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Finetti’s Theory of Probability and Its

Application to Quantum Mechanics
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Abstract Bruno de Finetti is one of the founding fathers of the subjectivist school

of probability, where probabilities are interpreted as rational degrees of belief. His

work on the relation between the theorems of probability and rationality is among

the corner stones of modern subjective probability theory. De Finetti maintained

that rationality requires that degrees of belief be coherent, and he argued that the

whole of probability theory could be derived from these coherence conditions. De

Finetti’s interpretation of probability has been highly influential in science. This

paper focuses on the application of this interpretation to quantum mechanics. We

argue that de Finetti held that the coherence conditions of degrees of belief in events

depend on their verifiability. Accordingly, the standard coherence conditions of

degrees of belief that are familiar from the literature on subjective probability only

apply to degrees of belief in events which could (in principle) be jointly verified;

and the coherence conditions of degrees of belief in events that cannot be jointly

verified are weaker. While the most obvious explanation of de Finetti’s

verificationism is the influence of positivism, we argue that it could be motivated

by the radical subjectivist and instrumental nature of probability in his interpreta-

tion; for as it turns out, in this interpretation it is difficult to make sense of the idea

of coherent degrees of belief in, and accordingly probabilities of unverifiable

events. We then consider the application of this interpretation to quantum mechan-

ics, concentrating on the Einstein-Podolsky-Rosen experiment and Bell’s theorem.
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16.1 The Background and Motivation

The foundations of this paper were laid in 1988/1989, when I worked on a seminar

paper for Itamar Pitowsky’s course in the philosophy of probability.1 The question

that motivated the paper was whether subjective probability, and more specifically

de Finetti’s subjectivist interpretation, could successfully be applied in quantum

mechanics (QM). This question, which was raised by Itamar, may seem a bit

anachronistic now that the subjective interpretation of quantum probabilities is

gaining popularity. But back then this interpretation was undeveloped.2

In de Finetti’s interpretation, probabilities have no objective reality. They are the

expressions of the uncertainties of individuals. Itamar’s question was not whether

such a radical subjective interpretation could constitute an adequate interpretation

of probabilities in quantum mechanics. Rather, it was the question whether de

Finetti’s interpretation could be reconciled with the apparent non-classical charac-

ter of these probabilities. We explain this concern in Sect. 16.1.3, and discuss it in

more detail in Sect. 16.2. To prepare the ground for this discussion, we now turn to

present Bell’s theorem and two different interpretations of it. In Sects. 16.3 and

16.4, we introduce the main ideas of de Finetti’s theory of probability, and in

Sects. 16.5–16.7 we discuss the application of this theory to the quantum realm.

16.1.1 Bell’s Theorem and Its Common Interpretation

Recall the Einstein-Podolsky-Rosen (EPR) experiment. Pairs of particles are emit-

ted from the source in opposite directions. When the particles are spacelike

separated, they each encounter a measurement apparatus that can measure their

position or momentum. The distant measurement outcomes are curiously

correlated. Einstein et al. [6] thought that this kind of correlation reflects the

incompleteness of QM rather than non-local influences. They argued that the QM

state-description is incomplete, and they believed that a more complete description

would render the distant measurement outcomes probabilistically independent. The

idea is that the correlations between such distant outcomes could be explained away

by a local common cause: the complete pair-state at the emission. Given this state,

the joint probability of the outcomes would factorize into their single probabilities

(see Factorizability below), and so the correlations between them would not entail

the existence of non-locality.

1 See Berkovitz [1, 2].
2 For applications of the subjective interpretation to QM, see for example, Caves, Fuchs and

Schack [3–5] and Pitowsky [59]. While these applications appeal to de Finetti’s subjective theory

of probability, both the interpretation of de Finetti and the focus of its application are substantially

different from the ones offered below.
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In his celebrated theorem, Bell [7–11] considers models of the kind EPR may

have had in mind, but he focuses on Bohm’s [12] version of the experiment

(henceforth, the EPR/B experiment), where the measured quantities are spins in

various directions. These models postulate the existence of “hidden variables”

that are supposed to constitute a (more) complete pair’s state, and this state is

supposed to determine the measurement outcomes or their probabilities in a

perfectly local way. Bell’s theorem demonstrates that such models are committed

to certain inequalities concerning the probabilities of measurement outcomes, the

so-called “Bell’s inequalities,” which are violated by the predictions of QM and

(granted very plausible assumptions) actual experimental results. In Clauser and

Horne’s [13] version, the inequalities are concerned with the probabilities of

measurement outcomes of spins in two different directions in each wing of the

EPR/B experiment, henceforth the “Bell/CH inequalities” (for details, see

Sect. 16.2).

The common view is that Bell’s theorem demonstrates that local hidden-

variables models cannot reproduce the predictions of QM [7–11, 13–16]. On this

view, the derivation of Bell/CH inequalities involves the following premises.

(i) The distribution of the complete pair-state is determined by the QM pair-state,

and is independent of the settings of the measurement apparatuses. That is, for

any QM pair-state c, complete pair-states l, and setting of the L- and

R-apparatus to measure spins in the directions x and y, respectively, we have:

ðl� independenceÞ rcxyðlÞ ¼ rcðlÞ;

where rcðlÞ and rcxyðlÞ are the probability distributions of l given c and given

c& x&y, respectively. Note that in our notation for conditional probabilities, we

place the conditioning events in the subscript rather than after the conditionalization

stroke. Unlike Kolmogorov’s [17] axiomatization, in this approach conditional

probability is not defined as a ratio of unconditional probabilities. Rather, condi-

tional probability may be thought of as a conditional, which does not necessarily

entail the corresponding conditional probability a la Kolmogorov (for more details,

see Sect. 16.3.7). In this concept of conditional probability, the conditioning events

c and c& x&y are not part of the probability spaces referred by rcð Þ and rcxyð Þ,
respectively. To highlight this fact, we place them in the subscripts. As we shall see

later, this alternative concept of conditional probability is in line with de Finetti’s

theory of probability. Arguably, it is also a more appropriate representation of the

basic idea of conditional probability in other interpretations of probability [18, 19].

Yet, while this representation is important for pedagogical reasons, it is not

essential for our analysis of Bell’s theorem and the feasibility of interpreting

probabilities in the quantum realm along de Finetti’s theory.

(ii) For each complete pair-state l and apparatus settings x and y, the model

prescribes probabilities of single and joint measurement outcomes:

PlxðOxÞ; PlyðOyÞ and PlxyðOx&OyÞ, where Ox is the outcome “up” in x-spin
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measurement on the L-particle; and similarly, mutatis mutandis, for the out-

come Oy in the R-wing.

(iii) The joint probability of distant outcomes given the complete pair-state and

apparatus settings factorizes into the single probabilities of the outcomes. The

idea here is that the correlation between the distant outcomes are explained by

a common cause, i.e. the complete pair-state, so that conditionalization on the

common cause renders the outcomes probabilistically independent. More

precisely, for any l; x; y; Ox and Oy:

Factorizabilityð Þ PlxyðOx&OyÞ ¼ PlxðOxÞ � PlyðOyÞ:

(iv) The QM probabilities of outcomes are reproduced as statistical averages over

the model probabilities of outcomes – namely, as sum-averages over the model

probabilities according to the distribution of the complete pair-state. That is,

granted l-independence, for any c; x and y, we have:

PcxðOxÞ ¼
ð
l
PlxðOxÞ drðlÞ; PcyðOyÞ ¼

ð
l
PlyðOyÞ drðlÞ; PcxyðOx&OyÞ

¼
ð
l
PlxyðOx&OyÞ drðlÞ:

Bell’s theorem demonstrates that in any model that satisfies (i)-(iv), the

probabilities of measurement outcomes in the EPR/B experiment are

constrained by the Bell/CH inequalities (see Sect. 16.2). Thus, granted the

plausibility of l-independence and the overwhelming evidence for the empiri-

cal adequacy of QM (in its intended domain of application), the consensus has

it that Factorizability fails in this experiment. The failure of this condition is

commonly thought of as indicating some type of non-locality (for a recent

review of quantum non-locality, see [20] and references therein).

16.1.2 Fine’s Interpretation of Bell’s Theorem

Following Bell [10], the above analysis of Bell’s theorem relies on a principle of

causal inference which is similar to Reichenbach’s [21] principle of the common

cause. That is, it is assumed that non-accidental correlations have causal explana-

tion, and the kind of explanation is as spelled out in (iii) and (iv) above. While this

kind of inference is common, there are dissenting views. Fine [22–24] denies that

non-accidental correlations must have causal explanation, and he argues that the

correlations between the distant measurement outcomes in the EPR/B experiment

do not call for causal explanation; and Cartwright [25, Chaps. 3 and 6] and Chang

and Cartwright [26] challenge the assumption that common causes must render

their joint effects probabilistically independent.
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More important to our consideration, Fine [27, p. 294] argues that

(F) What hidden variables and the Bell/CH inequalities are all about are the

requirements that make “well defined precisely those probability distributions

for non-commuting observables whose rejection is the very essence of quantum

mechanics.”

