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Typicality and the Role of the Lebesgue

Measure in Statistical Mechanics

Itamar Pitowsky

Abstract Consider a finite collection ofmarbles. The statement “half themarbles are

white” is about counting and not about the probability of drawing a white marble from

the collection. The question iswhether non-probabilistic counting notions such as half,
or vast majority can make sense, and preserve their meaning when extended to the

realm of the continuum. In this paper we argue that the Lebesguemeasure provides the

proper non-probabilistic extension, which is in a sense uniquely forced, and is as

natural as the extension of the concept of cardinal number to infinite sets byCantor. To

accomplish this a different way of constructing the Lebesgue measure is applied.

One important example of a non-probabilistic counting concept is typicality,

introduced into statistical physics to explain the approach to equilibrium. A typical

property is shared by a vast majority of cases. Typicality is not probabilistic, at least

in the sense that it is robust and not dependent on any precise assumptions about the

probability distribution. A few dynamical assumptions together with the extended

counting concepts do explain the approach to equilibrium. The explanation though

is a weak one, and in itself allows for no specific predictions about the behavior of

a system within a reasonably bounded time interval.

It is also argued that typicality is too weak a concept and one should stick with the

fully fledged Lebesgue measure. We show that typicality is not a logically closed

concept. For example, knowing that two ideally infinite data sequences are typical

does not guarantee that theymake a typical pair of sequenceswhose correlation iswell
defined. Thus, to explain basic statistical regularities we need an independent concept

of typical pair, which cannot be defined without going back to a construction of the

Lebesgue measure on the set of pairs. To prevent this and other problems we should

hold on to the Lebesgue measure itself as the basic construction.
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3.1 Introduction

Consider a finite but large collection of marbles. When one says that a vast majority

of the marbles are white one usually means that all the marbles except possibly very

few are white. And when one says that half the members are white, one makes

a statement about counting, and not about the probability of drawing a white

marble from the collection. The question is whether non-probabilistic notions

such as vast majority or half can make sense, and preserve their meaning when

extended to the realm of the continuum, especially when the elements of the

collection are the possible initial conditions of a large physical system.

A major purpose of this paper is to argue that the task of expanding combinato-

rial counting concepts to the continuum can be accomplished. In the third section

we shall see that counting concepts, which have a straight-forward meaning in the

finite realm, also have an extension in the construction of the Lebesgue measure.

Moreover, we shall argue that the extension is in a sense uniquely forced, as the

famous extension of the concept of cardinal number to infinite sets by Cantor. To

accomplish this task a different route to the construction of the Lebesgue measure

is taken.

All this relates to the notion of typicality [1–9], introduced to statistical physics

to explain the approach to equilibrium of thermodynamic systems. This concept has

at least three different definitions [9], all entail that a typical property is shared by

a vast majority of cases, or almost all cases. Typicality is not a probabilistic

concept, this is maintained explicitly [3, 7, 8] or implied, at least in the sense that

typicality is robust and “not dependent on any precise assumptions” about the

probability distribution [2]. A recent example ([8], page 9):

“When employing the method of appeal to typicality, one usually uses the language of

probability theory. When we do so we do not mean to imply that any of the objects

considered is random in reality. What we mean is that certain sets (of wave functions, of

orthonormal bases, etc.) have certain sizes (e.g., close to 1) in terms of certain natural

measures of size. That is, we describe the behavior that is typical of wave functions,

orthonormal bases, etc. However, since the mathematics is equivalent to that of probability

theory, it is convenient to adopt that language. For this reason, we do not mean, when using

a normalized measure m, to make an “assumption” of a priori probabilities,” even if we

use the word “probability”.

However, none of the above papers explain in a precise manner why the

Lebesgue measure is a “natural measure of size”, or what is the connection

between the continuum notions of “vast majority of cases” or “typical cases”, and

the equivalent finite notions which are based on simple counting.

A few modest dynamical assumptions combined with the combinatorial notions

do explain the approach to equilibrium. I shall argue that the explanation is a weak

one, and in itself allows for no specific predictions about the behavior of the system

within a reasonably bounded time interval. Whenever predictions of that kind are

made some additional knowledge about the initial condition or dynamics should be

added. This is where probability enters the picture. We shall argue this for a finite

system in the next section, and consider the infinite case in the 4th section.
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Typicality, however, is too weak a concept and it is argued in the last section that

one should stick with the full-fledged Lebesgue measure. Typicality does not quite

cover measurable subsets whose measure is strictly between zero and one, which

we might use in statistical mechanics. Even more seriously, the concept is not

logically closed. For example, consider Galton’s Board which is a central example

in [3, 7]. Knowing that two ideally infinite sequences are typical does not guarantee

that they make a typical pair of sequences whose correlation is well defined and

equal to 0.25. Therefore, the concept of typical sequence cannot be used to explain

basic long term statistical regularities. For this we need an independent concept of

typical pair, which cannot be defined without going back to a construction of the

Lebesgue measure on the set of pairs. Similar observations apply to triples,

quadruples, and all k-tuples; in each case typicality cannot be defined just on the

basis of the former notions.

3.2 Divine Comedy- the Movie

Consider the set of all possible square arrangements of 1,000 � 1,000 black and

white pixels. There are 210
6

such arrangements, we shall call each one a picture, and

the set of all pictures is our phase space. Imagine that upon his arrival in Hell,

a lesser sinner is seated in a movie theater (no air conditioning). The show consists

of the following movie:

1. Pictures are projected on the screen at a constant pace of 25 frames a second.

2. The sequence is deterministic, the director has arranged that each picture gives

rise to a unique successor. We can assume that the dynamical rule is internal, so

that each picture, apart from the first, depends uniquely on the pixel arrangement

of its predecessors.

