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Introduction

Yemima Ben-Menahem and Meir Hemmo

Questions concerning the meaning of probability and its applications in physics are

notoriously subtle. In the philosophy of the exact sciences, the conceptual analysis

of the foundations of a theory often lags behind the discovery of the mathematical

results that form its basis. The theory of probability is no exception. Although

Kolmogorov’s axiomatization of the theory [1] is generally considered definitive,

the meaning of the notion of probability remains a matter of controversy.1

Questions pertain both to gaps between the formalism and the intuitive notions of

probability and to the inter-relationships between the intuitive notions. Further,

although each of the interpretations of the notion of probability is usually intended

to be adequate throughout, independently of context, the various applications of the

theory of probability pull in different interpretative directions: some applications,

say in decision theory, are amenable to a subjective interpretation of probability as

representing an agent’s degree of belief, while others, say in genetics, call upon an

objective notion of probability that characterizes certain biological phenomena. In

this volume we focus on the role of probability in physics. We have the dual goal

and challenge of bringing the analysis of the notion of probability to bear on the

meaning of the physical theories that employ it, and of using the prism of physics to

study the notion of probability.
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The concept of probability is indispensable in contemporary physics. On the

micro-level, quantum mechanics, at least in its standard interpretation, describes

the behavior of elementary particles such as the decay of radioactive atoms, the

interaction of light with matter and of electrons with magnetic fields, by employing

probabilistic laws as its first principles. On the macro-level, statistical mechanics

appeals to probabilities in its account of thermodynamic behavior, in particular the

approach to equilibrium and the second law of thermodynamics. These two entries

of probability into modern physics are quite distinct. In standard quantum mechan-

ics, probabilistic laws are taken to replace classical mechanics and classical

electrodynamics. Quantum probabilities are here understood as reflecting genuine

stochastic behavior, ungoverned by deterministic laws.2 By contrast, in classical

statistical mechanics, probabilistic laws are supplementary to the underlying deter-

ministic mechanics, or perhaps even reducible to it. These probabilities may

therefore be the understood as reflecting our ignorance about the details of the

microstates of the world or as a byproduct of our coarse-grained descriptions of

these states.

Despite this radical difference, the probabilistic laws in both theories pertain to

the behavior of real physical systems. When quantum mechanics ascribes a certain

probability to the decay of a radium atom, it must be saying something about the

atom, not only about our beliefs, expectations or knowledge regarding the atom.

Likewise, when classical statistical mechanics ascribes a high probability to the

spreading of a gas throughout the volume accessible to it, it is purportedly saying

something about the gas, not only about our subjective beliefs about the gas. In this

sense the probabilistic laws in both quantum and statistical mechanics are supposed

to have some genuine objective content. What this objective content is, however,

and how it is related to epistemic notions such as ignorance, rational belief and the

accuracy of our descriptions are open issues, hotly debated in the literature, and

reverberating through this volume. Before getting into these issues in the physical

context, let us briefly review some of the general problems confronting the inter-

pretation of probability.3

1.1 The Notion of Probability

Consider the paradigmatic example of a game of chance, a flip of a coin in which in

each flip there is a fixed probability of 1/2 for getting tails and 1/2 for getting heads.

How are we to understand the term ‘probability’ in this context? At least three

2 This does not apply to Bohmian quantum mechanics, which is deterministic. See also Earman [2]

for an analysis of determinism and for an unorthodox view about both classical and quantum

mechanics regarding their accordance with determinism.
3 See Fine [3] for the various approaches to probability, and Hajek [4] for an overview and

references.
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distinct answers can be found in the literature. First, we could be referring to the

objective chance for getting heads or tails in each flip. This objective chance is

supposed to pertain to the coin, or the flip, or both, or, more generally, to the set up

of the coin flip. On this understanding, the chance is a kind of property, a tendency

(propensity) of the set up, analogous to other tendencies of physical systems. The

analogy suggests that, just as fragility is a tendency to break, chance is the tendency

to. . . The problem in completing this sentence is that fragile objects sometimes in

fact break whereas a chance 1/2 coin always lands on one of its faces. In other

words, a single outcome never instantiates the chance in the way a broken glass

instantiates fragility.

The response to this problem leads to the second notion of probability according

to which when we say that the probability of tails (heads) in each game is 1/2 we

refer to the relative frequency of tails (heads) in a (finite or infinite) series of

repeated games. The intuition here is that it is the relative frequency that links the

probability of an event to the actual occurrences. While the link cannot be

demonstrated in any single event, it is manifest in the long run by a series of events.