The idea is that Bell’s theorem focuses onmodels that presuppose the existence of

joint probability over non-commuting spin observables in the EPR/B experiment – a

distribution that does not exist according to standard QM. In more detail, Fine [27]

argues that:

I. (Corresponding to “Proposition 1”) “The existence of a deterministic hidden-

variables model is strictly equivalent to the existence of a joint distribution

probability function PðAA0BB0Þ for the four observables of the experiment, one
that returns the probabilities of the experiment as marginals.” [27, p. 291]

II. (“Proposition 2”) “Necessary and also sufficient for the existence of a determin-

istic hidden-variables model is that Bell/CH inequalities hold for the

probabilities of the experiment.” [27, p. 293]

III. (“Proposition 3”) “There exists a factorizable stochastic hidden-variables model

for a correlation experiment if and only if there exists a deterministic hidden-

variables model for the experiment.” [27, p. 293]

Fine believes that (I)–(III) entails (F), and this suggests that the common

interpretation of Bell’s theorem – namely, that (granted the very plausible assump-

tion of l-independence) the violation of Bell/CH inequalities entails quantum non-

locality – is misguided.

16.1.3 Subjective Probability, Joint Distributions and Verifiability

De Finetti held that for degrees of belief to be coherent they have to be probabilities,

i.e. they have to satisfy the probability axioms. It is commonly presupposed, albeit

implicitly, that a person’s coherent degrees of belief concerning all the propositions

she considers are to be represented by a joint probability distribution, which returns

these degrees of belief as marginals; for notable examples, see Lewis’s [28]

“A Subjectivist’s Guide to Objective Chance” and Carnap’s [29] “On Inductive

Logic.” If the subjectivist interpretation were committed to such an assumption, and

the view that the Bell/CH inequalities follow from the assumption of a joint

distribution over non-commuting observables in the EPR/B experiment were cor-

rect, followers of this interpretation would be bound to have probabilities that are

constrained by Bell/CH inequalities, and accordingly incompatible with the

predictions of QM.

Indeed, followers of the subjectivist interpretation may agree with Fine’s analy-

sis of Bell’s theorem, yet reject the view that a person’s degrees of belief are to be

16 The World According to de Finetti: On de Finetti’s Theory of Probability 253



represented by a single probability distribution. The question is whether they have

non-ad hoc reasons to reject this view. Based on a reconstruction of de Finetti’s

probability theory in Sects. 16.3 and 16.4, we shall argue in Sect. 16.5 that followers

of de Finetti have such reasons in the context of the EPR/B experiment and Bell’s

theorem. That is, we shall argue in Sect. 16.4 that de Finetti’s notion of coherent

degrees of belief embodies a certain verifiability condition. Consequently: (a)

Degrees of belief in events that are not verifiable have no definite coherence

conditions, and accordingly have no probability. (b) There are no joint probability

distributions over events that are not jointly verifiable. (c) The coherence conditions

of degrees of belief in events that are not jointly verifiable are weaker than they

would have been had the events been jointly verifiable. Thus, the coherence

conditions of degrees of belief in events that are not jointly verifiable are weaker

than the familiar coherence conditions discussed in the literature on subjective

probability. Accordingly, the inequalities that constrain the probabilities of such

events are weaker than those that constrain the probabilities of events that are

jointly verifiable.

In Sects. 16.5 and 16.7, we shall consider the implications of these consequences

for the structure of probabilities in models of the EPR/B experiment in which

probabilities are interpreted along de Finetti’s theory of probability. These sections

reflect the implications of de Finetti’s theory, as reconstructed in Sects. 16.3 and

16.4. De Finetti himself struggled to understand the nature of the QM probabilities

and their relation to “classical” probabilities. In Sect. 16.6, we shall briefly look at de

Finetti’s own analysis of the QM probabilities. But first we turn to present the Bell/

CH inequalities and to consider Fine’s claim that these inequalities follow from, and

are equivalent to the assumption of a joint distribution over non-commuting

observables in the EPR/B experiment.

16.2 Joint Distributions, Probabilistic Inequalities

and Bell’s Theorem

The term “Bell/CH inequalities” is ambiguous. It refers to different kinds of

inequalities. The first kind is a theorem of probability theory:

Bell=CH � probð Þ
� 1 � PlðX&YÞ þ PlðX0&YÞ þ PlðX&Y 0Þ � PlðX0&Y 0Þ � PlðXÞ � PlðYÞ � 0:

Indeed, this inequality obtains for any joint probability distribution over any four

events X; X0; Y; Y0 (or propositions about them). In the context of the hidden-

variables models of the EPR/B experiment, it is natural to think about l as the

complete pair-state, and X ðYÞ and X0 ðY0Þ as referring to spin properties of the

particles, or properties that determine their dispositions to spin in measurements.

For example, X ðYÞ may be the event of the L- (R-) particle spinning “up” in the
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direction x ðyÞ, or some other property that determines the disposition of the L- (R-)

particle to spin “up” along the direction x ðyÞ in a spin measurement along this

direction.

The second and third kinds of Bell/CH inequalities are not theorems of proba-

bility theory:

(Bell/CH - phys - lÞ � 1 � PlxyðOx&OyÞ þ Plx0yðOx0&OyÞ þ Plxy0 ðOx&Oy0 Þ
�Plx0y0 ðOx0&Oy0 Þ � PlxðOxÞ � PlyðOyÞ � 0

(Bell/CH - phys - cÞ � 1 � PcxyðOx&OyÞ þ Pcx0yðOx0&OyÞ þ Pcxy0 ðOx&Oy0 Þ
�Pcx0y0 ðOx0&Oy0 Þ � PcxðOxÞ � PcyðOyÞ � 0

where, as before, c is the QM pair-state, x (y) is the setting of the L- (R-) apparatus
to measure spin in the direction x (y), andOx (Oy) is the outcome “up” in x- (y-) spin
measurement on the L- (R-) particle; and similarly, mutatis mutandis, for x0 (y0) and
Ox0 (Oy0 ). (Bell/CH – physics – l) is an inequality of probabilities of the hidden-

variables model, whereas (Bell/CH – physics – c) is an inequality of QM

probabilities. The latter inequality is derived from the former by integrating over

all the complete pair-states l while assuming l-independence.
In (Bell/CH – prob) all the probabilities belong to the same probability space,

whereas in (Bell/CH – phys – l) and (Bell/CH – phys – c) each of the probabilities
belongs to a different probability space. This should be clear from the fact that each

of the probabilities in these latter inequalities has a different subscript. Thus, unlike

the former inequality, these inequalities cannot be derived purely on the basis of

considerations of coherence or consistency.

Indeed, (Bell/CH – phys – l) and (Bell/CH – phys – c) are sometimes

represented in terms of conditional probabilities a la Kolmogorov with the condi-

tioning events placed after the conditionalization stroke rather than in the subscript,

where in each inequality all the probabilities are embedded in one “big” probability

space:

(Bell/CH –phys – l – big)

�1 � PðOx&Oy=l&x&yÞ þ PðOx0&Oy=l&x0&yÞ þ PðOx&Oy0=l&x&y0Þ
�PðOx0&Oy0=l&x0&y0Þ � PðOx=l&xÞ � PðOy=l&yÞ � 0

(Bell/CH – phys – c – big)

�1 � PðOx&Oy=c& x&yÞ þ PðOx0&Oy=c&x0&yÞ þ PðOx&Oy0=c& x&y0Þ
�PðOx0&Oy0=c&x0&y0Þ � PðOx=c&xÞ � PðOy=c&yÞ � 0:

Yet, these inequalities are not theorems of probability theory. Unlike (Bell/CH –

prob), they cannot be derived from the assumption of a joint distribution over the

measurement outcomes, the (QM or complete) pair-state and apparatus settings.
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We shall discuss the relationships between (Bell/CH – prob) and (Bell/CH – phys –

l) below and in Sect. 16.3.7.

In hidden-variables models of the EPR/B experiment that postulate the existence

of definite values for all the four spin quantities that are involved in the Bell/CH

inequalities, it is natural (though not necessary) to suppose a joint probability over

these probabilities.3 Thus, in such models, it is plausible to expect (Bell/CH – prob).

But (Bell/CH – prob) is neither necessary nor sufficient for (Bell/CH – phys – c) or
(Bell/CH – phys – c – big). Indeed, unless we make some assumptions about the

relationships between the probabilities of the spin quantities in (Bell/CH – prob)

and the probabilities of their measurement outcomes, the assumption of joint

probability over these quantities will do little to constrain the probabilities of

their measurement outcomes. Two natural assumptions are l-independence and

the assumption that the probabilities of spin-measurement outcomes “mirror” the

probabilities that the particles’ spins have before the measurements: for any spin

properties X and Y, apparatus settings x and y to measure these properties, and the

corresponding measurement outcomes Ox and Oy,

(Mirror) PlxðOxÞ ¼ PlðXÞ; PlyðOyÞ ¼ PlðYÞ; PlxyðOx&OyÞ ¼ PlðX&YÞ:

Although these assumptions may seem natural, models of the EPR/B experiment

that postulate joint probability over the values of the particles’ spin in various

directions violate at least one of these assumptions; and their violation bears

directly on the question whether the quantum realm involves some kind of non-

locality. l-independence fails in models of the experiment that postulate retro-

causal influences from the measurement events to the source at the emission, so that

the distribution of the complete pair-state depends on the measured quantities (for

recent discussions of such models, see [31–35], and references therein). In such

models, the QM statistics may be accounted for by such retro-causal influences

rather than non-locality.

