
Chapter 6

Measures over Initial Conditions

Meir Hemmo and Orly Shenker

Abstract This paper concerns the meaning of the idea of typicality in classical

statistical mechanics and how typicality is related to the notion of probability.

6.1 Introduction

This paper concerns the meaning of the idea of typicality in classical statistical

mechanics and how typicality is related to the notion of probability. Our thoughts

about these issues have been greatly influenced along the years by numerous

conversations with Itamar Pitowsky. In his last paper [1] which he devoted to the

issue of typicality, he writes:

Consider a finite but large collection of marbles. When one says that a vast majority of the

marbles are white one usually means that all the marbles except possibly very few are

white. And when one says that half the marbles are white, one makes a statement about

counting, and not about the probability of drawing a white marble from the collection.

Here Itamar is making a sharp distinction between the size of a set of outcomes

of an experiment and the probability of these outcomes. The size of a set of

outcomes is fixed by a measure defined on the event space. In the discrete case,

the size of the set is fixed by counting the number of outcomes that belong to it. Itamar

thought that in the discrete case the measure obtained by counting is natural, and

therefore he thought that it is worthwhile to generalize this measure to the continuous

case. In his paper (ibid.) he argues that the Lebesguemeasure in the continuous case is
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the natural extension of the counting measure in the discrete case, and he takes this

result to establish a preference for the Lebesgue measure in the continuous case. This

means that in classical statistical mechanics, for example, the Lebesguemeasure is the

natural measure to determine sizes of sets in the state space. If this is right, the problem

of justifying the choice ofmeasure in classical statisticalmechanics is partially solved.

The reason why it is only partially solved is that on the standard way of thinking about

statistical mechanics, the problem concerns the justification of the statistical mechan-

ical probabilities, and as Itamar himself stresses (in the quotation above) the measure

of sets is not enough to determine probability.

Despite the distinction between measure and probability, Itamar thought (see

ibid.) that the Lebesgue measure in statistical mechanics plays some role, admittedly

weak, in the explanation of thermodynamic behavior. In this paper we examine this

question. Our starting point is similar to Itamar’s that measure is indeed different

from probability, but while Itamar thought that the Lebesgue measure is natural in

some a priori sense, it seems to us that the choice of measure in physics is guided by

experience, which in turn guides our choice of probabilistic laws.

The structure of the paper is as follows.We begin in Sect. 6.2 by describing the so-

called typicality approach (as it is usually framed in the context of deterministic

theories in physics). In Sect. 6.3 we describe the way in which probabilistic

statements in classical statistical mechanics ought to be understood. In Sect. 6.4 we

examine arguments based on the classical dynamics to the effect that the Lebesgue

measure is natural in statistical mechanics. In Sect. 6.5 we analyze the significance of

Lanford’s theorem in classical statistical mechanics, and we explain how the theorem

ought to be understood without appealing to typicality. Section 6.6 is the conclusion.

6.2 Typicality

In classical statistical mechanics the standard way of understanding the thermody-

namic behavior of systems around us appeals to a probability distribution over the

initial microstates of the systems (compatible with the initial thermodynamic

macrostate). On the standard way of thinking one says that given the uniform

probability distribution (relative to the Lebesgue measure) over the initial

macrostate, it is highly probable that the system will, for example, approach

equilibrium after some designated time. In this way, the behavior of the system is

explained by the fact that its actual microstate is highly likely to sit on a trajectory,

which will take it to equilibrium at the time in question. Here the high probability

pertains to subsystems of the universe, and it is assumed further that the trajectory

of the whole universe that gives rise to this high probability itself sits on an initial

condition which has high probability. Note that here there are two notions of

probability: a probability distribution over the initial macrostate (i.e. the

microstates compatible with the macrostate at some present time) of subsystems

of the universe, and a probability distribution over the initial conditions of the

universe.
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Another important example of the central role played by the measure in

explaining physical behavior in statistical mechanics is in Einstein’s [2] account

of Brownian motion, as developed by Wiener (see [3]). As is well known, Wiener

has proved that the so-called Wiener measure of trajectories in the phase space of a

Brownian particle which are continuous but nowhere differentiable is one. The

explanation of the actual behavior of Brownian particles is based on the assumption

that their actual trajectories belong to this measure one set. Avogadro’s number is

derived from this assumption.

