

Lecture Notes in Computer Science 6652
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Alexander Romanovsky TullioVardanega (Eds.)

Reliable
Software Technologies -
Ada-Europe 2011

16th Ada-Europe International Conference
on Reliable Software Technologies
Edinburgh, UK, June 20-24, 2011
Proceedings

13

Volume Editors

Alexander Romanovsky
Newcastle University, School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: alexander.romanovsky@newcastle.ac.uk

Tullio Vardanega
University of Padua, Department of Pure and Applied Mathematics
Via Trieste 63, 35121 Padua, Italy
E-mail: tullio.vardanega@math.unipd.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21337-3 e-ISBN 978-3-642-21338-0
DOI 10.1007/978-3-642-21338-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.3, D.2, F.3, C.2, H.4, C.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 16th edition of the International Conference on Reliable Software Technolo-
gies – Ada-Europe 2011—took place in the John McIntyre Conference Centre,
Edinburgh (UK). Previous editions of the conference were held in Switzerland
(Montreux 1996 and Geneva 2007), United Kingdom (London 1997 and York
2005), Sweden (Uppsala 1998), Spain (Santander 1999, Palma de Mallorca 2004
and Valencia 2010), Germany (Potsdam 2000), Belgium (Leuven 2001), Austria
(Vienna 2002), France (Toulouse 2003 and Brest 2009), Portugal (Porto 2006),
and Italy (Venice 2008).

This year Ada-Europe was combined with the Ada Conference UK 2011 in one
event, the Ada Connection, a union of two Ada events that have both been very
successful in their own right. The Ada-Europe series of conferences has become
established as an international forum for providers, practitioners and researchers
in all aspects of reliable software technologies. The Ada Conference UK has been
running in its current form since 2006 as a series of biennial one-day events, to
highlight the increased relevance of Ada in safety- and security-critical systems.
By combining these events, the Ada Connection provides a unique opportunity
for interaction and collaboration between academics and industrial practitioners.

The Ada-Europe conference represents the main annual event promoted by
Ada-Europe, in cooperation with ACM SIGAda. This third visit to the UK
acknowledges the fact that the Ada community in this country is a major con-
tributor to Ada-Europe’s activities. This year the conference was organized by
members of the Centre for Software Reliability (CSR) and School of Computing
Science, Newcastle University (Newcastle upon Tyne, UK).

The scientific program of the conference, which feeds these proceedings, also
included sessions devoted to multicore, verification, architecture and modelling,
education and mixed criticality, all combined under a more general heading of
reliable software technologies. This program is the result of a thorough selection
process of 12 papers out of 30 submissions received from authors representing
14 countries.

The conference was enriched with the three keynote talks delivered by the
invited speakers, opening the three central days of the conference:

– Peter Bernard Ladkin (University of Bielefeld CITEC and Causalis Limited),
a recognized specialist in system safety, spoke about “Functional Safety of
Software-Based Critical Systems.”

– Pippa Moore (UK Civil Aviation Authority), an Avionic Systems Design
Surveyor working with the CAA for over 14 years, gave a talk entitled “Hip-
pocrates and DO-178B.”

VI Preface

– Jeff O’Leary (US Federal Aviation Administration) with more than 18 years’
experience in software development, systems acquisition and deployment
of large-mission critical command and control systems, gave a keynote on
“Assuring Software Reliability While Using Web Services and Commercial
Products.”

These proceedings include a paper by O’Leary based on the material he presented
during the conference.

The conference program included two panels: Programming Languages Meet
Multicore and DO178C and Object-Orientation for Critical Systems. The first
panel discussed how the advent of multicore is shaking the very foundations
of programming languages for concurrency, resource sharing, synchronization,
etc. The panel was moderated by Erhard Ploedereder (University of Stuttgart)
with Alan Burns (University of York), Tucker Taft (Sofcheck, Inc), and Kevin
Hammond (University of St. Andrews) taking part as the panelists. The panel
on DO178C and Object-Orientation for Critical Systems discussed how the
high-integrity systems industry could reap the benefit of object orientation in
their rigid and demanding development process. The panel was moderated by
Tim Kelly (University of York) and involved Cyrille Comar (AdaCore), Jean-
Pierre Rosen (Adalog) and Dewi Daniels (Verocel) debating pros and cons, risks
and opportunities and ways to introduce elements of object orientation into
safety-critical system development. The proceedings include a number of position
statements.

As a forum that aims at connecting academics with the industrial knowledge
and experience centered around reliable software technologies, the conference
also included an exciting set of industrial presentations:

– The Transition from MISRA C to SPARK Ada in Active Life Support, by
Alex Deas (DeepLife)

– Ada Experience: ANSALDO Railways ‘Available Safety Computer’ CSD, by
Frederic Pinot (Ansaldo STS)

– Executable UML Models for High-Integrity Development, by Sam Moody
(AWE)

– Implementing a Software Product Line for a Complex Avionics System in
Ada83, by Frank Dordowsky (ESG Elektroniksystem)

– Crimeville - Using Ada Inside an On-line Multi-user Game, by Jacob Sparre
(J.S. Andersen Consulting)

– Monitorisation of Real-Time Properties of Certified Distributed Systems, by
Urueña Pascual (GMV Aerospace)

– Debugging Mechatronic Applications Written in Ada, by Wiljan Derks (NXP)
– Automatic Code Generation Tools Developed in the Ada Language in a Safety-

Critical Context, by Laurent Duffau (Airbus)
– Real-Time Management and Production Systems for Manufacturing and En-

ergy Facilities, by Jozef Cvirik (Ipesoft)

Preface VII

– An Overview of DO-178C, by Dewi Daniels (Verocel)
– Building Software Tools in Ada: The Rapita Experience, by Andrew Coombes

(Rapita)
– The Implementation of High-Integrity Data Structures, by Phil Thornley

(SPARKsure)

The conference also included a series of tutorials offering the participants an
opportunity to learn particular approaches, technologies and tools, all aiming at
the development of reliable software:

– Experimenting with ParaSail: Parallel Specification and Implementation Lan-
guage, by S. Tucker Taft (SofCheck, Inc.)

– Designing and Checking Coding Standards for Ada, by Jean-Pierre Rosen
(Adalog)

– Programming Distributed Systems with YAMI4, by Maciej Sobczak (Inspirel)
– Why and How to Measure Non-functional Properties On-target, by Ian Broster

(Rapita Systems Ltd.)
– Revamping the Software Technical Review Process, by William Bail (The

MITRE Corporation)
– Use of Object-Oriented Technologies in High-Reliability Systems, by Jean-

Pierre Rosen (Adalog)
– MAST: Predicting Response Times in Event-Driven Real-Time Systems, by

Michael G. Harbour (Universidad de Cantabria)
– SPARK. The Libre Language and Toolset for High-Assurance Software, by

Roderick Chapman (Altran Praxis)
– Distributed Programming Techniques in Ada, by Thomas Quinot (AdaCore)

The conference program also included an invited lecture by Les Hatton, Pro-
fessor of Forensic Software Engineering at Kingston University, well known for
his contributions in software engineering. A paper drawn from Hatton’s talk is
included in these proceedings.

The conference’s success heavily depends on the active and generous contri-
bution of a number of individuals and organizations. All of them deserve our
most sincere thanks. We are specially grateful to all who submitted quality con-
tributions that enabled us to build an attractive and technically sound program.
Of course we would like to thank all the attendees, who enable the conference to
thrive. We want to thank the Organizing Committee for their help and support
during the preparation of this event: Rod Chapman and Steve Riddle (Confer-
ence Co-chairs), Jamie Ayre (Industrial Chair), Albert Llemośı (Tutorial Chair),
Joan Atkinson (Exhibition Chair), and Dirk Craeynest (Publicity Chair). The
organizers are also grateful to the members of the Local Organizing Committee
at Newcastle University: Claire Smith and Dee Carr.

VIII Preface

The members of the Program and Industrial Committees did a fantastic job
in providing quality reviews helping the Organizing Committee in the difficult
task of eliciting the final contents of the conference. Last but not least, we wish
to express our gratitude to the sponsors at the conference: AdaCore, Altran
Praxis, Atego, BAE Systems, Ellidiss Software, Green Hills Software, INTECS
and Rapita Systems Ltd.

June 2011 Alexander Romanovsky
Tullio Vardanega

Organization

The 16th International Conference on Reliable Software Technologies – Ada-
Europe 2011—was organized by Ada-Europe and Newcastle University (UK), in
cooperation with ACM SIGAda.

Organizing Committee

Honorary Chair John Barnes
(John Barnes Informatics, UK)

Conference Co-chairs Rod Chapman
(Altran Praxis Ltd., UK)
Steve Riddle
(Newcastle University, UK)

Conference Program Co-chairs Alexander Romanovsky
(Newcastle University, UK)
Tullio Vardanega
(Università di Padova, Italy)

Tutorial Chair Albert Llemośı
(Universitat de les Illes Balears, Spain)

Industrial Chair Jamie Ayre
(AdaCore, France)

Exhibition Chair Joan Atkinson
(CSR, UK)

Publicity Chair Dirk Craeynest
(Aubay Belgium and K.U. Leuven, Belgium)

Financial Chair Neil Speirs
(Newcastle University, UK)

Program Committee

Alejandro Alonso
Ted Baker
Johann Blieberger
Jørgen Bundgaard
Bernd Burgstaller
Alan Burns
Jon Burton
Rod Chapman
Dirk Craeynest
Alfons Crespo
Juan A. de la Puente

Franco Gasperoni
Michael González

Harbour
José-Javier Gutiérrez
Andrew Hately
Peter Hermann
Jérôme Hugues
Albert Llemośı
Franco Mazzanti
John McCormick
Julio Medina

Stephen Michell
Javier Miranda
Daniel Moldt
Jürgen Mottok
Laurent Pautet
Lúıs Miguel Pinho
Erhard Plödereder
Jorge Real
Alexander Romanovsky
Bo I. Sanden
Sergio Sáez

X Organization

Ed Schonberg
Theodor Tempelmeier
Jean-Loup Terraillon

Elena Troubitsyna
Santiago Urueña
Tullio Vardanega

Andy Wellings
Jürgen Winkler

External Reviewers

Albert Black
Lawrence Cabac

Ramn Fernndez
Alex Green

Alexei Iliasov
Hector Perez Tijero

Table of Contents

Keynote Talk

Assuring Software Reliability While Using Web Services and
Commercial Products . 1

Jeffrey O’Leary

Multicore

Detecting High-Level Synchronization Errors in Parallel Programs 17
Syed Aoun Raza, Stefan Franke, and Erhard Ploedereder

Design and Implementation of a Ravenscar Extension for
Multiprocessors . 31

Fabien Chouteau and José F. Ruiz

A Real-Time Framework for Multiprocessor Platforms Using
Ada 2012 . 46

Sergio Sáez, Silvia Terrasa, and Alfons Crespo

Verification

The SQALE Quality and Analysis Models for Assessing the Quality of
Ada Source Code . 61

Thierry Coq and Jean-Pierre Rosen

Adapting ACATS to the Ahven Testing Framework 75
Dan Eilers and Tero Koskinen

Model-Based Analysis and Design of Real-Time Distributed Systems
with Ada and the UML Profile for MARTE . 89

Julio L. Medina and Alvaro Garcia Cuesta

Architecture and Modelling

Developing Dependable Software-Intensive Systems:
AADL vs. EAST-ADL . 103

Andreas Johnsen and Kristina Lundqvist

A Formal Approach to Design and Verification of Two-Level
Hierarchical Scheduling Systems . 118

Laura Carnevali, Giuseppe Lipari, Alessandro Pinzuti, and
Enrico Vicario

XII Table of Contents

Architecting a Common Bridge Abstraction over Different Middleware
Paradigms . 132

Iago Rodŕıguez-López and Marisol Garćıa-Valls

Education and Mixed Criticality

Using Robotics as a Motivational Tool: An Ada Interface to a Pioneer
Robot . 147

Rigoberto Chil, Diego Alonso, Francisco Ortiz, and Juan Pastor

ORK+/XtratuM: An Open Partitioning Platform for Ada 160
Ángel Esquinas, Juan Zamorano, Juan A. de la Puente,
Miguel Masmano, Ismael Ripoll, and Alfons Crespo

Implementing Mixed Criticality Systems in Ada . 174
Sanjoy Baruah and Alan Burns

Panel: Language Paradigms for Multicore
Programming

Programming Languages Meet Multicore . 189
Erhard Ploedereder

Programming Languages for Real-Time Applications Executing on
Parallel Hardware . 193

Alan Burns

Multicore Programming in ParaSail: Parallel Specification and
Implementation Language . 196

S. Tucker Taft

Why Parallel Functional Programming Matters: Panel Statement 201
Kevin Hammond

Panel: DO178C and Object-Orientation for Critical
Systems

OOT, DO-178C and SPARK . 206
Roderick Chapman and Trevor Jennings

Position Paper: DO-178C/ED-12C and Object-Orientation for Critical
Systems . 211

Dewi Daniels

Object Orientation in Critical Systems: Yes, in Moderation – Position
Paper for the DO178C and Object-Orientation for Critical Systems
Panel . 214

Jean-Pierre Rosen

Table of Contents XIII

Signet Library Talk

On the Evolution of Unnatural Language . 219
Les Hatton

Author Index . 227

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 1–16, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Assuring Software Reliability While Using Web Services
and Commercial Products

Jeffrey O’Leary

En-Route and Oceanic Programs, Air Traffic Organization (ATO-E)
US Federal Aviation Administration, Washington DC 20591, USA

Jeff.Oleary@FAA.Gov

Abstract. FAA’s recent large Ada based En-Route Automation Modernization
(ERAM) program has reintegrated many disparate system components into a
modern composite architecture. The program must now deliver on its promise
to facilitate the evolution of the U.S. National Airspace System (NAS) by
integrating Next Generation Air Traffic Control (ATC) capabilities starting with
System Wide Information Management (SWIM), Automatic Dependent
Surveillance (ADS-Broadcast) and the En Route Data Communications (Data
Comm). One of the major challenges is to implement and leverage more open,
flexible interfaces made possible by web service technologies and to ensure
reliability and security of high performance data and communications services
despite increased reliance on less trusted commercial products. The paper
focuses on maturity, problems and lessons learned during the development of
the initial SWIM as a Service Oriented Architecture (SOA) extension to the En
Route Automation Modernization ERAM System.

Keywords: FAA, Air Traffic Control, ATC, Web Technologies, High
Reliability, Safety Critical, ERAM, SWIM, DataComm, ADS-B, FUSE™,
Lessons Learned, SOA, SOA Security.

1 Introduction

The U.S. Federal Aviation Administration (FAA) manages sixty percent of the
world’s air travel. The agency depends upon large, complex and highly available and
reliable software systems to manage the vast commercial and civil aviation network
and to carry out the agency’s mission of ensuring high capacity, efficient and
extremely safe air travel for the flying public. Ada has become a strategic technology
in developing and sustaining systems that require high availability and high
reliability.

ERAM, developed by the Lockheed Martin Corporation provides the automation
services for the En Route domain at the twenty Continental United States Air Route
Traffic Control Centers (ARTCCs). The ERAM system is comprised of three
environments: 1) Operational, 2) Support, and 3) Test and Training and is the
backbone of the U.S. En-route Air Traffic Control system. The current total ERAM

2 J. O’Leary

software size is approximately 1.45 million lines of code with more than fifty percent
of the operational code written in Ada.

The Next Generation Air Transportation System (NextGen) [1] is the Federal
Aviation Administration’s (FAA) plan to modernize the National Airspace System
(NAS) through year 2025. Through NextGen, the FAA is addressing the impact of air
traffic growth by increasing NAS capacity and efficiency while simultaneously
improving safety, reducing environmental impacts, and increasing user access to the
NAS. NextGen consists of five major elements:

SWIM will provide a single infrastructure and information management system to
deliver high quality, timely data to many users and applications. By reducing the
number and types of interfaces and systems, SWIM will reduce data redundancy and
better facilitate multi-user information sharing. SWIM will also enable new modes of
decision making as information is more easily accessed.

ADS-B will use the Global Positioning System (GPS) satellite signals to provide
air traffic controllers and pilots with much more accurate information that will help to
keep aircraft safely separated in the sky and on runways. Aircraft transponders receive
GPS signals and use them to determine the aircraft's precise position in the sky. This
and other data is then broadcast to other aircraft and air traffic control. Once fully
established, both pilots and air traffic controllers will, for the first time, see the same
real-time display of air traffic, substantially improving safety. The FAA will mandate
the avionics necessary for implementing ADS-B.

DataComm: Current communications between aircrew and air traffic control, and
between air traffic controllers, are largely realized through voice communications.
Initially, the introduction of data communications will provide an additional means of
two-way communication for air traffic control clearances, instructions, advisories,
flight crew requests and reports. With the majority of aircraft data link equipped, the
exchange of routine controller-pilot messages and clearances via data link will enable
controllers to handle more traffic. This will improve air traffic controller productivity,
enhancing capacity and safety.

Next Generation Network Enabled Weather (NNEW) - Seventy percent of NAS
delays are attributed to weather every year. The goal of NNEW is to cut weather-
related delays at least in half. Tens of thousands of global weather observations and
sensor reports from ground, airborne and space-based sources will blend into a single
national weather information system, updated in real time. NNEW will provide a
common weather picture across the national airspace system, and enable better air
transportation decision making.

NAS voice switch (NVS) - There are currently seventeen different voice switching
systems in the NAS, some in use for more than twenty years. NVS will replace these
systems with a single air/ground and ground/ground voice communications system.

ERAM has already been developed and currently is in the deployment phase.
Several of the En-route sites have already started using the ERAM system for air
traffic services. Being the backbone of the En-route ATC System, all five major
NextGen elements will need to integrate with ERAM. The author is involved with the
software development of the ERAM programs and will oversee development and
integration of the subsystems and components to incorporate the NextGen elements
and capabilities.

 Assuring Software Reliability While Using Web Services and Commercial Products 3

2 Achieving Software Reliability

FAA’s Software systems are growing in complexity and size, and new software
paradigms support new forms of mix and dynamic progression of software
applications. Following sections discusses the En Route systems environment and
challenges inherent in software development of the web technology- based SWIM
system, called ERAM SWIM.

2.1 NAS Service Criticality

The FAA defines service criticality in National Air Space Document NAS-SR-1000A
[2] for each Air Traffic Control (ATC) service as

• Critical – A service that if lost would raise the risk associated with providing safe
and efficient local NAS operations to an unacceptable level

• Essential – service if lost would significantly degrade ATC such as weather,
General Info, Monitor & Control, System Data Recording

• Routine – service if lost would not significantly impact ATC such as Test &
Training, Support

In terms of the availability, down time and switch time, numbers converts to the
following –

Fig. 1. Service Criticality, Down Time and Switch Time for En-route ATC Systems

The ERAM software implements requirements associated with each of these
categories: radar data processing and display is safety critical while flight data
processing is efficiency critical. The ERAM SWIM program was originally conceived
as being essential, but as the SWIM program has evolved it became increasingly clear
that the system or subsystem services provided would evolve as it offered
opportunities to increase automation in efficiency critical flight data coordination
across NAS systems. For example, the preliminary architecture for the initial En
Route and Terminal portions of DataComm proposed to utilize ERAM SWIM to
facilitate sharing of flight data from all twenty ERAM centers to support the logon
and context management functions. This also introduced new requirements for
explicit safety assurance engineering mitigation in both ERAM and ERAM SWIM.
Switch time, of course, alludes to the reliability and fault tolerance strategies
employed to achieve the higher availability requirements. These strategies include

4 J. O’Leary

synchronized hot standby Address Spaces (AS), robust error detection and rapid
recovery including data reconstitution redundant processor resources, and redundant
network paths guaranteeing message atomicity, ordering, and integrity. Address
Space (AS) is a unit of work dispatchable by the operating system. Each AS occupies
its own area of memory in the processor and each AS contains one Ada main
program. Reference [3] provides a good overview of the ERAM architecture; for our
purposes it is sufficient to understand that reliability engineering is a prime driving
consideration in the architecture and development of En Route Systems. To achieve
the availability and reliability profile, the En Route program office has implemented
an increasingly feature rich middleware supporting various capabilities needed to
facilitate real world operations mostly supported by the FlightDeck® [4]. ERAM is
the latest evolutionary step and implements a layered API-based architecture of
system management and real-time monitoring capabilities. Table 1 identifies a subset
of those capabilities that are vital to the reliability strategies of ERAM.

Table 1. Key ERAM Middleware FlightDeck® Features supporting RMA

Fault Tolerance features Low-level crash and hang detection,
notification to backup resources to
become primary, fault data recording,
and automatic restart and recovery of
failed components.

Monitoring and Control features Continuously updated, detailed status
and performance data from each
application, processor and network
element; failure alerts and warnings;
operator commands to element to
restart, switch, stop, change modes
(active, backup, test); monitor system
security; generate detailed off-line
performance and status reports;
configure and control simulations.

Software Upgrade and System
Maintenance features

Ability to download, load and cutover
new versions of system and application
software or adaptation without
impacting user operations/cutover.
Ability to remove and replace hardware
and configure new resources

Support for data recovery, capture and
debugging

Extensive reconfigurable data recording
of system and application state,
messages and data; off-line and on-line
diagnostics, file management and state
service check pointing to support
application synchronization, switching
and restarting even (e.g.) from complete
facility power failures.

 Assuring Software Reliability While Using Web Services and Commercial Products 5

ERAM and the other major NAS systems have developed and evolved these
capabilities and the software to implement them in order to achieve the Reliability,
Maintainability and Availability (RMA) and system requirements. The FAA system
users who monitor, control, repair and support the operational systems have
developed requirements, detailed expectations, and extensive procedures for
managing and certifying the operational system resources are ready and able to meet
the required availability profiles and support air traffic services. The NAS systems,
including ERAM, are largely custom developed, proprietary and expensive. This
makes data sharing and integration across major NAS components very difficult,
expensive and inefficient. To evolve the NextGen capabilities the services and data in
these systems must be exposed and connected securely to the authorized systems.

3 System Wide Information Management (SWIM)

As discussed above, today’s National Airspace System (NAS) comprises systems that
have been developed over time for specific purposes. In general, they are connected
discretely to support specific data and information exchange needs. Each of these
interfaces is custom designed, developed, managed, and maintained individually at a
significant cost to the FAA. The NextGen relies upon a new decision construct that
will bring more data, systems, customers, and service providers into the process. Data
will be needed at more places, for more purposes, in a timely manner, and in common
formats and structures to ensure consistent use. The resulting decisions must be
distributed to the affected parties efficiently and reliably to support timely execution.

In the past, the state of the art for connecting two systems required a fixed network
connection and custom, point-to-point, application-level data interfaces. Current NAS
operations depend upon these legacy information systems, but much of their data
remains inaccessible to the rest of the NAS. This is an impediment to efficiency,
impairs situational awareness across the NAS, and prevents optimization of ATC
services. The FAA has identified a need to reduce the high degree of interdependence
among systems and move away from the proliferation of unique, point-to-point
application interfaces. Therefore, SWIM as envisioned will provide an open, flexible,
and secure information management architecture for sharing NAS data and enabling
increased common situational awareness and improved NAS agility. SWIM will
implement commercial off-the-shelf hardware and software to reduce development
cost and time as well as support a loosely coupled service-oriented architecture that
allows for easier integration of new connections, services and systems.

The mission of the SWIM Program is to realize greater information sharing among
NAS stakeholders, both FAA and non-FAA users, to support the NextGen concept of
operations. This includes, but is not limited to, aeronautical information, flight data,
traffic flow management data, surveillance, and weather information. To achieve this
mission, SWIM’s strategy is to migrate and connect NAS applications into a
distributed processing environment focused on information sharing. The larger
mission requires these systems to be highly scalable, robust and agile. These open
architecture principles are expected to provide value by reducing costs, reducing risks,
enabling new services, and extending existing services to facilitate highly coordinated
NAS wide operations.

6 J. O’Leary

Fig. 2. Point-to-Point Interfaces Transformed by the SWIM

As indicated in Figure 2, currently numerous systems in the NAS communicate
with each other using unique, custom point to point connections.

Specifically, SWIM has been under development using Service Oriented
Architecture (SOA) principles in designing and specifying NAS Air Traffic
Management (ATM) services. Key functional elements of the SWIM SOA are the
SWIM Core Capabilities and SWIM Business services. The initial SWIM Core
Capabilities are: Interface Management (Interface Specification, Interface Discovery,
Schema Management, Service Invocation, SWIM Basic Profile), Messaging (reliable
messaging), Security (authentication and authorization), and Enterprise Service
Management (service monitoring and configuration). The SWIM Program Office
specifies the standards for all SWIM Core Capabilities; however, implementation is
delegated to the domain and major program offices called SWIM Implementing
Programs (SIPS).

The SWIM Service Container [5] is an infrastructure component that will provide
many of the needed support (hosting) capabilities. It will relieve the SWIM
Implementing Program (SIP) implementers of some of the housekeeping tasks
required in service delivery. It should provide connections to data, to messaging
services, and to authentication/authorization services (i.e., the SWIM Core
Capabilities), as well as provide logging, error handling, and other support functions.
SWIM will use the Service Container as a means for achieving consistency and
interoperability among diverse NAS programs and operating elements, in the absence
of a centralized service infrastructure. The Service Container will be comprised of an
existing product (commercial off-the-shelf (COTS) or open source software) with

 Assuring Software Reliability While Using Web Services and Commercial Products 7

components configured to support SWIM specific goals such as interoperability,
extensibility, and portability. The Service Container also serves as the point of
enforcement for enterprise-wide SWIM policies and accelerates service
implementation by providing standard, reusable common infrastructure elements. It
provides access to enterprise resources and simplifies the service design and
development process.

Therefore, SWIM in other words is an IT infrastructure program that will operate
in the background to provide data to authorized users. SWIM will implement a
Service-Oriented Architecture (SOA) in the NAS and will allow the FAA to create
new system interfaces more quickly and cheaper than is possible today. It will
facilitate the data-sharing that is required for NextGen. SWIM is not a set of avionics
equipment or a substitute for NAS modernization programs or to replace the FAA
Telecomm Infrastructure (FTI). As a matter of fact, SWIM will enable increased
common situational awareness and improved NAS agility to deliver the right
information to the right place at the right time.

Progress® FUSE™ Services [6], which is a middleware providing a web service
stack supporting an Enterprise Service Bus (ESB) messaging framework, was selected
and is now in use in several SWIM development projects. FUSE™ is an open source
SOAP and REST web services platform based on Apache CXF for use in enterprise
IT organizations. It is productized and supported by the FuseSource group at Progress
Software. FUSE™ Services Framework service-enables new and existing systems for
use in enterprise SOA infrastructure. It is a pluggable, small-footprint engine that
creates high performance, secure and robust services using front-end programming
APIs like JAX-WS and JAX-RS. It supports multiple transports and bindings and is
extensible so developers can add bindings for additional message formats so all
systems can work together without having to communicate through a centralized
server. FUSE™ Services Framework is part of a family of SOA infrastructure tools
that include the FUSE™ ESB (based on Apache ServiceMix), FUSE™ Message
Broker and FUSE™ Mediation Router (based on Apache Camel).

Function

FUSE™
Component

Open Source Apache
Project

Web Services (WS) Stack
FUSE™ Services

Framework
Apache CXF

JMS Messaging FUSE™ Message Apache ActiveMQ

Integration Patterns (EIP)
FUSE™

Mediation Router
Apache Camel

Service Bus (ESB),
OSGi Service Container

FUSE™ ESB Apache Service Mix

Fig. 3. FUSE™ Functions Matrix

Most importantly, the FUSE™ products can be configured in a cluster type
environment to support the primary/standby configuration needed for failover to
achieve higher reliabilities. Specifically, the Message Broker, of Apache ActiveMQ
can coordinate Master-Slave JMS message communication between applications in

8 J. O’Leary

redundant service containers within a processor or between two processors. For
ERAM SWIM the design is to establish the redundant processors into an Application
Cluster LAN with two Gigabit Ethernet cables cross-mounted between the servers.
EtherChannel [7] is used to combine the two connections into a single logical channel
able to withstand failure in one of the connections and support high bandwidth if
required. The primary/standby state information is shared through a file system on the
En Route enterprise storage servers. It required extensive learning and testing, and
assistance from the Progress vendor to implement this approach, however testing so
far has shown that the ActiveMQ Master-Slave broker achieves almost immediate
failover after detection of the failure of a primary component. As will be seen,
extensive effort went into improving detection of some failures and failure modes.

Most of the SWIM programs so far, including ERAM SWIM, have selected
Eclipse, a free and open source (FOSS), web service-friendly integrated development
environment (IDE). The Eclipse Project (now Eclipse Foundation) was started by
IBM in November 2001 with many other vendors and established in January 2004 as
an independent, not-for-profit corporation, to act as the guardian for the Eclipse
community. The Eclipse platform is a universal tool platform. It can handle most any
type of resource (Ada, Java, C / C++, XML, HTML, even doc or text files.). The
Eclipse architecture supports extensions (developed as plug-ins) that teach the
platform how to work with these different kinds of resources. Hibachi Ada
Development Tools project (ADT), is the Ada plug-in for Eclipse that provides
extensive functionality for Ada developers, needed for the ERAM interface. For
ERAM SWIM, Eclipse is supported on the developers’ Windows workstations using
an existing plug-in which allows Eclipse to communicate with ERAM’s AIX
development machines.

Maven serves a similar purpose as the Apache Ant tool which is more or less the
imake equivalent for these environments. Maven (FOSS) uses a construct known as a
Project Object Model (POM) to describe the software project being built, its
dependencies on other external modules and components, and the build order. It
comes with pre-defined targets for performing certain well defined tasks such as
compilation of code and its packaging. Maven is also architected to support plug-ins
allowing it to use any application using standard inputs. Maven dynamically
downloads Java libraries and Maven plug-ins from one or more repositories. Maven
provides built-in support for retrieving files from the Maven Central Repository [8]
and other Maven repositories, and can upload artifacts to specific repositories after a
successful build. A local cache of downloaded artifacts acts as the primary means of
synchronizing the output of projects on a local system.

3.1 ERAM SWIM Architecture

The ERAM SWIM initially is developing capabilities to use this SOA web service
paradigm to increase NAS wide access to flight data in support of new traffic
management capabilities. As depicted in Figure 4 below, the SWIM Interface
Subsystem (SIS) uses the FUSE™ ESB and infrastructure components, running on an
AIX platform, to implement an OSGi service container that manifests the physical
end-points and service interface. It is instantiated as a single JVM process on each of
two SWIM servers which allows for load-balancing, fault-tolerance, and software

 Assuring Software Reliability While Using Web Services and Commercial Products 9

maintenance. The service container also handles the inflow and outflow of
management data, such as auditing, configuration, error handling, and service status.
In this first phase, now in test and preparing for deployment at a single ERAM site,
each SIS consists of a single service hosted in the OSGi container which will
automate flight plan changes from the Traffic Flow Management System (TFMS) to
mitigate severe weather or other air traffic flow initiatives [9]. TFMS will request and
consume pre-departure flight plans impacted by the initiative, create a reroute
amendment, and submit that back to ERAM as an update request via the SWIM
Interface Service (SIS). FUSE™ Mediation router (CAMEL), Message Broker (JMS)
and Services Framework (CXF) provide for SOAP/JMS messages, handle the
transport mechanisms, and supports automatic failover. SIS sends the update requests
(amendments) to the SWIM adapter in the appropriate ERAM using this “back-end”
interface.

Key Site
FIS

ZAB
FIS

ZTL
FIS

.. x19 ..

FTI
ERAM SWIM

Service Consumers

ERAM Op Channels
SWIM Interface Services (SIS)

Subsystem

Key
Site
FIS

SWIM Servers

ERAM R3 Consumer:
TFMS for Pre-departure
Reroute Amends

ZAB
.
.
.

ZTL
(x19)

ERAM Op Channels

ERAM Op Channels

ERAM
Back-end Interface

ZAB
FIS

ZTL
FIS

.. x19 ..

ERAM
Back-end Interface

20 Flight Information Service
SWIM Interfaces

ERAM
Back-end Interface

Chan
A

Chan
B

SWIM
Adapter

SWIM
Adapter

Chan
A

Chan
B

SWIM
Adapter

SWIM
Adapter

Chan
A

Chan
B

SWIM
Adapter

SWIM
Adapter

ZMP

Fig. 4. High Level Physical Architecture for initial ERAM SWIM Services [9]

The SWIM adapter is a client proxy of the ERAM flight data manager (FDM)
which “owns” the ERAM flight object data store. ERAM SWIM Service Consumers

10 J. O’Leary

(TFMS here) will communicate with the ERAM SWIM Flight Information Service
(FIS) using the FAA’s Telecommunications Infrastructure (FTI) routed over the
existing En Route Communications Gateway (ECG). Each ERAM has an ERAM
SWIM adapter component, providing the mechanism for FIS consumers to send or
receive data from the ERAM core. To minimize impact on ERAM performance, the
SWIM adapter - built on the ERAM Publisher FrameWork [10] - maintains a local
mirror of all relevant flight data. The SWIM adapter functions as a wrapper
translating the internal ERAM data representation to XML messages, publishing an
XML flight object to the SWIM application database, and converting XML flight
update requests back into internal ERAM binary format. Planned near-term
capabilities include the ability to support terminals obtaining pre-departure flight data
for local aircraft for use in uploading clearance information by DataComm in lieu of
current voice procedures. Numerous other flight data “consumer” applications are in
planning along with legacy replacement programs that would take advantage of the
new Flight Information Service (FIS) to move away from their current custom, single-
purpose interfaces. Still other services are envisioned for weather data, airspace, route
and restriction status information, radar track information, etc. ERAM also becomes a
consumer for other NAS system data such as Pilot Reports (PIREPs), other TFMS
flow data, and ATC Tower, and Runway Visual Range (RVR) data.

Fig. 5. Software Architecture of the ERAM-SWIM Components

 Assuring Software Reliability While Using Web Services and Commercial Products 11

The software architecture of the ERAM SWIM Application Services (ESAS) CSCI
is represented in Figure 5. In addition to the update, create, delete of the initial SIS
(light blue), now depicted as the ERAM Message Processor (EMP), a subscribe and
publish flight data service is provided using a WSDL-based FIS interface in the Web
Services Processor (WSP) component and as a JMS Message Processor (JMP)
replying to subscriber requests and endpoints. WSP exposes multiple service
endpoints to support load balancing and fail-over and performs authentication and
authorization of service consumers.

In addition, the future ERAM service consumer interfaces are depicted as the
consumer side of the WSDL-based web service (WSC) and JMS subscription service
(JMC). The context of the ERAM back end interface is extended to add DataComm
processing for context management and log-on services.

3.2 ERAM SWIM RMA Design Challenges

Figure 5 also explicitly depicts the System Analysis and Recording (SAR) logging
service (ELS), monitor and control and software release management interfaces
(EMS) providing the types of features described earlier for the ERAM FlightDeck®
middleware. ERAM SWIM service element status and performance will be
aggregated on the ERAM M&C consoles using the same iconography as other ERAM
elements. Control commands share the same GUI and command line semantics.
However, under the covers, the ERAM middleware is not there and most of these
capabilities differ not only in implementation, but also their semantics and behavior
which leads to a significant operator training burden and significant user acceptability
risk. Even with the more limited context of the initial single service SWIM SIS a
number of difficulties arose attempting to provide for similar RMA features and
providing for essential service critical performance. The next phases leading to the
end state architecture must be scalable to efficiency critical if, as expected, ERAM
SWIM services in the future are required to meet that level (e.g. Flight Data Input
Output replacement). The balance of this paper will discuss those challenges
including fault detection performance, failure recovery behavior, database fault
tolerance, CAS (commercially available software) and FOSS limitations and
problems that even extend to the development tools.

Certainly most critical to the FAA requirements and expectations is understanding
the reliability and availability of FUSE™ and other selected CAS/FOSS. ERAM’s
custom developed environment is carefully designed using allocated failure thresholds
on each component, however vendors and licensers of many software products
generally do not have or are unwilling to make failure mode and MTBF data available
to support decision making. The ERAM SWIM development team therefore had to
collect whatever industry available data they could, consult with company tech
support personnel, and apply industry norms based on software language and size to
calculate an expected failure rates for the COTS products. Table 2 shows the results
of that analysis for several key products selected for the SIS software and SWIM
servers.

12 J. O’Leary

Table 1. Calculated Failure Rates for Key ERAM SWIM CAS Products

Product Failure Rate
FUSE™ 4.785 E-06

TECTIA [11] 4.027 E-05
AIX (Includes Power VM) 1.240 E-06

ORACLE 1.376 E-06

Clearly FUSE™ presented a risk in achieving high reliability in the long run even

with robust redundancy and fail-over from the Master-Slave mechanisms. Perhaps
even more important to measure is the mean time to repair (MTTR) sometimes called
mean time to recover. MTTR begins at the failure and includes the time to detect the
failure, restart or switch processing resources, and reach steady state on the restarted
application. In ERAM developed software, particularly software supporting the
highest criticality services, recovery must usually complete on average within 5 to 6
seconds. To support this performance requirement, the middleware can detect the
overwhelming majority of failures in 1 to 2 ms by using an OS process state change
handler, complete failure handling and notify the standby address space well below
100 to 200 ms, and determine the scope and recovery action to begin restarting the
failed component under 500 ms from detection, and have the restarted application
redundancy restored with a complete restart of the failed element to become the
standby in 2 to 5 seconds. The very rare or unlikely software hang or loop condition
won’t achieve this, but is detectable by a configurable heartbeat mechanism, usually
set at about 6 seconds. The low probability of occurrence allows the aggregate
availability requirements to be met.

However, with the FUSE™ instances on ERAM SWIM, the middleware was not
there to implement these features partly to save cost and schedule, but also because
the initial SWIM service simply did not justify the need for this robustness. After all,
in the final analysis, SWIM is a message broker and router; for most uses it will
suffice to have the consuming client set a timer on its requests and retry on another
endpoint and/or the redundant service container so that the service is provided.
ERAM SWIM initially therefore specifies the client/consumer retry while failure
detection not detected by the ActiveMQ broker relies on a developed polling
mechanism using JMX to monitor the JVM PID. The ERAM SWIM developer had to
unexpectedly port and extend an ERAM low-level function to facilitate the
monitoring of the poll mechanism. The resulting time for ESAS to be able to process
web service requests after a single component failure on one SWIM server was
established as 30 seconds, a time that will likely need to be improved upon in the
future. To detect and recover broker hang conditions would be much higher and there
is concern some unknown failure modes may not detectable by the system at all.

Therefore, ERAM SWIM developers had to incorporate product changes under the
FUSE™/Apache license, in several processing threads. Essentially these changes
provided FUSE™ components the ability to dispatch events to the monitor – basically
heartbeats. The FUSE™ documentation and normal product tech support, however,
was not sufficient to understand where all these beating hearts needed to go and
it became necessary to engage Progress Software (Fuse™ vendor) architect level
engineers as private consultants to the developers to facilitate these and other

 Assuring Software Reliability While Using Web Services and Commercial Products 13

non-fatal alert features. Another key difference is that ERAM is able to make granular
recovery decisions to minimize the scope of the restart, but ERAM SWIM restarts the
entire service container on a node along with all of its bundles and endpoints in the
event of any ESAS or CAS failure. This increases the time to restore redundant
services by a small order of magnitude.

Other important differences exist in the area of commanding application resources
from the M&C position. FlightDeck® has several specifically designed directives and
receives an ACK from the application targeted. The system manager on SWIM relies
on simple SNMP requests and has no ACK feature, so that manual configuration,
maintenance, or recovery commanded actions are less certain. Likewise with status
reporting, ERAM applications collect and report detailed health information on the
applications resources and performance. SWIM relies on occasional polls to the major
products and, ultimately SWIM application health is derived from the interfacing
ERAM application which is running on FlightDeck® by monitoring the state of its
communication with ESAS. In fact, all status collection and reporting for the
available SWIM software elements is sent to the ERAM state service via the
interfacing ERAM application which then sends the updates to the ERAM M&C for
operator display and event recording.

Perhaps the biggest and most surprising challenge faced in architecture and design
of ERAM SWIM has been in providing for a robust, persistent, fault-tolerant data
store. Originally, SWIM expected to implement an Oracle cluster (Oracle RAC) in
particular to support a publication/subscriber service prototype. Several technical
problems were encountered and largely overcome. However, the procedures for
reconfiguring the cluster after a new software cutover was error-prone, not consistent
with current cutover design, and required administrator skills to correct if performed
improperly. In addition, after a network failure in the prototype configuration, it was
learned Oracle RAC will initiate a kernel panic to protect itself from shared database
corruption. SWIM servers, unlike ERAM FlightDeck®, do not have capabilities to
handle and recover from such a panic. Several alternative database options were
evaluated which had their own limitations that made them risky for the En Route
environment. The point design is now GPFS shared filed system implemented on the
En Route Enterprise storage subsystem which is a redundant pair of units. ActiveMQ
depends on the shared file system for queue/topic persistence and to support fail-over.
While prototyping it was learned that AIX mirroring with GPFS will lead to a file
system un-mount for lack of quorum when one of the two storage units is unavailable.
An unplanned application had to be written to perform the mirroring instead of using
the GPFS mirroring facilities which still leaves a tiny, but non zero dual failure risk.

3.3 System Safety and Security Considerations

ERAM SWIM makes some major changes which affect or relate to security. These
include moving from a single service consumer to multiple consumers, expanding
from a single key site to multiple ERAM SWIM sites and adding JMS inbound and
outbound traffic in addition to web traffic. The inbound JMS and web traffic is
externally initiated whereas the ERAM security architecture had ERAM initiating all
physical and data interfaces. Key components of the security approach include:

14 J. O’Leary

• Transport-level encryption is used (both inbound and outbound). This is
effectively HTTP/SSL for web traffic, JMS/SSL for publication traffic. The SSL
exchange is two-way.

• Certificate-based authentication using x.509 credentials will be necessary to
identify and authenticate users.

• Schema validation of all incoming messages

• Proxy web traffic, proxy JMS traffic.

Additionally, the credential-based access control is implemented on a per-operation,
per-data element basis.

Pre-departure DataComm is architected to leverage the FIS in phase 2 of ERAM
SWIM. DataComm applications are subject to safety assurance requirements of
DO278 [12]. After much agency deliberation the requirement was established as AL3,
but even this modest assurance level requirement requires that all developed,
commercial, and FOSS products be developed to that level or the safety risk
mitigated. The key challenge here is to assure flight data and message integrity in an
xml and web service environment. The DataComm architecture uses ERAM SWIM
as path or transport between DataComm application functionality that resides in
ERAM and DataComm applications that reside on the consumer side. Since FIS does
not need to do any actual flight data processing it was determined that the integrity
risk could be mitigated and thus assured to an acceptable level, by implementing high
integrity encryption around certain flight data. FIS will perform selection of flights
and filtering (masks) of the fields of a flight object needed by each subscriber, but is
constructed using the “untrusted” (per DO278) FUSE™ products. To resolve this
problem, the (trusted) ERAM SWIM adapter computes robust checksums on the key
protected data fields and includes the checksum as a field attribute in the SWIM XML
message. FIS passes it along in the filtered data it publishes to the authorized
consumer. Any consumer that requires high-integrity (such as DataComm) is then
responsible to retain the attribute through its consumer web service implementation
and verify field level integrity in a trusted application on the consumer side of the
interface. In reality, this data integrity issue is not unique to the SWIM environment;
ERAM will also be modified similarly to protect flight data integrity from CAS in the
ERAM environment including AIX and the Ada Runtime. However, this significantly
impacts CPU and network utilization of both ERAM and ERAM SWIM. Early
prototyping verifies the increases are a tolerable tradeoff to achieve the assurance
objectives while using the SWIM CAS and FOSS products.

As mentioned earlier, there is even an RMA impact from the associated
development tools. Software maintainability and supportability depend on available
tools. The FAA does not wish to become its own product support organization. In
selecting this large number of CAS and FOSS products for ERAM SWIM, it was
necessary to consider the cost and difficulty if these products later had to be replaced,
and for more critical components whether the vendor or consortium managing them
was capable and committed for the medium to long term. The Hibachi ADT plug in
for Eclipse IDE fortunately was not actually used in this project because Ada software
in the SWIM programs represented enhancements and modification of actual ERAM

 Assuring Software Reliability While Using Web Services and Commercial Products 15

“owned” source code, not new features for the SWIM service environment.
Therefore, all ERAM mods and additions followed the ERAM development process
and used the baselined development environment. As of January 2011, Hibachi ADT
is an archived project on the Eclipse Foundation web site. There appear to be no
current plans to support and promote those capabilities so that had the program
incorporated it would now have to evaluate its’ risk and the cost to move away from
it. In this CAS/FOSS collaborative environment there clearly are significant
supportability risks to be managed.

4 Conclusions

ERAM SWIM developers successfully implemented initial ERAM SWIM supporting
create, update, delete using Java based web services to interface with ERAM to
implement a robust Flight Information Service that will be used to automate
previously manual reroute procedures. Many more opportunities exist to exploit this
single interface to ERAM to support sharing across the NAS. The service container
will allow these services to share the interface even while maintaining independence
and allowing decoupling of the internal implementation. A number of challenges were
overcome; chief among them is overcoming the dearth of product documentation and
support for developing high availability web services. Some of the difficulties
encountered result from the institutionalization of strategies and procedures in the
FAA En Route domain. The learning curve for developing high reliability web
services is steep and requires significant experimenting, consulting and expert
assistance, as well as analyzing the source code of the FOSS products for failure
mode and implementation details not documented to the same standards that custom
developed code is expected to meet. Productivity with FOSS is very high because the
key functional capabilities exist already and the developers’ job is to configure and
harness those capabilities to meet the requirements of the particular service to be
implemented.

Acknowledgements. The author wishes to thank Dr. Alok Srivastava, Technical
Fellow of TASC Inc. for the initiative and the discussions, and FAA’s ERAM and
ERAM-SWIM Program Offices for their support. Assistance and support from the
ERAM and ERAM-SWIM development team of Lockheed Martin Corporation is also
highly appreciated.

References

1. FAA Next Generation Air Transportation System (NextGen),
http://www.faa.gov/nextgen/

2. NAS SR-1000A, National Airspace System, System Requirements Specification,
http://www.faa.gov/about/office_org/headquarters_offices/
ato/service_units/techops/atc_facilities/cm/dcc/
also available freely on the other websites

16 J. O’Leary

3. Keynote presentation - Use of Ada in Lockheed Martin for Air Traffic Management and
Beyond by Judith Klein of Lockheed Martin. In: ACM SIGAda 2006 International
Conference, Albuquerque, New Mexico, USA (2006)

4. Keynote presentation - An Ada Retrospective: Developing Large, Mature, and Reliable
Systems by Richard Schmidt of Lockheed Martin Information Systems & Global Services.
In: ACM SIGAda 2009 International Conference, Tampa Bay, Florida, USA (2009)

5. FAA SWIM Program Office Reference to the SWIM Container Infrastructure,
http://www.faa.gov/about/office_org/headquarters_offices/ato/
service_units/techops/atc_comms_services/swim/documentation/
media/newsletters/SWIMNewsletter_EditionOneweb.pdf

6. FUSETM Source Progress Software Company, http://FUSESource.com/
7. CISCO Ether Channel, http://www.cisco.com
8. Maven – An Apache software project management and comprehension tool,

http://maven.apache.org/
9. Goldstein, S., Indigo Arc LLC, Rockville Maryland USA, High Level Physical

Architecture for initial ERAM SWIM Services White Paper (2009)
10. Klein, J., Sotirovski, D.: The Publisher Framework. Ada User Journal 27(4)

(December 2006)
11. TECTIA Information Security COTS Solutions, http://www.tectia.com/en.iw3
12. DO 278 A Radio Technical Commission for Aeronautics (RTCA) Inc. developed

Guidelines for Communications, Navigation, Surveillance, and Air Traffic Management
(CNS/ATM) Systems Software Integrity Assurance, http://www.rtca.org/

Detecting High-Level Synchronization
Errors in Parallel Programs

Syed Aoun Raza, Stefan Franke, and Erhard Ploedereder

Dept. of Programming Languages, University of Stuttgart
Universitaetsstrasse 38, 70569 Stuttgart, Germany

{raza,ploedere}@informatik.uni-stuttgart.de,
stefan-franke@web.de

Abstract. Synchronization errors in parallel programs are not limited to race
conditions involving accesses to single variables. Absence of these errors does
not guarantee that programs are error free. However, many of the remaining errors
cannot be recognized without a higher level of abstraction for the communication
patterns. This paper discusses two types of high-level error scenarios, namely
non-atomic protection and lost-updates, and presents a static framework to detect
situations where such synchronization anomalies can manifest themselves.

1 Introduction

The recent introduction of multi-core processor architecture has brought much
popularity and attention to parallel programming. Nowadays, many programmers have
become interested in the gains promised by parallelized programs and by multi-cores.
However, simultaneous execution of threads with resources shared among them affect
the speed-ups achievable by parallelization as well as the correctness of the sequential
code sequences. Moreover, incorrect synchronization causes unexpected and often un-
acceptable results. The real limitations of exploiting multi-core architectures lie with
the unexpected behavior of the parallel programs produced by thread interleaving or
interference and resulting synchronization problems.

A major issue for parallel programming are race condition anomalies[1], which need
to be avoided by the application of an effective synchronization strategy. Data races
involving accesses to single shared variable are a well investigated issue and fall in the
category of low-level access anomalies. However, application of synchronization mech-
anisms does not always guarantee the absence of such problems. The experience with
object-oriented languages and their synchronization primitives provides evidence that
alleviation from low-level data races alone does not guarantee program correctness on
higher abstraction levels of the semantics of the applications[2]. The existing defini-
tions of race conditions are simply not sufficient to detect higher-level race issues. New
concepts and extensions of old ones are needed to uncover more erroneous situations.

In this paper we present two types of anomalies, which cover some of the higher-
level race condition scenarios.

The paper is organized as follows: section 2 introduces the problem of high-level
data races. Section 3 and 4 present the concepts for detecting these data races. Section 5

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 17–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

18 S.A. Raza, S. Franke, and E. Ploedereder

describes the implementation and section 6 presents experimental results. Related work
is discussed in section 7 and section 8 concludes the paper.

2 High-Level Synchronization Errors

Synchronization errors occurring in parallel programs can result in data corruption,
unintended results and eventually system failure. A higher abstraction layer enables
the detection of inconsistent synchronization, even if sets of shared variables or sets of
critical paths are involved. Our work targets two types of high-level synchronization
anomalies. First, we discuss non-atomic protection, a type of anomaly that is basically
identical to a high-level data race as defined by Artho et al.[2]. We extend the definitions
and the associated detection mechanism further to cover nested situations and path-
sensitivity. Second, we introduce an error type termed lost-update to cover data races
occurring because of value dependencies among separate critical code segments. Both
of these types will be discussed in more detail in the next sections.

3 Non-Atomic Protection

3.1 Definition and Concept

This section provides definitions and concepts for non-atomic protection faults. The
following is based on high-level data races as defined by[2].

A non-atomic protection fault can occur when two concurrent threads access a set V of
shared variables, which should be accessed atomically, but at least one of the threads
accesses V partially several times such that those partial accesses diverge.

Artho et al. define two concepts to identify such errors, namely view and view con-
sistency. A view expresses which fields are guarded by a lock and view consistency
is defined as mutual compatibility of views between all threads. Whenever views are
found to be inconsistent between threads, a non-atomic protection is being reported.
Artho et al. have implemented these concepts in the form of a dynamic analysis in a
run-time verification tool JPaX[3].

Our work, on the other hand, focuses on static analysis and extends the concepts
accordingly. Its implementation is integrated into RCanalyser [4]. It reports a complete
but conservative set of non-atomic protection faults.

In our previous work on RCanalyser we defined critical paths as those parts of a
program that access shared resources and need to be executed atomically by threads.
The concept of views is actually quite similar to that. Fields are accesses to shared
resources and a lock is a way to enforce an atomic execution of a sequence of statements.
A critical path CP (l, t, π) of a thread t can then be defined as a single-entry, single exit
execution path π = (s1, ...sn), where s1 locks l and sn unlocks l.

CP (l, t, π) = {sj, j = 1..n|π an execution sequence (s1, ..., sn)∧
∀si ∈ π : si ∈ statements(t)
∧ s1 locks l ∧ sn unlocks l

∧ �sx ∈ π, 1 < x < n : unlocks l}

Detecting High-Level Synchronization Errors in Parallel Programs 19

In the above definition, statements(t) contains all statements reachable by a thread
t. (The notion of statement refers to an intermediate level (IL) representation of the
program [5], in which compound statements of the source language have been mapped
to simple IL statements).

To incorporate the notion of views in RCanalyser, we use the above definition and
combine it with our definition of shared memory accesses. The set of shared accesses
M is defined as:

M = {m|∃si, sj ∈ S : ∃ti, tj ∈ T :(si ∈ statements(ti) ∧ (sj ∈ statements(tj)
∧ (ti �= tj ∨ (ti = tj ∧ ti ∈ mult inst)))
∧ m ∈ Nonlocals

∧ m ∈ (DEF (si) ∪ USE(si))
∧ m ∈ (DEF (sj) ∪ USE(sj))}

The set S contains all statements of the program and the set T all threads. The
mult inst indicates whether multiple instances of a thread might exist at runtime.
Nonlocals are variables accessed by, but not locally declared in functions (with static
variables in C belonging to Nonlocals). The standard data-flow terms DEF (s) and
USE(s) contain memory elements that are modified or read by statement s.

Now a view can be defined based on the statements of a critical path and shared
variable accesses throughout the program. Our definition of a view is comparable to
Artho’s:

view(l, t, π) = {m|m ∈ M : ∃s ∈ CP (l, t, π) : m ∈ (DEF (s) ∪ USE(s))}

3.2 Lockset Analysis

Our first implementation of a lockset analysis was quite similar to the flow- and context-
sensitive algorithm proposed in [6]. This algorithm is endangered by an exponential
runtime behaviour for special cases when several lock contexts are involved. Therefore,
to avoid such behavior of the lockset algorithm, we implemented a new lockset analysis
based on data-flow analysis.

Our data-flow based lockset computation is flow-, path- and context-sensitive. The
computation of the information follows standard forward data-flow techniques. The al-
gorithm traverses the program control-flow-graph to solve the data flow equations. The
lock acquisition and release operations are interpreted as Gens and Kills. Further, entry-
and exit-lockset information for routine bodies is mapped as In and Out sets, respec-
tively. For a path-sensitive analysis, control joins union the results from the branches
into a set of locksets, each of which is processed independently from then on. Thus a
locksetsset results.

For each call, the called function is analyzed for each lockset in the locksetset active
at the call site (the entry-lockset). If a previous analysis has been performed for this lock-
set, the cached exit-locksetsset is retrieved. Recursive calls are recognized and yield an
empty exit-locksetset upon first encounter. Otherwise, the function body is now
analysed accordingly.At theendofanalyzingafunction body, thecomputed lock informa-
tion exit-locksetset is returned and stored in a cache to avoid future re-computations with

20 S.A. Raza, S. Franke, and E. Ploedereder

the same entry-lockset. The function cache pairs entry-locksets and exit-locksetssets.
Standard data-flow analysis techniques will iterate until the exit-locksetssets of recur-
sive routines have stabilized.

The computation of shared variables and views is integrated into the lockset analysis
to avoid additional traversal of the program.

Our static framework relies on several preceding analyses to get sufficient auxiliary
information, i.e., points-to, control-flow and data-flow analyses. Points-to-information
is required for shared variable and lock detection. A precise general points-to
analysis consumes a lot of time and space, especially for larger programs. The points-to
analysis we normally employ in any preceding analyses is flow- and context-insensitive
(Anderson[7]). It provides us with a set of possible targets for a given pointer. If a lock
variable is defined as a pointer, a flow-insensitive analysis will return all locks assigned
to the variable as candidates. Based on this imprecise information, the lock of a lock-
acquire statement can not be determined with adequate precision. Therefore, another
feature of our lockset algorithm is the reduction of possible candidate locks returned
by the points-to query. To achieve this, we implemented an inter-procedural data-flow-
based search for lock pointer assignments to gather more detailed information about
the value of a lock pointer at a particular acquire statement. With this, lockset analysis
and view determination become more precise. The search algorithm uses the data-flow
in SSA form to traverse to the most recent assignments of the lock variable. If the al-
gorithm reaches the start of the function that contains the lock-acquire statement and
finds that the lock comes from an input parameter then all callers of the function are
determined and searched for an assignment of the lock. The locks thus found are then
used to refine the set of candidates. In many cases a singleton is the result.

An example of such a situation can be seen in listing 1.1. The listing shows that a
lock pointer is assigned twice in the code segment at point A and point B. At point C
the points-to query will deliver both candidates for the view resulting in two views. It is
obvious from the code segment that this information is too conservative. Our approach
traverses back to the most recent assignment to the pointer and consider only that one
for view generation, which reduces extra and spurious information. Consequently, the
analysis produces less false positives and, in turn, reduces spurious view generation.

3.3 Path-sensitive View Analysis

The path-sensitive data-flow based lockset analysis approach discussed in 3.2 is de-
signed to avoid exponential runtime behaviour. It enables us to easily include a path-
sensitive computation of views. Path-sensitive view detection covers situations like the
one illustrated in listing 1.2 correctly, which otherwise would not be detectable. The
thread 1 contains three views ({gl.x}, {gl.x, gl.y}, {gl.y}) and thread 2 only one view
({gl.x, gl.y}). A path-insensitive analysis finds two views ({gl.x, gl.y}, {gl.y}) for
thread 1 and therefore would not find the non-atomic protection fault.

To incorporate path-sensitive computation of views in our lockset analysis, we needed
to extend the traditional approach. We define the set of views as a data-flow item, and
include it in the data-flow computation along with the locks. Each decision point in the
program triggers a copy of the set of current views for each branch. The current set of
views is extended by a newly created view whenever a lock-acquire statement is reached.

Detecting High-Level Synchronization Errors in Parallel Programs 21

Listing 1.1. Intra-procedural decision on possible lock

lockptr l ;
.......

l = l1; // Point (A)
.......
.......

l = l2; // Point (B)

lock(l) ; // Point (C)
int tmp = balance ;
balance = tmp + amount;

unlock(l) ;

Listing 1.2. Path-sensitive Viewset Analysis

Thread 1: Thread 2:

lock(m); lock(m);
gl .x = 1; gl .x = 25;
if cond then gl .y = 10;

gl .y = 10; unlock(m);
unlock(m);
...

lock(m);
g1.y = 1;

end if ;
unlock(m);

All views of the set are updated when a shared variable is accessed. When a lock-release
statement is reached the corresponding view is finalized, stored and removed from the
set of current views. It may stay active on other branches, so that path-specific views
can arise and differ. At join points, the analysis unions the sets of current views of the
incoming branches.

3.4 Nested Views

The basic definition of view as stated above only includes accesses to shared variables
in a view. In our work, we extend this definition further to cover more complex patterns
of lock acquisition and release. For example, relationships between views can provide
information to improve the soundness of results. The extended definition of a view is
as follows: A view expresses which shared variables are guarded by a given lock, and
which locks are acquired during the execution of the critical paths associated with the
view:

view(l, t, π) = {a|(a ∈ M : ∃s ∈ CP (l, t, π) : m ∈ (DEF (s) ∪ USE(s)))
∨ (a ∈ L : ∃s ∈ CP (l, t, π) : s locks a)}

22 S.A. Raza, S. Franke, and E. Ploedereder

In the above equation, L contains all locks of the program. With this extension it
is possible to link a view to all views contained within that view. We call these views
child views and the container views parents. The following definition describes the
parent relationship:

parents(v) = {vp|vp ∈ V (t) ∧ vp �= v ∧ lockingOperation(v) ∈ statements(vp)}
The parent views of a view are all views which contain the lock-acquire statement

of the view. The equation contains V (t), which is the set of views of thread t. In
addition, lockingOperation(v) returns the lock-acquire statement in v, and the set
statements(v) contains all statements of a view v.

Listing 1.3 illustrates a situation when ignoring the nesting of views triggers false
positives. The algorithm proposed by Artho finds a non-atomic protection fault for the
two views for lock l in thread 1 and the view for lock l in thread 2, but the parent views
with lock m provide sufficient synchronization for the variables in this situation. The
parent-child relationship between views defined above enables the analysis to exclude
such false positives from the set of reported faults and thus to deliver more precise
results. Figure 1 gives a more intuitive description of the scenario, where outer and
inner views can be thought of as egg shells.

In general, a non-atomic protection fault includes three inconsistent views, two of
which are from the same thread and violate the atomicity of the third view from the
other thread. Whenever the two views in the first thread have a common parent view,
and its generating lock is identical to the lock of the third view in the second thread or
of any of its parent views, then atomicity is not violated. We define:

no nap error(v1 , v2, v3) ↔∃p1 ∈ parents(v1) : ∃p2 ∈ parents(v2) : p1 = p2

∧ lock(p1) = lock(v3) ∨ ∃p3 ∈ parents(v3) :
lock(p1) = lock(p3)

In the above equation, lock(v) denotes the lock that generates the view v. This check
is inserted on every non-atomic protection fault found by the basic algorithm in order
to reduce the number of false positives.

