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Preface

Artificial Life, unlike artifical intelligence, had humble beginnings. In the case
of the latter, when the word itself was born, the first breathtaking results were
already out, such as The Logic Theorist, a computer program developed by Allen
Newell, Herbert Simon and Cliff Shaw in 1955–56. In artifical life, for a long while,
amibition seems to have dominated over the results, and this was certainly true
for the first, formative years. It was a bit unclear what exactly Artificial Life is. As
not uncommon in science, the first definition was attempted in the negative form,
just like when psychology (the study of the mental) was first defined as“anything
not physics” (meaning, not natural science) in the nineteenth century. A tempt-
ing early definion of Artificial Life was one that distinguished it from theoretical
and mathematical biology, modeling, evolution theory, and all the rest of what
consituted “an old kind of science” about life. This was not without grounds,
perhaps, and the parallel with artificial intelligence comes up again. Artificial
intelligence was conceptually based on “machine functionalism,” the philosophi-
cal idea that all operations, such as the mental operations of humans, are to be
captured as “mere functions,” or, in other words, as independent of their actual
physical realizations. Functionalism has put computers and algorithms in the fo-
cus of interest in all dealings with human intelligence, and artificial intelligence
was a computerized approach to the mind that was designed to capture human
mental operations in the functional sense. Now it was simply the case that the
functionalism of life was not yet born, and Artificial Life looked like the candi-
date that was needed for exactly that—to discover how computers can be used to
uncover the secrets of life. There were cellular automata, that John von Neumann
discovered back around 1950, that are capable of self-reproduction. Perhaps life
was just a step away. This and a new fascination with functionalism in Artificial
Life put computer scientists (who could technically master cellular automata
and computer math) into a central position—in Artificial Life as it could be.

But Artificial Life became different. Incidentally, the slogan “life as it could
be” was coined as a motto for Artificial Life, but now the same conditionals
apply to Artificial Life itself. The reason is that functionalism turned out to be
just one part of the story.

There is a well-known and much used (maybe over-used) phrase in biology,
called “Dobzhansky’s dictum,” which says that “nothing in biology makes sense
except in the light of evolution.”Evolution is, as rightly captured in the dictum,
central to the understanding of all things alive, and hence it is, and this had to be
discovered, central to the studies of Artificial Life as well. And soon it also turned
out that evolution cannot be readily reduced to algorithmic problems, or and
least not in that pure, detached sense as it was attempted in functionalism. Evo-
lution is complex in a sense recently acknowledged in the sciences of complexity:
there is no single principle, no simple set of rules, and no transparency. Instead,
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evolution is a combination of many heterogeneous, and sometimes contingent fac-
tors, many of which have to do with the complex ways of existence of organisms:
their body, their interaction, their development, their geo-spatial relations, their
temporal history, and so on. This brought biology and biologists back into the
equation, and Artificial Life has greatly benefited from that. Evo-devo (the in-
terplay between evolutionary and developmental biology), evolutionary robotics,
or systems biology are examples of fields where mathematical and algorithmic
thinking combined with “wet” reality started to produce new and fascinating
results. (Those who kept an eye on cognitive science and artificial intelligence
found that over all those years a similar process has taken place there as well.
Embodiment, or situated physical realization, has permeated and changed these
fields to the same extent, or even more, as it did Artificial Life).

Today, as a result of these processes, Artificial Life is a prolific field that com-
bines the best of computer science with the best of theoretical biology, math-
ematical modeling, and simulation. One way to express this is to say “Darwin
meets von Neumann” at last—where “real” biology and “pure” function are no
longer seen as contradicting, or even complementary. Rather, they permeate and
fertilize each other in a number of fascinating ways.

ECAL 2009 was the 10th Europan Conference of Artificial Life, which means
20 years of history. It was an occasion to celebrate the 20 years of develop-
ment of the field and also the new symbiosis referred to in the title. Famously,
2009 was also “Darwin year,” celebrating his 200th birthday and the 150 years
of the Origin of Species. Thus it was highly appropriate to dedicate the meet-
ing to Darwin—and von Neumann together. Five keynote lectures were deliv-
ered by eminent invited speakers, in the order of appearance they were: Peter
Hammerstein (Humboldt University, Berlin), Hod Lipson (Cornell), Nick Barton
(FRS, Edinburgh), Richard Watson (Southampton) and Eva Jablonka (Tel-Aviv
University)—their choice reflected the spirit of convergence alluded to above.

The conference featured 161 submissions, out of which 54 were accepted as
talks and 87 as posters (making up a total of 141 presentations). Adopting the
recent practice of many science meetings, submissions could be based either on
full papers or extended abstracts. The meeting was organized in a single track
over three days, with parallel (whole-day) poster sections, to give best visibility to
everyone’s work. We decided to publish all papers of the accepted presentations,
not making any difference between posters and talks. This resulted from different
factors: many excellent submissions had to be put into the poster section to keep
reasonable time limits for the talks, and often this included second or third papers
of some of the key speakers. Poster or talk was therefore not necessarily a quality
issue. But also, we decided to publish all poster papers because we wanted to
show the heterogeneity and the full spectrum of activities in the field, in order to
provide an authentic overview. The result is this volume in 2 parts, containing
116 full papers.

The conference was sponsored by the Hungarian Academy of Science in dif-
ferent ways, one of them the special rates we enjoyed when using the wonderful
historical building of the Academy in the very center of Budapest, just across
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the castle and the Chain Bridge. It is a building with a unique historical atmo-
sphere and one that has seen many major scientific events. The conference talks
were held in the Great Lecture Hall, which added to the impression that Artificial
Life—and ECAL—are coming of age. The other sponsor was Aitia International,
Inc., whose support is gratefully acknowledged. Aitia is the maker of MEME,
or Model Exploration ModulE, a platform for DoE (design of experiments) and
parameter sweeping, running on a cloud (https://modelexploration.aitia.ai/).

The publication process experienced several unexpected difficulties and de-
lays. The proceedings could never have been published without a final push by
Mark Jelasity, of Szeged University, a member of the Local Organizing Commit-
tee. It was his support and his offer for a hands-on contribution and equally his
expertise of LATEX and prior experience with Springer LNCS publications that
made the essential difference that helped cross the line. Mark was offered but
declined to be an Editor, lacking a scientific contribution to this conference and
bearing a responsibility for the selection process, and this is a decision we had
to respect. Nevertheless, here is a “big thank you,” Mark. Several other people
provided important help in the production of the volume, of whom Balazs Balint
(Collegium Budapest) and Chrisantha Fernando (Sussex) need special mention.
We thank the TenSi Congress Ltd. for the seamless technical organization of the
meeting. In the evaluation phase, important help was given by several members
of the Program Committee and also by additional reviewers, listed separately,
whose contribution is highly appreciated. The conference and the proceedings
have been the work of several people, and we thank all of them for making it hap-
pen. Finally, we thank Anna Kramer of Springer for her support and patience.

February 2011 George Kampis
István Karsai

Eörs Szathmáry (Editors)
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Chrisantha Fernando, Márk Jelasity, Ferenc Jordán, András Lőrincz, and
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Abstract. Evolving cooperation by evolutionary algorithms is impos-
sible without introducing extra mechanisms. Group selection theory in
biology is a good candidate as it explains the evolution of cooperation in
nature. Two biological models, Wilson’s trait group selection model and
Traulsen’s group selection model are investigated and compared in evolu-
tionary computation. Three evolutionary algorithms were designed and
tested on an n-player prisoner’s dilemma problem; two EAs implement
the original Wilson and Traulsen models respectively, and one EA ex-
tends Traulsen’s model. Experimental results show that the latter model
introduces high between-group variance, leading to more robustness than
the other two in response to parameter changes such as group size, the
fraction of cooperators and selection pressure.

Keywords: the evolution of cooperation, evolutionary computation,
Wilson’s trait group selection model, Traulsen’s group selection model.

1 Introduction

Evolutionary computation (EC) is often viewed as an optimization process, as
it draws inspiration from the Darwinian principle of variation and natural se-
lection. This implies that EC may fail to solve problems which require a set of
cooperative individuals to jointly perform a computational task. When cooper-
ating, individuals may contribute differently, and hence might lead to unequal
fitnesses. Individuals with lower fitness will be gradually eliminated from the
population, despite their unique contributions to overall performance of the al-
gorithm. Hence, special mechanisms should be implemented in EC that avoid
selecting against such individuals.

In nature, the success of cooperation is witnessed at all levels of biological or-
ganization. A growing number of biologists have come to believe that the theory
of group selection is the explanation even though this theory has been unpopular
for the past 40 years; hence new models and their applications are investigated
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[2]. Individuals are divided into groups, and only interact with members in the
same group. The emergence of cooperation is due to competition between indi-
viduals and between groups. Individual competition selects against individuals
with lower fitness, but group competition favors individuals who cooperate with
others, regardless to their individual fitness. The group selection model proposed
by Wilson and Sober [9,12] and the model by Traulsen and Nowak [10] represent
two research strands in this area; groups in Wilson’s model are mixed period-
ically during evolution, while groups in Traulsen’s model are isolated. Hence,
selection between groups and within groups work differently in these models.

Extending these two models to encourage cooperation in artificial evolution
is a relatively new research direction; most research [1,3,6,7] so far is based
on Wilson’s model or its variations, not on Traulsen’s. This motivated us to
investigate the role each model can play to encourage cooperation in EC, and
to analyze their differences. Three evolutionary algorithms adapting the two
models were designed and examined under different parameter settings; these
parameters refer to group size, fraction of cooperators and selection pressure, and
they directly affect the selection dynamics. Our results show that the algorithm
which extends Traulsen’s model is more robust towards parameter changes than
the algorithms implementing the original Wilson and Traulsen models.

The reminder of this paper is organized as follows. Section 2 introduces the
three evolutionary algorithms. Section 3 describes the experiments and the re-
sults obtained. Section 4 concludes.

2 Algorithms Design

Wilson’s and Traulsen’s models interpret the idea of group selection in a differ-
ent fashion. In Wilson’s model, groups reproduce proportional to group fitness.
Offspring groups are periodically mixed in a migrating pool for another round of
group formation. The number of individuals a group contributed to this pool is
proportional to its size; so cooperative groups contribute more to the next gener-
ation. On the contrary, Traulsen’s model keeps groups isolated. An individual is
selected proportional to its fitness from the entire population, and the offspring
is added to its parent’s group. When the group reaches its maximal size, either
an individual in this group is removed, or the group splits into two, so another
group has to be removed. Cooperative groups grow faster, and therefore, split
more often. For detailed descriptions of these models, please refer to [9,10,12].

Our study aims to investigate the performance of the two models in extending
evolutionary algorithms to evolve cooperation. The investigation is conducted in
the context of the n-player prisoner’s dilemma (NPD). The NPD game offers a
straightforward way of thinking about the tension between the individual and
group level selection [4]; meanwhile it represents many cooperative situations in
which fitness depends on both individual and group behavior. In this game, N
individuals are randomly divided into m groups. Individuals in a group inde-
pendently choose to be a cooperator or a defector without knowing the choice
of others. The fitness function of cooperators (fCi(x)) and defectors (fDi(x)) in
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group i are specified by the following equations:

fCi(x) = base + w(
b(niqi − 1)

ni − 1
− c), (0 ≤ i < m) (1a)

fDi(x) = base + w
bniqi

ni − 1
, (0 ≤ i < m) (1b)

where base is the base fitness of cooperators and defectors; qi the fraction of
cooperators in group i; ni the size of group i; b and c are the benefit and cost
caused by the altruistic act, respectively; w is a coefficient. Evidently, cooperators
have a lower fitness than defectors, because they not only pay a direct cost, but
also receive benefits from fewer cooperators than defectors do. The fitness of
group i is defined as the average individual fitness. Although defectors dominate
cooperators inside a group, groups with more cooperators have a higher group
fitness. Hence, the dynamics between individual and group selection will drive
the game in different directions.

A simple evolutionary algorithm implementing Wilson’s model (denoted as
W) is described in Algorithm 1.

Algorithm 1. An Evolutionary Algorithm Based on Wilson’s Model

P ← Initialize Population(N, r);1

while population does not converge or max generation is not reached do2

P ′ ← Disperse Population(P, m);3

Evaluate Fitness(P ′);4

for i← 0 to N ′ do5

gn← Select Group(P ′);6

idv ← Select Individual(P ′ , gn);7

idv′ ← Reproduce Offspring(idv);8

Add Individual(idv′ , NP, gn)9

end10

P ← Mixing Proportionally(NP);11

end12

This algorithm starts with randomly initializing a population P with N in-
dividuals, r percent of which are cooperators. P is then divided into m groups,
and the individual and group fitness of the dispersed population P ′ is evaluated.
Afterwards, reproduction begins; a group with number gn is first selected, from
which an individual idv is selected to produce offspring idv′. idv′ is then added
to group gn in the new population NP . The reproduction causes groups in NP
vary in size, because the selection of groups is proportional to fitness. In total
N ′ offspring will be produced, where N ′ is normally larger than population size
N . This gives cooperators an opportunity to increase their frequency in the next
generation. To maintain the original population size N , groups in NP are mixed
and each contributes individuals proportional to its size to new population P .
P will repeat the above steps until the population converges or the maximum
number of generations is reached.
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Algorithm 2. An Evolutionary Algorithm Based on Traulsen’s Model

P ← Initialize Population(N, r);1

P ′ ← Disperse Population(P, m);2

while population does not converge or max generation is not reached do3

Evaluate Fitness(P ′);4

for i← 0 to N ′′ do5

idv ← Select Individual from Population(P ′);6

idv′ ← Reproduce Offspring(idv);7

Put Back to Group(idv′, gn);8

if Group Size(gn) > n then9

rnum← Generate Random Number(0, 1);10

if rnum < q then11

Split Group(gn);12

Remove a Group();13

else14

Remove an Individual in Group(gn);15

end16

end17

end18

end19

Similarly, Traulsen’s is embedded into an evolutionary algorithm shown in
Algorithm 2. This algorithm initializes, divides, and evaluates the population
the same way algorithm W does. However, there are two major differences. First,
the population only disperses once at the beginning of the process; the groups are
kept isolated afterwards. Second, the reproduction step is different. An individual
idv is selected from the entire population for reproduction, rather than from a
group. Offspring idv′ is put back into its parent’s group, group gn. If the size
of group gn exceeds the pre-defined group size n, a random number rnum is
generated. If rnum is less than a group splitting probability q, group gn splits
and its individuals are randomly distributed into offspring groups. A group has
to be removed to maintain a constant number of groups; otherwise, an individual
from group gn is removed. In Traulsen’s model, a group or an individual to be
eliminated is randomly selected. As an extension, we also investigate selecting
such a group or individual reversely proportional to its fitness. Therefore, two
variations of Algorithm 2 are implemented, one refers to the former (denoted as
T1) and the other to the latter (denoted as T2).

3 Investigations with the Algorithms

The investigations focus on the effects caused by different group size n, initial
fraction of cooperators r, and coefficient w. Parameters n and r affect the as-
sortment between cooperators and defectors in groups, and coefficient w affects
the individual and group fitness; both cause changes in selection dynamics.
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To focus on the selection dynamics, we assume asexual reproduction with-
out the interference of mutation. A roulette wheel selection is adopted in the
reproduction step for all algorithms. Parameters that are common to all experi-
ments are set as follows: runs R = 20, generation gen = 5, 000, population size
N = 200, base fitness base = 10, benefit b = 5, cost c = 1, group splitting
probability q = 0.05, N ′′=10, and N ′ is decided by the following equation [9].

N ′ =
m∑

i=1

ni × (qi × fCi(x) + (1 − qi) × fDi(x)) (2)

For each algorithm, we measure the success ratio by the number of runs whose
population converges to cooperators to the number of total runs 20. The larger
the ratio, the more likely an algorithm favors cooperation. We also collect the
average variance ratio [5], which indicates composition difference between groups.
The higher this ratio, the more prominent the effect of group selection.

3.1 The Effects of Group Size and Initial Fraction of Cooperators

First we investigate how the three algorithms behave under different group sizes.
We set r = 0.5 and w = 1. Group size n is varied from {5, 10, 20, 50, 100}. The
success ratio and average variance ratio (in brackets) for each setting are listed
in the first 3 columns in Table 1. As can be seen, the performance of T1 degrades

Table 1. The effects of group size n and initial fraction of cooperators r on the three
algorithms

r=0.5 r=0.3 r=0.1
n W T2 T1 W T2 T1 W T2 T1
5 1(0.196) 1(0.820) 1 1(0.201) 1(0.853) 0.95 1(0.196) 1(0.893) 0.7
10 1(0.092) 1(0.655) 0.85 1(0.098) 1(0.665) 0.55 1(0.095) 1(0.767) 0.2
20 0.8(0.045) 1(0.291) 0.65 0.55(0.045) 1(0.398) 0.25 0.25(0.042) 0.65(0.465) 0.1
50 0(0.015) 1(0.112) 0.15 0(0.016) 0.8(0.105) 0.1 0(0.015) 0.55(0.049) 0.05
100 0(0.004) 0(0.011) 0 0(0.005) 0(0.014) 0 0(0.005) 0(0.015) 0

as n grows. The population in W converges to cooperators when small groups are
employed (n = 5 or 10). As n increases, evolving cooperation becomes difficult.
In contrast, T2 converges to cooperators except for n = 100.

The observation can be explained by Figure 1. Figure 1(a) shows that vari-
ance ratio v in W decreases as n increases, which reduces the effect of group
selection. As a result, selection on the individual level is becoming the dominate
force, so the population converges quicker to defectors, see Figure 1(b). The same
trend between v and n is also observed in T2. However, given that n ranges from
5 to 50, its v value is much higher than or equal to the highest v value of W
(see Figure 1(c)). This implies that T2 preserves variance between groups better
than W, and explains why T2 is more effective than W in evolving cooperation.
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(d) Fraction of cooperators in T2

Fig. 1. The variance ratio v and fraction of cooperators r for algorithm W and T2
under different group sizes when r = 0.5 and w = 1

Unlike W, convergence to cooperators of T2 is not accelerated as n gets smaller;
for example, runs with n = 10 converge first. When groups are too small or too
large, much averaging is required to remove defectors from the population (see
Figure 1(d)).

We further adjusted the value of r from 0.5 to 0.3 and 0.1. We were curious
about the response of the three algorithms to this change, because when r drops,
the number of cooperators assigned to groups is smaller, which increases the
influence of individual selection in a group. As shown in Table 1, the performance
of T1 decreases as r drops. For W and T2, when n is small (5 or 10), due to
the strong group selection effects, the decrease of r does not affect the success
ratio, but only slows convergence speed towards cooperation; for larger groups,
as n increases (group selection is weaker) and r decreases (individual selection is
stronger), group selection can hardly dominate individual selection; so it becomes
difficult for both algorithms to preserve cooperation. However, T2 is less affected,
because for a given group size, similar v values in W are observed despite the
changes of r, while relatively high v values are produced by T2 even r drops.
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3.2 Weak vs. Strong Selection

The composition of groups is not the only factor that drives selection dynamics; a
difference in fitness values of cooperators and defectors is another one. It affects
the pressure put on groups and individuals. In the next experiment, we use
coefficient w to adjust the selection pressure. If w is small, the selection is called
weak selection; otherwise it is called strong selection.

We tested the three algorithms with r=0.5 and w set to {0.1, 0.5, 1, 2, 5,
10}, respectively on all group sizes. Results are shown in Table 2. One first

Table 2. The performance of the algorithms under weak and strong selection

w=0.1 w=0.5 w=1
n W T2 T1 W T2 T1 W T2 T1
5 1(0.197) 1(0.949) 0.6 1(0.201) 1(0.884) 0.9 1(0.196) 1(0.820) 1
10 1(0.095) 1(0.766) 0.6 1(0.096) 1(0.515) 0.8 1(0.092) 1(0.655) 0.85
20 0.85(0.044) 0.95(0.601) 0.55 1(0.046) 1(0.370) 0.65 0.8(0.045) 1(0.291) 0.65
50 0.4(0.015) 0.45(0.174) 0 0(0.015) 1(0.115) 0.3 0(0.015) 1(0.112) 0.15

w=2 w=5 w=10
5 1(0.196) 1(0.806) 1 0.9(0.196) 1(0.820) 1 0(0.190) 1(0.875) 1
10 1(0.096) 1(0.543) 0.9 0.1(0.096) 1(0.596) 0.8 0(0.096) 1(0.638) 0.85
20 0.1(0.042) 1(0.309) 0.8 0(0.050) 0.8(0.334) 0.5 0(0.046) 0.8(0.347) 0.15
50 0(0.014) 0.8(0.079) 0.15 0(0.014) 0.45(0.021) 0 0(0.016) 0.1(0.053) 0

notices that the performance of the three algorithms increases and then deceases
as selection pressure goes from weak to strong. If selection is too weak, the
fitness between two roles and between groups are very close. Hence, group and
individual selection become neutral, especially if large groups are adopted, so
defectors can more easily take over the population. If the selection is too strong,
though group selection still favors cooperative groups, because the larger fitness
difference between both roles, cooperators are more difficult to be selected. To be
more specific, for small groups (n = 5 or 10) only T2 can successfully preserve
cooperation under both weak and strong selection. The increase of selection
pressure raises the influence of individual selection. In response to this increase,
the variance ratio in W for a given group size does not change at all, while T2
still keeps noticeable high variance ratios. This also explains why T2 outperforms
W with larger groups.

3.3 Discussion

The above experiments demonstrate that maintaining variance between groups
has great impact on group selection models. For W, if groups are randomly
formed, small group sizes are desired because small groups increase group vari-
ance. This confirms previous investigations (see [5,8,11] for examples). We further
show that such a requirement only works if the selection is weak. T2, because
it is able to introduce high group variance, is more robust towards parameter
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changes. The reason lies in how the two models manage groups. Mixing and re-
forming of groups in Wilson’s model constantly averages the variance between
groups, so in Figure 1(a) we observe the variance between groups fluctuating.
In contrast, because groups in Traulsen’s model are kept isolated, and the se-
lection step in reproduction is proportional to individual fitness, the fraction of
cooperators in a cooperative group grows faster than in a less cooperative group,
hence gradually increases the variance between groups. T2 performs better than
T1 under all settings, because removing an individual or a group according to
reversed fitness value at death selection is very likely wiping out defectors, thus
it certainly helps cooperators.

4 Conclusion

Wilson’s and Traulsen’s models are possible extensions of EC to evolve cooper-
ation. Here, we investigated evolutionary algorithms that adapt the two models,
and analyzed their differences. Our experimental results show that an algorithm
which extends Traulsen’s model is less sensitive to parameter changes than the
algorithms based on the original Wilson and Traulsen models, because it is able
to maintain high between-group variance, which is able to override individual
selection arisen by the parameter changes. Future work will consider to theoret-
ically investigate the extended algorithm; its extensions to multilevel selection;
and its role in the theory of evolutionary transition.
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Abstract. We use digital evolution to study the division of labor among
heterogeneous organisms under multiple levels of selection. Although di-
vision of labor is practiced by many social organisms, the labor roles are
typically associated with different individual fitness effects. This fitness
variation raises the question of why an individual organism would select
a less desirable role. For this study, we provide organisms with varying
rewards for labor roles and impose a group-level pressure for division of
labor. We demonstrate that a group selection pressure acting on a het-
erogeneous population is sufficient to ensure role diversity regardless of
individual selection pressures, be they beneficial or detrimental.

Keywords: digital evolution, cooperative behavior, specialization, al-
truism.

1 Introduction

Within nature, many organisms live in groups where individuals assume different
roles and cooperate to survive [1–4]. For example, in honeybee colonies, among
other roles, drones care for the brood, workers forage for pollen, and the queen
focuses on reproduction [1]. A notable aspect of these roles is that they do not all
accrue the same fitness benefits. For example, leadership is a common role found
within multiple species, where the benefits of leadership are significantly greater
than that of a follower. In human societies, leaders of organizations commonly
earn many times more than the average worker [4]. An open question is why
individuals would not all attempt to perform the role associated with the high-
est fitness benefit, or in other words, why individuals would perform roles that
put their genes at an evolutionary disadvantage for survival. Group selection
pressures among human tribes have been proposed as one possible explanation
for the evolution of leaders and followers [4]. In this paper, we explore whether
group selection is sufficient to produce division of labor, where individual selec-
tion rewards different roles unequally.

Numerous evolutionary computation approaches have been used to study
the behavior of cooperative groups comprising heterogeneous members [5–9].
Two key differentiating characteristics for these approaches are the level of se-
lection used (i.e., individual or group) and whether or not division of labor
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occurs. Ecological approaches [6] use individual-level selection in concert with
limited resources to promote the evolution of specialists. Some coevolutionary
approaches [5, 9] evolve cooperative groups using individual selection, where dif-
ferent species are isolated in distinct subpopulations. Cooperation among these
species occurs only at the time of fitness evaluation, when individuals from one
species are evaluated with representatives from each of the other species. Perez-
Uribe et al. [7] and Waibel et al. [8] overview work performed in this area, and
also describe the effects of varying the levels of selection and population com-
position (i.e., heterogeneous or homogeneous populations) [8]. However, these
prior studies do not address multi-level selection, where organisms experience
individual-level competition to survive and also group-level pressure to coop-
erate. To explore these conditions, which are pertinent to biological studies of
the division of labor in cooperative groups, we apply multi-level selection to a
heterogeneous population.

For this study, we use Avida [10], a digital-evolution platform previously used
to study topics including the origin of complex features [11] and the evolution
of cooperation among homogeneous individuals [12]. Within an Avida experi-
ment, a population of self-replicating computer programs exists in a user-defined
computational environment and is subject to mutations and natural selection.
These digital organisms execute their genome to perform tasks that metabolize
resources in the environment, interact with neighboring organisms, and self-
replicate.

In this paper, we describe how we used Avida and multi-level selection to
evolve groups of heterogeneous organisms that perform roles with different fit-
ness benefits. First, we enabled organisms to self-select roles associated with
different costs and/or benefits. We applied a group-level pressure for division of
labor that successfully counteracted the individual pressure to perform only the
highest rewarded role. Second, rather than having an organism select a role, we
conducted experiments in which a role was associated with a labor task that the
organism had to perform. Again, we observed the evolution of division of labor.
Third, we analyzed one of the successful groups and determined that it used
a combination of genotypic diversity, phenotypic plasticity, and cooperation to
perform all roles. The model developed for this approach can be used to inform
biological studies of cooperation, such as those performed by Dornhaus et al.
for honeybees [1]. Additionally, this technique can serve as a means to achieve
division of labor within artificial life in order to solve engineering problems, such
as developing multiple software components that must interact to achieve an
overall objective [12], as well as cooperation among heterogeneous robots [13].

2 Methods

For each experiment, 30 trials were conducted to account for the stochastic
nature of evolution. Figure 1 depicts an Avida organism and population. An
Avida organism consists of a circular list of instructions (its genome) and a
virtual CPU that executes those instructions. The virtual CPU architecture
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comprises three general-purpose registers {AX, BX, CX} and two stacks
{GS, LS}. The standard Avida instruction set used in this study is
Turing complete and is designed so that random mutations will always yield
a syntactically correct program, albeit one that may not perform any mean-
ingful computation [14]. This Avida instruction set performs basic computa-
tional tasks (addition, multiplication, and bit-shifts), controls execution flow,
enables communication, and allows for replication. In this study, the instruc-
tion set also included several instructions developed for the evolution of dis-
tributed problem solving [12]; these instructions are summarized in Table 1.

get−id
inc

getid
h−div

rtrvm
hdiv

sendmsg

inc

rotater

if−less

rotater

rotatel
rtrvm

halloc

getid
Write Interface

Registers Stacks
CPU GS

LSCX
Heads

BXAX

InstrFlow
Read

Cell

Fig. 1. An Avida organism and
population

Avida organisms can perform tasks that en-
able them to metabolize resources from their
environment. It is typical for these tasks to be
logical operations performed on 32-bit integers.
Performing tasks increases an organism’s merit,
which determines the rate at which its virtual
CPU will execute instructions relative to the
other organisms in the population. For exam-
ple, an organism with a merit of 2 will, on av-
erage, execute twice as many instructions as an
organism with a merit of 1. Since organisms self-
replicate, an organism with greater merit will
generally out-compete other organisms, eventu-
ally dominating the population. For these exper-
iments, the amount of merit that an organism
gains for completing a task depends on a user-defined constant called the task’s
bonus value. When an organism performs a task, the organism’s merit is mul-
tiplied by the task’s bonus value. For example, if an organism performs a task
with a bonus value of 2, its merit is doubled.

An Avida population comprises a number of cells in which at most one organ-
ism can live. Thus, the size of an Avida population is bounded by the number
of cells in the environment. The cells are divided into a set of distinct sub-
populations, called demes. In this study, demes compete every 100 updates in
a tournament based on their fitness function, where a deme’s fitness is deter-
mined by the behavior of its constituent organisms. An update is the unit of
experimental time in Avida corresponding to approximately 30 instructions per
organism. Each tournament contains a set of demes selected at random, and the
deme with greatest fitness replaces the other demes (ties are broken randomly).
When a deme is replaced, all organisms from the source deme are copied into the
target deme, overwriting its previous inhabitants. Within each deme, organisms
are still able to self-replicate. Thus, an individual’s survival is dependent not
only on its ability to out-compete its neighbors for the limited space available in
its deme, but also on the collective behavior of the group. This process is similar
to competition among human tribes [3].

For the experiments described in this paper, we created mutually-exclusive
tasks for each possible role. An organism fulfills a role by performing its associated
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Table 1. Communication and coordination instructions for this study

Instruction Description
send-msg Sends a message to the neighbor currently faced by the caller.
retrieve-msg Loads the caller’s virtual CPU from a previously received message.
rotate-left-one Rotate this organism counter-clockwise one step.
rotate-right-one Rotate this organism clockwise one step.
get-role-id Sets register BX to the value of the caller’s role-id register.
set-role-id Sets the caller’s role-id register to the value in register BX.
bcast1 Sends a message to all neighboring organisms.
get-cell-xy Sets register BX and CX to the x− y coordinates of the caller.
collect-cell-data Sets register BX to the value of the cell data where the caller lives.

task; each organism may only have one role. For some of our experiments, we
used role-ids, a mechanism whereby an organism sets a special-purpose virtual
CPU register to an integer value, to indicate the role that an organism performs.
For others, we required the organisms to implement logical operations. We tried
these two mechanisms to see if the complexity of labor tasks affected the divi-
sion of labor. We varied the benefits of performing a task (and thus performing
a role) by changing the task’s bonus value. In all experiments presented here,
we used 400 demes, each containing 25 organisms on a 5×5 toroidal grid. Deme
fitness was based on the diversity of tasks performed by the organisms. Thus, our
experiments contain both the individual-level pressure to perform the task with
the highest reward and the group-level pressure to diversify the tasks performed.

3 Experimental Results

Varying Roles. Our first experiment was designed to ascertain whether group
selection is a strong enough pressure to produce division of labor when all roles
have the same fitness benefit. For this experiment, we considered an organism
to be performing a given role if it sets its role-id register to a desired value using
the set-role-id instruction. We varied the desired number of roles from 2 to 20
and associated each role-id with a task that has a bonus value of 2. For example,
when two roles are desired, the rewarded role-ids are 1 and 2. If an organism
replicates after setting its role-id to 1, then it has completed task 1 and as a
result, its merit is doubled. Similarly, if five roles are desired, then the rewarded
role-ids are {1, 2, 3, 4, 5}. If an organism sets its role-id to a value outside this
range, then no reward is granted. Additionally, we impose a group-level pressure
for both the number of organisms that have set a role-id and the diversity of the
role-ids. Specifically, the deme fitness function used here is:

F =
{

1 + n if n < 25
1 + n + r if n = 25 (1)

where F is the fitness of a deme, n is the number of organisms that have set a
role-id, and r is the number of unique rewarded role-ids set by organisms in the
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Fig. 2. (a) grand mean and (b) grand maximum number of unique roles over all demes
when the number of desired roles was varied from 2 to 20

deme. Experiments described in this paper were repeated with tournaments of
size 2, 5, and 10; results were not qualitatively different. Due to space limitations,
we present results for a tournament of size 2, except where noted.

Figure 2 depicts the grand mean and maximum performance of all demes
across 30 trials for each of {2, 3, 4, 5, 10, 20} roles. The different curves repre-
sent the varying number of desired roles. In general, the best performing deme
achieves the desired number of roles within 5,000 to 15,000 updates. Our anal-
ysis of the behavior of the demes indicates that they exploit location awareness
(using instruction get-cell-xy) to determine which role to perform. Specifically,
their x (or y) coordinate was used to calculate their role. Thus, we conclude
that group selection is strong enough to produce division of labor among equally
rewarded roles.

Varying Rewards. In the next set of experiments, we explored whether the group
selection pressure for division of labor was strong enough to counteract rewarding
roles unequally. The different rewards associated with roles provides an individ-
ual pressure to specialize on the most rewarded role, even if this behavior is
detrimental to the performance of the group. This setup is designed to reflect a
leader/follower situation, where it is desirable for the group to have one leader,
and yet the rewards for the leader may be significantly different than those of a
follower. To test this, we set the desired number of roles to be 2, and conducted
trials for different multiplicative benefits of role-id 1 (the leader role). All other
role-ids were neutral (i.e., they did not affect merit). We then specified a group-
level pressure to limit the leader role to only a single organism. The deme fitness
function used here was:

F =
{

1 + n if n < 25
(1 + n− (o1 − do1))

2 if n = 25 (2)

where F is the fitness of a deme, n is the number of organisms that have set a
role-id, do1 is the desired number of organisms that perform the leader role, and
o1 is the actual number of organisms that perform the leader role.
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Figure 3 depicts the results of varying the multiplicative benefit of the leader
role from 0.5 (a penalty) to 64 (a significant reward) across 30 trials. Each
treatment has two lines: a dashed line to indicate the number of followers, and a
solid line to indicate the number of leaders; different symbols are used to indicate
different treatments. In general, by 50,000 updates, the average deme has reached
an equilibrium between leaders and followers, where the number of leaders is less
than five in all treatments. The larger the benefit of leadership, the slower the
population was to reach equilibrium and the larger the number of leaders. These
results indicate that group selection is able to effectively counteract individual
selection pressures.
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Fig. 3. Group selection is strong enough to
overcome individual pressures for leadership,
which we test by varying the multiplicative
bonus value of leadership from 0.5 to 64

To assess the generality of these
results, we ran a control experi-
ment without group selection, where
the fitness of all demes were always
equivalent. As expected, the major-
ity of organisms chose to be lead-
ers when there was a reward and
followers when there was a penalty.
Additionally, we ran two-role ex-
periments where we set the desired
number of leaders to be 13 (ap-
proximately half of the population).
Similar to the results depicted in
Figure 3, the population reached
equilibrium by 50,000 updates with
the population nearly evenly divided between leaders and followers. Lastly, we
conducted treatments where we set the desired number of role-ids to be five and
varied the distribution of the benefits among roles. Specifically, we conducted
experiments where the benefits: (1) increased linearly; (2) where one role was
rewarded significantly greater than the others; and (3), where the majority of
task bonus values were penalties. For these experiments, the deme fitness func-
tion was the number of unique tasks performed. In all cases, the best performing
deme rapidly evolved to perform all five roles, with the average deme performing
three or more roles.

Increasing Complexity. For the last set of experiments, we studied whether this
multi-level selection technique was sufficient to evolve division of labor when the
complexity of the corresponding tasks varied. In the first two sets of experiments,
an organism performed a role by setting its role-id to a specific value. For these
experiments, we required the organism to perform a bit-wise logic operation on
32-bit integers. In this case, we used five mutually-exclusive logic operations:
not, nand, and, orn, or. For the first experiment in this set, we rewarded all five
logic operations equally with a task bonus value of 2. The deme fitness function
was set to the number of unique tasks performed plus 1. The best demes varied
between 4 and 5 tasks, whereas the average deme consistently performed between
3 and 4 tasks. Thus, this technique was successful in producing division of labor.
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Next we examined whether division of labor occurred when the tasks were
complex and their rewards were unequal. We rewarded the tasks based on com-
plexity. Task not was assigned a bonus value of 2, tasks nand, and, orn were
assigned a bonus value of 3, and or was assigned a bonus value of 4. This treat-
ment increases the difficulty of the problem because organisms must evolve to
perform logic operations and coordinate roles with different benefits. The best
performing demes continued to vary between 4 and 5 tasks, and the average
deme continued to perform between 3 and 4 tasks. This result indicates that
the group selection pressure is strong enough to counteract the varying rewards
among complex individual tasks.
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Fig. 4. A deme after an eco-
logical period. Genotypes are
denoted by different color
shading. Phenotypes are indi-
cated by task-id of the role
performed.

Behavioral Analysis. To better understand how
group selection maintained diversity of all five
logic tasks in the previous treatment, we analyzed
one deme from the end of a trial where all tasks
had equivalent rewards. This deme had 18 unique
genotypes. After we put the deme through a period
of 100 updates without mutations, an ecological pe-
riod, the deme maintained all 5 tasks and had 6
different genotypes. Figure 4 provides a graphical
depiction of the genotype (shading) and phenotype
(task-id of the task performed) of the organisms in
the deme. Of the 6 genotypes, five exhibited phe-
notypic plasticity. Specifically, depending on their
environmental context, genotypes in these families
could perform one of two different tasks, nand/orn
and not/and, respectively. For example, the first
two blocks are both shaded white, indicating they have the same genotype, and
yet one performs task 4 (orn) and the other performs task 2 (and). The remaining
genotype (depicted in black) exclusively performed task 5 (or). It is often the
case that explanations from a group selection perspective can also be interpreted
from a kin selection perspective, and both are equally valid yet provide different
intuitions [15]. For this paper, interpreting the results from a group selection
perspective provides the most intuitive explanations. Additionally, our analyses
revealed that the different genotypes belonged to three distantly-related lineages,
with those performing tasks 1-4 more closely related to each other than to the
genotype performing task 5.

Lastly, we conducted “knockout” experiments for each communication (send-
msg, retrieve-msg) and environment-sensing instruction (get-cell-xy, collect-cell-
data). Specifically, all instances of the target instruction were replaced with a
placeholder instruction that performs no useful function. We conducted 30 tri-
als for each instruction knockout, and the results indicated that the ability to
communicate with neighboring organisms and to sense their environment were
critical for the success of the group. Without these instructions, at the end of
a 100 update period (that did include mutations), the deme performed an average
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of 2.2 tasks. In summary, the most effective deme strategy relied on a combina-
tion of genotypic diversity, phenotypic plasticity, and cooperation to achieve all
five tasks.

4 Conclusion

In this paper, we demonstrated that group selection is a sufficient pressure to
produce division of labor among heterogeneous organisms. Specifically, we found
that group selection can produce demes whose constituent organisms perform
five different, mutually-exclusive complex roles, regardless of the underlying re-
ward structure. In future work, we seek to use this technique to better understand
behavior of social organisms and to harness this approach to apply evolutionary
computation to complicated problems, such as automatically generating software
systems [12].
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Abstract. We introduce a novel genotype-phenotype mapping based on
the relation between RNA sequence and its secondary structure for the
use in evolutionary studies. Various extensive studies concerning RNA
folding in the context of neutral theory yielded insights about proper-
ties of the structure space and the mapping itself. We intend to get a
better understanding of some of these properties and especially of the
evolution of RNA-molecules as well as their effect on the evolution of the
entire molecular system. We investigate the constitution of the neutral
network and compare our mapping with other artificial approaches using
cellular automatons, random boolean networks and others also based on
RNA folding. We yield the highest extent, connectivity and evolvability
of the underlying neutral network. Further, we successfully apply the
mapping in an existing model for the evolution of a ribozyme-catalyzed
metabolism.

Keywords: genotype-phenotype map, RNA secondary structure, neu-
tral networks, evolution, robustness, evolvability.

1 Introduction

For many years it is known that neutral mutations have a considerable influence
on the evolution in molecular systems [14]. The RNA sequence-to-structure map
with its many-to-one property represents a system entailing considerable neu-
trality. It has been used successfully to shed light on the mechanisms of evolution
[12,13] and explain basic properties of biological systems, such as resolving the
interplay between robustness and evolvability [19].

Several alternative scenarios have been proposed to describe the emergence
and evolution of metabolic pathways (for a review see [4]) including spontanious
evolution of enzymes with novel functions, the “backwards evolution scenario”
suggesting that pathways evolve backward from key metabolites and the “en-
zyme recruitment scenario” or “patchwork model” which assumes that highly
specialized an efficient enzymes evolved from a few inefficient ancestral enzymes
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Sequence Space Structure Space

Fig. 1. The RNA sequence-to-structure map: There are many more sequences than
structures which brings redundancy into the map. Sequences which fold into the same
secondary structure form extended neutral networks in sequence space. The strong
interweavement of the neutral networks implies that the sequences in a small volume
around an arbitrary sequence realize all possible secondary structures.

with broad specificities. While these scenarios explain certain aspects of the early
history of life and the evolution of metabolic pathways, the general mechanisms
of the transition from an uncatalysed to a catalysed reaction network and the
evolution of novel catalytic functions remains poorly understood.

We have proposed a multi-level computational model to study this transi-
tion in particular and the evolution of catalyzed reaction-networks in general
[18]. The model combines a graph-based algebraic chemistry [1] with a RNA
based structure-to-function-map within a protocellular entity. The structure-to-
function-map projects sequence and structure features of the ribozyme into a
hierarchical classification scheme for chemical reactions based on Fujita’s “imag-
inary transition structure concept”[8]. The structure-to-function-map itself is
evolvable and allows the emergence of completely new catalytic functions. Fur-
thermore it forms the link between the genotype (i.e. the RNA sequence of the
ribozymes) and the phenotype (i.e. the (partially) catalyzed reaction network).

2 The RNA Sequence-to-Structure Map

The folding of RNA sequences into their respective secondary structures [11] is
a relatively well understood biophysically grounded process. Efficient algorithms
[9] have been developed which allow the computation of nearly any desired ther-
modynamic or kinetic property of RNA sequences at the level of secondary struc-
ture. The relation between RNA sequences and their secondary structures can be
viewed as a minimal model of a genotype-phenotype map (see Figure 1), where
the RNA sequence carries the “heritable” information for the formation of the
phenotype, which in turn is the RNA secondary structure upon which selection
acts in evolutionary experiments [2,3].
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Fig. 2. The structure-to-function map: (lhs) The colored regions of the ribozyme fold
determine the catalytic function i.e. which leaf in ITS-tree is picked; (middle) Along the
levels of the ITS-tree the amount of chemical detail increases; (rhs) Acidic hydrolysis
of ethyl acetat. The ITS of the reaction is gained from the superposition of educts and
products by removing those atoms and bonds which do not directly participate in the
reaction (shown in green).

The statistical architecture of the RNA sequence-to-structure map and it’s
implications for the evolutionary dynamics [6,7] has been extensively studied
over the past decade. In particular, the map possesses a high degree of neutrality,
i.e. sequences which fold into the same secondary structure are organized into
extended mutationally connected networks reaching through sequence space. A
travel along such a “neutral network” leaves the structure unchanged while the
sequence randomizes. The existence of neutral networks in sequence space has
been demonstrated in a recent experiment [16]. Due to the fact, that the neutral
networks are strongly interwoven, the sequence-to-structure map shows another
interesting property called “shape space covering” [17]. Meaning that within
a relatively small volume of sequence space around an arbitrary sequence any
possible secondary structure is realized. Both features of the RNA sequence-to-
structure map account for directionality and the partially punctuated nature of
evolutionary change.

3 The Mapping

In the following, we elaborate the aspects of our novel genotype-phenotype map-
ping. First, the mapping is realized in two steps. While both steps have a bi-
ological motivation, they are also designed regarding statistical considerations.
We will refer to the two steps as the sequence-to-structure and the structure-to-
function map, respectively.

The sequence-to-structure map is equivalent to the folding of the RNA-
sequence to its minimum free energy structure. We use the RNA sequence-to-
structure map on the one hand to model ribozymes for our artificial metabolism
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(Section 4) and on the other hand to add the properties described in Section 2
to the mapping. The second and more interesting part, the structure-to-function
map, can vary in some aspects for different applications, since the resulting phe-
notype spaces may differ in size and structure as well as the constitution of the
phenotype itself. Here we focus on the mapping for our artificial metabolism
model (Section 4). Therefore, we map from the RNA secondary structure to a
chemical reaction. The reactions are represented by their transition state struc-
ture. The classification of those structures is hierarchical (see Figure 2). Accord-
ingly, we extract features for every level, to determine the resulting reaction.
Thereby, we regard structural and sequential information only of the longest
loop in the structure and adjacent stems. The length of the loop specifies the
size of the transition state, i.e. the number of involved atoms. Further, length
and starting base-pairs of the adjacent stems define the constitution of the basic
reaction, i.e. the abundance and position of single, double or triple bonds. Fi-
nally, the sequence inside the loop region decides over the specific reaction, i.e.
the position and type of the involved atoms. The decision to focus on the loop
region is based on the observation that most catalytic RNA molecules have their
active center in a hairpin loop and also generally enzymes have an active site
that covers only a small part of the entire structure. Furthermore, some studies
suggest that transition state stabilizing is an important catalytic strategy for
ribozymes [15], matching our representation of chemical reactions as transition
state structures.

4 Ribozyme-Catalyzed Artificial Metabolism

In order to investigate the evolution of biological networks and the emergence
of their properties, we have developed a sophisticated model of a ribozyme-
catalyzed metabolism. The graph-based model is supported by an artificial chem-
istry, to allow for realistic kinetic behavior of the system. The basic elements of
the model are represented as graphs. In case of the metabolites this complies
with the intuitive presentation of molecules in chemistry. Similarly, metabolic
reactions can be represented as a set of graphs or by one superimposition graph,
combining the relevant parts of all involved molecules. The process of the re-
action itself is performed by a graph-rewriting mechanism, through which new
molecules can be generated. The conjunction of metabolites and their partic-
ipation in metabolic reactions is captured in the metabolic network. We use
several techniques to analyze the properties of the produced networks and com-
pare them with analyzes of real-world networks [18]. Besides the metabolism,
our model also comprises a genome that is divided into several genes by TATA-
boxes. The genes are RNA-sequences of fixed length, intended to code for the
catalytic elements, ribozymes, of the model system. The idea for the genotype-
phenotype mapping that we introduce in this paper originates from the task to
find a realistic and efficient mapping from these RNA-sequences (genotype) to
the ribozymes (phenotype), or better, to the chemical reactions they implement.
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Fig. 3. Overview of the artificial metabolism model. Each gene of the genome expresses
for a ribozyme. While these catalysts are trapped within the protocellular entities,
metabolites under a certain size can pass through the membrane, allowing exchange
with the environment.

5 Results

We will now compare our genotype-phenotype mapping with other existing ap-
proaches. Mappings based on cellular automaton (CA) and random boolean
network (RBN) have been proven to exhibit desirable properties [5] and, thus,
will serve here as reference. In previous evolutionary models and for the statis-
tical analysis in this paper, we developed other mappings based on the RNA
sequence-to-structure map but varying structure-to-function maps. Here we will
mention only two of them. For the first mapping, we assign one target structure
for each point in the phenotype space, the structure then maps to the phenotype
of the closest target structure. The second mapping extracts structural features,
similar to our mapping, but for the entire structure.

5.1 Random Neutral Walk

One way of gaining statistical results for the comparison of different genotype-
phenotype mappings is through a random neutral walk on the genotype space.
It starts from an arbitrary point of the mapping’s genotype space. The first
step is to choose randomly one neutral mutation out of the set of all possible
one-point mutations. Applying the mutation, a new genotype is created that
differs from its predecessor in only one position and maps to the same point in
phenotype space. This procedure is repeated until the length of the walk reaches
the pre-defined limit or no neutral mutation can be applied.

In each step, we keep track of several statistics that give insight into the
structure of the neutral network. For this aim, we observe the one-point mutation
neighborhoods of all genotypes of the random neutral walk. The fraction of
neutral mutations within these neighborhoods will be referred to as the neutrality
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Fig. 4. Random neutral walk from an arbitrary point in genotype space to random neu-
tral neighbors until a certain length is reached. In each step, encountered phenotypes
in the one-point mutation neighborhood are protocolled.

of the underlying neutral network. In terms of biological systems this can also be
regarded as the robustness that is gained through the mapping, since neutrality
protects from harmful mutations. Further, we search for new phenotypes that are
encountered during the course of the walk, i.e. the number of different phenotypes
that were found in the one-point neighborhoods. This measurement indicates
the rate with which the mapping discovers new phenotypes and other neutral
components. The faster a system can access different points in the phenotype
space, the more evolvable is it. Thus, the discovery rate can be equated with
the notion of evolvability. Other measures that we regard as important here, are
the extent and the connectivity of the neutral networks. Former, is given by the
maximal distance between genotypes of the neutral walk. Latter, is defined by
the fraction of possible phenotypes that ca be reached from an arbitrary starting
configuration.

5.2 Comparison

For the following study, we performed 1000 random neutral walks of length
100 for each mapping. The size of the genotype spaces vary for the different
mappings. For the RNA-based mappings the size is 4100, for the random boolean
network mapping it is 2144 and for the cellular automaton mapping 276. The
phenotype space is 28 = 256 for all mappings.

Figure 5 shows the results of the performed random walks. It can be seen
that our mapping (RNA loop) reaches the most phenotypes (≈ 200 of 256), fol-
lowing the other RNA-based mappings (≈ 175 and 150), the random boolean
network (145) and the cellular automaton (100). We can also see that the dif-
ference in the first steps is even more drastically, indicating a faster discovery
rate of our mapping compared to all others. This can be explained by the con-
nectivity, whereas CA and RBN have about 14 and 21 neighboring phenotypes,
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Fig. 5. Encountered phenotypes in a random neutral walk of length 100 (left) and for
the first 20 steps (right). RNA loop = our mapping; RNA full = RNA-based map-
ping considering the entire structure; RNA distance = RNA-based mapping using tar-
get structures; RBN = random boolean network mapping; CA = cellular automaton
mapping.

respectively, our mappings have about 27 distinct phenotypes in their one-point
neighborhood. Furthermore, our mapping travels further in the genotype space,
allowing a steady discovery of new phenotypes. However, in terms of neutrality
the random boolean network mapping performs best, ≈ 58% of its mutations are
neutral, for CA it is ≈44% and the RNA-based mappings are in between with
around 50%.

5.3 Discussion

We have proposed here a genotype-phenotype mapping that is suitable for evolu-
tionary studies, as shown for the given example and the comparative study with
other mappings. Due to its advantageous properties, it is conceivable to use
our mapping in studies where so far rather simple artificial genomes have been
used and the RNA sequence-to-structure map can be integrated in a meaningful
way, such as the evolution of regulatory networks [10]. First of all, our map-
ping allows open-ended evolution of the simulation model, since it continuously
produces new phenotypes and does not get trapped in local optima. Further, it
provides sufficient robustness to evolve a stable system and at the same time
achieves high evolvabilty, allowing the system to react fast to perturbations or
changes in the environment. We have also shown here, that a good genotype-
phenotype mapping needs more than neutrality, the connectivity and extent of
the underlying neutral network is at least as important.

Observing the mapping within the proposed evolutionary study of ribozyme-
catalyzed metabolism, we hope not only to get insights about the emergence of
pathways but also about the properties of the mapping itself, thus, the RNA
sequence-to-structure map.
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Abstract. The role of symbiosis in macro-evolution is poorly understood. On 
the one hand, symbiosis seems to be a perfectly normal manifestation of 
individual selection, on the other hand, in some of the major transitions in 
evolution it seems to be implicated in the creation of new higher-level units of 
selection. Here we present a model of individual selection for symbiotic 
relationships where individuals can genetically specify traits which partially 
control which other species they associate with – i.e. they can evolve species-
specific grouping. We find that when the genetic evolution of symbiotic 
relationships occurs slowly compared to ecological population dynamics, 
symbioses form which canalise the combinations of species that commonly 
occur at local ESSs into new units of selection. Thus even though symbioses 
will only evolve if they are beneficial to the individual, we find that the 
symbiotic groups that form are selectively significant and result in 
combinations of species that are more cooperative than would be possible under 
individual selection. These findings thus provide a systematic mechanism for 
creating significant higher-level selective units from individual selection, and 
support the notion of a significant and systematic role of symbiosis in macro-
evolution.  

1   Introduction: Can Individual Selection Create Higher-Level 
Selection? 

Symbiotic relationships in general are ubiquitous and uncontroversial, but the role of 
symbiosis in macro-evolutionary processes such as the major evolutionary transitions 
( 1) and symbiogenesis (the creation of new species through symbiosis) ( 2), is poorly 
understood. Clearly, the evolution of symbiotic relationships may change the effective 
selection pressures on individuals in complex ways – but can they enable higher-level 
selection? When the fitness of individuals is context sensitive (i.e. under frequency 
dependent selection) grouping individuals together in small groups can change the 
average selection pressure on cooperative traits by altering the variance in contexts ( 3, 
 4). This effect is stronger when group membership is assortative on behavioural traits 
( 5). In most models, however, the existence of groups is presupposed and accordingly 
any group selection effect observed is unsurprising in the sense that it is fully 
explained by changes in individual selection given the context of these groups. In 
contrast, we are interested in scenarios where individually selected traits affect the 
strength of group selection or create group selection de novo ( 6). For example, related 
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work addresses the evolution of individually specified traits that affect group size ( 7, 
 8), or the evolution of markers that influence behavioural grouping ( 9). Here we 
address a multi-species scenario where species can evolve symbiotic relationships that 
allow explicit control over whether they group and who they group with. 

Symbiosis, the living together of different species, implies that one species ‘seeks 
out’ another, actively controlling (to a limited extent) the species composition of its 
environmental context. When organisms create their own environments a complex 
dynamic is created between the traits they evolve that affect their symbiotic 
relationships, and the ‘ordinary traits’ (traits that do not affect symbioses) they evolve 
given the context they have created for themselves. Our research question concerns 
whether it is possible for an individual to evolve symbiotic relationships that cause it 
to create a significant higher-level unit of selection. This might seem to be a logical 
impossibility because for a higher-level unit of selection to be significant one would 
ordinarily assert that it must oppose individual selection. And, if a group opposes 
individual selection then a defector or selfish individual that exploits the group will be 
fit and take over. Of course, group selection that acts in alignment with individual 
selection is possible – e.g. individual selection may cause a mixed population to reach 
some evolutionarily stable strategy (ESS) ( 10) and group selection that acts in 
alignment with individual selection might cause a population to reach this ESS more 
quickly, but it cannot cause it to go somewhere other than the local ESS. But we show 
this conclusion is too hasty. We show that in cases where group selection acts in 
alignment with individual selection it can alter evolutionary outcomes. This requires 
that we consider a different type of evolutionary game, however. 

The literature on group selection is largely preoccupied with the prisoners’ 
dilemma ( 11) – a game that has only one ESS ( 10) – ‘Defect’. Although a group of 
cooperative individuals is collectively fitter than a group of defectors, the cooperative 
group can never be stable given that the payoff for Defect is higher than the payoff for 
Cooperate when playing against other cooperators. Thus if groups are imposed 
Cooperate:Cooperate will beat Defect:Defect but it is not possible that a 
Cooperate:Cooperate group can be maintained by individual selection. In contrast, a 
game that has more than one ESS is a different matter. A coordination game of two 
strategies, for example, has two ESSs, let’s call them A-A and B-B, and these ESSs 
may have different overall utility, let’s say that an A-A group beats a B-B group. But 
the difference is that in a game that has multiple ESSs, each ESS can be supported by 
individual selection (there is no ‘cheat’ strategy that can invade either ESS) and this 
means that the two groups need not be externally imposed in order to be stable. 
Nonetheless, the evolutionary outcome can be significantly different from the 
outcome of individual selection without grouping. For example, with no grouping, if 
the utility of A-A is only slightly higher than B-B, then the population will reach the 
ESS that is closest to the initial conditions – for example, if B has a significant 
majority this will be the B-B ESS. But with grouping, the A-A ESS can be reached 
even if B has a significant majority because when A’s interact disproportionately with 
other A’s they are fitter than B’s. In the models that follow we will show that 
individual selection causes groups to form that represent combinations of species 
from different ESSs and thus allows the highest utility ESS to be found. 

We intend our model to represent the evolution of symbiotic relationships between 
species, not just assortativity of behaviours within a single species. Thus we permit 
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competition between heterogeneous groups (e.g. AB vs CD, where A and B are 
behaviours provided by unrelated species) rather than homogeneous groups (e.g. AA 
vs BB) as would be more conventional in a single-species assortative grouping model 
(where relatedness and inclusive fitness concepts straightforwardly apply) ( 12). By 
using a poly-species model we can show that the process we model significantly 
increases the likelihood of reaching a higher-utility ESS even in cases where the basin 
of attraction for high-utility ESSs is initially very small ( 13). Note that we do not 
change the interaction coefficients between species but only change the co-location or 
interaction probability of species. A species might thus change its fitness by 
increasing the probability of interacting with another (which is what we mean be a 
symbiosis) but it cannot change its intrinsic fitness dependency on that species (as 
might be part of a more general model of coevolution -  4, 14, 15). There are clearly 
many ways in which organisms can change interaction probabilities with other 
organisms either subtly or radically ( 16). 

2   An Ecosystem Model with Evolved Symbioses 

Our abstract model of an ecosystem contains 2N species, each of which contains P 
individuals. The fitness of each individual in each species will depend on the other 
species present in its local environmental context. A separation of timescales is crucial 
in this model ( 15): On the (fast) ecological dynamics timescale species densities 
within an environmental context change and quickly reach equilibrium, but on this 
timescale genetic changes are assumed to be negligible. At a much slower genetic 
evolution timescale, genetic changes that alter symbiotic relationships are significant. 
The genotype of an individual specifies partnerships with the other 2N-1 species that 
can partially (or completely) determine the combination of species it appears with in 
the environmental context. We assume that the initial composition of the local 
environment contains a random combination of species, but for the scenarios we 
investigate the ecological dynamics have only stable attractors, so the composition of 
the ecology quickly equilibrates to a subset of species that are stable. Although the 
frequency of a species may go to zero in a particular ecological context, in other 
contexts it will persist (i.e. no species are lost). Different individuals are evaluated in 
the environmental context for some time, and at the end of each period we turn 
attention to a new randomly initialised ecological context. Ours is therefore not an 
explicitly spatial model since we have no need to model different environmental 
contexts simultaneously. 

We choose a very simple representation of the local environmental context – a 
binary vector representing which species are present in non-zero frequency. We 
suppose that each position in the vector is a ‘niche’ that may be occupied by one of 
two possible species that are mutually exclusive, such that some species cannot 
coexist in the same ecological context. For example, in a forest where deciduous and 
coniferous trees are competing, patches of the forest may, in simplistic terms, contain 
either one or the other but not both simultaneously, and simultaneously a patch may 
contain one species of ant or another but not both, and moreover, the type of tree 
present may influence which type of ant is fittest., and vice versa. An N-bit vector 
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thus indicates which N species, of the possible 2N, are present in the environmental 
context. A species, ‘------0---’, indicates which type it is (e.g. ‘0’) and which 
environmental niche in the environmental context it occupies (e.g. 6th). This choice of 
representation has some properties that are required and some that are merely 
convenient. It is necessary for our purposes that not all species are present in all 
environmental contexts – otherwise, genetically specifying a symbiotic partnership 
would be redundant. It is also necessary that there are many different possibilities for 
the species composition in an environmental context – so the number of species 
present in any one environment should be large and many combinations of species 
should be allowed. The fact that species are arranged in mutually exclusive pairs is a 
contrivance for convenience: having all environmental states contain exactly N 
species allows us to define the environmental state and as N-dimensional space and to 
define fitness interactions between species using an energy function discussed below. 
And the fact that environmental states are defined using a binary ‘present or not’ 
representation rather than a continuous species density model is again a convenience – 
a continuous model would be interesting to investigate in future. 

Each individual in the ecosystem has a fitness that is a function of the other species 
present in the current environmental context. In principle, this requires an 
environmentally sensitive fitness function for each species and the resultant ecological 
dynamics could be arbitrarily complex in general. In the experiments that follow we 
restrict our attention to ecosystems with simple monotone dynamics and point 
attractors. Such dynamics can be modelled using an ‘energy function’ ( 17, 18) over 
environmental states, e(E), such that the fitness of an individual of species, s, given an 
environmental context, E, is determined by the change in energy, ∆e(E, s) produced by 
adding s to E. That is, the fitness of an individual of species s in context E is, fitness(s, 
E) = ∆e(E, s) = e(E+s) - e(E), where ‘E+s’ is the environmental state E modified by 
adding species s. (Dynamical systems theory would normally minimise energy, but for 
familiarity we let positive ∆e correspond to positive fitness such that selection tends to 
increase e). 

Each individual has a genotype that defines which other species it forms groups 
with (see Figure 1). This genotype is simply a binary vector length 2N defining which 
of N possible ‘0’ species it groups with followed by which of N possible ‘1’ species it 
groups with. Binary relationships of this form are somewhat crude perhaps, but 
although the partnerships of any one individual are binary, the evolved associations of 
the species as a whole, as represented by the frequencies of partnerships in the 
population of individuals for that species, is a continuous variable (to the resolution of 
1/population-size). We use the term ‘association’ to refer to this population-level 
inter-species average and reserve the word ‘partnership’ for the binary relationships 
specified by the genotype of an individual. The meaning of the binary partnership 
vector for an individual is simply that its fitness, already a function of the 
environmental context, is modified by the inclusion of its symbiotic partners into that 
context. Specifically, the fitness of an individual genotype, g, belonging to species, s, 
given a context, E, is defined as fitness(g, E)= ∆e(E, s+S) = e(E+s+S) - e(E), where S 
is the set of species that g specifies as partners.  

Using the components introduced above, illustrated in Figure 1, our model operates 
as defined in Figure 2. 
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A species, s: -------0--  
May contain an individual genotype: <0001100100,0100000010> # 
This example individual specifies partnerships with the following 5 species: 
 ----0-----, -----0----, -------0-- †,  -1--------, --------1- 
So, if this individual is placed into an environmental context, it and these partner 
species will be present: i.e. s+S = -1--00-01-. 
For example, if this individual is placed into E= 1000100000, with e(E)=α. 
It will create E+S+s=1100000010, with e(E+S+s)=β. 
And it will receive a fitness of  ∆e(E, S+s) = e(E+S+s) - e(E) = β-α. 

Fig. 1. An individual, its partners and its fitness in an environmental context. (†For implemen-
tational convenience, each individual specifies a partnership with itself. #A comma indicates 
separation of 0-partnerships from 1-partnerships.) 

 

Fig. 2. Model details. 1) Initially, each species associates with itself only. 2) Associating with 
self makes implementation of E+S+s identical to E+S. 3) This insertion of a species into the 
ecological state is cumbersome because there are 2N species that fit into N niches. 5) If an 
individual associates with ‘1’-species and ‘0’-species that are mutually exclusive (i.e. occupy 
the same niche) – then either species is added to E with equal probability. 6) Individuals 
specifying deleterious partnerships (negative fitness) have probability 0 of reproducing, but it is 
important that individuals specifying neutral partnerships have non-zero probability to 
reproduce. For the following experiments, N=50, P=100, and T=5N was sufficient to ensure an 
environmental context found a local ESS before being reinitialised. Mutation is single bit-flip. 

Initialise Ecosystem containing 2N species, s1...s2N. 
 For each species, sn, initialise P individuals, gn1...gnP. 
  For each individual, gn, initialise 2N associations: ai=n =1, ai≠n =0.    (notes 1 & 2) 
 

Until (stopping-criterion) evolve species: 
 For i from 1 to N:  Ei=rand({0,1}). //create random context E.  
 t=1. // counter to decide when to reinitialise the context. 
 //Evaluate g in context E. 
  For all, g, from Ecosystem in random order:   
  E’=add(E,g).  (note 2) 
  Fit(g) = e(E’) - e(E). 
 //Update environmental context 
  If (Fit(g) > 0) then {E=E’. t=1.} else t++. 
  If (t>T) {For i from 1 to N:  Ei=rand({0,1}). t=1.} 
 For each species s: s=reproduce(s). 
 

add(E,S) → E’:  // add individual, with partners, to ecosystem state to create E’. 
 For n from 1 to N: 
  If ((an==1) and (an+N==0)) E'n=0. (note 4) 
  If ((an==0) and (an+N==1)) E'n=1. 
  If ((an==1) and (an+N==1)) E'n=rand({0,1}).  (note 5) 
  
 

reproduce(s) → s’: // reproduce all the individuals in a species s 
 For p from 1 to P:  
  Select g1 and g2 from s with uniform probability (note 6).  
  If (Fit(g1)>Fit(g2)) s’p= mutate(g1) else s’p= mutate(g2).
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2.1   A Poly-ESS Ecological Dynamics 

We define the energy of an environmental state, E, as a sum over B copies of the sub-
function, f, applied to disjoint subsets of species as follows: 
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where B is the number of sub-functions, and k=N/B is the number of species in each 
sub-function. For convenience f is defined as a function of G, the number of 1-species 
in the subset of species. f, defines a simple ‘U-shaped’ energy function with local 
optima at all-0s and all-1s, but all-1s has higher energy than all-0s. Concatenating B 
of these U-shaped sub-functions creates a poly-attractor system. Five subsystems with 
two attractors each, as used in the following experiments, creates a system with 25=32 
point attractors (local optima in the energy function, corresponding to ESSs with N 
species each). For N=25, B=5, k=10, a local attractor under individual selection is: 
11111111111111111111000000000011111111110000000000. The attractor with the globally-maximal 
e-value is simply the concatenation of the superior solution to each sub-system, i.e. 
11111111111111111111111111111111111111111111111111. However, which of the two-possible 
local ‘sub-attractors’ for each sub-system (e.g. …1111111111… or …0000000000…) will be 
found depends (under individual selection) on whether the initial environmental 
conditions have type-0s or type-1s in the majority. The all-type-1 attractor for each 
sub-system is thus found with probability 0.5 from a random initial condition and the 
probability of finding the global-maximal energy attractor is 0.5B=1/32. (This poly-
attractor system is identical to a building-block function used in ( 19) to show sexual 
recombination permits selection on subfunctions if genetic linkage is ‘tight’ – but here 
we evolve useful linkages.) 

3   Results and Discussion 

Figure 3 (left) shows that under individual selection (before associations are evolved) 
different attractors are found (categorised by G). The globally-maximal energy 
attractor is not found in any of the 16 samples depicted. Figure 3 (right) shows that 
after associations have evolved the globally optimal attractor is being reached in 
every instance of the local ecological dynamics, regardless of the random initial 
conditions of the environmental context. Thus the basin of attraction of the globally 
optimal species configuration now absorbs the entire space of possible initial species 
configurations (Figure 4). 

To examine the evolved partnerships that have enabled these changes in the 
ecological dynamics, we can display an association matrix, Figure 5. Figure 5 (left) 
clearly shows not only that the majority of evolved associations are correct (between 
species of the same type) but also that they are correctly restricted to partnerships 
between species in the same sub-systems not across sub-systems. The evolution of 
partnerships is therefore successful at identifying sub-systems correctly, and 
identifying correct (single-type) partnerships  
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Fig. 3. Ecosystem dynamics: Left) before associations evolve (initial 10,000 time steps), Right) 
after associations evolve (around 2.8·107 time steps). G=1 → globally optimal attractor, 
G=0.2,0.4,0.6,0.8, 0.0 → other local attractors. Vertical lines indicate points at which a new 
random initial ecological condition is created.  
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Fig. 4. Change in size of basins of attraction for different attractor classes over evolutionary 
time: Shades indicate attractor classes grouped by energy values.  

  

Fig. 5. Evolved associations. Pixel (i,j) depicts the strength and correctness (i.e. 1s with 1s, and 
0s with 0s) of the associations between the species i and j (and species i+N and j+N). Left) 
associations in the main experiment reveal the modularity of the fitness dependencies defined 
in the energy function. Right) a control experiment fails to separate modules, see text. 

within those subsystems. Figure 5, right shows that the ability to evolve these correct 
associations is dependent on the separation of timescales. Specifically, if ecological 
dynamics are not allowed to settle to a local attractor (by setting T=1 in Figure 2), i.e. 
partnerships evolve in arbitrary ecological contexts, then although they find useful 
associations within sub-systems, they find incorrect associations between sub-
systems.  

G 

The proportion of 
initial conditions that 
reach the globally 
optimal attractor is 
intially 1/32 and 
eventually becomes 1. 

… 

‘correct’ 
associations 

‘incorrect’ 
associations 

no associations 
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These results show that individual selection for symbiotic relationships is capable of 
creating groups that are adaptively significant. After the relationships have evolved, the 
only attractor of the ecological dynamics is the attractor with the maximal energy. This 
is surprisingly ‘cooperative’ since ecological energy corresponds to collective fitness 
whereas individual selection should just go to the local ESS. The selective pressures 
that cause individuals to form these groups has two possible components: a) When the 
ecological context is not yet at an ESS, an individual that brings with it a partner that 
accelerates approach to the ESS is fitter than one that does not. Thus directional 
selection on two species promotes symbiosis between them (see ( 20) for an analogous 
argument regarding “relational QTLs”). b) When the ecological context is already at an 
ESS, an individual that brings with it a partner that is also part of the ESS has the same 
fitness as one that does not (because the species is already present). But an individual 
that brings a partner that is not part of the ESS will have negative ∆e – the partnership 
is deleterious because it attempts to introduce a species that is selected against in that 
context. Thus stabilising selection on two species also promotes symbiosis between 
them albeit in a rather subtle manner.  

We suggest that the former direct effect is less significant than the latter subtle 
effect given that the ecosystem spends most of its time at ESSs. This implies that the 
fommon form of evolved symbioses is to create associations between species that co-
occur most often, and suggests that relationship formation in ecosystems will be 
basically Hebbian ( 15, 18, 21, 22) – ‘species that fire together wire together’. This has 
the effect of reinforcing the future co-occurrence of species that already co-occur, and 
enlarges the basin of attraction for those species combinations in the same manner as 
Hebbian learning forms an associative memory ( 18, 22). Note that the groups that 
form do not represent an entire N-species ESS but only contain 10 species each 
(Figure 5) as per the interactions in the energy function. These small groups are both 
sufficient and selectively efficient in the sense that they create B independent 
competitions between the two sub-ESSs in each sub-function rather than a single 
competition between all 2B complete ESSs ( 19, 24). These small groups form because 
the co-occurrence of species within each sub-function is more reliable than the co-
occurrence of species in different sub-functions. In ( 13) we provide a model where we 
assume that relationships form in a manner that reflects species co-occurrence at ESSs 
and show that this is sufficient to produce the same effects on attractors as those 
shown here. Using this abstraction we are also able to assess the scalability of the 
effect and show that it can evolve rare, high-fitness complexes that are unevolvable 
via non-associative evolution. This suggests a scalable optimisation method for 
automatic problem decomposition ( 24), creating algorithmic leverage similar to that 
demonstrated by ( 25). 

How does individual selection create higher-level selection? Well, from one point 
of view it doesn’t. If we take into account the combined genetic space of characters, 
both those addressed directly in the energy function and the genetic loci that control 
partnerships, then all that happens in our model is that natural selection finds a local 
attractor in this space. It is only when we pretend not to know about the evolved 
partnerships, and examine the attractors in the energy function alone, that we see 
group selection. However, this separation is biologically meaningful and relates to the 
separation of timescales. That is, the most obvious characteristics of species are those 
that are under direct selection – the ones whose frequencies are affected by selection 
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on short timescales – the ecological population dynamics. But less obvious 
characteristics are simultaneously under indirect selection – characters that affect co-
location of species for example. These change more slowly, over genetic evolution 
timescales rather than population dynamic timescales ( 15). When both systems are 
taken into account, individual selection explains all the observations (if it did not, we 
would not be satisfied that an evolutionary explanation had been provided). 
Specifically, partnerships form when group selection is in alignment with individual 
selection (at ESSs), but in multi-ESS games, these same groupings can cause 
selection that acts in opposition to (non-associative) individual selection and alter 
future selective trajectories when individuals are far from that ESS. 

Because the indirectly selected characters only have fitness consequences via the 
directly selected characters their evolution is characterisable by statistics such as co-
occurrence of the directly selected characters. This produces systematic consequences 
on the attractors of directly selected characters – i.e. they enlarge attractors for species 
combinations reliably found at ESSs. This is equivalent to effecting higher-level 
selection on these combinations of species. Thus in our opinion, the two types of 
language - ‘higher levels of selection are created’ and ‘it is all explained by individual 
selection’ – are entirely reconcilable.  

Acknowledgements. Chris Buckley, Seth Bullock, Jason Noble, Ivor Simpson, 
Nicholas Hayes, Mike Streatfield, David Iclanzan, Chrisantha Fernando. 
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Abstract. We introduce a model of the evolution of cooperation in
groups which incorporates both conditional direct-reciprocity (“tit-for-
tat”), and indirect-reciprocity based on public reputation (“conspicuous
altruism”). We use ALife methods to quantitatively assess the effect of
changing the group size and the frequency with which other group mem-
bers are encountered. We find that for moderately sized groups, although
conspicuous altruism plays an important role in enabling cooperation, it
fails to prevent an exponential increase in the level of the defectors as
the group size is increased, suggesting that economic factors may limit
group size for cooperative ecological tasks such as foraging.

1 The Model

Pairs of agents (ai, aj) : i �= j are drawn at random from A = {a1, a2, . . .an},
and engage in bouts of grooming at different time periods t ∈ {0, 1, . . .N}. We
refer to n as the group size and N as the frequency-of-encounter.

At each time period t the groomer ai may choose to invest a certain amount
of effort u(i,j,t) ∈ [0, U ] ⊂ � in grooming their partner aj , where U ∈ � is a
parameter determining the maximum rate of grooming. This results in a neg-
ative fitness payoff −u to the groomer, and a positive fitness payoff ku to the
partner aj:

φ(j,t+1) = φ(j,t) + k · u(i,j,t)

φ(i,t+1) = φ(i,t) − u(i,j,t)

where φ(i,t) ∈ � denotes the fitness of agent ai at time t, and k ∈ � is a constant
parameter.

In an ecological context, the positive fitness payoff ku might represent, for
example, the fitness gains from parasite elimination, whereas the fitness penalty
−u would represent the opportunity cost of foregoing other activities, such as
foraging, during the time u allocated for grooming.

Since we are interested in the evolution of cooperation, we analyse outcomes
in which agents choose values of u that maximise their own fitness φi. Provided
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that k > 1, over many bouts of interaction it is possible for agents to enter into
reciprocal relationships that are mutually-beneficial, since the groomer’s initial
cost u may be reciprocated with ku yielding a net benefit ku − u = u(k − 1).
Provided that agents reciprocate, they can increase their net benefit by investing
larger values of u. However, by increasing their investment they put themselves
more at risk from exploitation, since just as in the alternating prisoner’s dilemma
[5], defection is the dominant strategy if the total number of bouts N is known:
the optimal behavior is to accept the benefits of being groomed without invest-
ing in grooming in return. In the case where N is unknown, and the number of
agents is n = 2, it is well known that conditional reciprocation is one of sev-
eral evolutionary-stable solutions in the form of the so-called tit-for-tat strategy
which copies the action that the opposing agent chose in the preceding bout at
t − 1 [4]. However, this result does not generalise to larger groups n > 2.

Nowak and Sigmund [7] demonstrate that reciprocity can emerge indirectly in
large groups, provided that information about each agent’s history of actions is
summarised and made publicly available in the form of a reputation or “image-
score” r(i,t) ∈ [rmin, rmax] ⊂ �. The image-score ri summarises the propensity-
to-cooperate of agent ai. As in the Nowak and Sigmund model, image scores in
our model are initialised ∀i r(i,0) = 0 and are bound at rmin = −5 and rmax = 5.
An agent’s image score is incremented at t + 1 if the agent invests a non-zero
amount at time t, otherwise it is decremented:

r(i,t+1) =
{

min(r(i,t) + 1, rmax) : u(i,x,t) > 0
max(r(i,t) − 1, rmin) : u(i,x,t) = 0

and agents invest conditionally on their partner’s image score:

u(i,j,t) =
{

γ : r(j,t) ≥ σi

0 : r(j,t) < σi

where σi is a parameter determining the threshold image score above which agent
ai will cooperate, and γ ∈ � is a global parameter (as in [7] we use γ = 10−1

and k = 10).
Nowak and Sigmund [6] demonstrate that widespread defection is avoided if,

and only if, the initial proportion of agents using a discriminatory1 strategy is
above a critical value, implying that strategies based on indirect reciprocity via
reputation are an essential prerequisite for the evolution of cooperation in large
groups.

We are interested in the effect of group size n and interaction frequency N on
the evolution of cooperation. The analytical model of Nowak and Sigmund [6]
assumes: a) that the group size n is large enough relative to N that strategies
based on private history, such as tit-for-tat, are irrelevant (since the probability
of encountering previous partners is very small); and b) that the we do not need
to take into account the fact that an agent cannot cooperate with itself when

1 Discriminatory strategies cooperate only if their partner’s image score is non-
negative, that is: σi = 0.
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calculating the probability with which any given agent is likely to encounter a
particular strategy. However, in order to model changes in group size, and hence
interaction in smaller groups, it is necessary to drop both of these assumptions.
The resulting model is more complicated, and it is difficult to derive closed-form
solutions for the equilibrium behaviour. Therefore we use ALife simulation to
estimate payoffs, and numerical methods to compute asymptotic outcomes, as
described in the next section.

2 Methodology

In order to study the evolution of populations of agents using the above strate-
gies, we use both ALife methods and mathematical modeling based on evolution-
ary game-theory. However, rather than considering pairs of agents, our analysis
concerns interactions amongst groups of size n > 2 assembled from a larger popu-
lation of individuals. The resulting game-theoretic analysis is complicated by the
fact that this results in a many-player game, which presents issues of tractability
for the standard methods for computing the equilibria of normal-form games. A
popular ALife approach to this issue is to use Co-evolutionary algorithms [3,4].
In a co-evolutionary optimisation, the fitness of individuals in the population is
evaluated relative to one another in joint interactions (similarly to payoffs in a
strategic game), and it is suggested that in certain circumstances the converged
population is an approximate Nash solution to the underlying game; that is, the
stable states, or equilibria, of the co-evolutionary process are related to the evo-
lutionary stable strategies (ESS) of the corresponding game. However, there are
many caveats to interpreting the equilibrium states of standard co-evolutionary
algorithms as approximations of game-theoretic equilibria, as discussed in detail
by Sevan Ficici [1,2]. In order to address this issue, we adopt a methodology
called empirical game-theory [10,12], which uses a combination of simulation
and rigorous game-theoretic analysis. The empirical game-theory method uses
a heuristic payoff matrix which is calibrated by running many simulations, as
detailed below.

We can make one important simplification by assuming that the game is
symmetric, and therefore that the payoff to a given strategy depends only on
the number of agents within the group adopting each strategy. Thus for a game
with j strategies, we represent entries in the payoff matrix as vectors of the form
p = (p1, . . . , pj) where pi specifies the number of agents who are playing the ith

strategy. Each entry p ∈ P is mapped onto an outcome vector q ∈ Q of the form
q = (q1, . . . , qj) where qi specifies the expected payoff to the ith strategy.

For each entry in the payoff matrix we estimate the expected payoff to each
strategy by running 105 ALife simulations and taking the mean2 fitness.

With estimates of the payoffs to each strategy in hand, we are in a position
to model the evolution of populations of agents using these strategies. In our
evolutionary model, we do not restrict reproduction to within-group mating;
2 We take the average fitness of every agent adopting the strategy for which we are

calculating the payoff, and then also average across simulations.
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rather, we consider a larger population which temporarily forms groups of size
n in order to perform some ecological task. Thus we use the standard replicator
dynamics equation [11] to model how the frequency of each strategy in the larger
population changes over time in response to the within-group payoffs:

ṁi = [u(ei, m) − u(m, m)] mi (1)

where m is a mixed-strategy vector, u(m, m) is the mean payoff when all
players play m, and u(ei, m) is the average payoff to pure strategy i when
all players play m, and ṁi is the first derivative of mi with respect to time.
Strategies that gain above-average payoff become more likely to be played, and
this equation models a simple co-evolutionary process of adaptation. Since mixed
strategies represent population frequencies, the components of m sum to one.
The geometric corollary of this is that the vectors m lie in the unit-simplex
	j−1 = {x ∈ �

j :
∑j

i=1 xi = 1}. In the case of j = 3 strategies the unit-simplex
	2 is a two-dimensional triangle embedded in three-dimensional space which
passes through the coordinates corresponding to pure strategy mixes: (1, 0, 0),
(0, 1, 0), and (0, 0, 1). We shall use a two dimensional projection of this triangle
to visualise the population dynamics in the next section3.

In our experiments we solve this system numerically: we choose 103 randomly
sampled initial values which are chosen uniformly from the unit simplex [9], and
for each of these initial mixed-strategies we solve Equation 1 as an initial value
problem using MATLAB’s ode15s solver [8]. This results in 103 trajectories
which either terminate at stationary points, or enter cycles.

We consider j = 5 strategies:

1. C which cooperates unconditionally (σi = rmin);
2. D which defects unconditionally (σi = rmax + 1);
3. S which cooperates conditionally with agents who have a good reputation

(σi = 0) but cooperates unconditionally in the first round (when reputations
have not yet been established);

4. Sd which cooperates conditionally (σi = 0) but defects unconditionally in
the first round of play;

5. T 4T which cooperates conditionally with agents who have cooperated in
previous rounds, and cooperates unconditionally against unseen opponents.

3 Results

Initially we restrict attention to j = 3 strategies and 102 initial values, allowing
us to more easily visualise the population dynamics and to compare our results
with that of Nowak and Sigmund [6] (who assume a large group size n relative
to N).

3 See [11, pp. 3–7] for a more detailed exposition of the geometry of mixed-strategy
spaces.
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Fig. 1. Direction field for n = 10 agents and N = 13 pairwise interactions per gener-
ation (above) compared with N = 100 (below). C denotes unconditional altruists, D
unconditional defectors and S discriminators who cooperate in the first round. Each
line represents a trajectory whose termination is represented by an open circle. The
arrows show the direction of change.
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Fig. 2. Mean frequency of each strategy in equilibrium as the number of pairwise inter-
actions per generation N is increased relative to n. The error bars show the confidence
interval for p = 0.05. C denotes the proportion of unconditional altruists; D uncondi-
tional defectors; S discriminators who cooperate in the first round; Sd discriminators
who defect in the first round; T4T the tit-for-tat strategy.

When we exclude discriminators and consider only cooperator (C), defectors
(D) and tit-for-tat (T 4T ) we find that defection is the dominant strategy regard-
less of N , implying that conditional reciprocity cannot sustain group cooperation
in the absence of reputation.

We obtain more subtle results when we introduce reputation-based strate-
gies. Figure 1 shows the phase diagram for the population frequencies when we
analyse the interaction between cooperators (C), defectors (D) and discrimina-
tors (S) when we have a small group of n = 10 agents. As in [6] we find that
a minimum initial frequency of discriminators (y axis) is necessary to prevent
widespread convergence to the defection strategy (in the bottom right of the
simplex). However, the results of our model differ in two important respects.

Firstly, when the critical threshold of discriminators is reached, our model
results in various stationary mixes of discriminators and cooperators with a
total absence of defection, and no limit cycles. This is in contrast to [6] where the
population cycles endlessly between all three strategies if the critical threshold
is exceeded.

Secondly, the behaviour of our model is sensitive to the number of pairwise
interactions per generation N : as N is increased from N = 13 to N = 100 we
see that the basin of attraction of the pure defection equilibrium is significantly
decreased, and correspondingly the critical threshold of initial discriminators
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necessary to avoid widespread defection. Our intuitive interpretation of these
results is that defection is less likely4 as we increase the frequency of interaction
relative to the group size.

As discussed in Section 1, if we increase N relative to n we need to consider
the effect of strategies that take into account private interaction history as well
as strategies that are based on public reputation. Figure 2 shows the mean
frequency in equilibrium of each strategy when we analyse all five strategies and
systematically vary N while holding n fixed. We plot the equilibrium population
frequency against N

n , and obtain the same graph for both n = 10 and n = 20
agents. This suggests that the ratio N

n determines the asymptotic behaviour.

4 Discussion

The frequency of both unconditional cooperation and discrimination increases
with N , and these strategies become more prevalent than discriminators for
N
n > 2. As we would intuitively expect, for N

n > 1 discriminators become more
prevalent as we increase group size or decrease frequency of interaction. However,
this is not sufficient to prevent free-riding. Most striking is that the likelihood of
defection decreases exponentially as we increase the number of interactions per
generation N . Correspondingly, as we increase the group size n we observe an
exponential increase in the level of defection.

If we consider the possibility of inter-group competition and hence group se-
lection, then since the expected frequency of defectors in equilibrium determines
the per-capita fitness of the agents in the overall population5, we can interpret
our results as showing how group fitness changes as a function of group size (n)
and frequency-of-encounter (N). That is, for any given N we can determine the
optimum group size n.

Our results indicate that the stylised cooperation task described by our model
introduces a very strong selection pressure for smaller group sizes. Of course, this
task is not the only ecological task which influences per-capita fitness for any
given species. For example, our model could be used in conjunction with optimal
foraging models to derive a comprehensive model of optimum group size for a
particular species in a particular niche. Our main contribution is to highlight
that economic factors play a significant role in determining optimal group size,
when other ecological tasks such as foraging favour group sizes that are relatively
small compared with the frequency-of-encounter.

5 Conclusion

Our model predicts that neither reputation nor conditional punishment are suf-
ficient to prevent free-riding as the group size increases. Although both types
of strategy play an important role, as the group size increases the level of

4 Assuming that all points in the simplex are equally likely as initial values.
5 In the absence of defection all other strategies are able to gain the maximum available

surplus.
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conspicuous altruism based on reputation rises, but defection rises faster. Thus,
when other tasks already favour smaller groups, we predict that economic factors
will limit the maximum group size independently of the group size favoured by
other niche-specific tasks.
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Abstract. Group selection is easily observed when spatial group struc-
ture is imposed on a population. In fact, spatial structure is just a means
of providing assortative interactions such that the benefits of cooperat-
ing are delivered to other cooperators more than to selfish individuals.
In principle, assortative interactions could be supported by individually
adapted traits without physical grouping. But this possibility seems to
be ruled-out because any ’marker’ that cooperators used for this purpose
could be adopted by selfish individuals also. However, here we show that
stable assortative marking can evolve when sub-populations at different
evolutionarily stable strategies (ESSs) are brought into contact. Inter-
estingly, if they are brought into contact too quickly, individual selection
causes loss of behavioural diversity before assortative markers have a
chance to evolve. But if they are brought into contact slowly, moder-
ate initial mixing between sub-populations produces a pressure to evolve
traits that facilitate assortative interactions. Once assortative interac-
tions have become established, group competition between the two ESSs
is facilitated without any spatial group structure. This process thus il-
lustrates conditions where individual selection canalises groups that are
initially spatially defined into stable groups that compete without the
need for continued spatial separation.

1 Introduction

The perspective of group selection is often used to explain altruistic behaviour.
Sober and Wilson provide the definition that ‘a behaviour is altruistic when it
increases the fitness of others and decreases the fitness of the actor’ [1], which
can appear unsupportable by traditional theories of natural selection as echoed
by Dawkins [2], who claims that for any gene to survive they must promote
themselves at the expense of others. A gene which supports altruistic behaviour
would quickly be exploited to extinction by selfish cheaters.

As such selfishness can be described as an Evolutionarily Stable Strategy
(ESS). A behaviour is considered to be an ESS if when all individuals within a
population adopt a particular behavioural strategy no other type can successfully
invade [3]. Altruism is therefore not an ESS since it can be invaded by cheats
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who will exploit the benefit awarded to them and not reciprocate. For natural
selection to occur at any level, there must exist a fitness variance between entities
[4], where an entity can be an individual or a group composed of individuals
forming a meta-population. In this one ESS system all groups will move towards
a situation where every individual holds the same behaviour, resulting in no
variance for natural selection to act upon.

Wilson [5] uses groups comprised of altruists and cheaters to provide a setting
in which altruism can prevail. Each group reproducing individually would ulti-
mately be drawn towards the one stable attractor which is the all selfish ESS,
but groups are dispersed prior to this occurring and the progeny are mixed.
New groups are composed of random samples and the aggregation and dispersal
process is repeated indefinitely. Since groups which contain more altruists grow
at a faster rate than groups composed of majority cheats, the effect is that the
net proportion of altruists rises. However, when practically assessing the model
it is found that between group variance in the frequencies of cheats and selfish
types is required to be extremely high, and as such a stronger effect is observed
through taking an extremely small sample of the population when creating each
new group in the aggregation process. This limit of small group sizes coupled
with the aggregation and dispersal movement limits the applicability to real
world situations. Although the conditions for such altruism to evolve are restric-
tive, Powers et al. [6] have investigated how these conditions can in fact arise by
evolution of individual traits that modify aspects of population structure, such
as group size.

Wilson [7] studies group level selection in complex meta-communities. His
model shows how individuals detrimental to local community productivity can
be purged through selection at the community level. This is an example of a
multi-ESS system, for the internal community dynamics have many attractors
(ESSs) and proves to be more effective than previous altruist/ cheat models,
since between-group variance could be preserved even when the groups reached
an internal equilibrium. Such a form of group selection is also explored by Boyd
and Richerson who consider selection acting among multiple ESSs [8], where
each group reaches an ESS holding an inherent fitness thus providing a between
group variance. Through competition with other groups based upon a migratory
process, the ESSs compete and some are forced into extinction as groups reach
the point of highest individual fitness. Their model does not consider the forces
which give rise to these groupings, even though they are able to illustrate the
selection processes which act at the group level.

We are interested in situations where a form of group selection can occur which
is not restricted by the need for constant spatial segregation. Consider a scenario
where two spatially separated sub-populations develop different behaviours, A
and B, which are both ESSs. The sub-populations are then slowly brought into
contact, perhaps through natural expansion of each of the sub-populations.
One of these behaviours, say A, even though it may have been intrinsically fit-
ter than B, may be lost when the two populations are brought into contact be-
cause it fares poorly in interaction with B, because B may be more numerous. In
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principle, if individuals within the two sub-populations evolved distinguishable
markers, such as the secretion of a unique, identifiable chemical which correlated
with behaviour and promoted assortative interactions then competition between
the groups would be enabled when the two are brought into contact. That is, al-
though A loses to B, A-A wins in interaction with B-B. This would mean that
the two sub-populations had formed higher-level units of selection.

A model provided by McElreath, Boyd and Richerson [9] in the domain of cul-
tural evolution shows that individual selection can evolve markers that are corre-
lated with behaviour and promote assortative interactions. Their work does not
address the notion that such marking facilitates higher-level selection - they are
interested in the promotion of stably coexisting (ethnically marked) groups. But
we show that the conditions they illustrate for evolving behaviourally-correlated
markers are also suitable to thereby facilitate inter-group competition.

2 A Model of the Evolution of Assortative Markers
under Some Degree of Spatial Segregation

Our model is founded upon the work of McElreath et al [9]. We describe individ-
uals as exhibiting a behaviour, labelled A and B, and a ‘marker’ trait, labelled 1
and 2. This can be interpreted as an externally apparent phenotype used for the
purpose of facilitating assortative interactions (as per Boyd et al’s work [10]) or
any other trait which has the effect of producing assortative interactions, such
as a habitat preference [11].

Upon initialization individuals are distributed between two sub-populations,
and we start from the scenario where each is already at a stable A or B ESS. The
algorithmic operation of the model for each subsequent time step is as follows:

1. Interactions - All individuals interact with each other within the same
sub-population in a coordination game with a payoff matrix as shown in
table 1.

Table 1. Payoff matrix for interactions between individuals harbouring either be-
haviour A or behaviour B. This system exhibits both A and B as ESSs.

A B
A 1 + δ + α 1
B 1 1 + δ

An individual interacting with another holding the same behavioural trait
will enjoy an advantage, δ but only the marker can influence which other
individual is likely to be interacted with. A parameter e describes assortativ-
ity, or marker strength - the probability that an individual will interact with
another possessing the same marker. When e=1 individuals will only inter-
act with others of the same marker as themselves, and when e=0 individuals
interact totally randomly with no reliance upon marker.
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2. Reproduction - The proportions, N, of each marker, i, and behaviour, j,
within the next generation of individuals changes according to equation 1,
where

∑
Wij is the total payoff awarded to each behaviour/marker type (A1,

A2, B1 and B2) and W̄ij is the average payoff awarded to individuals of that
type.

Nij =
∑

Wij

W̄ij
(1)

3. Migration - Prior to being brought together, there is a degree of migration
between the two groups, represented by the parameter m. This relocates a
random proportion of each group to within the other, thus representing a
metric of spatial segregation. Groups at a value of m = 0 implies that no
migration exists as groups are completely segregated, and a larger value of
m (maximum 0.5) represents a freely mixed population.

In order to generate a between group fitness variance, A-A interactions are given
an additional payoff bonus α, and groups are brought into a competitive state
by bringing the sub-populations together after a fixed period by setting the
inter-group migration to a maximum, m = 0.5.

3 Exploring the Behaviour of Two Sub-populations

It would of course be possible to set up the initial conditions of the two groups
such that markers correlated with behaviours will be reached regardless of in-
teraction. However, we set the initial conditions of the sub-populations such
that they have different behaviours in the majority and the same marker in the
majority. This means that without some selective pressure to cause markers to
diversify, both groups will have the same marker and assortative interactions will
not be possible. We also set the size of one sub-population to be slightly larger
than the other - the sub-population with the inferior behaviour - for similar
reasons. That is, we want to identify conditions where the superior behaviour
prevails despite being initially disadvantaged. We will refer to this correlation of
marker/ behaviour pairs as the evolution of assortative markers.

The simulation was run with the initial parameters shown in table 2, and as
will be seen the values of e and m will come under further investigation so these
are not fixed.

Crucially groups are initialised such that if the initial migration rate is too
high then the B behaviour will overwhelm as before markers have evolved in the

Table 2. Parameters used for the simulation process

Parameter Value Parameter Value
Sub-population 1 Prop. 1 Marker 0.9 Sub-population 2 Prop. 1 Marker 0.6
Sub-population 1 Prop. 2 Marker 0.1 Sub-population 2 Prop. 2 Marker 0.4
Sub-population 1 Size 2000 Sub-population 2 Size 3800
Like-for-like payoff, δ 0.5 A-A payoff bonus, α 0.1



Moderate Contact between Sub-populations Promotes Evolved Assortativity 49

system due to the larger sub-population 2 holding a higher majority of B type.
If the migration rate is too low then assortative markers will not evolve despite
sub-populations being behaviourally marked. Under these conditions should as-
sortative marking occur, if one of the sub-populations was going to go to the
marker 1, we would expect it to be sub-population 1.

When groups are freely mixed after an initial partial mixing phase, we would
expect the ultimate results to be predictable through observing the basins of
attraction shown in figure 1. If markers have not been able to evolve (for exam-
ple from a zero migration rate) then we would expect the distribution of each
marker type in a sub-population to be random as frequencies would drift. The
ultimately winning strategy would be B as when the sub-populations are mixed,
the majority - 65% - of the newly formed group would be from the all-B group
2, and this would overwhelm any advantage which A-A receives which would be
unable to successfully interact assortatively.

If the migration rate is too high then all individuals in both sub-populations
will become type B due to the initial majority of behaviour Bs in the entire
population, and so the mixed group would then already be at the all-B attractor.
However, if assortative markers have evolved then at e = 0.5 despite only 35%
of the mixed group being A1 type, the resultant attractor is expected to be A1
as figure 1(b) shows.
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Fig. 1. Relative fitness of A1 and B2 type when in competition in a single population.
The line indicates the lowest initial proportion of A1 type required for A1 to reach
fixation.

Figure 2 illustrates system behaviour for a fixed e = 0.5 and varying migration
rates. Figure 2(a) introduces a metric of the polarisation of marking present
within the sub-populations as the linkage disequilibrium of marker and behaviour
after an appropriate period of mixing. A higher value shows assortative markers
have evolved, and 0 shows that such marking has not occurred. It is clear that a
region exists where a degree of spatial segregation enables the evolution of such
assortative marking.
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Fig. 2. a) Analysis over a range of spatial segregation values, when e = 0.5, displaying
marker/ behaviour covariance evolved with spatial segregation after 600 time steps,
averaged over 20 runs b) Resulting proportion of A1 types which went on to reach
fixation determined from an average of the same 20 runs

Figure 2(b) shows the proportion of runs when the groups were then brought
together and the A1 behaviour type went on to reach fixation and drive the
B2 behaviour extinct. Again we see that there is a region where A1 is able to
outcompete B2 - and this corresponds to the region of polarised markers.

Taking single points from the graph in figure 3, we can observe the internal
behaviour between the two sub-populations which leads to the results shown:

– No initial contact, m = 0.0, shows that because the migration rate is zero
there is no pressure for markers to evolve, so when the groups are brought
together the effect is that B behaviour types overwhelm A behaviour.

– Moderate contact, m = 0.01, shows that although sub-population 2 starts
with marker 1 in the majority, there is a pressure not to interact with mi-
grants of majority A1 type from sub-population 1. This causes marker 2 to
cross over and become marked with behaviour B. When sub-populations are
freely mixed this results in A1 winning.