3. The movie goes through all 210
6

pictures, and then starts again. So the show

is periodic, but the period is extremely long, more than 10301020 years long

(compared with the age of the universe which is less than 1011 years). The phase

space contains all the pictures that were ever shot and will ever be shot,

including photo copies of written texts and frames from movies, provided they

are cast in the format of a thousand by a thousand black and white pixels. Despite

this, the set of pictures that look remotely like regular photographs is very small

compared with the totality of pictures. Worse, the set of pictures that contain

a large patch of black (or white) pixels is very small. These are just combinato-

rial facts: the overwhelming majority of pictures look gray, approximately half

black and half white, with the black and the white pixels well mixed. The

number of pictures with a single color patch of size m decreases exponentially

with m.

The conjunction of the three dynamical rules for the movie with this combinato-

rial observation explains why, in the long run, the movie is extremely boring and
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looks gray. It also explains why, in the long run, the frequency of the pictures that

have more black than white pixels is (a little less than) 0.5.1 We have to be clear

about the meaning of “the long run” here. In the absence of any detail about the

dynamics other than rules 1, 2, 3, we cannot really say how long the long run is. It

may be the case that the movie begins with a 50,000 year-long stretch of cinematic

masterpieces. However, this cannot last much longer and the movie then settles into

almost uniform gray for a vast length of time. Likewise, it is also possible that the

director has chosen a dynamics that puts all the pictures with more black than white

pixels at the end of the movie. In this case the long run may be very long indeed.

Another way of looking at the long run is to notice that, given the nature of the

theater, different spectators arrive at different times. The first picture each new-

comer encounters upon arrival can be taken as an “initial condition”. So the answer

to the question “how long will it take for the movie to settle into almost uniform

gray?” depends on the initial condition. Similarly, the number of to frames it takes

the time average of an “observable” (a function f : 0; 1f g106 ! R) to stabilize

depends on the initial condition.

So far nothing has been said about probabilities, it is clear that the frequencies

are just proportions in a finite set. The explanation for the frequencies is straight-

forward and involves no probabilities. However, the questions that can be answered

are limited. On the basis of the three dynamical rules and counting alone we can

make no specific forecasts. In the best case we obtain a simple theory which is

consistent with what we see.

Probabilistic considerations enter when definite predictions are made, beyond the

long run explanations. Given the deterministic nature of the system, probability in this

context is invariably epistemic. Consider the claim that the picture to be projected two

minutes from now will have more black than white pixels. We can imagine

two extreme reactions: A savant spectator (Laplace’s demon) may have figured out

what the dynamics is, and knowing the present condition, may calculate the pattern of

pixels twominutes from now. The probability he assigns his result is one, or very near

one allowing for a possible mistake. At the other extreme, where most spectators

are, no information beyond the dynamical rules is available. In this case a natural

choice of a prior is the uniform distribution, that is, the counting measure represents

the probability.2 The probability assigned to the event is thus (slightly less) than

0.5. It is easy to invent stories where partial information is available, with the

consequence that the probability can be anything between zero and one.

Now imagine that upon their arrival in Hell heavier sinners are made to watch

a different show. They are seated in front of a large transparent insulated container

1Note that the number of white pixels in a picture may be considered a “macroscopic” observable,

whose measurement requires no detailed knowledge of the pixel distribution. If we assume that

white pixels emit light, and black pixels do not, we just measure the light emitted from a picture,

and compare it with the all white picture.
2 This is not a very smart prior, though. It assumes independence, and therefore blocks the

possibility of learning from experience.
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full of gas at a constant temperature and sulk at it. Nothing much happens of course,

and the question is whether we can explain why this is the case on grounds that are

similar to the movie story. Here a single picture is analogous to one microscopic

state, and the movie as a whole to the continuous trajectory of the microstate in

phase space. However, since there is a continuum of microstates it is not clear how

to expand the finite concepts to the continuum. In particular, it is not clear what is

the meaning of overwhelming majority of microstates, or typical states, or half the

microstates, unlike the finite case where we just use the terms with their ordinary

meaning. The translation of the dynamical rules 1, 2, 3 to the motion of particles is

not obvious either.

Boltzmann had a long and complicated struggle with these issues [10]. In some

writings he was clearly attempting to associate combinatorial intuition, finite in

origin, with continuous classical dynamics. However, he lacked the appropriate

mathematics which had not yet been invented, or at any rate, was not yet widely

known among physicists. By the time it became available combinatorial and

probabilistic consideration were hopelessly mixed up. The idea of typicality goes

a long way to disentangle the two issues.

Putting the dynamical questions aside for a while, the next section is devoted to

the extension of the relevant combinatorial concepts to the domain of the contin-

uum. It is therefore a chapter in the philosophy of mathematics.

3.3 The Road Less Travelled to Lebesgue Measure

Our purpose is to extend concepts such as majority of cases, or one quarter of the
cases, from the finite realm, where their meaning is obvious, to the domain of the

continuum. Extensions of mathematical concepts from one realm to a larger domain

that contains it are not necessarily unique, and may result in a large variety of quite

different creatures [11]. However, in some cases there are very compelling

arguments why one particular possible extension is the correct choice, the most

important example being Cantor’s definition of the cardinality of infinite sets. I

shall argue below that the Lebesgue measure plays a similar role in the extension of

combinatorial counting concepts.