A question that immediately arises concerning this understanding is what could a

probability distribution over the initial conditions of the universe possibly mean.

A probability distribution suggests some sort of a random sampling of an initial

condition out of the set of all possible conditions. But with respect to the initial

conditions of the universe any such sampling (if it is to be physical) would be

external to the universe, and therefore this seems to suggest an empirically mean-

ingless fairy tale. This problem does not arise with respect to subsystems of the

universe, since one can ground a probability distribution over initial conditions in

experience (as we show in Sect. 6.3). Moreover, probability in physical theories is

usually conceived as involving (or as being tested by) repetitions of experiments,

which in the case of the initial conditions of the universe are trivially impossible.

We understand the typicality approach1 as an attempt to solve these problems by

appealing to a certain natural measure over initial conditions, where the measure is

not understood as a probability measure (see [5] for a similar construal).

Here is an example of how the distinction between typicality and a probability

distribution over initial conditions is made:

When employing the method of appeal to typicality, one usually uses the language of

probability theory. When we do so we do not mean to imply that any of the objects

considered is random in reality. What we mean is that certain sets (of wave functions, of

orthonormal bases, etc.) have certain sizes (e.g., close to one) in terms of certain natural

measures of size. That is, we describe the behavior that is typical of wave functions,

orthonormal bases, etc. However, since the mathematics is equivalent to that of probability

theory, it is convenient to adopt that language. For this reason, we do not mean, when using

a normalized measure m, to make an “assumption of a priori probabilities,” even if we use

the word “probability.” Rather, we have in mind that, if a condition is true of most D, or
most H, this fact may suggest that the condition is also true of a concrete given system,

unless we have reasons to expect otherwise. [7].

And in another place [8], they say:

When we express that something is true for most H or most c relative to some normalized

measure m, it is often convenient to use the language of probability theory and speak of a

random H or c chosen with distribution m. However, by this we do not mean to imply that

the actual H or c in a concrete physical situation is random, nor that one would obtain, in

repetitions of the experiment or in a class of similar experiments, differentH’s or c’s whose
empirical distribution is close to m. That would be a misinterpretation of the measure m, one

1 For various formulations and extensive discussions of the typicality approach, see D€urr et al. [4],
Maudlin [5], Callender [6].
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that suggests the question whether perhaps the actual distribution in reality could be non-

uniform. This question misses the point, as there need not be any actual distribution

in reality. Rather, Theorem 1 means that the set of “bad” Hamiltonians has very small

measure m.

There are three different statements made here about the idea of typicality:

(1) The set of initial conditions compatible with the initial macrostate of the

universe is divided into two subsets, T1 and T2 such that all the microstates

in T1 but not in T2 give rise to some property F. The property F may be for

example the approach to equilibrium in statistical mechanics, or the Born rule

in Bohmian mechanics.

(2) There is some natural (normalized) measure m over the initial conditions such

that m(T1) is close to one (and m(T2) is close to zero). In this sense, most initial
conditions, as determined by m, are in T1 (and are called typical).

(3) In a given experiment, the actual initial microstate of the universe belongs to T1.

Let us explain these three statements in turn. The statement in (1) above

expresses a contingent fact about the dynamics, namely a fact about how the initial

conditions are mapped by the equations of motion into microstates at later times.

There are various theorems in classical statistical mechanics that demonstrate that

special cases of (1) hold under some conditions with some appropriate property F.