Listing 1.3. Nested Views

Thread 1: Thread 2:

lock(m); lock(m);
lock(l) ; lock(l) ;
gl .x = 25; gl .x = 25;

unlock(l) ; gl .y = 10;
lock(l) ; unlock(l) ;
gl .y = 10; unlock(m);

unlock(l) ;
unlock(m);

Detecting High-Level Synchronization Errors in Parallel Programs 23

Fig. 1. Nested Views

3.5 View Generation

The view generation process is transformed into a forward data-flow problem using the
following data-flow equations.

Gen(e) =
{

v(l, t, e) if e is a lockOp on l
0 otherwise

Kill(e) =
{∀ views on l and t if e is a unlockOp on l

0 otherwise

In(e) =
⋃

x∈Pred(e) Out(x)

Out(e) = Gen(e)
⋃

(In(e) − Kill(e))

The In and Out sets contain the set of active views. Each program expression (e)
is processed according to its kind, i.e., whether it generates (Gen) a view or closes a
view (Kill). If an expression e is a lock acquisition statement (lockOp) then a new
view is created and stored in the set of already active views (viewset). For the purposes
of view analysis, identifying the critical path by the starting expresssion e is sufficient.
A lock release statement (unlockOp) will close (Kill case) any open view for that
particular lock, remove it from the set of active views and add it to the set of views of
the thread (viewset(t)) identified by the context-sensitive information of the analysis.
The computation of active views is a data-flow problem that unions the active views at
control joins.

Along with the propagation of active views, the views are filled by data-flow actions.
For our non-atomic update problem, we would record the variables read or written. For
our second problem of lost-updates (see section 4), we also want to record the kind of
access.

24 S.A. Raza, S. Franke, and E. Ploedereder

Action(e) =

⎧⎪⎪⎨
⎪⎪⎩

∀views v ∈ In(e) Insert(v, < x, Read >)
∀ x read in e

∀views v ∈ In(e) Insert(v, < x, Write >)
∀ x modified in e

Once the DF-solution has stabilized, views can be stored as part of the description of
thread t:

Action(e) =
{∀ views v(t,l,*) in In(e) Storev(t, l, ∗)

if e is a unlockOp on l

Similarly, the parent relationship described in section 3.4 can be computed.

Action(e) =
{∀ views v in In(e) Insert(v, l1)

if e is a lockOp on l1

Any standard data-flow algorithm can be used to solve the data-flow equations and
perform the additional actions. In our implementation we chose a worklist algorithm.

Our subsequent non-atomic protection detection is based on the computed views and
is an extension to the high-level data race detection by Artho. The difference lies in
the handling of path-sensitive view information, nested views and the translation into a
static analysis.

4 Lost-Updates

Lost-Updates is a newly categorized error situation, which is detectable by an extension
to the view concept.

4.1 Definition and Concept

A lost-update occurs when a value dependency exists between the reading of a shared
variable in one view of a thread and the writing of the same variable in a second view
of this thread, while there is a concurrent write access to the shared variable in another
thread.

Listing 1.4 illustrates a situation where a lost-update fault can manifest. The func-
tions deposit and withdraw are part of a bank account management system. There is
a shared variable balance, which is accessed in one view of function deposit and in
the two views of function withdraw. As illustrated in the code, Thread1 performs a
deposit by updating the account balance, and Thread2 withdraws some amount from
the same account. The critical property is that there exists a value dependency between
the two views in withdraw from the reading of the variable balance to its subsequent
writing. The dependency is caused by the local variable tmp, which carries the value of
balance from one view to the other. Whenever deposit and withdraw are called con-
currently in separate threads, a lost-update can occur: deposit might be scheduled in
between the execution of the two views in withdraw. The effect of the deposit update
to the balance is lost.

To detect lost-updates, we further extend the definition of views and incorporate
information provided by data-flow analysis. An access to a shared variable in a view
now also identifies the kind of access.

Detecting High-Level Synchronization Errors in Parallel Programs 25

Let F be the set of all shared variables of a program, f a variable of F and a the ac-
cess kind read or write. The tuple (f, a) describes an access to variable f with access
kind a. The set of all tuples (f, a) of a program is A. Furthermore, let B(t, l) be the
set of critical paths for thread t and a lock l, then each b ∈ B(t, l) generates a view
v ∈ P(A).

By using data-flow information, each write access in any view can be checked for
a value dependency on the reading of the same variable in another view in the same
thread. Our analysis utilizes SSA generated def-use information: each variable read in
the examined write access is investigated for the previous write access by following
the (use)-(def) relationship. If necessary, the variables read by this write access are
analyzed in turn. The search terminates successfully if the variable originally in ques-
tion is found to be read. It terminates unsuccessfully when all applicable (use)-(def)
relationships have been examined. Successful finds are recorded for the respective vari-
able and views. This process is repeated until all write accesses to shared variables in
all views have been analyzed.In listing 1.4 tmp gets the value of balance and afterward
a write into balance involves tmp. The analysis records a value dependency between
the two views involving balance.

Listing 1.4. Lost-update example

Thread 1: Thread 2:

void withdraw(int amount){ void deposit (int amount) {
lock(l) ; lock(l) ;
int tmp = balance ; balance = balance + amount;
unlock(l) ; unlock(l) ;
if (tmp >= amount){ }

lock(l) ;
balance = tmp − amount;
unlock(l) ;

}
}

Let s be a statement in a program and the function statement(a) returns the state-
ment for the tuple a ∈ A. The function reads(s) returns all read accesses that occur in
statement s and the function lastwrite(y) returns the last write access on a variable y
by means of data-flow information. Then the described traversal of the SSA information
is defined as a recursive function:

readsr(s) = reads(s)
⋃

x=lastwrite(reads(s)) readsr(x)

Phi-nodes are handled in the same way as statements. The recursion stops when there
is no read access in an assignment or an initialization. The SSA-traversal is interpro-
cedural. Whenever the algorithm reaches the start of a function body and finds that a
parameter has to be followed, all callers of that function are determined. Using this
traversal we can define the set of value dependencies for lost-updates:

26 S.A. Raza, S. Franke, and E. Ploedereder

value dependency set(t) ={(v1, v2, f)|v1, v2 ∈ V (t)
∧ a1 ∈ v1 ∧ a1 = (f, write)
∧ a2 ∈ v2 ∧ a2 = (f, read)
∧ statement(a2) ∈ readsr(statement(a1))}

In this definition, V (t) denotes the set of views generated by thread t. With the
information about a value-dependency across two views in one thread, it is then pos-
sible to detect lost-updates by searching for a concurrent write access in a view in an-
other thread. The potential lost-update fault in the example (Listing 1.4) is found in this
fashion.

4.2 Algorithm

The lost-update detection is shown in algorithm 1. This fault detection phase presumes
that all views and all value dependencies among them have been computed. It starts
by taking all pairs of threads, views and value dependency relations. Any of the found
value dependencies can result in a lost-update fault whenever a concurrent write access
on the same shared variable may happen in another thread. For this reason, each view
of the second thread is searched for a concurrent write access.

Algorithm 1. Lost-update detection
function FAULT DETECTION(threads)

for all pairs of threads (t1,t2) do
for all vset ∈ VIEWSETS(t1) do

for all vd ∈ VALUE DEP(vset) do
sv ← SHARED VAR(vd)
for all view ∈ VIEWS(t2) do

for all w ∈ WRITES(view, sv) do
REP LOST UPDATE(vd, view, w)

end for
end for

end for
end for

end for
end function

5 Implementation

The implementation is integrated into RCanalyser, which is a part of Bauhaus tool
suite [5]. Bauhaus provides a strong infrastructure for static program analysis. It con-
tains many general analyses, such as points-to, control- and data-flow analyses, which
provide the basis for the implementation of the algorithms described in this paper. As
illustrated in figure 2, language frontends derive an intermediate representation (IML)
from program source. Many subsequent analyses operate on the IML representation,
which is an Attributed Syntax Tree capable of representing programs from different
languages e.g., C/C++, Ada and Java.

Detecting High-Level Synchronization Errors in Parallel Programs 27

The Bauhaus tool suite contains a generic points-to analysis interface with plu-
gable implementation of several context- and flow-insensitive algorithms e.g., Steens-
gaard [8], Das [9], and Anderson [7]. In RCanalyser any of these points-to analyses can
be utilized to compute pointer targets. This step is necessary before the generation of
control-flow information, because in the case of heavy usage of function pointers an
approximation of callees would not be possible at the call-sites and control-flow graph
generation may become less effective. Afterwards, a control-flow analysis is performed
to obtain intra- and inter-procedural control-flow graphs of the program on which our
lockset-analysis computation will be performed. Data-flow analysis and SSA gener-
ation are done, which we later use for detecting value dependencies as discussed in
section 3.2.

Fig. 2. Bauhaus infrastructure and RCanalyser

In the next phase a combined analysis is performed which computes the locksets,
shared variables and view information. This is followed by the detection of value de-
pendencies among multiple views of a thread with the help of SSA information. The
algorithm is presented in section 4.

Once all required information is thus available, the tool proceeds with the detection
of high-level synchronization errors, i.e., non-atomic protection and lost update. Non-
atomic protection errors are determined by an approach similar to [2]. For lost-update
detection we apply the algorithm 1.

The last step outputs the errors in the RCanalyser text-based shell. For each of the
two error types we report the information needed to locate the fault in the source code.
One of the most important activities is the calculation of backtraces, since we want
to exactly trace a path to the erroneous expression, starting with the main program.
Whenever a decision point is reached or a function call is followed, the backtrace shows
this information along with source file and line number.

6 Test and Evaluation

For the test of our analysis we have selected a set of open source benchmarks of varied
size. Table 1 shows all programs along with the number of lines of code, of threads, of
views and of variables per view as the quantitative metrics of our analysis.

The metrics give an indication about the degree of parallelism in the analyzed pro-
grams, i.e., the maximal number of threads and the maximal number of views contained.

In addition to obtaining the shown statistics, we measured the runtime of analyses.
The results are presented in table 2. All of these tests were performed on a Xeon 3GHz
PC with 12 GB main memory.

28 S.A. Raza, S. Franke, and E. Ploedereder

Table 1. Program statistics

Program Lines of Code Threads Views Variables/View
pfscan 1K 2 11 1 – 7
aget 1K 4 4 2

retawq 15K 2 0 –
clamav 51K 5 8 1 – 53

openvpn 27K 1 0 –

Table 2. Runtime (in sec.) per functionality and program

Program Lockset analysis Value dependency Viewset analysis Backtraces
pfscan <1 <1 <1 2
aget <1 <1 <1 <1

retawq 29 <1 <1 1
clamav 187 <1 <1 <1

openvpn 8 <1 <1 <1

Table 3. High-level Data Races

Program Non-atomic protection Lost-update
pfscan 3 0
aget 0 0

retawq 0 0
clamav 0 0

openvpn 0 0

First of all, value dependency and viewset analysis are very fast for all test programs.
In part, this can be attributed to the fact that the number of views and variables per view
is low and thus the workload is limited. If the number of views and variables per view
remains to be low in relation to the program’s size, the runtime of value-dependency and
viewset analysis is unlikely to become a problem. More of a problem for large programs
will be the lockset analysis. Therein, it is especially the shared variable detection that
takes significant time whenever use is made of points-to analysis, while the lockset
analysis itself and the view detection, with all shared variable information available,
was very fast in all our test cases. It should be applicable to larger code basis as well.
The Backtrace algorithm is essentially of the same complexity as the lockset analysis
algorithm without the shared variable detection.

In our tests on benchmark programs, we found three non-atomic protection faults
in pfscan, but were unable to find any lost-updates. The test results are summarized in
table 3.

In addition, we applied our analysis on several smaller self-written test programs
which contain non-atomic protection and lost-update faults. There, all faults were
reported.

Detecting High-Level Synchronization Errors in Parallel Programs 29

7 Related Work

Several tools and techniques have been developed for analyzing multi-threaded pro-
grams for low-level data races based on static and dynamic analyses. The dynamic
approach of the Eraser algorithm [10] maintains a lock set for each variable: the set of
locks protecting the variable. The algorithm is also implemented in the Visual Threads
tool [11] to analyze C and C++ programs. It examines a program trace for locking
patterns and variable accesses in order to detect potential race conditions. The Eraser
algorithm maintains a lock set for each variable: the set of locks protecting the variable.
The idea of views turns this around and studies the variable association with a given
lock. This notion provides the possibility to discover situations where high-level syn-
chronization faults can occur. The original inspiration for such problematic situations
was based on examples published by Artho et. al. [2], which we modified and extended
to capture more scenarios, and discussed in section 3.

On the other end of the spectrum, several static analysis tools and algorithms ex-
ist to detect low-level data races in programs. Tools like RacerX [6], Jlint [12] and
RCanalyser [4] all use static analysis. Theorem proving techniques are used in the
ESC [13] tool which, however, requires an annotated version of the program, and does
not appear to be as efficient as the Eraser algorithm in finding low-level data races.

Dynamic tools come with the advantage of delivering precise information about er-
rors, but the analysis is of course limited to the single program execution, whereas static
tools have the advantage of code coverage, but the information is less precise and may
raise the degree of false positive results.

Another analysis technique is model checking, which explores all possible execu-
tions in a program. Usually model checkers use a model of the program; exceptionally,
Java PathFinder, which is developed by NASA [14], checks the program directly. How-
ever, model checking techniques suffer from the state space explosion problem.

8 Conclusions

We have discussed how shared-memory concurrent programs contain data race errors
on a higher-level of abstraction, which involves groups of shared variables. Absence
of low-level data races ensured by proper use of synchronization mechanisms does not
guarantee program correctness, however. We presented two typical synchronization er-
rors and described concepts and implementation of an analysis for their detection. The
presented static analysis is enriched with extended view consistency techniques to de-
tect error situation, which previous techniques could not, and it reduces spurious error
reporting present in other analyses. Our analysis handles nested higher-level synchro-
nization regions and provides path-sensitive error computation. The test runs discussed
in the paper have delivered positive results in reducing false positives and shown the
practicability of the analysis. In the future, we plan to extend this analysis to also in-
corporate techniques to compute the propagation of the effects of error situations on
subsequent computations of the program.

30 S.A. Raza, S. Franke, and E. Ploedereder

References

1. Netzer, R.H.B., Miller, B.P.: What are race conditions? some issues and formalizations.
LOPLAS 1992: ACM Letters on Programming Languages and Systems 1, 74–88 (1992)

2. Artho, C., Havelund, K., Biere, A.: High-level data races. Software Testing, Verification and
Reliability 13, 207–227 (2003)

3. Havelund, K., Roşu, G.: An overview of the runtime verification tool java pathexplorer. Form.
Methods Syst. Des. 24, 189–215 (2004)

4. Raza, A., Vogel, G.: RCanalyser: A Flexible Framework for the Detection of Data Races in
Parallel Programs. In: Kordon, F., Vardanega, T. (eds.) Ada-Europe 2008. LNCS, vol. 5026,
pp. 226–239. Springer, Heidelberg (2008)

5. Raza, A., Vogel, G., Plödereder, E.: Bauhaus - A Tool Suite for Program Analysis and Re-
verse Engineering. In: Pinho, L.M., González Harbour, M. (eds.) Ada-Europe 2006. LNCS,
vol. 4006, pp. 71–82. Springer, Heidelberg (2006)

6. Engler, D., Ashcraft, K.: RacerX: Effective, Static Detection of Race Conditions and Dead-
locks. In: SOSP 2003: Proceedings of the 19th ACM Symposium on Operating Systems
Principles, pp. 237–252. ACM Press, New York (2003)

7. Andersen, L.O.: Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen (1994)

8. Steensgaard, B.: Points-to Analysis in Almost Linear Time. In: POPL 1996: Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 32–41. ACM Press, New York (1996)

9. Das, M.: Unification-based Pointer Analysis with Directional Assignments. In: PLDI 2000:
Proceedings of the ACM SIGPLAN 2000, Conference on Programming Language Design
and Implementation, pp. 35–46 (2000)

10. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A Dynamic Data
Race Detector for Multi-Threaded Programs. In: SOSP 1997: Proceedings of the 16th ACM
Symposium on Operating Systems Principles, pp. 27–37. ACM Press, New York (1997)

11. Harrow, J.J.: Runtime checking of multithreaded applications with visual threads. In:
Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 331–342.
Springer, Heidelberg (2000)

12. Artho, C., Biere, A.: Applying static analysis to large-scale, multi-threaded java programs.
In: Australian Software Engineering Conference, pp. 68–75 (2001)

13. Detlefs, D.L., Rustan, K., Leino, M., Nelson, G., Saxe, J.B.: Extended static checking. SRC
Research Report 159, Compaq Systems Research Center (December 1998)

14. Visser, W., Havelund, K., Brat, G.P., Park, S.: Model checking programs. In: ASE 2000:
Proceedings of the Fifteenth IEEE International Conference on Automated Software Engi-
neering, Grenoble, France, pp. 3–12. IEEE Computer Society, Los Alamitos (2000)

Design and Implementation of a Ravenscar Extension
for Multiprocessors

Fabien Chouteau and José F. Ruiz

AdaCore
46 rue d’Amsterdam, 75009 Paris, France
{chouteau,ruiz}@adacore.com

Abstract. New software architectures demand increasing processing power, and
multiprocessor hardware platforms are spreading as the answer to achieve the
required performance. Embedded real-time systems are also subject to this trend,
but in the case of real-time high-integrity systems, the properties of reliability,
predictability and analyzability are also paramount.

The Ada 2005 language defined a subset of its tasking model, the Ravenscar
profile, that provides the basis for the implementation of deterministic and time
analyzable applications on top of a streamlined run-time system. This Ravenscar
tasking profile, originally designed for single processors, has proven remarkably
useful for modelling verifiable real-time monoprocessor systems.

The forthcoming Ada 2012 language proposes a simple extension to the
Ravenscar profile to support multiprocessor systems using a fully partitioned
approach. The implementation of this scheme is simple, and it can be used to
develop applications amenable to schedulability analysis.

This paper describes the design and implementation of a restricted run time
supporting the Ravenscar tasking model on a bare board multiprocessor machine
for safety-critical development.

1 Introduction

The Ravenscar model for single processors defines a deterministic and analysable task-
ing model which can be supported with a run-time system of reduced size and
complexity. It supports accurate analysis of real-time behavior using Rate Monotonic
Analysis (RMA) [13] and Response Time Analysis (RTA) [12]. In recent years, research
on scheduling theory for multiprocessor systems [8,6] has paved the way to timing anal-
ysis in multiprocessor systems.

Major aspects to be dealt with in the design of a multiprocessor environment are pri-
ority handling, assignment of tasks to processors (the terms processor and CPU will be
used interchangeably in this paper), communication and synchronization mechanisms,
time keeping, delays, and handling of external events.

According to the allocation of priorities to tasks, there are either static off-line
scheduling algorithms, or dynamic policies, where priorities are calculated at run time.
Dynamic-priority scheduling algorithms for multiprocessors, such as Pfair schedul-
ing [7], can achieve better processor utilization than static-priority ones. However, the
higher complexity of dynamic algorithms, their much higher run-time overhead, and

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 31–45, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

32 F. Chouteau and J.F. Ruiz

their lower predictability and robustness in overload situations make them less attrac-
tive for high-integrity systems. The Ravenscar profiles follows this static approach.

In terms of relationship between tasks and processors, the spectrum goes from global
scheduling, where any task can be executed on any processor at any time, to partitioned
scheduling, where each task is allocated for its whole lifetime to concrete processors.
The schedulability of neither approach is strictly better than the other [3] (there are task
systems that are feasible using a global partitioning that cannot be scheduled in a parti-
tioned system and vice versa). However, the partitioned approach has some interesting
advantages: 1) it can rely on well-known optimal monoprocessor priority-assignment
schemes and timing analysis techniques (local RMA on each CPU), and 2) the run-time
support is simpler.

This partitioned approach simplifies also development and testing, and eventually
certification, by the physical separation between tasks executing on different proces-
sors. This concept is the major strength of the Integrated Modular Avionics (IMA) [15]
architecture and the ARINC 653 [5] standard, that enables independently-produced ap-
plications to execute together on the same hardware. Note that the proposed Ravenscar
extension for multiprocessors provides limited temporal partitioning (a task allocated to
a given processor cannot use execution cycles from another processor) and no memory
partitioning, while ARINC 653 provides a more flexible temporal partitioning (it can
provide protection for tasks executing in the same processor) plus memory partitioning.
However, the Ravenscar scheduling model could be supplemented with space protec-
tion, and a more flexible temporal partitioning using execution-time clocks and timers
and timing events [10].

According to the Ravenscar principles of simplicity, reliability, and predictability,
fully partitioned scheduling, using static-priority policy, appears as the natural extension
of the monoprocessor Ravenscar profile [4]. There are tools and techniques supporting
the allocation of tasks to processors, the assignment of task’s priorities, and the timing
analysis of the resulting systems. The major drawback of such scheduling mechanism
is that the maximum worst-case achievable utilization is a third the capacity of the
platform [3]. The worst-case achievable utilization is defined as the total utilization that
makes any periodic task set below this limit schedulable, while there may be a task set
with a total utilization above this limit which is not schedulable.

Note that finding an optimal assignment of tasks to processors is an NP-hard bin-
packing problem that needs to be solved off-line in this partitioned scheme (not by the
system scheduler), although there exist heuristic algorithms, such as Rate-Monotonic-
Next-Fit (RMNF) [9], Rate-Monotonic-First-Fit (RMFF) [9], and Rate-Monotonic-
Best-Fit (RMBF) [14].

There exist many different communication and synchronization paradigms for multi-
processor architectures, such as semaphores, monitors, message passing, etc. Restricted
protected objects are used in the Ravenscar profile for this, and they will be used the
same way over multiprocessors. The underlying run-time support will have to be mod-
ified to cope with the new requirement of synchronizing tasks which are potentially
operating in parallel, hence demanding extra locking mechanisms.

The provision of a common high resolution time reference and precise and determin-
istic absolute delays is based on the use of two different hardware timers [21]. There

Design and Implementation of a Ravenscar Extension for Multiprocessors 33

may be multiprocessor hardware platforms with more timers (there may even be per-
processor timers), but requiring just two timers will facilitate portability to different
targets.

Finally, handling of external interrupts is supported using protected procedures. In-
terrupt handlers could be handled by one or more CPUs in the system, but for simplicity
of implementation and timing analysis the chosen approach is to allocate each interrupt
to a single CPU.

This paper and the described implementation build on the ideas presented at IRTAW
2009 [17] which led to the definition of AI05-0171 [4]. The following sections will de-
scribe the specific additions to the existing monoprocessor Ravenscar profile to support
multiprocessor systems using a fully partitioned approach, with each task and inter-
rupt allocated statically to a concrete processor. This scheme can be supported by a
streamlined run-time system, and applications built following this approach can apply
timing analysis techniques on each processor separately (the scheduling problem for
partitioned allocation is a combination of bin packing followed by single processor
dispatching).

2 Definition of Ravenscar for Multiprocessors

This section provides a high-level description of the model implied by the Ravenscar
extension to multiprocessors, based on the monoprocessor definition.

2.1 Task Scheduling

Scheduling is proposed as a simple extension to the monoprocessor fixed-priority pre-
emptive scheduling algorithm supported by the Ravenscar profile, where tasks are stat-
ically allocated to processors and task migration among CPUs is not allowed. Each
processor implements a preemptive fixed-priority scheduling policy with separate and
disjoint ready queues. A task is only in the ready queue of one processor, and the CPU
to which a task belongs is defined statically. Whenever a task running on a processor
reaches a task dispatching point, it goes back to the ready queue of the same processor.

Tasks are statically allocated to processors using a new pragma (pragma CPU). If
the pragma is not specified, the task is allocated to a default CPU.

The underlying idea is that each processor executes a statically defined set of tasks,
as it would be the case for Ravenscar on a single processor.

There is a single run-time system, where the only per-processor information would
be the ready and alarm queues. Some run-time data is common and shared among tasks
on different processors (such as the time reference).

When internal data in the run-time system can be modified by tasks executing on
different processors, we need to add inter-processor locking mechanisms (such as spin-
locks or similar, see section 3.4, “Fair locks”), to guarantee mutual exclusion. The stan-
dard monoprocessor solution of disabling interrupts to guarantee that the task is not
preempted before the access has been completed is not sufficient for multiprocessors.

34 F. Chouteau and J.F. Ruiz

Finally, something that must be taken into account is that the execution of a task (or
an interrupt handler) in a given processor may modify another processor’s ready queues
(and may also force the preemption of the running task). These operations on different
processors can be implemented triggering a special interrupt in the target processor,
which is the one performing the actual changes in the ready queue.

2.2 Task Synchronization

The restricted library-level protected objects defined by the Ravenscar profile are used
for inter- and intra-processor communication and synchronization. The same restric-
tions that exist in the Ravenscar profile for single processors apply to the case of a
multiprocessor (a maximum of one protected entry per protected object with a simple
boolean barrier using ceiling locking access).

One big advantage of monoprocessor Ravenscar is the simple and very efficient syn-
chronization mechanism required for protected objects, where entering/exiting to/from
the protected object can simply be done by just increasing/decreasing task’s priori-
ties [16].

In order to simplify timing analysis, and to allow for an efficient implementation
when possible, protected objects used only by tasks within the same CPU could use the
optimized monoprocessor implementation.

Protected objects for inter-processor communication would require multiprocessor
synchronization mechanisms. When a task waiting on an entry queue is awaken by
another tasks executing on a different processor than the waiting task, we need to
use the inter-processor interrupt facility to modify the ready queues, as described in
subsection 2.1, “Task Scheduling”.

One possibility would have been to allocate affinities for protected objects to facili-
tate timing analysis of the application (not part of AI05-0171). Protected objects bound
statically to a given processor (local protected objects) would never be affected by in-
terference coming from tasks executing on other processors, as well as no interference
being caused on other processors. The design of the application must take into account
this fact, and static analysis (and static tools) can also help detecting the use of protected
object by tasks living in different processors.

Suspension_Objects are implemented over protected objects. It may seem overkill,
but given the restrictions imposed by the Ravenscar profile, protected operations are
very efficient. Moreover, this allows for a generic implementation that is not dependent
on the underlying support.

For the handling of shared-memory in the target multiprocessor environment
(LEON3 based on SPARC V8), the standard memory model called Total Store Or-
dering (TSO) [19] is used. This memory model guarantees that the stores, flushes, and
atomic load-stores of all processors are executed by memory serially in an order that
conforms to the order in which the instructions were issued by processors. It means that
memory barrier instructions are not required for consistency among different proces-
sors. The write-through caches and snooping mechanism in LEON3 guarantee memory
coherency.

Design and Implementation of a Ravenscar Extension for Multiprocessors 35

2.3 Interrupt Handling

The only Ravenscar-compliant mechanism to specify interrupt handlers is to attach a
protected procedure. The differences in a multiprocessor system are related to mutual
exclusion and assignment of interrupts to CPUs.

The mutual exclusion mechanisms for interrupt handlers will be those of the pro-
tected operations, and therefore the same considerations for intra- and inter- processor
synchronization (as described in subsection 2.2, “Task Synchronization”) apply.

With respect to the processors that may handle the different interrupts, multiproces-
sor hardware and operating systems typically allow setting and changing the affinity
mask for interrupts. It means that the set of processors that may serve a given interrupt
can be statically set at initialization time, or it can change dynamically. Additionally,
the set can be restricted to a single processor or any number of them.

In order to simplify timing analysis, statically setting the affinity masks for interrupts
is the model that fits better the Ravenscar philosophy.

Interrupts can be configured to be handled by any number of processors, and the de-
cision of using one or more processors to handle interrupts depends on several factors.
When more than one processor handle a given interrupt, a single interrupt event will be
delivered to more than one processor, and hence the interrupt handler will be invoked
and executed more than once (the interrupt handler will be executed concurrently on
different processors). Mutual exclusion issues are handled by the underlying mecha-
nisms, but the handler needs to take into account these multiple executions. On the one
hand, it may decrease the response time, because of the highest probability of having
a processor ready to handle the interrupt (not executing a highest priority activity). On
the other hand, timing analysis of a system with interrupt events delivered to multiple
processors is more complex, and the increased interference reduce the utilization of the
system.

Setting the affinity masks of interrupts to a single processor, that may be different
for each interrupt, would be the recommended approach. Allocating the interrupts to
the CPUs where the tasks use them would remove the associated overhead of inter-
processor synchronization.

Affinity for interrupts is not part of AI05-0171. In the current implementation this
affinity is set in the startup routine, but it would be interesting to be able to use the same
pragma CPU defined for tasks. The pragma could be attached to the definition of the
protected handler.

2.4 Timing Services

In multiprocessor architectures, hardware support for timing services ranges from just
a few shared hardware timers for all processors to several timers per processor.

In the reference implementation used in this paper for the LEON3 multiprocessor
board [2], a single common hardware clock and a single shared hardware timer are used
for all processors. It provides a common reference for all the tasks in the system, thus
avoiding time drifting problems, and limits the amount of hardware resources required
from the underlying platform.

Following the same approach as for the partitioned implementation of the ready
queue (see subsection 2.1, “Task Scheduling”), each processor implements a separate

36 F. Chouteau and J.F. Ruiz

and disjoint delay queue. Hence, a task waiting on a delay statement will be placed in
the delay queue of the processor where it is allocated.

The interrupt service routines for the two hardware timers are executed in the con-
text of a single given processor. When a timer expires, it has an effect on the ready and
delay queues of potentially any processor, not only the one where the timer interrupt
is handled. The timer handler may awake tasks waiting on a delay statement, or exe-
cute the protected actions associated to either timing events or execution time timers.
In any of these cases, the mechanisms to exert the required actions in the different pro-
cessors are the same as those described in previous subsection 2.1, “Task Scheduling”,
subsection 2.2, “Task Synchronization”, and subsection 2.3, “Interrupt Handling”; if
there is a task with an expired delay in a different processor from the one handling the
interrupt then an inter-processor interrupt is triggered on the target processor, and the
handler for this inter-processor interrupt will traverse the list of local expired events,
executing the required actions in the local queues (an operation in a given processor
cannot directly modify the queues of another processor).

3 Design and Implementation Details

This section describes the main design decisions and implementation details of a real-
ization of the ideas described in previous sections on a bare board LEON3 multiproces-
sor board [2]. The LEON3 is a 32-bit processor based on the SPARC V8 architecture
with support for multiprocessing configurations. The processor used was synthesized
with 2 CPU cores, configured as symmetric multiprocessing (SMP).

3.1 Starting Point

GNAT Pro supports the Ravenscar tasking model on several bare board monoprocessor
architectures [16], including LEON3. The idea was to extend the LEON3 monoproces-
sor run-time system to support the partitioned Ravenscar model defined in this paper,
making it easy to choose between the monoprocessor and multiprocessor support ac-
cording to the hardware platform used.

3.2 Initialization

There is some initial work that needs to be done before jumping to the user applica-
tion code, which involves both the hardware initialization (registers, devices, etc.) and
setting up the run-time system (internal data structures such as the different queues).
To avoid race conditions problems, this initialization is performed in a monoprocessor
context, by one statically designated CPU (init CPU).

The other CPUs (slave CPUs) wait in a busy loop until initialization is done. At the
end of the initialization phase, the slave CPUs are released and start the execution of
the first task (highest-priority task) in their ready queue.

As an exception to the partitioned approach, the init CPU has access to all the ready
queues during the initialization phase, to assign tasks on the different processors during
initialization time.

Design and Implementation of a Ravenscar Extension for Multiprocessors 37

In multiprocessor mode, the init CPU executes the same initialization as in the pre-
vious monoprocessor implementation, the only difference being that there is a ready
queue per processor.

3.3 Task Management

Tasks and their related data structures are statically created at compile time, without any
use of dynamic memory. Task affinities are specified using the new pragma CPU (the
default processor when the affinity is not specified is CPU’First). The compiler inserts
the affinity into the Task Control Block (TCB) so the run-time system knows where to
schedule the different tasks.

The ready queues (one per processor) are internally implemented as single-link pri-
ority ordered queues, in which each thread points to the next thread to execute, and there
is an array of pointers containing the first task for each processor. Task affinities never
change, so each task can only be on a given ready queue. Modifications to the ready
queue are performed with interrupts disabled only on the affected processor, and the
rest of processors can continue their normal operations unaffected (no inter-processor
interference).

Tasks are scheduled according to the FIFO within priorities policy [1, D.2] on each
processor, as it is the case for a monoprocessor Ravenscar system.

3.4 Synchronization

Mutual exclusion. In the monoprocessor version of the run time, the ceiling priority
rules (Locking_Policy (Ceiling_Locking)) and the strictly preemptive priority schedul-
ing policy (Task_Dispatching_Policy (FIFO_Within_Priorities)) guarantee that
protected objects are always available when any task tries to use them [18] (otherwise
there would be another task executing at a higher priority), and hence entering/exit-
ing to/from the protected object can simply be done by just increasing/decreasing the
task priority. Obviously, this protection no longer works with two or more processors
because of the actual parallelism.

Mutual exclusion is now guaranteed by the use of an additional multiprocessor lock
(see fair locks below). Access to protected objects is performed in two phases: first, the
calling task raises its priority following the ceiling locking rules, and then it tries to get
the fair lock. Raising the priority ensures that at most one task per CPU will try to get
the lock at a given time. Tasks on different processors trying to access the protected
object will wait in a busy loop.

Note that protected objects used only by tasks within the same CPU will always get
access to the fair lock, so the multiprocessor overhead in this case is negligible.

Fair locks. In this multiprocessor context, multiple tasks on different CPUs may have
to be synchronized, to protect access to shared data or hardware registers for example.

The well-known spin lock algorithm is not suitable for real-time systems, like the
Ravenscar run-time, because of starvation risks [20, chapter 2. Existing Solutions].

On a processor with four cores, all of them fighting for the same spin-lock. There
can be a situation where lock’s ownership switches from core1 to core2 infinitely. In

38 F. Chouteau and J.F. Ruiz

that case, core3 and core4 are in a state of starvation and will not be able to gain lock.
Even if this situation is not likely to last a long period, it would be a major flaw in the
predictability of the Ravenscar run-time.

Fair lock [20] is a cooperative mutual exclusion algorithm. When the owner of the
lock wants to release, it will search for the next CPU waiting for the lock and transfer
the control to it (scanning for waiting CPUs in a round-robin fashion). Therefore, unlike
spin locks, the execution time is bounded and thus suitable for real-time systems.

In the case described earlier, the sequence of lock ownership will be:

– core1 → core2
– core2 → core3
– core3 → core4
– core4 → core1
– core1 → core2
– etc. . .

Fair locks are designed to synchronise tasks over two or more CPUs, but they must
not be use by two tasks on the same CPU. This constraint is ensured by the properties
of the Ravenscar profile and some protected (interrupts disabled) sections of code in the
run-time .

Served entries. In the monoprocessor run-time, when a task (the caller) tries to call
an entry whose barrier is closed, it becomes blocked. Then, another task (the server)
will release the barrier, execute the Entry_Body (proxy model), and then wake up the
caller.

The proxy model [11] implies that at the end of the execution of any protected pro-
cedure, that may change the state of the entry barrier, if there is a task waiting on the
protected object’s entry, then the barrier is evaluated, and if needed, the entry is executed
by the task that opened the barrier on behalf of the queued task. It enhances efficiency,
when both the caller and the server execute on the same processor, by avoiding
unnecessary context switches. The self-service model (the caller executes always
the code associated to the entry it calls) would be interesting for multiprocessors, as the
entry could be executed in parallel by another processor, thus increasing the parallelism
and reducing the worst-case blocking time. However, the proxy model is used for both
the monoprocessor and multiprocessor implementation for maintainability, to reduce
the difference between both cases.

Both models (proxy and self-service) require that the server wakes up the
caller. If the server runs on a different CPU, it cannot directly wake up the task,
because it would imply to modify the ready queue of the caller CPU, which is for-
bidden in the implemented partitioned approach.

In the multiprocessor implementation, if the two tasks are not on the same CPU, the
server task will open the barrier, and execute the Entry_Body (the proxy model
is still used). The difference with respect to the monoprocessor model is that it will
put the caller task in a list (Served_Entry_Call, an array containing a list
per processor), and then wake up the caller CPU using an inter-processor interrupt

Design and Implementation of a Ravenscar Extension for Multiprocessors 39

(see subsection 3.6, “Interrupt Handling”). The handling of the inter-processor interrupt
in the caller CPU will finally insert the blocked task in the ready queue as a result of
the barrier being open. Of course, if the two tasks run on the same CPU, there is no need
for such mechanism, so the run-time will check it and directly wake up the caller.

If the caller task has a lower priority than the currently executing task on the
caller CPU, the inter-processor interrupt will not be triggered, and the caller task
will be inserted in the ready queue at the next scheduling point, without triggering the
inter-processor interrupt. It may look like there could be a race condition, if the priority
of the caller task changes just after it was checked. However, this race condition is
not possible because dynamic priority changes are not allowed by the Ravenscar profile
restrictions.

To ensure data consistency, the Served_Entry_Call lists are protected by fair
locks.

3.5 Time-Keeping and Delays

Clock. The implementation of the time-keeping functionality does not differ when
migrating to a multiprocessor architecture. The only detail to take into account is to
choose the CPU in charge of handling the clock interrupt.

As described in [21], the requirements of having a good resolution and range with 32-
bit hardware timers force us to use a hardware periodic timer to store the least significant
part of the clock value, while the most significant part of the same value is stored in
memory, and incremented by the clock interrupt handler.

Reading the clock (the hardware least significant part plus the most significant part
in memory) is not an atomic operation, and there is the possibility of a consistency
problem (race condition) if an interrupt occurs between the reading of the hardware
and software components of the time. The monoprocessor implementation reads the
hardware clock twice to prevent this race condition, and this method can be safely used
on multiprocessor systems without introducing any kind of locking mechanism.

Alarms. The implementation of alarms in the Ravenscar run-time relies on a hardware
timer. Since most systems have fewer timers than processors, this resource must be
shared.

Each CPU manages its own list of alarms but one processor is in charge of the alarm
interrupt (Alarm_CPU).

When the alarm interrupt is triggered, the Alarm_CPU will get the time for the next
alarm on each CPU. If this time has expired, the Alarm_CPU uses an inter-processor
interrupt to wake up the other CPU; otherwise, the next alarm is used to reconfigure the
timer.

The CPU that receives the inter-processor interrupt will wake up all the expired
alarms in its own list.

Each processor has to configure the timer itself. The CPU checks if the new alarm is
before the current one and reconfigures the timer if needed. We use a fair lock to avoid
race condition during this operation.

40 F. Chouteau and J.F. Ruiz

for CPU_Id in CPU loop

i f CPU_Id /= Current_CPU then
Alarm_Time := Get_Next_Timeout (CPU_Id) ;

i f Alarm_Time <= Now then

−− Alarm expired , wake up the CPU

Poke_CPU (CPU_Id) ;

else
−− Check i f t h i s i s the next non−exp i red alarm
−− of the o v e r a l l system .

i f Alarm_Time < Next_Alarm_Overal l then
Next_Alarm_Overal l := Alarm_Time ;

end i f ;
end i f ;

end i f ;
end loop ;

i f Next_Alarm_Overal l /= Time ’ Last then
Update_Alarm (Next_Alarm_Overal l) ;

end i f ;

3.6 Interrupt Handling

No modifications to the interrupt handling code are required for the multiprocessor
support. However, during an interrupt, the context of the running thread is saved and
the execution switches to the interrupt context (interrupt stack). If the processor does
not have any task to execute, there is no context to save. To handle this case, each slave
CPU will create a task with minimum stack to provide an interrupt context.

The implementation currently requires setting the affinity masks of interrupts to a
single processor (different interrupts may be handled by different CPUs), which is the
approach recommended in subsection 2.3, “Interrupt Handling”.

Each time an event on one CPU involves a rescheduling for another CPU, the former
needs a way to wake up or interrupt the latter (inter-processor interrupt). It is done by
simulating an external interrupt with the LEON3 IRQ manager. Using specific registers,
the run-time can trigger an interrupt on one or more CPU. Therefore, on the chosen tar-
get we can trigger an interrupt on any CPU (similar inter-processor interrupt capabilities
are typically available on other multiprocessor architectures).

3.7 Sharing Code between Monoprocessors and Multiprocessors

The support for multiprocessor systems implies modifications to the previous imple-
mentation of the Ravenscar run time, and shared code between monoprocessor and
multiprocessor targets.

Most of the modifications are useless in a monoprocessor context, and would lead
to dead object code. For example, any call to the fair locks routines (section 3.4,
“Fair locks”) is a non-sense on a monoprocessor system and would reduce the per-
formance.

Design and Implementation of a Ravenscar Extension for Multiprocessors 41

To avoid this effect, and limit the impact of the multiprocessor support, the new
implementation takes advantage of the compile-time optimizations provided in GNAT.

With the following construction the code will be statically optimized. The call to the
Lock procedure will only remain if the run-time is configured to handle more than one
processor.

i f Mul t ip rocessor then
Fair_Locks . Lock (Any_Lock) ;

end i f ;

where the Multiprocessor condition is defined as:

Mul t ip rocesso r : constant Boolean := Max_Number_Of_CPUs /= 1;

and Max_Number_Of_CPUs is a parameter of the run-time representing the maximum
number of CPUs available on the target system.

Therefore, multiprocessor-specific code becomes deactivated code in monoproces-
sor systems, which is never present in the final application binary. The same run-time
sources are used for the monoprocessor and multiprocessor targets, and the only thing
that needs to be modified is the constant Max_Number_Of_CPUs. Once the run time is
recompiled, it can be used on the new target.

4 Performance

Here are presented the results of some performance tests used to measure the impact of
the new implementation. The test platform is a 40MHz LEON3 FPGA.

These measurements were taken over a large number of iterations. For each of them
there will be a table with the lowest values observed (Min) and the highest ones (Max).

The first three tests compare performances of the new multiprocessor implementa-
tion with the previous run-time. Since the previous implementation does not support
multiprocessor systems, these tests only run tasks on one CPU.
Tests are executed on four different run-times:

– Monoprocessor : Previous implementation
– Multiprocessor (1) : New run time, configured for 1 processor
– Multiprocessor (2) : New run time, configured for 2 processors
– Multiprocessor (16) : New run time, configured for 16 processors

4.1 Measurements

Delay until + context switch.

What is measured here is the elapsed time between the last statement executed at a task
dispatching point (a “delay until”) until the first statement in the next running task.

42 F. Chouteau and J.F. Ruiz

Min:
run-time time (μs) ratio diff (μs)
Mono 52.000 1.000 0.000
Mp (1) 48.625 0.935 -3.375
Mp (2) 70.125 1.348 18.125
Mp (16) 86.500 1.663 34.500

Max:
run-time time (μs) ratio diff (μs)
Mono 64.500 1.000 0.000
Mp (1) 59.000 0.914 -5.500
Mp (2) 78.000 1.209 13.500
Mp (16) 96.000 1.488 31.500

Protected objects.

This is the time to switch from one task to another using a protected object (one task
waits on an entry and the other task release it). We measure the time between opening
the barrier and the first statement after the entry call in the waiting task.

Min:
run-time time (μs) ratio diff (μs)
Mono 56.125 1.000 0.000
Mp (1) 50.000 0.890 -6.125
Mp (2) 83.500 1.487 27.375
Mp (16) 116.625 2.077 60.500

Max:
run-time time (μs) ratio diff (μs)
Mono 72.500 1.000 0.000
Mp (1) 68.250 0.941 -4.250
Mp (2) 101.000 1.393 28.500
Mp (16) 134.250 1.851 61.750

Alarm precision.

These numbers correspond to the delay until lateness [1],D.9(13), which is the differ-
ence between the requested time of delay expiration and the resumption time actually
attained by a task following an absolute time suspension.

Min:
run-time time (μs) ratio diff (μs)
Mono 50.375 1.000 0.000
Mp (1) 54.875 1.089 4.500
Mp (2) 70.000 1.389 19.625
Mp (16) 105.875 2.101 55.500

Design and Implementation of a Ravenscar Extension for Multiprocessors 43

Max:
run-time time (μs) ratio diff (μs)
Mono 76.125 1.000 0.000
Mp (1) 76.000 0.998 -0.125
Mp (2) 95.000 1.247 18.875
Mp (16) 136.250 1.789 60.125

Alarm precision on slave CPU.

This show the overhead introduced by the alarm mechanism (section 3.5, “Alarms”),
when alarms are served on slave CPUs. It is the same test as “Alarm precision”, except
that the test task is first assigned to the Alarm_CPU and then to a salve CPU.

Min:
Alarm on time (μs) ratio diff (μs)
Alarm_CPU 70.000 1.000 0.000
Slave 87.750 1.253 17.750
Max:

Alarm on time (μs) ratio diff (μs)
Alarm_CPU 95.000 1.000 0.000
Salve 132.125 1.390 37.125

4.2 Analysis

When the run-time is configured for one processor, we observe comparable perfor-
mances, even a slight improvement. This is due to the optimization described earlier
(subsection 3.7) and also to the improvements made on the run-time beside multipro-
cessor implementation.

With run-times configured for more than one CPU, the overhead looks like non-
negligible, but once we consider that the measured elapsed times are very short, even
a not very big difference represent a noticeable percentage. Looking at the actual time
differences, we can see that they are in the range of a few tens of microseconds. For a
40MHz processor (the hardware used), the time difference represents a few hundreds
of CPU instructions, which is actually a very low overhead.

5 Conclusions

This paper contains a description of a simple and natural extension to the Ravenscar
model to address multiprocessor systems. The idea behind it is to take an Ada appli-
cation (the whole partition in the Ada sense), and to statically allocate each task to
a processor. Any given processor will then have a set of tasks, protected objects and
interrupts to handle, that can be modelled and analyzed as a separate monoprocessor
Ravenscar system.

A pragma CPU is used for task partitioning, a concept already supported by most
operating systems (affinity management). The GNAT Pro compiler and run-time already
implement this Ada 2012 extension.

44 F. Chouteau and J.F. Ruiz

With respect to the implementation, handling the access to shared resources (hard-
ware and data) in a simple and efficient way is the main issue. Fair locks have been
added for ensuring inter-processor mutual exclusion. Inter-processor interrupt facilities
are the mechanisms typically used to enforce scheduling and dispatching operations on
different processors.

Configuring the run-time support from a single CPU to any number of CPUs is a mat-
ter of simply specifying the required value for the constant Max_Number_Of_CPUs.

The proposed partitioned approach provides a simple and analyzable model which
can be supported by a streamlined run-time system. It can be implemented directly on
a bare-board machine or on top of operating systems supporting affinity assignments.
The associated run time overhead remains small.

References

1. Tucker Taft, S., Duff, R.A., Brukardt, R.L., Plödereder, E., Leroy, P.: Ada 2005 Reference
Manual. LNCS, vol. 4348. Springer, Heidelberg (2006)

2. Aeroflex Gaisler: LEON3 Multiprocessing CPU Core (2010),
http://www.gaisler.com/doc/leon3_product_sheet.pdf

3. Andersson, B., Baruah, S., Jonsson, J.: Static-priority scheduling on multiprocessors. In:
RTSS 2001: Proceedings of the 22nd IEEE Real-Time Systems Symposium. IEEE Computer
Society, Los Alamitos (2001)

4. ARG: Pragma CPU and Ravenscar Profile. Tech. rep., ISO/IEC/JTC1/SC22/WG9 (2010),
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai05s/
ai05-0171-1.txt

5. ARINC: ARINC Specification 653, Avionics Application Software Standard Interface. Aero-
nautical Radio, Inc. (2005)

6. Baker, T.P.: An analysis of fixed-priority schedulability on a multiprocessor. Real-Time Sys-
tems 32(1-2), 49–71 (2006)

7. Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.: Proportionate progress: A notion of
fairness in resource allocation. Algorithmica 15, 600–625 (1994)

8. Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J., Baruah, S.: A categorization
of real-time multiprocessor scheduling problems and algorithms. In: Handbook on Schedul-
ing Algorithms, Methods, and Models. Chapman Hall/CRC, Boca Raton (2004)

9. Dhall, S.K., Liu, C.L.: On a real-time scheduling problem. Operations Research 26(1),
127–140 (1978)

10. Mezzetti, E., Panunzio, M., Vardanega, T.: Preservation of timing properties with the ada
ravenscar profile. In: Real, J., Vardanega, T. (eds.) Ada-Europe 2010. LNCS, vol. 6106,
pp. 153–166. Springer, Heidelberg (2010)

11. Giering, E.W., Mueller, F., Baker, T.P.: Implementing ada 9X features using POSIX threads:
Design issues. In: Proceedings of TRI-Ada 1993, pp. 214–228 (1993)

12. Joseph, M., Pandya, P.: Finding response times in real-time systems. BCS Computer Jour-
nal 29(5), 390–395 (1986)

13. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1) (1973)

14. Oh, Y., Son, H.: Tight performance bounds of heuristics for a real-time scheduling problem.
Tech. rep., Department of Computer Science, University of Virginia (1993)

15. RTCA: RTCA/DO-297: Integrated Modular Avionics (IMA) Development Guidance and
Certification Considerations. RTCA (August 2005)

http://www.gaisler.com/doc/leon3_product_sheet.pdf
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai05s/ai05-0171-1.txt
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai05s/ai05-0171-1.txt

Design and Implementation of a Ravenscar Extension for Multiprocessors 45

16. Ruiz, J.F.: GNAT pro for on-board mission-critical space applications. In: Vardanega, T.,
Wellings, A.J. (eds.) Ada-Europe 2005. LNCS, vol. 3555, pp. 248–259. Springer, Heidelberg
(2005)

17. Ruiz, J.F.: Towards a Ravenscar extension for multi-processor systems. Ada Letters 30,
86–90 (2010)

18. Shen, H., Baker, T.: A Linux kernel module implementation of restricted Ada tasking. Ada
Letters XIX(2), 96–103 (1999); Proceedings of the 9th International Real-Time Ada Work-
shop

19. SPARC International, Inc.: The SPARC Architecture Manual (1992), version 8
20. Swaminathan, S., Stultz, J., Vogel, J.F., McKenney, P.E.: Fairlocks — a high performance

fair locking scheme. In: International Conference on Parallel and Distributed Computing
Systems, pp. 241–246 (2002)

21. Zamorano, J., Ruiz, J.F., la de Puente, J.A.: Implementing Ada.Real_Time.Clock and abso-
lute delays in real-time kernels. In: Craeynest, D., Strohmeier, A. (eds.) Ada-Europe 2001.
LNCS, vol. 2043, p. 317. Springer, Heidelberg (2001)

A Real-Time Framework for Multiprocessor

Platforms Using Ada 2012�

Sergio Sáez, Silvia Terrasa, and Alfons Crespo

Instituto de Automática e Informática Industrial,
Universidad Politécnica de Valencia,

Camino de vera, s/n, 46022 Valencia, Spain
{ssaez,sterrasa,alfons}@disca.upv.es

Abstract. The next release of the Ada language, Ada 2012, will proba-
bly incorporate explicit support for multiprocessor execution platforms.
However, the implementation of multiprocessor scheduling approaches
over the low-level abstractions offered by Ada forces the programmer
to reconstruct complex task templates and algorithms in each new sys-
tem. This work proposes to extend the previous Real-Time Utilities by
Wellings and Burns to support multiprocessor platforms and to complete
the framework with a code generation tool that translates the scheduling
analysis reports into the real-time applications code.

Keywords: Real-Time Framework, Multiprocessor Scheduling, Multi-
processor Support, Ada 2012.

1 Introduction

Real-Time and embedded systems are becoming more complex, and multiproces-
sor/multicore systems are becoming a common execution platform in these areas.
Although schedulability analysis techniques for real-time applications executing
over multiprocessor platforms are still not mature, some feasible scheduling ap-
proaches are emerging. However, to apply these techniques a flexible support at
kernel and user-space level is needed. The forthcoming release of Ada 2012 is
expected to offer explicit support for multiprocessor platforms through a com-
prehensive set of programming mechanisms [1].

However, the complexity of current real-time systems not only requires pow-
erful execution platforms, but also support for different levels of criticality. This
situation gives rise to heterogeneous system workloads that mix hard, soft and
non real-time tasks. These tasks need to manage different kind of situations
as deadline misses, termination of optional parts, control of CPU budgets, etc.
Although Ada 2012 will provide powerful mechanisms to implement different
multiprocessor scheduling approaches at application level [2,3], the offered ab-
stractions to cope with these new requirements are still low level ones. Under this

� This work was partially supported by the Vicerectorado de Investigación of the Univ.
Politécnica de Valencia under grant PAID-06-10-2397.

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 46–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Real-Time Framework for Multiprocessor Platforms Using Ada 2012 47

situation, Wellings and Burns argued in their work [4] that there is a need for
a standardized library of real-time utilities that address common real-time prob-
lems. With the introduction of multiprocessor support and the related scheduling
mechanisms, the need for a real-time standardized library avoiding the program-
mer to reconstruct the same algorithms and task templates on each system is
exacerbated.

The main goal of this work is to make a step forward in this direction and to
extend the Real-Time Utilities proposed in [4] to support the new requirements
that arise in multiprocessor platforms. However, complex multiprocessor systems
normally require complex analysis techniques. The results of this analysis, i.e.
the real-time analysis report, will contain the scheduling attributes for each task
in the system. These scheduling attributes could be composed by multiple task
priorities, relative deadlines, release offsets and task processor migrations at
specified times. Additionally, the programmer may want to handle some special
events, e.g. deadline misses and execution time overruns. To translate this set of
attributes into the real-time application code is an error-prone process. This work
proposes to use a specific development tool that will generate the scheduling task
behavior and initialization code on top of the new Real-Time Utilities, leaving
the functional task behavior to the system programmer.

The rest of this paper is organized as follows. In section 2, the system load
the new framework will support is presented. Section 3 briefly describes some
multiprocessor scheduling approaches and their implementation feasibility at
application-level. Section 4 outlines the previous proposal of a real-time support
library and the new requirements imposed by the multiprocessor scheduling ap-
proaches. Then, section 5 presents the new components of the multiprocessor
real-time framework. Finally, the code generation framework and the work con-
clusions are drawn in sections 6 and 7.

2 System Load Model

A real-time system is composed of a set of tasks that concurrently collaborate to
achieve a common goal. Each real-time task can be viewed as an infinite sequence
of job executions. Depending on the activation mechanism used to release each
job the tasks are classified into aperiodic and sporadic tasks, if their jobs are
released by asynchronous events such as an external interrupt from a physical
device, or periodic tasks, if their jobs are released by equally spaced internal
clock events.

Typically, a job performs its work in a single step without suspending itself
during the execution, and therefore, a task is suspended only at the end of
a job execution to wait for the next activation event. However, some kind of
jobs organize the code as a sequence of well-differentiated steps that can be
temporally spaced to achieve a given system goal. An example of such tasks is
a real-time control task following the IMF model [5], that are divided into three
steps or parts: an Initial part for data sampling, a Mandatory part for algorithm
computation and a Final part to deliver actuation information. Although these

48 S. Sáez, S. Terrasa, and Alfons Crespo

steps usually share the job activation mechanism, different release offsets and
priorities can be used for each step to achieve input/output jitter reduction
during sampling and actuation steps.

These job steps constitute the code units where the programmer of the real-
time system will implement the behavior of each task. However, as pointed out
in [4], complex real-time system could be composed by tasks that need to detect
deadline misses, execution time overruns, minimum inter-arrival violations, etc.
The system behavior when these situations are detected is task-specific and it
has to be implemented in different code units in the form of task control handlers.
An example of this task-specific behavior could be a real-time control task with
optional parts. These optional steps or subtasks could help to improve control
performance, but they have to be cancelled if a certain deadline is missed in
order to send the control action in time.

When and where a given code unit is executed is determined by the scheduler
of the underlying operating system. This scheduler will use a set of scheduling
attributes to determine which job is executed and, specially in multiprocessor
platforms, which CPU will use to execute it. Some of the scheduling attributes a
real-time scheduler could use are: a release offset after the job activation, the job
priority, its relative deadline, the CPU affinity information, different execution
times of the job, etc.

In a complex multiprocessor system, each job step can have a different set of
scheduling attributes that could change during its execution depending on the
scheduling approach used to ensure the correct execution of the whole system.
The next section presents some of these scheduling approaches that can be used
to schedule real-time tasks in multiprocessor platforms.

3 Multiprocessor Scheduling Approaches

In order to achieve a predictable schedule of a set of real-time tasks in a multipro-
cessor platform several approaches can be applied. Based on the capability of a
task to migrate from one processor to another, the scheduling approach can be:

Global scheduling. All tasks can be executed on any processor and after a
preemption the current job can be resumed in a different processor.

If the scheduling decisions are performed online, in a multiprocessor platform
with M CPUs, the M active jobs with the highest priorities are the ones selected
for execution. To ensure that online decisions will fulfil the real-time constraints
of the system tasks, different off-line schedulability tests can be performed [6,7].
If the scheduling decisions are computed off-line, releases times, preemption in-
stants and processors where tasks have to be executed are stored in a static
scheduling plan.

Job partitioning. Each job activation of a given task can be executed on a
different processor, but a given job cannot migrate during its execution.

The processor where each job is executed can be decided by an online global
dispatcher upon the job activation, or it can be determined off-line by a

A Real-Time Framework for Multiprocessor Platforms Using Ada 2012 49

scheduling analysis tool and stored in a processor plan for each task. The job
execution order on each processor is determined online by its own scheduler using
the scheduling attributes of each job.

Task partitioning. All job activations of a given task have to be executed in
the same processor. No job migration is allowed.

The processor where a task is executed is part of the task’s scheduling at-
tributes. As in the previous approach, the order in which each job is executed
on each processor is determined online by the scheduler of that processor.

In addition to these basic approaches, new techniques that mix task parti-
tioning with task that migrate from one processor to another at specified times
are already available in the literature. In this approach, known as task splitting,
some works suggest to perform the processor migration of the split task at a
given time after each job release [8] or when the job has performed a certain
amount of execution [9]. It is worth noting that this approach normally requires
the information about the processor migration instant to be somehow coded into
the task behavior.

In the case that a task is composed by multiple job steps, specific scheduling
analysis tools usually decompose these steps as different real-time subtasks [5,10].
These subtasks share the same release mechanism, typically a periodic one, and
separate each job execution using a given release offset. Figure 1 depicts this
decomposition of a control task. The rest of the scheduling attributes of these
new tasks are established according to a given goal, e.g., to improve the overall
control performance by means of input and output jitter reduction. Once the task
steps are separated into different tasks, the multiprocessor scheduling approaches
shown above can be combined with the control specific ones.

I M F

I

M

F

T1

T1I

T1M

T1F

Fig. 1. Decomposition of a task with multiple job steps

Although schedulability analysis techniques that ensure the timeliness exe-
cution of the task set are not mature enough for all the scheduling approaches
presented above, to offer a flexible support to easily apply the most established
ones is part of the goals of this work. The next section analyzes the required
functionalities a library of Real-Time Utilities has to provide to help in the
applicability of these approaches and proposes a redesigned Real-Time Frame-
work that helps to implement complex real-time systems over multiprocessor
platforms.

50 S. Sáez, S. Terrasa, and Alfons Crespo

4 New Design of Real-Time Utilities

This section analyses the current proposal of a library of Real-Time Utilities and
revise the needed requirements to support the existing multiprocessor schedul-
ing approaches presented above. This work proposes to redesign the framework
presented by Wellings and Burns [4] to cope with these new requirements.

4.1 Previous Proposal of the Real-Time Utilities

The Real-Time Utilities proposed by Wellings and Burns offer a set of high-
level abstractions that allow the Ada 2005 programmer to build real-time task
with different release mechanisms (periodic, aperiodic and sporadic) and with
different ways to manage deadline miss and execution time overrun events.

This framework organizes the support for building complex real-time systems
around four kind of components:

Task State. This component encapsulates the main code units of a real-time
task: initialization, the code to be executed on each release of a task job and
specific handlers for deadline miss and execution time overrun events. Ex-
tending this component the programmer can easily build the tasks that com-
pound the system. The task state also maintains the scheduling attributes
for that task.

Release Mechanisms. This set of components provides different mechanisms
to control the activation of each system task: periodic, sporadic and ape-
riodic tasks. However, release mechanism components also implement the
support for deadline miss and execution time overrun detection and noti-
fication. As the detection and notification of these events are optional and
orthogonal also with respect to the kind of release mechanism used, this
gives rise to four different classes per release mechanism (2 number of events ×
number of release mechanisms). As the implementation of multiprocessor
scheduling approaches explained in section 3 could require an increased num-
ber of events to be managed by the task code, this solution seems to be
inadequate.

Real-Time Task. This kind of components implements the main structure of a
real-time task, integrating the task state and its corresponding release mech-
anism. Different task templates provide support to immediately terminate a
task on the occurrence of a given event. Once again, as the number of task
templates depends on the number of termination events (2 number of events),
this approach does not scale properly in relation to the number of such
events1.

Execution Servers. This component allows to manage group of tasks ensuring
that a certain proportion of CPU time is not exceeded. As new Ada 2012
will tie group budgets to a single processor [11], this work is not going to
consider this kind of components.

1 Although not present in the original framework, a notifycation mechanism intro-
duced in a later version allows to mitigate this drawback.