Usually the Lebesgue measure is introduced as part of the modern theory of

integration, the extension of the definition of the integral beyond the limitations of

Riemann’s construction. This is consistent with the historical development, and

answers the requirements of the mathematics curriculum. Here we take another

approach altogether. First note that without loss of generality our efforts can

concentrate on the interval [0, 1] with the Lebesgue measure on it. The reason is

that every (normalized) Lebesgue space is isomorphic to this space, meaning that

there is a measure preserving isomorphism between the two spaces.3 Second, note

3 This general result is due to Caratheodory, see [12, page 16].
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that the interval [0, 1] can be replaced with the set of all infinite sequences of zeros

and ones {0, 1}o, when we identify each infinite zero-one sequence a ¼ (a1, a2,
a3, . . .) with a binary development of a number in [0, 1], that is, a ! P1

j¼1 aj2
�j.

This map is not 1–1, but fails to be 1–1 only on the countable set of rational

numbers whose denominator is a power of 2 (dynamic numbers), hence a set of

measure zero. In sum, our construction of the Lebesgue measure is developed

without loss of generality as an extension from sets of finite 0–1 sequences to

subsets of {0, 1}o.

We start with the finite case, where the movie of the previous section is the

example we want to generalize. We can represent the movie as the set of sequences

of zeros and ones of length one million f0; 1g106 , where each picture is an element

of that set. Consider more generally the set {0, 1}n where n is any natural number,

and A � {0, 1}n. Then the measure mn of A is defined to be

mnðAÞ ¼ 2�njAj; (3.1)

where |A| is the number of elements of A. So that, for example, if mn (A) ¼ 0.5 we

can say that half the sequences of {0, 1}n belong to A. The size measure has an

important invariance property: If m > n then f0; 1gm ¼ f0; 1gn � f0; 1gm�n
, we

can embed every A � {0, 1}n in {0, 1}m by the map

A � f0; 1gn ! A0 ¼ A� f0; 1gm�n � f0; 1gm; (3.2)

so that mnðAÞ ¼ mmðA0Þ:
With these notations we can formulate the claim made in the movie story, that

the overwhelming majority of pictures are approximately half black and half white.

Given a sequence a ¼ (a1, a2, . . . , an) ∈ {0, 1}n, let SnðaÞ ¼
Pn

j¼1 aj be the sum of

the elements of a, and thus the average number of ones in the sequence is

n�1SnðaÞ ¼ n�1
Pn

j¼1 aj: Therefore, the claim is that for a sufficiently large n the

vast majority of sequences satisfy n�1 Sn (a) ~ 0.5. Indeed, the weak law of large

numbers (LLN) states: For every e > 0

mn a 2 f0; 1gn; 1
2
� e � n�1SnðaÞ � 1

2
þ e

� �
>1� 1

4n2e4
; (3.3)

so that the left hand side tends to 1 as n ! 1.4

Students usually encounter this or similar finite versions of LLN in a course on

probability and statistics. In rare cases the teachers make it a point to distinguish the

4 The rate of convergence on the right hand side of (3.3) is better than the historical one derived by

Bernoulli. We need the stronger result (essentially due to Borel) for later purposes. See [13], page 40.
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two meanings of LLN. First there is the familiar one of probability theory

concerning, for example, Bernoulli trials with probabilities p and q ¼ 1 � p for

the two outcomes. In case the distribution is uniform, p ¼ q ¼ 0.5, a formula like

(3.3) obtains. The second meaning, the one used here, concerns counting the

number of elements in the set between the braces in (3.3), or equivalently, calculat-

ing the proportion of such elements in the set of all 0–1 sequences of length n. This
combinatorial meaning is much simpler, and is qualitatively apparent by looking at

Pascal’s Triangle.

The difference between the two meanings of LLN can be better understood when

we consider the conditions for their applications. In the probabilistic case we have

to describe by which process the digits in the sequence are chosen, for example, by

coin tosses with probability p for “heads”. Subsequently, we have to justify the

assumption that coin flips are independent, and finally to explain that LLN is saying

that the probability that the average of “heads” lies close to p is large. By contrast,

in the application of the combinatorial theorem there is nothing to explain, the

process of counting requires no further analysis. As noted, the distinction between

the two meanings of the weak LLN is rarely taught in the class-room or mentioned

in text books. Moreover, this distinction is never mentioned at all when it comes to

the strong LLN, despite the fact that the strong LLN is a consequence of inequality
(3.3) and s-additivity (see below).

Moving to the infinite case, consider the set of all infinite 0–1 sequences {0, 1}o.