Examples are Lanford’s theorem in which F is (roughly) entropy increase and the

Birkhoff-von Neumann theorem in which F is the so-called pointwise ergodic

theorem, which we discuss below. Statement (1) is not controversial in our

discussion.

The notion of most in statement (2) above requires a measure over the phase

space. That is, there are infinitely many ways to determine the size of subsets of a

continuous set of points. The question is on what grounds one can justify the choice

of measure, or the choice of some class of measures. Usually, in classical statistical

mechanics the measure chosen is the Lebesgue measure (or the class of measures

absolutely continuous with the Lebesgue measure), and in quantum mechanics the

measure is given by the absolute square of the wavefunction. The grounds for these

choices are that each of these measures has a preferred dynamical status in the

theory.

Statement (3), as stated above, seems as expressing the brute fact, without

further reasoning, that the microstate of the universe invariably (in every experi-

mental set up) belongs to T1. But since there are microstates of the universe that

don’t belong to T1 this fact calls for a justification. It is evident that (2) is taken in

the typicality approach to completely justify (3), that is if T1 were to contain only a

small fraction of the microstates of the universe, one would not see (3) as justified.

It is important to stress that in this approach the justification of (3) makes no appeal

to probability. Rather, it is the measure of T1 that is supposed to do the whole work.

This implies that, lacking reasons to expect otherwise, microstates of the universe

that belong to T2 are not realized.

In short, there are two questions that need be answered in the context of

typicality: what justifies the choice of measure in (2), and what justifies the passage
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from (2) to (3). In particular, the question we consider is whether there are grounds

that justify the choice of measures in a way that explains the observed behavior of

physical systems. If such grounds could be spelled out the problems concerning

the meaning of probability distributions over the initial conditions of the universe

would obviously evaporate together with the probability distribution itself. In the

subsequent sections we attempt to answer these two questions. We will see that

statements (2) and (3) are both wanting. Again, statement (1) is not controversial in

the context of typicality. Our analysis will lead us to reject the typicality approach.

6.3 Probability in Classical Statistical Mechanics

In order to set the stage we need to go into some detail concerning the way in which

probability statements arise in classical statistical mechanics and how precisely the

choice of measure over the state space is carried out.

Consider the paradigmatic case of an ideal gas S, which is initially confined by a
partition to the left half of a container, and then, by removing the partition, is allowed

to expand. Finally, the gas fills out the entire container. Suppose that we set up a very

large number of such gases S1. . .Sk, all of which are prepared in the same initial

macrostate M0 in which the gas is confined to the left half of the container by a

partition. We then remove the partitions and follow the spontaneous macroscopic

evolution of these gases for a certain time intervalDt, and we see by simple counting

that the overwhelmingmajority of the gases S1. . .Sk quickly reach and then remain in

macrostateM1 in which they fill up the entire container. We now wish to predict the

evolution of another system, call it Sk+1, which is prepared in the same initial

macrostate as S1. . .Sk. We know that the dynamical equation of motion that governs

the evolution of Sk+1 is the same as the ones governing S1. . .Sk , but we do not know
the details of this dynamics, nor do we know the exact initial microscopic conditions

of Sk+1 and therefore all we can rely on in this prediction is the above experiment.

Can we infer from the experiment with S1. . .Sk that Sk+1 is highly likely to end up
in macrostateM1? That is, can we use the experiment with S1. . .Sk in order to come

up with a probabilistic law, on which we can base our bets regarding the evolution

of Sk+1? The answer is, of course, yes, we can infer the probabilities from the finite

observed relative frequencies.2 This inference is valid just to the extent that we can

infer from experience any other physical law or prediction, such as F ¼ ma.
However, the way in which our probabilistic predictions can be justified, and the

extent to which they can be justified – are not always clear in the literature, as we

show later.