– High contact, m = 0.2, shows that B behaviour fixates within the entire
population due to the higher migration rate, and again there is no pressure
for markers to evolve. Accordingly the resultant ‘winner’ is non-polarised
behaviour B.

4 Discussion

We have shown that, as per McElreath et al’s work, a small amount of initial
mixing between sub-populations that exhibit different behaviours can produce a
selective pressure to favour the evolution of markers that are correlated to those
behaviours. No mixing and the markers have no function, too much mixing and
one of the behaviours is lost before markers evolve; but a period with a small
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Fig. 3. Illustrating interactions with varying initial contact between sub-populations.
Sub-population 1 (above) is fixed at size 2000, and sub-population 2 (below) is fixed
at size 3800. At t=600 the sub-populations are mixed through setting inter-group
migration to maximum, resulting in the domination of one behaviour.

amount of mixing produces this effect. In essence, this occurs because it enables
a period where weak indirect selective pressures on markers can be felt, whilst
precluding the strong selective pressures on behaviours that would lose diversity
before the markers have evolved. This effect means that partial spatial segrega-
tion between sub-populations (but not complete segregation) enables individuals
to evolve behaviours that reinforce within-group interactions and we show that
the assortative interactions that result facilitate competition between groups
when increased mixing occurs. The evolution of markers in this way can be seen
as construction of an individual’s social environment [12]. Group selection can
be facilitated by such a process, as shown here and in other work [13,14].

In conventional altruist/ cheat dynamics involving the evolution of assortative
markers there exists a possibility of cheats evolving the phenotypic altruistic
marker, such as a green beard [2], signalling altruistic intent without actually
posessing a cooperative gene. Because this model holds multiple stable ESSs
the issue of cheating does not occur, as an individual falsely advertising its’
behaviour would receive a lower payoff than if it had been honest.

This model illustrates very simple conditions where individual selection can
favour the evolution of traits that support between-group competition. Accord-
ingly, from one point of view, the expectation that individual selection cannot
create significant group selection is shown to be false. But, from another point
of view, one which takes into account both individual selection on markers and
behaviours under these spatial conditions - individual selection explains the out-
comes we observe. Indeed, if there were not the case, we would not have provided
an evolutionarily explanation at all. Nonetheless, because the markers are differ-
ent from behaviours in that they only have fitness consequences via their indirect
effects on the assortativity of behaviours - we argue that a two scale selection
theory is conceptually useful.
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Abstract. The question of how cooperative groups can evolve and be
maintained is fundamental to understanding the evolution of social be-
haviour in general, and the major transitions in particular. Here, we
show how selection on an individual trait for group size preference can
increase variance in fitness at the group-level, thereby leading to an in-
crease in cooperation through stronger group selection. We are thus able
to show conditions under which a population can evolve from an initial
state with low cooperation and only weak group selection, to one where
group selection is a highly effective force.

1 Introduction

Understanding how cooperative social groups can evolve and be maintained is
a major challenge in both artificial life [1,2] and evolutionary biology [3,4]. In
particular, work on cooperative group formation has gained an impetus in recent
years through a recognition of the major transitions in evolution [5], and the
corresponding realisation that cooperation can be a driving force in evolution and
not a mere curio [6]. The major transitions include the evolution of multi-cellular
organisms from single cells, and the evolution of societies from solitary organisms.
In these transitions, lower-level entities (single cells, solitary organisms) formed
groups and donated part of their personal fitness to contribute to shared group
success, to the point where cooperation amongst the lower-level entities was so
great that the group ultimately became an individual in its own right [5,6] (e.g.,
somatic cells give up independent reproductive rights in multi-cellular organisms,
likewise for sterile workers in eusocial insect colonies). Such transitions therefore
represent premier examples of cooperative group formation. From the viewpoint
of artificial life, understanding the mechanisms behind these transitions, and
cooperative group formation more generally, may help us to understand the
evolution of increased complexity [1,7], and to create applied systems where the
evolution of a high degree of cooperation is supported [2].

The key difficulty that any explanation for the evolution of cooperative groups
must overcome is this: if performing a group-beneficial cooperative act entails
some cost, then why should an individual donate a component of its own fitness
in order to contribute to the success of its group? Surely selfish cheats who do
not themselves cooperate but instead simply reap the benefits of other group

G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part II, LNCS 5778, pp. 53–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



54 S.T. Powers and R.A. Watson

members’ cooperation should be expected to be fitter, for they receive all of the
group benefits whilst paying none of the individual costs. However cooperation
can nevertheless evolve, even in the face of selfish cheats, if there is competition
and hence selection between groups [8]. This is because groups with more co-
operators will, all other things being equal, outcompete other groups that are
dominated by selfish individuals. In this way, selection acting between groups
provides an evolutionary force favouring cooperation. However, because selfish
cheats still enjoy a relative fitness advantage within each group through free-
riding, any between-group selection for cooperation is opposed by within-group
selection for selfishness. In such a scenario selection is therefore multi-level, oper-
ating both within- and between- groups. The degree to which group cooperation
evolves then depends on the extent to which selection between groups is stronger
than selection within groups [8].

However, it is commonly held that the conditions under which between-group
selection can overpower within-group selection are rather limited [9]. In partic-
ular, there must be a high variance in the proportion of cooperators between
different groups, such that some groups contain many more cooperators, and are
hence much more productive, than others. One way that this variance can be
generated is if groups are formed assortatively, such that cooperators tend to
form groups with other cooperators. This could happen, for example, if groups
were founded by kin [10], for the genealogical relatives of a cooperator will them-
selves tend to be cooperators. Another way a high between-group variance can
arise is if groups are founded by individuals sampled at random from the global
population, but the number of founding individuals is small [11]. In this case the
groups will start out as small, unrepresentative, samples of the population and
so will tend to have a high variance. Selection at the group-level will be more
effective as a result of this increased variance, and the increased effect of group
selection would lead to greater cooperation. However, the initial group size must
typically be very small if significant group-level variance and hence selection is
to be generated by this mechanism.

We consider here how such groups with high variance, and that are conse-
quently much affected by group selection, can evolve from an initial population
where between-group variance is low and group selection weak. In order to do
so we relax an assumption that is present in nearly all other multi-level selec-
tion models, namely, that initial group size must remain fixed over evolutionary
time. Rather, we consider here the possibility that many organisms across all
taxa may be able to influence the size of their group to some extent, through
genetically coded (individual) traits. As an example, bacteria living in biofilms
have a trait that controls the amount of extracellular polymeric substance that
they secrete [12]. Since this substance allows bacterial cells to bind together, the
amount produced could influence microcolony (group) size. In our model we then
consider the evolution of both a group size preference trait such as this, and a
behavioural trait that determines whether an individual cooperates or not, such
that both traits evolve concurrently. If smaller groups lead, through increased
group selection, to increased cooperation then individuals with a preference for
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founding smaller groups could potentially be selectively favoured, for they would
experience a greater frequency of the benefits of cooperation in their groups and
hence be on average fitter.

In our previous work [13] we showed that, in principle, individuals with a
preference for a group size very much smaller than the current size could in-
vade if they arose in a sufficiently high frequency. Such a sudden, large, decrease
in group size is easier to evolve, since the increase in cooperation is greater if
there is more of a decrease in group size. However, if group size decreased grad-
ually, which seems a more plausible evolutionary mechanism, then it is not clear
whether there could be sufficient immediate individual benefit to be selectively
favoured. Here, we examine conditions under which groups of a smaller initial
size can in fact evolve from larger ones, simply through gradual unbiased muta-
tions on individual size preference, even when there are some other advantages
to being in a larger group (e.g., better predator defence, access to resources that
a smaller number of individuals cannot obtain [14]). We find that large jumps in
size preference, as modelled by our previous work, are not required under (neg-
ative) frequency-dependant within-group selection. Consequently, this process
can provide a gradualist explanation for the origin of cooperative groups.

2 Modelling the Concurrent Evolution of Initial Group
Size and Cooperative Behaviour

The simulation model presented here considers a population structured as fol-
lows. Individuals reproduce within discrete groups for a number of generations,
before individuals in all groups disperse and form a global migrant pool (dis-
persal stage). New groups are then formed by a uniform random sampling of
individuals from this migrant pool, and the process of group growth, dispersal,
and reformation repeats. Selection within groups occurs during the group growth
stage, where individuals reproduce and have fitness-affecting interactions with
other group members (i.e., selfish individuals will have more offspring than co-
operators within that same group). On the other hand, selection between groups
occurs at the dispersal stage, since those groups that have grown to a larger size
(i.e., those with more cooperators) will contribute more individuals to the mi-
grant pool. This kind of population structure is very similar to that considered
in some classical group selection models [15,11,10], and especially fits organ-
isms that live on temporary resource patches which become depleted, thereby
periodically forcing dispersal and the formation of new groups.

Unlike previous models, we give individuals a genetically coded initial group
size preference. An individual genotype then contains two loci: the first codes
for cooperative or selfish behaviour, the second for an initial group size prefer-
ence. Mutation on these loci happens after the dispersal stage; double mutations
within a single organism are not allowed. Mutation at the size locus is done
by adding or subtracting 1 to the current size preference (with 50% probability
each); mutation at the behaviour locus is done by swapping to the other be-
haviour. Groups are formed randomly with respect to behaviour (cooperative



56 S.T. Powers and R.A. Watson

or selfish), but assortatively on size, such that individuals with a preference for
smaller groups tend to, on average, find themselves in such groups, likewise for
individuals with a preference for larger groups. This is implemented by creating
a list of individuals in the migrant pool sorted ascendingly by their size pref-
erence. Individuals from this list are then added in order to a group, until the
size of the group exceeds the mean preference of the group members, at which
point a new group is created for the next individual and is populated in the same
manner. An algorithmic overview of the model is as follows:

1. Initialisation: Let the migrant pool be the initial population.
2. Group formation: Assign individuals in the migrant pool to groups.
3. Reproduction: Perform reproduction and selection within groups for a

fixed number of generations, using the fitness functions defined below.1

4. Dispersal: Place all individuals into the migrant pool.
5. Mutation: Mutate individuals in the migrant pool.
6. Iteration: Repeat from step 2 onwards until and equilibrium is reached.

2.1 Within-Group Selection: Snowdrift and Prisoner’s Dilemma
Games

To model within-group selection and reproduction, we assume that group mem-
bers have fitness-affecting interactions with each other as defined by the payoff
matrix in Table 1, where b is the benefit of cooperating, and c the cost. If b > c
then this represents the Snowdrift game [16], where a coexistence of cooperative
and selfish individuals is supported at equilibrium in a freely-mixed population,
since both types enjoy a fitness advantage when rare. Such an equilibrium co-
existence of behaviours can occur if cooperators are able to internalise some of
the benefits of cooperating. For example, if cooperation involves the production
of a public good, then cooperators may be able to keep a fraction of the good
they produce for themselves [17]. Where this occurs cooperators will receive, on
average, a greater per capita share of the benefits of cooperation, giving them
a fitness advantage. However, if the benefit of cooperation becomes discounted
with additional cooperators, but the cost remains the same, then selfish individ-
uals will become fitter as cooperators increase above a threshold frequency [17].
The Snowdrift game is thus a model of negative frequency-dependent selection
leading to a mixed equilibrium; there is a growing realisation that this type of
dynamic occurs in many biological systems [16,17]. It should be stressed that
despite an equilibrium coexistence of behaviours, it is still the case that mean
fitness would be higher if all individuals cooperated. This then means that if the
game is played in a group structured population, groups with more cooperators
will still be fitter than those with less. Group selection can, therefore, still further
increase the global frequency of cooperation.

For c > b > c/2, the payoff matrix in Table 1 yields the classical Prisoner’s
Dilemma [16], where selfish individuals are always fitter and cooperators are

1 We rescale the groups after each generation to maintain a constant population size.
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Table 1. Payoff matrix for within-group interactions

Cooperate Selfish

Payoff to Cooperate b− c/2 b− c

Payoff to Selfish b 0

driven extinct at equilibrium in a freely-mixed population. Again, however, mean
fitness would be higher if all individuals cooperated. We generalise the structure
of this 2-player payoff matrix to a group of n players by multiplying the payoff
matrix by the proportion of behaviours within the group, as is standard when
forming a replicator equation in evolutionary game theory; in our model this
corresponds to treating each group as a separate freely-mixed population. Doing
so yields the following fitness equations, where wc is the fitness of cooperators, ws

the fitness of selfish individuals, p the proportion of cooperators within the group,
w0 a baseline fitness in the absence of social interactions, and σn a sigmoidal
function that provides a benefit depending on group size n, as described below:

wc = p
(
b − c

2

)
+ (1 − p) (b − c) + w0 + σn

ws = pb + w0 + σn

σn =
β

1 + e−μn
− β

2

σn is a sigmoidal function which takes in as input the current group size, and
has as parameters a gradient μ (which determines how quickly the benefit tails
off as the group gets larger), and a maximum fitness benefit β. This provides
what is known in ecology as an Allee effect, whereby there is an advantage in
number when groups are small, but as the group grows this is overwhelmed by
the negative effects of crowding, i.e, the effect saturates with increasing size [14].

3 Results

We investigate here the conditions under which an individual preference for
groups of a smaller initial size can evolve, and lead to greater group selection
and cooperation. In all cases, we start all individuals out with the same size
preference (20), and then consider the evolutionary dynamics that occur through
mutation and selection. The initial frequency of the cooperation allele is taken
to be the global equilibrium frequency in the model that occurs if group size was
fixed at the starting size. We then record the changes in mean initial group size
and global proportion of cooperators over time. A particular focus of this study is
to contrast the effects of within-group selection modelled on the Snowdrift versus
the Prisoner’s Dilemma game. We set b/c = 1.1 to yield the Snowdrift game, and
b/c = 0.9 to produce the Prisoner’s Dilemma . The following parameter settings
were used throughout: 3 generations within groups prior to dispersal, w0 = 1,
mutation rate 1%, 90% of mutations on the size locus, and population size 1000.
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We initially considered a case where there is no intrinsic advantage to larger
groups (i.e., set σn = 0). We found that given time for a sufficient number of
mutations to accumulate, a population could evolve down to an initial group
size of 1, and 100% cooperation, from a large range of initial conditions. The
reason initial group size tended towards size 1 is that when there is no intrinsic
benefit to larger groups, such an initial size maximises cooperation and hence
absolute individual fitness. A representative example of the population dynamics
is shown in Fig. 1. Interestingly, our results show that a selective gradient towards
smaller groups does not always exist at the start; although it was present in the
Snowdrift game, in the Prisoner’s Dilemma the process relied on genetic drift
until such a time as very small groups were created. This drift can be seen by
individual size preferences spreading out in both directions at the start, whereas
in the Snowdrift game the mass of the population moved in one direction, thus
showing the presence of an individual selective gradient favouring smaller groups
from the outset.
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Fig. 1. Change in group size preference under Snowdrift and Prisoner’s Dilemma games
(lighter shades = greater frequency in population)

Next, we considered the case where there is an intrinsic advantage to larger
groups (σn parameters: β = 1 and μ = 0.4) . In such cases, the optimum initial
group size (in terms of absolute individual fitness) is a trade-off between the
benefit of cooperation and the intrinsic advantage to larger groups. It will thus
be greater than 1, but not so large as to prevent any significant between-group
selection and hence cooperation: using the parameters here, the optimum is 4.
The question is then whether this optimum size can be reached by mutation.
Figure 2 shows a representative case in which mean group size decreases to the
optimum in the Snowdrift, but not Prisoner’s Dilemma, game. The reason size
preference cannot decrease in the Prisoner’s Dilemma is that drift can no longer
be effective if there is an intrinsic advantage to larger groups, for the advantage
of larger groups provides a selective pressure away from small. By contrast, in
the Snowdrift game a counter selective gradient towards smaller groups and in-
creased cooperation exists from a much larger range of initial conditions. This
counter gradient is provided by the benefits of increased cooperation that can
be realised in smaller groups due to increased group selection. In the Prisoner’s
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Fig. 2. Allowing for some benefit to larger groups. Left and centre: change in group
size preference (lighter shades = greater frequency). Right: proportion of cooperators.

Dilemma there is no such gradient because group selection is completely ineffec-
tive over much of the parameter space, and so a small mutation on size would
not lead to any increase in cooperation.

The existence of a selective gradient over a larger range of parameters follows
from the fact that the Snowdrift game maintains a low frequency of cooperators
at (group) equilibrium. Consequently, because one type cannot be driven extinct
there is always the possibility that group-level variance can be generated when
the groups are reformed, even when groups are large, as shown in some of our
previous work [18]. As a result, moving to a slightly smaller group size can further
increase this variance, and allow increased group selection and a subsequent
increase in cooperation. By contrast, in the Prisoner’s Dilemma game moving
to a slightly smaller group size would not increase the effect of group selection
over much of the parameter space, for cooperators are driven extinct over a large
range of group sizes, thereby destroying the possibility of any group variance.
Where this occurs, there cannot be selection for a smaller group size, and so
the process must rely on drift, which cannot overcome an intrinsic advantage to
larger groups. Our results therefore demonstrated that the evolution of smaller
initial group size and greater cooperation is much more plausible if within-group
selection takes the form of a Snowdrift game.

4 Concluding Remarks

Many of the major transitions involved the evolution of mechanisms that in-
creased variance and hence selection at the group level, thereby allowing a high
degree of cooperation between group members to evolve [6]. One such mechanism
could be a reduction in initial group size. For example, multi-cellular organisms
are themselves cooperative groups of individual cells. Most multi-cellular organ-
isms develop from a single cell, and it has been argued that this evolved at least
partly because it increased between-organism (cell group) variance, and hence
increased cooperation between individual cells within the organism [5,6]. We
have shown here how selection on an individual trait can lead to the evolution
of increased variance in fitness at the group level, and hence a rise in coop-
eration between group members through increased group selection. Our results
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demonstrated that such a process is much more plausible if negative frequency-
dependent selection, as modelled here by the Snowdrift game, operates within
groups.

Acknowledgements. Thanks to Alex Penn and Seth Bullock for many discus-
sions, and Rob Mills for feedback on the manuscript.
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Abstract. Data show that human-like cognitive traits do not evolve in animals 
through natural selection. Rather, human-like cognition evolves through 
runaway selection for social skills. Here, we discuss why social selection may 
be uniquely effective for promoting human-like cognition, and the conditions 
that facilitate it. These observations suggest future directions for artificial life 
research aimed at generating human-like cognition in digital organisms.  

Keywords: artificial intelligence, sociality, evolution, social selection, 
Machiavellian intelligence. 

1   Introduction 

One of the most ambitious goals of Artificial Life research is the development of a 
digital organism that exhibits human-like cognitive behaviour [1, 2]. Such human-like 
behaviours include creative innovation, tool manufacture and use, self-awareness, 
abstract reasoning, and social learning [3-6]. Early researchers in artificial intelligence 
(AI) hoped that human-like cognition would rapidly emerge from AIs endowed with 
inference systems and explicit symbolic representations of their universe [2]. They 
were too optimistic. These inference systems, composed of search strategies and 
formal logic, provided good solutions in domains with semantics of limited 
complexity, such as games, mathematical problems and other formal systems, as well 
as simple model worlds [7] [8]. However, they failed to exhibit any useful intelligence 
in real-world settings [1]. 

Biomimicry is the development of engineered designs using biological principles. 
In the 1980s Brooks [9] and others argued that the true challenge of AI was to 
engineer systems that exhibit not human-like, but insect-like intelligence: a robust 
capability to perceive and respond in complex and dynamic environments. This view 
sparked many advances in areas such as machine learning, evolutionary computation 
and artificial life. Yet despite these advances, an engineered design for a human-like 
cognition remains elusive [1]. While many new systems perform well in specialised 
applications in complex environments, the integration of low-level behavioural 
intelligence and cognitive reasoning appears to hit a complexity wall [1].  

We propose that evolutionary in-silico techniques may provide a way around the 
complexity wall by recreating conditions that promote human-like cognition in 
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animals. Empirical and theoretical studies are approaching consensus on both the 
features associated with human-like cognition in animals, and the evolutionary 
conditions required [3-6]. These studies imply that our cognitive abilities are not a 
collection of independent traits, but a predictable product of selection in specific 
social environments. This view is termed the social brain or Machiavellian 
intelligence hypothesis [10, 11]. We discuss how social brain evolution may be 
embodied in a model system to develop human-like cognition in a digital context. 

2   Patterns in the Evolution of Human-Like Cognition 

Numerous studies show that large brains are strongly associated both with human-like 
cognition and with specific social systems and behaviours, but only weakly related to 
ecological factors. Thus, human-like cognition evolves as a social, not ecological, 
adaptation. Today, this view is widely accepted for primate cognition; recent reviews 
also support extending it to other taxa [3, 6, 12-15]. 
 
Brains and ecology. Relative brain size (brain-body mass ratio) differs dramatically 
among species. Among mammals, exceptionally large brains occur in primates, 
cetaceans (dolphins and whales) [6], and carnivores [12, 16]. Most bird brains are 
larger than those of comparable mammals, with the largest non-primate brains 
occurring in parrots and corvids (crows, jays and magpies) [13, 17, 18]. Ecological 
selection does not account for these patterns [17, 19-21]: why should birds need 
bigger brains than mammals? Why should seed-eating parrots need extremely large 
brains? Physical capacity for complex, flexible behaviour also seems unrelated to 
brain size: brain size and forelimb dexterity are uncorrelated in terrestrial carnivores 
[16], and handless dolphins are second only to apes in relative brain size [6]. 
 
Brains and social system. The idea that sociality might drive brain evolution was 
first proposed in the mid-twentieth century [19, 22, 23], but only recently attained 
wide acceptance [4]. In contrast to the diverse ecologies of large-brained animals, 
their social behaviour is strikingly similar. Large-brained vertebrates interact with 
unrelated adults, forming lasting and powerful social relationships with some [13, 14, 
24]. Most primates, cetaceans and carnivores share fission-fusion group dynamics, 
where coalitions of varying size and stability interact, cooperate and compete [21]. 
Large-brained birds more often form relatively stable socially or genetically 
monogamous pairs [24]. In all of these groups, long-term cooperative relationships 
among unrelated adults powerfully influence reproductive success[24].  

Dunbar [11] noted that group size and relative brain size are strongly related in 
primates, providing the first evidence that selection for social skills may drive the 
evolution of primate cognition. However, studies of other taxa suggested the result 
might be specific to primates: group size in parrots and hoofed mammals does not 
correlate with brain size[3, 25]. Closer attention reveals that the relation holds for 
some non-primates: brain size correlates with social group size in carnivorous and 
insectivorous mammals [26] and cetaceans [6]. However, Emery et al.[24] showed 
that brain size in birds was related to relationship duration, with social monogamists 
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having smaller brains than genetic monogamists. Similarly, hoofed mammals with 
unusually large brains do not aggregate in large, anonymous herds, but form small, 
close-knit social groups with persistent relationships [14].  
 
Brains and human-like cognition. Many aspects of cognition once thought to be 
confined to humans have now been documented in a range of species. For example, 
elephants [27], dolphins [28], corvids [29] and apes can recognize themselves in 
mirrors, a classical test of self-awareness (although one that favours visually-oriented 
animals). Social transmission of learned behaviour is also seen in these animals, 
allowing simple forms of cultural evolution [30]. Creative tool-making and tool-use 
have also been observed in many of these species [15]. Thus, while none of these 
species exhibits human-like technology or complex language, their traits suggest 
evolutionary antecedents to human cognition in diverse groups.  

Surveys of brain structure and size show that the behaviours described above – 
self-awareness, flexible problem-solving, tool manufacture and use, innovation and 
social learning – are consistently associated both with unusually large brains, and with 
specific social behaviours [3, 6, 20]. Large-brained animals show extended parental 
care, mature slowly and are playful even in adulthood [25, 31, 32]. They use sound 
both creatively and playfully, and their songs are wholly or partially learned [33]. 
Positive relationships between relative brain size, tool use, innovation and social 
learning are documented across a broad range of species [5, 6, 13, 20, 34]. In addition, 
early birth/hatching, slow maturation, long lifespan and extended parental care 
correlate with these behaviours and with relative brain size [32].  

Reader and Laland [20] noted that innovation rate and social learning are 
correlated independent of brain size. This result implies that there is no trade-off 
between social and asocial learning; rather, social cognition provides general 
cognitive benefits. The same study showed that that social group size does not 
correlate with social learning when other factors are controlled. This observation 
supports the idea that cognitive evolution is not determined by the volume of social 
interactions per se, but rather reflects the importance of personal relationships. 

3   Social Selection on Social Brains 

The dominant explanation for the above observations is a theoretical framework 
termed the social brain hypothesis [4, 10, 22, 23, 35]. A key factor in this framework 
is social selection, which occurs when the fitness of individuals depends on 
interactions with others. Social selection can drive the evolution of dramatic displays 
due to positive feedback which progressively exaggerates signal traits that reliably 
indicate social benefits [36-38]. For most species, the traits relevant to social success 
are primarily physical, so displays reflect individual physical ability. Complex 
strategies may be invoked by social displays without complex cognition, so social 
selection alone need not lead to brain evolution. However, when power is distributed 
in a network of cooperative individual relationships, the ability to manipulate this 
social network may become the target of social selection, resulting in social selection 
for improved cognition (Figure 1). Formulations of the social brain hypothesis vary in 
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their emphasis on social complexity, display, innovation, culture, cooperation and 
cheating. All, however, incorporate these factors in a positive feedback loop that 
drives increases in cognitive ability until resource limits are met. 

The social network is a unique selective environment in that fitness depends on the 
ability to model the minds and relationships of others; as minds and relationships 
become more complex, so do these models [22]. Through social selection for such 
cognitive ability, extreme displays of social skill may evolve, such as humour, artistry 
and song [36]. Increased behavioural flexibility resulting from improved cognition 
may then reduce the influence of ecological selection further [34, 39]. 

Cooperation emerges and persists in restrictive evolutionary conditions [40]; in 
particular, models suggest that it is likely to evolve in viscous social networks where 
repeated interactions allow punishment of non-cooperators [41]. For animals with 
limited cognition, group sizes that are too large to recall individual interactions 
undermine cooperation. Competition, however, is more intense when there are more 
competitors. Consequently, it seems plausible that social selection and selection for 
cooperative relationships combine most forcefully at group sizes and interaction rates 
that are as large as possible for cooperation to evolve given existing cognitive limits. 
This observation may explain why species that live in medium-sized groups often 
have the largest brains. 

 

 

Fig. 1. Conceptual model for the evolution of human-like cognition through social selection. 
When fitness is determined by social interactions, selection for social skills drives the evolution 
of displays of cognitive ability in a positive feedback loop which is ultimately inhibited by 
external resource limitations. 

Long-term relationships also appear crucial to the evolution of human-like cognition 
[6, 14, 24]. Social choices made without relationship commitment have immediate 
consequences but can be easily modified. In contrast, relationships that require large 
investments impose strong selection for appropriate partner choice; this may be  
why birds that are genetically rather than socially monogamous have larger brains 
[24]. A ubiquitous feature of long-term relationships is courtship. Courtship involves 
playful and coordinated display activities such as dancing, duets, and mutual 
grooming; it seems likely that these activities allow animals to assess the value of 
social investment [31].  
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4   Evolving Artificial Human-Like Cognition 

The results described in Sections 2 and 3 imply that features of human-like cognition 
are likely to evolve only when populations are faced with: 

- A complex network of social interactions 
- Selection for social status 
- Ability to communicate to other member of the social network 
- Ability to observe other members of the social network and their actions 

 

Possible ways to instantiate these features in artificial life are suggested below. 
 

Individuals. In most animals, cognition is performed by natural neural networks. 
Thus, one option is to represent individuals using an artificial neural network. 
However, as discussed in section 3, in most animals these networks evolved, not for 
abstract reasoning, but to channel responses to specific stimuli. Clearly, brains can be 
used for human-like cognition, but some functions may be prerequisite. This may 
include ability to represent objects, associative memory, communication, basic 
empathy, and others. Natural evolution of such functions took a very long time, and 
may be extremely complex. Including pre-wired components that can perform such 
basic functions may facilitate evolution of more interesting properties. 

Artificial neural networks are not the only possible choice to perform cognition. It 
has been shown that artificial life (although not intelligent) can arise in a universe of 
co-evolving computer programs (e.g. [42, 43]). Logical and probabilistic systems can 
also exhibit limited representational thinking (see review by [44]). Combining such 
techniques with evolutionary systems may yield an appropriate representation.  

The genotype representation in the model must support phenotypes of varying size 
and complexity. Lenton and Oijen [45] define a hierarchy for intrinsic control 
dynamics in adaptive systems. In their terms, the representational system for 
individuals must exhibit at least the third order of control. Second order systems with 
fixed representational structure may show learning capabilities in specific domains, 
but are not expected to develop open-ended cognition. 
 
Fitness. Reproductive success (fitness) must be based on the social standing of an 
individual relative to its peers. One way to do this is to supply every newborn 
individual with a unit amount of an abstract resource R. This represents the amount of 
social status it can confer on other individuals. Throughout its lifetime, an individual 
contributes to the social status of its peers by supplying them with an arbitrary 
proportion of R. An individual must share the entire unit amount of R during its life 
time, but cannot share R that it received from other individuals (it cannot pass on 
respect received from others). The social status (relative fitness) of an individual is 
determined by the total R it receives throughout its lifetime. 

 
Environment. We have argued that human-like cognition evolves only when 
selection targets social network skills. In social selection, individuals must perceive 
the actions of others (such as donating R or communicating a statement). In the real 
world, perception depends on individual location, but allowing perception to be 
determined by social network proximity seems sufficient for the current model. 
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Communication. Without a physical environment there is no explicit communication 
channel in the model universe. A statement can be encoded as a tuple (S, D, M), 
where S and D are source and destination individuals respectively, and M is a 
message. The role of noise and the circumstances under which a message between S 
and D may be observed by others require further consideration. The encoding of M 
may be critical for the evolution of meaningful communication and of cognitive 
abilities: a particular choice must agree with the representation chosen for individuals. 
Most generally, M may be represented as a bit string with a fixed maximum length. 
Individuals communicate randomly at the beginning of the model evolution, but once 
some individuals begin to be influenced in their actions by perceived communication, 
others will gain a selective advantage from discovering this and from sending specific 
messages. This may lead to evolution of primitive communication - a prerequisite for 
complex social interactions. 
 
Model lifecycle. The system can be initialised with a set of populations, each 
consisting of 10 to 30 individuals created randomly. The lifecycle is based on non-
overlapping generations, each consisting of two phases – competition and 
reproduction. During the competition phase, each individual receives a unit amount of 
resource R. The individuals then communicate by passing messages as described 
earlier. At any time during this phase, an individual may choose to pass on some of its 
R to any other individual. This process continues until all individuals have passed on 
all of their initial R. The reproduction phase then ensues, with individual reproductive 
success proportional to the amount of R received during the competition phase. 
Mutation supplies variation. Existing adults are replaced by juveniles and the 
competition phase ensues for the new generation. 

5   Conclusions 

We have argued that human-like cognitive traits evolve naturally in a restrictive set of 
evolutionary conditions when the social network of an organism is its primary 
selective environment. In particular, organisms that can increase their fitness by 
adaptively and flexibly forming long-term, high-commitment relationships seem most 
likely to evolve large brains, creative innovation, tool use, social learning and abstract 
reasoning. These principles could be embodied in an artificial life system to develop 
human-like cognition in a digital context. 
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Abstract. Searching an area of interest based on environmental cues
is a challenging benchmark task for an autonomous robot. It gets even
harder to achieve if the goal is to aggregate a whole swarm of robots at
such a target site after exhaustive exploration of the whole environment.
When searching gas leakages or heat sources, swarm robotic approaches
have been evaluated in recent years, which were, in part, inspired by bi-
ologically motivated control algorithms. Here we present a bio-inspired
control program for swarm robots, which collectively explore the envi-
ronment for a heat source to aggregate. Behaviours of young honeybees
were embodied on a robot by adding thermosensors in ‘virtual antennae’.
This enables the robot to perform thermotaxis, which was evaluated in
a comparative study of an egoistic versus a collective swarm approach.

1 Introduction

1.1 Motivation and Problem Formulation

Eusocial insects are fascinating and inspiring group consisting of termites, bees,
and ants, which live in well organized colonies. Colonies of honeybees are pre-
cisely regulated. For example the temperature in the brood nest is kept constant
at approx. 36�C. This is very important for the brood because otherwise this
could lead to disorders in the development or even the loss of brood [1]. One
challenge of a colony of honeybees in such a hive is, that the bees have to orga-
nize and orient themselves in a temperature gradient without the help of light.
Such a temperature gradient is inhomogeneous and dynamic. This is a compli-
cated challenge, because the antennae of honeybees are close to each other, but
it is solved collectively by the bees [2]. To find a point of a special property,
such as locating a field of heat or a leakage in a gas pipe, is a common challenge
in robotics, especially if the environment is changing over time and no global
gradient points to the target spot. One approach to tackle such challenges is
using a bio-inspired approach, e.g. using a swarm to perform a parallelized and
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coordinated search. Following this idea, swarm robotics [3] emerged from com-
bining autonomous robots with techniques originating from the field of swarm
intelligence [4]. In swarm intelligent systems, the collective of agents performs
decision making without a central unit that decides. As is summarized by [5],
swarm intelligent solutions are robust, flexible, scalable and (computationally)
cheap to implement on the individual. Camazine et. al. [6] showed that these
properties apply also to biological swarms and social insect colonies, which ex-
ploit self-organizing processes to achieve swarm intelligence.

As an example, natural selection sharpened individual behaviour of bees in a
way that colony fitness is maximized. Self-organisation and swarm intelligence
can enhance this colony fitness significantly: In the following, we focus on groups
of young honeybees which are an example of such a swarm-intelligent system.
Young honeybees need a certain environmental temperature. The temperature
in the hive varies usually between 32�C and 36�C while the optimal temperature
for young honeybees is approximately 35�C [7]. This temperature is found at the
brood nest of the hive, which is, preferred by the young honeybees [8]. Former
experiments also showed that a single bee is mostly not able to detect the area
of optimal temperature when the temperature gradient is rather flat [9].

1.2 Derivation of the Bio-inspired Solution

A model was reported in [10], that reproduces this behaviour of young bees
without assuming any explicit communication between the bees. Inspired by the
observed behaviour of young honeybees and based on this model, an algorithm
for a swarm of robots was developed, which enables the robots to find an area
with a special property collectively [2,10]. This typical (swarm) robotic task was
frequently realized based on areas marked by light and using light sensors be-
cause this experiment configuration is supposed to be the technically simplest.
We adopted the algorithm reported in [2] to consider the specific aspects of a
temperature field in contrast to a light gradient field. The algorithm is based
on robot-to-robot approaches. For simplicity we call it the BEECLUST algo-
rithm further on. By using heat instead of light the robots’ environment gets
closer to the original bio-inspired situation young honeybees are faced with.
Due to the fact that heat differs in its physical characteristics compared to
light (e.g., warming up period, thermal diffusion, turbulences in the airflow) we
show here how physical properties of stimuli are reflected in the swarm’s control
algorithm.

The typical engineering approach is very different to this swarm-intelligent
approach: In his book Braitenberg describes algorithms, such as a simple gra-
dient ascent, of robots which are sensitive to the environment [11]. There are
several works describing complex approaches with cooperating sensor networks
and robot groups (e.g., [12]). The sensor network measures the temperature gra-
dient and communicates within the robot swarm. The robots are able to localize
themselves globally and perform a simple gradient ascent. A single robot that
produces heat trails and follows them is reported in [13].
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2 Material and Method

2.1 Hardware and Electronics

For our robot experiments, we needed a small robot with two temperature sen-
sors. A good solution was to upgrade an out-of-the-shelf robot with an according
sensor system. Additional to an extensible I/O-board, the Hemisson robot has
six infrared-sensors, which we used for collision avoidance and for the identifica-
tion of other robots. Three of these sensors point to the front, one to each side
and one to the back. The locomotion is realized by two wheels with a differential
drive system. In addition, we developed a circuit processing the measured tem-
perature. The circuit with temperature sensors is able to detect temperatures in
a range of 140�C. We re-mapped this range to the relevant temperature interval
[10�C, 60�C] of honeybees, represented by digital sensor values on the interval
e ∈ [50, 225]. Our measurements indicate that the sensor’s voltage is approx.
linear within this temperature interval. Using an instrumentation amplifier the
measured signal was amplified for processing the data in an easier way. The ad-
vantage of an instrumentation amplifier compared to the operational amplifier
is that the former is regulated by a single resistor without affecting the circuit.
Fig. 1A shows the Hemisson with the temperature sensors.

Fig. 1. A: Robot “Hemisson” with temperature sensors. B: Temperature sensor of the
Hemisson. C: Robots underneath the heat lamps in the arena.

2.2 Algorithms

Naturally, there are many possibilities to implement the aggregation of au-
tonomous agents at a certain target area. Here, we want to analyze the properties
of the BEECLUST algorithm when working with fields of temperature instead of
light gradients. This bio-inspired algorithm is different from anything that could
be considered to be a standard approach. Actually, it might even be perceived as
counter-intuitive. However, we hypothesize that it is robust and efficient in multi-
robot scenarios. In order to test this hypothesis we compare the BEECLUST to
a rather classic approach of a simple gradient ascent algorithm (GAA).
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BEECLUST Algorithm: BEECLUST is adopted from young honeybees’ nav-
igation behaviour. In principle there are two strategies how young honeybees
find the optimal temperature: In a rather steep gradient field, the individual
behaviour of each single bee is effective and dominates. In a rather flat gradient,
a single bee is mostly not able to find the spot of optimal temperature. The
following group behaviour of young honeybees in such an environment was ob-
served [2]: The bees walk around randomly until they meet another bee. Then
they stop and wait. After a certain time the bees walk around randomly again.
This process forms clusters of bees. The higher the temperature is, the longer the
bees wait. Hence, the cluster sizes and numbers increase over time in the warmer
area whereas they decrease in the colder area. To realize such a behaviour the
robots have to perform several different tasks: random movement, discrimination
between the wall and other robots, avoidance of collisions, measurement of local
temperature and calculation of the waiting time.

Our program on the Hemisson robot mimics the minimal individual behaviour
extracted from honeybees: A robot drives forward until it detects an object in
the front. If this object is an obstacle (e.g., a wall) the robot turns in a ran-
dom direction by a random angle. This turning angle is uniformly randomly
distributed between 40 degrees and 140 degrees in both directions. If the de-
tected object is another robot, the robot stops, measures the temperature, and
calculates the time to wait. The robot-to-robot detection is realized by the help
of passive sensing using infrared sensors. Passive sensing means, in contrast to
active sensing, that no infrared light is emitted. If the sensor receives IR without
emitting IR there is only one possibility: The IR-light was emitted by another
robot. The dependency of the waiting-time on the measured temperature is also
an important factor and is described with a sigmoid curve. The following equa-
tion is used to map the sensor values e to waiting times (for details see [2]):

w(e) =
wmaxe

2

e2 + θ
, (1)

where θ indicates the steepness of the resulting curve. See table 1 for characteris-
tics of the robot and other parameters that were used in this work in comparison
to parameters of the original BEECLUST [2].

Table 1. Parameters

temperature light

speed of the robot 3 cm/s 30 cm/s
range of infrared sensors 4 cm 6 cm
robot size 12× 13 cm 3× 3 cm
max. waiting time wmax 180 s 66 s
interval of the sensor value e [50, 225] [0, 255]
waiting time function offset θ 21,000 7,000



Embodiment of Honeybee’s Thermotaxis in a Mobile Robot Swarm 73

GAA – Gradient-Ascent Algorithm: The GAA represents a simple straight-
forward approach to thermotaxis. The collision avoidance is implemented in the
same manner as described above. The only difference is that there is no robot-
to-robot detection implemented and therefore no waiting-time is calculated. The
GAA works as follows: The robot measures the temperature with a frequency of
two measurements per second. If one sensor reports a difference of temperature
greater than a threshold of 2 in the digital sensor value e (to achieve a certain ro-
bustness against fluctuations), the robot changes its direction and starts to turn
to the warmer area until the difference between the two sensors has vanished.
A difference of 2 units in the digital sensor value corresponds to a difference in
the temperature of about 1�C.

2.3 Setup of the Experiment

Experiment 1: To compare both algorithms we used three Hemisson robots
and built a rectangular arena as shown in Fig. 1C. The arena had a size of
150cm × 120cm. Over the right side of the arena we placed three infrared heat
lamps at a height of 44cm. Each of them had a power of 250 watt. The lamps
generated 30�C in a height of 10cm (where the robots measure the temperature)
above the target area. The ambient air temperature in the arena (where no heat
lamps were) was around 27�C. The target zone underneath the heat lamps was
marked with a surrounding black line as seen in Fig. 1C. It covered about an
eighth of the arena. Initially, the robots (depending on the scenario: one, two,
or three) are positioned at the side of the arena opposite to the target zone. In
case of BEECLUST, many robot-to-robot detections occur in the first seconds.
However, they do not remain there because the waiting-time in the cold part of
the arena is very small (mostly no waiting-time).

It was important to ensure that the ambient air temperature did not signif-
icantly change during the experiment. Such changes were prevented by heating
up the room to 27�C before our experiments started. To ensure the same ini-
tial conditions the temperature was measured before each experiment started.
In these experiments, the time each robot spent inside of the target zone was
measured. Each experiment lasted 14 minutes.

Experiment 2: In an additional experiment the probability of staying within
the target area after a robot-to-robot approach was measured after a time of 25
seconds. In case of the BEECLUST, not every robot-to-robot detection results
in a successful detection of the other robot due to noise and blind spots of the
infrared sensors. In case of the GAA, two approaching robots interfere with each
other and might “push” each other out of the target area when trying to avoid
collisions. In this experiment we had five different setups: a) one GAA robot,
b) two GAA robots, c) three GAA robots, d) two BEECLUST robots and e) three
BEECLUST robots . The robots started vis-á-vis and where placed 10cm outside
of the target area. The third robot in experiment c and e was placed inside of
the target area and was programmed to stay immobile. Therefore, it was not
included in the determination of the results.
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3 Results and Discussion

Fig. 2 shows the results of our three test runs in experiment 1 (N = 6 repeti-
tions). Three robots with the GAA have spent 25.4% (mean) of time inside of
the target zone. This time span is quite short compared to the mean of 49.7%
in the runs with a single GAA robot. This is explained by the consequences of
the competition for space underneath the heat lamps: If one robot is inside the
target zone and a second robot tries to get into the target zone as well, it may
happen that they approach each other. The collision avoidance behaviour might
lead to a turn and the robot might leave the target area.

m
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Fig. 2. Mean of the percentage of the total time a robot spent inside of the target zone
(see Fig. 1C). Error bars show the standard deviation, N = 6 per setting.

One single BEECLUST robot spent an eighth of the time in the target area,
because the target area covers an eighth of the arena. This was calculated statis-
tically because one single robot cannot stop underneath the heat lamps. Three
BEECL. robots yielded a result with a mean of 36.7%. In comparison to the
GAA the swarm-intelligent BEECL. has a higher success rate. If there is no
heat source in the arena the three robots do not aggregate for both algorithms.

In test runs with three robots, three cases of robot-to-robot encounters in the
target area can occur, which are tested in experiment 2. Fig. 3 shows the relative
frequency of a robot to stay in the target area. The accounted final state was
measured 25 seconds after the start leaving enough time for a robot to get out
of the target zone: One single GAA robot stayed inside of the target zone with
a frequency of 0.75 per trial. Two GAA robots remained there with a frequency
of 0.67 per trial whereas the frequency was 0.54 per trial in the experiment
with three GAA robots. 2 BEECL. robots had a frequency of 0.91 per trial and
3 BEECL. robots remained in the target area with a frequency of 0.83 per trial.
Significant differences were determined for the comparisons: 1 BEECL. and all
other comparable settings (Chi-square test, P < 0.0001), 2 GAA and 2 BEECL.
(P < 0.0330, χ2 = 4.547), and 3 GAA and 3 BEECL. (P < 0.0293, χ2 = 4.752).
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Fig. 3. Comparison of the relative frequency of robots that stay in the target zone for
both algorithms and for all possible robot-to-robot encounters, N = 12 per setting

The probability of the GAA robots remaining in the target zone decreases
with increasing number of robots. It is expected that with a higher number of
robots the probability will decrease further because the limited resource “space”
in the target area will get more scarce. Although this is true for the BEECLUST
robots as well, they have a higher probability of staying in the target area.

4 Conclusion and Outlook

As expected the use of heat instead of light brings along significant challenges in
designing an efficient robotic swarm due to different physical characteristics. Dif-
ferences are observed, e.g., in the shape of the temperature gradient, in the time
scale of diffusion and the time delays in the measurement of temperatures. This
had to be reflected in the control algorithm by slower motion/turns and longer
waiting periods. The time delay of measurement originates from the temperature
sensors because they have to heat themselves up to decrease their resistance. If
the robot is not exposed to heat long enough it measures a lower temperature
and so the calculated waiting-time is shorter. As a consequence the aggregated
robot swarm is not as robust as it could be in a light gradient.

A major challenge was the inhomogeneity concerning the spreading of heat
and air flows. Due to the fact that hot air ascends, the heat lamps generate a lot
of waste heat which heats up the ambient air instead of the desired area in the
robot arena. Between experiment runs the initial conditions (defined tempera-
tures at the target area, in the ambient air, etc.) needed to be re-established.
Otherwise the air temperature saturates close to the temperature in the tar-
get zone and the robots cannot identify the target area anymore. This would
influence the effectivity of the algorithms critically. Despite these characteris-
tics, which increase the difficulty of this task, the robots were able to locate
the target area beneath the heat lamps using the BEECLUST. This was possi-
ble although the configuration of the infrared-sensors of the Hemisson, used for
collision-detection and the detection of another robot, have blind spots.
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In this paper we focused on building robots which are able to perform ther-
motaxis. The experiments were used as a proof of concept. For an exhaustive
analysis are multiple robots, a larger arena and a longer period of time required.
We will continue to use these robots as a model to emulate natural organisms
such as honeybees. Furthermore we will test the robustness of bio-inspired algo-
rithms to obstacles and disturbances of the gradient.
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Abstract. Frequency-dependent selection (FDS) refers to situations
where individual fitnesses are dependent (to some degree) on where the
individual’s alleles lie in the proximate allele frequency distribution. If
the dependence is negative – that is, if alleles become increasingly detri-
mental to fitness as they become increasingly common at a given locus –
then genetic diversity may be maintained. If the dependence is positive,
then alleles may converge at given loci.

A hypothetical evolutionary model of FDS is here presented, in which
the individuals themselves determined – by means of a gene – whether
their fitnesses were positively or negatively frequency-dependent. The
population ratio of the two types of individual was monitored in runs with
different parameters, and explanations of what happened are offered.

Keywords: Frequency-dependent selection, multiple alleles, meta gene.

1 Introduction

Ridley’s textbook Evolution [6] contains a good entry on FDS, the opening
of which is reproduced here. “Frequency-dependent selection occurs when the
fitness of a genotype depends on its frequency. It is possible for the fitness of
a genotype to increase (positively frequency-dependent) or decrease (negatively
frequency-dependent) as the genotype frequency in the population increases.”

Many abstract models of FDS have been studied, with the principal aims
being to strengthen the theory underpinning these phenomena, and to explore
the surrounding space of possibilities. Curtsinger [3] looked at many different
selection modes, and found a condition that determined whether or not the sys-
tem would stably converge. Asmussen and Basnayake [1] studied several models,
focussing on the potential for the maintenance of genetic diversity, and Roff [7]
looked at maintaining both phenotypic and additive variation via FDS. Bürger
[2] performed an extensive analysis of a general model (of which previous known
models could be considered special cases) and gave a near-complete character-
isation of the equilibrium structure. Schneider [8] carried out a similar study,
with multiple alleles and loci, and found no equilibria possible with more than
two alleles at a locus. And Trotter and Spencer [9] investigated the potential for
maintaining polymorphism taking into account the presence of positive FDS.
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In every previous simulation of FDS, the selection regime has been imposed
on the individuals by (essentially) the environment, in order to reproduce real-
world conditions. In the present FDS model, the novel step is taken of putting
the form of the frequency-dependence under the control of the individuals. In
more precise terms, the individuals have a meta-gene in their genotype that
dictates whether their fitness will be proportional to how similar they are to
their neighbours, or how different they are to them. (Cf. the meta-genes in [4]
and [5].) The purpose here is not to model any known natural phenomena, but
to speculatively extend the domain of theoretical FDS in an interesting ‘what
if?’ way.

2 Experiments and Analysis

A standard genetic algorithm was written whose genotype consisted of one meta
gene plus a chromosome. The meta gene was a bit, and the chromosome con-
sisted of non-negative integers in a given range. A zero allele in the meta gene
told the fitness function to reward that individual for similarity, and a one told
the function to reward it for difference. The measures were based on the concept
of Hamming distance, and were implemented here in two different ways: pair-
wise, and population-wide. In the pairwise method, an individual’s fitness was
calculated by comparing it to a randomly chosen individual from the population
(which could have been itself). If the individual in question had a meta gene
of zero, its fitness was given by 1 plus the total number of genes1 – by locus
– which it had in common with the other individual, ignoring the meta genes.
If the meta gene was a one, the fitness was given by 1 plus the total number
of genes which they did not have in common. For example, for the individuals
<0-21012> and <1-01022>, the fitness of the first w.r.t. the second would be 4
(= 1 + 3), whereas the fitness of the second w.r.t. the first would be 3.

In the population-wide method, an individual’s fitness was calculated by com-
paring it to every individual in the population (including itself). This was per-
formed by applying the pairwise method down the whole population, and tallying
up the points.

These were the only components of the fitnesses.
Six runs were executed for every combination of the following parameter

ranges: population size = 10 and 100; chromosome length = 1, 4, and 40; allele
range = 2 (i.e. bitstrings), 3, and 4; fitness calculation = pairwise and popula-
tion wide; mutation rate = zero, ‘low’, and ‘high’; crossover = off and on (∼70%
across each new population). The chromosomes were initialised randomly, but
the meta-bits were set alternately to 0 and 1, to prevent biased starts. The
main datum that was tracked during every run was the ratio of the two types
of individual in the population per generation – this is what the vertical axes
represent in most of the figures. A value of 1 indicates that the population is

1 The minimal possible fitness was 1 so no individual could have a zero probability of
being selected.
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dominated by individuals whose fitness is negatively frequency-dependent (here-
after “NFDs”); a value of 0 indicates domination by individuals with positively
frequency-dependent fitness (PFDs); a value of 0.5 indicates a 50:50 mixture.

2.1 Two Alleles

When the bitstring results were plotted and compared, it was seen that neither
the presence of crossover nor the choice of fitness function (pairwise or population
wide) made much difference. The mutation rate was not particularly important
either, so long as it was neither vanishingly small nor excessively high. And
the population size and the chromosome length only changed the destiny of the
system when they were very small. Figure 1 shows what usually happened in
the experiments for all but the extreme settings. The PFDs made more copies
of themselves than the NFDs from the outset, and the population soon became
dominated by PFDs. The system entered an evolutionarily stable state, which
mutation and crossover could not overturn.

Fig. 1. How the ratio of binary PFDs (meta gene = 0) to NFDs (meta gene = 1) varied
over the first 200 generations of two sets of six runs. Plot (a) shows a noisy case, and
plot (b) shows a more representative case.

Why the PFDs always defeated the NFDs in base-2 (in non-extreme condi-
tions) can be understood in the following terms. If two bitstrings are generated
completely at random, the Hamming distance between them will lie somewhere
between zero and their length, according to a bell-shaped probability distribu-
tion with a peak at half their length. In other words, they will probably have
half their bits in common. This means that in a random initial population of
50% PFDs and 50% NFDs, the mixture of fitnesses found in the PFD group
will probably be the same as that of the NFD group. In the first few genera-
tions therefore, selection will effectively be random. This means that different
individuals will make varying numbers of copies of themselves, so after the first
few generations, the population will comprise a number of (near-)homogenous
groups of PFDs, a number of (near-)homogenous groups of NFDs, and a mixture
of unique individuals of both type. (Crossover is temporally being ignored here,
but when it is factored in it does not change the result.) In the pairwise fitness
method, a member of a group will be compared to one of three other kinds of
individual: a fellow group member, a member of another group, or one of the
singletons. A PFD will get maximum points from a fellow group member, and
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(essentially) random points from the others. A NFD, on the other hand, will
get minimum points from a fellow group member, and random points from the
others. This means that as the population evolves, the PFDs get progressively
fitter and the NFDs get progressively less fit, and at the same time, PFD groups
that are similar to each other will grow faster than PFD groups that are more
genetically isolated. The inevitable outcome is that the NFDs all die out as the
population drives towards uniformity. The same occurs with the population-wide
fitness method, because the same fitness mixture is there.

A converged PFD-only population cannot be invaded by an NFD mutant,
because such a mutant would have a minimal (or near minimal) fitness compared
to the maximal (or near maximal) fitnesses of the PFDs. A diverse PFD-only
population is resistant to NFD mutants by an amount that negatively correlates
to its diversity: if it is approaching convergence, it will have a high resistance, but
if it is very mixed, then an NFD mutant could arise with a fitness comparable
to those of the PFDs. However, if an NFD mutant does manage to get into a
mixed population and starts spreading, the mutant group will die down, for the
same reason as their kind dies out from the start.

2.2 Three Alleles

When the base-3 results were plotted, it was seen that the mutation rate and fit-
ness function were similarly (ir)relevant as for base 2, but that the chromosome
length and the population size were important, as was crossover in certain cir-
cumstances. One of the most important differences between the two-allele and
the three-allele systems was how they behaved initially, from a random start.
Whereas with two alleles, the population generally converged quickly to zeroes
at the meta-locus (i.e. the PFDs dominated), with three alleles the population
generally did the opposite, and converged to ones at the meta-locus. This was
because in every initial population, any two individuals could expect to have
on average only 1

3 of their genes in common (as opposed to the bitstring case,
where it was 1

2 ). The NFDs could thus expect fitnesses of ∼ 2
3 of the maxi-

mum, while the PFDs could only expect ∼ 1
3 of the maximum. Consequently, the

NFDs made around twice as many copies of themselves during the first few gen-
erations, so quickly wiped out the PFDs. Hence in every run (excepting some
with extreme parameters) the populations took themselves into a negatively-
frequency-dependent selection regime. (This is also what happens for all larger
allele alphabets, so the two-allele situation is exceptional in this regard.)

These NFD convergences did not always last: they often turned out to be
merely the first of two phases. When the population was large, and particu-
larly when the chromosome was short as well, the NFD domination seemed very
stable. Figure 2 shows two examples of this stability, as well as the fast conver-
gences mentioned previously. No PFDs could invade during the timescales of the
experiments, some of which went as far as 5000 generations, so these situations
were the complements – in terms of the PFD:NFD ratio – of the two-allele situ-
ations (though they were not complementary in terms of diversity, because NFD
populations stay diverse while PFD populations converge).
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Fig. 2. How the ratio of PFDs to NFDs varied during the first and last 100 generations
of two sets of six 2000-generation runs. The NFDs dominate in both cases, partly
because the chromosomes were short and the populations large.

Two examples of the second phase are plotted in figure 3. In (a), which is rep-
resentative of most small-population cases, the NFDs died out nearly as quickly
as they took over, whereas in (b) – where the populations were large – it took
varying lengths of time for the PFDs to successfully invade, with the longest
being around 300 generations. As stated earlier, PFD-domination states, where
the genotypes are converged or converging, are global attractors in this kind of
system, and a return to NFD domination may only occur via a vastly improbable
mutation and/or selection sequence.

Fig. 3. How the ratio of PFDs to NFDs varied over the first 200 and 400 generations
of two sets of six runs. The PFDs eventually dominate in both cases.

2.3 Multiple Alleles

The sets of results gathered for base-4 chromosomes were almost the same as
their counterparts in base-3, and preliminary runs in even higher bases indicated
that the patterns continue. Explanations of why certain multi-allele populations
can support long-term NFD domination, but others cannot, are now offered.

It was found that the configurations most conducive to stable NFD-domination
were those of very large populations and allele alphabets, but very short chromo-
somes, ideally single-locus. Reducing the population size, reducing the number of
alleles, and increasing the chromosome length all tended to reduce the length of
time the NFDs could survive before before displaced by PFDs. This result can be
explained with an example. In a population of 200 NFD-individuals with base-
5 single-gene chromosomes (i.e. the genotype comprises 2 genes: the meta gene
[0..1] + the chromosomal gene [0..4]) where there are 40 of each allele, every indi-
vidual’s fitness – as measured by the inclusive population-wide method – is 161.
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If an individual experienced a mutation in its meta gene, its fitness would be 41:
with only 1

4 the fitness of its neighbours, it would struggle to survive. And if it
did survive and spread a little, its group would continue to struggle, because no
matter how many copies it made, as long as there were at least two other alleles
in the population, those others would be fitter. The experimental reality would
be that the mutant would disappear in a generation or two’s time, as would any
copies it managed to make. An observer would have to wait a long time to see
a PFD takeover.

Now, if the allele range is increased, the expected fitness of a PFD mutant
decreases, and if the population size is increased, the amount of ‘work’ it must
do to dominate the population increases with it. This is why those settings have
the effect they do. Regarding the chromosome length, the effect of increasing it
is perhaps counter-intuitive; one might have thought that longer chromosomes
would have more capacity to be different from each other, thereby making NFD-
domination stabler and longer lasting. Not only is this not the case, it is the
opposite of the case, for the following reason. In a well-spaced-out population,
at each locus there should be approximately equal ratios of the alleles across
the population (so for example, in a population of 100 base-4 individuals, ∼25
individuals should have a 0 as their first gene, ∼25 should have a 1, etc.). When
the chromosome is short, the low capacity for difference means that every gene
is important, so every gene has ‘healthy’ selective pressure on it. But when
the chromosome is long, a given gene is less important, as it represents only a
very small portion of the distance between individuals, so the selective pressure
applied on it is relatively light. Consequently, whereas for short chromosomes the
local allele ratios are kept under quite tight control, for long chromosomes they
can drift and become skewed. This tends to reduce the genetic distance between
individuals, making it easier (to some degree) for PFD mutants to establish
themselves in the population.

2.4 Crossover

The last parameter to be discussed is crossover. This operator did not discern-
ably change the results in most of the runs, but when the populations and
chromosomes were (relatively) large and the number of alleles greater than two,
it made a difference. The disappearance of NFDs shown in figure 3(b) did not
happen in that same time period in different runs when the only difference in
settings was the absence of crossover. This may seem strange at first, when it is
considered that crossover does not change population-wide gene frequencies at
any loci, and that it is those frequencies that control the fitnesses. Something
subtle was happening. In a mutation-only system (with a big population, long
chromosomes, and multiple alleles) where NFDs are dominant, the population
is usually made up of several roughly-equally-fit groups, within each of which
there is homogeneity or near homogeneity. If a group happens to expand, its
members’ fitnesses dip, and the fitnesses of the non-members rise, so the group
usually shrinks back down. (This is a standard dynamic that one finds in popu-
lations subject to negatively FDS.) The crucial observation is that when a group
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expands, causing certain alleles become undesirably frequent at several loci, the
undesirable genes are carried by identifiable individuals. Evolution can therefore
remove these genes by selecting against the individuals that carry them.

When crossover of any type is added, it breaks up the group structure of the
population, but this in itself does not have too much impact on the system’s
behaviour. Crossing over can be described as ‘dispersing’ or ‘mixing up’ the
alleles – at each locus – across the population. Thus, if any individuals now make
extra copies of themselves, the alleles they add to the population are dispersed
up and down the loci, so there are no identifiably-bad individuals that can be
selected against. In other words, instead of selection having ‘guilty’ individuals
it can remove, the guilt is spread across the population, so there are no longer
any outstandingly guilty individuals.

Fig. 4. The mean fitnesses over the first 300 generations of three sets of six runs

To see the exact effect crossover had, the mean fitnesses were plotted for the
relevant base-3 runs. Figure 4 shows how they varied for 0%, 10%, and 70%
uniform crossover, where the other parameters were the same as those of plot
(b) in figure 3. Figure 4(a) shows a case where the groups scenario was played
out. The fitnesses quickly rose to around 2

3 of the maximum – which was to
be expected with three alleles – and stayed there. The variability of the values
reflects the group-sizes changing as well as the drifting of groups themselves.
Plot (c) – which represents the exact same runs as those in figure 3(b) – differs
in two keys way to (a). Firstly, there is a gradual drop after the initial rise, and
secondly, the curves ‘take off’ at those times that correspond to the PFD-mutant
invasions, as PFD populations are fitter than NFD ones. Plot (b) shows that a
very small amount of crossover changes the system’s behaviour. It is roughly the
same as (c), with the key differences being higher resistances to PFD invasions,
and the shorter durations of those invasions when they occur. The former can be
attributed to less ‘dispersion’ of unwanted alleles; the latter shows that crossover
slows down invasions, because the dispersals make the PFDs less similar to each
other.

Further runs with more alleles and other population sizes suggested that
crossover causes the mean fitness to decay geometrically from its high early value
to a stable value somewhere above the halfway value. (Also, the ‘dip depth’ in-
creased with the number of alleles, so the dips in figure 4 are the least severe
examples of their kind.) It appears that it is in those resultant regions of stable
fitness that selection can positively promote the rarer alleles as effectively as
crossover can assist the commoner ones.
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3 Conclusion

This paper has sought to present and explain a novel hypothetical model of
frequency-dependent selection in which the individuals determine for themselves
whether the frequency dependence of their fitness is positive or negative. It
was found that in this particular artificial evolutionary system, the important
parameters are the population size, the chromosome length, the allele range, and
the presence or not of crossover.

When there are only two alleles (the binary case) a random initial popula-
tion will become stably dominated by individuals whose fitness is positively
frequency-dependent. When there are more than two alleles, the population
will become dominated by individuals whose fitness is negatively frequency-
dependent. These converged states vary in their stability, with their durations
depending on the parameters. When they end, they end with the imposition of
stable positively-FDS across the population, a state whose arrival can be has-
tened by making any of the following parameter changes: reducing the population
size, increasing the chromosome length, and enabling crossover.
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Abstract. The principle of least effort in communications has been
shown, by Ferrer i Cancho and Solé, to explain emergence of power laws
(e.g., Zipf’s law) in human languages. This paper applies the principle
and the information-theoretic model of Ferrer i Cancho and Solé to ge-
netic coding. The application of the principle is achieved via equating
the ambiguity of signals used by “speakers” with codon usage, on the
one hand, and the effort of “hearers” with needs of amino acid transla-
tion mechanics, on the other hand. The re-interpreted model captures
the case of the typical (vertical) gene transfer, and confirms that Zipf’s
law can be found in the transition between referentially useless systems
(i.e., ambiguous genetic coding) and indexical reference systems (i.e.,
zero-redundancy genetic coding). As with linguistic symbols, arranging
genetic codes according to Zipf’s law is observed to be the optimal so-
lution for maximising the referential power under the effort constraints.
Thus, the model identifies the origins of scaling in genetic coding — via
a trade-off between codon usage and needs of amino acid translation.
Furthermore, the paper extends the model to multiple inputs, reaching
out toward the case of horizontal gene transfer (HGT) where multiple
contributors may share the same genetic coding. Importantly, the ex-
tended model also leads to a sharp transition between ambiguous HGT
and zero-redundancy HGT. Zipf’s law is also observed to be the optimal
solution in the HGT case.

1 Introduction — Coding Thresholds

The definition and understanding of the genotype-phenotype relationship con-
tinues to be one of the most fundamental problems in biology and artificial life.
For example, Woese strongly argues against fundamentalist reductionism and
presents the real problem of the gene as “how the genotype-phenotype relation-
ship had come to be” [1], pointing out the likelihood of the “coding threshold”.
This threshold signifies development of the capacity to represent nucleic acid se-
quence symbolically in terms of a amino acid sequence, and separates the phase
of nucleic acid life from an earlier evolutionary stage. Interestingly, the analysis
sheds light not only on this transition, but also on saltations that have occurred
at other times, e.g. advents of multicellularity and language. The common feature
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is “the emergence of higher levels of organization, which bring with them quali-
tatively new properties, properties that are describable in reductionist terms but
that are neither predictable nor fully explainable therein” [1].

The reason for the increase in complexity can be identified as communication
within a complex, sophisticated network of interactions: “translationally pro-
duced proteins, multicellular organisms, and social structures are each the result
of, emerge from, fields of interaction when the latter attain a certain degree of
complexity and specificity” [1, 2]. The increase of complexity is also linked to
adding new dimensions to the phase space within which the evolution occurs, i.e.
expansion of the network of interacting elements that forms the medium within
which the new level of organization comes into existence [1, 2]. An increase of
complexity is one of the landmarks of self-organization, typically defined as an
increase of order within an open system, without explicit external control.

As pointed out by Ferrer i Cancho and Solé [3], the emergence of a complex
language is one of the fundamental events of human evolution, and several re-
markable features suggest the presence of fundamental principles of organization,
common to all languages. The best known is Zipf’s law, which states that the
frequency of a word decays as a (universal) power law of its rank. Furthermore,
Ferrer i Cancho and Solé observe that “all known human languages exhibit two
fully developed distinguishing traits with regard to animal communication sys-
tems: syntax [4] and symbolic reference [5]”, and suggest that Zipf’s law is a
hallmark of symbolic reference [3].

They adopt the view that a communication system is shaped by both con-
straints of the system and demands of a task: e.g., the system may be con-
strained by the limitations of a sender (“speaker”) trying to encode a message
that is easy-to-decode by the receiver (“hearer”). In particular, speakers want
to minimise articulatory effort and hence encourage brevity and phonological
reduction, while hearers want to minimise the effort of understanding and hence
desire explicitness and clarity [3, 6, 7]. For example, the speaker tends to choose
ambiguous words (words with a high number of meanings), and this increases
the interpretation effort for the hearer. Zipf referred to the lexical trade-off as
the principle of least effort, leading to a well-known power law: if the words
within a sample text are ordered by decreasing frequency, then the frequency of
the k-th word, P (k), is given by P (k) ∝ k−α, with α ≈ 1.

The main findings of Ferrer i Cancho and Solé are that (i) Zipf’s law can be
found in the transition between referentially useless systems and indexical refer-
ence systems, and (ii) arranging symbols according to Zipf’s law is the optimal
solution for maximising the referential power under the effort constraints.

Combining terminology of Woese and Ferrer i Cancho and Solé allows us
to re-phrase these observations as follows: (i) referentially useless systems are
separated from indexical reference systems by a coding threshold, and (ii) Zipf’s
law maximising the referential power under the effort constraints is the optimal
solution that is a feature observed at the coding threshold.

In this paper we apply the principle of least effort to genetic coding, by equat-
ing, on the one hand, the ambiguity of signals used by “speakers” with codon
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usage, and, on the other hand, the effort of “hearers” with demands of amino
acid translation mechanics. The re-interpreted model confirms that Zipf’s law
can be found in the transition (“coding threshold”) between ambiguous genetic
coding (i.e., referentially useless systems) and zero-redundancy genetic coding
(indexical reference systems). As with linguistic symbols, arranging genetic codes
according to Zipf’s law is observed to be the optimal solution for maximising the
referential power under the effort constraints. In other words, the model iden-
tifies the origins of scaling in genetic coding — via a trade-off between codon
usage and needs of amino acid translation.

This application captures the case of the typical, vertical, gene transfer. We
further extend this case to multiple inputs, reaching out toward the case of hor-
izontal gene transfer (HGT) where multiple contributors may share the same
genetic coding. We observe that the extended model also leads to a sharp tran-
sition between ambiguous HGT and zero-redundancy HGT, and that Zipf’s law
is observed to be the optimal solution again.

2 Horizontal and Stigmergic Gene Transfer

It is important to realize that during the early phase in cellular evolution the
proto-cells can be thought of as conglomerates of substrates, that exchange com-
ponents with their neighbours freely — horizontally [8]. The notion of vertical
descent from one “generation” to the next is not yet well-defined. This means
that the descent with variation from one “generation” to the next is not ge-
nealogically traceable but is a descent of a cellular community as a whole. Thus,
genetic code that appears at the coding threshold is “not only a protocol for
encoding amino acid sequences in the genome but also an innovation-sharing
protocol” [8], as it used not only as a part of the mechanism for cell replication,
but also as a way to encode relevant information about the environment. Dif-
ferent proto-cells may come up with different innovations that make them more
fit to the environment, and the “horizontal” exchange of such information may
be assisted by an innovation-sharing protocol — a proto-code. With time, the
proto-code develops into a universal genetic code.

Such innovation-sharing is perceived to have a price: it implies ambiguous
translation where the assignment of codons to amino acids is not unique but
spread over related codons and amino acids [8], i.e. accepting innovations from
neighbours requires that the receiving proto-cell is sufficiently flexible in translat-
ing the incoming fragments of the proto-code. Such flexible translation, of course,
would produce imprecise copies. However, a descent of the whole innovation-
sharing community may be traceable: i.e., in a statistical sense, the next “gener-
ation” should be correlated with the previous one. While any individual protein is
only a highly imprecise translation of the underlying gene, a consensus sequence
for the various imprecise translations of that gene would closely approximate an
exact translation of it. As noted by Polani et al. [9], the consensus sequence would
capture the main information content of the innovation-sharing community.
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Moreover, it can be argued that the universality of the code is a generic
consequence of early communal evolution mediated by horizontal gene transfer
(HGT), and that thus HGT enhances optimality of the code [8]:

HGT of protein coding regions and HGT of translational components
ensures the emergence of clusters of similar codes and compatible trans-
lational machineries. Different clusters compete for niches, and because
of the benefits of the communal evolution, the only stable solution of the
cluster dynamics is universality.

The work of Piraveenan et al. [10] and Polani et al. [9] investigated particular
HGT scenarios where certain fragments necessary for cellular evolution begin
to play the role of the proto-code. For example, stigmeric gene transfer was
considered as an HGT variant. SGT suggests that the proto-code is present in
an environmental locality, and is subsequently entrapped by the proto-cells that
benefit from such interactions. In other words, there is an indirect exchange of
information among the cells via their local environment, which is indicative of
stigmergy: proto-cells find matching fragments, use them for coding, modify and
evolve their translation machinery, and exchange certain fragments with each
other via the local environment. SGT differs from HGT in that the fragments
exchanged between two proto-cells may be modified during the transfer process
by other cells in the locality.

SGT studies concentrated on the information preservation property of evo-
lution in the vicinity of the “coding threshold”, considering a communication
channel between a proto-cell and itself at a future time point, and posing a ques-
tion of the channel capacity constrained by environmental noise. By varying the
nature and degree of the noise prevalent in the environment within which such
proto-cells exist and evolve, the conditions for self-organization of an efficient
coupling between the proto-cell per se and its encoding with “proto-symbols”
were identified. It was shown that the coupling evolves to preserve (within the
entrapped encoding) the information about the proto-cell dynamics. This infor-
mation is preserved across time within the noisy communication channel. The
studies verified that the ability to symbolically encode nucleic acid sequences
does not develop when environmental noise ϕ is outside a specific noise range.

In current work we depart from the models developed by Piraveenan et al.
[10] and Polani et al. [9], and rather than considering proto-cell dynamics defined
via specific dynamical systems (e.g., logistic maps) subjected to environmental
noise, we focus on constraints determined by (i) ambiguous codon usage, and
(ii) the demands of amino acid translation mechanics. This allows us to abstract
away the specifics of the employed dynamical systems [10, 9], and explain the
emergence of a coding threshold from another standpoint that takes into ac-
count codon usage and amino acid translation. This, in turn, allows us to extend
the model to HGT/SGT scenaria with multiple inputs. Both types of models
— dynamical systems based [10, 9] and the one presented here — are able to
identify an (order) parameter corresponding to the coding threshold: the envi-
ronmental noise ϕ [10, 9] or the effort contribution λ [3]. Both types of models
formulate objective functions information-theoretically, following the guidelines
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of information-driven self-organisation [11–13, 10, 14–17]. The main difference
from the dynamical systems based models lies, however, in the ability to detect
a power law in the codon usage (lexicon) at the threshold.

3 Model

The Ferrer i Cancho and Solé model [3] is based on an information-theoretic
approach, where a (single) set of signals S and a set of objects R are used to
describe signals between a speaker and a hearer, and the objects of reference.
The relation between S and R (the communication channel) is modelled using
a binary matrix A, where an element ai,j = 1 if and only if signal si refers to
object rj . The effort for the speaker is low with a high amount of ambiguity, i.e.
if signal entropy is low. Hn(S) expresses this as a number between 0 and 1:

Hn(S) = −
n∑

i=1

p(si) logn p(si)

The effort for the hearer to decode a particular signal si is small if there is little
ambiguity, i.e. the probability of a signal si referring to one object rj is high.
In [3], this is expressed by the conditional entropy

Hm(R|si) = −
m∑

j=1

p(rj |si) logm p(rj |si)

Hearer effort is dependent on probability of each signal and effort to decode:

Hm(R|S) =
n∑

i=1

p(si)Hm(R|si)

A cost function Ω(λ) = λHm(R|S)+(1−λ)Hn(S) is introduced to combine effort
of speaker and hearer, with 0 ≤ λ ≤ 1 trading off the effort between speaker and
hearer. To consider effects of different efforts of speaker and hearer, different λ are
used to compute the accuracy of the communication as the mutual information,
In(S, R) = Hn(S)−Hn(S|R). This uses matrices evolved for minimal cost Ω(λ),
and a simple mutation-based genetic algorithm. In addition, L will denote the
number of signals referring to at least one object, i.e. the effective lexicon size.

3.1 Extension of the Model and “Readout” Modeling

To model codon usage by several neighbours, we extend the original approach
that was using one matrix A, to several matrices Ak, each of which represents
a different way of codon usage for the same set of objects (amino acids). In
the extended model, a separate matrix Ak is created and evolved to encode a
different communication channel. The cost Ω(λ) is computed for a matrix Â
that is obtained by averaging over all individual matrices Ak. During evolution,
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if the cost of Â, obtained from mutated Ak, is reduced, the mutation is kept.
Averaging captures SGT between different sources (variables), and is a specific
case of “readout”, motivated below.

Shannon information between two variables X and X ′ is determined as an
optimum of knowledge extracted from the state of X about the state of X ′ under
the assumption that both variables and their joint distribution have been identified
beforehand. In our model, however, the transfer of a message fragment from one
proto-cell to another does not, in general, enjoy that advantage, because there
are multiple candidates for the source of the message. The stigmergic nature
of the message transmission in the HGT scenario does not allow for a priori
assumptions of who the sender is and who the receiver is. This implies that
there might emerge a pressure to “homogenize” the instantiations of sender
and the receiver variables in the sense that, where information is to be shared,
an instantiation x in the sender variable X evokes to some extent the same
instantiation in the receiver variable X ′.

To formalize this intuition, we model the sending (and analogously receiving)
proto-cells as mixtures of probabilities, endowed with the “readout” interpreta-
tion suggested in [13] which we sketch in the following. Assume a collection of
random variables Xk, indexed by an index k ∈ K for each sender, where all Xk

assume values xk ∈ X in the same sampling set X . For a fixed, given k ∈ K, one
can now determine informational quantities involving Xk in the usual fashion;
however, if, as in the HGT case, the sender is not known in advance, one can
model that uncertainty as a probability distribution over the possible indices
k ∈ K, defining a random variable K with values in K. If nothing else is known
about the sender, one can for instance assume an equidistribution on K.

The readout of the collection (Xk)k∈K is then denoted by XK which models
the random selection of one k ∈ K according to the distribution of K which of
the Xk, followed by a random selection of an instance x ∈ X according to the
distribution of Xk. For a Bayesian network interpretation of the readout, see
[13]. Formally, the probability distribution of the readout XK assuming a value
x ∈ X is given by Pr(XK = x) =

∑
k∈K Pr(K = k) · Pr(Xk = x).
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4 Results

The accuracy of communication In(S, R) as a function of λ is shown in Fig. 1
and 2. Figure 1 traces mutual information for a single 150x150 matrix (staying
within the model in [3], and studying a typical vertical gene transfer), while
Fig. 2 contrasts the dynamics within HGT, simulated with four 40x40 matrices.
In both, three domains are distinguishable in the behavior of In(S, R) vs. λ.
For small values λ < λ∗, In(S, R) grows smoothly, before undergoing a sharp
transition in the vicinity λ ≈ λ∗. Following Ferrer i Cancho and Solé, we observe
that single-signal systems (effective lexicon size L ≈ 1/n) dominate for λ < λ∗:
“because every object has at least one signal, one signal stands for all the objects”
[3]. Low In(S, R) indicates that the system is unable to convey information in
this domain (totally ambiguous genetic code). Rich vocabularies (genetic codes
with some redundancy), L ≈ 1, are found after the transition, for λ > λ∗.
Full vocabularies are attained for very high λ. The maximal value of In(S, R)
indicates that the associations between signals (codons) and objects (amino-
acids) are one-to-one maps, removing any redundancy in the genetic code. In
the HGT case, this is harder to achieve, while the overall tendency is retained.

To investigate transition around λ ≈ λ∗, we focus on the lexicon’s ranked
distribution, and consider the signal’s normalised frequency P (k) vs. rank k, for
different λ. As expected, Ferrer i Cancho and Solé model shows that “Zipf’s law is
the outcome of the nontrivial arrangement of word-concept associations adopted
for complying with hearer and speaker needs” [3]. Contrasting the graphs (Fig. 3)
reveals the presence of scaling for λ ≈ λ∗, and suggests a phase transition is
taking place at λ∗ ≈ 0.44 in the information dynamics of In(S, R). This results
in a power law (P (k) = 0.2776k−1.0146), consistent with α ≈ 1 reported in [3].

Similar phenomenon is observed for HGT (Fig. 4). Scaling at λ∗ = 0.4 results
in the power law (P (k) = 0.2742k−1.0412, with R2 = 0.9474), again consistent
with α ≈ 1 in the power law reported in [3] and the one reported for vertical
gene transfer above. Thus, the trade-off between codon usage and needs of amino
acid translation in HGT results in a nontrivial but still redundant genetic code.
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5 Conclusions

We applied the principle principle of least effort in communications and the
(extended) information-theoretic model of Ferrer i Cancho and Solé to genetic
coding. The ambiguity of signals used by “speakers” was equated with codon
usage, while the effort of “hearers” provided an analogue for the needs of amino
acid translation mechanics. The re-interpreted model captures the case of the
typical (vertical) gene transfer, and confirms presence of scaling in the transition
between referentially useless systems (i.e., ambiguous genetic coding) and index-
ical reference systems (i.e., zero-redundancy genetic coding). Arranging genetic
codes according to Zipf’s law is observed to be the optimal solution for maximis-
ing the referential power under the effort constraints. Thus, the model identifies
the origins of scaling in genetic coding — via a trade-off between codon usage
and needs of amino acid translation. The extended model includes multiple in-
puts, representing HGT where multiple contributors may share the same genetic
coding. The extended model also leads to a sharp transition: between ambigu-
ous HGT and zero-redundancy HGT, and scaling is observed to be the optimal
solution in the HGT case as well.
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Abstract. We propose a new IEC for musical works based on an adap-
tive walk on a fitness landscape of sounds. In this system, there is a
virtual plane that represents the genetic space of possible musical works
called fitness soundscape. The user stands on the soundscape, and hears
the multiple sounds that correspond to one’s neighboring genotypes at
the same time. These sounds come from different directions that corre-
spond to the locations of their genotypes on the soundscape. By using
the human abilities for localization and selective listening of sounds, the
user can repeatedly walk toward the direction from which more favorite
sounds come. This virtual environment can be realized by a home theater
system with multiple speakers creating “surrounded sound”. We report
on the basic concept of the system, a simple prototype for musical com-
position with several functional features for improvement of evolutionary
search, and preliminary evaluations of the system.

Keywords: interactive evolutionary computation, musical composition,
fitness landscape, soundscape, virtual reality, artificial life.

1 Introduction

An interactive evolutionary computation (IEC) has been used for optimizing
various artifacts which are not possible to be evaluated mechanically or auto-
matically [1]. Based on subjective evaluations of the artifacts by a human, one’s
favorite artefacts in the population are selected as parents for the individuals in
the next generation. By iterating this process, one can obtain better artifacts
without constructing them by oneself.

IECs have been widely applied in various artistic fields. Especially, IECs have
been applied in creation of musical works such as musical composition, sound
design, and so on [2]. For example, Unemi constructed a musical composition
system named SBEAT in which a multi-part music can be generated through
simulated breeding [3]. Dahlstedt also proposed a system for synthesizing a
sound with interactive evolution, in which each sound has a visual representation
which corresponds to the set of parameters of the synthesizer for generating the
sound [4].

In IECs for graphical works such as Dawkins’s Biomorph [5], the individuals in
the population can be evaluated in parallel as shown in Fig. 1 (a). On the other
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(a) a parallel evaluation of graphical works (b) a sequential evaluation of musical works 

Fig. 1. The interactive evolutionary computation with a) parallel or b) sequential eval-
uations

hand, in IECs for musical works, the user listens to and evaluates each individual
in the population one by one, as shown in Fig. 1 (b). This is due to the fact that
it is basically thought as difficult to evaluate each individual correctly when
the all individuals are played all at once. This is an essential difference of IECs
for musical works compared with those for graphical works. Unfortunately, this
sequential evaluation of individuals increases the total evaluation time and thus
increases the user’s temporal cost significantly. It also increases one’s cognitive
cost in that one needs to remember the features of individuals so as to compare
between them. Thus, we often limit the population size small in order to decrease
these costs, which brings about the fitness bottleneck [6].

So as to solve these problems, we focus on the cognitive abilities of human
for localization and selective listening of sounds. We can localize the direction
of sounds, and can concentrate on the sound we like to hear, which is called
a cocktail party effect [7] in a broad sense. If we utilize these kinds of ability
properly, there is a possibility that we can correctly evaluate the individuals in
parallel even in the case of IECs for musical works.

We propose a new IEC for musical works based on an adaptive walk on the
fitness landscape of sounds. In this system, there is a two-dimensional virtual
plane that represents the genotypic space of possible musical works called fitness
soundscape. The user stands on the soundscape, and hears the multiple sounds
that correspond to one’s neighboring genotypes at the same time. The sounds
come from different directions that correspond to the locations of their genotypes
on the soundscape. This virtual environment can be realized by a home theater
system with multiple speakers creating “surrounded sound”. By using the ability
for localization and selective listening of sounds, the user can repeatedly walk
toward the direction from which more favorite sounds come, which corresponds
to the evolutionary process of the population in standard IECs.

In this paper, we introduce the basic concept of the proposed system, and a
simple prototype system for musical composition. We also propose the several
functional features for improvement of evolutionary search. The preliminary ex-
periments showed that the user successfully obtained one’s favorite musical work
with the help of these features.
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(a) fitness soundscape (b) 3D sound system with multiple speakers

Fig. 2. A conceptual image of adaptive walk on fitness soundscape

2 Adaptive Walk on Fitness Soundscape

We propose an IEC for musical works based on an adaptive walk on a fitness
landscape of sounds. Here, we introduce the basic concept of the model.

The conceptual image of the model is shown in Fig. 2. A fitness landscape is
often used so as to visualize and intuitively understand evolutionary dynamics
of the population [8]. We assume a two-dimensional plane of genotypes that
determine the individuals’ phenotypes. In this model, the phenotypes represent
possible musical works such as musical pieces that are going to be searched, as
shown in Fig. 2 (a). Thus, we call this landscape of sounds the fitness soundscape.

The user stands on this plane and hears the sounds of one’s neighboring
individuals from their corresponding position all at once. This virtual sound
environment can be realized by a home theater system with multiple speakers
creating “surrounded sound” as shown in Fig. 2 (b).

The height of the fitness landscape is the corresponding fitness value of a geno-
type on a possible genetic space. The fitness of each genotype on the soundscape
can be determined by a subjective evaluation by the user. Thus, the actual shape
of the soundscape will be different among users depending on their subjective
impression of individuals, and can change dynamically.

The adaptive evolution of the population can be represented by a hill-climbing
process on the fitness landscape. We adopt this process on the fitness soundscape
as an evolutionary mechanism of the model. The user can walk toward the di-
rection from which one’s favorite individuals’ sounds come. The user can obtain
one’s more favorite sounds by repeating this hill-climbing process.

3 Prototype

We constructed a prototype of the system, which includes the several functions
for improvement of an adaptive walk on the fitness soundscape. The main part of
the system was constructed using Java 3D with JOAL (the Java Bindings for Ope-
nAL API)1, and we used the software synthesizer TiMidity++2 for the dynamic
1 https://joal.dev.java.net/
2 http://timidity.sourceforge.net/

https://joal.dev.java.net/
http://timidity.sourceforge.net/
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Fig. 3. A snapshot of the system

t0=0->C t1=1->D t2=6->B t3=4

genotype 

phenotype

offset of tone by t3-2=+2 

repeated for  

T times 

(a)

(b)

(c)

X=1 Y=52 

Fig. 4. The genetic description of a musical piece in the case of T=3

generation of the sound files. The real 3D sound environment was composed of a
multi-channel home theater system with 7 speakers as shown in Fig. 3. A surround
headphone for the home theater system with 5.1 channels can be used instead of
this speaker system. We explain each part of the prototype in detail.

3.1 Genetic Description of the Individual

We assumed an evolutionary search of a musical piece as shown in Fig. 4, which
is quite simple but sufficient to evaluate and demonstrate the prototype system,
especially the parallel search utilizing the cocktail party effect. It also shows
the genetic description of a musical piece, which is represented by a bit string
with the length 12. Specifically, each genotype can be divided into 4 parts, each
of which represents an integer value from 0 to 7. They determine the values
of the parameters t0, · · · , t3 respectively, as shown in Fig. 4 (a). The first three
parameters determine the tones of the initial set of the three notes respectively as
shown in Fig. 4 (b). The possible values of the parameter “01234567” correspond
to the tones “CDEFGABC”. The tones of notes in the next set are defined as
those of the corresponding notes in the previous set offset by t3-2 within the
range of possible tones. This subsequent set starts to be played at the same
timing of playing the last note in the previous set. By repeating this process,
the T sets are generated. Fig. 4 (c) is the final phenotype of this example.
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the sound source of  

the individual being playing

Fig. 5. An example situation of the
soundscape around the user

Fig. 6. A three dimensional image of the
soundscape

3.2 Fitness Soundscape and Adaptive Walk

We mapped the genotypes described in the previous section into a two-
dimensional space using the following simple way. We divided the bit string
of each genotype into two parts, and regarded the former part as the x position
(0, · · · , 26−1) of each genotype and the latter part as its y position (0, · · · , 26−1)
as shown in Fig. 4 (a).

The fitness soundscape is composed of the 26 × 26 square-shaped areas, and
each genotype (phenotype) is assigned to each corresponding area as explained
above. Fig. 5 is an example situation of the soundscape around the user. The
size of each area is W × W in units of Java 3D environment. When the user
stands on the soundscape, at most 8 individuals on one’s neighboring areas
are played repeatedly in parallel. The user can determine which individuals are
actually played by specifying their relative directions from one’s heading by
using a control panel (explained later). The sound source of each individual is
placed at the center of each corresponding area. It is omnidirectional and its gain
decreases linearly to 0 percent at the distance of D. In Fig. 5, the user specified
that one can hear the individuals in front center, front right, front left, and rear
center. However, one does not hear the sound in front left, because its distance
from the user is out of the range of D. It should be noted that we do not play
the individual which corresponds to the user’s standing area. It is due to the
fact that it can make the user difficult to localize other neighboring sounds of
individuals because it is too close to the user, besides that it is not necessary for
deciding the direction of evolution.

When the user has moved to the next area, the new neighboring individuals
around the user’s standing area are played. Thus, the user can repeatedly walk
around the whole soundscape hearing and evaluating the neighboring individu-
als. Fig. 6 shows the three dimensional image of the fitness soundscape, which
is presented to the user during adaptive walk. The user can grasp the trajectory
of one’s adaptive walk so far, and the relative positions of the individuals that
are played now.
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3.3 Functional Features for Enhancement of Adaptive Walk

So as to improve the ability of evolutionary search, we introduced the following
functional features into the prototype system. The several properties of these
functions can be set up using the control panel of the system shown in Fig. 7.

The adjustment of the scale of the soundscape. The user can adjust the
scale of the soundscape by changing the hamming distance between the
nearest neighboring genotypes, which is realized by eliminating the areas
which correspond to the intermediate genotypes. By decreasing the scale
ratio, the user can evaluate more different individuals at the same time, and
walk toward a more distant place quickly.

The assingment of the relative positions of individuals being playing.
If the all neighboring individuals are always played, there is a possibility
that the user can not discriminate between them because they are too much
mixed. Thus, we added the set of options that determine the relative direc-
tions of the neighboring area in which the individuals can be played. The
user can adjust the total number of the individuals being playing and their
relative positions from the one’s heading by choosing activated individuals
from the sorrounding ones in the control panel.

The random delay in the timing of play. So as to make the user easy to
distinguish between individuals, we have introduced a randomly determined
time interval before playing each individual.

The use of different sound types. We have also added the option whether
the all individuals are played using the same sound type or are played using
randomly assigned sound types. The difference in the sound types enables
the user to listen to each individual more selectively.

4 Preliminary Evaluations

We have conducted the several preliminary experiments using the prototype ex-
plained in the previous section. First, we summarize basic evaluations on adap-
tive walk on the soundscape. By using the multiple speaker systems, we were
able to localize the positions of individuals and distinguish between them even
when they were played in parallel. We were also able to evaluate individuals,
and walk toward the favorite ones. Thus, we can say that the user can search for
favorite musical pieces based on one’s subjective evaluations using this system.

Fig. 8 shows example trajectories of adaptive walk on the soundscape when
the 5 different subjects searched for their favorite musical pieces. We used the
settings of parameters: W=5, D=7.5 and T=4. The sounds are played with a
randomly determined delay, and we adopted a unique sound type (piano) for all
individuals. The relative directions of individuals being playing are front center,
rear center, center right, and center left. The subjects were only allowed to use
the adjustment of the scale of the soundscape.

Starting from the center of the soundscape, the subjects moved over 10-80
areas, and finally reached their favorite piece whose corresponding position were
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Fig. 7. The control panel of the proto-
type

a

b

c

d e

Fig. 8. Example trajectories of evolu-
tionary search on the soundscape

Fig. 9. An evolved musical piece

indicated with a circle on the map. As the figure shows, the trajectories varied
significantly, which implies that the aesthetic feeling for musical pieces of the
subjects were basically different. It is also interesting that the two subjects finally
reached the closer positions (d and e). Fig. 9 is an evolved sound piece which
corresponds to the position c (50, 45) in Fig. 8.

It also turned out the following points with regard to the functional features.
By decreasing the scale of the soundscape during early period of the search, the
user could quickly reach one’s favorite areas in a long distance from the initial
area. It was not easy to localize the individuals in backward positions of the
user compared with those in other relative positions. Thus, there is a possibility
that we can improve the ability for selective listening by adjusting the number
or assignment of the individuals being playing in backward positions. Also, the
random delay in the timing of play and the use of different sound types made
the users much easier to distinguish between individuals. However, the latter
sometimes affected the intuitive impressions of the individuals strongly, and thus
affected their evaluations.

In addition, a searching process on the soundscape was itself a new experience,
which implies that this system can be extended to a kind of installation.

5 Conclusion

We have proposed a new interactive genetic algorithm for musical works utilizing
the human abilities of localization and selective listening of sounds, which is
based on adaptive walk on the fitness landscape of sounds. We constructed a
prototype of the system for simple musical pieces, and conducted a preliminary
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evaluation of it. It was confirmed that the users were able to search for their
favorite pieces by using this system. We also proposed the several functional
features for improving evolutionary search.

Future work includes the more detailed evaluation of the system, the improve-
ment of evolutionary search, and the application of this system to the interface
of content selection in portable music players.
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Abstract. We test the controversial ideas about the role of corridors in 
fragmented animal habitats. Using simulation studies we analyze how 
fragmentation affects a simple prey-predator system and how the introduction 
of openings that connect the habitats changes the situation. Our individual 
based model consists of 3 levels: renewable prey food, as well as prey and 
predators that both have a simple economy. We find, in line with intuition, that 
the fragmentation of a habitat has a strong negative effect especially on the 
predator population. Connecting the fragmented habitats facilitates predator 
(and hence prey) survival, but also leads to an important counterintuitive effect: 
in the presence of a high quality predator, connected fragmented systems fare 
better in terms of coexistence than do unfragmented systems. Using a frequency 
domain analysis we explain how corridors between sub-habitats serve as “wave 
breakers” in the population flow, thus preventing deadly density waves to 
occur. 

Keywords: predator prey systems, animal corridors, frequency domain analysis. 

1   Introduction 

Wave patterns are common in biology. Spatio-temporal waves have been demonstrated 
in many population models. In particular, various waveforms including spiral waves can 
be generated in simple predator prey systems [e.g., 1]. The stability and coexistence of 
populations is often closely related to the existence and behavior of wave patterns. High 
amplitude oscillations or transients tend to destabilize systems by generating depleted 
resource conditions. Therefore, the understanding and active control of population 
waves is of high importance in a number of contexts. For example, fragmented habitats 
tend to produce high densities that often lead to fatal oscillations.  

General spatial models in ecology, including island biogeographic models [2] as 
well as meta-population models [3, 4] predict that movements between patches will 
increase effective population size and persistence in general. Haddad & Tewksbury 
[5] reviewed major ecology and general biology journals from 1997 to 2003 and 
found only 20 studies to test the corridors’ effects on populations and diversity. They 
concluded that the current evidence offers only tentative support for the positive 
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effects of corridors, and much more work on population and community responses is 
needed, especially, that it is important to study the mechanisms and conditions under 
which we can expect corridors to impact populations. The authors also predicted an 
increasing importance of individual based models that can aid empirical studies by 
focusing on the effects of different life history parameters [5]. 

In this paper we present and agent based model to study the oscillatory behavior of 
populations in various fragmented and connected fragmented habitats, respectively. 
The model utilizes an approach inspired by studies of excitable media, hydrodynamics, 
and granular flows. Hydrodynamic analogies can often help understand wave 
phenomena in different domains. Wave control tools (such as wave breakers and 
barriers) are being extensively used in natural flow systems such as rivers, ocean 
shores, etc. Also, granular flows have been successfully applied to the modeling and 
control of the behavior of humans in mass situations such as when escaping from fire, 
in high traffic or in mass demonstrations [6] . We utilize a similar metaphor in the 
present model, where population waves are shown to be controllable by a combination 
of barriers and restricted passages (i.e., corridors). 

2   The Model 

The model (written in NetLogo 3.14) uses a simple set of assumptions: 

• The system consists of predator and prey individuals, which feed on biotic 
resources. Prey food has an autonomous growth dynamics with saturation.  

• The model is spatially explicit, consisting of n x n locations. A prey individual 
consumes a food token on its current location, if there is one. Similarly, the 
predator consumes a single prey individual if prey is found at the given location. 
All these behaviors are translated into a common currency, “energy”. Consumption 
ensures a certain amount of energy, i.e., GainPY and GainPD for the prey and 
predator, respectively. The consumed individual dies, and it is removed from the 
system. Death also happens if the energy level of an individual reaches zero. 

• At each time step every individual is forwarded by a constant amount Fd (this 
speed is assumed identical for both predator and prey). Each move occurs in a 
uniformly selected random direction taken from the interval ±T (the degree of 
turning in degrees relative to the current orientations). One step costs exactly one 
energy token (stored “energy” thus directly converts to lifetime).  

• The habitat is modeled as a rectangular area with reflecting boundaries. Each 
position (except the borders) can be empty or occupied by an arbitrary number of 
individuals (except that prey food that can only be on or off at a given location).  

• Reproduction is asexual and occurs with probability RPY and RPD, for prey and 
predator. Upon reproduction, a new individual of the given type is produced, with a 
random spatial orientation. Energy tokens of the parent individual will be shared 
evenly with the offspring. Prey food regenerates in K steps. 

• Prey and predator start from random initial positions as well as orientation and 
receive a randomized amount of startup energy (between 0 and EPY or EPD 
respectively). At every discrete time step, the following sequence of actions is 
performed for each individual organism in a dynamically randomized order: move, 
consume available resources, reproduce, and die if energy is out.  
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Borders with reflecting walls implement fragmentation in the habitat. Borders (similar 
to real roads, canals, or fences) do not decrease the overall habitat size significantly, 
and behave in the same way, as does the outer boundary. Corridors are implemented 
as openings in the walls where the organisms can pass through freely. Corridors have 
zero length (beyond the wall thickness) and are wide enough to permit several 
organisms to cross at the same time. 

w1c0

 
 

w2c0

 
 

w3c0

 
 

w1c1

 

w2c2

 

w3c3

  

Fig. 1. Fragmentation schemes studied in the paper: wXcY is an X walls and Y corridors system 

The main numerical control parameter of the model is GainPD, i.e., the amount of 
energy gained by the predator when a prey individual is consumed (this can be 
thought of as representing a “quality” parameter for the predator: thus, the parameter 
is used as an umbrella descriptor for many direct and indirect relationships between 
several individual predator traits). In the model, high levels of predator gain and the 
resulting higher energy reserves of the predators imply a higher expected predator 
lifetime, which corresponds to an efficient natural predator that can control a large 
area.  