Given a finite set A � {0, 1}n we can embed it as a subset of {0, 1}o using the same

method in (3.2) namely

A � f0; 1gn ! F ¼ A� f0; 1g � f0; 1g � :::: � f0; 1go: (3.4)

Call every subset of {0, 1}o that has the form of F in (3.4) finite. Summarizing,

F � {0, 1}o is finite if it has the form F ¼ A � {0, 1} � {0, 1} � . . . , with
A � {0, 1}n for some natural number n. Of course F has infinitely many elements,

but this does not cause confusion as long as the context is clear. Now, define the

measure m of F to be

mðFÞ ¼ mnðAÞ ¼ 2�njAj: (3.5)

As long as only finite subsets of {0, 1}o are considered no real expansion of the

concept of measure is achieved. Note that the family of all finite subsets is

a Boolean algebra, it is closed under complementation and (finite) unions and

intersections. The minimal expansion to infinity is achieved by considering count-

able infinite unions and intersections. Denote the Boolean algebra of finite subsets

of {0, 1}n by F . In other words, F 2 F if F has the form F ¼ A � {0, 1} � {0,

1} � . . . with A � {0, 1}n for some natural number n. The s-algebra B of Borel

subsets of {0, 1}o is defined to be the minimal s-algebra that contains F . This

means that B is the minimal family of subsets of {0, 1}o which contains F , and is

closed under complementation, and under countable unions and countable

3 Typicality and the Role of the Lebesgue Measure in Statistical Mechanics 47



intersections of its own elements, to generate B, one takes countable unions of finite
sets, then countable intersections of the resulting sets, and so on.5

The measure m is extended from F to B using the s-additivity rule: If
E1; E2; . . . ;Ej; . . . 2 B is a sequence subsets, disjoint in pairs, i.e., Ei \ Ej ¼
f for i 6¼ j; then

m [1
j¼1

Ej

� �
¼

X1
j¼1

m Ej

� �
: (3.6)

Usually, one additional “small” step is taken to complete the construction: Given

any Borel set B 2 B such that mðBÞ ¼ 0 add every such subset of B to the Borel

algebra B. The larger s-algebra which is generated after this addition is the

Lebesgue algebra L. The measure m, which is extended to L in an obvious way,

is the Lebesgue measure.6

Why is m the correct expansion to infinity of the size measure in the finite case?

Obviously, the crucial steps in the expansion are the construction of the s-algebra
and the application of s-additivity. As a consequence new theorems can be

formulated and proved, for example, the strong law of large numbers:

m a 2 0; 1f go; lim
n!1 n�1Sn að Þ� � ¼ 1

2

� �
¼ 1; (3.7)

which says that the set defined within the braces in (3.7) is an element of L (in fact

even B) and its Lebesgue measure is 1; hence in almost every infinite 0–1 sequence

half the elements are zero and half one. This is a direct extension of the counting

intuition expressed by the weak LLN (3.3). Indeed, the strong LLN (3.7) is a logical

consequence of the weak law (3.3) in conjunction with s-additivity. This means that

the finite (3.3) and infinite (3.7) express the same idea, and s-additivity is a way to

translate the cumbersome (3.3) to the compact (3.7). Borel, the author of the strong

LLN, actually preferred (3.3), in line with his intuitionistic views. He thought that

(3.7) added nothing except for the illusion that infinite sets of infinite sequences

made sense.

Similar observations can be made with respect to other limit laws that have

familiar infinite formulations in L, but also parallel formulations in F which

together with s-additivity imply the infinite laws. An important example is

the Law of Iterated Logarithm (LIL), a stronger and more subtle law than (3.7),

which implies, among other things, that for almost every a 2 0; 1f go the sign of n�1

5 The construction of B is achieved by transfinite induction over the two operations, countable

union and then countable intersection, all the way to the first uncountable ordinal.
6 Further extensions of the Lebesgue measure are possible. The validity of the strong version of the

axiom of choice entails the existence of non-measurable sets, that is, C � 0; 1f go such that C =2L.
We can add some of those to L and extend the measure to them [14]. With this the measure is no

longer regular (see below). Moreover, there are models of set theory, with weaker principles of

choice, in which every subset of 0; 1f go is Lebesgue measurable [15].
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Sn (a) � 0.5 oscillates infinitely often as n ! 1. Sometimes the infinite law is

more easily discovered than its finite parallel which may be even hard to formulate.

In any case one can prove the regularity of m, that every set in L can be

approximated by a set in F to an arbitrary degree.

Theorem 1. Let E 2 L be any Lebesgue measurable set and let e> 0; then there
is Fe 2 F such that m E nFeð Þ [ FenEð Þ½ �< e:

The proof is in Appendix 1 (note that the theorem becomes trivial when

m ðEÞ ¼ 0 or m ðEÞ ¼ 1Þ. Therefore, the expansion of the measure from the finite

to the infinite domain conserves the meaning of the counting terms. We can, in

principle, replace any set in E 2 L by a finite set Fe 2 F which is arbitrarily close

to E. If direct counting shows that Fe comprises 0.75 of the cases, then so does E up

to a small error.7 Moreover, the Lebesgue algebra L is the maximal extension of F
for which theorem (1) is valid (see footnote 6). This seems to me to be a compelling

argument for why L is the correct extension of F , and why the Lebesgue measure m
on L is the correct extension of the combinatorial counting measure to infinity. It is

also a compelling argument for why the notions of s-algebra and s-additivity are

the appropriate tools in extending the combinatorial measure to infinity.

Let us come back to the issue of the Lebesgue measure and probability. As noted

before only in rare cases do teachers make a point of distinguishing the meanings of

weak LLN as a combinatorial and as a probabilistic statement. As for the strong

LLN and other similar theorems, teachers and textbooks alike never make the

distinction, and invariably interpret the Lebesgue measure in this context as proba-

bilistic. There is no intrinsic reason for this, the application of s-additivity has no

probabilistic qualities. The reason is more sociological: For the pure mathematician

there is no difference between the uniform probability distribution and the combi-

natorial measure, since their formal properties are one and the same. At a certain

point in time mathematicians started to use the probabilistic language exclusively,

and fellow scientists, physicists in particular, followed in their footsteps. But there

is all the difference in the world between the mathematicians who are using the

measure probabilistically, as a mere formality, and the physicists who are commit-

ting themselves to an application of probability as part of a theory of reality.