To see how to understand probabilistic statements in statistical mechanics let us

describe the above experiment in the phase space of the gas. Classical mechanics

2 This inference is a subtle issue which depends on how probability is understood. We don’t

address this question here.
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tells us that the universe consists of microscopic particles, and that our experience is

an effect of the microstate of the universe, which is the state of those particles.

However, it is a physical fact that our senses are too coarse to reflect the full details

of the microscopic structure of the universe; we can only perceive some of its

general features. In this sense our experience is macroscopic. In the above experi-

ment, we can only observe relative frequencies of transitions between macrostates

of the gas. Let us see how these transitions are described in the phase space, and

then how these relative frequencies are accounted for in the phase space.

The phase space of a system (in our example, of any of the systems Si) is

partitioned into sets of microstates, which are indistinguishable by an observer;

these sets are called macrostates. The phase space regions corresponding to the

macrostates express the observer’s maximal observational capability, and therefore

while the observer can tell which macrostate contains the actual microstate of

the system at the time of observation, it cannot tell which part of the macrostate

contains that microstate.

We now formulate what we take to be the essential way for calculating transition

probabilities in statistical mechanics. Suppose that at time t0 an observer O finds the

system S in macrostate M0 (as for example in our experiment above; see Fig. 6.1).

Suppose also that O knows the laws of classical mechanics, which govern S’s

evolution in time. If O knows the Hamiltonian of S, that is: if O knows the equations

of motion of S, then O can (in principle) calculate the evolution of all the trajectory

segments that start out in the microstates contained inM0 and find out the end points

of these trajectory segments after the time interval Dt. These end points make up a

set, which we call the dynamical blob B(t0 + Dt) of S at t0 + Dt given that it was in

M0 at t0. In general, the region covered by B(t0 + Dt) overlaps with several

macrostate regions; for instance, it may partially overlap with M1 (in which the

gas fills out the entire container), and with some other macrostates, such as M2 or

M3 in which the macrostate of the gas is different. If the system S, which started out
inM0 at t0, is observed to be (say) in macrostate M1 at t0 + Dt, then this means that

the microstate of S is actually in the region of overlap between the region of

macrostate M1 and the region of the dynamical blob B(t0 + Dt). Now, in our

above experiment, O carries out the experiment k times (or on k identical systems).

In some of these experiments – actually in most of them (in our story) – at t0 + Dt

Fig. 6.1 The time evolved

blob B(t) spreads over

different macrostate
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the system S is observed to be inM1 and in other fewer experiments it is found inM2

orM3, or more precisely in the regions of overlap of the dynamical blob B(t0 + Dt)
with these macrostates, with some relative frequencies F1, F2 and F3 respectively.

These relative frequencies are the empirical basis on which the probabilistic

statements of the theory can be based, and on the basis of which these statements

can be tested or justified.

The next step towards constructing or justifying the probabilistic theory is as

follows. Given the above experimental outcomes, we have the relative frequencies

with which systems of type S that start out in M0 at t0 are found in the macrostates

M1, M2 or M3. We conclude that the phase points of our k systems evolved into the

regions of overlap of the dynamical blob B(t0 + Dt) with the macrostatesM1,M2 or

M3. We then conjecture on the basis of our experience that this statistical behavior

will be repeated (more or less) in the future. Since any of the microstates inM0 is a

possible initial condition of Sk+1 and since the phase space is continuous, such

a generalization of our experience requires that we impose a measure on the phase

space. We identify the set of probability measures that, if applied to the continuous

phase space of S, yield a measure of the regions of overlap of the blob B(t0 + Dt)
with the macrostates M1, M2 or M3 that are (to a satisfactory approximation)

identical with the relative frequencies F1, F2 and F3, respectively. There are

many – possibly infinitely many – such measures, and all of them are empirically
adequate. Among them we choose one measure, using pragmatic criteria such as

simplicity, convenience, meshing with other theories, etc. Call this measure m. The
(normalized) measures of the regions of overlap are then given by

mðBðtÞ \M1Þ � F1; mðBðtÞ \M2Þ � F2; mðBðtÞ \M3 � F3. This measure m is

imposed over the blob B(t0 + Dt) and provides the basis for predicting the evolution
of system Sk+1 in terms of transition probability (roughly) as follows:

(*) The transition probability that Sk+1 will evolve to macrostate Mi at t0 + Dt
given that it was in macrostate M0 at t0, is equal to

m Bðt0 þ DtÞ \Mi Bðt0Þ ¼ M0jð Þ � Fi:

That is, the transition probability from the macrostate M0 at t0 toMi at t0 + Dt is
equal to the (normalized) measure of the region of overlap of the blob B(t0 + Dt)
with the macrostates Mi. This is the basis of our probabilistic theory.

Note that in general mðMiÞ=mðMjÞ need not be equal to mðBðtÞ \MiÞ=
mðBðtÞ \MjÞ.3 Note further that despite the deterministic dynamics these transition

probabilities between macrostates are physically objective provided the partition to
the macrostates is objective.4

What is the significance of taking the m (normalized) measure over the blob

B(t0 + Dt) as underwriting our probabilities for measurement outcomes? It is crucial

3 This implies that the transition to a given macrostate need not be equal to the entropy of that

macrostate, even if both are measured by the same measure m.
4 This last condition needs to be flashed out; we skip this here.
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to see that the probabilistic statements are about transitions fromM0 at t0 to any one of

themacrostatesMi. We don’t distribute probabilities relative to the mmeasure over the

initial macrostateM0 at t0. Of course, if the measure m is invariant under the classical

dynamics, e.g. if it happens to be the Lebesguemeasure , then one canmap, backwards

(as it were), the measure of regions over the blob at later times to the corresponding

regions over the initialmactostate. That is, in this case themeasure of a set of points in

M0 is equal to the measure of the time evolved set of points to which it is mapped by

the dynamics. Once the (normalized) measure is fixed (by the probabilities) one can

distribute uniform probabilities relative to the Lebesgue measure over the initial

macrostate. But note that this interpretative move is derivative. In general, whether

or not the measure that best fits our observations is the Lebesgue measure, or more

generally a measure that is invariant under the dynamics, is a contingent matter.

We can now see what justifies the choice of measure and what justifies probabi-

listic statements in classical statistical mechanics, and moreover how these two

issues are related. First, probabilistic statements are grounded in the experience of

relative frequencies in the way stated above. Second, the choice of measure is

dictated inductively (not uniquely) by the observed relative frequencies. That is, the

measure is implied by the probabilities rather than the other way around. We can

only justify empirically transition probabilities as sketched in (*) above rather than

distributions over initial conditions.

The implications of this analysis for the typicality approach are as follows.

1. The probability measure m is applicable only to subsystems of the universe. Of

course, if the dynamics is deterministic, each microstate of all the subsystems of

the universe can be mapped backwards to the initial conditions and the measure

over the initial conditions will depend on the measure at the later times. But in

this way the justification of the choice of the measure over the initial conditions

is grounded in experience, and therefore it cannot be taken to explain (non-

circularly) experience. Note that this argument applies to the question of the

choice of the measure regardless of whether the measure is understood as

determining the typical set of initial conditions (as in the typicality approach)

or as a probability measure over the initial conditions of the universe (as in

standard approaches to statistical mechanics).

2. This strategy of grounding the measure over the initial conditions of the universe

in experience can hold only with respect to a fraction of all possible initial

conditions of the universe (compatible with the initial macrostate). It excludes

by construction initial conditions that lead to a universe at the later times which

is macroscopically different from what we see.

3. Our ignorance about the initial microstate of Sk+1 is often illustrated by appealing

to some random sampling of a point out of M0. Of course, this idea need not be

taken too seriously (as describing a fairy tale about some mechanism of selec-

tion). However, the point to be stressed here is the following. A random

sampling is a sampling that depends only on the measure. The measure with

respect to which the sampling is random need only be the measure that fits the

observed relative frequencies in experience. In particular the measure need not
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be the Lebesgue measure, and may not even be conserved under the dynamics.