An additional, and most important, control parameter is the number of boundaries 
and openings in the system. We studied several different combinations (see Fig. 1.) 
Baseline settings define an initial area large enough to support a high population size 
(about 10,000 individuals) of prey and predator (Table 1.). Under the baseline 
conditions, in the unfragmented area (w0c0) the prey population always persists 
indefinitely without the predators, while prey and predator tend to coexist together.  

In the experiments, the value of GainPD and the number of boundaries and 
corridors were varied, while all other parameters were kept unchanged. Many of these 
parameters have various effects on dynamic properties that we cannot study in this 
paper. Treatments consisted of an exhaustive combination of the values GainPD = 10 
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(baseline), 30, 50 and 70, with a complete set of boundary-corridor systems as 
presented on Fig.1. (For each treatment, we started simulation runs with a delay t=50 
in initial prey food re-growth, to avoid extreme initial prey densities and follow-up 
extinctions.) A high number (≥ 50) of simulation runs with different random seeds 
and t = 4,596 time steps were carried out for each treatment. Data were analyzed and 
plotted using the R statistical package. 

Table 1. Model parameters and initial values used in the simulations 

Initial prey NPY = 1,000; predator NPD = 100 n area size = 200  
Fertility RPY = RPD= 15 % Corridor width = 3 
Motion speed Fd = 0.9;  Max. turning T = 50 
GainPY = 4, GainPD = varied (10, 30, 50, 70) Regeneration time K = 5 
Initial energy maximum EPY = 2*GainPY,  
EPD = 2*GainPD 

 

3   Results and Discussion 

The various effects of fragmentation and corridors exerted on the quantitative 
behavior of coexistence dynamics has been explored in (Karsai and Kampis 2011, 
submitted). The basic – and seemingly counterintuitive – finding is that, although 
fragmentation decreases the chance of survival for the predator (as expected), yet a 
combined effect of fragmentation and corridors produces a situation favoring the 
coexistence and stable dynamics of prey and predator above the chance of coexistence 
found in the unfragmented system. In the present paper we study the oscillatory 
behavior and the effect of boundaries and corridors on the emerging spatio-temporal 
waves understood as population oscillations. Accordingly, the main results reported 
here are based on a frequency domain analysis.  

3.1   Qualitative Behavior 

In an unfragmented habitat (Fig. 2.a), massive waves (typical for high density 
populations) together with a high risk of extinction are experienced at high values of 
predator gain. In isolated fragmented habitats (Fig. 2.b), under the same conditions a 
system of short-lived dynamic transients dominates the system in each isolated 
fragment, leading to the extinction of the predator or the prey (and then both of them) 
in almost every trial and any degree of fragmentation applied. Wave phenomena are 
not strongly expressed in these cases, because of the lack of a stationary domain of 
existence and also due to the strongly limited size of the isolated fragments.  

In a connected-fragmented system, however, an entirely new phenomenon is 
found. “Broken” waves appear that can percolate through boundaries via the openings 
and tend to form a new seed for newer waves (Fig. 2c.). The typical mechanism is that 
some prey individuals get into (“escape” into) new territories, followed by the 
predator somewhat later. The new territories often lack predators as a result from 
earlier overexploitation. Hence, a new territory can be freely repopulated by the prey, 
harvested by the predator later; and so on. Unlike in isolated fragments, in connected 
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fragments the local extinction dynamics does not lead to a fatal population level 
consequence. New growth and new oscillations can start in neighboring fragments 
and spread all over in a recursive fashion. In the following, we analyze these 
behaviors using Fourier analysis to quantify the nature of the summarized effects. 

a

b

c
 

Fig. 2. Population distributions in unfragmented: a, fragmented: b; fragmented and connected: c 
habitats. Prey food (grey), prey (white) and predator (black). 

3.2   Frequency Domain Analysis 

Prey behavior is clearly derived from predatory effects. It will, therefore, be 
instructive to focus on the behavior of the population of predators. 

Recurrence plots for N=1024 steps are shown on Fig. 3. To appreciate these 
recurrent plots, note that a perfectly regular plot (for instance, the recurrence plot of a 
sinus wave) shows a regular, reticular pattern. Transients are visible as stripes and 
smudges. Disregarding transient irregularities, Fig. 3. shows a clear overall pattern. 
The upper row shows the unfragmented situation. The baseline case GainPD = 10 
yields a quite perfect regular recurrence pattern, showing the dominance of a single 
frequency and its higher harmonics. Increasing GainPD (going right) leads to slower 
and less sharp recurrences, visualized as a decay of the original regular reticular 
pattern. Below the upper row, we show similar plots for a feasible fragmented 
connected habitat (w2c2). Here, even at higher values of GainPD, the recurrence 
structure is maintained in an undamaged and sharp condition.  



 Breaking Waves in Population Flows 107 

We also performed a (Fast) Fourier Transformation on the predator records for the 
various habitat types as shown in Fig. 1, using N=4096 steps, and discarding  
the initial transients (t<500). Plots vary in vertical resolution but are identical in the 
horizontal axis, showing the actual frequencies (i.e., modes). At the base level of 
predator gain (GainPD=10), an invariant, single frequency peak characterizes the 
dynamics, which is independent from the number of fragments and corridors (Fig. 4, 
upper row). This invariant frequency arises from the interaction between the 
population and the spatial environment, parameterized here as a special case. 

 

Fig. 3. Recurrence plots of various unfragmented viz. connected fragmented systems. For high 
quality predators (large GainPD), connected fragmented systems show sustained oscillations. 

Fragmented isolated habitats show obligate extinction transients in the high predator 
gain region (i.e., GainPD ≥ 50). Because of the universality of the extinction transients, 
a systematic frequency analysis of these systems would not be informative. In the 
unfragmented case, however, we see a different situation. We can observe that the 
increase of GainPD leads to a characteristic slowdown (Fig. 4., lower row) and a heavy, 
low-frequency tail, appearing due to various transients that arise from irregular 
oscillations with spatial inhomogeneity (as seen in Fig. 2.a), topped by a zero 
frequency component that corresponds to the extinctions (Fig.4., lower row, right); this 
combined tail finally suppresses the periodic signal (GainPD =70, w3c3). 

In contrast, fragmented connected habitats show the most interesting behavior. We 
observe that predators respond to increasing fragmentation and to growing GainPD 
differently. The opening of corridors introduces a left shift and a wider base in the 
frequency distribution; this means that many new frequencies emerge with small 
amplitude but also that the waves are slowing down (Fig. 5, throughout). The overall 
system dynamics also depends on the degree of fragmentation via the appearance of 
 



108 G. Kampis and I. Karsai 

  

  

Fig. 4. Connected fragmented habitats I. Upper row: Sharp oscillations in the baseline case 
(GainPD=10). Left to right: w0c0, w1c1, and w3c3. Lower row: unfragmented (w0c0) case with 
increasing predator gain (GainPD=30, 50 and 70), showing low viz. zero frequency tail. 

  

  

  

Fig. 5. Connected fragmented habitats II. Left to right: increasing predator gain (GainPD=30, 50 
and 70). Top to bottom: increasing fragmentation: w1c1, w2c2 and w3c3. 

global harmonics that survive despite local extinctions (Fig. 5, middle and lower 
rows) (A notable contingency is the occurrence of higher harmonics when fragment 
size supports multiple oscillations, see Fig. 5, middle row). The quality of the predator 
(GainPD) also has a profound effect here. As in the unfragmented case, increasing 
predator quality leads to a left shift (i.e., slowdown) on the frequency plot, and the 
same low-frequency tail appears. This tail is again associated with the transients and 
extinctions in the same way as in the unfragmented case. However, this time we deal 
with an asynchronous process, which is the result of the independent dynamics of the 
several fragments, and accordingly, we see that the local transients do not destroy the 
main population harmonics. Indeed, in the connected-fragmented case, increasing 
fragmentation (Fig. 5, top to bottom) increasingly restores the original harmonics. 

Thus, we observe that two interwoven effects arise from fragmentation and predator 
quality. A worst combination case is seen on Fig. 5, upper row (viz. w1c1), where 
fragmentation biases the system towards extinctions in the individual fragments 
(shown by the notorious low-frequency tail), but at the same time, the positive effect 
arising from corridors (Fig. 5, middle and lower rows) is not strong enough yet to 
support the survival of the lead frequency in the combined system of fragments. 
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4   Conclusions and Interpretation 

There is a natural analogy with wave-breakers here. Wave-breakers are obstacles that 
disrupt otherwise fatal see or river waves, dispersing the effects of energy. Here, 
similarly, fragmentation barriers can break population waves – however, of course, 
here the end effect is the opposite on the system; exactly by breaking the otherwise 
fatal waves can the population escape and via the “leaking” of corridors a sufficient 
amount of organisms can survive, to build up new waves, to be broken up again, etc. 

This mechanism explains our otherwise highly counterintuitive main finding that 
more fragmentation can be better than little or – what is the least expected – no 
fragmentation at all. The key is connectedness in fragmentation: the higher the 
fragmentation, the more effective the wave breakers, and via the connections, the 
more efficient the regeneration process of subpopulations. 

References 

1. Boerlijst, M.C., Lamers, M.E., Hogeweg, P.: Evolutionary consequences of spiral waves in 
a host-parasitoid system. Proceedings of the Royal Society of London Series B Biological 
Sciences 253(1336), 15–18 (1993) 

2. MacArthur, R.H., Wilson, E.O.: The theory of island biogeography. Princeton University 
Press, Princeton (1967) 

3. Levins, R.: Some demographic and genetic consequences of environmental heterogeneity 
for biological control. Bulletin of the Entomological Society of America 15, 237–240 
(1969) 

4. Hanski, I.: Metapopulation ecology. Oxford University Press, Oxford (1999) 
5. Haddad, N.M., Tewksbury, J.J.: Impacts of corridors on populations and communities. In: 

Crooks, K., Sanjayan, M. (eds.) Connectivity Conservation, pp. 390–415. Cambridge 
University Press, Cambridge (2006) 

6. Helbing, D.: A fluid-dynamic model for the movement of pedestrians. Complex Systems 6, 
391–415 (1992) 

7. Karsai, I., Kampis, G.: Connected fragmented habitats facilitate stable coexistence 
dynamics. Ecological Modelling 222, 447–455 (2011) 



Symbiosis Enables the Evolution of Rare
Complexes in Structured Environments

Rob Mills and Richard A. Watson

Natural Systems Research Group, University of Southampton, UK
rmm05r@ecs.soton.ac.uk

Abstract. We present a model that considers evolvable symbiotic asso-
ciations between species, such that one species can have an influence over
the likelihood of other species being present in its environment. We show
that this process of ‘symbiotic evolution’ leads to rare and adaptively
significant complexes that are unavailable via non-associative evolution.

1 Introduction

The organisation of biological systems depends strongly on the interactions be-
tween the organisms that share environments [1]. These interactions not only
shape the selective forces on organisms, but in addition can be subject to change
themselves. Symbiosis, the collaboration between organisms of different types [2],
is very common in nature [3, 4]. Symbiotic associations have the capability of
altering an organism’s biotic environment: the selective context in which it will
appear. This modification in environment is clear where symbiosis is taken to
its logical conclusion, symbiogenesis: where the symbionts involved become re-
productively inseparable [5]. This has the potential for evolutionary significance:
symbiogenesis is thought to be implicated in some of the major transitions in
evolution [6, 7]. There are also less extreme symbioses between free-living species
that still a have significant impact on their likely biotic environments [1].

Given the ubiquity of symbiotic associations, and the assumption that such
relationships can modify the likelihood of co-occurrence between species, we ask
the following questions: What kind of association formation mechanism can lead
to the evolution of complexes that are unevolvable in the absence of associations?
Under what conditions is such a distinction available?

In this paper we describe a model framework of symbiotic evolution, where
the ecosystem composition adapts rapidly according to local dynamics, symbi-
otic associations adapt gradually between co-occurring species in the ecosystem,
and the associations in turn modify local dynamics. We investigate an imple-
mentation of this framework that idealises the separation in timescales of these
two adaptive processes. We find that evolving symbiotic associations on a slower
timescale than the dynamical changes in ecosystem composition is sufficient
to lead to adaptively significant complexes with many dependencies resolved,
and are unavailable without association formation. We use a structured adap-
tive landscape, where only very specific changes are sufficient to traverse the
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ruggedness. The challenge then for associative evolution is to evolve compatible
groupings that resolve conflicts, and transfer competition to a higher level, which
is sufficient to traverse this ruggedness. This provides insight into why there is
a distinction in the evolutionary outcomes with and without association forma-
tion. In other work in this volume [8], we show conditions under which individual
selection leads to the reinforcement of associations between individuals of differ-
ent species that co-occur in the ecosystem dynamics. In the present paper, we
use a higher-level model where associations evolve between species according to
their co-occurrence. This allows us to examine the adaptive significance of the
coupled processes, when compared to non-associative evolution.

Prior models have been suggested that investigate the evolution of symbio-
genic encapsulation [10–12], or abstractions thereof [13]. These models use a
variety of mechanisms to determine the suitability of symbiogenic joins, includ-
ing Pareto dominance [10], context-optimality [13], and maximising reciprocal
synergy [12]. In [14] the evolution of ‘observers’ provides groupings to coarse-
grain an adaptive landscape. A related approach is applied to physical models
in [15]. As noted, we use different temporal scales for ecosystem dynamics and
association formation. In evolutionary computation, [16] uses results of multiple
hill climbing runs to build a model of dependencies, which provides a similar
timescale separation to successfully solve hierarchical problems. Memetic algo-
rithms [17] also use search at two levels, but importantly, neither search process
modifies the variational units for the other.

2 Modelling Symbiotic Variation

In our model ecosystem there are many species. Since we want to investigate the
effect of evolving the interactions between species, the species themselves have a
trivial representation. For each of N niches in the environment, two particular
species compete to inhabit it. There are 2N species in total. Each species also
has a set of association strengths, one for each of the other 2N −1 species. These
associations can evolve, whereas their niche is immutable.

Initially the ecosystem has a random constitution of N species, such that all
niches are occupied. All association strengths are initialised at zero. Changes in
the ecosystem composition occur by following the system dynamics – by intro-
ducing random migrants that compete with the current ecosystem occupants.
The symbiotic associations strengthen between species that are present in the
ecosystem at any given timestep. Within a reasonably short timescale, no fur-
ther changes in ecosystem composition occur: the ecosystem is at a locally stable
state. Periodically, the ecosystem is perturbed such that its constitution is ran-
domised, and local dynamics will again cause ecosystem changes. Note that these
perturbations do not modify the symbiotic associations that have evolved.

The changes in the ecosystem composition are effected by allowing a random
species to immigrate, and if the overall utility of the ecosystem is higher with
this migrant than without, it is retained. When the migrant species has non-zero
associations with other species, these are interpreted as probabilities that those
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Table 1. Symbiosis Model Main Procedure

1. allow d demes to run to their local attractor
2. measure the co-occurrence of each pair of species within all deme attractors,

and reinforce symbiotic associations according to Eqn. 1.
3. randomise each ecosystem composition and go to step 1.

other species will migrate at once. Thus, if a pair of species has symbiotic associa-
tions of maximal strength, they will always migrate together. These associations
have the effect of correlating the possible variation in ecosystem composition.

We use an external fitness function to define the overall utility of each ecosys-
tem composition, and this is used in a ‘black box’ manner: a utility value is
only defined if all niches are occupied. However, by comparing two compositions
that only differ by the occupant of a single niche, we identify which of the al-
ternatives is more suited to the current context, thus effecting individual-level
selection. The case is similar when a migrant group modifies multiple niches.
Therefore, this reveals the context-dependent utility contribution of a migrant
group.

In order to examine the behaviour we instantiate a model within this frame-
work, with two additional assumptions: i) the length of time the system spends at
local attractors dominates the time spent in transients; ii) instead of modifying
the associations gradually over several trajectories, we use several independent
demes in parallel, and modify the associations in proportion to the co-occurrence
of species across the ensemble of demes. Using only attractor states to inform as-
sociation evolution makes explicit the separation of timescales between changes
to association and ecological changes.

2.1 Model M-S: Continuous Associations, Parallelised

If the ecosystem spends most of its time at attractors (or close to), a suitable
approximation is to only modify the associations according to the species that are
present at attractors. Procedurally, this model is described in Table 1. Following
the dynamics of the ecosystem is a simple process that takes into account the
symbiotic associations. The procedure is described in Table 2.

Observed co-occurrence, Oi,j , is calculated from the proportion of demes
where both species i and j are present. The expected co-occurrence frequency is
calculated from the product of univariate frequencies: Ei,j = XiXj . Using these
values we construct a deviance from expected metric (essentially, a measure of
surprise with respect to Ei,j). Associations are formed according to the rule in
Eqn 1, where h is the threshold below which all Si,j values are set to zero.

Si,j =

{
Oi,j−Ei,j

min(Xi,Xj)−Ei,j
, if h · Oi,j−Ei,j

min(Xi,Xj)−Ei,j
< Oi,j ≤ min (Xi, Xj)

0, otherwise
(1)

The exit condition in step 6) when following dynamics can either be to make a
pre-specified number of migrations, or alternatively to wait for P trial migrations
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Table 2. Symbiosis-Informed Ecosystem Dynamics

1. Evaluate the initial ecosystem composition (→ fp)
2. Form a migrant group g:

(a) Randomly select a migrant species m, and add to g
(b) Select without replacement a random species x �= m
(c) With probability Sm,x, add x to g, unless that niche is already filled in g
(d) If any species has not been sampled, goto (b)

3. Temporarily introduce g to the ecosystem, allowing g to take precedence over
the current occupants

4. Evaluate the modified ecosystem composition (→ fm)
5. If fm ≥ fp, allow the migrant group g to remain permanently, and set fp ← fm

6. If exit conditions not met, go to step 2).

without a change in composition. Note that in step 5), if the overall utility of
the modified ecosystem is not higher than the original ecosystem, all species
changes are reverted. Implications of this are discussed further in Sec. 4.

3 Simulation Experiments

We investigate the behaviour of the described models, and in particular, the
complexes that evolve. We measure the evolutionary timescales required for each
model to find the globally optimal configuration in the entire landscape (exam-
ined over several system sizes). The control model (M-C) is equivalent to M-S
except that no associations are evolved – the S matrix is held at 0 throughout.

Watson and Jansen [18] introduce a synthetic problem class where instances
comprise several large modules of binary variables, or ‘building blocks’. Each
module has two optima, one of higher utility than the other, both with equal sized
basins. These are concatenated with no inter-module dependencies to construct
the full problem. Eqn. 2 defines the utility contribution of a single module.

f (x) =

⎧⎪⎨⎪⎩
k if U (x) = k
U(x)

2 if k > U (x) > k
2

(k−U(x))
2 else

(2)

Given that each of Z modules has k variables, x is a configuration of variables
within that module, and U (x) is the unitation (number of variables set to ‘1’).
We set k = Z =

√
N , such that the size of the modules scales with the size of

the system, and thus refer to this problem as the scalable building blocks (SBB)
problem. Each variable in the problem corresponds to a niche, and we refer to
the two species that can occupy this niche as the ‘0-species’ and ‘1-species’ –
giving a total of 2N different species in the ecosystem. The resultant landscape
is very rugged, with 2Z locally optimal configurations. Of these configurations,
only one is globally optimal: when all niches are occupied by the 1-species. From
any local optimum, the nearest configuration of higher utility differs in k niches
– all within one module that is currently entirely occupied with 0-species.
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Fig. 1. Timesteps that each model takes before visiting the highest utility configuration
in the SBB landscape. The symbiotic model visits this configuration with ease, whereas
the control model very rarely does (thus requiring exponentially many epochs to sample
the appropriate basin). The parameter settings are as follows: for M-S, we set d = 50,
h = 0.6; In both M-S and the control M-C, following the dynamics uses 2N migrations,
sampling on the initially selected species m without replacement; each model continues
to restart until the globally optimal configuration is sampled. 30 repeats are performed
for M-S, 100 repeats are performed for M-C (on account of higher stochasticity).

4 Discussion

As Fig. 1 shows, the symbiosis model provides an efficient processes that finds
the very particular configuration with highest overall utility. This is in contrast
to the control model, where the number of timesteps required to find the same
configuration increases exponentially with the system size. The comparison in-
dicates the significance of the result that M-S can find such a configuration.

The symbiotic model is very efficient at discovering the globally optimal con-
figuration in this landscape. How is this so? First, consider the attractors visited
by the initial set of demes. In each one, some modules will be occupied by all-0,
and some by all-1 species – but no single attractor will have all-1 in all mod-
ules. Whenever a 1-species occurs, it always co-occurs with other 1-species in the
other niches in that module. Note that it is not the case that 1-species always
occur in any particular module: the all 0-species attractor also has a 50% basin.
Furthermore, there is no correlation between the attractor that each module
finds, since the landscape is separable. Associations are formed between species
that co-occur frequently across the set of demes. Thus, within any module strong
symbioses will form amongst all k of the 1-species, and likewise amongst all k of
the 0-species. No associations will form between 0-species and 1-species that oc-
cupy niches in the same module, since at attractors there are no co-occurrences.
The between-module co-occurrences are predicted by the univariate frequencies
(i.e., there is little or no surprise), so no associations will form here either. Fig.
2 (a) shows the resultant associations from the described process.

Now let us consider the local dynamics with these associations. Each migration
is likely to introduce all of the compatible species in a particular module. This
transfers competition to the module-level. To start with, introducing either an
all-0 group or an all-1 group will remain, since both are significantly higher utility
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(a) (b)

Fig. 2. Symbiosis matrices for a 72 species (N=36, k=6) ecosystem. (a) Ideal target to
represent the landscape structure. (b) Calculated from the surprise metric (Eqn. 1) on
an example set of local optima, without a threshold (i.e., h=0). This leads to a largely
accurate representation, with some spurious interactions. An appropriate threshold can
recover the target – see text. Lighter shades indicate stronger associations.

than a random composition in the corresponding niches. However, as soon as an
all-1 group is introduced, it has exactly the right variation to move to the highest
utility possible in that module, and will thus replace any other composition.
When appropriate all-1 groups have migrated into each of the modules, the
overall utility will be maximised. After the associations develop as described
above, this reliably occurs.

While each of the configurations that is discovered in one of the demes has N
species present, the subsequent competition is not directly between these local
optima. The associations that evolve form groups of k members, corresponding
to each module, as described. This is important for a significant result. Because
the module sub-functions are independent, these small groups are both sufficient
and selectively efficient in the sense that they create Z independent competitions
between the two sub-solutions in each module, rather than a single competition
between all 2Z possible local optima [18].

The success of the symbiosis model depends on the formation of associations
appropriate to construct these per-module competitions. Fig. 2 (a) shows the
target associations, which comprises strong associations between all compatible
species within each module, and between-module associations. Frame (b) shows
an example calculation of the surprise metric, without a threshold applied (Eqn.
1). In addition to the correct within-module interactions, this measure indicates
some spurious interactions. Using Eqn. 1 with h = 0.6 is sufficient to recover
just the appropriate associations, as in frame (a).

There are several control models that we could have used, but would any have
a better chance than M-C? Selecting on groups at the level of entire ecosystems
does not allow one ecosystem configuration to have any correlation with the next.
Without the ability to follow fitness gradients, all possible ecosystems must be
enumerated. In principle, migrations of uncorrelated groups of species can move
between the local optima that defeat single-migrant dynamics. However, to move
between local optima in the SBB landscape, the k species that are in one module
must all change at once. The number of different possible k-species groups is
2k

(
N
k

)
, so any uncorrelated group formation process will require a prohibitively

large number of attempts before finding the exact group necessary to move
from one local optimum to another of higher utility. Even if the decomposition



116 R. Mills and R.A. Watson

were somehow known, randomly forming a group of the particular membership
required is still exponential in the module size, which scales with the system size.
Considering all 2Z local attractors as M-C does is therefore the fastest control
when k = Z, despite it not requiring any structural information. Therefore, any
reasonable control that does not evolve symbiotic associations will not reliably
find ecosystems of the same level of utility.

As described above, we use a mechanism that reinforces associations at the
inter-species level – based on the surprise in the co-occurrence of species across
several demes, with respect to the expected frequencies predicted from individ-
ual occurrence levels. The proposed mechanism is simpler than those suggested
in previous models [10–12], and gives rise to qualitatively distinct results. In
other work, we use a model that has an explicit population within each species,
and each individual can evolve species-specific symbiotic associations (i.e., the
associations are individual traits) [8]. We use this model to explore the types of
population structure that lead to the evolution of adaptively significant associ-
ations. In particular, we show that the high-level mechanism used in M-S need
not be imposed at the species level, but can in fact can be manifested via the
evolution of individual traits. As in the present model, the evolved associations
create higher-level groupings and selective units.

Note that due to the transparent simplicity of the SBB landscape, it is ac-
tually possible to simplify M-S to only use ‘all-or-nothing’ associations in this
case. However, such a simplification narrows the applicability. Elsewhere we have
investigated landscapes in which associations with intermediate strengths find
high-utility configurations that cannot be found with ‘all-or-nothing’ associations
[19, 20]. It is worth noting that the algorithm proposed in [16] is able to effi-
ciently solve hierarchical problems with some similar abstractions, in particular
by model building from information at local optima.

In our model, we apply selection on migration groups such that an entire
group is rejected if overall utility is not improved. This effectively causes the
units of variation to be synonymous with the units of selection. An alternative
scheme might allow groups to migrate together, but select on individual species.
We suggest that because the individual selection is performed in the new context,
with the entire migration group, the ultimate changes in ecosystem composition
will not be significantly different than if selecting on groups as an entire unit.
Recall that migration groups typically comprise species that were frequently
found to co-occur in locally stable contexts. Thus, the individual species would
be selected in the context of the particular group. We leave the verification that
both schemes have qualitatively equivalent results for future work.

We have presented a model of the evolution of symbiotic associations
where a separation of the temporal scales of changes in ecosystem composition
and changes in species associations leads to the evolution adaptively signifi-
cant complexes. This is in contrast to previous models of symbiosis with similar
timescales for both levels of adaptation, and results in a simpler and more bi-
ologically plausible model. Provided that the ecosystem is perturbed at a low
frequency such that the transients are shorter than the average time between
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perturbations, the associations that form give rise to specific species groupings
that can traverse rugged landscapes.

Acknowledgements. Thanks to Jason Noble, Simon Powers, Johannes van
der Horst, and Devin Drown for useful discussions.
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Universitätsplatz 2, A-8010 Graz, Austria
ronald.thenius@uni-graz.at

Abstract. In the work at hand, a bio-inspired approach to robot con-
troller evolution is described. By using concepts found in biological em-
bryogenesis we developed a system of virtual embryogenesis, that can
be used to shape artificial neural networks. The described virtual em-
bryogenesis has the ability to structure a network, regarding the number
of nodes, the degree of connectivity between the nodes and the amount
and structure of sub-networks. Furthermore, it allows the development
of inhomogeneous neural networks by cellular differentiation processes
by the evolution predispositions of cells to different learning-paradigms
or functionalities. The main goal of the described method is the evolu-
tion of a logical structure (e.g., artificial neural networks), that is able
to control an artificial agent (e.g., robot). The method of developing,
extracting and consolidation of an neural network from a virtual embryo
is described. The work at hand demonstrates the ability of the described
system to produce functional neural patterns, even after mutations have
taken place in the genome.

1 Introduction

Structured artificial neural networks (ANNs) are advantageous in many ways:
For example, they provide highly interesting auto-teaching structures as men-
tioned by Nolfi in [1] and [2]. In these works an ANN is described, which consists
of two subnets, a “teaching net” and a “controlling net”. If such a network is
shaped by an artificial evolutionary process it has “genetically inherited pre-
dispositions to learn”, as described by the authors. The ability of an ANN to
evolve such substructures is one of the main goals of the virtual embryogenetic
approach described in this work.

Other concepts, like the influence of body (and neural controller shape) onto
the function of the controller are described in [3] and [4]. The main ideas of these
publications are to describe the significant influence of the morphological shape
of the agent (or robot) on the learning and controlling process. As described later
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in this article, the positions of sensor input nodes and actuator output nodes
within the virtual embryo’s growing body corresponds the positions of sensors
and actuators in the real robot (“embodiment” of controller).

Other interesting approaches to the challenge of shaping of ANNs (with focus
on the French flag problem described in [5]) are described in [6]: The function
of a node is not determined there, but can be shaped by the genome. Another
work, that deals with the problem of differing functions within an ANN, is [7], in
which different predispositions for learning are implemented by “virtual adaptive
neuro-endocrinology”. Within such a network, different types of cells exist: gland-
cells, which influence the learning of the network, and regular cells, which are
influenced by the gland-cells.

In [8] the process of virtual embryogenesis is described (see figure 1). It also
describes how the feedback between morphogenes and the interaction between
morphogenes and the genome act together and define the final shape of the
embryo. Based on this work we show how to extract, how to optimize and how to
use an ANN from a grown virtual embryo. In addition we discuss the advantages
of such networks for future evolutionary adaptation.

Fig. 1. Comparison of virtual embryogenesis in our model and real-world embryogenesis
(from [8]): A: Virtual embryo, consisting of cells (dots); B: Morphogene gradient in the
embryo; C: Gradient of another morphogene, inducing cell differentiation. D: Embryo
consisting of differentiated cells (white dots) and non-differentiated cells (invisible) ;
E: Natural example of gene expression: Activity domains of gap genes in larva (lateral
view) of Drosophila m. (from [9]; ’Kr’ and ’Gt’ indicate gene activity.)

2 Method

2.1 Concept of Adapting Virtual Embryogenesis for Controller
Development

In the process of virtual embryogenesis, described in [8], an embryo consists
of cells, which develop to nodes in the ANN during the embryological process.
These cells duplicate, specialise, emit chemical substances (morphogenes), die,
or build links to other cells depending local status variables. Links between cells
represent neural connections between the nodes of the resulting ANN. Cells can
be “pushed around” in space, due to growth processes of the embryo, but they
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have no ability for active movement. Cellular actions are coded in the genome
(collection of single genes) of the embryo. Genes are triggered by presence of
virtual morphogenes. One possible effect of gene-activation is the production of
another morphogene. This way a network of feedbacks emerges, which leads to
a self-organised process, that governs the growth of the embryo. The developed
network is analysed and translated into a data structure which is compatible to
a standard ANN-interpreter.

The overall process of growing and extracting an ANN from an embryo is
a procedure of 9 distinct steps (figure 2): A genome (figure 2a) that is able to
perform complex operations including operations regarding the interpretation of
the genome (figure 2b) codes for the growth process of a virtual embryo (fig-
ure 2c). For details of this process see [8]. Some cells of this virtual embryo are
able to develop links to other cells in the embryo and thus become neural cells.
(figure 2d). After the embryogenetic process, the ANN is extracted from the vir-
tual embryo (figure 2e). “Dead-end” connections within the network that might
develop during embryological process are removed for the sake of calculation
speed (figure 2f). The ANN is then linked to sensor- nodes and actuator nodes
according to the definitions of the robot in which the network has to perform
(figure 2g). After this step, the network is translated into a data structure, that
can be parsed by an ANN interpreter (figure 2h) and tested in the robot or in
the simulation environment (figure 2i).

Fig. 2. Concept of shaping ANNs by virtual embryogenesis
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3 Results

3.1 Growth of Neurons

One of the most important steps on the way from the initial genome to a robot
controller is the definition and linkage of neural cells within the virtual embryo.
Some genes trigger the growth of neural links of a cell. In figure 3(c) a simple
multi-layered neural structure is shown. Due to locally differing concentrations
of morphogenes it is possible that sub-networks grow within different parts of
the embryo. Due to the possibility to modify the internal status variables of neu-
ral cells (as mentioned in [8]), these sub-networks have different properties, for
example, in their pre-disposition for learning or in their function. The possibility
to structure neural networks this way in a genome controlled self-organised pro-
cess is one of the main advantages of the method described here. Such processes
can be modified by artificial evolution.

The genetic structure shown in figure 3(a) contains two genes (“p165” and
“p185”), which code for proteins that lead to a linkage of neural cells. The
protein, coded by the gene “p165”, is part of the genetic substructure (beginning
with the morphogene coding gene “m2”) that controls the vertical growth of the
embryo (final shape of the embryo depicted in figure 3(b)). Due to its position,
this gene induces the building of “long distance connections” all over the embryo
(depicted by red lines in figure 3(c)). This process already takes place very
early in the growth process of the virtual embryo, so that linked cells move
into different directions and the neural connections reach throughout the whole
embryo. The protein resulting from the triggering of the gene “p185” leads to
the development of the spatially concentrated sub-networks. The sub-networks
with high density are depicted by white lines in figure 3(c).

3.2 Translation

After the virtual embryo has stopped to grow, it is necessary to extract the
ANN from the embryo and to translate it into a structure that is readable for a
standard neural network interpreter. Before that, the network gets consolidated:
All neural cells that have no input or output are removed from the network .
This “consolidation process” is an optimisation step which prevents unnecessary
structures (like “dead end” connections). In a second step, the ANN has to be
linked to the inputs (sensors) and outputs (actuators) of the robot (or other
agent), controlled by the network (figure 4). The cells that get connected to
inputs and outputs are selected by their position in the virtual embryo corre-
sponding to the position of sensors and actuators on the robot. In a third step
the finalised neural network is translated into a structure of one-dimensional and
two-dimensional arrays that can be parsed by a standard neural network inter-
preter. After this step the embryogenetically shaped ANN is ready for upload to
the robot.
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(a) Genome (b) Embryo (c) Neural cells

Fig. 3. Growth of an ANN in a virtual embryo. (a): The genome defining the number
and location of neural sub-networks in the embryo via self-organizing processes (for
details please see [8]). (b): Shape of the embryo, neural connections are not drawn. (c):
Screenshot of the neural network in the embryo. White lines indicate “short distance
connections” within local sub-networks, red lines indicate “long distance connections”
that reach throughout the whole embryo and connect the sub-networks with each other.

(a) Network inside embyro (b) Unflolded network

Fig. 4. Extracting and optimising the ANN. (a): A neural network inside of a virtual
embryo. (b): Unfolded neural network. During virtual embryogenesis “dead-end” con-
nections can occur, which consist of neural cells that do not have input and output.
These cells are disadvantageous to the efficiency of the resulting ANN. Yellow circles
indicate neural cells, lines indicate connections between cells.
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4 Discussion

4.1 Usability of Virtual Embryogenesis for Shaping of ANNs and
Robot Controllers

One important ability of the described system, on which an artificial evolutionary
process works, is the stability against lethal mutations, along with the ability to
forward changes from the genetic level to the phenotypic (morphological) level.
As shown in figure 5, different embryo shapes emerge from one “ancestor” by
applying small changes to the genome. One important feature is, that these new
shapes do not look completely different from its ancestor, but differ only slightly
(“self-similarity’). These changes do not only take place on the level of shape, but
also on the level of resulting ANNs. As shown in figure 6, changes in the genome
lead also to changes in the structure of the resulting network (i.e., the robot
controller). This way the number of layers, the number of cells within a layer,
the micro-structure of a layer, etc. can change. Please notice, that this ability
of the described system leads to an increased number of “viable ” offspring of
an given “ancestor” in an evolutionary system . We expect this self-similarity
to allow for exploration of larger areas of the fitness landscape in less time, due
to higher possible mutation rates, and better variations of the offspring due to
mutation.

Using the described technique of virtual embryogenesis enables us to develop
embryos from genomes (see figure 1). Within these embryos we are able to let
grow ANNs, whereby the shape, the degree of connectedness and differentiation
processes within the ANN are determined during the developmental process.
This growth process is controlled by the genome and uses a system of feedbacks
and delays. Especially the differentiation of cells within the embryo (see figure 1
D) is important. It allows us to evolve complex structures, constructed out of
sub-structures: many local networks within one bigger network. The described
system allows not only evolution of morphological structures: In addition internal
functions or predispositions of cells or groups of cells get optimized. Within a
neural network different kinds of learning methods could applied (like mentioned
in [1] and [2]). In addition different subnets within one neural network could learn
with different speeds, so they are able to adapt to processes that take place in
different time scales in the environment of the agent. It is possible to structure
an ANN into different sub-networks, that are able to specialise for different
functionalities by being receptive to different external reward functions, that
influence the learning function. Also different functions within structured ANNs
sub-networks can be determined, for example sensor fusion or task-management.

5 Conclusion

Our method of evolving ANNs by simulating embryogenesis elaborates on con-
cepts from the field of evo-devo [10]. This approach produces results that are
comparable to the products of natural developmental processes (figure 1). Within
an embryo we are able to grow ANNs, consisting of different sub-networks. If
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Fig. 5. Variations in the genome lead to variations in shape: If the genome of one
“ancestor” (left sub-figure) is changed slightly, resulting embryos differ slightly in shape
(right sub-figures). Changes in the genome are marked with red boxes.

Fig. 6. Variations in the genome lead to variations in the shape of the resulting ANN:
If the genome of on “ancestor” (left sub-figure, network with 2 layers) is changed, the
resulting networks also change (right sub-figures, networks with 1, respectively 4 layers)
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the genome of a virtual embryo is mutated, the described system leads to func-
tional intact offspring, slightly differing from its “ancestor” (figure 6 and 5). We
also show the possibility how to differentiate groups of cells (figure 1D), what is
comparable to tissue development in biology.

In the next step we plan to combine the presented virtual embryogenesis with
artificial evolution. The quality of the neural network (e.g., regarding learning
abilities, learning speed or ability to adapt to new situations) will be used for
a fitness function. This way novel and efficient ANN-structures are planned to
be evolved. Due to the possibility of the described system to develop structured
ANNs, we plan to investigate the processes of evolution of hierarchical brain-
structures, and this way to learn more about the biological evolution of brains in
real-world animals. Further, we expect this technique to be excellent for shaping
robot controllers, due to the fact that the evolved ANNs can be as variable in
their structure and function as the virtual embryos, in which they develop.
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Abstract. We analyse how the conventional Genetic Algorithm can be stripped 
down and reduced to its basics. We present a minimal, modified version that can 
be interpreted in terms of horizontal gene transfer, as in bacterial conjugation. 
Whilst its functionality is effectively similar to the conventional version, it is 
much easier to program, and recommended for both teaching purposes and 
practical applications. Despite the simplicity of the core code, it effects 
Selection, (variable rates of) Recombination, Mutation, Elitism (‘for free’) and 
Geographical Distribution.  

Keywords: Genetic Algorithm, Evolutionary Computation, Bacterial Conjugation. 

1   Introduction 

Darwinian evolution assumes a population of replicating individuals, with three 
properties: Heredity, Variation, and Selection. If we take it that the population size  
neither shrinks to zero, nor shoots off to infinity -- and in artificial evolution such as a 
genetic algorithm we typically keep the population size constant -- then individuals 
will come and go, whilst the makeup of the population changes over time. 

Heredity means that new individuals are similar to the old individuals, typically 
through the offspring inheriting properties from their parents. Variation means that 
new individuals will not be completely identical to those that they replace. Selection 
implies some element of direction or discrimination in the choice of which new 
individuals replace which old ones. In the absence of selection, the population will 
still change through random genetic drift, but Darwinian evolution is typically 
directed: in the natural world through the natural differential survival and mating 
capacities of varied individuals in the environment, in artificial evolution through the 
fitness function that reflects the desired goal of the program designer. 

Any system that meets the three basic requirements of Heredity, Variation and 
Selection will result in evolution. Our aim here is to work out the most minimal 
framework in which that can be achieved, for two reasons: firstly theoretical, to see 
what insights can be gained when the evolutionary method is stripped down to its bare 
bones; secondly didactic, to demystify the Genetic Algorithm (GA) and present a 
version that is trivially easy to implement. 

2   GAs Stripped to the Minimum 

The most creative and challenging parts of programming a GA are usually the 
problem-specific aspects. What is the problem space, how can one best design the 
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genotypic expression of potential solutions or phenotypes, and the genotype-
phenotype mapping, how should one design an appropriate fitness function to achieve 
ones goals?  

Though this may be the most interesting part, it is outside the remit of our focus 
here on those evolutionary mechanisms that can be generic and largely independent of 
the specific nature of any problem. So we will assume that the programmer has found 
some suitable form of genotype expression, such that the genetic material of a 
population can be maintained and updated as the GA progresses; for the purposes of 
illustration we shall assume that there is a population size P of binary genotypes 
length N. We assume that all the hard problem-specific work of translating any 
specific genotype in the population into the corresponding phenotype, and evaluating 
its fitness, has been done for us already.  

Given these premises, we wish to examine the remaining GA framework to see 
how it can be minimized. 

2.1   Generational and Steady State GAs  

Traditionally GAs were first presented in generational form. Given the current 
population of size P, and their evaluated fitnesses, a complete new generation of the 
same size was created via some selective and reproductive process, to replace the 
former generation in one fell swoop. A GA run starts with an initialized population, 
and then loops through this process for many successive generations. This would 
roughly correspond to some natural species that has just one breeding season, say 
once a year, and after breeding the parents die out without a second chance.  

There are many natural species that do not have such constraints, with birth and 
death events happening asynchronously across the population, rather than to the beat 
of some rhythm. Hence the Steady State GA, which in its simplest form has as its 
basic event the replacement of just one individual from P by a single new one (a 
variant version that we shall not consider further would replace two old by two new). 
The repetition of this event P times is broadly equivalent to a single generation of the 
Generational GA, with some subtle differences. 

In the Generational version, no individual survives to the next generation, although 
some will pass on genetic material. In the Steady State version, any one individual 
may, through luck or through being favoured by the selective process, survive 
unchanged for many generation-equivalents. Others, of course may disappear much 
earlier; the average lifetime of each individual will be P birth/death events, as in the 
generational case, but there will be more variance in these lifetimes.  

There are pragmatic considerations for the programmer. The core piece of code in 
the Steady State version, will be smaller, although looped through P times more, than 
in the Generational GA. The Generational version needs to be coded so that, in effect, 
P birth/death events occur in parallel, although on a sequential machine this will have 
to be emulated by storing a succession of consequences in a temporary array; 
typically two arrays will be needed for this-generation and next-generation. If the 
programmer does have access to a cluster of processors working in parallel, then a 
Steady State version can farm out the evaluation of each individual (usually the 
computational bottleneck) to a different processor. The communication between 
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processors can be very minimal, and the asynchronous nature of the Steady State 
version means that it will not even be necessary to worry too much about keeping 
different processors in step.  

These are suggestive reasons, but perhaps rather weak, subjective and indeed even 
aesthetic, for favouring a Steady State version of a GA. A stronger reason for doing so 
in a minimalist GA is that it can exploit a very simple implementation of selection. 

2.2   Selection  

Traditionally but regrettably, newcomers to GAs are usually introduced to ‘fitness-
proportionate selection’, initially in a Generational GA. After the fitnesses of the 
whole current population are evaluated by whatever criterion has been chosen, and 
specified as real values, these values are summed to give the size of the reproductive 
‘cake’. Then each individual is allocated a probability of being chosen as a parent 
according to the size of its own slice of that cake. 

This method has three virtues: it will indeed selectively favour those with higher 
fitnesses; it has some tenuous connection with the different biological notion of 
fitness (although in the biological sense any numbers associated with fitness are based 
on observing, after the event, just how successful an individual was at leaving 
offspring; as contrasted with the GA approach that reverses cause and effect here); 
and lastly, it happens to facilitate, for the theoreticians, some mathematical theorem-
proving. But pragmatically, this method often leads to unnecessary complications. 

What if the chosen evaluation method allocates some fitnesses that are negative? 
This would not make sense under the biological definition, but where the experimenter 
has chosen the evaluation criteria it may well happen.  This is one version of the 
general re-scaling issue: different versions of a fitness function may well agree in 
ordering of different members of the population, yet have significantly different 
consequences. One worry that is often mentioned is that, under fitness-proportionate 
selection, one often sees (especially in a randomized initial population) many 
individuals scoring zero, whilst others get near-zero; though this may reflect nothing 
more than luck or noise, the latter individuals will dominate the next generation to the 
complete exclusion of the former. 

These issues motivated many complex schemes for re-scaling fitnesses before then 
implementing fitness-proportionate selection. But -- although it was not initially 
reflected in the standard texts -- many practitioners of applying GAs to real-world 
problems soon abandoned them in favour of rank-based methods.  

2.3   Rank-Based and Tournament Selection  

The most general method of rescaling is to use the scores given by the fitness function 
to order all the members of the population from fittest to least fit; and thereafter to 
ignore the original fitness scores and base the probabilities of having offspring solely 
on these relative rankings.  A common choice made is to allocate (at least in 
principle) 2.0 reproductive units to the fittest, 1.0 units to the median, and 0.0 units to 
the least fit member, similarly scaling pro rata for intermediate rankings; this is linear 
rank selection. The probability of being a parent is now proportional to these rank-
derived numbers, rather than to the original fitness scores. 
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There are in practice some complications. If as is common practice P is an even 
number, the median lies between two individuals. The explicit programming of this 
technique requires some sorting of the population according to rank, which adds 
further complexity. Fortunately there is a convenient trick that generates a similar 
outcome in a much simpler fashion. 

If two members of the population are chosen at random, their fitnesses compared, 
and the Winner selected, then the probability of the Winner being any specific 
member of the population exactly matches the reproductive units allocated under 
linear rank selection. This is easiest to visualize if one considers P such tournaments, 
in succession using the same population each time. Two individuals are chosen at 
random each time, so that each individual can expect to participate in two such 
tournaments. The top-ranker will win both its tournaments, for 2.0 reproductive units; 
a median-ranker can expect to win one, lose one, for 1.0 units; and the bottom-ranker 
will lose both its tournaments, for 0.0 units. A minor difference between the two 
methods will be more variance in the tournament case, around the same mean values.  

Tournament selection can be extended to tournaments of different sizes, for 
instance choosing the fittest member from a randomly selected threesome. This is an 
example of non-linear rank selection. From both pragmatic and aesthetic 
perspectives, Tournament Selection with the basic minimum viable tournament size 
of two has considerable attractions for the design of a minimalist GA. 

2.4   Who to Breed, Who to Die?  

Selection can be implemented in two very different ways; either is fine, as long as the 
end result is to bias the choice of those who contribute to future generations in favour 
of the fitter ones. The usual method in GAs is to focus the selection on who is to 
become a parent, whilst making an unbiased, unselective choice of who is to die. In 
the standard Generational GA, every member of the preceding generation is 
eliminated without any favouritism, so as to make way for the fresh generation 
reproduced from selected parents. In a Steady State GA, once a single new individual 
has been bred from selected parents, some other individual has to be removed so as to 
maintain a constant population size; this individual is often chosen at random, again 
unbiased.  

Some people, however, will implement a method of biasing the choice of who is 
removed towards the less fit. It should be appreciated that this is a second form of 
selective pressure, that will compound with the selective pressure for fit parents and 
potentially make the combined selective pressure stronger than is wise. In fact, one 
can generate the same degree of selective pressure by biasing the culling choice 
towards the less fit (whilst selecting parents at random) as one gets by the 
conventional method of biasing the parental choice towards the more fit (whilst 
culling at random). 

This leads to an unconventional, but effective, method of implementing Tournament 
Selection. For each birth/death cycle, generate one new offspring with random 
parentage; with a standard sexual GA, this means picking both parents at random, but 
it can similarly work with an asexual GA through picking a single parent at random. 
A single individual must be culled to be replaced by the new individual; by picking 
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two at random, and culling the Loser, or least fit of the two, we have the requisite 
selection pressure. One can argue that this may be closer to many forms of natural 
selection in the wild than the former method. 

Going further, we can consider a yet more unconventional method, that combines 
the random undirected parent-picking with the directed selection of who is to be 
culled. Pick two individuals at random to be parents, and generate a new offspring 
from them; then use the same two individuals for the tournament to select who is 
culled -- in other words the weaker parent is replaced by the offspring.  

It turns out that this is easy to implement, is effective. This is the underlying 
intuition behind the Microbial GA, so called because we can interpret what is 
happening here in a different way -- Evolution without Death! 

2.5   Microbial Sex  

Microbes such as bacteria do not undergo sexual reproduction, but reproduce by binary 
fission. But they have a further method for exchanging genetic material, bacterial 
conjugation. Chunks of DNA, plasmids, can be transferred from one bacterium to the 
next when they are in direct contact with each other. In the conventional picture of a 
family tree, with offspring listed below parents on the page, we talk of vertical 
transmission of genes ‘down the page’; but what is going on here is horizontal gene 
transfer ‘across the page’. As long as there is some selection going on, such that the 
‘fitter’ bacteria are more likely to be passing on (copies of) such plasmids than they are 
to be receiving them, then this is a viable way for evolution to proceed. 

We can reinterpret the Tournament described above, so as to somewhat resemble 
bacterial conjugation. If the two individuals picked at random to be parents are called 
A and B, whilst the offspring is called C, then we have described what happens as C 
replacing the weaker one of the parents, say B; B disappears and is replaced by C. If 
C is the product of sexual recombination between A and B, however, then ~50% of 
C’s genetic material (give or take the odd mutation) is from A, ~50% from B.  So 
what has happened is indistinguishable from B remaining in the population, but with 
~50% of its original genetic material replaced by material copied and passed over 
from A. We can consider this as a rather excessive case of horizontal gene transfer 
from A (the fitter) to B (the weaker).  

3   The Microbal GA 

We now have the basis for a radical, minimalist revision of the normal form of a GA, 
although functionally, in terms of Heredity, Variation and Selection, it is performing 
just the same job as the standard version. 

This is illustrated in Fig. 1. Here the recombination is described in terms of 
‘infecting’ the Loser with genetic material from the Winner, and we can note that this 
rate of infection can vary. In bacterial conjugation it will typically be rather a low 
percentage that is replaced or supplemented; to reproduce the typical effects of sexual 
reproduction, as indicated in the previous section, this rate should be ~50%. But  
in principle we may want, for different effects, to choose any value between 0%  and 
100%. In practice, for normal usage and for comparability with a standard GA, the 
50% rate is recommended. The simplest way of doing this, equivalent to Uniform 
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Fig. 1. The genotypes of the population are represented as a pool of strings. One single cycle of 
the Microbial GA is represented by the operations PICK (two at random), COMPARE (their 
fitnesses to determine Winner = W, Loser = L), RECOMBINE (where some proportion of 
Winner’s genetic material ‘infects’ the Loser), and MUTATE (the revised version of Loser).  

Recombination, is with 50% probability independently at each locus to copy from 
Winner to Loser, otherwise leaving the Loser unchanged at that locus. 

From a programming perspective, this cycle is very easy to implement efficiently. 
For each such tournament cycle, the Winner genotype can remain unchanged within 
the genotype-array, and the Loser genotype can be modified (by ‘infection’ and 
mutation) in situ. We can note that this cycle gives a version of ‘elitism’ for free: 
since the current fittest member of the population will win any tournament that it 
participates in, it will thus remain unchanged in the population -- until eventually 
overtaken by some new individual even fitter. Further, it allows us to implement an 
effective version of geographical clustering for a trivial amount of extra code. 

3.1   Trivial Geography 

It is sometimes considered undesirable to have a panmictic population, since after 
many rounds of generations (or, in a Steady State GA, generation-equivalents) the 
population becomes rather genetically uniform. It is thus fairly common for 
evolutionary computation schemes to introduce some version of geographical 
distribution. If the population is considered to be distributed over some virtual space, 
typically two-dimensional, and any operations of parental choice, reproduction, 
placing of offspring with the associated culling are all done in a local context, then 
this allows more diversity to be maintained across sub-populations. Spector and Klein 
[3] note that a one-dimensional geography, where the population is considered to be 
on a (virtual) ring, can be as effective as the 2-D version, and demonstrate the 
effectiveness in some example domains. If we consider our array that contains the 
genotypes to be wrap-around, then we can implement this version by, for each 
tournament cycle: choose the first member A of the tournament at random from the 
whole population; then select the next member B at random from a deme, or sub-
population that starts immediately after A in the array-order. The deme size D, <= P, 
is a parameter that decides just how local each tournament is. 
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Fig. 2. The genotypes of the population are represented as geographically distributed on a ring, 
numbered from 0 to P-1. For a tournament, A is picked at random from the whole population; 
then B is picked at random from the deme (here of size D=5) immediately following A.  

3.2   Program Code 

The core part of the code for a Microbial GA is here given in pseudo-code based on 
C. We shall assume that there is a population size P of binary genotypes length N, 
stored in an array of the form gene[P][N], that has been suitably initialized at 
random for the start of the GA; we have a function eval(i), that returns some real 
value for the ith member of the population. This code represents a single tournament, 
that is repeated as many times as is considered necessary. We assume a pseudo-
random number function rnd() that returns a real number in the range [0.0,1.0). 
REC is the recombination or ‘infection’ rate (suggested value 0.5), and MUT is the (per 
locus) mutation rate. D is the deme size.  

This minimal GA routine incorporates Rank Selection, (variable rates of) 
Recombination and Mutation, (variable size) Demes, and Elitism, in just a few lines:- 

void microbial_tournament(void) {  
  int A,B,W,L,i; 
  A=P*rnd();                       // Choose A randomly 
  B=(A+1+D*rnd())%P;               // B from Deme, %P..   
  if (eval(A)>eval(B)) {W=A; L=B;} // ..for wrap-around 
  else {W=B; L=A;}                 // W=Winner L=Loser 
  for (i=0;i<N;i++) {              // walk down N genes 
    if (rnd()<REC)                 // RECombn rate 
      gene[L][i]=gene[W][i];       // Copy from Winner  
    if (rnd()<MUT)                 // MUTation rate   
      gene[L][i]^=1;               // Flip a bit   
  }  
}  
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4   Discussion 

The original version (without demes) of this minimal Microbial GA has been widely 
used and taught at Sussex for over a decade [1], but only previously discussed in 
published form briefly in [2], in the context of Evolutionary Robotics. Another 
application in that field has been the Embodied Evolution of [4].  It is here presented 
in full for the first time with added Trivial Geography [3] providing demes. 

We do not claim that it is more effective than the standard GA; indeed its 
underlying functionality is basically the same. It lends itself well to distributed, 
asynchronous applications. The minimalism makes it easy to teach and to implement. 
The re-interpretation in terms of bacterial conjugation opens up new perspectives and 
possibilities, including that of varying the rates of recombination or ‘infection’. 
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Abstract. Evolutionary algorithms typically use direct encodings, where each 
element of the phenotype is specified independently in the genotype. Because 
direct encodings have difficulty evolving modular and symmetric phenotypes, 
some researchers use indirect encodings, wherein one genomic element can in-
fluence multiple parts of a phenotype. We have previously shown that Hyper-
NEAT, an indirect encoding, outperforms FT-NEAT, a direct-encoding control, 
on many problems, especially as the regularity of the problem increases. How-
ever, HyperNEAT is no panacea; it had difficulty accounting for irregularities 
in problems. In this paper, we propose a new algorithm, a Hybridized Indirect 
and Direct encoding (HybrID), which discovers the regularity of a problem with 
an indirect encoding and accounts for irregularities via a direct encoding. In 
three different problem domains, HybrID outperforms HyperNEAT in most 
situations, with performance improvements as large as 40%. Our work suggests 
that hybridizing indirect and direct encodings can be an effective way to im-
prove the performance of evolutionary algorithms.   

Keywords: Indirect (generative, developmental) encodings (representations), 
artificial neural networks, neuroevolution, evolutionary algorithms.  

1   Introduction 

Evolutionary algorithms, such as neuroevolution and genetic algorithms, typically use 
direct encodings, where each element of a phenotype is independently specified in its 
genotype. However, these direct encodings are limited in their ability to evolve com-
plex, modular, and symmetric phenotypes because individual mutations cannot pro-
duce coordinated changes to multiple elements of a phenotype [1]. Such coordinated 
mutational effects can occur with indirect encodings, also called developmental or 
generative encodings, wherein a single element in a genotype can influence many 
parts of the phenotype [1, 2]. Indirect encodings have been shown to produce highly 
regular solutions to problems [1, 3-5], but their bias toward regularity makes it diffi-
cult for them to properly handle irregularities in problems [4].  

In this paper, we propose a new algorithm that is a Hybridized Indirect and Direct 
encoding (HybrID), which combines the benefits of both encodings. Although we pre-
sent one specific implementation of a HybrID, we apply the term to any combination 
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of indirect and direct encodings. While we are not aware of any prior work that spe-
cifically combines direct and indirect encodings, researchers have previously altered 
representations during evolutionary search, primarily to change the precision of val-
ues being evolved by genetic algorithms [6]. Other researchers have employed non-
evolutionary optimization techniques to fine-tune the details of evolved solutions [7]. 
However, such techniques do not leverage the benefits of indirect encodings.  

This paper presents results from problems where an indirect encoding has already 
been shown to outperform a direct encoding [3, 4], and demonstrates that HybrID can 
further improve performance by as much as 40%. The major contribution of this pa-
per is to introduce HybrID as a type of evolutionary algorithm that can both exploit a 
problem’s regularities and account for its irregularities.   

2   The Indirect and Direct Encodings and Their Hybridization 

The HybrID in this paper first runs HyperNEAT [8], an indirect encoding for evolv-
ing artificial neural networks (ANNs), and then switches to FT-NEAT, its direct-
encoding control [3, 8]. We next describe each encoding and their hybridization.  

2.1   HyperNEAT, the Indirect Encoding 

HyperNEAT is an indirect encoding for evolving ANNs that is inspired by the way 
natural organisms develop [8]. It evolves Compositional Pattern Producing Networks 
(CPPNs) [9], each of which is a genome that encodes an ANN phenotype (also called 
a substrate) [8]. Each CPPN is itself a directed graph, where each node is a mathe-
matical function, such as sine or Gaussian. The nature of these functions can facilitate 
the evolution of properties such as symmetry (e.g., an absolute value or Gaussian 
function) and repetition (e.g., a sine function) [8, 9]. The signal on each link in the 
CPPN is multiplied by that link’s weight, which can alter its effect. 

A CPPN is queried once for each link in the ANN substrate to determine that link’s 
weight. The inputs to the CPPN are the Cartesian coordinates of both the source (e.g.,  
[x1=2, y1=3]) and target (e.g.,  [x2=1, y2=5]) nodes of a link and a constant bias value. 
The CPPN takes these five values as inputs and produces one or two output values, 
depending on the substrate topology. If there is no hidden layer in the substrate, the 
single output is the weight of the link between a source node on the input layer and a 
target node on the output layer. If there is a hidden layer, the first output value deter-
mines the weight of the link between the associated input (source) and hidden layer 
(target) nodes, and the second output value determines the weight of the link between 
the associated hidden (source) and output (target) layer nodes. All pairwise combina-
tions of source and target nodes are iteratively passed as inputs to a CPPN to deter-
mine the weight of each substrate link.  

HyperNEAT is capable of exploiting the geometry of a problem [8]. Because the 
link values between nodes in the final ANN substrate are a function of the geometric 
positions of those nodes, HyperNEAT can exploit such information when solving a 
problem [8, 10]. In the case of quadruped locomotion, this property helped Hyper-
NEAT produce gaits with front-back, left-right, and four-way symmetries [3, 10]. 
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The evolution of the population of CPPNs occurs according to the principles of the 
NeuroEvolution of Augmenting Topologies (NEAT) algorithm [11], which was origi-
nally designed to evolve ANNs. NEAT can be fruitfully applied to CPPNs because of 
their structural similarity to ANNs. For example, mutations can add a node, and thus a 
function, to a CPPN graph, or change its link weights. The NEAT algorithm is unique 
in three main ways [11]. Initially, it starts with small genomes that encode simple 
networks and slowly complexifies them via mutations that add nodes and links to the 
network, enabling the algorithm to evolve the network topology in addition to its 
weights. Secondly, NEAT has a fitness sharing mechanism that preserves diversity in 
the system and gives time for new innovations to be tuned by evolution before com-
peting them against more adapted rivals. Finally, NEAT tracks historical information 
to perform intelligent crossover while avoiding the need for expensive topological 
analysis. A full explanation of NEAT can be found in [11].  

2.2   FT-NEAT, a Direct-Encoding Control  

To isolate the effects of changing only the representation, the direct encoding 
switched to after the HyperNEAT stage is Fixed Topology NEAT (FT-NEAT) [3]. FT-
NEAT directly evolves each weight in the ANN independently and does not use com-
plexification. All other elements from NEAT (e.g., its crossover and diversity preser-
vation mechanisms) remain the same between HyperNEAT and FT-NEAT.  

2.3   A HybrID of HyperNEAT and FT-NEAT  

The HybrID presented in this paper runs HyperNEAT for a fixed number of genera-
tions and then the encoding is changed to FT-NEAT at a switch point. To switch, we 
transfer the ANN phenotypes of each individual in the HyperNEAT population to FT-
NEAT genomes that are then further evolved with FT-NEAT.  In the discussion sec-
tion we describe alternate HybrID instantiations. 

3   Results from Three Problem Domains 

We compare HybrID to controls on three problems that have scalable regularity to 
assess HybrID’s performance on versions of the same problem with varying amounts 
of problem regularity. The first two problems were chosen because they are easy to 
conceptualize, and the third is a more challenging, realistic problem.  

We conducted 50 runs of each experimental treatment in this paper, and all data 
plotted is averaged across them. The parameter configurations for all experiments are 
similar to those in [3, 4, 8, 10], and can be viewed at http://devolab.msu.edu/ Sup-
portDocs/Hybrid. The mutation rate per link was 0.08 for HyperNEAT and 0.0008 for 
FT-NEAT; preliminary experiments revealed these to be effective mutation rates for 
each encoding. FT-NEAT has a lower per-link mutation rate because its genome has 
many more mutational targets than HyperNEAT. Additional experiments showed no 
statistically significant increase in HyperNEAT’s performance on all three problems 
when its mutation rate was dropped to 0.0008 at the switch point. 
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The Target Weights Problem: We begin our analysis with the simple test problem 
of evolving a specific target ANN. At the start of each run, a target weight is assigned 
to each link in an ANN, and during the run fitness values are set in proportion to each 
organism’s similarity to that target ANN. As in previous work [4], we scaled the regu-
larity of this problem by varying the percentage of links in the target ANN that were 
the same, randomly chosen value (Q), from 0% to 100%. All non-Q target weights 
were each independently assigned a random value. Target weights were in the range 
[-3, 3]. The ANN had 9 input and 9 output nodes, and was fully connected. HybrID 
switched from HyperNEAT to FT-NEAT at 100 generations, and the experiment 
lasted a total of 1000 generations. The population size was 1000.  

As previously shown [4], HyperNEAT quickly discovered the regularity in the 
more regular versions of this problem, but had difficulty making exceptions to ac-
count for irregularities, even after hundreds of generations (Fig. 1). FT-NEAT, on the 
other hand, was slower, but eventually performed well, in part because the problem 
has no epistatic interactions and thus coordinated mutational effects are not required. 
HybrID combined the best attributes of both encodings: it quickly discovered the 
regularity of the problem and, after the encoding switch, was able to further optimize 
solutions by accounting for irregularities. While HybrID and FT-NEAT eventually 
evolved solutions of similar quality, early on HybrID did better on more regular prob-
lems and less well on less regular problems. HybrID significantly outperformed both 
HyperNEAT and FT-NEAT at generation 250 on the 70%, 80%, and 90% regular 
problems (p < .01, Wilcoxon rank-sum test). Earlier switch points further improved 
the speed at which HybrID made progress on this problem (data not shown).  

 

Fig. 1. A comparison of HyperNEAT, FT-NEAT and HybrID on a range of problem regulari-
ties for the target weights problem. For each regularity level, a HybrID line (gray) departs from 
the corresponding HyperNEAT line (colored) at the switch point (generation 100). The per-
formance of FT-NEAT (black lines) was unaffected by the regularity of the problem, which is 
why the lines are overlaid and indistinguishable. HybrID outperforms HyperNEAT and FT-
NEAT in early generations on versions of the problem that are mostly regular but have some 
irregularities.  

The Bit Mirroring Problem: The next problem, called bit mirroring, [4] is more 
challenging and realistic because it has epistasis. In this problem, each input node is 
paired with a target output node, and the goal is to pass a value from each input node 
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to its associated target output node. The ideal solution features a positive-weight link 
between each input-output pair, and a zero weight for every other link. The ANN sub-
strate for this experiment had a 49-node input sheet and 49-node output sheet, each 
arranged in a 7x7 grid. Each input node was connected to all output nodes, totaling 
2401 links. The most regular version of the problem paired each input node with the 
output node in the same row and column. We decreased the regularity, first by reduc-
ing the fraction of inputs that were constrained to be in the same column as their tar-
get, and then by further reducing the fraction of inputs that were constrained to be in 
the same row as their target. Because it has previously been shown that HyperNEAT 
outperforms FT-NEAT on all versions of this problem [4], here we only compare Hy-
brID to HyperNEAT. A population of size 500 was evolved for 5000 generations and 
the switch point for HybrID was at generation 2500.  

The results reveal that HybrID ties HyperNEAT on the most regular versions of 
this problem, and provides a significant fitness improvement over HyperNEAT on all 
versions of the problem that have a certain amount of irregularity (Fig. 2). HybrID’s 
advantage over HyperNEAT was largest on problems of intermediate regularity.  

 
Fig. 2. HybrID vs. HyperNEAT performance on versions of the bit mirroring problem with 
regularity decreasing from left to right. Plotted are median values ± the 25th and 75th quartiles. 
Asterisks indicate p < . 05 (Wilcoxon rank-sum test). 

The Simulated Quadruped Controller Problem: The previous two test problems 
were chosen because they are easy to conceptualize, their regularity can be scaled, 
and because the ideal solution is known a priori. However, it is also important to 
demonstrate that HybrID succeeds on more complicated, real-world problems, such as 
evolving controllers for legged robots.  HyperNEAT has previously been shown to 
evolve fast, natural gaits for simulated legged robots [3]. The evolved gaits, however, 
were extremely coordinated, with all legs often moving in near perfect synchrony. We 
tested HybrID on this problem to determine if it would improve fitness by facilitating 
the fine-tuning of aspects of the controller, such as the movements of individual legs.  

We repeated the experiment from [3] with HyperNEAT and HybrID, except that 
half the simulation time was allotted per evaluation due to computational limitations. 
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The ANN substrate consisted of three 5x4 Cartesian grids of nodes forming input, 
hidden, and output layers. Adjacent layers were completely connected, meaning that 
there were (5x4)2 x 2 = 800 links in each substrate. The inputs to the substrate were 
the current angles of each of the 12 joints of the robot (described below), a touch sen-
sor that provides a 1 if the lower leg is touching the ground and a 0 if it is not, the 
pitch, roll, and yaw of the torso, and a modified sine wave (to facilitate the production 
of periodic behaviors). The sine wave was the following function of time (t) in milli-
seconds: sin(120 x t) x π. This function produces numbers from –πto π, which was 
the range of the unconstrained joints. During preliminary tests, we experimentally 
found the constant 120 to produce fast, natural gaits, and determined that the touch, 
pitch, roll, yaw, and sine inputs all contributed to the ability to evolve fast gaits [3]. 

The ANN substrate outputs were the desired angles for each joint, which were fed 
into proportional controllers that applied forces to move the joints toward the desired 
angles. Robots were evaluated in the ODE physics simulator (www.ode.org). The 
rectangular torso of the robot was (in ODE units) 0.15 wide, 0.3 long, and .05 tall. 
Each of four legs was composed of three cylinders (length 0.075, radius 0.02) and 
three hinge joints. The first cylinder functioned as a hip bone. It was parallel to the 
proximal-distal axis of the torso and barely stuck out from it. The other two cylinders 
were the upper and lower leg. There were two hip joints and one knee joint. The first 
hip joint allowed the legs to swing forward and backward (anterior-posterior) and was 
constrained to 180° such that, at maximum extension, it was parallel with the torso. 
The second hip joint allowed a leg to swing in and out (proximal-distal). Together, the 
two hip joints approximated a universal joint. The knee joint swung forward and 
backward. The second hip and knee joints were unconstrained.   

Each controller in a population of 150 was simulated for 3000 time steps (3 sec-
onds). Experiments lasted 1000 generations with a switch point at generation 500. 
Trials were cut short if any part of the robot except its lower leg touched the ground, 
or if the number of direction changes in joints exceeded 960. The latter condition re-
flects the fact that servo motors cannot be vibrated incessantly without breaking. The 
fitness of controllers was the following function of d, the maximum distance traveled: 
2d 2

. The exponential nature of the function magnified the selective advantage of small 
increases in the distance traveled. Because HyperNEAT greatly outperforms FT-
NEAT on this problem [3], we compare HybrID to only HyperNEAT.  

HybrID should excel when a problem is mostly regular but has some irregularities. 
Adding faulty joints to the quadruped provides such a problem. In addition to experi-
ments with no faulty joints, we also conducted tests where the proportional controller 
of 1, 4, 8 or all 12 joints had an error such that if the ANN specified a desired target 
angle of A, the actual desired angle fed to the proportional controller was A + E, 
where E is an error value in degrees in the range [-2.5, 2.5]. The value E was set once 
at the beginning of each run for each faulty joint and was constant throughout the run. 
This is analogous to expected variation in joint function due to manufacturer error.  

The results show that HybrID yielded an improvement over HyperNEAT on all 
versions of this problem (Fig. 3, p < 0.001, Wilcoxon rank-sum test).  The improve-
ment of HybrID over HyperNEAT was 6, 10, 30, 40, and 38 percent, respectively, for 
treatments with 0, 1, 4, 8, and 12 faulty joints. The performance boost from HybrID 
tended to increase with more faulty joints, and thus roughly correlated with the irregu-
larity of the problem. Interestingly, HybrID with 1 faulty joint actually outperformed 
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Fig. 3. HybrID outperforms HyperNEAT on all versions of the simulated quadruped controller 
problem. The increase generally correlates with the number of faulty joints. 

HyperNEAT with 0 faulty joints (p < 0.05, Wilcoxon rank-sum test). The results sug-
gest that HybrID can increase performance when it is allowed to fine tune the regu-
larities produced by HyperNEAT. 

4   Discussion and Conclusion 

We presented only one of many possible HybrID implementations. The HybrID in 
this paper evolves first with an indirect encoding then switches to a direct encoding, 
and could be called a switch-HybrID. Another candidate HybrID implementation 
would have the indirect encoding produce a set of values (e.g., link weights) and the 
direct encoding evolve a set of offsets that modify the individual values. This offset-
Hybrid would allow exceptions to be made while the indirect encoding is still evolv-
ing. HybrIDs can also be made with other indirect encodings, and in domains besides 
neuroevolution. Additionally, instead of occurring at a predefined time, the switch 
from indirect to direct encodings, or the addition of offsets, could occur automatically 
after fitness has stagnated. Future investigations are required to test the efficacy of 
different HybrID implementations.   

This work also suggests that it is difficult for evolutionary encodings to simultane-
ously discover the regularity of problems and make exceptions to account for problem 
idiosyncrasies. At a minimum, HyperNEAT exhibits this deficiency in its present 
form. Theoretically, HyperNEAT should be able to make any exception required, but 
in practice it frequently does not. We predict that similar problems exist with other 
generative encodings, although additional research is required to test our prediction. It 
is an open challenge for the field to improve current generative encodings to enable 
the encoding of both regularities and exceptions to those regularities. If such devel-
opments are made to generative encodings, it might obviate the need for HybrID algo-
rithms, but until that time HybrID remains an effective enhancement of generative 
encodings.  
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Many real world problems have regularities but also require exceptions to be made. 
It is important for evolutionary algorithms to both exploit such regularity in problems 
and account for their irregularities. We have shown that HybrID, a combination of 
indirect and direct encodings, accomplishes this goal by first discovering the regular-
ity inherent in a problem and then accounting for its irregularities. We validated the 
algorithm on two simpler test problems and on a more challenging, real-world prob-
lem. HybrID frequently outperformed HyperNEAT, sometimes by as much as 40%.  
While further research is needed to see how HybrID works with other pairs of indirect 
and direct encodings, alternate HybrID implementations, and on additional problems, 
these preliminary results suggest that HybrID is an effective algorithm for evolving 
solutions to complex problems.  
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Abstract. It is widely recognised that many species adapt to complex and dy-
namic environments, but it is no longer accepted that an organism passes char-
acteristics acquired during its lifetime to its offspring. However, in evolutionary
computation such Lamarckian inheritance can be useful. Simulations of the ben-
efits of Lamarckian inheritance have been reported in the literature. However,
in this paper we present the first formal proof that Lamarckian inheritance can
dominate more traditional individual (non-inheritable) learning. We present a pa-
rameterised model that can demonstrate conditions in which different inheritance
types perform best, which we empirically validate.

1 Introduction

The study of natural systems has shown that many species are capable of adapting to
real-world environments exhibiting dynamic and unpredictable situations. The under-
lying mechanics of such systems are relevant to the development of computer systems
where novel circumstances may present themselves. Furthermore, such systems can in-
form the development of artificial systems capable of robust responses to such changes.

One form of learning which has recently been employed in computer simulations is
Lamarckian learning [9, 11, 13]. Lamarckian learning allows individuals to store the in-
formation they have acquired during their lifetime in their genome, allowing this experi-
ence to be inherited directly by successive generations. While the existence of this form
of learning in the natural world has been largely discredited [2], it has been the focus of
evolutionary biology, evolutionary computation and machine learning research inves-
tigating its possible applications in artificial systems [11, 13, 8, 10, 1, 4–6]. An early
model of Lamarckian learning [8] showed that it should be favoured in slowly chang-
ing environments, but this model did not distinguish between an individual’s genotype
and phenotype, as its purpose was not to compare Lamarckian learning with individual
(non-inheritable) learning.

The comparison between Lamarckian learning and non-inheritable individual learn-
ing has been the focus of a number of simulations developed by a range of researchers
[13, 11]. While these empirical models have provided some interesting results, there is
as yet no formal proof describing the suitability of Lamarckian learning for changing
environments. Our aim is to provide a formal analysis of Lamarckian learning using
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a simple mathematical model which is capable of describing the conditions in which
Lamarckian learning is favourable. The model captures the experimental results ob-
tained by other researchers and provides a sound framework from which to build more
complex models describing more complex environmental changes. In addition, this pa-
per presents a simple set of experiments which demonstrate that a population capable
of selecting for or against Lamarckian learning will do so in accordance with the con-
ditions predicted by our proof.

2 Related Work

Evolutionary Learning. A large number of natural organisms are born with innate
abilities embodied in their genetic make-up. An accepted process for the development
of these abilities is that of natural selection, as proposed by Darwin [3]. Individuals that
are well-adapted to their environment are more likely to survive to reproduce and impart
these abilities to the next generation through the transmission of genetic material. Over
time, traits that are useful to a species become established in the population [3].

The process of natural selection can be seen as a learning mechanism applied to a
species as a whole and is often dubbed evolutionary learning. While individuals within
the species do not explicitly learn to adapt to their environment, the emergent properties
of natural selection ensure that future generations are better suited to their environment
than previous ones. In this model, the learning process is strictly confined to each or-
ganism’s genetic material: the organism itself does not contribute to its survival through
any learning or adaptation process [7].

Lamarckian Learning. There exist species in nature that are capable of learning, or
adapting to environmental changes and novel situations at an individual level. Such
learning, known as life-time learning is often coupled with evolutionary learning, fur-
ther enhancing the population’s fitness through its adaptability and resistance to change.

An evolutionary theory proposed by Jean-Baptiste Lamarck posits that adaptations
which occur during an individual’s lifetime can be directly passed on to that individ-
ual’s offspring [9]. In other words, the claim is that lifetime learning directly influ-
ences evolution by altering an individual’s genetic make-up during its life so that any
such adaptations are genetically inherited by future generations. The theory has largely
been discredited in light of the fact that such direct adaptations do not occur in nature.
However, recent work has shown a number of mechanisms capable of neo-Lamarckian
inheritance, particularly in the field of epigenetics [12].

3 An Analytical Model

The following is a simple mathematical model which enables us to compare evolution-
ary with Lamarckian learning, so one can determine when one is likely to dominate the
other. While the model is very simple, we will see that the conclusions drawn from it
are consistent with a much more sophisticated empirical study, which will be presented
in the next section.
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Let E0 and E1 denote two environments. Let T0 and T1 be the target solutions for
environments E0 and E1 where T0 < T1; for the purposes of our analysis we can
(arbitrarily) set T0 = 0 and T1 = 1. We denote the current target as T . We consider
an environment oscillates between the two target values T0 and T1 at certain intervals.
We begin with T = T1 (arbitrarily) at generation 1. When the environment changes,
T = T0. Once the environment changes back, T = T1 and so forth. For the time being,
we will consider that environmental changes occur every generation. This is expanded
further later in this section.

We let g be the genotype of an individual in a population, where g is a real number
in the range [T0, T1], and p be the phenotype of an individual in a population, where
p is a real number in the range [T0, T1]. Each individual is born with genotype g and
is capable of altering its genotype to create its phenotype p, measured at the end of an
individual’s lifetime. Adaptation is assumed to be always beneficial, moving an individ-
ual’s genotype closer to the current target T . We denote by L the amount by which an
individual’s genotype is moved towards T to produce the individual’s phenotype p. For
simplicity, this scheme considers that individuals reproduce asexually. We will denote
as g′ the offspring genotype of the individual with genotype g.

We consider two types of adaptation mechanisms: Baldwinian and Lamarckian. Bald-
winian adaptation allows populations to alter their genotypes to produce phenotypes
closer to the current environmental target. Individuals are selected according to fitness
and reproduce (asexually) to create new individuals. The mechanism of reproduction
only considers the genotype of the individual, i.e. any lifetime adaptations stored in
an individual’s phenotype are not re-encoded into the genotype. Note that we do not
intend Baldwinian adaptation in the strict sense of the Baldwin effect, but rather as a
convenient label assigned to evolving populations capable of lifetime adaptation.

Lamarckian adaptation is equal to Baldwinian adaptation in all respects except that
any adaptations acquired by an individual are re-encoded into the genotype and passed
on to the next generation. For simplicity, this scheme assumes that both adaptation
mechanisms evolve through some mutation operator. The mutation operator is assumed
to provide an equal evolutionary force in both adaptation schemes. Because of this, the
following does not consider the effect of the mutation operator, but rather concentrates
on the relative impact of each adaptation scheme in isolation. In addition, we do not
consider the effect of crossover as it is assumed to be mutually beneficial to either
adaptation mechanism.

The offspring at every generation for each of the schemes can be defined as:

g′Baldwin = g.

g′Lamarck =

{
g + L if T = T1,

g − L if T = T0.

The phenotype of an individual using Baldwinian adaptation is defined as:

pBaldwin =

{
g + L if T = T1,

g − L if T = T0.

The situation for an individual employing Lamarckian adaptation is slightly different.
Table 1 shows the phenotypes of two individuals over time, one employing Baldwinian
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Table 1. Phenotypes of individuals over time

Generation 1 2 3 4 5
Target T1 T0 T1 T0 T1

Baldwin g+L g-L g+L g-L g+L
Lamarck g+L (g+L)-L g+L (g+L)-L g+L

and the other Lamarckian learning. The Baldwinian individual’s phenotype alternates
between g + L and g − L. However, since the Lamarckian individual re-encodes its
phenotype into its genotype, its phenotype over time is not the same as the Baldwinian
individual. Therefore, Lamarckian adapted phenotypes are defined as:

pLamarck =

{
g + L if T = T1,

g if T = T0.

Let d be the distance from an individual’s phenotype to T (recall that g is initialised
such that g ≤ T1 and g ≥ T0). The distance for an individual employing Baldwinian
adaptation can be defined as:

dBaldwin =

{
T − (g + L) if T = T1,

(g − L) − T if T = T0.

Note that this assumes that the learning mechanism stops once an individual matches
the current target T , (i.e. that (g + L) ≤ T1 and (g − L) ≥ T0), and therefore, both
(T1 − (g + L)) and ((g − L) − T0) will always be positive (recall that T0 < T1 and g
is initialised such that it lies between [T0, T1]).

The distance for an individual employing Lamarckian adaptation can be defined as:

dLamarck =

{
T − (g + L) if T = T1,

g − T if T = T0.

The average distance for each individual, d̄ can be calculated as:

d̄Baldwin =
(T1 − (g + L)) + ((g − L) − T0)

2

=
T1 − T0

2
− L.

For Lamarckian adaptation:

d̄Lamarck =
(T1 − (g + L)) + (g − T0)

2

=
T1 − T0

2
− L

2
.

Therefore, Baldwinian adaptation has, on average, a smaller distance to the average
target and consequently a higher average fitness.
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Let’s now consider how the gap between environmental changes affects the perfor-
mance of each adaptation mechanism. Let n be the number of generations between
E0 and E1. The average distance for the Baldwinian population is the same because
adaptations are not re-encoded into the genotype:

dPopBaldwin =
(T1 − (xi + L)) + ((xi − L) − T0)

2

=
T1 − T0

2
− L.

For Lamarckian adaptation, the average distance can be derived as:

dPopLamarck =
(T1 − (xi + nL)) + (xi − T0)

2

=
T1 − T0

2
− nL

2
.

It follows that:

– When n = 1, dPopBaldwin < dPopLamarck (by L
2 );

– When n = 2, dPopBaldwin = dPopLamarck;
– When n > 2, dPopBaldwin > dPopLamarck.

Therefore, we can say that, on average, Lamarckian adaptation is better suited to sit-
uations where the gap between environment changes is more than 2. Note that this is
restricted to the situation where environments oscillate between extremes and the learn-
ing mechanism moves an individual towards a target by a constant amount.

4 Experiments

Given the above proof, it seems likely that Lamarckian learning should be selected for a
population faced with an environment in which changes occur less frequently. To inves-
tigate this, we devised a simple experiment that allows individuals within an evolving
population to prefer Lamarckian learning over evolutionary learning depending on the
merits of either approach in a specific setting. We chose a simple problem domain, and
illustrate the concept using a genetic algorithm. In one environment the target pheno-
type is one which contains all 1s and in the other, one which contains all 0s.

Each individual in the population possesses a genome comprised of 1001 bits, where
1000 bits encode a possible solution and the last bit encodes whether the individual
employs Lamarckian learning or not. Each individual is allowed a learning round where
a number of its unfit alleles are improved by setting either to 1 or 0, depending on
the environment. If an individual employs Lamarckian learning, these changes are re-
encoded into its genome to be passed on to the next generation. If an individual does
not employ Lamarckian learning, all changes are lost to the next generation.

A number of experiments were undertaken, examining both the effect of increasing
the number of generations between environmental changes and also the number of al-
leles altered during the learning round applied to both populations. The former can be
regarded as controlling the frequency of environmental change, while the latter controls
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Fig. 1. 1 allele change per learning round

learning rate. We examined populations employing 1 and 50 allele changes in environ-
ments changes every 1, 2, 3, 4 and 5 generations. The results from these experiments
(averaged from 20 independent runs) are illustrated in Figures 1 and 2.

Figure 1 shows populations allowed to change 1 unfit allele each generation. Although
the results show a slight trend towards Lamarckian adaptation, the selection process
does not truly discriminate between Lamarckian and Baldwinian learning regardless
of the number of generations between changes. The modest amount of adaptation that
occurs when only one allele is changed is not enough to bring out the characteristics
and relative advantages or disadvantages of either learning mechanism. By contrast, the
results obtained for 50 allele changes illustrated in Figure 2 show a clear divergence
between Baldwinian and Lamarckian learning according to the number of generations
between changes. Lamarckian adaptation is selected against in environments where
there are 3 or less generations between changes and selected for in environments with
larger gaps between changes. Clearly, increasing the number of allele changes allows
the selection process to distinguish between Baldwinian and Lamarckian learning.

In summary, these results show that Lamarckian learning is not favoured by selection
in environments where changes occur very frequently. In addition, the results show that
as the gaps between environmental changes increases, the probability of Lamarckian
learning being selected increases. Finally, in the situation where changes occur every
3 generations, the probability is split (slightly disfavouring Lamarckian learning). This
is because the relative advantage of Lamarckian learning in this environment is not
sufficient to fully take over the population. What is crucial is that individuals employing
Lamarckian learning continue to exist in much larger numbers than in environments
with smaller gaps between environmental changes. These results correlate with both
our formal analysis of Lamarckian adaptation and with previous empirical research on
Lamarckian learning.

A brief examination of the fitness values of the Baldwinian and Lamarckian popula-
tions for each environment further illustrates the selection pressure exerted by the envi-
ronmental conditions on the Lamarckian evolution gene. An experiment was conducted
with two populations, one employing Baldwinian learning and the other Lamarckian
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learning. Both populations were allowed 50 allele changes during the lifetime learning
stages. The average fitness values (F̄ ) over the entire experiment were computed for
each population as follows:

F̄Baldwin =
1
G

G∑
g=0

f̄Baldwin(g)

F̄Lamarck =
1
G

G∑
g=0

f̄Lamarck(g)

where G is the number of generations and fg is the average fitness of the populations
at generation g. The difference between Lamarckian and Baldwinian populations (D)
was calculated as:

D = F̄Lamarck − F̄Baldwin.

Table 2 shows the average fitness for both Baldwinian and Lamarckian populations
as well as the difference measure D for each environmental setting. Negative values
indicate fitter Baldwinian populations while positive values indicate fitter Lamarckian
populations. It is clear from these results that Lamarckian learning produces fitter pop-
ulations in environmental conditions where the gap between environmental changes is
larger than 2, as predicted by the analysis outlined in Section 3.

Table 2. Average fitnesses and differences for Baldwinian and Lamarckian populations

Change Interval Baldwin Lamarck Difference
1 584.1 577.7 -6.4
2 575.5 570.5 -5.0
3 568.2 575.4 7.2
4 565.6 577.4 11.8
5 564.7 581.2 16.5



An Analysis of Lamarckian Learning in Changing Environments 149

5 Conclusions

This paper presented a formal analysis of Lamarckian learning showing the conditions
in which Lamarckian learning can be a better choice over evolutionary learning. We
presented the first formal analytical proof that can be used to show that Lamarckian in-
heritance can dominate more traditional individual (non-inheritable) learning schemes.
The findings of this model were validated through a set of simple experiments showing
that the evolutionary pressure to select for or against Lamarckian learning closely fol-
lows the conditions predicted by the proof. Future work will examine the suitability of
Lamarckian learning in more complex environments.
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Abstract. Language evolution takes place at two levels: the level of
language strategies, which are ways in which a particular subarea of
meaning and function is structured and expressed, and the level of con-
crete linguistic choices for the meanings, words, or grammatical construc-
tions that instantiate a particular language strategy. It is now reasonably
well understood how a shared language strategy enables a population of
agents to self-organise a shared language system. But the origins and
evolution of strategies has so far been explored less. This paper proposes
that linguistic selection, i.e. selection driven by communicative success
and cognitive effort, is relevant and shows a concrete case study for the
domain of colour on how different language strategies may cooperate and
compete for dominance in a population.

1 Language Strategies and Language Systems

Human languages are complex
adaptive systems that are shaped
and reshaped by their users, even
in the course of a single dialogue
[1]. They undergo change in or-
der to remain adaptive to the ex-
pressive needs of the community,
while maximising communicative
success and minimising cognitive
effort [2]. The past decade, con-
siderable progress has been made
to model the architecture and
behaviour of ‘linguistic’ agents
such that symbolic communica-
tion systems with properties sim-
ilar to human languages may
arise through language games [3].
In this paper we will use the

Fig. 1. Robotic experiments with the Colour
Naming Game. The speaker draws attention
to a chip by naming its colour and the hearer
points to the chip which has been named.
Agents give feedback after this interaction in
order to share and align their colour categories
and vocabularies.
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Colour Naming Game, where the speaker uses a colour to draw the attention
of the hearer to an object in the world [4]. Two agents drawn randomly from
a population are shown a set of Munsell colour chips. The speaker chooses one
chip as the topic, categorises the colour of this topic, and then searches in his
own private lexicon how this category is named. The hearer gets the name, looks
it up in his own lexicon, and then identifies and points to the chip in the context
which fits best with the category named. If this is the chip that the speaker
had in mind, the game is a success. Otherwise the speaker points to his original
choice and the hearer can learn the name and the category expressed by it.

Colour Naming is an interesting domain because it has been studied intensely
by anthropologists, neuroscientists, and psychologists, and so there is a signif-
icant body of empirical data available, including data about the evolution of
colour terms and colour categories [5]. These empirical studies of colour naming
in humans have shown three facts:

(1) There are different strategies by which speakers use colour to draw at-
tention to objects in the world. One common strategy, which has been studied
the most, is to use a limited set of basic colour prototypes utilising the full
colour space, meaning the two hue opponent channels and brightness (for exam-
ple: black, white, red, green, blue, yellow, pink, purple, brown, orange) [6]. We
further call this the Basic Colour Strategy. Another strategy is to use only bright-
ness, with words like “dark”, “shiny”, or “light”. We will call this the Brightness
Colour Strategy. There are still other possibilities: to combine two basic colour
prototypes (as in “bluish green” or “reddish orange”), to suggest colours by
naming an object that typically has the colour (as in “lila” or “almond”), to
combine the latter with basic colours as in “grass green”, “milk white” or “sky
blue”, etc.

(2) There is considerable variation in the way in which a particular strat-
egy is instantiated in a language and how it determines how languages change
over time. For example, “red” is the name of a prototypical colour in English,
roughly in the 625-740 nanometer range of the colour spectrum, but it used to
be called “read” in Old English. The same colour prototype is called “rojo” in
Spanish, “aka” in Japanese, “červený” in Czech, or “merah” in Indonesian. The
basic colour prototypes used in different languages vary as well and there is also
evolution, usually towards more and more refined colour prototypes [6]. For ex-
ample, English speakers make a rather clear distinction between green and blue,
but in Chinese and Japanese there is a single colour category which covers both
areas, named “ao” in Japanese or “q̄ing” in Chinese. It is used for the (green)
traffic light (“ao shingo”) or the colour of unripe bananas, but also for a blue
sky (“aozora”). The Berinmo, a Papua New Guinea indigineous culture, has a
word “wor” which covers some of the green region, a word “nol” which covers
much of green, blue and blue/purple, a word “wap” which covers almost all the
lightest colours, and a word “kel” which covers almost all dark colours [7].

(3) Interestingly, a kind of switch has often happened or is happening in
predominantly brightness-oriented colour languages towards predominantly full-
colour oriented languages which use both brightness and hue [8], showing that
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there is not only evolution in how a strategy is instantiated (in other words which
words and categories are used) but also which strategies a language community
employs. Today’s hues like “yellow”, “brown”, or “blue” were all expressing
brightness-based distinctions in Old English before they became used as part
of the Basic Colour Strategy in the late Middle English period (1350-1500) [9],
showing that the same linguistic elements (e.g. the same words) may be used by
different strategies leading to a kind of competition and mutual influence across
strategies.

Given that we see variation and evolution at these two levels, we must con-
clude that individual language users master both language strategies, which are
procedures for building, expanding, and adapting form-meaning mappings in or-
der to achieve a particular communicative goal, and language systems, which are
the concrete instantiations with respect to meanings (ontology), words (lexicon)
or grammatical constructions (grammar) given a particular strategy. The com-
munal language strategies, i.e. the strategies shared by all or most members of
a population, and the communal language system, being the shared choices in a
particular community, emerge out of the collective activity of all individuals and
is not explicitly accessible nor represented.

The goal of this paper is to understand and model the competition, selection
and evolution of language strategies using colour as a concrete case study, specif-
ically the interaction between brightness-based and full-colour-based strategies
as attested in the evolution of English and many other languages.

2 Language Strategies
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Fig. 2. A two-dimensional
projection of the Munsell
chips on the hue plane.
A subset of these chips is
used as the stimuli in a lan-
guage game.

The first step in the investigation is to operationalise
the language strategies themselves. We have done this
here for two strategies: the Basic Colour Strategy and
the Brightness Colour Strategy. We have chosen the
CIE L*u*v* space because the distance between two
colours in this space accurately represents the psy-
chological distances between these colours perceived
by human subjects [10]. The L* dimension represents
brightness (ranging from black to white), the u* di-
mension represents the red-green opponent channel
and the v* dimension the yellow-blue channel. A two-
dimensional projection of the Munsell chips is shown
in Fig. 2. Colour categories are represented by a single
point in this colour space, usually called its focal pro-
totype [11], and categorisation can be modeled with
a standard one-nearest neighbour classification algo-
rithm. The prototypes nearest to each chip in the context are computed and
categorisation is successful if there is a unique distinctive prototype found for
the topic. This prototype is named and if this lead to a successful game, it
is shifted with a very small factor towards the stimulus topic. When there is
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another stimulus with the same prototype as the topic, a new prototype is intro-
duced using the topic as seed. This happens at a very low rate, to ensure that
new categories and the names to express them become sufficiently shared in the
population before another new category is invented. When the hearer encounters
a name he has never heard before, he adds a new association between this name
and a newly created colour category based on the current topic.

The Basic Colour Strategy uses all three dimensions of the colour space (both
the brightness and the hue dimensions). Figure 3(a) shows that this strategy en-
ables a population of agents to self-organize a colour lexicon from scratch. Figures
3(b) and 3(c) show the evolution of a colour lexicon in a typical experiment.
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Fig. 3. The Basic Colour Strategy allows a population of agents (in this case 10) to
self-organise a colour lexicon from scratch (a). The graph shows how steady high com-
municative success is reached with a lexicon of about 15 colour words. The evolution
of a typical lexicon in a smaller population (5 agents), is shown after 400 (b) and 1200
(c) games per agent. Each row represents the lexicon of one agent.

The Brightness Prototype Strategy is similar to the previous strategy, but
instead of taking all three dimensions into account, only the L* dimension of
both the stimuli in the context and the prototypes of the colour categories are
compared. While learning, the prototype of the used colour category is shifted
on the L* axis towards the L* value of the topic. During invention, only the L*
value of the topic is considered relevant. Figure 4(a) shows that this strategy is
also adequate to allow a population of agents to self-organize and coordinate a
colour lexicon from scratch. The resulting colour lexicon now consists of different
shades of gray (see Figs. 4(b) and 4(c) for the evolution of a typical lexicon).

3 Strategy Selection

We can now turn to the main topic of this paper: how can there be selection and
cooperation between different language strategies, and how can there be evolu-
tion, in the sense that one strategy overtakes another. Different strategies may
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Fig. 4. The Brightness Colour Strategy also allows a population of agents (in this case
10) to evolve an adequate colour lexicon (a). The evolution of a typical lexicon in a
smaller population (5 agents), is shown after 400 (b) and 1600 (c) games per agent.
Each row represents the lexicon of one agent.

cooperate in the sense that one strategy may be better in certain circumstances
than in others. For example, a brightness colour vocabulary is obviously more ap-
propriate when talking about black-and-white photographs. But strategies also
compete because a population will obviously be more successful if each language
user adopts the same default strategy for dealing with the same sort of commu-
nicative problem. There is also competition for words and meanings among the
different strategies. A hearer cannot know whether a particular word (e.g. “yel-
low”) is to be interpreted using one strategy (brightness-based) or another one
(full-colour-based), particularly because both strategies could work in similar
circumstances. For example, yellow colour chips are often the most bright ones
and hence both strategies would work.

We have operationalised the linguistic selection of strategies in the following
way. Each strategy is reified, in the sense that it is an object represented as such
in the memory of the agents. A strategy has a score which reflects its ‘fitness’.
This fitness is based on the communicative success of the words and meanings
that were built or used with this strategy. The meanings, words or grammati-
cal constructions are tagged with the strategy that has been used to invent or
learn them. For example, if a word “dark” is acquired with the brightness-based
strategy, it is tagged with that strategy. The same word may be tagged with
different strategies because a learning agent does not know which strategy has
been used by the speaker with a particular word and hence may have to make
different hypotheses. In speaking, agents handle a communicative problem with
the solution stored in their language system that had most success in the past
and this solution implies a particular strategy. When the problem cannot be
handled, the speaker has to expand his set of meanings and his lexicon and he
prefers the default strategy, i.e. the strategy that had most success in the past.
It is only when this strategy does not work that other alternative strategies are
tried out in decreasing order of fitness. In listening, the hearer first applies his
own stored solution to interpret the utterance, which again implies the use of the
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language strategy associated with this solution. When the hearer is confronted
with an unknown word or with a situation in which his interpretation of the
word does not work for the present context (because apparently the speaker
used another strategy for the word), he uses first his own default strategy to
figure out the meaning of the unknown word, and, if that does not work, he tries
out alternative strategies, again in the order of decreasing fitness.

Due to space limitations, we can only show the outcome of one of our experi-
ments to study the rich and complex dynamics that result from these behaviours.
In this experiment, the set of prototypes is kept fixed, namely equal to the fo-
cal colours underlying the Spanish colour system [12]. However we left it open
which strategy agents should use. For example, the word “morado” (purple) can
both be interpreted in the full-colour space and in the brightness space. Two
situations arise. In one situation, a single strategy becomes clearly dominant in
the population. This could either be the brightness or the full colour strategy,
depending on small fluctuations in the early stages (Fig. 5(a)). But we have also
observed situations where one strategy becomes dominant first (for example, the
brightness strategy) to be overtaken later by another strategy (i.c. the full-colour
strategy), as seen in the history of English (Fig. 5(b)). The two strategies con-
tinue to co-exist in this case. Brightness is still used in circumstances where this
gives a higher chance of communicative success, for example when colour chips
are close in hue but distinct in brightness or when there is a word which has
most of its success in the brightness dimension.