A Real-Time Framework for Multiprocessor Platforms Using Ada 2012 51

Although these components provide a useful set of high-level abstractions to
implement real-time systems, they can be inadequate to implement multiproces-
sor scheduling techniques. As introduced above, scalability problems will arise
if the number of events that could be managed by a given task is increased,
as the number of types required to implement each release mechanism has an
exponential relation with the number of events. Currently only deadline miss
and execution time overrun events are managed, but the introduction of a new
event will require to double the number of supporting types.

It is also important to remark that the current class hierarchy of the Real-
Time Utilities is not compatible with the code generator framework proposed
in this work. For example, Listing 1 shows how the periodic release mechanism
M and the real-time task T have to be declared after the programmer defines
and declares the final task state P. With this code structure, a code generation
tool only can set up the scheduling attributes of a task in its Initialize proce-
dure, and therefore, it has to provide a task-specific Periodic Task State with this
procedure already implemented. When the programmer extends this new task
state type to implement the task behavior its initialization code will collide with
the one provided by the code generation tool. Although a possible solution to
this problem could be to provide an additional Setup procedure to allocate the
initialization generated code, this work proposes bellow a complete separation
of scheduling and behavior task code.

Listing 1. A simple example of a periodic task using the Real-Time Utilities

−− with and use clauses omitted
package Periodic Test is

type My State is new Periodic Task State with
record

I : Integer ;
end record;

procedure Initialize(S: in out My State);
procedure Code (S: in out My State);

P : aliased My State;
M : aliased Periodic Release(P’Access);
T : Simple Real Time Task(P’Access, M’Access, 3);

end Periodic Test;

4.2 Real-Time Multiprocessor Requirements

Real-Time multiprocessor scheduling techniques presented in section 3, such
global scheduling, have some implementation requirements that have to be pro-
vided by the underlying Real-Time Operating System or be implemented at
user level be means of some kind of Application Defined Scheduler [12], that
also requires some support from the RTOS. However, the rest of the scheduling
approaches, i.e. task partitioning, job partitioning and task splitting can be im-
plemented using the low-level constructions that will be probably available in
Ada 2012. This new support at language level has already been used in several
works to show these multiprocessor scheduling techniques can be feasibly im-
plemented [3,2,13]. This section presents the requirements the new framework

52 S. Sáez, S. Terrasa, and Alfons Crespo

has to fulfill to allow the implementation of the techniques with a new set of
high-level abstractions.

Previous sections have presented a task model and a set of scheduling scenarios
where a task could require:

– To establish its scheduling attributes, including the CPU where each job will
be executed. These scheduling attributes can be set at the task initialization
to support task partitioning, they can be dynamically changed at the begin-
ning of each job to provide job partitioning support or after a given amount
of system or CPU time has elapsed to provide support for some of the task
splitting techniques.

– To program and to be notified about the occurrence of a wide set of runtime
events. These events could include: deadline misses, execution time overruns,
mode changes, timed events using system or CPU clocks to inform about a
programed task migration, etc. Some of these events could also terminate
the current task job.

– To specify task release delays or offsets in order to support the decomposition
of tasks with multiple steps into several subtasks.

To support these requirements a new set of components are proposed in the
following section.

5 New Framework Components

Taking into account the behavioral and scalability requirements that will be de-
sirable in a library of Real-Time Utilities to support multiprocessor platforms
and automatic code generation, the original components presented in section 4.1
have been split in: Real-Time Task State, Real-Time Task Sched, Control Mech-
anisms, Release Mechanisms and Real-Time Tasks. Figure 2 shows dependencies
among new packages. The details are discussed in the next sections.

Fig. 2. Structure of new Real-Time Utilities packages

A Real-Time Framework for Multiprocessor Platforms Using Ada 2012 53

5.1 Real-Time Task Scheduling and Task State

The original Task State tagged type provides the structure that allows the pro-
grammer to implement the code the real-time task will execute. Along with this
code, the scheduling attributes of the task and the state variables associated
with the real-time task are also allocated in this type or in the extended type
the programmer defines to implement the task behavior.

As the scheduling attributes of a real-time task have been shown as some-
thing that different scheduling approaches can change dynamically during the
task lifespan, it could be interesting to present this concept as an independent
type. This will allow one to fully define the task attributes before the final task
state is defined, to associate scheduling attributes to a task event, or to define
arrays of attributes to implement static scheduling plans or job partitioning
schemes.

Fig. 3. Task related types

On the other hand, some multiprocessor scheduling approaches will require
to implement part of the scheduler behavior in the task code, giving rise to task
templates that depend on the results of the real-time analysis tool. Examples of
these task templates in Ada for task splitting techniques can be found in [3] and
a brief outline of a task using job partitioning in [13]. Since this work proposes
to automatically generate this scheduling task behavior using a properly format-
ted real-time analysis report, it is suggested to encapsulate this code in a new
Task Sched tagged type. Although this conceptual separation of the scheduling
behavior is not strictly necessary, it will prevent the programmer from acciden-
tally overriding the scheduling code. Figure 3 shows the relations among these
new types and Listing 2 sketches their basic operations.

The new tagged type Task Sched will implement the operations to manage
common scheduling situations. Example procedures shown in Listing 2 are in-
tended to support different scheduling behaviors:

54 S. Sáez, S. Terrasa, and Alfons Crespo

Listing 2. Task tagged types

package Real Time Task Sched is
...
type Task Sched Attributes is new Sched Attributes with private;
−− Get/Set operations omitted
...
type Task Sched is abstract new Sched Interface with private;

procedure Initialize (S : in out Task Sched) is abstract;
procedure Set Attributes (S : in out Task Sched) is null;
procedure Adjust Attributes (S : in out Task Sched) is null;
procedure Mode Change(S: in out Task Sched) is null;
−− Get/Set operations omitted

private
type Task Sched Attributes is new Sched Attributes with

record
Offset : Time Span := Time Span Zero;
Relative Deadline : Time Span := Time Span Last;
Execution Time : Time Span := Time Span Last;
Prio : Priority := Default Priority ;
CPU Affinity : CPU Range := Not A Specific CPU;

end record;
...

end Real Time Task Sched;

– Initialize – this code will be used by the code generation tool to initialize
the task attributes and the task scheduling mechanisms.

– Set Attributes – this code will be used to establish the task attributes to
its original values on each job release after a task split or to establish new
values in the case of job partitioning scheme.

– Adjust Attributes – this code will adjust task attributes during its execu-
tion, e.g., to perform a task split or a dual priority scheme [14].

– Mode Change – this is the code that specifies how the task scheduling at-
tributes are adapted to the new execution mode.

5.2 Real-Time Task Control Mechanisms

Multiprocessor scheduling techniques will require a higher number of events to be
managed by the task code. This work proposes to detach the event management
from the previous version of the release mechanisms, moving this support to
the new package Control Mechanisms. This new package contains two main com-
ponent, Control Objects and Control Events, that will collaborate to implement
the Command design pattern [15]. Control Objects will perform the Invoker
role, that will ask to execute the Command implemented by the Control Event
upon some scheduling event occurs. The Receiver role is played by Task State

or Task Sched types, while the Client role is performed by the initialization
code that creates the event command and sets its receiver. Specialized ver-
sions of Control Objects will enable to trigger scheduling events under different
situations:

A Real-Time Framework for Multiprocessor Platforms Using Ada 2012 55

Listing 3. Execution Time Overrun Control Event

...
−− Cost Overrun Event
type Cost Overrun Event (State: Any Task State;

Attrib: Any Task Sched Attributes;
Termination: Boolean) is new

Control Event Using CPU Clock(Termination) with null record;
procedure Dispatch(E: in out Cost Overrun Event);
function Get Event Time(E: in Cost Overrun Event) return CPU Time;

...
−− Cost Overrun Event
procedure Dispatch(E: in out Cost Overrun Event) is
begin

E.State.Overrun;
end Dispatch;

function Get Event Time(E: in Cost Overrun Event) return CPU Time is
begin

return Clock + E.Attrib.Get Execution Time;
end Get Event Time;

– On job release: it will allow the job partitioning scheme to be implemented
by creating a new control event that will execute Set Attributes procedure of
the Task Sched object before a new job is released.

– After a given amount of system time: The use of an Ada Timing Event will
allow a task splitting based on system time to be implemented. Command

Fig. 4. Control Mechanisms

56 S. Sáez, S. Terrasa, and Alfons Crespo

executed by the control event will invoke the Adjust Attributes procedure of
the Task Sched object.

– After a given amount of CPU time: task splitting based on CPU time
will use Ada Execution Time.Timers to trigger the appropriated event. In
this case, the command executed by the control event will also invokes the
Adjust Attributes procedure after the specified CPU time.

– On job completion: It will allow a task to execute a given procedure to
respond to scheduling events that have deferred their actions until the cur-
rent job completes its execution. This task procedure could change the task
attributes before the next job activation occurs, e.g., the Mode Change pro-
cedure could be used to change the priority and period of a task before
reprogramming its next release event.

Listing 4. Periodic Release Mechanism

1 ...
2 protected type Periodic Release (S: Any Periodic Task Sched) is
3 new Release Mechanism with
4 entry Wait For Next Release;
5 pragma Priority(System.Interrupt Priority’Last);
6 private
7 procedure Release(TE : in out Timing Event);
8 TE : Timing Event;
9 ...

10 end Periodic Release;
11 ...
12 protected body Periodic Release is
13 entry Wait For Next Release when New Release or not Completed is
14 begin
15 if First then −− Release mechanism initialization
16 First := False;
17 Epoch Support.Epoch.Get Start Time (Next);
18 Next := Next + S.Get Period;
19 S.Set Release Time (Next + S.Get Offset);
20 TE.Set CPU (S.Attrib.Get CPU);
21 TE.Set Handler (S.Get Release Time, Release’Access);
22 New Release := False;
23 requeue Periodic Release.Wait For Next Release;
24 elsif New Release then −− Job begin
25 New Release := False;
26 Completed := False;
27 −− Invocation of On Release procedures of Control Objects
28 else −− Job end
29 Completed := True;
30 −− Invocation of On Complete procedures of Control Objects
31 −− TE.Set CPU (S.Attrib.Get CPU); −−> Version with Control Objects
32 Next := Next + S.Get Period;
33 S.Set Release Time (Next + S.Get Offset);
34 TE.Set Handler (S.Get Release Time, Release’Access);
35 requeue Periodic Release.Wait For Next Release;
36 end if;
37 end Wait For Next Release;
38

39 procedure Release (TE : in out Timing Event) is
40 begin
41 New Release := True;
42 −− Set CPU(S.Attrib.Get CPU, T Id); −−> Version with Control Objects
43 end Release;
44 end Periodic Release;

A Real-Time Framework for Multiprocessor Platforms Using Ada 2012 57

On the other hand, Control Events only have to implement the Dispatch op-
eration that will execute the corresponding task behavior. Most of the control
events are triggered by a time event and, in this case, they also have to provide
the Get Event Time function to program that time event adequately. Listing 3
shows the implementation of Execution Time Overrun event.

Figure 4 depicts Control Objects and Control Events hierarchy, showing how
Deadline Miss and Execution Time Overrun events along with events to support
task splitting can be mapped into this new mechanism.

Control Object procedures On Release and On Completion, that will be invoked
by the corresponding release mechanism, will allow the task to program the
Timing Event or the Execution Time Timer on job release and to cancel them
on job completion.

5.3 Real-Time Task Release Mechanisms

Once the control mechanisms have been introduced, the release mechanisms
become simpler. Only two kind of protected types are needed per release mech-
anism. The first one, Release Mechanism, remains similar to the previous version
of the Real-Time Utilities with some minor changes to support CPU affinities
and release offsets. Listing 4 shows the definition of Periodic Release.

The second release mechanism, Release Mechanism With Control Objects, is al-
most identical to the former one but invoking On Release and On Completion pro-
cedures of all registered control objects each time a job is released or completed
(marked as commentaries in Listing 4). It also offers the notification operations
Notify Event and Trigger Event to add task termination support. As suggested
in [13], the new Set CPU procedures of Timing Event and Dispatching Domains

are used to avoid unnecessary context switches when a job finishes its execution
in a different CPU than the next job release is going to use, e.g, due to the
application of a job partitioning or task splitting scheme (see lines 31 and 42).

Listing 5. Real-Time Task with Event Termination

task type Real Time Task With Event Termination (
S : Any Task State; C : Any Task Sched;
R : Any Release Mechanism With Control Objects) is

end Real Time Task With Event Termination;
...

task body Real Time Task With Event Termination is
E : Any Control Event;

begin
C. Initialize ; S. Initialize ;
loop

select
R.Notify Event(E);
E.Dispatch;

then abort
R.Wait For Next Release;
S.Code;

end select;
end loop;

end Real Time Task With Event Termination;

58 S. Sáez, S. Terrasa, and Alfons Crespo

5.4 Real-Time Tasks

Finally, although the Simple Real-Time Task remains almost identical, the tem-
plate of a Real-Time Task With Event Termination becomes simpler due to
the new event dispatching mechanism. As it can be observed in Listing 5, the
task initializes the Task Sched object, containing the automatically generated
initialization code, and Task State object, containing the programmer initial-
ization code, before starting the main loop. It is also worth noting that the
Wait For Next Release procedure can also be aborted to support event notifica-
tion while a task job is inactive.

6 Code Generator Tool

The proposed real-time multiprocessor framework have been redesigned to bet-
ter adapt its components to multiprocessor platform requirements. However,
the number of small components required to implement a complex task has in-
creased and also the relations among them. This fact gives rise to a more elabo-
rated initialization code to set up a task scheduling infrastructure. As translating
scheduling attributes to application code and interconnect the resulting compo-
nents can be an error-prone process, this work suggest the use of a very simple
development that generates the scheduling task behavior and initialization from
the real-time analysis report.

Fig. 5. Real-Time Multiprocessor Framework

The current prototype of the code generation tool has been implemented
using the PHP script language2, and the YAML language [16] to format the
file with the real-time analysis report. PHP languages is used due to its agile
programming style and code generaton facilites that eases the prototyping pro-
cess, while YAML language selection is based on its human readability. Specific
XML2YAML conversion tools can be provided to support systems specified in
standard XML formats.

2 Using the PHP Command-Line Interface.

A Real-Time Framework for Multiprocessor Platforms Using Ada 2012 59

A scheme of the proposed real-time multiprocessor framework is shown on the
left side of the Figure 5. On the right side, it is depicted the structure of the
generated code: one package per Scheduling Domain and each Task of a given
domain represented by a child package. The system programmer only has to
extend the specialized Task State type provided for each task in the system and
implement the task behavior in the corresponding procedures.

7 Conclusions

The complexity of modern real-time system will require the use of multiprocessor
platforms. Future Ada 2012 will provide basic mechanism to support part of the
scheduling approaches proposed for that platforms. However, the Ada language
support provides low-level mechanisms and the programmer have to reconstruct
complex task templates and algorithms on each system.

This work has extended the previous Real-Time Utilities presented in [4] to
support multiprocessor platforms and to better adapt its structure to an auto-
matic code generation framework.The multiprocessor scheduling approaches have
been analyzed, and the new requirements have been taken into account in the new
framework components. The resulting framework allows the programmer to center
the implementation efforts only in the task behavior, letting the scheduling mecha-
nisms to be automatically generated from the real-time analysis report. Currently,
the support for multi-stepped jobs is being finished and a web site to share the
real-time framework code and the development tools is being set up.

References

1. Burns, A., Wellings, A.J.: Multiprocessor systems session summary. In: 14th Inter-
national Real-Time Ada Workshop (IRTAW-14) (2009)

2. Burns, A., Wellings, A.J.: Dispatching domains for multiprocessor platforms and
their representation in ada. In: Real, J., Vardanega, T. (eds.) Ada-Europe 2010.
LNCS, vol. 6106, pp. 41–53. Springer, Heidelberg (2010)

3. Andersson, B., Pinho, L.M.: Implementing multicore real-time scheduling algo-
rithms based on task splitting using ada 2012. In: Real, J., Vardanega, T. (eds.)
Ada-Europe 2010. LNCS, vol. 6106, pp. 54–67. Springer, Heidelberg (2010)

4. Wellings, A.J., Burns, A.: Real-Time Utilities for Ada 2005. In: Abdennahder, N.,
Kordon, F. (eds.) Ada-Europe 2007. LNCS, vol. 4498, pp. 1–14. Springer, Heidel-
berg (2007)

5. Balbastre, P., Ripoll, I., Vidal, J., Crespo, A.: A task model to reduce control
delays. Journal of Real-Time Systems 27(3), 215–236 (2004)

6. Baruah, S., Fisher, N.: Global fixed-priority scheduling of arbitrary-deadline spo-
radic task systems. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha,
S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 215–226. Springer, Heidelberg (2008)

7. Baruah, S.K., Baker, T.P.: Schedulability analysis of global EDF. Real-Time
Systems 38(3), 223–235 (2008)

8. Lakshmanan, K., Rajkumar, R., Lehoczky, J.P.: Partitioned fixed-priority preemp-
tive scheduling for multi-core processors. In: 21st Euromicro Conference on Real-
Time Systems, ECRTS 2009, pp. 239–248. IEEE Computer Society, Los Alamitos
(2009)

60 S. Sáez, S. Terrasa, and Alfons Crespo

9. Kato, S., Yamasaki, N., Ishikawa, Y.: Semi-partitioned scheduling of sporadic task
systems on multiprocessors. In: 21st Euromicro Conference on Real-Time Systems,
ECRTS 2009, pp. 249–258. IEEE Computer Society, Los Alamitos (2009)

10. Hong, S., Hu, X.S., Lemmon, M.: Reducing delay jitter of real-time control tasks
through adaptive deadline adjustments. In: Euromicro Conference on Real-Time
Systems, ECRTS 2010, pp. 229–238. IEEE Computer Society, Los Alamitos (2010)

11. Ada 2005 Issues. AI05-0169-1/06: Defining group budgets for multiprocessor plat-
forms. (2010) Version: 1.7. Status: Amendment 2012

12. Aldea, M., Miranda, J., González Harbour, M.: Implementing an Application-
Defined Scheduling framework for Ada tasking. In: Llamośı, A., Strohmeier, A.
(eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 283–296. Springer, Heidelberg (2004)

13. Sáez, S., Crespo, A.: Preliminary multiprocessor support of Ada 2012 in
GNU/Linux systems. In: Real, J., Vardanega, T. (eds.) Ada-Europe 2010. LNCS,
vol. 6106, pp. 68–82. Springer, Heidelberg (2010)

14. Burns, A., Wellings, A.J.: Dual priority assignment: A practical method for in-
creasing processor utilisation. In: 5th Euromicro Workshop on Real-Time Systems,
pp. 48–55. IEEE Computer Society, Los Alamitos (1993)

15. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

16. Ben-Kiki, O., Evans, C., Ingerson, B.: YAML ain’t markup language (YAML) (tm)
version 1.2. Technical report, YAML.org (September 2009)

The SQALE Quality and Analysis Models for

Assessing the Quality of Ada Source Code

Thierry Coq1 and Jean-Pierre Rosen2

1 DNV France, Paris, France
thierry.coq@dnv.com, http://www.dnv.com

2 Adalog, Issy-les-Moulineaux, France
rosen@adalog.fr, http://www.adalog.fr

Abstract. This article presents the quality and analysis model of the
SQALE assessment method of software source code. It explains how an
Ada quality model compliant to SQALE is implemented and the results
of its application to selected software, and how the use of Ada reduces
the quality debt unlike many other technologies.

1 Introduction

Det Norske Veritas (DNV) is a not-for-profit organization specialized in risk
management. As such, we are conducting research in the measurement of soft-
ware quality (qualimetry). We discovered that the analysis model, and more
precisely the rules used for aggregating raw measures, is a key factor for the ef-
fective implementation of qualimetry. This paper introduces the analysis model
of the SQALE (Software Quality Assessment Based on Lifecycle Expectations)
method to assess the quality of software and in particular software source code.
A detailed view of SQALE has been presented in our white paper [1]. The quality
model of SQALE and its application to real-time or embedded software has been
described in [2]. Its particular strength resides in its compliance to the repre-
sentation clause [3]. The SQALE method is open source and freely available [4].
Several tool vendors provide implementations for various languages such as C,
C++, Java and Cobol. We explain in this paper how the SQALE for Ada quality
model is developed in compliance with the SQALE requirements, how the basic
Ada metric and quality measurements tools can be used. Finally a few results
of applying SQALE for Ada are described and analyzed, putting in evidence the
small quality debt incurred in the selected projects.

2 The SQALE Analysis Model

Before describing in detail the implementation of the SQALE model for Ada, the
quality model of the SQALE method will be briefly presented. The quality model
of the SQALE method expresses the requirements applicable to the software
and its source code over its life cycle. In the same manner that the activities
linked to making the software and in particular its source code, follow a clear

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 61–74, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

62 T. Coq and J.-P. Rosen

Fig. 1. Dependencies between Activities and Quality Characteristics

Fig. 2. Some details of Level 2 and 3 of the SQALE Quality Model

chronology the requirements applicable to the source code appear in a same
order. The approach and the structure of the SQALE quality model has been
detailed elsewhere [1] and are summarized in figures 1 and 2.

The generic SQALE model is derived according to the implementation tech-
nologies (design and source code languages) and the tailoring needs of the
project. As stated in [1], the quality model is a requirements model. The way it
is built ensures the quality targets a total absence of non compliances.As written

The SQALE Quality and Analysis Models for Assessing the Quality 63

by Ph. Crosby [5], assessing a software source code is therefore similar to mea-
suring the distance which separates it from its quality target. To measure this
distance, the concept of remediation index has been defined and implemented
in the SQALE analysis model. An index is associated to each component of
the software source code (for example, a file, a module or a class). The index
represents the remediation effort which would be necessary to correct the non
compliances detected in the component, versus the model requirements. Since
the remediation index represents a work effort, the consolidation of the indices
is a simple addition of uniform information, which is compliant with the repre-
sentation condition and a critical advantage of our model. A component index
is computed by the addition of the indices of its elements.

A characteristic index is computed by the addition of the base indices of its
sub-characteristics. A sub-characteristic index is computed by the addition of the
indices of its control points. Base indices are computed by rules which comply
with the following principles:

– A base index takes into account the unit remediation effort to correct the
non-compliance. In practice, this effort mostly depends on the type of non-
compliance. For example correcting a presentation defect (bad indentation,
dead code) does not have the same unit effort cost as correcting an active
code defect (which implies the creation and execution of new unit tests,
possible new integration and regression tests).

– A base index also considers the number of non-compliances. For example,
a file which has three methods which need to be broken down into smaller
methods because of complexity will have an index three times as high as a
file which has only one complex method, all other things being equal.

Base indices are aggregated either by the artifact where the non-compliance has
been identified, or by the relevant (sub-)characteristic. In the end, the remedia-
tion indices provide a means to measure and compare non compliances of very
different origins and very different types. Coding rule violation non-compliances,
threshold violations for a metric or the presence of an antipattern non-compliance
can be compared using their relative impact on the index.

The standard measure set of SQALE has more than 30 control points and the
extended set more than 60. A few examples of base measures are explained in
more detail, to show how each complies with the conditions explained above:

– A well-known issue contributing to reduced testability is an excessive cyclo-
matic complexity for a given operation (procedure or function) in the code.
The default threshold for excessive complexity in SQALE is 15. Any opera-
tion having a V(G) over 15 will be counted as one violation, and the count
is cumulative per class and file in order to apply the representation con-
dition. This measure is mostly independent of the programming language,
each language has an equivalent.

– A contributor to reliability measurement is the absence of dynamic memory
allocation (for real-time software) or a balanced use of allocation and deal-
location instructions (malloc and freemem in C for example). Each violation
of this rule increments the count by one, again for each class and file.

64 T. Coq and J.-P. Rosen

– A contributor changeability measurement can be obtained by computing the
number of operations (methods) per class (excluding getters and setters) and
checking it is beneath a threshold, fixed in SQALE at 30.

– A contributor to maintainability measurement is obtained by measuring the
comment ratio, for each file. If it is below SQALEs default threshold of 25%,
a violation is counted.

– Finally, for real-time software, the presence of dead code and commented-out
code is also counted as a contributor against maintainability.

Of course, the various examples presented above have different remediation in-
dices. The SQALE method uses the organizations remediation indices built using
historical data from the projects. If it is not possible, a Delphi analysis [6] or AHP
[7] may be used with the project and the SQALE experts to define expert-based
remediation indices.

In the above examples, the thresholds provided are examples in a particular
context, the SQALE method providing conservative defaults if needed. Many
authors (f.e.: [8,9,10,11,12]) have proposed individual check points and thresholds
that can be used in SQALE, provided the representation clause is satisfied [3].

The SQALE quality and analysis models have been used to perform many
assessments of software source code, of various application domains and sizes.
The same layered and generic quality model has been used to assess Cobol, Java,
embedded Ada, C or C++ source code. For Java, C++ and Ada, the quality
model contains object-oriented metrics to assess Testability, Changeability and
Reusability. The quality model also provides control points to detect the absence
of antipatterns such as those identified by Brown [13]. The indices are computed
based on the average remediation efforts estimated by the development team.
The index thresholds providing a rating in five levels (from “poor” to “excellent”)
are established by the application managers.

3 The SQALE for Ada Quality Model

Making a SQALE Ada quality model requires defining the requirements for the
Ada language. Some requirements can be reused as-is from the SQALE default
quality model, such as the maximum cyclomatic complexity for subprograms, or
the absence of copy/paste (for 100 tokens). Other requirements such as the one
for comments can be applied to Ada, but with a lower bound (and a maximum)
due to the inherently more readable nature of the language.

Other requirements are not applicable as they are enforced by the compiler.
The most notable of those is the requirement for a directed acyclic hierarchical
dependency graph between units of compilation: cyclic dependencies between
packages are prohibited by the language.

Some requirements related to object-oriented concepts are more difficult to
analyze in the dual nature of the Ada language and have to be adapted to the
language. For example, the stability requirement is computed on the efferent and
afferent coupling of packages, not objects. The final list of selected requirements,
for our SQALE Ada Quality Model covers most characteristics and subcharac-
teristics of the SQALE model.

The SQALE Quality and Analysis Models for Assessing the Quality 65

A drawback of the model is the lack of efficiency requirements. SQALE re-
quirements in other languages require the absence of certain statements or li-
brary functions likely to cause inefficiencies. A first analysis has not uncovered
the equivalent in the Ada language. Other efficiency requirements need to be set
up, related to the two sub-characteristics: CPU performance, memory (RAM)
performance. One requirement was identified related to the absence of dead code
in the source, and linked to the memory (ROM) performance subcharacteristic.
The final SQALE Ada Quality Model is presented in table 1. The reusability
requirement is based on the stability principle, where the dependency graph and
the stability are computed to determine the actual reusability. If a less stable
package is reused by a more stable one, then it is a violation of the model (for
both packages). The stability is computed as the ratio of using packages over

Table 1. The SQALE for Ada Default Quality Model

No Characteristic Sub-
Characteristic

Generic Requirement Description Ada Requirement

1 Testability Unit testability Acceptable number of parameters
in a call (NOP)

NOP ≤ 5

2 Testability Unit testability Acceptable number of test paths in
a module (V(G))

V(G) ≤ 15

3 Testability Unit testability Tolerable number of test paths in a
module (v(G))

V(G) ≤ 60

4 Testability Unit testability Acceptable number of different
called modules from a module
(FANOUT)

Efferent coupling ≤ 20

5 Testability Unit testability Acceptable duplication within a
module (CPRR100)

Number of CPRR100 violations

6 Testability Unit testability All code paths within a module are
reachable

All code is reachable

7 Testability Unit testability All modules are reachable All modules are reachable
8 Testability Unit testability No module calling itself recursively No recursion
9 Testability Integration testa-

bility
Acceptable coupling between ob-
jects (CBO)

CBO ≤ 7

10 Testability Integration testa-
bility

No public data within classes No directly accessed globals, all public
(tagged) types are private.

11 Testability Integration testa-
bility

Acceptable number of direct de-
clared required files

With count < 50

16 Reliability Data reliability All types are safely converted No unchecked conversions
17 Reliability Data reliability No use of unitialized variables No use of unitialized variables
19 Reliability Logic reliability One single point of exit per module No multiple exits
25 Reliability Statement relia-

bility
Reproducible floating point compu-
tations

No equality comparison between reals

27 Reliability Statement relia-
bility

No ambiguous statement execution
order

No operator precedence order ambiguity

28 Reliability Synchronization
related reliability

Shared resources are used in pro-
tected scope

No shared variables used in several con-
texts

34 Reliability Architecture reli-
ability

Standardized error and exception
handling

No exception propagates to other lan-
guages

38 Changeability Architecture
changeability

No different elements with the same
name

No local hiding

39 Changeability Architecture
changeability

Acceptable number of class meth-
ods (NOM)

NOM (public) ≤ 60 (for a package)?

42 Changeability Data changeabil-
ity

No explicit constants directly used
in the code (except 0,1...)

No literals in expressions or statements

43 Changeability Data changeabil-
ity

All objects are declared at smallest
scope

No unnecessary use or with clause, no re-
duceable scope

45 Efficiency RAM efficiency No unused variable, parameter or
constant in code

No unused variable, parameter or constant
in code

48 Efficiency ROM efficiency All statements are useful No simplifiable statements
51 Maintainability Readability Acceptable File size LSLOC < 2000
58 Maintainability Readability Capitalization rules are followed for

code elements.
Casing

59 Maintainability Readability Rules for identifying types, vari-
ables and other code elements are
followed.

Check the project’s naming rules are ap-
plied. (To be adjusted to the project)

60 Maintainability Understandability Acceptable minimum level of com-
ments

Comments density ≥10% (needs to take
into account verbose FOSS headers)

61 Maintainability Understandability Acceptable maximum level of com-
ments

Comments density ≤35% (needs to take
into account verbose FOSS headers)

64 Maintainability Understandability No unstructured statements (goto,
break outside a switch...) (eV(G))

eV(G) ≤1

66 Reusability Stability The SDP (Stability Dependency
Principle) is applied

The less stable package is not used by the
more stable package1

66 T. Coq and J.-P. Rosen

the total of the using and used packages. If a package does not use any other
packages, it has a stability of one.

Unlike tool-based quality models, the SQALE Ada Quality model is based on
defining the objectives and requirements first, then finding or building the tools
needed to implement it, creating the tools check points from the requirements.

In addition to the quality model, an analysis model was defined for the Ada
language. Each requirement was assigned a remediation factor, based on the
estimated work units required to correct the defect.

The remediation factors are defined by the following table, and mapped to
the quality model.

Table 2. The SQALE Ada remediation factors

Non-Compliance
Type Name

Description Remediation
Factor

Sample

Type0 Undefined 0 Not applicable
Type1 Fixable by automated tool,

no risk
0.01 Change in capitalization

Type2 Manual remediation, but no
impact on compilation

0.1 Add comments

Type3 Local impact, need only unit
testing

1 Replace an instruction
by another

Type4 Medium impact, need inte-
gration testing

5 Split a big function in
two

Type5 Large impact, need a com-
plete validation

20 Architectural change

Table 3. The effort scale per source line for each type of package

Package Type Work Unit per Line

Package Specification (.ads) 1
Package Body (.adb) 0.1

In addition, in order to compute index densities, the size of the packages (in
source lines of code) was used as a rough estimate of the number of work units
to produce the package from scratch, if it were entirely rewritten.

For example, a typical package with 15 lines of specification and 250 lines
of body rates 15 + 25 or 40 work units in this model. The justification for this
choice is based on the authors experience of using Ada as a specification language
where the structure of the packages is as important as the implementation.

This number can then be compared with the indices obtained, either in total
or for a given characteristic, and the file rated using the rating scale described
in table 4. For example, a package with 25 work units and a remediation index
of 30 would be rated as “E”, very bad (rating of 1.2 in the interval]1, +∞[) .
The same with a remediation index of 7 would be rated as a “C”, medium (rating

The SQALE Quality and Analysis Models for Assessing the Quality 67

Table 4. The SQALE Ada rating thresholds

Class Name Class Letter Rating Interval Color

Excellent A [0, 0.03] green
Good B]0.03, 0.1] light green
Medium C]0.1, 0.3] yellow
Bad D]0.3, 1] orange
Very Bad E]1, +∞[red

of 0.28 in the interval]0.1, 0.3]). Of course, where available in organizations, a
better estimation model may be used to assign more precise remediation and
work effort factors in the analysis model.

Once the quality and the analysis models are defined, the tools implementing
these models may be selected and implemented where missing.

4 Implementing SQALE for Ada Quality Model

The first step of the method consists in building the non-compliance table from
the source code. The choice of an appropriate set of tools for this is fundamental
to the method, since the significance of the results depends strongly on the accu-
racy and reliability of the measurement tool. For example, simple text processing
tools like Unix’s ”grep”, are too sensitive to presentation issues to be used [15].

The generic SQALE quality model [4] identifies more than 66 points of mea-
surements, and no single tool is able to measure all of the derived checkpoints.
Developing a custom tool for SQALE is not feasible, given the limited time and
budget allotted to the Ada implementation. However, using a limited number
of tools and some ”glue” processing, we were able to implement the method for
Ada. These checkpoints are close to programming rules: they are places in the
source code where undesirable features are used (goto, multiple loop exits), or
where a certain limit is exceeded (number of parameters, cyclomatic complexity).

The requirements are designed independently of any programming language.
An interesting property of Ada is that, among the 66 requirements, 17, which
correspond to features that are best avoided, are actually forbidden by the lan-
guage definition (and thus automatically enforced).

Our main checking tool is Adalog’s AdaControl [14]. The choice of AdaControl
was motivated by several reasons:

– Since it is an ASIS [21] tool, its analysis on the language is based on the
same technology as the compiler, thus increasing the confidence that the
tool processes the language correctly.

– It has a rich set of rules. Out of the remaining 49 requirements, 22 had
checkpoints that were provided right out of the box.

– It can output its results in CSV format, making them directly loadable in a
spreadsheet program for further analysis.

– Moreover, since AdaControl is free software and easily extendable [15,16,17],
more checkpoints can be added at will.

68 T. Coq and J.-P. Rosen

AdaControl is oriented towards finding occurrences of various constructs, more
than actually measuring mathematical or statistical properties of the source.
For rules that were of this second kind (number of paths, cyclomatic complexity,
fan-out), we used AdaCore’s Gnatmetric tool. Gnatmetric is also ASIS based
and free software.

PMD-CPD[18] is also used to compute the copy/paste non compliances. In
addition, a little post-processing was used to compute some of the complex
checkpoints, glue the results together and build the indices. Table 5 summarizes
the tool set used.

Table 5. The SQALE Ada tool set

Tool Usage

AdaControl Most check-points
Gnatmetric Volumetry, comments
PMD-CPD Copy/Paste detection

Specific tooling Stability, dependencies, Index assembly

5 Some Results of SQALE for Ada

Two open-source projects are used to present SQALE for Ada: AdaControl[14]
and Ada Web Server (AWS)[19,20]. The data presented here are for illustration
purposes and does not constitute an endorsement or rejection of either project.

5.1 SQALE for Ada Applied to AdaControl

Naturally we used AdaControl as an example of applying SQALE to an Ada
project. AdaControl is free software: the source code is readily available, and our
results can be published, unlike most industrial applications of SQALE which
are performed on confidential software.

In this analysis, we analyzed the AdaControl as a whole, and computed the
indices for the three parts: AdaControl itself, the ASIS framework, and the
GNAT packages used. Showing the indices for the 3 different parts allows us to
show how each part has unique properties. Each SQALE analysis first provides
size measurements as in figure 3:

The total line code is around 230 KLoc, evenly distributed between the three
parts of the application. This is a rather low range of the application size for
SQALE, which can target the 0.1 40 million lines of code range. It is an ideal
example, however to demonstrate the usefulness of SQALE.

Once the indices and the densities have been computed, it is possible to use
the aggregated indices and compare the index densities, as in figure 4. The
total quality index for the AdaControl application is 2930 work units, where the
GNAT library takes 1474, the ASIS library 1109 and the AdaControl specific
part 347. The absolute numbers are difficult to compare, so the index densities
are computed over the sum of the lines of code, resulting in a quality index
density of 40, 20 and 10 for each KLoc of code for the GNAT library, the ASIS

The SQALE Quality and Analysis Models for Assessing the Quality 69

Fig. 3. Volume indicators for the AdaControl software

Fig. 4. The indices and index densities for the three parts of AdaControl

library and the AdaControl specific part, respectively. For an industrial analysis,
where the parts could be delivered by different teams, this figure could be used
to benchmark the quality results of each team, against expected quality targets.

There is another way to look at the results, especially from a project managers
point of view, which has a limited budget for the improvement of the quality of
the software. Which defects should be corrected first? Figures 5 and 6 present a
vivid picture demonstrating where the major benefits could be obtained.

The GNAT library actually has a limited testability issue and the ASIS frame-
work has a higher index, as well as a higher index density. Improving the ASIS
framework would increase the overall quality of this application and is a major
result of the SQALE analysis.

70 T. Coq and J.-P. Rosen

Fig. 5. The testability indices and index densities

Fig. 6. The reliability indices and index densities

The reliability indices computed by the SQALE method are mostly linked to
the GNAT library, and within the indices, related to the use of global unprotected
data. If some quality budget remains, it might be useful for the maintainers to
review and protect the global variables published by the GNAT library. Fully half
of the indices have been analyzed by just reviewing the first two characteristics
of the SQALE model. A careful project manager may not need to look further
for quality increases until these issues have been solved. The SQALE pyramid
provides the same indication in a clear picture: 1731 work units out 2930 are
assigned to the testability and reliability characteristics. The actual amount of
files to be modified is extremely low, mostly below 10%. In addition, since the

The SQALE Quality and Analysis Models for Assessing the Quality 71

Fig. 7. The SQALE pyramid for AdaControl

copy/paste requirement is in the testability characteristic, the low values we see
here indicate a low copy/paste problem, which is often not the case in industrial
SQALE analyses.

5.2 SQALE for Ada Applied to Ada Web Server

Ada Web Server (AWS) is a framework to provide complete web based appli-
cations. It can be embedded in an Ada application to provide web services. See
[19] for more information. AWS itself reuses other libraries available within the
Ada community, such as XMLAda, a SSL library. It contains a well-defined

Fig. 8. Application of SQALE to another Ada framework: Ada Web Server (AWS)

72 T. Coq and J.-P. Rosen

“templates parser” module to separate web design from the code. For our anal-
ysis, we decided to rate each part separately.

The overall size of the framework and its parts is shown in figure 8 below.
With 132 KLOC, this framework is smaller than the AdaControl application.
The 7000 cyclomatic complexity sum is consistent with the size. The “tem-
plates parser” module is a small component of AWS, while XMLAda is roughly
equivalent to the rest of the code base. Figure 9 below shows the SQALE pyra-
mid for AWS. Testability and reliability indices are quite correct, whereas some
work might still be useful on the maintainability and reusability characteris-
tics. The final quotation shows little need for improving the AWS packages for

Fig. 9. The SQALE pyramid for AWS

testability, while maintainability might be an issue for some of the packages.
Most of the remediation in the maintainability characteristic is related to the re-
quirement “eV(G) ≤ 1” and needs more investigation. Again, as for AdaControl
and contrary to common industrial practice, there is little need for copy/paste
refactoring.

6 Future Work

The validity of the SQALE model is based on its focusing on the quality require-
ments first, then drilling down into the sub-characteristics and how the require-
ments are implemented by the tools as check points. As described above, the
efficiency characteristic is lacking requirements for Ada. Additional research can
therefore identify requirements, or if that proves too difficult, identify why in the
Ada language such an endeavor is difficult. Additional reusability requirements
would also be very useful. Once SQALE starts to be used, the Ada community
will be able to review the various SQALE requirements and fine-tune them for
its specific needs.

Building a SQALE quality model for Ada has proved surprisingly easy, es-
pecially compared to other languages. SQALE has always been intended as a

The SQALE Quality and Analysis Models for Assessing the Quality 73

method for checking software quality, not only source code quality. SQALE for
Ada might be the right quality model to extend SQALE and start using require-
ments for other software artifacts such as requirements or design models, test
cases and test results (using coverage and dynamic analysis tools). Particularly,
being able to measure design at an early stage may result in SQALE being used
as early predictor of final quality.

7 Conclusion

This paper proposes a quality model and an analysis model for measuring the
quality of applications using the Ada language, based on the SQALE method. It
also describes a set of tools for implementing the checkpoints and computing the
resulting indices, index densities and ratings according to the SQALE method.
These indices are computed to estimate the remaining technical debt, or work
effort remaining in the application from quality non-compliances.

Two examples of the application of the SQALE method are described, to the
AdaControl tool itself, and to the Ada Web Server framework. Both demonstrate
the value of measuring the software, pinpointing testability, reliability and main-
tainability issues that, once corrected, will raise the quality of the software by
more than half.

Finally, since the indices of the SQALE method are independent of the tar-
get language, once computed, the results provided demonstrate the low quality
debt remaining in an Ada application, quality debt which can be comparably
estimated in other applications in other languages. SQALE for Ada can be one
of the benchmark tools to help promote the use of Ada.

References

1. Letouzey, J.-L., Coq, T.: The SQALE Models for assessing the quality of software
source code, DNV Paris, white paper (September 2009)

2. Letouzey, J.-L., Coq, T.: The SQALE Models for Assessing the Quality of Real
Time Source Code, ERTSS 2010, Toulouse (September 2010)

3. Letouzey, J.-L., Coq, T.: The SQALE Analysis Model - An Analysis Model Com-
pliant with the Representation Condition for Assessing the Quality of Software
Source Code. In: VALID 2010, Nice (August 2010)

4. http://www.sqale.org

5. Crosby, P.B.: Quality is free: the art of making quality certain. McGraw-Hill, New-
York (1979) ISBN 0-07-014512-1

6. Linstone, H.A., Turoff, M.: The Delphi Method: Techniques and Applications.
Adison-Wesley, Reading (1975)

7. Saaty, T.L.: Fundamentals of Decision Making and Priority Theory. RWS Publi-
cations, Pittsburgh (2001)

8. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality. The
National Technical Information Service 1(2,3) (1977)

9. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., McLeod, G., Merrit, M.: Char-
acteristics of Software Quality. North Holland, Amsterdam (1978)

http://www.sqale.org

74 T. Coq and J.-P. Rosen

10. McCabe, T., Watson, A.H.: Structured Testing: A Testing Methodology using the
Cyclomatic Complexity Metric, National Institute of Standards and Technology,
Special Publication 500-235 (1996)

11. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering 20(6), 476–493 (1994)

12. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A rigourous & Practical Approach,
2nd edn. PWS Publishing Company, Boston (1997) ISBN 053495425-1

13. Brown, et al.: Anti patterns: refactoring software, architectures and projects in
crisis. John Wiley, Chichester (1998) ISBN 978-0-471-19713

14. http://www.adalog.fr/adacontrol2.htm

15. Rosen, J.-P.: AdaControl: a free ASIS based tool, presentation at FOSDEM, Brus-
sels, Belgium (February 2006)

16. Rosen, J.-P.: On the benefits for industrials of sponsoring free software development.
Ada User Journal 26(4) (December 2005)

17. Jemli, M., Rosen, J.-P.: A Methodology for Avoiding Known Compiler Prob-
lems Using Static Analysis. In: Proceedings of the ACM SIGAda Annual Interna-
tional Conference (SIGAda 2010), October 24-28. ACM Press, ACM order number
825100, Fairfax (2010)

18. PMD-CPD site, http://pmd.sourceforge.net/cpd.html
19. Ada Web Server site, http://libre.adacore.com/aws/
20. Rosen, J.-P.: Developing a Web server in Ada with AWS. Ada User Journal 25(3)

(September 2004)
21. ISO/IEC 15291:1999. Information technology Programming languages Ada Seman-

tic Interface Specification (ASIS)

http://www.adalog.fr/adacontrol2.htm
http://pmd.sourceforge.net/cpd.html
http://libre.adacore.com/aws/

Adapting ACATS to the Ahven

Testing Framework

Dan Eilers1 and Tero Koskinen2

1 Irvine Compiler Corp.
http://www.irvine.com

dan@irvine.com
2 tero.koskinen@iki.fi

Abstract. The Ada Conformity Assessment Test Suite (ACATS) in-
cludes thousands of individual executable test programs, but no test
driver or tools for grading the output. We show how ACATS can be
adapted to work with the Ahven testing framework, resulting in a single
easy-to-build executable program that combines the executable ACATS
tests, runs them in order, and grades and summarizes the test results.
Our goal is a highly portable and automated ACATS driver, and as a
side benefit we obtain a somewhat more stressful test capability for Ada
compilation systems.

Keywords: ACATS, Ahven, testing framework, test harness, test au-
tomation, conformance, conformance testing, Ada, compiler.

1 Introduction

The Ada Conformity Assessment Test Suite (ACATS) [1] is a publicly available
test suite intended to check Ada compilers for conformance with the Ada [2]
standard. It is derived from the original Ada Compiler Validation Capability
(ACVC) sponsored by the former Ada Joint Program Office (AJPO).

Although ACATS is intended to be relatively straightforward to use, it re-
quires much more effort than simply typing a few commands and waiting for
the results. This is partly because there is no supplied test driver nor any tools
for grading the output. ACATS users are expected to develop their own driver
scripts and analysis tools, which presents a high barrier to use, especially for
those who are accustomed to downloading and building large software packages
with a single command. We look to automated testing frameworks as a solution.

Testing frameworks for Ada have become popular relatively recently, notably
including Ahven [3,4] developed by Tero Koskinen (co-author of this paper) and
AUnit [6] developed by Ed Falis. Both frameworks were inspired by the JUnit
testing framework for Java, and both are open source Ada packages in the Debian
GNU/Linux distribution [5,7]. These frameworks work by combining a collection
of individual test procedures into a single executable program, where they are

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 75–88, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.irvine.com

76 D. Eilers and T. Koskinen

run in order and graded, with a summary of the results produced at the end. A
single “Ada make” command suffices to build the combined test program, with
no need for unportable shell scripts. We focus on the Ahven framework because
it avoids the need to write a test wrapper for each individual ACATS test.

Combining ACATS test programs is something that the ACATS User’s Guide
envisions for efficiency reasons. However, our concern is not efficiency. Instead
we are concerned with automating the process in a portable manner. And as
a side benefit, combining the tests creates the possibility of exposing runtime
errors that might otherwise have gone undetected.

ACATS includes both “positive” and “negative” tests. That is, tests that
are intended to compile and run successfully, and those with errors that are
intended to be rejected by the compiler. We have found that the positive tests
are well suited for automation using Ahven. The negative tests, however, are
not. Negative tests pose grading difficulties because they typically have multiple
intentional errors per test. The grader must verify that the compiler has detected
each of those, without rejecting any legal constructs. Negative tests are also not
suitable for testing frameworks such as Ahven that expect to successfully compile
and run each test case. So this paper is concerned only with the positive tests.

Fortunately, the positive ACATS tests are both the easiest to grade as well as
the most interesting, for users who are especially concerned with correctness of
compiled Ada code, since negative tests do not exercise the dynamic semantics,
optimization, and code generation phases of the compiler. Users who may have
modified the compiler’s run-time system, or who are using an unusual set of
compiler switches would also benefit most from the positive tests. Some previous
language test suites, such as those for Cobol and Fortran did not even include
any negative tests [12]. There are however occasional cases where negative tests
can have value with regard to preventing incorrectly compiled code, such as
where a negative test enforces a language rule designed to prohibit a dangerous
combination of features.

We envision Ahven being used with ACATS primarily for informal compiler
testing, particularly by those who have never used ACATS before because they
considered it too much trouble. So we are not bothered by a few unusual tests
that may require omission or special handling. We believe that the minor ACATS
test modifications we describe would be beneficial to incorporate into a future
version of the test suite, and are happy to make them available upon request.

Section 2 describes ACATS and existing scripting capabilities; Section 3 de-
scribes Ahven and how it can be integrated with ACATS; Section 4 describes
some elaboration issues requiring test modification; Section 5 describes how us-
ing a framework can make ACATS more effective; Section 6 compares Ahven
with AUnit; and Section 7 gives the conclusions.

2 Background and Related Work

I’ve written the following simple routine, which may separate the “man-
compilers” from the “boy-compilers”. Donald Knuth

Adapting ACATS to the Ahven Testing Framework 77

Unfortunately, Ada compiler conformance testing is not as simple as Knuth’s
clever 10-line test program for Algol 60 compilers [8]. But perhaps his novel idea
of a single executable test program is not as far-fetched as it might seem.

For Ada, we have the ACATS test suite, which was designed from the begin-
ning to include thousands of individual test programs, intending to provide a
comprehensive conformance assessment [9]. Composing a test suite from many
tests has obvious advantages. It produces meaningful results for partially con-
forming compilers, and it simplifies analysis of failing tests. But such a large
collection of tests requires some sort of test harness and automated grading
tools in order to be cost effective.

ACATS does not come with a modern testing framework such as Ahven or
AUnit. This comes as no surprise, since ACATS and the ACVC before it predate
such frameworks. The ACATS User’s Guide [10] was written with the expecta-
tion that users of the suite would use custom-developed shell scripts to compile,
run, and grade the positive tests. Ideally, such scripts would be provided with
ACATS. But it is difficult if not impossible to create portable shell scripts that
would work with any potential compiler on any potential operating system.

A significant milestone in ACATS automation was a shell script developed
by Laurent Guerby for running and grading the ACATS positive tests using
the gcc Ada compiler. This script was incorporated into the testsuite of gcc 3.4
and later [11, Section 2.3.4]. It has provided various individuals and organiza-
tions who rehost and/or retarget the gcc Ada compiler with an effective means
of demonstrating that the compiler and run-time system are working properly.
It also provides a fully automated compiler test capability for system adminis-
trators, compiler testers, and end users who download and build the gcc Ada
compiler from source code. Most such users would not be using ACATS if it were
not fully automated.

The shell scripts used by the gcc testsuite rely on textual analysis of the
ACATS output, using the “Expect” tool. Although the shell interpreter and
the Expect tool are both widely available, our goal is to have a more portable
pure Ada solution that eliminates any textual analysis by hooking directly into
the ACATS grading mechanism. We also wish to have a compiler-independent
solution.

2.1 Nature of the ACATS Tests

The ACATS positive tests are supplied in a directory structure organized by
chapter of the Ada Reference Manual. Some tests have multiple compilation
units in the same file, and some tests have multiple compilation units spread
across several files. Each test, and each compilation unit within a test, generally
has a unique name, so all such tests could conceivably be compiled into the same
Ada environment without interference.

The ACATS User’s Guide specifies that the tests should be compiled and
run in the order given, but generally the tests are independent of each other,
and the order of compilation and execution doesn’t matter. So a compilation

78 D. Eilers and T. Koskinen

system’s “make” facility for automatically determining compilation order would
normally be effective. In fact, the gcc testsuite mentioned earlier uses gnatmake
to determine compilation order for tests with multiple files.

There are a few tests for RM Chapter 10 that include multiple compilation
units with the same name, for the purpose of testing that a later compiled unit
properly replaces a previously compiled unit with the same name. These tests
can be handled by submitting their source files to the compilation system in
alphabetical order, except for test ca14028e which may require special handling.

Most ACATS tests are self-contained. However, there are approximately fifty
support packages, referred to as foundation code, that are used by multiple tests.
Sharing code between bundled tests presents an issue of package elaboration as
discussed below.

There are a few Text IO tests in RM Annex A that interfere with each other,
such as when one test calls Set Input to change the default input file, without
restoring it, causing a later test to fail. The affected tests are ce3806a, ce3806b,
ce3706d, ce3605c, ce3405c, ce3202a, ce3411c, ce3413c. We have not yet identified
the best solution for these tests.

The ACATS tests generally don’t use command-line arguments, which would
prevent them from being bundled. One exception is test cxaf001 which may
require special handling.

2.2 Bundling Test Programs

The ACATS User’s Guide was written with the expectation that the tests will
normally be compiled and run individually. But Section 5.5.3 specifically de-
scribes the possibility of bundling multiple tests into a single executable for
efficiency reasons.

5.5.3 Bundling Test Programs
In some situations, the usual test processing sequence may require an
unacceptable amount of time. For example, running tests on an embed-
ded target may impose significant overhead time to download individual
tests. In these cases, executable tests may be bundled into aggregates
of multiple tests. A set of bundled tests will have a driver that calls
each test in turn; ACATS tests will then be called procedures rather
than main procedures. No source changes in the tests are allowed when
bundling; that is, the only allowed change is the method of calling the
test.
All bundles must be approved by the ACAL (and, if necessary, the
ACAA) to qualify for a conformity assessment. It is the responsibility
of the user to identify the tests to be bundled and to write a driver for
them.

Bundling of test programs is facilitated in Ada by the lack of any syntactic
distinction between an Ada main program and an Ada subprogram. In Pascal or

Adapting ACATS to the Ahven Testing Framework 79

Fortran, for example, the main program uses the program keyword to distin-
guish it from ordinary subprograms. Similarly, in C and C++, the main program
is distinguished by its name, main. Java is more like Ada, in that any Java class
can be treated as the main program.

So bundling of existing Ada test programs requires no changes to the tests.
Given three test programs, P1,P2,P3, we can simply do:

with P1, P2, P3;
procedure Main_Driver is
begin

P1;
P2;
P3;

end;

An obvious drawback of this solution is that if an unexpected exception is
propagated out of one of the earlier tests, the remaining tests will not be run. This
can be solved by adding a begin-end block with an exception handler around each
call. But that starts to get messy. If we want to add protection from infinitely
looping tests, it gets even messier. Keeping track of pass/fail statistics makes it
messier still. We would probably want to do some refactoring, to isolate all the
per-test support code in one location, which is exactly what a testing framework
is all about.

Caution Regarding Undistinguished Main Programs. Although Ada’s
undistinguished main programs are useful for test bundling, they can surprise
the unwary in other situations. An Ada main program can call itself recursively,
either directly or indirectly, just like any other Ada subprogram. So the stor-
age for the main’s local variables will likely be stack based rather than being
statically allocated. This raises the possibility of stack overflow when the main
program includes large array variables on systems with fixed stack limits. For
similar reasons, a subprogram nested in the main program may use static links
to reference the main’s local variables, rather than global references, affecting
the nested subprogram’s low-level calling signature.

An additional surprise is that in order to prevent dangling pointer references,
Ada has the notion of accessibility levels, where library subprograms are con-
sidered to be one level deeper than library packages. Ada 95 had a rule (later
repealed in Ada 2005) preventing type extension of tagged types at a deeper
accessibility level than the parent type (RM95 3.9.1(3)). This rule disallowed
extending a library-level tagged type inside the main subprogram, just like any
other library subprogram [13, Section 15.1].

2.3 Hooks for Attaching ACATS Tests to a Testing Framework

ACATS tests generally have a standard structure. Section 4.6 of the ACATS
Users Guide shows:

80 D. Eilers and T. Koskinen

Executable tests (class A, C, D, and E) generally use the
following format:

with Report;
procedure Testname is

<declarations>
begin

Report.Test ("Testname", "Description ...");
...
<test situation yielding result>
if Post_Condition /= Correct_Value then

Report.Failed ("Reason");
end if;
...
Report.Result;

end Testname;

There is a package Report, which is common to all tests. At the beginning of
each test, there is a call to Report.Test. In the body of each test there are one or
more possible calls to Report.Failed, whenever an error is detected. At the end
of each test there is a call to Report.Result. A test is considered to pass if there
were no calls to Report.Failed before the call to Report.Result.

This Report package is convenient for our purposes, since it provides the nec-
essary hooks to integrate a testing framework simply by making minor modifi-
cations to the Report package body, without needing to make any modifications
to the tests, in general. The exceptional cases are noted below.

3 Integration with Ahven

Where the primary concern in OO is encapsulation, the primary concern
in data-driven programming is writing as little fixed code as possible [14].
Eric S. Raymond

We have three main goals for integration of ACATS with a testing framework.
The first is to avoid modifications to the tests, except in a few cases where
necessary. This is easily accomplished by adding a call to Ahven.Fail in the
ACATS Report package body, in procedure Result, when a test is determined to
have failed.

ACATS actually categorizes test results into four states, passed, failed, not-
applicable, and tentatively-passed. This presents an issue of how the not-
applicable and tentatively-passed states should be mapped to Ahven pass-fail
states. Normally, these are considered as passing. Alternatively, their results
could be highlighted for hand analysis by treating them as failing, using the
message parameter to Ahven.Fail to record the details.

The second goal is that the test driver should be hierarchical, reflecting the
directory structure of ACATS, where tests are grouped by RM chapter. Ahven

Adapting ACATS to the Ahven Testing Framework 81

supports arbitrarily deep test-suite hierarchies, although only two levels are used
for ACATS.

The third goal is to keep the test driver as simple as possible. Ideally, the
test driver will be data driven, using a framework-independent Ada aggregate,
with one line in the aggregate per test. In particular, we want to avoid having
to perform multiple operations in the driver for each test. We also want to avoid
having to write a wrapper subprogram for each test.

3.1 Framework-Independent Representation of Tests

Suppose for example we have six tests, P1,P2,P3,Q1,Q2,Q3, partitioned into two
groups, P and Q, of three tests each.

We would like to define a type One Test, which is a record containing the nec-
essary information about each test, consisting of an access to the test procedure,
and an access to the test name. Then we can declare type Suite Type, which is
an array of One Test. For example:

package Test_Suite is

type Proc_Access is access procedure;
type One_Test is record

Proc: Proc_Access;
Name: access String;

end record;
type Suite_Type is array(Natural range <>) of One_Test;

generic
Suite_Name: String;
Suite_Array: Suite_Type;

package Suites is
end Suites;

function "+"(S: String) return access String;
end Test_Suite;

package body Test_Suite is

function "+"(S: String) return access String is
begin

return new String’(S);
end;

end Test_Suite;

This example includes a generic package Suites, which can be instantiated
with the name of a test suite, and an array aggregate providing the data for
each test in the suite. So we would define P Suite as:

82 D. Eilers and T. Koskinen

with P1, P2, P3;
with Test_Suite; use Test_Suite;
package P_Suite is new Test_Suite.Suites(

Suite_Name => "P",
Suite_Array => (

(P1’access, +"P1"),
(P2’access, +"P2"),
(P3’access, +"P3")));

And Q Suite would similarly be defined as:

with Q1, Q2, Q3;
with Test_Suite; use Test_Suite;
package Q_Suite is new Test_Suite.Suites(

Suite_Name => "Q",
Suite_Array => (

(Q1’access, +"Q1"),
(Q2’access, +"Q2"),
(Q3’access, +"Q3")));

This example meets our goal of defining each test suite with an aggregate
containing one line per test.

3.2 Connecting with Ahven

Now that we have a framework-independent way of representing our set of tests,
we can write some glue code to connect our Test Suite package to Ahven.

In Ahven, each sub-suite of individual tests is created by deriving a new con-
trolled type from Test Case, and overriding its Initialize routine. Inside Initialize,
the sub-suite’s name is specified by calling Set Name. Then each test in the sub-
suite is registered by calling Add Test Routine, passing an access to the test,
and the name of the test. Outside of Initialize, a framework is created by calling
Create Suite, and each sub-suite is added to the framework by calling Add Test.
The framework, which now includes all of the tests in all of the sub-suites, is
run, graded, and summarized by calling Run.

The glue code is as follows:

with Ahven.Framework;
with Test_Suite;
generic

S : Ahven.Framework.Test_Suite_Access;
with package The_Suite is new Test_Suite.Suites(<>);

package One_Suite is
type Test is new Ahven.Framework.Test_Case with null record;
procedure Initialize (T: in out Test);

end One_Suite;

Adapting ACATS to the Ahven Testing Framework 83

package body One_Suite is

procedure Initialize (T: in out Test) is
begin

T.Set_Name(The_Suite.Suite_name);
for I in The_Suite.Suite_Array’range loop
T.Add_Test_Routine(
Ahven.Framework.Simple_Test_Routine_Access(

The_Suite.Suite_Array(I).Proc),
The_Suite.Suite_Array(I).Name.all);

end loop;
end;

begin
Ahven.Framework.Add_Test (S.all, new Test);

end One_Suite;

with P_Suite;
with Q_Suite;
with One_Suite;
with Ahven.Framework;
package All_Suites is

S : Ahven.Framework.Test_Suite_Access :=
Ahven.Framework.Create_Suite ("all tests");

package Suite_P is new One_Suite(S, P_Suite);
package Suite_Q is new One_Suite(S, Q_Suite);

end All_Suites;

with All_Suites; use All_Suites;
with Ahven.Text_Runner;
with Ahven.Framework;
procedure Main_Driver is
begin

Ahven.Text_Runner.Run (S);
Ahven.Framework.Release_Suite (S);

end Main_Driver;

The result of running Main Driver will be the output from each of the indi-
vidual tests, followed by an Ahven summary report such as the one below. The
right-hand column shows the execution time taken for each test.