Mirrormay be violated in various “hidden-variables” theories. For example, it is

violated in Bohmian mechanics, if X and X0 (Y and Y0) are respectively the positions
of the L- (R-) particle relative to planes aligned along the directions x and x0 (y and
y0) at the emission. In Bell’s [36] “minimal” Bohmian mechanics spins are not

intrinsic properties of the particles, and the positions of the particles at the emission

influence their spin dispositions, i.e. their behavior in spin measurements: X ðYÞ
determines the spin disposition of the L- (R-) particle in the direction x (y) in a

measurement of spin x (y), if the L- (R-) measurement occurs first; and similarly for

X0 ðY 0Þ and x0 y0ð Þ. Yet, due to non-local influences, the distribution of these

dispositions is different from the distribution of the outcomes of the corresponding

spin measurements. If, for example, at the emission both particles are disposed to

spin “up” in a z-spin measurement, and the L-measurement occurs first, this

3 Svetlichny et al. [30] argue that if probabilities are interpreted as infinitely long-run frequencies

in random sequences, such a joint probability distribution need not exist.
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measurement will change the z-spin disposition of the R-particle: after the L-

measurement, it will be disposed to spin “down” on z-spin measurement ([36,

37], Chap. 7, [20], Sect. 5.3.1).

While the joint distribution over the spin quantities of the particle-pair in the

EPR/B experiment (the “hidden variables”) is neither necessary nor sufficient

condition for (Bell/CH – physics – c) or (Bell/CH – physics – c – big), the question

arises whether some other joint distributions are. The most comprehensive, relevant

joint probability distribution in the context of these inequalities is a distribution

over the QM and complete pair-state, the various relevant apparatus settings and

the corresponding measurement outcomes,4 and such distribution is neither neces-

sary nor sufficient for these inequalities. (Bell/CH – phys – c) follows from

Factorizability and l-independence [13],5 and as it is not difficult to see these

conditions do not presuppose a joint distribution over the pair-state, apparatus

settings and measurement outcomes. Similarly, (Bell/CH – phys – c - big) follows

from factorizability and l-independence expressed in terms of conditional

probabilities a la Kolmogorov – for any QM and complete pair-states, l and c,
apparatus settings x and y to measure the particles’ spins along the directions x
and y, and the corresponding measurement outcomes Ox and Oy,

(Factorizability*) PðOx&Oy=l&x&yÞ ¼ PðOx=l&xÞ � PðOy=l&yÞ

ðl - independence*) rðl=c&x&yÞ ¼ rðcÞ

– and these conditions do not presuppose such a joint distribution. Indeed, each

particular case of Factorizability* presupposes a joint distribution over the com-

plete pair-state, two measurement outcomes (Ox and Oy) and two apparatus settings

(x and y), and each particular case of l-independence* presupposes a distribution

over the QM and complete pair-state and two apparatus settings. But these

conditions do not presuppose a joint distribution over the QM and the complete

pair-state and all the four apparatus settings and four corresponding measurement

outcomes that are involved in (Bell/CH – phys – c – big). Thus, a joint probability

over the QM and complete pair-state, apparatus settings and measurement

outcomes is not a necessary condition for (Bell/CH – phys – c – big). It is also

4 In fact, one may also add to this list the complete states (the “hidden variables”) of the apparatus

settings. While such a distribution will be even more comprehensive, it will not change the

conclusion of the analysis below.
5 The derivation of (Bell/CH – phys – c) from Factorizability and l-independence is straightfor-
ward. � 1 � a � bþ a0 � bþ a � b0 � a0 � b0 � a� b � 0 obtains for any real numbers

0 � a; a0; b; b0 � 1. Substituting a ¼ PlxðOxÞ; a0 ¼ Plx0 ðOx0 Þ; b ¼ PlyðOyÞ; b0 ¼ Ply0 ðOy0 Þ and

applying Factorizability we have (Bell/CH – phys – l), and integrating over l while assuming

l-independence we obtain (Bell/CH – physics – c).
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not sufficient for (Bell/CH – phys – c – big), as it is easy to construct such a

distribution that violates the inequality.6

Fine [27] discusses a fourth kind of Bell/CH inequality, where the probabilities

are supposed to be “the observed distributions for each of the four observables

involved in the EPR/B experiment plus the joint observed distributions for each of

the four compatible pairs” of these observables. (Fine [27], p. 291)

(Bell/CH – Fine)

�1 � PðOx&OyÞ þ PðOx0&OyÞ þ PðOx&Oy0 Þ
�PðOx0&Oy0 Þ � PðOxÞ � PðOyÞ � 0;

where, presumably, P is a probability function that depends on the QM pair-state

c. (Bell/CH - Fine) follows from the assumption of a joint probability over the

measurement outcomes. The question is what could motivate such an assumption.

Surely, the probabilities in this inequality need to depend on the apparatus

settings, so that they either belong to different spaces (each characterized by

different apparatus settings), as in (Bell/CH – phys - c), or are in the same

probability space but are conditional on the QM pair-state and apparatus settings,

as in (Bell/CH – phys - c - big). In the first case, the motivation for (Bell/CH –

Fine) should probably include assumptions like Mirror and l-independence, and
as we have seen the violation of such assumptions is relevant to the question

whether the quantum realm involves non-locality. In the second case, one may

assume a joint distribution for the QM pair-state, apparatus settings and measure-

ment outcomes, but as we argued above such a distribution would not entail

(Bell/CH – phys - c - big). So in either case, (Bell/CH – Fine) has to be motivated

by assumptions about the physical nature of the systems involved in the EPR/B

experiment – in particular, assumptions about the state of the particles at the

source, the causal relations between this state and the state of the measurement

apparatuses during the measurements, and the causal relations between

measurements in the two distant wings of the experiment. And granted such

assumptions, the violation of (Bell/CH – Fine) will have bearings on the causal

relations in the EPR/B experiment in general, and the question of quantum non-

locality in particular.

It is also noteworthy that in the derivation of the Bell/CH inequalities, or more

precisely (Bell/CH – Fine), Fine [27] in fact presupposes l-independence and some

factorizability conditions. That he presupposes l-independence is clear from the

6 For example, (Bell/CH – phys – c – big) fails for any joint distribution that returns the

following probabilities as marginals for apparatus settings that satisfy jx� yj ¼ jx0 � yj ¼ jx�
y0j ¼ 60� and jx0 � y0j ¼ 180�: Pðc&x&yÞ ¼ Pðc&x0&yÞ ¼ Pðc&x&y0Þ ¼ Pðc&x0&y0Þ ¼ 1=4,
Pðc&xÞ ¼ Pðc&yÞ ¼ 1=2, PðOx&Oy&c&x&yÞ¼PðOx0&Oy&c&x0&yÞ¼PðOx&Oy0& c&x&y0Þ¼
1=32, PðOx0&Oy0&c&x0&y0Þ¼1=8, PðOx&c&xÞ¼PðOy&c&yÞ¼1=4.
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fact that he takes the distribution of l to be the same for all spin measurements;

and as it is not difficult to see from equations (2) and (11) in his paper, his

characterization of hidden-variables models embody factorizability conditions.

Recalling footnote 5, it is not difficult to show that l-independence and these

factorizability conditions are sufficient for the derivation of Bell/CH inequalities.

So the question arises as to the role that the assumption of joint distribution plays in

Fine’s derivation of these inequalities. It may be tempting to argue that such an

assumption is necessary for the physical plausibility of the hidden-variables

models. But, first, this argument is not open to Fine, who holds that the rejection

of such an assumption is the very essence of QM. Second, even if we suppose that

the assumption of joint distribution were important for the ontological status of the

hidden-variables models (an assumption that Bell, Clauser and Horne and many

others reject), the violation of this assumption per se is not sufficient to vindicate

Fine’s claim that “what the hidden-variables models and the Bell/CH inequalities

are all about are the requirements that make well defined precisely those probability

distributions for non-commuting observables.” [27, p. 291] Since factorizability

fails in the EPR/B experiment, Fine has to appeal to the view that the violation of

this condition has no implications for the question of non-locality [22–24]. For if we

suppose that the failure of factorizability involves some kind of non-locality, as a

broad consensus has it, then the fact that factorizability fails in standard QM as well

as in any alternative interpretation or hidden-variables model in which l-indepen-
dence obtains, will entail that the common interpretation of Bell’s theorem is on the

right track.

In any case, as we shall see in Sect. 16.5, if probabilities are interpreted along

de Finetti’s probability theory, (Bell/CH – Fine) cannot be derived from the

assumption of joint probability distribution over the measurement outcomes

since such distribution does not exist. Similarly, l-independence and Mirror do
not entail (Bell/CH – phys – c) since (Bell/CH – prob) does not hold; for the joint

probability distribution over the spin quantities in this latter inequality does not

exist. But before turning to discuss the application of de Finetti’s theory to the

quantum probabilities, we introduce the highlights of this theory in Sects. 16.3

and 16.4.