4 Conclusion

Language strategies can only compete with each other through the use of the
language systems that they enable their users to build. And language systems can
only be tested through the production and comprehension of concrete utterances.
So we get selection at two levels: (1) The application of a language strategy by
a population generates possible variation (possible categories, possible words)
and those variants that lead to higher communicative success undergo positive
selection and are hence re-used in future communications. We have shown that
this selectionist process can be orchestrated by coupling communicative success
to language adaptation (Figs. 3(a) and 4(a)). (2) The recruitment of cognitive
functions generates possible language strategies and those strategies that lead to
the construction of language systems with higher communicative success undergo
positive selection, and are thus used even more in the future. We have shown
here that this selectionist process can be orchestrated by having the agents
keep track of which strategy they used for the building and interpretation of a
particular word as well as the long term communicative success of each strategy
(its fitness). We have shown that this dynamics allows a population to settle on
a dominant default strategy although there is not necessarily a winner-take-all
situation (Figs. 5(a) and 5(b)).

The same sort of competition and selection between different strategies has
been observed in many areas of lexical and grammatical evolution. For exam-
ple, there is currently an evolution going on in Spanish clitics (“le”, “la”, “lo”)
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Fig. 5. In (a) the Brightness Colour Strategy becomes entirely dominant and is used
significantly more, whereas in (b) one strategy overtakes the dominant one which is
reflected in the respective use of each strategy

whereby the etymological system of Standard Spanish, which uses clitics to ex-
press different cases (nominative, dative, accusative), is shifting to a referential
system in which case differentiation is lost, but with existing forms recruited for
expressing gender and number distinctions [13]. The two-level selectionist dy-
namics discussed here is relevant to understand more broadly how an individual
may select the language strategies used in his or her language community and
how language strategies may evolve in the historical evolution of a language.
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Abstract. This paper reports on foundational considerations for ex-
periments into the acquisition of human-like use and understanding of
negation in linguistic utterances via a developmental robotics approach.
For this purpose different taxonomies of negation in early child language
are analysed in order to show the large variety of communicative func-
tions that these different types of negation have. Requirements for robotic
systems that aim at acquiring these utterances in a linguistically uncon-
strained human-robot dialog are derived from this analysis.

1 Introduction

This paper presents an analysis of negation in early child language which offers
an alternative to the prevailing paradigm of propositional representation with
one that considers language as a means to manipulate the world. Apart from
being necessary in order to ground negative utterances this shift in the view-
point seems more in accordance with evolutionary perspectives on language [9].
The discussion below contributes to ongoing research into achieving human-like
language acquisition in robots via developmental processes [16,10,5].

The motivation for the development of existing frameworks is at least partially
to tackle the symbol grounding problem by linking the symbolic representations
of the system to sensorimotor data [8,15]. Some of the embodied frameworks
such as [19] enable artificial agents to invent their own vocabulary and simple
forms of grammar like word order for the purpose of communicating with each
other in a language constructed by and understandable to the robotic partici-
pants of the dialog [18]. Other frameworks, e.g. [6] or [14], enable robots to learn
and understand names for objects, actions, or spatial relations, simple proposi-
tions, or commands taken from natural human language. From the perspective
of pragmatics all of these frameworks enable robots to engage in one or two
types of speech acts: commenting on the state of the world, an assertive speech
act, and following orders, a reaction to directive speech acts. As is known from
speech act theory [1,17] human language has many more functions than only
stating facts about the world or receiving and giving orders. Observations of the
earliest language use of children show clearly that the functional scope of early
human language transcends these types of speech acts [4]. Already in the pre-
grammatical phase of early utterances children express linguistically attraction
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or aversion towards objects, actions and persons by requesting or refusing. The
latter constitutes only an alternative means for conveying communicative inten-
tions which in the pre-linguistic phase were conveyed via gestures or prosodically
marked non-lexical utterances that accomplish the same function. Negatives
play a major role in so called “langage de volonté” (language of will) [7] and
many types of negation are prototypical examples for utterances that cannot be
grounded without being linked to the volitional or affective state of an agent.
Pea [13] uses the apt expression of “motor-affective sensorimotor intelligence” to
characterize the capability that children must have in order to refuse things in a
linguistic manner. This highlights the difference compared to pure sensorimotor
grounding of object words like “cup” or “ball” or action words like “grasp” or
“throw”. Prohibitive speech acts, acts of refusal, or acts of motivation-dependent
denial are examples for negatives that are at least partially distinguished through
their affective nature. Other negative speech acts include commenting on disap-
pearance of objects, cessation of events, or expressing unfulfilled expectations
which could be grounded with the existing frameworks. It can neither be as-
sumed that the last mentioned types constitute the overwhelming majority of
early negation nor can these be expected to be the dominant types of nega-
tion in a human-robot dialog with unconstrained language use on part of the
human.

We examine the preconditions of this very early form of human speech that
must be met by robotic agents in order to ground negatives and engage in
negative speech acts in the context of such a dialog. Less affective utterances
that comment on disappearance or express unfulfilled expectations, sometimes
grouped together under the term of non-existence, have the advantage of being
a natural counterpart to positive comments on and descriptions of the world and
thus highlight the difference between recent frameworks and the new approach
proposed here, which aims at extending these frameworks towards the grounding
of negation including affect-heavy forms like rejection or prohibition.

The presented outline is meant to be a theoretical basis for research which
is dedicated to enable robots to obtain early pre-grammatical human language.
The account tries to stay close to early human language development while at the
same time exposing the crucial properties of negation which have to be met by
robotic systems in order to be able to engage in dialogues with humans. Section 2
gives a short overview of negative speech acts observed in early child language in
the one-word stage and their characteristics. Different taxonomies are presented
and compared with specific regard to properties that are crucial for grounding
and representation of negatives in robotic language acquisition. These acts will
be considered from the point of view of pragmatics, speech act theory, semiotics,
and accounts of early language acquisition [4,12]. Section 3 outlines implications
of the linguistic analysis for robotic frameworks and describes cornerstones of
a computational model designed to enable humanoid robots to acquire early
human language via dialog with a human partner. Section 4 concludes with a
short summary.



160 F. Förster, C.L. Nehaniv, and J. Saunders

2 Emergence of Negation in Human Language
Development

Compared to words that name objects, actions or even abstract categories, nega-
tion is semantically hard to classify and is deeply interwoven with lexical meaning
in general [13]. There are several strategies to categorize negation semantically
with varying granularity (see also [13] for a discussion). To the knowledge of the
authors there is despite many centuries of research on many aspects of negation
no commonly accepted taxonomy with regard to its semantics. This circumstance
indicates the difficulty of this enterprise. We adopt in the following the taxon-
omy proposed by Pea [13] as it is motivated by similarities in the situational
context and the child’s behavior which leads to an intuitive clustering. More-
over this taxonomy exhibits the nice feature of emphasizing different properties
for the particular negation types that lend themselves readily to a translation
into different requirements for the computational model delineated in section 3
below. Note that this taxonomy does not necessarily reflect the child’s own dis-
tinction (see [13]). Other taxonomies can be found in [2] and [3] and will be
compared to the adopted one. Table 1 summarizes the most frequent types of
early negation and their characteristics in the period up to 25 months according
to Pea [13]. The negation types in the table roughly emerge in the order listed,
whereby the three middle types can also be exchanged with regard to order of
emergence. The reason for this variability is simply that different parents from
potentially different social classes speak very differently to their children which
has a strong impact on their linguistic development. Nonetheless the tendency
from a rather reactive behavior towards a behavior that requires an increasingly
complex memory is observable.

Negation types not listed in table 1. Less frequent and therefore omitted
types are make-believe, agreement to negative statements, motivation-dependent,
and perspective-dependent denial (see [13]).

Rejection. Action-based negations that serve to reject objects, persons, ac-
tivities or events in the immediate environment fall into this category. Often
expressed as a simple “No” this type of negation is repeatedly reported to be
the first type that emerges and has gestural and non-gestural predecessors long
before the emergence of the first word. Rejections might be the most affective
type of negation as they cannot be interpreted without reference to aversion.

Self-Prohibition. Utterances of negation in the context of objects or actions
that have been forbidden previously by the teacher. One can observe these ut-
terances in a scenario, where the child approaches a forbidden object, hesitates
to touch it while looking at the teacher, approaches it again and so on. Self-
prohibition is more complex than rejection in the sense that it requires a internal
representation of the preceding external prohibition.

Disappearance. Typically expressed as “gone” or “all-gone” in English, dis-
appearance negatives signal the disappearance of something in the immediate
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Table 1. Most frequent types of early negation. Taxonomy and characteristics are
compiled from Pea [13] except for characteristics tagged with * which were added
by authors. (affective) means that corresponding negation types are not intrinsically
affective but accompanied or caused by affective states. ‘Adjacent’ describes whether
or not an utterance is produced in response to another one.

Negation type Topic Characteristics

Rejection objects, persons, events,
activities in the present

affective, adjacent and nonadjacent,
action-based, no need for internal
representation

Self-Prohibition objects, persons, events,
activities

nonadjacent, (affective)*, referent in
present but assumes prohibition in
past with regard to the same referent
on part of the carer

Disappearance objects, persons, events,
activities

adjacent and nonadjacent, non-
affective*, referent in the immediate
past, typically in context of where-
questions but also with declaratives,
need for internal representation

Unfulfilled
Expectation

objects, persons, events,
activities

nonadjacent, (affective)*, referent in
past or present, comment on con-
straint on activity or absence other
than immediately prior disappear-
ance or cessation, need for internal
representation, first action-uses then
existential and locational uses

Truth-functional
Denial

facts of the situation which
the proposition that is to be
denied refers to

adjacent, non-affective*, response to
a proposition, need for abstract inter-
nal representation

past. Like self-prohibition this type requires an internal representation, in this
case of objects that disappear, but on a shorter time-scale. Short-term memory
might be enough to support this type.

Unfulfilled Expectation. Like disappearance, unfulfilled expectations might
be expressed as “gone” or “all-gone”. They are uttered in contexts where ob-
jects are absent from their expected or habitual location without having been
present in the immediate past. They also occur when an activity is unsuccessful
in contrast to previous success, e.g. caused by broken toys. This type requires
representations of objects, actions or events on longer time-scales than disap-
pearance.

Truth-functional Denial. This type of negation is the most abstract in the
taxonomy and the last to emerge. Generally it is a response to a proposition not
held to be true by the child. To employ this kind of negation a child must be able
to conduct logical judgments and use at least some truth-conditional semantics
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of language. The negated proposition is independent of the child’s attitude to-
wards it, distinguishing this from motivation- and perspective-dependent denial.
The facts that are referred to might be in the present, past or future.

Taxonomy Proposed by Choi. Choi divides cross-linguistic negation up to
age 40 months into nine categories, which roughly emerge in three developmental
phases [3]:

Phase 1: (nonexistence), prohibition, rejection, (failure)
Phase 2: denial, (inability, epistemic negation)
Phase 3: normative negation, inferential negation

The brackets indicate a variation in the time of emergence for the different chil-
dren observed by Choi. For some children they emerged during the indicated
phase for others they emerged one phase later. With normative negation Choi
describes negatives that occur when the state of affairs differs from the agents
habitual expectations. Negations of this type are evoked through a deviation
from normative expectation (e.g. persons go in and not on a car) or the un-
orthodox use of a tool. Inferential negation is related to denial, but in contrast
the agent assumes that the conversation partner holds the statement which is to
be denied to be true rather than having actually heard the latter expressing it.
Nonexistence is expressed when the agent expects an entity to be present which
is not or the entity disappears. Nonexistence according to Choi therefore seems
to subsume Pea’s categories of disappearance and unfulfilled expectation. Pro-
hibition is used by the agent to negate action on part of the interaction partner.
Pea does not list this category explicitly but notes that it is tightly linked to re-
jection. Failure is the reaction to a specific event that does not occur as expected.
Like nonexistence it therefore seems to map to Pea’s category of unfulfilled ex-
pectation. Denial probably subsumes all the differentiated types of denial of Pea.
On the other hand Choi only quotes one example which falls into Pea’s category
of truth-functional denial. Inability describes an agent’s negation of its physical
ability to accomplish a task. It probably maps best to Pea’s unfulfilled expecta-
tion category as this also subsumes constraints on activities. Epistemic negation
describes negative responses to requests for information like “I don’t know”.
This type does not seem to be captured by Pea’s taxonomy maybe because he
did not observe it while monitoring the children of his study.

Taxonomy Proposed by Bloom. Bloom is cited by both of the other authors
and seems to have provided one of the first accounts of the development of
negation with regard to semantics [2]. At the same time her partition is the least
elaborate one of the presented taxonomies. She only distinguishes the three types
nonexistence, rejection and denial. Another striking difference is the fact that
she reports nonexistence as the first negation type to emerge. Pea argues that
this might be the case because Bloom focuses on negative meanings in sentences
instead of their emergence during the single-word period.
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Nonexistence: The referent is not manifest in the context, where there is an
expectation of its existence, and is correspondingly negated in the linguistic ex-
pression.
Rejection: The referent actually exists or is imminent within the contextual
space of the speech event and is rejected or opposed by the child.
Denial: The negative utterance asserts that an actual (or supposed) predication
is not the case. The negated referent is not actually manifest in the context as
it is in rejection, but it is manifest symbolically in a previous utterance.

Bloom’s category of denial is evidently the same as Pea’s category of truth-
functional denial. Rejection is defined in the same way as given by Pea. Nonex-
istence maps to Pea’s unfulfilled expectation. Blooms focus on sentential nega-
tion renders it incomparable with regard to developmental emergence and we
therefore will not take it into account in what follows.

3 Prerequisites for Grumpy Robots

From the linguistic analysis above we infer that there are three crucial properties
that distinguish the different types of negation. First they are distinguished
through their relatedness to affect or volition. E.g. rejection cannot be grounded
meaningfully without referring to the affective state of the agent. We therefore
propose to replace sensorimotor grounding with sensorimotor-affective grounding
to take this circumstance into account. An easy way to accomplish this might
be to simply introduce two-dimensional values for affect denoting the valence
(positive/negative) and the degree of affect. These values principally could be
associated to instances of acquired concepts, linked to ongoing ‘needs’ of the
robot, treated in the same way as other sensorimotor values and stored together
with the other sensor readings for each frame in two additional dimensions. These
values constituting the willingness to cooperate/accept or the opposite thereof
could in the beginning be chosen arbitrarily indicating a tendency to accept or
reject certain actions and objects. For the sole purpose of grounding the reason
why an affective state is the way it is seems not of importance. In order to signal
the state of affect to the interaction partner in language acquisition games this
state should be mirrored by facial or body gestures of the humanoid. This is
necessary in order to provoke negative utterances by the interaction partner in
the case of non-cooperation/non-acceptance. This could be utterances like “No?
You don’t like this ball?”. In later stages the arbitrary choice of affect could
be replaced by more sensible measures like the outputs of a planning module
depending on the decision if a certain action is useful or harmful to the agent to
achieve its goals, to satisfy its internal drives, or to maintain its state [11].

The second distinction we can observe is the increasing complexity with regard
to the required memory: from a purely reactive behaviour in the case of rejec-
tion to the need for long-term memory for unfulfilled expectations or normative
negation. Interesting issues in this context are the need for an internalization
of a previously external physical prohibition in the case of self-prohibition and
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Fig. 1. Humanoids iCub (left) and Kaspar (right) used in language acquisition studies.
These studies include work on learning vocabulary, holophrases, negation and grammar
in a manner where language is grounded in active manipulation of objects, the social
environment, and in sensorimotor experience in unconstrained interaction with human
teachers. The work is targeted at the acquisition of human language-like capabilities.

the need for an internal representation of habitual locations and habitual func-
tionality in the case of unfulfilled expectations. It is unclear whether these two
memory-related requirements should be treated in a differentiated manner or
whether it would be advantageous to distinguish them on a higher level but
map them to the same underlying memory-structure. Experiments with differ-
ent memory-models in which both negation types are acquired simultaneously
should shed light onto this issue.

The third distinction for the types is given by their property of being adja-
cent or nonadjacent (see table 1). In order to engage in adjacent negation the
agent must know when it is addressed. The only purely adjacent type is truth-
functional negation, the latest negation type expected to emerge. In this case
turn-taking is an issue and the analysis of prosody or an artificial replacement
thereof as the agent is supposed to react to being spoken to and therefore must
have the means to find out when it is addressed.

The large functional variability of the different negation types suggests that
from a developmental point of view early negation might be rather considered as
a family of related but different types of speech acts than being a variation of a
single phenomenon. Seen from this perspective an implementation in the spirit
of item-based constructions seems natural [20]. The latter support a treatment
of these types as if they were entirely independent in the beginning and leave it
up to machine learning algorithms to detect the similarity. Eventually a higher-
level schema constructed through these mechanisms might emerge that could be
labeled negation by an external observer.

4 Summary

We provided an analysis of early negation types with regards to their functional
use which highlighted crucial differences with regards to their treatment in the
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context of robotic language acquisition in general and furthermore in a setting
of human-robot dialogues. We propose to introduce a representation of affect or
volition into the system in order to enable the acquisition of particular nega-
tion types like rejection. We also propose to introduce a differentiated memory
architecture in order to support other types of negation like disappearance or
unfulfilled expectations. The fact that all but one negation type are expressed
also in a nonadjacent manner suggests that the integration of means to detect
questions, e.g. through prosody extraction, is of importance but seems to be not
of equal priority. Nonetheless turn-taking and the detection of questions is im-
portant in order to maintain the progress of the dialog which drives the grounded
acquisition process itself. Initially it could be replaced by easier means of dialog
control until e.g. robust methods for social cue and prosody detection are found.
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the EU Integrated Project ITALK (“Integration and Transfer of Action and Lan-
guage in Robots”) funded by the European Commission under contract number
FP-7-214668.
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7. Guillaume, P.: Les débuts de la phrase dans le langage de l’enfant. Journal de
Psychologie Normale et Pathologique 24, 1–25 (1927)

8. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)
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Abstract. We investigate the performance of agents co-evolved using
genetic programming techniques to play an appropriation common pool
game. This game is used to study behaviours of users participating in
scenarios with shared resources or interests eg. fisheries. We compare the
outcomes achieved by the evolved strategies to that of human players as
reported by [6]. Results show that genetic programming techniques are
suitable for generating strategies in a repeated investment problem. We
find that by using co-evolutionary methods, populations of strategies will
quickly converge to nash equilibrium predicted by game theoretic analy-
sis, but also lose many adaptive behaviours. Further, by evolving against
a set of naive strategies, we show the creation of diverse and adaptive
behaviours that play similarly to humans as described in previous exper-
iments.

1 Introduction

Common pool problems are ones that deal with multiple agents and shared
resources. These games model many scenarios in real world economic and social
scenarios where many individuals are sharing resources e.g. fishing grounds. We
are interested in a specific type of common pool problem – the appropriation
game. The main characteristic of this game is that the level of yield from the
pool is dependent on all the agents acting in the pool. The problem becomes how
the agents must appropriate their investments to achieve an optimum return.
Agents must cooperate to some degree in order to achieve a maximally beneficial
outcome for the individual and the group.

In this game we are studying a co-evolved genetic programming method for
creating investment strategies in a common pool resource (CPR). We wish to
compare the performance of the strategies generated and the group level be-
haviour of the agents with that of the human players performance in a similar
game [6]. This game provides a difficult problem for the agents and a difficult
search space for the genetic programming process. In the agent environments
specified, the maximum return from investments is gained by using the CPR,
however over-investment ruins the output of the CPR for the group.

For these experiments a fixed number of agents play an iterated appropriation
game. Each agent is provided with an endowment of tokens at the beginning of
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each round which must be invested in two markets. The first market offers a
fixed return on the tokens invested, while the second, the CPR, provides a level
of return based on the amount of total investment by all the agents in that
market. The GP generated tree chooses the investment strategy for each agent
every round and the fitness of the solution is a measure of the success of the
agent.

The performance of these evolved trees are compared to the human players
in order to discover: (1) if the evolved solutions are close to the aggregate group
level Nash equilibrium as predicted by non-cooperative game theory, (2) if the
individual play by the agents approaches Nash equilibrium by selective pres-
sure and (3) what decision making processes are adopted by the agents is while
playing the game against various opponents.

The main contributions of this paper are as follows: (1) a genetic programming
based study of this CPR game. GP can provide an evolutionary perspective on
this problem and by using decision trees it can overcome the constraints in
other evolutionary methods[7], (2) the use of co-evolution and discussion of the
findings, (3) the study of strategies employed by agents and (4) a comparison of
the evolutionary results with human players.

The paper is divided in several sections. The next section is a discussion of
the background and related research, which introduces briefly the concepts seen
in the rest of the report. Section three introduces the CPR appropriation game
and our GP approach. Section four introduces the experiments that we have
conducted and section five contains the results. The final section discusses the
uses for the techniques in the paper as well as possible future work.

2 Related Research

There is a great deal of literature available on specific field based CPRs such as
the fishery [4] and for a review of the literature see [3]. We focus on studies that
are more comparable to the computer agent simulations we employ. In [6] CPR
problems are discussed from the point of view of lab experiments with human
players and a study of common-pool scenarios in the field. Their main focus from
the experiments is the appropriation game with a view to discover how changes
to the rules of the games alters the rate of cooperation. They find that both the
ability to communicate and sanctioning in games increases the players’ yield.

There have been a number of evolutionary approaches to different economic
games in previous research. It has been shown that multi population co-evolution
with genetic algorithms performs well when for searching for equilibria in simple
standard games used in organisational theory[7]. All the games explored were
one shot, simultaneous move games owing to a representational constraint in
GAs. The authors suggest that other techniques, including GP, would provide
the ability for conditional choice and thus exploration of more complex and
repeated games.

The emergence of cooperation has been demonstrated in a spatial CPR game
where the spatial element is represented by agents on a circle[5]. They show that
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in the CPR game a cooperative strategy can survive, even when the majority
of agents is defecting. As the strategies of players were based on neighbors it
allowed some agents to maintain cooperation even when globally defection was
the generally adopted strategy.

A model using the Swarm multi-agent simulation environment was built[1] to
capture how adaptive agents perform in the baseline CPR game as defined in
[6]. The agents are randomly allotted a subset of 16 preprogrammed strategies
for which the performance results of each alternate strategy is measured as the
average return that the agent would have received in each round had it utilized
it. It is found that the agents perform similarly to the humans in the lab exper-
iments. These findings can be used for comparison with other approaches to the
same game.

3 Game Definition

Researchers[6] developed a series of laboratory experiments utilising human sub-
jects and investigate the correlation between the behaviours of the human players
and the behaviours predicted by non-cooperative game theory.

The baseline experiment comprised the following parameters: eight human
participants made finitely repeated investment decisions regarding an amount
of tokens with which they were endowed at the beginning of each round. The
tokens are then invested in either Market 1, offering a fixed return, or Market
2, the common pool offering a return based on the level of investment, or some
combination of both. Participants know the number of other players, their own
endowment, their own past actions, the aggregate past actions of others, the pay-
off per unit for output produced in both markets, the allocation rule for sharing
Market 2 output, and the finite nature of the game’s repetitions. Participants
also know the mapping from investment decisions into net payoffs.

Table 1 shows the parameters for the two baseline experiments undertaken
which are also used for the evolutionary experiments. The number of tokens
predicted by Nash equilibrium is 8 for each agent, or 64 for the group when such
comparisons are made, for both experiments.

Averaged across several experiments the results were as follows: the aver-
age net yield as a percentage of the maximum yield was in the 10 token game
37% and in the 25 token game -3%. The main conclusion from this baseline
experiment was that even as users reach the equilibrium point, net yield decays
toward 0 and rebounds as subjects alter their investment strategies. In low en-
dowment settings, aggregate behaviour results tend toward Nash equilibrium.
In the high endowment setting aggregate behaviour in early rounds is far from
Nash euilibrium but does approach it in later rounds. At the individual decision
level, however, behaviour is inconsistent with the Nash prediction. In [1] they re-
port almost identical performance from their agents, in terms of efficiency, when
compared to the human players.
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Table 1. Human Experiments

Type of Endowment
Low (10 tokens) High (25 tokens)

Number of Subjects 8 8
Individual token endowment 10 25

Production function (xi is the investments by player i) 23(
∑

xi)− .25(
∑

xi)2 23(
∑

xi)− .25(
∑

xi)2

Market 2 return/unit of output $.01 $.01
Market 1 return/unit of output $.05 $.05

Earnings/subject at group maximum $.91 $1.65
Earnings/subject at Nash equilibrium $.66 $1.40

Earnings/subject at zero rent $.50 $1.25

3.1 Using GP to Co-evolve Agents in the Two Market Game:

We use the GP process to create a tree for each agent representing its investment
strategy for the CPR. As all tokens must be invested each round, the remainder
are put into the fixed market. The GP creates trees from the set of functions
and terminals contained in Table 1 which are divided into different nodesets for
the STGP (for determining creation and crossover points for the trees). The
functions are listed in Table 2 denoted with an f(n) where n is the number of
arguments the function takes.

The description of the GP nodesets is as follows: The environment nodeset
contains functions and terminals that represent the agent’s perception of the
environment. Where the node says that it is believed, for this game that belief
is with 100% certainty. The function BELIEVEDPROFITFROMM1 returns the
amount the agent would receive based on the level of input as a given argument.
BELIEVEDPROFITFROMM2 acts the same but also requires the total group
investment as an argument.

The constant nodeset contains terminals in the form of constants. It also
contains some standard mathematical functions which take two arguments to be
operated on (multiply, divide). It also contains the If function which takes 3
arguments, the first from the decision set, the second is the true branch and the
third is the false branch.

The decision set has functions which take environmental or constant nodes
and compare them (greater, less, equal). We have also included And and Or
which take other decisions. This allows for complex if then statements to be
created.

We use a co-evolution method for evaluating the GP trees. We iterate through
the population 20 times selecting an individual member and choosing a random
seven others to create a group of eight agents – with each tree representing
the investment strategy of each agent. As the opponent strategies are chosen at
random each member of the population usually plays a far higher number than
this minimum 20. The group then plays the game as the humans would with one
difference – a fixed 20 rounds instead of at least 20 but the agents do not know
the exact finite nature of the game.
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For each round, the tree is evaluated returning a value of tokens which the
agent will invest into the CPR. The remainder of the tokens are invested into the
fixed market. The fitness of the individual is the cumulative profit of the agent
over the 20 investment rounds with a small penalty for length of the tree. We
also penalise invalid trees by assigning a very poor fitness score. An invalid tree
is one that returns a value of tokens to invest in the CPR greater than the round
endowment or less than zero. When a strategy like this occurs during evalutaion,
it is replaced by a one investing a random percentage of the tokens endowments
each round. The GP parameters that we use, based on experimentation and
recommendation, are as follows: population size of 250, 100 generations, crossover
probability of 90%, a mutation rate of 10%, a creation probability of 2% and
finally elitism is employed.

Table 2. Node Sets for GP

Environment Constants Decisions
BELIEVEDROUND Multiply f(2) Or f(2)

BELIEVEDTOTALGROUPTOTKENS Mod f(2) Greater f(2)
BELIEVEDAMOUNTOFAGENTS Plus f(2) Less f(2)
BELIEVEDROUNDENDOWMENT Divide f(2) Equal f(2)

PROFITLASTROUND If f(3) And f(2)
PROFITM1LASTROUND {0, 1, 2, . . .}
PROFITM2LASTROUND

TOTALGROUPINVESTMENTM2LASTROUND
INVESTEDM2

CUMULATIVEPROFIT
AVERAGEINVESTEDM2

AVERAGECUMULATIVEPROFIT
AVERAGETOTALGROUPINVESTMENTM2

AVERAGEPROFITEACHROUND
AVERAGEPROFITM1EACHROUND
AVERAGEPROFITM2EACHROUND

BELIEVEDPROFITFROMM1 f(1)
BELIEVEDPROFITFROMM2 f(2)

4 Experiments

We evolve 8 separate populations of solutions. We then select the tree with
the best fitness at generation 100 to be a representative of that evolutionary
run. We play each of the 8 selected strategies in a game against each other.
As a benchmark they also play against a group of pre coded fixed strategies.
We use the game the evolved agents play together as the comparison with the
human players’ game. Averaged over 3 iterations of this process we use the
aggregate play as well as individual investments in each round as the basis of our
comparison. We repeat the experiments for both 10 and 25 token endowments
per agent per round.
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We use a set of fixed naive strategies to assess the similarity in performance
between the individual representative evolved strategies. The cumulative profit
of each strategy should show the degree of variance between them and also how
well each strategy performs. We, for an analysis, also save the best strategy each
generation for the evolutionary runs. We analyse the population of 100 “best”
strategies creating an overall profile of the evolutionary process in this problem
domain.

We play each of the strategies against each other. We record the cumulative
profits and rank the solutions accordingly to determine the if there is an increase
in performance as the evolution time increases. We also analyse the playing of
rounds to see if there is a general pattern that agents adopt.

5 Results

5.1 GP Co-evolved Agents

Using the tree with the best fitness at the end of 100 generations of the evo-
lutionary run as a representative, we use eight of these candidates to play the
game. We find that, regardless of the token amount, the chosen agents play close
or equal to the Nash equilibrium amount of tokens.

Recall from Table 1 that the individual investment Nash equilibrium is 8
tokens and for the group is 64 tokens. In the three 10 token scenarios the agents
play fixed strategies. The average group token investment for the games is 65.68.
This is the same performance as the human players had at an aggregate level. At
an individual level however we see a different trend. The evolutionary pressure
is on the individual to perform at the Nash equilibrium and this is the result we
see from our evolved agents; this deviates from what the human players played.
The human performance show a changeable strategy that tends towards a group
aggregate Nash in later rounds but at the individual level it is quite varied. The
evolved agents play a typical non varying strategy of an average 8.21 tokens.

In the 25 token game, taking a candidate agent from eight different evolution-
ary runs, we see a perfect Nash play in the three chosen instances. During the
game between the evolved agents, each agent plays an unchanging strategy of 8
tokens per round.

We can see from Fig. 1 that the evolutionary process converges to the Nash
amount of tokens quite quickly. The standard deviation of the population’s in-
vestment decreases for the run. The results are averaged over eight separate
evolutions of the problem. This is evolution pattern is seen with both token
endowment levels.

In order to further evaluate the co-evolved strategies we play them against
a set of naive strategies that play 0%, 20%, 40%, 60%, 80% or 100% of the
token endowments. These opponents have a uniform and unchanging strategy
throughout. We perform this experiment to test if our evolved strategies contain
the ability to exploit when there is low pool investment and to counteract over-
investment.
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While playing the naive fixed strategies the evolved 25 token agents played a
mix of fixed and mild exploitative strategies. The fixed played 8 tokens or 8 in the
first round and then 9 tokens in subsequent rounds. Some exploitative strategies
gradually increased the amount of tokens from 8 to 10 when playing with the
low investment naive strategies. Once the high investment naive strategies were
in play all of the evolved agents did not reduce their usage of the pool and as
such suffered net losses.

In the 10 token game the agents are not as badly exploited as they are in
the 25 token game. This is due to the fact that the naive agents are bound to
the maximum of 10 token investments so we do not see negative returns. We do
observe an inability to change strategy as the pool is over exploited with agents
playing roughly fixed strategies that invest either 8 or 9 tokens.

As the co-evolved population of agents converge to play the Nash amount of
tokens, where during their evaluation a larger proportion of opponents will be
playing similar strategies, the agents do not evolve very dynamic strategies that
counteract being exploited. This results in very fixed strategies, as seen above,
where typically the evolved agents do not take into account the actions of others.

5.2 Evolving against Naive Strategies

To explore the possibility of creating a good strategy we use the naive strategies
in the evaluation of our agent trees. Each agent plays 6 different games with
the naive strategies as described above. This is the first time that the evolved
strategies different outcomes between the 10 and 25 tokens games. As the 10
token game does not get exploited when all tokens are invested by the 8 players
the strategies learned are consistently close to or at a Nash level of investment.

For the 25 token games, the strategies evolved vary. Some play a uniform
investment strategy while others play adaptive strategies. When the new evolved
strategies play each other the performance is similar to human play. The pool
utilization refines itself close to Nash at the aggregate level but from an individual
level it is wildly varying. The best performing strategy is one that does not invest
in the pool at all while the two next best are adaptive strategies. The worst
performing strategies are ones that invest the total amount of tokens constantly.
These findings are shown in Fig. 2. The average efficiency of the investments as
a percentage of the maximum return is 53.5% which is much higher than that
earned by human players.

6 Discussion and Future Work

We have shown that genetic programming techniques are suitable for generating
strategies in a repeated investment problem. By using co-evolutionary methods
we have shown that populations of strategies will quickly converge to Nash equi-
librium, as predicted by game theoretic analysis, but also lose many adaptive
behaviours. We have shown that genetic programming techniques are suitable for
generating strategies in a repeated investment problem. By evolving against a set
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Fig. 1. Average Investment for 25 tokens Fig. 2. Evolved Strats playing each other

of naive strategies we have shown the creation of diverse and adaptive behaviours
that play similarly to humans. Erratic behaviours emerge when the goals of the
opponents differ from the evolving agent; this supplies an evolutionary pressure
towards more adaptive strategies.

We plan to explore and compare single and multiple population co-evolution
for this problem. In conjunction with this we wish to examine the fitness to take
into account varying proportions of the group score in order to ascertain if there
is a tipping point in the agents’ performance towards the optimum for the group.
Using multiple populations would allow for specific roles to emerge to emerge
within the population if the group composition is fixed.
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Abstract. We present a decision making procedure, for a problem where
no solution is known a priori. The decision making procedure is a human
powered genetic algorithm that uses human beings to produce variations
and evaluation of the partial solution proposed. Following [1] we then pick
the pareto front of the proposed partial solutions proposed, eliminating
the dominated ones. We then feed back the partial results to the human
beings, asking them to find a alternative proposals, that integrate and
synthesize the solutions in the pareto front. The algorithm is right now
being implemented, and some preliminary results are being presented.
Some possible variations on the algorithm, and some limits of it, are also
discussed.

1 Introduction

Decision making is a common challenge in any community, independently of its
size. Every form of government is essentially a way to solve this problem, but
it is also solved (or suffered) in groups that are too small to have any form of
official decision making structure. Often the way to find an agreement is through
a democratic voting system. In this way the options are listed, and everybody
votes what is their favourite option. Theory of voting is, generally, considered
part of game theory, and it has a long history. For a good review we suggest
[2]. Mostly the difference between the various voting systems are limited to (1)
how many options can a member of the community endorse; (2) if the option
chosen are ranked or not, and (3) how are the voting of the various member
integrated to acknowledge what would be the winning proposal. The general
structure is then: (a) the possible options are spelled out (often by some member
of the community); (b) everybody votes; (c) through an algorithm the votes are
counted; (d) the winning proposal is interpreted as the representative of the
community global desire.

Of course unless the decision was taking through an unanimity, not everybody
will have favoured the winning proposal, and thus some people of the community
will be forced to accept a decision they do not favour. If this happens often, with
the same people forcing over the same minority some decisions, it is common
to talk about a tyranny of the majority. It is also well known in voting theory
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(and practice) that requiring an unanimity before letting a decision be accepted
tend to freeze a community, when its size grows too much. How much is “too
much”, is different from community to community, but often between 10 and 20
members are enough to freeze a community who is trying to achieve unanimity.
Is there really no other option?

2 The Unspoken Assumptions

There are a number of assumptions that are at the base of all those voting
systems. We shall try to list them, and propose an alternative decisions system
not based on them. Firstly there are some assumptions being made about the
size of the space of the possible actions that can be undertaken by a community.
It is generally assumed that those possibilities are few (first assumption), are
clear (second assumption), and can be easily recognized (third assumption) and
acknowledged (fourth assumption). By assuming that there are few possibilities,
we also assume that it is possible to list them all (fifth assumption).

If we break free from those assumption, we can instead suppose that the space
of possibility is vast, needs to be explored, and no single human being can see all
the possible solutions. We can even assume that at the starting point no group
of people can see all the possible solutions. Now the problem have moved from
finding an algorithm that decides which of the few possibilities to implement,
based on how many people prefer which of them, to finding a solution that fits
as many persons as possible.

To say that generally the problem is simply posed as listing the possibilities,
and the voting on them, ignores the important aspect of mediation. Some, gen-
erally few, individuals, when posed with different positions will try to mediate
among the various possibilities, trying to find a solution that fits more people.
Not only those people are rare, but also communities need to have one of those
people in a particular position of power, to be able to benefit of its ability. So we
could say that in a community, where everybody can vote, there are generally
only few individuals that set up the possible proposals on which everybody else
will vote, and even less that are actively working to find a mediation between
the various groups. Those mediators are the ones which are effectively looking
for possible solutions that can be endorsed by a wider base.

What we want to suggest here is a system where every member of a community
has the opportunity to present proposals, mediate between existing proposals,
endorse others proposals, and finally where this happens in a cyclic way in such
a way that eventually an optimal solution is eventually reached.

3 The Algorithm

The algorithm that we are proposing in this paper, is a human based genetic
algorithm [3], that explores the space of possible solution to the question posed.
Looking for a solution that can satisfy the maximum number of people; poten-
tially satisfying everybody.
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The algorithm starts with a question being posed. It can be posed by one
of the user, or it can be posed by an external person. Then every user will
be allowed to write a possible solution (called proposal) to the question. At
this stage the proposals are secret, and no user is allowed to see the proposals
written by the others participants. When everybody has written their proposal,
the writing phase end, and the algorithm moves to the endorsing phase. Now
everybody is allowed to read each other proposal, and endorse all the proposals
they agree with. It is important in this stage that each user endorse all of the
proposals that he agrees on. No limit should be set on the number of proposals
that a participant can endorse. In the worse case a participant will only endorse
their own proposal. If a participant is instead satisfied with all the proposals he
can endorse them all. Once everybody has endorsed all the proposals they are
happy with, a selection process happen.

We define a proposal A as dominating a proposal B, if the set of participants
that endorse proposal A strictly contains the set of participants that endorse
proposal B. Of course if A dominates B, and B dominates C, then A dominates C.

To select the winner proposals we eliminate all the proposal that are being
dominated by any other proposal. What remains is a Pareto Front of the propos-
als. Note that each participant will be present in at least one proposal. As such
the Pareto Front can be said to represent every person that has participated, so
far. As the selection ends, we say that also a generation (or a turn) has passed.

If the selection process produced a single proposal, this must necessarily be
endorsed by everybody. We then decide that the question has been answered,
and an acceptable unanimous solution has been found. If the selection process
did not produce a single proposal, the process continues with a new generation.

Now at this new generation the participants are presented with the question
that was posed (the same as before), and the pareto front of the proposals that
won the past round. All the other proposals from the past generation have been
eliminated, and will be ignored. The participants are now invited to write new
proposals, taking the previous Pareto Front as an inspiration. They should try
to find possible synthesis among them. Although this is the invitation that they
are presented each participant is allowed to write anything they want. They can
introduce new solutions, re-propose past solutions that did not make it to the
Pareto Front, rephrase past proposals. If a participant feels that he has nothing
to contribute, and that his view is fully represented by the proposals that made
it to the Pareto Front, he is also allowed not to contribute at all at this stage.
Once the participants (who wanted to write) have written their proposals, again
we move to the endorsing phase, and then to the selection stage, and so on.

The process continues through writing, and endorsing phase, until the system
has either converged to a single unanimous answer, or the system does not seem
to produce any more variations, and generations after generations the Pareto
Front is always the same.

The system is very simple, it is a genetic algorithm that uses human beings to
produce the ‘genetic’ variation. It also uses human beings to evaluate the generated
partial solutions. And then then limits itself to the pareto front of the proposals.
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Fig. 1. A schematic representation of the genetic algorithm

We have already discussed in the introduction, how we moved from framing
the problem as finding the best solution among a given set, to find the best
solution, in an open context. Once we have framed the problem as a search
problem, using a genetic algorithm is a natural choice.

What we are looking for is a solution which is expressed as a text describing
a set of actions. If we were trying to produce such algorithm automatically we
would incur in three different problems. Each unsolved so far. First of all there
is no automatic way to translate a text in a set of actions. Solving this problem
would be equivalent to solve the general problem of automatically finding the
semantic meaning of a text. Although a lot of research has been done so far,
the results generally apply only for very specific cases. The second problem is
to select and filter the actions that are meaningful and possible, from the ones
that do not simply make any sense. And this is a second unsolved problem,
which would instead require a computer program to have an understanding of
the physical world, and its laws. And finally the genetic algorithm would have
to be able to evaluate which solutions are better than others. None of those
problems have been solved so far.

Similarly to [4] we decided to let human beings produce the possible solutions,
and again human beings evaluate them. Evaluating the proposals, selecting which
to pick for the next generation is in itself not a straightforward task. There are
here three requirements that need to be satisfied: (1) we want the algorithm
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to converge in few solutions, that eventually (through various generations) give
rise to a single answer; (2) we want the set of solutions to represent the whole
panorama of possibilities, and (3) we want every participant to feel that the
solutions they endorse are part of those panorama.

In the literature there are different threads of research that studied this prob-
lem. If we look at this as a voting problem, there is the whole voting theory that
has been developed. On the other hand, if we look at this as a genetic algorithm
problem, there is also a huge literature on the subject, too.

As a voting problem the assumption has always been that each voters had
an equally valid point of view, and so it was natural and fair to just sum them.
But basically each voter represents a different dimension, on which each of the
proposals would be evaluated. If we sum the votes, we are evaluating a bunch
of points in a unidimensional space. And we just need to decide where to stop.
How many proposals should be allowed to the next generation. At this point the
proposals are also playing a transitive game. If proposal A, wins over proposal
B (i.e. A has more votes than B), which wins over proposal C, then A wins over
C. But we are effectively throwing away a lot of information. In particular we
are ignoring who has voted for what proposal. So the result is suboptimal, in the
sense that many participants are not really considered in the result. If instead
we consider this information, the problem moves from a transitive game to an
intransitive game; now a proposal A can be better than a proposal B (according
to Joe), which can be better than the proposal C (according to Suzanne), which
can again be better than the proposal A (according to James). In this case no
proposal is then inherently better, and we are faced with what is called an intran-
sitive cycle. In the field of genetic algorithm Bucci and Pollack [1] have shown
that it is possible to escape those intransitive cycles by using Pareto Fronts. Not
only this moves back from the potentially dangerous place of intransitive cycles,
back to a transitive games; now a proposal A dominates a proposal B if and only
if A is bigger or equal in all dimensions to B (no participant prefers B to A),
and there is at least a dimension in which A is strictly bigger than B (there is
one person that prefers A to B). So if A dominates B, and B dominates C then
A will dominate C. This effectively permits us to drop all the proposals that
are being dominated by another one. What remains is what is called a Pareto
Front. While we are doing this we are not losing the representation of any par-
ticipant: if proposal A dominates B, and we drop B, all the participant that have
endorsed B will have endorsed also A. So by ignoring B we are not ignoring any
participant input. They are all present in A. Now assuming that each person
have endorsed at least one proposal (which is a safe assumption, since at the
very least they would have endorsed the proposal written by them), then each
person will be present in the Pareto Front.

This solution also solved the problem of how many proposals to take-on to
the next generation. We need to take all and only the proposals of the Pareto
Front. If we took less, the solution would not be inclusive, and we would run the
risk of representing all the participants. If we took more, we would be keeping a
solution which is unnecessarily redundant.
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4 Limits, Problems and Variations

While the basic algorithm is quite simple, there are a number of possible varia-
tions that should be tested. Some of those variations are presented here.

Anonymity of the proposals. Should proposals be anonymous, or should the
people who are endorsing the proposals be allowed to know who have written a
particular proposal. If the proposals are anonymous the participants are forced to
read the whole proposal, before endorsing it. Will they be able to understand it?
This depends on the topic, and on the group. The philosophy behind this choice
requires each proposal to stand on its own too legs, and not be endorsed thanks
to the popularity of the person writing it. On the other side, if the proposals are
non anonymous, people who are interested in the topic, but lack the technical
knowledge to understand the subtle elements of it, could still participate in the
vote. In system where the key element is a comparison between set of voters,
and not the actual counting of the endorsers, the anonymous choice seems to be
a natural one.

Anonymity of the endorsements. After the endorsing phase, the success-
ful Pareto Front of the proposals are fed back to the participants, asking them
to write new proposals. When this is done the name of the participants that
have endorse each proposal can also be made public, or not. By making those
information public it permits to the participants to understand which are the
major proposals, also it works as a light social control system, to avoid partici-
pants abusing of the system in an antisocial way. In this system each user has a
strong power. If a participant writes a proposal, and then endorses only his own
proposal, he can be sure that his proposal will be present in the pareto front.
This behavior is possible, and even socially acceptable when a person is honestly
in disagreement with all the proposals that are being presented. But it can be
abused by using it as a way to protest. By letting everybody see who has voted
for what, this kind of antisocial behavior is exposed, and generally ceases. On
the other hand an anonymous system would permit everybody to endorse what
they truly believe in. So in this case both of the possibilities make sense, and
both should be tested.

Who is allowed to write, who is allowed to endorse? In our description
we assumed that everybody who was allowed to write a proposal was allowed to
endorse them. This does not necessarily need to be so. If the participants who are
allowed to propose are a subset of the participants which are allowed to endorse
we have a situation who is similar to a modern democracy, where few people
define the options for everybody else. We are not particularly interested in this
situation, as it has already been tested enough in modern democracies. If instead
the participants who are allowed to suggest proposals are a supra-set than the
set of the endorsers, then we have a situation where a community are discussing
an issue, and external people are allowed to insert new ideas. This situation has
rarely been tested. Another, different, possibility is a situation where no one who
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has proposed something is allowed to participate in the endorsing phase. If this
is done by splitting the group into two subgroups at the beginning, and keeping
every proposal anonymous. This last option might produce interesting results.

Changing the Participants During the Process. So far we have assumed
that the same participants that have written a proposal one generation, will also
write it on the next generation. And somehow this would probably be an optimal
situation, because, since the people participating are also the ones evaluating
the results, this defines a static fitness landscape on which the genetic algorithm
can climb. Unfortunately this is not always possible. Since this decision system
requires multiple voting, periods, and in general a protracted interaction between
the users and the system, it is possible (and even common) that the participants
in a generation (or even between phases, inside a generation) might change. If
the community is big enough this is not necessarily a problem, provided there
are enough participants to represent the various possible ideas, the system can
keep on finding an answer. If the community is small, changing the participants
half way seems to produce the most unreliable results. As it would be running
a genetic algorithm where the fitness function changes from one generation to
the next. Unfortunately most of the test that we could do far of this method
suffered of this problem.

Real Questions versus False Questions. Although the work is still prelimi-
nary, we already noticed an interesting pattern. We tried the algorithm several
times, on various questions. Every time the question was a real question, among
real participants, which were going to have their life changed by the result, the
algorithm seemed to work better. It would act in a more predictable way, it would
converge more rapidly. When more than one result was in the Pareto Front, the
participants would try harder to synthesize an acceptable compromise. When
instead the question was irrelevant, the answer were random, the endorsing was
random, and the algorithm did not seem to converge easily (if it would converge
at all). All this seem to suggest that the algorithm is indeed exploring a space of
possibilities. And when the question is a real question, there is a definite fitness
space to be explored. With peaks, valleys, and neutral ridges. When instead the
question is irrelevant (to the participants), the algorithm is unable to find any
real synthesis because no real synthesis is there to be found. This suggests that
future work should be done on participants that are really involved with the
results of the procedure.

5 Partial Results and Conclusions

At the moment we only did preliminaries studies on the subject. We tried it out
among six participants with pen and paper. We then implemented the algorithm
on a website (http://pareto.ironfire.org), and invited some testers to try it out.
All the results are promising, but not consistent enough to make any statistical
case. We will thus only rely them as an anticipation of some future work. On the
pen and paper example, the question posed was: “We are going for one month
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together, in vacation, this summer. What shall we do?”. This test only lasted
two generations. On the first generation the answer were: “go camping”; “help
my grandmother with her garden” (from participant ‘D.’ ); “join a construction
site and build a house”; “go biking in east Europe”; “go to thailand”; “go to
Canada”. After the evaluation process the Pareto Front only included two pro-
posals left: “go to Canada” and “help my grandmother with her garden”. Then
the participants were invited to write new proposals. Five out of six proposals
suggested to “go to Canada with D.’s Grandmother, and ...”. The sixth proposed
to pay a gardener for D.’s Grandmother, and then go to Canada. We notice here
an interesting result. The proposals seem to get more complex as the genera-
tion passes. As if the algorithm started by exploring the space of possibilities,
in a more general way, and then become more precise in successive generations.
Everybody is effectively trying to mediate between the elements. It was also
interesting that each person tried to reinsert what they really cared for, in the
next proposal. For example the participant that first suggested to “go biking in
east Europe”, on the second generation suggested to “go to Canada with D.’s
grandmother, and go biking, after leaving D’s grandmother in a camping site.”

A decision making algorithm was presented to permit to a community to
investigate and discover the most widely endorsed proposal that answers a given
question. A number of possible variations were discussed and some partial results
were presented. Future work include testing with bigger communities, for longer
time, as well as testing the effect of the possible variations.
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Abstract. The paper describes an universal constructor model realized
in artificial environment called DigiHive. The environment is a two di-
mensional space, containing stacks of hexagonal tiles being able to mov-
ing, colliding, and making bonds between them. On the higher level of
organization a structure of tiles specifies some function whose execution
affects other tiles in its neighborhood. After short description of the Digi-
Hive the paper describes design of an universal constructor and discusses
possibilities of simulating self-replicating strategies in the environment.

1 Introduction

The individual and agent based modeling are natural tools for modeling of ba-
sic biological phenomena. Using this approach an universal or problem oriented
modeling environments (artificial worlds) can be constructed. The DigiHive en-
vironment [1,2] (see also precursor of the environment [3,4]) is an artificial world
aimed for modeling of various systems which a complex global behavior emerge
as a result of many simultaneous, distributed in space, local and simple inter-
actions between its constituent entities. It is especially convenient for modeling
of basic properties of self organizing, self modifying and self replicating systems.
laws The short description of the DigiHive system is given in the first part of
the paper.

The various strategies of self replication usually involves existence of an uni-
versal constructor, a device which can build any entity basing on its description
and using surrounding building materials. The design of the universal construc-
tor in the DigiHive environment is described in the second part of the paper. The
design process must still take into account the fact that all entities in the envi-
ronment are in continuous movement. The design constitues the base for testing
a series of modeling of various self reproducing strategies: their efficiency, speed,
and ability to evolve.

2 The DigiHive Environment

The environment is a two dimensional space containing objects which move,
collide and change their structure. The constituent objects of the environment,
called particles, are represented by hexagonal tiles. The particles are of 256 types
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and are characterized by velocity, position, and internal energy. Each type is
related with a set of constant attributes: mass, bond energy (needed to disrupt
bond between particles of given types), activation energy (needed to initiate any
change of bonds).

Particles can bond together forming a complex of particles. The permanence
of the complex depends on its constituent particles bond energies. Particles can
bond vertically on the directions up and down forming stacks. The particles on
the bottom of the stack can bond horizontally. An example of stack of particles
and a complex formed by horizontal bonds are shown in Fig.1.

(a)

N

S

SE

NENW

SW

U

D

(b)

Fig. 1. Examples of complexes: (a) horizontal view of single stack of particles with
directions shown, and (b) vertical view of complex formed by horizontal bonds, where
hexagons drawn by single lines represent single particles, and by double lines represent
stacks of particles and black dots mark horizontal bonds between particles

There are two types of collisions of particles and complexes: elastic and in-
elastic one, where the type is chosen randomly according to preset probability.
During elastic collision, the resulting velocities are calculated according to the
rules of classical mechanics resolving the collision of two disks (circles surround-
ing hexagons) – conservation of momentum and of kinetic energy is observed.

After inelastic collision the velocities of both particles are equalized – con-
servation of momentum is observed but the resulting decrease of kinetic energy
of particles is compensated by emission of a photon. Photons move and collide
with particles (but not with other photons). The collisions result in creating or
removing bond between hit particle and other particle close to the hit one.

When the probability of inelastic collision is set to 0 the above described prop-
erties allow to perform simulation of classical mechanics processes – equivalence
of a simple molecular dynamic. When the probability is set to non zero value,
some photons will appear as a result of collisions and then the reactions triggered
by photons will lead to creation of various complexes of particles.

2.1 Functions

Besides the reactions resulting from the collision of particles with photons, there
also exists additional class of interactions in which complexes of particles are
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capable to recognize and manipulate particular structures of particles in the
space around them. The description of the function performed by a complex is
contained in the types and locations of particles in the complex. The structure of
the complex is interpreted as a program written in a specially defined declarative
language. Syntax of the program encoded in a complex of particles is similar to
the Prolog language, using the following predicates only: program, search, action,
structure, exists, bind, unbind, move, not. Predicates: program, search, action and
structure helps maintain the structure of the program. The other predicates are
responsible for selective recognition of the particular structure of particles (exists)
and for manipulation of them (bind – create bonds, unbind – remove bonds and
move – move particles).

program():–
search(), action().

search():–
structure(0).

structure(0):–
exists([0,0,0,0,0,0,×,×], mark V1),
exists([1,1,1,1,1,1,1,1] bound to V1 on N, mark V2),
exists([0,0,0,0,0,0,0,0], mark V5),
not(structure(1)),
not(structure(2)).

structure(1):–
exists([1,1,1,1,0,0,0,0] bound to V2 on NW, mark V3),
exists([1,1,1,1,0,0,0,0] bound to V3 on SW, mark V4),
not(structure(3)).

structure(3):–
exists([0,0,0,0,1,1,1,1] bound to V4 on S).

structure(2):–
exists([1,0,1,0,1,0,1,0]).

action():–
bind(V2 to V5 on SW).

Fig. 2. Example of a program recognizing the structure shown in Fig. 3

An example of a program is presented in Fig. 2. The program recognizes the
structure shown in Fig. 3, and then binds the particle 11111111 to the unbound
particle 00000000.

The predicate program consists of exactly two predicates search and action.
First one calls the searching predicates, while the second one calls the predicates
responsible for performing some actions in the environment.

The predicate search calls the predicate structure. The predicate structure con-
sists of sequence of exists predicates and/or other structure predicates, always
followed by the negation not. It provides the ability of recognizing the particular
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Fig. 3. Single particle and a complex of particles recognized by the program listed in
Fig. 2 (a), and the structure after action of the program (b)

structure in case of some other structure does not exists. In the example, the
particle of type 10101010 plays role of the reaction inhibitor (its existence would
prevents program from being executed).

With the predicate exists it is possible to check various conditions, e.g.: exis-
tence of some particular particle type (exists([0,0,0,0,1,1,1,1] ...)), check if the
particle is bound to some other particle on given direction (exists(... bound
to V2 on N ...)) etc. It is also possible to mark the particle which fulfills the
predicate condition with one of 15 labels (variables: V1 to V15), e.g. the ex-
ists([1,1,1,1,0,0,0,0] bound to V2 on NW, mark V3) means: find the particle of
type 11110000 which is bound to the particle marked as V2 on direction NW,
and store the result in variable V3 (mark the found particle as V3).

In fact, the only result of search predicate is some state of the variables V1
to V15 in which there are stored particles fulfilling the conditions grouped in
all structure predicates. While the searching is performed via Prolog like back-
tracking algorithm, the order of execution inside this predicate doesn’t matter
(besides performance impact).

The predicates grouped in the action predicate are sequence of predicates that
affect the environment. Contrary to the previous one, the order of execution is
important. As a matter of facts this part of the program acts as an imperative
(not declarative) sequence of commands which operates on data provided by
declarative search part.

The important feature of the particle complex language is the property that
small changes in code of a program (i.e. in particles in which the program is
encoded) usually lead to small changes in its execution effects. Such a property
of the language is crucial while simulation of self organizing phenomena. The
simulation that demonstrates this property was presented in [2].

The program is encoded by complex of particles. Each predicate structure
is represented by the single stack of particles. Such a stack encodes a list of
predicates exists. Stack which encodes structure(0) also encodes predicates bind,
unbind and/or move. Adjoining stacks encode negative form of predicates struc-
ture. More details can be found at project website [1].

The introduced property of the environment that the complexes of particles
perform some functions on other particles and a moment later are an object
of manipulation by another complex opens the wide possibilities of modeling
variety of self modifications systems and regulation chains.
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3 The Universal Constructor

The universal constructor is a concept introduced by von Neumann in his famous
work on self-replicating cellular automata [5] (see also [6] for most recent ideas).

The universal constructor in DigiHive environment is a structure A (complex
of particles) being able to constructs other structure X based on its description
d(X). It is admissible to constructs the X structure via description d(X ′) of an
intermediate structure X ′ �= X , being able to transform itself into the X .

The universal constructor is the consistent structure (set of programs) being
able to fulfill the following tasks:

1. search for valid information structure (information string) – d(X). The infor-
mation string encodes description of some structure d(X). The description
may be viewed as another program written in simply universal constructor
language with the following commands: PUT (add specified particle to the
stack), SPLIT (start construction of a new stack connected horizontally to
the existing one), NEW (start construction of a new stack and not connect it to
the existing one), and END (end of the information string). The information
string is a stack of particles of specified types as described in the Fig. 4a. As
an example the following program:

PUT(01010101) PUT(01010101) END

which describes stack of two particles of type 01010101 can be encoded by
the stack:

11111111
01010101
00000001
01010101
00000001

2. connect itself to the found information string and start constructing the
structure X . The structure X consists of horizontally joined stacks of parti-
cles. There is always exactly one stack of particles being build at the moment,
called active stack X�,

3. sequentially process the joined information string:
(a) if current particle in the information string encodes command PUT –

find the particle of specified type which is on the top of stack of building
material. The building material is contained in stacks of particles (named
M) marked by the particle at the bottom (material header) of the type
0000××10 (see Fig.4b). The newly found particle is removed from the
top of the stack M , and put on the top of the stack X� (Fig. 5a).

(b) if current particle in the information string encodes command SPLIT
– split the stack X� into two stacks: remove particle from top, move
the trimmed stack in the specified direction, and create horizontal bond
between X� and removed particle. The particle becomes the bottom of
active stack X�. This action is presented in the figure 5b,
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(a)

END (×,×,×,×,×,×,×,×)
...

direction (×,×,×,×,×,×,×,×)
SPLIT header (×,×,×,×,×,×,1,1)

...
particle type (×,×,×,×,×,×,×,×)

NEW header (1,1,1,1,1,1,0,1)
...

particle type (×,×,×,×,×,×,×,×)
PUT header (×,×,×,×,×,×,0,1)

(b)

particle (×,×,×,×,×,×,×,×)
...

particle (×,×,×,×,×,×,×,×)
material header (0,0,0,0,×,×,1,0)

Fig. 4. Encoding stack (a) and building material (b)

(a) (b)

Fig. 5. Illustration of actions of the universal constructor during processing of the
information string: (a) action caused by the command PUT. The particle of specified
type is put on the top of active stack X� (draw using thicker lines), (b) action caused
by the command SPLIT. The particle is removed from top of X�, then the bond is
created on specified direction, the particle becomes a new active stack X�.

(c) if current particle in the information string encodes command NEW –
disconnect the structure X and immediately start the construction of
a new structure with specified particle as the beginning of X� (single
information string can then encode various structures, e.g. both d(B)
and d(A) – see also additional note on the use of the NEW command at
the end of this paragraph),

(d) if current particle in the information string encodes command END –
release the information string and the constructed structure.

The universal constructor was implemented as a set of cooperating 10 programs
being able to fulfill tasks described above, enhanced with 5 helper stacks of
particles. Helper stacks are used mainly for performing synchronization between
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working programs, they also mark some characteristic part of the universal con-
structor e.g. a place where the new structure is build, a place where the universal
constructor join the encoding string etc.

In order to illustrate the universal constructor abilities it was provided with
the information string describing flat, rhombus-shaped complex. As the result,
the programmed structure was successfully build. The simulation screenshots
are presented in the fig. 6.

Note, that after the complex is finished the constructor is immediately ready
to connect to the same information string again and start a new translation.
Such behavior would cause that constructor will produce all the time the copies
of the same structure. This undesirable side effect can be resolved be encoding
a simple program which can disable the information string – i.e. prevent it from
being recognized by the constructor. The program can be encoded together with
the main structure in one information string. During translation the program can
be separated from the main structure by the NEW command. It is also possible
to encode another program which can enable again the information string (e.g.
at the beginning of the string in order to guarantee the existence of at least one
program after the reaction). Note, that the efficiency of universal constructor
reaction can be then adjusted by the concentration of both types of programs.

Fig. 6. Construction process after 0 (a), 26 (b) and 88 (c) simulation cycles

4 Strategies of Self-reproduction

During designing of the universal constructor, several technical problems has
been encountered, solving which would need introduction of some subtle pro-
gramming tricks leading to in some way to superfluous structure of the con-
structor.

For example in case when the constructor A works with its description d(A),
i.e. when constructor builds its own copy the problem is to prevent the activity of
partially constructed structure. This structure should not manifest any activity
before it is completely finished, in other case the simulation can become unpre-
dictable (e.g. the unfinished constructor may start producing the copy of itself
etc.). On the other hand the constructor that builds the structure should not
recognize this structure as a part of itself. The another problem is a geometry
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of the constructed structure. Sequential adding of subsequent stacks in various
direction may lead to the situation that a built structure will try to occupy a
place already occupied by the constructor itself. Also sequential adding of stacks
produces complexes only in the form of one dimensional strings of stacks.

Taking into consideration the tradeoff between the above problems and the
simplicity and efficiency of solutions it has been assumed that the constructor
may not be fully universal – some structures can not be built straightforwardly.

These limitations can be fully compensated using a wide possibilities offered
by the actions of functions encoded in complexes. The problem of constructing
any structure can be resolved in one of the following ways:

1. By constructing some intermediate structure I ′ being able to transform itself
into the desired one: I, in finite number of time cycles:

A + d(I ′) → A + d(I ′) + I ′ → A + d(I ′) + I

2. By constructing set of programs I1, I2, . . . , In being able to build the struc-
ture I in finite number of time cycles:

A +
n∑

i=1

d(Ii) → A +
n∑

i=1

d(Ii) +
n∑

i=1

Ii → A +
n∑

i=1

d(Ii) +
n∑

i=1

Ii + I

5 Conclusions and Further Research

The universal constructor implemented in the DigiHive environment has been
designed and implemented. The limitations of the design has been discussed and
the ways of compensation has been shown.

The aim of the further research is to implement and compare the effectiveness
of various possible self-reproduction strategies and their ability to evolve in time.
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Abstract. Relation between the part and the whole is investigated in
the context of complex discrete dynamical systems. For that purpose,
an algorithm for local behavior identification from global data described
as Generative Network Automata model configurations is developed. It
is shown that one can devise a procedure to simulate finite GNA con-
figurations via Automata Networks having static rule-space setting. In
practice, the algorithm provides an automated approach to model con-
struction and it can suitably be used in GNA based system modeling
effort.

Keywords: Generative Network Automata, Automata Networks, In-
verse Problem, Identification, Discrete Dynamical Systems.

1 Introduction

In the context of complex dynamical systems, one can talk about two general
approaches to the study of behavior: The first one is to start with global in-
formation describing state and topology changes of the system and identify the
local state transition/topology transformation functions that generate them (i.e.
the inverse problem). The second approach is to start with some state transi-
tion/topology transformation functions at hand and observe the resulting behav-
ior of the constructed system through local function execution (i.e. the forward
problem) [1][2][3].

In this study, we consider the first problem in the context of Generative
Network Automata (GNA) known to be a varying-topology extended model-
ing framework for complex dynamical systems [4]. GNA framework provides
us a well-defined environment for examining potential relations and mechanisms
between the part and the whole. Different from Automata Networks (AN) model-
ing in which locally interconnected large set of cells evolve at discrete time steps
through mutual cell interactions [5], GNA modeling framework supports time
varying connectivity among automata components that results in autonomous
transformations of complex dynamical networks. To the best of authors knowl-
edge, the first appearance of Automata Networks in literature is due to the works
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of John Von Neumann [6] in order to model various phenomena in physics and
biology. When we consider discrete systems, one may encode any entity in bits.
Here, the coded thing can be any value representing some property of the sys-
tem. And, if the coded entity somehow changes its value over time, this makes
the system suitable for being modeled by for example Cellular Automata [7]
or in general by AN. In fact, the encoding can also be applied to GNA inter-
component connectivity information. So, one can devise a procedure to identify
(then simulate) finite GNA configuration sequences via AN having static rule-
space descriptions. This paper describes how the idea can be realized for some
restricted type of discrete dynamical systems. The existence of proposed algo-
rithm also proves (by construction) the generatability of seemingly autonomous
behavior via designed one. Simply, the output of the algorithm is an instance of
AN constituted by the identified i) set of encoded and coupled state/connectivity
transition rules and ii) static AN topology (represented by what we call overlay
level neighborhood graph) describing the structure and flow of state/connectivity
information between AN components. In practice, the algorithm provides an au-
tomated approach to model construction and it can suitably be used in GNA
based automated system modeling effort.

In section 2, we give some of the necessary definitions and assumptions made
throughout the paper. The proposed algorithm is described in section 3. Section 4
is the conclusion part that includes discussions/speculations about applicability
of the approach to different discrete dynamical network domains and possible
future works. Throughout the text, we used the terms component and node
interchangeably.

2 Definitions and Assumptions

GNA is a dynamical network described by a time-varying directed graph with
its labeled nodes. Each node of the graph represents one system component and
takes one of the possible state values defined by a state value set S . The edges are
supposed to be the indicators of referential relationships between system compo-
nents that cause state transitions and topology transformations in time. Below,
we give definitions about GNA configuration and its temporal dynamics[4].

Definition 1: A configuration of a GNA at time t is a triplet 〈Vt, Ct, Lt〉 where

Vt : a finite set of nodes at time t describing dimension of the system,
Ct : a mapping Vt → S defining the global state of the system at time t,
Lt : a mapping Vt → V ∗

t defining global topology of the system at time t and
this mapping is defined by outgoing edges of a specific node to its destination
nodes.

Definition 2: Let G be the set of all GNAs. Temporal dynamics of a GNA is
defined by a triplet 〈E, R, I〉 where
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E : a mechanism that produces an extraction ge ∈ G from a given GNA
instance g ∈ G.

R : a mechanism that replaces the extracted subGNA ge a with a new GNA
instance gr ∈ G and produces correspondence V

ge
t → V

gr
t from nodes of ge to

nodes of gr.
I : an initial configuration of GNA.

The extraction and replacement mechanisms can be deterministic or stochas-
tic. The above extraction mechanism E, replacement mechanism R and initial
configuration I are sufficient to define GNA based dynamic models and reflect a
perspective (defined by 〈E, R, I〉 structure) to explain complex dynamic behavior
of systems under study. Clearly, based on the amount of information provided
by given global behavior data, there may be many GNA based models to be
identified by an identification algorithm. This fact has also been pointed out
in the context of reverse engineering of Automata Networks [7]. So, one need
to define his/her assumptions about the characteristics of the system model
under automated identification/construction for better precision. The assump-
tions/restrictions can be treated as apriori knowledge about the system under
study that may vary from biological organisms, ecological communities and hu-
man societies to computer communication networks. Our assumptions include
the following:

• Local behavior of system components are supposed to be deterministic. As
a consequence, whole system behavior is supposed to be deterministic which
is reflected by global behavior data under study.

• Components have minimal memory. In their update, components consider
only one step previous state/connectivity of other system components (this
may also include themselves).

• System evolves synchronously in terms of its component states and network
connectivity updates.

• Global behavior of the system is supposed to be cyclic. In other words, the
data reflecting last configuration is supposed to be followed by the first one,
for completeness.

• We divide system into two parts: observable part and reservoir part (see
Figure 1). The whole system is supposed to be isolated and its components
are distinguishable. However, the observable part of the system from which
global behavior data input is extracted is non-isolated while its components
are still distinguishable.

• Components are supposed to appear at least once in the observable part of
the system during their lifetime.

• All system components are assumed to be known apriori in the form of a
finite ordered set H defining inter-component neighborhood relation based
on ordering.

• Component behaviors are supposed to be explainable by state/connectivity
information fed from nearest neighbor components defined by H.
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• At any time a component can be in one of three states represented by 0,
1 or 2 symbols (i.e. S = {0, 1, 2}). A component residing in the observable
part of the system may take state value either 0 or 1. On the other hand,
the state value of a component in reservoir part can only be 2. This value
represents unknown states of separate/disconnected components.

From Figure 1, we can conclude that set of system components
H = {p, q, r, s, t, u, v, w, x, y, z} ; finite set of components at time t,
Vt = {p, r, t, v, w, y, z} ; component states Ct (r) = Ct (t) = Ct (v) = Ct (z) = 0
and Ct (p) = Ct (w) = Ct (y) = 1; destination component sets for each com-
ponent Lt (p) = {z}, Lt (r) = {v}, Lt (t) = {p}, Lt (v) = {p, w}, Lt (w) = ∅,
Lt (y) = {r, t, w}, Lt (z) = {t, y}. The state of any component at reservoir part
is unknown and symbolized by 2.

Fig. 1. An example system snapshot

3 The Algorithm

In this section, we define an identification algorithm for the restricted type of
systems defined by the assumptions given in section 2. The inputs of the algo-
rithm are a sequence of GNA configurations reflecting the restricted system’s
global behavior; a finite ordered set H of components from which Vt sets are
constructed and state/connectivity interaction mode considered in the identifi-
cation process. A fundamental question that we have to answer is: “How should
component states and connectivity affect each other so that given autonomously
varying topology and state change sequence can be generated?”. For that pur-
pose, the algorithm considers three alternative state/connectivity interaction
modes which characterize single component behavior that drive general GNA
system evolution: reader mode, writer mode and transfer mode. For a given
system, all components are supposed to behave in the same mode. In reader
mode, component i is first supposed to be able to identify its incoming edges
and their corresponding source nodes Pt−1(i) (this set may also include the
component itself) together with their states Ct−1(j) where j ∈ Pt−1(i) then
decide on new incoming components Pt(i) and the component i’s new state
Ct(i).
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Similarly in writer mode, component i first determines destination compo-
nents Lt−1(i) through outgoing edges and their corresponding states Ct−1(j)
where j ∈ Lt−1(i) then the state and connectivity information is used to gener-
ate new outgoing components set Lt(i) and new state of component i, Ct(i).

In transfer mode, component i is supposed to generate new outgoing edges
(i.e. destination components Lt(i)) and its state Ct(i) based on its incoming com-
ponents Pt−1(i) and their states Ct−1(j) where j ∈ Pt−1(i) of the corresponding
source components in previous time step. In this mode, the effect of individual
component i over the whole system behavior is realized through transforma-
tion of incoming connectivity and corresponding state information to outgoing
connectivity and the component’s state.

Table 1. Mode Table - List of [(Connectivity,State)] → [(Connectivity),(State)] based
component behavior modes for minimal memory restricted systems under study

In computations, Pt is assumed to be a mapping Vt → V ∗
t defining global

topology of the system at time t by incoming edges of node i from its source
nodes. We can relate Pt and Lt in such a way that for all j ∈ Pt(i) we re-
quire i ∈ Lt(j) and for all j ∈ Lt(i) we require i ∈ Pt(j). Clearly, one can
obtain all Pt values from all Lt values. None of the proposed modes cause con-
flicts in terms of their decided state and connectivity values. One can consider
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alternative component behavior modes that can explain the restricted system’s
global behavior in terms of (connectivity, state) input tuples generating (con-
nectivity) and (state) outputs (see Table 1).

In the Mode table, a component behaving in modes 1 to 4 does not get any in-
put from the others. In other words, system components are disconnected. They
have no meaning in our GNA context. Similarly, modes 1, 5, 9 and 13 do not pro-
duce any output and they do not define a dynamical system so have no practical
importance in our study, Component behavior modes 4, 8, 12 and 16 update
both incoming and outgoing component’s connectivity, simultaneously that may
result in conflicts and assumed that components live in peace. Therefore, we did
not consider these modes during the identification process. However, for these
modes one can establish some negotiation protocols and embedded component
strategies as new constraints over the system. And, the identification algorithm
can be extended to cover them also. Finally, modes 7, 14 and 15 are not consid-
ered but they can easily be added to the implementation. In the implementation
of the algorithm, information about existence of incoming or outgoing connectiv-
ity between components (defined by sets Pt(i) and Lt(i) is encoded as 0 and 1 for
simplicity. Depending on given configuration sequence, deterministic behavior of
an individual component may not be explainable only by its own history. We call
it inconsistency. They are resolved by neighborhood expansion of component in
concern. So, the inconsistencies are resolved by the establishment of what we
call overlay level component dependency settings that leads to the identification
of an overlay level network topology. Initially, each component is assumed to de-
pend only on itself. Therefore, the only overlay level neighbors of components are
themselves, initially. Any neighborhood expansion may continue at most until all
system components are added into the current overlay level neighborhood of the
component under construction. Note that any inconsistency is guaranteed to be
resolved at worst when the identified overlay network become fully-connected.
This is because the given global behavior of the system has been assumed to
be deterministic. The following example covers an inconsistency situation re-
solved through component overlay neighborhood expansion realized over finite
ordered set H of system components which is given as input.In below, we give
the proposed identification algorithm IDENTIFY GNA().

Inputs:

• a deterministic sequence of k + 1 GNA configurations 〈Vi, Ci, Li〉 labeled
from S0 to Sk where 0 ≤ i < k and S0 = Sk

• a finite ordered set H of system components such that Vi ⊆ H for all
0 ≤ i < k,

• state/connectivity interaction mode read/write/transfer.

Outputs:

• an identified set of encoded and coupled state/connectivity transition rules
Ti for each system component i ∈ H

• overlay level neighborhood graph F describing the flow of state/connectivity
information between system components.
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Algorithm IDENTIFY GNA():

For each component i {
Set rule set Ti to ∅;
Set component i s overlay level neighbor set Fi to {i};

}
For each component i {
If (mode = reader or mode = transfer)

Construct the sets Pt(i) by using Lt(j)
of other components in given sequence;

}
For each component i {
t =0;
While t < k do {

Switch(mode) {
case reader : Construct next rule u

by using Pt(i), Pt+1(i), Ct(j) and current Fi;
case writer : Construct next rule u

by using Lt(i), Lt+1(i), Ct(j) and current Fi;
case transfer : Construct next rule u

by using Pt(i), Lt+1(i), Ct(j) and current Fi;
}
If (u is consistent with all the rules in Ti {

If (u /∈ Ti) Set Ti = Ti ∪ {u };
t=t+1;

}
Else {

Set rule set Ti to ∅;
Find next overlay level nearest neighbor component n for i

by using ordered set H ;
Set Fi = Fi ∪ {n };
t =0;
Start over while loop;

}
}
Return all sets Ti and graph F ;

Note that the algorithm does not directly produce the 〈E, R, I〉 triplet de-
scribing temporal dynamics of GNA but instead transition rules that describe
component level local behavior together with overlay level neighborhood topol-
ogy are the outputs. In fact, the outputs describe nothing but an Automata
Network. Left-hand-sides of the identified AN transition rules describe the parts
to be extracted from GNA due to a single component subGNA and right-hand-
sides define the parts that replace the extracted left-hand-sides on the same
single component subGNA scale. Collective extraction and replacement effort of
the components results in sequence generation. The AN transition rules are suf-
ficient to generate given global system behavior because it can be explained by
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collective behavior of individual system components co-evolving through state
and connectivity based overlay level complex neighborhood interactions. De-
pending on the nature of the sequence, the identified AN may fit to instances
of cellular automata, random Boolean networks, graph grammar, pure network
growth models or any other hybrid GNA model. Finally, the identified rulespace
of AN model might be partially defined since the information provided by GNA
sequence is limited to some finite number of configurations.

4 Conclusions

Identification of the relation between local and global, subsystem and system
or simply the part and the whole is a known fundamental question. An algo-
rithm to identify the behavior of complex discrete dynamical systems from their
whole behavior description to the parts behavior identification is developed.
During identification of state/connectivity based transition rules of the systems
in concern, apriori system knowledge is treated as assumptions/restrictions. An
abstraction what we call overlay level nearest neighbor component interaction
is introduced. Different component behavior modes (namely reader, writer and
transfer) are defined to explain the whole systems behavior by simple local com-
ponent set behavior. Clearly, the more information (i.e. state/topology change
history) provided about the system the more rules can be identified.

Finally, we showed the existence of a GNA identification procedure for at
least systems with some defined assumptions and restrictions. In fact, auto-
mated identifiability of systems (up to some degree) of different scales ranging
from nonliving systems (e.g. communication networks), cellular/species level bi-
ological/ecological systems to human systems through devising computer pro-
cedures/algorithms is still questionable. This is because of known limitations
of computing based on formal description of algorithms built over the Church-
Turing thesis. The existence of alternative/unconventional hypercomputing ap-
proaches and their products may (hopefully/hopeholy but inshAllah) result in
contribution to peace and charity. However, it seems that the success is techni-
cally upper bounded by human-being himself/herself who is complicated enough
to be identified/understood. The proof is the existence of the authors of this pa-
per. As a consequence, any identification/decision made about it only based on
the letter sequences of this paper may not be sufficient for healthy model con-
struction, not only for an intelligent machinery, but also for an expert of the
domain. The proof, in this case, is the paper itself.
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Abstract. In this work we present the practical application of the Asynchronous 
Situated Coevolution (ASiCo) algorithm to a special type of vehicle routing 
problem, the heterogeneous fleet vehicle routing problem with time windows 
(HVRPTW). It consists in simultaneously determining the composition and the 
routing of a fleet of heterogeneous vehicles in order to serve a set of time-
constrained delivery demands. The ASiCo algorithm performs a situated 
coevolution process inspired on those typical of the Artificial Life field that has 
been improved with a strategy to guide the evolution towards a design objective. 
This strategy is based on the principled evaluation function selection for 
evolving coordinated multirobot systems developed by Agogino and Tumer. 
ASiCo has been designed to solve dynamic, distributed and combinatorial 
optimization problems in a completely decentralized way, resulting in an 
alternative approach to be applied to several engineering optimization domains 
where current algorithms perform unsatisfactorily. 

Keywords: Open-ended Evolution, Optimization, Vehicle Routing Problem. 

1   Motivation 

Typical engineering optimization problems belonging to the Operational Research 
field such as dynamic programming, assignment, scheduling, supply chain flow, 
network optimization or decision analysis, have been widely used, due to their 
complexity, as testbeds for new optimization techniques [1]. In fact, solving the real 
applications behind these problems is still a challenge, mostly due to the fact that the 
simplifications assumed in the computational models are usually substantial. 
Specifically, providing a practical solution for real time operation implies dealing 
with three main features: the huge number of interactions between the elements that 
make up the system, the locality of the available information and the dynamic 
properties of the environments. In this work, we study the application of a new 
evolutionary approach based on the algorithms used in Artificial Life simulations 
called ASiCo (Asynchronous Situated Coevolution) that includes these three features 
as a design requirement. 
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The idea of applying Artificial Life simulations in fields different from biology is 
not new [2]. In the particular case of engineering problems, these techniques have not 
been studied in depth but, nevertheless, relevant work centered on function 
optimization that has been applied to real problems may be found. Examples of this 
have been reported by Satoh [3] or Yang [4] among others. These authors propose an 
emergent colonization algorithm for the optimization of non-convex functions. The 
algorithm was later applied in [5] to design tasks. Another example that hybridizes 
different approaches is the one found in [6] where the authors propose an algorithm 
that combines an Artificial Life simulation with a Tabu search algorithm for the 
optimal design of an engine mount. 

Within a different field, that of autonomous robotics, we must mention the work by 
Watson et al. on Embodied Evolution [7]. Basically, the authors seek a robot population 
that evolves in a completely autonomous manner, without external intervention to 
obtain a single controller that makes the robots fulfill their objectives. Recently, we 
have expanded this idea in order to consider the possibility of obtaining robot 
populations that cooperate towards an objective. In fact, this was the origin of the 
ASiCo algorithm as proposed by our group [8][9] and used in collaboration with 
Schut et al. [10] for the operation of a set of robots performing a surveillance task. 
The results show the appropriateness of the approach for real time operation over a 
fixed number of robots or agents.  

Here we go one step further and evaluate the possibility of obtaining differentiated 
controllers (different species) for a heterogeneous population of agents. In fact, the 
objective is to test this strategy in a problem that would require dimensioning the 
agent set, selecting the appropriate features for each agent (size, capabilities), and 
constructing the individual agent controllers simultaneously. For formal reasons we 
have decided to do this on a well described and established problem within 
operational research, that is, the heterogeneous fleet vehicle routing problem with 
time windows (HVRPTW).  

2   Asynchronous Situated Coevolution 

The ASiCo algorithm is inspired on Artificial Life simulations in terms of the use of 
decentralized and asynchronous open-ended evolution. Unlike other bio-inspired 
approaches such as genetic algorithms in which selection and evaluation of the 
individuals is carried out in a centralized manner at regular processing intervals based 
on an objective function, this type of evolution is situated. This means that all of the 
interactions among individuals of the population are local and depend on spatial and 
temporal coincidence of the individuals, implying an intrinsic decentralization. 
Consequently, reproduction, creation of new individuals or their elimination is driven 
by events that may occur in the environment in a decentralized way. 

This type of evolution has usually been employed for analysis purposes, this is, to 
study how a system evolves in an open-ended manner, and not really with an 
engineering objective in mind, and thus, there is no clear procedure to relate the 
global objective to be achieved with the local objectives of the agents that participate 
in the process. To this end, we take inspiration from the studies of utility functions 
and their distribution among individuals in order to structure the energy dynamics of 
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the environment to guide evolution to the objectives sought. Specifically, we have 
used the principled evaluation function selection procedure for evolving coordinated 
multirobot systems developed by Agogino and Tumer [11], which establishes a 
formal procedure to obtain the individual utility function from the global function. 
With this procedure, ASiCo open-ended evolution becomes an evolutionary 
optimization algorithm that provides a distributed solution by means of the whole 
population and not only by the best individual as in typical evolutionary algorithms. 

 

Fig. 1. Schematic representation of ASiCo structure 

Fig. 1 displays a schematic representation of the algorithm’s structure divided into 
two different parts, and the relations between these procedures and the processes 
carried out during evolution. On one hand (right block) we have the procedures that 
guide the evolution towards an objective. Individual encoding defines the solutions 
that can be generated, the objective function is established using the utility functions 
commented above, and, finally bipolar crossover, explained in detail below, allows 
for the evolution of a heterogeneous population. On the other hand (left block) we 
have the evolution engine, which is based on the interactions among elements in the 
environment. After the creation of a random population, the execution of the 
interaction events occurs in a continuous loop modifying the state of the elements. In 
some conditions and based on energetic criteria for spatiotemporally coinciding 
individuals, the procedures that represent the evolution of the population (selection, 
evaluation and elimination) occur. The energy/utility association represents the 
energetic rules in the environment and affects these three procedures. Finally, the 
objective function defines the energetic criteria, the selection and the elimination.  

Thus, ASiCo is an interaction driven algorithm. Interactions are a set of rules that 
make the state of the elements and individuals in the environment change in time due 
to particular events. This process is independent from the evolution of the population. 
Two elements are very relevant within ASiCo. On one hand we have the flow of 
energy, which represents the different rules that regulate energy variations and 
transmissions between the individuals and the environment and vice versa. On the 
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other, reproductive selection is the set of rules that regulates the reproduction process. 
This selection process must be defined for each problem and is based on spatial 
interactions together with some energetic criteria. Specifically, it is usually performed 
by means of a tournament operator, which, in a typical evolutionary algorithm, 
randomly selects a number of individuals from the population for the reproduction. 
This centralized behavior is not possible here, so the tournament has been modified to 
be asynchronous and decentralized and, consequently, based on local interactions 
between the individuals. 

The reproduction process uses a bipolar crossover operator that we have developed 
to preserve heterogeneous populations in the evolution process. To achieve it, when 
two parent individuals are selected to create an offspring, one of them is randomly 
labeled as the base individual, and the resulting offspring will be a variation of this 
base individual. The crossover is performed gene by gene applying a Gaussian 
function that is centered on the genes of the base individual and with a deviation 
function that depends on the difference between the parents’ genes. The idea is that, 
in the case of having two very different parent individuals (that could be considered 
as belonging to different species), this operator tends to create an offspring that is 
more similar to one of them, with a very small probability of being a mixture as this 
would eventually lead to a homogeneous population. 

3   The Shipping Freight Problem 

In order to evaluate ASiCo´s capability of generating heterogeneous variable sized 
populations in real time, we have solved a heterogeneous fleet vehicle routing 
problem with time windows (HVRPTW), as a testbed for real applications. It consists 
in simultaneously determining the composition and the routing controllers for a fleet 
of heterogeneous vehicles in order to serve a given set of customers with probabilistic 
delivery demands that have time constraints. 

Several algorithms may be found that were designed specifically to solve HVRPTW. 
The most successful results have been achieved using classical heuristic methods 
adapted to the problem such as [12], or metaheuristics [13][14]. In this work, we apply a 
more general algorithm, which has not been designed for this particular problem. In 
addition, as we will explain later, ASiCo allows to simultaneously obtain the fleet 
composition and the optimal routing with a continuous range of possible vehicles, that 
is, we do not have to use fixed sets of vehicles to make up the fleet. Finally, ASiCo may 
be used in real time and adapts to changing circumstances in the environment or agents. 

3.1   Experimental Setup 

The particular HVRPTW we have studied is a shipping freight problem, that is, the 
fleet will be made up of cargo ships that must supply the demands that appear in some 
points (representing naval ports). For the sake of realism, two more elements have 
been added: supply points, where the cargo must be delivered, and maintenance 
points, that the ships must visit periodically. These 4 elements make up the simulation 
environment and they are represented in Fig. 2 where a screenshot of this application 
example in the ASiCo simulator [8] is shown. 
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Fig. 2. Screenshot of the shipping simulation environment. Demand points are represented by 
small circles, supply points by squares and maintenance points by large circles. The remaining 
elements are ships of different size. 

The objective of the ASiCO algorithm is to obtain a fleet that minimizes the 
unsatisfied demand level. Specifically, it must provide the composition of the fleet 
(number and size of ships) and the control system for each ship to reach this 
objective. To achieve it, the population of the algorithm is made up of individuals 
representing the ships that have the following 5 sensors: 

1. Reward: provides the estimated level of resources the ship will have after 
performing a delivery. 

2. Minimal resources: provides the minimum level of resources that is reached 
during the itinerary of a given route. 

3. Distance: to the destination along a given route. 
4. Autonomy: provides the autonomy the ship would have in the nearest 

maintenance point after the delivery following a given route. 
5. Load: provides the load the ship would have after the delivery. 

The action the ships can execute is simply the selection of the route they will follow 
to a demand point, either directly, through a supply point, through a maintenance 
point or through both, a supply and a maintenance point. 

The control system of the ships acts as an evaluator that must select the route the 
ship must follow using information from the sensor values. This selection is performed 
through a function that provides an evaluation parameter (E), which depends on the 
load (CL), autonomy (CA) and resources (CR) coefficients that represent the relevance 
of these input values in the selection of the route. In addition, E depends on the reward 
rate (Rrw) of a given route, obtained from the estimated time to reach a demand point, 
the resources consumed and the estimated reward. Thus, the valuation of each possible 
route can be obtained using: 

E = RrwCLCACr  
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Consequently, the genotype of each individual is made up of the following parameters: 
the capacity (Q) that indicates the maximum load a ship can transport, the autonomy 
(A) that indicates the time between maintenance operations, the velocity (V) and the 3 
coefficients CL, CA and CR.  

The energy input in this environment occurs at the supply points. Every time a ship 
performs a delivery, it receives a reward value associated to the merchandise deposited 
there. Energy output takes place through resource consumption that occurs during each 
ship’s life represented by two economic factors, the fuel consumption and the 
maintenance costs. The depreciation of the ship´s value has also been included in the 
consumption rate. It depends on the velocity, the autonomy and the fuel consumption 
according to [15]. Consequently we take as the global utility the sum of the private 
utilities of all the ships in terms of their energy, or in economic terms, their available 
budget. 

Finally, the selection process in this problem is highly decentralized and 
asynchronous because the ships do not coincide spatially. Consequently, we have 
developed the following selection procedure: when a ship reaches a supply point with 
an energy level over a given threshold, it leaves a copy of its genotype. When the 
number of deposited genotypes is higher than a previously established tournament size, 
the bipolar crossover occurs using the two best individuals according to their 
individual utility. 

3.2   Results 

Using this setup we have created a simulation environment where a set of 20 demand 
points, located relatively near one supply and one maintenance points, were 
considered. Starting from an initial population of 50 ships, Fig. 3 (left) shows the 
changes in the fleet under these conditions. Here we have represented fleet size, fleet 
resources, fleet consumption and the whole demand level as time passes. It can be 
seen that, once fleet size becomes stable at around 40 homogeneous ships (4000 
simulation steps), the demand level starts to decrease reaching a very low level. Fig. 3 
(right) shows the variation in time of the average resource level and the average 
consumption level for the fleet. It tends to use homogeneous ships with a smaller 
consumption level and with a more adjusted profit margin, as expected. 

 

Fig. 3. Evolution results for the shipping freight problem 
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Due to the distribution of demand and supply points in this first experiment, we did 
not obtain a heterogeneous fleet as the optimal solution. To achieve it, we have created 
a second experiment with 17 demand points placed near one supply and one 
maintenance point (distance of less than 40 spatial units) and 6 demand points that are 
placed far from the supply and maintenance points (more than 500 spatial units). Fig. 4 
(top) shows the results obtained after 9950 simulation steps, when the population is 
stable. The three graphs represent the relations between the three parameters that 
define the fleet composition: capacity, velocity and number of ships. As shown in the 
graphs, ASiCo produces a fleet made up of 22 ships, 12 with low capacity and 
velocity and 10 of higher capacities and velocities, constituting a self-organized 
heterogeneous solution. This distribution is consequent with that of the demand and 
supply points, because we obtain a fleet of 12 slow and small ships to cover the short 
haul routes and 10 faster and larger ships to deliver in long haul routes. 

Finally, in Fig. 4 (bottom) we show the parameters that define the fleet at step 
21400 if we simulate a variation in the fuel costs in simulation step 10000. As 
displayed in the figure, the fleet changes, as expected: it is made up of 13 ships, all of 
them are slow (right graph) and 11 of them have a low capacity (center graph). 
Obviously, they do cover the demand and the fleet is profitable despite the fuel price 
increase. With this result we show the ability of ASiCO to adapt the solutions to 
dynamic environments. 

 

Fig. 4. Distribution of ships in the fleet in simulation step 9950 (top) and 21400 (bottom) after a 
variation in the fuel cost in step 10000 

4   Conclusions 

A heterogeneous fleet vehicle routing problems with time windows (HFVRPTW) is 
solved using the Asynchronous Situated Coevolution (ASiCo) algorithm. This problem 
is a very relevant testbed in the operational research field due to its broad range  
of practical applications. In this work, we show how an open-ended evolutionary 
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simulation improved with a procedure to guide evolution towards a design objective 
provides successful results to this problem. The solution obtained is a self-organized 
fleet of heterogeneous ships that distribute their features adapted to the spatial 
distribution of the demand and supply points according to market requirements and 
restricted to time windows. 
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Abstract. A fundamental issue of evolution of life is the emergence and 
maintenance of self-referential autocatalytic systems (e.g. living cells). In this 
paper the problem is analyzed from a computational perspective. It is proposed 
that such systems have to be infinite autocatalytic systems, which can be 
considered equivalent to Turing machines. The implication of this is that 
searching for finite autocatalytic systems is likely to not be successful, and any 
such finite system would be maintainable only in a highly stable environment. 
The infiniteness of autocatalytic systems also implies that top-down search for 
the simplest living system is likely to stop at relatively complex cells that are 
still able to provide a realization of infinite autocatalytic systems. 

Keywords: autocatalysis, computation, formal model, self-reference, infinite 
model. 

1   Introduction 

The questions of what makes living systems alive and how to create live systems are 
among the fundamental questions of biology [1-10]. A common feature of several 
theories of living systems is the requirement of self-referencing in the system [7-9], i.e. 
what happens in the system depends on what happened within the system before and 
the system somehow re-creates itself through such self-referential processes. What 
makes the self-referential recreation of the system problematic is that the references 
need to go back infinitely and the recreated system needs to be equivalent of the 
current one, without shrinking or explosive growth [7]. In terms of foundations of life 
these theories led to the postulation of autocatalytic chemical interaction systems that 
are assumed to provide the ground level building blocks for living systems [9]. 

Experimental work aimed to support theories about elementary forms of life showed 
that a wide range of organic molecules (e.g. amino acids, nucleobases) can be created 
in the conditions that may have existed on the early Earth [4,5]. Other related research 
aims to identify the last universal common ancestor (LUCA) organism by analyzing 
genetic data and experimenting with primitive organisms [10]. Another related line of 
research aims to produce the most reduced life by simplifying experimentally the 
genome of organisms that have already a small genome [11]. A further approach is to 
build simple autocatalytic or self-reproducing biochemical systems that are validated 
experimentally [12]. 
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Here I present a computational interpretation of self-referentially reproducing living 
systems (in particular of simple life forms). This interpretation implies the equivalence 
of such systems with universal computers (Turing machines). A further implication of 
this interpretation and analysis is that autocatalytic systems of molecular interactions 
have to be infinite systems. 

The rest of the paper is organized as follows. First I discuss briefly autocatalytic 
systems. This is followed by a computational interpretation of simple living systems. 
Then I discuss about the infiniteness of autocatalytic systems. Finally the paper ends 
with the conclusion section. 

2   Autocatalytic Systems 

Various self-regenerating self-referential systems have been proposed as models and 
descriptions of living systems in the second half of the last century [7-9]. While such 
systems capture conceptually fundamental features of living systems, most of these 
proposals remain obscure and difficult to understand due to the lack of their 
appropriate formalization and difficulty of their predictive application. For example, 
the theory of autopoietic systems of Varela and Maturana [7] provides an attractive 
interpretation of how living systems work, but lacks the formal analytic representation 
that would make it practically applicable in the context of experiments. 

An alternative theory of living systems was developed by Rosen [8] around the 
same time, following the work of Rashevsky [13]. This theory of M-R systems 
postulates the composition of living systems by a metabolic (M) and a repair (or 
reproductive) (R) component and provides a formal framework in terms of category 
theory. While this approach is very exciting theoretically, it did not find yet its way to 
the interests of experimentalists. 

Another more experimentally rooted approach was proposed by Ganti [9]. This 
approach focuses on chemical automata (chemoton) which perform self-reproducing 
interactions between molecules in a similar manner as reproducing patterns are 
generated in cellular automata. In this context cellular automata [14] can be also seen 
as models of self-reproducing autocatalytic systems. The chemoton theory builds on 
known chemical catalytic reactions and expands these in principle to describe 
molecular interaction systems that can maintain and reproduce themselves. However, 
so far there is no clear experimental proof of such chemoton systems except living 
systems, in which the interactions are known only partially. 

Researchers starting from the experimental end first showed that key organic 
molecules can be generated in abiotic conditions [4,5]. These molecules self-organize 
in some way to lead to living systems. The way how this happens is not yet known. 
The discovery of catalytic activity of RNA molecules [4,12] led to the formulation of 
the RNA world hypothesis, according to which interacting RNA molecules may 
constitute autocatalytic systems that are living systems. Recently it has been shown 
that small sets of RNA molecules can act alternately as catalysts, reaction components 
and products such that their system is reproduced if the right prime materials 
(molecules) and physical and chemical conditions are provided [12]. However, yet 
there is no sufficient explanation how proteins, RNA and DNA molecules are created 
and kept together in self-reproducing chemical interaction systems that are alive. 
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3   Computational Interpretation 

In some sense, a computational interpretation of living systems is present in the M-R 
systems theory of Rosen [8] and in the chemoton theory of Ganti [9]. Recent works on 
DNA computing also point in this direction [15]. Here I present an alternative way of 
looking at autocatalytic self-referential systems through a computational interpretation. 

First, let us consider a living system of interacting molecules that maintains and 
reproduces itself in the context of its environment formed of other molecules and 
molecular interactions. The living system is an open system, which receives molecules 
from the environment and releases molecules into the environment. The system can 
maintain itself by reproducing its molecules and molecular interactions in the right 
spatio-temporal patterns that correspond for example to the functional maintenance of 
the cell membrane and of the various cellular organelles. This means that the system is 
ready to produce the right molecular interactions to incorporate new required molecules 
(e.g. pinocytosis) and to release molecules that are not required any longer (e.g. 
lysosomal defecation). Being ready for such molecular interactions means that the 
system is able to ‘predict’ in a sense what these interactions need to be (e.g. by 
displaying the right receptor and anchor molecules on the cell membrane, and having 
ready sufficient amount of ATP to energize the molecular import). This kind of 
prediction of what the system ‘expects’ can be also considered as a computational 
process performed by the system. Note that the predictive ability of the system works 
well in a range of appropriate environments. If a bacterium is put in an environment 
with antibiotics present, the molecular interactions in the bacterium do not fit well any 
longer the environment and the bacterium dies. However, if the bacterium has resistance 
against the antibiotic, this can be interpreted in the sense that it can adapt its prediction 
machinery to generate the right molecular interactions which lead to the decomposition 
or expulsion from the cell of the antibiotic molecules. 