How does this response affect the notion of chance? We may either conclude that

chance has been eliminated in favor of relative frequency, or hold on to the notion

of chance along with the caveat that it is instantiated (and thus verified) only by

relative frequency. An example of the first kind is the relative frequency analysis by

vonMises [5], where probability is identified with the infinite limit (when it exists) of

the relative frequency along what vonMises called random sequences. Of course, the

notion of a random sequence is itself in need of a precise and non-circular characteri-

zation. Moreover, the relation between a single case chance and relative frequency is

not yet as close as we would like it to be, for any objective chance, say 1/2 for tails, is

compatible with any finite sequence of heads and tails, no matter how long it is.

The third notion of probability is known as subjective or epistemic probability.

On this interpretation, championed by Ramsey, de Finetti and Savage, probabilities

represent degrees of belief of rational agents, where rationality is defined as acting

so as to maximize profit. The rationality requirement places normative constraints

on subjective degrees of belief: the beliefs of rational agents, it is claimed, must

obey the axioms of probability theory in the following sense. Call a series of bets

each of which is acceptable to the agent a Dutch-book if they collectively yield

a sure loss to the agent, regardless of the outcomes of the games. It has been proved

independently by de Finetti and Ramsey that if the degrees of belief (the subjective

probabilities) of the agent violate the axioms of probability theory, then a Dutch-

book can be tailored against her. And conversely, if the subjective probabilities of

the agent conform to the axioms of probability, then no Dutch book can be made

against her. That is, obeying the axioms of probability is necessary and sufficient to

guarantee Dutch-book coherence, and in this sense, rationality. Thus construed, the

theory of probability – as a theory of partial belief – is actually an extension of

logic!

One of the problems that the subjective interpretation faces is that without

further assumptions, the consistency of our beliefs (in the above sense of avoiding

a Dutch book, or complying with the axioms of probability theory) does not
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guarantee their reasonableness. In order to move from consistency to reasonable-

ness, it would seem, we need some guidance from ‘reality’, namely, we need a

procedure for adjusting our subjective probabilities to objective evidence. Here

Dutch book considerations are less effective – they do not even compel rational

agents to update their beliefs by conditioning on the evidence (see van Fraassen

[6]). To do that, one needs a so-called diachronic (rather than synchronic) Dutch

book argument. More generally, the question arises of whether the evidence can be

processed without recourse to objectivist notions of probability.4 If it cannot, then

subjective probability is not, after all, the entirely self-sufficient concept that

extreme subjectivists have in mind. Suppose we accept this conclusion and seek

to link the subjective notion of probability to objective matters of fact. Ideally, it

seems that the subjective probability assigned by a rational agent to a certain

outcome should converge on the objective probability of that outcome, where the

objective probability is construed either in terms of chance or in terms of relative

frequency. Can we appeal to the laws of large numbers of probability theory in

order to justify this idea and close the gaps between the three interpretations of

probability? Not quite, for the following reasons.

According to Bernoulli’s weak law of large numbers, for any e there is a number

n such that in a sequence of (independent) n flips, the relative frequency of tails will,
with some fixed probability, be in the interval 1=2 � e. And if we increase the

number of flips without bound then according to the weak law, the relative

frequency of tails and heads will approach their objective probability with proba-

bility that approaches one. That is, the relative frequency would probably be close
to the objective probability. But this means that the convergence of relative

frequency to objective chance is itself probabilistic. Threatening to lead to

a regress, these second-order probabilities cast doubt on the identification of the

concept of objective chance with that of relative frequency. A similar problem

arises for the subjectivist: are the second order probabilities to be understood

subjectively or objectively? The former reply is what we would expect from

a confirmed subjectivist, but it leaves the theorem rather mysterious.

Moreover, consider a situation in which the objective chance is unknown and one
wishes to form an opinion about the chance relying on the observed evidence: Can

the law of large numbers support such an inference? Unfortunately, the answer is

negative, essentially because any finite relative frequency is compatible with

infinitely many objective chances. Suppose that we want to find out whether the

objective chance in our coin flip is 1/3 for tails and 2/3 for heads, or whether it is 1/2

for both. Even if we assume that the flips are independent of each other (so that the

4 It has been shown that the subjective probabilities of an agent who updates her beliefs in

accordance with Bayes’ theorem, converge on the observed relative frequencies no matter what

her prior subjective probabilities are. But this is different from converging on the chances or the

relative frequencies in the infinite limit. Similar considerations apply also to the so-called ‘logical’

approach to probability on which probabilities are quantitative expressions of the degree of support

of a statement conditional on the evidence.
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law of large numbers applies), we cannot infer the chance from long run relative

frequencies unless we put weights on all possible sequences of tails and heads.