16.3 De Finetti’s Theory of Probability

Our aim here is to offer a new reading of de Finetti’s theory of probability and,

assuming that quantum probabilities are interpreted along this theory, to study their

logical structure – i.e. the inequalities that constrain them. Thus, for lack of space,

the presentation of de Finetti’s theory will be uncritical.
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16.3.1 The Probability Axioms Are Not Merely Formal
Conventions

De Finetti held that “probability theory is not merely a formal, merely arbitrary

construction, and its axioms cannot be chosen freely as conventions justified only

by mathematical elegance or convenience. They should express all that is necessar-

ily inherent in the notion of probability and nothing more.” [38, pp. xiii–xiv] He

thought of probability as a guide of life under uncertainty. Having been influenced

by positivism, he held that probability, like other notions of great practical impor-

tance, should have an operational definition, namely “a definition based on criterion

which allows us to measure it.” [39, p. 76] Also, being a guide of life under

uncertainty, de Finetti maintained that probability should be closely related to

rational decisions under uncertainty. ([38], pp. xiii–xiv, Chaps. 1 and 2; [39],

76–89) The decision framework that he had in mind is Bayesian, where a person’s

degrees of belief reflect her uncertainty concerning the things she cares about, her

utilities reflect her subjective preferences, and the outcomes of rational decisions

are actions that maximize her expected utility.7 De Finetti thought of probability as

reflecting rational degrees of belief, and of coherence as a necessary condition for

degrees of belief being rational, and he argued that all the theorems of probability

theory could be derived from the coherence conditions of degrees of belief. ([39],

pp. x, 72–75, 87–89; [38], Chaps. 1 and 2)

16.3.2 The Domain of Probability Is the Domain of Uncertainty

De Finetti made a distinction between the domain of certainty, i.e. that which one

takes as certain or impossible, and the domain of uncertainty, i.e. the range over

which one’s uncertainty extends. The distinction between these domains is very

important and fundamental to de Finetti’s philosophy of probability, as his long and

detailed discussion of this topic demonstrates [39, Chap. 2]. The domain of uncer-

tainty depends on one’s (actual and/or hypothetical) background knowledge

[39, pp. 27, 47] and one’s reasoning, and thus it may include events that are

logically impossible or certain, e.g. complicated contradictions or tautologies that

one fails to recognize. The domain of probability is the domain of uncertainty. This

domain is supposed to include all the atomic uncertain events (or the propositions

that such events occur) and their logical combinations, which may be certain

(for example, if A is an uncertain event, the domain of uncertainty will also include

the certain event A or not-A). Whether an event is atomic is a pragmatic matter,

which does not depend on metaphysical questions. It is noteworthy that for de

7 It is noteworthy that unlike Frank Ramsey [40], another founding father of the modern school of

subjective probability, de Finetti held that probability is not strictly related to rational preferences.
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Finetti, there is a sharp distinction between being certain about an atomic event, and

having a degree of belief one in it. The former belongs to the domain of certainty,

whereas the latter belongs to the domain of uncertainty.

16.3.3 Probabilities Are Subjective and Instrumental

Many friends of the subjective interpretation of probability think that coherence is a

necessary but not sufficient condition for the rationality of degrees of belief. They

hold that for degrees of belief to be rational, they also have to be constrained by

knowledge of objective facts about the world. In particular, it is frequently

maintained that when objective probabilities are available, they should constrain

the corresponding subjective probabilities. Thus, many hold that rationality

requires that a person’s subjective probability of E given that the objective proba-

bility of E is p, and she assumes, believes or knows nothing else about the prospects

of E, should be p. An influential expression of this idea is Lewis’s [28] “principal

principle.”

De Finetti rejected the idea that subjective probabilities are supposed to be

guesses, predictions or hypotheses about the corresponding objective probabilities,

or based on such probabilities or any other objective facts. Indeed, he argued that

probabilities are inherently subjective, and that none of the objective interpretations

of probability makes sense. He held that objective probability does not exist, and

that recognition of its inexistence would constitute a progress in scientific thinking.

“The abandonment of superstitious beliefs about the existence of Phlogiston, the

Cosmic Ether, Absolute Space and Time, . . . , or Fairies and Witches, was an

essential step along the road to scientific thinking. Probability, too, if regarded as

something endowed with some kind of objective existence, is no less misleading

misconception, an illusory attempt to exteriorize or materialize our true [i.e. actual]

probabilistic beliefs.” [39, p. x]8

De Finetti [39, pp. x–xi] argued that probability and probabilistic reasoning

should always be understood as subjective. Probability only reflects uncertainty,

and accordingly no fact could prove or disprove a degree of belief. He did not deny,

however, the psychological influence that facts may have on degrees of belief. “I

find no difficultly in admitting that any form of comparison between probability

evaluations (of myself, or of other people) and actual events may be an element

influencing my further judgment, of the same status as any other kind of informa-

tion . . . But, as with any other experience, these modifications would not be

governed by a mechanical rule; it is, in each case, my personal judgment that is

responsible for giving a weight to the facts (for instance, according to my feelings

8 The addition of the word “actual” in the square brackets is mine, as the translation from Italian

seems incorrect. The word “vero” could be translated as “actual” or “true”, and it is clear that in

this context it should be translated as “actual.”
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about the success of the other person being due to his skill and competence or

merely due to a meaningless chance).” [38, p. 21]

The source of uncertainty is immaterial. “It makes no difference whether the

uncertainty relates to unforeseeable future, or to an unnoticed past, or to a past

doubtfully reported or forgotten; it may even relate to something more or less

knowable (by means of a computation, a logical deduction, etc.) but for which we

are not willing or able to make the effort; and so on. . . . The only relevant thing is

uncertainty – the extent of our knowledge and ignorance. The actual fact of whether

or not the events considered are in some sense determined, or known by other

people, and so on, is of no consequence.” [39, pp. x–xi] The important thing for de

Finetti is that in all these different states of uncertainty, subjective probability could

be useful as a guide. The role of probability is purely instrumental, and its value

should be determined solely on the basis of its potential to serve as a guide in

everyday and science. De Finetti went to great pains in his attempt to show that his

subjective theory of probability could serve as such a guide.

As de Finetti’s Philosophical Lectures on Probability suggest, he was instru-

mentalist about probabilistic theories [41, pp. 53–54], interpreting their

probabilities as subjective, representing nothing but degrees of expectations.

[41, p. 52] And he held that distributions brought to us by probabilistic theories,

such as Statistical Mechanics and Quantum Mechanics, “provide more solid

grounds for subjective opinions.” [41, p. 52]

Like other instrumental views, de Finetti thought that subjective probability

could play its role as a guide, independently of our metaphysical assumptions

about the world. “[P]robabilistic reasoning is completely unrelated to general

philosophical controversies, such as Determinism versus Indeterminism, Realism

versus Solipsism – including the question of whether the world ‘exists’, or is simply

the scenery of ‘my’ solipsistic dream.” [39, p. xi]

16.3.4 Intuition, Prudence and Learning from Experience

It is common to portray probability in de Finetti’s radical subjective interpretation

as unconstrained, too permissive and possibly whimsical (see, for example, [42,

Sect. 3.5.4]. On the other hand, de Finetti held that assigning or “evaluating”

probabilities is an inductive reasoning, and as such it is based on learning from

experience; and “to speak about inductive ‘reasoning’ means, however, to attribute

a certain validity to that mode of learning, to consider it not as a result of a

capricious psychological reaction, but as a mental process susceptible of an analy-

sis, interpretation and justification.” [38, p. 147] Indeed, he warned against superfi-

ciality in assigning probabilities, which is frequently associated with subjective

probability. In particular, he warns against two common patterns of superficiality.

“On the one hand You may think that the choice, being subjective, and therefore

arbitrary, does not require too much of an effort in pinpointing one particular value

rather than a different one; on the other hand, it might be thought that no mental
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effort is required, since it can be avoided by the mechanical application of some

standardized procedure.” [39, p. 179] He recommended various features that must

underlie each probability evaluation, like for example to “think about every aspect

of the problem. . .try to imagine how things might go. . .encompass all conceivable

possibilities; and also take into account that some might have escaped

attention. . .identify those elements which, compared to others, might clarify or

obscure certain issues. . .enlarge one’s view by comparing a given situation with

others. . .attempt to discover the possible reasons lying behind those evaluations of

other people. . .” [39, pp. 183–4]. This is not surprising given that de Finetti held

that “the (subjectivistic) theory of probability is a normative theory, not a descrip-

tive one,” and the value of probability theory is “precisely as an aid to the avoidance

of plausible and frequently serious shortcomings and errors.” [38, p. 151]

De Finetti’s philosophy of probability presupposes that people have the intuitive

faculty to form reasonable opinions about uncertain events and, with the aid of

probability theory, the capacity to form reasonable probabilistic opinions. De

Finetti held that people need to develop and refine this faculty, and apply reason

to learn to guard it against the tendency to form superficial probabilistic opinions.

Yet, he cautioned against the misunderstanding of the role of reason. In particular,

he warned that “the tendency to overestimate reason – often in an exclusive spirit –

is particularly harmful. Reason, to my mind, is invaluable as a supplement to the

other psycho-intuitive faculties, but never a substitute for them. Figuratively,

reason is a pole that may keep the plant of intuitive thought from growing crooked,

but it is not itself either a plant or a valid substitute for a plant.” [38, pp. 147–8]

Learning from experience is important for assigning both “prior” and posterior’

probabilities. De Finetti held that every probability is conditional “not only on the

mentality or the psychology of the individual involved, at the time in question, but

also, and essentially, on the state of information in which he finds himself at the

moment,” though in many cases there is no need to mention explicitly the back-

ground information, and accordingly it is suppressed [39, p. 134]. So both prior and

posterior probabilities are conditional probabilities. The prior probabilities are

conditional on some prior background information, and they are updated according

to the increase or change in background knowledge/beliefs/assumptions. De Finetti

makes a distinction between updating and changing opinions. When one

conditionalizes on new information, one keeps the same opinion yet updates it to

a new situation [41, p. 35]. And when one revises one’s probability function, one

changes one’s opinion. Change of opinion could result from reconsideration of

neglected, inaccurate or ambiguous information, or change of mind about the

relevance of information, or superficial or careless evaluations, etc. Thus, de Finetti

held that realistically the evolution of one’s subjective probabilities involves both

updating and changing opinions [41, pp. 39–40].

Due to the disparity in subjective evaluations, prior probabilities are expected to

vary significantly. Yet, de Finetti held that the effects of “the disparity between the

initial judgments of people or of vagueness in the initial judgments of one person

are often largely eliminated,” if the additional information gathered between the

16 The World According to de Finetti: On de Finetti’s Theory of Probability 263



prior and the posterior evaluations is sufficiently revealing and the prior probabilities

are “sufficiently gentle or diffuse,” i.e. not too opinionated [38, p. 145].