This has not always been the case, even for mathematicians! For example, in the

struggle to obtain the correct estimation of frequency oscillations (LIL- the law of

iterated logarithm), bounds were suggested by Hardy and Littlewood in 1914. They

viewed the problem as number theoretic, concerning the binary development of real

numbers between zero and one, and related to Diophantine approximation. Even in

his final formulation of LIL from 1923 (for the uniform case) Khinchine was using

the number-theoretic language, and only a year later switched to probability [16].

Extending the notion of vast majority from the finite to the infinite realm results

in typical cases. None of these concepts is intrinsically probabilistic. I believe that

7Actually Fe ¼ A � 0; 1f g � 0; 1f g � . . . � 0; 1f go with A � 0; 1f gn for some integer n,
and we are counting the elements of A.
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this is an important step towards removing the host of problems associated with

probability distributions over initial conditions. As an example consider a recent

application that does not even involve dynamics. Let a quantum system (“the

universe”) be associated with a finite dimensional Hilbert space H, with a large

dimension D. Now, consider a small subsystem of dimension d � D that

corresponds to a subspace H1. We can write H ¼ H1 	H2, where H2 is the

Hilbert space of the environment with a large dimension d�1D. The set of pure

states inH is the unit sphere ofH; let m be the normalized Lebesuge measure on it.

Each pure state induces a mixed relative state on the small subsystem. The

following recent result was proved independently in [17, 18]: Almost all pure states
in H induce on H1 a relative state which is very close, in the trace norm, to the
maximally mixed state on H1, that is, d

�1Id with Id the unit operator on H1.

One possible reading is that with probability one the state of the large system

induces the near uniform state on the subsystem.8 A natural question is, “What does

probability mean in this context?” Assume the large system is a model of the

universe; it began in one pure state, and after time t it is again in one particular

pure state. This state has been deterministically developed from the initial condition

by the unitary time transformation. So the question is, “What do we mean by saying

that the initial condition of the universe was picked from a uniform rather than some

other probability distribution?” The only sensible answer is that this statement

represents the epistemic probability of an agent who has no knowledge at all

about the initial condition. However, this agent cannot be a physicist, who usually

knows something about the present and earlier (macroscopic) states of the universe.

In the typicality approach, by contrast, the result simply means that the vast

majority of pure states of the big system have the property in question, a combinato-

rial claim. This claim gives rise to a weak, but still informative conditional statement:

If the universe began from a typical state then equilibrium should be a widespread

phenomenon. A simple assumption (typicality) explains a large set of observations.

3.4 Dynamics

Our aim is to discuss the dynamical conditions that are the infinite parallels of the

constraints 1, 2, 3 we have imposed on the movie. To fix notations let G denote the

energy hypersurface of the closed system under consideration. If x0 2 G is a point,

it can be considered as a possible initial condition, let x0(t) denote the trajectory

starting from this point in G. Alternatively, if t is fixed x0(t) is the point to which

x0 travels after time t. The Lebesgue measure on G will be denoted by m, and we

assume it is normalized (we ignore the difficulties arising from a non compact G,
which are settled by known techniques). The s-algebra of the Lebesgue measurable

8 See [17]. In a later important dynamical extension of this result the authors adopt the typicality

point of view [19].
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sets will again be denoted by L. If E 2 L, define Et to be the time translation of E,
that is, Et ¼ {x0(t); x0 ∈ E,} for 0 � t < 1.

The second assumption 2 corresponds to the determinism inherent in classical

mechanics and already reflected in the notation. The classical dynamical rule

closest to assumption 1 is the conservation of energy. In the case of an ideal gas

the velocities of the individual particles are varied but the average (square of the)

particle’s speeds remains constant (by analogy, the pace of the movie is constant).

Energy conservation, that is, the Hamiltonian character of the system, also

guarantees that the dynamics is measure preserving: m(E) ¼ m(Et). In the movie

case measure preservation is trivial.

Condition 3 corresponds to ergodicity. Historically, a major difficulty was

associated with the formulation of this condition, Boltzmann mistakenly thought

that a path can fill the whole energy hypersurface in phase space, so that every state

will be visited. However, this requirement contradicts basic topological facts.9 It

took a long struggle until the modern version of the ergodic condition was

formulated, and the ergodic theorems subsequently proved [16]. Instead of referring

to individual points visited by the path, the condition takes (measurable) set of

points, and puts a constraint on the way the set fills up the space. Let E be

a measurable subset of the energy hypersurface in phase space. Then E is invariant
if for some t > 0 we have Et � E. The system is ergodic if all invariant sets have

measure zero or one.

In the finite case the dynamical rules provide an explanation why, in the long

run, the movie is extremely boring and looks almost always gray. They also explain

why, in the long run, the frequency of the pictures that have more black than white

pixels is (a little less than) 0.5. This corresponds, in the infinite case, to the identity

of the long run averages and the phase space averages of thermodynamic

observables, a highly non-trivial fact which is the content of the ergodic theorems.

In both cases the long run may be very long, in the infinite case there is no a priori

bound on its length. This is the explanation why the system is at maximal entropy

most of the time, or why about half the time the pressure in the left half of the

container is less (even very slightly so) than in the right half.