Placing such weights, however, amounts to presupposing the objective chances we

are looking for.5 We will encounter several variations on this question in the context

of quantum mechanics and classical statistical mechanics. In both cases, the choice

of the probability measure over the relevant set of sequences is designed to allow

for the derivation of the chances from the relative frequencies. Let us now turn to

these theories.

1.2 Statistical Mechanics

Statistical mechanics, developed in the late nineteenth century by Maxwell,

Boltzmann, Gibbs and others, is an attempt to understand thermodynamics in

terms of classical mechanics. In particular, it aims to explain the irreversibility

typical of thermodynamic phenomena on the basis of the laws of classical mechan-

ics. Thus, while in classical thermodynamics, the irreversibility characteristic of the

approach to equilibrium and the second law of thermodynamics is put forward in

addition to the Newtonian laws of classical mechanics, in statistical mechanics the

laws of thermodynamics are expected to be reducible to the Newtonian laws. This,

at least, was the aspiration underlying the theory. One of the major difficulties in

this respect is that the laws of classical mechanics (as well as those of other

fundamental theories) are time-symmetric, whereas the second law of thermo-

dynamics is time-asymmetric. How can we derive an asymmetry in time from

time-symmetric laws?

In order to appreciate the full force of this question, it is instructive to consider

Boltzmann’s approach in the early stages of the kinetic theory of gases.6 In his

famous H-theorem, Boltzmann attempted to prove a mechanical version of the

second law of thermodynamics on the basis of the mechanical equations of motion

(describing the evolution of a low density gas in terms of the distribution of the

velocities of the particles that make up the gas). Roughly, according to the

H-theorem, the dynamical evolution of the gas as described by Boltzmann’s

equation is bound to approach the distribution that maximizes the entropy of the

gas, that is, the Maxwell-Boltzmann equilibrium distribution. Essentially, what this

startling result was meant to show was that an isolated low-density gas in a non-

equilibrium state evolves deterministically towards equilibrium, and therefore its

entropy increases with time. However, Boltzmann’s H-theorem turned out to be

5 See van Fraassen [7], p. 83. Note again that the condition of Dutch-book coherence is of no help

here since the objective probabilities in the situation we consider are unknown.
6 Our account below is not meant to be historically rigorous. We essentially follow the Ehrenfest

and Ehrenfest [8] reconstruction of Boltzmann’s ideas in a very schematic way. See Uffink [9] for

a detailed historical account of statistical mechanics and references.
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inconsistent with the fundamental time-symmetric principles of mechanics. This

was the thrust of the reversibility objection raised by Loschmidt: given the time-

symmetry of the classical equations of motion, for any trajectory passing through

a sequence of thermodynamic states along which entropy increases with time, there

is a corresponding trajectory which travels through the same sequence of states in

the reversed direction (i.e., with reversed velocity), along which entropy therefore

decreases in the course of time.7

It is at this juncture that probability came to play an essential role in physics. In

the face of the reversibility objections, Boltzmann concluded that his H-theorem

must be interpreted probabilistically. The initial hope was that an analysis of the

behavior of many-particles systems in probabilistic terms would reveal a straight-

forward linkage between probability and entropy. If one then makes the seemingly

natural assumption that a system tends to move from less probable to more probable

states, a direction in the evolution of thermodynamic systems towards high entropy

states would emerge. In other words, what Boltzmann now took the H-theorem

to prove was that although it is possible for a thermodynamic system to evolve

away from equilibrium, such an anti-thermodynamic evolution is highly unlikely or

improbable.

To see how this idea can be made to work, consider the following. First,

thermodynamic magnitudes such as volume, pressure and temperature, are

associated with regions in the phase space called macrostates, where a macrostate

is conceived as an equivalence class of all themicrostates that realize it. Second, the
thermodynamic entropy of a macrostate is identified with the number of microstates

that realize that macrostate, as measured by the Lebesgue measure (or volume) of

the phase space region associated with the macrostate. Third, a dynamical hypoth-

esis is put forward to the effect that the trajectory of a thermodynamic system in the

phase space is dense in the sense that the trajectory passes arbitrarily close to every

microstate in the energy hypersurface. This idea, which goes back to Boltzmann’s

so-called ergodic hypothesis, was rigorously proved around 1932 by Birkhoff and

von Neumann. According to their ergodic theorem, a system is ergodic if and only if

the relative time its trajectory spends in a measurable region of the phase space is

equal to the relative Lebesgue measure of that region (i.e., its volume) in the limit of

infinite time. This feature holds for all initial conditions except for a set of Lebesgue

measure zero. Now, since the probability of a macrostate (or rather the relative

frequency of that macrostate) along a typical infinite trajectory can be thought of as

the relative time the trajectory spends in the macrostate, it seems to follow that in

the long run the probability of a macrostate is equal to its entropy. And this in turn

seems to imply that an ergodic system will most probably follow trajectories that in

the course of time pass from low-entropy macrostates to high-entropy macrostates.