Passed : 6
all tests:
P:
P1 PASS 0.00000s

84 D. Eilers and T. Koskinen

P2 PASS 0.00000s
P3 PASS 0.00000s

Q:
Q1 PASS 0.00000s
Q2 PASS 0.00000s
Q3 PASS 0.00018s

Now we can simply replace the P Suite and Q Suite shown above in package
All Suites with one suite for each subdirectory in ACATS, which is organized by
chapter in the Ada RM. This achieves our goal of a single program that will run,
grade, and summarize all executable ACATS tests. Since this program includes
a with-clause for each individual ACATS test, it is easy to build, with just a
single “Ada make” command.

4 Elaboration Issues in Shared ACATS Support Code

There are however some technical details to resolve before we can declare success.
As noted above, some ACATS tests depend on shared foundation packages.
When such packages use package elaboration to initialize their variables, we
must ensure that the shared package is properly re-initialized before running the
next test that depends on it.

There are three such foundation packages, along with the tests that depend
on them, that need modification.

Specifically, foundation package f390a00 includes the declaration

Display_Count_For : Display_Counters := (others => 0);

This package is shared between three tests, c390a011, c390a022, and
c390a031.

Foundation package f393a00 includes the declaration

Finger : Natural := 0;

This package is shared between four tests, c393a02, c393a03, c393a05, and
c393a06.

Foundation package fb40a00 includes the declarations

AlphaNumeric_Count,
Non_AlphaNumeric_Count : Natural := 0;

This package is shared between four tests, cb40a01, cb40a021, cb40a031, and
cb40a04.

In each case there is no existing means for reinitializing the variables, so we
propose to add a new initialization procedure to each of these three foundation
packages, and add a call to these new procedures at the beginning of each of
these eleven dependent test cases.

Adapting ACATS to the Ahven Testing Framework 85

4.1 Shared Support Package TCTouch

There is a special shared support package, TCTouch, which is used by more than
40 tests. It verifies that each test performs particular actions in a particular order.
It includes the declaration

Finger : Natural := 0;

Happily, there does exist an initialization procedure Flush that resets variable
Finger to zero. Unfortunately, most tests that use package TCTouch do not call
Flush. Instead they simply rely on the default initialization. We must ensure
that Flush is called at the start of every test that uses package TCTouch. This
could be done with a small change to 40+ tests. Alternatively we could ensure
that Flush is called before every test, whether it needs to be or not, by inserting
one call in procedure Test of the ACATS Report package.

With Flush called at the start of every test, we must also ensure that there are
no cases where calls are made to procedure Touch in package TCTouch during
initialization of the test’s local variables. This affects two tests, c393001 and
c761013.

Test c393001 includes the declarations

Short : C393001_1.Breaker’Class -- Basic_Breaker
:= C393001_2.Construct(C393001_2.V440, C393001_2.A5);

Sharp : C393001_1.Breaker’Class -- Ground_Fault
:= C393001_3.Construct(C393001_2.V110, C393001_2.A1);

Shock : C393001_1.Breaker’Class -- Special_Breaker
:= C393001_4.Construct(C393001_2.V12, C393001_2.A100);

These calls to Construct during initialization result in calls to TCTouch.Touch.
So we need to move these three declarations into a newly created declare block
in this test’s main procedure, just after the call to Report.Test, to delay their
effect.

Test c761013 includes the declaration

Outer : Ctrl;

where Ctrl is a controlled type with an initialization procedure that calls TC-
Touch.Touch. So we need to move this declaration, and also procedure Subtest 3,
which references it, to a newly created declare block in this test’s main procedure,
just after the call to Report.Test, to delay its initialization.

A more subtle issue is that we must ensure that no calls are made to TC-
Touch.Touch during the library package elaboration of any test. This is because
test bundling causes the elaboration of all library packages to be done before
any individual test is started. It would defeat our attempt to reinitialize package
TCTouch before every test if calls were being made to Touch from the combined
elaboration code of multiple tests.

86 D. Eilers and T. Koskinen

This issue affects one test, c3a2001, which includes the library package elab-
oration code:

Short : C393001_1.Breaker’Class -- Basic_Breaker
:= C393001_2.Construct(C393001_2.V440, C393001_2.A5);

Sharp : C393001_1.Breaker’Class -- Ground_Fault
:= C393001_3.Construct(C393001_2.V110, C393001_2.A1);

Shock : C393001_1.Breaker’Class -- Special_Breaker
:= C393001_4.Construct(C393001_2.V12, C393001_2.A100);

These calls to Construct during elaboration result in calls to TCTouch.Touch.
So we need to move them into a newly created initialization procedure in package
C3A2001 5, which we call just after the call to Report.Test, to delay their effect.

4.2 Tests with Unusual Organization

Test cd5003a is organized somewhat differently than usual. It calls Report.Test
and Report.Failed in the initialization code of a library package, rather than in
the test’s main procedure. It is not difficult to reorganize this test into the usual
format, without affecting its objective, by replacing the package elaboration code
with a newly created procedure called from the main procedure. Such reorgani-
zation is necessary in order to avoid calling the Report package during any test’s
elaboration, since test bundling has the effect of combining elaboration code for
all tests.

There are six tests, c761001, c761010, c94004a, c94004b, c94004c, and
c94005a that call Report.Result as part the library unit finalization. There are
four tests, c39006f3m, ca5004a, ca5006a, and ca5004b2m that call Report.Test
in library package initialization. These tests may require special handling.

5 Bundling As a Compilation System Stressor

Bundling of tests offers a nice side benefit of increasing the stress on a compilation
system, thereby maximizing the benefit of the test suite to find anomalies in
the compilation system. In particular, bundling has the potential to uncover
cases where the state of the run-time system at the completion of one test isn’t
pristine enough to run the next test. Bundling all ACATS positive tests into
a single executable program also has the potential to uncover capacity issues
or capacity-related performance issues in the various tools, such as the library
system, compilation-order tool, linker, debugger, etc.

5.1 Repeatability and Ordering of Tests

Using a testing framework makes it trivial to stress the compilation system
even further, by executing tests multiple times within the same program, to
ensure repeatability. Most ACATS tests can be restarted, but a preliminary
investigation suggests that some tests may require minor modifications.

Adapting ACATS to the Ahven Testing Framework 87

Frameworks also have the potential to easily alter the order in which the tests
are run. Doing so may expose subtle compiler or run-time system anomalies that
might not otherwise show up.

5.2 Making Positive Tests Out of Negative Tests

We have ignored the negative tests, but Robert Eachus has suggested [15] that by
removing the errors from the negative tests, we would be left with useful tests
which could be treated as additional positive tests. Preliminary investigation
shows this to be feasible and worthwhile, although substantial manual effort is
required.

6 Ahven vs. AUnit

AUnit is quite similar to Ahven, but the way tests are registered is slightly
different. Ahven accepts a parameterless test procedure, where AUnit does not.
In procedure Initialize above, we have:

Ahven.Framework.Simple_Test_Routine_Access(
The_Suite.Suite_Array(I).Proc),

where The Suite.Suite Arr(I).Proc designates the actual parameterless ACATS
test procedure. AUnit registration requires writing a wrapper procedure for each
test, which includes a parameter of type AUnit.Test Cases.Test Case’Class.

Ada does not seem to have a way of automating creation of these wrapper
procedures that AUnit requires, given our array aggregate of access to parame-
terless procedures. Ada does allow procedures to be created dynamically using
generics, but such procedures would be at the wrong accessibility level. Ada
also allows procedures to be created dynamically using allocators to protected
records containing a protected procedure. But AUnit does not allow registering
protected procedures.

7 Conclusions

We have shown the ability to integrate the Ahven testing framework with the
ACATS test suite, providing a portable test driver. This is done with only minor
modifications to the ACATS test suite. The test driver is data driven, with one
line of test description per test using a framework-independent Ada aggregate,
organized by RM chapter. The resulting single program is easy to build using
“Ada make”, and it automatically runs the tests and grades and summarizes the
results. Combining tests has the side benefit of providing a more stressful test
of the compilation system. Improving the cost/benefit ratio of running ACATS
may increase the usage of this valuable resource.

Acknowledgments. The authors would like to thank the anonymous referees
for their helpful comments.

88 D. Eilers and T. Koskinen

References

1. Brukardt, R.L.: Ada Conformity Assessment Test Suite (ACATS),
http://www.ada-auth.org/acats.html

2. Taft, S.T., Duff, R.A., Brukardt, R.L., Plödereder, E., Leroy, P.: Ada 2005 Refer-
ence Manual. LNCS, vol. 4348. Springer, Heidelberg (2006)

3. Koskinen, T.: Ahven developer, http://sourceforge.net/projects/ahven
4. Koskinen, T.: Ahven 1.8 announcement on comp.lang.ada newsgroup reprinted in

Ada User Journal. Ada Europe 31(3), 159–161 (2010)
5. Buerki, R., Rueegsegger, A.-K.: Ahven package maintainers in Debian GNU/Linux,

http://packages.debian.org/ahven

6. Falis, E.: AUnit developer, http://libre.adacore.com/libre/tools/aunit
7. Leake, S.: LibAunit package maintainer in Debian GNU/Linux,

http://packages.debian.org/libaunit

8. Knuth, D.E.: “Man or boy?”. ALGOL Bulletin 17, 7 (1964); 19, 8–9 (January 1965),
Reprinted as ch. 6 of Selected Papers on Computer Languages. Center for the Study
of Language and Information, Stanford, California (2003)

9. Goodenough, J.B.: The Ada Compiler Validation Capability. Computer 13(6),
57–64 (1981), doi:10.1109/C-M.1981.220496

10. Brukardt, R.L.: Ada Conformity Assessment Test Suite (ACATS) User’s Guide,
Version 3.0 (2008),
http://www.ada-auth.org/acats-files/3.0/docs/ACATS-UG.PDF

11. Brenta, L., Leake, S.: Debian Ada Policy. 5th edn (May 29, 2010),
http://people.debian.org/~lbrenta/debian-ada-policy.html

12. Oliver, P.: Experiences in Building and Using Compiler Validation Systems. In:
Proc. of AFIPS Conf., NCC, vol. 48, pp. 1051–1057 (1979)

13. English, J.: Ada 95: The Craft of Object-Oriented Programming (2001),
http://www.it.bton.ac.uk/staff/je/adacraft

14. Raymond, E.S.: The Art of Unix Programming. Pearson Education, Inc., London
(2004)

15. Eachus, R.: Personal communication (May 2010)

http://www.ada-auth.org/acats.html
http://sourceforge.net/projects/ahven
http://packages.debian.org/ahven
http://libre.adacore.com/libre/tools/aunit
http://packages.debian.org/libaunit
http://www.ada-auth.org/acats-files/3.0/docs/ACATS-UG.PDF
http://people.debian.org/~lbrenta/debian-ada-policy.html
http://www.it.bton.ac.uk/staff/je/adacraft

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 89–102, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Model-Based Analysis and Design of Real-Time
Distributed Systems with Ada and the UML Profile for

MARTE*

Julio L. Medina and Alvaro Garcia Cuesta

Departamento de Electrónica y Computadores, Universidad de Cantabria,
39005-Santander, Spain

{julio.medina,alvaro.garciacuesta}@unican.es

Abstract. This paper considers the design of hard real-time distributed systems.
It uses a model-based approach whose specification is made using UML, a high
level standard modelling language. This work describes a tool-aided
methodology to enable the assembly and transformation of such design
intended models into schedulability analysis models. These analysis models are
suitable for the verification of the timing properties of a fully described system
in a real-time situation. The description of a real-time situation includes also the
knowledge of the load the system is expected to support. In order to annotate
the required non-functional properties, and to state other real-time enabling
features, the UML profile for Modelling and Analysis of Real-Time and
Embedded systems (MARTE), a recent modelling standard of the OMG, has
been used. The methodology proposed brings several methodological guidelines
to get in tune the generation of Ada applications described by the high level
application modelling concepts provided by MARTE, with its corresponding
schedulability analysis models. The tool associated to this methodology
generates as an output the concrete analysis models used by the MAST set of
tools, it invokes MAST, and also recovers the output results back into the high
level design UML models.

Keywords: Ada, embedded systems, MARTE, MDA, MDE, modelling, OMG
standards, real-time, schedulability analysis, UML.

1 Introduction

Model-based software development is one of the most promising software
engineering approaches, since having reusable, configurable, and composable models
may help significantly in the separation of concerns, the increase of development
efficiency, and even enhancing the quality of the software at large.

* This work has been funded by the European Union under contracts, FP7/NoE/214373

(ArtistDesign), and FP7/CSA/224330 (ADAMS); and by the Spanish Government under
grants TSI-020400-2009-108 (ITEA2-EVOLVE), and TIN2008-06766-C03-03 (RT-MODEL).
This work reflects only the author’s views; the EU is not liable for any use that may be made
of the information contained herein.

90 J.L. Medina and A. Garcia Cuesta

For applications with real-time requirements, a model-based methodology can
additionally help to ease the process of building their temporal behaviour analysis
models. These models usually constitute the basis of the real-time design and the
schedulability analysis validation processes. With that purpose, the designer of a
software (or even hardware) component must generate, in synchrony with the models
used to generate the component’s code (or the hardware specification), an additional
parameterisable model. This other model must be suitable for the timing validation of
the system resulting out of the usage of that component in the composition as a whole.
The analysis model for each component abstracts away implementation details but
retains the timing behaviour of all the actions it performs. In particular it needs to
include all the scheduling, synchronization and resources information that is
necessary to predict the real-time qualities of the applications in which it might be
integrated. In the approach that we present here, these analysis models are to be
automatically derived from high level software design models annotated with a
minimum set of real-time features. The input data are taken from the requirements of
the application in which they are to be used. In analogy to the generation of the
application’s code as a composition of the code of its constituent components, the
analyst, or application designer, can also compose the set of real-time sub-models,
and build the complete real-time analysis model of the application. This strategy helps
the designer to get rid of the tedious and error prone task of building in one piece the
complete reactive model of the application.

A discussion of the process followed for the design of the real-time characteristics
of an application in a strict component-based development methodology may by
found in [1]. This paper explores the semantics of the modelling elements provided by
MARTE [3] in both sides of its principal concerns: analysis and design. It also
exploits them with the aim of enabling the automatic extraction of analysis models
from high level design models. This task is feasible provided the design space is
restricted to those constructs that are safely implementable by specific analysable
patterns described in Ada. From a model based engineering perspective, those Ada
patterns serve the purpose of conducting the code generation consistently with the
schedulability analysis capabilities associated to the design modelling constructs used.

The rest of the paper is organized as follows: Section 2 presents the rational for the
modelling approach and visits some related work. Section 3 describes the modelling
and extraction tools used for the generation of the output MAST analysis models [2].
Section 4 gives guidelines for the construction of high level application design UML
models that can be transformed in an automated way in the respective schedulability
analysis models. Section 5 presents our initial experiences with the analysis models
for an example application. Finally we draw some conclusions and outline future
work.

2 The Approach

The UML Profile for MARTE [3] brings a large number of modelling constructs and
concepts that may be used for realizing schedulability analysis in a variety of ways.
This effort has been driven by the goal to enable, thanks to those modelling
constructs, (1) early V&V and (2) the iterative use of the models created. These

 Model-Based Analysis and Design of Real-Time Distributed Systems 91

requirements are key elements of any development process that aims to reduce
integration costs while assuring predictability.

In order to cope with complexity, to manage the risks associated to the research
and the development of tools efforts, and also to make better use of the modelling
resources offered by MARTE, the complete problem has been divided in two
challenging but achievable research steps. Fig. 1 illustrates these two challenges in the
context of the model processing paradigm. The picture shows a re-visited version of
the approach followed in a previous work [4]. Now we consider separate
representations of both: the design and the analysis models in UML, and use the
MARTE standard for them.

Fig. 1. The Model processing paradigm in the design and analysis approach

The first step addressed by our research effort (a) comprises the definition and
manipulation of what we will denominate the "analysis models". This effort is
described in Section 3 and includes two modules; one (Compiler) that extracts the
MAST models, and another (Updater) that recovers analysis results back into the
UML models.

The second part of this effort (b) is the specification and automation of those
modelling constructs related to what we call the "design models". These models are
usually entered by hand in the UML tool. Instead, the analysis models can be obtained
either through model transformation from the design models, or entered by hand.

The proposed methodology extends the regular UML description of a system with
a design model which includes some particular MARTE modelling elements
describing specific real-time features. These constructs must be sufficient to generate
the analysis model. An analysis model defines an additional view of a particular
situation of the system that is subject to real-time requirements and expresses:

 the computational capacity of the hardware and software resources that constitute
the platform,

 the processing requirements and synchronization artefacts that are relevant for
evaluating the timing behaviour of the execution of the logical operations, and

 the real-time situations to be evaluated, which include the workload and the
timing requirements to be met.

92 J.L. Medina and A. Garcia Cuesta

From another point of view, this method also helps to support the design of
applications in terms of composable parts. As far as their granularity is concern, these
parts are closer to the concept of real-time objects than to the CBSE (Component-
based Software Engineering) interpretation of components. In a fully component-
based approach, the creation of the analysis models would have to be made as a
combination of structural elements plus the recursive inclusion of their behaviour
invocations following their precise deployment. In a model-driven approach, this later
strong form of composability is in a higher level of abstraction, but still may benefit
from the approach described here in order to assess a variety of non-functional
properties, in our case its timing properties by means of schedulability analysis.

In order to constrain the design space to the patterns that may be analysed by the
currently available schedulability analysis techniques, the models of computation
implicit in the high level application modelling constructs offered by MARTE are
restricted to those that have been studied in our previous work [4]. This implies the
use of Ada platforms with both the Real-Time System as well as the Distributed
Systems annexes of the Ada standard.

Considering some related work it is relevant to mention a similar effort that has
been proposed as a result of the ASSERT project [5]. Though the solutions provided
there disregard the semantics framework of the design models in the MARTE
standard (by using an ad-hoc profile), and commit for single processor systems, it is a
very relevant effort that shows the main formalisms and the technical and industrial
trends in place. Our approach differs in several aspects, first (1) the analysis models
are also expressed using UML plus the MARTE standard so that they may be used for
additional transformations not only to MAST but to other tools if necessary. Then (2)
the constraints over the design model are not restricted specifically to the Ravenscar
profile but to those of the finally used techniques, which in our case are the offset
based holistic analysis techniques used for distributed systems. Finally, (3) as already
mentioned the formalism to express the model of computation with the real-time
features is the corresponding high level application modelling chapter of the MARTE
standard itself.

Considering the conversion from MARTE to schedulability analysis tools in
particular, there are some other efforts to mention. The closest in style and modelling
capabilities is the RSA plugin to perform schedulability analysis with RapidRMA [8].
The version of this tool that is available shows some limitations: it supports
scheduling analysis for mono-processors, with periodic and sporadic events (through
sporadic servers). It does not provide support for multi-processors and distributed
systems. RapidRMA and IBM RSA are not integrated through the GUI. Moreover,
there is no automatic launch of RapidRMA after the input files are generated. It
requires a manual operation. The current implementation does not offer any feedback
capabilities from RapidRMA to the UML modelling tool. All the analysis results can
be exploited within the tool only. Similar limitations plus a lack in modelling
guidance is provided by the tool in [9], which aims to represent Cheddar models with
MARTE. That document shows how MARTE concepts can be matched to those used
in Cheddar in order to do analysis on models and proposes model transformation
solutions using ATL.

 Model-Based Analysis and Design of Real-Time Distributed Systems 93

3 Analysis Models

The first, and so far sufficiently solved problem, has been the definition/selection of
which and how elements in MARTE are to be used in the creation of schedulability
analysis models. These elements are the basis for the tool that has been developed for
the generation of MAST analysis models taken from UML+MARTE annotated
analysis models. Following previous research efforts [6], MARTE provides concepts
to structure the analysis models using three main categories: The platform resources
(a), the elements describing the logical behaviour of the system constituent parts (b),
and finally the real-time situations to be analysed (c). The precise mapping from
MARTE to MAST elements may be easier to see by inspecting the code, nevertheless
here we summarize a condensed view of the MARTE elements proposed for their use
in each of these three main categories.

Table 1. Modelling elements in MARTE used for the creation of MAST schedulability analysis
models

Platform Resources Behavioural Models Real-Time Situations

GaResourcesPlatform
SaExecHost *
SaCommHost *
SaSharedResource *
SchedulableResource *

GaWorkloadBehavior
GaScenario
SaStep *
SaCommStep

SaAnalysisContext *
GaWorkloadEvent *
Allocate
Allocated
Assign
SaEndToEndFlow *
SaSchedObs
GaLatencyObs *

* Elements used in the marte2mast extraction tool in its current version.

In the tool that has been provided for the generation of MAST models from
UML+MARTE models, the platform elements and the logical (software) components
are modelled as a set of structural elements with stereotypes annotated on them. Fig. 2
shows an example of the usage of these elements in the modelling of a tele-operated
robot distributed application.

The stereotype annotations shown there represent the timing models of their
respective operation software entities. The timing properties (i.e. the worst case
execution time) for each of them appear in the properties tab of the tool corresponding
to the SaAtep stereotype used. The class “Drivers” models the overheads due to the
sending and reception of messages; it is used to represent in SAM the modelling
elements called “drivers” in MAST. The elements used for modelling the platform
include nodes, networks, tasks, channels, and operations that will be invoked as part
of the internal platform behaviours.

The end-to-end flows that described execution scenarios are modelled using
sequence charts or activity diagrams. Fig. 3 shows an example of the usage of these
elements in the modelling of a tele-operated robot distributed end-to-end flow. Some
steps in the flow are shown directly in the activity as stereotyped actions, others are
statically defined somewhere else in the model but are modelled in the flow as

94 J.L. Medina and A. Garcia Cuesta

invoked subUsages of the shown actions. These internal steps are not visible in the
diagram but are retrieved by the tool recursively.

The full example is available in the web page of the tool:
http://mast.unican.es/umlmast/marte2mast. There the reader can find
the specification of the example application as well as the models used for its
analysis. These are delivered in the form of an eclipse workspace containing all the
models.

Fig. 2. View of the tool showing structural modelling elements for schedulability analysis

In summary, in the current version of this tool, the elements taken from MARTE to
generate the MAST analysis models are:

> Processing_Resource <= SaExecHost, SaCommHost
> Scheduler <= SaExecHost, SaCommHost
> Scheduling Servers <= SchedulableResource
> Shared_Resource <= SaSharedResource
> Operations <= SaStep <= Sequence/activity Diagram
 plus subUsages (ordered list of called operations)
> Transactions <= Sequence/Activity Diagram +
 GaWorkloadEvent + GaLatencyObs

This effort has been implemented using the Eclipse technologies provided by
PapyrusUML as graphical tool, the UML2 plugin as model repository, and the
Acceleo plugin for the extraction of text from the UML2 models plus a significant

 Model-Based Analysis and Design of Real-Time Distributed Systems 95

number of Java functions. The code used as well as the scripts created are shared as
open source. The current version supports the modelling of end-to-end-flows by
means of activity diagrams and the composition of independently characterized timed
behaviours. It also includes the invocation of the MAST tools from the eclipse
environment and the recovery of the results back in the UML model. It may be
downloaded from http://mast.unican.es/umlmast/marte2mast.

The high level algorithm to do the extraction of the MAST model is easy to identify
following the script in marte2mast.mtl. Here you may see a summary of it:

1) Processing Resources and Schedulers take their attributes from:
 Classes with stereotype 'SaExecHost' or 'SaCommHost'
2) Scheduling Servers in processors and networks take their attributes from:
 Classes with stereotype 'SchedulableResource' and 'GaCommChannel'
3) Shared Resources (critical sections) take their attributes from:
 Classes with stereotype 'SaSharedResource'
4) The real time situation is taken from:
 A Class with the stereotype 'SaAnalysisContext'
5) Finally the Transactions in it are extracted from:
 Activities with the stereotype 'SaEndtoEndFlow'

A recursive strategy is used for retrieving composed operations and assigning them
to the appropriate MAST activity-handlers. There are two ways of expressing these
composed operations. One is static and is based in the use of the recursive capabilities
of the subUsage association of the SaStep modelling element. This association is
inherited from ResourceUsage. Fig. 4 shows the implementation model of this
modelling construct in an extract from the MARTE GRM UML view.

Fig. 3. View of the tool showing structural modelling elements for schedulability analysis

96 J.L. Medina and A. Garcia Cuesta

Fig. 4. The list of subUsages, a recursive mechanism to model composite operations. Extract of
the model of the GRM::ResourceUsage, ancestor of SAM::SaStep.

The other way of modelling composed operations is based on the activity diagrams
that are internal to the actions (as well as any internally called operation) that are
placed in the activities used for representing the flows. The corresponding extracting
code is implemented in java and may be seen in the source code file
ActivityFunctions.java

4 Design Models

The second challenge is the definition of the elements in UML+MARTE to be used in
early V&V design models in such a way that they can be used for the double purpose
of constructing development (implementation) oriented models or even code directly
while, at the same time, their respective analysis models may be generated through
simple and as much as possible automated model transformation mechanisms.

For this purpose the natural candidates in MARTE are the fundamental modelling
constructs described in the HLAM (High Level Application Modelling) chapter:
RtUnit and PpUnit.

The RtUnit modelling element is the basic building block for handling concurrency
in the design and analysis of real-time applications. The PpUnit is the modelling
element used for specifying mutual exclusion between concurrent units and the
adequate protection protocols in the access to passive shared resources, for avoiding
unbounded priority inversion.

The key for the usage of these elements is the enabling of simple mechanisms to
keep in synch the two specialized views that are elaborated as transformations from
the design models built with them: the code generation and the platform configuration
on the one side, and the corresponding schedulability or even performance analysis
models on the other side. In order to get that semantic alignment we propose a
methodology founded in a small number of modelling rules for the usage of RtUnits
and PpUnits, and some directions for the generation of the subsequent implementation
and analysis models.

 Model-Based Analysis and Design of Real-Time Distributed Systems 97

In order to accomplish the objective of setting up the basis for an iterative
development process, the driving forces for the definition of the methodology have
been the easiness to iterate over modelling intents, and a design space exploration
strategy to introduce analysis results back in the design constraints.

For the purpose of this methodology we will consider all the requirements as
applicable to a generic unit of design called module. A module in this sense represents
a fraction of the system. It is to be mapped to the equivalent abstraction/encapsulation
entities defined for coping with complexity on the concrete design methodology used
by the industrial practitioners in the field targeted. This results natural when
considering them as independent subsystems, but it is applicable also to other
composition mechanisms like loosely coupled software/hardware components, or
physical concurrent units.

The modelling rules to be applied are the basis for the combined purpose of a
design & analysis methodology and are complemented with guidelines for specific
phases and concrete concerns.

The description of the RtUnits and PpUnits and their precise semantics are made in
the domain view of HLAM chapter and the Appendix F of MARTE [3] respectively.
The set of rules is worded considering the semantics described in the domain
description contained in Appendix F but using the nomenclature of the attributes
available in the stereotypes of the corresponding UML representation.

Early V&V assumes that at the time of analysis there are still a number of
decisions about aspects like the platforms or specific interface technologies that have
not been taken yet. To be able to assess the viability of the system without this
information, some default values will be filled in the analysis & design models.

The set of rules for the use of UML with the HLAM modelling elements of
MARTE needs to restrict the design space to get models that may be analysed by
schedulability analysis with the available techniques. This way it formulates the basis
for modelling at any stage of the development process. This initial set of rules is the
following:

1) Real concurrency is handled by RtUnits at processing resource level, each node
by them represented may in turn handle several schedulable resources by means
of a regular scheduler.

2) Each RtUnit may have up to one schedulable resource on it, and all its
behaviours, which may be called from other RtUnits, run under the scheduling
parameters associated to that schedulable resource. In case the RtUnit has no
schedulable resource, its behaviours run under the scheduling parameters of the
calling RtUnit.

3) All the RtUnits deployed in a processing resource are handled by the same
scheduler and use the same (or fully compatible) scheduling policy.

4) Each RtUnit whose isMain attribute is set to true, implies the presence of an
execution host where the main service of the RtUnit is deployed.

5) The attribute srPoolPolicy holds the value infiniteWait.
6) ExecKind of PpUnits is ImmediatRemote.
7) All services use the same priority scheme: ImmediateCeiling or

PriorityInheritance.

98 J.L. Medina and A. Garcia Cuesta

8) The ConcurrencyPolicy of PpUnit is “Guarded”. [The concurrency policy of the
kind Concurrent might be enabled in order to have the writer/reader
ConcurrencyKind available but this behaviour requires additional capabilities
from the analysis techniques so in principle it is discouraged].

9) Behaviours of RtUnits stereotyped as RtServices are those that may be called
from others.

Additional rules that apply in specific phases of the development process are:

10) The platform models of the execution hosts are derived from the RtFeatures of
RtUnits with the attribute isMain set to true. The basic assumption is that a main
is the starting of the full piece of software running on a concrete node. The
scheduling policy of the scheduler is derived from the one used for this main.
Consistently the range of priorities (in the case in which this is the policy
chosen) will be set to be greater than the number of RtUnits (with their isMain
attribute to false) with which the main RtUnit has any sort of interaction.

11) The rules for analysis platform models will be refined after practising with the
MAST default values (using initially no context switch time for example).

12) The links between services define the steps in the end-to-end-flows.
13) The parameters of the Analysis Context modelling element will be used to

define the variations in the analysis due to refinements in the design.
14) Results will be placed back in design models by means of RtFeatures

Specifications and the parameters of AnalysisContexts.
15) The iterative nature of the models used for design space exploration will be

handled by specializing/using the configuration stereotype, described in the
Modal Behaviour section of the CoreElements chapter of MARTE.

The tooling support for enforcing and helping to assess the usage of these rules is
not yet formalized and embedded in the version of the eclipse plugin that may be
downloaded at the time this paper is submitted, but it is part of our future (actually
ongoing) work.

Considering the transformation of design to analysis models the procedure most
difficult to automate is the definition of the real-time situations and the extraction of
the precise scenarios to take into account. The key aspect to consider in order to
extract the necessary execution scenarios is the manner in which the behaviours are
expressed.

For passive RtUnits or for those whose behaviours are expressed as activities (by
means of activity diagrams), the end-to-end flows may be composed by creating and
combining the resource usage (GRM part of MARTE) that represents the
operations/services of the objects involved. These are expressed in our design model
as classes with the SaStep stereotype (which inherits from ResourceUsage). The
precedence or control flow dependencies between them are expressed as transitions
between actions inside the activities. These transitions correspond to the simple
precedence relationships among the steps (as described in GQAM model of MARTE)
and are the place to express also the latency or jitter constraints, see the gaLatencyObs
stereotype in Fig. 3.

For the RtUnits whose behaviours are expressed as state machines, the scenarios
may be extracted by assuming the order in which the independent external events that
trigger the transitions of the state machine are expected to occur. An analysisContext

 Model-Based Analysis and Design of Real-Time Distributed Systems 99

represents a particular real-time situation. For each end-to-end-flow in the
analysisContext the composition of such ordered list of event-occurrences would need
in any case the specification of at least one additional diagram per end-to-end flow.
Then it might be worth asking the designer for the composition and description of the
high level services conforming the end-to-end flows instead of the ordered list of
event-occurrences that triggers the state machine. Additional efforts would have to be
required from the designer in case the state machines have concurrent states or
involve several active objects.

The easier mechanism to automate the extraction of elements from the design
models to be included in the analysis context of the real-time situation to analyse is
the use of a collaboration whose parts are the RtUnits and PpUnits to include.

4.1 Real-Time Design Model of the Basic Ada Structures

Even though the modelling and schedulability analysis methodology presented is
language independent and is useful for modelling a wide range of real-time
applications, the semantics of the high-level modelling constructs defined is
particularly suitable to represent systems conceived and coded in Ada [7]. Similar
topics have been described in detailed in our previous work [4] but we now wish to
re-visit some of the aspects that are relevant for the discussion herein in the light of
the HLAM-MARTE modelling constructs.

The RT-design-model has the structure of the Ada application: The RTUnit
instances may model the real-time behaviour of packages and tagged types, which are
the basic structural elements of an Ada architecture:

 Each object describes the real-time model of all the procedures and functions
included in a package or Ada class.

 Each object declares all other inner objects (package, protected object, task, etc.)
that are relevant to model its real-time behaviour. It also preserves in the model
declarations the same visibility and scope of the original Ada structures.

An object only models the code included in the logical structure that it describes. It
does not include the models of other packages or modules on which it is dependent.

The RT-design-model includes the concurrency introduced by Ada tasks: An
active RTUnit model an Ada task. Each task component instance has implicitly an
aggregated SchedulableResource, which is associated with the processor where the
component instance is allocated. Synchronization between tasks is only allowed in the
invocation of RTServices belonging to active RTUnits. The model implicitly handles
the overhead due to the context switching between tasks.

The RT-design-model includes the contention in the access to protected objects:
A PpUnit models the real-time behaviour of an Ada protected object. It implicitly
models the mutual exclusion in the execution of the operations declared in its
interface, the evaluation of the guarding conditions of its entries, the priority changes
implied by the execution of its operations under the priority ceiling locking policy,
and also the possible delay while waiting for the guard to become true. Even though
the methodology that we propose is not able to model all the possible synchronization

100 J.L. Medina and A. Garcia Cuesta

schemes that can be coded using protected entries with guarding conditions in Ada, it
does allow to describe the usual synchronization patterns that are used in real-time
applications. Therefore, protected object-based synchronization mechanisms like
handling of hardware interrupts, periodic and asynchronous task activation, waiting
for multiple events, or message queues, can be modelled in an accurate and
quantitative way. Please refer to [4] for a detailed description of the patterns that may
be supported.

The RtService operations involved in the declaration of a PpUnit are implicitly
modelled with mutual exclusion between them, by attaching an implicit shared
resource to them. Each operation in this component implicitly locks and unlocks the
shared resource before and after the operation activities.

The RT-design-model shall include the real-time communication between Ada
distributed partitions: MARTE does not support explicitly in a particular construct
all the data that is necessary to analyze the remote access to the APC (Asynchronous
Procedure Call) and RPC (Remote Procedure Call) procedures of a Remote Call
Interface (RCI), as described in Annex E of the Ada standard. It is possible to
determine whether an invocation is local or remote but additional modelling
constructs will be necessary to handle information for the marshalling of messages,
their transmission through the network, their management by the local and remote
dispatchers and the un-marshalling of messages, in order to be able to manage it
automatically by the tools.

5 Practical Experience

In order to try in practical terms the modelling methodology and particularly the
analysis capabilities in it, the implemented tool has been used over an example
application that has been already used in previous works. So the analysis model
corresponding to the Teleoperated_Robot example [6] has been introduced in UML
using PapyrusUML, and the stereotypes provided by its UML MARTE Profile.

To help the reader to reproduce the modelling and analysis experience,
the installation procedure to follow, and a video with usage hints, as well as a
workspace for eclipse with all the files used may be downloaded from
http://mast.unican.es/umlmast/marte2mast.

For the habitual users of MAST the most relevant issues found in the modelling of
distributed applications like the already traditional Teleoperated_robot are related to
the lack of the “driver” concept in MARTE. This is solved by inserting the
corresponding overhead end-to-end flows (formerly called transactions in MAST).
These transactions model the overhead due to the insertion and recovering of
messages into and from the network respectively. For this reason the results in the
MAST graphical results viewer show 7 instead of 3 transactions. Fig. 5 shows a
snapshot of these results.

The Eclipse plugin includes an option to run the MAST set of analysis tools
directly from Eclipse and finally recover the results back into the UML model. These
results are annotated in the attributes of the corresponding stereotypes in the UML
model. For example the system slack is recovered in the slack attribute of the

 Model-Based Analysis and Design of Real-Time Distributed Systems 101

Fig. 5. Results for the schedulability analysis of the Teleoperated_Robot example

analysisContext stereotype, and for the response time of each step the attribute respT
of the SaStep stereotypes is used. The response time of each End-to-end-Flow is the
one stored in the last SaStep of the flow.

The UML model having all this values may be stored in the same file. In this case
each new analysis result value is appended to the ordered list of values of the
attribute. To identify the analysis to which the results correspond, the field “mode” of
each new value is set to the “mode” field defined in the AnalisysContext at the time
of launching the analysis. Alternatively the “updated” version on the UML model
may be stored in a new file on disk. This way the original model may be either used
again in a different analysis essay, or used to iterate searching in an optimization loop.

6 Conclusions and Future Work

Considering the prospects of the OMG´s UML Profile for MARTE as a modelling
standard for analysis tools interoperability, it seems reasonable to look for model
based strategies that link it with modelling intensive activities. And a clear semantics
for the High level application modelling is the basis for automating the process of
having timing analysis results quickly in the development life cycle.

The extraction of MAST analysis models from the UML+MARTE schedulability
analysis specific models is a first demonstrable step in the direction pointed out by
this effort and comprises the construction of analysis models from separated
composable modelling descriptions using the specific constructs brought by the SAM
chapter of MARTE, which is consistent with MAST and the previous efforts in this
direction [4].

102 J.L. Medina and A. Garcia Cuesta

From the real-time and embedded systems research community perspective, this effort
constitutes a step to get the effective exploitation of the capabilities of the available
analysis and verification techniques, which despite the efforts in dissemination, have not
yet reached an audience large enough to reward the many years of work in the field.

The modelling strategy and tools proposed in this work are just a first step in this
direction; a significant work remains to be done in order to have a fully automated
process. The validation of the rules and their automation by means of a model
validator and the necessary transformations are part of our ongoing work and will be
addressed in the near future.

The re-visit to former work made for the consistent modelling and analysis of Ada
applications, in the light of the previous UML formalizations of the MAST model, has
been a driving force in the adjustment of the high level application modelling of
MARTE for this purpose. Nevertheless some lacks in the standard have been
identified whose resolution requires either formal extensions to it or the definition of
additional methodological guidelines, in particular for the case of remote procedures
invocation.

References

[1] López, P., Drake, J.M., Medina, J.L.: Enabling Model-Driven Schedulability Analysis in
the Development of Distributed Component-Based Real-Time Applications. In:
Proceedings of 35th Euromicro Conference on Software Engineering and Advanced
Applications, Component-based Software Engineering Track, Patras, Greece, pp. 109–112.
IEEE, Los Alamitos (August 2009) ISBN 978-0-7695-3784-9

[2] González Harbour, M., Gutiérrez, J.J., Palencia, J.C., Drake, J.M.: MAST: Modeling and
Analysis Suite for Real-Time Applications In: Proc. of the Euromicro Conference on Real-
Time Systems (June 2001)

[3] Object Management Group, UML Profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE) version 1.0, OMG doc. formal/2009-11-02 (2009)

[4] Gutierrez, J.J., Drake, J.M., González Harbour, M., Medina, J.L.: Modeling and
Schedulability Analysis in the Development of Real-Time and Distributed Ada Systems.
ACM Ada Letters XXII(4) (2002)

[5] Mazzini, S., Puri, S., Vardanega, T.: An MDE Methodology for the Development of High-
Integrity Real-Time Systems. In: DATE 2009, Nice, France, April 20-24, p. 1154 (2009)

[6] Medina, J.L., González Harbour, M., Drake, J.M.: Mast Real-Time: A Graphic UML
Tool for Modeling Object-Oriented Real-Time Systems. In: Proc of the 22nd IEEE Real-
Time System Symposium (RTSS 2001), pp. 245–256 (2001), IST project
COMPARE: Componentbased approach for real-time and embedded systems,
http://www.ist-compare.org

[7] Tucker Taft, S., Duff, R.A., Brukardt, R.L., Plödereder, E., Leroy, P., et al.: Ada 2005
Reference Manual. LNCS, vol. 4348, pp. 43–48. Springer, Heidelberg (2006)

[8] Demathieu, S., Rioux, L.: MARTE to RapidRMA. Thales Report/Technical Document
number 61565273 305 6, http://www.omgwiki.org/marte/node/31

[9] Maes, E., Vienne, N.: MARTE to Cheddar Transformation using ATL. Thales
Report/Technical Documents number 61565546-179 and 61565546 108,
http://beru.univbrest.fr/~singhoff/cheddar/contribs/
examples_of_use/thales_rt/MARTE2CheddarTransformationRules.pdf

Developing Dependable Software-Intensive

Systems: AADL vs. EAST-ADL�

Andreas Johnsen and Kristina Lundqvist

School of Innovation, Design and Engineering
Mälardalen University

Väster̊as, Sweden
{andreas.johnsen,kristina.lundqvist}@mdh.se

Abstract. Dependable software-intensive systems, such as embedded
systems for avionics and vehicles are often developed under severe qual-
ity, schedule and budget constraints. As the size and complexity of these
systems dramatically increases, the architecture design phase becomes
more and more significant in order to meet these constraints. The use of
Architecture Description Languages (ADLs) provides an important basis
for mutual communication, analysis and evaluation activities. Hence, se-
lecting an ADL suitable for such activities is of great importance. In this
paper we compare and investigate the two ADLs – AADL and EAST-
ADL. The level of support provided to developers of dependable software-
intensive systems is compared, and several critical areas of the ADLs are
highlighted. Results of using an extended comparison framework showed
many similarities, but also one clear distinction between the languages
regarding the perspectives and the levels of abstraction in which systems
are modeled.

Keywords: Dependable systems, Software-intensive systems, AADL,
EAST-ADL, Architecture description languages.

1 Introduction

One of the most critical phases in the development process of software-intensive
systems is the architecture design phase. The architecture specification repre-
sents a set of design-decisions, which are analyzed and evaluated to ensure con-
formance with the system requirements. The efficiency and effectiveness of the
evaluation method is largely dependent on the type of artifact being evaluated.
Hence, the means used to design architectures of dependable software-intensive
systems are critical to ensure quality of the system. Architecture Description
Languages (ADLs) have been developed as means for designing systems’ archi-
tecture.

Software-intensive systems are systems where software interacts with sensors,
actuators, devices, other systems and people [1]. Examples of such systems are
� This work was partially supported by the Swedish Research Council (VR), and

Mälardalen Real-Time Research Centre (MRTC)/Mälardalen University.

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 103–117, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

104 A. Johnsen and K. Lundqvist

embedded systems for vehicles, medical equipment and avionics. What these sys-
tems have in common is that they often operate in dynamic, time- and safety-
critical environments where the components embedded within the systems are
heterogeneous and have to meet real-time constraints. Two widely used ADLs
within both industry and the research community are the Architecture Analy-
sis and Design Language (AADL) [2], developed by the Society of Automotive
Engineers (SAE), and the Electronics Architecture and Software Technology -
Architecture Description Language (EAST-ADL) [3], initially developed by the
Embedded Architecture and Software Tools - Embedded Electronic Architec-
ture (EAST-EEA) project in the Information Technology for European Advance-
ment (ITEA) programme and further refined by the Advancing Traffic Efficiency
and Safety through Software Technology (ATESST and ATESST2) projects[4].
EAST-ADL was developed specifically for automotive systems, and AADL was
initially developed for Avionics but now targets all large-scale software-intensive
embedded systems and systems of systems, such as, aircraft, motorized vehicles,
autonomous systems, and medical devices.

In this paper, we investigate these two ADLs and compare the level of support
they provide developers to ensure correctness of software-intensive systems. An
ADL should support activities – or tools performing activities – such as analysis,
V&V, model checking (formal verification), code generation/synthesis, etc., by
providing multiple perspectives with well defined semantics. At the same time,
an ADL should support understandability and communication among stake-
holders, by providing multiple levels of abstraction [5]. Generally, ADLs do not
support both parts [6], which is critical for dependable systems since both parts
contribute to systems’ correctness.

The comparison is performed by applying an extension of Medvidovic and
Taylor’s ”classification and comparison framework for software architecture de-
scription languages” [6]. In order to be able to compare AADL and EAST-ADL,
Medvidovic and Taylor’s framework is expanded with aspects of hardware archi-
tectures and typical quality attributes of software-intensive systems, which are
timing and dependability.

The extended framework will be presented in Section 2, before overviews of
the languages under comparison is given in Section 3. The results of applying the
ADLs to the extended framework are presented in Section 4, which is followed
by conclusions in Section 5.

2 The Comparison Framework

Medvidovic and Taylor developed a framework [6] for classification and compar-
ison of software ADLs. In this paper, we extend their framework with hardware
architecture aspects and vital quality-attributes of software-intensive systems.
The new framework consists of, as in the original framework, a set of building
blocks and their features (depicted in Table 1) that an ADL should provide. The
main building blocks are components, connectors and configurations, where
these components, in order to interchange architectural information, must have

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 105

Table 1. ADL Building Blocks (bold), their Features (italic) and vital quality-
attributes

ADL: Building Blocks and Features

Components
Interface, Types, Semantics, Requirements, Evolution, Non-functional properties

Connectors
Interface, Types, Semantics, Requirements, Evolution, Non-functional properties

Configurations
Understandability, Compositionality, Refinement and traceability, Heterogeneity,
Scalability, Evolution, Requirements, Non-functional properties

ADL: Vital Quality Attributes

Dependability
Timing

interfaces. Connectors are the interactions within the architecture whereas con-
figurations define how each building block is combined to form an architecture
description.

Architectures of software-intensive systems can be represented by these build-
ing blocks, which are abstractions of architectural elements. The framework
developed by Medvidovic and Taylor restricts these building blocks to be ab-
stractions of architectural elements of software. The extensions are reflected in
the defined restrictions (given in section 2.1, 2.2, 2.3) of what the building blocks
are abstractions of, which are: architectural elements of software, architectural
elements of hardware and architectural elements of software mapped on hard-
ware.

Within following subsections, an overview of each architecture building block,
their features and the vital quality attributes is given.

2.1 Building Block: Component

Components are abstractions of main hardware/execution platform-units,
computational software-units or composition of software and hardware-units.
Computational software units refer to procedures/functions as well as entire ap-
plications. Main hardware/execution platform-units refer to complex hardware
that may be associated with software to complete its functionality. Examples of
such units are: sensors, actuators, processors, memories and communication links
such as buses. Composition of software and hardware units refer to systems where
computational software units are mapped to main hardware/execution platform
units (e.g. flight control system, GPS system, electronic cruise control system,
etc.). Components interact through their interfaces which are logical points of
interactions between a component and its environment. An interface of a com-
ponent describes the services a component provides and requires. The behavior
model of a component, which here is referred to as component semantics, is an
important feature of a component since it describes requirements and provides
information for analysis and V&V activities. Components that are encapsulated

106 A. Johnsen and K. Lundqvist

within a certain subset of semantics and properties are here referred to as a
component type, which can be instantiated several times within an architecture.
Component types facilitates the ability to understand and analyze architectures
since instances of a component type have common properties. Types are most
often created by extensible type systems within ADLs, but built-in component
types should also be provided. Components should be able to be modeled with
external and internal properties specifying unacceptable borders, which we here
refer to as component requirements. Furthermore, an ADL should provide mod-
eling of non-functional properties (e.g. reliability, safety, performance, etc.) as-
sociated with components for V&V, simulation and analysis purposes. In order
to control evolution of components within a system, i.e., modifications of com-
ponent properties, the language should be able to support the evolution of the
system. An ADL can support the evolution by supporting subtyping of compo-
nent types as well as refinement of component features.

2.2 Building Block: Connector

Connectors are abstractions of interactions, where the method to interact may
be of simple or highly complex nature. The nature may exclusively consist of
software (e.g. data flows, control flows, function calls and access to data), hard-
ware (e.g. wires) or a combination of the two (e.g. bus system). Connectors may
have interfaces, specifying interaction points which components or connectors
can be connected to. The behavior models of connectors which specify interac-
tion protocols, are here referred to as connectors semantics. Similar to compo-
nent semantics, connector semantics provide information for analysis and V&V
activities, where the information is based on interconnection and communica-
tion requirements/properties. Connectors that are encapsulated within a subset
of connector semantics and properties are here referred to as a connector type.
These types are provided, similar to component types, by ADLs to facilitate
modeling and understandability by reusable building blocks. Connector require-
ments assert interaction protocol properties by describing unacceptable borders.
Connectors should also be able to be modeled with non-functional properties,
which can not be derived from the connector semantics. As these interaction
protocol properties are modified according to the evolution, ADLs should be
able to support this evolution through subtyping and refinement of connector
features.

2.3 Building Block: Configuration

ADLconfigurations define howeachbuilding block (components and connectors) is
combined to form an architecture describing correct component connections, com-
ponent communications, interface compatibility and that the combined semantics
of the whole system result in correct system behavior. Since a system architecture
partly serves as a mutual communication blueprint among stakeholders, the under-
standability of specifications is of great importance. An ADL specification should
describe the topological system with understandable syntax or/and graphical no-
tions, where an architecture configuration can be understandable without knowing

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 107

components’ and connectors’ architectural details. Closely related to the under-
standability of anarchitecture configuration is the architecturecompositionality. In
order to provide anunderstandable architecture configuration, it is important to be
able to describe the system at different abstraction levels, by abstracting away un-
interesting details when concerning specific perspectives of the system. Such views
can be provided by ADLs that have the capability to model a system hierarchically,
where an architecture configuration may be contained within a higher abstracted
component. As ADLs provide means for architectural description at different lev-
els of abstraction, it is important to have traceability throughout the refinement of
properties and relationships, from high levels of abstraction to the concrete system,
in order to bridge the gaps between them. Since ADLs partly are used to facilitate
development of large, complex and often highly heterogeneous systems, it is impor-
tant thatADLs can meet these heterogeneity and scalability problemsby providing
possibilities to specify components and connectors described by external formal
languages, and to be able to handle large and growing systems. Evolvability, which
is closely related to scalability, does not only concern ADLs ability to accommodate
to new architectural building-blocks to be added, but does also concern how ADLs
can accommodate to incomplete architectural specifications, since it is unfeasible
to make all design decisions at once. Requirements and non-functional properties
of architectural configurations are not specific to individual components or connec-
tors, but may be extracted from or are depended upon component- or connector-
specific requirements and non-functional properties.

2.4 Vital Quality Attributes

Software-intensive systems are of highly complex nature with numerous criti-
cal quality-attributes. What software-intensive systems have in common is that
they often are operating in safety-critical and time-critical environments. Con-
sequently, two of the most important quality-attributes are dependability and
timing. Even though one of the fundamental results of architecture-based devel-
opment is increased dependability, as a result of abstracting complex systems
to understandable and manageable blueprints, an ADL for software-intensive
systems should explicitly provide means for dependability modeling. An ADL
should facilitate safety- and reliability-analysis, such as for example, provide
means for error modeling, reliability modeling, hazard analysis, risk analysis,
and structures of requirements. Another critical aspect of software-intensive sys-
tems is timing since these systems often have to meet real-time constraints. An
ADL should provide means to support modeling and analysis of timing require-
ments and properties, such as for example, end-to-end timing (sensor to actuator
timing), latency, task execution time and deadlines.

3 ADLs Under Comparison

We present an overview of both ADLs in order to provide a basis for the com-
parison in section 4.

108 A. Johnsen and K. Lundqvist

3.1 Overview of AADL

AADL (1.0) [7] [8] was released and published as a Society of Automotive En-
gineers (SAE) Standard AS5506 [2] in 2004. It is a textual and graphical lan-
guage used to model, specify and analyze software- and hardware-architectures
of real-time embedded systems. The AADL language is based on a component-
connector paradigm that describes components, component interfaces and the
interaction (connections) between components. Hence, the language captures
functional properties of the system, such as input and output through compo-
nent interfaces, as well as structural properties through configurations of com-
ponents and connectors. Furthermore, means to describe quality attributes are
also provided. A system is modeled as a hierarchy of components where compo-
nents that represent the application software are mapped onto the components
that represent the hardware platform. A component is modeled by a compo-
nent type and a component implementation. The component type specifies the
external interfaces of the component in which other components can interact
through, while the component implementation specifies the internal view of a
component, such as subcomponents and their connections, and must be coupled
to a component type.

Although a new version of AADL (AADLv2) [9] was published in 2009, the
survey is restricted to the version of the language released in 2004.

3.2 Overview of EAST-ADL

The EAST-ADL [3] [10] is a domain-specific ADL for modeling and development
of automotive electronic systems, where the language has modeling possibilities
to specify software components, hardware components, features, requirements,
variability and annotations to support analysis of the system. The language
supports modeling of electronic systems at four different conceptual abstraction
levels, namely: Vehicle level, Analysis level, Design level and the Implementation
level. These abstraction levels reflect the amount of details in the architecture
where abstract features and functions modeled in higher abstraction levels are re-
alized to software and hardware components modeled in lower abstraction levels.
The language provides a complete traceability through the different abstraction
levels. The basic vehicle features (e.g. wipers and breaks) of the electronic sys-
tems are captured at the Vehicle level, the highest level of abstraction. These
features are refined in related functions at the Analysis level by abstract elements
representing software functions and devices interacting with the vehicle environ-
ment. The Design level represents a realization of the functionalities depicted at
the analysis level, where the level allows further decomposition or restructuring
of software functions and preliminary allocation of software elements. Specified
devices are realized at this level into hardware architectures, such as sensors
and actuators, including software for signal transformations. The lowest level of
abstraction, the Implementation level is defined by using the Automotive Open
System Architecture (AUTOSAR) standard[11].

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 109

4 AADL vs. EAST-ADL

AADL and EAST-ADL are compared according to the comparison framework
given in section 2, where each architectural building block, their features and
vital quality-attributes are analyzed and discussed based on the AADL standard
specification [2] and the EAST-ADL standard specification [3].

4.1 Modeling of Components

Both AADL and EAST-ADL support modeling of all three component categories
(i.e. computational software, main hardware/execution platform and composi-
tion of software and hardware). EAST-ADL refer these components to features,
functions or components, depending on which conceptual abstraction level is
considered whereas AADL exclusively refer to components.

Interface. AADL support modeling of five different types of component inter-
faces, or component features as referred to in the AADL standard. The different
types of component interfaces are: ports, data access, bus access, subprogram or
parameter. Ports are interaction points of software components for transfer of
typed data and events. Data access interfaces are used to connect software com-
ponents to static data whereas bus access interfaces are used to interconnect
hardware components through bus components (built-in component types are
depicted in the ”types” section). Subprogram components may be used as in-
terfaces of data components, representing methods that can be called by thread
components. Parameters are interaction points of subprogram components for
transfer of data. EAST-ADL on the other hand provides modeling of different
interfaces, depending on which conceptual abstraction layer is being modeled.
At the functional analysis level and the functional design level it is possible to
model interfaces such as client-server ports and flow ports. Client and server
ports are interaction points for communication between clients and servers, i.e.
operations are required or provided by client ports and server ports. Flow ports
are directional interaction points for exchange of data which is specified by as-
sociated data-types. The hardware design architecture, modeled at the design
level, provides pin interfaces in which hardware elements can be connected to
electrical sources, sinks and ground.

Types. The AADL language provides ten types of built-in component abstrac-
tions: process, thread, thread group, data, subprogram, processor, memory, bus,
device and system. Note that a bus component represents an entity that inter-
connects hardware components (processor, memory, device and bus components)
for exchange of data and control according to some communication protocol, and
thus, it could be argued to be a connector type. Families of related components
may also be modeled in the AADL language by an extension system where a
component extending an antecedent component will inherit its antecedent char-
acteristics, which can be refined or modified. EAST-ADL has built-in component
types which encapsulate semantics and properties in relation to a certain abstrac-
tion level, in contrast to AADL which types encapsulate semantics and properties

110 A. Johnsen and K. Lundqvist

in relation to the concrete component that is abstracted by the language. For ex-
ample, at the vehicle level, it is only possible to model feature components, and
at the analysis level, it is only possible to model function and device components,
where the encapsulated semantics and properties of these types are abstract. As
the abstraction level decreases, the types are getting more concrete. For exam-
ple, at the design level, it is possible to model hardware components of sensor
or actuator type, and at the implementation level it is possible to realize (by
using AUTOSAR) design level functions into software components types. The
EAST-ADL language provides modeling of component types where occurrences
of such instances, in a modeling artifact, are called typed prototypes. Modeling
by these typing systems is provided at every abstraction level, except at the
vehicle level. The EAST-ADL language does also provide modeling of variabil-
ity models, which has similarities with modeling of component types but with
a difference of the conceptual usage. The main conceptual usage of variability
models is to facilitate controllability of product lines, and not mainly to facilitate
understandability and analyzability. The variability management is provided at
all the different conceptual abstraction levels, where related components can be
merged to a component (which can be seen as a component type) with variability
properties, meaning that the aspect of such a component can vary to another
closely related aspect.

Semantics. Both AADL and EAST-ADL provide specification of components’
behavior, but with some limitations which can be exceeded by language annexes
and integrated tools. For example, the AADL language is extended with a be-
havioral annex [12], which provides modeling of components’ behavior by using
automata theory whereas the EAST-ADL language has traceability to behavior
models based on external notations such as Simulink [4]. Both core languages
provide sufficient modeling of behavior and functionality through modeling of
component modes and triggers based on data, events or timing, for exchange
of modes.

Requirements. The AADL language provides modeling of requirements
through the generic property annotation, which does not only provide modeling
of requirements, but also modeling of a component’s functional properties (com-
ponent semantics) as well as non-functional properties. Component properties
can be specified with either the component types or the component implemen-
tations, to distinguish internal and external requirements of a component. The
AADL language provides built-in properties (requirements) and possibilities to
define new properties. EAST-ADL, on the other hand, treats requirements as
separate entities that are associated to the target EAST-ADL element with a
specific association, according to principles of SysML [13]. The concept of the
requirement modeling is to provide an interface between OEMs (original equip-
ment manufacturer) and suppliers.

Evolution. AADL provides means for structural evolution through its com-
ponent extension system, where an instance of a component type can be used
to type other components. Since AADL is built on a paradigm where a system

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 111

is modeled as a hierarchy of components, its nature provides means for refine-
ments of component features across different levels of abstraction. EAST-ADL
does not allow modeling of component subtypes, because the EAST-ADL domain
model (metamodel) only describes component types and their prototypes (type
instances). However, EAST-ADL provides means for refinement across different
level of abstraction, but with a hierarchical difference compared to AADL. Even
though starting from a high abstraction level, AADL specifies components that
are abstractions of concrete implementation components (e.g. a system compo-
nent with sensors, processes and actuators as subcomponents), which then can
be refined with other abstracted components (e.g. thread components), modeled
inside components. EAST-ADL, on the other hand, starts with specification of
components that are abstractions of features and functions (which themselves
are abstractions), which can be decomposed in a lower abstraction by specifying
these features and functions by using more concrete building blocks (compo-
nents). EAST-ADL’s terminology defines this as each abstraction layer realizes
its antecedent layer.

Non-functional properties. Both languages provide modeling of built-in non-
functional properties of components, as well as means for specifying new non-
functional properties. For example, for AADL components, there are built-in
non-functional properties such as execution time, latency, throughput, startup
deadline and write-time. For EAST-ADL components, there are properties such
as safety, timing (e.g. execution time and latency), development cost, cable length
and power consumption in addition to low-level properties represented through
AUTOSAR elements. As can be seen by the presented built-in non-functional
properties, EAST-ADL has properties of importance to higher levels of organi-
zations compared to AADL.

4.2 Modeling of Connectors

Neither of EAST-ADL or AADL model connectors explicitly, instead connections
are modeled ”in-line” with the components, i.e. connectors are not first-class
entities. Modeling of connectors within AADL and EAST-ADL basically consist
of describing which component interfaces are connected. Connectors between
software components are left out completely in the AUTOSAR language since
the modeling concept is built on standardized component interfaces interacting
through an abstract component called the Virtual Functional Bus (VFB).

Interface. EAST-ADL and AADL connectors do not have interfaces.

Types. EAST-ADL and AADL provides built-in connector types which encap-
sulates properties and semantics of a connector. Each connector type can be
used to connect one or several types of component interfaces. For example, in
AADL there is a data access connection connector type which can be used to
connect data access interfaces, and in EAST-ADL there is a FunctionConnector
connector type which can be used to connect FunctionFlowPorts or ClientServer-
Ports. AADL does also provide modeling of abstract information paths through

112 A. Johnsen and K. Lundqvist

Fig. 1. Modeling of Components and Connectors

a system, called AADL flows, to support control- and data-flow analysis such as
end-to-end timing, reliability, resource management and latency.

Semantics. Semantics of AADL connections are defined by the type of the
connection, types of components involved, as well as properties specified with
the connections where the properties can be used to specify communication
protocols. EAST-ADL connector types have predefined semantics, where means
to specify additional semantics is not provided by the language.

Requirements. Modeling of requirements on connections is feasible in AADL
through property statements, which is conceptually similar as with modeling
requirements of AADL components. The same conclusion goes for EAST-ADL,
where modeling of requirements on connectors is similar as on components.

Evolution. As both languages do not treat connectors as first-class entities,
which can not be typed or reused, they do not provide means for controlling
their evolution.

Non-functional properties. Modeling of non-functional properties of connec-
tors is supported by both languages, similarly as with modeling of non-functional
properties of components.

4.3 Modeling of Configurations

Architectural configurations can be modeled and expressed syntactically and/or
graphically by the AADL language whereas in EAST-ADL configurations are

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 113

modeled and expressed according to the UML-based metamodel. Modeling of a
system configuration that may vary to another system configuration is provided
by both languages, through their modes modeling features.