However, there seems to be a difference between the finite and infinite case here.

Given a thermodynamic observable, only typical initial conditions result in the

identity of its phase space and long time averages. This may seem like a major

difference from the finite case in which all initial conditions behave properly.

However, a small amendment to the movie story can lead us to the conclusion

that the movie satisfies condition 3 only for a vast majority of initial conditions, not

all. To see this imagine that the set of pictures is divided into two disjoint subsets,

one very small containing 20 pictures and the other containing the rest. When

a movie begins with a picture in the small subset it goes through a small loop,

9Dimension is a topological invariant, as proved by Brouwer in 1911. Partial results concerning

the non-existence of a homeomorphism between the real line and higher dimensional real spaces

existed in Boltzmann’s time. For example, L€uroth in 1878.
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visiting all 20 pictures and starts again. Similarly for an initial condition in the

second set, but then it covers all the pictures except 20. In both cases determinism is

satisfied. We can say that for the vast majority of initial conditions the time and

space averages of “thermodynamic observables”, functions f :f0; 1g106 ! R, are
(very nearly) the same.

It must be emphasized that the sense of explanation obtained in this manner is

significant but limited. As a result of the unbounded nature of the long run, and in

the absence of more information, there is no way we can combine the dynamical

rules with the combinatorial facts to yield a definite prediction, for example, about

what will take place 2 days from now. The kind of explanation we do have is

weaker, and has the conditional form: “If the initial condition is typical, then. . . ”
The assumption of typicality explains why the (calculated) space averages of

observables are the same as the measured long time averages (which stabilize

quickly in practice). Thus, assuming we are on a typical trajectory, one of a vast

majority, explains much of what we actually see.

So far the explanation relies on the dynamical rules and the observations derived

from the combinatorial nature of the Lebesgue measure. One may object to the

latter point on the ground that the measure here does not seem to be “the same” as

the measure on the set of infinite 0–1 sequences, being a Lebesgue measure on

a Euclidean manifold of high dimension. This objection can be answered on two

levels, the first is purely formal. As indicated before, all Lebesgue spaces which are

defined on compact subsets of real or complex Euclidean spaces are isomorphic

(after normalization of the measure) to the interval [0,1] with the Lebesgue measure

on it. Therefore, they are also isomorphic to the space of all 0–1 sequences,

and every measurable set E � G corresponds to a measurable set bE � f0; 1go,
with the same measure, and bE can be approximated by a finite set F 2 F as

indicated in theorem 1.

On a deeper level there often exists a connection between ergodic systems

and the sequence space when we apply a mapping of the ergodic system, includ-

ing its dynamics, to the set two sided infinite 0–1 sequences [12, page 274]. This

space, denoted by {0, 1}z, is equipped with the (uniform) Lebesgue measure, and its

elements can be written as a ¼ ð . . . ;a�2; a�1; a0; a1; a2; . . .Þ, with ai 2 f0; 1g;
i ¼ 0;
1;
2; . . . . To perform the mapping between the thermodynamic system

and this space one has to replace the continuous time variable by a discrete

parameter. It turns out that many important ergodic systems, including the few

physically realistic systems for which ergodicity was actually proved, are isomor-

phic as dynamical systems to the Bernoulli shift on {0, 1}Z, defined by10

ðSaÞi ¼ ai�1. These results were proved in a sequence of papers, mainly by

Orenstein and his collaborators [12]. Ergodic systems with this property include

the standard model of the ideal gas (hard-sphere molecules in a rectangular box),

10 The reason why the double sided sequence space is used is to make the Bernoulli shift well

defined and invertible.
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Brownian motion in a rectangular region with reflecting boundary, geodesic flows

in hyperbolic and many other spaces.

The connection with the combinatorial character of the measure is even more

transparent in this case. For example, the Ergodic theorem for {0, 1}ℤ with the shift

entails the strong LLN. To see this let A � f0; 1gZ be a measurable set then the

ergodic theorem for the Bernoulli shift states,

m a 2 f0; 1gZ; lim
n!1

1

n

Xn
i¼1

wAðSjðaÞÞ ¼ mðAÞ
( )

¼ 1: (3.8)

Here wA is the indicator function of A, so that wA (a) ¼ 1 if a 2 A, and wA(a) ¼ 0

otherwise. Now take A ¼ fa 2 f0; 1gZ; a0 ¼ 1g, then m(A) ¼ 0.5 andPn
i¼1 wAðSjðaÞÞ ¼

Pn
i¼1 ai, and we obtain the strong LLN as a special case.

Probabilistic considerations enter when definite predictions are made, beyond

the weaker long term explanations that are possible on the basis of ergodicity.

Given the deterministic nature of the system we shall take probability in this context

to be epistemic, although this may be disputed [7, 20]. The assignments of

probabilities are based on knowledge about the system that may go beyond the

simple rules we have considered. Some-times, in the absence of any knowledge

about the initial condition and the dynamics beyond ergodicity, the uniform

Lebesgue measure can serve as the degree of knowledge regarding the system.