16.3.5 Probabilities Are Coherent Degrees of Belief

Probabilities are not just any degrees of belief. They are coherent degrees of belief

in (propositions about) events that belong to the (agent’s) domain of uncertainty.

The notion of coherent degrees of belief is commonly understood in terms of Dutch

books, i.e. bets that results in loss come what may. The idea is that incoherent

degrees of beliefs are subjected to Dutch books. ([39, 40, 60], Chaps. 3 and 4)

Coherence is thus characterized in a betting framework, where a person is subjected

by a clever bookie to series of bets. The person assigns certain odds to these bets

according to her degrees of belief, and the bookie prescribes the possible gains and

losses according to these odds.

In his later work, de Finetti preferred a different decision-theoretic framework

(for the motivation, see Sect. 16.3.6). ([38], Chaps. 1 and 2; [39], Chaps. 3 and 4) In

this alternative framework, there is no bookie. Individuals express their degrees of

belief, and they are subjected to fixed gains and variable monetary losses, the so-

called “loss functions,” which are functions of their degrees of belief about events

and the occurrence of these events. That is, letting E being any verifiable event, d a

degree of belief in E, and E an indicator function denoting whether E occurs (E ¼ 1

if E occurs, and E ¼ 0 otherwise), the loss L that the individual is subjected to is:

(L1) L ¼ ðE� dÞ2
k

;

where k is an arbitrary constant which is fixed in advance and which may differ from

one case to another. In the case of multiple degrees of belief, the total loss is the sum

of the losses incurred by each degree of belief. For example, the loss function for the

degrees of belief d1; d2; d3 in the events E1; E2; E3, respectively, is:

(L2) L ¼ ðE1 � d1Þ2
k1

þ ðE2 � d2Þ2
k2

þ ðE3 � d3Þ2
k3

:

In this alternative decision-theoretic scheme, coherent degrees of belief are

explicated in terms of admissible decisions. The “decisions” are the individual’s

degrees of belief in various events, and they are admissible if they are not

dominated by any other decisions, i.e. by any other degrees of belief in the same

events; where a set of degrees of belief in events is dominated by another set of

degrees of belief in the same events, if it leads to higher losses come what may.

A set of degrees of beliefs is coherent just in case it is not dominated by any other

set of degrees of belief in the same events.
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16.3.6 Measurements of Degrees of Belief

De Finetti assigned a great importance to the measurement of degrees of belief. He

thought that since probability is supposed to be a guide of life, it should have a

meaning that renders it effective as such. Being influenced by positivism, he held

that “in order to give an effective meaning to a notion – and not only an appearance

of such in a metaphysical-verbalistic sense – an operational definition is required.”

By operational definition, he meant “a definition based on a criterion which allows

us to measure it.” [39, p. 76] His inspiration came from early twentieth century

physics. “The notion of probability, like other notions of practical significance,

ought to be operationally defined (in the way that has been particularly stressed in

physics following Mach, Einstein, and Bridgman), that is, with reference to

observations, in experiments that are at least conceptually feasible. In our case,

the experiments concern the behavior of an individual (real or hypothetical) facing

uncertainty.” [38, p. xiv]

The main reason why de Finetti preferred the loss-functions decision-theoretic

scheme is that the Dutch-book framework involves a bookie, an “opponent,” the

presence of whom may intrude with the measurement of degrees of belief. In

particular, de Finetti mentioned the possibility that the bookie or the individual

take advantage of differences of information, competence or shrewdness [39, p. 93].

The presuppositions of this scheme are that individuals strive to maximize their

expected utility, and that utility is linear with money, where k is supposed to

warrant this linearity. Granted these assumptions, it is not difficult to show that it

is in the best interest of individuals to express their actual degrees of belief; for any

other degrees of belief will lower their (subjective) expected utility.

Since de Finetti defines probability in terms of betting or measurement contexts,

it may be tempting to interpret him as behaviorist about degrees of belief, holding

that degrees of belief, and accordingly probabilities, do not exist outside these

contexts [43, 185–9]. This interpretation is particularly suggestive given the inspi-

ration that de Finetti took from Bridgman’s [44] operationalism, where theoretical

terms are defined in terms of the operational procedures of their measurements. Yet,

de Finetti did not intend the betting and the loss-function decision-theoretic

frameworks as Bridgman-like operational definitions of degrees of belief. Indeed,

he held that degrees of belief exist independently of the contexts of their measure-

ment. “The criterion, the operative part of the definition which enables us to

measure it, consists in this case of testing, through the decisions of individual

(which are observable), his opinions (previsions, probabilities), which are not

directly observable.” [39, p. 76] Moreover, as Eriksson and Hájek [43, p. 190]

point out, de Finetti’s worries about the relation between utility and money and

about agents who care too much or too little about their bets, do not make sense if

degrees of beliefs are interpreted along Bridgman’s operationalism. The operational

procedure is supposed to provide a reliable measurement of degrees of belief, not a

definition of them. Yet, as we shall see in Sect. 16.4, the operational procedure
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plays an important role in explicating the coherence conditions of degrees of belief

and to that extent it plays an important role in defining subjective probabilities.

16.3.7 Conditional Probability

Following Kolmogorov’s [17] influential axiomatization of probability, it is com-

mon to define conditional probability in terms of unconditional probabilities:

PðB=AÞ � PðB&AÞ=PðAÞ. De Finetti rejected this axiomatic approach. He thought

that probability theory should be derived from the analysis of the meaning of

probability. He held that every probability is conditional “not only on the mentality

or the psychology of the individual involved, at the time in question, but also, and

essentially, on the state of information in which he finds himself at the moment,”

though in many cases there is no need to mention explicitly the background

information, and accordingly it is suppressed [39, p. 134]. Thus, he maintained

that conditional probability is the fundamental object of probability theory, and

unconditional probability does not make sense (except when it is a conditional

probability in disguise).9

In introducing the concept of conditional probability, de Finetti says that “we shall

writePðEjHÞ for the probability ‘of the event E conditional on the event H’ (or even the

probability ‘of the conditional event EjH’), which is the probability that You attribute to

E if You think that in addition to your present information, i.e. the H0 which we

understand implicitly, it will become known to You that H is true (and nothing else).”
[39, p. 134] This characterization is ambiguous. On the one hand, conditional probabil-

ity is characterized as a conditional with a probabilistic consequent, whereas on the

other it is likened to unconditional probability of a “conditional event.”

The association of conditional probability with a “called-off” bet in the betting

decision-theoretic framework, and the loss function for conditional probability in the

loss-function decision-theoretic framework both suggest the first interpretation. The

loss function for the probability of E given H and the background knowledge H0 is:

(L3) L ¼ H0HðE� dÞ2
k

where d is a degree of belief in E,E andH are indicator functions, denoting the truth

value of E and H, and H0 is an indicator function denoting the truth value of H0.

Based on (L3), the proposition that the conditional probability of E given H and H0

equals p may be characterized by the following conditional:

(CP1) If you have the background knowledge H0 and you come to know H (and

nothing else), then your degree of belief in E will be p.

9 In fact, the idea that conditional probability is the fundamental object of probability theory could

also be defended in other interpretations of probability. [18, 19, 45]
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The idea is that a person with such a conditional probability is subjected to a loss

of ðE� pÞ2=k on the condition that she has the background knowledge/beliefs H0

and she comes to know H and nothing else; and the loss is zero, if she does not have

the knowledge/beliefs H0 or does not come to know H. This is very similar to the

idea of a called-off bet, where the probability of E given H&H0 being p is

explicated by a bet in which a person pays pS dollars on the condition that she

knows H&H0 for the opportunity to earn S dollars if E occurs and zero otherwise,

and the bet is called off if she does not know H&H0.

The notion of conditional probability applies not only to cases where one knows

H0 and H, but also to cases where one assumes or believes H0 and H. We may thus

extend the meaning of conditional probability as follows:

(CP2) If you know, believe or assume H0 and you come to know, believe or assume

H (and nothing else), then your degree of belief in E will be p.

Further, the conditioning event and the background knowledge may be counter-

factual rather than actual. In such cases, conditional probability may be

characterized by the following counterfactual conditional:

(CP3) If you had the background knowledge or beliefs H0 and you had come to

know, believe or assume H (and nothing else), then your degree of belief in E
would have been p.

Beware! (CP2) is neither the material nor the strict conditional. It is true if one

knows, believes or assumesH and nothing else beside one’s background knowledge

H0, and one’s degree of belief in E is p; it is false when one has the background H0

and comes to know, believe or assume H but one’s degree of belief in E is not p; and
it is indeterminate when one does not have the background H0 or does not come to

know, believe or assume H. (CP3) is not the Stalnaker–Lewis counterfactual

conditional, though it may be interpreted as being true in case one’s degree of

belief in E is p in the most similar relevant worlds or scenarios in which one holds

H0 and H. For a more detailed discussion of these conditionals, see Berkovitz [45].

In order to distinguish the above notion of conditional probability from that of

Kolmogorov, we shall place the conditional event in the subscript: PH0HðEÞ will
denote the conditional probability of E given H and the background knowledge H0.

De Finetti ([38], Chap. 2, [39], Chap. 4) demonstrates that coherence entails that:

(C1) PH0HðEÞ � PH0
ðHÞ ¼ PH0

ðE&HÞ;

where PH0
ðHÞ and PH0

ðE&HÞ are respectively the probability of E givenH0 and the

probability of E&H given H0. When PH0
ðHÞ is definite and non-zero, we obtain

Kolmogorov’s definition of conditional probability as a coherence condition on

degrees of belief.