In self-referential autocatalytic systems, such as living cells, the interactions between 
molecules can be considered as computational operations on the data represented by 
molecules. Being autocatalytic it means that the current molecular interactions in the 
system make possible the realization of further molecular interactions within the system. 
This means that the computational process calculates a representation of the system 
itself as well, beside of calculating an approximation (or prediction) of the environment. 
In other words, the approximation of the environment leads to the regeneration of the 
system itself. Being self-referential it means that the computations depend (reference) 
on the available data (molecules), on past computational operations (patterns of 
molecular interactions), and on the earlier data as well. To achieve this, the system 
needs some way of providing the information about its past ready for referencing.  

The requirement of providing reference to past interactions and molecules can be 
satisfied if all patterns of molecular interactions (reference-able computations) can be 
represented by molecules (e.g. molecules that formed through these interactions), and if 
all patterns of molecules (reference-able data) can be represented by ongoing molecular 
interactions (e.g. interactions which can happen only if the referenced pattern of 
molecules was present earlier). This circular referencing may appear irresolvable; 
however there is a mathematical formalism that can provide a solution, which is the 
theory of recursive domain equations [16].  
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Let us assume that R is a domain (e.g. a set, or possibly a mathematical object that 
is larger than any set, for example the collection of all sets – i.e. the category Set), 
which contains objects. There are transformations of the domain R into itself; these 
can be considered as functions f:R R. The collection of all these transformations is 
denoted as [R R]. The recursive domain equation is stated as 

R ≅ A+[R R] (1)

where A is a part of R (a sub-domain), which may be empty. In other words, each 
object of the domain R is either an unrepresented object (part of A) or it is represented 
by a transformation f:R R, and each transformation f:R R is represented by an 
object of R. To build up the analogy with the autocatalytic self-referential molecular 
interaction systems, let us consider each molecule type and also types of combinations 
of such molecules (e.g. proteins and protein complexes composed of multiple subunits 
constituting independent molecules) as an object and the transformations of the cell 
that result from patterns of molecular interactions the analogues of transformations of 
the domain, which is the collection of all considered molecule and molecule 
combination types. It is possible that there are molecules which have no 
transformation representation (e.g. inorganic ions that flow into the cell from the 
environment), but all transformations have some representation in terms of molecules 
or patterns of molecules, and all molecules involved in the self-reproduction have a 
representation in form of some transformation representing molecular interactions. If 
there is a solution of the recursive domain equation (1) then that solution may be used 
as a model of autocatalytic self-referential molecular interaction systems that are 
living cells.  

Equation (1) has solutions, for example the category of partial orders satisfies this 
equation (collection of all partial orders defined on sets, together with all functions 
that transform one partial order into another partial order). In general there are many 
categories, which satisfy this equation. These categories are the so called Cartesian-
closed categories, which are defined by following features: (a) they have a Cartesian 
product object for each finite set of objects and (b) for any ordered pair of objects 
they have an object representing the set of morphisms between the first and the 
second object (for more information about categories and category theory the reader 
should consult relevant textbooks – e.g. [17]). This means that Cartesian-closed 
categories can be considered as models of self-referential autocatalytic systems. In 
fact considering the above identified requirements of self-referential autocatalysis any 
model of these systems has to be a such category. 

Notably, Cartesian-closed categories are also models of λ-calculus, which are a 
representation of Turing machines [18]. Turing machines are universal computational 
machines that are able to represent any computational algorithm and consequently can 
compute anything that is computable. This means that if self-referential autocatalytic 
molecular interaction systems (i.e. living cells) are representable as Cartesian-closed 
categories then they can also be seen as representations of Turing machines that can 
compute anything computable in principle. 

This implies that indeed the molecular interactions that happen in a living cell can 
be seen as a representation of computational processes. I argued earlier that these 
computations may be considered as computations leading to an approximation (or 
prediction) of the environment. In principle the Turing machine equivalence suggests 
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that these computations may compute everything computable, and consequently 
living cells may approximate their environment arbitrarily correctly. However, the 
high precision approximation computations may need very much time and space, and 
time and space limits may limit the attainable precision of the environment 
approximation. So, in practice the living system is able to achieve only limited 
precision approximation of its environment, which implies that there are 
environments in which these system cannot survive (since they cannot approximate it 
or predict it sufficiently correctly) – e.g. consider the earlier example of antibiotics in 
the environment of non-resistant bacteria. 

4   Infinite Autocatalytic Systems 

The previously discussed computational interpretation of self-referential autocatalytic 
systems shows that such living systems of molecular interactions (cells) can be 
represented as Cartesian-closed categories, and cannot be represented by smaller 
formal representations. These categories include infinitely many objects, such that the 
level of this infinity is the same as the level of infinity in the case of the collection of 
all sets (i.e. more infinite than any infinite set). The morphisms between any ordered 
pair of objects always form a set, i.e. their number may be infinite, but not more 
infinite than the most infinite set (note that sets can be countable infinite – i.e. same as 
the infinity of natural numbers, and continuously infinite – i.e. the same as the infinity 
of real numbers). This implies that molecular interaction systems that compose living 
cells have to be infinite systems in principle. 

Infinite autocatalytic systems have to have infinitely many molecules and molecular 
configurations corresponding to the infinitely many objects of the representing 
Cartesian-closed categories. The infinity of molecules and molecular configurations 
has to be comparable to the infinity of collection of all sets (i.e. more than the infinity 
of real numbers). This may seem to be contradictory with the evidence of observed 
molecules in living cells. However, considering the range of macromolecules (e.g. 
proteins, RNA, DNA), their complexes and polymers, and also the polymers of simpler 
organic molecules (these polymers may approximate infinitely long molecules in 
principle), it becomes more plausible the assumption that there are very infinitely many 
molecules, complexes and molecular configurations that may represent the infinitely 
many objects of Cartesian-closed categories. The morphisms between objects of a 
corresponding Cartesian-closed category can be represented as interactions between 
molecules or spatio-temporal patterns of such interactions. 

Note that the DNA in itself can be seen as a computational machine equivalent of 
Turing machines [15]. This means that in principle (assuming that the DNA’s length 
approximates countable infinity) it can represent any computational processes and the 
computational system represented by it is the equivalent of λ-calculus. Consequently 
the system of computations that can be represented by the DNA can represent a 
corresponding Cartesian-closed category. So, what the DNA can encode in principle 
is equivalent to a system with very infinitely many objects and sets of morphisms 
between these objects. This means that the molecular interaction system encoded by 
the DNA, i.e. involving proteins, RNA, their complexes and spatio-temporal patterns, 
is a representation of an infinite Cartesian-closed category. This confirms that the 
above conclusion that living cells form infinite autocatalytic systems is valid. 
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Still there is an issue about how to accommodate the observational fact of finite sets 
of types and instances of molecules in cells with the assumption of infinite 
autocatalytic systems considered to be represented by these cells. To resolve this issue, 
let us start by considering that cells are open systems. This means that molecules flow 
into and out of the cell. Many of these molecules are essential components of proteins 
or prime material for molecular components of other macromolecules. In this sense the 
molecular interaction system of the cell extends out of the physical boundaries of the 
cell, by involving other molecule types that are not produced in the cell. Next, let us 
consider the cell together with its ancestor and descendant cells. The system of the cell 
is open in this temporal sense as well, since molecular interactions in the cell depend 
on molecules and molecular interactions that composed its ancestor cells and determine 
the molecular composition and molecular interaction of its descendant cells. While the 
cell contains a finite set of molecules at any time, considering the molecular interaction 
system spanning through ancestor and descendant cells as well, the molecules and their 
interactions constitute an approximation of an infinite fragment of the autocatalytic 
system represented by the cell.  

Different cells represent different fragments of the full system. They are adapted to 
their molecular environment in the sense that the computations represented by them 
assume the presence of this molecular environment, which may include required 
organic and inorganic molecules for the proper functioning of the cell, which are not 
produced by the cell. This means that it is sufficient for these cells to represent the 
appropriate fragment of the full autocatalytic system that can deal with the 
approximation / prediction of the characteristic environment of the cell. Since the part 
of the environment that is not given is at least comparably complex as cells themselves 
(e.g. many other cells contribute to it), the fragment of the autocatalytic system 
represented by the cell has to be infinite itself to make able the cell to compute good 
approximations / predictions of this environment. 

An implication of the infiniteness of the autocatalytic system is that searching for 
finite autocatalytic systems is likely to be fruitless. Finite variants of autocatalytic 
systems can be considered at best as finite fragments of an autocatalytic system that 
can maintain itself in the context of a stable specific environment providing inputs to 
and taking away outputs from the self-reproducing molecular interaction system (see 
for example [12]) – significant variation of the environment cannot be dealt with by 
the finite autocatalytic system, since this is unable to perform the full range of 
required computations. The computational requirements imposed by a partially given 
environment mean that any molecular realization of a fragment of an autocatalytic 
system that can reproduce in this partially given environment should be able to 
represent an infinite fragment of the autocatalytic system. This means that the bottom-
up search for autocatalytic systems by combining molecules and their interactions is 
unlikely to be successful unless the resulting molecular interaction system can be 
considered a representation of an infinite autocatalytic system. On the other side, it 
also means that top-down search for minimal self-reproducing autocatalytic systems 
is likely to stop at the level of relatively complex cellular systems that can still realize 
such infinite autocatalytic systems. 
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5   Conclusions 

A formal computational interpretation of living systems (live cells) is presented in this 
paper. This interpretation leads to the conclusion that self-referential autocatalytic 
systems have to be infinite systems that have an equivalent representation in form of a 
Cartesian-closed category. It is argued that such autocatalytic systems are equivalent 
to Turing machines as well, and in principle can compute anything computable. 

The realizations of such systems are live cells that have temporal and spatial 
constraints which imply that their computational ability in practice is limited and they 
can predict (or approximate) their environment to some extent that allows their 
survival and reproduction. However this ability depends on the assumptions of the 
system about its environment. If these assumptions are violated in a critical way that 
may imply the drop in the predictive ability of the system in the context of the 
modified environment and may lead to the termination of the system (e.g. bacteria in 
presence of antibiotics). 

An important implication of this conclusion about autocatalytic systems is that 
searching for their finite variants is likely to be fruitless, and in the best case finite 
variants of them will depend on very stable environmental condition. It also implies 
that top-down search for the simplest live organism is also likely to stop at relatively 
complex organisms that can still represent an infinite fragment of the infinite 
autocatalytic system. 
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Abstract. Life as an N-P problem is a philosophical, scientific and engineering 
concern. N-P problems can be understood and worked out via artificial life. 
However, these problems demand a new understanding of engineering, since 
engineering is basically a way of acting upon the world. Such a new 
engineering is known as non-conventional engineering or also as complex 
systems engineering. Bio-inspired systems are more flexible and allow a higher 
number of degrees of freedom. As a consequence, AL enlarges our 
understanding of living systems in general and can be taken as a step forwards 
in grasping the complexity of life.  
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1   Life Is an N-P Problem 

Generally speaking, life is an N-P problem. However, a feasible way for dealing with 
N-P problems and trying to solve them is via thinking, experimenting and working on 
and with AL. The workings and research on and with artificial life (AL) cover three 
main action domains, namely philosophy, science, and engineering. The first two deal 
with understanding and explaining phenomena, systems and dynamics exhibiting life –
natural or artificial– whereas the third is mainly centered around building, optimizing, 
predicting and/or controlling engineering-like systems that behave as living beings, or 
having living features or characteristics. Two outcomes can be derived hereafter [1]: 
firstly, models and simulations for studying life (scientific orientation); secondly, 
artificial systems bearing biological properties and capabilities applicable to solving 
problems (engineering orientation). 

In both cases, though, the role of computing is crucial in order to literally be able to 
see non-linearity in phenomena characterized by emergence, self-organization, growing, 
adaptation, evolution, and increasing complexity –in one word: life! However, we 
claim, many if not all examples of AL and its applications in other disciplines and 
sciences are systems imposing tremendous computational challenges –they are N-P 
systems. 
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2   Engineering Life and AL 

Unlike the techniques used in artificial intelligence, AL does not work uniquely on 
the existing computational paradigm (based on Von Neumann architecture). Rather, it 
creates in many cases new paradigms inspired by the forms of processing, 
architecture and dynamics of biological, social and evolutionary systems such as 
evolutionary computation (among others, J. Holland, J. Koza), swarm intelligence  
(E. Bonabeau, M. Dorigo, G. Theraulaz), membrane computing (Gh. Paun), DNA 
computing (L. Adleman), artificial immune systems or immunological computation 
(D. Dasgupta) and cellular computing (M. Sipper). These new computational 
paradigms belong to the so-called non-conventional computing and cross other 
paradigms from other areas and contexts such as physics and logics; such is 
notoriously the case of quantum computation (P. Benioff, S. Lloyd), fuzzy systems or 
also hipercomputation (foreseen somehow by A. Turing circa 1938 when working on 
the idea of non-computable tasks; in other words, tasks that are not carried out by a 
conventional Turing machine [2]). 

The most generic example of the new computational paradigms arisen within the 
frame of AL has been pointed out by M. Sipper [3], related to cellular computing 
(CC). Here, most of the features and claims of AL, even philosophical ones, are 
gathered. The core of CC turns around principles such as simplicity, vast parallelism 
and locality: 

• Simplicity: unlike current complex units, the processing unit in CC, called cell, can 
carry out very simple tasks.  

• Vast parallelism: This principle is based on the interaction of large number of cells 
(around 10x) that interact in order to carry out complex tasks at a high level that 
one single cell could not achieve (emergence). This is evidently a proposal quite 
different to those that we normally find within the frame of parallel computing and 
massive parallelism. 

• Locality: The connectivity patterns –interaction- among cells are entirely local, and 
no single cell is able to see the whole system. In other words, it has to do with the 
absence of local control or with the implementation of distributed and local control 
techniques. 

These three principles are strongly connected with each other and are necessary to 
create a CC; otherwise, if one of them is modified we converge to another type of 
computational paradigm (Fig. 1). Nonetheless, within every principle there are diverse 
degrees that are eligible according to the context of the problem one wishes to attack. 
The kind of cells (discrete or continuous), the scheme of connectivity (regular or 
irregular grid) and the dynamics in time (synchrony/asynchrony, discrete/continuous) 
are some of the configurable variables in CC [3].  

However, the really important feature of CC and hitherto of the remaining 
computational paradigms of AL consists in that within the possible applications, 
among others, are the complete N-P problems, opening thus a wide horizon for the 
study of complex systems.  
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Fig. 1. Computing Cube. Adapted from Sipper [3] 

3   About Non-conventional Engineering 

Now, the majority of paradigms in non-conventional computation are inspired by 
natural systems –whether biological or not, and they are gathered under the generic 
name of natural computing. Here, as f. i. does Nunes de Castro [4] swarm intelligence 
or evolutionary computation are categorized as independent and parallel to artificial 
life; beyond such recognition, that can be debatable, what is really important consists 
in its underlying goals [4], namely i) to develop computation inspired on nature in 
order to solve complex problems; ii) to construct tools to synthesize behaviors, 
patterns, forms, and natural systems; and iii) to use natural materials in order to carry 
out computational tasks. 

These underlying goals set out clearly that paradigms such as cellular computing or 
any other in AL or from natural computation in general are not applicable as such to 
any kind of problems set out by science, engineering and computation, for in many 
cases the conventional techniques and models are better suited and work better. In 
contrast, we only use those models and techniques that entail a large number of 
variables, non-linearity, multiple goals, N-P time, a space of solutions or, what is 
equivalent, more than one potential solution – whereas standard techniques provide a 
unique or singular solution. 

M. Bedau et al. [5] and [6], have worked on the structuring of AL around fourteen 
open problems. Being as they are all in all relevant, these problems could make more 
sense if they were set as P or N-P problems. In any case, even if for the sake of 
agreement we can say that those are N-P problems it remains to be set whether any 
open problem is an N-P problem. 
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Here, we claim that AL is a most viable way to deal with “real” N-P problems of 
real life; hence its utility and significance. 

In engineering in general, we have come to talk about non-conventional engineering 
or complex systems engineering [7] or also about a “new engineering” – three different 
ways referring to one and the same idea. Non-conventional engineering is rooted in the 
theory of non-linear dynamic systems, namely the sciences of complexity1, and 
thereafter on the bio-inspired systems of AL. We strongly believe that AL can and 
must play a crucial role in the structuring of the frame of this new engineering, not 
only from the technical and engineering-like scope, but also from a philosophical, 
scientific, heuristic and methodological standpoint [9]. 

Such a new way of thinking on, and doing, engineering has made possible firstly 
moving away from the basic principles of classical engineering – namely centralized 
control, preprogramming, the search for a unique solution: optimality – towards more 
flexible and robust principles such as distributed and local control, emergent or 
bottom-up programming, a space of solutions, and secondly it has set out previously 
unforeseen research lines in order to implement features and characteristics of  
living systems, such as autonomy, adaptation, evolution, self-organization, self-
synchronization, immunological response and metabolizing, among others. 

4   P Problems and N-P Problems within the Frame of AL 

A problem to which any problem in P can be reduced is called P-hard; if it also 
belongs to P, is called P-complete. Thus, to show that a problem is P-hard, it is 
enough to reduce a P-complete problem to it. Similarly, a system is universal if it may 
simulate a universal Turing machine. If so, then the problem arises about the 
decidability or undecidability of the system, i.e. whether we can safely say whether 
the program stops or not and when, and also whether the program can be compressed. 
A system is P-hard, when it admits a P-hard problem. 

Any P problem, whether P-hard or P-complete, assesses and presupposes at the 
same time a polynomial time. Polynomial time is critical to living organisms as 
circadian cycles, or also at the scale of developmental biology. The critical case is the 
study of apoptosis and, hence, the biological clock [10]. ALife systems however not 
always “die”. They just vanish in simulated programs. What is it for an AL system to 
die? It is conspicuous to notice that artificial organisms may die, as they do indeed, 
but the program does not! Inversely, an AL-organism is born as the program creates 
it, but the very process of giving birth and developing on the evolution of an AL 
system is the very success of the program! The program can be different as it 
happens: artificial chemistry, swarm intelligence, and the like. 

This idea could lead us back to the belief of a “programmer of the universe”, a dream 
that has already been dreamt. The reply to the belief can be positive if we think of 
conventional engineering, but it can be negative if we take into consideration non-
conventional engineering, i. e., artificial chemistry, and the very possibility of programs 
that create other programs [11] and [12]. 
                                                           
1 For example, the thermodynamics of non-equilibrium, the theory (or science) of chaos, 

fractals, the theory of bifurcations, self-organized criticality, and the science of complex 
networks. See Maldonado [8]. 
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What can be thought of as a kind of biological clock within AL-systems, is simply 
a matter of programming. The question arises: can we really talk about N-P problems 
in the frame of AL? So far the answer clearly seems to be: no. If so, then AL is at 
most a P-complete problem; no more, no less. 

The implications of such an acknowledgement are twofold: on the one hand, AL is 
susceptible only of P-treatments; hence, N-P problems are a patrimony of carbon-
based life, not to talk about human systems. On the other hand, we could figure out as 
a question of possibilities N-P problems for AL. If so, the best chance comes from 
engineering AL in that direction. 

As a consequence, three big axes are useful as references when working with or 
studying AL, namely the philosophical significance, the scientific endeavor and the 
engineering featuring of AL. As for the N-P problems, we want to asses that 
engineering AL is most useful to deal, understand and try to solve them. Nonetheless 
the road remains open and not fully experienced or crossed. Just some steps, although 
steady, have been done so far. 

The crux of the studies on life, whether natural or artificial, is about the meaning of 
life. To be sure, any scientific answer to this question crosses necessarily throughout 
the fields of N-P problems. Living systems live by solving P problems, but when 
solving these kind of problems, they happen to encounter N-P; for instance, problems 
of optimization. Hence, the most basic form of appearance of N-P problems is via 
problems of optimization, but N-P problems do not, alas, reduce to questions 
concerning optimization. 

Therefore, it can be useful to introduce a sort of phenomenology of N-P problems. 
Simulation via swarm intelligence or artificial chemistry allows us to truly “see” N-P 
times. 

An N-P time should not be taken as a physical stance, namely quantitatively, i.e. as 
a large or big span of time. Such would be indeed a Newtonian understanding of  
time – as a “mass” or “force”. Grasping N-P time in such a way is misleading and it 
can simply be taken as a limit as in mathematics. 

5   N-P Time and Complexity 

An N-P time is, accordingly to complex science, rather a quite surprised time, 
unexpected in principle and unforeseeable. This opens up the door to the Greek notion 
of kairós, but it can be better grasped as Nietzsche put it: unzeitmässige 
(Betrachtungen). Here we get a hint for further exploring of N-P time as different from 
a classical mechanical background (as an extensive – long span). Computationally 
speaking this leads us necessarily to quantum computing a most intriguing and 
passionate field underlying, to be sure, complex theory. 

Life in general, and ALife in particular, obeys from time to time these kinds of  
N-P- times, and they emerge unexpectedly, as it happens. Several accounts of such 
phenomena have been recounted by Ch. Langton [13], [14] and [15], T. Ray [16] and 
[17], or J. Conway [18], among others. We can experience those accounts not just as 
physical phenomena, but also as temporal or time happenings not assailable to, or as, 
a P time. 
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N-P time has been conceived in terms of its computability and, thereafter, its 
complexity (computational complexity) [19]. The question remains whether AL can 
bring new insights on a broader scope on computational complexity. This, we recall, 
is at the same time a scientific, a philosophical and an engineering challenge and 
endeavor that remains, so far, still open. 
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Abstract. In this paper, we analyze the temporal dimension of the problem of 
emergence of functional networks in living systems and give an abstract 
mathematical framework for dealing with those issues without considering the 
structure of the particular mappings or the resulting dynamics. We found that 
formal structures equivalent to emergence of local ordering and local 
chronologies can be defined within the framework of topological relations 
based on local observers. By using category theory, we further represented 
higher levels of transformations (between closures), with a special focus on 
observer turnover. 

Keywords: Time, Emergence, Category theory, Observer, Artificial Life. 

1   Introduction 

The problem of understanding the flow of time has a long tradition and often presents 
inextricable difficulties derived from disputes in basic conceptual approaches. 
Demarcation points are numerous: reductionism vs. Platonism, different views of the 
topology of time, presentism vs. non-presentism, and so on [1, 2]. We do not strive to 
understand the philosophical considerations of the nature of time itself. Instead, we 
will deal only with the experience of time on the very elementary level of interactions 
of intracellular proteins. These proteins are the basis for the emergence of functional 
networks where transformations and regulations work together to create metabolism. 
Since each protein acts as a state machine with determined inputs which can be 
mapped into defined outputs, we will consider them as elementary observers. As 
observers they reside within some universe and are able to assimilate a segment of 
external changes with an appropriate set of internal operations to produce reactions. In 
addition, the operational environment is defined from the perspective of that 
individual so that external changes functionally exist for individuals only if they can 
be observed. 

Starting from this framework, we will develop a theoretical and mathematical 
treatment of the emergence of these processes, their chronological organization and 
the possibilities of internal manipulations.  
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2   Theoretical Treatment 

When considering the perception of time, changes in the observer’s environment are 
only one basis upon which a perceptive entity or a group of entities can construct their 
own time flow. Such construction is established locally in three senses: (i) the act of 
observing is synonymous with the translation of a vast diversity of external physical 
and/or chemical changes into an “understandable” signal, so it is functionally local, 
(ii) the life span of observing agents are always limited (temporal locality) and (iii) 
spatial constraints are inherent to the act of observation. We consolidate these notions 
into a single idea under the term local endo-time. 

However, perceptivity itself is not enough for the establishment of systemic time 
flow, since the prerequisite for establishing systemic time relations is the ability to 
compare different systemic states. As long as perceptivity is not incorporated into the 
network of systemic relations, the system will remain in a state of independent linear 
processes flows. If, according to Luhmann [3], we define a process as a mutually 
connected succession of events where the scope of selections is re-established at each 
stage, the specific characteristic is defined by anticipation as an accumulation toward 
less and less probable states (less probable from the perspective of the beginning of 
the process) which emerges as a necessary consequence of previous stages. However, 
there is a very important difference between elementary processes (e.g., separate 
enzymatic transformations) and the processes developed from them (e.g., metabolic 
pathways). The first ones can be considered as unambiguous transformations toward a 
determined state (in an ideal case) or a group of very similar states. However, in 
living systems, that kind of almost indispensable flow enclosed in a rigid structure is 
only a basis for the further development of functionality. These irreversible sequences 
can be rearranged into higher order structures (metabolic pathways) gradually 
relativizing process indispensability with every superposed level of functionality 
constructed. In such a structure, individual events are no longer necessary for 
continuing the line of transformations (which is the case with elementary processes), 
but become “one of” the possible realizations of functionality. In spite of such 
relativization, what remains inherently connected for these processes is their 
necessary differentiation: former/latter – as the primary form of local temporal 
differentiation.  

Through this relativization of necessities, the system becomes able to construct 
anticipatory structures which, from the available (perceptively constructed) context, 
choose indicators that are in correlation with changes in the future1, associating them 
with adequate systems of transformations and preparing themselves for the following 
events. From such a perspective it is obvious that mutual interactions of anticipatory 
structures are not only based on the possibility of perceiving signals, but also on the 
possibility of anticipating future states (e.g., establishment of regulations based on 
feedback). Such anticipations are inherently connected with systemic expectations in 
which realization or non-realization becomes a powerful intrasystemic regulative 
factor. Therefore, it is not only important to accomplish some function; equally 
important is temporal compatibility with other, parallel processes. Consequently, only 

                                                           
1  As future changes in this context we consider only those which are within a scope of results 

of other systemic-induced transformations. 
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a combination of these two factors--the possibility of anticipation and regulation by 
anticipation--can create a basis for the construction of an autonomous, systemic time 
flow, as a generalization of the validity of partial intrasystemic time horizons across 
functional elements and (organizational) structures within certain subsystems. In other 
words, during interactions, along with perceptive normativity, subsystems also impute 
time (their own construction of time) to their environment. The organizational 
dynamics of mutual influences results purely from such imputations.  

Although such relativizations make organizational manipulations available, we still 
cannot talk about systemic comparisons (since an abstract measurement of empty 
intervals in such systems is not possible) and hence, about systemic time. The final 
precondition is to establish parallel and multiple repetitions of transformations which 
are successively superpositioned. Then, the system enters a state where consequences 
of transformations are transferred to the following cycles of successive processes. In 
this way, the dynamics of cycles are not self-sustained but always exist with reference 
to previous operations in their environment; i.e., by a rudimentary “comparison” of 
intervals. Only then processes became autonomous axes for establishing systemic 
time relations, and consequently for construction of organizational regulations and 
controls. 

However, at the same time, the physical duration of constitutive elements is limited 
(in this case it is called protein turnover) [4]. This means that pattern of observation, 
with all of the consequences described above, is not fixed to some location in space 
nor is the structure of functional relations invariable. Although the theory of 
autopoietic systems make it obvious that systemic elements should always be self-
reproduced, [5] mathematical models of global regulations in organisms mainly 
neglect this fact and its consequences. With this in mind, it is necessary to pay 
particular attention to the development of functionality based on cyclic degradations 
and reconstructions of systemic material structures. First, it should be emphasized that 
it is not a mere repetitive circle that produces sameness, but rather a production with 
deviations, due to locality inherent to perception. The continuous decomposition of 
segments of processes compels them to be in constant reconstruction, thus making 
space available in the organizational structure of different insertions, divergences and 
re-routings without the need to construct specific mechanisms (in the form of 
localized regulators) for each specific case. In addition, through turnover, the system 
purposefully eliminates groups of elements, concordantly eliminating them from the 
possibility of direct reaction (with respect to other elements, subsystems, etc.). In this 
way, the system’s internal structure perpetually reconstitutes the causal basis for its 
own processes and the past is not merely a fixed set of preceding events, but is rather 
a dynamic accumulation where, according to its relevancy to the current state (a 
relevancy constantly updated with causal reconstitution) some elements and structures 
can be summoned while others disappear without any further functional influences. 
Through such cycles, the system is forced not to be self-adapted but rather in self-
adaptation. 

Finally, it is necessary to answer one more question: What is the main precondition 
for turnover of elements without destroying systemic functionality? It is obvious that 
since an organism’s survival is inherently connected with undisturbed metabolism 
function, turnover should not influence the continuity of metabolic processes. Is it 
justified then to assume the existence of elementary functional units which cannot be, 
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and should not be perturbed? If we analyze metabolism as a whole, at each stage we 
can identify some segments that are essential for survival of the organism and that 
will be safeguarded from the possibility of internal violations (e.g., excessive 
synthesis of groups of enzymes coupled with a decrease in the level of the specific 
chaperone). However, determination of such “elementary units” is highly dependent 
on context: both materially (e.g., availability of certain nutrients, the constellation of 
environmental factors), as well as functionally (e.g., hierarchical variations regarding 
actual distribution of subsystems). Therefore, what is usually considered a central 
property of elementary units, namely their perseverance through different contexts, is 
lost. However, if we set our focus down to the level of concrete, material 
transformations, we can see that every single step in the processes of metabolic 
transformations is performed by enzymes whose actions are not susceptible to cutting 
or dividing into independent phases. In this manner, single enzymatic transformation 
is not only an elementary event, but is also an inherently unambiguous process—an 
atom of functionality. Only through the enclosure of single occurrences in a web of 
functionally meaningful events does it become possible for systems to base their 
functionality on recursive, reflexive reproduction of elements. The rise of elementary 
events from the level of discrete, meaningless occurrences to the level of finished 
processes, lays the groundwork for a situation where any kind of interruption (in the 
sense of physical elimination of functional elements) or rearrangement cannot violate 
the fundamentality of such units. Without that kind of organization, temporalizing 
constitutive elements of the systems would destroy them. 

3   Mathematical Treatment 

In the theoretical construction of the problem we raised several notions important for 
understanding emergence of endo-time in living systems and their consequences for 
the pattern of functional organization of living systems. Based on these 
considerations, we will develop an appropriate mathematical framework. 

Definition 1 (Relations). If we denote by { , , ,...}M f g h=  the set of proteins and by 

{ , , ,...}U a b c=  the set of environmental objects, then relations on U  can be 

represented as  

( ,G( ))R U R=  (1)

where 1 1G( ) :{ ... ,..., ,..., }k j kR U U U U U U× × ⊂  is determined by M  (in any given 

context internal determination of G( )R by U  itself is not important) such that  

G( ) , ,G( )a R b a b U R f M∈ ≡ ∈  (2)

Set of all a U∈  is called the domain of the relation R  and is denoted domf , while 

set of all b U∈  is called the codomain of the relation R  and is denoted codf . Since 

the relation R  is structure, preserving it can be called a morphism. The relation 
( )G R  is: 
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- irreflexive: ( )aG R a¬ ; 

- symmetric: ( ) ( )aG R b bG R a⇒ ; 

- nontransitive: ( ) ( ) ( )aG R b bG R c aG R c∧ ⇒ ¬ ; 

- with a unique resultant: ( ) ( )aG R b aG R c b c∧ ⇒ = . 

Here, domf  represents the observed subset of the environment, while G( )a R b  

incorporates the intrinsic unambiguity of elementary processes. In addition, it should 
be noted that being member of e.g., codf  is context dependent: codf  can became 

domf  and vice versa. 

Definition 2 (Mapping into Shared Metric Space). If both sets M  and U  can be mapped 

into the metric space ( , )C d  such that {(0, ) } {(1, ) }C M U m m M u u U≡ ⊕ = ∈ ∪ ∈  

then C  is a coproduct of M  and U , while ( , )C d  is shared metric space over M  and U . 

Definition 3 (Domain Determination). For domf , doma f∈  iff there exist a U∈  

such that: 

- if we define a set of many-valued attributes 

1 2 3{ , , ,...}, , { , , ,..., }nP p q r p P p p p p p= ∀ ∈ = , and each a U∈  and f M∈  are 

associated with the ^
nP , where { }n M U∈ ∪ , nP P⊆ , and ^

nP  is a strictly 

ordered set ( , )nP < , where the ordering relation is determined in accordance with 

the underlying structure of a  and f , then the Cartesian product ^ ^
v a v fP P×  

where ^ ^
v a aP P⊆ , ^ ^

v f fP P⊆  represents visibility of a  for f ; 

- ( , ) 1d f a = for
0, if 1 2 1 2

( , )
1, if 1 2 1 2

r r
f a

r r
f a

f a p p
d f a

f a p p

⎧ − > +⎪= ⎨
− ≤ +⎪⎩

 where r
fp  and r

ap  are 

called the “activity radius” values for f  and a , respectively, and are 

determined by the corresponding attribute values. 

In other words, in order to be recognized, each element of the environment must be 
within the scope of a certain enzyme, and recognizable by it. All elements recognized 
in such manner are collected into an equivalence class [ ]domfa . 

Definition 4 (Topology Based on Observations). If the metrical radius ( )R f  for domf , 

is defined as ( ) { , , ( , ) 1, ( , ) 1}dom codR f a b a f b f d a f d b f= ∈ ∈ ∧ = = , then the 

collection of all ( )R f  for a given metric space ( , )C d  is a basis for the topology T  on 

C . Therefore, a subset N  of C  is in T  (is an open set) if it is a union of members of 
the collection of all ( )R f . Such a topology T  is induced by the metric d  and ( , )C T  

is the induced topological space. It should be emphasized that each open set is defined 
with respect to a particular f M∈ . 
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Definition 5 (Emergence of Functional Closure and Boundaries). In order to describe 
functional relations induced by local perceptions, we will focus our attention on the 
emergence of closure and boundaries for open sets in an induced topological space: 

- for ( )R f , a point a C∈  is defined as limit point of ( )R f  if every open set of 

induced topology containing a  contains a point of ( )R f  different from a . The 

set of all limit points of ( )R f  is denoted ( ) 'R f . Then, ( ) ( ) 'R f R f∪  is called 

the closure of ( )R f , denoted ( )R f . Within the given framework, ( )R f  

signifies the emergence of metabolic processes. 
- for an open set ( )R f , the interior, denoted ( ( ))int R f , is the largest open set 

contained in ( )R f . In other words, ( ( ))int R f  is ( )R f  itself. All points in the 

closure of ( )R f  not belonging to the ( ( ))int R f  define the boundary of ( )R f  

denoted ( )bdR f . An element of the boundary of ( )R f  is called a boundary 

point of ( )R f . Less formally, boundary points of ( )R f  are those points which 

can be approached both from ( )R f  and from the outside of ( )R f . Within the 

given framework, ( )bdR f  signifies points of possible divergence or 

differentiation of emerging metabolic processes. 

In order to have ordering, a relation over the set has to be transitive and asymmetric. 
However, Definition 1 states that relations induced by enzymes are nontransitive and 
symmetric. Therefore, it is clear that one single relation determined by f M∈  cannot 

induce ordering over the environment. Instead, we need to introduce a relation which 
would naturally follow from the existence of a number of different members of the set 
M  within a given range. 

Definition 6 (Ordering). If ( ( ) ( ))bd bda R f R g∈ ∧  and ( ( ) ( ))bd bdb R g R h∈ ∧  then 

between ,a b  is established a causal influenceability with respect to 

( ), { , , ,...}R M M f g h=  denoted 
( )R M

< , which is transitive and asymmetric. 

Definition 7 (Chronology). , ( ), { , , ,...}bda b R M M f g h∈ =∪  ordered by the 

relation 
( )R M

<  can be naturally mapped into a finite index set I  such that 

{ , , ,...},I i j k I= ⊂ . Then, index set I  represents a chronology over closure. This 

chronology is not imposed onto the structure but emerges from the bottom as a 
consequence of established causal relations.  

Definition 8 (Locality of Chronology). Chronology defined by the relation 
( )R M

<  is 

local in the sense that due to Definitions 3 – 5 is applicable only to observable subsets 
of U determined by structures and metrics. 

Therefore, the closure chronology of living systems is globally linear. However, if we 

try to broaden our scope beyond ( )R M  over which 
( )R M

<  is established, it is 
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nonlinear in the sense of Robb’s axiom, [6] which states that “For every element x , 
there is another element y  such that neither x y>  nor y x> ”, and its strengthened 

form: ( )( )( )( ( ))x y z y x z x z y z y y z∀ ∀ ∃ ∧ ¬ = ∨ ∨≺ ≺ ≺ ≺ [7]. 

Definition 9 (Category Based on Observations). If we assume: 

- a collection of closures of ( ), { , , ,...}R M M f g h=  for a given topology is a basis 

for collections of objects such that each object consists of a quadruplet 

0 1( , , , )G A O= ∂ ∂ where A is a set of directed edges defined by Eqs. (1) and (2), 

O  is a set of objects whose members are equivalence classes [ ]domMa , [ ]codMb  

where { , , ,...}M f g h= and mappings ( 0,1)i i∂ =  from A  to O  such that 0∂  is 

a source map that sends each directed edge to its source and 1∂  is a target map 

that sends each directed edge to its target; 
- homomorphisms exist between objects G  such that if : 'D G G→ , where 

0 1( , , , )G A O= ∂ ∂  and ' ' ' '
0 1' ( , , , )G A O= ∂ ∂  then D  consists of two maps 

'( ) :D A A A→  and '( ) :D O O O→  such that following diagram commute: 

 

(3)

- an arrow is assigned to each object id :G G G→  called the identity on G ; 

- the composition of homomorphisms is defined as an associative operation 
assigned to pairs of morphisms such that for : 'D G G→  and : ' "E G G→ , a 
map : "E D G G→  is defined by ( )( ) ( ( ))E D G E D G= , 

then the category Γ  of graphs and their homomorphisms is defined over interacting 
agents residing within subjective environment.  

Finally, using categories we are able to represent protein turnover. In category 
theory a forgetful functor is defined as a functor that “forgets” some or all of the 
structure of an algebraic object [8]. For example :U Grp Set→  assigns to each  

element of G Grp∈  its underlying set and to each morphism : 'D G G→  the same 

function regarded just as a function between sets. Since in our framework the structure of 
an object is defined as a collection of closures determined by ( ) { , , ,...}R M M f g h= ,  

a function that “forgets” any f  and the corresponding interior of ( )R f  will accurately 

represent protein turnover, and at the same time will cause reorganization of the structure 
of subjective environment. 

Definition 10 (Forgetful Function). For an object 0 1( , , , ),G A O G= ∂ ∂ ∈ Γ  we  

define forgetful function Φ  as a homomorphism such that in mapping 
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' ' ' '
0 1 0 0: ( , , , ) ( , , , )A O A OΦ ∂ ∂ → ∂ ∂  one or more ( ), { , , ,...}R M M f g h=  are ignored. 

In 'G  equivalence classes [ ]domMa , [ ]codMb  are changed and the according structure of 
'G  is reconfigured. 

4   Conclusions 

Organization of living systems is unique in the sense that it cannot at any moment 
passively exist, from the mere fact that it is already formed. They are not finished 
systems, but rather systems in continuous self-construction, which require them to 
always be in the process of adaptation to both the external and internal environment. 
The results presented here are only a part of the global framework which could be 
comprehensive enough to stands as an evolvable, self-organizing model of an abstract 
organism. Merging the presented framework with the internal coding system which 
would ensure that generation of observers is autonomously determined, will represent 
an important step toward that goal, which is a task for future work. 
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Abstract. When driven by an external thermodynamic gradient, non-
biological physical systems can exhibit a wide range of behaviours usually
associated with living systems. Consequently, Artificial Life researchers
should be open to the possibility that there is no hard-and-fast distinc-
tion between the biological and the physical. This suggests a novel field
of research: the application of biologists’ methods for studying organisms
to simple “near-life” phenomena in non-equilibrium physical systems. We
illustrate this with some examples, including natural dynamic phenom-
ena such as hurricanes and human artefacts such as photocopiers. This
has implications for the notion of agency, which we discuss.

Keywords: Near-life, Thermodynamics, Dissipative Structures,
Autopoiesis, Developmental Systems Theory.

1 Introduction
1.1 A-Life and Near-Life

The premise of Artificial Life is that there is more to being alive than the details
of terrestrial biology; that there are abstract principles which underlie those
particular instantiations of life we happen to share a planet with. In this paper
we will argue that, besides “life as it could be” [6], we should also be considering
“near-life as it is”: life-like properties in the familiar inanimate world. Indeed, we
will see that hurricanes and even photocopiers have thought-provoking features
in common with living organisms.

When we use the word “life” in this paper, we do not refer to a definition
but to a class of examples, namely those things existing on this planet which
biologists consider alive: the eukaryotes, prokaryotes and occasionally viruses.
Similarly, we use “life-like” informally to refer to various properties shared by
all or most of these examples.

Central to our approach is the study of life-like phenomena that arise natu-
rally within a wider system, either simulated or physical. We propose to study
“near-living” systems in the same kind of way that a biologist studies living or-
ganisms: by observing them in their natural habitat; by studying their behaviour;
and by trying to see how their anatomy functions. The processes behind life-like
behaviour in non-living systems are likely to be much easier to understand than
in living systems. Our purpose in this paper is not merely to point out similar-
ities between some non-living systems and living systems, but to suggest that
principled further studies of such similarities could be a gold-mine of new results.

G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part II, LNCS 5778, pp. 230–237, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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1.2 Non-equilibrium Thermodynamics

Physical systems in thermal equilibrium are not life-like: the second law of ther-
modynamics means that isolated macroscopic systems tend towards more or less
homogeneous equilibrium states. However, this does not apply to open systems
in which an externally imposed “thermodynamic gradient” causes a continual
flow of matter or energy through the system. In such non-equilibrium systems
complex patterns can arise and persist. Authors such as Prigogine, Schneider
& Kay and Kauffman [12,14,5] have observed that life is an example of such a
“dissipative structure.” Life exists within the Earth system, which is an open
system with a gradient imposed primarily by the sun1.

Living organisms exist within this system and are constrained by the second
law of thermodynamics. Therefore many of their properties have to be realised in
non-trivial ways. No organism can maintain its structure by isolating itself from
the world: the need to “feed on negative entropy” (Schrödinger [15]) guarantees
that interaction with the world is required in order to find food or other sources
of energy. Ruiz-Mirazo and Moreno connect this to the theory of autopoiesis [13].

Simulation work in artificial life has often ignored thermodynamics; it is com-
mon to see research using physically unrealistic cellular automata, abstract ar-
tificial chemistries in which there is no quantity corresponding to entropy, or
simulated agents which eat abstract “food” (if indeed they need to eat at all).

In contrast, our approach builds upon and extends previous authors’ obser-
vations about the relationship between life and thermodynamics. An abiotic
non-equilibrium system has many parallels with an ecosystem; our focus is on
the equivalents to organisms that exist in such systems, and the specific prop-
erties that they do or do not share with biological organisms. These properties
vary depending on the system under consideration, so our methodology is to in-
vestigate many different types of non-equilibrium system, looking for the general
circumstances under which various life-like properties arise.

2 Some Examples of Near-Life

2.1 Hurricanes

A hurricane is a classic exemplar of a dissipative structure. It is instructive to
focus on this example because hurricanes exhibit a phenomenon we call individu-
ation. Emanuel [3] gives the following characterisation of a hurricane’s operation:

“[Air] flows inward at constant temperature within a thin boundary layer
[above the sea surface], where it loses angular momentum and gains moist en-
tropy from the sea surface. It then ascends and flows outward to large radii,
preserving its angular momentum and moist entropy. Eventually, at large radii,
the air loses moist entropy by radiative cooling to space. . . ” These processes oc-
cur simultaneously. Their rates balance so that the hurricane as a whole is stable.

1 More precisely, the gradient is formed by the difference in temperatures between the
incoming solar radiation and deep space.
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The net result of the interactions between these processes is that the hurri-
cane is formed and remains stable to perturbations. Moreover it is formed as a
spatially distinct individual, separate from other hurricanes (this can be com-
pared to the definition of autopoiesis by Maturana & Varela [8,9] as a “network
of processes” that “constitute” a “unity.”).

A hurricane has functionally differentiated parts: near the sea surface the
water is drawn towards the eye, picking up moisture from the sea and rotational
speed from the Coriolis force; in the eyewall itself the air is moving rapidly
upward. Each part, together with its associated processes, is necessary for the
whole to persist. This is analogous to an organism’s anatomy.

A hurricane remains an individual entity because of its vortex structure,
whereas a cell is surrounded by a membrane. We see this as the same phe-
nomenon, individuation, occurring by different mechanisms. In both cases the
result is that the system is localised in space and distinct from other individuals.

Although the research is so far preliminary, hurricanes may also be able to
exhibit behaviour that could be called adaptive. Shimokawa et al. [16] claim that
when the prevailing wind is subtracted from the data, tropical cyclones tend to
move towards regions which are better able to sustain them, namely those with
a greater temperature gradient between the sea and the upper atmosphere2.

The hurricane has been given as an example of a “self-organising” system
before but its similarities to living cells have not been studied in depth. We feel
that such a study would provide many novel scientific insights.

2.2 Reaction-Diffusion Spots

Hurricanes are large, comparatively complex and difficult to study. A much sim-
pler and easier-to-study example of an individuated dissipative system can be
found in the patterns that form in reaction-diffusion systems [11]. Reaction-
diffusion systems are very simple and easily simulated non-equilibrium chemical
systems in which reactions take place among chemical species that are able to
diffuse along a plane. The non-equilibrium conditions are maintained by con-
tinually adding reactants and removing products from the system. Under some
parameter regimes the system can form a pattern in which there are spatially
distinct “spots” of an autocatalytic substance, separated by regions in which no
autocatalyst is present (see fig. 1, left).

We can observe interesting life-like properties in the form and behaviour of
reaction-diffusion spots: like all dissipative systems they export entropy and are
dependent on specific thermodynamic gradients; they are patterns in matter
and energy; like organisms, they exist mostly as identifiable individuals; under
certain parameter regimes they reproduce [11].

Studying reaction-diffusion spots according to our methodology involves treat-
ing a single spot as a model agent and studying it from a “spot-centric” point
of view. The following simulation-based results have been demonstrated in [17],

2 More strictly, higher Maximum Potential Intensity, a measure that takes into account
both the temperature and pressure gradients that power hurricanes.



Life and Its Close Relatives 233

and a paper giving details of the experiments is in preparation. Briefly, we found
that reaction-diffusion spots, perhaps like hurricanes, tend to move towards ar-
eas where more food is available, a behaviour that could be called “adaptive.”
We also found that individuated spots are very likely to arise when there is a
negative feedback added between the whole system’s activity and overall supply
of food (this situation is common in natural systems and we think the result is
suggestive of a possible general phenomenon). Using this as a method for produc-
ing individuated entities we were able to produce agents with a more complex
‘anatomy’ than just a single spot (fig. 1, right). Some of these more complex
agents exhibited a very limited form of heredity in their reproduction.

Fig. 1. left : “individuated” spots of autocatalyst in a reaction-diffusion system;
right : structurally complex individuated entities in a reaction diffusion system. Each
consists of spots of two different autocatalysts (represented with diagonal stripes in this
image) coexisting symbiotically, mediated by an exchange of nutrients, one of which is
shown in grey. Details will be published in a forthcoming paper.

2.3 Photocopiers

In this section we will examine a photocopier — a stereotypical inanimate object
— from a point of view that might be called “enactive.” That is, it is a point
of view in which the photocopier itself is the central player, maintaining its
identity and behaving adaptively as a result of dynamical interactions with its
environment. This is a difficult viewpoint to take at first, since our intuition
tells us that a photocopier is not the sort of thing that can “act.” Rather, we
normally think of it as acted upon by human beings. However, this intuition can
be stretched, and we hope the reader will agree that it is worthwhile to do so.

We chose a photocopier for this example because it is usually repaired when
it breaks down; any such machine would have done. In particular, the fact that
the photocopier performs a copying task has no special significance.

We focus on this example because it shows how far our intuitions can be
stretched without reaching a reductio ad absurdum: a photocopier is an archety-
pal example of an inanimate object, but when considered as an agent engaged
in complex interactions with its environment it becomes in many ways the most
life-like of our three examples.

When trying to support our natural intuition of a qualitative difference be-
tween photocopiers and bacteria, we may cite a variety of apparently relevant
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facts. Bacteria have DNA, and we can observe the complex process of bacterial
reproduction under the microscope, whereas the same is not true of photocopiers.
A photocopier, unlike a bacterium, consists of mostly static and chemically inert
parts; if a part of the photocopier becomes damaged, it does not reconstitute
itself internally. Bacteria display complex adaptive behaviour including chemo-
taxis and habituation; photocopiers don’t appear to.

This may seem like a conclusive list of differences between a cell and a pho-
tocopier. And some of these differences are genuine, if perhaps arbitrary: pho-
tocopiers do indeed lack DNA. However, on closer scrutiny some of the other
issues will turn out to be less clear-cut. We think that many if not all of the most
significant differences between cells and photocopiers can be seen as differences
of degree rather than kind.

Dynamic Identity. One prototypical property of bacteria and other living
organisms is their identity as patterns of matter and energy. Individual atoms
flow through the organism, and the overall organism is maintained even if all
the material parts change. We can consider a photocopier that has this prop-
erty, although the rate of material turnover is much slower than in a cell: when
the parts of this photocopier break they are replaced by an engineer. Like the
hammer which retains its identity despite having a new handle and a new head,
matter flows through the photocopier leaving its photocopier-ness unchanged.

In ordinary discourse, we would not describe the process as self -repair, since
we prefer to locate causal primacy in the engineer rather than the photocopier.
But seen from a logical point of view, both photocopier and engineer are neces-
sary parts of the physical process; the repair is caused by the interaction between
the two. It is no different for bacteria: ongoing cell repair is caused by the inter-
action between the cell and its environment, since the organism must be able to
absorb relevant nutrients and excrete waste.

Note that some important physical principles can be observed in action here.
In order for this process to continue, the photocopier’s environment has to be in
a very specific state of thermodynamic disequilibrium: it has to contain appro-
priately competent and motivated engineers.

From a more photocopier-centric point of view one could say that the photo-
copier causes the repair to be carried out: simply by performing a useful office
task, the photocopier is able to co-opt the complex behaviour of humans in its
environment in just such a way that the raw materials needed to maintain its
structure are extracted from the ground, fashioned into the appropriate spare
parts and correctly installed. Seen from this perspective the photocopier is a
master of manipulating its environment. It needs no deliberative intelligence to
perform these feats, however: one is reminded of species of orchid that cause
their pollen to be spread by mimicking the form of a female bee.

Many of these processes take place outside the physical (spatial) bounds of
the photocopier itself, with most of them involving human activity in some way.
This is in contrast to the usual conception of an organism, since these systems
rely heavily on a network of metabolic or dynamical processes that occur within
the system’s physical boundary. We argue however that this difference between
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artefacts and organisms is one of degree rather than a difference in kind, since
all organisms must rely on some processes that are external to their spatial
boundary, some of which will often involve the action of other organisms.

Individuation. The phenomenon of individuation is evident in this example:
photocopiers are maintained as individual photocopiers. Half a photocopier will
not function as one and will not be maintained as one. We can imagine an
environment in which half a photocopier might be maintained: we might find
one inhabiting a display case in a museum, for example. But in this case it is
being maintained as a museum exhibit rather than as a photocopier: it would
be a different species of artefact.

Reproduction and Evolution. Although there are obvious differences be-
tween the process of “evolution” in photocopiers and in living organisms, we
can still observe some similarities. The photocopier phenotype has become bet-
ter adapted to its ecological niche over time, as successful photocopiers are
re-produced in factories and successful designs retained and modified. A pho-
tocopier’s external casing does not contain its blueprints, whereas we often re-
gard the “design” for a cell as being in its DNA (with developmental influences
from the internal and external environment). But this notion is perspectival
rather than factual: as Oyama [10] points out, the interaction of environment
and genome forms the cell, with both being required. Reproduction and devel-
opment in any organism relies heavily on environmental machinery external to
the organism itself. The photocopier phenotype interacts with its blueprint in-
directly through the phenotype’s effects on photocopier sales, which fund the
production of more photocopiers from the blueprint. In turn the sales depend
on the successful operation of the photocopiers, among other factors.

3 Discussion

When we picture something which symbolises the fundamental properties of a
living being, the chances are good that we imagine a biological object: a living
organism such as a cell, plant or animal, or perhaps the DNA helix. Alternatively,
we may think of our favourite simulation model in Artificial Life. It is unlikely in
the extreme that we picture an inanimate object such as a rock, a hurricane or
a photocopier. Due in part to our evolutionary heritage, humans have a definite
sense of what is alive and what is not.

We assert that scientists should treat this intuition with suspicion. In the
past, it has given rise to erroneous theories of an animal spirit or elan vital as
an explanation for the remarkable behaviours of living organisms. Although these
ideas have long been discarded by formal science, the underlying psychological
stance is more enduring, and it has led science astray in the past.

In this sense, we echo Oyama’s insights in Developmental Systems Theory(e.g.
[10]): human beings like to postulate chains of effect which attribute causal pri-
macy to a particular part of a holistically integrated system. In the scientific imag-
ination, part of the system becomes the agent and the rest is the environment.
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Oyama argues that attributing causal primacy to genes is a conceptual error
within developmental biology; we contend that similar problems arise when we
think about living and non-living systems.

Thermodynamic gradients can be found nearly everywhere in the physical
universe, and consequently we should not be surprised if near-life is abundant in
interesting forms. By “near-life”, we simply mean non-biological systems which
share important characteristics with living organisms, including any of the fol-
lowing: reproduction, particularly with heritable variation; maintenance of a
dynamic pattern of matter and energy; production of spatially separated indi-
viduals; “goal-directed” behaviour. All of these properties can be observed in
comparatively simple non-equilibrium systems; there is every reason to suppose
we will find more such properties. It is quite possible, for example, that one
could find life-like structures that exhibit a developmental trajectory over their
existence; or show a permanent memory-like change in behaviour in response to
a stimulus; or have a more complex form of heredity.

It is not a new idea to look for life-like processes in non-biological systems.
Lovelock [7] describes the entire Earth system as a “single living system”, using
terms such as “physiology” and “anatomy.” Our ambitions concern simple and
physically numerous systems which can be studied experimentally.

While many of the similarities between life and dissipative structures are well-
known, most previous commentators (e.g. Prigogine, Schneider & Kay [12,14])
have considered only natural (as opposed to artificial) phenomena. However, ar-
tificial structures are part of the same physical world as natural structures. Our
perspective allows us to observe physical characteristics associated with biol-
ogy even in apparently prototypical inanimate objects such as photocopiers. Of
course, it is not a new idea to attribute biological properties to cultural artefacts
(this occurs in “meme theory,” which concentrates on “selfish replicator” proper-
ties, e.g. Blackmore [1]) or to consider physical artefacts as an integral part of a
biological system (Clark & Chalmers [2]). We add the observation that ordinary
physical artefacts can also be a type of life-like dissipative structure, providing
they exist in a human environment which maintains them against decay. This is
particularly instructive because it illustrates the extent to which our intuitions
can be stretched without breaking.

3.1 Proposed Future Research

Searching for life-like properties of phenomena that arise in physical rather than
computational systems is an under-researched area of A-Life that has poten-
tial for some very important results. Current “wet” A-Life research (i.e. in vitro
chemical experiments), tends to focus on the deliberate design of life-like struc-
tures (e.g. synthetic bacteria [4] or formation of lipid vesicles), rather than on
open-ended observation of structures that form naturally. However, interesting
behaviour can also be observed spontaneously in non-equilibrium systems, in-
cluding ones which are simple enough for physically realistic computer simulation
(e.g. [17] and forthcoming work). More research along these lines would help to
bridge the gap between biology and physics.
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Abstract. Cognitive biases explaining human deviation from formal
logic have been broadly studied. We here try to give a step toward the
general formalism still missing, introducing a probabilistic formula for
causal induction. It has symmetries reflecting human cognitive biases
and shows extremely high correlation with the experimental results. We
apply the formula to learning or decision-theoretic tasks, n-armed bandit
problems. Searching for the best cause for reward, it exhibits an optimal
property breaking the usual trade-off between speed and accuracy.

Keywords: cognitive bias, heuristics, multi-armed bandit problems,
stimulus equivalence, mutual exclusivity.

1 Introduction

Recently, cognitive biases and heuristics have attracted widespread attention,
as typically in psychology and behavioral economics (e.g. [1–4]). Logicality and
rationality must be distinguished, and we are required to inquire their origin,
development and the relationship between them. Considering the effects of the
biases may be the key to construct artificial agents. It is interesting to see that
animals do not appear to have some of these illogical biases. It means that in some
senses animals are more logical, or machinelike, than us. There is considerable
circumstantial evidence that the biases deeply involve the difference between
human and other animals.

In this study, we try to show the importance of loosely symmetric cognition
through a constructive approach. We introduce a certain formula as an elemen-
tary model of causal inductive cognition and apply it to decision making or
reinforcement learning. The formula, a loosely symmetric (LS) model [5, 6],
implements key biases in a flexible way, autonomously adjusting the bias inten-
sity according to the situation. The derivation of LS is given, along with its
best humanlike behavior and high performance. The model’s descriptive validity
for causal induction, beating all tens of preexisting models, is shown. Its high
performance is presented in binary bandit problems (BBP), a simplest class of
decision theoretic tasks. BBP are the simplest dilemmatic situations where an
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agent has difficulty in balancing exploration (searching for better options) and
exploitation (persisting to the known best option). The LS model is shown to
break the speed-accuracy trade-offs resulting from the dilemma. Even though
it has no parameter, it gives better performance than existing standard models
like the epsilon-greedy softmax methods. First we introduce our LS model in
the context of causal induction.

2 Human Biases in Causal Induction and LS Model

It is critical for survival to inductively reason a causal relationship from event
co-occurrence. In psychology, symmetrical biases are considered to be crucial in
general [1]. It is also argued that the biases enhance information gain from the co-
occurrence [4]. Stimulus equivalence and mutual exclusivity have been originated
in behavior analysis [2] and language acquisition [3]. They can be generalized to
the inferential biases that we call symmetry (S) and mutual exclusivity (MX)
biases. From a conditional p → q, S and MX biases respectively induces q → p
and p̄ → q̄ (where p̄ means the negation of p). These conditionals correspond to
the following three conditions that are important to our intuition of causality,
that p is the cause of q:

1. High conditional probability of q given p, P (q|p).
2. Simultaneously high

(a) “converse” probability P (p|q) ≈ P (q|p) (S bias) and
(b) “inverse” probability P (q̄|p̄) ≈ P (q|p) (MX bias).

Condition 1 is fundamental in prediction. However, it is not directly connected
to causality. Even if the sun rises always after ravens croak, it does not mean
that the croaking is the cause of the sunrise.

2.1 The Models

Two events co-occurrence or covariation information is expressed in a 2 × 2
contingency table (Table 1). The cells a, b, c and d respectively mean the joint
probabilities P (p, q), P (p, q̄), P (p̄, q) and P (p̄, q̄).

Table 1. A 2 x 2 contingency table for
causal induction

posterior event
q q̄

prior event
p
p̄

a
c

b
d

Table 2. The completely symmetric
contingency table for RS

posterior event
q q̄

prior event
p
p̄

a
c

+
+

d
b

b
d

+
+

c
a

If it is just to predict a posterior event q from the occurrence of a prior event
p, conditional probability (CP ) suffices.

CP (q|p) = P (q|p) = P (p, q)/P (p) = P (p, q)/(P (p, q)+P (p, q̄)) = a/(a+b). (1)
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However, it does not satisfy the conditions (2a) nor (2b). They are satisfied by a
transformation of the information. If we identify the b and c, the first condition

CP (q|p) = a/(a + b) = a/(a + c) = CP (p|q) (2)

is satisfied. In a similar way, the second condition holds if a and d mean the
same thing as well:

CP (q|p) = a/(a + b) = d/(d + c) = CP (q̄|p̄). (3)

The transformation P (p, q) → P (p, q)+P (p̄, q̄) satisfies the identities; the result
is in Table 2. Denoting the probabilities on Table 2 by P̂ (p, q) = a + d and so
on, we get a completely biased model RS (rigidly symmetric) as:

RS(q|p) = P̂ (p, q)/(P̂ (p, q) + P̂ (p, q̄)) = (a + d)/((a + d) + (b + c)). (4)

RS satisfies both of the two symmetric conditions, 2a and 2b. It is important
to see that there is another way to get it: it is to change how to refer to the
untouched experience in Table 1. Since Σu,vP (u, v) = 1.0,

RS(q|p) =
(
P (p, q) + P (p̄, q̄)

)
/Σu,vP (u, v) = P (p, q) + P (p̄, q̄). (5)

In this form, the diagonal elements a and d are summed and the sum is divided
by the whole, a+b+c+d = 1.0. Conversely, CP can be expressed in this reference
form. Ignoring c and d cells by giving the coefficient 0 in CP (q|p) realizes

CP (q|p) =
(
a + 0 · d)/

(
a + b + 0 · c + 0 · d). (6)

It is to ignore p̄, the information in the absense of p. Conversely, for calculating
CP (q|p̄), it is required to neglect a and b, the information in the presence of p.

CP (q|p̄) =
(
c + 0 · b)/

(
c + d + 0 · a + 0 · b) (7)

While the focal shift from p to p̄ changes the cells in the contingency table
from a, b, 0, 0 to 0, 0, c, d and vice versa, the value of the unfocussed information
is trivially conserved as zero. This is figure-ground segregation that is essential
to cognition [8]. While the figure information is straightly used, the ground is
treated in an invariant way, against focal shift. It is ground-invariance.

2.2 The LS Model

Here we introduce our loosely symmetric (LS) model.

The Conditions for the Model. LS is defined as a probabilistic formula
satisfying the following conditions:

(i) (Loosely symmetric) LS is not always rigidly biased.



A Loosely Symmetric Model of Cognition 241

(ii) (Flexible) However, its bias intensity is flexibly adjusted according to the
situation, that is here (a, b, c, d).

(iii) (Cognitive) It reflects a cognitive constraint or ability: figure-ground segre-
gation and the ground invariance.

Condition (i) can be satisfied by a family of intermediate models between CP
and RS, PS (parametrically symmetric) that has two parameters 0 ≤ α, β ≤ 1.
We adopt it as a prototype of our LS model.

PSα,β(q|p) = (a + βd)/((a + βd) + (b + αc)). (8)

However, PS can not satisfy neither condition (ii) nor (iii), as far as α and β
are constants. Condition (iii) demands CP -like weakening of ground information,
but condition (ii) requires α and β to be a function of the situation, here a, b, c, d.
So we determine α(q|p) = α(a, b, c, d) and β(q|p) = β(a, b, c, d) so as to satisfy
condition (iii). The condition is to equate αc and βd in Table 3 with αa and
βb in Table 4, that are all in the row of the unfocussed event in the two tables.
Constants can not be the solution, so the problem is to find functions α and
β that satisfy α(q|p)c = α(q|p̄)a and β(q|p)d = β(q|p̄)b. Because 0 ≤ α, β ≤

Table 3. The table for PS(q|p), when
focussed on p

q q̄

⇒ p a b
p̄ αc βd

Table 4. The table for PS(q|p̄), when
focussed on p̄

q q̄

p αa βb
⇒ p̄ c d

1, probability formulae are suitable. The numerator of α(q|p) and α(q|p̄) can
respectively be a = P (p, q) and c = P (p̄, q) to make the numerator of the both
terms ac. The denominators are the ones invariant against the change between p
and p̄. The sum of a and c satisfies the condition and hence α(q|p) = a/(a+ c) =
P (p|q) and α(q|p̄) = c/(c + a) = P (p̄|q). Similarly, β(q|p) is determined to be
b/(b + d) = P (p|q̄) and β(q|p̄) = d/(d + b) = P (p̄|q̄). Now we get the following
formula:

LS(q|p) =
a + P (p|q̄)d

a + P (p|q̄)d + b + P (p|q)c =
a + b

b+dd

a + b
b+dd + b + a

a+cc
. (9)

As we see in Table 3, the relation (ratio) between a and c, a/(a+c), is recursively
or self-referentially introduced as the coefficient α to c.

2.3 Results

We here introduce two models for comparison. One is called contingency (DP )
model. [9] The other is the presently best dual-factor heuristics (DH) model.
[10] They are defined as follows:

DP (q|p) = P (q|p) − P (q|p̄) (10)
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Table 5. The determination coefficient r2 of the model with human estimations

CP DP DFH RS LS

H03 [10] 0.000 0.000 0.964 0.158 0.969
AS95 [11] 0.823 0.781 0.905 0.761 0.904

WDK90 [12] 0.944 0.884 0.961 0.888 0.969

DH(q|p) =
√

P (q|p)P (p|q) (11)

In Table 5, we compare the estimations by the models with the average human
ratings data from three experiments available in the literature. We can see that
LS describes the data best as well as DH , while DH has been comprehensively
shown the superior descriptive power compared to existing 41 models. [4]

3 Application to Reinforcement Learning

The findings just from contemplation can not be definitive. Some experiment or
intervention is needed to identify a conclusive. Relationships inferred from causal
induction must be then utilized in decision making. So we apply the models to
BBP. We can apply the causal inductive models to decision making by reading p
and p̄ as “trying A” and “trying B”, and q and q̄ as “win” and “lose”, in Table 1.
The models calculate the value of the options (action value). The option o to
choose can be determined by a model M as:

o = argmax
o′∈{p,p̄}

M(q|o′). (12)

This way of managing action values for decision making is called the greedy
method.

3.1 The Settings for the Simulation

The simulation is executed in the following framework.

Initial Condition. We need some stipulations for the initial setting. To avoid
the exception “division by zero”, we define the initial covariation information
a, b, c and d as respectively a uniform random number from [0, 1]. They are
here not the joint probability but the frequency, so 1 is added to a when it wins
trying A, and so on. The adoption is justified by the fact that the change of initial
condition setting preserves the ordering of the results (correct rate, explained
later) by the models. We could uniformly set a, b, c and d as a = b = c = d = θ
where the θ may be 0, 1, 0.5 or � 0.1 or try all the options in the first stage.

Problems. A binary bandit problem is totally defined by a pair of two prob-
abilities, (PA, PB) = (P̃ (q|p), P̃ (q|p̄)). We generated the problems as follows.

P̃ (q|p) = Σn
i=1rndi/n (13)
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where rndi is a uniform random number from [0, 1]. We fix the parameter n
controlling the variance to 6. P (q|p̄) is determined in the same fashion.

Index. As the index for the performance of the models, we adopt the correct
rate, the percentage of choosing the optimal option o = argmax

o′∈{p,p̄}
P̃ (q|o′), that has

the highest win probability, in all 1, 000, 000 simulations.

3.2 Non-deterministic Models

Here we introduce some non-deterministic models for the bandit problems that
are standard in reinforcement learning.

Epsilon-Greedy Methods. There are three ways to enhance the effectivity of
initial search by probability.

– Epsilon-first (EF) method. Randomly choose an option in the initial n steps.
– Epsilon-constant (EC) method. Randomly choose an option at the constant

probability ε through the whole series of trials.
– Epsilon-decreasing (ED) method. ε in EC method gets decreased according

to a monotonously decreasing function. Here we define the function as

ε(t) = 0.5/(1.0 + τt). (14)

All the above methods, EF, EC and ED show a tradeoff that corresponds to the
exploration-exploitation dilemma, as shown in Figure 1-4. The parameters for
the methods are n for EF, ε for EC, and τ for ED.

Softmax Method (SM). The softmax action selection rule has a different way
to manage the action values calculated by probabilistic formulae. It determines
the probability of choosing an option according to the following formula that
uses the Gibbs distribution:

P̂ (q|r) =
exp(M(q|r)/τ)

Σs∈{p,p̄}exp(M(q|s)/τ)
, ∀r ∈ {p, p̄}. (15)

Note that P̂ (q|p) is the probability of choosing the option p, not like other meth-
ods that compare M(q|r) for all r in argmax function. τ is temperature.

3.3 Results and Discussion

Among five causal models in Table 5, LS performs the best, with RS just slightly
worse, with the greedy method. CP and DP give the same result and DH
chooses the optimal option at the 15th and 2000th step with the same percentage
55%. CP , LS and RS are employed in the probabilistic methods. The result by
ED method in Figure 1 most prominently show the trade-off between the initial
(short-term) and the final (long-term) rewards. The average correct rate of CP ,
LS and RS by the non-probabilistic greedy method are plotted as well. The
parameter τ is moved in {0.01, ..., 1.5} (21 variations). The arrow direction means
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Fig. 1. Epsilon-decreasing method
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Fig. 2. Epsilon-constant method
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Fig. 3. Epsilon-first method
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Fig. 4. Softmax method

the increase of τ . Infinitely large τ conforms ED to the greedy method. The
change of the method from greedy to ED does not enhance the performance of
LS and RS. It means that they deterministically prosecute the optimal balancing
of exploitation and exploration. Other methods, EC, EF and SM are shown
in Figure 2, 3 and 4. As for the parameters, ε ∈ {0.01, ..., 0.25}(11) for EC,
n ∈ {1, ...120}(21) for EF, and τ ∈ {0.002, ..., 0.1}(21) for SM.

4 Concluding Remarks

We have introduced a causal inference model, LS, and shown its descriptive
validity for human causal induction. The model, when applied to reinforcement
learning tasks, has shown its optimal nature. Although we here limited the test-
ing framework elementary one to make the result general, it is easy to generalize.
The reward was restricted to binary values: win or lose, but it can be given from
a distribution. Some generalizations of LS toward another directions can be ex-
ecuted. Preserving the ground-invariance, a LS formula for n candidate causes
or options can be obtained [6]. For n options or causes, we can derive a formula
from the original LS with formal definition of probability. See Appendix.

LS formula can be applied to every area having use of conditional probability.
We can implement it in a multi-agent system and see what it changes. It might



A Loosely Symmetric Model of Cognition 245

show some characteristics that human society exclusively possesses. Because it
also loosely satisfies many important relations such as Bayes’ rule, we will be
able to utilize it in practical uses with Bayesian filter and so forth.
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Appendix

LS model considers only “two candidate causes” p and p̄. If there are n prior
events pi (i ∈ {1, 2, ..., n}), the contingency table becomes n×2 and the formula
is defined as follows, if we define ai = P (pi, q) and bi = P (pi, q̄):

LS(q|pi) =
ai + P (pi|q̄)(Σj �=ibj)

ai + P (pi|q̄)(Σj �=ibj) + bi + P (pi|q)(Σj �=iaj)
. (16)

There is yet another consistent generalization to n × m contingency table. [7]
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Abstract. Observations are an essential implicit component of the sim-
ulation based artificial-life (ALife) studies by which entities are identi-
fied and their behavior is observed to uncover higher-level “emergent”
phenomena. Building upon the axiomatic framework of Henz&Misra [2],
we analyze computational complexity bounds for the algorithmic imple-
mentation of an observation process for an automated discovery of the
life-like entities in arbitrary ALife models. Among other results of such
analysis is the conclusion that the problem of entity recognition in a sim-
ulation using syntactic constraints is a NP-hard problem and therefore
cannot always be solved in polynomial number of steps. The computa-
tional complexity bounds are established distinguishing further between
those ALife models which allow entities with overlapping structures to
coexist in a state and others which do not.

1 Background

The very identification of life is still an existential problem in ALife studies since
in general there is no known method to decide beforehand the kind of entities,
which might emerge demonstrating non-trivial life-like behavior, without closely
observing the simulations. An important aspect where ALife studies demand in-
creasing focus is the automated discovery of life-forms and their dynamics in the
simulated environments. Since ALife studies mostly involve digitized universes
and their simulations, it is actually desirable to explore by algorithmic means
potentially varied possibilities which these simulations hold yet usually require
such detailed observations that it may not always be feasible to carry out for hu-
man observers alone. Such an automated discovery of life-forms and the evolving
dynamics may bring much promise in ALife studies as compared to what could
possibly be achieved only with manually controlled observations. An example of
such an automated discovery is discussed by Samaya in [1]. In order to identify
the living loops in his CA model, another “Observer CA” system is designed
and embedded within the original CA simulator software. The observer CA can
perform complex image processing operations on the input configuration given
to it by the simulator CA to automatically identify the living loops of different
types.
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However, because of its implicit nature and the multitude of ALife mod-
els, a precise characterization of the observation process is generally a difficult
problem. Importantly any sufficiently generic framework for studying the ob-
servational processes needs to be defined independent of the low-level micro
dynamics or the “physical laws” of the underlying universe of any specific ALife
model and should permit the study of higher-level observationally “emergent”
phenomena. Initial attempt in this direction appeared in [2]. The central idea
proposed there in is a high level formal axiomatic characterization of the obser-
vational processes, which leads to abstractions on the model universe, which are
consequently used for establishing the necessary elements and the level of life-like
behavior in the model. With a focus on the problem of entity recognition, in this
work we extend that axiomatic framework and derive results on computational
complexity theoretic analysis of the observational processes.

The paper is organized as follows: In Section 2, we will review the framework
followed by computational complexity theoretic analysis in Section 3. Section 4
presents further discussion and pointers for future research.

2 The Framework

Preliminaries: Apart from usual set theoretic notations e.g., \ (set difference),
P (power set), � (partial function), �→ (total function), following notation from
first order logic [3] will be used: ∧ (and), ¬ (not), ⇒ (implication), ⇔ (iff), ∃
(existential quantifier), ∀ (universal quantifier), and |= (satisfies). Also concepts
from multiset theory [4] (e.g.,

⊎
(multiset join)) and the theory of computa-

tional complexity [5,6] (e.g., ‘big-Oh’ notation - O) would be used in the formal
exposition of the derived results. N+ is the set of positive integers.

2.1 The Formal Structure of the Framework

In this section we will review and extend the axiomatic framework presented
in [2]. We limit our attention to only those aspects which pertain to the problem
of entity recognition.

Axiom 1 (The Axiom of Observable Life). Life-like phenomena in a ALife
model exists only if it can be observed using its simulations. Ξ

Definition 1 (Observation Process). Obj : Γ �→ Π: An observation pro-
cess Obj is defined as a computable transformation from the underlying model
structure Γ = (Σ0, Σ, δ) to observer abstractions Π = (Absind, Absdep), where
Absind is the set of process independent abstractions and Absdep is the set of
process dependent abstractions. Ξ

Definition 2 (States). Σ: set of observed states of the model across simula-
tions. Ξ

Definition 3 (Observed Run). T : Σ � P(N+): An observed sequence of
states ordered with respect to the temporal progression of the model during its
simulation. Ξ
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N+ acts as a set of indexes for the states in the sequence. Since a state may
appear multiple times in a simulation, subsets of N+ are used to denote that.
Each such sequence represents one observed run of the model. We let ΣT denote
the set of states appearing in a specific run T .

Σ and a set of observed runs T 1, T 2, . . . thus define the underlying dynamic
structure of the model as a state machine Γ = (Σ0, Σ, δ) with respect to a given
observation process. Where

– Σ0 ⊆ Σ is the set of starting states, i.e., ∀s ∈ Σ0.∃Ti such that Ti(s) = 0.
– δ ⊆ Σ × Σ is the transition relation between states, i.e., (s, s′) ∈ δ ⇔

∃Ti such that Ti(s′) = Ti(s) + 1.

2.2 Axioms of Entity Recognition

Observer Abstraction 1 (Entity Set). Es: Multiset of entities observed and
uniquely identified by the observer in a state s of the model for a given run T .
ET =

⊎
s∈ΣT

Es is the multiset of entities observed and uniquely identified by
the observer across the states in the given run T . Ξ

Defining a sound criterion to identify entities often requires a careful attention
since arbitrariness in defining entities might well lead to the problem of false
positives as discussed in [2]. “Tagging” can be used as a mechanism for the
identification of individual entities whenever there exist multiple entities in the
same state which are otherwise indistinguishable.

In general an observation process may recognize an entity in a state as a sub-
set of the observable atomic structures, that is, (structure of) an entity can be
defined as a subset of the state itself. Formally, Es ⊆ P(s). Notice that such a
subset based structural identification of entities also allows entities with over-
lapping sets of atomic elements. In such scenarios also application of additional
tagging is essential. Formally, Tagging : ET �→ ITag , where ITag is the set of
unique tags to be associated with the entities.

Also we have the following two axioms imposing consistency requirements
on the entity identification. First axiom states that every entity in a state is
uniquely identified. Second axiom states that the set of entities identified in
identical states should be the same.

Axiom 2 (Axiom of Unique Identification of Entities). An entity must be
uniquely identified in a given observed run T . Formally, Tagging is a one-to-one
function on states, that is, ∀s ∈ ΣT . ∀e, e′ ∈ Es. Tagging(e) = Tagging(e′) ⇒
e = e′. Ξ

Axiom 3 (Axiom of Unique Identification in States). If two states are
identical, i.e., consist of the identical multisets of atomic observable structures,
then an observer must identify the same multisets of entities in these states
irrespective of their temporal ordering in the observed run T . Formally, ∀s, s′ ∈
ΣT : s = s′ ⇒ Es = Es′ . Ξ
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Note that converse is not true, Es = Es′ �⇒ s = s′, i.e., an observer could also
identify identical multisets of entities in different states. This axiom may also be
considered as the soundness axiom for entity recognition.

Finally we have the following complementary completeness axiom for entity
recognition.

Axiom 4 (Axiom of non-Ignorance). It must not be true that an observer
omits identification of an entity in a state s but in a different state s′ identifies
it as consisting of the same atomic elements which were also available in s.

3 Computational Complexity of Entity Recognition

In this section, we will derive safe (though pessimistic) upper bounds on the
worst case time complexity to the problem of entitiy recognition for arbitrary
ALife models.

An important problem to be considered while providing estimates on the
computational complexities is that observed state progression during simulations
might not correspond to the actual underlying reaction semantics for a specific
entity. In other words observed states during simulations progress according to
the underlying updation rules for the model, which determine which subset of
entities would react in any state. Since an automated discovery of the updation
rules in not what is considered in this paper and automated discovery of entities
is considered to be independent of the underlying updation semantics, we assume
that all those entities, which are enabled to react in each state, are indeed allowed
to react. In cases where it is not true, an observation process could be assumed
to store state subsequences of certain finite lengths where all (or most of) the
enabled entities have been observed to react and then merges all those states
in a subsequence into a single meta state, which would reflect the effect that
most of those entities which could react in the initial state have indeed reacted.
However, which of the entities will react and the outcomes is still determined by
the underlying updation rules and to be followed by observation process as well.

In general, an automated (algorithmic) discovery of entities with life-like be-
havior in arbitrary simulation models is a non trivial problem. Currently most
of the ALife studies either depend upon the researchers to identify the entities
of interest (e.g., using geometric features) or the models are built using pre-
determined entities (e.g., programs, λ expressions etc). Difficulty arises owing to
the fact that in a state s of size n, total possible entity sets Es ⊆ P(s) could
be as large as 22n

in case where entities may have overlapping structures or in
case where entities do not have overlapping structures it could be in the range
[Pn,Bn] [7], where Pn is the nth Partition number denoting the number of par-
titions of an integer n and Bn is the nth Bell number denoting the number of
partitions of a set (not multiset) with n elements. Both these estimates become
very large even for small values of n. Therefore, in absence of the knowledge
of the underlying reaction semantics of the model, searching a specific entity
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set from these super exponentially many possibilities may require large amount
of computational resources. Even before a search for such an entity set can be
performed, algorithmically determining the criterion to select the entities based
upon their characteristics is itself a difficult problem.

Therefore we consider the case of expert guided semi automated discovery of
entity sets, which requires an ALife researcher to a priori define the criterion,
which possible entities in the model may satisfy. Actual discovery of these entities
which satisfy such criterion may then be performed algorithmically. For example,
the “Observer CA” system designed to automatically extract living loops in the
Sayama’s model [1] is based upon the fact that the set of living loops of type
n would consist of all the subsets of non-quiescent CA cells that contain an
open square made of sheath ‘2’ and signal ‘3’ whose edges are n sites long.
Interestingly, the no free lunch theorems in search [8,9] indicate that such expert
assisted discovery could be algorithmically much more efficient than a search
without any prior knowledge of the object-model.

We next present a result on time complexity requirement for such an expert
assisted discovery of entities in a representative abstract model by reducing the
problem of entity recognition into the problem of logical formula satisfiability
checking.

3.1 Computational Complexity of Entity Recognition Using
Syntactic Constraints

Let us assume that the distinct atomic structures in the model can be represented
as the alphabets collected in X = {a1, a2, . . . , al}. A state s ∈ ΣT would be
expressed as a multiset over X . Entities in s would thus be the multisubsets of
s comprising of these alphabets. These entities can indeed be encoded as binary
strings of size n = s(a1) + s(a2) + . . . + s(al), where first block of size s(a1) bits
is for the alphabet a1 and so on such that if an entity e is encoded as a binary
string b1 . . . bs(a1) . . . bs(a1)+s(a2) . . . bn, then bi = 1 when kth copy of aj is in e

and bi = 0 when it is not, where i = k +
∑j−1

z=1 s(az).
Since the process of recognition of an entity can also be considered as a se-

quence of the choices made on the atomic structures as to whether they are in the
entity or not, we can consider the expert given criterion guiding these choices as
a boolean formula F on the variables {b1, . . . , bn}. Thus an entity set Es would
consist of those entities which satisfy F , i.e., if e ∈ Es then e |= F . With the well
known results in the theory of computational complexity we know that checking
the satisfiability of a boolean formula is NP-hard [5], and currently there is no
known algorithm which can exactly solve it always in polynomial number of time
steps. Therefore we have the following result, which is proved using the reduction
method, often used in proving such claims.

Theorem 1. The problem of entity recognition using structural (syntactic) con-
straints is NP-hard.
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Proof. For the purpose of reduction, we consider the 3 SAT problem, which was
among the first problems to be demonstrated in the class NP-Hard1 [10]. For
reduction any instance of 3-SAT problem would be reduced into an instance of
an expert guided entity recognition the following way:

Consider a 3 SAT formula f in conjunctive normal form over the Boolean
variables X = {b1, . . . , bn} and their negations X̄ = {b̄1, . . . , b̄n}. For translation
into an instance of expert guided entity recognition, the set of the variables X
gives rise to a set of atomic structures, such that there exists exactly one unique
atomic structure corresponding to each variable in X . The formula f is considered
as it is as a Boolean structural constraint - F ≡ f - such that presence of a
negated variable b̄i in a clause is interpreted as forcing the absence of the atomic
structure corresponding to the true variable bi. Conjunction and disjunction
also have natural interpretations of ‘include both’ and ‘include either’. Hence
each recognized entity represented as a subset of the atomic structures by the
observation process following the constraint f would correspond to a solution of
the original 3 SAT formula in the sense that if an atomic structure corresponding
to the variable bi is present in the recognized entity, then that variable needs to
be set to 1 in the corresponding solution and if it is not present then it needs
to be set to 0, e.g., if an recognized entity is {b1, b3, . . . , bn−1}, corresponding
solution vector would be 1010 . . .10. It is clear that f is satisfiable if and only if
there exist at least one entity which can be recognized as satisfying the structural
constraint F .

This reduction proves that the problem of entity recognition using structural
(syntactic) constraints is as hard as the 3 SAT problem, which is known to be a
NP-hard problem. Therefore the problem of entity recognition using structural
constraints is also NP-hard. Ξ

Let us also consider the case, where entities do not have overlapping structures.
In that case, the entity set Es would be a partition of a subset of s. However this
constraint cannot be formalized only as a (Boolean) formula over the variables
{b1, . . . , bn} alone and instead needs to be specified over the solution space of
F . Formally, it can be stated as a first order formula: ∀e, e′ ∈ Es ⇒ [e, e′ |=
F ] ∧ [∀i.¬(e[i] ∧ e′[i])], where e[i] is the ith bit of the bit string representing
entity e and the clause [∀i.¬(e[i]∧ e′[i])] specifies that no two entities e, e′ in Es

can share any of the atomic structures.
Since in order to satisfy this constraint, it would require as a prior step to

identify the entities as per the given constraint F , computational complexity
of generating the entity set would be no less than the what is specified in the
theorem 1 for the case of overlapping entities. In the worst case, when an initial
entity set Es might consist of all the 2n subsets of s (without the constraint of
non-overlap), checking the clause [∀i.¬(e[i]∧e′[i])] may require searching though
all these entities (as strings) to see if the ith bit is not set to 1 in more than one
string and whenever this is so, arbitrarily selecting only one of these entities in
the final set. This gives an upper bound of O(2n) + O(n2n) = O(n2n).

1 Actually NP-Complete.
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However, in practice, we may not define such boolean constraint F as a cri-
terion for entity recognition and instead may use more sophisticated and well
expressed constraints using higher level programming languages. This leads to a
much larger question as to what extent checking the presence of entities which
may satisfy these criterion is feasible and how much computational resources
are required for answering that. The corresponding formula satisfiability prob-
lems have been well studied for long in the fields of computability theory and
mathematical logic [11]. For example, currently known techniques for syntactic
pattern recognition [12, chapter 1] use regular, context free, context sensitive,
tree, graph, shape, and matrix grammars to specify the structural constraints
for the objects to be recognized.

3.2 Computational Complexity of Entity Recognition Using
Semantic and Statistical Constraints

A natural question which may occur to the reader at this point is that structural
constraints are possibly not always the right criterion to select the set of enti-
ties in ALife models. Often characteristics of the life-like behavior are expected
to be exhibited on semantic level by entities, e.g., reproduction, autopoisis etc.
However algorithmically deciding these semantic constraints would require much
more computational resources then the relatively simpler syntactic criterion ana-
lyzed above. The reason for this is that the identification of entities which satisfy
certain semantic constraints inevitably requires larger search space of entities to
explore. Consider for example, “reproduction” as a criterion for selecting the
entities in a state. Since the very determination of the fact that an entity e
in a state would reproduce would require observations in the future states, the
observation process needs to assume all possible entities in the current state as
potentially reproducing entities and hence would require at least O(2n) steps as
estimated above. Furthermore even if an entity is not reproducing in a specific
state, it does not preclude the possibility that it would reproduce in some fu-
ture state. This increases the resource requirements for the observation process
much further and precise estimates are usually controlled by the actual semantic
criteria at hand.

A third kind of criterion which may also be used sometimes to select an entity
set is the statistical criterion. Statistical constraints over the possible entities in a
single state is relatively less resource centric and would possibly only require lin-
ear increment over the syntactic constraints. However statistical constraints over
a sequence of states may be as challenging as the semantic criterion discussed
above. Indeed, in some sense statistical constraints could also be considered as
semantic criterion but over a population of (potentially) identifiable entities.
For example a criterion specifying the conservation of certain statistical prop-
erties of population of entities would demand adequate resources to consider
many possible sets of entities over a sufficiently long sequence of states. Heredity
and natural selection are important examples of statistical criterion to establish
life-like evolutionary behavior [2].
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4 Conclusion and Further Work

In this work, we defined an inference process specifying necessary conditions,
as axioms, which must be satisfied by the outcomes of observations made upon
the model universe in order to infer the presence of entities satisfying the pre-
specified constraints. Computational complexity theoretic analysis of the expert
guided entity recognition reveals that an automated discovery of life-like entities
could be computationally intensive in practice and techniques from the fields of
pattern recognition and machine learning in general can be of significant use for
such purposes.

The work can can be further extended in several interesting directions, includ-
ing the following: As an immediate next step the framework could be extended
to include an algorithmic discovery of the emergent evolutionary behavior by
the population of observed entities and its associated computational complexity
theoretic analysis. Associated computational complexity analysis can be fur-
ther refined and strengthened by considering specific classes of models for which
most of the parameters have precise bounds compared to the generic analysis
presented in this paper.
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Abstract. One of the goals of artificial life in the arts is to develop
systems that exhibit creativity. We argue that creativity per se is a con-
fusing goal for artificial life systems because of the complexity of the
relationship between the system, its designers and users, and the cre-
ative domain. We analyse this confusion in terms of factors affecting
individual human motivation in the arts, and the methods used to mea-
sure the success of artificial creative systems. We argue that an attempt
to understand creative agency as a common thread in nature, human
culture, human individuals and computational systems is a necessary
step towards a better understanding of computational creativity. We de-
fine creative agency with respect to existing theories of creativity and
consider human creative agency in terms of human social behaviour. We
then propose how creative agency can be used to analyse the creativity
of computational systems in artistic domains.

1 Introduction

Both artificial intelligence (AI) and artificial life (Alife) have been used to study
artistic creativity and to create new forms of art. Traditionally, AI has focused
on the artificial simulation of human intellectual capacities, whereas Alife takes
its inspiration from the creative power of nature through processes such as self-
organisation, natural selection and autonomy. The study of Alife therefore holds
special significance for the arts due to its inherent concern with creativity beyond
human agency, paying special attention to systems that exhibit the emergence of
new, higher-level primitives in a system de novo [1]. Despite these differences of
focus, in both approaches artificial creativity is a commonly stated goal, whether
represented as a means for better understanding human creativity, creativity in
general, or towards new systems for artists. But although the intent is clear, a
perspicuous definition of this goal or means of objective measurement remains
conspicuously hazy. As Saari and Saari put it, “Creativity is fascinating! We
know so much about the topic without having the slightest idea what it is”
[2, p. 79].

Our motivation is a lack of focus on agency in the literature on creativity. We
argue that a better understanding of creative agency will help clarify the goals
of achieving creative behaviour in computational systems.
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2 Defining Creative Agency

A typical definition of creativity (e.g. [3]) is as follows:

Definition 1. A system is creative if it produces novel and valuable (appropri-
ate, useful) output.

Understandably, the novelty and value of the output of a system have been
predominant areas of interest in the literature on creativity. In this paper we turn
to the process of production itself: the relationship between subject (the system)
and object (the output). We address this relationship in terms of what we call
creative agency: the extent to which the subject is responsible for producing the
object.

Definition 2. The creative agency of a system is the degree to which it is re-
sponsible for a creative output.

Identifying creative agency therefore involves the (apparently subjective) evalu-
ation of responsibility. It is not the output itself that we are interested in, but
the creativity invested in the output, in other words, the intangible qualities of
novelty and value. Thus a master artist could employ skilled students to create
a work, not once touch the work, but still be attributed with the creative agency
associated with the production. By the same reasoning, a wealthy patron com-
missioning such a work could take some credit for making the work come about,
but their choice to employ a reputed artist would be to borrow already existing
creativity.

In computational creativity, the problem of creative agency is often taken as
being of secondary importance to the novelty and value of the output produced
by a system. A lack of attention to the nature of creative agency is common
when discussing creativity in humans, because it is generally taken as given that
humans are the only kind of creative agent we need consider. In the case of
computational creativity, however, this can be a source of opacity, since we can-
not directly translate the notion of creative production that applies to humans
straight onto computational systems. Computational systems have a completely
different relationship to their environments from people. Not least, they are in-
variably brought into the world by human design. By highlighting this relation-
ship, computational creativity throws into light the problem of creative agency
not only in computational systems, but also in human and natural systems.

With respect to creative agency, systems that exhibit a low degree of creative
agency make a smaller genuine contribution to the novelty and value of the
output they are involved in producing; in such cases the creative agency should
instead be attributed to the designer of the system. A system that has a high
degree of creative agency, on the other hand, should have a greater claim to the
novelty or value identified in any output produced by that system. If the output
is indeed novel and valued (to be determined separately) then by virtue of its
greater contribution to that output, the system itself can be deemed creative.
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In short: novelty and value that cannot be attributed in some measure to the
computational system should have no weight in supporting claims about the
creativity of that system.

We can think of the assignment of creative agency to computational systems
as akin to assigning royalties to a collection of artists who collaborated on a
creative work – the greater their original contribution to the the output, the
higher the attribution of creative agency.

A simplified representation of the problem of creative agency is shown in
Figure 1. Agency and creativity are placed on distinct axes (without necessarily
implying that they are independent), and we consider two hypothetical compu-
tational systems. System A has a high degree of agency but does not produce
particularly novel or valuable output, whereas System B’s output is highly novel
and valuable even though the system itself is not particularly responsible for the
creativity of that output. The diagonal line represents a hypothesised limit of
current systems. At present, designers of computationally creative systems are
forced to find compromises between systems of type A and systems of type B,
but one of the ultimate goals of computational creativity is to find systems that
exhibit the agency of System A, but with true creative output as in System B.

A
ge

nc
y

Creativity

System A

System B

current lim
it between agency and creativity

Target

Fig. 1. Graph representing a hypothesised limit to the combination of agency and
creativity in current computationally creative systems

3 A Layered View of Traditional Dimensions of
Creativity

The human species is eminently capable of introducing novel structures into
the world, and the same is patently true of nature. Since we would not expect
to identify the creative agency of nature in the random mutations of genetic
variation, it would be reasonable to suspect that the creative agency of culture
as a whole is greater than the sum of the creative agencies of individual humans.
A number of contemporary trends in human evolutionary theory have expounded
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this argument. Meme theory, for example, proposes that cultural behaviour can
be explained in terms equivalent to genetic theory, by positing the meme as an
abstract cultural replicator [4].

This points to the need for a multi-layered model of creativity that unifies in-
dividual creativity with super-individual cultural processes responsible for driv-
ing the emergence of creative domains themselves. The need for distinguishing
creativity on different levels is also driven at the sub-individual level by the per-
spective in cognitive science typified by Andy Clark’s Extended Mind hypothesis,
which postulates that cultural artefacts offer cognitive cybernetic enhancement
[5]. According to this point of view human creative agency is already a highly
distributed network of elements with human brains at the centre (for the time
being). This distributed model complements the point of view that the brain
itself is a distributed set of functional units, as typified by the Swiss Army-knife
model of mental modularity, proposed by Barkow, Cosmides and Tooby [6].

For the creativity theorist Csikszentmihalyi, the problem of defining value in
the attribution of creativity necessitates a view centred on the embeddedness of
individuals within creative domains:

There is no way to know whether a thought is new except with reference
to some standards, and there is no way to tell whether it is valuable
until it passes social evaluation. Therefore, creativity does not happen
inside people’s heads, but in the interaction between a person’s thoughts
and a sociocultural context. It is a systemic rather than an individual
phenomenon. [7, p.23]

Csikszentmihalyi therefore defines a creative person as “someone whose thoughts
or actions change a domain, or establish a new domain” (p28). Since modifying
a domain influences the way that domain will respond to future potential cre-
ativity, individual and domain are strongly interdependent. Csikszentmihalyi’s
characterisation of the relationship between individual and domain extends nat-
urally to a general relationship between creative agency at different levels, that
has an unmistakably Darwinian, or perhaps more appropriately ecosystemic,
feel. The creativity of certain individuals is determined by processes occurring
at a higher level (the creative domain), mediated by the generation of a system
of value. This is Darwinian in that a higher level process selectively filters ele-
ments being produced and reproduced at lower levels. The system of value, like
the Darwinian concept of fitness, is implicit and mostly revealed in hindsight.

Novelty itself must also be seen as domain specific if it is to have any
non-trivial meaning. Trivially, everything that is different is novel. It is less
trivial, and far more meaningful, to measure the degree of novelty of things. But
measurement occurs in a metric space, and metric spaces are not real things, but
are constructed by perceiving agents. This is not a problem for creativity per se:
novelty is our evidence for creativity, but creative systems don’t need to recog-
nise novelty to be creative. This suggests that novelty-seeking alone may have
little functional utility. Some human cultures, such as Western industrialised
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society, seem to have fostered neophilia, forging an inherent link between novelty
and value. It is not self-evident that this has any functional utility, however [8].

Boden discusses the cognitive requirements for humans to find new ways to
achieve goals, distinguishing between three kinds of creative process: combina-
torial creativity is the combination of existing elements to create new elements;
exploratory creativity is search through an existing conceptual space; and trans-
formational creativity is the transformation of an existing conceptual space. A
problem for the precise application of Boden’s theoretical work has been the for-
mulation of what these conceptual spaces actually are [9], particularly with re-
spect to understanding how transformational creativity differs from exploratory
creativity [9,10]. Viewing creativity at multiple levels allows us to hypothesise
that transformational creativity is really a process occurring at the higher cul-
tural level, for example in the way described by Kuhn in his theory of scientific
revolutions [11], and that value (which itself can be emergent) is the means by
which the products of lower level creative acts are shunted up to higher levels.

4 Categorising Agency in Computational Creativity

The multilevel approach to creativity helps to identify three distinct ways in
which computational systems can exhibit creative agency. The first is by ac-
tively contributing to, and enhancing, the creative agency of individual humans,
as an active component in a distributed creative process. Most computationally
creative systems to date fit this category, although they may be at odds with
their designers’ original goals of establishing human-like creativity. This adheres
to the extended mind perspective that our individual creativity is already highly
distributed and enhanced by cultural artefacts, some of which may be computa-
tional systems performing complex tasks. We already use computers creatively,
but their role in our individual creativity is creeping towards an increasingly
active status. Programs like Cohen’s Aaron [12], and the general increase in
popularity of generative art demonstrate how this shift is taking place.

Disappointingly, the predominant tool of Alife-based art – the interactive
genetic algorithm (IGA) [13] – has had limited success as a tool for enhancing
creativity. The IGA aims at fixing the problem of formally defining complex
human aesthetic preferences by letting humans take the place of the fitness
function, but this arguably leads to a poor creative partnership where both user
and algorithm assume roles of little creative agency. The genetic algorithm is
passive in that it relies on the user for the crucial step of selection, but the user
is rendered passive by being unable to control the long-term course of evolution or
the underlying structure of the developmental process. Nevertheless, interactive
genetic algorithms are beginning to emerge in commercially available creative
software where their use makes sense. Dahlstedt’s Mutasynth, for example, assists
a user to search a vast space of possible synthesiser sounds using an IGA with
visual representation of synthesis parameter space [14]. Anyone who has played
with a synthesiser will be familiar with the mild sensation of blind search already
inherent the mapping from parameters to sounds.
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The second approach is to consider how computational systems can fit into ex-
isting processes at the higher cultural level. These systems need to identify how
individual interactions lead to social structures and cause cultural change. Pock-
ets of research have been conducted in this area, spanning a variety of disciplines.
The DrawBots project [15] attempted to accentuate the social construction of a
robotic art system’s creative agency as far as possible by allowing its creations
to be exhibited in an art gallery without human intervention, illustrating the
potentially vast variety of ways creative agents might manipulate creative do-
mains. This includes the potential circularity that perhaps the legitimisation of
the art gallery is enough to make the work acceptable to a receptive audience.
That said, if, in hindsight, the robot did have an impact on its creative domain
in this way, the sticky problem is that the agency of this particular act (putting
the work into the gallery) falls yet again to the human agent that curated the
event.