Often more knowledge is available, which can be theoretical, but frequently

concerns the initial condition and is based on experience. For example, we may

know something about the rate with which the dynamics is moving to mix

the molecules. Usually the rate cannot be derived directly on the basis of the

interactions between the particles. Higher theories such as fluid dynamics may be

involved, together with experimental data. If a gas is prepared in a container with

a divider, and the pressure on the left hand side much higher than the pressure on the

right, then upon removing the divider the pressures will equalize very swiftly. By

contrast, when we drop ink into water we know that it will take much longer to mix

uniformly with the medium. Therefore, if we where to bet whether the pressures on

both sides will equalize 20 s from now, the answer will be yes with probability close

to 1, but the probability that the ink will be well mixed within 20 s is near zero. This

does not follow from ergodicity which just explains why the system will eventually

arrive at equilibrium and stay there most of the time.

We also know that in all recorded human history the reverse of these processes

has never seen reported. Consequently, the probability assigned to a spontaneous

large pressure differences occurring within the next week (or month, or year. . .) is
zero or very nearly so. This observation too cannot be derived logically from the

dynamical and combinatorial rules. Given ergodicity, almost all initial conditions

will take the system arbitrarily near every possible state. How do we know that the

creation of a spontaneous large pressure difference is not around the corner?

We do know from combinatorial considerations that non equilibrium states are

very rare, but this condition is insufficient to derive the probabilistic conclusion,
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because we do not know what the trajectory is, and have no clue about the way rare

states are distributed on it. The movie analog is a photograph of the Empire State

Building appearing suddenly in the midst of gray pictures. This photograph must

appear sometime, but in the absence of detailed knowledge of the dynamics one

cannot tell when. However, after sitting 1010 years and watching gray pictures one

may assign the sudden pop up of the Empire State Building in the next week a very

small probability. This would not be the case after a long stretch of pictures of

buildings. By analogy, we assign zero probability to the creation next week of

a spontaneous large pressure differential because this has never happened, and not

just because we know abstractly that this is an atypical event.11

3.5 Troubles with Typicality

The problem is that typicality is too restrictive a notion, and the reasons are twofold,

physical and logical. Physically, there are good reasons to deal with measurable sets

of intermediate size. For example, the set of micro states for which the pressure in

the left half of the container is equal or less than the pressure in the right comprise

0.5 of all the states. Logically, we shall see that the concept of typicality lacks

closure. For example, even after typical points have been “fixed” one cannot use

this stipulation to define typical pairs of points, that is, a pair of typical points is not
necessarily a typical pair of points. To define the latter, one has to go back to the

Lebesgue measure on the set of pairs (which is defined in terms of the Lebesgue

measure on the set of singletons) and redefine typicality for pairs.

As for the physical restriction, one important case is that of smooth classical

Hamiltonian systems which are not ergodic, but only measure preserving. By

Birkhoff’s theorem convergence of the time average of a thermodynamic observ-

able for typical initial conditions is guaranteed, but the result is not identical to the

space average. In this case the phase space is partitioned into invariant sets of

positive measure, such that the restriction of the dynamics to each element in the

partition is ergodic (after a suitable renormalization). By KAM’s theorem many

Hamiltonian systems are not ergodic, although the partition is often composed of

one large invariant set and other much smaller elements. (For such systems the

notion of e ergodicity has been introduced [22]). Even in this case one has to say

something about sets of initial conditions with measure smaller than 1, which

cannot even be formulated without the full Lebesgue measure.

The logical point is that exchanging the full Lebesgue measure for the weaker

notion of typicality does not even accomplish the task of explaining the long run

statistical regularities. In order to provide such an explanation one has to introduce

an infinite sequence of logically independent concepts of typicality, none of which

11A similar point about the role of induction in statistical mechanics is made in [21].
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are definable in terms of the former. Consider Galton’s board, which serves as

a central example in the papers by D€urr [3] and Maudlin [8]. The first notion

introduced is that of a typical initial condition, which explains, e.g., the stability

of relative frequencies of going left and going right. Next, we must introduce a new

notion of typical pairs of initial conditions to explain the stability of the frequency

of the correlated sequence obtained from two runs of the board, then we have to

introduce a new notion of typical triples to explain the stability of triple correlated

sequences obtained from three runs, and so on. Each one of these notions is

logically independent of the former notions, that is, none of them can be defined

on the basis of the previous concepts of typicality. In each case one has to

reintroduce the fully fledged Lebesgue measure (respectively, on the interval of

initial conditions, the Cartesian product of the interval by itself, the three–fold

Cartesian product, and so on), and only then, in each case separately, throw away

the ladder as it were, and introduce the new notion of typicality in the manner

described by Maudlin for the singleton case.

One consequence of this state of affairs is that being typical is not an intrinsic

property of a point even for a single dynamical system, but is a property induced by

its relations to other points. Moving to the system comprising the whole universe

(which after all has only one initial state) does not solve the problem. In this case it

also arises in the context of the typicality of idealized sequences of empirical

observations, the correlations or independence of two such sequences, and of

triples, etc. Even if we observe only one (ideally infinite) typical sequence, the

problem arises with respect to its subsequences and their relations.

To see this consider a pair of a;b 2 f0;1go and denote a � b ¼ ða1b1; a2b2;
a2b2; :::Þ. We know that typically a � b is a sequence whose averages satisfy 1

n �Pn
i¼1 aibi ! 0:25: But does this fact follow if we assume that a and b are typical?