By appealing to the probabilitymeasure we can now justify statements about the

probability of randomly sampling initial conditions for subsystems of the uni-

verse. Here unlike the statement (3) of the typicality approach, the sampling is

described in terms of probability rather than typicality. The role of the measure

in our approach is derivative rather than fundamental and is patently

probabilistic.

6.4 Are There Natural Measures?

In the literature there are attempts to justify the choice of the measure (in the typicality

approach and in other approaches) on the basis of dynamical considerations.

An argument sometime given for preferring the Lebesgue measure as ‘natural’

on the basis of the classical dynamics is the invariance of the Lebesgue measure

under the dynamics as expressed by Liouville’s theorem. If a measure is invariant

under the dynamics it means that the measure of a given set of points in the state

space is equal to the measure of the set to which it is mapped by the time evolution

equations for all times. Of course this feature has very attractive properties (sim-

plicity, elegance, etc.) but it is unclear why this fact is relevant at all to the issue at

stake, namely the explanation and prediction of physical behavior.

A similar argument is sometimes given in the case of ergodic dynamics. Obvi-

ously, the ergodic theorem gives a preferred status to the Lebesgue measure (or to

any measure absolutely continuous with the Lebesgue measure) since it shows that

the relative frequency of any macrostate M along an infinite trajectory is equal to

the Lebesgue measure of M for a Lebesgue measure one of points in the phase space

of the system. There are various senses in which the preferred status of the

Lebesgue measure here is irrelevant for the issue at stake. First, the ergodic theorem

yields no predictions concerning finite times, and therefore strictly speaking the

theorem is not empirically testable. For example, it is extremely difficult to distin-

guish empirically between an ergodic system and a system with KAM dynamics

(see [9]). Second, even if the dynamics of the universe is granted to be ergodic and

even if one accepts the fairy tale about an initial random sampling, this does not

imply that the sampling is random relative to the Lebesgue measure. One can say

metaphorically that God could have used a non-Lebesgue sort of die in sampling at

random the initial condition of the universe even if the universe were ergodic.

Third, and with respect to the typicality approach. Consider again statement (3) in

Sect. 6.1. Here the idea is that the fact that T1 has measure (close to) one suggests

that the initial condition of the universe belongs to T1. Since the measure is not to

be understood as a probability measure, this seems to mean that the measure zero

set is excluded as impossible in some sense. But the measure zero set belongs to the

initial macrostate of the universe and we don’t see what justifies this exclusion.

Finally, it is important to stress in this context that in understanding the ergodic

theorem as a theorem about probability one must identify from the outset that a set
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of Lebesgue measure zero (one) has zero (one) probability. Although the theorem is

usually understood in probabilistic terms, it should be stressed that this identifica-

tion is not part of von Neumann’s and Birkhoff’s ergodic theorem. Whether or not

the Lebesgue measure may be interpreted as the right probability measure for

thermodynamic systems depends on whether it satisfies our probability rule (*).

Another argument sometimes given for taking the Lebesgue measure as

the natural measure in statistical mechanics is that the Lebesgue measure of

a macrostate corresponds to the thermodynamic entropy of that macrostate. How-

ever, this correspondence is true only if the Second Law of thermodynamics (even

in its probabilistic version) is true. But as we argued elsewhere (see our [7, 8, 10],

Chap. 5) the Second Law of thermodynamics is not universally true in statistical

mechanics.