Recall (Sect. 16.2) the two different ways of representing the Bell/CH

inequalities: in terms of conditional probabilities with the conditions (namely, the
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pair-state and the apparatus settings) in the subscript, as in (Bell/CH – phys – c);
and in terms of conditional probabilities a la Kolmogorov, where the conditions are

placed after the conditionalization stroke, as in (Bell/CH – phys – c – big). (C1)

suggests a way to relate these different representations.

De Finetti’s proposal that the probability of E given H may be seen as the

probability of the “conditional event” EjH suggests another interpretation of condi-

tional probability. Conditional events (or “tri-events”) are in effect three-valued

propositions about events, the truth-value of which depends on the condition

([39], p. 139, [46], Appendix, pp. 307–11). In particular, EjH is the proposition

that E occurs, but its truth-value depends on whether H occurs. If H occurs, then

EjH is true if E occurs and false if E does not occur; and if H does not occur, then

EjH has indeterminate truth-value. The idea is then to assign probabilities only to

conditional events that are true or false, so that indeterminate conditional events

have no probabilities.

We shall return to consider the implications of the two different interpretations

of de Finetti’s concept of conditional probability in our discussion of his

verificationism in Sect. 16.4, and in the application of his theory of probability to

QM in Sect. 16.5.

16.3.8 Symmetry and Exchangeability

Judgments of equally probable events, and accordingly of symmetries, are central

to all interpretations of probability. In objective interpretations of probability, the

symmetries concern the way things are. For de Finetti, the relevant symmetries

concern one’s opinions and judgments. De Finetti held that any evaluation of

equally probable events is based on subjective judgments, and that the notion of

exchangeability is central to such judgments. A collection of events is said to be

exchangeable if the probability ph that h of them occur depends only on h and is

independent of their order of appearance [38, p. 229]. Followers of de Finetti’s

interpretation and friends of the Bayesian interpretation of quantum probabilities

attribute a great importance to exchangeability. Indeed, the notion of exchangeabil-

ity, and the related notion of partial exchangeability are bound to play a central role

in the interpretation of the quantum probabilities along de Finetti’s probability

theory. For example, Caves et al. [4] apply de Finetti’s work on exchangeability to

the interpretation of the notion “unknown quantum states” and the related notion of

“unknown quantum probabilities” from a subjectivist Bayesian perspective. Yet, as

the notion of exchangeability is not central to our main focus – the study of the

coherence conditions of degrees of belief in the context of QM – we postpone its

discussion to another opportunity.
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16.4 Verifiability, Coherence and Contextuality

De Finetti [39, p. 34] held that the events in probability assignments have to be

verifiable. “In general terms, it will always be a question of examining, if, and in

which sense, a statement really constitutes an ‘event,’ permitting in a more or less

realistic acceptable form, and in unique way, the ‘verification’ of whether it is ‘true’

or ‘false’. . . A and B are events (observables), but it is not possible to observe both

of them, and, therefore, it is not possible to call the product AB an event

(observable).”

An important implication of this view is that the constraints on probabilities

of events that are not jointly verifiable are weaker. For example, if A and B are

jointly verifiable, their probabilities are subjected to the inequality P(A)þP(B)�
P(A&B)�1. But if A and B are not jointly verifiable, they have no joint probability,

and accordingly their probabilities are not subjected to this inequality.

De Finetti [46, p. 260] acknowledged that verifiability is “a notion that is often

vague and illusive” and thought that it is necessary “to recognize that there are

various degrees and shades of meaning attached to [it].” He took a pragmatic

attitude toward the kind and degree of verifiability that is actually required for

events to have a definite probability [46, Appendix]. To simplify things, we shall

focus on verifiability in principle, and by “verifiable events” we shall mean events

that are verifiable in theory according to one’s beliefs.

Unlike probabilities, de Finetti was not antirealist about events. Yet, he held that

notions of great practical importance should have “operational definitions,” namely

definitions based on criteria that render them measurable. If events are not verifiable,

they cannot have such an operational definition. Further, the prospects of adequate

measurements of degrees of belief in such events are dim, thus undermining the idea

that probability should also have an operational definition. The most obvious expla-

nation for de Finetti’s verificationism is the influence of positivism. De Finetti [39,

p. 76] was worried that events that are not verifiable may appear to be sensical but in

fact be meaningless, and accordingly degrees of belief in such events will be useless.

In the context of de Finetti’s philosophy of probability, there is a different reason

to motivate his verificationism. It is difficult to make sense of the idea of coherent

degrees of belief in, and accordingly probabilities of unverifiable events. This is

clear in the betting decision-theoretic framework. Bets on events that are in

principle unverifiable could never be concluded. Accordingly, no Dutch book

could be based on such bets, and the idea that Dutch book could be used to explicate

the notion of “coherent degrees of belief” collapses. Things are not so obvious in

the loss-function decision-theoretic framework, as this framework appears to pro-

vide a way to explicate this notion even in the case of unverifiable events; for the

notion of “admissible decision,” which is used to explicate coherence in this

framework, seems applicable even in the case of unverifiable events. But a little

reflection on the nature of probabilities in de Finetti’s theory suggests that this

appearance is deceptive. In this theory, there are no objectively correct probability

assignments. Probabilities are subjective opinions that only reflect uncertainty
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about things. The value of probabilities reside solely in their instrumental role as a

guide for decisions under uncertainty, and this role could only be measured in terms

of verifiable “gains” and “losses,” or more generally verifiable consequences. In the

case of unverifiable events, the instrumental value of probabilities vanishes because

the consequences of probability assignments are in principle unverifiable. This lack

of instrumental value reflects on the prospects of explicating the notion of coherent

degrees of belief. Incoherent degrees of belief in unverifiable events have no

verifiable harmful consequences, and so radical subjectivists about degrees of

belief, like de Finetti, who deny the existence of objective probabilities, have no

incentive to have coherent degrees of belief in such events. Accordingly, like in

the betting decision-theoretic framework, the idea that the loss-function decision-

theoretic framework could be used to explicate the notion of coherent degrees of

belief collapses in the case of unverifiable events.

De Finetti proposes to make the verifiable nature of events explicit by assigning

probabilities to “conditional events” EjH (see Sect. 16.3.6) rather than to the events

themselves; where H is an observation that enables to verify the event E [46, pp.

266–7, 307–313]. The idea is to assign probabilities only to conditional events EjH
with determinate truth-values, so that unverifiable events E have no probabilities.

This idea is easily generalized to complex “conditional events,” i.e. logical

combinations of conditional events. Consider, for instance, E12jH12, the conjunc-

tion of the conditional events E1jH1 and E2jH2; where Hi is an observation that

enables to verify whether Ei is true, and E12 is the event that denotes the conjunction

of the events E1 and E2. E12jH12 is true if H12 and E12 are both true, false if H12 is

true and E12 false, and has indeterminate truth-value if H12 is false. By restricting

probabilities to conditional events, “complex” conditional events (like E12) may fail

to have definite probabilities, even when the “atomic” events that constitute them

(E1 and E2) do. In this approach, a person’s probabilities are represented by a “big”

probability space with “gaps” in the place of some complex events (henceforth, DF-

big-space). The logic and probability of conditional events seem to require some

kind of three-valued logic, and indeed de Finetti discussed various three-valued

logics that could serve as a basis for such probability theory [46, Appendix, pp.

302–313]. For de Finetti’s early thoughts about conditional events and their logic,

see De Finetti [47] and Mura [48].

De Finetti also entertained the idea of representing probabilities of verifiable

events in terms of classical, two-valued logic. In fact, as we shall see in Sect. 16.6,

he preferred such an approach. This alternative approach is in line with our proposal

in Sect. 16.3.7 that conditional probability a la de Finetti may be characterized as a

conditional with a probabilistic consequent. Indeed, this interpretation of de Finetti

suggests a natural way of representing probabilities of verifiable events in terms of

two-valued events. The main idea is to suppose that the “unconditional” probability

of an event E being p has in effect a logical structure of a conditional with a

probabilistic consequent: if an observation H that enables to verify E occurs

(occurred), the probability of E is (would be) p. Recall (Sect. 16.3.7) that in our

suggested notation, this conditional is represented as PHðEÞ ¼ p, i.e. as a condi-

tional probability with the conditioning event in the subscript; and probabilities
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with different subscripts, i.e. conditionals with different antecedents, correspond to

different probability spaces. That is, we could represent de Finetti’s verificationism

by supposing that a person’s subjective probabilities are represented by multiple

probability spaces, in each of which probabilities of events are conditional (implic-

itly) on an observation that enables to jointly verify all the events in the space.

On this view, a person’s coherent degrees of belief are represented by many

“smaller” probability spaces (henceforth, DF-many-spaces), each contains events

that could be jointly verified.

Although the two approaches are different, in de Finetti’s philosophy of proba-

bility they are closely related. In both approaches, probabilities of events are

conditional on observations that enable to verify them. This is not obvious in the

DF-big-space, where probabilities appear to be unconditional. But recall

(Sect. 16.3.7) that for de Finetti probabilities of “conditional events” are closely

connected, if not equivalent, to the corresponding conditional probabilities. The

similarity between conditional probability, represented as a conditional with prob-

abilistic consequent, and the corresponding probability of conditional event is

hindered by de Finetti’s formal notation, which is similar to the common notation

for conditional probability a la Kolmogorov. Yet, in both cases only verifiable

events E have probabilities, and the observations H that enable their verification

have no probability, as they are not events in the probability space. To highlight this

feature, in our representation of conditional probability as a conditional with a

probabilistic consequent, we have placed the conditioning events H in the subscript

rather than after the conditionalization stroke, PHðEÞ; and, as de Finetti [38, p. 104]
remarks, the conditional event EjH “must be considered as a whole,” and accord-

ingly H is not part of the probability space. Indeed, the inclusion of H in the

probability space while maintaining de Finetti’s verificationism would lead to an

infinite regress, where H would have to be a conditional event, the condition of

which would have to be represented by a conditional event, and so forth.