7 In fact, there are other arguments, which show that Boltzmann’s deterministic approach in

deriving the H-theorem could not be consistent with the classical dynamics, e.g. the historically

famous objection by Zermelo based on the Poincaré recurrence theorem. It was later discovered

that one of the premises in Boltzmann’s proof was indeed time-asymmetric.
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And so, if thermodynamic systems are in fact ergodic, we seem to have a probabi-

listic version of the second law of thermodynamics.

This admittedly schematic outline gives the essential idea of how the thermody-

namic time-asymmetry was thought to follow from the time-symmetric laws of

classical mechanics. Despite its ingenuity, the probabilistic construal of the second

law still faces intriguing questions. Current research in the foundations of statistical

mechanics is particularly beleaguered by the problems generated by the (alleged?)

reduction of statistical mechanics to the fundamental laws of physics. Here are

some of the questions that are addressed in this volume.

1. The first challenge is to give a mathematically rigorous proof of a probabilistic
version of the second law of thermodynamics. Some attempts are based on

specific assumptions about the initial conditions characterizing thermodynamic

systems (as in Boltzmann’s H-theorem), while others appeal to general features

characterizing the dynamics of thermodynamic systems (as in the ergodic

approach). The extent to which these attempts are successful is still an open

question. In this volume, Roman Frigg and Charlotte Werndl defend a number of

variations on the ergodic approach.

A related issue is that of Maxwell’s Demon. Maxwell introduced his thought

experiment – portraying a Demon who violates the second law – to argue that it

is impossible to derive a universal proof of this law from the principles of

mechanics. He concluded that, while the law is generally (probabilistically)

valid, its violation under specific circumstances, such as those described in his

thought experiment, is in fact possible. In the literature, however, the standard

view is that Maxwell was wrong. That is, it is argued that the operation of the

Demon in bringing about a local decrease of entropy is inevitably

counterbalanced by an appropriate increase of entropy in the environment

(including the Demon’s own entropy).8 The article by Eric Fanchon, Klil

Ha-Horesh Neori and Avshalom Elitzur analyses some new aspects of the

Demon’s operation in defense of this view.

2. Another question concerns the status of the probabilities in statistical mechanics.

Given that the classical equations of motion are completely deterministic, what

exactly do probabilities denote in a classical theory? Of course, classical deter-

ministic dynamics applies to the microstructure of physical systems whereas

Boltzmann’s probabilities are assigned to macrostates, which can be realized in

numerous ways by various microstates. Nonetheless, the determinism of classi-

cal mechanics implies that anything that happens in the world is fixed by the

world’s actual trajectory. And so, at first sight, the probabilities in statistical

mechanics can only represent the ignorance of observers with respect to the

microstructure. But if so, it is not clear what could be objective about statistical

8 See Leff and Rex [10] and Maroney [11] for reviews and the recent literature on the Demon

question. For a rigorous recent account of Maxwell’s Demon supporting Maxwell in the context of

Boltzmann’s approach, see Albert [12] and Hemmo and Shenker [13, 14].
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mechanical probabilities and how they could be assigned to physical states and

processes.9 Since we expect these probabilities to account for thermodynamic

behavior– the approach to thermodynamic equilibrium and the second law of

thermodynamics – which are as physically objective as anything we can get, the

epistemic construal of probability is deeply puzzling. Responding to this chal-

lenge, David Albert provides an over-arching account of the structure of proba-

bility in physics in terms of single case chances. Wayne Myrvold, in turn,

proposes a synthesis of objective and subjective elements, construing

probabilities in statistical mechanics as objective, albeit epistemic, chances.

3. We noted that the appeal to probability was meant to counter the reversibility

objection. But does it? What we would like to get from statistical mechanics is

not only a high probability for the increase of entropy towards the future but also

an asymmetry in time – an ‘arrow of time’ (or rather an arrow of entropy in time) –

so that the same probabilistic laws would also indicate a decrease of entropy

towards the past. And once again, the time-reversal symmetry of classical

mechanics stands in our way. Whatever probability implies with respect to

evolutions directed forward in time must be equally true with respect to

evolutions directed backward in time. In particular, whenever entropy increases

towards the future, it also increases towards the past. If this is correct, it implies

that the present entropy of the universe, for any present moment, must always be

the minimal one. That is to say, one would be justified to infer that the cup of coffee

in front of me was at room temperature a few minutes ago and has spontaneously

warmed up as to infer that it will cool off in a few minutes. To fend off this absurd

implication, Richard Feynman ([25], p. 116) said, “I think it necessary to add to the

physical laws the hypothesis that in the past the universe was more ordered, in

the technical sense, than it is today.” Here Feynman is introducing the so-called

past-hypothesis in statistical mechanics,10 which in classical statistical mechanics

is the only way to get a temporal arrow of entropy. Note that the past-hypothesis

amounts to adding a distinction between past and future, as it were, by hand. It is an

open question as to whether quantum mechanics may be more successful in this

respect.11 The past-hypothesis and its role in statistical mechanics are subject to

a thorough examination and critique in Alon Drory’s paper.