6.5 Lanford’s Theorem

The above conclusion has implications for the significance of measure one

theorems in statistical mechanics. We focus here as an example on Lanford’s

theorem.5 Lanford proved on the basis of the classical equations of motion, that,

roughly, given some specific initial macrostate, and some specific kind ofHamiltonian,

a Lebesgue measure one of the microstates in that macrostate will evolve to

a macrostate with larger entropy, after a certain short time.6 Can such a theorem

endow the Lebesgue measure with a status that is stronger than that of an empirical

generalization (as sketched in (*) above)?

In terms of our transition probabilities Lanford’s theorem proves that the

Lebesgue measure of the overlap between the blob B(t0 + Dt) and the macrostate

E of equilibrium (or some other high entropy macrostate) is 1. Of course, as we said

above, since the Lebesgue measure is conserved under the dynamics, one may

interpret Lanford’s theorem as referring to the Lebesgue measure of subsets of the

initial macrostate M0 at t0. However, inferring anything about the measure of

subsets of the initial macrostate is an artifact of the contingent fact that the

Lebesgue measure matches the observed relative frequencies.

Another crucial point in this context is the following. There are two different and

logically independent ways of understanding the role of the Lebesgue measure in

Lanford’s theorem. (A) The size of the overlap between the blob B(t0 + Dt) and the
macrostate E, as determined by the Lebesgue measure, is 1; (B) Upon a random

sampling of a point out of the blob B(t0 + Dt), one is highly likely to pick out a point

5 For details concerning Lanford’s theorem see Uffink [11].
6 The fact that a Maxwellian Demon is compatible with classical statistical mechanics

demonstrates that there can be no theorem in mechanics that implies a universal entropy increase.

See Albert [10, Chap. 5] and Hemmo and Shenker [12, 13].
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from the overlap of the blob with E. The distinction between (A)-type statements

about sizes of sets and (B)-type statements about probabilities is general.

Lanford’s theorem is about the size of the overlap with E, that is, it is only an

(A)-type theorem, whereas in order to make predictions about the future behavior of

S-type systems (such as our Sk+1 in the above example) one needs to add a (B)-type

statement, which is not proven by Lanford’s theorem. In other words, assuming that

we already know from experience that the Lebesgue measure of the overlap regions

(of the blob with the macrostates) matches the relative frequencies of the

macrostates, Lanford’s theorem provides possible mechanical conditions, which

underwrite these observations.

To appreciate this point, note that if the measure m that matches our experience

were not the Lebesgue measure, but some other measure (that may not be absolutely

continuous with Lebesgue) then Lanford’s theorem would have a completely

different significance: for instance, it could happen that by the measure m the

number of systems that go to equilibrium given Lanford’s Hamiltonian would be

small. The theorem that a set of Lebesgue measure one of points has a certain

property (such as approaching equilibrium after some finite time interval) would be

empirically insignificant – unless this fact is supplemented by the additional fact

that the Lebesgue measure happens to correspond (to a useful approximation) to the

observed relative frequencies.

The general structure of Lanford’s theorem is that it proves a certain statement

about the dynamics of the form of (1) in the typicality approach (see Sect. 6.2). That

is, Lanford’s theorem shows that a certain subset of micrsostates T1 share some

property F (entropy increase, for example), such that all the points in T1 are mapped

by the dynamics to points in T1*. Moreover, the theorem shows that the subset T1

has Lebesgue measure one. But nothing in this theorem justifies the choice of the

measure. In particular, the fact that T1 has Lebesgue measure one does not

constitute such a justification. What’s important in Lanford’s theorem is that it

identifies two sets T1 and T1* and proves that T1 evolves to T1* under the

dynamics. That is, the theorem is about the structure of trajectories. The fact that

T1 has Lebesgue measure one is important only if there are independent reasons for

preferring the Lebesgue measure. As we saw in Sect. 6.3 such reasons can be

grounded essentially only in experience.

6.6 Conclusion

In this paper we showed that one can understand the full scope of classical statistical

mechanics by appealing to the notion of transition probabilities between

macrostates, without resorting to probability distributions over initial conditions

or to typicality considerations.
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