Romero, Machado and Santos’ ongoing Hybrid Society project aims to build
a virtual social system coinhabited by human and computer artists, all operat-
ing as both producers and critics and interacting in social networks such that
the real artistic value systems of the humans influence the world of the artificial
agents [16]. In principle, in such an environment (as with DrawBots), agents may
potentially influence the creative domain of human participants. By Csikszent-
mihalyi’s definition, nothing could provide a better indication of creative agency
than this.

Earlier Alife style models, based completely in silico (e.g. [17,18,19]) have
already established the potential of exploring basic cultural or bio-cultural dy-
namics using multi-agent systems, yet it is hard to ground those dynamics in
a way that produces anything we would recognise as creative (novel, yes, but
of any aesthetic interest, no!). This overlaps smoothly with our third suggested
approach, which is to work out how to exploit the creative potential already
under investigation in in silico research in Alife, but in artistic domains. A pi-
oneering example of such research is the Italian composer Agostino di Scipio’s
musical performances, which work by building sonic ecosystems that transform
the latent sound of the performance space into musical works using a series of
complex variations on the process of audio feedback [20]. Di Scipio’s insight is
to begin with the medium that he is interested in, and construct complex net-
works of processes within that domain (sound itself). In other artistic domains,
elements from Alife can be used more literally, such as Jon McCormack’s in-
stallation, Eden, which presents a population of artificial learning agents whose
environment is ‘fed’ by the presence of audience members, who are lured to stay
in the installation space by the agent’s ability to create interesting music [21].
Eden creates an evolving symbiotic relation between the audience and artificial
agents. In these domains, creative emergence can occur that is inherent to the
environment defined by the work, and as such, the works do achieve an internal
creative agency, without conflicting with the creative achievements of the artists
involved in making them. However, this internal creative agency only becomes of
interest when it is sufficiently coupled to the creative domain in which it exists.
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5 Conclusion

In this paper, we have argued, for purely practical reasons of evaluation, the
need to consider the creative agency of systems that are involved in producing
a creative output. Although we believe that this focus will help to clarify the
goals of computational creativity and the potential role of Alife in this domain,
our contribution does not take the form of a mathematical definition of creative
agency which could be easily applied by researchers to various creative systems.
Instead, it appears necessary that assigning creative agency will continue to be
a subjective matter based on disparate evidence. Our goal has been to attempt
to form an appropriate perspective with which to simultaneously view creative
processes in nature, human culture, individual human behaviour and existing
computationally creative systems. We have argued for a perspective that recog-
nises creative agency and the role of value in mediating between levels in a
hierarchy of creative processes. This replaces the dominance of the human indi-
vidual as the exemplary creative agent with a more distributed set of interacting
elements into which computational systems can more easily situate themselves.
We propose that this clarifies the potential creative role of Alife systems in the
cultural domain of the arts. Such a perspective can ultimately lend itself to more
detailed numerical analysis of creativity, however, further discussion combining
sociological, philosophical and Alife-based reasoning will be needed before this
can be achieved.
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Abstract. Is a competitive free market the most efficient way to equally 
allocate rare resources among economical agents ? Many economists tend to 
think it is the case. This paper presents a preliminary attempt through a very 
Alife like model to tackle this question. Agents which are alternatively 
producer, seller, buyer and consumer participate in a free market to increase 
their welfare. The simulation is organized and presented in a UML class 
diagram and two types of economy, competitive and distributive, are compared.  

Keywords: Artificial economy, agent-based model, OO software, competitive 
vs distributive.  

1   Introduction 

The dramatic economical crisis occurring these days raises an intense and 
controversial discussion about the possibility for the market economy to self-regulate 
(stabilizing the prices) while, in the same time, ensuring the most equalitarian 
distribution of wealth among the agents involved in this market. Disciples of Adam 
Smith’s doctrine of the invisible hand and famous historical advocates of competitive 
free market, such as Friedrich Von Hayek, Milton Friedman and so many others, have 
always seen in this type of decentralized and self-organized economical exchanges 
between agents the most efficient way to equally allocate rare resources among them. 
Many mechanisms such as “the parallel interactions among simple agents (since just 
motivated by profit)”, “the reactivity of these agents through the stigmergic effect of 
price - buying less when prices increases and pushing price to decrease by selling 
more”, “the self-organized stabilization of prices which equilibrate supplies and 
demands”,  testify of the clear connections existing between the sort of computational 
modeling popular in Alife and the working of free markets. As a matter of fact, John 
Holland was among the authors of a 15 years old paper entitled “Artificial Economic 
Life: A Simple Model for a Stockmarket” [1] where they state in the introduction: 
“This stockmarket model may also be seen as a case-study in artificial life; from a 
random soup of simple rules an intelligent system spontaneously arises…”. 

Many agent-based models [1-5] have been developed and run to illustrate or deny 
the capacity of free markets, in which seller and buyer agents compete to sell and buy 
their goods, to spontaneously converge to stable prices which balance the demand 
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against the supplies rather than having the prices largely fluctuating. The purpose of 
the simplistic model presented in this paper is different. It rather questions the 
capacity of free-market to equally distribute the wealth among the agents as a function 
of the nature of the economical interaction: distributive vs competitive. So the 
emphasis is rather on the “competitive” nature of the economy instead of its capacity 
to stabilize price. How a competitive system which is supposed to install inequality 
among the agents by promoting the winners could by chance equally distribute the 
wealth ? While free markets per se do not obligatory require the existence of 
competition among agents, this competition seems inherent to the nature of the law of 
supply and demand which rules the dynamics of these markets. As a result of this 
competition among agents, the price of a rare product to acquire should increase, 
limiting the buyers, and the price of an abundant product to sell decrease, favoring 
performant sellers.   

The next chapter will describe the main classes of the object oriented free market 
simulation presented in this paper. The following one will differentiate the two styles 
of economy to be compared: competitive (where the product to buy goes to the most 
offering agent) vs distributive (where the selection of the buyers to satisfy is done in a 
random way). The final one will present some preliminary results where the wealth 
among the agents, after many simulation steps of economical exchanges, will be 
compared for the two types of economy and as a function of the quantity and diversity 
of available products i.e. the strength of the potential competition. As usual with Alife 
models, the simulation presented here is not intended to depict any precise reality but 
has to be construed as a software thought experiment, the conception and the 
execution of virtual worlds helping to understand in outlines the behavior of a 
caricatured reality.  

2   The Object-Oriented Agent-Based Toy Model 

The model can’t be better explained than by decorticating the UML class diagram 
represented in figure 1. Eleven classes need to be sketched. The class “Resource” is 
described by its quantity and its scarcity. These same resources will also serve to 
characterize the tastes and skills of the economical agents. Any product to be 
exchanged is composed of a certain quantity of some of these resources. The more the 
resources the more the different products that can be built out of them. The initial 
quantity of a resource is inversely related to its scarcity. The class “Product” 
describes a product indeed as a random composition of a random quantity of some of 
these resources. It is thus possible to compute how well a product satisfies a consumer 
by computing its welfare as a mapping between the nature of the agent’s tastes and 
the composition of the product. Additionally, the basic fabrication price of a product 
can be deduced as a function of its composition.  

The main actor of the program is depicted by the class “Agent”, characterized by its 
welfare, its tastes, its skills (both expressed as a random vector of resources), and the 
quantity of money at its disposal. At each agent are associated four classes of 
behavior: “Consumer”, “Producer”, “Buyer” and “Seller”. The consumer possesses a 
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certain number of products each with its respective quantity. At each consumption, 
the associated agent’s welfare increases as a result of the mapping between its tastes 
and the product being consumed. At every time step, this welfare decreases by one 
unity. The producer constructs a certain quantity of products. The product to be 
constructed can be determined either randomly (but with a low frequency) and more 
often based on the knowledge of the market in a way to be described later. At any 
construction of new products, the resources which compose these products decrease 
in quantity as well as the money possessed by the agent spent for the production. The 
seller is just able to make a selling offer composed of the certain amount of the 
products in the possession of its associated producer. The price of the offer is based 
on the fabrication price plus a benefit which depends on the type of economy being 
practiced: either random in a distributive economy or inversely related to the money 
the agent possesses in a competitive economy. The richest competitive agent can sell 
this product at the lowest price.  

 

Fig. 1. The UML class diagram of the model with its eleven classes to be described in the text 
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The buyer also makes offer, but buying offers this time. The nature of the offer to 
be made depends on the current state of the market i.e. the current list of the selling 
offers (maintained in the blackboard as explained later). The buyer will first select in 
this list a selling offer the product of which corresponds the most to its tastes. Then, if 
rich enough, its offer will consist in the price of the selling offer plus a bid depending 
again on the nature of the practiced economy: random or proportional to its current 
money situation. In a competitive economy, the richest agent can make the highest 
offer for the same product.  

An instance of the class “Offer” is simply characterized by the product in 
question, the quantity proposed, the agent that makes that proposal and the proposed 
price (the price to sell in the case of a selling offer or to buy in the other case). The 
direction of the offer indicates if it is of a buying or selling type. The “Blackboard” 
class inspired by the work described in [4] just gives birth to one object which is 
composed of both the lists of the buying offers and of the selling offers (these two 
lists are limited in size in order to give priority to the most recent offers). The 
blackboard also maintains a list of the products currently exchanged in the market 
and designated as members of the class “ProductInTheMarket”. Each of its objects is 
associated with one given product, the maximum and minimum buying price that has 
been so far proposed for it as well as the maximum and minimum price it has been 
sold. It also maintains as attribute a first quantity obtained by summing all the 
buying offers that concerns it and a second one obtained by summing all the selling 
offers that equally concerns it. Based on these attributes, it is possible to compute the 
attractivity of a “ProductInTheMarket” as:  

attractivity = (buyQuantity*maxBuyPrice - sellQuantity*minSellPrice) 

Whenever a producer has to produce a new product, it will give its preference to the 
most attractive ones. Obviously, the fabrication price of this product will be related 
to the agent’s skills (cheaper in the case of numerous skills). In such a way (and like 
argued by any advocate of the economical “laissez-faire”), the market consists in the 
best and most reliable source of information, for instance for the producer to be 
informed on the most wanted products. The existence of this blackboard, impacted 
by the agents actions and exerting in turn an effect on the agents behavior, is what 
connects the most this model with the more biological Alife ones. Finally, the 
“Transaction” class is composed of two offers, the selling and the buying one. A 
transaction will be created out of the blackboard in a way to be described in the next 
chapter. If possible (if the buyer is still rich enough and the seller still in possession 
of the products to sell), the execution of any transaction will result in a money 
exchange between the buyer and the seller, in the buyer agent acquisition of the 
products and the corresponding seller agent loss of these same products. It will also 
provoke a decrease in both the selling and the buying quantity of the corresponding 
productInTheMarket.  

3   Distributive vs. Competitive Economy 

The figure 2 illustrating the constitution of the blackboard and the way a transaction 
can be created out of it should help to distinguish between the two types of economy. 
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The only possible transaction to create in a competitive economy will be the one 
that maximizes the profit made both by the buyer and the seller agents. Here it will be 
the one which, for a given product, maximizes the difference between the buying unit 
price and the selling unit price. So in the case of the two lists represented in the figure, 
the only possible transaction to execute will be: 
 

Transaction: Selling Offer 2 and Buying Offer 2.  
 

In a distributive economy, any transaction for which the buying price is superior to 
the selling price will go, so for instance a possible transaction selected randomly 
among many others could be: 
 

Transaction: Selling Offer 3 and Buying Offer 4.  

 
 Selling 
Offer 

Agent  Product  Quantity  Price  UnitPrice 

1 A P1 100 200 2 
2 B P2 50 100 2 
3 C P3 50 50 1 
4 
5 

A 
B 

P1 
P2 

25 
50 

100 
100 

4 
2 

 
Buying 
Offer 

Agent Product Quantity Price UnitPrice 

1 A P1 50 150 3 
2 D P2 100 600 6 
3 B P1 25 100 4 
4 C P3 25 75 3 
5 B P3 100 300 3 

Fig. 2. The two lists of offers which compose the blackboard, above the selling list below the 
buying list 

Once a transaction selected, its execution will first see the two agents negotiating 
the unit price, here simply by cutting it in two. So, in the case of the transaction 
resulting from a competitive economy, the buying agent D will pay 200 for the 50 
units of the product P2. In the distributive case, the buying agent C will pay 50 for the 
25 units of the product P3.  

The competitive economy forces the agent to more aggressively sell and buy, as a 
function of their current richness since, acting this way, the chance of their offer to be 
selected is increased. A distributive economy, selecting the offers at random, allows 
the agents to just care for their benefits while selling, and to simply identify the most 
tasty products to acquire while buying.   
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4   Preliminary Results 

The simulation goes as follows. First 100 agents are created, each with the same 
amount of initial money and initial wellfare. The skills and tastes of each agent are 
determined at random as a subset of the resources to consume. Then to initiate the 
simulation, 50 agents selected randomly activate their “producer” and “seller” 
behaviors, selling the results of their productions. Finally, for a given amount of 
simulation steps, the agents (installed in an array of size 100 called “theAgents”) 
execute the following succession of instructions: 
 
foreach (Agent a in theAgents) { a.decreaseWellFare(1);} 
ra = ran.Next(0, theAgents.Length); 
theAgents[ra].actProduce(); 
ra = ran.Next(0, theAgents.Length); 
theAgents[ra].actSell(); 
ra = ran.Next(0, theAgents.Length); 
theAgents[ra].actBuy(); 
foreach (Agent a in theAgents) { a.actConsume(); } 
blackboard.operateCompetitiveTransaction(); 
// OR blackboard.operateRandomTransaction()           
// depending on the type of economy 
 
So successively, at each time step, an agent taken at random produces, then another 
one sells, another one buys and they all together consume. The selection of the 
transaction to operate is either done competitively or randomly. Two sets of 
simulation results will be now presented, comparing a competitive and a distributive 
economy for the exact same list of agents, first in the presence of only one resource 
(making the market more competitive) then for three resources.  

Figure 3 shows the result for the one-resource case.  
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Fig. 3. Comparative results for the one-resource case 

The average welfare of the 100 agents turns out to be better in the random case, 
due to a more intense and distributive consumption of the resource. The figure 
illustrating the single resource consumption (the y axis is the remaining quantity) 
shows how the random economy entails a stronger consumption to give greater 
satisfaction to the agents.  
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Figure 4 shows the results in the three-resources case. 
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Fig. 4. Comparative results for the three-resources case 

The situation turns out to be different with the competitive agents presenting a 
better welfare in average (associated with a greater resource consumption) although, 
as can be seen in the last figure plotting the distribution of this welfare, the variance is 
much larger in the competitive case. This result tends to confirm what is well known 
in economy. In a situation with enough resources to share, a competitive and more 
stimulating economy drives in average to a better welfare, but at the expense also of a 
greater inequality. Two complementary results tend to explain this increase of welfare 
in the competitive case: a more important consumption of resources but, above all, a 
much larger increase in the price of the products (due to the competitive incentive, 
remember that richer agents will pay more and sell for cheap) and thus a much larger 
fluctuation in the quantity of money in the possession of the agents during these 
products exchange. Agents tend to alternate more between the richer and poorer 
situation and this better circulation of money allows more agents to consume more 
resources. However, again not so surprisingly, competition leads to a larger inequality 
than in the distributive case.  
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5   Conclusions 

This paper presents a very simple economical model which, although deliberately 
naïve (but not more naïve than the autopoietic cellular automaton or the game of life 
for illustrating biological processes), allows the appearance of interesting although not 
so unexpected collective outcome. The OO global architecture of the model should be 
robust enough to allow a lot of refinements and economical realism in the classes 
describing the agent’s different behaviors (the producer or the buyer for instance). 
However, it remains interesting to discover the incentive effect for the collectivity of 
a competitive economy, once the resources are in sufficient quantity (though this does 
not resolve the problem of inequality among the agents), and the benefit of a more 
distributive economy (alleviating from the competitive pressure) when the resources 
are much less diversified. Its organization and inherent dynamics makes it similar to 
many alife simulations in which, by acting, these simple agents modify their 
environment whose perception by the other agents impact in turn their future 
behavior.  

References 

1. Palmer, R.G., Arthur, W.B., Holland, J.H., Le Baron, B., Taylor, P.: Artificial Economic 
Life: A Simple model of a stockmarket. Physica D 75, 264–274 (1994) 

2. Derveeuw, J.: Market dynamics and agent behaviors: a computational approach. Artificial 
Economics 564, 15–27 (2005) 

3. Bouchaud, J.-P., Mézard, M.: Wealth condensation in a simple model of economy. Physica 
A 282 (2000) 

4. Derveeuw, J., Beaufils, B., Mathieu, P., Brandony, O.: Un modèle d’interaction réaliste 
pour la simulation de marchés financiers. In: Proceedings of the Quatrièmes Journées 
Francophones des modèles formels de l’interaction (2007) 

5. Ball, P.: Critical Mass. How one thing leads to another, 1st edn. Farrar, Straus and Giroux, 
New York (2004) 



Swarm Cognition and Artificial Life

Vito Trianni and Elio Tuci

Institute of Cognitive Sciences and Technologies (ISTC)
National Research Council (CNR), Rome, Italy
{vito.trianni,elio.tuci}@istc.cnr.it

http://laral.istc.cnr.it/{trianni,tuci}

Abstract. Swarm Cognition is the juxtaposition of two relatively un-
related concepts that evoke, on the one hand, the power of collective
behaviours displayed by natural swarms, and on the other hand the com-
plexity of cognitive processes in the vertebrate brain. Recently, scientists
from various disciplines suggest that, at a certain level of description, op-
erational principles used to account for the behaviour of natural swarms
may turn out to be extremely powerful tools to identify the neuroscien-
tific basis of cognition. In this paper, we review the most recent studies
in this direction, and propose an integration of Swarm Cognition with
Artificial Life, identifying a roadmap for a scientific and technological
breakthrough in Cognitive Sciences.

1 Introduction

What do ants and neurons have in common? A bit of reasoning reveals that they
share more than one would intuitively think. An ant is part of a colony, much as
a neuron is part of the brain. An ant cannot do much in isolation, but a colony is
a highly resilient adaptive system. Similarly, a neuron is individually able just of
limited interactions with other neurons, but the brain displays highly complex
cognitive processes. In other words, both ants and neurons behave/act in perfect
harmony with other conspecifics/cells to accomplish tasks that go beyond the
capability of a single individual. Self-organisation is the common mechanism
that allows simple units—e.g., ants and neurons—to display complex spatio-
temporal patterns. As a consequence, colony behaviour and cognitive processes
can be explained in terms of self-organising rules of interaction among the low-
level units and their environment. By describing the behaviour of ants, Aron
et al. recognise that “while no individual is aware of all the possible alternatives,
and no individual possesses an explicitly programmed solution, all together they
reach an ‘unconscious’ decision” [1]. This is particularly true also for neural
systems, where the relevance or the meaning of the self-organised pattern is not
found at the individual level, but at the collective one.

Recent work recognises this close relationship between brains and swarms
[2–4], giving birth to a novel approach in the study of collective intelligence and
computational neuroscience. This is the Swarm Cognition approach, which aims
at encompassing the above mentioned disciplines under a common theoretical
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and methodological framework. In this paper, we suggest that Artificial Life can
give an essential contribution to Swarm Cognition studies. In fact, by synthesis-
ing distributed models of cognitive processes through ALife techniques, it could
be possible to discover the underlying mechanisms common to swarms and to
the vertebrate brain.

In the following, we will outline the background of Swarm Cognition, identified
in studies of self-organising behaviours and in computational neuroscience (see
Section 2). We continue in Section 3 by reviewing two recent studies that belong
to Swarm Cognition, and we finally discuss how ALife can contribute in this
direction in Section 4. Section 5 concludes the paper.

2 Background

The foundations of Swarm Cognition has to be found in the study of self-
organising systems, particularly biological systems that can display cognitive
behaviour, which are treated in Section 2.1, and in computational models of
brain functions, discussed in Section 2.2.

2.1 Self-organisation in Biological Systems

Self-organising systems can be found in living and non-living matter. Self or-
ganisation refers to a spatio-temporal pattern (e.g., a collective behaviour or a
physical structure) that is not explicitly programmed in each individual compo-
nent of the system, but emerges from the numerous interactions between them.
Each component only follows simple individual rules, which are performed with
approximation on the basis of local information only, without any global map
or representation [5]. Self-organised behaviour has been demonstrated in real
biological societies, particularly in insects, but also in fish, birds and mammals,
including humans (for some recent reviews, see [5–8]).

The basic ingredients of self-organisation are often recognised in multiple in-
teractions, which generate positive and negative feedback mechanisms that allow
the system to amplify certain random fluctuations, and to control the evolu-
tion of a coherent spatio-temporal pattern. A self-organising system is therefore
able to achieve and sustain a certain spatio-temporal structure despite external
influences [5]. A slightly different view of self-organisation focuses on its dynam-
ical aspects, by describing the self-organising system as a complex dynamical
system close to a bifurcation point. This means that the system, upon varia-
tion of some control parameter—e.g., temperature or chemical concentration—
rapidly changes presenting new spatio-temporal patterns—e.g., a new type of
collective behaviour or physical structure. This latter view of self-organisation
is particularly relevant for Swarm Cognition studies. Indeed, it suggests that
decision-making processes can be seen as the result of a bifurcation of a complex
dynamical system. This system is formed by simple units that interact to produce
the global spatio-temporal pattern, which results in the self-organised decision.
There is clearly room to include in this definition also distributed processes that



272 V. Trianni and E. Tuci

take place in the vertebrate brain. Here, the system units are individual neurons
or neuronal assemblies, and the interactions are in form of inter-neuron commu-
nication. As we shall discuss in the next section, the dynamical and self-organised
aspects of cognition are recently acquiring more and more attention.

2.2 Computational Neuroscience

Modelling of brain regions is not a novel endeavour: a long research tradition
attempted to shed some light on the mechanisms at the basis of human reason-
ing, not without any success. Early in the mid fifties, Connectionism postulated
the use of artificial neural networks (ANNs) as tools to study cognitive phe-
nomena, without the need of knowledge representation, symbols and abstract
reasoning [9]. With the advent of Computational Neuroscience, researchers have
started to recognise the exquisitely dynamical traits of cognitive processes [10].
Dynamical systems theory is recently acquiring more and more attention in cog-
nitive sciences as it can give explanations of cognitive phenomena while they
unfold over time. Concepts like “attractor” and “bifurcation” start to be com-
monly used, and dynamical models are developed—just to name a few—to give
new answers to classic psychology debates such as the A-not-B error in infant
reaching [11], or to account for intrinsically dynamical processes such as inter-
limb coordination [12, 13]. To date, connectionist models are merged with the
dynamical systems approach, recognising that cognitive processes are the result
of a complex web of interactions in which both time-dependent and topologi-
cal factors play a crucial role. In [14], Deco et al. propose the study of brain
functional organisation at different space-time description levels, in order to
understand the fundamental mechanisms that underpin neural processes and re-
late these processes to neuroscience data. However, so far there has been only
limited room for holistic explanations of cognitive processes at different levels
of description. Neither the relation with embodiment and environmental inter-
actions has been thoroughly investigated. As we shall see in the following, the
Swarm Cognition approach, by drawing parallels between swarm behaviours and
the vertebrate brain, targets distributed processes in which cognitive units act in
interaction with their environment, therefore attempting an holistic explanation
of the phenomena under observation.

3 Case Studies: From Collective Intelligence to Cognition

Animal groups often display collective behaviours that allow to regulate the ac-
tivities of the group maintaining a coherent organisation. In [2], Couzin observes
that the dynamics of group behaviour show interesting similarities with those of
cognitive processes in the brain. Multistability, non-linear responses, positive and
negative feedback loops, population averaging and consensus decision-making
(winner-takes-all) are the ingredients of cognitive process both in animal groups
and in the brain. Recent studies argue that the massively parallel animal-to-
animal interactions which operationally explain collective processes of natural
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swarms are functionally similar to neuron-to-neuron communication which un-
derlie the cognitive abilities of living organisms, including humans [3, 4]. In this
section, we briefly review these studies highlighting the main features of Swarm
Cognition.

3.1 Swarm Cognition in Honey Bees

The nest site selection behaviour of honey bees Apis mellifera is the starting
point taken by Passino et al. for a comparison between the decision-making abil-
ities displayed by the swarm and the cognitive functions of primate brains [3].
Honey bees select a new nest site through a self-organising process, which is
mainly based on a positive feedback mechanism that differentially amplifies the
perceived quality of discovered nest sites. Scout bees explore the area surround-
ing the swarm in search of valuable sites. When they discover a potential nest
that has a supra-threshold perceived quality, they return to the nest and per-
form a waggle dance to recruit other scouts. The higher the perceived quality,
the longer the waggle dance, the stronger the recruitment. In this way, the differ-
ences between low quality nesting sites are amplified, allowing to quickly discard
poor sites in favour of the better ones. When a sufficient number of scouts has
been recruited to a nesting site (i.e., a quorum is reached), a second phase is
triggered that leads to the lift-off of the entire swarm.

It is important to notice that the selection of the best nest site is not per-
formed by individual bees that directly compare different options by visiting
different sites. Neither it is based on the comparison of different waggle dances.
The competition between sites is performed at the level of the group through
recruitment and quorum sensing, and not at the level of the individual bee. In
this respect, a strong parallelism with brain functions can be recognised. Scout
bees perform functions similar to individual neurons in the brain. Waggle dances
are analogous to action potentials, and the threshold in the estimated quality
of a discovered nest corresponds to the neuron activation threshold. The paral-
lelism between swarm and brain goes beyond these similarities, including lateral
inhibition, feature detection and attention. By developing a model of nest site
selection, tests have been performed to assess the discrimination abilities be-
tween different sites, as well as the ability of the swarm as a whole to discard
distractors and focus the attention on the highest quality site [3].

3.2 Decision-Making in Brains and Insect Colonies

The work of Marshall et al. [4] goes a step further. They again focus on nest
site selection in rock ants (Temnothorax albipennis) and in honey bees, and
show that it has the same properties of diffusion models used to characterise
decision-making in the cortex [15]. Diffusion models describe the accumulation
of evidences trough time during a decision-making process as a random walk with
normally distributed step size (Wiener process or Brownian motion), subject to
a constant drift toward the better choice. When a threshold is passed toward
one or the other alternative, the decision is taken.



274 V. Trianni and E. Tuci

The remarkable fact is that similar diffusion models provide a statistically
optimal speed-accuracy tradeoff in decision-making, which reflects the tension
between the need to take a quick decision and the need to wait until enough
evidence is accumulated in favour of one or the other option. In fact, by varying
the decision threshold, the model can account for quick but unsafe decisions,
or for more conservative but time-demanding ones. The speed accuracy tradeoff
is well known from psychological experiments in humans and animals, and has
been also recognised in the nest site selection behaviour of rock ants: under
stormy weather conditions, ants lower their decision threshold (i.e., the quorum
necessary to select a site), therefore performing a quick decision at the expense
of a higher error rate [16].

In [4], the authors analyse a model of the ants nest site selection, as well as
two models of the same process performed by honey bees, also described above.
These models differ mainly in the possibility for scouts of direct switching of
commitment between alternative sites, without passing through an “uncommit-
ted” state. The model that allows direct switching corresponds to a diffusion
model, accounting for statistical optimality of the nest selection behaviour, and
suggesting that neural and swarm decision-making can be explained by func-
tionally similar mechanisms.

4 The Artificial Life Approach

In the previous section, we have described how comparative studies of cognitive
processes and swarm behaviours highlight surprising similarities. We believe that
this is not a fortunate case, and we suggest that similar comparisons should be
further developed, in search of common working mechanisms. This is the goal of
Swarm Cognition studies that involve the observation of the biological reality.
In this paper, we propose Artificial Life as a complementary approach to the
investigation of Swarm Cognition. ALife is intimately connected to Cognitive
Sciences. Bedau recognises this as he notices that “one of the fundamental open
problems in artificial life is to explain how robust, multiple-level dynamical hier-
archies emerge solely from the interactions of elements at the lowest-level. This is
closely analogous to the problem in cognitive science of explaining how cognitive
capacities ultimately emerge from the interactions of non-cognitive elements like
neurons” [17].

We propose the development of an ALife approach to Swarm Cognition,
aiming at improving our understanding of the mechanisms behind cognitive
processes by synthesising such processes in artificial systems. By paraphras-
ing Langton [18], we claim that ALife and Swarm Cognition can contribute to
Cognitive Sciences by locating cognition-as-we-know-it within the larger pic-
ture of cognition-as-it-could-be. This means that the ALife approach to Swarm
Cognition, by building bridges between computational neuroscience and swarm
intelligence, searches for the underlying mechanisms of cognition being inspired,
rather than constrained, by the biological reality.
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4.1 Beyond Connectionism

A first contribution of ALife to Swarm Cognition is providing explanations of
cognition as the result of self-organising processes through computational mod-
els. Indeed, there is no doubt that cognitive processes involve a massive amount
of neuron-to-neuron interactions. There is also no doubt that neurons are organ-
ised in assemblies of coherent activities, and that they are spatially and func-
tionally segregated in different brain areas. It is anyway difficult to unveil causal
relationships between neurophysiological phenomena and cognition, without re-
ducing the latter to the former. The Swarm Cognition approach is expected to
shed light on such complex issue by explicitly searching for the emergence of
measurable phenomena from the interaction of low-level cognitive units. These
cognitive units should not necessarily be related to biological reality—e.g., neu-
rons, neuronal assemblies or populations—but may well be closer to a bee or to
a generic artificial agent.

The main goal of these studies should be the identification of the mechanisms
underlying cognitive processes, as a result of the dynamical interactions among
cognitive units. The simulated approach brings these activities closer to compu-
tational neuroscience, and cross-fertilisation between the two disciplines should
be promoted whenever possible, in the attempt to complement neruophysiolog-
ical models and fit, at least qualitatively, experimental data.

4.2 Embodiment and Swarm Robotics

A distinctive feature of ALife is the attempt to study how life occurs not only in
computer simulation, but also in the physical world. “Wet” ALife seeks the syn-
thesis of living systems out of biochemical substances. Apart from this, robotics
is the other field of confrontation with the physical world. In Bedau’s view,
(evolutionary) robotics “is artificial life’s most direct overlap with cognitive sci-
ence, as its aim is to synthesize autonomous adaptive and intelligent behavior
in the real world” [17]. When adaptive behaviour is performed by a swarm of
robots, we deal with a Swarm Robotics system, characterised by limited abilities
at the level of the individual robot, which can anyway perform complex tasks
by coordinating in a group.

There are multiple reasons that justify the swarm robotics approach to cog-
nition. First of all, it is important to stress the relevance of using robots to
study cognitive processes. Robots are artifacts with a physical body situated
in the physical world, with physical sensors and actuators to perceive and act
within their environment. The embodiment of the robots is a very important as-
pect for the study of cognitive behaviour, which is not the result of “reasoning”
alone, but is rather the result of the dynamical interactions between brain, body
and environment. Robots therefore are excellent tools to study such brain-body-
environment dynamics and their bearing on the emergence of cognitive abilities
such as categorisation, decision making, attention and learning [19].

Additionally, a peculiar feature of Swarm Robotics systems is the transfer of
behavioural complexity from the individual to the interactions among individ-
uals. Brought to the limit, this vision sees robots as neuron-like devices that
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can move in the environment and interact, physically or trough communication,
with other robots, while bringing forth complex cognitive processes as a whole.
Within the Swarm Cognition framework, this transfer of complexity from the
individual behaviour to the interactions among individuals is fundamental to
understand how cognitive processes can be supported by distributed systems.
Swarm Robotics is therefore the only mean to study self-organisation in embod-
ied and situated systems. Each robot is a cognitive unit, in this case, playing
either the role of the individual insect in a swarm, or the role of a neuron or an
assembly in the brain. In our opinion, all these aspects make Swarm Robotics the
most appropriated method to instantiate the Artificial Life approach to Swarm
Cognition.

4.3 Bridging the Gap between Behaviour and Cognition

Comparative studies in Swarm Cognition can pinpoint the relevant mechanisms
that support cognition, a significant breakthrough in Cognitive Sciences. The
ALife approach offers the possibility to synthesise cognitive process in artificial
brains as well as in artificial swarms. With such a dual approach, it is possible
to study similar problems, such as decision-making or attention, in search of
common mechanisms. Similar discoveries in artificial systems may well be gen-
eralisable to natural ones, when some biological plausibility has been preserved
into the models.

Additionally, the knowledge acquired in Swarm Cognition studies could also
be integrated in a single experimental scenario in which a swarm of robots is
governed by neurocomputational controllers. In this way, the ALife approach to
Swarm Cognition is expected to advance the state of the art in robotics and com-
putational neuroscience. In fact, by integrating neurocomputational controllers
in swarm of robots, an highly complex system could be synthesised, composed
of three different organisational levels hierarchically stacked, from the neuro-
controller internal dynamics, through the embodied cognition displayed by the
individual robot, up to the cognitive processes displayed by the group dynam-
ics. In this way, we could have a physical realisation of multiple-level dynamical
hierarchies that truly generate cognition from the bottom-up.

5 Conclusions

In this paper, we have introduced Swarm Cognition as a multidisciplinary re-
search field that bridges studies in collective intelligence and computational
neuroscience under a common theoretical and methodological framework. We
suggest that ALife can give a significant contribution, by developing synthetic
models of cognition-as-it-could-be. This concerns both simulated models of the
brain and swarm robotics systems. The goal is understanding how cognitive pro-
cesses are brought forth as transient dynamics emerging from massively parallel
interactions among cognitive units, be they simulated neurons or physical robots.



Swarm Cognition and Artificial Life 277

References

1. Aron, S., Deneubourg, J.L., Goss, S., Pasteels, J.M.: Functional self-organization
illustrated by inter-nest traffic in ants: The case of the argentinian ant. In: Alt, W.,
Hoffman, G. (eds.) Biological Motion. Lecture Notes in BioMathematics, vol. 89,
pp. 533–547. Springer, Berlin (1990)

2. Couzin, I.: Collective cognition in animal groups. Trends in Cognitive Sciences
13(1), 36–43 (2009)

3. Passino, K., Seeley, T., Visscher, P.: Swarm cognition in honey bees. Behavioral
Ecology and Sociobiology 62, 401–414 (2008)

4. Marshall, J.A.R., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., Franks, N.R.:
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Abstract. The Dynamic Energy Budget (DEB) theory has become a
fundamental tool in modeling the metabolic behaviour of organisms. Its
capacity to describe the biological aspect of life alone justifies its applica-
bility in Artificial Life. Aware of this potential, the DEB research group
in Instituto Superior Técnico (IST) in Lisbon has joined the videogame
company Biodroid Entertainment in the Life Engine project. This project
aims to develop a library for scientific purposes but also to create a biol-
ogy engine for videogames. From the scientific point-of-view, this library
is intended to be the standard tool for DEB researchers and, at the same
time, to popularize DEB theory in other scientific communities, such as
the AL community.

Keywords: Dynamic Energy Budget, Artificial Life.

1 Introduction

Bedau [1] published a list of open problems in Artificial Life (AL) in which
the simulation of a unicellular organism during its life cycle was included. It
was argued that this should be done through a bottom-up simulation of the
genetic and regulatory networks of the cell. From the interaction of these low-
level entities, global properties and processes should emerge. The search for
patterns that emerge from the interaction of multiple low-level entities, while
having well known merits, may have caused not only AL but also, for some
time, Biology to overlook the similarities and patterns that are common to all
organisms.

The aim of Dynamic Energy Budget (DEB) theory [2, 3, 4] is to explain
these patterns. DEB theory is a general mathematical theory at the organism
level applicable to all taxonomic groups with implications at the sub- and supra-
organism levels. Since DEB is a non-species specific theory, it can describe all
types of organisms, from bacteria to trees, with the same theoretical framework.
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DEB theory is based on simple mechanistic rules for the uptake of energy and
nutrients and the consequences of these rules for physiological organization along
the life cycle of organisms. It has many empirical models as special cases, such as
Droop’s model for the nutrient limited growth of algae, von Bertalanffy’s model
for the growth of animals or Kleiber’s law for respiration. The large collection
of empirical support for all these empirical models that accumulated in the
literature and the evidence that people working with DEB have accumulated
during the 30 years of DEB research makes DEB theory probably one of the best
tested theories in biology. It has already several practical applications, namely
in toxicology (where its use is recommended by ISO and OECD), environmental
engineering and biological engineering.

The capacity of DEB theory to describe the biological aspect of life alone
justifies its applicability in AL. Moreover, the theoretical richness of DEB theory
allows the generation of complex and novel individuals or agents, which has
practical gains for entertainment purposes. Aware of this potential, the DEB
research group in Instituto Superior Técnico (IST) in Lisbon has joined the
videogame company Biodroid Entertainment in the Life Engine project. This
project aims to develop a library not for scientific purposes but also to create a
biology engine for videogames.

From the scientific point-of-view, the Life Engine project has three main ob-
jectives: (i) supply a standard tool for DEB researchers around the world, which
allows simulations from the individual to the ecosystem level and, with this tool,
(ii) develop the body of knowledge concerning DEB theory, particularly the
interaction between different organizational levels, and, finally, (iii) popularize
DEB theory in other scientific communities such as the AL community.

The present paper reports the first stage of the project: the development of
the individual organism with the capacity to prey, process food, grow, mature,
reproduce and die by ageing. These processes are well defined in the DEB theory,
assuring a realistic description of the organism. Section 2 details the standard
DEB organism, in which emphasis is given to state variables, fluxes and pro-
cesses, and from the life cycle perspective, in which emphasis is given to life
stages and transitions. This is followed by section 3 where focus is put on how
a DEB framework helps in building complexity automatically. Finally in section
4 we summarize the main points, describe the current phase of implementation
of the project and outline future work.

2 Standard DEB Model

At a given instant, an organism of a particular species is completely defined
by a set state variables. DEB theory presents a set of mechanistic rules that
determines the organism’s energy and mass fluxes, which will be responsible by
the evolution of the state variables through time (see Fig. 1).

At a higher level, each species is defined by a set of parameters. Two organisms
of the same species will have the same parameters (apart from small variations
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Fig. 1. Diagram of the state variables that define an organism and the fluxes modeled
by DEB. A fixed portion of ingested food is assimilated (ṗA) into its reserve (E).
Reserve is mobilized for the several tasks the organism needs to perform (ṗC). A fraction
κ is first used for somatic maintenance (ṗS) and then for growth (ṗG), which increases
its structure (V ). The remaining (1 − κ) fraction is used for maturity maintenance
(ṗJ) and maturation or reproduction (ṗR), depending on the life stage of the organism.
Maturity (EH) and the reproduction buffer (ER) are the other two state variables
needed to define the organism.

due to genetic variation). Moreover, the framework of DEB theory provides rules
for the extrapolation of parameters between species, which we will come back to
in section 3.

2.1 State Variables

In the standard DEB model, the organism is mainly defined by two state-
variables: reserve (E) and structure (V ). These are two generalized aggregated
compounds that have a fixed chemical composition. As the amounts of reserve
and structure evolve through time the organism can and will have a varying
chemical composition.

As food is assimilated, it is stored on the reserve. On the other hand, reserve
is continually being mobilized and used for all the metabolic purposes. Addi-
tionally, reserve has no maintenance costs in contradistinction with structure,
which needs to be maintained. When relating these two state variables to body
size, only structure is taken to be relevant. Physiological processes are either
proportional to surface area, e.g. uptake of nutrients, or proportional to volume,
e.g. maintenance costs. Thus, the relationship between surface area and volume
– body shape – controls the metabolism of an organism.

Complementing the view of the organism’s instantaneous fluxes, one can also
look at the organism as it evolves through its life cycle. The organism’s ontogeny
is characterized by stages and respective transitions. For an example, see Fig. 2.
DEB theory allows for the modeling of the organism’s ontogeny due to the
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existence of the maturity state variable (EH). A major part of multicellular
organisms follow a standard life cycle, which is characterized by three stages:
embryo, when the organism does not feed from the environment and thus only
uses energy from its initial reserve; juvenile, in which the organism starts feeding,
and it continues to allocate energy to maturation and not yet to reproduction;
and adult, when the organism stops allocating energy to maturation and diverts
the corresponding flux to reproduction. Birth (from embryo to juvenile) and
puberty (from juvenile to adult) transitions are defined by maturity values, Eb

H

and Ep
H respectively. When the organism reaches the adult phase, it starts to

accumulate energy in the reproduction buffer (ER). This buffer has the same
chemical composition of the reserve. On the act of reproduction the reproduction
buffer is emptied out. Its content is transformed into gametes that will originate
new organisms.

Fertilization

Embryo

Birth

Juvenile

Puberty

Adult

Death

Fig. 2. Diagram of the standard life cycle of a multicellular organism

2.2 Processes

In this section we will characterize the main processes and associated parameters,
and see how they impact the organism ontogeny. We will follow closely the
diagram in Fig. 1.

For the major part of its life, an organism needs to assimilate food. Assim-
ilation is the process of transforming food in to reserve (state variable of the
organism). In DEB theory the assimilation flux (ṗA) is dependent on food avail-
ability and is proportional to the surface area of the organism. Each organism
has a surface-area-specific maximum assimilation rate {ṗAm}. A bigger value
of {ṗAm} translates into larger amounts of food being assimilated at a given
instant, for the same food level. This would imply that, all other things being
equal, an organism with a larger {ṗAm} would reach its maximum volume in a
shorter period of time.

Reserve is mobilized for the different tasks the organism needs to perform,
e.g. growth. In DEB this mobilization is called catabolism. Based only on first
principles (see [5]) one can compute the reserve dynamics and the catabolic flux
(ṗC). For the specification of the reserve dynamics, one needs to introduce the
specific-energy conductance v̇. This parameter regulates the rate of output from
the reserve. The resulting catabolic flux will be used for four purposes: somatic
maintenance ṗS , growth ṗG, maturity maintenance ṗJ and maturation (or repro-
duction) ṗR. DEB makes the assumption that a fraction κ of the catabolic flux
will be used for somatic maintenance plus growth, and the remaining (1 − κ)
fraction will be used for maturity maintenance and maturation (or reproduc-
tion). κ belongs also to the set of parameters that defines the organism, and the
fact that it is a constant implies the decoupling of growth from reproduction,
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opening the possibility of an organism reproducing while growing. Different val-
ues of κ mean different balances between growth and reproduction. A larger κ
would delay maturation and reproduction, while hastening growth.

The fraction κ of the catabolic flux is first used for somatic maintenance,
i.e. to pay the cost of maintaining structure, which includes processes such as
the turnover of proteins or the continuous production of hair, feathers or scales.
The most important component of somatic maintenance is proportional to the
structural volume and controlled by the volume-specific somatic maintenance
cost [ṗM ]. As [ṗM ] states the cost of maintenance, it impacts on the amount
on κṗC that remains for growth, and therefore a larger value would shrink the
maximum volume of the organism.

The remaining part of κṗC that was not used for somatic maintenance is used
for growth. Reserve is transformed into structure and the inverse of the volume-
specific cost of structure [EG] is the conversion factor. This parameter impacts
directly on growth. A greater [EG] means that the same amount of reserve is
transformed in a smaller amount of structure.

A similar system of priorities is used for the fraction (1 − κ) of the catabolic
flux. This flux is first used for maturity maintenance. ṗJ is proportional
to maturity with a proportionality constant k̇J . As this is the primary use of
(1−κ)ṗC , a larger k̇J leaves a smaller amount of reserve to be allocated to mat-
uration or, after puberty, to reproduction. Reserve that goes to reproduction
is first collected in the reproduction buffer ER. There are handling rules, depen-
dent on the species, that model the transformation of this reserve into gametes
(e.g. eggs), that typically leave the body upon formation. At their formation, the
gametes can be said to consist exclusively of reserve. The amount of structure
is negligibly small and the level of maturity is null.

Finally, DEB can also capture the process of aging and its effects on the
survival rate, making use of the idea that damage-inducing compounds (changed
genes, affected mitochondria), accumulate at a rate that is proportional to the
mobilization rate ṗC , and these in turn produce damage at a constant rate. To
model this process one needs to keep track of the damage density.

2.3 Equation Set and Parameter Space

After going through the main processes that occur in the organism, one can
summarize them in the expressions of the dynamics of the state variables. Reserve
and structure are controlled by the following set of coupled differential equations:

dE

dt
=
{ṗAm}f − [E]v̇

L
(1)

dV

dt
= V

[E]v̇/L + [ṗM ]/κ

[E] + [EG]/κ
(2)

Where [E] is the reserve density (E/V ), and L is the structural length (V 1/3).
This set of coupled differential equations encapsulates the life history of the or-
ganism, given that we know its environment. The functional response f depends
on the food level, and gives us the link to the environment.
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As for the maturity and the reproduction buffer, their dynamics is dependent
on reserve and structure but, as was shown above, does not have any effect on
them. Their equations are:

ṗR = (1− κ)E
[EG]v̇/L + [ṗM ]

κ[E] + [EG]
− k̇JEH (3)

dEH

dt
=

{
ṗR , EH < Ep

H

0 , EH ≥ Ep
H

dER

dt
=

{
0 , EH < Ep

H

κRṗR , EH ≥ Ep
H

(4)

Where κR is the fraction of the reproduction flux that is fixed in the eggs.
The branches exist due to the puberty transition, when ṗR is diverted from
maturation to reproduction.

3 Generating Complexity

The theoretical richness of DEB theory allows the automatic generation of com-
plex and novel metabolic behaviours without neglecting realism. The two most
straightforward and important automatic generators of complexity are the en-
vironment and the parameter set. Below we list several of the features that will
help to generate complexity.

Environment. As assimilation depends on food availability, similar organisms
exposed to different food levels will have different life histories. But even in the
case of organisms in the same food environment, the stochasticity inherent to
predation can make two organisms grow in very distinct forms [6].

Parameters. The parameter set of an individual will also have a great impact
on its ontogeny. Organisms of the same species will have very similar sets of
parameters. The small variation, corresponding to real variations in nature, is
implemented stochastically. On the other hand, DEB provides rules for the rela-
tion between parameters of different species (which include the usually referred
body size scaling relations). These relations provide a way of automatically gen-
erate different realistic species.

Life stages. Departing from the life cycle we have described, one can include new
life stages, such as larval or pupae, or more unusual stages, e.g negative juvenile,
where the organism starts to allocate to reproduction before birth (which is
usual in aphids and gives rise to the existence of matryoshka-like reproduction).
In fact, there can also be stages characterized by the organism’s behaviour, which
can have effects on some parameter values.

Body shape. In section 2.1 we stressed the importance of the relation of surface
area and structural volume, since there are processes that depend on one or the
other. We are most used to the surface area being proportional to V 2/3, which
applies to organism that grow proportionally in all dimensions (isomorphs). But
this is not always the case. For instance, there are organisms that grow only in
one dimension and in this case surface area is proportional to V . Therefore one
needs also to generalize the surface area - volume relation.
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Multivariate DEB models. So far we have discussed standard DEB theory,
which in fact is fully capable of describing most organisms in typical environmen-
tal conditions, but further detailing is possible and useful to model more complex
organisms. There are organisms, or details in one organism, that need several
reserves or several structures to be well modeled. For instance, heterotrophic or-
ganisms, that uptake different substrates (carbon, nitrogen, photons,...) by dif-
ferent routes, have to be modeled with more than one reserve. As for structures,
these are usually associated with different organs or body parts. The existence
of several structures allows organs or body parts to grow independently of the
remaining structures, which can happen to organisms when they are adapting
to the environment (e.g. algae reduce chlorophyll in excessive light, ). Another
example of several structures is the plants, where the root and shoot are modeled
as different structures.

4 Conclusion

Bedau [1] stated that AL aimed to develop a coherent theory of life in all its
manifestations, while DEB is meant to be a single quantitative framework which
comprises all living organisms. We think DEB is the perfect tool for the realiza-
tion of this goal, firstly on the organism level, but with several implications at
the sub- and supra-organism levels.

The fact that DEB is based on simple mechanistic rules and allows for the
automatic generation of complexity, without neglecting realism, makes it the
perfect instrument to be used as the base of a biology engine. Furthermore, each
species is characterized in DEB theory by a set of parameter values and DEB
theory predicts how these sets can be extrapolated from one species to another.
Apart from the evident economy in coding, the DEB engine provides also an
enormous potential for realistic and unexpected complexity.

The scientific and entertainment applications should make use of each other
strengths to make progress. In fact applications in which they overlap are en-
visioned in several fields. For example, massive multiplayer online games allow
thousands of players to interact with each other and with AL in search of so-
lutions to problems posed by scientists. This has been advocated by various
authors – see [8].

The development of the Life Engine project will take place during the next
two to three years, with three main axes of research and implementation. The
first axis is on the generalization of DEB theory. With the starting point of the
standard DEB model, which can already describe most organisms, the work has
been aimed at understanding the rules that describe the interactions between
new state variables (reserves and/or structures) and that will allow the automatic
generation of new types of organisms. The second axis concerns the organiza-
tional levels, and we will follow a bottom-up approach. From the organism level,
which is already implemented in C++ and returning results, we will implement
population through individual-based models (IBM). At this stage we are set-
ting up the the IBM protocols [7] that will guide the simulations. The results
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from IBM will in turn be used to build a sound theory concerning structured
populations of DEB organisms. This will allow us to simulate simultaneously
discretized populations and continuous (structured) populations. Finally, the
third axis concerns the development of a basic artificial intelligence such that
the global behaviour of the system is in accordance to empirical observations.

The biology game engine will supply game designers with a tool to create
realistic organisms, populations and ecosystems, each with a wide range of cor-
responding processes, using a single framework. Some of the various advantages
are: (i) less coding is necessary for the creation of organisms - all organisms
are instances of the same class, defined by a point in the parameter space; (ii)
simpler algorithms for the interaction between objects - different objects are in
essence equal, thus there is no need to create explicit functions for each interac-
tion type; and (iii) easier generation of novelty - unorthodox organisms are just
points in the parameter space. The application in videogames may span from
those focused in the individual, in which processes at the organism level are
more relevant, to ecosystem focused games, in which interactions and emerging
properties are more relevant.
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grant SFRH/BPD/27174/2006.
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Abstract. High-throughput genotyping has made genome-wide data
on human genetic variation commonly available, however, finding as-
sociations between specific variations and common diseases has proven
difficult. Individual susceptibility to common diseases likely depends on
gene-gene interactions, i.e. epistasis, and not merely on independent
genes. Furthermore, genome-wide datasets present an informatic chal-
lenge because exhaustive searching within them for even pair-wise inter-
actions is computationally infeasible. Instead, search methods must be
used which efficiently and effectively mine these datasets. To meet these
challenges, we turn to a biologically inspired ant colony optimization
strategy. We have previously developed an ant system which allows the
incorporation of expert knowledge as heuristic information. One method
of scaling expert knowledge to probabilities usable in the algorithm, an
exponential distribution function which respects intervals between raw
expert knowledge scores, has been previously examined. Here, we de-
velop and evaluate three additional expert knowledge scaling methods
and find parameter sets for each which maximize power.

1 Introduction

Advances in genotyping technology have made it possible for human geneticists
to rapidly and accurately measure genetic variations across a large number of
genetic markers. Our research focuses on a set of genetic variations known as
single nucleotide polymorphisms (SNPs), where single DNA bases differ across
individuals. However, determining which polymorphisms are correlated with dis-
ease states is a non-trivial exercise. Epistasis, low disease heritability, and in-
formatics constraints present challenges to research efforts. Epistasis, where one
gene’s contribution to phenotype depends on the genotype of one or more other
genes complicates the problem [1]. The study of single genes may therefore not
be adequate and more complex models might be required. Heritability is the pro-
portion of phenotypic variance that can be attributed to genotypic (i.e. SNP)
factors in a population [2]. When heritability is low, noise obscures relationships
between SNPs and disease, making it harder to characterize genetic associations.
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Finally, the size of genomic datasets prevents exhaustive searching of combina-
tions of attributes, necessitating methods which can more efficiently search vast
noisy landscapes.

We have used a biologically inspired ant colony strategy to look for pairs of
SNPs which are predictive of disease. In the ant system, simulated ants search the
dataset for interactions between attributes using a positive feedback approach
[3]. The ant system was implemented within the user friendly Multifactor Di-
mensionality Reduction (MDR) software package [4]. Due to its intuitive design
and ready availability, the MDR GUI has been widely used for genetic analyses
[5,6,7]. The ant system simulates a specified number of ants over generations
where each ant is assigned two SNPs. Initially, each attribute of the dataset is
given a selection probability which determines the likelihood that that attribute
will be incorporated into an ant. Within MDR, we construct rules for the SNPs
assigned to each ant. The rules are assessed for accuracy by the proportion of
correct differentiations between case (disease) and control (healthy) subjects.
At the end of each generation, the SNP selection probabilities are adjusted to
account for the relative success of rules that were tested [8].

The ant system uses expert knowledge and we examine four methods for
scaling and incorporating such information. We discuss the strengths and weak-
nesses of these approaches and we find three of the methods perform well at
a genetically relevant heritability, of 0.1, when optimized parameters are used.
Biologically inspired approaches, such as the ant colony optimization, allow for
the characterization of genetic factors influencing human health in genome-wide
datasets where other methods may not be effective.

2 Use and Scaling of Expert Knowledge

The ant system was implemented to use any expert knowledge source in which
attributes with higher scores are more likely to be relevant. We use Tuned ReliefF
weights as our expert knowledge source. Tuned ReliefF (TuRF) is an algorithm
which is capable of detecting how well SNPs, in the context of other SNPs, are
able to differentiate individuals with disease from those without [9]. TuRF has
been shown to perform significantly better than other algorithms in a human
genetics context, where large numbers of noisy attributes confound analyses.

We explore three new scaling methods, along with the one used in our previ-
ously developed ant system [8]. Two of these four methods use an exponential
distribution function to transform expert knowledge scores into probabilities. Of
these two, one uses a fitness based approach which respects the interval between
expert knowledge scores [8], while the other method uses only the ranking of the
SNPs. We will refer to these two methods as exponential-fitness and exponential-
rank. Both are implemented with a user-adjustable parameter, θ, which can vary
from 0 to 1. The lower the value of θ, the more likely that SNPs with high expert
knowledge scores are selected over those with low scores.

The other two scaling methods use a linear distribution function. As with the
exponential case, there are linear-fitness and linear-rank methods. For both linear
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methods, a window of allowable selection probabilities can be assigned to the
SNP with the highest expert knowledge score and a user-adjustable parameter,
maxProb, specifies this assignment. As maxProb varies through its range from
0% to 100%, the selection probability varies linearly from its minimum to its
maximum value.

3 Linear and Exponential Scaling

In all four scaling methods, we order the attributes A1, A2, . . . , AN so that their
expert knowledge scores are increasing, and let si be the expert knowledge score
of the ith attribute Ai. We often work with ti, the expert knowledge scores
normalized so that they range from 0 to 1. Specifically,

ti =
si − s1

sN − s1
for i = 1, 2, . . . , N.

In the linear-fitness method, we use

N · P (AN is selected) − 1

N −
∑N

i=1 ti
(ti − 1) + P (AN is selected) (1)

for P (Ai is selected), the selection probability of attribute Ai. Here
P (AN is selected) is the probability that the attribute with the highest expert
knowledge score is selected. To assure that

0 < P (A1 is selected) < P (AN is selected) < 1, (2)

it must satisfy
1
N

< P (AN is selected) <
1∑N

i=1 ti
.

The parameter maxProb, which is entered as a percent, equals

P (AN is selected) − 1
N

1∑
n
i=1 ti

− 1
N

· 100.

For the linear-rank method, we set

ti =
i − 1
N − 1

(3)

so that the distance between all adjacent ti is the same, namely 1
N−1 . Then

expression (1) becomes

P (Ai is selected) =
(

2 · P (AN is selected) − 2
N

)
· ti +

2
N

− P (AN is selected).

This gives the probability that attribute Ai is selected, where, if the constraint
(2) is to hold, we must have 1

N < P (AN is selected) < 2
N . Again, the value



An Analysis of New Expert Knowledge Scaling Methods 289

of P (AN is selected) can be specified by the parameter maxProb, which is the
percentage the interval

( 1
N , P (AN is selected)

)
comprises of the interval

( 1
N , 2

N

)
.

For the exponential-fitness method we use

P (Ai is selected) =
1∑N

i=1(θN−1)−ti

(
1

θN−1

)ti

. (4)

For the rank based exponential method, we use equation (4), with ti as in equa-
tion (3), to get

P (Ai is selected) =
θ−1 − 1
θ−N − 1

(
1
θ

)i−1

. (5)

In both cases, θ is a user-adjustable parameter which must satisfy 0 < θ < 1.

4 Data Simulation and Analysis

The ant colony based search algorithm used by the MDR software package
depends on several user-adjustable parameters and allows for the incorpora-
tion of expert knowledge scores. Scaled expert knowledge scores are used both
to set initial selection probabilities for each SNP and in the update rule for
pheromone deposition. To find the optimal parameter set for each of the four
expert knowledge scaling methods, we performed a full factorial parameter sweep
across maxProb/θ, β, the retention factor, and the number of ants and updates.
The parameters maxProb/θ, β, and the retention factor were allowed to vary
independently but the number of ants and updates were held such that the total
number of ants tested across all generations was 5000. This constraint ensures
that at most 1% of the exhaustive search space for the dataset was explored. For
linear methods, maxProb was allowed to vary from 0-100% on 10% intervals.
For the exponential methods, θ was varied from .8 to 1. Outside of this interval,
the probability (using the rank based method) that at least one of the attributes
AN or AN − 1 is paired with any given ant is > 1/2. The retention constant was
tested at 0.1, 0.5 and 0.9, and the number of ants/updates was tested at 10/500,
100/50, 250/25, and 500/10.

This analysis was performed on previously used datasets [8]. These contained
two relevant epistatic SNPs out of 1000. We focused on the subset of these where
sample size was 1600 and heritability was 0.1. At this heritability, 10% of the
variability in phenotype is due to genotype. We tested five models using each
of the expert knowledge scaling methods across all parameters. Each parameter
set was run on 100 independent datasets for each model and the power of each
parameter set was determined by the proportion of successful trials. We divided
our results into four subsets, one corresponding to each expert knowledge scaling
method, and performed logistic regression. The effects on power for all single
parameters and all two-way interactions between the parameters was determined.
For the logistic regression, we used the Design package [10] of the R programming
language [11]. Parameters whose effects on power had p-values ≤ 0.05 were
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considered to be statistically significant. Using these criteria, we would expect
significant p-values to occur only one in twenty times by chance alone. Optimal
settings for significant parameters were determined in order of the magnitudes
of their coefficients found by logistic regression.

5 Results

The exponential-fitness method depended, with p-values ≤ 0.05, on the value of
θ, the number of ants/updates, and an interaction effect between these two. The
parameters β and retention were not shown to be significant, indicating that the
update rule for ant pheromone deposition is less influential on the success of the
algorithm for this scaling method. The selection probabilities for exponential-
fitness scaling are the most extreme of any method we tested, meaning that they
assign a greater proportion of the selection probability to the SNPs with higher
initial expert knowledge scores. All parameters, with the exception of retention
and interaction effects which included retention, were found to have significant
effects on the power of the exponential-rank method. The strongest effects were
observed from θ, β and an interaction effect between these two. The power of the
linear methods was significantly dependent on all parameters and in both cases
the strongest effects were observed to be the pheromone retention parameter, β
and the interaction between these two parameters.

Using the information from the logistic regression analysis, we propose a set
of parameters that maximizes power for each of the expert knowledge scaling
methods. We find that for the exponential-fitness method θ = 0.99 and ants =
500 yielded the highest power [8]. As previously stated, β and retention were not
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Fig. 1. These plots show the effects of θ and β on power for the exponential-rank
method. θ values between 0.8 and 0.9 maximize the power of the algorithm and β = 2
is the most robust parameter setting across θ values.



An Analysis of New Expert Knowledge Scaling Methods 291

0.8 0.83 0.86 0.9 0.93 0.96 0.99

0
20

40
60

80
10

0

P
ow

er

Theta

(a) Exponential-fitness

0.8 0.83 0.86 0.9 0.93 0.96 0.99

0
20

40
60

80
10

0

P
ow

er
Theta

(b) Exponential-rank

0 10 20 30 40 50 60 70 80 90

0
20

40
60

80
10

0

P
ow

er

maxProb

(c) Linear-fitness

0 10 20 30 40 50 60 70 80 90

0
5

10
15

20
25

P
ow

er

maxProb

(d) Linear-rank

Fig. 2. The power of each scaling method is shown with their respective optimized
parameters. All scaling methods, with the exception of linear-rank, perform well on
our simulated data under optimal parameter settings.

shown to be significant for this scaling method. For the exponential-rank method,
we find the highest power when β = 2 and ants/updates = 500. The retention
parameter was not shown to be significant and therefore the update rule for ants
must depend more on the effects of β as it applies to the original scaling of the
expert knowledge [8]. The exponential scaling methods are both able to achieve
high power, > 90%, using optimal parameter settings, though we find that
the exponential-fitness method is more robust to changes in parameters other
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than θ. This is because the success of the exponential-fitness method depends
highly on the initial scaling of the expert knowledge. Therefore, in cases where
expert knowledge is less reliable, the exponential-rank method will likely out-
perform the exponential-fitness method.

The power of the linear-fitness method, using optimal parameters, was com-
parable to the powers of the exponential methods. However, the linear-fitness
method was influenced more by retention and β than by its scaling parameter,
maxProb. This indicates that the linear-fitness method may be less dependent
on expert knowledge values than the exponential methods. The optimal parame-
ter settings for the linear-fitness method were retention = 0.9, β = 1, and ants =
500. The optimal parameters for the linear-rank method were the same for those
as the linear-fitness method, except that for the linear-rank method the opti-
mal number of ants was 250. The linear-rank method performed dramatically
worse than any other method and we hypothesize that a uniform assignment
across the linear distribution function does not differentiate strongly enough be-
tween expert knowledge scores. As a result, the algorithm rarely explores areas
of the search space likely to contain the relevant SNPs. For all methods, except
linear-rank, the power was higher for greater numbers of ants.

6 Discussion

High-throughput genotyping presents an informatics challenges to human ge-
neticist who are searching for genetic markers associated with common disease.
Exhaustive combinatorial analysis of these genome-wide datasets is not feasible.
Biologically inspired methods such as ant colony optimization provide compu-
tationally efficient approaches to searching for epistatic pairs of genes which are
predictive of disease. By including expert knowledge information into our ant
system we have shown that such a technique can be effective. Using the pa-
rameter set derived from our logistic regression analysis it is feasible to apply
powerful methods such as MDR to the analysis of epistasis in large-scale high-
throughput datasets. Biologically inspired computing are powerful software tools
for the discovery of genetic interactions and genetic associations with disease,
with the potential for widespread use in the field of human genetics.

7 Implementation and Method Availability

Every method we use here, including the machine learning algorithm, TuRF,
which we use as expert knowledge, is available in the open source MDR software
package from a user friendly GUI or command line interface. The ant system was
implemented in the Java programming language and is distributed as a stochas-
tic search method in the MDR software package [4]. Java and MDR are both
open-source and freely available at sourceforge.net. The TuRF algorithm is avail-
able in the MDR framework as a dataset filtering method. Finally, the logistic
regression analysis was performed using the Design package of the R statistical
programming language. R [11] and the Design package [10] are both open source



An Analysis of New Expert Knowledge Scaling Methods 293

and freely available at cran.org. Powerful and easy to use implementations of
biologically inspired computing methods provide effective tools for researchers
interested in disease susceptibility and the elucidation of epistatic genes.
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Impoverished Empowerment:
‘Meaningful’ Action Sequence Generation

through Bandwidth Limitation
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Abstract. Empowerment is a promising concept to begin explaining
how some biological organisms may assign a priori value expectations to
states in taskless scenarios. Standard empowerment samples the full rich-
ness of an environment and assumes it can be fully explored. This may
be too aggressive an assumption; here we explore impoverished versions
achieved by limiting the bandwidth of the empowerment generating ac-
tion sequences. It turns out that limited richness of actions concentrate
on the “most important” ones with the additional benefit that the em-
powerment horizon can be extended drastically into the future. This in-
dicates a path towards and intrinsic preselection for preferred behaviour
sequences and helps to suggest more biologically plausible approaches.

1 Introduction

Methods to provide an agent embodied in an environment with strategies to
behave intelligently when given no specific goals or tasks are of great interest
in Artificial Life. However, to do this embodied agents require some method by
which they can differentiate available actions and states in order to decide on
how to proceed. In the absence of no specific tasks or goals it can be difficult to
decide what is and is not important to an agent.

One set of approaches examines processing and optimising the Shannon in-
formation an agent receives from its environment (Atick, 1992; Attneave, 1954;
Barlow, 1959, 2001), following the hypothesis that embodied agents benefit from
an adaptive and evolutionary advantage by informationally optimising their sen-
sory and neural configurations for their environment.

Information-based predictions could provide organisms/agents with intrinsic
motivation based on predictive information(Ay et al., 2008; Bialek et al., 2001;
Prokopenko et al., 2006). In this paper we will concentrate on empowerment
(Klyubin et al., 2005a,b), an information theoretic measure for the external ef-
ficiency of a perception-action loop.

One shortcoming of empowerment is that whilst it provides behaviours and
results which seem to align it with processes that may have resulted from evo-
lution the algorithms used to calculated it tend not to operate using an equally
plausible process. It implicitly requires a notion of the richness and full size of
the space it searches whatever algorithm is used to determine it. In this paper we
thus introduce the assumption of a limit on the richness of the action repertoire.
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1.1 Information Theory

First we give a very brief introduction to information theory, introduced by
Shannon (1948). The first measure is entropy, a measure of uncertainty given by
H(X) = −

∑
x p(x) log p(x) where X is a discrete random variable with values

x from a finite set X and p(x) is the probability that X has the value x. We use
base 2 logarithm and measure entropy in bits.

If Y is another random variable jointly distributed with X the conditional en-
tropy is H(Y |X) = −

∑
x p(x)

∑
y p(y|x) log p(y|x). This measures the remaining

uncertainty about the value of Y if we know the value of X . Finally, this also
allows us to measure the mutual information between two random variables:
I(X ; Y ) = H(Y ) − H(Y |X).

Mutual information can be thought of as the reduction in uncertainty about
the variable X or Y , given that we know the value of the other.

1.2 Empowerment

Essentially empowerment measures the channel capacity for the external compo-
nent of a perception-action loop to identify states that are advantageous for an
agent embodied within an environment. It assumes that situations with a high
efficiency of the perception-action loop should be favoured by an agent. Based
entirely on the sensors and actuators of an agent, empowerment intrinsically en-
capsulates an evolutionary perspective; namely that evolution has selected which
sensors and actuators a successful agent should have, which in turn implies which
states are most advantageous for the agent to visit.

Empowerment is based on the information theoretic perception-action loop
formalism introduced by Klyubin et al. (2004, 2005a,b), as a way to model em-
bodied agents and their environments. The model views the world as a com-
munication channel; when the agent performs an action, it is injecting Shannon
information into the environment, which may or may not be modified, and sub-
sequently the agent re-acquires part of this information from the environment
via its sensors.

In Fig. 1 we can see the perception-action loop represented by a Bayesian
network, where the random variable Rt represents the state of the environment,
St the state of the sensors, and At the actuation selected by the agent at time t.
It can be seen that Rt+1 depends only on the state of the environment at time t,
and the action just carried out by the agent.

Empowerment measures the maximum potential information flow, this can
be modelled by the channel capacity (Shannon, 1948) for a discrete memoryless
channel: C(p(s|a)) = maxp(a) I(A; S).

R
t

R
t+1

R
t+2

S
t

A
t

S
t+1

A
t+1

Fig. 1. Bayesian network representation of the perception-action loop
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The random variable A represents the distribution of messages being sent over
the channel, and S the distribution of received signals. The channel capacity is
measured as the maximum mutual information taken over all possible input
distributions, p(a), and depends only on p(s|a), which is fixed. One algorithm to
find this maximum is the iterative Blahut-Arimoto algorithm (Blahut, 1972).

Empowerment can be intuitively thought of as a measure of how many ob-
servable modifications an embodied agent can make to his environment, either
immediately, or in the case of n-step empowerment, over a given period of time.

In the case of n-step empowerment, we first construct a compound random
variable of the last n actuations, labelled An

t . We now need to maximise the
mutual information between this variable and the sensor readings at time t + n,
represented by St+n. Here we consider empowerment as the channel capacity
between these: E = C(p(st+n|an

t )) = maxp(an
t ) I(An

t ; St+n).
An agent that maximises its empowerment will position itself in the envi-

ronment in a way as to maximise its options for influencing the environment
(Klyubin et al., 2005a).

2 Empowerment with Limited Action Bandwidth

2.1 Goal

We wanted to introduce a bandwidth constraint into empowerment, specifically
n-step empowerment where an agent must look ahead at possible outcomes for
sequences of actions, and even with a small set of actions these sequences can
become very numerous.

An agent’s empowerment is bounded by that agent’s memory; empowerment
measures the agent’s ability to exert influence over it’s environment and an
agent that can perform only 4 distinct actions can have no more than 2 bits of
empowerment per step. However, there are two factors which normally prevent
empowerment from reaching this bound:

– Noise - A noisy / non-deterministic / stochastic environment means that
from a given state an action has a stochastic mapping to the next state.
This reduces an agent’s control and thus its empowerment.

– Redundancy - Often there are multiple action (or sequences) available which
map from a given state to the same resultant state. This is especially true
when considering multi-step empowerment: e.g Moving North then West, or
moving West then North.

Due to redundancy there are many cases where bandwidth for action sequences
can be reduced with little or no impact on achievable information flow. Beyond
this there may be scenarios with a favourable trade off between a large reduction
in action bandwidth only resulting in a small reduction in empowerment (or
utility).
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2.2 Scenario

To run tests we constructed a simple scenario; an embodied agent is situated
within a 2-dimensional infinite gridworld and has 4 possible actions in any single
time step. The actions the agent can execute are North, South, East and West
each moving the agent one space into the corresponding cell, provided it is not
occupied by a wall. In the scenario the state of the world is solely the position
of the agent, which is all that is detected by the agent’s sensors.

2.3 Algorithm

The agent to examines all possible sequences for n-step empowerment for small
values of n (typically n < 6) and then selects a subgroup of the available se-
quences to be retained.

To do this we use the information bottleneck method (Tishby et al., 1999).
Having calculated the empowement we have two distributions: p(an

t ) is the ca-
pacity achieving distribution of action sequences and p(st+n|an

t ) is the channel
that represents the results of an agent’s iteractions with the environment.

We now look for a new “compact” distribution p(g|an
t ), where g are groups

of ‘alike’ action sequences with g ∈ G where |G| ≤ |An
t | and the cardinality of

G corresponds to our desired bandwidth limit. A colloquial, though not entirely
accurate, way to think of this is as grouping together action sequences that have
similar outcomes (or represent similar ‘strategies’). The information bottleneck
works by first choosing a cardinality for G and then maximising I(G; St+n) (the
empowerment of the reduced action set) using St+n as a relevance variable.

This results in a conditional distribution p(g|an
t ), from which we must derive

a new distribution of our action sequences (with an entropy within the specified
bandwidth limit). In order to end up with a subset of our original action se-
quences to form this new action policy for the agent, we must use an algorithm
to ‘decompose’ the conditional distribution into a new distribution p(ân

t ) which
has an entropy within the specified bandwidth limit (and usually contains only
a subset of the original action sequences).

In the spirit of empowerment, for each g we want to select the action sequences
which are most likely to map to that g (i.e the highest value of p(g|an

t ) for the
given g) and provide the most towards our empowerment (i.e the highest value
of I(an

t ; St+n)). This results in collapsing strategies to their dominant action
sequence and maximises an agent’s ability to select between strategies.

2.4 Results

Fig. 2 shows three typical outcomes of this algorithm; in this example we have
a bandwidth constraint of 2 bits, operating on sequences of 6 actions. The walls
are represented by patterned grey, the starting position of the agent is the light
center square, and the selected trajectories by the dark lines with a black cell
marking the end location of the sequence. The result that emerges is of interest;
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Fig. 2. Typical behaviours where 4 action sequences were selected from 46 possibilities

the sequences chosen can immediately be seen to be non-trivial and a brief
examination reveals that the end points of each sequence each have only a single
sequence (of the available 4,096) that reaches them.

In section 2.1 we discussed redundancy as one factor which should be elim-
inated first in order to maintain empowerment whilst reducing bandwidth. If
we extrapolate this process of eliminating trajectories to ‘easier to reach’ states
then it follows that, exactly as in Fig. 2, the last states the agent will retain are
the entirely unique states that have only a single sequence that reaches them.

It appears that choosing to retain a limited number of explored sequences
and this tendency for the agent to value ‘unique’ sequences indicates a first step
towards a solution for extending the sequences beyond what was computationally
possible before and may point to a plausible process for a biological organism to
undertake. We discuss this in section 3.

2.5 Noise Induced Behaviour Modifications

Figures 3 A & B, a 4-step scenario with a bandwidth constraint of 2 bits cor-
responding to 4 action sequences, show there is not always a neat division of
the world into what we would probably recognise as the 4 main ‘strategies’ (one
trajectory into each of the 4 rooms). However, there is no pressure for the agent
to do this or to consider the geographical distinctions between states, only for it
to select unique end points.

However, with the introduction of noise this changes. Figures 3 C & D show
two more randomly selected behaviours from the same scenario but with the
introduction of noise, where each action in the sequence has a 5% probability of

A B C D

Fig. 3. Randomly selected behaviours; 4 steps with a 2 bit bandwidth constraint. A &
B have no noise, C & D have 5% noise per step.
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being replaced with a random action. In order to maintain as much empowerment
as possible, the agent must ensure that in attempting one strategy it does not
accidentally employ another, and in this environment that translates to being
‘blown off course’ and adds a drive for a geographical distinction between end
states.

Note that some of the sequences appear to be only 3 steps long. This is a
strategy employed by the agent, and what is actually happening is the agent
uses an action to push against the wall while passing through the doorway,
possibly as a way to minimise the effect of noise.

3 Building Long Action Sequences

The current formulation for n-step empowerment utilises an exhaustive search
of the action space for n − steps. It can be seen that this is a highly unlikely
approach for biological organisms to employ, especially for large values of n and
in rich environments.

We hypothesise, given that for short sequences of actions it is manageable to
cheaply examine all sequences, that we could approach an agent’s bandwidth
divided into two parts. In section 2.3 we evaluated all possible short sequences
in a ‘working’ memory, then retained only a subset for the agent’s ‘long term’
memory according to our bandwidth constraint.

Following the result above from bandwidth-limited empowerment it became
apparent that retaining only a small subset of investigated action sequences lends
itself to the idea of then searching further from the final states of such sequences.

This is obvious when applied to the cases where the bandwidth has been
constrained just enough to retain empowerment but eliminate all redundancy. It
is essentially realising the Markovian nature of such sequence based exploration:
when arriving at a state to explore, how you arrived is not of consequence to
further exploration. The results, however, seem to suggest that even beyond
this point of retained empowerment, where the bandwidth severely limits the
achievable empowerment and selection of sequences, the iterative approach still
produces noteworthy behaviours.

The approach was to set a target length for a sequence, for example 15-step
empowerment, then the problem is broken down in to i iterations of n-step
empowerment where n · i = 15. Standard n-step empowerment is performed, and
then the above presented bandwidth-reduction algorithm is run to reduced the
action set to a small subset. Each of these action sequences is then extended
with n additional steps. These are then again passed through the bandwidth-
reduction algorithm and this repeated a total of i times. If we select n = 5, i = 3
and a bandwidth limit of 4 bits (16 action sequences) then the total sequences
evaluated in our gridworld scenario is reduced from 415 to 33, 792, which is a
search space more than 3 · 104 times smaller.

Figure 4 shows the results of such a scenario with the selected action sequences
and there are several important aspects to note. Firstly, the agent continues to
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Fig. 4. Iteratively built sequences of 15 steps, with a bandwidth constraint of 4 bits

reach certain states that are of obvious consequence, most notably the 4 cardinal
directions, but also over half of the furthest reachable corner points. Furthermore
the pattern of trajectories has a somehwat ‘fractal’ nature and appears to divide
the search space up systematically. These results are of interest because these
states and behaviours are far beyond the horizon of a single iteration of standard
n-step empowerment. Space does not permit us to give details but initial results
also indicate that interesting locations of the environment, such as door and
bridges, are also handled by such iterative sequence building.

4 Discussion

We have identified several challenges to the recently introduced concept of em-
powerment which endows an agent’s environmental niche with a concept distin-
guishing desirable from less desirable states. Empowerment essentially measures
the range in environmental change imprinted by possible action sequences whose
number grows exponentially with the length of the sequence. It is virtually im-
possible to compute it algorithmically for longer sequences, and, likewise, it is
implausible that any adaptive or evolutionary natural process would be able to
indirectly map this whole range.

Therefore, here we have, consistently with the information-theoretic spirit of
our study, applied informational limits on the richness of the action sequences
that generate the empowerment. In doing so, we found that: 1. the information
bottleneck reduces redundant sequences; 2. in conjunction with the complexity
reduction through the collapse of action sequences, particularly “meaningful”
action sequences that explore important features of the environment, e.g. prin-
cipal directions, doors and bridges, are retained, and finally, that significantly
longer action sequences than before can be feasibly handled. This in itself already
suggests insights for understanding the possible emergence of useful long-term
behavioural patterns. Note that in this study we have relinquished the com-
putation of empowerment as measure for the desirability of states in favour of
filtering out desirable action patterns.
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Abstract. Genetic Regulation Networks (GRNs) are a model of the
mechanisms by which a cell regulates the expression of its different genes
depending on its state and the surrounding environment. These mech-
anisms are thought to greatly improve the capacity of the evolutionary
process through the regulation loop they create.

Some Evolutionary Algorithms have been designed to offer improved
performance by taking advantage of the GRN mechanisms. A recent hy-
pothesis suggests a correlation between the length of promoters for a
gene and the complexity of its activation behavior in a given genome.
This hypothesis is used to identify the links in in-vivo GRNs in a recent
paper and is also interesting for evolutionary algorithms. In this work,
we first confirm the correlation between the length of a promoter (bind-
ing site) and the complexity of the interactions involved on a simplified
model. We then show that an operator modifying the length of the pro-
moter during evolution is useful to converge on complex specific network
topologies. We used the Analog Genetic Encoding (AGE) model in order
to test our hypothesis.

1 Introduction

Evolutionary Algorithms (EA) are nowadays able to offer improved solutions for
many problems and sometimes outperform engineering methods. Though, we are
unable to obtain solutions as complex as what in-vivo evolution has produced.
Some of the evolutionary mechanisms behind biological evolution are still unex-
plained. It is believed EA could benefit from understanding these mechanisms
[1]. There are many of these mechanisms, as for example splicing, through which
a single gene can encode multiple proteins [2, 3]. Genetic Regulation Networks
(GRNs) are a model of other of theses mechanisms by which a cell regulates the
expression of its different genes depending on its state[4]. A strong hypothesis
is that the complexity of the interactions obtained thanks to the GRNs is, at
least, partly responsible for the diversity increase of many living organisms [5],
as well as improvements in the genome evolvability and robustness [6]. Though,
the complexity of these mechanisms is still not fully understood [7].

We believe that understanding which in-vivo characteristics improve the per-
formance of biological evolution is a key to designing efficient EA. In order to do
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so, it is necessary to identify which elements of these mechanisms are necessary
and must be reproduced to improve performance. In this work, we investigated
if one of these mechanisms is relevant: a mutation operator adding or remov-
ing one base in string based evolutionary algorithms. This operator is usually
considered minor, as in-vivo RNA is read three bases at a time (codon) during
protein synthesis, and adding or deleting a base in DNA shifts the sequence,
creating a protein totally different from the original. Though, in the case of
non-coding DNA, this operator may be more useful. In the following work, we
asked ourselves two questions. First, does the add/remove operator provide a
sufficient mechanism to obtain a correlation between the length of cis-regulatory
sequences as stated in [8]. And more important, does this operator improve the
performance of the algorithm in any way ?

2 Related Works

2.1 Gene Regulation Networks

GRNs rely on multiple mechanisms. One of them is the possibility for a protein,
called a transcription factor to bind itself to a sequence of DNA located before
or after a given gene. When a relevant protein binds itself to the site, the ex-
pression of the gene will either be enhanced (enhancer) or blocked (inhibitor).
Most genes present such cis-regulatory sequences, which contain multiple bind-
ing sites for various proteins. These mechanisms can first be seen as a mean to
create “programs”, enhancing the cell capacity to order the synthesis of proteins
or reactions to adapt to specific stimuli [9].

GRNs are also believed to speed up evolution. A single mutation in a cis-
regulatory region can have varying impact on an organism without modifying
the gene itself, for example by removing or creating a new interaction between the
regulated gene cis-regulatory sequence and another transcription factor. Dupli-
cation of a transcription factor gene or binding site also creates new interactions
in a genome [10]. Therefore interactions provided by the GRNs provide another
level impacted by evolution.

2.2 Existing Methods

The objective to find ways to harness the properties of these GRNs to improve
the performance of evolutionary algorithms is stated in [1]. More precisely, the
goal is to understand which GRN properties improve the evolvability of living
organisms. Some properties have already been highlighted in several articles
[11–13]. Algorithms have been created to take advantage of them as Artificial
Ontogeny [14] or lately PBGA [15]. We tried to find a model closely related to
the biological mechanisms while avoiding the overhead of more complex biology
based models like HeRoN [16].
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2.3 Research of Relevant Properties of GRNs

The first step to take advantage of the GRN capabilities is to understand their
properties and the implications for evolvability. Examples of these properties
are found in [11] which tries to understand how varying goals coupled to spe-
cific evolution mechanisms can change the evolvability of a genome to speed
up convergence on specific problems. It highlights the fact that the specificity
of transcription factors to multiple binding sites is, in itself, a way to encode
evolutionary information. The mechanisms behind GRNs are quite complex and
multiple parameters are still unknown. Here, we restrict our study to algorithms
using both a string based encoding while keeping simple enough matching mech-
anisms. AGE is the only existing example we could find to fulfill these conditions.
A work similar to this one was done by C. Mattiussi [17], who studied the im-
pact of a mutation operator allowing the duplication of sequences in a genome
to obtain convergence of the algorithm. Here, we do a similar work with the
possibility to incrementally modify the length of the cis-regulatory sequences.

2.4 AGE

Analog Genetic Encoding is an indirect encoding mechanism which was designed
to use some mechanisms of the GRNs [17] to generate networks by evolving a
string based EA. It has recently shown impressive results for the reverse engineer-
ing of existing in-vivo GRNs[18]. AGE features complex generation mechanisms,
many of which are not relevant to our problem, therefore, we chose to focus only
on part of these mechanisms which will be described here. Our goal, as in [11] is
to assess the capacity of a set of nodes to converge to a specific network topology.
In AGE, a network is composed by a set of genes. Each gene is equivalent to
a node in a network (see figure 1). Each gene is composed by output and in-
put sequences, each of which is located in the gene and located between a start
and an end sequence (which could be compared to start and stop codons). The
links in the network are defined by comparing the input and output sequences
of different nodes. Similar sequences will be considered as a strong link between
two nodes while two totally different sequences will be considered as an absence
of link. As expressed in [17], this is quite similar to the process by which micro
RNA can repress the expression of other genes by blocking their DNA or RNA
expression [19]. For this model, the strength of the link is computed using a local
alignment score [20].

3 Experiments

For our experiment, we considered a fixed set of nodes (three to five, depending
on the experiment). Each node is composed of two sequences of nucleotides. One
input sequence which models the promoter sequence, and one output sequence,
loosely modelling the transcription factor / microRNA. Our algorithm mutates
theses two sequences by using three possible operators. The first (second) one is
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Fig. 1. Left: Two sample nodes in our simplified implementation of AGE; Right: the
sequence comparison algorithm for definition of the link between the output sequence
of the bottom node and the input sequence of the top node. Only contiguous bases are
considered, the longest subsequence for this comparison is therefore of 3 bases even if
both also have the F in common.

the addition (deletion) of a nucleotide at some point in the sequence. Another
point is that we do not extend our algorithm to differentiating inhibitory and
enhancing links.

The fitness of a network is obtained by comparing the network topology to
a reference network. An optimal link strength (1.0) is defined by two sequence
containing a common subsequence of three bases. The absence of link is defined
as two sequences with a longest common subsequence between two sequences
of one base. The intermediary is considered as a link with a strength of 0.5.
We made two different experiments related to the length of the sequence of the
binding sites. The first one is used to test the correlation between the length of a
sequence and the number of links this sequence has in the network. The second
experiment tests the effect of switching on and off the add/remove operator on
the convergence speed for a “complex” network. All the runs were done using the
simplified version of AGE described previously where the only additional muta-
tion operators possible are the exchange of a base in the sequence for another
and the addition / deletion operators. In order to improve the performance, the
size of the alphabet was set at 7 (this gives the best results for our networks).
There is no order relationship between the bases in the alphabet (the replacing
mutation operator switches randomly from one base to the other). The selec-
tion algorithm used for all the experiments was NSGA 2 [21], a commonly used
tournament based multi objective selection algorithm as further experiments re-
quired multiple objectives. Each run was repeated at least 10 times. Figure 2
sums up all the parameters used for the experiments.

3.1 Convergence of Sequence Length

The first experiment was done in two steps. In the first step, we tried to evolve
two simple networks of 3 nodes with homogeneous (2 output links and 2 input
links per node) or heterogeneous links (2 outputs for each node but 1 to 3 inputs
per node) as shown in figure 3 and we analysed the length of all the sequences
of the first individual to reach the optimal fitness in each run.
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Parameters
alphabet size 7 population 200
maximum number of generation 10000 probability to delete base 0.01
probability to add base 0.02 probability to mutate base 0.1
max sequence length 20

Fig. 2. Summary of the parameters

Fig. 3. Left: homogeneous network of three vertex (the top circles show the outputs,
the bottom ones the inputs); Center: heterogeneous (different number of inputs and
same numbrer of outputs) network with 3 nodes; Right: heterogeneous network with 5
nodes
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Fig. 4. Left: sequence length for an homogeneous network containing 3 nodes; Center:
sequence length for an heterogeneous network containing 3 nodes; Right: sequence
length for an heterogeneous network containing 5 nodes

The results of these experiments show a convergence to a size of 7 for each
sequence in the homogeneous network. In the experiment trying to converge on a
3 node heterogeneous network (center box of figure 3),we obtained a correlation
between the length of the sequence and the number of links connected to the
node. As the differences were not significant, we made a similar experiment
with a network containing 5 nodes and heterogeneous connections (nodes had
3 outputs each and respectively 1, 2, 3, 4 and 5 inputs). All the results (mean
length of the sequences and standard deviation) are shown in figure 4.

For the results on the 5 nodes network, we have a significant difference (us-
ing Wilcoxon T-test) as the probability of the two sequences being from the same
data is less than 1% between all the nodes having different numbers of inputs
apart from between sequences 2 and 3 where this probability is 7.5%. These results
confirm our first hypothesis, which is that the length of the sequences illustrates
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Fig. 5. Performance of the EA on a complex network for different bootstrap lengths

bootstrap length 5 6 7 8 9 10 11 12 13
add/remove enabled 1 1 1 1 1 1 1 1 0.8
add/remove disabled 0 1 1 1 1 1 1 1 0.4

Fig. 6. Convergence rate of experiments depending on bootstrap length and specified
operators

the complexity of the interactions the node is involved in. The add/remove mu-
tation operator is therefore sufficient to obtain these results. This is also a con-
firmation of the results stated in [8].

3.2 How the Operator Affects Performance of the EA

The first experiment showed that the length of the cis-regulatory sequence de-
pends on the complexity of the interactions the node is involved in. Our next
step was to test if a network correctly initialized could converge without length
modification during the run or if the modification of the length improves per-
formance. In evident cases (simple 3 nodes networks), the add/remove operator
doesn’t have a significant impact on the results unless initial parameters are ini-
tialized to abnormal values. Therefore, we experimented on a network which the
algorithm has difficulties to converge to. In order to place ourselves in the worst
possible scenario for our hypothesis (necessity of the add remove operator), we
took an homogeneous symmetric target network where each node has 4 inputs
and 4 outputs and tried to compare the performance. To do so, we first randomly
initialized a 5 node network and made it converge to the target network with the
addition / deletion operator enabled. It converged in all of the runs and showed
a mean length of 8 bases per sequence and a standard deviation around 1. We
then ran the same experiments with length modification operators disabled and
a fixed initial length of 8 corresponding to the “optimal” length and compared
it to a similar network without the length modification enabled.

The results were that the runs without sequence length modification were sig-
nificantly faster than the runs with the operator enabled. However, this is a case
where we specified the optimal length before running the algorithm, which is an
unusual situation. Therefore, we made several additional runs of both algorithms
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by changing only the initial sequence length to compare their performance. The
results are given in figure 5 and show that, if the initial length is not optimal,
the add/remove operator is a good way to avoid seeing the algorithm get stuck
because of insufficient initial complexity. It also helps the convergence rate in
non optimal bootstrap cases as can be seen in figure 6. Therefore, we believe
that, as the optimal situation of both an homogeneous network and predefined
optimal sequence length is unusual, it is usually a good idea to enable the se-
quence length modification. The alternative being to define the optimal length
by another mean before running the algorithm.

4 Conclusion and Discussion

In this work we have first confirmed that there is a correlation between cis-
regulatory sequence length and the complexity of interactions the following gene
is involved in, but also that the dynamic modification of sequence length is a
useful operator (sometimes to allow convergence of the EA, or to facilitate con-
vergence in complex situations). We have also illustrated that a simple evolution
mechanism is able to take advantage of these operators, at least in certain cases.

The results shown in the first experiment converge around a length of 7 for
both the 3 nodes network while the 5 nodes network converge on a length of 8.
Therefore, it could be argued that the optimal length is usually around 8 and
that, as this length is sufficient, the add/remove operator can be disabled to
improve performance. This is partly true for these sandbox networks (in experi-
ment 2, the best performance is achieved for a bootstrap length of 9). The goal
of AGE and other EA is eventually to solve complex problems, with potentially
many more nodes and links. In these situations, using a default a length of 8 is
raises a risk that the network might not offer enough complexity to converge, as
was the case with the 5 bases long runs of the third experiment and therefore
be unable to converge.

References

1. Banzhaf, W., Beslon, G., Christensen, S., Foster, J.A., Képès, F., Lefort, V., Miller,
J.F., Radman, M., Ramsden, J.J.: GuidelinesFrom artificial evolution to computa-
tional evolution: a research agenda. Nature Reviews Genetics 7(9), 729–735 (2006)

2. Tischer, E., Mitchell, R., Hartman, T., Silva, M., Gospodarowicz, D., Fiddes, J.C.,
Abraham, J.A.: The human gene for vascular endothelial growth factor. Multiple
protein forms are encoded through alternative exon splicing. Journal of Biological
Chemistry 266(18), 11947–11954 (1991)

3. Modrek, B., Lee, C.: A genomic view of alternative splicing. Nature Genetics 30(1),
13–19 (2002)

4. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Joseph, B.Z., Gerber, G.K., Han-
nett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., et al.: Transcriptional reg-
ulatory networks in Saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)

5. Levine, M., Tjian, R.: Transcription regulation and animal diversity. Nature 424,
147–151 (2003)



Influence of Promoter Length on Network Convergence in GRN-Based EA 309

6. Wagner, A.: Robustness and evolvability in living systems. Princeton University
Press, Princeton (2005)

7. Wittkopp, P.J.: Evolution of cis-regulatory sequence and function in Diptera.
Heredity 97(3), 139–147 (2006)

8. Kristiansson, E., Thorsen, M., Tamas, M.J., Nerman, O.: Evolutionary forces act
on promoter length: identification of enriched cis-regulatory elements. Molecular
Biology and Evolution (2009)

9. Alon, U.: An introduction to systems biology: design principles of biological cir-
cuits. Chapman & Hall/CRC (2007)

10. Teichmann, S.A., Babu, M.M.: Gene regulatory network growth by duplication.
Nature Genetics 36(5), 492–496 (2004)

11. Izquierdo, E.J., Fernando, C.T.: The Evolution of Evolvability in Gene Transcrip-
tion Networks. Artificial Life 11, 265 (2008)

12. Tanay, A., Regev, A., Shamir, R.: Conservation and evolvability in regulatory net-
works: The evolution of ribosomal regulation in yeast. Proceedings of the National
Academy of Sciences 102(20), 7203–7208 (2005)

13. Chen, K., Rajewsky, N.: The evolution of gene regulation by transcription factors
and microRNAs. Nature Reviews Genetics 8(2), 93–103 (2007)

14. Bongard, J.C.: Evolving modular genetic regulatory networks. In: Proceedings of
The IEEE 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1872–
1877 (2002)

15. Bellas, F., Becerra, J.A., Duro, R.J.: Using promoters and functional introns in ge-
netic algorithms for neuroevolutionary learning in non-stationary problems. Neu-
rocomputing (2008)
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Abstract. The leader election problem is a crucial problem in the the-
ory of distributed algorithms, multi-agent systems as well as in sociobi-
ology. In this paper we investigate one-dimensional binary state cellular
automata with an intention to track self-organizational mechanisms that
finally enable a global leader to be elected. Since our model is anonymous
and uniform we also have to deal with a problem of symmetry that in
great majority of cases is broken by inhomogeneity of arbitrary initial
configurations. Our approach to the problem is based on the evolution
of cellular automata by genetic algorithms and the methodology of com-
putational mechanics. The presented new solution of the leader election
reaches remarkably high performance of 94− 99%. The analysis shows a
sophisticated collective computation demonstrated by so called particles
and their interactions. Due to the simplicity of our model, presented ap-
proach is general and universal enough to be applicable even at the level
of primitive biological or artificial societies.

1 Introduction

In the last decades scientists from natural as well as social science are increas-
ingly facing problems related to the principal holistic concepts of complexity and
self-organization [1]. It is often a surprising finding that dynamics of numerous
structurally simple uniform systems, both natural and artificial might be consid-
ered as complex. Elementary distributed system of cellular automaton (CA) [2]
introduced by the pioneer of computational age, von Neumann, has been exten-
sively used since its very origin for studying various aspects of artificial life and
dynamical systems. In this paper we focus on a well known problem of leader
election [3], nontrivial for the anonymous and uniform architecture of CA. Our
methodology includes evolution of CAs [4,5] employing genetic algorithms [6]
and consecutively an analysis of CA dynamics by the framework of computa-
tional mechanics [7]. These approaches have been applied at the Santa Fe In-
stitute with the motivation to understand natural systems and also to engineer
decentralized artificial systems which can give rise to emergent computation.
Emergent dynamics of best CAs we present are characterized by propagating
space-time structures called particles. Our findings have important implications
for the theory of distributed algorithms, sociobiology and development biology.
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2 Leader Election Problem

Leader election has an important role for a global coordination, decision making
and spatial orientation of social and biological systems. Animal groups have to
collectively decide about communal movements, activities, nesting sites and co-
operative hunting. Sociobiology distinguishes two decision making procedures -
shared consensus, in which the group does what the majority votes for, and
unshared consensus also referred to despotic decision, in which one individual
(leader) makes the decision, which the rest of the group follows. For example,
penguins Columbia livia decide mostly by shared consensus [8], whereas despotic
decision of one individual can be found in the population of bottlenose dolphins
[9]. Consensus decision in the group of Macaca tonkeana involves nearly all group
members, on the other side just a few dominant and old individuals take a promi-
nent role in Macaca mulatta [10]. In animal societies leader is usually elected or
determined by attributes like age, knowledge and/or dominance, however vari-
able leadership with no correlation to dominance was observed as well. Leader
election is also implemented in biologically-inspired computational models of cell
differentiation [11]. Within the homogenous regions, some cells have to be elected
to take on special roles. Nice example of such process is the developing of a wing
during morphogenesis of the fruit fly Drosophila [12]. Evolution of leader election
in the system of self-replicating digital organisms (AVIDA) is described in [13].
The theory of distributed algorithms deals with the leader election (queen bee
problem) [3] at more general level. Given a net of processors it is required to de-
sign the processors such that they are able to choose a leader (single processor)
starting from an initial configuration, where all the processors are in the same
state. It is an important prerequisite of other distributed algorithms as minimal
clique, graph explore, broadcast etc. Angluin [14] showed that no determinis-
tic algorithm can find a leader of a ring of anonymous processors due to the
full symmetry of system. Nevertheless, various solutions considering less strict
instance of the problem were proposed. Basically the most common approach
presumes distinguishable unique processors where the search for a processor with
particular minimal or maximal id is applied [15].