Finally, as represented above de Finetti’s verificationism is very stringent.

Conditionalizing probabilities of events on observations that enable to verify

them would severely restrict the range of events that have probabilities. First, this

brand of verificationism restricts probabilities to observational contexts. Second, in

various cases the required observations are actually impossible to carry out. Third,

it threatens to render de Finetti’s philosophy of probability extremely operational-

ist, as the probability of an event may vary according to the kind of observation that

enables to verify it. Yet, it is possible to sustain the main thrust of de Finetti’s

verificationism while avoiding the above undesired consequences by conditio-

nalizing probabilities of events on the proposition that the events are verifiable in

principle, rather than on the proposition that observations that enable to verify them

have been performed. In fact, this weaker version of verificationism is what de

Finetti seemed to have in mind. We shall discuss the implications of the weaker and

the stronger versions of verificationism in the next section.
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16.5 Coherent Degrees of Belief for the EPR/Bohm

Experiment

The most important implication of de Finetti’s verificationism is that the coherence

conditions on degrees of belief in events that are not jointly verifiable are weaker

than they would have been had the events been jointly verifiable. Let’s consider

again (Bell/CH – prob) (see Sect. 16.2). In de Finetti’s theory, (Bell/CH – prob) is a

necessary condition for coherent degrees of belief in, and accordingly for

probabilities of X; Y; X&Y; X0&Y; X&Y0 and X0&Y0 only when these events

(propositions) are jointly verifiable. But in various hidden-variable models of the

EPR/B experiment, X and X0 (Y and Y0) are values of non-commuting spin

observables, which are not jointly verifiable. Similarly, the measurement outcomes

in (Bell/CH – Fine) are not jointly verifiable, and so they are not necessary

conditions for coherent degrees of belief, and accordingly for probabilities of the

measurement outcomes involved in this inequality. Thus, if probabilities are

interpreted along de Finetti’s theory, (Bell/CH – prob) and (Bell/CH – Fine) do not

apply to the EPR/B experiment.

Recalling (Sect. 16.4) that de Finetti formalizes his verificationism in terms of

conditional probabilities, the failure of these inequalities can be manifested in two

different ways, corresponding to the two different interpretations of de Finetti’s

concept of conditional probability. Consider, for example, (Bell/CH – prob).

In the DF-big-space approach, probabilities are assigned only to conditional events.

In our case, the relevant conditional events are X=HX, Y=HY , X
0=HX0 , Y0=HY0 ,

X&Y=HXY , X0&Y=HX0Y , X&Y 0=HXY0 , X0&Y 0=HX0Y0 , X&X0=HXX0 and Y&Y0=HYY0 ;

where, as before, Hi is either a measurement that enables to verify the event i, or
the proposition that the event i is verifiable (we shall consider below the differences

between these two interpretations of Hi). Since it is impossible in principle to

jointly observe X and X0 (Y and Y0), individuals who are familiar with this feature

of the quantum realm will not assign a determinate truth-value to

X&X0=HXX0 ðY&Y0=HYY 0 Þ, and so X&X0=HXX0 ðY&Y0=HYY 0 Þ and any conjunction

that includes it has no probability. Consequently, a (Bell/CH - prob)-like inequality

is not a necessary condition for the probabilities of the conditional events

X=HX, Y=HY , X&Y=HXY , X0&Y=HX0Y , X&Y0=HXY0 and X0&Y0=HX0Y0 . In the

DF-many-spaces approach, the assumption that X and X0 (Y and Y0) are not jointly
verifiable entails that the events X, X0, Y and Y0 are not in the same probability

space. There are four smaller probability spaces, each contains two of these events:

fX; Yg; fX0; Yg; fX; Y0g and fX0; Y 0g. So (Bell/CH - prob) is not a necessary

condition for coherent degrees of belief in, and accordingly for the probabilities

of the events X; Y; X&Y; X0&Y; X&Y0 and X0&Y 0. The upshot is that followers of
de Finetti, who assume that the spins of a particle in different directions are not

jointly verifiable, are not committed to (Bell/CH – prob). Thus, they may assume

Mirror (e.g. that the probability distribution of spin-measurement outcomes reflects

the probability distribution of the particles’ spins before the measurements) and

l-independence (e.g. that the distribution of the particles’ spins is independent of
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the measurements), yet assign probabilities that are not constrained by (Bell/CH –

phys – c). Similarly, followers of de Finetti will not see (Bell/CH – Fine) as a

necessary constraint on the probabilities of the four spin-measurement outcomes

involved in each of the Bell/CH inequalities.

Two challenges may be posed for de Finetti’s verificationism. The first is for the

DF-many-spaces approach. In this approach, the same event may have different

probabilities in different spaces: e.g. event X may have the probability p1 in the

probability space S1 that is constituted by the “atomic” events X and Y, and p2,
p2<p1, in the space S2 that is constituted by the “atomic” events X and Y0. For
recall that the probabilities in S1 are conditionalized on a measurement HXY that

enables to verifywhetherX and Y occur, and the probabilities in S2 are conditionalized
on a measurementHXY0 that enables to verify whether X and Y0 occur. IfHXY andHXY0

are incompatible measurements, there is no Dutch-book argument to dictate that the

probability of X should be the same in both probability spaces.

Things are different, however, in our suggested interpretation of de Finetti’s

verificationism, where events are conditionalized on their verifiability rather than

on measurements that enable their verification (see Sect. 16.4). In this version, the

probability of X has to be the same in S1 and in S2 on pain of a Dutch book, where a
bookie offers to sell a bet on X for $p1 and buy it back for $p2, thus “pumping”

money out of any individual who holds that the probability of X in S1 is different
from the probability of X in S2. The reasoning is as follows. An individual who

holds the above probabilities should consider as fair a bookie’s offer to (i) sell a

conditional bet on X given that X and Y are jointly verifiable at the price of $p1, and
(ii) buy a conditional bet on X given that X and Y0 are jointly verifiable at the price

of $p2. Since in each of these cases the bet is conditional on the relevant events

being verifiable, rather than on actually being verified by measurements, the two

bets could be jointly realized. Thus, if the individual accepts both bets as fair, she is

destined to lose money come what may.

The second challenge is for both approaches, and it is related to the Kochen and

Specker’s (1967)’s no-go theorem. Due to its verificationism, de Finetti’s theory of

probability prescribes weaker constraints on probabilities in the EPR/B experiment.

This provides followers of de Finetti’s theory with some flexibility that is lacking in

other interpretations of probability. Thus, for example, hidden-variables models of

this experiment in which probabilities are interpreted along de Finetti’s theory may

postulate the existence of definite values for non-commuting spin observables, i.e.

values of spins in various directions, even if they assume Mirror and l-indepen-
dence. Yet, Kochen and Specker’s theorem and other similar theorems impose

heavy constraints on assignments of definite values to such non-commuting

observables (for a review of these theorems, see [49]), which substantially limit

the scope of such flexibility. The reasoning is as follows.

In their theorem, Kochen and Specker consider a spin-1 particle and triples of the

square values of spins in three orthogonal directions, S2x ; S
2
y ; S

2
z . The observables

S2x ; S
2
y ; S

2
z commute and accordingly their values are jointly verifiable (though the

observables Sx; Sy; Sz do not commute and so their values are not jointly verifiable).
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Kochen and Specker demonstrate that granted the following assumptions, there is

no coherent way of distributing the values of spins in 117 directions.

Values: All physical quantities of a quantum system, i.e. all the observables that

pertain to it, have definite values at all times.

Non-contextuality: Properties that a system possesses, i.e. the values of the

observables that pertain to it, are non-relational to other properties or the

measurement context.

More recently proofs involving less observables have been given (for references,

see [49]). The upshot is that any “hidden-variables” model that satisfies these

assumptions cannot provide a coherent assignment to a particle’s spins in more

than a limited number of directions. Indeed, the challenge that Kochen and

Specker’s theorem raises is not particular to the interpretation of probabilities

along de Finetti’s theory; it is posed for any interpretation of the probabilities of

“hidden-variables” models. Yet, these theorems substantially restrict the

advantages that de Finetti’s interpretation provides.