4. In the assertion that thermodynamic behavior is highly probable, the high

probability pertains to subsystems of the universe. It is generally assumed that

the trajectory of the entire universe, giving rise to this high probability, is itself

fixed by laws and initial conditions. Questions now arise about these initial

conditions and their probabilities. Must they be highly probable in order to

confer high probability on the initial conditions of subsystems? Would

9 See Maudlin [15] for a more detailed discussion of this problem.
10 See Albert [12], Chap. 4 for some variations on this idea.
11 The situation, however, is somewhat disappointing, since in quantum mechanics the question of

how to account for the past is notoriously hard due to the problematic nature of retrodiction in

standard quantum mechanics.
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improbable initial conditions of the universe make its present state inexplicable?

But even before we answer these questions, it is not clear that it even makes

sense to consider a probability distribution over the initial conditions of the

universe. A probability distribution suggests some sort of a random sampling,

but with respect to the initial conditions of the universe, this random sampling

seems an empirically meaningless fairy tale. An attempt to answer these

questions goes today under the heading of the typicality approach. The idea is

to justify the set of conditions that give rise to thermodynamic behavior in

statistical mechanics (or to quantum mechanical behavior in Bohmian mechan-

ics) by appealing to the high measure of this set in the space of all possible initial

conditions, where the high measure is not understood as high probability. Two

articles in this volume contribute to this topic: Sheldon Goldstein defends the

non-probabilistic notion of typicality in both statistical and Bohmian mechanics;

Meir Hemmo and Orly Shenker criticize the typicality approach.

5. Finally, a probability distribution over a continuous set of points (e.g. the phase

space) requires a choice of measure. The standard choice in statistical mechanics

(relative to which the probability distribution is uniform) is the Lebesgue

measure. But in continuous spaces infinitely many other measures (including

some that do not even agree with the Lebesgue measure on the measure zero and

one sets) are mathematically possible. Such measures could lead to predictions

that differ significantly from the standard predictions of statistical mechanics.

Are there mathematical or physical grounds that justify the choice of the

Lebesgue measure? This problem is intensified when combined with the previ-

ous question about the probability of the initial conditions of the universe. And

here too there are attempts to use the notion of typicality to justify the choice of

a particular measure. In his contribution to this volume, Itamar Pitowsky justifies

the choice of the Lebesgue measure, claiming it to be themathematically natural
extension of the counting (combinatorial) measure in discrete cases to the

continuous phase space of statistical mechanics.

1.3 Quantum Mechanics

The probabilistic interpretation of the Schr€odinger wave equation, put forward by

Max Born in 1926, has become the cornerstone of the standard interpretation of

quantum mechanics. Two (possibly interconnected) features distinguish quantum

mechanical probabilities from their classical counterparts. First, on the standard

interpretation of quantum mechanics, quantum probabilities are irreducible, that is,

the probabilistic laws in which they appear are not superimposed on an underlying

deterministic theory. Second, the structure of the quantum probability space differs

from that of the classical space. Let us look at each of these differences more

closely.

According to the von Neumann-Dirac formulation of quantum mechanics, the

ordinary evolution of the wave function is governed by the deterministic

1 Introduction 9



Schr€odinger equation. Upon measurement, however, the wave function undergoes

a genuinely stochastic, instantaneous and nonlocal ‘collapse,’ yielding a definite

value – one out of a (finite or infinite) series of possible outcomes. The probabilities

of these outcomes are given by the quantum mechanical algorithm (e.g. the

modulus square of the amplitude of Born’s rule). Formally, this process is construed

as a projection of the system into an eigenstate of the operator representing the

measured observable, where the measured value represents the corresponding

eigenvalue of this state. Thus, the collapse of the wave function, unlike its ordinary

evolution, is said to be governed by a ‘projection postulate’. Among other impli-

cations, this ‘projection’ means that in contrast with the classical picture, where

a measurement yields a result predetermined by the dynamics and the initial

conditions of the system at hand, on the standard interpretation of quantum

mechanics, measurement results are not predetermined. Moreover, they come

about through the measurement process (although how precisely this happens is

an open question) and in no way reflect the state of the system prior to

measurement.