The leader election has its indisputable purpose, but what processes hidden
behind the scene are responsible for that. Let us make fundamental abstraction
and consider fully uniform society with anonymous agents without any memory.
Would it be possible to elect leader also in such a case? In this work we will
demonstrate that model required for leader election does not have to be compli-
cated at all and no comparable attributes of individuals as size, age is needed. In
particular, we present the minimalist biologically inspired distributed system of
cellular automaton [2] with aspiration to explain or at least give some insights to
leader election at the elementary level of cells, biological and artificial societies.

3 Cellular Automaton and Computational Mechanics

John von Neumman introduced the concept of a cellular automaton with motiva-
tion to explore logical requirements for machine self-replication and information



312 P. Banda

processing in nature. CA consists of a lattice of components called cells with
cycled boundaries (toroid topology). Let us denote the number of cells by letter
N and the state set by Σ (k = |Σ|). The state of a cell with index i at a time t is
labelled as st

i ∈ {0, . . . , k − 1}. The configuration is then sequence of cell states

st = (st
0, s

t
1, . . . , s

t
N−1) (1)

In this paper we are focused exclusively on one-dimensional binary state CA.
The neighborhood function η : N → Σn for one-dimensional CA is determined
by radius r, thus the number of neighbors n = 2r + 1 and

ηi = (si−r, . . . , si, . . . , si+r) (2)

The same transition rule φ : Σn → Σ represented either by the transition
table or finite state transducer, is applied synchronously to each cell resulting
in an update of cell state st+1

i = φ(ηt
i) starting from some initial configuration

(IC). By extending the scope of transition function, we can define the global
transition rule Φ : ΣN → ΣN operating on configurations and furthermore the
ensemble operator Φ : 2N → 2N mapping a set of configurations. Dynamics of
one-dimensional CA is often illustrated using a space-time diagram (Figure 1),
where lattice of cells is displayed horizontally using black for active cell (state 1)
and white for inactive cell (state 0). Time goes vertically from top to the bottom.
CAs were successfully used in a variety of research fields and applications, such
as artificial life, physical modelling, social and biological simulations etc.

Since CAs are completely discrete, it was quite difficult to analyze their behav-
iors with instruments known from the theory of conventional dynamical systems.
This gap was bridged by the methodology of computational mechanics [7] using
concepts from both, computation and dynamical system theories. The global,
collective dynamics of CA can be therefore understood and described in terms
of space-time structures - domains forming the regular background of computa-
tion, particles acting as carriers of information and particle interactions that are
analogous to information processing.

Formally, a regular domain Λj is a process (regular) language consisting of
a set of spatial configurations. This process language fulfils the properties of
temporal invariance (Φp(Λj) = Λj) and spatial homogeneity - the graph of Λj

process language is strongly connected. Domains can be discovered either by
visual inspection of space-time diagrams or automatically via the ε-machine re-
construction and verifying given two conditions [16]. Domains might be filtered
out from space-time diagram by so called domain filter [7] revealing certain space-
time structures not belonging to domains. Part of these structures are regular,
propagating objects that are known as particles. A particle usually marked by a
letter of Greek alphabet is spatially localized and temporally periodic structure
at the boundary of two domains with limited width (Fig. 1). Temporal peri-
odicity of particle α is denoted as pα and set of particles as P = {α, β, . . .}.
The displacement dα of a particle α is defined as the number of cells, that parti-
cle is shifted during one period (the left displacement is negative, the right one is
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positive). Velocity is then calculated as vα = dα/pα. Different velocities of par-
ticles lead to particle interactions denoted α + β → γ (Fig. 1). The result of
interaction is determined by the actual phase of colliding particles and might
lead to a production of new particle(s) or to an annihilation of colliding parti-
cles (result ∅). The set containing all possible interactions is denoted as I. Par-
ticle catalog consisting of domains, particles and particle interactions {Λ,P, I}
gives us a strong descriptive tool to understand the processes underlying CA
dynamics.

We use the model of CA (r = 3) that is anonymous, synchronous and deter-
ministic with no information about its size. We would like to emphasize that it
is a most difficult instance of leader election which is principally insolvable in its
purist form. Basically only approach to break a symmetry in such a system is
to presume self-stabilizing version in which ICs are not uniform, but arbitrary
(random). All state of art models however require besides arbitrary ICs some
additional prerequisites. Our CA operates in linear time (2N) and just constant
(binary state) memory and is even to some minor limitations in terms of ICs,
most basic system capable of leader election reaching performance of 94− 99%.

(a) (b)

Fig. 1. (a) Space-time diagram and (b) filtered version with particle identification [5]

4 Evolution of Leader Election

Now we define leader election computational task reflecting the relationship be-
tween an input (IC) and desired output (final configuration(s)) as

T : {0, 1}N → {s ∈ {0, 1}N |#1s = 1, T (s) = s} (3)

The function #1 denotes the number of 1s in a configuration. The goal is to
transform each IC to some stable point configuration containing exactly one cell
in state 1 and the rest in state 0. Due to the huge number of possible config-
urations (|Σ|N ) performance P I

N (φ) of CA with transition rule φ and lattice
size N considers not all, but just the reasonable number of randomly generated
ICs I. Performance is then a fraction of the number of correctly computed ICs
to the total number of test ICs I. Additionally, if CA does not reach a correct
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answer within the time TMAX , the output is considered as incorrect. The CAs
(transition rules) capable of leader election were found by employing well known
genetic algorithms (GAs) [6] inspired by classical Darwin’s theory of natural
selection. We performed CA evolutions in a similar way as EvCA research group
at SFI for CA problems of density classification and synchronization [4,5].

Chromosome is a binary vector of length 22r+1 coding transition table out-
puts φ(ηi). Since the size of chromosome space (kk2r+1

) is in our case 2128, full
search can not be applied. The GA model implemented in our evolutions uses
a one-point cross-over and elitist selection. Implementation details can be found
in [5]. Fitness F I1

N (φ) is basically a performance on I1 = 100 density-uniform
ICs. After each evolution we calculated performance P I2

N (φ) of selected chro-
mosomes more accurately for both, density-uniform (each IC density has the
same probability) and uniform distribution (each IC has the same probability),
N ∈ {149, 599, 999, 1001, 1301} and I2 = 104. Acceptable solutions were achieved
only for small part of the total of 202 evolutionary runs. Due to the local scope
of individual cells (r << N), best CAs or strategies are pushed to employ the
global information exchange. The evolutionary dynamics of leader election is
not quite smooth and shows some very dramatic leaps or innovations. From the
computational perspective the most important one lies between the fitness 0.4
and 0.8, since it separates localistic from the global particle-based strategies.
Evolutionary process uncovered various strategies which were further examined
and analyzed. They can be roughly categorized according to their characteristic
computational aspects into - strategy of mandatory function, density reduction,
divide and eliminate strategy, first particle-based strategy and strategy of mir-
ror particles. First three strategies are localistic and are based on the statistical
parameters of generated ICs. There is no information exchange on the long dis-
tance, therefore leader is elected just on short subsequences of cells, what results
to sharp decrease of performance with regard to N . The last two strategies are
based on particle models of computational mechanics exhibiting coordination
of cells at the global scale. We will focus on the evolutionary most successful
strategy of mirror particles in more details.

5 Strategy of Mirror Particles

Main characteristics of this strategy is the occurrence of pair-like particles mov-
ing the same velocity but in opposite directions, therefore we call them mirror
particles (see Fig. 2). Mirror particles α and β, γ and δ, ε and ζ lie at the bor-
der of domain 0∗ and the zig-zag domain of (01)∗. The main rule responsible
for leader (particle ω) election is the interaction of α + β → γ + δ and sequen-
tially γ + δ → ω (Fig. 3(a)). Collision of α and β indicates that in the place
of their interaction a potential leader might emerge. Consequently particles γ
and δ are emitted to verify if there are any particles left. They shift around the
whole configuration with very high opposite velocities. In case they do not collide
on their routes, they meet in the middle and they finally create a global leader ω.
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Particles P

Label Boundary Velocity
α Λ1Λ0 1
β Λ0Λ1 −1
γ Λ0Λ1 3
δ Λ1Λ0 −3
ε Λ0Λ1 3
ζ Λ1Λ0 −3
ω Λ0Λ0 0

Domains Λ

Label Regular language
Λ0 0∗

Λ1 (01)∗

Interactions I

α + β → γ + δ | ∅(Λ1) α + ω → α

γ + δ → ω |α + β β + ω → β

α + γ → α + β ε→ ε + ω

β + δ → ω ζ → ζ + α + β

ε + ζ → α + β + ε

Fig. 2. The particle catalog of the strategy of mirror-particles

The unique attribute of long-periodical particles of ε and ζ is a spontaneous
emission of particles during each period. The ε generates a leader particle ω, ζ
generates mirror particles α and β. Another observation is that α and β clean ω
particles on their ways, what in case of α + ω → α causes the phase shift of α.

There is the equal number of particles with positive and negative velocities.
Particles are quite fast and the differences of colliding particles velocities are high
that has a positive impact on the overall performance. The fitness of this final
evolutionary strategy is 0.99. Performance reaches for N = 149 values of 0.944,
resp. 0.992 depending on distribution type of ICs and remains high for much
bigger N (see Fig. 3(d)). However, the performance for N = 999 cells is extremely
low - just about 0.01. This finding can be maybe surprisingly explained by crucial
leader electing interactions α + β → γ + δ and γ + δ → ω, which actually might
lead to different results according to the phases of colliding particles. Since α
and β are two phase particles, there are two possible results of their interactions
α + β → γ + δ | ∅. Analogically γ and δ are three phase particles, hence the
interactions γ + δ → ω |α + β |α + β can be obtained. The result of second and
third interaction of γ + δ is the same, however the interaction process is slightly
different. In the last phase of the leader election, when γ + δ and partially α + β
have to shift around the whole configuration, the number of cells N becomes
essential in determining their phases in a moment of interactions. We identified
typical results of α + β and γ + δ interactions in relation to the modulo classes
of N (Table 3(e)). Our goal is to produce only one leader (particle) ω in a final
configuration. That can be achieved by the interaction of γ + δ → ω occurring
for N ≡ x mod 6, x ∈ {2, 5}. Further, particles γ + δ needed for this interaction
are produced for N ≡ x mod 6, x ∈ {1, 3, 5}. As a result, the only acceptable
number of cells allowing the leader election (with satisfactory result) is 5 mod 6
also proved by experiments (N ≥ 23). CA dynamics for the modulo classes 0, 2
and 4 leads to the global zig-zag domain Λ1 (Fig. 3(b)), remainder 5 to the stable
point of the leader particle ω (Fig. 3(a)) and 1 and 3 to the cycled behavior of
α + β → γ + δ → . . . (Fig. 3(c)). We would like to stress that the predecessor
of the strategy of mirror particles called the first-particle based strategy is not
N ≡ 5 mod 6 restricted and for 999 cells reaches performance of about 0.7.
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(a) (b) (c)

N P 104

densN(φ) P 104

unif N (φ)
149 0.944 0.992
599 0.932 0.954
999 0.011 0.009
1001 0.971 0.989
1301 0.972 0.987

(d)

N mod 6 α + β → γ + δ →
0 ∅ α + β

1 γ + δ α + β∗
2 ∅ ω

3 γ + δ α + β

4 ∅ α + β∗
5 γ + δ ω

(e)

Fig. 3. Strategy of mirror particles: space-time diagrams with particle identification
showing examples of (a) successful (N = 149) and (b)(c) unsuccessful (N = 150,
N = 151) leader election; (d) performance with respect to N ; (e) typical results of
crucial leader electing interactions in relation to N modulo classes

6 Conclusion

In this paper we successfully analyzed and solved the problem of leader elec-
tion for CA. We showed that even mere distributed system of CA consisting of
indistinguishable and uniform cells operating just with a binary state is capa-
ble of emergent and complex dynamics. Evolutionary process [5] pushed CAs
towards a creation of remarkable collective patterns known as domains, par-
ticles and interactions [16]. Our final evolutionary strategy of mirror particles
reached performance of 94−99% that was however limited by the number of cells
N ≡ 5 mod 6. The general limitations of 1D CAs on symmetric and lossy-coupled
ICs will be addressed in another paper. Our approach substantially reduced ar-
chitectural requirements on the model capable of leader election. Furthermore,
the presented results are generally applicable in the theory of distributed algo-
rithms and also at the elementary level of biology and social science. Last, but
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not least we hope that this paper illustrated how powerful self-organization is
and what processes are responsible for complex computation implemented by
nature.
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Abstract. We verify through numerical simulations that the influence
of the update dynamics on the evolution of cooperation in the Snow-
drift game is closely related to the number of strategy exchanges be-
tween agents. The results show that strategy exchanges contribute to
the destruction of compact clusters favorable to cooperator agents. In
general, strategy exchanges decrease as the synchrony rate decreases.
This explains why smaller synchrony rates are beneficial to cooperators
in situations where a large number of exchanges occur with synchronous
updating. On the other hand, this is coherent with the fact that the
Snowdrift game is completely insensitive to the synchrony rate when the
replicator dynamics transition rule is used: there are almost no strategy
exchanges when this rule is used.

Keywords: evolution of cooperation, update dynamics, asynchronism.

1 Introduction

The existence of cooperation in nature has been challenging to explain since,
from an evolutionary point of view, this type of behavior is apparently less
advantageous than a selfish one [12]. This problem is also of central importance in
social sciences [1] and especially on the development and maintenance of artificial
societies [11], where it is relevant to study how cooperation may be promoted and
sustained. Evolutionary games are models used to study these phenomena. In
these models, a population of agents interacts during several time steps through
a given game which is used as a metaphor for the type of interaction that is being
studied. The underlying structure that defines who interacts with whom is called
the interaction topology. After each interaction session, some or all the agents,
depending on the update method used, have the possibility of changing their
strategies. The strategy update process is modeled using a so called transition
rule that emulates the fact that agents tend to adapt their behavior to the
context in which they live by imitating the most successful agents they know. It
can also be interpreted as the selection step of an evolutionary process in which
the least successful strategies tend to be replaced by the most successful ones.
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In the research areas of dynamical systems and evolution of cooperation, syn-
chronous updating has been the most used update method: at each time step,
all the elements of the system are updated at exactly the same time. This prac-
tice has been widely questioned, the argument being that perfect synchronism is
absent from the real world [8][9]. The most common alternative to synchronous
updating is sequential updating, which is an extreme case of asynchronism: at
each time step, exactly one element is updated. It has been shown that the
level of cooperation achieved and the dynamics of these models, can be signif-
icantly affected if such an asynchronous updating is used. Previous studies on
the Prisoner’s Dilemma game, played on regular lattices under the best-neighbor
transition rule, reported that synchronous updating supports more cooperators
than sequential updating [8][9]. The results are the same for the Snowdrift game
played under the same conditions [13]. When this game is played using the
proportional rule (see Section 2) it was found that sequential updating favors
cooperation [13]. In our work with both games [2][3][5] we confirmed the results
of previous works but also found that asynchronous updating is detrimental for
cooperation for very small noise values only, especially for regular networks. We
also showed that the influence of the update dynamics depends mainly on the
noise present in the strategy update process [4]: asynchronism becomes increas-
ingly beneficial to cooperators as the noise level grows up to a certain value.
Finally, it was found that both games are insensitive to the update dynamics
when the replicator dynamics rule is used [6][13]. However, we showed that this
rule becomes sensitive to the synchrony rate if agents are allowed to imitate less
successful agents, which is equivalent to raising the noise level [4].

Here, we verify the idea suggested by Tomassini et al. [13] that strategy ex-
changes between agents are the reason why sequential updating supports more
cooperators than synchronous updating when a proportional transition rule is
used. In Section 2, the model used in the simulations is described. In Section 3,
we show and discuss the results of the simulations in order to verify this idea.
Finally, in Section 4, some conclusions are drawn and future work is advanced.

2 The Model and Simulations Setup

We use a model very similar to [13]. The Snowdrift (SD) game, also known as
Hawk-Dove, is a two-player game where there is a task which takes a cost c to
be completed and which pays a benefit b > c to each player, regardless of their
participation in the task completion. If both cooperate (C), they divide the cost,
which results in a payoff of b − c

2 to each; If only one cooperates, it receives
a payoff of b − c, while the defecting agent (D) receives b. If none cooperates,
both receive nothing. Given these conditions, it follows that the best action
depends on the opponent’s decision: the best thing to do is to take the opposite
action the opponent takes. As is common practice, we set c = 1 which leads to
a cost-to-benefit ratio of mutual cooperation r = 1/(2b− 1), 0 ≤ r ≤ 1.

At each time step, agents first play a one round game with all their neighbors.
After this, each agent updates its strategy with probability α using a transition
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rule (see below). The update is done synchronously by all the agents selected
to engage in the update process. The α parameter represents the synchrony
rate and is the same for all agents. It allows us to cover all the space between
synchronous and sequential updating: α = 1 models synchronism; as α → 1

n ,
where n is the population size, the model approaches sequential updating.

Small-world networks (SWNs) [14] are used as interaction topologies as in
[13]: first a toroidal regular 2D grid is built so that each node is linked to its 8
surrounding neighbors; then, with probability φ, each link is replaced by another
one linking two randomly selected nodes. Self, repeated links or disconnected
graphs are not allowed. These networks have the property that, even for very
small φ values, the average path length is much smaller than in a regular network,
maintaining a high clustering coefficient. Both these properties are commonly
observed in real social systems. As φ → 1, we get random networks with both
small average path lengths and clustering coefficients.

Two different transition rules are used to model the strategy update process:
the generalized proportional (GP) [10] and the replicator dynamics (RD) [7]. Let
Gx be the average payoff earned by agent x, Nx be the set of neighbors of x and
cx be equal to 1 if x’s strategy is C and 0 otherwise. According with the GP
rule, the probability that an agent x adopts C as its next strategy is

pC(x, K) =

∑
i∈Nx∪x ci(Gi)

1
K∑

i∈Nx∪x(Gi)
1
K

, (1)

where K ∈ ]0, +∞[ is the noise present in the strategy update process. Noise
is the possibility that an agent imitates strategies other than the one used by
its most successful neighbor. K → 0 corresponds to the best-neighbor rule in
which x always adopts its best neighbor’s strategy. With K = 1 we have a linear
proportional rule. Finally, for K → +∞ we have random drift where payoffs play
no role in the decision process. Usually, the interval K ∈]0, 1] is used.

According to the RD rule, the updating agent x imitates a randomly chosen
neighbor y with probability Gy−Gx

b if Gy −Gx > 0. Here, b is the largest possible
payoff difference between two players in a one shot game. Notice that in this rule
agents do not imitate neighbors with lower payoffs.

All the simulations were performed with populations of 50×50 = 2500 agents,
randomly initialized with 50% of Cs and 50% of Ds. When the system is run-
ning synchronously, i.e., when α = 1, we let it first run during a period of 900
iterations which, we confirmed, is enough to pass the transient period of the
evolutionary process. After this, we let the system run for 100 more iterations
and, at the end, we take as output the average proportion of cooperators, ρC ,
and the average number of strategy exchanges during this period. Simulations
where α �= 1 are setup so that the number of individual updates is approximately
the same as in the α = 1 case. Each run is a combination of r (SD game), φ
(SWNs), K (only for the GP rule) and α. For each tested combination, 30 runs
were made and the average of these runs is taken as the output.
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3 Strategy Exchanges and Cooperation

Tomassini et al. [13] suggested that, when the proportional rule (K = 1) is used,
synchronous updating leads to less cooperation than sequential updating because
in the former case agents may exchange their strategies, which is not possible in
the last case. However, the authors did not verify this idea, which is the purpose
of this paper. This idea raises some questions that are not answered by the
authors. The first one is concerned with the transition rule: it is true that both
the best-neighbor (K = 0) and the replicator dynamics rules do not allow direct
strategy exchanges between two connected agents as the proportional rule does.
That is, two agents x and y cannot infect each other simultaneously. However,
it is possible that they exchange strategies indirectly: x can be infected by an
agent a having the same strategy as y while y is infected by another agent b
having the same strategy as x. It is not obvious also that strategy exchanges are
disadvantageous for cooperators. After a strategy exchange, be it direct or not,
the number of cooperators and defectors remains the same. This means that we
must verify if there is a relation between the number of strategy exchanges and
the final proportion of cooperators and, if it exists, we need to verify if there
is a cause-effect relation between the two aspects. Finally, if we conclude that
strategy exchanges negatively affect cooperation, one must try to explain why it
is so.

We first measure the average number of strategy exchanges, as a function
of α. This average is taken over periods of 1

α time steps so that the number of
individual updates considered is approximately the same as for the synchronous
case (α = 1). The observed result is a strategy exchange decrease as α decreases
(Fig. 1(a) shows an example). Exceptions to this result happen almost exclusively
for small noise levels (K = 0 and K = 1

100 ) when the GP rule is used: for some
r values the number of strategy exchanges for α = 0.5 is larger than for α = 1
(Fig. 1(b)). In these situations, the smaller number of strategy exchanges for
α = 1 is due to cyclic dynamics in the asymptotic phase, resulting from the
deterministic nature of the model (synchronous and best-neighbor rule). Even
so, for the most part of these situations ρC is larger for α = 1 than for α = 0.5.
For larger K values, the number of strategy exchanges is larger for α = 0.5 than
for α = 1 only in rare cases. This happens when, for α = 1, the system converges
to uniform populations of Ds, where no exchanges can occur (ex: r = 0.9 in
Fig. 1(a)).

Figs. 1(a) and (b) also exemplify how the number of strategy exchanges vary
with K for the GP rule (K values used: 0, 1

100 , 1
10 , 1

8 , 1
6 , 1

4 , 1
2 , 1): strategy ex-

changes grow with K, specially for α = 1. Only results for φ = 0.05 are shown
but this pattern arises for all the tested topologies (φ values used: 0, 0.01, 0.05,
0.1, 1). On the other hand, we verified that there are almost no strategy ex-
changes when the RD rule is used: the maximum number of strategy exchanges
never exceeds 4 during each 1

α period no matter the α value used. We recall that,
when the GP rule is used, smaller α values are more beneficial for cooperators
as K grows (see Section 1). We also recall that the game is completely insensi-
tive to α when the RD rule is used. This suggests that there is indeed a close
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(a) (b)

Fig. 1. Number of strategy exchanges and ρC (insert) as a function of α, when the
game is played on SWNs (φ = 0.05) using the GP rule. (a) K = 1, (b) K = 0.

(a) (b)

Fig. 2. Proportion of cooperators, ρC , as a function of p when the game is played on
regular networks (φ = 0) using (a) the GP rule (K = 1) and (b) the RD rule

relation between the number of strategy exchanges and how the model reacts to
α changes. In other words, the larger the difference between the number of strat-
egy exchanges occurring under synchronous and sequential updating, the larger
is the difference between the level of cooperation achieved with synchronous up-
dating (less cooperation) and sequential updating (more cooperation). However,
this result does not allow us to establish a cause-effect relation between the num-
ber of strategy exchanges and the proportion of Cs since strategy exchanges are
just a consequence of the input parameters.

In order to verify the effect of strategy exchanges on the level of cooperation,
we did the following experiment: on each time step, either a randomly chosen
agent is updated with probability 1−p using the transition rule or two randomly
chosen neighbor agents exchange their strategies with probability p. We note that
no strategy exchanges can occur as a result of the utilization of the transition
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(a) (b)

Fig. 3. Typical asymptotic patterns when the game (r = 0.6) is played on regular
networks (φ = 0) using the GP rule (K = 1). (a) p = 0, ρC = 0.4692; (b) p = 0.9,
ρC = 0.3636. Colors: black for cooperators and white for defectors.

(a) (b)

Fig. 4. As in Fig. 3 but for the RD rule and r = 0.4. (a) ρC = 0.4668; (b) ρC = 0.4788.

rule since only one agent is selected. This means that, when p = 0, this is a
sequential system. Fig. 2(a) and (b) exemplify the effect of strategy exchanges
on the level of cooperation, respectively for the GP and RD rules, when the game
is played on regular networks. For reasons of space only these two examples are
shown but the results are similar no matter the noise level (only GP rule) and the
interaction topology used. Results for p = 1 are not shown also because in this
regime we have random drift, where payoffs do not influence the dynamics, and
the cooperation level always converges around 0.5, which is the initial proportion
of cooperators. The results are the following: when the game is played under
the GP rule, the proportion, ρC , of Cs decreases as the probability of strategy
exchanges increases. On the other hand, when the RD rule is used, the game is
almost insensitive to p.

The difference between these two behaviors can be understood if we look at
the spatial patterns formed by the agents during the evolutionary process. Fig. 3
shows two examples of asymptotic spatial patterns achieved with the GP rule,
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for p = 0 and p = 0.9. When no strategy exchanges are allowed, C agents or-
ganize into more compact clusters. This is a well known phenomena: structured
populations allow C agents to form clusters so that they interact mainly with
each other, thus protecting themselves from exploration by D agents. This is
important to understand how strategy exchanges influence the level of coopera-
tion. A strategy exchange between a C and a D in the fringe of a cluster pushes
the C away from the other Cs. At the same time, it introduces a D inside the
cluster or, at least, it contributes to more irregular cluster frontiers, which is also
detrimental for cooperators [10]. This can be seen in Fig. 3(b) where there are
more isolated C agents and more filament-like clusters. The situation is different
when the RD rule is used: C agents organize into filament-like clusters and this
pattern does not change when strategy exchanges are introduced (Fig. 4). That
is, when the RD rule is used, agents do not organize into compact clusters even
when there are no strategy exchanges. This means that when strategy exchanges
are introduced, there are no compact clusters to destroy and that is the reason
why both the spatial patterns and ρC are not affected.

4 Conclusion and Future Work

We verified the idea from Tomassini et al. [13] that, when the Snowdrift game
is played under the proportional transition rule (K = 1), sequential updating
supports more cooperators than synchronous updating because in the last case
strategy exchanges may occur, which is not possible in the former case. The
results of the simulations, put together, are a strong evidence that this idea is
correct. We saw that strategy exchanges are detrimental to the evolution of coop-
eration because they destroy compact clusters of agents when these exist, which
is disadvantageous for cooperators. The results show that, when the generalized
proportional transition rule is used, the number of strategy exchanges grows con-
siderably as the noise level gets larger, mainly for synchronous updating. This
explains why smaller synchrony rates increasingly favor cooperation as the noise
level grows. On the other hand, when the replicator dynamics rule is used, there
are almost no strategy exchanges, which explains why this rule is completely in-
sensitive to the synchrony rate of the system. The way how evolutionary games
depend on the update dynamics has already been reported in other works, in-
cluding ours, but this work, complementing the work by Tomassini et al., offers
an explanation for how they react to changes in this parameter. The results pre-
sented in this paper are also in line with the one achieved in our previous work
that the sensitivity of evolutionary games depends mainly on the noise level
present in the strategy update process [4]. This is important because it means
that, in order to build less sensitive artificial societies, special care should be
taken in the design of strategy update processes and agents’ perception skills,
namely by trying to avoid less successful agents to be imitated.

In future developments of this work we will verify this result with the Pris-
oner’s Dilemma game. The way this game reacts to synchrony rate changes is
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similar to Snowdrift. It is, however, more sensitive than the Snowdrift when the
GP rule is used, which turns it a good candidate for the task of verifying how
general this result is.
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Abstract. We study learning in Minority Games (MG) with multiple re-
sources. The MG is a repeated conflicting interest game involving a large
number of agents. So far, the learning mechanisms studied were rather
naive and involved only exploitation of the best strategy at the expense
of exploring new strategies. Instead, we use a reinforcement learning
method called Q-learning and show how it improves the results on MG
extensions of increasing difficulty.

1 Introduction

J. von Neumann, inventor of game theory, showed that economic behavior (i.e.
maximizing your share of economic goods) is in fact the same as players inter-
acting in a game [1]. Game theory assumes that all players act rationally, they
deduce their optimal action for each interaction. Later, J. Maynard Smith ex-
plained how game theory applies in biology under natural selection [2]. In an
evolutionary scenario, each individual interacts many times with many other
individuals. The more successful the individual, the higher the probability it
passes its strategy to the next generation. Natural selection on populations re-
places rationality used in traditional game theory. In 1994, the economist W.
Brian Arthur criticized the deductive reasoning assumption and introduced the
El Farol Bar problem [3]. In real-world situations, players cannot cope with the
complexity of the situation or competitors simply choose not to play rationally.
In such problems, players choose their actions according to what they think other
players will do. These actions in turn are precedents for other players which then
in turn adjust their beliefs.

The Minority Game (MG) is a mathematical formulation of the El Farol Bar
problem by statistical physicists Challet and Zhang [4]. It can be seen as an
abstraction of many real-life situations that are governed by a so-called minority
rule. The transportation system is one such example. It is a complex system
where many people use a common network of roads to get to their destination –
preferably as fast as possible. However, each road has limited capacity, i.e. only
a fixed number of people can use the same road at the same time. When too
many people use the same route (at the same time), they cause traffic jam
and their travel time increases considerably. The Internet is another example of
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a complex network with an important minority rule. The data packets travel
faster through less-used routers. A third example with a totally different type of
resource: animals try to find areas where food is abundant but where competitors
are few.

In each of these cases we have a complex system where individuals (travelers,
ISPs and animals respectively) have access to a limited amount of resources
(network of roads, bandwidth and food respectively). The individuals do not
care about the welfare of each other (or the whole population). They are self-
interested and only want to fulfill their own needs. However, it is clear that the
actions/decisions of one particular individual affect the success of the others.
And vice versa: the actions of the others affect his own welfare.

The common assumption in game theory mentioned above is that agents al-
ways behave rational and solve problems deductively. The El Farol Bar prob-
lem [3] demonstrates a limitation of deductive reasoning. In this problem, many
agents have to decide autonomously whether or not they will attend Thursday’s
night live concert based on the attendances of the previous weeks. Every agent
prefers to attend as long as it is not too crowded. Note that there is no rational
best strategy. When the best action would be to attend, then everybody would
go and they would all end up in the majority.

Inductive reasoning, i.e. learning, was proposed as an alternative. Agents make
decisions based on what they think the other agents will do and these beliefs are
influenced by what the other agents have done in the past. Each new decision
becomes in its turn a precedent that will influence the future decisions of the
others. In other words, it creates a feedback loop from precedents to beliefs to
decisions and back to precedents. Inductive reasoning assumes that this feedback
loop eventually leads to a steady state which corresponds to the best possible
outcome for the agents involved.

In the standard MG [4], the first mathematical formulation of the El Farol
Bar problem, a large but odd number of agents have to make independently
and repeatedly one of two choices. The agents who end up on the minority side
win and are rewarded while the others, i.e. the majority, are punished. The only
information available to the agents is the distribution over the two outcomes in
the previous time-steps. Of course, every agent wants to be in the minority but
this is simply impossible and the optimal outcome for the agent society as a
whole is the largest possible minority given the total number of agents.

The standard MG can be interpreted as a simple resource allocation problem:
there is a single resource with a fixed optimal capacity level η and agents can
decide whether to use it or not. The resource can only be used efficiently if the
fraction of agents using it is less than η. Extensions of the MG include (i) allowing
the optimal capacity level η(t) to change over time and see whether agents can
adapt to the new capacity level, and (ii) introducing multiple resources and see
whether they can balance the load over the different resources.

Since its introduction, the MG has received a lot of attention in the statistical
physics community because of its similarities with complex disordered systems.
For an overview of MG-related research in statistical physics we refer to [5,6].
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It has been shown that in the standard MG a very simple learning rule results in
an optimal steady state [4] but it fails when applied to the extensions mentioned
above [7].

In previous work [8] we applied Q -learning, a reinforcement learning tech-
nique [9]. We found good results both on the standard MG and the time-
dependent MG. Here, we apply Q -learning on MGs with multiple resources,
the second extension mentioned above. In the following we first give a formal
description of the standard MG and the MG with multiple resources. Then we
discuss reinforcement learning in general and Q -learning in particular. Finally,
we present our experiments, results and conclusions.

2 The Standard Minority Game

The standard MG is defined as follows [4]:

– The MG is played with a large but odd number of agents N , i.e. N = 2k +1
for some integer k. All agents use the same simple learning rule.

– Each agent i can choose between two possible actions ai: either to use the
resource – represented by 1 – or not to use it – represented by 0.

– The optimal resource capacity η = 50%, this means the minority group is at
most k and the majority group is at least k + 1.

– The payoff is +1 if the agent is in the minority and −1 if it is in the majority.
– The agents have a memory of m bits to store the last m winning actions,

i.e. the action chosen by the agents in the minority. The memory is updated
after every stage of the game. This information is used by each agent to
decide which action to take at the next time-step.

– Agents also have a set of (at random chosen) strategies S. A strategy s ∈ S
maps each possible combination of m winning actions to the action ai to be
taken next by agent i whenever that combination occurs. Table 1 shows two
strategies.

– Each strategy has a score reflecting how successful it was in the past. After
each stage, the agents increase the score of all their strategies that predicted
the minority action. The next time, they use the prediction of their best
strategy. This is the simple learning rule.

Table 1. An example of two strategies for m = 3, i.e. agents remember the last 3
winning actions. In that case, there are 8 possible combinations. If the winning actions
at time-steps T − 3, T − 2 and T − 1 were 0, 0 and 1 respectively, then agent i will
apply action 1 if it uses s1 and action 0 if it uses s2. The agent uses the strategy with
the highest score. Ties are broken randomly.

000 001 010 011 100 101 110 111

s1 0 1 0 1 1 0 0 1
s2 0 0 0 1 1 0 1 0
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3 Minority Games with Multiple Resources

In MGs with multiple resources, every agent j = 1, . . . , N from a large population
needs to choose repeatedly one out of R resources. At any time t, the resources
i = 1, . . . , R can only satisfy a limited number of agents (ηi(t)N , with 0 ≤ ηi(t) ≤
1). We denote the number of agents choosing resource i at time t by #i(t). Only
resources that are not overused, i.e. #i(t) ≤ ηi(t)N , will satisfy their users. The
agents are rewarded with a point (+1) while others are punished (−1). Users do
not know each other’s intentions (i.e. the resource they will select next time).
Also, they do not know the capacities of the resources.

Here, we consider the case with just enough resources to please the whole
agent population:

∑R
i=1 ηi(t) = 1.

As in the standard MG, the ideal outcome is where as many agents as pos-
sible are satisfied each time. We do not want that some agents are excluded all
the time. In terms of resource demand this means all resources should be used
optimally. I.e., the number of agents #i(t) selecting resource i should be as close
as possible to the capacity of that resource (ηi(t)N). Or, the overuse of resource
i, measured by Ai = #i(t) − ηi(t)N should approach Ai → 0.

Next, we discuss the learning scheme we apply and show its advantages over
the simple learning rule often used in MGs.

4 Reinforcement Learning

Reinforcement Learning (RL) agents solve problems using trial and error. Unlike
in supervised learning, agents are not told which actions or decisions are best. In-
stead, agents receive a reward1 after each action taken. They also have (some) in-
formation about the state of their environment. The goal of the agent is to find an
optimal policy. A policy is a mapping from each state of the environment to a prob-
ability distribution over the possible actions in that state. The agent maximizes
its total expected reward if it takes all actions according to an optimal policy.

Since agents are not told which action to take, they should balance explo-
ration and exploitation. While the agent wants to exploit its knowledge of the
environment most of the time in order to maximize its rewards, once in a while
the agent should take an exploratory action in order to discover actions that are
better than the best one found so far.

The environment is allowed to be non-deterministic: there are probabilities
for each transition from one state to a successor state and for the rewards that
the agent receives. An important assumption is that these probabilities remain
fixed over time, i.e. the environment is stationary. See [9] for an overview of RL.

4.1 Q-Learning

One well-known RL-algorithm is Q -learning. It maps each state-action pair (s, a)
to the total expected reward if the agent applies action a in state s. One can
1 The reward is a scalar, possibly zero or negative. When negative, it is also called

punishment.
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proof that Q -learning will find the optimal policy, i.e. the Q-values converge to
the true total expected reward provided that the environment is stationary [10].
Unfortunately, in a multi-agent setting the environment is non-stationary due to
the presence of other agents that also learn. Whereas in a stationary environment
exploration can be totally ignored when enough information has been collected,
in a non-stationary environment the agent has to continue exploring in order to
track changes in the environment.

Q-values are initialized with an arbitrary value, e.g. 0. After each action a,
the agent updates Q(s, a) according to the rule:

Q(s, a) ← Q(s, a) + α(r + γ max
a′

Q(s′, a′) − Q(s, a)) (1)

where a is the action taken in state s, r is the immediate reward that follows
this action, s′ is the new state of the environment and a′ is the best action
currently known to the agent when in state s′. The learning rate 0 < α ≤ 1
controls the update speed of the Q-values. The discount factor 0 ≤ γ < 1 allows
to weight the importance of future rewards. In the extreme case of γ = 0 only
the immediate reward is taken into account.

Q -learning only tells the agent how to exploit but not how to explore. There-
fore we need an exploration strategy or action-selection rule like ε-greedy or
softmax. In the ε-greedy action-selection strategy (where ε is small), the agent
selects with probability 1− ε the action with the highest Q-value and with prob-
ability ε it selects an action at random.

5 Experiments

In this section we first discuss related work on the MG with multiple resources
and we put forward an alternative hypothesis. Next, we explain how we apply Q -
learning to the MG followed by a discussion of the experimental setup. Finally,
we present and discuss our results.

5.1 Related Work

Galstyan and colleagues [7] have shown that agents using the simple learning rule
in the time-dependent MG cannot track changes in the optimal resource capacity
η(t). To solve this problem, they have restricted the information available to
the agents. Before, all agents knew the last m winning actions. Now, agents
only know what their immediate neighbors did in the previous stage. They use
this information to decide their next action. In other words, a neighborhood
structure is imposed on the agents and they have only local information available
as opposed to global information in the standard MG. An agent population with
local information manages to track changes in optimal resource capacity η(t).
The neighborhood structure used for the agents are the random NK -networks:
N is the number of agents, i.e. nodes in the network, and K is the number of
neighbors of each agent in the network. These K neighbors are chosen at random
when the network is constructed.
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In previous work we illustrated an alternative hypothesis. The simple learning
rule used in the MG is naive from a reinforcement point of view since there is
only exploitation, i.e. the current best action is always applied. We have shown
that a proper balance between exploitation and exploration can track changes
in the resource capacity. We implemented this using Q -learning.

In [7] the authors extended their work to MGs with multiple resources. Here,
we also test our hypothesis on these generalized MGs.

5.2 Q-Learning in the Minority Game

In order to apply Q -learning to the MG, the rewards, state- and action-space
must be defined. The actions simply refer to one of the resources i = 1, . . . , R.
Each agent is punished (r = −1) when choosing an overused resource; and is
rewarded (r = +1) otherwise. The agents receive only local information or, no
information regarding the state of the environment.

The first type of agents (Q0 ) receive no information from the environment.
The second type of agents (NK+Q2 ) have to choose their next action based on
the last decision of their K neighbors, i.e. the agent society is organized according
to a random NK -network.

Rests us to choose the parameter values: the learning rate α is set arbitrarily
to 0.1 and the discount factor γ is set to 0 since experimental results have shown
that the dynamics of the MG is not affected by the order in which the states are
visited [5]. This results in the following update rule:

Q(s, a) ← Q(s, a) + 0.1(r − Q(s, a)) (2)

To select an action we use the ε-greedy strategy. After some experimentation a
reasonable value for most simulations was found to be ε = 0.01.

5.3 Experimental Setup

The performance of the Q -learning agents is compared to two other types of
agents:

RND-agents choose a resource i with probability equal to the resource’s ca-
pacity level ηi(t),

NK -agents are organized according to an NK -random graph as proposed by
Galstyan et al. [7]. They use the last action of their K neighbors to decide
which action to take.

One might say that RND -agents are cheating. They know the capacity of the
resources at each time-step, whereas all other agents have no access to this
information. Anyway, RND -agents are used as benchmark. Q -learning agents
are considered to use the resources efficiently only if the resulting volatility is
lower than that for the RND -agents.
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Table 2. Volatilities (average μV and standard deviation σV ) for the MG with 3
resources. The resources have fixed capacities 0.5, 0.3 and 0.2. The result of NK -agents
were found for P = 0.60.

agent type K ε μV σV

RND 0 – 0.208152 0.00694868
NK 2 – 0.0265430 0.0377557
Q0 0 0.01 0.00784792 0.000489822
NK+Q2 2 0.01 0.0395739 0.00709967

Table 3. Volatilities (average μV and standard deviation σV ) for the MG with 3
resources with fluctuating capacities as mentioned in the text

agent type K ε μV σV K ε μV σV

RND 0 – 0.219063 0.00718633 0 – 0.197639 0.00695407
NK 2 – 0.118924 0.157421 – – – –
Q0 0 0.01 0.0166284 0.00118486 0 0.01 0.0349235 0.00252304
NK+Q2 2 0.01 0.0907612 0.00789532 2 0.01 0.461914 0.0784233

The experiments of which we show the results are all run 100 times. Each sim-
ulation lasts for 10, 000 time-steps. The volatility V (averaged over all resources)
is measured during the last 1, 000 time-steps according to the equations below.
Furthermore, we used a population of size N = 101.

Ai(t) = #i(t) − ηi(t)N (3)

σ2
i =

1
T

T∑
t=0

Ai(t)2 (4)

V =
σ2

tot

N
=

1
NR

R∑
i=1

σ2
i (5)

5.4 Results for Multiple Resources

In Table 2 results are given for a MG with R = 3 resources (η1 = 0.5, η2 = 0.3
and η3 = 0.2). We see the Q0 -agents perform significantly better. The left side of
Table 3 is the result of changing capacities according to following sine functions:

η1(t) = 1/3 + 1/6 sin(2πt/1000) (6)
η2,3(t) = 1/3 − 1/12 sin(2πt/1000) (7)

Next, we doubled, both the size and frequency of the fluctuations in resource
capacities. The results are shown in the right side of Table 3. Note that the
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NK -agents are not mentioned. We simply did not found a value for the strategy
bias P giving satisfying results2. We searched the range [0, 1] in steps of 0.05.
Volatility was almost always 10 times worse than for the RND -agents.

In general, we see that Q -learning agents Q0 (i.e. without communication) per-
form best in these multiple resource MGs. Adding (local) information decreases
system performance. The NK -agents of Galstyan are difficult to tune. Their re-
sults vary largely, possibly due to the relatively small network sizes, N = 101
nodes. But more likely, because of the way the strategies are created.

6 Conclusion

In this paper, we showed first that reinforcement learning is a good alternative
for the learning schemes used so far in the MG. We showed that the simpli-
fied Q -learning agents can handle the MG extensions. Moreover, they can deal
with difficult multiple time-dependent resource capacities which the NK -agents
cannot.

It shows that learning is an important feature of adaptive systems. The ε-
greedy action selection strategies allows the agents to continuously explore. This
creates a situation were they ‘coordinate’, i.e. they adapt to each other’s adapta-
tion. In order to understand this phenomenon better, we would like to compare
our current results with Learning Automata and softmax action selection.
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Abstract. The perceived robustness of multi-agent systems is claimed
to be one of the great benefits of distributed control, but centralised
control dominates in space applications. We propose the use of market-
based control to allocate tasks in a distributed satellite system. The use of
an artificial currency allows us to take the capabilities, energy levels and
location of individual satellites, as well as significant communication costs
into account. Simulation is used to compare this approach to centralised
allocation. We find the market-based system is more efficient and more
robust to satellite failure, due to the adaptive allocation of tasks.

1 Introduction

The robustness and scalability of multi-agent systems are articles of faith in the
artificial life community. Researchers observe that, in social insects, in human or-
ganisations and in markets, the behaviour of the whole is not critically dependent
on the functioning of any single component. In recent years these types of social
and biological networks have inspired a host of technological systems in which
robust, cooperative behaviour is achieved across a group of autonomous agents.
However, the view that distributed systems should be controlled from the centre
still dominates in other engineering fields. A notable example is the engineering
of spacecraft where the central control paradigm has been extremely successful.
This can be traced back to a history of monolithic spacecraft, incremental de-
velopment philosophies and high mission costs. In these systems, reliability is
usually achieved through redundancy, fault detection and error correction. The
centralised and distributed control approaches are rarely compared head to head,
because their respective applications are often completely different.

The idea of using multiple coordinated spacecraft to perform the function of
a single larger vehicle has recently been proposed[1]. Distributing functionality
between the component spacecraft allows larger structures to be constructed
in orbit, while also benefiting from the commoditisation of spacecraft, rapid
deployment and mission flexibility. The increased complexity requires that the
system handles component failure transparently, while also abstracting the man-
agement of components in the system. The control of such a system lies at the
intersection of the spacecraft engineering and multi-agent systems fields, with
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neither approach assuredly superior. In this paper we investigate the suitability
of a distributed multi-agent system solution by comparing its performance to a
centralised control implementation. Using a simplified task allocation model also
allows us to verify the widely assumed increased robustness offered by a multi-
agent system, which is one of the primary motivations for using this approach.

In [2] a multi-objective evolutionary algorithm is used to find a trade-off be-
tween signal delay and transmission power cost for communication in a multi-
satellite system. Power consumption is decreased by using multi-hop routing,
with the option of long distance transmissions to meet communication time con-
straints. An artificial potential field is used in [3] to position spacecraft in a
lattice formation. By using a bottom-up approach it provides scalability and
robustness. Self-organisation is also used in the proposed in-orbit assembly of
large structures[4]. None of the above addresses the problem of task distribution
in a group of spacecraft.

From a computational point of view, a group of spacecraft can be seen as
a multi-robot system, where coordination in a hostile and noisy environment
is a challenge. Alternatively, the multi-satellite system can be abstracted as a
distributed computing network, where tasks need to be efficiently allocated to
different nodes. Natural systems have provided useful metaphors for obtaining
desired emergent behaviours in multi-robot contexts; for example, aggregations
of robots through mimicking cockroaches[5], and divisions of labour[6] and for-
aging strategies [7] inspired by social insects. From the distributed computing
perspective marketplaces have been popular mechanisms for allocating tasks in
a distributed fashion. Typically, agents bid based on their suitability to perform
a task and an auctioneer selects the best agent based on the size of the bid. The
use of an artificial currency allows agents to make adaptive local decisions in a
system where global information is incomplete and out of date. When viewed
from a system-level perspective, these market-driven systems display collective
social adaptive behaviour[8].

In [9] a market is used to allocate computing tasks in a heterogeneous network.
The system self-organises to distribute loads fairly, by mapping idle resources
into currency. The trade-off between sensing and data routing in wireless sensor
networks (WSNs), is managed using a market mechanism in [10]. Nodes decide
which role to fulfil, based on the payment they receive. By maximising their own
revenue, the system performs close to optimal, dealing with changing sensor num-
bers and extending network lifetime. [11] combines the market-based allocation
with robotics to efficiently explore a unknown territory. Robots compare their
own cost of visiting a waypoint with trading it with a potentially better-situated
vehicle. This maximises information retrieved while minimizing the system cost.
Target allocation in unmanned miniature aerial vehicles (MAVs) using a mar-
ket is presented in [12]. A distributed auction scheme takes the kinematic and
sensing constraints of MAVs account.

The above examples demonstrate the utility of market-based control (MBC)
in task allocation in distributed systems. The limited power and high communi-
cation costs in a distributed satellite mission are, however, not fully addressed.
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While WSNs share these constraints, their computation and communication de-
mands are quite different. We will use a distributed market-based control ap-
proach that encapsulates the energy of individual nodes, their capabilities and
their location in the network to achieve robust, adaptive allocation.

Although several multi-spacecraft missions have been proposed, no actual im-
plementations have been flown yet. We therefore propose the following reference
mission: A group of small, low-cost satellites, numbering in the tens to hun-
dreds are positioned in close proximity to each other in low earth orbit. Due to
power constraints, communication is limited to only take place between neigh-
bours, forming a network of autonomous, yet highly interdependent agents. The
agents are specialised, with different classes displaying different skills: some are
equipped to communicate with the ground station, while others carry remote
observation cameras.The different payloads can operate independently, or be
merged to provide synthesized data. For example, cameras can either be oper-
ated independently for low-resolution coverage of a wide area, or be combined to
provide high-resolution images of a particular area of interest. Ideally, the group
of satellites should be addressable as a single virtual spacecraft, with the detailed
management of individuals left to the system. This reference mission is used to
construct a simulation model that can be used to compare the robustness and
efficiency of the centralised and distributed control methodologies directly.

2 Model

The desired multi-satellite system has no single point of failure and the goal is
to allocate tasks in a manner that maximises the total amount of work done. We
represent the system as a network of agents, with connections reflecting reliable
wireless links between satellites. We currently have two types of agents: uplink
nodes that communicate with the ground station; and worker nodes that per-
form tasks. A batch of tasks is uploaded to the uplink nodes at regular intervals,
similar to a satellite having periodic contact with the ground station. Consid-
ered from the point of view of an uplink node, uploaded tasks are sequentially
allocated to worker nodes using a sealed-bid reverse auction.

The uplink node acts as auctioneer and announces the auction by flooding a
request describing the task through the system. If a node has enough energy and
the required infrastructure to complete a job, it places a bid. The request message
is repeated to its neighbours, who perform the same process. The value of the bid
(B) is dependent on the ratio of maximum (emax) to remaining energy (erem)
of the node, the size s of the task and a scaling factor α that reflects the actual
energy cost of performing the type of task: B = αs emax

erem
. Returning bids are

routed along the path of the original request message, with intermediate nodes
adding a constant percentage commission to the bid. The uplink node selects
the lowest bidder to assign the task to. The winning agent takes responsibility
for the task, decreases its remaining energy (erem) by the cost of performing
the task (αs) and receives payment. All the nodes in the communication path
also receive their commission. As commission is multiplicative, it encourages the
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(a) (b)

Fig. 1. Task allocation shifts to reflect changes in the network. In (a) the dotted line
shows the area in which the majority of tasks sold by each auctioneer (shaded node) is
allocated to. The nodes intersected by the dotted line receives tasks from both auction-
eers. If a node fails, we lose its capacity to complete jobs and its routing functionality.
The relative distances (measured in number of hops between nodes) and loading of
nodes will change, resulting in a new distribution of labour in the network (b).

local allocation of tasks, because distant nodes appear more expensive to the
auctioneer. This bidding mechanism results in inexpensive bids from nodes that
are under-utilised (large erem), while nodes that receive more allocations (lower
erem) will increase their bids, making them less likely to be allocated a task.
Agents do not try to win tasks by underbidding others — the quoted price is
an honest reflection of the internal state of the node. Communication uses a
significant portion of the total energy budget, in contrast to many multi-robot
systems where it can safely be treated as negligible when compared to other
energy uses. On every transmission erem is decreased by a value corresponding
to the packet size. The commission parameter is responsible for minimising this
communication expenditure.

When this process is executed concurrently across the network, the balance
between the distributive effect of energy dependent bids and the localising effect
of commission results in an allocation policy that is sensitive to levels of utilisa-
tion and changes in topology. Note that any node can act as an auctioneer, but
for the simplified task structure above only uplink nodes allocate tasks.

Node failure is implemented as a uniformly distributed probability of failure
per node per time step. Failed nodes cannot perform any work and have no
communication links, thereby altering the network topology, as shown in Fig. 1.

This model has only one type of task and a relatively simple allocation prob-
lem. Although it is a simplified scenario, we believe it still captures enough of
the dynamics of the system to allow a fair evalution of control approaches. The
design does, however, allow for future expansion: multiple task types can be used
and recursive auctions can take place, which means any node can subcontract
another node to perform part of a task. While the bid value is currently largely
determined by the remaining energy in a node, it can easily be extended to
include other system resources, such as bandwidth or memory.

Note the similarities between this abstraction and networked computing sys-
tems, where the best node for a task is determined by available CPU cycles,
memory and disk space[9]. It also applies to wireless sensor networks, where
node utility is dependent on remaining energy.
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3 Results

The market-based control allocation scheme is used in a network with 100 nodes
arranged in a 10 by 10 square lattice formation. Nine of the nodes act as uplink
nodes; the remaining 91 are worker nodes. The duration of a day is 100 time
steps. Our focus is on task allocation, so we assume formation flight is managed
by a system similar to that presented in [3]. Tasks are introduced to the system
at a constant rate (9 tasks per day), while nodes have failure probability of 0.001
per day per node. Approximately half the nodes usually fail after 800 days. The
energy costs of tasks are generated from a Weibull distribution with shape k = 2
and scale λ = 2. The recharging of batteries from solar panels is implemented
by increasing nodes’ energy by 0.15 units per day, up to a maximum of 10 units
per node. Transmission cost is set to 0.001 units per packet for negotiation and
0.1 units for allocation packets. As we currently only have a single task type, α
is set to 1 for all nodes. Commission is set at 20%.

We compare our system to three other idealised control strategies to quantify
its performance and robustness. Note that the following systems are unrealisable
in a real world, but they do provide useful measures for comparison.

The ideal case represents the best possible performance. This assumes the
controller has perfect knowledge of the network and can communicate cost-free
with any node, without being constrained by network topology. Allocation is
treated as a bin packing problem: for every task, the controller finds the worker
node with the most remaining energy and assigns the task to it. The controller
is considered immune against failure.

In the centralised approach, we have an intelligent mother ship that controls
a network of simpler worker spacecraft. The level of realism is increased by
reintroducing the network topology and transmission cost. The single controller
node is positioned in the centre of the same lattice used by the distributed
controller. The remaining 99 nodes are workers, as opposed to 91 workers for
the MBC case. The controller has perfect information about the energy levels of
nodes in the network, as well as the topology of the network — we ignore the
cost of maintaining this information. Tasks are again assigned as in the ideal
case, with the additional constraint that to allocate a job to a node, a valid path
must exist between the central controller and the selected worker node. A path
is valid if all nodes along it are active and have enough energy for transmission.

As the controller node in the centralised approach is a single point of failure,
we assume that in a real mission scenario, it would incorporate redundancy to
decrease its vulnerability. We therefore model this node as being immune to
failure in the centralised with immunity (CI) case. All other variables are the
same as used in the centralised approach.

3.1 Performance

The system was allowed to settle into steady state behaviour, before enabling
the failure of nodes. The number of tasks successfully assigned over a period of
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Fig. 2. Performance and robustness of different allocation strategies. In (a), network
performance is measured by the total number of tasks allocated, normalised with re-
spect to the steady-state performance of the ideal system. The amount of work stays
constant, while nodes fail with a uniform probability. The ideal case, marked with
triangles, provides an upper bound on the performance because it does not take com-
munication cost or network topology into account. The market-based control allocation
scheme (diamonds) deteriorates faster than the ideal case, but performs more efficiently
than the centralised approaches (circles and squares). Robustness is defined as the abil-
ity to maintain performance despite satellite failures. In (b), the performance data is
normalised with respect to the steady-state performance of the respective allocation
strategies. The ideal case (triangles) shows the theoretical maximum obtainable, if
topology and transmission cost have no influence. Market-based allocation (diamonds)
shows a more gradual deterioration than either of the centralised approaches. The vul-
nerability of the network due to failure of the controller node is clearly visible when
comparing centralised case (squares) to centralised with a controller that is immune to
failure (circles). The solid horizontal line indicates 50% of the initial throughput.
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100 days was measured and normalised with respect to the steady-state perfor-
mance of the ideal allocator. This was repeated 100 times to obtain an average
behaviour; the resulting performance is shown in Fig. 2(a).

The ideal system can be seen to form an upper bound on the allocation success.
It slowly deteriorates over time as the number of failed nodes increases and the
system’s capacity to complete jobs decreases. The MBC approach displays lower
initial performance: due to the energy cost of communication it accommodates
only 76.9% of the tasks the ideal case does. Steady-state performance drops
to 68.9% for both centralised control schemes, because of the larger portion
of the energy budget spent on communication (the average path length when
allocation tasks is greater than with MBC). Progressive node failure decreases
the total capacity of the network: allocation paths becomes longer and use more
energy, and the network is fragmented when all routes to functioning nodes are
cut. This is reflected in the steep slope of the centralised, CI and MBC data.
The sensitivity of the network to failure of the central controller is significant,
as can be seen when comparing the centralised approach to CI.

Additional experiments confirmed that the behaviour of the system is ro-
bust to variations in parameter values. The qualitative observations still hold,
although some quantitive changes occur. For smaller networks, the centralised
and MBC results converge. If the ratio of transmission cost to task size changes,
the performance will increase (for smaller packets) or decrease (for larger pack-
ets) accordingly.

3.2 Robustness

We define robustness as the ability of the system to maintain steady-state per-
formance despite satellite failures. To compare the robustness of the different
systems, the results from Sect. 3.1 are normalised with regards to their respec-
tive steady-state values (Fig. 2(b)).

The ideal case again provides an upper bound. The centralised case deterio-
rates rapidly, largely due to the whole network collapsing if the controller node
fails. While the CI approach performs better, it is still subject to network frag-
mentation. The MBC approach is more robust than both centralised systems.
To express these results in terms of mission reliability, we define a mission as
operational while it delivers more than 50% of its initial throughput. The cen-
tralised system reaches this limit at 360 days, the immune-centralised at 525
days and the MBC approach at 605, making it the most reliable of the three. In
spite of having having fewer worker nodes, the performance of the MBC system
is superior. This is not only related to efficiency, but also to robustness. In par-
ticular, this is a result of having multiple uplink nodes which are able to adapt
their allocation to changes in the network topology and node utilisation.

4 Discussion

We have shown that a market-based task allocation system completes more jobs
and is more robust than a centralised approach, irrespective of whether the
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central controller is subject to failure. The improved performance is a result
of lower system-level communication costs when assigning jobs and improved
robustness, due to the distributed and adaptive nature of the control system.
These results are promising for distributed space applications. Launch mass will
always be the dominant factor in total mission cost and, assuming a given launch
mass and spacecraft of equal size, our results show that more work can be done
more robustly using an MBC approach.

The results are also applicable to robustly controlling systems with simi-
lar constraints, such as WSNs and distributed computing systems, by using
emergent behaviour. The work presented here is the first step towards a task-
allocation mechanism for a distributed satellite system. Future work will look
at composite tasks, requiring cooperation; adding temporal constraints to tasks;
optimising the energy cost of transmissions to match communication distances;
optimal composition of the satellite types in the group; and enhanced physics to
provide more realism.
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Abstract. Hierarchical structuring of behaviour is prevalent in natural
and artificial agents and can be shown to be useful for learning and per-
forming tasks. To progress systematic understanding of these benefits
we study the effect of hierarchical architectures on the required informa-
tion processing capability of an optimally acting agent. We show that an
information-theoretical approach provides important insights into why
factored and layered behaviour structures are beneficial.

1 Introduction

Animals sometimes make performing complex tasks seem almost trivial. For in-
stance, a praying mantis can show a wide arrange of complicated behaviours such
as feeding, grooming and sexual behaviour, with very limited brain power. Un-
derstanding this is only possible when realising that their behaviour is well struc-
tured, partially in a hierarchical manner [1]. Nature supplies a large amount of
examples of this kind of hierarchical behaviour, e.g. in vocal behaviour in singing
birds [2] and ordering tasks in capuchin monkeys [3]. Unsurprisingly, there has
for long been a call in the field of ethology to not neglect this structure [4].

Computational models of such structures are well established. Traditionally
as static systems [5], but the latest advances in reinforcement learning show that
adaptive hierarchical behaviour structures can significantly speed up learning [6],
even when an agent has to build up its behavioural hierarchy autonomously in
parallel with learning a new task [7, 8]. Recent research has investigated the
relationship of biological structures to computational models of layered control
[9] and modern adaptive hierarchical architectures [10].

The benefits of hierarchical organization of behaviour are intuitive: it reduces
complexity, eases learning and facilitates skill transfer [6]. What is missing how-
ever is a systematic rather than heuristic understanding of the reasons for success
of this kind of structures in nature and in artificial agents. Additionally, quan-
titative methods for comparing the growing number of computational models
of behaviour hierarchies are needed. Currently these are partly, if not wholly,
based on assumptions and external knowledge of their designer, of which the
necessity is difficult to judge. What we seek is a minimal model that extracts
and unifies commonalities between specific fields such as biology, robot control,
decision theory and engineering.
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Information theory has proven to be a useful tool in supplying such models and
in understanding fundamental, global properties and limits of agent-environment
systems [11–14]. Our hypothesis is that the advantages of hierarchical behaviour
structures in animals and artificial agents are grounded in their effect on the way
an agent processes information. Firstly, they divide the burden of information
processing over different layers. Secondly, information about the current context
is retained in more abstract behaviours at higher levels, relieving lower levels
from performing redundant information processing. In this paper we will first
research and quantify these effects separately. Subsequently we will investigate
their combination.

2 Relevant Information

An agent with sensors and actuators combined with its environment forms an
action-perception loop, in which at each time step t the agent perceives the state
of the environment st ∈ S and decides on an action at ∈ A. The dynamics of
the total system are determined by the state transition probability distribution
Pa

st,st+1
= p(st+1|st, at) and the agent’s policy π(st, at) = p(at|st).

We are interested in agents operating in an environment that rewards certain
behaviour, according to an immediate reward function rt+1 = Rat

st,st+1
∈ R.

Given this reward we can determine two functions: the state value function
V π(s), which is defined as the expected future reward an agent will receive when
starting in state s and following policy π, and the state-action value function
(or utility function) Uπ(s, a) which gives the expected future reward of taking
action a when in state s and consequently following policy π [15]:

V π(s) =
∑

a

p(a|s)
∑
s′

p(s′|s, a) [r(s, a, s′) + γV π(s′)] (1)

Uπ(s, a) =
∑
s′

p(s′|s, a) [r(s, a, s′) + γV π(s′)] , (2)

where γ ∈ (0, 1) is a discount factor to model preference of short term over long
term reward.

An optimal policy for an agent in such an environment is one that maximizes
the expected utility Eπ [U(S, A)] =

∑
s,a p(s, a)U(s, a) =

∑
s,a p(a|s)p(s)U(s, a).

To be able to execute this policy, the agent needs to take in and process infor-
mation from the environment through its sensors. However, not all available
information is needed. The concept of relevant information provides a concrete
minimum of the amount of information an agent needs to acquire to be able to
follow an optimal policy, measured by the mutual information between states and
optimal actions [11]: I(S; A∗) = minp(a|s):p(a|s)p(s)>0⇒a optimal for s I(S; A) . This
measure is an important, fundamental property of the agent-environment dy-
namics and the given reward function. It does not depend on the actual method
of finding an optimal policy. Mutual information is measured in bits and is de-
fined by the change in entropy (uncertainty) about A when S is being observed:
I(S; A) = H(A) − H(A|S).
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G

(a) Flat

G

(b) Memory

Fig. 1. Grid-world environment used in experiments with the policy of the best solution
found using (a) a flat, memory-less policy and (b) when using memory. The size of the
arrows is proportional to the probability of choosing the action to move in that direction
in a given state (π(s, a) = p(a|s)).

3 Grid-World Navigation Task

3.1 Environment

The environment used in this paper is a 2-dimensional grid-world as shown in
Fig. 1. The set of possible states S comprises all unoccupied cells. The set of
available actions A consists of four actions that move the agent one cell north,
east, south or west. State transitions are fully deterministic: Pat

st,st+1
∈ {0, 1}.

When performing an action that would bring the agent to an occupied grid cell,
the agent remains in the same state.

A single cell g is designated as the goal state and a reward is given when the
agent arrives in this state: Rat

st,st+1
= 1 if st �= g, st+1 = g, and 0 otherwise.

3.2 Policy Evolution

We are interested in the minimum amount of state information an agent, equipped
with different behaviour structures, takes in when following an optimal policy.
We will denote the amount of memory intake as I, the minimum amount as I∗.
When using a flat policy, the minimum is the relevant information as discussed
in Sect. 2: I∗ = I(S; A∗), which can be determined computationally, e.g. by
generalising the classical Blahut-Arimoto algorithm for rate-distortion[11, 16].

However, it is not trivial to adapt this algorithm to the other behaviour struc-
tures that we will introduce further on in this paper. Therefore, we will use
an evolutionary approach to find policies that minimize I. We start with a
population of random individuals, defined by the conditional probability distri-
butions that make up their policies. At each epoch, individuals are iteratively
selected from the previous population and combined by crossing their genotypes
to create descendants, which advance to the next generation, possibly undergoing
mutation.

The selection is done through tournament selection. A number of individuals
is chosen at random and a fitness function F (π) is used to rate their policy.
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Fig. 2. Causal Bayesian network of the action-perception loop using (a) a hierarchical
policy, (b) memory or (c) temporally extended options, unrolled in time

The winner is selected for breeding and produces a single offspring, of which a
conditional probability distribution that is part of its policy can be crossed with
that of the child of another tournament winner. The probability of occurrence
of this crossing is determined by a cross-over rate pc ∈ [0, 1]. Cross-over mixes
distributions of the children such that pchild1(A|B) ← pchild2(A|B) for B ≥ b
where b is chosen at random. Mutation is applied by permuting a distribution
P (A = a|B = b) ← P (A = a|B = b) + ε for each b with probability pm, where a
and ε are chosen at random. After mutation P (A|B = b) is renormalized.

In all experiments described in this paper we have used a population size
of 100 individuals and a tournament size of 3 individuals. The cross-over and
mutation rates have been set to pc = pm = 0.1. The fitness function is defined as:

F = I + β
∑
s,a

p(a|s)p(s)U(s, a) , (3)

where I is varied according to the experiments as described in the next sections.
Furthermore, we set β = 105 to enforce near-optimal policies. Evolution is run
until the change of fitness of the best individual between generations becomes
sufficiently small. To establish a baseline we have applied the evolutionary al-
gorithm using memory-less flat policies where Iflat = I(S; A) . The algorithm
consistently converged to a solution giving I∗

flat ≈ 1.27 bits, which is the same
amount as found with the traditional Blahut-Arimoto algorithm. The policy of
this solution is shown in Fig. 1(a).

4 Hierarchical Policies

In this section we will investigate the first intuition about the advantage of using
a hierarchical policy: it splits up the task into simpler parts so it can be per-
formed by an agent with simpler components. The minimum information intake
I∗ gives a natural quantitative measure to determine difficulty of a (sub)task.
Our hypothesis is that using a hierarchy reduces the amount of information re-
quired, and thus the necessary information processing capabilities, at each layer.

Here we will use the simplest hierarchical model with two levels. At each time
step, a general decision is made at the higher level, based on the current state,
which we will call an option, in accordance to the terminology of Sutton et al [15].
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G G

Fig. 3. Policy of the best solution found using a hierarchical, memory-less policy per
option. The size of the arrows is proportional to the probability of choosing the action
to move in that direction in a given state and option (p(a|o, s)). The opacity of the
arrows in a cell are proportional to the probability of selecting the respective option in
that state (p(o|s)).

At the lower level the actual action that is to be performed is selected based on
this option ot and some extra information about the current state. The policies
at the higher and lower level are determined by the conditional probability dis-
tributions p(ot|st) and p(at|st, ot). The corresponding causal Bayesian network
of this hierarchical policy is shown in Fig. 2(a).

The total information intake is the sum of the information intake at each level:

I = I(St; Ot) + I(St; At|Ot) = I(St; At) + I(St; Ot|At) . (4)

As can be seen, this sum is greater than or equal to the mutual information
between states and actions, with equality if either the current state or the cho-
sen option is completely determined by the selected action. Therefore, the total
information intake will never drop below the minimum achieved with a flat pol-
icy. It is no surprise then that we find that both the evolutionary approach
as an adapted version of the Blahut-Arimoto algorithm find solutions where
I(St; Ot) = 0 and I(St; At|Ot) = I(St; At), effectively optimizing away the
hierarchy.

Our goal is to show that using a hierarchy can let one get away with combining
simple components. To do this we not only minimize the total sum, but also the
information intake of the most complex part by extending the fitness function:

F = I + max [I(St; Ot), I(St; At|Ot)] + β
∑
s,a

p(a|s)p(s)U(s, a) . (5)

In our experiments we set the number of options to 2. The best solution found by
the evolutionary algorithm resulted in average information intakes of I(St; O∗

t ) ≈
0.83 bits, I(St; A∗

t |O∗
t ) ≈ 0.98 bits, totalling to I∗

hier ≈ 1.81 bits. Although the
total system needs more information, the most complex level (the lower level)
can get away with handling almost 25% less information as compared to a flat
policy. The policy of this solution is shown in Fig. 3.
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5 Memory

As mentioned in the introduction, the second intuition about hierarchical be-
haviour structures is that behaviours on higher levels function as a form of
memory and retain information about the environment and the current task
being performed. In this section we will investigate the effect of memory on
necessary information intake of a policy. When looking at trajectories of states
and actions, an agent can clearly get away with taking in less information than
the sum of the single-step intakes discussed in the previous sections. Knowing
about the past already gives you information about the current state without
looking, since inherent structure of the world restricts the number of possible
state transitions and the selection of an action is fed back into the distribution
of possible states.

To handle channels that show this kind of feedback, the concept of directed
information I(ST → AT ) [17] was developed, which measures the actual infor-
mation flow from an input sequence (ST ) to an output sequence (AT ) of length
T . The directed information intuitively gives an indication of the amount of in-
formation an agent has to take in when having access to information about the
past. In our experiments with memory we use this measure, scaled by trajectory
length, as the average per step intake:

I =
1
T

I(ST → AT ) =
1
T

T∑
t=0

I(St; At|At−1) . (6)

We use the simplest model, where T = 2 and thus memory only goes back a
single time step, resulting in the network shown in Fig. 2(b). The best solution
found in these experiments resulted in an average information intake of I∗

mem =
1
2

(
I(St; A∗

t ) + I(St, St+1; A∗
t+1|A∗

t )
)
≈ 1

2 (1.32 + 1.08) bits = 1.2 bits. The policy
of this solution is shown in Fig. 1(b). As expected, this average is lower than
in the memory-less case. However, the average intake at the first step of a two-
step trajectory (I(St; A∗

t ) ≈ 1.32 bits) was consistently higher than I∗
flat, which

means that the agent still needs a more complex information processing system.

6 Temporally Extended Actions

The separate properties of hierarchical behaviour discussed in the previous sec-
tions show important effects on the processing capabilities of an agent, however
each still introduce more processing costs in some aspects. In this section we
study the combination of both properties into a structure that corresponds bet-
ter with the examples of nature given in the introduction and the notion of
Sutton’s options.

In these experiments we model a hierarchical policy that uses Temporally
Extended (TE), abstract, actions: at higher levels in the hierarchy such an action
(or option) is chosen as in Sect. 4, with the difference that this option is applied
for several subsequent time steps. An action is chosen at the lowest level in the



348 S.G. van Dijk, D. Polani. and C.L. Nehaniv

same way as in the memory-less case. The Bayesian network corresponding to
the model used in our experiments, with a two-step cycle, is shown in Fig. 2(c).
Note that this model is more limited than that of the previous section, since the
choice for an option can only retain direct information about the previous state,
information about the previous action is only implicit through the lower level
policy (p(a|o, s)).

In this model the total per-step information intake is the average over the
intake during both steps of a cycle:

I =
1
2
(I(St; Ot) + I(St; At|Ot) + I(St+1; At+1|Ot)) . (7)

Again, we aim to minimize the costs of both the complete system and its seperate
parts. Therefore, as in Eq. 5, we add the maximum intake of all parts I(St; Ot),
I(St; At|Ot) and I(St+1; At+1|Ot) to the fitness function.

Experiments with this structure in the grid-world described in the previous
sections is still ongoing work at time of writing. Results obtained with a smaller,
2-room environment, however, show that temporally extended actions combine
the advantages quantified in the previous two sections. One solution achieves the
minimum necessary information intakes I(St; O∗

t ) ≈ 0.62 bits, I(St; A∗
t |O∗

t ) ≈
0.97 bits, I(St+1; A∗

t+1|O∗
t ) ≈ 0.36 bits, giving I∗

TE ≈ 0.97 bits, where with a flat,
memory-less policy one has I∗

flat ≈ 1.03 bits. This indicates that an agent can
achieve an optimal policy with simpler information processing components (as
in Sect. 4) and still on average take in less information in total (as in Sect. 5).
Preliminary results suggest that these advantages generalize to more complex
environments.

7 Discussion and Future Work

The results presented in the previous sections show quantitatively how hierar-
chical behaviour structures can reduce the necessary amount of information an
agent needs to be able to process to perform a task optimally. We have also shown
that simpler behaviours placed in a hierarchy can, with the same or even smaller
amount of information, perform as well as a more complex, flat behaviour. This
offers a novel, quantifiable, environment and architecture-independent argument
for the use of these structures.

The methods put forward in this paper promise applications in the study of
hierarchical behaviour in ethology, possibly resulting in a systematic understand-
ing of the prevalence of this phenomenon in nature. Additionally, they can be
applied to a wide variety of computational models and their specific implemen-
tations of behaviour structuring to determine the necessity of designer imposed
assumptions and heuristics.

Future work will consist of studying how these results can guide optimal
behaviour organization in organisms and artificial agents and to determine the
optimality of existing models of organization. Additionally, we will study the
effect of including more general notions of behaviour structuring, different models
of memory and information flow [18] and further limitations and noise.



Hierarchical Behaviours: Getting the Most Bang for Your Bit 349

References

1. Prete, F.R., Wells, H., Wells, P.H., Hurd, L.E.E.: The Praying Mantids. Johns
Hopkins University Press, Baltimore (1999)

2. Yu, A.C., Margoliash, D.: Temporal Hierarchical Control of Singing in Birds. Sci-
ence 273(5283), 1871–1875 (1996)

3. McGonigle, B.O., Chalmers, M., Dickinson, A.: Concurrent disjoint and reciprocal
classification by Cebus apella in serial ordering tasks: evidence for hierarchical
organization. Animal Cognition 6, 185–197 (2003)

4. Dawkins, R.: Hierarchical organisation: A candidate principle for ethology. In:
Growing Points in Ethology, pp. 7–54. Cambridge University Press, Cambridge
(1976)

5. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (2007)
6. Barto, A.G., Mahadevan, S.: Recent Advances in Hierarchical Reinforcement

Learning. Discrete Event Dynamic Systems 13(4), 341–379 (2003)
7. McGovern, A., Barto, A.G.: Automatic Discovery of Subgoals in Reinforcement

Learning using Diverse Density. In: Proc. 18th International Conf. on Machine
Learning, pp. 361–368. Morgan Kaufmann, San Francisco (2001)
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Abstract. Construction of wasp nests is a self organized process that requires 
building materials, pulp and water foragers, and builders to cooperate. In this 
paper we study how the society of agents use a social crop, or common 
stomach, to store water that also provides a mechanism for worker connectivity, 
which in turn regulates building. Our model predicts that via the common 
stomach usage, medium sized colonies enjoy the benefit of having highly 
effective foragers and this in turn means that the colonies need only endanger a 
few foragers to ensure steady construction. When pulp foraging becomes more 
costly than water foraging, the colonies adjust via recruiting more pulp foragers 
and less water foragers, but keep high numbers of common stomach wasps on 
the nest. The common stomach provides an adaptable platform for indirect 
worker connectivity and a buffer for water storage. 

Keywords: communication, swarm, social insect, superorganism, agent. 

1   Introduction 

Insect societies can be conceived as superorganisms in which inter-individual conflict 
for reproductive privilege is largely reduced and the worker caste is selected to 
maximize colony efficiency [1]. The ability of social insects to divide the colony’s 
work via specialization, polyethism, and task partitioning has fascinated scientists for 
centuries. Many of these studies are commonly concerned with the integration of the 
individual worker behavior into colony-level task organization and with the question 
of how regulation of division of labor may contribute to colony efficiency. For 
example, bee colonies collect food from flowers, whose abundance varies strongly in 
space and time. Finding these resources requires considerable search effort [2] and 
effective foraging by the colony depends on an appropriate allocation of bee workers 
to exploration versus exploitation (collection of food from known resources) [3].  

Colony-level flexibility in response to environmental changes and internal 
perturbations is an essential feature of division of labor [4, 5]. The actual number of 
workers allocated to different tasks is a result of the individual decisions made by these 
workers, which in turn are based on information available to these individuals through 
direct and indirect communication with their nest-mates and the environment. The 
collective colony-level pattern is therefore self-organized, without a central leader or 
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template directing individuals to particular resources. Colony size correlates with 
productivity, body size, behavioral flexibility and colony organization [6].  

Studies on a diverse array of social insect taxa show that interactions among 
workers (called worker connectivity) often play important roles in structuring division 
of labor [7]. O’Donnell and Bulova [8] propose that relying on shared and connected 
information can be beneficial: 1. Connectivity permits sharing of information among 
more workers and across greater distances than direct perception of stimuli. 2. 
Connectivity can foster task switching or can overcome task inertia. 3. “Catalytic 
individuals” with better or more information can propagate the information through 
the connected colony faster. The possible mechanisms of worker connectivity range 
from simple pair-wise encounters [9, 10] to specialized communicative displays [11]. 

While pheromones and dances are well-developed communication systems, even 
bees and ants use a wide variety of other types of communication to regulate or fine 
tune their division of labor [12]. For example, Cassill and Tschinkel [13] found that 
the division of labor in S. invicta ants depends on worker size and age and is fine 
tuned by the states of their crop volume and content. In honeybees, food reserves not 
only ensure homeostasis, but also regulate division of labor [14]. In social wasps, 
construction behavior is regulated indirectly by the temporally stored water in the 
crop of the insects [15, 16]. 

In this paper our goal is not to construct a detailed model the behavior of wasp 
societies, but rather to investigate in a more abstract way some important features of 
the common stomach. While our model is inspired by the colony regulation of wasps, 
the presented model is minimalistic; our agents are much simpler than the wasps, and 
we focus on the function of the common stomach rather than on the dynamically 
evolving agents. Specifically, we investigate how colony efficiency changes as a 
function of colony size and the constitution of task force. We also demonstrate how 
colony efficiency changes with the increase of the time cost of pulp foraging. 

2   The Model 

We constructed a multi-agent model (implemented in Java) inspired by the nest 
construction of Metapolybia wasps [15]. Nests are built by builder wasps using 
wooden pulp. For collecting pulp, the colony needs water and pulp foragers, and for 
the water the colony needs water foragers. For simplicity, we assumed that each agent 
belongs to a predetermined task group and her job does not change. Our goal was to 
focus on short term efficiency and to study the efficiency of different workforce 
combinations. For a more complex approach of the same phenomena see [16]. 

Collection of water and pulp take place outside the nest at the water and pulp 
source respectively (Fig. 1). The time required for collecting these materials is 
parameterized with Tw (water) and Tp (pulp) which represent the time in which the 
forager wasp is outside the nest collecting materials. We assumed that there is no 
variation in collection times or the amount of water and pulp collected. Collection of 
pulp generally takes longer [15] and we explicitly studied the effect of collecting time 
and the effectiveness of different colony compositions. Construction of the nest is  
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simplified into a sink and the shape and the size of the nest do not change or play any 
role in this model. The pulp is considered to build into the nest by builder wasps that 
are working outside the interaction platform (therefore they were not modeled 
explicitly). Upon arrival the pulp forager unloads the pulp (into a sink that represents 
nest building) and starts to collect water on the interaction platform in the next turn. 
This simplification is in agreement with the usual operation of wasp colonies where 
individuals that are willing to build are generally abundant and they ready to accept 
the pulp promptly from the pulp forager [15].  

 

 

Fig. 1. Schematic representation of the wasp nest. Wasp types: water forager (WF); pulp 
forager (PF); common stomach wasp (CS). Common stomach wasps are able to receive water 
when empty and able to give water when they are full. Flow of the water (blue arrows), pulp 
transported from pulp source to the nest (gray arrow). Pulp is given to builders (not modeled 
explicitly). Transition of behavior of unloaded foragers for the next time step (solid arrows). 

The simplifications above permitted us to focus on the water exchange among 
individuals as the main focus of this study. There are three types of agents on the 
interaction platform (Fig. 2): 

• Common stomach wasps are either empty or filled with water. When they are 
empty they accept water from a water forager, and when they are full they give 
water to a pulp forager. However, they do not exchange water with each other. 

• Pulp foragers attempt to collect water from a common stomach wasp or from a 
water forager. After this happens, they leave the nest for Tp time for collecting 
pulp. The pulp foragers use up all their water for the pulp collection (i.e., they 
leave with water and return only with pulp). 

• Water foragers attempt to download their water load into a pulp forager or a 
common stomach wasp. After this happens, they leave the nest for Tw time for 
collecting water. 
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Fig. 2. Interactions of agents on the interaction platform. Wasps: water forager (W: blue color); 
pulp forager (P: orange color); common stomach wasp (CS: blue with blue dot: holding water; 
yellow: empty). Currently active pulp forager (yellow background) are able to receive water 
from a W agent in its Moore neighborhood. The two CS agent in its neighborhood are empty 
and cannot interact with this pulp forager in this turn. 

In each time step, the agents attempt to land on the interaction platform randomly and 
interact with a single wasp in a Moore neighborhood (Fig. 2). The agent in focus 
examines how many potential cooperative agents are in the neighbor cells and 
randomly chooses one to interact with. Both foragers and common stomach wasps are 
considered a potential partner in the same way. For example, both a water forager and 
a common stomach wasp that hold water can give water to the pulp forager wasp. The 
rules of interaction are described as simple material transfer: if the states of the 
interaction are matching (one giver and one receiver) then material transfer happens. 
If no interaction is possible, the agent retains its behavioral state and makes a random 
landing again on the interaction platform in the next turn. This simplified routine is 
close to what we can observe in real wasp colonies during a 10 second long time 
interval: the wasp either makes an interaction with a neighbor and material transfer 
happens or she moves around on the interaction platform [15]. The small size of the 
interaction platform and the speed the wasps travel between material exchanges 
allowed us to simplify the movement patterns to a series of random landings. 

The number of delivered pulp load divided by the number of foragers (PF+WF) 
was used as a measure of efficiency in a given colony. We assumed that colonies 
which operate with fewer foragers and provide high pulp input are more effective, 
because it results in a high construction rate with a minimized risk of losing foragers 
to predation. Each simulation started with empty common stomach wasps and all 
foragers landed on the interaction platform with full load. To avoid the effect of this  
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colony initiation, the first 100 time steps (about 20 complete foraging cycles) were 
discarded and only the pulp arrival of the next 100 time steps was measured. The 
average of twenty parallel runs for each colony combination was calculated and used. 

3   Results 

First, we compared two very distinct scenarios: colonies which only operate with 
foragers (CS:WF:PF=0:1:1) versus colonies where half of the colony members are 
common stomach wasps and half of the colony members are foragers 
(CS:WF:PF=2:1:1). With increasing colony size, the amount of pulp delivered to the 
nest is larger [17] because of the increasing number of pulp foragers. Colony efficiency 
(pulp delivered/number of foragers) is significantly higher (MW U test p<0.05, N=40) 
in case of a larger colony size in both scenarios (Fig. 3). 
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Fig. 3. Construction efficiency (total pulp returned/(WF+PF)) (average and std.dev) as a 
function of colony size. Workforce: 50% of the colony is common stomach wasp and 25- 25% 
are pulp and water foragers, respectively (grey); 50-50% of the colony are pulp and water 
foragers, respectively (black). Panel a: Tw=Tp=4; panel b: Tw=2, Tp=8. 

When pulp foraging was 4 times more time consuming than water foraging (Fig 3, 
a vs.b), the efficiency of the colonies was significantly smaller (MW U test p<0.05, 
N=40) except in the smallest colony size where common stomach wasps were also 
present (MW U test p>0.1 (two tailed), N=40). Comparing the effectiveness of the 2 
scenarios at each colony size showed significant differences (MW U test p<0.05, 
N=40) at colony sizes 16, 32 and 48, and the same pattern also emerged when pulp 
foraging was more time consuming. These indicated that using non-forager common 
stomach wasps can result in a more efficient solution for middle-sized colonies in 
these special mixes of workforces (Fig 3). 

After studying two specific combinations of workforce along the wide range of 
population size above, we focused on two colony sizes (8 and 48), but generated all 
possible workforce combinations. In cases of small colonies when collection of pulp 
and water took the same time (TP=TW=4) the most effective workforce combination 
consists of 6 common stomach wasps, and 1 pulp and water forager, respectively.  
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Fig. 4. Average efficiency (dots) of every possible workforce combination in small (8 
individuals) colonies. Efficiency (pulp delivered/(WF+PF)) are calculated from 20 parallel runs 
of the same type of colony mix; a: TP=TW=4; b: TW=4, TP=8, c: TW=2, TP=8.  

The increase of the number of foragers beyond 2-3 foragers clearly decreased the 
efficiency. On the other hand, as the number of common stomach wasps increased 
the efficiency (especially its lower bound) increased. Making pulp foraging more 
costly than water foraging (Fig. 4. b, c) resulted in a similar picture with a slight 
preference for more foragers. When pulp foraging was very costly, the most effective 
mix consisted of 5 common stomach wasps, 2 pulp foragers and 1 water forager  
(Fig 4 c). 

In the larger colonies (colony size 48), the main trends were similar to the 
observed patterns of small colonies, but due to the larger workforce, there were a 
larger number of highly effective combinations (Fig. 5). The most effective colonies 
consist of a few foragers of both types and many common stomach wasps, but there 
were other combinations with less common stomach wasps and more foragers that 
provided only slightly less efficiency. When foraging for the two resources required 
the same time (Tw=Tp=4), then if either forager types dominated in numbers (more 
than half of the colony belonged to that forager types), the effectiveness of the 
colony is dropped sharply. As the time cost of pulp foraging increased compared to 
water foraging, the effective colonies had fewer water foragers, but they operated 
with high range (5-35) of pulp foragers (Fig 5. c). However, even in this case the 
most effective colonies are operated by small number of foragers and large number 
of common stomach wasps. 
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Fig. 5. Average efficiency (dots) of every possible workforce combination in large (48 
individuals) colonies. Efficiency (pulp delivered/(WF+PF)) are calculated from 20 parallel runs 
of the same type of colony mix; a: TP=TW=4; b: TW=4, TP=8, c: TW=2, TP=8.  

4   Conclusions 

Our model predicted that the effective and low risk use of worker force via worker 
connectivity (common stomach) is affected by both colony size and the time required 
for retrieving the resources. We showed that the usage of the common stomach was 
beneficial in most cases, except if the density of the wasps is very low (hard to find 
partners) or very high (easy to find a partner for direct transmission). The size of the 
interaction platform could be a consequence of evolutionary pressures that prefer to 
keep most wasps on the nest. The regulation mechanism we presented is also able to 
adapt to the changing cost of resource collection via adjusting the number of foragers, 
but still retaining high number of common stomach wasp to ensure highly effective 
low-risk foraging. Using the common stomach as a regulator and buffer also provides 
secondary advantages in the form of additional work that these common stomach 
wasps can provide while they hold water, such as patrolling, defense and so on. 
Keeping the number of foragers low is beneficial, because foraging is dangerous [18]. 
By using the common stomach, only a few foragers need to take up the risky trips to 
the resources, and these individuals will be highly effective due to experience gained 
by the frequent trips [19]. Using the common stomach or social crop seems to be an 
efficient self-organizing mechanism for regulation of work of agents. 
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Abstract. Honeybees are able to share the workload dynamically among
the colony members. This division of labor is flexible and robust and is
not controlled by a central unit. Thus, it is a ‘swarm intelligent’ feature.
Several models of proximate mechanisms have been proposed which aim
to explain how single workers decide on which task they work. We elab-
orated on an existing model of a honeybee colony which predicts the
flow of workforce, information, and nutrients. We tested several models
of proximate mechanisms and predicted colony-level fitness parameters:
brood survival and net nectar gain. We found significant differences in
the impact of specific proximate models on ultimate observables which
describe colony fitness. Thus, our model could serve as a tool to predict
benefits and costs of these mechanisms in honeybees. It contributes to
the discussion of their potential evolutionary background.

1 Introduction

A honeybee colony consists of several tens of thousand workers which collec-
tively regulate their colony by forming a complex super-organism. A network
of feedback loops arises from worker-to-worker interaction, which regulates the
homeostasis of this super organism with an impressive degree of precision, ro-
bustness and flexibility [1,2]. This control is achieved in a ‘swarm intelligent’
way [3].

One prominent issue of homeostasis found in many social insects is division
of labor (DOL): The colony work is not distributed at random. In contrast, it
is observed that workers (workforce) split up into sub-groups by preferentially
focusing on specific aspects of work (tasks). At a low degree, this phenomenon is
just a slight preference of work groups to engage in specific tasks, which might
change over the life time. At the highest degree, it is found as life-long special-
ization of workers to their tasks. It was observed that specialization is in many
cases not rigid. Even in ant species which show high degrees of morphological
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(a) Screenshot of simulation (b) State automaton

Fig. 1. (a) Screen-shot of a typical situation in our multi-agent simulation ‘TaskSelSim’:
Foragers fly to and from a flower patch and search for storage bees after they have re-
turned to the hive. These storer bees take over the nectar and head to the upper honey
comb to store the nectar there. Nurse bees feed nectar to brood in the central part of the
hive. Bees are color-coded on screen and nectar cells are brighter the fuller they are. (b)
Hierarchical state automaton used in our model: Big boxes indicate tasks an agent can
get involved in. Inside these tasks, a set of ‘activities’ form another automaton which
reflects the behavioral program that is performed by agents in this specific task. Bold
arrows indicate transitions between tasks, thin arrows indicate transitions between ac-
tivities. Darker grayed boxes indicate activities that are associated with a higher nectar
consumption rate (flying agents).

adaptation to the jobs they are usually specialized in, workers can switch to
other jobs in cases of colony disturbances (e.g., artificial removal of a group of
specialist workers, [4]).

In honeybees, DOL among workers is not achieved by strong morphological
polymorphism, as it is the case in many ant species and termites. Worker bees
tend to sequentially specialize on tasks following an age-based scheme, which
correlates with physiological changes of the bees, favoring the efficiency of those
tasks that are usually performed at the specific age. Younger bees first clean
combs, then they nurse the brood. Middle-aged bees receive, handle and store
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the nectar and build combs. Older bees specialize on foraging for pollen, nectar,
propolis and water. The degree of flexibility of workers within this age polyethism
regime is still a controversial issue: Older studies emphasis the role of age [5].
In the last decades, worker reversion and flexibility was also demonstrated in
honey bees [6]. Studies showed that workers progress more quickly to foraging
after brood removal and that foragers revert to nursing after nurse removal.
Recent studies suggest, that flexibility is much bigger within jobs that do not
need physiological alteration: Developing specific glands or muscles takes time,
thus these studies suggest that worker flexibility is over-emphasized in honeybees
(e.g., see [7]).

2 Proximate Mechanism Models of DOL in Social Insects

Several models have been proposed for social insects with the aim to investigate
proximate mechanisms of self-organized DOL [8]. Social insects are a heteroge-
neous group, thus it is unlikely that one of these proposed models holds for all
species or even for all aspects found in one species. Some models are based on
information [9] or on social inhibition [10]. Others rely on exchange of substances
[11]. The most frequently discussed models are based on behavioral thresholds
that have to be met by local stimuli: To trigger engagement bee i to task j,
a stimulus si,t at time t has to exceed a certain behavioral threshold θi,j . The
probability to engage in this task is frequently modeled by equations similar to

pi,j,t =
s2

i,t

s2
i,t + θ2

i,j

. (1)

Some of these models work with fixed thresholds that do not change over time
[12]. Other models discuss specialization to specific tasks by implementing an
additional mechanism [13], which was extended by [14]. As expressed in in Eq.
1, an increase of θi,j decreases the probability of agent i to engage in task j.
This fact is exploited by ‘specialization models’ in the following way: Whenever
an agent (bee) i engages into task j, the associated threshold θi,j is decreased
by ξj , thus this agent will be more likely to engage in the given task j again. In
contrast, the threshold θi,m of a tasks m, which is not performed by agent i, will
be increased by a constant value ψj , what decreases the probability to choose
task m later on. In both models, each task is quit with a defined probability per
time step lj.

This article’s main aim is to implement some of these discussed mechanisms
in our existing multi-agent model of a honeybee colony (TaskSelSim, see Fig. 1)
and to investigate how these mechanisms affect predicted DOL and predicted
colony-level fitness parameters (net nectar gain, survival of brood). We do not
suggest a new threshold reinforcement model. In contrast, this study compares
efficiency and robsutness of models already proposed in literature.
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3 Specific Honeybee Model

In addition to the mechanisms of task selection mentioned above, our TaskSel-
Sim model implements several significant aspects of honeybee biology in detail.
The model is described in [15], here we give those details that are necessary to
understand the experiments described in this article:

The model depicts a colony having an entrance/exit in the lower left. The
central area contains the brood nest, where immobile larvae wait to be fed by
nurse bees. The upper hive area contains the ‘honey comb’ where nectar is stored
by storage bees. All agents (bees) carry a specific energy reserve in form of nectar
in their crop (see Fig. 1). Every activity decreases this nectar load at a different
extent: immobile larvae consume less nectar than moving adults and flying adults
consume more nectar per step than walking adults. If an agent (brood or adult)
runs out of nectar, it dies and is removed from the system. Adults refill at
the flower patch or at the honey comb, hungry larvae emit a chemical signal,
which attracts nurse bees and which are able to switch unemployed bees to the
nursing task.

Homecoming filled foraging bees search empty storage bees for transferring
their nectar load to them. This is achieved by emitting a short-range ‘unloading
signal’. Filled storer bees head towards the honey comb, unload the nectar into
a cell and head again towards the entrance area to unload the next forager bee.
Depending on whether or not the forager searched long for a storer bee, the
forager performs either a ‘waggle dance’ or a ‘tremble dance’. Both dances have
only a limited range (2-3 bee lengths) and disappear imideatly from the envi-
ronment after the dancer stopped. The first kind of dance recruits new forager
bees, the latter recruits new storer bees. This system of two conflicting dances
was found to be a main mechanism to regulate the forager group size according
to the current size of the storer group [16]. Nurse bees that run low on nectar
reload at the honey comb. Brood emits a chemical hunger stimulus when it runs
low on nectar. This stimulus recruits nurse bees, diffuses in space and decays
over time. It is additive (brood emits new stimulus as long as it is hungry) and
lasts some time in the system after the brood is fed. Our multi-agent simulation
has several important characteristics that distinguish it from other models in
this field:

1. We carefully implemented the behavioral programs of the three tasks ‘for-
aging’, ‘storing’ and ‘nursing’ to reflect behaviors of honeybees (Fig. 1b).

2. We implemented several variants of threshold mechanisms in our model.
3. We modeled tactile stimuli (short-range, not additive, not persistent), dance

stimuli (mid-range, not additive, not persistent) and chemical stimuli (long
range, additive, persistent). See Fig. 1a.

4. We implemented an activity-specific energy consumption and the flow of
nectar through the honeybee colony. This allows us to investigate the effects
of several models of proximate mechanisms of task selection on the individual
bee level and on the colony level (colony’s nectar gain/loss).
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These characteristics make our model unique and allow us to perform sophis-
ticated analyses of models of proximate mechanism in honeybees. Our model
reflects many details of honeybee ethology and ecology, thus predictions of our
model should be of high significance for honeybees.

4 Simulation Experiments

To compare literature-suggested threshold models of DOL, we simulated our our
multi-agent model with three characteristic distributions of behavioral thresholds
(θi,j), which did not change over time, see graphical representations of these
parameter-sets ‘1Caste’, ‘3Castes’, and ‘random’ in Fig. 2. These distributions
reflect 3 potential cases of threshold distributions within the worker population:
(1) All bees have the same mean probability to engage in any task, thus they are
generalists. (2) Bees belong to one of three distinct worker castes, each preferring
one task, thus they are specialists. (3) Every bee is different from other bees. In
addition, we performed one series of experiments, in which the thresholds were
initially distributed randomly (uniformly) between 0 and 1. These thresholds did
change over time according to the mechanism described in section 2. We set the
threshold adaptation parameters to values of ξnursing = ξforaging = ξstoring =
0.1 and φnursing = φforaging = φstoring = 0.001, which was found to be an rather
insensitive (to colony performance) default setting [15]. The abandonment rate
of agents was set to lnursing = lstoring = 0.005 and lforaging = 0.001. We started
all simulations with 700 unemployed adults and 100 medium-fed larvae. Each
run lasted 8000 time steps and was repeated 16 times.

To test our 3 non-adapting threshold models (‘1Caste’, ‘3Castes’, ‘random’)
and the self-reinforcement model (‘dynamic’), we performed 3 types of simulation
experiments: First, we kept the environment unchanged for 8000 time steps.
Second, we increased the length of a foragers’ flight cycle by 50% at t = 4000,
what relaxes the workload of storer bees. And third, we removed 50% of all adult
bees at t = 4000, what doubles suddenly the workload on worker bees.

Statistical analysis was done in R. To indicate differences in colony vari-
ables depending on the used threshold model, we performed one-way ANOVA.
Between-group medians were compared with paired two-sided Wilcoxon tests
(α = 0.05) using Bonferroni correction.

5 Results

Fig. 3 shows, that in an undisturbed environment the performance of all three
threshold distributions that do not adapt over time lead to a better colony effi-
ciency in terms of net nectar gain and brood survival compared to the threshold
reinforcement model (Wilcoxon test, p < .05, N = 16 per setting).