Understandability. Understandability of an AADL system configuration de-
pends on which way it is expressed (syntactically or graphically). The graphical
perspective provides a view of the system configuration that is easily under-
stood. If a more detailed view is preferred, the syntactical model offers this, con-
sequently with difficulties to perceive the whole system at once. Since there are
precise relationships between a graphical and a syntactical configuration, both
can be used simultaneous to enhance understandability. The understandabil-
ity of EAST-ADL configurations depends upon which abstraction level is being
viewed, since each level provides a complete configuration of the system with
respect to the concerns of the level. Each abstraction level is modeled according
to the metamodel, where mappings between elements among two neighbor ab-
straction levels are expressed by realization relationships, which provides means
for expressing all the configurations at once.

Compositionality. Both languages support hierarchical description of systems
at different levels of abstractions, however with a difference which we already
have touched upon in Section 4.1. A system in AADL is modeled by specifying
components and connections among components within a system component,
which is not the case in EAST-ADL. In EAST-ADL a system is being viewed as
completely specified according to a specific abstraction level with specific con-
cerns. Note here that each abstraction level does not only provide a level of detail,
but also specific concerns, and thus a certain perspective. However, systems are
specified hierarchically in EAST-ADL since each architectural element in a spe-
cific abstraction level is realized by one or several elements in the subsequent
(lower) level. Thus, with respect to the explicit abstraction layers, each compo-
nent (excluding vehicle/top level and implementation/bottom level components)
has relations to a ”superior” and a ”subordinate” component element(s). Con-
sequently, the fundamental hierarchical differences between the languages are
the relations between the members (components) of the hierarchy. In AADL,
the hierarchy is generated by the notion of subcomponents, i.e., components are
subsumed within another component and thus generates a kind of ”subsumptive
containment hierarchy”. EAST-ADL, on the other hand, generates the hierarchy
through the notion of realization. The realization is done through decomposition
of components to more concrete elements provided at a subsequent abstraction
level. Thus, the hierarchy is a kind of ”compositional containment hierarchy”
where vehicle level entities are composed of analysis level entities, which are
composed of design level entities, which are composed of AUTOSAR entities.

Refinement and traceability. The languages’ compositionality nature pre-
serves traceability among properties and relationships throughout the refinement
process. EAST-ADL explicitly relate requirement properties to each other, where
requirements in the higher abstraction levels are refined to more detailed require-
ments in the lower levels.

114 A. Johnsen and K. Lundqvist

Fig. 2. Modeling of Configurations

Heterogeneity. AADL and EAST-ADL provide explicit support for specifica-
tion by multiple specification languages, such as approved annexes (e.g. Behav-
ioral annex, Error Model annex, etc.) for AADL and extension packages (e.g.
ErrorBehavior, Requirements, Constraints, etc.) for EAST-ADL. AADL pro-
vide additional support for implementation details through predeclared proper-
ties where components can be associated with source text written in software
languages such as C and Ada, modeling languages such as Simulink, and hard-
ware languages such as VHDL. Implicitly, they support specification by multiple
languages through model transformation into formal specification languages.

Scalability. Both languages have scalability issues since both are ”in-line con-
figuration ADLs”, meaning that components and connectors are not modeled
separately from the configurations. Adding new components to a configuration
may require modifications to existing connections, since connections within in-
line configurations are solely dependent upon the components they connect.

Evolution. Partial architecture specifications are supported by both languages.
For example, the AADL language allows architectures of components without
component implementation descriptions and with untyped data port interfaces.
EAST-ADL allows architectures lacking of entire abstraction levels.

Requirements. Modeling of requirements on configurations is similar as mod-
eling of requirements on components in AADL, since configurations are modeled
inside components. EAST-ADL provide possibilities to associate requirements
to a complete abstraction level.

Non-functional properties. Both languages support modeling of non-
functional properties, such as timing and dependability, for architecture con-
figurations.

4.4 Dependability

EAST-ADL consist of an explicit dependability package which provides means,
such as hazard analysis, structuring of safety requirements according to their

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 115

purpose in the safety life-cycle, formalizing requirements through safety con-
straints, analysis of fault propagation through error models and structuring evi-
dence of safety, to specify and classify dependability. The dependability package
is constructed to support the automotive safety standard ISO/DIS 26262. The
AADL language does also support dependability modeling through the Error
model annex, which defines a sub-language for modeling of error models that
can be associated with AADL components. Through the error modeling fea-
tures, the annex enables modeling and assessment of redundancy management,
risk mitigation and dependability in architectures.

4.5 Timing

Specification of timing is provided by the AADL language through timing prop-
erties (such as deadlines, worst-case execution time, arrival rate, period etc.) as
well as predefined concurrency, interaction and execution semantics. AADL has
tool support for timing analysis through the Cheddar tool [14] and the Oca-
rina tool-suite [15]. Cheddar is a free real-time scheduling tool for analysis of
temporal constraints. The tool supports both cyclic and aperiodic tasks, as well
as a wide range of scheduling policies such as Rate Monotonic (RM), Earliest
Deadline First (EDF), Deadline Monotonic, etc. Ocarina provides schedulability
analysis of AADL models. EAST-ADL on the other hand has an explicit timing
package, as with dependability, which provides means for modeling structures
of timing constraints and timing descriptions. A timing structure is based on
events and event chains that can be modeled across all abstraction levels. An
event describes a distinct point in time where a change of state in the system
takes place or it may also be an report of the current state. An event chain
describes the temporal behavior of steps in a system, where the behavior is ex-
pressed by two related groups of events: stimulus and response. The chains is
also used to specify built-in timing requirements on the different steps in the sys-
tem. Timing analysis of EAST-ADL models is supported by the MARTE UML
profile through the Papyrus add-in [16].

5 Conclusion

In this paper, we addressed the importance of an ADL for dependable software-
intensive systems to support activities such as analysis, V&V, code genera-
tion/synthesis, etc., and at the same time support understandability and mutual
communication. The classification and comparison framework for software Ar-
chitecture Description Languages [6] developed by Medvidovic and Taylor was
extended and used to compare the levels of support AADL and EAST-ADL
provide these two aspects. The framework highlighted several areas when the
languages were compared. One area was frequently highlighted during the com-
parison, which is that the metamodel of EAST-ADL has possibilities to describe
systems at higher abstraction levels compared to the AADL standard. EAST-
ADL provides means to model component types such as features, devices and

116 A. Johnsen and K. Lundqvist

functions of automotive systems, where a more detailed software architecture
of concrete software components can be modeled by AUTOSAR, a complemen-
tary language to EAST-ADL. AADL on the other hand, models a system using
abstractions of concrete system elements (e.g. processes and threads), which pro-
vide less freedom of the structure and how the functionality is obtained in the
implementation. As EAST-ADL’s point of view is on a higher abstraction level,
hiding implementation solutions behind abstract features, devices and function-
alities, it concentrates on system aspects of importance between the main parties
within the automotive industry (e.g. between suppliers and OEMs) such as mod-
eling of requirements, dependability, variability and timing of the system. This
can be concluded in that the gap between an architecture description artifact
and its implementation is larger when developing systems using EAST-ADL
compared to using AADL, whereas the gap between the understandability of a
system (as well as the controllability and the communicability) and its complex-
ity is smaller. Therefore, EAST-ADL tend to primarily focus on understandabil-
ity and communication of systems whereas AADL tend to be more appropriate
for analysis tools, model checkers and compilers.

References

1. Wirsing, M.: Report of the beyond the horizon thematic group 6 on software in-
tensive systems. Technical report, Thematic Group 6: Software-Intensive Systems
(2006)

2. As-2 Embedded Computing Systems Committee SAE. Architecture Analysis &
Design Language (AADL). SAE Standards no. AS5506 (2004)

3. The ATESST Consortium. East-adl 2.0 specification (November 2010),
http://www.atesst.org

4. ATESST2. Advancing traffic efficiency and safety through software technology
(November 2010), http://www.atesst.org

5. Medvidovic, N., Rosenblum, D.S.: Domains of concern in software architectures and
architecture description languages. In: Proceedings of the Conference on Domain-
Specific Languages (DSL 1997), p. 16. USENIX Association, Berkeley (1997)

6. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93
(2000)

7. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis and design lan-
guage (aadl): An introduction. Technical report (2006)

8. Hudak, J., Feiler, P.: Developing aadl models for control systems: A practitioner’s
guide. Technical report, CMU Software Engineering Institute (SEI) (2007)

9. As-2 Embedded Computing Systems Committee SAE. Architecture Analysis &
Design Language (AADL). SAE Standards no. AS5506A (2009)

10. Cuenot, P., Frey, P., Johansson, R., Lönn, H., Reiser, M.-O., Servat, D., Tavakoli
Kolagari, R., Chen, D.J.: Developing automotive products using the east-adl2, an
autosar compliant architecture description language. In: European Congress on
Embedded Real-Time Software (ERTS), Toulouse, France (2008)

11. AUTOSAR. Automotive open system architecture (November 2010),
http://www.autosar.org

http://www.atesst.org
http://www.atesst.org
http://www.autosar.org

Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL 117

12. Franca, R.B., Bodeveix, J.-P., Filali, M., Rolland, J.-F., Chemouil, D., Thomas,
D.: The aadl behaviour annex – experiments and roadmap. In: ICECCS 2007:
Proceedings of the 12th IEEE International Conference on Engineering Complex
Computer Systems, pp. 377–382. IEEE Computer Society, Washington, DC, USA
(2007)

13. SysML. Systems modeling language (November 2010), http://www.sysml.org
14. The cheddar project: a free real time scheduling analyzer (November 2010),

http://beru.univ-brest.fr/~singhoff/cheddar/

15. Ocarina: An aadl model processing suite (November 2010),
http://www.ocarina.enst.fr

16. Papyrus for east-adl (November 2010), http://www.papyrusuml.org

http://www.sysml.org
http://beru.univ-brest.fr/~singhoff/cheddar/
http://www.ocarina.enst.fr
http://www.papyrusuml.org

A Formal Approach to Design and Verification

of Two-Level Hierarchical Scheduling Systems

Laura Carnevali1, Giuseppe Lipari2, Alessandro Pinzuti1, and Enrico Vicario1

Dipartimento di Sistemi e Informatica - Università di Firenze
{laura.carnevali,alessandro.pinzuti,enrico.vicario}@unifi.it

Real-Time Systems Laboratory - Scuola Superiore Sant’Anna
giuseppe.lipari@sssup.it

Abstract. Hierarchical Scheduling (HS) systems manage a set of real-
time applications through a scheduling hierarchy, enabling partitioning
and reduction of complexity, confinement of failure modes, and tempo-
ral isolation among system applications. This plays a crucial role in all
industrial areas where high-performance microprocessors allow growing
integration of multiple applications on a single platform.

We propose a formal approach to the development of real-time applica-
tions with non-deterministic Execution Times and local resource sharing
managed by a Time Division Multiplexing (TDM) global scheduler and
preemptive Fixed Priority (FP) local schedulers, according to the schedul-
ing hierarchy prescribed by the ARINC-653 standard. The methodology
leverages the theory of preemptive Time Petri Nets (pTPNs) to support
exact schedulability analysis, to guide the implementation on a Real-Time
Operating System (RTOS), and to drive functional conformance testing
of the real-time code. Computational experience is reported to show the
feasibility of the approach.

Keywords: Real-time systems, Hierarchical Scheduling, ARINC-653,
Time Division Multiplexing, preemptive Fixed Priority, verification, pre-
emptive Time Petri Nets, real-time code, real-time testing.

1 Introduction

Hierarchical scheduling (HS) systems consist of real-time applications arranged
in a scheduling hierarchy. They can be generally represented as a tree, or a hier-
archy, of nodes where each node represents an application with its own scheduler
of internal workloads. The tree may have an arbitrary number of levels and each
node may have an arbitrary number of children [29]. Hierarchical scheduling is
receiving an increasing attention due to its effect of partitioning and reduction of
complexity, confinement of failure modes, and temporal isolation among system
applications. Among the disparate architectures that may serve the design of
HS systems, one way of composing existing applications with different timing
characteristics is to use a two-level scheduling paradigm: at the global level, a
scheduler selects which application will be executed next and for how long; at

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 118–131, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Formal Approach to Design and Verification of Two-Level HS Systems 119

the local level, a scheduler is used for each application in order to determine
which tasks of the selected application should actually execute.

Various analytical approaches have been proposed to support schedulability
analysis and verification of HS systems under the assumption of local resource
sharing [13],[19],[23],[29],[24],[22],[11],[15].In [13], a two-level HS scheme is intro-
duced to manage the execution of both real-time and non real-time applications
on a single processor, assuming an Earliest Deadline First (EDF) global sched-
uler and a Total Bandwidth Server (TBS) [30] for each application. The approach
is extended in [19] to encompass Rate Monotonic (RM) scheduling policy at the
global level, although the treatment is restricted to the case of periodic tasks
with harmonic periods. In [23], an exact schedulability condition is provided for
a two-level HS architecture with EDF global scheduling policy and EDF/RM
local scheduling policy. In [22], [24], HS systems are described through the peri-
odic server abstraction, providing the class of server parameters that guarantees
schedulability for Fixed Priority (FP) local schedulers. Following the approach
based on server abstraction, in [11], response time analysis is employed to obtain
exact schedulability conditions for HS systems that are handled by FP preemp-
tive scheduling at both the local and the global level, comparing Periodic, Spo-
radic, and Deferrable Servers. The schedulability analysis techniques of [15], [29]
address a hierarchical scheduling framework that employs the bounded-delay re-
source partition model of [26], providing a compositional method according to
which the timing requirements of a parent scheduler are directly derived from the
timing requirements of its child schedulers and they are satisfied if and only if the
timing requirements of the child schedulers are satisfied. The approach supports
the integration of applications developed by independent suppliers, but yields
more pessimistic schedulability results.

Recent works address global resource sharing in HS systems. In [12], the re-
sponse time analysis of [11] is extended with a global resource access policy called
Hierarchical Stack Resource Policy (HSRP), which bounds priority inversion and
limits the interference due to overruns during resource accesses. In [2], the Sub-
system Integration and Resource Allocation Policy (SIRAP) provides temporal
isolation between subsystems that share logical resources and thus facilitates the
integration of applications developed independently of each other. In [16], com-
positional techniques support automatic scheduling and correctness verification
of ARINC-653 [1] partitions with global resource sharing.

As a major limit, analytical techniques provide pessimistic results for models
including sporadic tasks, inter-task dependencies in the time of release, inter-task
dependencies due to mutual exclusion on shared resources, and internal sequenc-
ing of tasks. Moreover, analytical approaches do not encompass computations
associated with a non-deterministic Execution Time, providing schedulability re-
sults for assigned values usually coincident with the Worst Case Execution Time
(WCET). For complex task-sets that expose any of these factors, the verifica-
tion of both sequencing and timing correctness may become sufficiently critical
to motivate the use of state space analysis of models based on formalisms such
as StopWatch Automata [9], preemptive Time Petri Nets (pTPNs) [4], Petri

120 L. Carnevali et al.

Nets with hyper-arcs [27], and Scheduling-TPNs [21]. As a common trait, these
formalisms encompass temporal parameters varying within an assigned interval
and support the representation of suspension in the advancement of clocks. In
particular, their semantics can be defined in terms of a state transition rule driv-
ing the evolution of a logical location and of a set of densely-valued clocks, which
requires that the state space be covered through equivalence classes. In particu-
lar, in [4], an efficient approach is proposed which enumerates an approximation
of the state space that preserves Difference Bounds Matrix (DBM) encoding [31],
[3], [10], supporting the derivation of the tight timing profile of clocks enabled
along a path through an algorithm that cleans up false behaviors introduced
by the approximation. In [8], the theory of pTPNs is cast in a tailoring of the
V-Model SW life cycle that supports design, implementation, and verification of
real-time applications within a Model Driven Development (MDD) approach.

In this paper, we extend the methodology of [8] to support the development
of two-level HS systems with local resource sharing managed by a Time Division
Multiplexing (TDM) global scheduler and preemptive Fixed Priority (FP) local
schedulers, according to the scheduling hierarchy prescribed by the ARINC-
653 standard [1]. The approach leverages the theory of pTPNs [4] to enable
exact schedulability analysis of multiple real-time applications made by peri-
odic, sporadic, and jittering tasks with nondeterministic Execution Times and
semaphore/mailbox synchronizations. To this end, the approach of [8] is ex-
tended to encompass the representation of a TDM global scheduler, exploiting
the induced temporal isolation among system applications to manage the com-
plexity of the model and to keep the analysis viable (Section 2). The pTPN
specification model steers the implementation on a Real-Time Operating System
(RTOS), yielding code that exposes a readable structure, reflects the organiza-
tion of the pTPN model, and, especially, preserves pTPN semantic properties.
In particular, the coding process of [8] is extended to support the emulation of a
TDM global scheduler on RTAI [14] (Section 3). This enables agile verification of
the conformance of the implementation to sequencing and timing requirements
of its pTPN specification, according to the testing approach of [8] (Section 4).
Conclusions are finally drawn in Section 5.

2 Design and Verification through pTPNs

We address real-time applications with local resource sharing managed by a
TDM global scheduler and FP local schedulers, according to the scheduling
hierarchy prescribed by the ARINC 653 standard [1]. Each application is a task-
set encompassing usual patterns of real-time concurrency [7]: i) a task-set is made
by recurrent tasks which release jobs with periodic, sporadic, or jittering policy,
depending on whether the release time is deterministic, bounded by a minimum
but not a maximum value, or bounded by a minimum and a maximum value,
respectively; ii) a job is a sequence of chunks, each associated with an entry-point
function that implements its functional behavior, with an expected Execution
Time interval, and with a priority level (low priority numbers run first); iii) a task

A Formal Approach to Design and Verification of Two-Level HS Systems 121

is subject to a deadline which is usually coincident with its minimum inter-release
time; iv) tasks belonging to the same application (i.e., running in the same time-
slots) may have dependencies (e.g., binary semaphore synchronizations), while
those belonging to different applications (i.e., running in different time-slots) do
not share critical sections.

time-slot = 50 ms

period = 250 ms

TDM global scheduler

A1 A2 A1 A3 A1

TDM
global scheduler

Operating System

FP local scheduler

Tsk11 Tsk12 Tsk13

Application A1

FP local scheduler

Tsk21 Tsk22 Tsk23

Application A2

FP local scheduler

Tsk31 Tsk32 Tsk33

Application A3

Tsk14 Tsk24 Tsk34

Fig. 1. A HS system made by a TDM global scheduler and 3 FP local schedulers

Fig. 1 illustrates the scheme with reference to the case of 3 applications A1,
A2, and A3. The global scheduler partitions a period of 250 ms in 5 time-slots
of equal length of 50 ms and assigns each of them to a single application, i.e.,
T1, T3, and T5 are assigned to A1, T2 is assigned to A2, and T4 is assigned to
A3. While the fixed partitioning is a requirement of the approach, equal slots are
assumed here without loss of generality to simplify the description of the case.
Each application is made by 3 periodic tasks and 1 sporadic task synchronized
on 2 binary semaphores, as illustrated in the workload of Table 1.

2.1 PTPN Model of the HS System

PTPNs [5] extend Time Petri Nets (TPNs) [25], [3] with a concept of resource
assignment that makes the progress of timed transitions dependent on the avail-
ability of a set of preemptable resources, enabling the representation of sus-
pension in the advancement of clocks and thus providing an expressivity that
effectively supports the specification of real-time task-sets. In [8], the theory of
pTPNs is cast in a V-Model SW process supporting all the steps of development
of real-time task-sets running under preemptive FP scheduling. We extend here
the approach of [8] to enable design and verification of HS systems managed by

122 L. Carnevali et al.

Table 1. The workload of the HS system of Fig.1 (times expressed in ms)

Application Task Release Deadline Chunk Priority Exec. Time Sem

A1

Tsk11 [150, 150] 150
C111 1 [1, 2] mux11

C112 1 [10, 20] -

Tsk12 [200, 200] 200
C121 2 [2, 4] mux12

C122 2 [1, 2] -

Tsk13 [250, 250] 250
C131 3 [5, 10] -
C132 3 [1, 2] mux12

Tsk14 [150,∞) 150
C141 4 [1, 2] -
C142 4 [1, 2] mux11

A2

Tsk21 [250, 250] 250
C211 1 [2, 4] mux21

C212 1 [15, 20] -

Tsk22 [280, 280] 280
C221 2 [2, 4] -
C222 2 [1, 2] mux22

C223 2 [1, 2] -

Tsk23 [300, 300] 300
C231 3 [10, 15] -
C232 3 [1, 2] mux21

Tsk24 [250,∞) 250
C241 4 [1, 2] -
C242 4 [1, 2] mux22

A3

Tsk31 [300, 300] 300 C311 1 [1, 2] mux31

Tsk32 [350, 350] 350
C321 2 [1, 2] -
C322 2 [1, 2] mux31

Tsk33 [350, 350] 350 C332 3 [2, 4] mux32

Tsk34 [250,∞) 250 C341 4 [1, 2] mux32

a TDM global scheduler and FP local schedulers. The temporal isolation among
tasks of different applications permits to specify each application with a different
pTPN model made by the submodels of the task-set and the global scheduler.
This reduces the complexity of the problem and enables exhaustive verification
of sequencing and timing constraints of complex systems, which could not be
afforded through direct analysis of a unique flat model due to the state space
explosion problem. We illustrate the approach with reference to the pTPN model
of application A1 of the HS system of Table 1 (see Fig. 2).

The pTPN submodel of the task-set. Recurrent task releases are modeled by tran-
sitions with neither input places nor resource request, which thus fire repeatedly
with inter-firing times falling within their respective firing intervals, e.g., t110
models recurrent job releases of Tsk11. Chunks are modeled by transitions with
static firing intervals equal to the min-max range of Execution Time, associated
with resource request and static priorities, e.g., t112 models the completion of
the first chunk of Tsk11, which requires resource cpu with priority level 1 for an
Execution Time within [1, 2] ms. Computations in different jobs compete for re-
source cpu and run under FP preemptive scheduling, e.g., both transitions t112
and t122 require resource cpu with priority level 1 and 2, respectively, and, if
t112 becomes enabled while t122 is progressing, then t112 preempts t122 and t112

A Formal Approach to Design and Verification of Two-Level HS Systems 123

 pTPN task-set submodel

p111 p112

mux1

p113

p121 p122 p123

mux2

p131 p132 p133 p134

p141 p142 p143 p144

pgs1 pgs2 pgs3 pgs4 pgs5tgs1

[50,50]

tgs2

[50,50]
[prio=0] - {cpu}

tgs3

[50,50]

tgs4

[50,50]
[prio=0] - {cpu}

tgs5

[50,50]

t110

[150,150]

t111

[0,0]
[prio=1] - {cpu}

t112

[1,2]
[prio=1] - {cpu}

t113

[10,20]
[prio=1] - {cpu}

t120

[200,200]

t121

[0,0]
[prio=2] - {cpu}

t122

[2,4]
[prio=2] - {cpu}

t123

[1,2]
[prio=2] - {cpu}

t130

[250,250]

t131

[5,10]
[prio=3] - {cpu}

t132

[0,0]
[prio=3] - {cpu}

t133

[0,0]
[prio=2] - {cpu}

t134

[1,2]
[prio=2] - {cpu}

t140 t141

[0,0]
[prio=4] - {cpu}

t142

[0,0]
[prio=1] - {cpu}

t143

[1,2]
[prio=1] - {cpu}

t144

[1,2]
[prio=4] - {cpu}

 pTPN global scheduler submodel

Tsk11

Tsk12

Tsk13

Tsk14

Fig. 2. The pTPN model of application A1 of the HS system of Table 1

becomes suspended. Binary semaphores are modeled as places initially marked
with 1 token; their acquisition operations are represented as immediate transi-
tions, while their release operations are allocated to transitions that also account
for chunk completions, e.g., mux11 models a binary semaphore synchronizing the
first chunk of Tsk11 and the first chunk of Tsk14; wait operations are modeled
by t111 and t142; signal operations are represented by transitions t112 and t143,
which also model the completion of the two chunks. According to the prior-
ity ceiling emulation protocol [28], the priority of any chunk synchronized on a
semaphore is statically raised to the highest priority of any chunk that ever uses
that semaphore, so as to avoid priority inversion. Priority boost operations are
explicitly modeled as immediate transitions, while priority lowering operations
are allocated to transitions that also account for chunk completions. According
to this, the priorities of Tsk13 and Tsk14 are raised to the priority of Tsk12

and Tsk11, respectively, in the sections where they hold a semaphore: priority
boost operations are represented by t132 and t141, which precede semaphore wait

124 L. Carnevali et al.

operations; priority lowering operations are represented by t134 and t143, which
also account for chunk completions.

The pTPN submodel of the global scheduler. The submodel of the global sched-
uler is made by as many transitions as the number of time-slots in the period,
each associated with a static firing interval equal to the duration of the cor-
responding time-slot and chained to the transition accounting for the previous
time-slot through its input place, e.g., transitions tgs1, tgs2, tgs3, tgs4, and tgs5

model time-slots T1, T2, T3, T4, and T5, respectively. Transitions modeling time-
slots assigned to the application are not associated with a resource request, while
the other transitions require resource cpu with a higher level of priority than any
task of the application. In so doing, transitions modeling jobs of the task-set sub-
model may be progressing and advance their clocks only during the time-slots in
which the application is scheduled to execute and they are suspended during the
other time-slots. According to this, since tasks of A1 require cpu with a priority
level between 2 and 5 and A1 is scheduled to execute in time-slots T1, T3, and
T5, transitions tgs1, tgs3, and tgs5 are not associated with a resource request,
while transitions tgs2 and tgs4 require cpu with priority level 0.

Generalization to multi-level scheduling hierarchies. The proposed approach ap-
plies to any tree of schedulers where leaf nodes are FP schedulers and non-leaf
nodes are TDM schedulers. The root scheduler partitions its period into a num-
ber of time-slots and exclusively assigns each of them to one of its children
schedulers. The process is repeatedly applied until each sub-slot is assigned to a
leaf FP scheduler. In so doing, each application is exclusively assigned a number
of sub-slots and can thus be analyzed in isolation.

2.2 Architectural Verification

The pTPN model of each application is analyzed in isolation, since the em-
bedding environment of the application is completely accounted by the pTPN
submodel of the global scheduler. This supports exact schedulability analysis
based on correctness verification of the model with respect to logical sequencing
and quantitative timing constraints. The analysis is performed through the Oris
Tool [18], which supports enumeration of the space of state classes, selection of
paths attaining specific sequencing and timing conditions, and tight evaluation
of their range of timings. In particular, the identification of all paths that start
with a task release and end with its completion enables the derivation of the Best
Case Completion Time (BCCT) and the Worst Case Completion Time (WCCT)
of each task, thus verifying whether task deadlines are met.

As shown in Table 2, state space analysis enumerates 32084, 183981, and 26147
state classes for A1, A2, and A3, respectively, taking less than 2 minutes and
using approximately 300 MB RAM. Note that architectural verification could not
be afforded through an unique flat model, which exhausts 4 GB RAM after the
enumeration of nearly 106 classes in approximately 13 minutes. In fact, as usual
in techniques based on state space enumeration [4],[9],[27],[21], the complexity

A Formal Approach to Design and Verification of Two-Level HS Systems 125

Table 2. Space and time complexity of state space enumeration on the HS system of
Fig.1: structured model vs flat model

Model # Classes RAM Time

model of A1 32084 ∼ 300 MB ∼ 20 sec

model of A2 183981 ∼ 300 MB ∼ 83 sec

model of A3 26147 ∼ 300 MB ∼ 15 sec

flat model > 106 > 4 GB (out of memory) > 13 min

of the analysis notably increases with the number of concurrent tasks and with
the number of sporadic tasks.

Table 3 shows the number of paths, the BCCT, the WCCT, the deadline, and
the laxity of each task of each application, proving that all deadlines are met. For
instance, tasks Tsk11, Tsk12, Tsk13, and Tsk14 of A1 have 11979, 15023, 11069,
and 15213 paths, respectively, a BCCT of 61 ms, 14 ms, 6 ms, and 66 ms, and
a WCCT of 74 ms, 80 ms, 42 ms, and 82 ms, respectively. This guarantees that
all task deadlines are met, with minimum laxity of 76 ms, 120 ms, 208 ms, and
68 ms for Tsk11, Tsk12, Tsk13, and Tsk14, respectively.

Table 3. Results of the architectural verification on the structured model of the HS
system of Fig.1, showing the number of paths, the BCCT, the WCCT, the deadline,
and the laxity of the tasks of each application (times expressed in ms)

Application Task # Paths BCCT WCCT Deadline Laxity

A1

Tsk11 11979 61 74 150 76
Tsk12 15023 14 80 200 120
Tsk13 11069 6 42 250 208
Tsk14 15213 66 82 150 68

A2

Tsk21 31480 67 74 250 176
Tsk22 66069 39 230 280 50
Tsk23 139417 30 247 300 53
Tsk24 57286 82 249 250 1

A3

Tsk31 13826 101 204 300 96
Tsk32 20742 53 210 350 140
Tsk33 28932 55 212 350 138
Tsk34 13617 156 212 250 38

3 Implementation on RTAI

The specification provided by the pTPN model can be implemented on differ-
ent RTOSs which natively support HS schemes or not. We illustrate here how a
TDM global scheduler can be emulated on RTAI 3.6 [14] by extending the coding
process of [8]. The implementation is guided by the structure of the pTPN model

126 L. Carnevali et al.

and produces code that is responsible for: i) task suspension/resumption accord-
ing to the allocation of time-slots to system applications, ii) task releases, iii)
invocation of semaphore and priority handling operations, and, iv) invocation of
entry-points. As a characterizing trait, the code has a manageable architecture
and preserves the pTPN semantic properties, and it could be equivalently de-
rived in automated manner through an MDD approach. The architecture of the
implementation is organized in a kernel module.

Implementation of the entry-point and the exit-point. The kernel module is
loaded into the kernel space through the entry-point init module, which creates
data structures employed by tasks of the applications (e.g., binary semaphores),
creates real-time tasks that implement tasks of the specification, and starts the
timer. The kernel module is unloaded at the end of the execution through the
exit-point cleanup module, which stops the timer and destroys data structures
and real-time tasks.

Implementation of jobs. In order to observe the timely release of jobs, the re-
sponsibility of job releases and job executions is given to different real-time tasks,
synchronized on a semaphore which is supposed to receive a signal at each re-
lease. According to this, each task of the specification is implemented through:
i) a recurrent real-time task that performs job releases by signaling a semaphore
at each activation, and ii) a further real-time task that performs job operations
by executing a loop that acquires the semaphore at the beginning of each repe-
tition. Real-time tasks performing job releases have a higher priority level than
real-time tasks performing job executions.

A code skeleton with two real-time tasks for each task of the specification is
adopted also in [8], where an experimental assessment is carried on to evaluate
the overhead of the code architecture and the confidence of measurements. Ex-
perimental results show that the error due to finite accuracy keeps lower than
nearly 1.2 μs with recurrent peaks in the order of 3-4 μs, which can be ascribed to
timing uncertainties due to processor and bus effects on a general purpose CPU
running a hard RTOS [20], [17]. This highlights that the overhead is negligible
with respect to the precision of temporal parameters in the model.

Implementation of the global scheduler. The TDM global scheduling policy is
emulated through a periodic real-time task with period equal to the duration
of a time-slot and with higher priority level than real-time tasks implementing
job releases and job executions. At each period, the task suspends the real-
time tasks of the applications that are not scheduled to execute during the next
time-slot and resumes the real-time tasks of the application that is assigned the
next time-slot. Listing 1.1 shows a fragment of the entry-point of the task. For
instance, at the beginning of time-slot T2 (i.e., case 2 of the switch control
structure), real-time tasks that implement jobs of A1 (i.e., tsk11job, tsk12job,
tsk13job, and tsk14job) are suspended and those that implement task jobs
of A2 (i.e., tsk21job, tsk22job, tsk23job, and tsk24job) are resumed. Real-
time tasks that implement jobs of A3 do not need to be suspended since they are
suspended also during time-slot T1, which is in fact assigned to A1. If time-slots

A Formal Approach to Design and Verification of Two-Level HS Systems 127

have different duration, the global scheduler could anyhow be implemented as a
periodic task by letting it change its period at each activation and set it equal
to the duration of the subsequent time-slot.

static void tskgs_job(int t)
{

static int slot = 1;
while (1) {

switch(slot) {
case 1:

...
slot = 2;
break;

case 2:
rt_task_suspend(& tsk11job);
rt_task_suspend(& tsk12job);
rt_task_suspend(& tsk13job);
rt_task_suspend(& tsk14job);
rt_task_resume(& tsk21job);
rt_task_resume(& tsk22job);
rt_task_resume(& tsk23job);
rt_task_resume(& tsk24job);
slot = 3;
break;

case 3:
...
slot = 4;
break;

case 4:
...
slot = 5;
break;

case 5:
...
slot = 1;
break;

}
rt_task_wait_period();

}
}

Listing 1.1. Emulation of a TDM global scheduler on RTAI (t is a formal parameter
of the task function, which is actually not used in the context of our experiment)

4 Testing Conformance with Respect to pTPN Semantics

The close adherence of the code architecture to the pTPN semantic properties
enables functional conformance testing of the implementation with respect to
sequencing and timing requirements accounted by the pTPN specification [8],
as illustrated in the schema of Fig. 3. In particular, the abstraction of pTPNs
enables the observation of the following kinds of failures:

– un-sequenced execution: an execution run breaking sequencing requirements
(e.g., a priority inversion);

– time-frame violation: a temporal parameter assuming a value out of its ex-
pected interval (e.g., a computation breaking its Execution Time interval);

– deadline miss : a job breaking its end-to-end timing requirement.

128 L. Carnevali et al.

Each action of the implementation is mapped on a transition in the pTPN model
of one of the applications. By construction, these actions are: the completion of
suspensions/resumptions of real-time tasks performed by the global scheduler at
the beginning of a time-slot, the release of a task job, the completion of a chunk,
the completion of a wait operation on a semaphore, the boost of a priority before
a semaphore access. The implementation is then instrumented so as to produce
a time-stamped log that stores: i) each action of the implementation that has a
counterpart in the pTPN model of an application and ii) the time at which the
action occurred. According to this, each run executed by the implementation
provides a finite sequence of timed actions {〈ai, τi〉}N

i=0, where:

– ai is an action of the implementation, univocally mapped on a transition ti
of the global scheduler submodel or the task-set submodel of an application;

– τi is the time at which ai occurred.

The log produced by the execution of the real-time applications is off-line
parsed in order to obtain a separate sub-log for each application, made by the
timed actions that correspond to the firings of transitions belonging to the pTPN
model of the application. In particular, the sub-log of each application comprises
a firing sequence for the pTPN model of the application and it can be compared
in isolation against the model itself, in order to determine whether it represents a
feasible behavior. More specifically, the decision algorithm starts from the initial
state s0, which accounts for conditions at which the system is started, checks
the feasibility of the first timed action 〈a0, τ0〉, and computes the subsequent
state s1; at the i-th step, the algorithm checks whether ti can be fired at time
τi − τi−1 from state si−1 and computes the resulting state si. A failure verdict
is emitted as soon as any timed action 〈ai, τi〉 is not accepted by the algorithm,
while a pass verdict is emitted when the run terminates. In so doing, any un-
sequenced execution and any time-frame violation are detected, whereas any
stealing of resources are recognized iff the quantity of stolen time exceeds the
laxity between the actual Execution Time and its expected upper bound.

The code of the implementation is instrumented by letting real-time tasks
write time-stamped actions on an RTAI FIFO queue, since file operations are
not available in the kernel space and would in any case take time beyond ac-
ceptable limits. The log is subsequently processed and written on a file by a low
priority task running in the user space. On the Intel Core 2 Quad Q6600 desk-
top processor employed in the experiment, the run-time overhead introduced
by time-stamped logging is 150 ns on average and it can thus assumed to be
negligible with respect to the time scale of the specification [8].

To provide a comprehensive experimental set-up, a busy-sleep function was
implemented to emulate computations lasting for a controlled duration and re-
place entry-point functions [8]. The implementation was run for several times for
2 hours, which corresponds to more than 28000 releases of the shortest period
task of application A1. Logs produced by the execution runs were evaluated and
no failure was detected, thus highlighting the conformance of the implementation
to its pTPN specification and the feasibility of the proposed approach.

A Formal Approach to Design and Verification of Two-Level HS Systems 129

Application A1

Tsk11 Tsk12

Tsk14

TDM
global scheduler

Operating System

FP local scheduler

Tsk13

FP local scheduler

Tsk21 Tsk22 Tsk23

Application A2

FP local scheduler

Tsk31 Tsk32 Tsk33

Application A3

Tsk24 Tsk34

System specification Formal specification through pTPNs
and state-space enumeration

Translation of the pTPN specification
into real-time code

Simulation of the log in the pTPN specification
and success/failure verdict

nna

a

a

a

,
...
,

,

,

22

11

00

Log

+ = PASSED / FAILED

static void tsk1_1_release(int t)

{

 while(1){

 rt_sem_signal(&Tsk1_1_release_sem);

 ...

 rt_task_wait_period();

 }

 } . . .

Code
execution

nna

a

a

a

,
...
,

,

,

22

11

00

Log

enumeration

p11 p11

p20 p21

t10

[150,150]

t11

[2,3]
[prio=1] - {cpu}

t20

[200,200]

t21

[0,0]
[prio=2] - {cpu}

Tsk1

Tsk2

p11 p11

p20 p21

t10

[150,150]

t11

[2,3]
[prio=1] - {cpu}

t20

[200,200]

t21

[0,0]
[prio=2] - {cpu}

Tsk1

Tsk2

Fig. 3. A schema illustrating the use of pTPNs in the development of HS systems

5 Conclusions

In this paper, we extended the methodology of [8] to support formal specification,
architectural verification, implementation, and conformance testing of HS sys-
tems managed by a TDM global scheduler and preemptive FP local schedulers,
according to the scheduling hierarchy prescribed by the ARINC-653 standard
[1]. The approach employs the theory of pTPNs [4] to engineer all the steps of
development, addressing complex HS systems made by real-time applications in-
cluding periodic, sporadic, and jittering tasks, with nondeterministic Execution
Times and local resource sharing.

In the design stage, the temporal isolation among different applications is
conveniently exploited by leveraging the expressive power of pTPNs in the rep-
resentation of suspension in the advancement of clocks, which allows the specifi-
cation of a HS system through a structured model made by a different pTPN for
each application. In particular, the pTPN model of each application is made by
the submodels of the task-set and the global scheduler, and it can be analyzed
in isolation independently of the models of the other applications. This largely
reduces the complexity of the problem, facilitates the scalability of the approach,
and enables exhaustive architectural verification through state space enumera-
tion, which could not be carried out through direct analysis of an unique flat
model due to the state space explosion problem. Moreover, the partitioning of a
high number of tasks into subsets and the specification of each of them through a
different model easies the assignment of task priorities made by the programmer
in the design stage.

In the implementation stage, the coding process of [8] is extended to support
the emulation of a TDM global scheduler on RTAI [14]. As a characterizing

130 L. Carnevali et al.

trait, the resulting code has a readable structure and preserves the semantic
properties of the pTPN model. This enables a conformance testing approach
where time-stamped logs produced by execution runs are compared against the
set of feasible behaviors of the pTPN specification in order to verify whether
sequencing and timing requirements are satisfied [8].

The pTPN submodel of the global scheduler of each application comprises a
kind of Required Interface [6] accounting for the environment where the local
application is embedded. Generalization of the structure of this interface seems
a promising way to extend the analysis to more complex schemes of hierarchy
that encompass inter-application communication mechanisms as prescribed by
the ARINC-653 standard [1].

References

1. ARINC Specification 653-2: Avionics Application Software Standard Interface:
Part 1 - Required Services. Technical report, Avionics Electronic Engineering Com-
mittee (ARINC) (March 2006)

2. Behnam, M., Shin, I., Nolte, T., Nolin, M.: SIRAP: A Synchronization Protocol for
Hierarchical Resource Sharing in Real-Time Operating Systems. In: Proc. of the
ACM & IEEE Int. Conf. on Embedded SW, pp. 279–288. ACM, New York (2007)

3. Berthomieu, B., Diaz, M.: Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. IEEE Trans. on SW Eng. 17(3) (March 1991)

4. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed State Space Analysis of Real
Time Preemptive Systems. IEEE Trans. on SW Eng. 30(2), 97–111 (2004)

5. Bucci, G., Sassoli, L., Vicario, E.: Correctness verification and performance analysis
of real time systems using stochastic preemptive Time Petri Nets. IEEE Trans. on
SW Eng. 31(11), 913–927 (2005)

6. Bucci, G., Vicario, E.: Compositional Validation of Time-Critical Systems Using
Communicating Time Petri Nets. IEEE Trans. on SW Eng. 21(12), 969–992 (1995)

7. Buttazzo, G.: Hard Real-Time Computing Systems. Springer, Heidelberg (2005)
8. Carnevali, L., Ridi, L., Vicario, E.: Putting preemptive Time Petri Nets to work

in a V-Model SW life cycle. IEEE Trans. on SW Eng. (accepted for publication)
9. Cassez, F., Larsen, K.G.: The Impressive Power of Stopwatches. In: Palamidessi,

C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 138. Springer, Heidelberg (2000)
10. Dill, D.: Timing Assumptions and Verification of Finite-State Concurrent Systems.

In: Proc. Workshop on Computer Aided Verification Methods for Finite State
Systems (1989)

11. Davis, R.I., Burns, A.: Hierarchical Fixed Priority Pre-Emptive Scheduling. In:
Proc. of the IEEE Int. Real-Time Systems Symp., pp. 389–398 (2005)

12. Davis, R.I., Burns, A.: Resource Sharing in Hierarchical Fixed Priority Pre-
Emptive Systems. In: Proc. IEEE Int. Real-Time Sys. Symp., pp. 257–270 (2006)

13. Deng, Z., Liu, J.W.-S.: Scheduling real-time applications in an open environment.
In: Proc. of the IEEE Real-Time Systems Symp., pp. 308–319 (1997)

14. Dept. of Aerospace Engineering - Polytechnic of Milan. RTAI: Real Time Applica-
tion Interface for Linux, https://www.rtai.org

15. Easwaran, A., Lee, I., Shin, I., Sokolsky, O.: Compositional Schedulability Analysis
of Hierarchical Real-Time Systems. In: Proc. of the IEEE Int. Symp. on Object
and Component-Oriented Real-Time Distributed Comp., pp. 274–281 (2007)

https://www.rtai.org

A Formal Approach to Design and Verification of Two-Level HS Systems 131

16. Easwaran, A., Lee, I., Sokolsky, O., Vestal, S.: A Compositional Scheduling Frame-
work for Digital Avionics Systems. In: Proc. of the Int. Workshop on Real-Time
Computing Systems and Applications, vol. 0, pp. 371–380 (2009)

17. Proctor, F.M., Shackleford, W.P.: Real-time operating system timing jitter and its
impact on motor control. In: Proc. of SPIE, Sensors and Controls for Intelligent
Manufacturing II, December 10-16, vol. 4563 (2001)

18. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a Tool for Modeling, Verification
and Evaluation of Real-Time Systems. International Journal of Software Tools for
Technology Transfer 12(5), 391–403 (2010)

19. Kuo, T.-W., Li, C.-H.: A Fixed-Priority-Driven Open Environment for Real-Time
Applications. In: Proc. IEEE Real-Time Sys. Symp., pp. 256–267 (1999)

20. Dozio, L., Mantegazza, P.: General-purpose processors for active vibro-acoustic
control: Discussion and experiences. Control Engineering Practice 15(2), 163–176
(2007)

21. Lime, D., Roux, O.H.: Formal verification of real-time systems with preemptive
scheduling. Real-Time Syst. 41(2), 118–151 (2009)

22. Lipari, B.-E., Giuseppe: A methodology for designing hierarchical scheduling sys-
tems. Journal of Embedded Computing 1(2), 257–269 (2005)

23. Lipari, G., Baruah, S.K.: Efficient Scheduling of Real-Time Multi-Task Applica-
tions in Dynamic Systems. In: IEEE Real Time Tech. and Appl. Symp., p. 166
(2000)

24. Lipari, G., Bini, E.: Resource Partitioning among Real-Time Applications. In: Proc.
of the Euromicro Conf. on Real-Time Sys., pp. 151–158 (2003)

25. Merlin, P., Farber, D.: Recoverability of Communication Protocols. IEEE Trans.
on Communications 24(9) (1976)

26. Mok, A.K., Feng, A.X., Chen, D.: Resource Partition for Real-Time Systems. In:
IEEE Real Time Technology and Applications Symposium, pp. 75–84 (2001)

27. Roux, O.H., Lime, D.: Time petri nets with inhibitor hyperarcs. Formal semantics
and state space computation. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004.
LNCS, vol. 3099, pp. 371–390. Springer, Heidelberg (2004)

28. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority Inheritance Protocols: An Approach
to Real-Time Synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)

29. Shin, I., Lee, I.: Periodic Resource Model for Compositional Real-Time Guarantees.
In: Proc. of the IEEE Int. Real-Time Systems Symp., pp. 2–13 (2003)

30. Spuri, M., Buttazzo, G.: Scheduling Aperiodic Tasks in Dynamic Priority Systems.
Real-Time Systems 10, 179–210 (1996)

31. Vicario, E.: Static Analysis and Dynamic Steering of Time Dependent Systems
Using Time Petri Nets. IEEE Trans. on SW Eng. (August 2001)

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 132–146, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Architecting a Common Bridge Abstraction over
Different Middleware Paradigms*

Iago Rodríguez-López and Marisol García-Valls

Distributed Real-Time Systems Lab
Department of Telematics Engineering

Universidad Carlos III de Madrid
Av. de la universidad 30, 28911 Leganés (Madrid), Spain

{irlopez,mvalls}@it.uc3m.es

Abstract. Currently, there are a number of communication middleware
technologies that are successful solutions to provide an abstraction for distributed
computing in different domains. Although most current middlewares offer
different interfaces for a number of programming languages, they are usually
bound to use one specific communication paradigm. The usage of middleware
decreases programming complexity, but it is not cost-free and fully transparent.
Every distributed application using a communication middleware has some
degree of dependence over the specific middleware it uses mainly related to the
interaction paradigm of the communication. Therefore, there is no fully
transparent way to use middleware at present. This paper contributes to increase
the transparency between applications and middlewares by presenting a common
bridge that has been architected in an environment that requires using different
middleware technologies interchangeably. This bridge is a software component
to abstract the complexity of the middleware solutions requiring minimum
porting efforts. Some results are presented to validate the transparency.

Keywords: middleware; interoperability; component-based design, real-time.

1 Introduction

The general idea behind the concept of middleware is to provide a software layer
between the operating system and the distributed applications abstracting them from
the details of their communication. This definition was fully detailed in [1], that
defined a structure of four layers and their specific functionality taking a network-
centric point of view.

Over the years, different middleware technologies have appeared solving the
problem of distributed communication. In the same way, the different application
models and software paradigms have appeared, and new middleware paradigms have
provided extended functionality over the common communication facilities. This is the

* This work has been partly funded by the iLAND project (ARTEMIS-JU 100026) funded by

the ARTEMIS JTU Call 1 and the Spanish Ministry of Industry, Commerce, and Tourism.
Also, this work has been partly funded by the ARTISTDesign NoE (IST-2007-214373) of the
EU 7th Framework Programme.

 Architecting a Common Bridge Abstraction over Different Middleware Paradigms 133

case of the middleware developed in [2] where support for service-oriented paradigms,
real-time communication, service-based composition, and time-deterministic
reconfiguration is provided. This extended functionality is an added-value on top of the
communication infrastructure services of the middleware. This added-value
functionality can be ported to different underlying infrastructure middleware if the
complete architecture is appropriately designed for this goal. Failing in the design of
the complete middleware architecture and the appropriate hooks will surely decrease
the flexibility and applicability of the full middleware solution. As a matter of fact, the
ease of porting the added-value functionality to different communication infrastructure
middleware is directly related to how the architecture is conceived.

This paper presents a contribution to develop part of the highly-flexible iLAND
middleware. This middleware is flexible enough to use different infrastructure
communication levels; its architecture is developed explicitly to be independent of the
distribution middleware technologies and upper added-value functionality (see figure
1). To reach this objective, the encapsulation of any middleware-specific details is
performed hiding the details of the technologies and even their interaction paradigms,
by means of using common bridge.

Fig. 1. Shows the common bridge component; it hides the complexity of the underlying
distribution middleware technologies, increasing its transparency

The interface given by the common bridge to the added-value functionality must be
extremely simple; it is necessary to hide the complexity of the communication middleware
technologies in use. In fact, abstracting the complexity of the communications to create
distributed systems is a clear objective of the communication middleware, and it is kept at
all times by the common bridge. However, current solutions still manage a high
complexity degree. This is because the creation of an abstraction enabling a distributed
system to perform as standalone requires managing complex communication interactions
which is not an easy task. This task becomes even harder when the different middleware
solutions introduce the quality of service (QoS) parameters used to model, in a more
accurate manner, the communications between different hosts. However, managing QoS
parameters is key for the middleware in distributed real-time embedded systems (DRE).

An essential part of this work is the creation of mechanisms to provide a generic
way to interact from the developed common bridge with the QoS parameters of the
abstracted distribution middleware technologies.

The creation of standards mitigates in part the complexity problem and enables the
use of independent middleware components. Nevertheless, even some standard
middleware as DDS [3] or CORBA [4] present have highly complex interfaces to be
used straightforward. Therefore, this is another problem that adds to the traditional
(and understandable) resistance of some networked real-time domains and software
developers to integrate middleware technologies. The use of an external software that

134 I. Rodríguez-López and M. García-Valls

will be an essential part of the developed applications implies a risk in terms of
software obsolescence, licensing and in sum, control over the final software product.
For example, some DDS standard compliant implementations are mainly used as a
technology for aerospace, military and transportation projects but not in other
domains like domotics or e-health where it would be as useful but more costly.

To present the developed common bridge, this paper is structured as follows.
Section 2 defines in detail the concept of middleware in its traditional communication-
oriented view and similar approaches for maximum flexibility, independence, and
portability. Section 3 presents the main abstractions of the common bridge and its
structure. Section 4 details the proposed API. Finally, in section 5, the validation of the
component is performed. Section 6 presents the conclusions and future work.

2 Background and Related Work

This section presents interesting background work on the definition of the middleware
concept and a brief explanation of the architectural model taken as reference in its
classical meaning. Also, the different approaches for architecting middleware
transparency are presented, as well as the issues involved in the attempt to decrease its
complexity and other derived issues like maximizing interoperability.

There are multiple uses of the concept of middleware, but not all of them are
appropriate nor even informed. As mentioned before, this work is based on the
classical definition of middleware provided by Schantz and Schmidt [1] related to
the origin of this term: communication middleware. To be more precise, they divide
the middleware in four layers and explain the functionalities of each one. The focus of
this work is on the distribution middleware layer, which enables to program the
distributed systems like stand-alone applications. The objective is to increase the
transparency of the enabling technologies (see figure 2). The distribution middleware
technologies are diverse: DDS, RMI[5], JMS[6], CORBA, RT_CORBA[7], ICE[8],
etc., and they communicate using paradigms as message oriented middleware
(MOM), remote procedure call (RPC), object remote broker (ORB), peer-to-peer
(P2P), or more innovative ones like publish/subscribe (P/S), and any other not yet
classified. Depending of the communication paradigm the enabling solutions will
require a different degree of sophistication and complexity. The classifying of all
these middleware depends of multiple variables and points of view, and there are
researches focused just in this task as it is done in [9, 10].

The use of different middleware as communication backbone has already been
done in [11]. PolyORB is presented as a schizophrenic middleware that can support
distribution with different personalities: CORBA, RT-CORBA, or DSA [12]. With
the common bridge component the target is similar, but it has been created in a
different way. The iLAND common bridge focuses at not only giving different
personalities to the middleware, but also at providing a transparent component to use
the different middleware technologies. The component transparency is one of the
principles in the architecture of the software ecosystems [13]. This kind of systems,
manage the complexity using transparency and modular design with translucence
interfaces. In this work, some of the ideas of the software ecosystems are going to be
used to provide the maximum transparency to the developed common bridge

 Architecting a Common Bridge Abstraction over Different Middleware Paradigms 135

component. Moreover, interface uncertainty is used to manage the QoS parameters of
the different middleware technologies.

Another similar approach is the presented in the work of [14] where an abstraction
over the peer-to-peer overlays is given to “facilitate independent innovation in overlay
services and applications” based on an API proposal. Although there is some distance
between our proposal and [14], the theoretical problems faced are similar; therefore,
proposing an API is an essential part our work too.

Up to now, in this section, we have explained how transparency has been tackled in
other approaches where complexity and interoperability problems appear as lateral
issues overcome by the fact of increasing the transparency.

Fig. 2. Illustrates the interoperability of different communication middleware technologies
using the common bridge

There are, however, other approaches that focus directly on the interoperability and
complexity problems. Frameworks like [15] or the protocol-bridging are presented in
[16] for achieving interoperability through introducing more complexity to the
system. Other solutions, as DDS, deal with complexity by creating a standard API
that enables the use of independent middleware components. However, even with the
standard, the complexity degree is high, and simpler APIs are merging. The best
example is SimD [17], an API based on DDS (but outside of the standard) to simplify
the creation of DDS applications.

3 The Common Bridge Abstraction

This section explains the main ideas that lead to the creation of an abstraction level
developed as a piece of software in the middleware architecture (the iLAND
middleware common bridge) and how it has been defined.

Every system must provide higher level abstractions in order to be used with a
reasonable effort. In this case the created abstraction increases the transparency of the
different upper levels with the distribution middleware. The upper levels are the
applications and the middleware layers: common middleware functionality and
domain-specific middleware functionality.

136 I. Rodríguez-López and M. García-Valls

Another important issue to be explained are the QoS parameters; most distribution
middleware technologies for real-time environments have some level of QoS
parameters to model the communication and even the execution characteristics of
local and distributed threads. The type of QoS parameters used is mostly specific of
the technology and target domain so having some kind of mechanism that enables
their usage becomes a key issue.

3.1 Communication Abstraction

The architecting of the common bridge component requires to keep in mind a clear
separation among the existing distribution middleware technologies; two are the main
identified: event communication and client/server communication technologies. This
division allows to benefit from the performance characteristics of both worlds that
mainly provide synchronous and asynchronous communication models, respectively.

This work names both approaches as the synchronous and asynchronous modes. To
be more specific, following the defined communication schemes defined for WS*, the
most widespread services architecture defined in [18], the synchronous communication
implements request/response scheme and the asynchronous communication
implements the fire&forget scheme.

In the request/response scheme, a source service sends a message to a destination,
and it waits until it receives the response (either full-content message or a message
indicating no response). In the other hand, the destination entity receives the request
message, processes it, and transmits back the response. In the fire&forget scheme, the
sending source sends a message with a destination address without any kind of
synchronism with the destination entity. The decision taken of having two models for
two communication schemes will affect to the full common bridge component,
especially in the interaction with higher levels. The API proposal will need to manage
functions enabling the two different ways to communicate. This introduces some
more logic inside the common bridge at the cost of architecting a powerful
communication model supporting the two major communication paradigms.

The next step is defining the architecture of the common bridge component. Taking
as main reference how the middleware definition in layers was performed, this
component is structured following a three layered hierarchy, as it can be seen in
figure 3.

The top layer of the component is the common bridge layer. The name coincides
with the naming of the whole component since it is its interface to both sides: (1) the
applications and (2) the backbone communication infrastructure of the underlying
middleware. The main goals of the common bridge layer are:

 To maximize the degree of independence enabling transparency,
 To achieve a high degree of simplicity in the design,

One of the key elements for achieving these objectives is the API definition. It is
defined as generic as possible as it will be explained in the next paragraphs; the
specific data types and functions are detailed in section 4.

 Architecting a Common Bridge Abstraction over Different Middleware Paradigms 137

Fig. 3. Presents the general architecture of the common bridge

As it is stated in software ecosystems, to provide transparency, the information in
the component interfaces must be minimized. So, the different parameters, structures,
or entities involved in a middleware communication have been divided by their
functionality in common ones (the minimal and essential information), and modeling
ones. In the first group includes principal characteristics as source, destination, and
data to be exchanged. This does not mean every middleware uses them in a direct
way; for example, MoM aggregated these characteristics to define a queue. However,
with these principal characteristics, the basic communication in middleware
technologies can always be created. Moreover, modeling structures, parameters and
entities allow to shape the communication. Following again the MoM example,
modeling parameters define the number of elements in the message queue or the
queuing disciple, among others.

To create the communication in a transparent way, the interactions between the
higher levels and the common bridge must be defined in a generic way in order to
satisfy all the middleware technologies. Furthermore, in these interactions, only the
common parameters will be directly involved; modeling parameters will be
encapsulated and managed through a QoS structure as explained in section 3.2.

The strategic location of the common bridge makes it receive and send data to the
applications. Reception is performed through the specific receptacle parameters of its
API. Data is sent by using callback functions, that is either data exchanged in the
communications or data related to the communications (communication states
essentially).

A different way to perform this task is through the return parameters of the
functions. This option was discarded because this can only be used on synchronous
models. Also, the wait/notify mechanism between middleware and the applications
has been tested. It can be implemented with the provided API, but for simplicity (one
of our objectives), the callbacks are preferred.

The second layer is the specific bridge (see figure 4) and its main objectives are:

 The transformation of the provided data and the datatypes of the common
bridge,

 The creation of the different structures involved in the communication.

138 I. Rodríguez-López and M. García-Valls

In this layer, programmers with expertise in the specific middleware technology
that is chosen can hide the complexity of the distribution middleware using the
common bridge interface. For this purpose, the communication entities must be
created and modeling parameters for the communication must be initialized. This is
done by using the API of the specific middleware technology and implementing
additional logic to cover unsolved issues. Finally, it also has to deal with the different
data types proposed in the common bridge API and with the data types that the
distribution middleware handles.

Finally, in the low level layer there is the specific middleware layer consisting of
the specific implementation of a distribution middleware paradigm. This distribution
middleware manages the common communication issues (serializing, de-serializing,
addressing, discovering); if any of these is not provided, it must be created in the
specific bridge logic.

Fig. 4. Shows the specific bridge functionality in the context of the three layers of the common
bridge component

As a final remark, with the proposed architecture, it is possible to have different
middleware technologies to be used for the modeling of the synchronous and the
asynchronous communication modes. The cost of this improvement is an increase of
the complexity of the specific middleware layer because of the need of some
mechanisms to share data in the different technologies. When supporting both
communication modes, it is the usual case that the system performs better for one of
them. As an example, DDS middleware has better performance for the fire&forget
scheme, but it loses performance implementing request/response.

3.2 QoS Abstraction

Different middleware approaches model the communication performance in a non
homogeneous way. Mostly, it is done by specifying QoS parameters but other entities
may be involved as well.

 Architecting a Common Bridge Abstraction over Different Middleware Paradigms 139

In our approach, we focus on the analysis of the QoS parameters of the different
middleware technologies to determine the communication behavior. In the common
bridge, the management of the QoS properties uses two concurrent mechanisms:

 Additional logic in the specific bridge to manage the static QoS,
 A QoS component that uses information of the common bridge component

interface and interacts with the specific bridge to handle the dynamic QoS.

In the additional logic of the specific bridge, the QoS parameters common for all
the communications of the system are set. It means that we configure the middleware
technology to manage the communication with this QoS.

Fig. 5. Shows that the QoS component interactions handle the dynamic QoS and the specific
bridge logic handles the static QoS

The QoS component models one specific communication. This component in its
simpler version consists in a mapping of the high level QoS parameters specified by
the applications into structures, entities, or QoS parameters of the specific middleware
technology.

This component must be located over the common bridge; although, it is not a
requirement of the proposed architecture, it adds dynamism to the system
communications. Figure 5 shows the interaction among components.

4 Common Bridge API

The common bridge API (summarized in table 1) is described in a language closer to
C; however, it can be easily defined and implemented for Ada and even Java. This
section first defines the types used in the API; later, the functions are defined and
explained.

4.1 Data Types

 Domain is a 20 Bytes String to identify a service domain in the
system. Source and destination are domains of services.

 The cb_data is a structure containing two elements:

• Length, a 32 bits integer representing the size of the sent data.

• Data, a sequence of bytes containing the information.

140 I. Rodríguez-López and M. García-Valls

 The QoS is a structure which contains a sequence of QoS parameters.
 The rec_ptr is the pointer to a callback function in the service to

receive the data. It also can be used as pointer to implement the reception of
wait/notify signals.

4.2 Asynchronous Functions

 int create_listener (domain, rec_ptr). This operation
initializes all the needed structures to create a listening connection attached
to a specific domain. When a message is received, the data is stored in a
local variable through the rec_ptr. This is very similar to the way the
hardware interruptions work. The function returns an int type to notify if
the operation has been completed or to send to the upper levels an error code.

 int close_listener (domain). This function closes the specific
listening connection associated to a domain. The int type that the operation
returns works in the same way as explained in the creation of the listener.

 void send_async (domain, cb_data, qos). This operation sends
a specific number of bytes to a destination domain where a listener is supposed
to be waiting to receive the data. This sending operation is non-blocking and
no response is expected as it was explained for the fire&forget scheme.