The collapse of the wave function is the Achilles heel of the standard interpreta-

tion. Is it a physical process or just a change in the state of our knowledge? Why

does it occur specifically during measurement? Can it be made Lorentz invariant in

a way that ensures compatibility with special relativity? Above all, can quantum

mechanics be formulated in a more uniform way, one that does not single out

measurement as a distinct process and makes no recourse to ‘projection’? These

questions are the departure point of alternative, non-standard, interpretations of

quantum mechanics that seek to solve the above problems either by altogether

getting rid of the collapse or by providing a dynamical account that explains it. As it

turns out, rival interpretations also provide divergent accounts of the meaning of

quantum probabilities. While the standard interpretation has been combined with

practically all the probabilistic notions, relative frequency, single case chance and

epistemic probability, the non-standard alternatives are generally more genial to

a specific interpretation.

Bohm’s [16] theory is a deterministic theory, empirically equivalent to quantum

mechanics. Here there is no collapse. Rather, the probability distribution cðxÞj ij j2,
introduced in order to reproduce the empirical predictions of standard quantum

mechanics, reflects ignorance about the exact positions of particles (and ultimately

about the exact initial position of the entire universe). In this sense the probabilities

in Bohm’s theory play a role very similar to that played by probability in statistical

mechanics, and can thus be construed along similar lines. By contrast, stochastic

theories, such as that proposed by Ghirardi et al. (GRW, [17]), prima facie construe

quantum probabilities as single case chances. In these theories, probability-as-

chance enters quantum mechanics not only through the measurement process but

through a purely stochastic dynamics of spontaneous ‘jumps’ of the wave function

under general dynamical conditions. Many worlds approaches, based on Everett’s

relative-state theory [18], take quantum mechanics to be a deterministic theory

involving neither collapse nor ignorance over additional variables. Rather, the

unitary dynamics of the wave function is associated with a peculiarly quantum
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mechanical process of branching (fission and fusion) of worlds. However, since the

branching is unrelated to the quantum probabilities, the role of probability in this

theory remains obscure and is widely debated in the literature. Addressing this

issue, Lev Vaidman’s article secures a place for probabilities (obeying Born’s rule)

in the many worlds theory.

In addition, there are subjectivist approaches, according to which quantum

probabilities are constrained only by Dutch-book coherence. Such an epistemic

approach was defended by Itamar Pitowsky [19] and is advocated in this volume by

Christopher Fuchs and R€udiger Schack. A subjectivist approach inspired by de

Finetti is the subject of Joseph Berkovitz’s paper. He discusses the implications of

de Finetti’s verificationism for the understanding of the quantum mechanical

probabilities in general and Bell’s nonlocality theorem in particular.

The second characteristic that distinguishes quantum mechanical probabilities

from classical probabilities is the logical structure of the quantum probability space.

This feature, first identified by Schr€odinger in 1935, was the basis of Itamar

Pitowsky’s interpretation of quantum mechanics. In a series of papers culminating

in 2006, he urged that quantum mechanics is to be understood primarily as a non-

classical theory of probability. On this approach, it is the non-classical nature of the

probability space of quantum mechanics that is at the basis of other characteristic

features of quantum mechanics, such as the non-locality exemplified by the viola-

tion of the Bell inequalities. Since these probabilities obey non-classical axioms,

the expectation values they lead to deviate from expectations derived from classical

ignorance interpretations.

Pitowsky believed that the difference between quantum and classical mechanics

is already manifested at the phenomenological level, that is, the level of events and

their correlations. He therefore insisted that before saving the quantum phenomena

by means of theoretical terms such as superposition, interference, nonlocality,

probabilities over initial conditions, collapse of the wavefunction, fission of worlds,

etc. (let alone the vaguer notions of duality or complementarity), we should first

have the phenomena themselves in clear view. The best handle on the phenomena,

he maintained, is provided by the non-classical nature of the probability space of

quantum events. Note that what is at issue here is not the familiar claim that the laws

of quantum mechanics, unlike those of classical mechanics, are irreducibly proba-

bilistic, but the more radical claim that quantum probabilities deviate in significant

ways from classical probabilities. Hence the project of providing an axiom system

for quantum probability. The very notion of non-classical probability, that is, the

idea that there are different notions of probability captured by different axiom

systems, has far-reaching implications not only for the interpretation of quantum

mechanics, but also for the theory of probability and the understanding of rational

belief.