De Finetti was also verificationist about events (see Sect. 16.4), and his

verificationism may provide a way around Kochen and Specker’s theorem. The

proof of the theorem requires a truth-value assignment to propositions about events

that are not jointly verifiable, and given de Finetti’s verificationism about events the

assignment of truth values to propositions about events that are not jointly verifiable

may be more flexible, so as to avoid a Kochen and Specker-like contradiction; for

such an assignment may violate Non-contextuality. Recall (Sect. 16.4) that de

Finetti argued for verificationism on the grounds that the instrumental value of

notions depends on their verifiability, and that this reasoning relies heavily on a

positivist philosophy. Recall also that in the case of probabilities of events, de

Finetti’s verificationism can be motivated on different grounds – namely, by the

radical subjectivist and instrumental nature of probability in his theory; for due to

this nature, it is difficult to make sense of the notion of coherent degrees of belief,
and accordingly of probabilities of unverifiable events. Such a motivation does not

seem to exist in the case of events per se, as Finetti was not antirealist about events.
Followers of de Finetti’s interpretation of probability who do not wish to adhere

to de Finetti’s positivism may circumvent Kochen and Specker’s theorem by

rejecting Values. They may for example follow the orthodox interpretation and

accordingly reject Values; for recall that in this interpretation, the particles in the

EPR/B experiment have no definite spins before the measurements. While the

rejection of Values does not entail the failure of Mirror, it is more difficult to

motivate the later premise when the former fails. Alternatively, followers of de

Finetti may hold Values but reject Non-contextuality. For instance, they may hold

that the values of spin quantities are relational to the values of other spin

quantities,10 so that the value of the particle’s spin along the direction x relative

10 For an example of interpretation of QM that postulates such relationalism, see Berkovitz and

Hemmo’s [50] relational modal interpretation.
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to the values of its spins in the (mutually) orthogonal directions y and z is different
from its value relative to the values of its spins in different (mutually) orthogonal

directions y0 and z0. Given such contextuality, there exist coherent assignments for

the values of all the spin quantities that are involved in the Kochen and Specker

theorem. The question whether such contextuality is compatible with Mirror is

rather delicate and go beyond the scope of our current discussion. But, in any case,

the above reasoning seems to suggest that the challenges that the Kochen and

Specker theorem poses limit the advantage that de Finetti’s interpretation of

probability may have over other interpretations of probabilities.

16.6 De Finetti on the Nature of Quantum Probabilities

De Finetti found QM both fascinating and challenging. He dedicated a substantial

part of the long appendix of his Theory of Probability to the analysis of QM

probabilities [46, pp. 302–333]. Unlike his analysis of the foundations of probabil-

ity, the discussion of the nature of QM probabilities lacks incisiveness and clarity.

De Finetti refers frequently to von Nenumann’s [51] Mathematical Foundations of
Quantum Mechanics, Bodieu’s [52] Theorie dialectique des probabilities and

Reichenbach’s [53] Philosophic Foundations of Quantum Mechanics. He models

his analysis as a simplified version of Bodieu’s and Reichenbach’s. Like Bodieu, de

Finetti believes that quantum probabilities are a special case of a general calculus of

probability. Yet, he thinks that Reichenbach presents “the questions most lucidly

from the logical and philosophical point of view,” and he thus uses Reichenbach’s

comments as guidelines for developing his own analysis of the QM probabilities.

The aim of de Finetti’s analysis is “finding the logical constructions which will

prove suitable for resolving the difficulties we find ourselves” in trying to interpret

QM. He believes that “the correct path is straightforward and simple” and “it is

obscured precisely by preconceived ideas about what it is that constitutes a neces-

sary prerequisite for any logic,” and the key for resolving the difficulties is to

recognize that the logic of events should be three-valued [46, p. 303, 305–9].

Reichenbach presented the three truth-values in reference to observations: E is

true if the observation H has given the result E; E is false if the observation H has

given the result not-E; and E is indeterminate or meaningless if the observation H
has not been made. De Finetti [46, p. 307] thinks that Reichenbach’s presentation

corresponds to his conditional three-valued events, the only difference being that in

his framework the third value is called “void.” Following Reichenbach, he seems to

favor the view that the third truth value lies between true and false; for “[t]his is, in

fact, the requirement that must be satisfied if something is to be called a mathemat-

ical structure or, in particular, a logical structure.” Yet, later, in his philosophical

lectures on probability, he [41, p. 169] explicitly rejects this view when he says that

denoting the third truth-value by “1=2” instead of “;” “is not appropriate because it
somewhat suggests that it is an intermediate value between true and false.” This

later view of the indeterminate truth-value is more in line with our interpretation of
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de Finetti, where indeterminate conditional events have no determinate truth-value

and accordingly have no probability.

In any case, de Finetti [46, p. 308] thinks that all the logical construction of

Reichenbach’s three-valued logic “could be expressed in terms of two-valued

logic”, so as to avoid “creating a number of symbols and names of operations and

consequent rules (which are difficult to remember and sort out, and difficult to use

without confusion arising). Above all, one avoids creating the tiresome and

misleading impression that one deals with mysterious concepts which transcend

ordinary logic.” De Finetti thinks that the conceptual scheme of the three-valued

event, expressed in ordinary binary logic, could account for the quantum puzzles. In

particular, he argues that this framework could serve as the basis for understanding

the problem of complementarity in QM. He characterizes complementarity in terms

of indeterminate three-valued events – two events are complementary if at least one

of them “remains certainly indeterminate (but it is not known which. . .)”
[46, p. 311] – and then proceeds to argue that complementary events also arise in

classical phenomena though “the most celebrated example is undoubtedly that of

complementarity in quantum mechanics.” [46, p. 312]

We argued above that de Finetti’s theory of probability could serve as a basis for

interpretation of the quantum probabilities. Yet, we believe that de Finetti’s discus-

sion of QM probabilities and their relationships to classical probabilities does not

do justice to the difficulties that are involved in such an endeavor. In particular, de

Finetti seems to be unaware of Bell’s and Kochen and Specker’s theorems and the

heavy constraints they impose on assignments of probabilities in the quantum

realm.

16.7 Conclusions

De Finetti held that a theory of probability has to express what is inherent in the

notion of probability and nothing more. Probability is a rational guide of life under

uncertainty. Probabilities are coherent degrees of belief in verifiable events, and the

theorems of probability are supposed to follow from the coherence conditions of

degrees of belief. Unlike other subjective interpretations, probability is not sup-

posed to be ignorance about objective probabilities. Probability reflects only sub-

jective uncertainty, and its value is purely instrumental. We argued that in de

Finetti’s instrumental philosophy of probability, coherence embodies a certain

kind of verificationism, and accordingly the coherence conditions of degrees of

belief in events depend on their verifiability. Indeed, in the context of this philoso-

phy it is difficult to make sense of coherent degrees of beliefs in events that are

unverifiable.

We argued that de Finetti’s verificationist conception of coherence has important

implications. A common view has it that in the subjective interpretation,

probabilities are coherent degrees of belief and in principle every event (or propo-

sition about it) may have a probability. In de Finetti’s theory, there are many
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degrees of belief that have no corresponding probability; for degrees of belief in

unverifiable events have no coherence conditions, and accordingly no probability.

The restriction of probabilities to verifiable events also entails that the coherence

conditions of degrees of belief in events that are not jointly verifiable are weaker

than the (familiar) coherence conditions that such events would have had, had they

been jointly verifiable.

The idea that verifiability is relevant for probability was also highlighted in

Pitwosky’s [54, 55] discussion of George Boole’s [56] “conditions of possible

experience.” Boole thought of probabilities as relative frequencies in a finite

sample, and of the conditions of possible experience as inequalities concerning

such probabilities. Pitowsky [55, p. 105] notes that “none of Boole’s conditions of
possible experience can ever be violated when all the relative frequencies involved
have been measured in a single sample. The reason is that such a violation entails a
logical contradiction . . . But sometimes, for various reasons, we may choose or be

forced to measure the relative frequencies of (logically connected) events, in

several distinct samples. In this case a violation of Boole’s conditions may occur.”

We proposed that the restriction of probabilities to verifiable events in de

Finetti’s theory entails that the probability space of these events is “non-classical”

(see de Finetti’s big-space approach in Sect. 16.4), or that probabilities are

represented by multiple, smaller probability spaces, each of which contains events

that are jointly verifiable (see de Finetti’s many-spaces approach in Sect. 16.4). In

either case, the implication is that the inequalities that constrain the probabilities of

the values of spin observables in the EPR/B experiment are different from the

inequalities that would have obtained had these events been jointly verifiable; and

similarly, mutatis mutandis, for spin-measurement outcomes. This different proba-

bility structure provides followers of de Finetti’s theory with some extra flexibility.

Thus, for example, their probability assignments for the values of spin observables

in “hidden-variables” models for the EPR/B experiment will not be constrained by

(Bell/CH – prob) (see Sect. 16.2). Accordingly, they may suppose that the

probabilities of spin-measurement outcomes in the EPR/B experiment “mirror”

the probabilities of the corresponding spin observables before any measurement

occur (Mirror) and that the distribution of the values of these spin observables is

independent of the measurement settings (l-independence) (see Sect. 16.2), yet

their probabilities of spin-measurement outcomes will not be subjected to the (Bell/

CH – phys - c) or (Bell/CH – phys - c - big) (see Sects. 16.2 and 16.5). However,

the heavy constrains that Kochen and Specker’s and similar theorems impose

substantially limit the scope of such advantages (see Sect. 16.5).

Finally, it is noteworthy that in the context of de Finetti’s theory of probability it

is more difficult to reconstruct Bell’s argument for non-locality. First, in this

context it is more difficult to relate probabilities to causality, and accordingly it is

hard to motivate the violation of Factorizability (see Sect. 16.1.1) as a locality

condition. Second, it may be impossible to formulate l-independence, another main

premise of Bell’s theorem; for if probability is interpreted along de Finetti’s theory,

in some hidden-variables theories the probability of the complete pair-state in the

EPR/B experiment will not exist because this state is unverifiable. Whether this is
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the case will depend on both the nature of the complete pair-state, which varies

from one hidden-variables theory to another, and the concept of verifiability one has

in mind. Yet, that it is more difficult to reconstruct Bell’s argument in the context of

such radical subjective theory of probability should not be surprising, as

probabilities in this theory are purely subjective and instrumental and accordingly

are not supposed to reflect objective facts about the world. In de Finetti’s interpre-

tation, quantum probabilities are not supposed to reflect the ontological nature of

the quantum realm; they only serve as a guide for policing uncertainty and forming

anticipations about events in this realm.
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