The negative answer follows from

Theorem 2. Let A � f0; 1go be any measurable set with mðAÞ> 1
2
; then there are

a;b 2 A such that a � b has a divergent sequence of averages.
The proof is in Appendix 2. This means that no matter what the set of typical

sequences is, there will always be pairs of typical sequences whose correlation is

not even defined. One might object on the ground that the set of such bad pairs has

measure zero, and the set of typical pairs has measure one. However, this refers to

the measure on the Lebesgue space of pairs. The set of typical pairs does not have
the form A � A with A 2 L, and m(A) ¼ 1. By theorem 2 any set of the form A � A
contained in the set of typical pairs has at most measure mðAÞ � 0:5: Therefore, to
be able to speak about typical pairs one has to construct first the Lebesgue measure

on the set of pairs f0; 1go � f0; 1go, or alternatively [0, 1] � [0 1], and only then

define typicality for pairs. One cannot do it by relying on the already established set

of typical points. This observation can be extended to triple, quadruple correlations,

and so forth. In the case of triples the equivalent theorem applies when mðAÞ> 1
3
,

and so on, for k-tuples when mðAÞ> 1
k In all these cases the notion of typicality

cannot be derived from the lower dimensional ones.
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As noted this also means the being typical is not an intrinsic property of an initial

condition, not even for a single fixed system, but depends on the relation between

the point and other possible initial conditions. The way suggested here to avoid this

difficulty is to use the fully fledged Lebesgue measure, in its combinatorial inter-

pretation. In this case subsets of measure one are just special cases. I think all the

advantages of the concept of typicality that were pointed out in the literature are

preserved, but the difficulties are avoided.
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Appendix 1: Proof of Theorem 1

Theorem 1. Let E 2 L be any Lebesgue measurable set and let e>0; then there is
Fe 2 F such that m½ðEnFeÞ [ ðFenEÞ�<e:
Proof. Consider first a Lebesgue measurable subset E � ½0; 1�: By the regularity of
the Lebesgue measure (see [23], page 230) given any e>0 there is an open set U,
with E � U and mðUnEÞ< e

2
: The family of open intervals with dyadic endpoints

forms a basis for the usual topology on [0, 1] (recall that a dyadic number is

a rational whose denominator is a power of 2). Thus, we can represent U as

a disjoint countable union U ¼ [1
j¼1ðcj; djÞ; where cj and dj are dyadic, and mðUÞ ¼P1

j¼1 ðdj � cjÞ: By choosing a sufficiently large natural number Nwe can make sure

that U0 ¼ [N
j¼1ðcj; djÞ � U satisfies mðU0Þ>mðUÞ � e

2
: Now define U00 to be the set

obtained from U0 by adding the endpoints of each interval: U00 ¼ [N
j¼1ðcj; djÞ. Since

we have added just finitely many points the measure of U00 is the same as that of U0,
and therefore, m½ðEnU00Þ [ ðU00nEÞ�<e:
Now apply the map

P1
j¼1 aj2

�j ! ða1; a2; a3; . . .Þ which takes real numbers in [0,

1] to their sequence of binary coefficients in f0; 1go. Dyadic rationals have two

binary developments, one ending with an infinite sequence of zeroes, and the other

ending with an infinite sequence of ones. Adopt the convention that in case of

a dyadic rational d, the map takes d to its two binary sequences. Since the set of

dyadic numbers has measure zero the map is measure preserving. The set E is then

mapped to a subset of f0; 1gowhich we shall also denote by E. The set U00 is
mapped to a finite subset of f0; 1go which we will denote by Fe 2 F . The reason is

that every closed interval with dyadic endpoints is mapped to a finite set, for

example, 1
4
; 5
8

� 	 ! fð0; 1; 0Þ; ð0; 1; 1Þ; ð1; 0; 0Þg � f0; 1g � f0; 1g � . . . � f0; 1go; :
and U00 is a finite union of such intervals. This completes the proof.
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Appendix 2: Proof of Theorem 2

This theorem and proof appeared first in [24] as part of a criticism of the frequency

interpretation of probability.

Theorem 2. Let A � {0, 1}o be any measurable set with mðAÞ> 1
2
, then there are

a, b ∈ A such that a�b has a divergent sequence of averages.
Proof. Denote by a � b the XOR of the elements a and b, in other words (a � b)i ¼
ai + bi (mod 2). We first show that mðAÞ> 1

2
implies that A � A ¼ {a � b; a, b

∈ A} ¼ {0, 1}o. Indeed if c =2 A � A, then (c � A) \A ¼ f, where c � A ¼ {c �
a; a∈ A}. Otherwise, if d∈ (c � A) \ A then d∈ A and d ¼ (c � a) for some a∈
A. Hence c ¼ (d � a)∈ A � A, contradiction. Therefore, (c � A) \ A ¼ f, but this
also leads to a contradiction since mðc � AÞ ¼ mðAÞ> 1

2
, hence A � A ¼ {0, 1}o.

We can assume without loss of generality that all elements of A have a conver-

gent sequence of averages. This is the case because the set of elements of {0, 1}o

whose averages diverge has measure zero. Let c ∈ {0, 1}o be some sequence with

a divergent sequence of averages. Then by the above argument there are a, b ∈ A
such that c ¼ (a � b), that is ci ¼ ai + bi (mod 2) ¼ ai + bi � 2aibi and therefore

1

n

Xn
i¼1

ci ¼ 1

n

Xn
i¼1

ai þ 1

n

Xn
i¼1

bi � 2

n

Xn
i¼1

aibi:

The sequence on the left diverges, and the first two sequences on the right

converge. Hence, n�1
Pn

i¼1 aibi diverges. This completes the proof.
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