4.3 Synchronous Functions

 int create_server (domain, rec_ptr). It starts all the needed
structures to create a receiving connection attached to a specific domain for
the service, and it uses the callback function to manage the data and answer
to each request.

 int close_server (domain). This function closes the specific
listening connection associated to a domain.

 cb_data send_sync (source, destination, cb_data,
qos). It sends a specific number of bytes to a destination domain where a
server is supposed to be waiting to receive the data. The source entity
domain is specified because the replying entity needs to know who is going
to get the response. This sending operation blocks the sender until the
reception of the response message.

Table 1. Shows the common bridge API

Model Function Parameters Return

create_listener domain,rec_ptr int

close_listener domain int Fire&Forget

send_async
destination,cb_data,
qos

void

create_server domain,rec_ptr int

close_server domain int Request/
Response

send_sync
destination,source,
cb_data,qos

cb_data

 Architecting a Common Bridge Abstraction over Different Middleware Paradigms 141

5 Validation

In this section, the architecture and the API presented are going to be applied DDS
and to the complete iLAND architecture. This scenario has been chosen for various
reasons. First, DDS middleware is a standard, implementing one of the newest
communication paradigms for the distribution middleware based on publish/subscribe
and decoupled communication between entities. The modeling of the communication
is performed through a comprehensive set of QoS parameters also related to time that
provide soft real-time capacities. Second, the composition of services over a SOA
(service-oriented architectures) for networked embedded systems is a new and
interesting field of research on the real-time technologies that are progressively
integrating it. To provide the distribution capabilities to the SOA paradigm, the
common bridge layer must support different kinds of interactions between the services
and the infrastructure.

The validation work is described in two sections. Section 5.1 explains the use of
the common bridge API with the service architecture defined in [2], and then, in
section 5.2, the implementation of the common bridge is explained over the DDS
standard.

5.1 Use of the Common Bridge in the iLAND Middleware

The iLAND project creates an architecture defined and explained in [2]. iLAND
targets at supporting real-time distributed service oriented systems. In such a context,
application services perform several interactions types among themselves and also
with the iLAND middleware. Further details are provided in [19], but in essence, the
middleware supports registering of application services in the system, composition of
services, and it controls their execution. Every application service is mapped to a
single task execution, and it has associated QoS parameters. A set of tasks (services)
can be composed in a sequence to offer an enhanced functionality; such a set is called
an application.

Following, we present a validation by providing a simplified model that uses two
kinds of interactions: application and infrastructure. The infrastructure interactions
take place in two forms (see figure 6): (1) between services and the middleware
components, or (2) among the middleware components. On the other side, the
application interactions happen only between application services.

Any application will have a set of services and a set of infrastructure components
to carry out diverse functionalities that work as a distributed system over the common
bridge. This means that the common bridge API supports that the architecture may
execute in a standalone mode.

The infrastructure interactions take place as commands; therefore, a request/
response interaction is appropriate for this scheme. Infrastructure components
communicate via the synchronous API. In the case of the interactions between
applications, the asynchronous API is the natural option.

The next step is the definition of domains and QoS properties related to the
infrastructure and application interactions. In the case of the infrastructure, they are
set in a specific range reserved for the system. In the case of the services, they are
uniquely identified in the architecture; this ID defines the domain of their

142 I. Rodríguez-López and M. García-Valls

communications and enables dynamic creation. The definition of QoS properties is,
therefore, application/service dependent; therefore, it will be established by the
service/application programmer.

Fig. 6. Shows iLAND service interaction model over the common bridge

Several validation demonstrators have been created, ranging from the typical (and
simple) HelloWorld to a data-streaming real-time video surveillance. In the first
example, each service adds a word to the string “Hello iLAND world” every
second. This requires to send small amounts of data periodically. Observing the actual
behavior of this example indicates that the kind of data managed by the applications is
better supported by a specific middleware approach. In the same way, RTP transport
protocol is used for isochronous communication or TCP for information that requires
higher reliability, since it uses its connection oriented approach and retransmission
windows to avoid packet loss. This is the key point to creating a transparent
middleware component.

5.2 Common Bridge Implementation

This section shows how an existing distribution middleware technology (DDS) can be
integrated in the proposed common bridge API without losing language specific
expression capabilities. The validation takes a functional point of view since the
objective of the common bridge is providing transparency of the middleware. This
way, the main advantages and performance issues of the architecture will be given by
the different middleware technologies to be used; the selection must be carefully
studied to maximize performance. The main challenge has been to check if the
common bridge could maximize the use of the complex DDS standard with an Ada
front-end.

In the next paragraphs, it will be detailed the essentials of the implementation of
the common bridge for the synchronous and asynchronous models in the DDS
standard followed by a description of the QoS parameters management.

The asynchronous scheme is modeled through the creation of a DDS topic:
asynchronous topic. This topic is then divided in subtopics through the specific DDS
partition QoS parameter. The partitions are created only when a new domain requests
it through the create_listener or send_async functions of the common
bridge API. So, the management of the DDS entities is related essentially to the
domain parameter of the common bridge API. Finally, the pointer parameter specified
in the creation of a listener is attached to a specific DDS entity, called listener, which
manages the reception of data.

 Architecting a Common Bridge Abstraction over Different Middleware Paradigms 143

The definition of the asynchronous topic contains the fields: id (to implement
different queues for instances) and length&data (to implement the cb_data
structure defined by the API).

Regarding the QoS parameters of DDS, some of them are directly set in this
specific bridge layer and others are set at a higher level (service level). The low level
specified parameters will be the same for every asynchronous communication, static.
The service level parameters will model the services communication dynamically.
The DDS QoS parameters specified as static are the data availability which is
specified as transient, the data delivery which is not reliable, the resource
consumption which is set to use the minimum data possible; finally, the timeliness
QoS parameters are the dynamic ones.

The synchronous scheme requires more complexity than the asynchronous one.
The reason for this is that DDS provides decoupled event communication. To create
the request/response scheme, two main approaches were studied:

 Creating two different topics for the request and the response,
 Adding a new parameter in the topic to define if a message is a request or a

response.

This last solution is the implemented approach because it was prioritized having
the minimum topics possible and also, this solution boosts the performance with other
mechanisms of the DDS standard as the content_filtered_topic. Figures 7
and 8 show the asynchronous and the synchronous topic definitions in IDL and
adapted for Ada.

The management of the DDS entities and the different queues are developed in a
similar way. In the asynchronous communication, it is done by using the domain
parameter of the function create_server and send_sync of the common bridge
API.

module Common_Bridge {
 struct async_topic {
 long domain_id;
 struct cb_data {
 long length;
 sequence <octet, 2000> data;
 }
 }; #key async_topic domain_id
 struct sync_topic {
 long domain_id;
 octet type;
 struct cb_data {
 long length;
 sequence <octet, 200> data;
 }
 }; #key sync_topic domain_id
};

Fig. 7. Shows the DDS topics definition for the common bridge in IDL

144 I. Rodríguez-López and M. García-Valls

package Common_Bridge is
async_topic_TypeName:DDS.String := DDS.To_DDS_String (“async_topic”);
 type async_topic is record
 domain_id : DDS.Long;
 length : DDS.Long;
 data : DDS_OctetSeq;
 end record;
pragma Convention (C,async_topic);
-
sync_topic_TypeName:DDS.String := DDS.To_DDS_String(“sync_topic”);
 type sync_topic is record
 domain_id : DDS.Long;
 type : DDS.Octet;
 length : DDS.Long;
 data : DDS_OctetSeq;
 end record;
pragma Convention (C, sync_topic);

Fig. 8. Shows the DDS topics definition for the common bridge in Ada

Regarding the management of the QoS parameters, the functionality is the same
exposed in the asynchronous model. Also, the value specified for the data availability
is transient. Similarly, the value specified for the data delivery is reliable, for the
minimal resource consumption to improve reliability. Finally, the timeliness QoS
parameters are left to be established at higher level in the QoS component.

Table 2. Using distribution middleware technologies with the common bridge

 DDS ICE RTSJ JMS

Complexity of
the
implementation

Simple (implemented) Simple Hard Hard

Managing QoS
Static: good
Dynamic: fine (worst
performance)

Good Good Good

Interoperability
over CB

Good Good Good Good

Remarkable
issues

Depending of the
implementation needs
launching external
processes.

ICE needs to
run a server
process and
addressing it.

Interaction with
the Virtual
Machine.

The use of JMS is
difficult due to the
interacting with J2EE
server.

Although the current implementation is over DDS, other technologies have been

analyzed for obtaining conclusions about the ease of usage of the common bridge
with other relevant approaches with different programming languages. DDS has
already been integrated since it most naturally fits the service oriented paradigm and
decoupled interaction. However, other technologies such as Ada Glade also offer
interesting properties that are currently being considered for adapting the common

 Architecting a Common Bridge Abstraction over Different Middleware Paradigms 145

bridge. Table 2 shows how different middleware technologies perform with the
common bridge as a result of the current analysis.

6 Conclusions

The presented work has presented the architecture of a software component, the
common bridge, to use distribution middleware technologies in a more transparent
way, especially considering the management of QoS parameters. Also, it has been
presented the common bridge API, that enables the interaction of the higher levels
with the developed component abstracting the complexity of the distribution
middleware layer.

The component has been validated by (1) implementing it over a specific
middleware standard, DDS, and (2) creating the infrastructure of a service oriented
application containing different services that used the component to interact as a
standalone system. The implementation of this component using DDS middleware
technology demonstrates that the proposed architecture provides sufficient expression
capabilities to support not only the middleware communication under a
publish/subscribe paradigm, but also the management of a full set of QoS parameters.

Current and future work is developing new full implementations over other
middleware technologies, measuring the complexity of the provided common bridge
API by software design methods compared to the standard middleware APIs.

References

1. Schantz, R.E., Schmidt, D.C.: Middleware for distributed systems. In: Evolving the
Common Structure for Network-Centric Applications. Encyclopedia of Software
Engineering (2001)

2. García-Valls, M., Rodríguez-López, I., Fernández-Villar, L., Estévez-Ayres, I., Basanta-
Val, P.: Towards a middleware architecture for deterministic reconfiguration of service-
based networked applications. In: Proc. of the 15th IEEE Int’l Conference on Emerging
Technologies and Factory Automation - ETFA 2010, Bilbao, Spain, September 13-16
(2010)

3. OMG.: A Data Distribution Service for Real-time Systems Version 1.2. Real-Time
Systems (2007)

4. OMG.: Common Object Request Broker Architecture (CORBA) Specification, Version
3.1. Interfaces (2008)

5. Wollrath, A., Riggs, R., Waldo, J.: A Distributed Object Model for the Java System.
USENIX Computing Systems 9(4) (1996)

6. Hapner, J.M., et al.: Java Message Service (JMS) Specification v1.1. (April 2002)
7. OMG.: Real-time CORBA Specification (2005)
8. ZeroC Inc.: The Internet Communications Engine (2003),

http://www.zeroc.com/ice.html
9. Ibrahim, N.: Orthogonal Classification of Middleware Technologies. In: 3rd International

Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
UBICOMM 2009, pp. 46–51 (11-16, 2009)

146 I. Rodríguez-López and M. García-Valls

10. Pérez, H., Gutiérrez, J., Sangorrin, D., Harbour, M.: Real-time distribution middleware
from the ada perspective. In: Kordon, F., Vardanega, T. (eds.) Ada-Europe 2008. LNCS,
vol. 5026, pp. 268–281. Springer, Heidelberg (2008)

11. PolyORB, http://polyorb.objectweb.org/
12. Tucker Taft, S., Duff, R.A., Brukardt, R.L., Plödereder, E., Leroy, P.: Ada 2005 Reference

Manual. LNCS, vol. 4348. Springer, Heidelberg (2006)
13. Cataldo, M., Herbsleb, J.D.: Architecting in software ecosystems: interface translucence as

an enabler for scalable collaboration. In: Proceedings of the Fourth European Conference
on Software Architecture: Companion Volume, pp. 65–72. ACM, New York (2010)

14. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common API for
structured peer-to-peer overlays. Peer-to-Peer Systems II, 33–44 (2003)

15. Berler, A., Pavlopoulos, S., Koutsouris, D.: Design of an interoperability framework in a
regional healthcare system. In: Conference Proceedings: Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3093–3096 (2004)

16. Moon, K.-d., Lee, Y.-h., Lee, C.-e., Son, Y.-s.: Design of a universal middleware bridge
for device interoperability in heterogeneous home network middleware. IEEE Transactions
on Consumer Electronics 51, 314–318 (2005)

17. Data Distribution Portal, Simple DDS (2010),
http://www.omgwiki.org/dds/content/document/

18. W3C: Web Services Architecture Usage Scenarios
19. http://www.w3.org/TR/2002/WD-ws-arch-scenarios-20020730 (2002)
20. Garcia-Valls, M., Basanta-Val, P., Estevez-Ayres, I.: A component model for

homogeneous implementation of reconfigurable service-based distributed real-time
applications. In: Proc. of the 10th Annual Int’l Conference on New Technologies of
Distributed Systems (NOTERE - DANCE Workshop), pp. 267–272 (2010)

Using Robotics as a Motivational Tool: An Ada Interface
to a Pioneer Robot∗

Rigoberto Chil, Diego Alonso, Francisco Ortiz, Juan Pastor

Division of Systems and Electronic Engineering (DSIE)
Technical University of Cartagena, Campus Muralla del Mar, E-30202, Spain

diego.alonso@upct.es

Abstract. The new European Higher Education Area encourages student cen-
tred learning, which puts the focus on the learner and his needs, rather than being
centred around the teacher’s input. This paper presents an initiative that revolves
around the use of a real robot and a robot simulator with two main objectives: make
learning programming languages more appealing to undergraduate students, and
to have a platform that can be still used in postgraduate and master courses. The
interface with the simulator and the real robot has been programmed in Ada, and
it is also being used in our current Research and Development projects.

1 Introduction and Motivation

Motivating students when teaching programming languages is an arduous and difficult
task. One of the main reasons for this, in our opinion, is that the simplicity and limi-
tations of the used examples and proposed problems do not motivate students enough
to go into knowing programming languages in depth. Also, they give students the false
impression that what they are learning is of little use, since all they do is solving sim-
ple calculations, like quadratic equations, calculating Fibonacci numbers, a number’s
factorial, bubble sort ten numbers, etc.

The purpose of the Bologna Process [1] is to create the European Higher Education
Area (EHEA) by making academic degree standards and quality assurance standards
more comparable and compatible throughout Europe. The Bologna Process currently
has 46 participating countries, whereas there are only 27 Member States of the Euro-
pean Union. The new EHEA encourages the development and adoption of new learning
techniques [2], such as autonomous and problem-based learning [3] for students. In this
new reality, the kind of exercises described above does not meet the requirements of
the EHEA. This situation is even more important when considering higher and mas-
ter courses, since students must then apply transversal skills, such as teamwork ability,
ability to put knowledge into practice, adaptation to new situations, etc.

Laboratories and practical classes play a crucial role in the curriculum of scientists
and engineers [4], and the acquisition of practical skills is one of the main requirements
of the Bologna process. In this vein, it is worth mentioning related initiatives such as
the one described in [5], where the authors describe a laboratory for teaching Robotics.

∗ This work has been partially supported by the Spanish CICYT Project EXPLORE
(ref. TIN2009-08572) and the Séneca Proyect MISSION-SICUVA (ref. 15374/PI/10).

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 147–159, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

mailto:diego.alonso@upct.es

148 R. Chil et al.

With this in mind, we think that building simple robotics control programs will allow
us to achieve a number of closely related objectives. Firstly, we think that the use of
a simulator will increase students motivation as well as show them the usefulness of
what they are learning. Secondly, using a simulator enables us to propose problems of
different size and levels of complexity, according to the students level, without being
limited by the access to a single robot. Lastly, Robotics is a traditional research area for
the DSIE Research Group, and in this sense, using a robot or a simulator enables us to
transfer part of our research to students, as well as to attract interested students.

On the other hand, the use of simulators is justified by itself, since before these robots
are put to work, they need to be tested under different conditions. As mobile robots are
used extensively for their ability to navigate and perform tasks in unstructured environ-
ments (space exploration, military surveillance, nuclear power industry, security, etc.),
simulators play a key role during these early stages of the robot development, as they
will give designers an idea of how the robot is going to behave [6]. Their use can avoid
the robot suffering damage in the early tests, while it makes it possible to have many
people working in parallel, testing their algorithms against their own simulators. This
last advantage is crucial for teaching, since students can safely and concurrently crash
their virtual robots while testing their programs.

In 2010 we started teaching the subject “Applied Computing" in the first year of
the Bachelor in Industrial Electronics and Automation Engineering [7], and in two
years’ time we will start teaching “Real-Time Systems Programming". Finally, we also
teach “Software Development for Real-Time Systems" in Master in Information and
Communication Technologies [8]. And we plan to use the simulator and the real robot
in all of them.

Our research background began in the early 90s., integrating new paradigms in the
service robot development process as they emerged [9,10]. During the early years (1993–
1998), our efforts were directed at the development of software for various kinds of tele-
operated robots to perform maintenance tasks in nuclear power plants; during a second
phase (1999–2006),we built applications for ship-hull cleaning robots. All this time, we
have been applying all the possibilities offered by Software Engineering, from the use
of Structured and Object-Oriented programming paradigms in early developments, to
the recent adoption of the Model-Driven Software Development (MDSD) approach.

Nowadays, we are involved in the EXPLORE Research and Development project,
whose main objective is to develop and implement a set of methods and tools for
real-time systems development incorporating design patterns, a component-oriented ap-
proach, and MDSD techniques for the design and validation as well as for the automatic
code generation for the target platform. We use three robots as case study: a small robot
developed by us, a golf cart also modified by us, and a commercial Pioneer 3–AT robot.
And we want to use the same interface with all of them. This reason led us to develop
the application described in this paper.

The Pioneer robot has helped us uniting our teaching and researching facets. On the
teaching hand, its manufacturer provides a simulator that has the same interface and
that accepts the same commands with the same protocol as the real robot. Thus, we
have an excellent platform in which students can test their programming skills. On the
other hand, the Pioneer is an excellent and robust platform that already provides the

Using Robotics as a Motivational Tool: An Ada Interface to a Pioneer Robot 149

Fig. 1. Pictures of the Pioneer P3–AT robot (left) and screen shot of the MobileSim simulator
(right). Simulator screen capture extracted from http://robots.mobilerobots.com/
wiki/MobileSim

low-level control facilities, which allows developers to focus on higher-level aspects.
Fig. 1 shows a couple of pictures of the robot and a screen-shot of the simulator.

This paper presents the design and implementation details of the already mentioned
interface with both the real Pioneer P3–AT robot [11] and the MobileSim simulator
[12] in Ada, as a continuation and improvement of a previous work [13]. The follow-
ing two sections are devoted to present a brief review of the technical background, and
to describe the developed interface with the Pioneer robot and its simulator. Section 4
presents some examples of the kind of applications that students must develop, depend-
ing on the course level. And finally section 5 concludes and presents some future work.

2 Technical Background: Hardware and Software Involved

Since the target robot of the software described in this paper is a Pioneer 3-AT mobile
robot (P3–AT), it is worth describing first its main characteristics, the software installed
in the robot and the available software for controlling it.

The Pioneer family of robots is sold as a research tool, used in many universities
and companies around the world as the main physical research platform. These kind
of robots are programmable intelligent platforms equipped with the basic devices for
navigation and sensing in the real world. They are part of an extensive family of robots
released in 1995 by the company Mobile Robots [14]. Specifically, the P3–AT is pro-
vided with high resolution motion encoders with inertial correction to compensate for
skid steering (that is, when the wheels skid encoders are still counting revolutions even
though the robot is not really moving as the encoders indicate), reversible DC motors

http://robots.mobilerobots.com/wiki/MobileSim
http://robots.mobilerobots.com/wiki/MobileSim

150 R. Chil et al.

and motor controllers, as well as the four-wheel skid steer which carries out the bal-
anced drive system of the robot. The P3–AT robot can carry a payload of up to 40 kg,
reaches speeds up to 0.7 m/s, it can climb steep up to 45% grades and sills of 9 cm.
The P3–AT is equipped with eight front and eight rear sonars, and a SICK laser scanner
that senses obstacles from 15 cm to 7 m. In order to handle the low-level control details
of the mobile robot (e.g. maintaining the platform’s drive speed and heading, acquir-
ing sensor readings, etc.), the P3–AT uses a high-performance 32-bits micro-controller
with the embedded robot control software developed by its manufacturer, ARCOS (Ad-
vanced Robot Control and Operations Software).

The Pioneer 3–AT requires a PC to run client software for intelligent robotics com-
mand and control operations. As shown in Fig. 2, the robot follows a client-server archi-
tecture: ARCOS operates as a server that manages all the low-level details of the mobile
robot, while the client role is played by the software running on a computer connected
with the robot micro-controller via the host serial link. The high-level functionality and
behaviour of the robot, such as obstacle avoidance, path planning, features recognition,
localization, navigation, and so on, must be provided by the client software.

Fig. 2. Some possibilities to connect a client PC to the robot server

As said in the introduction, the manufacturer also offers MobileSim, a 2D simula-
tor for their robots, together with its C++ source code distributed under the terms of
the GNU General Public License. Communication with the simulator is done through
TCP/IP using the same protocol as with the real robot (ARCOS commands), although
not each and every feature and command are currently supported by the simulator. The
simulator is also capable of simulating several robots, which are controlled through dif-
ferent network sockets. This feature provides additional possibilities to the use of the
simulator, since it is now possible to develop applications where the simulated robots
must collaborate.

While using ARCOS for the low-level control of the robot is mandatory, there are
two main options for selecting the client software, namely: (i) use any of the available
robotic frameworks, including the one provided by the manufacturer, or (ii) write your

Using Robotics as a Motivational Tool: An Ada Interface to a Pioneer Robot 151

own robotics control software in order to have greater control of its behaviour. After
describing briefly in the following paragraphs the advantages and disadvantages of both
options, we will justify why we have adopted the second option.

Specific middleware and framework technologies for developing software for au-
tonomous mobile robots have matured, evolved and improved during the last years.
They all facilitate design reuse and provide the typical functionality that is common in
the domain. The fact that robots from different manufacturers have completely different
hardware platforms and their own development environments, has forced developers to
pay special attention to the abstraction of the lowest levels, trying thereby to design a
common API for programming them all. Thus, many manufacturers provide develop-
ment platforms for their robots, like ARIA (for the robots built by MobileRobots), Mo-
bility (for the robots developed by iRobot), Open-R (for the Sony Aibo), etc. There are
also other initiatives that are not promoted by any manufacturer, such as Player/Stage,
which provides a common abstraction for many robotic platforms that facilitates the
development of control applications. It is possible to find a very detailed comparison of
their characteristics in [6].

These frameworks standardize and simplify the low-level control aspects of the cho-
sen robot. They usually provide access to abstract sensors and actuators, which ex-
hibit a simpler interface and greater functionality than directly accessing the hardware
through the operating system. Further raising the level of complexity, other frameworks
such as OROCOS, CARMEN, ORCA, and MARIE, to mention a few, include features
commonly used in robotics, such as control algorithms, localization and mapping, safe
navigation, etc. A summary of the main features of these kind of high-level frameworks
together with a comparison chart of their characteristics can be found in [15,16]. Finally,
the manufacturer of the P3–AT offers ARIA (Advanced Robotics Interface for Appli-
cations), which provides a client-side interface to a variety of intelligent behaviours al-
ready programmed. ARIA is released under the GNU Public License, fully documented
C++, Java and Python libraries and source code, but there is no Ada version available.

Though robotics frameworks provide much tested and working code, which enables
developers to start programming the robot easily and quickly, there are some cases in
which you want to have strict control of what the robot is executing, or in which using
a framework is not suitable. For instance, frameworks such as ARIA offer typical algo-
rithms for localization and mapping, but they offer no temporal guarantees and suffer
the “inversion of control” (or the “Hollywood principle”) problem [17], in which the
flow of control of a system is inverted in comparison to procedural programming. That
is, the framework code deals with the program execution order, but the business code
is encapsulated by the called subroutines (developed by framework users). Thus, devel-
opers have no control over tasking characteristics, e.g. number of tasks, type, priority,
etc., since they are determined by the framework design.

At the educational level, ARIA is written in C++, and though we could have used
the facilities for interfacing with other languages that Ada offers, as described in [18],
we decided not to do that. In that work, a Player-Ada binding is built using import C
facilities. We did not do something similar because it would still present the inversion
of control problem, and because using the ARIA framework would still be complex,
making the student feel overwhelmed by the overall structure of the framework.

152 R. Chil et al.

Besides, the objective we pursue in our courses is not teaching students to manage
any of these frameworks (which might be of interest to other subjects more related to
robotics), but using the robot as a platform for setting out different types of problems.
Thus, we simply need to have direct access to the basic functionality offered by the
robot, as discussed in the next section. In such cases, it is necessary to control the P3–
AT robot simply via the ARCOS client-server interface.

As an added value for our research and for the robotics community, we offer a very
simple Ada interface, which is as transparent as possible, so that developers know at all
times what data is being used and also have complete control over tasking issues, e.g.
their number, periods, priorities, etc.

3 Architecture of the Application

As explained in the previous section, in order to have strict control of the execution
of tasks in the robot, we decided to develop an abstraction layer to access directly to
ARCOS. Fig. 3 shows a deployment diagram of the two considered scenarios: direct
access to the real robot through a serial port, and communication with the simulator
through network sockets.

Control Software

I_Robot

Real_Robot

<<
 u

se
s

>>

RS-232

Onboard PC

μController

Control Software

I_Robot

Sim_Robot

<<
 u

se
s

>>

TCP/IP

Development PC

MobileSIM

Sockets

<< access to >>

ARCOS

<< access to >>

μController

Fig. 3. Deployment diagram depicting the two considered scenarios: communication with the real
robot and the simulator

As said before, one of the key requirements in the development was that the same
program should drive the real and the simulated robots with minimum changes to the
code. This is possible because the MobileSim simulator shares the same commands with
the real Pioneer robot. Thus, we decided to create an interface (I_Robot, see Figures 3
and 4) that provides the functionality that is shared by both the simulator (Sim_Robot)
and the real robot (Real_Robot), which are implemented as types derived from the
already mentioned interface (see Fig. 5). These two types were implemented as pro-
tected objects, since they ensure mutual exclusion in the reading and writing access to

Using Robotics as a Motivational Tool: An Ada Interface to a Pioneer Robot 153

1 package P i o n e e r _ P 3 a t i s
2 type T_Robot_Comm i s (S e r i a l , Socke t) ;
3 type Rt_Robot_Comm_Config (Comm : T_Robot_Comm) i s record
4 case Comm i s
5 when S e r i a l =>
6 Port_Number : P o s i t i v e := 1 ;
7 Ra te : Gnat . S e r i a l _ C o m m u n i c a t i o n s . Da ta_Ra te :=
8 Gnat . S e r i a l _ C o m m u n i c a t i o n s . B9600 ;
9 when Socke t =>

10 Address_Rec : GNAT. S o c k e t s . Sock_Addr_Type := (Addr => Ine t_Addr
11 (" 1 2 7 . 0 . 0 . 1 ") , P o r t => 8101 , Family => F a m i l y _ I n e t) ;
12 end cas e ;
13 end record ;
14

15 type I_Robo t i s s ynchronized i n t e r f a c e ;
16 procedure Read_Data (T h i s : in out I_Robo t) i s a b s t r a c t ;
17 procedure Begin_Comm (T his : in out I_Robo t ; Comm_Parm :

Rt_Robot_Comm_Config) i s a b s t r a c t ;
18 procedure Wri te_Da ta (T h i s : in out I_Robo t ; B u f f e r : in Ada . S t reams .

S t ream_E lemen t_Array) i s a b s t r a c t ;
19 f u n c t i o n Get_Posx (T h i s : in I_Robo t) re turn I n t e g e r i s a b s t r a c t ;
20 f u n c t i o n Get_Posy (T h i s : in I_Robo t) re turn I n t e g e r i s a b s t r a c t ;
21 . . .
22 end P i o n e e r _ P 3 a t ;

Fig. 4. Definition of the synchronized interface and its (abstract) subprograms. Only 4 subpro-
grams are shown, but a total of 14 have been defined.

1

2 package P i o n e e r _ P 3 a t . Real_Robot i s
3 type P i o n e e r _ P 3 a t i s s ynchronized new I_Robo t with p r i v a t e ;
4 p r i v a t e
5 p r o t e c t e d type P i o n e e r _ P 3 a t i s new I_Robo t with
6 o v e r r i d i n g procedure Read_Data ;
7 o v e r r i d i n g procedure Begin_Comm (Comm_Parm : Rt_Robot_Comm_Config) ;
8 o v e r r i d i n g procedure Wri te_Da ta (B u f f e r : in Ada . S t reams .

S t ream_E lemen t_Array) ;
9 o v e r r i d i n g f u n c t i o n Get_Posx re turn I n t e g e r ;

10 o v e r r i d i n g f u n c t i o n Get_Posy re turn I n t e g e r ;
11 . . .
12 end P i o n e e r _ P 3 a t ;
13 end P i o n e e r _ P 3 a t . Real_Robot ;

Fig. 5. Definition of the synchronized type implementing the communication with the real P3AT
robot through a serial port. The Ada package for interfacing with the simulator is similar to this
one.

the serial port and the network socket, through which the communication with the real
robot and the simulator takes place. In this case, we decided to use the synchronized in-
terface facility provided by Ada 2005 in order to implement the common interface and
both protected objects. We created a totally passive structure comprising two protected
types, since we decided that concurrency issues should be considered in higher layers
by the code using the provided protected types. In this vein, we have a very versatile
code, since it can be used in both single and multi-tasking applications.

154 R. Chil et al.

Fig. 6. Structure of ARCOS commands: SIP command sent by the robot (top) and command sent
by the client (bottom)

Once the communication is started, ARCOS sends periodically every 100 ms a spe-
cial packet containing the robot status, the Server Information Packet (SIP). This packet
is sent without waiting for the client to request it. The client program can read data sent
from the robot, and send commands back to it asynchronously. The robot can send dif-
ferent types of information, each one of them has a specific data structure, but the packet
structure remains always the same for the Header, Byte Count and Type bytes. Fig. 6
depicts the typical structure of ARCOS commands.

On the other hand, client commands have a different structure, but as can be seen
in Fig. 6, it is almost always the same, changing only the arguments that depend on
the chosen command. ARCOS commands can contain four different types of argument,
namely none (the argument is empty), integer (16 bits signed integer), unsigned (16 bits
unsigned integer), or string (array of characters with variable length). A brief descrip-
tion of some of the most frequently used ARCOS commands is shown in Table 1.

Table 1. Some of the most frequently used ARCOS=commands

Command Number Data Description
PULSE/SYNC0 0 — Keep the watchdog alive/ First synchrony packet
OPEN/SYNC1 1 — Begin communication with the robot/Second synchrony packet

CLOSE/SYNC2 2 — Finish communication with the robot/Third synchrony packet
ENABLE 4 Int Enable or disable the motors
SONAR 28 Int Enable or disable all the sonars, or some specific array of sonars
CONFIG 18 — Request a configuration SIP
MOVE 8 Int Translate X mm forward(+) or backward(-)

ROTATE 9 Int Rotate X degrees counter-clockwise(+) or clockwise(-)
VEL 11 Int Translate at a velocity X (mm/sec) forward(+) or backwards(-)

The client receives the SIP commands from ARCOS and stores the data in a struc-
tured way, allowing other parts of the program to access it. The client also takes care
of sending to the robot the commands received from the higher layers, as well as keep-
ing communications alive, by sending the ARCOS watchdog PULSE command every
100 ms.

Using Robotics as a Motivational Tool: An Ada Interface to a Pioneer Robot 155

3.1 Implementation of the Protected Objects

Figure 7 shows the package structure in which the code for communicating with the
real and the simulated robot has been organized into. As can be seen, there is a parent
package that contains the definition of the common synchronized interface (I_Robot),
the common data types to be used, and the functions that generate the byte arrays cor-
responding to the ARCOS command to be sent (Output_Gen set of functions). Both
protected types are implemented in separate child packages. They store the last update
of the robot status and the communication configuration parameters. Finally, we have
defined two private child packages that contain the data types that are used internally,
and the supporting subprograms shared by both protected types, such as CRC calcula-
tion. It is worth describing some key details:

Fig. 7. Package diagram showing the structure of the developed code

– The Begin_Comm procedure must be called with the adequate configuration param-
eter, depending on whether the real robot or the simulator is going to be used. As
said before, it is important to remember that the simulator can simulate one or more
robots, which are available through different network ports. Thus, the configuration
parameter (Rt_Robot_Comm_Config) must be set accordingly.

– The Read_Data procedure reads the last SIP command sent by the robot and up-
dates the inner variables stored in the protected object. Then, it sends the watchdog
command back to the robot in order to keep it alive, every 100 ms (the time that
takes for ARCOS to send a new SIP). These variables can then be read by a set of
Get_XXX functions, for instance Get_Pos, Get_Vel, Get_Sonars, etc.

– The Output_Gen functions receive a command number and optionally a set of ar-
guments, and generate the adequate ARCOS commands. These functions only re-
turn the desired ARCOS command. It must then be sent to the robot by using the
Write_Data procedure.

156 R. Chil et al.

Lastly, this structure allows for a smooth transition between the code developed for
the simulator and for the real robot, since it is only necessary to change the type of
the protected object being used, as shown in Fig. 8. Thanks to the dispatching facilities
obtained by the use of Ada interfaces, subprograms calls need not be modified.

1 −− Using t h e s i m u l a t o r
2 Robot : P i o n e e r _ 3 a t . I_Robot ’ C l a s s := new P i o n e e r _ 3 a t . Sim_Robot ;
3 Robo t_Conf ig : P i o n e e r _ 3 a t . Rt_Robot_Comm_Config (Socke t) ;
4

5 −− Using t h e r e a l r o b o t
6 Robot : P i o n e e r _ 3 a t . I_Robot ’ C l a s s := new P i o n e e r _ 3 a t . Real_Robot ;
7 Robo t_Conf ig : P i o n e e r _ 3 a t . Rt_Robot_Comm_Config (S e r i a l) ;
8

9 −− Subprograms c a l l s need n o t t o be m o d i f i e d :
10 Robot . Begin_Comm (R obo t_Conf ig) ;
11 Robot . Wr i t e_Da ta (P i o n e e r _ 3 a t . Cmd ’ (Watchdog)) ;

Fig. 8. Changing between the simulated and the real robot

4 Using the Developed Software: Templates for Students

The structure of the code presented before lends itself to different experiments with var-
ious levels of complexity for undergraduate, graduate or master students. Grade students
can avoid the complexity added by concurrency and develop a simple single-tasking
application that implements a Sense-Plan-Act control loop. At this level, students only

1 with P i o n e e r _ 3 a t ; use P i o n e e r _ 3 a t ; with P i o n e e r _ 3 a t . Sim_Robot ;
2 use P i o n e e r _ 3 a t . Sim_Robot ; with Ada . Real_Time ; use Ada . Real_Time ;
3

4 procedure T e s t _ S i m u l a t o r i s
5 Next_Time : Time := Clock ;
6 P e r i o d : c o n s t a n t Time_Span := M i l l i s e c o n d s (1 0 0) ;
7 Robot : P i o n e e r _ 3 a t . I_Robot ’ C l a s s := new P i o n e e r _ 3 a t . Sim_Robot ;
8 Robo t_Conf ig : P i o n e e r _ 3 a t . Rt_Robot_Comm_Config (Socke t) ;
9 −− we ar e go ing t o us e t h e s i m u l a t o r

10 begin
11 −− C o n f i g u r a t i o n
12 Robot . Begin_Comm (R obo t_Conf ig) ;
13 Robot . Wr i t e_Da ta (P i o n e e r _ 3 a t . Cmd ’ (Conf ig)) ;
14 Robot . Wr i t e_Da ta (P i o n e e r _ 3 a t . Cmd ’ (Motors_On)) ;
15 Robot . Wr i t e_Da ta (P i o n e e r _ 3 a t . Cmd ’ (Sonars_On)) ;
16 −− Sense−Plan−A c t loop
17 f o r I in 1 . . 1000 l oop
18 Robot . Read_Data ; −− ’ Sense ’
19 −− ’ Plan ’ and ’ Act ’ code her e !
20 −− Pos_X := Robot . Get_Pos_X ;
21 −− Sonar s := Robot . Ge t_Sonar s ;
22 −− Robot . Wr i t e_Data (P i o n e e r _ 3 a t . Output_Gen (Cmd ’ (Motors) , 20 , 20)) ;
23 −− e t c .
24 Robot . Wr i t e_Da ta (P i o n e e r _ 3 a t . Cmd ’ (Watchdog)) ;
25 Next_Time := Next_Time + P e r i o d ;
26 de lay u n t i l Next_Time ;
27 end loop ;
28 end T e s t _ S i m u l a t o r ;

Fig. 9. Excerpt of the code template given to undergraduate students

Using Robotics as a Motivational Tool: An Ada Interface to a Pioneer Robot 157

have to fill the “Plan” part of the control loop with the code that solves the proposed
problem. We provide a sample template code (see Fig. 9) that students must reuse and
complete.

We propose simple problems, since students do not have enough programming ex-
perience, like:

– Make the robot accelerate as time passes.
– Make the robot draw circles.
– Make the robot follow a path generated from its initial position.
– Make the robot wander in a big map without colliding with any object.

Regarding postgraduate and master students, they are presented two different kind
of problems, depending on their profile. On the one hand, they have to implement a
concurrent solution for the problem of controlling the simulated robot, since writing
and reading commands can be sent to the robot, at most, every 100 ms. Thus, they have
to design an application with two or more tasks, and one or more protected objects
to store the robot’s status data in order to avoid polling the simulator. Besides, the
MobileSim simulator is capable of simulating more than just one robot. This makes it
possible to develop harder problems, where students must design an application where
two or more robots must be controlled and must cooperate in order to fulfil a given
mission. The usual structure of such programs is shown in Fig. 10.

Fig. 10. Flow chart describing the kind of applications postgraduate students must develop

158 R. Chil et al.

On the other hand, master students must also solve harder problems regarding robot
navigation, path planning, mapping, etc. These are mainly algorithmic problems and
we are not going to describe them in this paper, but the interested reader can find more
information in [19].

5 Conclusions and Future Research

This paper has described ongoing work that aims at developing a common Ada infras-
tructure that can be used in both our teaching and research duties. This infrastructure
revolves around the development of an Ada interface to a real Pioneer P3–AT robot
and its simulator. We hope the use of such platform will make learning programming
languages more appealing to undergraduate students, while at the same time it allows
us to prepare more difficult problems to postgraduate and master students, involving
concurrency control and robot cooperation in complex missions.

The Ada interface has been programmed by using the synchronized interface facility
provided by Ada and then implementing to protected objects: one for interfacing with
the real robot and another for the simulator. We found variant records very useful for
the configuration procedure, since the protected type representing the real robot and
the one representing the simulator have different configuration parameters (serial port
number and serial port parameters versus IP and port number), and we were able to
define a single procedure to perform the configuration using a variant record instead of
adding two configuration subprograms. However, we experienced some troubles using
the library distributed with GNAT for the control of the serial port in Linux.

Regarding future research, we plan to develop a thin network layer in order to make
it possible to use any programming language to interact with the Ada interface with the
MobileSim. We will then be able then to extend this to other courses where we teach
different programming languages.

References

1. The Bologna Process web page,
http://ec.europa.eu/education/higher-education/doc1290_en.htm
(checked February 2011)

2. Benlloch-Dualde, J.V., Blanc-Clavero, S.: Adapting Teaching and Assessment Strategies to
Enhance Competence-Based Learning in the Framework of The European Convergence Pro-
cess. In: Proceedings of the 37th ASEE/IEEE Frontiers in Education Conference, Milwaukee,
USA (October 2007)

3. Markham, T., Larmer, J., Ravitz, J.: Project Based Learning. A Guide to Standards-Focused
Project Based Learning for Middle and High School Teachers, Buck Institute (2003)

4. Boud, D., Dunn, J., Hegarty-Hazel, E.: Teaching in Laboratories. Society for Research into
Higher Education, Guildford (1986)

5. Hassan, H., Domnguez, C., Martnez, J.M., Perles, A., Albaladejo, J.: Remote Laboratory
Architecture for the Validation of Industrial Control Applications. IEEE Transactions on
Industrial Electronics 54(6), 3094–3102 (2007)

6. Kramer, J., Scheutz, M.: Development environments for autonomous mobile robots: A sur-
vey. Autonomous Robots 22(2), 101–132 (2007)

http://ec.europa.eu/education/higher-education/doc1290_en.htm

Using Robotics as a Motivational Tool: An Ada Interface to a Pioneer Robot 159

7. Web page of the School of Industrial Engineering of the Universidad Politcnica de Cartagena,
Bachelor in Industrial Electronics and Automation Engineering,
http://www.etsii.upct.es/giti_en.htm (checked November 2011)

8. Web page of the Master in Information and Communication Technologies of the Univer-
sidad Politcnica de Cartagena (in Spanish), http://www.dte.upct.es/doctorado
(checked November 2010)

9. Iborra, A., Alonso, D., Ortiz, F.J., Franco, J.A., Snchez, P., Álvarez, B.: Design of service
robots. IEEE Robotics and Automation Magazine, Special Issue on Software Engineering
for Robotics 16(1), 24–33 (2009)

10. Ortiz, F.J., Alonso, D., Álvarez, B., Pastor, J.A.: A reference control architecture for service
robots implemented on a climbing vehicle. In: Vardanega, T., Wellings, A.J. (eds.) Ada-
Europe 2005. LNCS, vol. 3555, pp. 13–24. Springer, Heidelberg (2005)

11. Pioneer 3 operations manual web page, http://robots.mobilerobots.com/
docs/alldocs/P3OpMan6.pdf (checked November 2010)

12. Web page of the MobileRobots/ActivMedia MobileSim simulator, http://robots.
mobilerobots.com/wiki/MobileSim (checked November 2010)

13. Chil, R.: Desarrollo de un protocolo de comunicacin en tiempo real, usando el lenguaje
Ada, para comunicarse con el robot Pioner P3–AT, Master Thesis (in Spanish), Universidad
Politcnica de Cartagena (2010)

14. Web page of the MobileRobots company, http://www.mobilerobots.com (checked
November 2010)

15. Mohamed, N., Al-Jaroodi, J., Jawhar, I.: Middleware for Robotics: A Survey. In: Proceedings
of the 2008 IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China,
pp. 736–742 (September 2008)

16. Web page of the Robot Standards and Reference Architectures (RoSTa), Coordination Ac-
tion funded under EU’s FP6, http://wiki.robot-standards.org/index.php/
Current_Middleware_Approaches_and_Paradigms

17. Fayad, M., Schmidt, D.: Object-Oriented Application Frameworks. Special Issue on Object-
Oriented Application Frameworks, Comm. of the ACM 40(10), 32–38 (1997)

18. Mosteo, A., Montano, L.: SANCTA: an Ada 2005 general-purpose architecture for mo-
bile robotics research. In: Abdennahder, N., Kordon, F. (eds.) Ada-Europe 2007. LNCS,
vol. 4498, pp. 221–234. Springer, Heidelberg (2007)

19. Murphy, R.: Introduction to AI robotics. The MIT press, Cambridge (2000) ISBN
0-262-13383-0

http://www.etsii.upct.es/giti_en.htm
http://www.dte.upct.es/doctorado
http://robots.mobilerobots.com/docs/alldocs/P3OpMan6.pdf
http://robots.mobilerobots.com/docs/alldocs/P3OpMan6.pdf
http://robots.mobilerobots.com/wiki/MobileSim
http://robots.mobilerobots.com/wiki/MobileSim
http://www.mobilerobots.com
http://wiki.robot-standards.org/index.php/Current_Middleware_Approaches_and_Paradigms
http://wiki.robot-standards.org/index.php/Current_Middleware_Approaches_and_Paradigms

ORK+/XtratuM: An Open Partitioning

Platform for Ada�

Ángel Esquinas1, Juan Zamorano1, Juan A. de la Puente1,
Miguel Masmano2, Ismael Ripoll2, and Alfons Crespo2

1 Universidad Politécnica de Madrid (UPM), E-28040 Madrid, Spain
aesquina@datsi.fi.upm.es,jzamora@fi.upm.es,jpuente@dit.upm.es
2 Universidad Politécnica de Valencia (UPV), E-46022 Valencia, Spain

mmasmano@ai2.upv.es, {iripoll,alfons}@disca.upv.es

Abstract. The ARINC 653 standard defines an Integrated Modular
Avionics (IMA) architecture for building complex systems consisting of
several real-time applications with different levels of criticality running
in the same hardware platform. Applications execute in partitions that
are isolated from each other in the temporal and spatial (i.e. storage)
domains. The standard defines an architecture and an applications pro-
gram interface (API) for an operating system or application executive
(APEX) supporting these concepts.

This paper describes an implementation of a partitioning platform for
Ada based on a similar approach. The platform is built with two compo-
nents: the XtratuM hypervisor, which supports multiple virtual machines
on a single computer, and the Open Ravenscar Kernel (ORK+), a small,
reliable real-time kernel supporting the Ada Ravenscar tasking profile.
This combination provides an open-source platform that enables high-
integrity Ada applications to share the same computer board with other,
possibly less critical, applications.

Keywords: Ada 2005, real-time systems, high-integrity systems, inte-
grated modular avionics, partitioned systems, ORK, Ravenscar profile.

1 Introduction

Current avionic systems are often composed of several applications that may have
different levels of criticality. In such kind of systems, applications must be isolated
from each other, so that their integrity is not compromised by failures occurring in
other applications. A common approach to isolation has been based on using a fed-
erated architecture, i.e. on allocating different applications to different computers.
However, the growth in the number of applications and the increasing processing
power of embedded computers have opened the way to integrated architectures,
in which several applications are executed on a single computer platform. In this
case, alternate mechanisms must be put in place in order to isolate applications

� This work has been partly funded by the Spanish Ministry of Science, project
TIN2008-06766-C03 (RT-MODEL).

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 160–173, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ORK+/XtratuM: An Open Partitioning Platform for Ada 161

from each other. A common approach is to provide a number of logical partitions
on each computer platform, in such a way that each partition is allocated a share
of processor time, memory space, and other resources. Partitions are thus isolated
from each other both in the temporal and spatial domains. Temporal isolation im-
plies that a partition does not use more processor time than allocated, and spatial
isolation means that software running in a partition does not read or write into
memory space allocated to other partitions.

Partitioning has been successfully implemented in the aeronautics domain
by the so-called Integrated Modular Avionics (IMA) concept [15]. The IMA
architecture requires a specialized operating system layer that provides temporal
and spatial isolation between partitions. The ARINC 653 standard [3] defines an
architecture and an applications program interface (API) for such an operating
system or application executive (APEX), in ARINC terms.

Temporal isolation is achieved by using a two-level scheduling scheme. A
global partition scheduler allocates processor time to partitions according to
a static cyclic schedule, where partitions run in turn for the duration of a fixed
slice of time (see figure 1). The global scheduler is a variant of a static cyclic
executive, while the local schedulers are priority-based. Spatial isolation between
partitions is provided by implementing a separate address space for each parti-
tion, in a similar way as process address spaces are protected from each other in
conventional operating systems.

It should be noted that the Ada 2005 advanced real-time mechanisms allow
other approaches to time and space partitioning, which may be simpler to imple-
ment and provide more flexibility in scheduling real-time tasks [14,18]. However,
there is a strong demand for IMA systems in industry, and support for such

Global scheduler
 (time slicing) �

Local schedulers
 (FPPS) �

Application 1�

 Thread 1�
 Thread 2�

 Thread 3�

Application 2�

 Thread a�
 Thread b�

Application 3�

 Thread x�
 Thread y�

 Thread z�

App1� App2� App3� App1� App2� App3� ···

Fig. 1. Hierarchical scheduling architecture

162 Á. Esquinas et al.

architectures must be made available to Ada software developers as well. In-
deed, there are multiple industrial ARINC 653 implementations available from
a variety of vendors, and the standard has been successfully used in a number of
commercial and military avionics systems. However, there is currently no open
source platform available which can be used to build partitioned systems. This
paper shows how an open-source platform following the IMA approach can be
built by combining the XtratuM hypervisor [12] with the Ada 2005 version of
the Open Ravenscar Kernel (ORK+) [19]. The hardware platform is LEON2 [8],
a radiation-hardened implementation of the SPARC V8 architecture [16] that is
commonly used in European space systems.

The rest of the paper is organized as follows: Section 2 introduces the ar-
chitecture and the main features of the XtratuM hypervisor. The architecture
of ORK+ is described in Section 3. Section 4 describes the approach and some
issues that arose during the porting of ORK+ to run on top of XtratuM. A
preliminary evaluation of the performance of the platform compared to ORK+
running directly on a bare board is included in Section 5. Related work is sum-
marized in Section 6. Finally, some conclusions about the resulting partitioning
platform are drawn and plans for the near future are exposed in Section 7.

2 Overview of XtratuM

XtratuM [12] is an open-source hypervisor that has been designed to meet safety
critical real-time requirements in embedded systems. Its most relevant features
are:

– Bare machine (type 1) hypervisor.
– Para-virtualization. The virtual machine interface is similar, but not identi-

cal, to the underlaying hardware.
– Dedicated devices: some devices can be directly and exclusively managed by

a designated partition.
– Strong temporal isolation by enforcing a static cyclic plan to execute parti-

tion in a major temporal frame.
– Strong spatial isolation by allocation partitions at specified memory regions

that cannot be accessed by other partitions.
– Safe partition execution: partitions are executed in processor user mode,

whereas the hypervisor is executed in privileged processor mode.
– Fine-grained resource allocation via a configuration file that specifies the

resources available on the board and the way they are allocated to partitions.
– Robust inter-partition communication mechanisms based on sampling and

queuing ports.
– Some restricted services can only be used by system partitions, not by normal

partitions (the default).
– Fault management model. Faults are detected and handled by the hypervisor,

as a consequence of a system trap or a hypervisor-generated event.

XtratuM provides a virtual machine interface that is close to the native hard-
ware. The virtual machine interface gives access to the system resources: CPU
registers, clock, timer, memory, interrupts, etc., through a set of system calls

ORK+/XtratuM: An Open Partitioning Platform for Ada 163

(hypercalls). Each virtual machine defines a partition that can contain either a
bare machine application or an operating system on top which applications can
run. An operating system that runs in a partition has to be para-virtualized,
which implies that some parts of the operating system hardware abstraction
layer (HAL) have to be replaced with the corresponding hypercalls.

The Xtratum architecture is shown in figure 2. The figure shows several par-
titions based on ORK+/XtratuM, and an additional partition based on a bare
machine C code running directly on top of XtratuM. Other configurations are
also possible. In the figure, only one partition is defined as a system partition,
while the other ones are normal or user partitions. In general, several partitions
can be configured as system partitions.

Ada application

ORK+

para-virtualized services

Ada application

ORK+

para-virtualized services

Ada application

minimal RTS

para-virtualized services

Ada application

ORK+

para-virtualized services

hypercall interface

 X
tr

at
u

Mmemory manager scheduler IP communications tracing

clock & timers interrupt manager health monitor

System partition User partitions

us
<

er
 m

od
e

su
pe

rv
is

or
 m

od
e

P
R

O
C

E
S

S
O

R

Fig. 2. XtratuM architecture

The services provided by XtratuM are summarized in table 1. As shown in the
table, some services are constrained or partially constrained to be used only in
system partitions. As an example, partition management is restricted in such a
way that any partition can halt, stop, resume, reset, or shutdown itself, but only
system partitions can execute these actions on other partitions. Likewise, only
system partitions have access to the health monitor events in order to analyse
errors detected at run time.

XtratuM provides some additional services for managing specific hardware
resources that depend heavily on the processor architecture. Table 2 shows the
specific services for the SPARC V8 architecture.

XtratuM version 2.2 is currently being used by CNES (Centre National
d’Études Spatiales, France) as a time and space partitioning (TSP) based solu-
tion for building highly generic and reusable on-board payload software for space
applications [1,2].

164 Á. Esquinas et al.

Table 1. XtratuM general hypercalls

Group of services Hypercalls Partition

Clock management get clock; define timers normal

IRQ Management enable/disable IRQs,
mask/unmask IRQs

normal

IP Communication create ports
read/receive/write/send messages

normal

IO management read/write IO normal

Partition management mode change
halt/reset/resume/
suspend/shutdown partitions

system

Health monitoring
management

read/seek/status HM events system

Audit facilities read/status system

Table 2. XtratuM SPARC V8 specific hypercalls

SPARC V8 hypercalls

XM sparcv8 atomic add
XM sparcv8 atomic and
XM sparcv8 atomic or
XM sparcv8 flush regwin
XM sparcv8 get flags
XM sparcv8 inport
XM sparcv8 iret
XM sparcv8 outport
XM sparcv8 set flags

3 Overview of ORK+

ORK [19] is an open-source real-time kernel which provides full compliance with
the Ada Ravenscar profile [4, D.15] on embedded computers. The kernel has a
reduced size and complexity, and has been carefully designed to allow develop-
ers to build reliable software systems for embedded applications on LEON-based
computers. It is integrated with a cross-compilation system based on GNAT1.
The current version, ORK+, includes support for the new Ada 2005 timing
features, such as execution-time clocks and timers, group budgets and timing
events. Restricted support for execution-time timers and group budgets is pro-
vided, despite not being part of the Ravenscar profile, as these mechanisms have
been found useful to ensure some temporal properties at run time [13].

The kernel functions can be grouped as follows:

– Task management, including task creation, synchronization, and scheduling.
– Time services, including absolute delays, real-time clock, execution time

clocks and timers and timing events.
1 http://www.dit.upm.es/ork

http://www.dit.upm.es/ork

ORK+/XtratuM: An Open Partitioning Platform for Ada 165

– Interrupt handling, including attaching a protected parameter procedure to
a hardware interrupt vector, dealing with interrupt priorities and initializing
vectors in the interrupt table.

BB.Parameters:

BB.CPU_Primitives:

BB.Peripherals:

BB.Peripherals.Registers:

Bare Board Kernel

Scheduling:

Time Services:

Serial Output:

Synchronization:

Interrupt Handling:

<<component>>

BB.Threads.Queues:

BB.Threads:

Kernel Protection:

Thread Management:

BB.Protection:

BB.Time:

BB.Time.Execution_Time:

BB.Interrupts:

BB.Serial_Output:

Fig. 3. ORK+ architecture

The kernel components implementing the above functions are depicted in
figure 3. Most of the components are fully independent from the underlying
platform. The lower-level components, which are hardware-dependent —namely
BB.CPU Primitives, BB.Time, BB.Peripherals, and BB.Interrupts— have platform-
independent specifications. Consequently, only the implementations of these
components have to be rewritten in order to port the kernel to the XtratuM
virtual machine interface. Overall, 1398 out of 7316 lines of code have been
modified. This figure accounts for the XtratuM interface as well as low-level
assembly routines that are part of the implementation of the above packages.

4 Porting ORK+ to XtratuM

4.1 Adapting the XtratuM Interface

As a general rule, the kernel components that closely depend on the processor
characteristics have to be re-implemented in order to port ORK+ to different
hardware platforms. In the case of XtratuM, the porting strategy is slightly dif-
ferent, as the question is not to port the kernel to a different processor, but
to the virtual processor interface provided by the hypervisor for a partition.
As previously stated, the virtual processor is similar, but not identical, to the

166 Á. Esquinas et al.

original processor architecture. Therefore, the processor-dependent components
of ORK+ have to be para-virtualized, i.e. some of the processor resources have
to be accessed by means of the Xtratum hypercalls.

ORK+ is written mostly in Ada, except for a few low-level routines that are
written in SPARC assembly language. On its side, the XtratuM native interface
is coded in C, which is its main implementation language. Therefore, an Ada
interface to XtratuM has to be built as a first step so that the ORK+ code can
use the XtratuM hypercalls. To this purpose, the standard Interfaces.C package
and pragma Import [4, Ap. B] have been used to write a new kernel package,
named System.BB.XtratuM, which provides the hypercall interface. The parts of
this package that are related to interrupt support are shown in listing 1 as an
example.

4.2 CPU Management

The context switch operation is one of the first things to be re-implemented
when porting a kernel to a different architecture, as it is highly dependent on
the processor. In this case, the SPARC architecture includes a set of register
windows that are especially complex to handle [16]. At the lowest level, XtratuM
provides some basic support for this feature, including register window underflow
and overflow trap handlers. However, the basic context switch operations have
still to be provided by ORK+ in order to support Ada tasking at the application
level.

An important difference when running ORK+ on top of XtratuM with respect
to the original, bare machine implementation, is that now the kernel runs in user
processor mode, as all XtratuM partitions do. As a result, the ORK+ context
switch routine cannot access privileged processor registers, which are only avail-
able to the hypervisor, running in supervisor mode. Consequently, the ORK+
context switch routine has been rewritten so that all the assembly language code
referencing privileged processor registers uses specific SPARC V8 hypercalls (see
table 2). These hypercalls have a lightweight implementation in order to keep
context switches and other low-level operations efficient.

4.3 Interrupt Support

XtratuM virtualizes the 16 interrupt sources of the SPARC architecture, and
defines 32 additional virtual interrupt sources that are intended to be used for
Xtratum services. For instance, XM VT HW TIMER is a virtual interrupt source
for a software elapsed-time timer defined by the hypervisor. Therefore, the num-
ber of interrupt sources in XtratuM is greater than in the original SPARC ar-
chitecture. This has been reflected in the kernel System.BB.Interrupts package,
as well as the standard Ada.Interrupts and Ada.Interrupt.Names packages, so that
application code can attach protected parameterless procedures to all interrupt
sources, including the XtratuM virtual interrupts.

XtratuM does not support priorities for interrupt sources. Therefore, all the
interrupt sources have the same priority, as it is customary for hypervisor and

ORK+/XtratuM: An Open Partitioning Platform for Ada 167

Listing 1. Interrupt support in the Xtratum Ada API

pragma Restrictions (No Elaboration Code);
with Interfaces .C;

package System.BB.Xtratum is
pragma Preelaborate;

use type Interfaces .C.unsigned;

−−−−−−−−−−−−−−−−−−
−− INTERRUPTS −−
−−−−−−−−−−−−−−−−−−
XM VT EXT FIRST : constant Interfaces.C.unsigned := 32;

XM VT EXT HW TIMER : constant Interfaces.C.unsigned := 0 + XM VT EXT FIRST;

XM VT EXT EXEC TIMER : constant Interfaces.C.unsigned := 1 +
XM VT EXT FIRST;

procedure Disable Interrupts ;
pragma Import (C, Disable Interrupts , ”XM disable irqs”);
−− All external interrupts (asynchronous traps) are disabled

procedure Enable Interrupts ;
pragma Import (C, Enable Interrupts , ”XM enable irqs”);
−− Interrupts are enabled

function Mask IRQ (Irq : Interfaces .C.unsigned) return Integer ;
pragma Import (C, Mask IRQ, ”XM mask irq”);
−− Mask an interrupt
−− [1 .. 15] Hardware Interrupts . Traps from 0x11 to 0x1F
−− [31 .. 63] Extended Interrupts . Interrupts trigger the traps from
−− 0x100 to 0x11F.

function Unmask IRQ (Irq : Interfaces .C.unsigned) return Integer ;
pragma Import (C, Unmask IRQ, ”XM unmask irq”);

...

end System.BB.Xtratum;

operating systems. Consequently, ORK+ has been modified so that the System.
Interrupt Priority range has only one value.

4.4 Time Services

ORK+ provides direct support for the Ravenscar profile time services, i.e. Ada.
Real Time.Clock, absolute delays, global timing events, and execution-time clocks.

168 Á. Esquinas et al.

It also supports execution-time timers and group budgets, as an extension to the
Ravenscar profile. The original implementation of these time services is based
on two hardware timers: a periodic timer and a single-shot timer [19].

It must be noted that hardware timers are indeed elapsed-time timers. How-
ever, the XtratuM hypervisor, as it is common in partitioned systems, has a dual
concept of time: in addition to the common notion of elapsed real-time, there is
the notion of partition-time, which only advances when a partition is scheduled.
Accordingly, Xtratum provides two kinds of software timers, as well as two kinds
of clocks: elapsed-time clocks and timers, and partition-time clocks and timers.

The real-time mechanisms, i.e. Ada.Real Time.Clock, absolute delays, and
global timing events, are implemented in ORK+/XtratuM in a similar way to the
bare machine version, i.e. by using the elapsed-time clock and timer. However,
execution-time clocks cannot be implemented in the same way. Since the hyper-
visor switches the running partition without giving any notice to the software
running in the partitions, implementing execution-time clocks on elapsed-time
timers would also account for the time the partition is not running. In order
to avoid this inconvenience, all execution-time mechanisms, i.e. execution-time
clocks and timers, as well as group budgets, are implemented using partition
time timers.

5 Performance Evaluation

5.1 General Approach

Possible losses in performance are a key issue when running critical real-time
software on a partitioned system. We have carried out some experiments in
order to quantify the loss of performance incurred by an application running on
an ORK+/XtratuM partition with respect to using ORK+ on a bare LEON2
computer. To this purpose, we have developed a set of scenarios in order to
evaluate which is the performance loss incurred by the hypervisor layer when
different partition sets are defined.

There are two possible approaches to performance evaluation in this context:

– Direct measurements: the hypervisor is instrumented with breakpoints at the
hypercall entry/exit points so that clock registers can be dumped in order
to compute the execution time of every service.