Pitowsky’s probabilistic interpretation brings together suggestions made by

a number of earlier theorists, among them Schr€odinger and Feynman, who saw

quantum mechanics as a new theory of probability, and Birkhoff and von Neumann,

who sought to ground quantum mechanics in a non-classical logic. However,

Pitowsky goes beyond these earlier works in spelling out in detail the non-classical
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nature of quantum probability. In addition, his work differs from that of his

predecessors in three important respects. First, Pitowsky clarified the relation

between quantum probability and George Boole’s work on the foundations of

classical probability. Second, Pitowsky explored in great detail the geometrical

structure of the non-classical probability space of quantum mechanics, an explora-

tion that sheds new light on central features of quantummechanics, and non-locality

in particular. Finally, unlike any of the above mentioned theorists, Pitowsky

endorsed an epistemic interpretation of probability [19, 20]. It is this epistemic

component of his interpretation, arguably its most controversial component, that he

took to be necessary in order to challenge rival interpretations of quantum mechan-

ics, such as the many worlds and Bohmian interpretations. Once quantum mechan-

ics is seen as a non-classical theory of probability, he argued, and once probability is

construed subjectively, as a measure of credence, the puzzles that gave rise to these

rival interpretations lose much of their bite. Specifically, Pitowsky thought we may

no longer need to worry about the notorious measurement problem. For, as Pitowsky

and Bub put it in their joint paper [24], we may now safely reject “the two dogmas of

quantum mechanics,” namely, the concept of the quantum state as a physical state
on a par with the classical state, and the concept of measurement as a physical

process that must receive a dynamical account. Instead, we should view the formal-

ism of quantum mechanics as a ‘book-keeping’ algorithm that places constraints on

(rational) degrees of belief regarding the possible results of measurement.

To motivate this point of view, Pitowsky and Bub draw an analogy between

quantum mechanics and the special theory of relativity: According to special

relativity, effects such as Lorenz contraction and time dilation, previously thought

to require dynamical explanations, are now construed as inherent to the relativistic

kinematics (and therefore the very concept of motion). Theories that do provide

dynamical accounts of the said phenomena may serve to establish the inner

consistency of special relativity, but do not constitute an essential part of this

theory. Similarly, on the probabilistic approach to quantummechanics, the puzzling

effects of quantum mechanics need no deeper ‘physical’ explanation over and

above the fact that they are entailed by the non-classical probability structure.

And again, theories that do provide additional structure, e.g. collapse dynamics of

the measurement process, should be regarded as consistency proofs of the quantum

formalism rather than an essential part thereof. As it happens, the debate over the

purely kinematic understanding of special relativity has recently been renewed (see

Brown [21]). Following Pitowsky’s work, a similar debate may be conducted in the

context of quantum mechanics. A number of papers in this volume contribute to

such a debate. While Laura Ruetsche and John Earman examine the applicability of

Pitowsky’s interpretation to quantum field theories, William Demopoulos and

Yemima Ben-Menahem address issues related to its philosophical underpinnings.

To illustrate the difference between classical and quantum probability, it is

useful to follow Pitowsky and revisit George Boole’s pioneering work on the

“conditions of possible experience.” Boole raised the following question: given

a series of numbers p1, p2, . . . pn,, what are the conditions for the existence of

a probability space and a series of events E1, E2, . . . En, such that the given numbers
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represent the probabilities of these events. (Probabilities are here understood as

frequencies in finite samples represented by numbers between 0 and 1). The answer

given by Boole was that the envisaged necessary and sufficient conditions could be

expressed by a set of linear equations in the given numbers. All, and only, numbers

that satisfy these equations, he argued, can be the obtained from experience, i.e.

from actual frequencies of events. In the simple case of two events E1 and E2, with

probabilities p1 and p2 respectively, an intersection E1 \ E2whose probability is p12,
and a union E1 [ E2, Booles conditions are:

p1 � p12

p2 � p12

pðE1 [ E2Þ ¼ p1 þ p2 � p12 � 1

Prima facie, these conditions seem self-evident or a priori. Evidently, if we have
an urn of balls containing, among others, red, wooden and red-and-wooden balls,

the probability of drawing a ball that is either red or wooden (or both) cannot exceed

the sum of the probabilities for drawing a red ball and a wooden ball. And yet,

violations of these predictions are predicted by quantum mechanics and

demonstrated by experiments. In the famous two-slit experiment, for instance,

there are areas on the screen that receive more hits than allowed by the condition

that the probability of the union event cannot exceed the sum of the probabilities of

the individual events. We are thus on the verge of a logical contradiction. The only

reason we do not actually face an outright logical contradiction is that the proba-

bilities in question are obtained from different samples, or different experiments

(in this case, one that has both slits open at once, the other that has them open

separately). It is customary to account for the results of the two-slit experiment by

means of the notion of superposition and the wave ontology underlying it. But as

noted, Pitowsky’s point was that acknowledging the deviant phenomena should

take precedence over their explanation, especially when such an explanation

involves a dated ontology.

Pitowsky [22] showed further that the famous Bell-inequalities (and other

members of the Bell inequalities family such as the Clauser, Horn, Shimony

and Holt inequality) can be derived from Boole’s conditions. Thus, violations of

Bell-inequalities actually amount to violations of Boole’s supposedly a priori
“conditions of possible experience”! This derivation provides the major motivation

for Pitowsky’s interpretation of quantum mechanics, for, if Bell’s inequalities

characterize classical probability, their violation (as predicted by quantum mechan-

ics) indicates a shift to an alternative, non-classical, theory of probability. Note that

the classical assumption of ‘real’ properties, existing prior to measurement and

discovered by it, underlies both Pitowsky’s derivation of the Bell inequalities via

Boole’s conditions and the standard derivations of the inequalities. Consequently,

in both cases, the violation of the inequalities suggests renunciation of a realist

understanding of states and properties taken for granted in classical physics. In this
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respect, Pitowsky remained closer to the Copenhagen tradition than to its more

realist rivals – Bohmian, Everett and GRW mechanical theories.

Examining the geometrical meaning of Boole’s classical conditions, Pitowsky

showed that the probabilities satisfying Boole’s linear equations lie within

n-dimensional polytopes whose dimensions are determined by the number of the

events and whose facets are determined by the equations. The geometrical expres-

sion of the fact that the classical conditions can be violated is the existence of

quantum probabilities lying outside of the corresponding classical polytope.

The violation of Bell-type inequalities implies that in some experimental set-ups

we get higher correlations than those permitted by classical considerations, that is,

we get nonlocality. If, as Pitowsky argued, the violation of the inequalities is just

a manifestation of the non-classical structure of the quantum probability space, non-

locality is likewise such a manifestation, integral to this structure and requiring no

further explanation.

The next step was to provide an axiom system for quantum probability. The core

of such a system had been worked out early on by Birkhoff and von Neumann [23],

who considered it a characterization of the non-Boolean logic of quantum mechan-

ics. Pitowsky endorsed the basic elements of the Birkhoff-von Neumann axioms, in

particular the Hilbert space structure with its lattice of its subspaces. He also

followed Birkhoff and von Neumann in identifying the failure of the classical

axiom of reducibility as the distinct feature of quantum mechanics. By employing

a number of later results, however, Pitowsky managed to strengthen the connection

between the Birkhoff-von Neumann axioms and the theory of probability. To begin

with, Gleason’s celebrated theorem ensures that the only non-contextual probability

measure definable on an n-dimensional Hilbert Space (n � 3) yields the Born rule.

On the basis of this theorem, Pitowsky was able to motivate the non-contextuality

of probability, namely the claim that the probability of an event is independent of

that of the context in which it is measured. Further, Pitowsky linked this non-

contextuality to what is usually referred to as ‘no signaling,’ the relativistic limit on

the transmission of information between entangled systems even though they may

exhibit nonlocal correlations. In his interpretation, then, both nonlocality and no

signaling are derived from formal properties of quantum probability rather than

from any physical assumptions. It is the possibility of such a formal derivation that

inspired the analogy between the probabilistic interpretation of quantum mechanics

and the kinematic understanding of special relativity.

Several articles in this volume further explore the probabilistic approach and the

formal connections between the different characteristics of quantum mechanics.

Alexander Wilce offers a derivation of the logical structure of quantum mechanical

probabilities (in a quantum world of finite dimensions) from four (and a half)

probabilistically motivated axioms. Daniel Rohrlich attempts to invert the logical

order by taking nonlocality as an axiom and derive standard quantum mechanics

(and its probabilities) from nonlocality and no signaling. Jeffrey Bub takes up

Wheeler’s famous question ‘why the quantum?’ and uses the no signaling principle

to explain why, despite the fact that stronger violations of locality are logically

possible, the world still obeys the quantum mechanical bound on correlations.
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From a philosophical point of view, Pitowsky’s approach to quantum mechanics

constitutes a landmark not only in the interpretation of quantum mechanics, but also

in our understanding of the notion of probability. Traditionally, the theory of

probability is conceived as an extension of logic, in the sense that both logic and

the theory of probability lay down rules for rational inference and belief. Like logic,

the theory of probability is therefore viewed as a priori. But if Pitowsky’s concep-
tion of quantum mechanics as a non-classical theory of probability is correct, then

the question of which is the right theory of probability is an empirical question,

contingent on the way the world is. The shift from an a priori to an empirical

construal has its precedents in the history of science: Geometry as well as logic have

been claimed to be empirical rather than a priori, the former in the context of the

theory of relativity, the latter in the context of quantum mechanics. Pitowsky’s

approach to quantum mechanics suggests a similar reevaluation of the status of

probability and rational belief.
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