– Indirect measurements: the application code executes some workload. The
difference in the amount of work that is performed when running in a par-
tition compared to what is done on the bare board provides a measurement
of the effect of the hypervisor on the application.

We have opted for the indirect measurements approach as it is simpler to im-
plement and does not require any special equipment nor instrumenting the hy-
pervisor code. In order to get a good accuracy in the estimation of the overhead
introduced by the hypervisor, an extremely simple workload, consisting on in-
crementing a counter whose value is sampled at periodic time intervals, has been

ORK+/XtratuM: An Open Partitioning Platform for Ada 169

used. The total increment in an interval provides a good estimation of the num-
ber of instructions executed in it. It should be noted that the duration of the slot
assigned to the partition must be long enough to guarantee that XtratuM will
not perform a partition switch during the interval, in order to avoid additional
overheads on the measurement.

The platform used for the evaluation is the TSIM/LEON SPARC simulator,
version 2.0.6 (professional version) running at 80 MHz with 4 MB of RAM and
separate instruction and data caches of 4 KB. During the evaluation the LEON2
processor was running at 2.25 CPIs (clock cycles per instruction), which means
a performance of 35 MIPS. This is a typical value for current space systems.

5.2 Scenario Description

The evaluation scenario consists of three tasks:

– Counter task: a background, low priority task that continously increases a
counter. The counter value is global and can be read by other tasks.

– Timer task: a periodic task with an intermediate priority level. The period
of the task is calculated so as to generate a specified number of preemptions
of the counter task in a reader task period.

– Reader task: a high priority service that periodically reads the counter value
and stores the increment in the period. In the experiments the task period
has been set to 1 second.

Figure 4 shows an execution diagram for the above tasks. This scenario has
been executed several times for different values of the number of preemptions
incurred by the counter task in a period of the reader task. The values used for the
evaluation go from 1 to 1000 preemptions per second, which correspond to timer
task periods between 1000 and 1 milliseconds. This scenario has been executed
in a slot in the XtratuM schedule which is longer than the total duration of the
experiment, so that no additional interference due to partition context switch is
incurred.

…

Reader task

Timer task

Counter task

Execution scheme

Priority

++

+

–

…

period = MAF = 1s

period = MAF / no interrupts

Fig. 4. Evaluation scenario

170 Á. Esquinas et al.

Table 3 shows the results of the evaluation for ORK+ running on a native
LEON2 platform, and ORK+ running in a XtratuM partition. The numbers are
the average, maximum, and minimum count values in a reader task period over
a 50-second interval, which is the total duration of the experiment. The results
are shown for different values of the timer task period (TTP).

Table 3. Evaluation results

ORK+ on native LEON2

TTP 1000 500 100 50 10 5 1

AVG 9999113 9998618 9994117 9988498 9943509 9887269 9444166

MAX 9999131 9998642 9994141 9988522 9943520 9887280 9445368

MIN 9999046 9998558 9994056 9988436 9943462 9887222 9437370

DIF 0 495 4996 10615 55604 111844 554947

PL1 0,000% 0,004% 0,049% 0,106% 0,556% 1,118% 5,549%

ORK+ on XtratuM

TTP 1000 500 100 50 10 5 1

AVG 9997222 9994785 9975228 9950780 9755212 9510748 7555050

MAX 9997235 9994791 9975236 9950790 9755216 9510760 7555056

MIN 9997185 9994750 9975195 9950749 9755176 9510719 7555019

DIF 0 2437 21994 46442 242010 486474 2442172

PL2 0,000% 0,024% 0,219% 0,464% 2,42% 4,866% 24,428%

PL3 0,02% 0,03% 0,19% 0,38% 1,89% 3,80% 20,00%

The first column, for a TTP of 1000 ms, provides a basic value for the perfor-
mance, as there are no preemptions of the counter task in a reader task period.
For the rest of the TTP values, the difference (DIF) between the average values
and the reference value provides an indication of the performance losses (PL)
of the counter task due to the task switching overhead of the timer task. The
following performance loss indicators are shown:

– PL1 : performance loss for ORK+ with respect to its best case (TTP = 1000).
– PL2 : performance loss for ORK+/XtratuM with respect to its best case

(TTP = 1000).
– PL3 : performance loss for ORK+/XtratuM with respect to ORK+.

Figure 5 shows the performance loss values for different values of the timer task
period.

The above results show that for ORK+ on native LEON2, the performance
loss due to task switching (PL1) is negligible when the timer period is longer than
10 ms, and only reaches a significant value for a timer period of 1 ms, which is
seldom found in the kind of space applications we have in mind. The performance
loss for ORK+ on XtratuM (PL2) follows a similar pattern. The PL3 figures
give an indication of the cost of virtualization, i.e. the difference in performance
between the ORK+/XtratuM and the native ORK+ configurations. Again, it
can be seen that it is only significant for very short periods, far below the values

ORK+/XtratuM: An Open Partitioning Platform for Ada 171

Fig. 5. Evaluation scenario

that are commonly found in on-board software applications. These results can
be considered very satisfactory, taking into account the advantages of having
several applications running in an isolated (temporal and spatial) partitioning
framework.

Finally, it must be noted that PL2 values are about 5 times the corresponding
PL1 values. This result roughly means that the periodic task switching overhead
in ORK+/XtratuM is about 5 times the native ORK+ overhead. This increment
is mainly due to clock management, as XtratuM general hypercalls have to be
made not only to set the elapsed timer for the absolute delay, but also to keep
the values of the execution-time clocks using the partition time clock. It can
thus be concluded that the implementation of Ada timing services on top of a
virtualization layer deserves further research.

6 Related Work

Although hypervisors were first developed by IBM in the 1960s, there has been
a recent revival of interest in this technology, due to projects such as Xen [7],
VMWare [20] and L4 [11]. These projects were aimed at building virtualizers
for general purpose systems, including desktop PCs and servers.

More recently, hypervisors have been used in embedded and real-time sys-
tems. For example, PikeOS [10] is a microkernel based on L4 which is targeted
to embedded systems and uses virtualization techniques. Although microkernels
were first developed as an architectural approach for building large and com-
plex operating systems, they can also be used as bare-metal supervisors. The
PikeOS architecture has two main components, namely the separation kernel
and the system software. The former runs in supervisor mode and provides a set
of basic services: scheduling, memory management and interrupt handling. The

172 Á. Esquinas et al.

latter runs in user mode and is shared by all partitions. It provides services for
inter-partition communication and device drivers. The services provided by the
microkernel can be used to build several different operating systems, resulting
in a virtualized system.

Other related projects are NOVA [17], which is aimed at constructing a secure
virtualization environment, and OKL4 Microvisor [9], which is designed as a
highly-efficient hypervisor for use in embedded systems.

Generally speaking, it can be said that para-virtualization is the virtualiza-
tion method that better fits the requirements of embedded systems with real-
time constraints. Other methods which can provide full virtualization introduce
a siginficant overhead in the system execution, with a direct impact on the pre-
dictability of the the applications running in the different partitions. For exam-
ple, binary translation works by catching the execution of conflicting instructions
and replacing them on the fly, which has a clear cost in terms of execution time.

7 Conclusions and Future Work

Combining ORK+ and Xtratum builds up an efficient partitioning platform
that enables real-time Ada applications with different criticality levels to run on
a LEON2 platform. Time and space isolation between partitions is implemented
by the XtratruM hypervisor, and ORK+ provides timing predictability within
each partition. The temporal behaviour of applications running on a hierarchical
scheduling environment like that provided by ORK+/XtratuM can be statically
analysed using an extension of response-time analysis methods [6,5]. It should
be noted that ORK+ provides an additional level of enforcement of the required
temporal behaviour by means of execution time clocks and timers [13].

XtratuM and ORK+ are currently targeted to LEON2-based computers. The
LEON2 support for spatial isolation is rather primitive, consisting only of a set
of fence registers, which do not provide any protection against incorrect read
operations. This kind of limited memory protection mechanism also imposes
a rigid memory sharing scheme between different partitions. This limitation is
expected to be overcome with the next-generation of LEON3 processors, which
have a full-featured MMU.2 Future plans include porting the platform to LEON3
and other common embedded processor architectures.

References

1. Arberet, P., Metge, J.J., Gras, O., Crespo, A.: TSP-based generic payload on-board
software. In: DASIA 2009, Data Systems in Aerospace, Istanbul (May 2009)

2. Arberet, P., Miro, J.: IMA for space: status and considerations. In: ERTS 2008,
Embedded Real-Time Software, Toulouse France (Jannuary 2008)

3. ARINC: Avionics Application Software Standard Interface — ARINC Specification
653-1 (October 2003)

2 Memory Management Unit.

ORK+/XtratuM: An Open Partitioning Platform for Ada 173

4. Tucker Taft, S., Duff, R.A., Brukardt, R.L., Plödereder, E., Leroy, P.: Ada 2005
Reference Manual. LNCS, vol. 4348. Springer, Heidelberg (2006) ISBN 978-3-540-
69335-2

5. Balbastre, P., Ripoll, I., Crespo, A.: Exact response time analysis of hierarchical
fixed-priority scheduling. In: Proceedings of 15th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (August 2009)

6. Davis, R., Burns, A.: Hierarchical fixed priority pre-emptive scheduling. In: Pro-
ceedingsof the 26th IEEE International Real-Time Systems Symposium — RTSS
2005 (2005)

7. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A.,
Barham, P., Neugebauer, R.: Xen and the art of virtualization. In: Proceed-
ings of the ACM Symposium on Operating Systems Principles (October 2003),
http://www.citeseer.ist.psu.edu/dragovic03xen.html

8. Gaisler Research: LEON2 Processor User’s Manual (2005)
9. Heiser, G., Leslie, B.: The OKL4 Microvisor: Convergence point of microkernels

and hypervisors. In: Proceedings of the 1st Asia-PacificWorkshop on Systems, New
Delhi, India, pp. 19–24 (August 2010)

10. Kaiser, R., Wagner, S.: Evolution of the PikeOS microkernel. In: MIKES 2007:
First International Workshop on MicroKernels for Embedded Systems, Sydney,
Australia (2007)

11. Liedtke, J.: On microkernel construction. In: Proceedings of the 15th ACM Sym-
posium on Operating System Principles (SOSP-15). Copper Mountain Resort, CO
(December 1995), http://www.l4ka.org/publications/

12. Masmano, M., Ripoll, I., Crespo, A., Metge, J., Arberet, P.: Xtratum: An open
source hypervisor for TSP embedded systems in aerospace. In: DASIA 2009, Data
System in Aerospace, Istanbul (May 2009)

13. Mezzetti, E., Panunzio, M., Vardanega, T.: Preservation of timing properties with
the ada ravenscar profile. In: Real, J., Vardanega, T. (eds.) Ada-Europe 2010.
LNCS, vol. 6106, pp. 153–166. Springer, Heidelberg (2010)

14. Pulido, J.A., Urueña, S., Zamorano, J., Vardanega, T., de la Puente, J.A.: Hier-
archical scheduling with ada 2005. In: Pinho, L.M., González Harbour, M. (eds.)
Ada-Europe 2006. LNCS, vol. 4006, pp. 1–12. Springer, Heidelberg (2006)

15. Rushby, J.: Partitioning for safety and security: Requirements, mechanisms, and
assurance. NASA Contractor Report CR-1999-209347, NASA Langley Research
Center (June 1999), also to be issued by the FAA

16. SPARC International, Upper Saddle River, NJ, USA: The SPARC architecture
manual: Version 8 (1992), http://www.sparc.com/standards/V8.pdf

17. Steinberg, U., Kauer, B.: Nova: a microhypervisor-based secure virtualization ar-
chitecture. In: EuroSys, pp. 209–222 (2010)

18. Urueña, S., Pulido, J.A., López, J., Zamorano, J., de la Puente, J.A.: A new ap-
proach to memory partitioning in on-board spacecraft software. In: Kordon, F.,
Vardanega, T. (eds.) Ada-Europe 2008. LNCS, vol. 5026, pp. 1–14. Springer, Hei-
delberg (2008)

19. Urueña, S., Pulido, J.A., Redondo, J., Zamorano, J.: Implementing the new Ada
2005 real-time features on a bare board kernel. Ada Letters XXVII(2), 61–66
(2007); Proceedings of the 13th International Real-Time Ada Workshop (IRTAW
2007)

20. White paper: Virtualization overview (2006),
http://www.vmware.com/pdf/virtualization.pdf

http://www.citeseer.ist.psu.edu/dragovic03xen.html
http://www.l4ka.org/publications/
http://www.sparc.com/standards/V8.pdf
http://www.vmware.com/pdf/virtualization.pdf

Implementing Mixed Criticality Systems in Ada

Sanjoy Baruah1 and Alan Burns2

1 Department of Computer Science, The University of North Carolina, USA
2 Department of Computer Science, University of York, UK

Abstract. Many safety-critical embedded systems are subject to certification re-
quirements. However, only a subset of the functionality of the system may be
safety-critical and hence subject to certification; the rest of the functionality is non
safety-critical and does not need to be certified, or is certified to a lower level. The
resulting mixed criticality system offers challenges both for static schedulability
analysis and run-time monitoring. This paper considers both of these issues and
indicates how mixed criticality applications can be implemented in Ada. In partic-
ular, code is produced to illustrate how the necessary run-time mode changes can
be supported. This support makes use of a number of the new features introduced
into Ada 2005.

1 Introduction

One of the ways that standard real-time systems has been extended in recent years is the
removal of the assumption that all tasks in the system have the same level of criticality.
Models have been produced that allow mixed criticality levels to co-exist on the same
execution platform. For systems that contain components that have been given different
criticality designations there are two, mainly distinct, issues: run-time robustness [7]
and static verification [12,3].

Run-time robustness is a form of fault tolerance that allows graceful degradation
to occur in a manner that is mindful of criticality levels: informally speaking, in the
event that all components cannot be serviced satisfactorily the goal is to ensure that
lower-criticality components are denied their requested levels of service before higher-
criticality components are.

Static verification of mixed-criticality systems is closely related to the problem of
certification of safety-critical systems. The current trend towards integrating multiple
functionalities on a common platform (for example in Integrated Modula Avionics,
IMA, systems) means that even in highly safety-critical systems, typically only a rela-
tively small fraction of the overall system is actually of critical functionality and needs
to be certified. In order to certify a system as being correct, the certification authority
(CA) must make certain assumptions about the worst-case behavior of the system dur-
ing run-time. CA’s tend to be very conservative, and hence it is often the case that the
assumptions required by the CA are far more pessimistic than those the system designer
would typically use during the system design process if certification was not required.
However, while the CA is only concerned with the correctness of the safety-critical part
of the system the system designer wishes to ensure that the entire system is correct,
including the non-critical parts.

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 174–188, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Implementing Mixed Criticality Systems in Ada 175

In this paper, we consider some of the scheduling issues involved in static verifica-
tion. But we consider in more detail the run-time robustness requirements and show
how they can be supported in Ada.

2 System Model

A system is defined as a finite set of components K. Each component has a defined
level of criticality, L. Each component contains a finite set of tasks. Each task, τi, is
defined by period, deadline, computation time and criticality level: (Ti, Di, Ci, Li).
These parameters are however not independent, in particular the following relations are
assumed to hold (for the same task) between L and the other parameters in any valid
mixed criticality system:

– The worst-case computation time, Ci, will be derived by a process dictated by the
criticality level. The higher the criticality level, the more conservative the verifica-
tion process and hence the greater will be the value of Ci.

– The deadline of the task may also be a function of the criticality level. The higher
the criticality level, the greater the need for the task to complete well before any
safety-critical timing constraint and hence the smaller the value of Di.

– Finally, though less likely, the period of a task could depend on criticality. The
higher the criticality level, the tighter the level of control that may be needed and
hence the smaller the value of Ti.

These relations are formalised with the following axioms: if a component is reclassified
so that task, τi is moved to criticality level L1

i from criticality level L2
i then

L1
i > L2

i ⇒ C1
i ≥ C2

i

L1
i > L2

i ⇒ D1
i ≤ D2

i

L1
i > L2

i ⇒ T 1
i ≤ T 2

i

At run-time a task will have fixed values of T , D and L. Its actual computation time
is however unknown; it is not directly a function of L. The code of the task will execute
on the available hardware, and apart from catching and/or dealing with overruns the
task’s actual criticality level will not influence the behaviour of the hardware. Rather
the probability of failure (executing beyond deadline) will reduce for higher levels of L
(due to C monotonically increasing with L).

In a mixed criticality system further information is needed in order to undertake
schedulability analysis. Tasks can depend on other tasks with higher or lower levels of
criticality. In general a task is now defined by: (T , D, C, L), where C is a vector of
values – one per criticality level, with the constraint:

L1 > L2 ⇒ CL1 ≥ CL2

for any two criticality levels L1 and L2.
The general task τi with criticality level Li will have one value from its Ci vector

that defines its representative computation time. This is the value corresponding to Li,
ie. CLi

i . This will be given the normal symbol Ci.

176 S. Baruah and A. Burns

Definition 1 (Behaviors). During different runs, any given task system will, in general,
exhibit different behaviors: different jobs may be released at different instants, and may
have different actual execution times. Let us define the criticality level of a behavior to
be the smallest criticality level such that no job executed for more than its C value at
this criticality level.

As previously stated, two distinct issues have been addressed concerning the scheduling
of mixed-criticality systems: static verification, and run-time robustness.

Static verification. From the perspective of static verification, the correctness criterion
expected of an algorithm for scheduling mixed-criticality task systems is as follows: for
each criticality level �, all jobs of all tasks with criticality ≥ � will complete by their
deadlines in any criticality-� behavior.

Run-time robustness. Static verification is concerned with certification – it requires
that all deadlines of all tasks τi with Li ≥ � are guaranteed to be met, provided that
no job executes for more than its level-� worst-case execution time (WCET). Run-time
robustness, in addition, seeks to deal satisfactorily with transient overloads due either to
errors in the control system or to the environment behaving outside of the assumptions
used in the analysis of the system. Even in behaviors that have a high criticality level
by Definition 1 above, it may be the case that all jobs executing beyond their WCET’s
at some lower criticality level did so only for a short duration of time (i.e., a transient
overload can be thought to have occurred from the perspective of the lower criticality
level). A robust scheduling algorithm would, informally speaking, be able to “recover”
from the overload once it was over, and go back to meeting the deadlines of the lower-
criticality jobs as well. This is illustrated in the latter half of the paper.

3 Scheduling Analysis for Fixed Priority Scheduling

The distinctive feature of mixed criticality as opposed to partitioned criticality is that
schedulability is obtained from optimising the temporal characteristics of the tasks
rather than their important parameters.

Consider the common fixed priority deadline-monotonic scheduling scheme. Here
the key operational parameter priority (P) is derived solely from the deadlines of the
tasks. For any two tasks τi and τj : Di < Dj ⇒ Pi > Pj . As noted earlier there will
be a natural tendency for high criticality tasks to have shorter deadlines, but this is not
a strong enough rule to result in a partitioning of deadlines (and hence priorities) via
criticality levels.

In general therefore we must consider mixed criticality systems in which a task may
suffer interference from another task with a higher priority but a lower criticality level.
A phenomenon that could be referred to as criticality inversion.

To test for schedulability, the standard Response Time Analysis (RTA) [9,1] ap-
proach first computes the worst-case completion time for each task (its response time,
R) and then compares this value with the task’s deadline D (ie. tests for Ri ≤ Di for all

Implementing Mixed Criticality Systems in Ada 177

tasks τi). The response time value is obtained from the following (where hp(i) denotes
the set of tasks with priority higher that than of task τi):

Ri = Ci +
∑

τj∈hp(i)

⌈
Ri

Tj

⌉
Cj (1)

This is solved using a recurrence relation.
Three cases need to be considered depending on whether the arbitrary higher priority

task τj has an equal, higher or lower criticality. For each case the correct value of Cj

must be ascertained:

1. If Li = Lj then the tasks are at the same level of criticality and the normal repre-
sentative value Cj is used.

2. If Li < Lj then it is not necessary to use the large value of computation time
represented by Cj , rather the smaller amount corresponding to the criticality level
of Ci should be used (as this is the level of assurance needed for this task). Hence
eqn (1) should use CLi

j .
3. If Li > Lj then we have criticality inversion. One approach here would be to again

use CLi

j , but this is allowing τj to execute for far longer than the task is assumed
to do at its own criticality level. Moreover, it would require all low criticality tasks
to be verified to the highest levels of importance, which would be prohibitively
expensive (and in many ways undermine one of the reasons for having different
criticality levels in the first place). Rather we should employ Cj , but the run-time
system must ensure that τj does indeed not execute for more than this value.

The latter point is crucially important. Obviously all the shared run-time software must
be verified to the highest critically level of the application tasks. One aspect of this is the
functionality that polices the execution time of tasks and makes sure they do not ask for
more resource that was catered for during the analysis phase of the system’s verification.
We note that Ada 2005 provides this functionality as illustrated in Section 5.
The response time equation (eqn 1) can be rewritten as:

Ri = Ci +
∑

τj∈hp(i)

⌈
Ri

Tj

⌉
C

min(Li,Lj)
j (2)

Note that this use of minimum implies that values of C are only required for the
task’s criticality level and all lower criticality levels (ie. not for higher).

3.1 Shared Objects

With a more realistic system model, tasks will not be independent but will exchange
data via shared objects protected by some mutual exclusion primitive or access control
protocol (as in Ada’s protected objects).

If an object is only used by tasks from the same component then it itself can be
assigned the criticality level of the component. More generally if a shared object is
used to exchange data between tasks from different components with different criticality

178 S. Baruah and A. Burns

level then the object must be produced and analysed at the ceiling criticality level of the
components that use it.

As a consequence of the use of shared objects, a blocking term must be introduced
into the scheduling equation:

Ri = Ci + Bi +
∑

τj∈hp(i)

⌈
Ri

Tj

⌉
C

min(Li,Lj)
j (3)

where Bi is the blocking term; its value is the maximum execution time of any operation
on a shared object that has a ceiling priority equal or higher than the priority of task τi,
and which is also used by a task of lower priority.

3.2 Optimal Priority Ordering for Fixed Priority Scheduling

Using the analysis outlined above it is possible to allocate priorities to tasks in a way
that optimises schedulability whilst being aware of criticality levels. Vestal [12] was the
first to address this issue by assigning priorities to the tasks using Audsley algorithm [2].
That is, it first identifies some task which may be assigned the lowest priority; having
done so, this task is removed from the task system and a priority assignment is recur-
sively obtained for the remaining tasks. If the tasks are ‘tested’ in lowest criticality first
order then, if the system is indeed schedulable, a priority ordering is found that deliv-
ers a schedulable task set and is as close as possible to being in criticality order (ie.
lower criticality tasks are given lower priorities as often as possible). Vestal’s claim of
optimality for the algorithm was recently proved by Dorin et al [8].

Once a priority ordering is found then an implementation in Ada is straightforward.
Tasks are assigned static priorities and a standard, even Ravenscar compliant, program
can be developed. However, the run-time behaviour of a mixed-criticality system is not
as straightforward. This issue is considered in the rest of this paper.

4 Managing Overruns and Increasing Robustness

As indicated in the introduction one of the important uses of criticality levels is to
increase the robustness of the run-time behaviour of a system. This dynamic use of
criticality levels can control overloads, either those that are derived from component
failure or from excessive work load. The latter could involve a ‘best effort’ system that
must deal with some level of work, but the environment cannot be constrained to never
exceed this level. Whatever the level, the system should try and cope. Its main weapon
for doing so is to drop less critical work and assign this capacity to the more critical
tasks.

The golden rule here is that an overrun by a task at criticality M should not impact
on tasks of higher criticality, but can steal resource from tasks with lower criticality.
The problem with this rule of course is that for schedulability the priority of a high
criticality task may be below that of the M crit task.

To make run-time trade-offs between tasks of different criticality, it is important
to define more precisely the measurement scale of the ‘criticality’ metric [10]. In the

Implementing Mixed Criticality Systems in Ada 179

literature on mixed criticality systems there is no evidence to use anything other than an
ordinal scale. Hence one task of criticality H is worth more than any number of tasks
at criticality M (with H > M). It follows that a task, τi can execute for no longer than
Ci (which is the value corresponding to its criticality level) unless it exploits slack in
the system or steals execution time from strictly lower criticality tasks.

There could be a number of implementation schemes that could ensure this ‘sharing’
of computation time - ie. allow a task to use capacity statically allocated to lower criti-
cality tasks. For example the use of execution time servers [5,6,4]. However all of these
schemes have considerable run-time complexity and are not currently supportable on
high integrity systems. Therefore here we exploit a simple scheme that only involves
changes to task priorities. As a change to a task priority will impact on all aspects of the
system’s schedulability we identify this behaviour as a mode change.

The mode change to a more criticality aware priority ordering is triggered by the
identification of an overrun of a task’s execution time. For a long running system it
is likely that the overload situation will eventually pass, and hence it is necessary to
return to the original priority ordering. A mode change back to the original ordering
must, however, be taken with care as it could cause a high criticality task to miss its
deadline if undertaken prematurely. The simplest, and safest, protocol to undertake for
this priority change is to wait until there is an idle tick and only switch priority at this
time [11]. At this point all effects of the old mode are concluded and the new mode can
proceed. The ‘idle’ tick can actually be of zero duration, but it must be a genuine point
at which there is no existing load.

5 Implementation of the Run-Time Protocol in Ada

To illustrate the run-time behaviour described above, and to demonstrate that the pro-
posal is implementable, a simple example is programmed in Ada. The example uses
just four tasks and two criticality levels (H and L). The details of the task set are given
in Table 1.

Table 1. Example Task Set

Task Li Ti Di Ci Ci(overload)

τ1 H 100 25 12
τ2 L 100 50 10 50
τ3 L 100 70 15
τ4 H 100 100 25

The C values for each task relate to their criticality levels. On the assumption that
the two lower critical tasks do not execute for more than their C values, the system is
schedulable with the static priorities in the order (highest first) τ1, τ2, τ3 and then τ4. In
this example task τ2 is allowed to enter an overloaded state in which its execution time
is not 10 but rises to 50. This breaks the schedulability constraint, and hence a mode
change is required in which the priority ordering changes to one that is more criticality
based, ie τ1, τ4, τ3 and then τ2.

180 S. Baruah and A. Burns

5.1 Implementation Details

This section describes a prototype implementation of the priority changing protocol.
The compiled code executed on a bare machine implementation. All priorities are
changed from within a protected object (Pri Changer). This object is called by a
handler for a Timer object, and by the background task. It makes use of the dynamic
priorities package. It therefore needs to record the task IDs of the system’s tasks, and
the specific priorities to be used in the two modes. These values are embedded in the
code but in a real implementation would by taken from an external source. The priority
changer is specified in the following package:

with System;
with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Execution_Time; use Ada.Execution_Time;
with Ada.Execution_Time.Timers; use Ada.Execution_Time.Timers;
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with Ada.Real_Time; use Ada.Real_Time;
with Ada.Dynamic_Priorities; use Ada.Dynamic_Priorities;
package Overload_Control is

Max_Tasks : constant natural := 4;
type Mode is (Normal, Overload);
type Task_Ids is array(1..Max_Tasks) of Task_ID;

protected Pri_Changer is
pragma Priority(Min_Handler_Ceiling);
procedure Change(M : Mode);

-- called by background task
procedure Changer(TM : in out Timer);

-- called by a Timer
procedure Register(N : Natural);

-- called once by each of the four system tasks
private

Current_Mode : Mode := Normal;
IDs : Task_Ids;

end Pri_Changer;
end Overload_Control;

The body of this package is as follows:

package body Overload_Control is
Task_Pris : array(1..Max_Tasks, Mode) of positive;
protected body Pri_Changer is

procedure Change(M : Mode) is
begin

if not (M = Current_Mode) then
put("Mode Change to "); put("Normal"); new_line;
Current_Mode := M;
for I in 1..Max_Tasks loop

Set_Priority(Task_Pris(I,Normal),IDs(I));
end loop;

end if;
end Change;
procedure Changer(TM : in out Timer) is
begin

Implementing Mixed Criticality Systems in Ada 181

if Current_Mode = Normal then
put("Mode Change to "); put("Overload"); new_line;
Current_Mode := Overload;
for I in 1..Max_Tasks loop

Set_Priority(Task_Pris(I,Overload),IDs(I));
end loop;

end if;
end Changer;
procedure Register(N : Natural) is
begin

IDs(N) := Current_Task;
end Register;

end Pri_Changer;

begin
-- the following static values represent the required
-- priorities in the two modes
Task_Pris(1, Normal) := 10; Task_Pris(1, Overload) := 10;
Task_Pris(2, Normal) := 9; Task_Pris(2, Overload) := 4;
Task_Pris(3, Normal) := 8; Task_Pris(3, Overload) := 8;
Task_Pris(4, Normal) := 7; Task_Pris(4, Overload) := 9;

end Overload_Control;

The main part of the program contains a task type for the four application tasks and
a single background task. The task type uses discriminates to set its temporal character-
istics:

task type Periodic(Id, Pri, Period, Deadline, WCET, LifeSpan : Natural);

LifeSpan is used to give a finite duration to the execution of the program.
The ‘work’ of each task is simulated by a busy loop that executes for the required

time, using an execution time clock:

procedure Work(Initial : CPU_Time; C : natural) is
X : integer := 0;

begin
loop

X := X + 1;
exit when Clock - Initial > Milliseconds(C);

end loop;
end Work;

The start of each of the tasks is coordinated by a ‘starter’ protected object:

protected Starter is
pragma Priority(12);
procedure Get_Start_Time(T : out Time);

private
First : boolean := true;
St : Time;

end Starter;

protected body Starter is
procedure Get_Start_Time(T : out Time) is
begin

if First then

182 S. Baruah and A. Burns

St := Clock;
First := false;

end if;
T := St;

end Get_Start_Time;
end Starter;

The background task has a low priority and whenever its get to run it calls Change
in protected object Pri Changer and attempts to return the system to the normal
mode. For most executions of the task this will be a ‘null op’ as the system will be
in this mode. However execution time is not wasted as this task only runs when the
system is otherwise idle. Note an entry cannot be used for this interaction; if the task
called an entry (and was blocked) then as soon as the mode is changed to Overload
and the barrier made True then the blocked task would execute and set the mode back
to Normal!

If a more efficient version of the protocol is needed, so that other non-real-time
tasks can execute at the lowest priority level in the normal mode, then this background
task would need to be prevented from executing when the mode is Normal. A further
action to take when the overload occurs would be the release (from suspension) of the
‘background’ task.

task Background is
pragma Priority(1);

end Background;

task body Background is
Epoc : constant Duration := 4.5;
End_Time : Time := Clock + Seconds(30);

begin
delay Epoc;
-- needs to delay until tasks have registered
loop

Pri_Changer.Change(Normal);
exit when Clock > End_Time;

end loop;
end Background;

The code for each periodic task has the usual form. It gets a (common) start time, waits
5 seconds to allow all initialisation to occur. It then sets up its temporal parameters. For all
but the second task (which is involved with the overload) the repeating code is essentially:

loop
Work(CPU,WCET);
if Clock > Next_Release + Relative_Deadline then

put("Task "); put(Id); put(" missed a deadline"); new_line;
else

put("Task "); put(Id); put(" met a deadline"); new_line;
end if;
Next_Release := Next_Release + Release_Interval;
exit when Next_Release > End_Time;
CPU := Clock;
delay until Next_Release;

end loop;

Implementing Mixed Criticality Systems in Ada 183

For the second task a Timer is set (and canceled if it does not fire). Also the duration
of the work is extended for 3 iterations of the loop:

loop
Count := Count + 1;
Set_Handler(Overrun, Milliseconds(WCET), Pri_Changer.Changer’Access);
if Id=2 and (Count > 4 and Count < 8) then

Put("Overload in Task "); put(Id); new_line;
Work(CPU,WCET*5);

else
Work(CPU,WCET);

end if;
Cancel_Handler(Overrun, TempB);
... -- as other tasks

end loop;

Note for completeness, all tasks have Timers set, but they are not called on to execute
in the example executions (as execution time is less than WCET by construction).

The full code for the main program is continued in the Appendix.

5.2 Example Execution

The task set runs for a number of iterations and meets all its deadlines. The overload
then occurs in task τ2 for three consecutive jobs. After that the task returns to its ‘nor-
mal’ behaviour. If no changes are made to the system then deadlines are missed in tasks
τ2, τ3 and τ4; τ1, still has the highest priority and therefore is not impacted by the
overload. A sample run of the code, on a bare board single processor platform, for this
situation is as follows:

Main Started
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Overload in Task 2
Task 2 missed a deadline
Task 3 missed a deadline
Task 1 met a deadline
Overload in Task 2
Task 2 missed a deadline
Task 3 missed a deadline
Task 4 missed a deadline
Task 1 met a deadline
Overload in Task 2
Task 2 missed a deadline
Task 3 missed a deadline

184 S. Baruah and A. Burns

Task 4 missed a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 missed a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
...

After the overload and nine missed deadlines the system does eventually return to a
stable situation in which all deadlines are met.

To implement the mode change protocol, a Timer is defined for task τ2 that is
executed only when the task executes for more than its WCET (10). The handler calls
a protected object that changes the priorities of all tasks to the ‘overload’ setting. A
background, low priority, task is used to change the system back to the ‘normal’ priority
settings. This task will only execute if there is slack in the system, in which case it is
appropriate to reinstate the original priorities. An example run of the system when the
protocol is engaged is as follows:

Main Started
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Overload in Task 2
Mode Change to Overload
Task 4 met a deadline
Task 3 met a deadline
Task 1 met a deadline
Task 4 met a deadline
Task 3 met a deadline
Task 2 missed a deadline
Overload in Task 2
Task 1 met a deadline
Task 4 met a deadline
Task 3 met a deadline
Task 2 missed a deadline
Overload in Task 2
Task 1 met a deadline
Task 4 met a deadline
Task 3 met a deadline
Task 2 missed a deadline
Task 2 missed a deadline

Implementing Mixed Criticality Systems in Ada 185

Mode Change to Normal
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline

As evident in this print out, all tasks apart from τ2 meet their deadlines even when
there is an overload. Of course τ2 misses a series of four deadlines but once it has
‘caught up’ and the priorities changed by the background task then all tasks behave
correctly.

6 Conclusion

In this paper we have considered some of the issues involved in supporting the produc-
tion of mixed criticality systems. A type of system that is increasingly being considered
in a wide range of applications. To verify such systems an extended form of scheduling
analysis is needed and a somewhat more complex method of assigning priorities is re-
quired. Both of which are now available; and neither of which presents any significant
problems for implementation languages such as Ada.

The required run-time characteristics are however beyond what is available in, say,
a Ravenscar compliant real-time kernel. As tasks with low criticality may be executing
with priorities higher than tasks with higher criticality it is imperative that tasks are
not allowed to execute for more than their allotted execution time. Fortunately Ada
2005 allows task execution times to be monitored and code executed when bounds
are violated. Such code can manipulate priorities so that critical tasks are protected.
In this paper we have illustrated how such a protocol can be supported in Ada. An
illustrative prototype multi-tasking program has been produced and executed on a bare-
board single processor platform. Example executions of this code illustrate the required
isolation between the ‘failing’ low criticality task and all higher criticality tasks. The
code patterns provided by this prototype are such that their use in real industrial high-
integrity applications should be seriously evaluated.

References

1. Audsley, N.C., Burns, A., Richardson, M., Tindell, K., Wellings, A.J.: Applying new schedul-
ing theory to static priority preemptive scheduling. Software Engineering Journal 8(5),
284–292 (1993)

2. Audsley, N.C.: On Priority Assignment in Fixed Priority Scheduling. Information Processing
Letters 79(1), 39–44 (2001)

3. Baruah, S.K., Vestal, S.: Schedulability analysis of sporadic tasks with multiple criticality
specifications. In: ECRTS, pp. 147–155 (2008)

4. Bernat, G., Broster, I., Burns, A.: Rewriting history to exploit gain time. In: Proceedings
Real-time Systems Symposium, Lisbon, Portugal, pp. 328–335. IEEE Computer Society,
Los Alamitos (2004)

186 S. Baruah and A. Burns

5. Bernat, G., Burns, A.: Multiple servers and capacity sharing for implementing flexible
scheduling. Real-Time Systems Journal 22, 49–75 (2002)

6. Caccamo, M., Buttazzo, G., Sha, L.: Capacity sharing for overrun control. In: Proceedings
21th IEEE Real-Time Systems Symposium (2000)

7. de Niz, D., Lakshmanan, K., Rajkumar, R.: On the scheduling of mixed-criticality realtime
task sets. In: Proceedings of the IEEE Real-Time Systems Symposium, pp. 291–300 (2009)

8. Dorin, F., Richard, P., Richard, M., Goossens, J.: Schedulability and sensitivity analysis of
multiple criticality tasks with fixed-priorities. Real-Time Journal (2010)

9. Joseph, M., Pandya, P.: Finding response times in a real-time system. BCS Computer Jour-
nal 29(5), 390–395 (1986)

10. Prasad, D., Burns, A., Atkin, M.: The measurement and usage of utility in adaptive realtime
systems. Journal of Real-Time Systems 25(2/3), 277–296 (2003)

11. Tindell, K., Alonso, A.: A very simple protocol for mode changes in priority preemptive
systems. Technical report, Universidad Politecnica de Madrid (1996)

12. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees of ex-
ecution time assurance. In: Proceedings of the IEEE Real-Time Systems Symposium,
pp. 239–243 (2007)

Implementing Mixed Criticality Systems in Ada 187

Appendix -Example Code

The full code of the example used in this paper is as follows (note the package
Overload Control is as given earlier).

pragma Task_Dispatching_Policy(FIFO_Within_Priorities);
pragma Locking_Policy(Ceiling_Locking);
with System;
with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Execution_Time; use Ada.Execution_Time;
with Ada.Execution_Time.Timers; use Ada.Execution_Time.Timers;
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with Ada.Real_Time; use Ada.Real_Time;
with Ada.Dynamic_Priorities; use Ada.Dynamic_Priorities;
with Overload_Control; use Overload_Control;
procedure Mixedcrit is

task type Periodic(Id, Pri, Period, Deadline, WCET, LifeSpan :
Natural) is pragma Priority(Pri);

end Periodic;

task Background is
pragma Priority(1);

end Background;

protected Starter is
pragma Priority(12);
procedure Get_Start_Time(T : out Time);

private
First : boolean := true;
St : Time;

end Starter;

procedure Work(Initial : CPU_Time; C : natural) is
X : integer := 0;

begin
loop

X := X + 1;
exit when Clock - Initial > Milliseconds(C);

end loop;
end Work;

task body Periodic is
Epoc : constant Time_Span := Seconds(5);
Next_Release, Start_Time, End_Time : Time;
Release_Interval : constant Time_Span := Milliseconds(Period);
Relative_Deadline : constant Time_Span := Milliseconds(Deadline);
CPU, CPU_New : CPU_Time;
T_ID : aliased Task_ID := Current_Task;
Overrun : Timer(T_ID’Access);
TempB : Boolean;
Count : integer := 0;

begin
Starter.Get_Start_Time(Start_Time);

188 S. Baruah and A. Burns

Pri_Changer.Register(Id);
Next_Release := Start_Time + Epoc;
End_Time := Start_Time + Epoc + Seconds(LifeSpan);
delay until Next_Release;
CPU := Clock;
loop

Count := Count + 1;
Set_Handler(Overrun, Milliseconds(WCET), Pri_Changer.Changer’Access);

if Id=2 and (Count > 4 and Count < 8) then
Put("Overload in Task "); put(Id); new_line;
Work(CPU,WCET*5);

else
Work(CPU,WCET);

end if;
Cancel_Handler(Overrun, TempB);
if Clock > Next_Release + Relative_Deadline then

put("Task "); put(Id); put(" missed a deadline"); new_line;
else

put("Task "); put(Id); put(" met a deadline"); new_line;
end if;
Next_Release := Next_Release + Release_Interval;
exit when Next_Release > End_Time;
CPU := Clock;
delay until Next_Release;

end loop;
end Periodic;

task body Background is
Epoc : constant Duration := 4.5;
End_Time : Time := Clock + Seconds(30);

begin
delay Epoc;
loop

Pri_Changer.Change(Normal);
exit when Clock > End_Time;

end loop;
end Background;

protected body Starter is
procedure Get_Start_Time(T : out Time) is
begin

if First then
St := Clock;
First := false;

end if;
T := St;

end Get_Start_Time;
end Starter;

A : Periodic(1,10,100,25,12,1); B : Periodic(2,9,100,50,10,1);
C : Periodic(3,8,100,70,15,1); D : Periodic(4,7,100,100,25,1);

begin
put_line("Main Started");

end Mixedcrit;

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 189–192, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Programming Languages Meet Multicore

Erhard Ploedereder

University of Stuttgart, Universitaetsstr. 38, 70569 Stuttgart, Germany
Erhard.Ploedereder@informatik.uni-stuttgart.de

Abstract. This introduction to a panel presents topics that need to be addressed
by language designers as they strive to support the move towards multicore
applications and much higher degrees of concurrency in the execution of
programs.

Keywords: multicore, memory models, programming language design.

1 Introduction to the Panel

Multicore architectures have rekindled the discussion about suitable strategies to
exploit the physical parallelism offered by them. While it is easy to keep two or four
cores busy, mostly with independent concurrent activities, it is far from clear how one
can fill 32, 64, or 1024 cores with useful work while the speed of the single cores
declines or, at least, no longer increases. History provides little guidance towards a
conclusive answer to this question. Successfully exploiting large-scale parallelism has
been the traditional domain of “embarrassingly simple problems”, whose
computational structure lends itself to a direct mapping onto the hardware structures.
Numerical applications on vector machines are early examples, graphics algorithms
on GPUs are today’s forerunners of such problems. In these restricted domains,
amazing performance gains have been realized by parallelization. But not all
problems are “embarrassingly simple”. Quite the contrary, most of today’s software
does not exhibit the replicable and regular structures needed to easily distribute the
computation over a large number of individual processors. And yet, in order to exploit
the performance promises of multicore architectures, such distribution onto the
available cores is necessary while minimizing the communication and
synchronization across cores.

Crucial to the design of new languages and run-time environments is a concept of
what the concurrent code units consist of and how they are to be composed. The
spectrum starts at a view that sees concurrency as an implementation issue to be dealt
with mostly by the tools used in producing the systems. Here compilers are made
responsible for subdividing a given program into code portions that can then be
farmed out to the different cores for concurrent execution. Demands on the design of
a programming language are then relatively modest at first glance. They deal mostly
with better decidability of data and control dependencies and on minimizing or at
least strictly controlling the communication among concurrent entities. This approach
has been quite successful in the past but only in very restricted problem domains, e.g.,
in the afore-mentioned numerics area. Implicit parallelization for irregular problems

190 E. Ploedereder

or software in general has been singularly unsuccessful when targeted to a significant
number of parallel hardware units. Alternatively, tools can be used to generate source
code and feed it into parallel entities supported by a particular programming language.
This approach requires appropriate language features but leaves it negotiable where
the constraints needed for data-race-free execution (see below) are enforced.
Enforcement by the tools allows the language designer to provide highly efficient,
flexible mechanisms, possibly difficult to validate in all possible combinations.
Engineering of embedded systems goes this route but requires a business model that
ensures the tool-based validation of the absence of dangerous data races. Finally,
languages that take on this responsibility or cater directly to the programmers in the
more traditional sense of software production will have to solve both problems of
offering a sufficiently rich model of concurrent program units and a way to ensure
data-race-free execution. As always, many parameters influence the language design:
is the distribution to be established statically or opportunistically during execution?
How much explicit synchronization is inherent in the provided features? Most
importantly, is the concurrency model adequate for the way programmers will think
about parallel execution? An interesting and rather fundamental question to ask any
language designer is where he or she positions the language in this wide spectrum of
options.

For about a decade, designers of hardware, programming languages, compilers,
and run-time kernels have struggled to develop a memory model that supports reliable
semantics of programs in the presence of concurrency. A good overview of the topic
is [1]; several of the following issues are paraphrased from this publication. The
issues with memory models are amazingly difficult to formalize, understand and
argue about, once sequential consistency is at stake or, worse, particular programmer
expectations are violated by the semantics implied by the memory model.
Performance concerns at the hard- and software levels, capabilities for analysis and
detection of endangering execution characteristics, and the fundamental desire and
need for non-deterministic execution orders of independent code portions interact to
make simplistic memory models infeasible. One could go as far as to say that the
memory models developed for present languages in many years of hard work are a
major step towards understanding the issues but have ultimately failed to provide a
solid basis for program execution without surprises. Users are still very unsure about
what to expect and what to exclude as possible behavior of a concurrent program.

As we face the added dimension of multicore architectures with parallel accesses to
shared memory via a hierarchy of separate and joint caches and the ensuing issues for
providing a consistent view of “memory” contents and operations on these contents
across cores, it can be argued that the model of threads (or anything similar) operating
on and communicating via shared variables unrestrictedly is an evolutionary dead end
for our model of parallel execution. Yet it is the most common paradigm in today’s
notions of concurrency and one wonders whether popular familiarity will win over
technically better alternatives. At a different point in the spectrum, we have the well-
established models of distributed systems without the concept of shared variables.
The simplistic answer of mapping the methods of distributed system design and
communication by message passing onto multicore architectures runs counter to the
design of these architectures and partly forgoes the significant performance
advantages of shared memory. A more constrained and more efficient model is highly

 Programming Languages Meet Multicore 191

desirable. Several such models have been proposed and much of the work on memory
models has gone into providing sound semantics for these more constrained models.
Increasingly, “programmer beware” as the attitude to deal with intentional or uninten-
tional violations of the constraints imposed by such models is becoming unacceptable.
Too many applications are being developed where data-race situations in the execu-
tion of code with unexpected impacts on functional behavior are simply unacceptable.
Medical equipment, automotive control, robots, communication systems, and power
grids are examples of domains where unsafe or unsound execution characteristics
need to be verifiably avoided. The next generation of programming languages and
run-time execution libraries will need to be designed with these concerns in mind.
Hence, a primary question to be answered for future technologies is how the
communication and synchronization of concurrently executing code portions is to be
achieved with a guaranteed absence of unintended data races, presumably by
language constructs and enforcement rules constraining communication and
synchronization, but also with an efficiency that is commensurate with the frequency
of these operations.

Thirty years of research and practice have established a wealth of knowledge and
experience with scheduling concurrent units on single-CPU systems. Unfortunately,
quite a few properties that were appreciated by users no longer hold true on multicore
architectures. For example, priority protection models, a.k.a. ceiling protocols, can no
longer protect resources by virtue of priority assignments. Languages or run-time
environments will have to take a stand on the question which scheduling paradigms
will be the most advantageous ones on multicore architectures. Possible answers still
have to reach the user community.

2 Questions to the Panelists

For the following questions, please consider the term “language” as including run-
time environments and libraries.

• Does the programmer have to identify concurrent units in the code? If so,
what are these units, were they specifically designed for massively parallel
execution, and how are they to be used? If not so, what is the underlying
concept to arrive at concurrent execution?

• How does your language support communication and synchronization among
concurrent units?

• How did you address efficiency concerns that arise from synchronization on
multicore architectures?

• Which guarantees do your concepts provide regarding the avoidance of data
races and general races?

• Can programmers step outside the safe bounds, i. e., write programs with
races after all? How likely is an accidental violation of any such bounds?

• Which mapping of your language constructs to multicore architectures do
you have in mind?

• Did transactional memory influence your choice of language constructs, resp.
is it a good match to any of your existing constructs?

192 E. Ploedereder

• Who or what decides about distribution of concurrent units to the available
cores? Does your language make assumptions about when that decision is
made? Can the user influence the decision?

• Which scheduling paradigms do you see as the winners on manycore
architectures? Which ones does your language support?

• If you could radically change some concepts of your existing language to
achieve a better match to multicore targets, what would these changes be?

Reference

1. Adve, S.V., Boehm, H.J.: Memory Models: A Case for Rethinking Parallel Languages and
Hardware. Comm. of the ACM 53(8), 90–101 (2010)

Programming Languages for Real-Time Applications
Executing on Parallel Hardware

Alan Burns

Department of Computer Science, University of York, UK

Panel Position Statement

If there were only one type of parallel hardware then perhaps the problem of designing
programming languages for this domain would be tractable. Unfortunately, there are
many: multicores, SMPs, MPSoCs, FPGAs, GPGPUs and dataflow machines to name
just a few. And even the single architecture of ‘multicore’ represents a host of alterna-
tives specifically with respect to memory management and scale. The scale issue being
a particular source of concern – dual and four cores chips are currently problematic,
but we know 1024 cores are not too far away. Even a focus of 1024 cores is sometimes
criticized as being redundant and a wasted effort as 10,000 cores per chip is just around
the corner.

It is clear that certain forms of parallel hardware are best exploited by tools that
extract the necessary concurrency from the application’s program which may be se-
quential or agnostic in this respect. But it is also clear that some forms of hardware and
some kinds of application need to let the programmer control the mapping of their code
on to the available platform. One of these platforms is SMPs (possibly a multicore chip)
and one of the application areas is real-time systems.

Real-time systems have timing constraint, typically deadlines, that must be satisfied.
A non real-time system may have considerable non-determinacy; as long as it is mak-
ing progress, correctness does not depend on the detailed ordering of the large set of
possible execution sequences. Real-time system must be more constrained; resources
must be managed so that temporal constraints are taken into account. For a relatively
small number of cores, the best way of managing this resource usage, at the program-
ming language level, would appear to be the use of the well formed abstraction of a
task/process/thread – I’ll use the term task here.

On single processor system, the execution behaviour of a collection of tasks can be
adequately controlled, from a scheduling point of view, by the use of priority and/or
explicit task deadlines. What multicore architectures bring, in addition, is the notion of
affinity – the relation of a task to the core (or cores) on which it must/may execute.
For a real-time system, executing on a multicore platform, control over affinity is as
important as the control of priority or deadline.

Most languages used for programming real-time systems provide the abstraction of
a task. Sometimes this is well integrated into the language (as with Ada) and some-
times it is more of an add-on only available via a standard library (as with Java). These
languages all support the notion of priority and priority based scheduling of tasks, and
some even support deadlines and EDF scheduling (Earliest Deadline First). So how
should they support affinities?

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 193–195, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

194 A. Burns

From the scheduling theoretic point of view, there are a number of task management
schemes that all have merit [3]:

– Partitioned allocation – each task is assigned to just one core
– Global allocation – all tasks can execute on all cores
– Migration – some tasks can migrate to some cores
– Zoned allocation – cores are grouped into zones, within which any one of the other

schemes may be applied.

So, for an example of the latter scheme, an 80 task application running on a 16 core
platform may be structured as four 4-core zones. Within each zone most tasks are parti-
tioned, but three tasks can migrate, each between two statically defined cores [1]. Such
a structure has the advantage of giving near optimal performance whilst minimizing
overheads – as only 9 tasks migrate, and they do so between just two cores.

The natural place to support these aspects of a task (priority, deadline and affinity)
is from within the programming language – even if a different kind of programmer
deals with these aspects. It is to be commended that Ada is moving to give this level of
support [2].

Turning now to issues of inter-task communication and synchronisation. As the
Chair’s paper discusses1, this is a difficult area. What works well on single proces-
sors does not even generalise to two cores let alone, 10, 100 or 10,000. At the platform
level there are various features that allow fast and predictable parallel code to execute.
From the programming language designers point of view, what are the abstractions that
allow these features to be accessed? Unlike the uniprocessor situation, it is unlikely that
a single scheme will satisfy all application requirements.

One issue that must be addressed is control over the order of execution: when can
code be reordered and when must the sequential order in the program be maintained
– even when there does not seem to be any functional dependency between the state-
ments. The use of unprotected shared variables is usually deemed undesirable in con-
current programming, but there are a number of lock free schemes that deliver good
levels of performance on parallel hardware. These schemes, however, require explicit
control over the order of execution of key volatile variables. Control over ordering can
be extended to define blocks of code as being atomic. This allows the compiler and
run-time to exploit transactional memory which is becoming more common; although
perhaps not yet for real-time systems.

In conclusion, for small numbers of cores the current notion of a sequential task
would appear to be the correct abstraction for real-time code. But this simple notion of
a task must be augmented by allowing affinity to be controlled, and atomic or volatile
variables and blocks to be directly supported in the programming language. There are,
however, a number of important issues that are not addressed by this approach:

– Worst-case execution time (WCET), a vital parameter in real-time applications, is
not easily obtained/measured on many forms of multicore chips.

– Not all platforms will have homogeneous processors, many will contain various
heterogeneous components that will need different forms of abstraction to be avail-
able at the language level.

1 Contained in these proceedings.

Programming Languages for Real-Time Applications Executing on Parallel Hardware 195

– The notion of a task is perhaps not the right abstraction for highly parallel hardware.

Not all of these issues can be solved at the programming language level, but it is to be
hoped that the languages available to application developer are more of a help than a
hindrance.

References

1. Burns, A., Davis, R.I., Wang, P., Zhang, F.: Partitioned EDF scheduling for multiprocessors
using a C=D scheme. In: Proceedings of 18th International Conference on Real-Time and
Network Systems (RTNS), pp. 169–178 (2010)

2. Burns, A., Wellings, A.J.: Dispatching domains for multiprocessor platforms and their rep-
resentation in ada. In: Real, J., Vardanega, T. (eds.) Ada-Europe 2010. LNCS, vol. 6106,
pp. 41–53. Springer, Heidelberg (2010)

3. Davis, R.I., Burns, A.: A survey of hard real-time scheduling algorithms for multiprocessor
systems. Accepted for publication in ACM Computing Surveys (2011)

Multicore Programming in ParaSail

Parallel Specification and Implementation Language

S. Tucker Taft

SofCheck, Inc.
tucker.taft@sofcheck.com

Abstract. The advent of multicore processors requires a new approach
to programming. ParaSail is an example of such a new approach. It is
a marriage of implicit parallelism and formal methods integrated into a
simplified yet powerful programming language.

Keywords: parallel programming, formal methods, multicore proces-
sor, race-free.

1 Introduction

ParaSail [1] is a new language for race-free parallel programming, with a dis-
tinct approach to supporting parallelism. ParaSail has two overarching themes:
language semantics should be parallel by default, forcing the programmer to
work harder if sequential execution is required; and all checking, for race con-
ditions, user-defined assertions, and other potential run-time problems such as
null values or array out of bounds, should be performed at compile-time.

ParaSail was created not by bolting parallelism and formal annotations onto
an existing language, but rather by going back to basics, and building parallelism
and formal annotations into the language from the beginning, while simplifying
and unifying concepts wherever possible.

2 Implicitly Parallel

All expression evaluation in ParaSail is parallel by default. Explicitly parallel,
explicitly sequential, or (by-default) data-dependence-based execution of state-
ments and loops is provided. Annotations such as preconditions, postconditions,
assertions, constraints, invariants, etc., are woven into the syntax, and are en-
forced at compile-time. Both sequential and concurrent data structures are sup-
ported, with both lock-based and lock-free concurrency mechanisms provided.

To enable its full compile-time checking, ParaSail eliminates global variables
to operations, requiring all outputs and non-constant inputs of an operation to
be explicitly declared. In addition, no aliasing is permitted between a writable
parameter that is of a non-concurrent type, and any other parameter to the
operation.

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 196–200, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Multicore Programming in ParaSail 197

3 Simplified and Unified Language Concepts

To make conceptual room for including implicit parallelism and formal annota-
tions in ParaSail, a conscious attempt was made to eliminate from the language
all extraneous concepts, and to unify those that remain. ParaSail has four basic
concepts – modules, types, objects, and operations. All modules are parame-
terized (like a generic template). Every type is an instance of a module. Every
object is an instance of a type. Operations are defined in modules and operate
on objects.

There is no special syntax for built-in types. Instead, all aspects of a type
are definable by the user, including what literals are appropriate for the type,
whether the type is indexable like an array, the comparison operations available
on the type, any other operators available on the type, etc. Modules may be
sequential or concurrent, with their instances being sequential or concurrent
types, respectively. Instances of a concurrent type support concurrent access by
multiple threads. Synchronization for concurrent objects may be indicated as
locked, conditionally queued, or lock-free.

There is no explicit use of the heap or pointers in ParaSail. All ParaSail objects
effectively live on the stack, in a region associated with the scope where they
are declared. Objects are extensible and shrinkable as the result of assignment,
but never share space with any other object. Storage management is automatic
within each region, but there is no need for asychronous garbage collection since
all size-changing operations are explicit and there is no sharing.

There are no exceptions in ParaSail, though it is possible for one thread to
explicitly “exit” or “return” from a lexically enclosing construct, and as a side-
effect terminate all other threads active within the construct. Large objects are
generally passed by reference, but since there is no aliasing for non-concurrent
objects and no exceptions, passing non-concurrent objects by copy is feasible as
well.

4 Parallel Run-Time Model and Pico-Threading

ParaSail’s run-time model is most closely related to that of Intel’s Cilk language
[2], where small computations are spawned off as pico-threads, which are then
served by a set of worker processes running on separate processors or cores.
Computations spawned by a given worker are served last-in, first-out (LIFO)
by that worker. When a worker runs out of threads to serve, it steals from the
queue of another worker, but in this case using first-in, first-out (FIFO).

Because of the lack of aliasing and the concurrent looping constructs, ParaSail
is also amenable to the stream computing model of CUDA [3] and OpenCL [4],
where the body of a concurrent loop becomes a “kernel” which is executed on
each element of the container or stream over which the iteration applies. Because
of the lack of pointers and exceptions, passing parameters by copy, as might
be required when communicating with a Graphics Processing Unit (GPU), is
straightforward.

198 S. Tucker Taft

5 Deterministic and Non-deterministic Race-Free Parallel
Programming

ParaSail makes it easy for the programmer to achieve determinism when desired,
but also does not force overspecification, so that, for example, the iterations of
a (non-concurrent) loop over a sequence are by default unordered, but the pro-
grammer may specify “forward” or “reverse” explicitly. This enables the com-
piler to more readily interleave or run in parallel non-data-dependent parts of
the loop. Similarly, by default the execution of sequential statements are limited
only by data dependencies involving non-concurrent data structures, but it is
possible for the programmer to force strictly sequential execution by using “;;”
rather than simply “;” to separate statements. Or the programmer can go the
other way, and effectively declare there are no non-concurrent data structure
dependencies by using “||” rather than “;” to separate statements, essentially
“forcing” parallel execution.

6 Object-Oriented Programming in Parasail

As far as object-oriented programming, ParaSail supports inheritance and poly-
morphism. Each module has an “interface,” and if not declared as abstract, a
“class” that defines it. Modules may inherit operation interfaces from one or
more other modules, and may inherit operation code and data components from
at most one other module. Named sets of operations may be effectively appended
to a module, without disturbing the original module, largely bypassing the need
for “visitor” operations. A polymorphic variant of a type, identified by append-
ing a “+” to the type name, may be used anywhere a type is used, to represent
any type that implements the associated interface.

7 Conclusion

Our position is that languages like ParaSail are the way to bring safe and effi-
cient parallel programming to the masses, which will be mandatory as we move
into the era of multi-core on the desktop. ParaSail fosters the use of parallel
programming by making programs parallel by default, while eliminating pro-
grammer concerns like race conditions and run-time failures, thereby easing the
debugging burden. This burden is further reduced by eliminating exceptions, the
heap, and reassignable pointers, and unifying the typically distinct concepts of
generic templates, packages, namespaces, modules, interfaces, classes, objects,
and structs, into a single notion of module, with all types being an instance of
a module, and all objects being an instance of a type.

References

1. Taft, S.T.: ParaSail Programming Language blog (2011),
http://parasail-programming-language.blogspot.com

2. Blumofe, et al.: Cilk: An Efficient Multithreaded Runtime System (1995),
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-548.pdf

http://parasail-programming-language.blogspot.com
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-548.pdf

Multicore Programming in ParaSail 199

3. NVIDIA: What is CUDA (2011),
http://www.nvidia.com/object/what_is_cuda_new.html

4. Khronos Group: OpenCL - The open standard for parallel programming of hetero-
geneous systems (2011), http://www.khronos.org/opencl/

Appendix

As an example of the syntax of ParaSail, here is a parallel version of the Quick-
sort algorithm in ParaSail. The expressions in braces are annotations which are
checked for validity at compile-time. Comments start with “//”. Reserved words
are in lower case. In this example, user identifiers are in mixed case, though that
is not required. Note that rather than explicit recursion, a parallel “continue
loop” is used to perform the sorting of the two partitions of the original array.
interface Sort ing<One Dim Array<>> i s

// Non−re curs i v e p a r a l l e l qu ic k sor t
procedure Quicksort (Arr : ref var One Dim Array ;

function Before (Left , Right : One Dim Array : : Element Type)
−> Boolean i s ”<”) ;

// Sort Arr according to the sor t ing funct ion ”Before”
// which re turns True i f Le f t must appear be fore Right
// in the sorted order .
// Before re turns False i f Le f t = Right .

end interface Sort ing ;

class Sort ing i s
// Non−re curs i v e p a r a l l e l qu ic k sor t

exports
procedure Quicksort (Arr : ref var One Dim Array ;

function Before (Left , Right : One Dim Array : : Element Type)
−> Boolean i s ”<”)

i s
for A => Arr while Length (A) > 1 loop

// Handle short arrays d i r e c t l y . Part i t ion longer arrays .
i f Length (A) == 2 then

i f Before (A[A. Last] , A[A. F i r s t]) then
// Swap the elements i f out o f order
A[A. Last] :=: A[A. F i r s t] ;

end i f ;
else

// Part i t ion array
const Mid := A[A. F i r s t + Length (A) / 2] ;
var Le f t : Index Type := A. F i r s t ;
var Right : Index Type := A. Last ;
until Le f t > Right loop

var New Left : Index Type := Right+1;
var New Right : Index Type := Left −1;
block

// Find item in l e f t h a l f to swap
for I in Le f t . . Right forward loop

i f not Before (A[I] , Mid) then
// Found an item tha t can go into r i gh t p a r t i t i t i o n
New Left := I ;
i f Before (Mid , A[I]) then

// Found an item tha t ∗must∗ go into r i gh t part
exit loop ;

end i f ;
end i f ;

end loop ;
| |

// In pa ra l l e l , f ind item in r i gh t h a l f to swap
for J in Le f t . . Right r e v e r s e loop

http://www.nvidia.com/object/what_is_cuda_new.html
http://www.khronos.org/opencl/

200 S. Tucker Taft

i f not Before (Mid , A[J]) then
// Found an item tha t can go into l e f t p a r t i t i t i o n
New Right := J ;
i f Before (A[J] , Mid) then

// Found an item tha t ∗must∗ go into l e f t part
exit loop ;

end i f ;
end i f ;

end loop ;
end block ;

i f New Left > New Right then
// Nothing more to swap
// Exit loop and recurse on two pa r t i t i on s
Le f t := New Left ;
Right := New Right ;
exit loop ;

end i f ;

// Swap items
A[New Left] :=: A[New Right] ;

// continue look ing for items to swap
Le f t := New Left + 1 ;
Right := New Right − 1 ;

end loop ;

// At t h i s point , ”Right” i s r i g h t end of l e f t p a r t i t i on
// and ”Left ” i s l e f t end of r i g h t pa r t i t i on
// and the pa r t i t i on s don ’ t over lap
// and neither i s the whole array
// and everyth ing in the l e f t p a r t i t i on can precede Mid
// and everyth ing in the r i g h t p a r t i t i on can fo l l ow Mid
// and everyth ing between the pa r t i t i on s i s equa l to Mid .
{Left > Right ;
Right < A. Last ;
Le f t > A. Fir s t }

{(for a l l I in A. Fir s t . . Right => not Before (Mid , A[I])) ;
(for a l l J in Left . . A. Last => not Before (A[J] , Mid)) ;
(for a l l K in Right+1 . . Left−1 =>

not Before (Mid , A[K]) and not Before (A[K] , Mid))}

// I t e r a t e on two halves (in pa r a l l e l)
then
continue loop with A => A[A. F i r s t . . Right] ;

| |
continue loop with A => A[Le f t . . A. Last] ;

end i f ;
end loop ;

end procedure Quicksort ;
end class Sort ing ;

Why Parallel Functional Programming Matters:

Panel Statement

Kevin Hammond

School of Computer Science, University of St. Andrews, UK
kh@cs.st-andrews.ac.uk

Abstract. Parallel programming is returning to importance. Functional
programming ideas offer a way to break through the barriers that restrict
parallel programmers, dramatically simplifying how parallelism can be
exploited. This paper explores some ideas of abstraction from functional
programming, showing how functional programming offers opportunities
to deal with real problems of parallelism.

1 Introduction

In a possibly unguarded moment, Carnegie Mellon professor Bob Harper said1:

”The only thing that works for parallel programming is functional pro-
gramming”

While this statement might need some qualification, it conveys a kernel of truth
that has led to an epiphany moment for many programmers and system de-
signers. Parallel programming is fundamentally about avoiding or minimising
side-effecting conflicts, and functional programming can clearly help with this:
if a language has no side-effects, or makes all side-effects explicit, it becomes
much easier to write programs that run in parallel.

For a long time, parallel programming was seen as a specialised activity, rele-
vant only to high-performance applications. This situation is currently changing,
and changing extremely rapidly. Future multi-core/many-core hardware will not
be slightly parallel, like today’s dual-core and quad-core processor architectures,
but will be massively parallel. It is becoming increasingly obvious that the tra-
ditional sequential von Neumann programming model has reached, or will soon
reach, its limits, even when packaged into a threading model.

“Ultimately, the advice I’ll offer is that developers should start thinking
about tens, hundreds, and thousands of cores now in their algorithmic
development and deployment pipeline. This starts at a pretty early stage
of development; usually, the basic logic of the application should be in-
fluenced because it drives the asymptotic parallelism behaviors.”
Anwar Ghuloum, Principal Engineer, Intel Corporation

1 Pers. comm., March 2011.

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 201–205, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

202 K. Hammond

It is not enough simply to program in a language that permits parallelism and
to hope that adequate performance can be obtained; rather, programmers must
think about parallelism as a fundamental part of their program structure, in
the same way that they think about loops, conditionals and other constructs.
Parallelism cannot be “bolted on” to an existing program (or language) as an
afterthought, it must be present in a fundamental way in the original design.
Failure to do this will yield a program with unacceptable parallel performance,
or one that cannot be scaled to meet future requirements. This paper discusses
these issues, building on substantial experience with Parallel Haskell [1,2,3,4].

2 What Are the Key Challenges to Writing Effective
Parallel Programs?

Parallel programmers face many challenges that are not present in sequential
code, and which may not be obvious from the outset. The key problems include:

Decomposition: the parallel tasks within the program must be identified.
Race conditions: the order in which expressions are evaluated and/or the or-

der of communications may affect the outcome of the parallel program.
Locking: Shared memory locations must be locked to avoid conflicts that could

give inconsistent results; this locking is often expensive and very error-prone.
Deadlock/Livelock: the programmer must avoid creating dependencies that

block program execution.
Granularity: It is necessary to achieve the correct level of granularity - too fine-

grained and the system will be swamped with small tasks; too coarse-grained
and there will be insufficient granularity. Unfortunately, a fixed choice will
generally not scale.

Scalability: programs should scale to take advantage of increased numbers of
parallel processors.

Load balancing: work may be unevenly distributed among the available pro-
cessing resources, especially where tasks have irregular granularity, and it
may be necessary to rebalance the work allocation.

2.1 How does Functional Programming help with These Challenges?

Fortunately, good high-level language and implementation design can help with
many of these challenges. Purely functional languages such as Haskell have sev-
eral advantages when it comes to parallel evaluation. The most fundamental is
that because there are no side effects, it is always safe to execute computations
in parallel, so decomposition is easy. Regardless of the order in which compu-
tations are executed, the result of the program will always be the same. In fact,
even more strongly, the result will be identical to that obtained when the program
is run sequentially. Moreover, provided all the parallel computations are needed
as part of the result of the program, if the program terminates when it is run
sequentially, it will also terminate when run in parallel. These two points mean

Why Parallel Functional Programming Matters: Panel Statement 203

that programs can be debugged sequentially, which represents a huge saving in
effort. The parallel implementation adds only behavioural effects in terms of e.g.
performance and memory usage. In addition, because the order in which any I/O
operations are performed is fully defined by the language2, there can never be
race conditions or unexpected outputs caused by interleaving I/O operations
in the wrong order. Much or all of the required locking and synchronisation can
be handled entirely within the implementation. In addition, deadlock can never
occur: the data and control dependencies in the functional language ensure that
there can be no unresolved mutual dependencies between tasks. Finally, scal-
ability and load balancing are made much simpler if granularity can be
varied by the runtime system: it is much easier to rebalance fine-grained tasks,
and to absorb increased processing capabilities. However, care needs to be taken
to avoid both excessive per-thread overheads and excessive numbers of threads.
Ultra-lightweight threading can help with this.

2.2 Shared Memory and Locking

Avoiding memory conflicts is very important in shared-memory systems. The
usual solution to this problem is to use a memory-locking protocol, often using
very slow and bandwidth-hogging atomic operations. If nothing is known about
the behaviour of other parallel threads, as in most imperative/object-oriented
languages, then it is necessary to lock very conservatively in order to avoid
possible conflicts. This can lead to a high level of locking and poor performance,
especially when the programmer has (as often happens) been over-cautious with
the use of locking. One solution is to avoid shared memory and to provide threads
with their own completely private and independent memory spaces. Sharing then
occurs only if it is necessary, using either a shared-memory or a message-passing
abstraction. Maintaining this discipline manually is extremely difficult, but it is
easily handled as part of a well-designed runtime system for a parallel functional
language, for example.

3 Parallel Patterns or Skeletons

Recognising and using patterns of parallelism can dramatically simplify the pro-
gramming task. Pattern-based programming is one of the key weapons in getting
programmers to “think parallel”. There is a long history of using parallel pat-
terns in functional programming, where they are usually called skeletons [5].
Higher-order functions naturally describe high-level programming patterns, the
use of higher-order functions allows them to be combined easily and generically,
and the advanced type systems allow these patterns to be safely reused in a
variety of settings. For example, a simple parallel map where a function f is
mapped over a list of elements [x1, . . . , xn] to give [fx1, . . . , xn] can be given a
simple direct parallel implementation as shown in Figure 1, which maps easily

2 e.g. using the IO monad in Haskell

204 K. Hammond

x1 x2 … xn

f x1 f x2 … f xn

f

thread1 thread3thread2

f f

Fig. 1. Simple Implementation of Parallel Map Pattern

onto a data-parallel system. Alternative parallel patterns for the same construct
include control-parallel task farms or parallel workpools or even, if the depen-
dencies are correct, pipelines. These high-level patterns can easily be selected
and changed by the programmer.

4 Influences on Real-World Languages/Systems

Functional languages such as Haskell [6], Erlang [7] and Micrososft’s F# [8]
are rapidly growing in popularity. Such languages naturally support parallelism.
Functional programming concepts are also finding their way into other, main-
stream notations. For example: Apple’s Grand Central Dispatch sched-
uler uses closures to capture very lightweight threads; C++0x uses futures to
encode potential threads, and allows anonymous functions to be defined using
lambda functions and closures ; dataflow ideas are widely used in parallel com-
puter architectures; CUDA is based around the idea of stateless threads with
bulk synchronisation; and Google has very successfully deployed pattern-based
programming in the form of its mapReduce pattern, which is a classic func-
tional programming construct. These are just a few instances of the idea that
“the only thing that works is functional programming”.

5 What about Sequential Performance?

This is a mantra that is often raised. Sequential imperative programs are faster
than the corresponding functional programs, so we should aim to parallelise
them rather than the functional programs. Unfortunately, as discussed in the
introduction, this idea is fundamentally limited for a number of reasons:

1. conventional language approaches lead us to think sequentially rather than
to think parallel;

2. imperative languages usually lack the high level structuring constructs that
are needed for parallel programming;

3. the most scalable parallelism works at a fine level of granularity;

Why Parallel Functional Programming Matters: Panel Statement 205

4. we will usually not be able to minimise the use of locking;
5. we will usually need to program very defensively, since we do not have any

guarantees about the structure of our parallel program;
6. we will need to expend considerable energy dealing with race conditions,

memory contention and deadlock etc.

Moreover, as described above, many of the successful ideas in parallelism actu-
ally reflect functional programming concepts at some level. Encapsulation and
isolation of both task and memory is key to achieving good parallel performance.
The functional programming paradigm naturally lends itself to this.

6 Conclusions

This paper has briefly covered the key problems associated with parallel pro-
gramming, and shown how functional programming technology can help with
many of them. Naturally, there are still many problems and difficulties that re-
main to be overcome and the paper has both barely scratched the surface of the
topic and been deliberately provocative. However, by eliminating uncontrolled
side-effects functional programming dramatically simplifies the problem of writ-
ing good parallel programs. Functional programming may not be the only thing
that works, but it does seem to be one of the most promising.

Acknowledgements

This work has been generously supported by the EU Framework 6/7 projects
SCIEnce (RII3-CT-2005-026133) and ADVANCE (IST-2010-248828), and by the
UK’s Engineering and Physical Sciences Research Council (Islay, EP/F 030657
and HPC-GAP, EP/G 055181).

References

1. Hammond, K., Trinder, P.: Parallel Haskell: Lightweight Parallelism for Heavy-
weight Parallel Programs (2011) (in Preparation)

2. Trinder, P., Hammond, K., Loidl, H.W., Peyton Jones, S.: Algorithm + Strategy =
Parallelism. J. of Functional Programming 8(1), 23–60 (1998)

3. Trinder, P.W., Hammond, K., Mattson Jr., J.S., Partridge, A.S., Peyton Jones, S.L.:
Gum: a Portable Parallel Implementation of Haskell. In: Proc. PLDI 1996: ACM 1996
Conf. on Prog. Lang. Design and Implementation, pp. 79–88. ACM, New York (1996)

4. Marlow, S., Maier, P., Loidl, H.W., Aswad, M.K., Trinder, P.: Seq no more: better
strategies for parallel haskell. In: Proceedings of the Third ACM Haskell Symposium
on Haskell, Haskell 2010, pp. 91–102. ACM, New York (2010)

5. Cole, M.: Algorithmic Skeletons: Structure Management of Parallel Computations.
In: Research Monographs in Parallel and Distributed Computing. MIT Press, Cam-
bridge (1989)

6. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries: the Revised Report.
Cambridge University Press, Cambridge (2003)

7. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)
8. Petricek, T.: Real World Functional Programming With Examples in F# and C#.

Manning Publications (2009)

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 206–210, 2011.
© Springer-Verlag Berlin Heidelberg 2011

OOT, DO-178C and SPARK

Roderick Chapman and Trevor Jennings

Altran Praxis Limited,
20 Manvers Street

Bath BA1 1PX, UK
{rod.chapman,trevor.jennings}@altran-praxis.com

Abstract. This position paper briefly covers the design of object-oriented
programming in SPARK, and goes on to discuss the potential impact that the
emerging DO-178C and Ada2012 standards might have on SPARK.

Keywords: Ada, SPARK, DO-178C, Object Oriented Programming, LSP.

1 Introduction

The SPARK1 language is designed primarily for the comprehensive application of
static analysis. The depth of the analyses achievable ranges from data-flow and
information-flow analysis, through proof of absence of run-time exceptions, to formal
verification of correct functionality of the code against a specification. This paper
looks at the underlying design principles of SPARK and considers the aspects of OOT
that have been adopted without compromising those principles. We also look to the
future and the impact that Ada2012 and DO-178C might have.

2 Static and Dynamic Verification for OO

Static analysis is recognized as a valuable mechanism for verifying software.
Industrial experience shows that the use of static analysis during development
eliminates classes of errors that can be hard to find during testing [1]. Moreover, these
errors can be eliminated by the developer before the code has been compiled or
entered into the configuration management system, saving the cost of repeated code
review and testing which results from faults that are discovered during dynamic
testing.

Static analysis as a technology has a fundamental advantage over dynamic testing.
If a program property is shown to hold using static analysis, then the property is
guaranteed for all scenarios if the soundness of the analysis can be trusted. Testing, on
the other hand, may demonstrate the presence of an error, but the correct execution of
a test only indicates that the program behaves correctly for the specific set of inputs
provided by the test, and within the specific context that the test harness sets up. For
all but the simplest systems, exhaustive testing of all possible combinations of input

1 The SPARK programming language is not sponsored by or affiliated with SPARC

International Inc. and is not based on the SPARC® architecture.

 OOT, DO-178C and SPARK 207

values and program contexts is infeasible. Further, the impact of correcting errors that
are found during the testing phases of the lifecycle is generally massive in comparison
to those found during development. In spite of these limitations, testing remains at the
heart of most software engineering projects, while static analysis remains
undervalued.

2.1 Here Comes DO-178C…

DO-178B does require some forms of static analysis. These appear under the “Source
Code is Accurate and Consistent” objectives appearing in Table A.5 and section
6.3.4f. The application of these analyses, though, did not permit subsequent testing
activities to be reduced or eliminated and perhaps have remained under-valued in the
context of DO-178B for some time.

DO-178C “moves the goalposts” significantly. In our understanding of the current
draft of the new standard, it will allow verification credit to be taken for static analysis
activities, and hence subsequent dynamic analyses may be reduced or eliminated. This
is most welcome – effectively catching up with the application of static analysis that
has been advocated and implemented by SPARK for more than 15 years.

178C offers the prospect of meeting a verification objective by wholly static
means, wholly dynamic, or some combination of the two. We presume that the
selection of techniques to be used will form part of the Plan for Software Aspects of
Certification (PSAC) in a 178C project, and will have to be justified appropriately.
We do not ever imagine that dynamic verification will be entirely eliminated – for
instance, testing still has its place in several areas:

• To verify environmental assumptions that underpin static analysis.
• To confirm the results of static analysis under experimental conditions.
• To verify behaviours that lie beyond that mathematical model of whatever static

analysis tools have been used. For example – covert channels such as timing and
power consumption for security.

• To verify system level behaviour and the interaction of software components with
other systems, hardware devices, and the outside world.

• To validate that system behaviour really does meet top-level requirements.

Nevertheless, static analysis should still play a significant role in DO-178C
projects if only to reduce the cost, risk and repetition of subsequent dynamic analyses.

3 OOT in SPARK: 2002 - Present

Following the advent of tagged types in Ada95, a design study was carried out to see
if any of Ada’s (then) new OO features could be incorporated in SPARK. This
eventually led to release 6.1 of the SPARK language definition and Examiner in June
2002. This section briefly describes the language subset that resulted from this work
and persists to this day.

The basic design goal was, in line with the existing design of SPARK, to favour
static verification and soundness of that verification at all costs over dynamic
language features. In short, anything that defied static verification was eliminated.

208 R. Chapman and T. Jennings

3.1 Constructors and Finalizers

The model of object creation and destruction in SPARK is explicit. A SPARK object
is created simply via its declaration, and its lifetime is statically determined by the
scope in which it is declared. The declaration defines its type (and class) statically.
The object may be initialized either as part of its declaration, or via an explicit call to
an initializing subprogram. Data flow analysis techniques ensure that the object is
always initialized prior to first use.

Object finalization is also explicit in SPARK. A finalizer operation must be called
explicitly prior to the exit of the object’s scope if some finalization action is required.

3.2 Abstraction

Abstraction involves the identification of the abstract features of a class - these are the
key features that define each object of the class. SPARK supports abstraction via its
abstract data types that define both the abstract data fields for members of the class
and the abstract operations for the class.

3.3 Encapsulation

Encapsulation involves the hiding of implementation detail from clients of the class.
SPARK supports encapsulation via packages in the same way as Ada. The package
specification provides the visible interface for the class. The package body
encapsulates the entire implementation of the class, which is hidden from clients of
the class. SPARK language rules verify that the implementation conforms to the
contracts that define its visible semantics.

3.4 Hierarchy and Inheritance

In OOT the concepts of hierarchy and inheritance are closely coupled. In order to
create a hierarchy of related classes, a subclass can be created that is based on a more
abstract superclass. The subclass automatically inherits all the visible attributes and
operations of the superclass and in addition, the subclass may override certain
inherited operations with specialist implementations, and may also add further
attributes and operations that are appropriate for its own use.

The creation of hierarchies and the application of single-level inheritance are both
supported within SPARK via tagged types and public child packages.

A further characteristic of the SPARK inheritance model is that it enforces
statically the Liskov/Wing substitution principle (LSP) [2]. This principle essentially
requires that where a subclass operation overrides an operation in the superclass then
the subclass operation will conform to all pre- and post-conditions of the superclass
operation. In this context, conformance implies that the subclass operation requires at
most the pre-conditions of the superclass operation, and promises at least the post-
conditions of the superclass operation.

Support for the Liskov substitution principle in SPARK is based on explicit pre-
and post-condition contracts that may be applied to any operation, allowing formal
verification of code properties. The use of pre-conditions is a very powerful tool in
defining the conditions under which an operation can be used safely. One of the major

 OOT, DO-178C and SPARK 209

risks of inheriting operations is misunderstanding of the pre-conditions associated
with the use of the operation, and not abiding with those pre-conditions in the context
of a subclass. SPARK protects against this since the preconditions are stated explicitly
and more importantly, the Examiner will statically analyze the program to ensure that
the operation is only ever invoked within its pre-conditions.

3.5 Polymorphism and Dynamic Dispatching

Polymorphism is a key feature of OOT, however it can undermine certain aspects of
static analysis. The conflict seems obvious: how can a tool statically analyze a
dynamically dispatched call? This issue applies not only to formal verification by a
static analysis tool, but also to verification by code review and by test. There is also
an impact on other forms of static verification techniques such as schedulability and
structural coverage analysis. Secondly, polymorphic programming is almost always
associated with the use of general access types in order to build and iterate over
heterogeneous data structures. Access types are currently forbidden in SPARK for
very good reasons—principally to avoid aliasing—so it is not even clear that allowing
classwide types and dispatching would be any use at all without the addition of access
types – something that was too horrible to consider at the time.

For these reasons, polymorphism and dynamic dispatching are not directly
supported in SPARK at present.

4 OOT in SPARK – Future

Following the Ada2005 and (soon) Ada2012 standards, there are several areas of
OOT in SPARK that are now worth re-visiting.

The most significant development concerns the provision of container libraries in
Ada2012. The new “Bounded Containers” proposed for Ada2012 provide libraries
that are compatible with the overall design of SPARK, and allow for heterogeneous
data-structures to be build without the explicit use of access types or “pointers.” This
is a significant breakthrough, since it implies that classwide types and dispatching
could be both achievable and useful in SPARK. This would, of course, be
complemented by SPARK’s existing support for verification of LSP.

5 Open Issues

Some issues with OOT remain open from our point of view. In particular:

5.1 Is Verification of LSP A Mirage?

Many proponents of OOT cite the LSP as “the way” to justify the use of dynamic
dispatch in OO programs. While this is superficially attractive, we must remember
that the original formulation of LSP was for a particular formalization of OO that may
not apply to “real” programming languages like C++, Ada or Java.

Dynamic verification of LSP has been long-established in languages such as Eiffel
[3], for example, and (soon) in Ada2012 with its new pre- and post-condition aspect

210 R. Chapman and T. Jennings

clauses. While this does constitute progress, dynamic checking of contracts is most
definitely not “verification” from a formal point of view – it remains just a highly
specialized form of testing.

This leaves static verification of LSP. SPARK has shown how this can be done at
the cost (some would say) of Draconian language subsetting and discipline. Static
verification of LSP remains extremely challenging in other unsubsetted languages, so
we look forward to progress in this area.

5.2 Is LSP Actually Useful?

Next question: is it possible to write useful programs that strictly comply with the
LSP? Perhaps LSP is too restrictive, and projects will simply ignore such guidance in
favour of increased expressive power? Perhaps we should ask the Eiffel community
for advice on this topic?

6 Conclusions

The jury may be still out on the use of OOT in high integrity software to some extent,
but the advent of Ada2012 and DO-178C does seem to suggest a bright future where
both the technical approach and standards will align with useful results. We look
forward to results from projects using these new languages and standards.

References

1. Amey, P.: Correctness by Construction: Better can also be Cheaper. CrossTalk Journal
(March 2002), PDF on,
http://www.stsc.hill.af.mil, http://www.sparkada.com

2. Liskov, B., Wing, J.: A Behavioural Notion of Subtyping. ACM Transactions on
Programming Languages and Systems 16(6) (November 1994)

3. Meyer, B.: A Touch of Class: Learning to Program Well with Objects and Contracts.
Springer, Heidelberg (2009) ISBN 978-3-540-92144-8

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 211–213, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Position Paper: DO-178C/ED-12C and
Object-Orientation for Critical Systems

Dewi Daniels

Abstract. DO-178C/ED-12C, six years in preparation, is expected to be
published in 2011. This updated document will provide guidance for the
development and verification of safety-related software for avionic systems. As
this position paper will describe, DO-178C/ED-12C is good news for Ada.

Keywords: Ada, avionics, DO-178B, DO-178C, safety-critical, safety-related,
software.

1 DO-178C

For the past nineteen years, DO-178B/ED-12B [1, 2] has provided guidance on the
software aspects of airborne systems and equipment. With over 20,000 certified jet
aeroplanes in service worldwide [3], DO-178B/ED-12B has turned out to be an
extremely important document. The document is currently being updated to reflect the
changes in software technologies since 1992. About 375 individuals have been involved
in preparing the updated document. These individuals represent a broad mix of
organizations, including certification authorities, airframe manufacturers and equipment
suppliers from around the world, so DO-178C will present a consensus of the airborne
software community. DO-178C/ED-12C is expected to be published at the end of 2011.

2 Object-Oriented Supplement

I believe that DO-178C/ED-12C will be mostly good news for Ada. The object-
oriented technology supplement will provide much-needed guidance on how to use,
and verify the use of, the object-oriented features of Ada 95 (and later). I’m really
impressed by the excellent job done by the folks in the sub-group that wrote the
object-oriented supplement. They had a very good starting point in the FAA Object
Oriented Technology in Aviation (OOTiA) Handbook. Nevertheless, I was surprised
by what they wrote. I expected a list of rules; for example, “thou shalt not use
multiple-inheritance”. Instead, they’ve identified a set of objectives that need to be
satisfied. Some of these objectives will be very easy to satisfy if you limit the features
that you use, but very difficult (and therefore time-consuming and expensive) to
satisfy if you’re determined to use every feature in the object-oriented toolbox.
Nevertheless, nothing is forbidden.

3 Formal Methods Supplement

The formal methods supplement will, at long last, allow certification credit to be
taken for the use of technologies such as SPARK. I get frustrated when people

212 D. Daniels

complain that formal methods are immature and unproven. Formal methods have
been around longer than MC/DC, yet no-one complains that MC/DC is immature or
unproven.

Dijkstra’s seminal book on “A Discipline of Programming” [5] was published in
1976. I was personally involved in conducting program proof of a family of Full
Authority Digital Engine Controllers, including one for the Rolls-Royce RB211-535,
when I worked for Program Validation Limited in the early 1990s. In 2004, a report
funded by the US Department of Homeland Security [6] cited Praxis’ Correctness by
Construction methodology, which relies heavily on the use of formal methods
(including SPARK), as one that can produce software with fewer than 0.1 defects per
thousand lines of code. More recently, Airbus has been doing some very interesting
work using the Caveat tool [7].

4 Strongly Typed Languages

I regret that we did not push harder to promote strongly typed languages in DO-
178C/ED-12C. I remember that, at the Vienna plenary, Professor John Knight was
trying to drum up support for DO-178C/ED-12C to recommend the use of strongly
typed languages. Nevertheless, this was never a battle that we could have won; the
voting rules mean that just a few dissenting voters would have been able to block the
proposal.

This is a shame; Andy German’s work [8] showed that, on C-130J, Ada (and
especially SPARK) programs had a much lower average defect rate than C programs.

DO-178B/ED-12B §4.2c states that “methods and tools should be chosen that
provide error prevention in the software development processes”. This good advice is
not followed up elsewhere in the document. Indeed, it’s easier to satisfy the DO-
178B/ED-12B objectives using C than it is using Ada (for example, verification of
array-bound checks is not an issue in C, since they are not a part of the language
definition). The result is that Ada is now little-used in civil avionic software
development (C is the most widely used language), while Ada is widely used in the
European rail industry (because EN 50128 highly recommends the use of strongly
typed languages).

5 In-Service Experience of DO-178B/ED-12B

DO-178B/ED-12B has been a spectacularly successful document. Or have we just
been lucky so far? There has not been a single accident in passenger service that has
been ascribed to software, although software has been a contributing factor is a very
small number of accidents, and has been implicated in a small number of in-flight
upsets.

The issues that I know of that have caused problems in service have not been
because the software failed to implement the requirements correctly; rather, the
software implemented the requirements faithfully, but the requirements specified
unsafe or otherwise undesirable behaviour (usually in circumstances that had not been
foreseen by the requirements author). An example is the A320 accident in Warsaw in
1993, where a software interlock that had been designed to prevent inadvertent

 Position Paper: DO-178C/ED-12C and Object-Orientation for Critical Systems 213

deployment of the engine thrust reversers and ground spoilers in-flight prevented their
deployment for 9 seconds after landing in a strong crosswind.

6 Model-Based Supplement

It therefore follows that the most effective way in which software developers can help
improve aircraft safety is by using methods and techniques that help ensure that the
requirements are the right requirements; and that, in particular, they specify safe
behaviour. For this reason, I believe that the model-based supplement could turn out
to be one of the most significant DO-178C/ED-12C supplements. Model-based
techniques allow common tools and notations to be shared between system engineers
and software engineers. Furthermore, they allow for early animation of the
requirements, providing the system engineers with early feedback that the software
behaviour is as they expected and supports the system safety objectives.

Again, Ada has its part to play in model-based design. The SCADE-to-SPARK
code generator that is under development promises to combine the advantages of
model-based development, formal methods and Ada.

7 Conclusion

Airborne software has an exceptional safety record. We would like to keep it that
way. I believe that Ada has a part to play in ensuring that airliners remain a safe way
to travel. I also think that DO-178C/ED-12C will be good for the Ada community.

References

1. RTCA, Inc.: DO-178B: Software Considerations in Airborne Systems and Equipment
Certification, Washington (1992)

2. EUROCAE: ED-12B: Software Considerations in Airborne Systems and Equipment
Certification, Paris (1992)

3. Boeing Commercial Airplanes: Statistical Summary Of Commercial Jet Airplane Accidents,
Worldwide Operations 1959-2009, Seattle (2010)

4. Federal Aviation Administration,
http://www.faa.gov/aircraft/air_cert/design_approvals/
air_software/oot/

5. Dijkstra, E.W.: A Discipline of Programming, Englewood Cliffs (1976)
6. Redwine, S.T., Davis, N. (eds.): Processes to Produce Secure Software. Improving Security

across the Software Development Lifecycle (National Cybersecurity Partnership Taskforce
Report), Appendix B, pp. 17–47 (2004),
http://www.cyberpartnership.org/init-soft.html

7. Souyris, J., Wiels, V., Delmas, D., Delseny, H.: Formal Verification of Avionics Software
Products. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 532–546.
Springer, Heidelberg (2009)

8. German, A.: Software Static Analysis Lessons Learned, CrossTalk (2003)
9. Ladkin, P.B.:

http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/
ComAndRep/Warsaw/warsaw-report.html

Object Orientation in Critical Systems:

Yes, in Moderation

Position Paper for the DO178C and Object-Orientation
for Critical Systems Panel

Jean-Pierre Rosen

Adalog, Issy-les-Moulineaux, France
rosen@adalog.fr, http://www.adalog.com

1 Introduction

DO178C introduces a supplement addressing Object Oriented Technology (OOT)
for avionics software. Although OOT is more of a methodological issue than a
language issue, and despite the wording that tries to be programming-language
agnostic, it is clear that this supplement is the result from a strong push from
the C++ and Java communities to make their languages more acceptable for
critical systems.

For example, some issues were purposedly not included in the supplement on
the ground that they were not related to OOT (like concurrency and function
pointers), while others were included despite them not being related to OOT
either (dynamic memory management, virtualization), because the latter were
absolutely necessary for C++ and Java.

In this position paper, we review the origin of the push for OOD, and claim
that a restricted form of OOT is all that is needed in the context of critical
systems developed in Ada, in order to grasp the benefits of OOT without the
heavy load (or the risks) of certification of full OOT systems.

2 DO178C and OOT

2.1 Why Use OOT in Airborne Systems?

A fundamental feature of DO178C is that the whole process is requirements-
driven: every aspect of software should be related to a low-level requirement,
which is itself connected to high level requirements. Therefore, the decision of
using OOT in airborne systems should be connected to some requirements, and
OOTiA[1] had a section on “considerations before making the decision to use
OOT”. There is no equivalent in DO178C that would address which kind of
requirements could lead to choosing OOT for the development of airborne sys-
tems.

Beyond the desire of developers to use C++ and Java in avionics (but a
desire does not make a proper requirement!), there might also be the push to

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 214–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Object Orientation in Critical Systems: Yes, in Moderation 215

using UML. Although UML is a notation which claims to be methodologically
neutral, it forces in practice an OO approach; for example, the main design
diagram is the class diagram. But this simply pushes the question to “why use
UML for avionics”?

Of course, proponents of the full OO approach will claim that object ori-
entation promotes encapsulation, contracts, reuse, and diminishes development
costs. True, but OOT (or more precisely OO by classification[2]) is not the only
way to achieve these goals, especially when using Ada.

OOTiA recognized that the true benefits of OOT in avionics is still an open
issue; however, it seems unavoidable, simply because it is the way history is
going. And after all: why not?

2.2 The Main Issue with OOT: Testing

A fundamental principle of DO178C is that certification is performed on the
whole program; exhaustive testing is therefore (in principle) possible. However,
dynamic binding implies that for a given (dispatching) call, full coverage would
require testing all the methods for all possible classes in the whole class hierarchy.
Since this needs to be done at every level in the call graph, it leads to a com-
binatorial explosion of paths that can make extensive (also called pessimistic)
testing impractical.

DO178C would allow such pessimistic testing; however, it suggests another
path that relies on the application of the LSP (Liskov Substitution Principle)[3]:
if it can be demonstrated that a using class relies only on some properties of the
used class, and that every object in the derivation tree satisfies these properties,
then there is no need to test all the combinations of objects. What a nice idea!
Unfortunately, relying on the LSP in critical and real-time software is not that
easy.

– There has to be some differences between the various classes in the inheri-
tance tree, otherwise it would make no sense to define different classes. The
key point is that those differences are deemed “not significant” for the point
of view of the using class. Any behaviour considered “not significant”, but
on which the using class inadvertantly relies, would break the whole proof
system.

– All real time aspects have to be part of the “significant” properties, and as
such inherited by all descendant classes. Therefore, the WCET expected by
the using class has to be the worst of all subclasses too, and similarly for all
other real-time properties, like blocking aspects, use of resources, etc. This
can imply an excessively pessimistic contract.

– Would you board an airplane, knowing that some combination of the com-
ponents have never been tested?

For these reasons, we think that relying on the LSP as a replacement for
pessimistic testing is not acceptable for the highest (A and B) criticality levels;
it can be acceptable for the lower levels, and in any case LSP is a useful concept
- as long as it is applied in addition to full testing.

216 J.-P. Rosen

3 How is This Applicable to Ada?

Ada has a rich toolbox, and many (but not all) of the claimed benefits of OOT
can be obtained by other means. For each issue, it is the designer’s job to assess
the need, and choose the most appropriate tool.

The fact that OOT might be an appropriate solution for other languages
does not mean that it is necessarily the same for Ada; it can be seen as a real
benefit of Ada that the OO technology is available when useful, but not required
when the drawbacks exceed the benefits. For example, Ada provides packages
for modularity, generics for reuse, tasks for concurrency, without needing OOT.

In our experience, the use of tagged types and inheritance is most valuable
when the following three criteria are met:

– There is a need to model various entities as abstract data types, and those
types are too different to be considered as simple variations of a single type
(otherwise, a discriminated type would be appropriate).

– Although different, the various types share a number of properties, and es-
pecially operations where each type has its own way of providing the service
(true methods1).

– There is a need to maintain an heterogenous data structure, where objects
of the various types are kept, and the same method must be invoked on the
various objects.

Since true methods are intimately linked to the type they operate on, there
is no reason for them to perform redispatching, i.e. dispatching calls to some
implementation attached to a different type.

There is however a different kind of operation, when a higher level operation
is implemented by a combination of true methods. In other languages, these
operations are often defined as methods, although they are not conceptually
connected to a single type. In Ada, they are best implemented with class-wide
operations, i.e. operations with a parameter of a class-wide type, making all calls
to primitive operations of the parameter naturally dispatching.

For Ada, we propose therefore to make a clear separation between true meth-
ods where redispatching would be prohibited, and class-wide composition sub-
programs that would provide higher level services. By organizing critical software
along those line, the combinatorial explosion would be limited:

– True methods would need testing only for values of the applicable type, and
not for values of the whole inheritance tree; testing would not be different
from normal subprograms

– Class-wide operations would require testing for all applicable values - like
any other operation. Of course, “all applicable values” would include values
from the whole inheritance tree.

1 By “true methods”, we mean operations that implement an abstract, elementary
operation, where different types have different implementations.

Object Orientation in Critical Systems: Yes, in Moderation 217

– The places where pessimistic testing is required could be easily identified, and
hopefully limited in number. Remember that a critical mass is necessary to
get an “explosion” (at least one that challenges the testability of a program).

It can be argued that this paradigm is very limiting - and it would be in-
deed for application that require extensive use of OOT. However, we are dealing
here with critical software. Critical software design implies a lot of restrictions,
and restrictions are always limiting, and generally annoying! But that is the
recognized price to pay when safety is at stakes.

4 A Profile for Using OOT in Ada for Critical Systems

The above proposed design pattern would need enforcement by tools. This can be
provided by external tools, such as AdaControl[4], Gnatcheck[5], or RainCode[6],
to name a few.

However, the best solution would be to enforce the restrictions at compile time
- as well as some other restrictions that would be deemed useful in this context.
Such a set of restrictions could be included in a profile, following the example
of the Ravenscar profile for tasking features. This approach was first presented
at a workshop held during the SIGAda 2010 conference in Fairfax, where the
idea received general acceptance, and some additional restrictions were proposed.
This effort is naturally open to anyone interested.

Note that there is no need to wait for Ada2012 to define such a profile - nor
to ask for a delay to the new standard for this purpose. Like Ravenscar, the
profile could be published as a technical report2, and if proven useful, proposed
for inclusion in the next revision of the Ada standard.

5 Conclusion

The main issue when applying OOT to critical software is the combinatorial
explosion of tests implied by dynamic dispatching. The OOT supplement to
DO178C tries to counter this by extensive use of formal methods, but it remains
to be seen if the use of formal methods can be accepted as a replacement for
exhaustive testing in the context of levels A and B software.

Instead, we propose a restrictive design pattern for classes that would make
extensive (pessimistic) testing acceptable, by limiting dispatching to a small
number of well identified places. This pattern is possible in Ada, because OOP
is less pervasive than in other languages, and can therefore be restricted to places
where the benefits overcome the drawbacks.

Such a profile could give Ada an advantage over other languages, by allowing
easier testing and certification when OOT is used for critical software.

2 Not necessarily an ISO TR, although it would help for wider acceptance by compiler
vendors.

218 J.-P. Rosen

References

1. FAA/NASA, Handbook for Object-Oriented Technology in Aviation (2003)
2. Rosen, J.-P.: What Orientation Should Ada Objects Take. Communications of the

ACM 35(11)
3. Liskov, B., Wing, J.: A Behavioral Notion of Subtyping. ACM Transactions on

Programming Languages and Systems 16(6) (November 1994)
4. http://www.adalog.fr/adacontrol2.htm

5. http://www.adacore.com/home/products/gnatpro/toolsuite/gnatcheck/

6. http://www.raincodechecker.com/adachecker.html

http://www.adalog.fr/adacontrol2.htm
http://www.adacore.com/home/products/gnatpro/toolsuite/gnatcheck/
http://www.raincodechecker.com/adachecker.html

On the Evolution of Unnatural Language

Les Hatton

CISM, Kingston University
http://www.leshatton.org/

Abstract. A search of the web reveals that natural language is consid-
ered to be language which a human would consider natural and unnatu-
ral language is language a human would consider artificial. This clearly
raises interpretation questions and plenty of leeway so I am going to take
the latter view here and bend it somewhat to consider programming lan-
guages as particularly good examples of unnatural language.

Programming languages are something like 60 years old. Their evo-
lution tells us much about the triumph of creativity over parsimony;
the need for diversity and the frequent triumph of politics over common
sense or logic. Yet their minimum set of features is defined by the beauty
and simplicity of the Böhm-Jacopini theorem [1] and their underlying
similarity in information theoretic terms is shown in the theorem proved
by myself in [3],[4].

This essay is a reflection on programming languages both old and new,
engineering, systems evolution and the role of education.

1 A Little Essential Background

In 1966, two Italian computer scientists Corrado Böhm and Guiseppe Jacopini
proved a very important and relatively unsung theorem which essentially demon-
strated that every computable function could be implemented in a programming
language which contained three control structures which we recognise today as
sequence, selection and iteration [1]. This seminal paper also initiated the struc-
tured programming debate, however from our point of view it sets the minimum
a programming language requires to implement every computable function.

Such minimum implementations would be a bit bleak to use in practice so it
is interesting therefore to consider how much else computer scientists feel they
must add to enhance “expressive ability”.

1.1 Standardisation: The Good and the Bad

1966 was a busy year. As far as I can see, the first ANSI (American National
Standard) programming language appeared in that year and became known as
Fortran 661. It was followed shortly after by ANSI standard COBOL in 1968
and a regular series of new languages over the next decades although these
1 It was also the last year in which the lamentable and now massively overpaid England

football team won anything of significance but let’s not go there.

A. Romanovsky and T. Vardanega (Eds.): Ada-Europe 2011, LNCS 6652, pp. 219–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

220 L. Hatton

became subsumed within the ISO (International Standards Organisation) from
around 1990, (the C standard was probably the first to jump ship when ANSI
C89 became ISO C90 with a simple section renumbering). At the time, standards
were incredibly important. Without them, chaos would have ensued and although
the promise of complete machine independence was never achieved, if you knew
what you were doing, you could retain very high levels of portability with a
generally negligible effort to move to another environment. Most of the time,
you even got the same answers give or take a couple of significant figures, [5].

Unfortunately, things have struggled a bit since then due to rampant featur-
ism. I’ve sat on a few national standards bodies in my time and one thing was
very clear even in the early stages. No language committee was going to sit still
and let other languages steal a march on them with some wicked new features
however useless they were or turned out to be. It was a regular topic of conver-
sation at Fortran meetings I attended that “we needed to have pointers because
C had them”. In fact pointers and notably dynamic memory spread across all
languages very quickly, (although with odd and non empirically supported re-
strictions in some, as was the case in Ada 83 for example). As it turns out,
almost nothing to do with programming languages is empirically supported. We
are not a critical discipline and therefore we are not a scientific one either in the
Popperian sense but more of this later.

This really took off with the widespread adoption of object orientation from
around 1990 in spite of a complete lack of any supporting evidence. Language
committees literally fell over themselves in the rush to add OO features, however
inappropriate it might have been. Languages blew up like food addicts at a free
hamburger stall. Just have a look at the following if you don’t believe me.

Language Size 1 Size 2 Increase factor
Ada 270Kb zipped HTML (1983) 1093Kb (1995) 4
C 191 pages (1990) 401 pages (1999) 2

C++ 808 pages (1999) 1370 pages (2010 draft) 1.7
Fortran 134 pages (1978) 354 pages (1990) 2.5

This whole process whereby languages have evolved into each others’ spaces
has always seemed odd to me and must surely be driven by the simple need to
attract more market share. With hindsight, it would have been much simpler to
provide languages fit for a particular purpose and more emphatically encourage
heterogeneous systems where the strengths of different languages combine to-
gether to provide the best application - Ada for real-time and high-integrity, C
for systems work, Fortran for mathematical computation, Perl for pattern recog-
nition and so on. This of course has happened quite naturally to a certain extent.
The GNAT translator is a hybrid of Ada95 and gcc which is itself written in C;
GNAT will be run on an operating system written in C (Linux) or Windows
(C++); Java compilers are written in Java and Java run-time environments in
C; Perl translators are written in C; there are Python translators written in (at
least) Java, C and Python, and so on. So heterogeneity has occurred naturally

On the Evolution of Unnatural Language 221

but individual languages have become leviathans in the process. Perhaps this is
itself unstoppable.

In the period 1990 - present day, the landscape has changed dramatically. I
have a copy of the ACM SIGPLAN notices of March 1993 on the History of
Programming Languages, (Volume 28(3)). It gives short introductions to: Ada,
Algol 68, C, C++, CLU, Concurrent Pascal, Formac, Forth, Icon, Lisp, Pascal,
Prolog and Smalltalk.

In 2010, students at my university offered projects in the following languages,
C, C#, C++, Java, Perl, PHP, MySQL, XML, HTML, XHTML, VB.Net on
XP, of which Java, PHP and MySQL dominated. Just look how little this has
in common with the prior SIGPLAN list.

1.2 Validation and Compilers

One very important area in which Ada has done particularly well is in the
provision of compiler testing. Until April 2000 or so, it was common for ISO
languages to be validated against the validation suites which were available. In
the 1990s it was possible to check standardisation of C or Fortran compilers
against information provided by national bodies like NIST in the USA. Since
then compiler validation has become a distant dream for many languages and
the Ada community should be congratulated on keeping them publicly available.

A propos of nothing in particular, I downloaded and measured the size of
the Ada validation suite as shown below. Comparing these against two other
validation suites which I happen to have licences for, (C90 and Fortran 77),
reveals.

Language Validation suite (LOC) Validation lines / Standard pages
Ada 95 355,498 (.ADA) + 253,748 (.A) 1,070
C 90 298,867 (.c) + 40,176 (.h) 1,800

Fortran 77 108,842 (.f) 820

These numbers were calculated in the case of Ada by

% find . -name ’*.ADA’ -exec wc -l {} \; \
| awk ’{sum += $1;}END{print sum;}’

% find . -name ’*.A’ -exec wc -l {} \; \
| awk ’{sum += $1;}END{print sum;}’

It is interesting to reflect on the above densities of validation lines to standard
pages. Although rather approximate, I will note in passing that Ada validation
might perhaps be made more extensive given the size of the Ada 95 standard.

To summarise here, standardisation initially served a very valuable function
providing a level of portability which had not hitherto existed. Unfortunately,
the need to avoid breaking old code, (backwards compatibility), makes the in-
ternational standards process highly asymmetric whereby it is generally much
easier to introduce new features of unknown value in a standard revision than

222 L. Hatton

it is to remove existing features of known problematic behaviour. Consequently
the standards get bigger and bigger and considerable effort is needed to trim
them back to a level of parsimony and precision appropriate to their use in high-
integrity systems. This is not a process which can be continued indefinitely and
some languages, for example, C, will struggle unless the thicket of unconstrained
creativity can be cut back somewhat. Historically of course, the only alternative
has been to start again with yet another new language, the evidence of which
surrounds us.

2 Education and Programming Skills

In tandem with the growth and complexity of traditional programming language
standards, CS education has changed dramatically. We now live in a world where
classic programming such as is found in the study of compilers and data struc-
tures has been largely supplanted with concepts such as “mash-ups” in non-
standardised languages and exotic development environments for systems such
as those found in mobile phones. Such environments mix graphical methods with
more traditional coding skills in a frequently very complex and, at least to my
ageing eyes, arbitrary manner. As a result there has been a dramatic shift in the
centre of gravity of skill sets which can make it very difficult to find competent
developers in languages such as Ada and Fortran. Worse, they tend not to be
taught widely in universities which almost entirely focus on a single language
- the flavour of the last few years being Java. Whether this will be the case in
the near future is impossible to tell as new paradigms come and go amongst the
hardy-annuals of Ada, Fortran, C and C++.

Marrying a decline in traditional programming skills with increasing complex-
ity in those languages requiring such skills will become a significant gap to fill.
There is every sign that Cloud Computing demands, rapid development environ-
ments such as Ruby on Rails and the general evolution of web applications will
increase rather than decrease the size of this gap. It almost seems to me that
two completely different programming paradigms have evolved side by side.

1. The traditional life-cycle languages which involve system design, specifica-
tion, implementation and validation. It is hard to conceive of a high-integrity
system being built in any other way.

2. The “throw sub-systems at each other and see what works” life-cycle, so
prevalent in web development.

It remains to be seen how easily people will move between these two very dif-
ferent paradigms. It may be that I am simply getting old but I find it relatively
difficult to build web technologies because I tend to approach them too analyti-
cally and my experience is not such a benefit. I suspect the converse is also true
- the rigour and discipline of specifying and building a system on which peoples
lives may depend would not I feel come easily to a Ruby on Rails developer. If
we were to explicitly separate them and prepare people in different ways, then
that would be perfectly satisfactory according to the demands of each. However,

On the Evolution of Unnatural Language 223

if we continue to prepare the vast majority of CS students at university for the
latter of the two, the former will be starved.

3 Underlying Linguistic Similarity

Amidst this blizzard of languages and technologies, it is very reasonable to ask if
there are any common denominators. Clearly some languages have great staying
power even though they regularly morph into other forms. Fortran is a wonderful
example with something like 50 years of sustained use, although 1960s Fortran
has very little in common with Fortran 2008, formally approved in late 2010.

Surprisingly however, considering the enormous differences which exist be-
tween different applications and different implementations, there appears to be
a beautiful form of clockwork underlying this massive externally forced complex-
ity.

In 2009, I proved a theorem [3], [4], which shows that for any system of N
components each containing ti tokens such that the total number of tokens is
given by

T =
N∑

i=1

ti (1)

then the probability pi of a component of ti tokens appearing is overwhelm-
ingly likely to obey a power-law in the alphabet ai of unique tokens used

pi ∼ a−β
i (2)

where β is a constant, under the constraints that the total size of the system
and the total amount of Shannon information in the system is conserved. The
theorem combines arguments from statistical physics with standard properties
of Shannon’s information theory, as can be found for example in [2].

Note that this is completely language independent - it makes no assumptions
about the implementation language. In this sense, a token of a programming
language is either a fixed token af , (for example keywords like if else begin
end procedure or operators like + ++ –) or a variable token av, (for example
identifier names or constants).

Given that in smaller components, the number of fixed tokens tends to pre-
dominate (there is a fixed token startup overhead of implementing anything in a
programming language) and in larger components, variable tokens predominate,
the theorem further predicts that

pi ∼ constant (3)

for smaller components merging asymptotically into the power-law described
in (2).

Investigating this experimentally has taken some time because of the need
to write a universal token parser able to distinguish between fixed and variable

224 L. Hatton

 1

 10

 100

 1000

 1 10 100 1000

C
om

po
ne

nt
s

w
ith

 >
 x

 m
em

be
rs

 in
 a

lp
ha

be
t

Size of component alphabet x

Distribution of alphabets
NAG

Embedded system
X11R5 library
X11R5 server

xgobi data visualisation
GNU gas

Fig. 1. Examples of disparate systems in different languages which appear to follow
the behaviour predicted by (2) and (3). To date, no systems have been found which
depart from this.

tokens for a number of languages with enough intelligence to distinguish the
start and end of components. This has been done so far for Ada, C, C++,
Fortran, Java, Perl and Tcl-Tk. This lexer takes advantage of the standard lexical
analysis generator lex and the rest is written in C. The results of analysing the
distribution of sizes of components across highly disparate systems in several
languages is shown in Figure 1. This shape is precisely what is predicted by the
development which leads to (2) and (3).

This provides good experimental support for the theorem and suggests that
underneath all the complexity of notation, there is a very strong similarity in how
we express the information inherent in systems implemented in programming
languages.

4 Conclusion

Perhaps then we have come full circle. We started off in 1966 with an underlying
simplicity and here almost 50 years later, we appear once again to have an
underlying simplicity. However, this does not disguise the fact that the languages
themselves have either disappeared or become very complex systems in their
own right, presenting a very steep learning challenge to new and even partly
experienced engineers.

On the Evolution of Unnatural Language 225

In parallel with this, changing patterns of education and an apparent and
growing dichotomy of development paradigms places further stresses on the abil-
ity to produce high quality systems and engineers with the requisite experience.
In particular, the modern “mash-up” methods seem strongly in the ascendant.

Will programming languages continue to accrete complexity ? Will the land-
scape in 30 years time be Ada 2032, C 2038, C++ 2036, Fortran 2040 or will
interpreted languages dominate ? Given that these contenders have already had
30 years or more, it would be a brave person to bet against them in spite of the
above concerns.

References

1. Boehm, C., Jacopini, G.: Flow Diagrams, Turing machines, and Languages with
only Two Formation Rules. Communications of the ACM 9(5), 366–371 (1966)

2. Cherry, C.: On Human Communication. John Wiley Science Editions, Chichester
(1963), library of Congress 56-9820

3. Hatton, L.: Power-law distributions of component sizes in general software systems.
IEEE Transactions on Software Engineering (July/August 2009)

4. Hatton, L.: Power-laws, persistence and the distribution of information in software
systems (January 2010), http://www.leshatton.org/variations_2010.html

5. Hatton, L., Wright, A., Smith, S., Parkes, G., Bennett, P., Laws, R.: Sks: A large
scale exercise in fortran 77 portability. Software, Practice and Experience 18(4),
301–329 (1988)

http://www.leshatton.org/variations_2010.html

Author Index

Alonso, Diego 147

Baruah, Sanjoy 174
Burns, Alan 174, 193

Carnevali, Laura 118
Chapman, Roderick 206
Chil, Rigoberto 147
Chouteau, Fabien 31
Coq, Thierry 61
Crespo, Alfons 46, 160

Daniels, Dewi 211
de la Puente, Juan A. 160

Eilers, Dan 75
Esquinas, Ángel 160

Franke, Stefan 17

Garcia Cuesta, Alvaro 89
Garćıa-Valls, Marisol 132

Hammond, Kevin 201
Hatton, Les 219

Jennings, Trevor 206
Johnsen, Andreas 103

Koskinen, Tero 75

Lipari, Giuseppe 118
Lundqvist, Kristina 103

Masmano, Miguel 160
Medina, Julio L. 89

O’Leary, Jeffrey 1
Ortiz, Francisco 147

Pastor, Juan 147
Pinzuti, Alessandro 118
Ploedereder, Erhard 17, 189

Raza, Syed Aoun 17
Ripoll, Ismael 160
Rodŕıguez-López, Iago 132
Rosen, Jean-Pierre 61, 214
Ruiz, José F. 31

Sáez, Sergio 46

Taft, S. Tucker 196
Terrasa, Silvia 46

Vicario, Enrico 118

Zamorano, Juan 160

	Title
	Preface
	Organization
	Table of Contents
	Keynote Talk
	Assuring Software Reliability While Using Web Services and Commercial Products
	Introduction
	Achieving Software Reliability
	NAS Service Criticality

	System Wide Information Management (SWIM)
	ERAM SWIM Architecture
	ERAM SWIM RMA Design Challenges
	System Safety and Security Considerations

	Conclusions
	References

	Multicore
	Detecting High-Level Synchronization Errors in Parallel Programs
	Introduction
	High-Level Synchronization Errors
	Non-Atomic Protection
	Definition and Concept
	Lockset Analysis
	Path-sensitive View Analysis
	Nested Views
	View Generation

	Lost-Updates
	Definition and Concept
	Algorithm

	Implementation
	Test and Evaluation
	Related Work
	Conclusions
	References

	Design and Implementation of a Ravenscar Extension for Multiprocessors
	Introduction
	Definition of Ravenscar for Multiprocessors
	Task Scheduling
	Task Synchronization
	Interrupt Handling
	Timing Services

	Design and Implementation Details
	Starting Point
	Initialization
	Task Management
	Synchronization
	Time-Keeping and Delays
	Interrupt Handling
	Sharing Code between Monoprocessors and Multiprocessors

	Performance
	Measurements
	Analysis

	Conclusions
	References

	A Real-Time Framework for Multiprocessor Platforms Using Ada 2012
	Introduction
	System Load Model
	Multiprocessor Scheduling Approaches
	New Design of Real-Time Utilities
	Previous Proposal of the Real-Time Utilities
	Real-Time Multiprocessor Requirements

	New Framework Components
	Real-Time Task Scheduling and Task State
	Real-Time Task Control Mechanisms
	Real-Time Task Release Mechanisms
	Real-Time Tasks

	Code Generator Tool
	Conclusions
	References

	Verification
	The SQALE Quality and Analysis Models for Assessing the Quality of Ada Source Code
	Introduction
	The SQALE Analysis Model
	The SQALE for Ada Quality Model
	Implementing SQALE for Ada Quality Model
	Some Results of SQALE for Ada
	SQALE for Ada Applied to AdaControl
	SQALE for Ada Applied to Ada Web Server

	Future Work
	Conclusion
	References

	Adapting ACATS to the Ahven Testing Framework
	Introduction
	Background and Related Work
	Nature of the ACATS Tests
	Bundling Test Programs
	Hooks for Attaching ACATS Tests to a Testing Framework

	Integration with Ahven
	Framework-Independent Representation of Tests
	Connecting with Ahven

	Elaboration Issues in Shared ACATS Support Code
	Shared Support Package TCTouch
	Tests with Unusual Organization

	Bundling As a Compilation System Stressor
	Repeatability and Ordering of Tests
	Making Positive Tests Out of Negative Tests

	Ahven vs. AUnit
	Conclusions
	References

	Model-Based Analysis and Design of Real-Time Distributed Systems with Ada and the UML Profile for MARTE
	Introduction
	The Approach
	Analysis Models
	Design Models
	Real-Time Design Model of the Basic Ada Structures

	Practical Experience
	Conclusions and Future Work
	References

	Architecture and Modelling
	Developing Dependable Software-Intensive Systems: AADL vs. EAST-ADL
	Introduction
	The Comparison Framework
	Building Block: Component
	Building Block: Connector
	Building Block: Configuration
	Vital Quality Attributes

	ADLs Under Comparison
	Overview of AADL
	Overview of EAST-ADL

	AADL vs. EAST-ADL
	Modeling of Components
	Modeling of Connectors
	Modeling of Configurations
	Dependability
	Timing

	Conclusion
	References

	A Formal Approach to Design and Verification of Two-Level Hierarchical Scheduling Systems
	Introduction
	Design and Verification through pTPNs
	PTPN Model of the HS System
	Architectural Verification

	Implementation on RTAI
	Testing Conformance with Respect to pTPN Semantics
	Conclusions
	References

	Architecting a Common Bridge Abstraction over Different Middleware Paradigms
	Introduction
	Background and Related Work
	The Common Bridge Abstraction
	Communication Abstraction
	QoS Abstraction

	Common Bridge API
	Data Types
	Asynchronous Functions
	Synchronous Functions

	Validation
	Use of the Common Bridge in the iLAND Middleware
	Common Bridge Implementation

	Conclusions
	References

	Education and Mixed Criticality
	Using Robotics as a Motivational Tool: An Ada Interface to a Pioneer Robot
	Introduction and Motivation
	Technical Background: Hardware and Software Involved
	Architecture of the Application
	Implementation of the Protected Objects

	Using the Developed Software: Templates for Students
	Conclusions and Future Research
	References

	ORK+/XtratuM: An Open Partitioning Platform for Ada
	Introduction
	Overview of XtratuM
	Overview of ORK+
	Porting ORK+ to XtratuM
	Adapting the XtratuM Interface
	CPU Management
	Interrupt Support
	Time Services

	Performance Evaluation
	General Approach
	Scenario Description

	Related Work
	Conclusions and Future Work
	References

	Implementing Mixed Criticality Systems in Ada
	Introduction
	System Model
	Scheduling Analysis for Fixed Priority Scheduling
	Shared Objects
	Optimal Priority Ordering for Fixed Priority Scheduling

	Managing Overruns and Increasing Robustness
	Implementation of the Run-Time Protocol in Ada
	Implementation Details
	Example Execution

	Conclusion
	References

	Panel: Language Paradigms for Multicore Programming
	Programming Languages Meet Multicore
	Introduction to the Panel
	Questions to the Panelists
	Reference

	Programming Languages for Real-Time Applications Executing on Parallel Hardware
	References

	Multicore Programming in ParaSail
	Introduction
	Implicitly Parallel
	Simplified and Unified Language Concepts
	Parallel Run-Time Model and Pico-Threading
	Deterministic and Non-deterministic Race-Free Parallel Programming
	Object-Oriented Programming in Parasail
	Conclusion
	References

	Why Parallel Functional Programming Matters: Panel Statement
	Introduction
	What Are the Key Challenges to Writing Effective Parallel Programs?
	How does Functional Programming help with These Challenges?
	Shared Memory and Locking

	Parallel Patterns or Skeletons
	Influences on Real-World Languages/Systems
	What about Sequential Performance?
	Conclusions
	References

	Panel: DO178C and Object-Orientation for Critical Systems
	OOT, DO-178C and SPARK
	Introduction
	Static and Dynamic Verification for OO
	Here Comes DO-178C…

	OOT in SPARK: 2002 - Present
	Constructors and Finalizers
	Abstraction
	Encapsulation
	Hierarchy and Inheritance
	Polymorphism and Dynamic Dispatching

	OOT in SPARK – Future
	Open Issues
	Is Verification of LSP A Mirage?
	Is LSP Actually Useful?

	Conclusions
	References

	Position Paper: DO-178C/ED-12C and Object-Orientation for Critical Systems
	DO-178C
	Object-Oriented Supplement
	Formal Methods Supplement
	Strongly Typed Languages
	In-Service Experience of DO-178B/ED-12B
	Conclusion
	References

	Object Orientation in Critical Systems: Yes, in Moderation
	Introduction
	DO178C and OOT
	Why Use OOT in Airborne Systems?
	The Main Issue with OOT: Testing

	How is This Applicable to Ada?
	A Profile for Using OOT in Ada for Critical Systems
	Conclusion
	References

	Signet Library Talk
	On the Evolution of Unnatural Language
	A Little Essential Background
	Standardisation: The Good and the Bad
	Validation and Compilers

	Education and Programming Skills
	Underlying Linguistic Similarity
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