For a sudden increase of the flight cycle of foragers (Fig. 4), the threshold-
reinforcement model led to a significantly lower nectar gain than the other models
(Wilcoxon test, p < .05, N = 16 per setting). In terms of brood survival, the
‘random’ (non-adapting) and the ‘dynamic’ (self-reinforcement) model slightly
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Fig. 2. Distribution of behavioral thresholds in our simulation experiments
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Fig. 3. Colony level fitness parameters as a result of the tested threshold models in an
undisturbed environment. Graphs show medians and quartiles of the net nectar gain
and the number of survived brood at t = 8000.

performed worse than the other two non-adapting models, which both have no
extreme thresholds present in the population (Wilcoxon test, p < .05, N = 16
per setting).

When we removed 50% of the adult bees (Fig. 5), the largest differences be-
tween the used threshold model were observed: The self-reinforcement model
(‘dynamic’) led to the lowest net nectar gain and to the smallest brood sur-
vival rate (Wilcoxon test, p < .05, N = 16 per setting). In addition, the model
‘3Castes’ was less efficient compared to fixed random thresholds in terms of
brood survival (Wilcoxon test, p < .05, N = 16 per setting).

6 Discussion and Outlook

The approach to use our existing model of the ‘internal collective physiology’
of a foraging honeybee colony showed to be useful. It allowed us to successfully
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investigate the differences between two model paradigms that were suggested
in literature to describe the proximate mechanisms governing task selection in
social insects. We could show that in both models, the colony was able to deal
with environmental fluctuations, but that the threshold-reinforcement mecha-
nism is associated with the costs of a lowered net nectar gain and with lowered
brood survival rate. This was shown for the modeled tasks in a honeybee model
and must not be generalizable for all social insects. Differences between the two



Economics of Specialization in Honeybees 365

model paradigms were bigger in the simulation experiments with environmental
fluctuation. When the colony reaches an equilibrium in worker groups, the rein-
forcement mechanisms drives θ values of tasks that are not performed by agents
towards the maximum value (θmax = 1). This makes it harder for these agents
to switch to these tasks after environmental fluctuations, even though such a
switching might be favourable from the colony perspective (data not shown).
When comparing the different fixed distributions of θ among each other, we
found only few significant differences (see Fig. 4b and Fig. 5b).

In future, we plan to investigate more threshold distributions, more distur-
bances (e.g., adding and removing brood) in our model. We also plan to inves-
tigate the effect of the reinforcement parameters ξ and φ in more detail, as well
as the parameters θmax and l. It might prove to be useful to correlate the θ
values with actual working efficiency parameters: For example. we plan to make
predisposed foragers flying faster. Overall, the level of detail of our multi-agent
simulation of a honeybee colony allows us to perform perform comparative studis
of proximate mechanisms in bees. Such findings are a significant input to the
discussion of the volutionary background of these mechanisms.
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Abstract. Previous studies showed that two swarms of autonomous
robots pursuing two conflicting goals can cooperate efficiently, especially
at small swarm sizes. In this study we investigate how the spatial sepa-
ration of the two conflictive aggregation spots affect the cooperation be-
haviour. The swarms are controlled by the BEECLUST algorithm, which
is a robot control algorithm inspired by honeybee behaviour. We found
that the spatial separation of the optima does not affect the aggregation
efficiency of swarm sizes of 9 individuals or more. In contrast smaller
cooperating swarms take advantage in their aggregation efficiency. Het-
erogeneous swarms are a big challenge in swarm robotics. When several
tasks have to be achieved in parallel, swarms have to split up in task-
related sub-swarms. Then efficiency enhancement by cooperation and the
exploitation of side effects are a successful recipe for developing swarm
intelligent algorithms.

1 Introduction

In social insects (e.g. honeybees) a huge number of individuals form a superor-
ganism which shows self-organisation and swarm intelligent behaviour [1]. Even
if all individuals exhibit “simple” behaviour, the swarm as a whole is able to solve
complex challenges. Honeybees for example exploit rich foods sources more mas-
sively than poorer ones [2]. In the field of swarm robotics it is very important to
keep individuals as simple as possible because resources are limited (e.g. memory
or energy). For this reason social insects are a perfect source of inspiration for
the field of swarm robotics [3] [4]. In swarm robotics the aggregation of agents is
a very common goal but the approaches are very diverse. Dorigo et al. used an
evolving neural network which consisted of 12 neurons for robot aggregation [5].
Other aggregation experiments were made with cockroach-like robots in simu-
lation experiments as well as in real world, whereas an unique ID was required
and communicated between the robots [6].

In this work we made experiments with robots controlled by the BEECLUST
algorithm which is inspired by honeybee behaviour [7]. This algorithm consists
of four simple rules (see Fig. 1):
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Fig. 1. Finite state machine of the BEECLUST algorithm. Boxes represent the different
states of the robots. Diamonds represent if-else decisions. The asterisk (*) indicates the
starting state of the controller.

1. The robots move straight forward through the arena. Whenever a robot
detects an obstacle it checks whether the obstacle is a wall or another robot.

2. If this obstacle is a wall, the robot turns and continues with step 1.
3. If the obstacle is another robot, the robot measures the local illuminance

and calculates a waiting time, depending on the illuminance.
4. When the waiting time is over, the robot turns and continues with step 1.

In [7] it has been shown that a swarm of Jasmine III robots, controlled by this
algorithm, is able to find a spot of highest illuminance in an arena. A swarm
of robots controlled by this algorithm responds dynamically on spontaneous
environmental changes and satisfies all needs for being classified as swarm intel-
ligent [1] [7]. The reasons for this intelligent behaviour are the feedback loops
which emerge from within the swarm [8]. In [9] we showed that swarms of robots
controlled by this algorithm act robust against disturbances induced by other
swarms. Small swarms can even take advantage in their ability to aggregate if
another swarm is present, even if the other swarm is performing a different task.
Elaborating on this work, we wanted to find out if the spatial separation of
two conflicting target sites for both swarms has an influence on the aggregation
efficiency.

2 Methods

We performed our experiments in SMARS which is a simulation environment
for experiments with Jasmine III robots, written in NetLogo [10]. We imple-
mented two different swarms which act in parallel within the same environ-
ment: One swarm waits longer at places of high illuminance and is further called
“light finders”. The other swarm waits longer at places of low illuminance and is
called “shadow finders”. So the only difference between the two swarms is that a
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Fig. 2. Screenshot of an empty arena. The white area indicates the light spot, the black
area indicates the shadow spot. The arena has the size of 42x20 patches, whereby a
patch is a square with the side length of 3 cm.

different waiting time function was implemented (see Fig. 4) whereas the robots
do not discriminate between the two swarms. The tested population sizes were 2,
3, 6, 9, 11, 18 and 24 robots per swarm. Each experiment was repeated six times.
We implemented the following light distribution: The arena shows an ambient
illuminance of 500 lux, one light spot of approx. 1000 lux and one shadow spot
of approx. 0 lux. The arena has a size of 46 patches in length and 20 patches
in width (see Fig. 2), whereby a patch is a square with a side length of 3 cm.
In a first experiment we changed the distance between the light spot and the
shadow spot in each run. These spots had a distance of 7, 9, 11 and 13 patches
to the arena centre. All tested light distributions are shown in Fig. 3. In a second
experiment we tested the response of the robot swarm on spontaneous changes
in the environment. For this reason we started the experiments with the same
setup as already mentioned above. After four minutes we swapped the positions
of the light and the shadow spot. After four more minutes we swapped them
again and monitored the following reaction of the robot swarm for four more
minutes. In this experiment we compared runs with a distance of 7 patches be-
tween the optima and the arena centre to runs with a distance of 13 patches
between the optima and the arena centre.

In our analysis we defined a target zone for the “light finders” which includes
all patches, on which an illuminance between 600 and 1000 lux was present.
This area covers 40% of the maximum light value in the arena. To analyse the
aggregation quality we monitored the percentage of “light finders” within the
state “wait” in the target zone during the last minute of every repetition. To
analyse the aggregation speed of the swarm we monitored the point of time, in
which 50% of the “light finders” were aggregated in the target zone (TA50). Each
run took 4 minutes. To analyse the swarm’s respond on changes in environment,
we monitored the “light finders” in the target zone during the whole experiments.
For quantifying possible enhancement of aggregation (% of the total swarm) we
defined the index ΔAL as

ΔAL = AL7 − AL13. (1)
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Fig. 3. Tested light distributions. The centres of the extreme spots were located in a
distance of 7 (A), 9 (B), 11 (C) and 13 (D) patches from the arena centre.

Fig. 4. Dependence of the waiting time on the local illuminance. The solid line shows
the function which was implemented in the “light finders”, the dashed line represents
the same for the “shadow finders”.

ΔAL represents the aggregation enhancement of the “light finders”. AL7 is the
percentage of aggregated “light finders” when the optimum has a x-distance of 7
patches. AL13 is the percentage of aggregated “light finders” when the optimum
has a x-distance of 13 patches from the arena centre.

3 Results and Discussion

In Fig. 5 we show that small swarms (2 and 3 individuals) show a lower aggre-
gation quality than larger swarms. The distance between the two optima has an
effect on small swarms by decreasing the fraction of aggregated robots. Larger
swarms (9 individuals or more) are not influenced by the distance between the
optima. In each case 70% to 80% of the swarm is aggregated under the light spot.
Concerning the aggregation speed we found that larger swarms (9 individuals or
more) are not affected by the distance between the optima (see Fig. 5). In each
case it takes about 30 to 40 seconds to place 50% of the swarm under the light
source. But contrary to aggregation quality, small swarms aggregate faster when
the optima are close to each other.
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Fig. 5. (A) Percentage of “light finders” aggregated in the target zone within the last
minute of the observation. This represents the aggregation quality. (B) Point of time
when 50% “light finders” are aggregated in the target zone. This is an indicator for
aggregation speed (n = 6 repetitions per experiment).

Fig. 6. Percentage of aggregated “light finders” in the target zone. The distance from
an optimum to the arena centre (x-distance) is 13 patches. (A) Left target zone. (B)
Right target zone.
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Fig. 7. Percentage of aggregated “light finders” in the target zone. The distance from
an optimum to the arena centre (x-distance) is 7 patches. (A) Left target zone. (B)
Right target zone.

Fig. 8. Shown is the aggregation enhancement ΔAL in percent. For the formulation of
ΔAL see equation 1. (A) Left target zone. (B) Right target zone. Please notice, that
the y-axis (robots/swarm) is flipped for a more clearly representation in this the figure.
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We show that the swarm reacts fast and reliable to spontaneous changes in
the environment and follows the light spot in the arena when the two optima are
far (x-distance = 13 patches) from each other (see Fig. 6) as well as when the
two optima are close (x-distance = 7 patches) to each other (see Fig. 7). In both
cases we found that swarms of 9 individuals or more show a robust aggregation
efficiency: approx. 60% of the swarm aggregates when the optima are close to
each other and 70% of the swarm aggregates when the optima are far from each
other. But as it can bee seen in Fig. 7 small swarms (2 and 3 individuals) show
a higher aggregation quality than larger swarms when the optima are close but
the aggregation quality decreases when the two optima are far from each other
(see Fig. 6).

In Fig. 8 we show that small swarms can achieve an aggregation enhancement
of 30% after 100 seconds when the two targets are close to each other. After
that the enhancement decreases again. This means that small swarm aggregate
faster when the two optima are close to each other. The same effect can be seen
after the swap of the two optima in second 240 in the right target and second
480 in the left target. This shows that small swarms can take advantage of close
optima and are able to react more dynamically on spontaneous environmental
changes. Larger swarms on the other hand are not significantly affected by the
distance between the two targets.

Our results corroborate our presumption of the BEECLUST algorithm being
a robust control algorithm for robot swarms. In Fig. 6 and Fig. 7 we show that
the swarm is able to react to spontaneous changes in the environment. This
corresponds well with reports in [7]. As it is shown in Fig. 5, the aggregation
quality increases with the swarm size until an optimal robot density (9 indi-
viduals) is reached. This fits well to the results shown in [9]. Such a “critical
minimum swarm density” is characteristic for swarm algorithms. The distance
between the two optima affects small swarms (6 individuals and below) signif-
icantly in aggregation quality and speed. In contrast large swarms are affected
only slightly. Small swarms do not only aggregate faster when the two optima are
close to each other (see Fig. 5), they also react faster to environmental changes
than larger swarms (see Fig. 8). The reason for better aggregation performance
with close targets is that both swarms of aggregated robots build a kind of one
big cluster which is shared by both swarms when the two optima are close to
each other. This leads to a high number of robot-to-robot encounters near their
optima. In large swarms, jamming effects induced by high robot density cancel
this benefit out. Nevertheless large swarms show robust aggregation which is not
affected significantly by the spatial separation of the optima.

4 Summary and Outlook

In summary, we say that the BEECLUST algorithm works very robust even with
two cooperating swarms without discriminating the swarm affiliation. Larger
swarms are not affected by the spatial separation of the optima, whereas smaller
swarms gain benefit from optima which are close to each other. In future we will
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investigate whether or not the light gradient steepness in the arena (flat vs. steep
vs. discrete steps) has an influence on the aggregation efficiency. Furthermore
we will investigate whether or not the BEECLUST algorithm acts dynamically
enough to follow moving light spots.
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Universitätsplatz 2, 8010 Graz, Austria

{christoph.moeslinger,thomas.schmickl}@uni-graz.at

Abstract. In this paper we describe a low-end and easy to implement
flocking algorithm which was developed for very simple swarm robots
and which works without communication, memory or global informa-
tion. By adapting traditional flocking algorithms and eliminating the
need for communication, we created an algorithm with emergent flocking
properties. We analyse its potential of aggregating an initially scattered
robot swarm, which is not a trivial task for robots that only have local
information.

1 Introduction

One of the most amazing developments in biological evolution is the domain
of social insects. These animals, although being very small, achieve impressive
feats. Bees, ants and termites live in elaborately constructed nests which are,
in comparison to the insect, gigantic [1]. The colony super-organism can be
characterized as being swarm-intelligent [2] because its abilities, for example to
optimally allocate foragers to food sources, are a result of the interactions within
the swarm and cannot be achieved by the single individual. This decentralized
and distributed way of achieving a goal is an interesting and useful field of study
which has inspired the fields of swarm-intelligence [3, 4] and swarm robotics [5].
In the last decade, a lot of control strategies and algorithms for robotic swarms
have been presented, both in simulated and real robot swarms.

Innovation and industrial progress make it possible to manufacture such
swarm robots in smaller and smaller sizes [6]. For such small robots, reach-
ing a common goal is not an easy task. This is due to the constraints that come
with decreasing size, like small sensor ranges, very limited computational power,
little memory and imprecise locomotion. Thus, developing control algorithms
for small scale swarm robots raises interesting questions, like “how can a robot,
which only knows about the very small part of the environment around itself,
achieve a common goal with the rest of the swarm?” and “given all constraints,
what is the most efficient way to reach a common goal?”.

Reaching such a common goal often implies that the swarm has to be aggre-
gated for cooperative work, transport [7, 8] or assembly [9, 10]. This aggregation
task seems to be relatively trivial, but the constraints of a swarm of small robots
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create some conceptual problems. Small robots usually do not have the capa-
bility of long range communication and do not possess global information like
position and heading. When only local information is available, the coordina-
tion of numerous autonomous agents requires a different approach. Examples of
such an approach already exist in nature: the phenomenon of flocks, herds and
schools.

Flocks can be aggregations of up to several thousand individuals which move
together with astounding elegance and flexibility. Craig Reynolds was amongst
the first to abstract this behaviour to steer a swarm of simulated birds which
he called boids [11]. To do this, he implemented three behavioural rules in his
autonomous boids: collision avoidance to evade obstacles and flock mates which
are too close, flock centering to stay close to flock mates and velocity / heading
matching to move in the same direction as nearby flock mates. The resulting sim-
ulated flocks appear very similar to real flocks. As a result, several approaches
to adapt this behaviour to a robotic swarm have been made. Although these
pursues were successful in creating flocks, all of them incorporated something
that is usually not found in real bird flocks or fish schools: communication and
knowledge of the own heading [12–15] or predefined leaders [16]. Other interest-
ing approaches used light beacons (and the resulting shadows) in an arena to
generate a flocking swarm, either using evolved neural networks [17] or adapted
aggregation algorithms in combination with situated communication [18], where
the only significance is the presence or absence of an “empty” message. Usually,
the matching of velocity and heading was only possible when the robots were
able to communicate with their flock mates through a stable communication
channel. This means that each robot needed to know its own heading (through
a digital compass) and the headings and speeds of all its (near) flock mates.

This involves extensive communication, which can be far too complex for
small and numerous swarm robots, and, more importantly, that is also not in
accordance to how a real flock achieves alignment. In real swarms, the animals
identify the heading of each other because they derive it visually from their
flock mates’ body form, although most fish species also have a specialized lateral
line organ which is additionally used for alignment [19]. Such methods could be
adapted for swarm robots by using on-board cameras and image recognition, but
that would probably be way too complex for very small robots.

We found out that there is also a much easier way to create flocking behaviour.
By discretizing the robots’ sensor fields into sectors and using different distance
thresholds for attraction and repulsion in these sectors, robot swarms can achieve
emergent alignment.

2 Material and Methods

2.1 Algorithm Requirements

The main aim of our flocking algorithm is simplicity. This means that we devel-
oped our algorithm in consideration of very limited computational power and
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only minimalist swarm robot equipment. Such a basic equipment is a set of
distance sensors, which are usually used for collision avoidance. We wanted to
utilize just these sensors to generate complex swarm behaviours.

Swarm robots usually have IR-sensors in all directions which enable the de-
tection of reflecting surfaces like walls, obstacles and other robots. A major dis-
advantage of these IR-sensors is, that they have very limited range and cannot
discriminate robots from obstacles, except when using a combination of active
and passive sensing. Here, active sensing means that the robot activates its IR-
light at the position of the sensor and checks for reflections, whereas passive
sensing means that the robot only checks for IR-light from other robots without
emitting IR-light itself. Usually, the brighter the sensed IR-light, the higher is
the value that the sensor returns. These IR-sensor values are all that is needed
for the effectivity of our algorithm. Of course other distance measuring sensors,
like ultrasonic sensors, can be used for our algorithm as well.

The minimal requirements of the algorithm are 4 circumferential distance sen-
sors with limited range and 3 discrete reactions in movement: move straight, turn
left or turn right. The algorithm does not require any global information about
positions or headings, precise sensor information, memory, elaborate robot-to-
robot recognition or communication.

2.2 Flocking Algorithm

Each robot in the swarm periodically emits IR-pulses. The robots then react
(move straight, turn left or turn right) depending on information from their
active and passive IR-sensors. These sensors are polled periodically and the
returned values are then checked against predefined thresholds (Fig. 1B) in a
simple subsumption architecture (Fig. 1A).

First, the active IR-value for the front sensor is polled to find out whether
there is an obstacle in front. If the value for the reflected IR-light is above a
certain threshold, the robot turns away in a random direction. This is the basic
collision avoidance of our robots.

If there are no objects in its way, the robot checks the passive IR-values of all
sensors. If the front, left or right sensor is above a certain threshold, the robot
turns away from what is presumably another robot which is too close. This rule
is usually referred to as the separation rule in flocking algorithms.

If there is no other robot too close, the robot checks the passive IR-values of
its left, right and rear sensors. For every sensor that returns a value that is above
the environmental IR-light threshold but below the threshold which defines the
maximally desired distance to another robot in that sector, the robot performs a
basic vector addidtion and adds up all turns. It then decides to turn in a direction
depending on whether there were more left or more right turns. Robots in the
rear zone trigger a random turn reaction. This rule is usually referred to as the
cohesion rule in flocking algorithms.

The third rule in flocking algorithms is usually the alignment rule which gen-
erates the common direction of movement in a flock. Since we wanted our algo-
rithm to be as simple as possible we wanted to exclude complex communication
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Fig. 1. A: Simple subsumption architecture depicting the flocking algorithm. The first
decision results in collision avoidance, the second decision results in robot separation
and the third decision results in flock cohesion and emergent alignment. B: Simplified
depiction of the perceived IR-values of other objects (reflected active IR) or flock mates
(passive IR) dependent on their distance to the robot. Thresholds and the resulting
zones for a robot with 4 IR-sensors.

or image recognition procedures and implemented a method which generates
emergent alignment. To achieve this we adjusted the thresholds for the cohesion
rule so that robots tend to follow other robots. This is done by simply shifting
the threshold for the rear sensor more outwards in comparison to the thresholds
for the left and right sensors (zones 3 and 4 in Fig. 1B). Depending on the posi-
tion and heading of two approaching robots, one robot will be behind the other
robot. When both robots move, the robot behind will turn towards the robot
in front before the robot in front reacts and turns around. This creates a leader
robot and a follower robot, purely by chance. These two robots will then move
around in the arena without separating. If the path of these two robots is blocked
by an obstacle or another robot joins the flock, the arrangement can change in-
stantly. If two robots approach frontally, they will avoid each other, only to turn
back to each other shortly after, which can create a deadlock situation. To pre-
vent such situations, we implemented a random-turn reaction which means that
robots will randomly turn either left or right when avoiding other robots in front
(zone 1 in Fig. 1B).

2.3 Simulator

We conducted simulations firstly as a proof-of-concept and secondly to evaluate
the aggregation and flocking capability of a robot swarm which uses our algo-
rithm. These simulations use very abstracted and ideal two-dimensional models
of autonomous mobile agents with circumferential sensors. For our simulations
we used a custom-built simulator (Fig. 2A) based on the multi-agent program-
ming language NetLogo [20]. A short video can be seen at [21].
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The tests were conducted with different numbers of robots in differently sized
arenas. For generality, we assumed 1 robot-diameter as the unit of measurement.
A simulated robot moved with 3 units per second and polled its distance-sensors,
which had a maxmium range of 5 units, 60 times per second. The thresholds
were set to 1 unit for zone 1, 1 unit for zones 2, 2 units for zones 3 and 3.5
units for zone 4. These values were derived from tests with real swarm robots
[22]. To emulate real-world conditions and to avoid certain deadlocks (e.g., two
robots circling each other) we introduced inaccuracies. In the simulations, the
sensor values were subject to a 5% random-normal error in measurement and the
speed of the individual robots was subject to a 5% random-normal variance. We
simulated swarms of 5, 10, 15, 20 and 25 robots in bordered square arenas with
the sizes of 3600, 7200, 10800, 14400 and 18000 robot-diameter2. The sizes of the
arenas were chosen to create density-neutral setups so that we could measure
the impact of swarm size on the efficiency of the algorithm.

3 Results

Our simulations contribute to two distinct analyses. On the one hand, we wanted
to investigate the flocking capabilities of our swarms and, on the other hand, we
wanted to determine the algorithm’s efficiency to let randomly scattered robots
form an aggregation in an arena. Here, aggregated or flock means that we counted
each robot which was inside the IR-sensor field of another robot and counted
the total number of robots within that connected swarm.

3.1 Flocking Analysis

Our first simulations were set up to find out the mobility of an aggregated robot
swarm. For this we simulated a huge 300x300 robot-diameter2 arena so that
the robots were not confined in their movement by the borders. An already
aggregated swarm of 1 to 25 robots with randomized headings was placed into
the middle of this arena. We then added up the movements of all robots for 60
seconds and calculated the average distance covered by a robot in the swarm.
Additionally, we measured the movement of the coherent flock by calculating its
center of mass and adding up its path.

An ideally mobile flock would cover the same distance as the average distance
covered by a robot in the flock. Since our algorithm does merely impede but
not prevent a flock from splitting up, we only counted simulation runs where
the whole swarm stayed together the whole time of the simulation, which was
the case, on average, in 46% of all runs. Each experiment was repeated until
there were 10 successful runs. A comparison of the distance measurements for
the robots and the center of mass of the flock can be seen in Fig. 2B. The
average movement of a robot in a flock differs slightly due to the implemented
speed error.
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Fig. 2. A: Screenshot of our simulator with a swarm of 10 robots (black cubes) in a
small arena with borders. The path of the center of mass of the flock is depicted by a
grey line. B: Average movement of a robot in a flock (dark grey) in comparison to the
average movement of the center of mass of the flock (light grey) in 60 seconds. Means
and standard deviations of 10 repetitions.

3.2 Aggregation Analyses

General Efficiency: Next, we focussed on finding out the aggregation efficiency
of a robot swarm which uses our algorithm. In these simulations the robots had
been randomly scattered in an arena and had to aggregate. There was no global
information about where to aggregate and the robots reacted purely on short-
range IR-detection. A swarm was considered as being aggregated when at least
60% of its members were in the same flock. We measured the time it took a
scattered swarm to aggregate under different combinations of swarm size and
arena size. 100 repetitions with randomized starting positions and headings were
evaluated, the result can be seen in Fig. 3A.

Density-neutral Efficiency: Further simulations were conducted only under
density-neutral conditions, for example 5 robots in a 3600 robot-diameter2 arena
or 10 robots in a 7200 robot-diameter2 arena. This was done to measure the
influence of swarm size on the efficiency of the algorithm. A supplementary
measurement was made by increasing the desired aggregation size from 60% to
80% (Fig. 3B). Each simulation was evaluated by the median, first and third
quartiles of 100 repetitions.

4 Discussion

The flocking analysis showed that the mobility of a flock of swarm robots which
use our algorithm was dependent on the flock’s size. A small flock of 5 robots still
moved 69% of the distance a single robot could have moved, whereas increasing
the flock size to up to 25 robots decreased the mobility down to 25%. This
decrease is of course a major drawback in comparison to traditional flocking
algorithm implementations, where large flocks can still be quite mobile.
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Fig. 3. A: Aggregation speed analysis for all swarm sizes and all arena sizes. We mea-
sured the median time it took for an initially scattered robot swarm to form an aggre-
gation of at least 60% of the whole swarm. B: Comparison of aggregation time for an
initially scattered robot swarm in density neutral setups for 60% (light grey) and 80%
(dark grey) desired aggregation size. Median, first and third quartiles of 100 repetitions.

The aggregation analyses suggested that our flocking algorithm was quite effi-
cient concerning aggregating scattered robots. It should be noted that, contrary
to our expectations, there was an increase in aggregation time when increasing
the number of robots in the same arena. In retrospective this can be explained
by the flocking analysis, which showed that with increasing numbers of flock
mates, the movement of the flock was more and more limited. Thus it became
harder for two larger flocks to merge in order to attain the desired aggregation
size.

Our density-neutral experiments showed that the aggregation time was in-
creased when increasing the number of robots and the size of the arena. This is
due to the larger distances that flocks have to cover in order to join other flocks
and the aforementioned decrease of flock movement in bigger flocks. When the
desired aggregation size was changed from 60% of the whole swarm to 80% of the
whole swarm, there was a large increase in aggregation time. The reason why we
did not test the goal of achieving 100% aggregation was that, when working with
numerous swarm robots, one has to expect a small fraction of malfunctioning or
stuck robots, so that perfect achievements are rather improbable.

Summing up, our flocking algorithm enables swarm robots to form a coherent
and reactive flock which moves around in the arena randomly. Our results suggest
that it works well with small swarms and is especially suited for robots with
minimal equipment. It could, for instance, be used for the aggregation part of
a more comprehensive scenario. Moreover, the algorithm can also be used for
a heterogeneous robotic swarm when the robot types use the same distance-
sensing method. Our next step will be to port the algorithm to a real swarm of
up to 30 heterogeneous swarm robots [22, 23].

1 Supported by: EU-IST-FET project ‘SYMBRION’, no. 216342; EU-ICT project
‘REPLICATOR’, no. 216240; EU-IST FET project ‘I- Swarm’, no. 507006.
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Abstract. Evolution of cooperation is a fundamental question of socio-biology. 
Intrinsic factors like kinship play an important role in cooperation among selfish 
individuals. External factors like uncertainty and the structure of the social 
interaction network also contribute significantly to the evolution of cooperation. 
Here I use agent-based simulations to generate artificial social networks. I show 
that some of these networks have similar scale-free structure as real social 
networks. The analysis shows that having agents with memory and with the 
ability to share their memory through gossiping does not have a significant effect 
on the scale-free nature of simulated social networks. However the presence of 
high uncertainty in the cooperation games played by the agents is required for 
the generation of scale-free social interaction networks. 

Keywords: agent-based modeling, cooperation, evolution, network analysis, 
simulation, uncertainty. 

1   Introduction 

The evolution of cooperation among selfish individuals is fundamental question of 
socio-biology [1-4]. Natural examples show that such cooperation may emerge in 
various species, including plants [5], fish [6], and various mammals [7,8]. The most 
influential theories argue that kin-selection or similarity-selection [1,9] and direct and 
indirect reciprocity [2,10] play a key role in the emergence and evolution of 
cooperation among selfish individuals. Other theories emphasize the role of 
segregation of cooperators and defectors [11], or effects of some kind of group 
selection [4]. 

In addition to intrinsic factors (e.g. genetic relatedness, similarity) external factors 
also play an important role in facilitating the evolution of cooperation. For example, 
uncertainty plays a major role in facilitating the emergence of cooperative 
arrangements in human economic activity (e.g. insurance, common goods) [12]. 
Another important factor is the nature of interaction networks between individuals. It 
has been shown that in case of humans such interaction networks have small-world and 
scale-free features [13,14]. Such networks may play an important role in providing the 
confirmed trust base that is critical for the maintenance of human cooperation [15]. 

In agent-based simulation studies of cooperation the usual assumption is that the 
interaction network is a fully connected graph [3]. More recent simulation studies 
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considered the replacement of the fully connected graph by less connected interaction 
graphs, e.g. scale-free and small-world graphs [16] – note that in all these cases the 
interaction graph is given by design of the simulation. Another approach is to let the 
interaction graph be driven by spatial neighborhood arrangements, i.e. the interaction 
partners should be spatially sufficiently close to each other and as they may move 
they may change their neighborhood [17].  

Here I study emergent interaction networks between agents in the context of agent-
based simulations of evolution of cooperation using uncertain cooperation games 
[17]. The interaction networks are determined by neighborhood relations and also 
possibly by memories of interactions and gossip about interactions between other 
agents. The aim of the analysis is to investigate to what extent the emerging 
interaction networks are similar to scale-free networks that are a characteristic of real 
world social interaction networks. I show that the presence of memories and gossip 
features does not influence significantly the structure of simulated social networks, 
and that the presence of high uncertainty represented in the cooperation games played 
by the agents is required to generate scale-free social interaction networks. 

The rest of the paper is organized as follows. First I introduce simulation studies of 
the evolution of cooperation. Next I introduce social interaction networks, including 
real and simulated networks. This is followed by the presentation of the agent-based 
simulation used here and the presentation of the results about emergent artificial 
social interaction networks. The paper is closed by the conclusion section. 

2   Simulation of Evolution of Cooperation 

In agent-based simulations of evolution of cooperation [3,9,11,17] simple agents play 
cooperation games with other agents and accumulate resources. The agents follow 
some simple game playing strategy. When the agents reach the end of their simulated 
life they generate offspring, which inherit the game playing strategy of the parent. The 
number of offspring increases with the resource wealth of the agent. These studies 
aim to study the extent to which cooperation oriented strategies become dominant in 
simulated agent populations. 

The cooperation games that simulated agents play are defined by a pay-off matrix, 
which determines how much the agents get out of the game playing depending on their 
choice of cooperation / defection decision. A commonly used example is the Prisoner’s 
Dilemma game, for which the game matrix is presented in Table 1 and the rules  
that apply to the pay-off values are given by the inequalities t>r>p>s and 2r>t+s. 

A way to represent uncertainty in cooperation games is to use pay-off distributions 
instead of fixed values of pay-offs [17]. The external uncertainty in such case is 
represented by the variance of the pay-off distributions. When the agents play the game 
they determine their actual pay-off by sampling the corresponding pay-off distribution. 
In order to keep the game’s characteristic inequalities satisfied it is possible to consider 
distributions for a smaller set of parameters to determine actual pay-offs of the game 
matrix. For example, in the case of the Prisoner’s Dilemma, the pay-offs can be 
determined as r=b+d/2, t=b+d, s=0, and p=b, where b and d are determined by 
sampling two normal distributions. If the variance of these distributions increases the 
samples may deviate more from the mean, implying increased variation of possible 
pay-offs. 
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Table 1. The pay-off matrix of a Prisoner’s Dilemma game 

 Player 2 

 Cooperate Defect 

Cooperate r,r s,t 

P
la

ye
r 

1 

Defect t,s p,p 

 
Agents usually play a fixed number of repeated games with the same playing 

partner [3,9]. It is also possible that they play a variable number of games or even just 
one game in each round of game playing [17]. The agents that an agent plays with are 
determined by a play graph, which may be fully connected, sparse, or possibly 
dynamically determined for example in function of neighborhood relations between 
agents [3,16,17]. Over many rounds and many generations of agents some game 
playing strategies may become dominant; these are the evolutionarily stable strategies 
(ESS). The question is whether cooperation is supported by ESS and in what 
conditions does this happen. 

Analytical and simulation studies show that inherent mechanisms, like kin 
selection and reciprocity can lead to the dominance of cooperation oriented strategies 
[1,2,9,10]. However, external conditions may facilitate this or may prevent it. For 
example, increased externally induced uncertainty increases the level of cooperation 
in simulated agent populations [17]. 

3   Social Interaction Networks 

Social networks have been analyzed for several decades. The classical result of six 
degrees of separation established that human social networks have the small-world 
feature [13]. More recent analysis of social networks of co-acting of actors [13], of 
sexual partner relationships [14], and of mobile phone calls [18] shows that these 
human interaction networks have the scale-free feature. An important implication of 
the scale-free feature is the resilience of the functionality of the network to random 
changes. While the small-world and the scale-free features are not equivalent they are 
related, and they characterize jointly most human social networks. 

The key factor that leads to generation of scale-free social networks is the 
mechanism of preferential attachment, i.e. that people tend to be introduced or to get 
in contact with other people who already know many other people. This means that 
the probability of establishing a new connection between two nodes is proportional 
with the numbers of existing connections of the two nodes. Similarly, the probability 
of breaking of a connection is inversely proportional with the number of connections 
of the two nodes. 

The structure of the interaction network is very important from the perspective of 
evolution of cooperation [13-16]. This determines the spread of information in the 
social system, the likely interaction partners of individuals, and constraints on 
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similarity selection and reciprocity. The social interaction network structure may 
constrain or may facilitate the evolution of cooperation in the community of 
individuals. 

The usual interaction network in simulation studies of cooperation is a pre-set fully 
connected network [3,9]. This means that all agents play with all other agents in each 
round of the game. This setting may fit the case of very small social groups, but it is 
not a valid model in case of larger social groups. More recently researchers used also 
particular pre-set scale free networks [16]. The latter setting approximates better real 
world social situations, but still its disadvantage is the static nature of the pre-set 
interaction network. 

A more dynamic alternative is to use at start a pre-set scale-free (or other random) 
network and rewire the network according to its design principle after every round of 
play between agents [19]. Another approach is to consider the agents in some spatial 
setting (e.g. on a rectangular grid) and to use spatial neighborhood relations between 
agents to determine the network of interactions [17]. Again this may be done by 
considering fully connected neighborhood networks or random networks within 
neighborhoods. Allowing the number of game plays to change randomly; or in the 
extreme allowing only a single game play between interacting agents may add further 
realism to the interaction networks used in simulation studies [17]. 

4   Emergent Artificial Social Networks – Are These Scale-Free 
Networks ? 

The results and analysis reported here aim to check whether scale-free interactions 
networks can be generated in agent-based simulations without explicitly coding such 
interaction networks into the simulation. While preferential attachment is a simple 
and intuitive mechanism in social context, a question is whether other less explicit 
mechanisms may lead to the same or similar results in terms of the arrangement of 
social interaction networks. Here I analyze the role of uncertainty, memory and gossip 
through an agent-based simulation setting. 

The simulated agent world that I use here has been described in detail in earlier 
papers [17,20]. The agents play an uncertain Prisoner’s Dilemma game and gain 
resources by playing the game. They spend some of these resources on living costs in 
each turn. The playing strategy of agents is fixed, and it is given as the probability of 
choosing the cooperation decision (p). The agents move randomly in a rectangular 
world with warped edges. In each round, each agent tries to pick an interaction 
partner from its neighborhood. The agents play a single game with their interaction 
partner in each round. The agents live in average for 100 rounds. At the end of their 
life they may produce offspring asexually. The number of offspring depends on the 
amount of resources accumulated by the parent agent. Higher amount of resources 
means more offspring according to a saturating sigmoid function. The offspring 
inherit the playing strategy of their parent with random modifications. The offspring 
start their life from the location of their parent in diffuse from there through their 
random movements. 

The agents are equipped with memory and can remember the outcome of their 
interactions with the last ten other agents. The memories fade with time. Depending 
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on their memory agents may increase or decrease the probability of cooperation with 
another agent (i.e. the actual probability of cooperation becomes p’=a.p, where a>1 
in case of positive memories and 0<a<1 in case of negative memories). The agents 
are also able to gossip. This means that they can share memories about interactions 
with other agents and combine such information received from other agents with their 
own memory information. In this way they can adapt their cooperation behavior in the 
case of meeting of agents that they have not encountered previously. The memory and 
gossip abilities were switched on in some experiments, while there were not used in 
others in order to study the effect of these features on the formation of artificial social 
networks.  

To measure social interaction networks the simulations were run 20 times at two 
levels of uncertainty (low and high) with all memory/gossip settings (no memory/no 
gossip, memory/no gossip, memory and gossip). Each time the simulation was run for 
1000 rounds (~10 generations of agents). All interactions were recorded and the 
generated interaction graphs were considered for measurement (an interaction graph 
was calculated for every 100 rounds). The distributions of the connectedness of nodes 
of these graphs were calculated. I measured whether these distributions were power 
law distributions or not.  

To test the power low nature of these distributions it is assumed that the power law 
has the probability density function 
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where xmin is the cut-off value above which the distribution follows the power law, 
and γ is the exponent of the power law. I used the estimators proposed in [21] to 
estimate the parameters and the fit of the assumed power law considering the actual 
connectivity distributions of the generated networks. In particular the exponent γ is 
estimated as 
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where xi>xmin are the observed values of connectedness, n is the number of graph 
nodes for which the connectedness was calculated, and the estimate of the value of 
xmin is calculated as the value for which the Kolmogorov-Smirnov fitness measure 
between the actual distribution and the expected power law distribution is the best. 
The fitness measure is calculated as 
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where S(x) is the cumulative probability distribution of the data and P(x) is the 
cumulative probability distribution of the estimated power law distribution; the lower 
D value is the better. The Matlab algorithms used for the distribution fitness  
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calculations [21] are stable for exponents 1.5<γ<7.0. The corresponding significance 
levels of the match with the best fitting power law were calculated using the 
Kolmogorov-Smirnov test of the Matlab.  

Table 2. Analysis of experimental connectedness distributions of simulated social networks. 
The log(p) is the logarithm of the calculated significance level – the network is significantly 
different from a scale-free network if log(p) < –2.  

 

The summary of the results is presented in Table 2. The analysis shows that many of 
the generated simulated social networks can be considered as scale free networks 
according to the above tests. The calculated power value (γ) varies in a wide range (2 to 
6.5 – we ignored all cases when the calculated γ value reached above 7, since at this 
level the used algorithms become unstable); however the goodness of fit between the 
experimental connectedness distribution and the corresponding power law distribution is 
much better for γ values above 5 than for values below 3. The calculated xmin values also 
vary accordingly from 12 to 60; higher xmin values being associated with higher γ values.  

The comparison of results between the three memory and gossip settings shows 
that there is no significant effect of these features on the power law nature of the 
connectedness distributions of the corresponding simulated social networks. In all 
three settings we find similar power (γ) and cut-off value (xmin) ranges and similar 
levels of goodness of fit with corresponding theoretical power laws. This means that 
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in the context of the presented agent-based simulations having memory and being 
able to share memories through gossip do not influence the generic nature of the 
structure of the resulting simulated social networks. 

However the results show that the level of uncertainty incorporated into the pay-off 
matrices of the games played by the agents has a much more important effect on the 
network structure of the social interaction networks. In case of high uncertainty in all 
memory/gossip settings the connectedness distributions of the social networks match 
much better the power law distribution than in the case of low uncertainty. This is true 
at all levels of power (γ) and cut-off (xmin) values. 

In summary, the results show that it is possible to generate simulated social 
networks that have a scale-free networks structure, using agent-based simulations of 
cooperative behavior. The scale-free nature of the resulting simulated social networks 
does not depend on the presence of memory and gossip features, but depends 
critically on the presence of high uncertainty in the cooperation games played by the 
agents. It is important to note that in these simulations the principle of preferential 
attachment was not explicitly encoded, and that social networks which are in 
agreement with this growth principle resulted simply by playing high uncertainty 
cooperation games by simulated agents. 

5   Conclusions 

The structure of social interaction networks is likely to contribute to the evolution of 
cooperation in socio-biological systems supported by these networks. Here I show 
that it is possible generate realistic scale-free simulated social interaction networks 
through agent-based simulations. 

The results show that the scale-free nature of the simulated social networks is 
primarily influenced by the uncertainty present in the cooperation games played by 
the simulated agents. The results also show that the network structure does not depend 
significantly on the presence of memory and gossip features in the simulations. 

Being able to generate realistic simulated social networks without the explicit 
encoding of mechanisms that generate scale-free networks is also an important step 
towards the improved analysis of social networks. Having such simulated social 
networks allows specifying the functionality of the simulated social system (e.g. 
evolution of cooperative behavior) and then the generation of simulated social 
networks that match their real counterparts in terms of structural features. In this way 
the role of the network structure in the functionality of the supported social system 
can be analyzed more independently since the network structure is not explicitly 
specified in the simulation. 
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Abstract. This paper investigates an update strategy for the Univariate Marginal 
Distribution Algorithm (UMDA) probabilistic model inspired by the equations 
of the Ant Colony Optimization (ACO) computational paradigm. By adapting 
ACO’s transition probability equations to the univariate probabilistic model, it is 
possible to control the balance between exploration and exploitation  by tuning a 
single parameter. It is expected that a proper balance can improve the scalability 
of the algorithm on hard problems with bounded difficulties and experiments 
conducted on such problems with increasing difficulty and size confirmed these 
assumptions. These are important results because the performance is improved 
without increasing the complexity of the model, which is known to have a 
considerable computational effort.  

1   Introduction 

Estimation of Distribution Algorithms (EDAs) [8] constitute a class of Evolutionary 
Algorithms (EAs) [7] in which the standard crossover and mutation operators are 
replaced by: 1) an estimation of the joint probability of promising solutions, and; 2) 
the generation of new solutions by sampling from the corresponding estimated 
distribution. During the optimization process, an EDA makes use of the probabilistic 
models to build possible solutions to the problem (sampling). The probability model 
is then updated in a way that reflects the quality of those solutions (selection).  

Unlike traditional EAs, this class of algorithms does not use genetic operators, and 
relies exclusively on the probability model, not only to converge to a proper solution 
but also to capture the underlying problem decomposition during runtime. This 
particular behaviour overcomes one of the disadvantages of traditional EAs: fixed and 
problem-independent operators often disrupt and do not mix properly the raw 
building-blocks provided by the initial population. Some EDAs, being able to capture 
the problem structure, scale much better than traditional EAs, namely on problems 
with strong dependencies between variables.  

Different strategies may be used at the sampling and selection steps, meaning that 
the diversity of the model (and resulting algorithm’s convergence) is strongly 
dependent on the chosen schemes. EDAs are usually classified according to the 
complexity of the probabilistic model they rely on, i.e., the level of interactions they 
can capture between the variables of the problem. On univariate models, for instance, 
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the variables are assumed to be independent. One of the algorithms based on such 
models is the the Univariate Marginal Distribution Algorithm (UMDA) [10], which is 
the one addressed in this paper. However, there are EDAs based on other types of 
models, like the bivariate, which represent pairwise interactions between variables, 
usually via chain or tree structures, and the multivariate [9], which relies on much 
more complex probabilistic models.  

Univariate models’ learning complexity is very low and they perform well on 
linear problems, while failing when the interactions between the variables are strong. 
Multivariate EDAs rely on more complex model learning, but they are able to detect 
interactions between variables, thus being very efficient on some hard problems that 
are intractable by other EAs. However, multivariate EDAs require an extra 
computational effort in order to estimate the distribution and learn the variables’ 
interactions. It is thus necessary to find the best compromise between the simplicity of 
univariate models and the learning abilities of multivariate ones when facing a new 
problem. Therefore, any effort that results in improvements on simpler models may 
be widening the range of application of such algorithms. This paper addresses that 
theme and studies the performance of an update strategy for UMDA’s probabilistic 
model inspired by the Ant Colony Optimization (ACO) transition probabilities [5]. 
These equations have one parameter that may be tuned in order to control the 
algorithm’s balance between exploration and exploitation and it is expected that a 
proper tuning of the parameter enhances UMDA’s behaviour on hard problems, 
namely its scalability on m-k trap functions. The results confirmed this hypothesis. 
Before proceeding to the description of the algorithm and results, the following 
section addresses EDAs in the model-based search context and relates them to ACO. 

2   Model-Based Search 

EDAs are classified by Zlochin et al. [11] within a larger framework that includes also 
stochastic gradient ascent, cross-entropy method and ACO – see [11] for a description 
of these methods. The authors identified the similarities between these algorithms, 
with the aim of unifying them in a single framework. All these heuristics rely on a 
probabilistic model that is updated according to the results of the search process. It is 
thus plausible that some features that have been proven to be effective in one model-
based search heuristic can be used in another algorithm of the same kind with success. 
We are particularly interested in merging EDAs and ACO.  

ACO is a computational paradigm inspired by the foraging behaviour of real ants, 
i.e., their ability to find the shortest paths between the nest and food sources. ACO 
belongs to a wider class of algorithms called ant algorithms, which rely on a principle 
called stigmergy, or indirect communication via the environment [6]. Ant algorithms 
may be used not only on combinatorial optimization but also on clustering and 
classification problems, image processing, robotics and other real-world problems [1]. 

Before being tackled by an ACO algorithm, a problem must be reduced to finding 
the shortest paths in graphs. Then, artificial ants will travel possible trails, and 
deposit, on the edges, an amount of pheromone that is proportional to the quality of 
the path. In addition, the ants go from node to node according to a probability that 
depends on the pheromone. Ant System [3] − the first ACO algorithm −, for instance, 
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may be described by equation 1, which defines the probability with which at t-th 
iteration an ant  located in node  chooses an adjacent node  to move to: 

∑  (1) 

where  is the feasible neighbourhood of node  if for ant ,  is the amount of 
pheromone in edge ,  is a component that incorporates a priori knowledge,  is a 
parameter that controls the influence of  and  controls the influence of . The 
pheromone, in every edge , is updated in every iteration: 

, ∆ , , 1 1  (2) 

where  is the pheromone’s evaporation rate and ∆ ,  is the amount of pheromone 
deposited, which must depend on cost of the ant’s tour (if the edge is part of an ant’s 
tour; otherwise, ∆ , 0). This is very similar to EDAs’ process for updating the 
probabilistic model according to the previously found solutions. In fact, Fernandes et 
al. based their Binary Ant Algorithm [4] on ACO, but a closer look soon revealed that 
the resulting algorithm mimics the behaviour of a bivariate EDA. More recently, and 
within this line of work, Fernandes et al. [5] proposed an ACO-like update strategy 
for UMDA with the objective of preserving diversity and tackle time-varying fitness 
functions. The results presented in [5] show that the method is able to outperform 
several other previously proposed strategies that reduce UMDA’s diversity loss. This 
paper broadens that study and investigates the performance and scalability of that 
ACO-like model on stationary problems with different degrees of difficulty. 

3   UMDA and Diversity Loss 

UMDA is a discrete EDA with independent variables. It starts by initializing the 
probability model, assigning 0.5 to each parameter  of the model, meaning that the 
first population is randomly generated. Parameters  are defined as the probability 
that each variable takes the value 1: 1  (3) 

where i = 1,…l, and l is the string length. After initializing the model, UMDA 
generates n strings  according to the equation below: 

1 1  (4) 

where  is the ith component of string . The  fittest strings are then selected 
by truncation or any other method ( 0,1  is a parameter that defines UMDA’s 
selective pressure). The chosen solutions update the model in the following manner: 1

 (5) 

where Ds is the selected population. The algorithm repeats until a stop criterion is met. 
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Please note that once a parameter of the model loses diversity (  0  or  1) 
UMDA has no means to regain it. (This effect is similar to genetic drift in traditional 
EAs.) For that reason, it is of extreme importance to avoid diversity (or variance) loss 
in order to escape premature convergence of the algorithm to local optima. Since the 
loss occurs at two steps of the algorithm − sampling and selection − those are the 
components that must be addressed. This work addresses selection. 

Variance loss due to selection can be reduced by changing the way the 
probabilistic model is updated. In [2], the authors present four methods to correct 
parameter . In a previous study [5], our proposal − the Reinforcement-Evaporation 
(RE) correction − was included in a test set together with these techniques and proved 
to be more effective on dynamic problems. 

RE strategy corrects probability distribution in order to reduce diversity loss by 
replacing equation 5 by ACO-like equations. Consider two vectors  and  that are 
updated in each time step as defined by equations 6 and 7: 

 (t)   (t)+ ∑  (6)

 (t)   (t)+ 1 ∑  (7)

where i = 1,…l, and 0 0 and 0 0. These vectors emulate ACO’s 
pheromone maps and act as kind of memory, allowing UMDA to incorporate 
information from prior distributions into the current parameters. The parameters  are 
then updated in the following manner: 

 

 (8)

where 0,1  is a parameter that controls the relative weights of  and . Before 
the update stage, vectors ,  are “evaporated” according to equation 9: 

 

 , , 1  (9)

where 0,1  is the evaporation rate. Please note that setting 1  implies that 
the vectors ,  are set to 0 at the beginning of each time step, thus meaning that the 
previous equations are reduced to equation 10. 
 

 

Fig. 1. Reinforcement-Evaporation (RE) UMDA 

Set γi ← 1/2 for all i = 1 . . .l; Set , ← 0 for all i = 1 . . .l; Set α and  
repeat 
    sample n strings according to Eq. 2 to make a population D. 
    generate new population Ds by selecting the  f×n fittest strings. 
    reinforce (equations 6 and 7) and evaporate pheromone (equation 9) 
    for i = 1 to L do update model (equation 8) 
  until stop criterion met 
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Fig. 2. Loss [2], Laplace [2] and RE correction effect on γi 

 ∑
 (10)

Fig. 1 shows the pseudo-code of an UMDA with the proposed update strategy. Fig. 2 
shows RE correction with different α values (  is set to 1) and compares it with loss 
correction and Laplace correction [2]. With low α values, the method approaches 
random search, since  is kept close to 0.5 (with α = 0, UMDA does random search:   is always 0.5). Increasing α cause the model to relax its exploration efforts and the 
diversity is reduced. When 1 the model becomes very close to the standard 
update strategy (equation 3). Evaporation rate also controls diversity: when  1, 
UMDA incorporates prior distributions in the probabilities. Setting α = 1 and  = 1 
results in the standard UMDA. 

RE sigmoid shape indicates that the search process is kept (if  is properly tuned) 
in a more exploratory stage in the beginning, before engaging in a strong local search 
effort when the variables are converging. In that sense, RE is more similar to loss 
correction, but the  parameter allows the user to tune the balance between 
exploration and exploitation (please note that in the beginning of the search, loss 
correction does not bias the search towards good solutions). The following section 
investigates the effects of varying  on the performance of UMDA. Evaporation rate 

 is set to 1 (standard UMDA) and it is not addressed in this study. 

4   Experimental Setup and Results 

In order to investigate how the UMDA with the RE strategy scales when the size (or 
difficulty) of a problem increases, an experimental setup was designed that comprises 
the onemax problem and two m-k trap functions. Onemax is a simple linear problem 
that consists in maximising the number of ones in a binary string. A trap function is a 
piecewise-linear function defined on unitation (the number of ones in a binary string) 
that has two distinct regions in the search space, one leading to a global optimum and 
the other leading to the local optimum. Depending on its parameters, trap functions 
may be deceptive or not. The trap functions in these experiments are defined by: ,1 ,  

(11) 
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where u( ) is the unitation function and  is the problem size (and also the fitness of 
the global optimum). With these definitions, order-3 traps are in the region between 
deceptive and non-deceptive, while order-2 are non-deceptive. Under these settings, it 
is possible to investigate not only how UMDA scales on order-k trap functions but 
also to observe how that performance varies when moving from non-deceptive to 
nearly-deceptive search spaces. For that purpose, -bit decomposable functions are 
constructed by juxtaposing m trap functions and summing the fitness of each sub-
function to obtain the total fitness. This way, we obtain the so-called −  trap 
problems, and by increasing m it is possible to investigate how an algorithm scales. 

Scalability tests are important to assess how the algorithm behaves when problem 
size increases, and to what extent large-scale instances of the problem are still 
tractable. The following test intends to check the effects of RE strategy on UMDA’s 
scalability by testing it on onemax, order-2 and order-3 traps with different sizes. For 
that purpose, the standard UMDA the baseline for comparison. In both approaches, 
the bisection method [11] is used to determine the optimal population size so that the 
given algorithm is able to find the optimum in 49 out of 50 runs. After determining 
the optimal population size, the configuration with that size is run for 100 times and 
the number of evaluations necessary to reach the optimum is averaged over the 
successful runs (that is, the runs in which the algorithm converged to the global 
optimum). The UMDAs are tested with parameter  set to   0.1. 

The tests with the onemax problem had the expected outcome. As seen in fig. 3 − 
which represents the scalability of the algorithms in terms of evaluations to reach the 
optimum and optimal population size − RE does not improve standard UMDA’s 
scalability and for 0.96 the performance is even degraded. More exploration for 
onemax problem does not help because this is a linear problem that is easily solved 
with any pure exploitation method such as a hullclimbing local searcher. 

As for the −  traps, RE strategy proved to be able to improve standard UMDA’s 
performance. Fig. 4 shows that, on order-2, UMDA’s scalability is improved by 
setting  to values around 0.96. Lower values did not enhance the performance. 
However, the tests with order-3 traps show that significant improvements in the 
scalability are only attained with 0.90. The graphics in the bottom row of fig. 4 
compare UMDA with 1.0 (standard UMDA) and 0.80.  In this case, the 
population size scalability is particularly interesting, since the optimal size seems to 
remain stable when   50. A good scalability in terms of evaluations is very 
important because it saves computational effort and broadens the spectrum of 
problems that are tractable, but the scalability of the population is also crucial because 
of memory issues, which can feedback to performance increasing the running time. 

 

Fig. 3. Scalability on onemax problems 
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Fig. 5. Loss correction [2] and RE scalability on order-3 m-k functions 
 

The significance of the results in fig. 4 were assessed via Kolmogorov-Smirnov 
tests and RE strategy was found to be statistically better (faster) than standard UMDA 
when 320 (order-2) and 45 (order-3). A final test with order-3 traps was 
made in order to compare RE with the loss correction method [2]. The results in fig. 5 
show that, unlike RE, loss correction does not improve standard UMDA’s 
performance on order-3 traps.  

5   Conclusions and Future Work 

This paper presents a study on the scalability of the Univariate Marginal Distribution 
Algorithms (UMDAs) with a non-traditional update strategy inspired by the Ant 
Colony Optimization (ACO) paradigm that aims at correcting the probabilities in 
order to avoid diversity loss: the Reinforcement-Evaporation (RE) correction. The 
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Fig. 4. Scalability on order-2 (top row) and order-3 (bottom row) m-k functions. Evaluations 
curves are fit by a polynomial function. 
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proposed method, which mimics the pheromone deposition and evaporation found in 
ant colonies and modeled by ACO, incorporates a parameter that controls the balance 
between exploration and exploitation. The algorithms are tested on a linear problem 
(onemax), a non-deceptive trap (order-2) function and quasi-deceptive (order-3) trap 
function. Results show that increasing the exploration effort does not improve the 
performance on onemax, as expected, since the problem is easily solved by pure 
exploitation methods. However, tuning the parameter in order to increase exploration 
leads to better results than standard UMDA on trap problems. RE also outperformed a 
previously proposed correction method on order-3 traps.     

In the future, the efficiency of this method on more complex EDAs will be 
investigated and the effects of evaporation rate on stationary functions will be studied. 
Finally, RE will be tested on dynamic trap functions. 
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Abstract. This research investigates a swarm intelligence based multi-
objective optimization algorithm for optimizing the behavior of a group
of Artificial Neural Networks (ANNs), where each ANN specializes to
solving a specific part of a task, such that the group as a whole achieves
an effective solution. Niche Particle Swarm Optimization (NichePSO)
is a speciation technique that has proven effective at locating multiple
solutions in complex multivariate tasks. This research evaluates the effi-
cacy of the NichePSO method for training a group of ANNs that form a
neural network ensemble (NNE) for the purpose of solving a set of mul-
tivariate tasks. NichePSO is compared with a gradient descent method
for training a set of individual ANNs to solve different parts of a multi-
variate task, and then combining the outputs of each ANN into a single
solution. To date, there has been little research that has compared the
effectiveness of applying NichePSO versus more traditional supervised
learning methods for the training of neural network ensembles.

1 Introduction

In nature, biological systems such as ant and termite colonies optimize solutions
to their tasks via having a set of simple individuals specialize to solving dif-
ferent (and complementary) parts of the problem [2]. A goal of artificial life is
to replicate the mechanisms that allow groups of behaviorally simple individ-
uals to cooperate in order to optimize solutions to complex tasks [5]. Particle
Swarm Optimization (PSO) has close ties to artificial life models such as that
of Reynolds [13] and Heppner [9], which indicated that emergent group dynam-
ics such as bird flocking behavior are based on local interactions. These studies
were the foundation for the development of PSO with applications that include
industrial process control [11] and multi-objective function optimization [1].

Most evolutionary and swarm intelligence techniques are designed to converge
on a single solution in a search space, where the quality of the solution depends
on a task dependent fitness function. These techniques implicitly assume that
only a single solution exists in the search space, and therefore that the search
space is univariate. When presented with a multivariate task domain, typical
� Current work address: KPMG N.V. Burgemeester Rijnderslaan 10-20. 1185 MC

Amstelveen. The Netherlands.
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univariate techniques will either favor a single solution, or fail to converge due to
the confusion introduced by multiple possible solutions [3]. Niching techniques
attempt to overcome the deficiencies of univariate optimization techniques by
explicitly assuming that multiple solutions exist in a search space.

This paper evaluates the efficacy of a PSO based niching method [3] compared
with an established gradient descent method [14] for training Neural Network
Ensembles (NNEs) [8] to solve a set of multivariate classification and regression
tasks. To date, there has been little research that compares the effectiveness of
using more traditional supervised learning techniques such as back propagation
to train NNEs with more recent niche based (multi-population) swarm intelli-
gence techniques such as that of Zhang et al. [15] and Brits et al. [3] to train
NNEs. Results elucidate that NichePSO outperforms back propagation as a NNE
training method for a majority of the multivariate classification and regression
tasks. Traditionally, back propagation has been successfully applied as a super-
vised learning approach to train NNEs for solving such tasks [10]. Given this, the
following research goal, hypotheses, and performance measure were formulated.

– Research Goal: To elucidate that the NichePSO algorithm [3] is able to
outperform a back propagation algorithm [14] for training NNEs applied to
solve a given set of multivariate classification and regression tasks.

– Hypothesis 1: For the given task set, back propagation is able to train a
NNE such that the NNE outperforms each of its constituent ANNs.

– Hypothesis 2: For the given task set, NichePSO is able to train a NNE
such that the NNE outperforms each of its constituent ANNs.

– Hypothesis 3: For the given task set, NichePSO is able to train a NNE
such that it outperforms a back propagation trained NNE.

– Performance Measure: The portion of misclassified cases and the mean
squared error, for classification and regression tasks, respectively.

2 Methods for Training Neural Network Ensembles

This section describes comparative methods evaluated for solving a given set of
classification and regression tasks. These methods are: Gradient Descent trained
Ensembles (GDE) and Niche Particle Swarm Optimized Ensembles (NPSOE).
GDE uses back propagation to train a NNE, and NPSOE uses the NichePSO
algorithm to train a NNE in order to solve a given task set. Previous research
has indicated that when a single network is not capable of correctly representing
a given data set, the fusion of a set of networks, each of which is specialized to
a part of the data set, can significantly improve performance [8]. The key idea
behind the performance increase yielded by NNEs, is that each network in the
ensemble specializes to solving a complementary part of the task. Collectively,
these specializations result in a task performance that is superior to that of a
single ANN applied to solve the same task. From a behavioral perspective, an
input layer is processed by all constituent ANNs of a NNE, and a fusing scheme
is then applied in order to combine the outputs of each ANN into one NNE
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output layer [8]. This research uses a uniformly weighted output scheme for the
regression tasks, and a majority voting scheme for classification tasks [10].

When training a NNE using GDE or NPSOE (for either a classification or
regression task), the input layer consisted of attributes from training data. This
input layer was split over the constituent ANNs of the NNE. For measuring
the performance of a trained NNE, the validation data was passed as the input
layer to the NNE, and NNE performance compared to NNE performance using
training data. An average task performance was calculated over multiple runs.

Table 1. GDE and NPSOE method parameter settings

GDE and NPSOE Method Parameter Settings
Number of hidden nodes (NPSOE / GDE) 8
Input / hidden node transfer function (NPSOE / GDE) linear
Output node transfer function (NPSOE / GDE) sigmoid
Learning rate (GDE) 0.001
Momentum (GDE) 0.01
Iterations (NPSOE / GDE) 50000
Number of particles (NPSOE) 30
Weight range (NPSOE / GDE) [-1.0, +1.0]
Number of networks (NPSOE / GDE) 7
Number sub-swarms (NPSOE) 7
Initial ρ (NPSOE) 0.1
ρ increment value (NPSOE) 15
ρ decrement value (NPSOE) 5

Both the GDE and NPSOE methods used a homogeneous ensemble, meaning
each of the constituent ANNs was the same. The number of input neurons used
by each ANN equalled the number of attributes that were being passed as the
input layer for a given classification or regression task. The number of outputs
always equalled one, which was the prediction or classification value. Hence, the
value type of the input and output neurons depended on the value of the at-
tributes being used by a given classification or regression task. For both methods,
prior to training, the weights of each ANN were randomly initialized within the
range [-1.0, 1.0]. Also, for both methods, the fusion of each of the outputs of
each ANN was done according to a majority voting [8] or weighted average [12]
scheme for classification and regression tasks respectively. Table 1 presents the
parameter values used by the GDE and NPSOE methods. These values were de-
rived in a set of exploratory experiments, and minor changes to these parameter
values produced similar results for both GDE and NPSOE applied to all tasks.

2.1 GDE Method: Back Propagation Trained Ensemble

Figure 1 illustrates the architecture of the method for training a NNE with back
propagation. First, the training data is given to the input layer of the NNE. Each
ANN is then trained by a back propagation algorithm [14]. The validation data is
then passed to the NNE input layer, the output is compared with that produced
by the training data, and the weights of the NNE are adapted accordingly.
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Fig. 1. Architecture of back propagation trained neural network ensemble
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Fig. 2. Architecture of the NichePSO trained neural network ensemble

2.2 NPSOE Method: NichePSO Trained Ensemble

NichePSO [4] is a niche-based PSO method that dynamically creates sub-swarms
that converge upon multiple newly discovered optima in the search space. The
function of the initial main swarm is thus to continually explore the search space.
Figure 2 illustrates the architecture used for training a NNE with NichePSO
(NPSOE). For the experiments presented in section 3, NPSOE derived one sub-
swarm in order to optimize the weights of each constituent ANN. Each sub-
swarm particle represents the weight vector of a given ANN. Each sub-swarm
uses the GCPSO algorithm [6] as the particle velocity update strategy. GCPSO
was selected since it has been demonstrated to work well with low particle num-
bers, and is more appropriate for exploitation than exploration. In order to train
each ANN the training data is passed to each ANN as the input layer, and the
output is compared to that produced when the validation data is passed. The
error is used as a fitness value by the NichePSO algorithm. The weights of each
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ANN were set according to each sub-swarm’s best particle. For a complete de-
scription of the NichePSO algorithm refer to Brits et al. [4].

3 Experiments

The performance of the GDE and NPSOE methods were both evaluated on
five regression, and five classification tasks. The performance of each method
was measured as the number of misclassified cases for classification tasks, and
mean squared error for regression tasks. For the performance evaluation of each
method, the validation set, and not the training set, was used. For each method
applied to each task, 20 simulation runs were executed, and results presented are
averages of these 20 runs. Method parameters for all classification and regression
tasks are as presented in table 1. With the exception of the random pattern
classification task, and the Friedman#1 synthetic data set used for the first
regression task, the data sets used for all classification and regression tasks were
taken from the UCI Machine Learning Repository1.

3.1 Classification Tasks

– Classification Task 1: Random pattern classification: The classifica-
tion of random patterns task investigated by Hansen and Salamon [8] is used.
There were 1000 training and 400 validation patterns. Each pattern was a
real valued input vector with 20 attributes. Given this training set, the task
was to correctly classify each validation pattern to one of the five classes.

– Classification Task 2: Ozone Level Detection: This data set uses 2536
instances. Each instance contains 73 attributes. The task is to correctly clas-
sify an ozone reading given a set of environment related attributes.

– Classification Task 3: Abalone: This data set consists of 4177 data pat-
terns, each with eight real valued attributes. The task is to correctly classify
abalones as belonging to a particular age range, given a set of attributes.

– Classification Task 4: Wine: The wine data set contains 178 types of
wine, each with 13 real valued attributes. The attributes represent physical
characteristics of the wines. All wines belong to one of three classes. The
task is to correctly classify each wine to the correct class.

– Classification task 5: Glass: The glass database consists of 214 patterns
each representing a piece of glass. Each pattern contains ten real valued
attributes. The task is to classify each piece of glass as crime scene processed,
or not, for a given set of attributes.

3.2 Regression Tasks

– Regression Task 1: Friedman #1: The Friedman#1 synthetic data set
[7] corresponds to training vectors with five input and one output variable.
The data set was created by randomly generating real valued input vectors

1 http://archive.ics.uci.edu/ml/datasets.html

http://archive.ics.uci.edu/ml/datasets.html
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with attributes in the range [0.0, 1.0], and computing a corresponding output
[7]. A set of 1200 patterns was split into a training set baring 1000 instances,
and the remaining 200 patterns were assigned to the validation set.

– Regression Task 2: MPG Auto: This data set consists of 398 instances,
having eight real valued attributes. The task is to determine the fuel con-
sumption of cars with given attributes.

– Regression Task 3: Computer Hardware: This data set contains 209
instances, where each instance has nine integer attributes. The task is to
predict the relationship between hardware and performance given a set of
computer hardware attributes.

– Regression Task 4: Servo: The servo data set consists of 167 instances,
where each instance has two continuous and two discrete attributes. The
task is to predict a a servo-mechanism rise time (the time required for the
mechanism to respond to a change in position) given a set of attributes.

– Regression Task 5: Wisconsin breast cancer: The Wisconsin breast
cancer data set comprises 198 instances each with 34 real valued attributes.
The task is to predict cancer (benign or malignant) given a set of attributes.

4 Results and Discussion

Table 2 presents the results of an independent t-test (0.95 confidence value) ap-
plied in order to test for a statistically significant difference between the average
task performance results of GDE and NPOSOE applied to each of the classifi-
cation and regression tasks. That is, the NPSOE method out-performs GDE on
three out of the five classification tasks and four out of the five regression tasks.

Hypothesis 1: T-tests applied to misclassification and mean square error results
of the NNE and each of the constituent ANNs trained by back propagation
indicates the following significant differences. For the classification tasks, it is
only for the random pattern classification task, that back propagation trained
NNEs are able to out-perform each of their constituent ANNs (table 2). For the
regression tasks, the Friedman #1, Wisconsin Breast Cancer, and MPG Auto
trained NNEs out-perform each of their constituent ANNs (table 2).

Hypothesis 2: T-tests applied to misclassification and mean square error results
of the NNE and constituent ANNs trained by NichePSO indicates the follow-
ing significant differences. For the classification tasks, NichePSO trained NNEs
out-perform their constituent ANNs for the random pattern, abalone, wine, and
Ozone Level Detection tasks (table 2). NichePSO trained NNEs out-perform
each of their constituent ANNs for all regression tasks (table 2).

Hypothesis 3: T-tests applied to misclassification and mean square error re-
sults of the back propagation (GDE method) and the NichePSO (NPSOE method)
trained NNEs indicates the following significant differences. For the classification
tasks, NPSOE out-performs GDE for the random pattern, glass and Ozone Level
Detection tasks (table 2). However, for the abalone, and wine tasks, both methods
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Table 2. Overview of acceptance or rejection of hypotheses for the results of GDE and
NPSOE when applied to each of the classification and regression tasks

Classification Tasks Hypothesis 1 Hypothesis 2 Hypothesis 3
Accept/Reject Accept/Reject Accept/Reject

Random Pattern Classification Accepted Accepted Accepted
Glass Rejected Rejected Accepted
Abalone Rejected Accepted Rejected
Wine Rejected Accepted Rejected
Ozone Level Detection Rejected Accepted Accepted
Regression Tasks Hypothesis 1 Hypothesis 2 Hypothesis 3

Accept/Reject Accept/Reject Accept/Reject
Friedman #1 Accepted Accepted Accepted
Wisconsin Breast Cancer Accepted Accepted Rejected
MPG Auto Accepted Accepted Accepted
Computer Hardware Rejected Accepted Accepted
Servo Rejected Accepted Accepted

Table 3. Average portion of misclassified cases (classification) and mean squared error
(regression), and standard deviation in parentheses for GDE and NPSOE

Classification Tasks GDE NPSOE
Random Pattern Classification 0.33 (0.022) 0.291 (0.02)
Glass 0.378 (0.157) 0.291 (0.074)
Abalone 0.374 (0.01) 0.432 (0.016)
Wine 0.646 (0.068) 0.652 (0.047)
Ozone Level Detection 0.648 (0.015) 0.567 (0.02)
Regression Tasks GDE NPSOE
Friedman #1 2.169 (0.055) 0.249 (0.128)
Wisconsin Breast Cancer 29.217 (5.644) 51.413 (16.256)
MPG Auto 63.059 (0.018) 41.745 (16.938)
Computer Hardware 60.578 (6.299) 54.625 (6.853)
Servo 1.211 (0.228) 1.019 (0.006)

yield comparable results. NPSOE out-performs GDE for all of the regression
tasks, except the Wisconsin Breast Cancer task. A statistical comparison of
mean squared indicated comparable results for this task (table 2).

These results indicate that NichePSO (hypothesis 2) comparative to back
propagation (hypothesis 1) is an appropriate method for training NNEs. That
is, NichePSO trained NNEs outperform each of the constituent ANNs trained
by NichePSO for 90% of the tasks. Where as, back propagation trained NNEs
outperform each of the constituent ANNs trained by back propagation for only
40% of the tasks. Regarding hypothesis 3, results indicate that the NichePSO
trained NNE (NPSOE), comparative to a back propagation trained NNE (GDE)
is appropriate for solving the given set of multivariate classification and regres-
sion tasks. That is, NPSOE outperforms GDE with a statistically significant
difference for 70% of the tasks. Table 3 presents the task performance results for
GDE and NPSOE applied to the classification and regression tasks.
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5 Conclusions

This research was an initial step for establishing NichePSO as being an appro-
priate algorithm for training neural network ensembles to solve complex multi-
variate tasks that require different networks to specialize to solve complementary
parts of the task. This paper presented a set of multivariate classification and
regression tasks. Such tasks have typically been solved via applying gradient de-
scent algorithms to train neural networks or neural network ensembles. Results
indicated that a neural network ensemble trained with NichePSO was able to ex-
ploit the multivariate nature of these tasks, which in turn lead to a significantly
lower classification and prediction error rate compared to the back propagation
trained ensemble. Given that NichePSO trained neural network ensembles have
been successful at solving more the classification and regression tasks presented
in this paper, the approach has potential applications to complex artificial life
oriented tasks. For example, automating the design of a group of agent neu-
ral controllers such that the controllers develop specialized and complementary
behaviors and a collective group behavior is produced that solves a given task.
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Abstract. We have developed a model of crowd based on social agents
and swarm intelligence. The model takes the form of a randomly gener-
ated directed graph where nodes represent individuals locked in a room
where a fire occurs. Each individual follows connected individuals, called
the references. There are two special individuals, the firefighters, situ-
ated at the two exits from the room: exit T or true and exit F or false.
The agents are directed at targets T and F in a computer animation im-
plemented in Netlogo. They come into conflict of over-information when
they receive contradictory information from their references.

We studied experimentally the influence of the following mechanisms
of conflict resolution: follow the mode or the anti-mode, random resolu-
tion and the effect of excluding the own opinion. We found that these
mechanisms lead people following the mode to unanimously choose one
of the options, flocking towards the selected goal. In the case of anti-
mode, the population oscillates between the two options. The number of
references is critical to this behavior and following one or two references
with exclusion of the own state leads the system to chaotic patterns of
convergence.

Keywords: crowd simulation, swarm intelligence, complex systems,
computational intelligence, chaos theory, collective decision-making.

1 Introduction

A conduct that necessarily leads to the formation of social groups without any
internal representation of the world is tracking mimetic behavior [1,2,3,4,5]. We
can easily imagine this through examples: in a situation of economic crisis, two
media A and B respectively advise to draw or not the money from banks, or
promote the vote for a candidate in an election. In the field of crowd psychology,
we can imagine a situation like a fire, where firefighters are situated at the
emergency exits A or B to evacuate the room. Let us identify option A to boolean
value T (true) and B to F (false). T and F agents are sources that remain in
a fixed position and do not receive any input. We describe the mechanism of a
stampede: In the face of danger, the agents create references, i.e. they choose
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a number of agents to follow. Assume for simplicity that all of them select the
same number of references. Those agents close to the sources T and F, will move
towards these areas, but those that are a little farther will set up camp in the
direction of their neighbors following the stream to zone T or to F. The conflict
arises when the agents at the border of the two basins are required to move
in opposite directions, or when they go in one direction and see other agents
running in the opposite direction. These agents enter in conflict and hence stop.

The way to get out of conflict is to create new references to informed choices
that will lead to the goal T or to F. In this work we assume randomly created
references. Figure 1 graphically expresses this self-organizational logic in which
the system moves from conflict to the information values T or F.

We might ask what kind of collective choice made the agents: from observing
the environment, they develop a decision over a process that lasts until the
changes of opinion of the environment no longer occur (convergence). The final
counting of agents in each state, gives us a collective choice. Note that to solve
the problem of evacuating the room, the best solution is to split the crowd in
two equilibrated groups.

Our simulation shows that this solution is anecdotal if conflict crowds follow-
ing the Mode (the most common direction in the neighborhood) or the Anti-
Mode (the less common). Judging from the average results would appear that
the group is divided into two homogeneous sub-groups, but on the contrary, we
obtain dynamics that lead to a unanimous choice as well as dynamics that show
periodic or chaotic patterns of convergence.

Fig. 1. Interpretation of Diamond logic. Resolution of conflict J ensures the conver-
gence to informed values T or F.

2 Outline of Model Formalization

Each agent, who is called Ri, can identify a maximum number k of agents that
we call their references, Ri1 . . . Rij 1 ≤ j ≤ k. This reference network is a
directed graph created randomly. The agents are initially in the state denoted
by the symbolic value of misinformation I = “Does not know.”. The boolean
values T=“true” and the F= “false” represent information. The conflict due to
over-information is expressed by the value J = “Does not answer”, meaning that
an agent is receiving two contradictory pieces of information.
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The transmission of messages and therefore the movement of the group was
formalized through the Diamond Logic [7,8], a tetra-valued extension of the
propositional logic that allows for the formulation of assertions in the form of
self-referential equations. The set of values is the logic Diamond D = (T, F, I, J),
where T and F are the Boolean values True (true) and false (false), while I and
J are meta-logical values denoting paradox, both solutions of the auto-denied
equation X = not(X).

The transmission is modeled by a self-referential equation associated with
each agent:

Ri = state − operator(Ri, Ri1, ..., Rik)

which is interpreted as follows: The Ri, Rij , are variables that identify the agents
taking their values in the diamond D. The value of Ri at time t + 1 depends on
the action itself and what they hear from their references at the moment t just
before.

We study experimentally the following dynamics: they are all identical in the
absence of conflict, the values T, F have priority over misinformation I. When
conflict by over-information J arises, the differences appear.

– BASIC: The concurrence of contradictory information, T and F, represents
an excess of information expressed as a conflict J and that’s going to override
all other values.

– MODE: In the event that the basic conflict J occurs, the agent will choose
the more frequent state T or F. In case of a tie, remain in conflict J.

– ANTI-MODE: Like operator mode but selecting the less frequent state T or
F.

These dynamics are analyzed in two ways:

– Include own opinion: Ri = state − operator(Ri, Ri1, ..., Rik).
– Exclude the opinion: Ri = state − operator(Ri1, ..., Rik).

Regarding conflicts J there are two options:

– Not random resolution: Doesn’t reset the individual in conflict, maintaining
the value J. Random.

– Random resolution: Reset the agent with new references and initialize to the
state of misinformation I.

Basic dynamic of transmission corresponds to the rule “the more the information,
the more the priority of transmission”. Note that the value J represents an excess
of information being transmitted with the maximum priority. Given a list of
logical values m = v1, v2, . . . , vn with n ≥ 2, let nI(m), nT (m), nF (m), nJ(m)
be the number of occurrences of the sub-indexed value in the list.

Basic T F I J
T T J T J
F J F F J
I T F I J
J J J J J

Basic(m) =

⎧⎪⎪⎨⎪⎪⎩
J (nT (m) > 0 ∧ nF (m) > 0) ∨ nJ (m)>0
T nT (m) > 0 ∧ nF (m) = 0 ∧ nJ(m) = 0
F nT (m) = 0 ∧ nF (m) > 0 ∧ nJ(m) = 0
I nT (m) = 0 ∧ nF (m) = 0 ∧ nJ(m) = 0



Chaotic Patterns in Crowd Simulation 411

J is transmitted with the highest priority and means something like a warning
to others: be careful, I’m following one who is still missing. For example, given
the following system of self-referential equations and iterating from the initial
condition I assigned all the variables, we have the following stages until the sys-
tem reaches a fixed point:

R1= T
R2= F
R3= Basic( R3 , R1 , R4 )
R4= Basic( R4 , R3 , R5 )
R5= Basic( R5 , R4 , R6 )
R6= Basic( R6 , R2 , R5 )

R1 R2 R3 R4 R5 R6
t=0 I I I I I I
t=1 T F I I I I
t=2 T F T I I F
t=3 T F T T F F
t=4 T F T J J F
t=5 T F J J J J
t=6 T F J J J J

3 A Netlogo Implementation of the Model: Comparing
the Dynamics of the Mode and the Anti-mode

In order to understand the above concepts, we developed a simulation on
Netlogo1. The button setup creates a random graph with as many nodes as
number-of-agents and as many sources of each class, T or F, as specified in the
respective inputs sources-T or sources-F. The dynamics can be situated geo-
graphically or not: Neighborhood input variable specifies the size of the environ-
ment around an agent. The world positions vary between coordinates (-10, -10)
and (10, 10) leading to 21 x 21 patch positions in a square.

The kind of dynamics produced by Basic state operator in non situated ex-
periments (the neighborhood of an agent is the whole world) is typically: (a
a final configuration where all the agents stop in conflictive state J, (b Ac-
tivating mode as a method of resolution of conflicts the typical final state is
such that the crowd unanimously select goals T or F respectively. This is a
surprising result since one can expect heterogeneous groups of agents in final
states T, F and J. In the case of anti-mode method of conflict resolution, the
mean results are similar to the ones obtained for the mode, but the crowd
normally enters in a periodic point and individuals oscillate between the two
goals.

In Figure 2 we compare the extent of information for operators Basic, Mode
and Anti-mode in a population of 100 agents by varying the number of references
parameter from 1 to 10 and conducting 100 runs for each experiment. The cri-
terion for stopping the system is either reaching a fixed point or completing 100
steps of iteration. One can observe that while conflict is dominant in the basic
dynamics, information becomes dominant in the Mode and Anti-Mode models
reaching T value about the 50%.

1 Available at http://www.ehu.es/ccwintco/index.php/Sociedades

Artificiales -- Artificial Societies

http://www.ehu.es/ccwintco/index.php/Sociedades_Artificiales_--_Artificial_Societies
http://www.ehu.es/ccwintco/index.php/Sociedades_Artificiales_--_Artificial_Societies
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Table 1. The first part of the table shows the average results over 100 agents and 100
runs including own opinion. The second part presents the results of the same models
excluding own opinion.

Basic Steps I T F J
Mean 4.84 8.70 2.86 2.32 86.12

Standard deviation 2.72 26.79 14.96 13.58 34.55
Mode Steps I T F J
Mean 6.95 7.94 47.09 44.97 0.00

Standard deviation 3.18 25.44 47.89 47.76 0.00
Anti-Mode Steps I T F J

Mean 87.59 7.91 46.74 45.35 0.00
Standard deviation 31.77 25.36 28.13 27.74 0.00

Steps I T F J
4.97 7.94 3.87 3.98 84.22
2.84 25.70 17.97 18.53 36.44
Steps I T F J
11.66 8.32 45.88 45.80 0.00
20.82 26.22 48.53 48.47 0.00
Steps I T F J
85.12 8.51 45.80 45.70 0.00
33.98 26.65 28.18 28.29 0.00

Fig. 2. Comparison of the transmission of information according to the model. The
independent variable is the number of references. The dependent variable counts the
number of agents in state T at the end of the experiment.

Since T and F values are symmetric, misinformation and over-information are
reduced to nearly 0% from 2 references avoiding conflict. With respect to the
time of convergence, Mode and Anti-Mode dynamics reflect the same curve than
Basic, although the maximum shifts to three references, as shown in Figure 3.

Concerning to the average values over all experiments, the following table
describes the mean and deviation obtained on each variable. Note that the dy-
namics Mode and Anti-Mode completely eliminate the conflict and obtain unan-
imous dynamics navigating to T and to F, as we can infer from the values of
standard deviation in table 1 of 1.
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Fig. 3. Number of iterations until convergence or termination of the experiment (100
steps) comparing the three models

4 Discussion: On the Role of the Own Opinion

We have studied experimentally the mode and anti-mode mechanisms of conflict
resolution. Note that mode amplifies the information value most frequent in the
references of the agent, and in this way we can expect an unanimous selection
of the group. Anti-mode makes just the opposite, selecting the less frequent
information, but the emergent behavior is similar in mean to the case of mode
operator.

For more than 3 references, the basic model ends in configurations of total
conflict J, while following 1 or 2 references implies less transmission of informa-
tion values over misinformation I. This suggests that the percolation index of
the graph [9] has to do with this behavior of the system.

Interpreting our model as a generalization of cellular automata [5], the kind
of computations obtained in the experiments described before correspond to the
classes I (short transient lengths and fixed points), II (greater transient lengths
and periods) and III (long transient lengths and short periods) of the Wolfram-
Langton hierarchy.

We wonder if the exclusion or inclusion of the own opinion in the model has
importance to obtain behaviors at the edge of chaos. The number of references
is critical to this behavior and following one or two references with exclusion
of the own opinion leads the system to chaotic patterns of convergence. Re-
sults of experimentation excluding own opinion (with identical parameters to
experimentation presented before) are given in table 2 of 1.
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Fig. 4. Comparing the period and the transient-lengths following the mode and de the
anti-mode for 10 agents

Fig. 5. Comparing the period and the transient-lengths following the mode and de the
anti-mode for 10 agents

To explore completely the periodic patterns of convergence, we have repeated
the experiments for 10 agents with one source T and one F and 100 runs per
experiment. States operators Mode and Anti-Mode were compared, excluding
and including own opinion and exploring the whole range from 1 to 9 references.
Experimentation has shown that following the anti-mode produces more vari-
ability than following the mode as show figures 4 and 5. The values of periods
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and transient lengths are significantly greater for the anti-mode state operator.
Following the Mode with 2 references per agent and excluding the own opinion
makes arise computations at the edge of chaos (type III), while the Anti-Mode
produces the same behavior either excluding or including the own opinion. Sum-
marizing, conflict crowds, but paradoxically, solving the problem of splitting the
crowd in two equilibrated groups that navigate to the exits occurs in a tiny
amount of cases.
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Abstract. This paper presents a simulator for the behaviors of swarm
robots based on a Dynamic Bayesian Network (DBN). Our task is to
design each robot’s controller which enables the robot to patrol as many
regions as possible without collisions. As the first step, we use two swarm
robots, each of which has two motors each of which is connected to a
wheel and three distance-measurement sensors. To design the controllers
of these robots, we must determine several parameters such as the motor
speed and thresholds of the three sensors. The simulator is used to reduce
the number of real experiments in deciding values of such parameters. We
fist performed measurement experiments for our real robots in order to
get probabilistic data of the DBN. The simulator based on the DBN re-
vealed appropriate values of a threshold parameter and interesting phase
transitions of their behaviors in terms of the values.

Keywords: Swarm Robots, Dynamic Bayesian Network, Simulation.

1 Introduction

Recently, swarm robots have been attracting a lot of attention in the research
community since they possess advantages such as scalability, flexibility, robust-
ness, and cost-performance [4]. It is a difficult problem to design a controller of
swarm robots which accomplish given tasks as a system due to uncertainties of
robots, the complex interaction among robots, and their limited capabilities.

We aim at developing each robot’s controller which enables the robot to patrol
as many regions as possible without collisions. As a simple case, we assume two
robots and one parameter that is a threshold of the robot’s sensor. Finding a
good value for the parameter necessitates us a large number of experiments and
thus we use a simulator.

M. Toussaint [5] recently proposed to use a Dynamic Bayesian Network (DBN)
for planning problems of a manipulator robot. The DBN is a probabilistic model,
which consists of a set of states and probabilistic information between the states.
In his work, DBN returns the joint probability distribution of the states of the
robot. As the final state is given in the planning problem unlike in our collision

G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part II, LNCS 5778, pp. 416–423, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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avoidance problem, we can not directly apply his method to our problem. We
therefore propose another type of the DBN to model the behaviors of the swarm
robots for our task.

2 Collision Avoidance Problem

2.1 Definition

Our problem is to design controllers for swarm robots so that they patrol as many
regions as possible without collisions with other robots or wall. We put D as a
a × a closed domain in the 2 dimensional space in which the swarm robots can
move, where a represents the size of one edge of D. At time t ∈ [1, T ], a variable
xi

t is the state of the i-th robot and its action is represented by ai
t. Similarly, a

variable si
t is a value of distance-measurement sensors of the i-th robot at time

t. The action of each of the swarm robots is determined by a controller δi as
follows:

δi
(
si

t

)
= ai

t.

In order to evaluate the performance of the program δi, we consider to divide
the domain D into b × b square sub-domains, where b represents the size of one
edge of the sub-domain, and define a probability of visiting each sub-domain as
Psearch. and a probability of collisions with another robot in each sub-domain
as Pcollision. Note that these probabilities are defined in terms of the two robots
from t = 1 to the time of a collision. In this paper, each of the swarm robots
determines its action based on the values of the distance-measurement sensors
and the values depend on their states. Our task is to find an appropriate value
for the threshold so as to increase Psearch and decrease Pcollision. To determine
the value, we use a simulator to imitate the real behaviors of the two robots.
We store the observed behaviors as the log records of their positions and their
angles in time sequence. From the log data, we calculate Psearch and Pcollision.

2.2 Controller

In this paper, we put a set of the states of the robot at time t as Xt, so Xt =
{s1

t , s
2
t}. Concretely, si

t = (pi
t, d

i
t), where pi

t and di
t ∈ [0, 360) represent the

position and the angle of the i-th robot at time t, respectively. In the rest of the
paper, we may omit i and t if they are clear from the context.

Swarm robots are autonomous agents each of whom interacts with their en-
vironment locally based on a relatively simple program but as a system they
exhibit complex collective behaviors. As the first step, we tackle a simple prob-
lem to study the feasibility of our approach by understanding its essence without
being overwhelmed by a complex problem. We use the same controller for the
two robots, i.e., each controller δi for determining the action of the i-th robot is
given below.
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Controller of each robot
while(1)
{
s = GetSensorValue();
if (s > threshold)
turn right;

else
move forward;

}

In the controller, GetSensorValue() returns the average value of the distance-
measurement sensors. Each of the robots can only perform two kinds of actions:
move forward and turn right to avoid the collision with another robot or a wall.

3 Simulator Based on the Dynamic Bayesian Network

A simulator may enable a quick and easy design of the controller of the swarm
robots. To create the swarm robots’ simulator, we must know how each robot
moves for each action. Unfortunately, our robots can not necessarily move for-
ward or turn right as ordered in the robot’s program. Moreover, the values of our
sensors include noise, i.e., a sensor may overlook or mis-detect an object. There-
fore, we model the uncertain behaviors of such robots as a DBN, which has been
successfully used in [5] as a model of a manipulator robot in planning problems.

3.1 Dynamic Bayesian Network

A DBN [3] consists of a pair of Bayesian Networks (B1, B→), where B1 defines
the prior probability distribution P(Z1) over the initial state at time t = 1,
and B→ defines the the conditional probability distribution P(Zt|Zt−1) over the
states at previous-time t−1 to current-time t. Here Zt represents all probability
variables at time t. In this paper, we assume that the P(Zt|Zt−1) is realized in
time t > 1.

3.2 Structure of Our DBN

We propose the following DBN as a model of n swarm robots. The initial
Bayesian Network B1 has a set of nodes which represent probabilistic state vari-
ables A1

1, · · · , An
1 , X1

1, · · · ,Xn
1 , and a set of arrows which represents these state

transitions. Here Ai
t represents the set of actions of the i-th robot at time t. The

state transitions are given by P(Ai
1|X1

1, · · · ,Xn
1 ) in each of i ∈ [1, n]. Similarity,

Bayesian Network B→ has a set of probabilistic state variables A1
t−1, · · · , An

t−1,
X1

t−1, · · · ,Xn
t−1, A1

t , · · · , An
t ,X1

t , · · · ,Xn
t , and a set of arrows which represent

the state transitions given by P(Ai
t−1|X1

t−1, · · · ,Xn
t−1), P(Ai

t|X1
t , · · · ,Xn

t ) and
P(Xi

t|Ai
t−1,X

i
t−1) in each of i ∈ [1, n]. An example of the structure of the pro-

posed DBN model in case of n = 2 is as shown in Fig. 1.
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Fig. 1. DBN model in case of 2 robots

Here we introduce the following two assumptions. One is that the states of each
robot follow the same conditional probability distribution, that is, the following
equation is realized:

P(Ai
t|X1

t , · · · ,Xn
t ) = P(Aj

t |X1
t , · · · ,Xn

t ),

where i, j ∈ [1, · · · , n], i �= j. Similarity, the other assumption is that the following
equation is realized:

P(Xi
t|Ai

t−1,X
i
t−1) = P(Xj

t |A
j
t−1,X

j
t−1).

4 Experimental Results

In this section, we show the results of two types of experiments. In the first
experiment, we measure the performance of the swarm robot to determine the
probability distributions used in our DBN model. The second experiment is a
simulation of the behavior of the swarm robots based on the DBN.

4.1 Measurement Experiment

This section describes the environment of the first experiment. As a swarm robot,
we use a robot kit called Robo Designer, which is commercially available from
Japan Robotech ltd [7]. This robot consists of two motors each of which is con-
nected to a wheel, a battery, a controller board, and three distance-measurement
sensors as shown in Fig. 2. The controller board orders to move forward or to
turn right, and can read the value of the sensors.

In order to observe the behavior of the swarm robots, we use a USB camera
(Logicool Qcam Orbit) of 300,000 pixels and we set it on a position of 160 cm
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Fig. 2. ROBO DESIGNER, our swarm
robot

Fig. 3. Detection of the position and
the direction of the robot

Fig. 4. Regression analysis of the position
(in case of a move forward)
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Fig. 5. Regression analysis of the direc-
tion (in case of a move forward)

height with a 45-degree angle to the ground [6]. We cover the robot with a sheet
of colored paper, and detect the position and direction of the robot by using
the color information. Figure 3 illustrates the overview of the detection of the
position and the direction of the robot.

We observe the actions to move forward and turn right, and then calculate
the change of positions and directions of the robots observed by USB camera.
Here we assume that the velocity of the robot is constant.

The probability distributions of the positions and directions is computed by
applying a regression analysis to the observed log data. In the regression analysis,
we assume that pi

t and di
t follow two or one dimensional normal distributions as

stated in equations (1) and (2)), respectively. The parameters μp, Σp, μd, σd

are estimated from the observed data.

f(p) =
1

2π
√
|Σp|

exp
(
−1

2
(p − μp)T Σ−1

p (p − μp)
)

(1)

f(d) =
1√

2πσd

exp
(
− (d − μd)2

2σ2
d

)
(2)
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Table 1. Initial parameters for our simulations

Domain D [−200, 200]× [−200, 200]
Time limit T 1000 sec.

Number of robots n 2
Initial states (x1

0, x
2
0) ((0,−100, 90), (0, 100,−90))

Threshold θ 0, 10, . . . , 100

θ=10 θ=11 θ=12

θ=13 θ=14 θ=15

θ=20 θ=30

Fig. 6. Visiting probabilities of sub-domains

Results of the regression analysis using the log data of the positions and direc-

tions when the robot moves forward are μp = (0.069, 17.24), Σp =
(

0.52 0
0 6.76

)
,

μd = −1.47, σd = 3.57 (Fig. 4 and Fig. 5). Similarly, results of regression anal-

ysis when the robot turn right are μp = (−14.35, 21.09), Σp =
(

19.98 0
0 14.82

)
,
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0.16

θ=10 θ=11 θ=12

θ=13 θ=14 θ=15

θ=20 θ=30

Fig. 7. Collision probabilities of sub-domains

μd = −118.49, σd = 11.78. In this experiment, the interval of time sequence is 1
sec. and the initial position and direction of the robots are (0, 0) and 0 degree,
respectively.

4.2 Simulation

Using our DBN model, we perform simulations of the behavior of the swarm
robots. For each of domain D, time limit T , number of robots n, initial states
(x1

0, x
2
0), and threshold θ, we define their values as shown in Table 1. We have

obtained Psearch with the simulation and show it for each sub-domain with
varying values for θ in Figure 6. Detailed experiments have been performed for
θ = 10, 11, . . . , 15. As the result, is is clear that either 13, 14, or 15 is appropriate
as the value for θ, where the robot is neither too sensitive nor too insensitive.
Interestingly, there is a phase transition between θ = 12 and 13, which tells
us the importance of the simulation in investigating the behavior of a system
composed of swarm robots.
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Similarly, we have obtained Pcollision for each sub-domain and show them
in Figure 7. The results show two phase transitions and we can conclude that
θ = 13 is the best value.

5 Conclusion

This paper has proposed the DBN model to simulate the behavior of the swarm
robots, and calculated the probability distribution based on these model using
the observed real behavior of the swarm robots. Especially, in case of the 2
robots and some thresholds for the sensor, we obtained the probability of visits
and collisions, and analysed the results of our simulations. We believe that our
simulation helps us to design the controller of the robot by decreasing the number
of real experiments. In a future work, we will introduce a new method to discover
appropriate values for the parameters.
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Abstract. River Formation Dynamics (RFD) is an evolutionary com-
putation method based on copying how drops form rivers by eroding the
ground and depositing sediments. In a rough sense, this method can be
seen as a gradient-oriented version of Ant Colony Optimization (ACO).
Several experiments have shown that the gradient orientation of RFD
makes this method solve problems in a different way as ACO. In partic-
ular, RFD typically performs deeper searches, which in turn makes it find
worse solutions than ACO in the first execution steps in general, though
RFD solutions surpass ACO solutions after some more time passes. In
this paper we try to get the best features of both worlds by hybridizing
RFD and ACO, in particular by using a kind of ant-drop hybrid and
considering both pheromone trails and altitudes in the environment.

Keywords: River Formation Dynamics, Ant Colony Optimization Al-
gorithms, Heuristic Algorithms, NP-hard problems.

1 Introduction

River Formation Dynamics (RFD) [8–10, 7] is an Evolutionary Computation
method [3, 4] related to Ant Colony Optimization (ACO) [2, 1]. Roughly speak-
ing, RFD can be seen as a gradient-oriented version of ACO where, in particular,
a different nature-inspired metaphor is considered. RFD is based on copying how
the water forms rivers in nature. The water transforms the environment by erod-
ing the ground when it falls through a high decreasing slope, and it deposits car-
ried sediments when a flatter ground is reached. In this way, altitudes of places
are decreased/increased, and paths of decreasing gradient are dynamically con-
structed. These slopes are followed by subsequent drops to create new gradients,
reinforcing the best ones. Eventually, paths consisting in consecutively taking
the highest decreasing gradients constitute good paths from raining places to
the sea.

In RFD, drops tend to fall through high decreasing gradients with higher prob-
ability. Thus, the probabilistic decision of where a drop will move next depends
� Research partially supported by projects TIN2006-15578-C02-01, CCG08-UCM/

TIC-4124, and UCM-BSCH GR58/08 - group number 910606.
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on the difference of some values (the difference of altitudes between the origin
and the destination) rather than on the values themselves (in the case of ACO,
the pheromone trail of the edge leading to the destination). From the beginning
of the execution of RFD, any path from the origin point to the target point
has a gradient that, considering this path as a whole (i.e. from the origin to the
target), must be decreasing. Hence, all complete paths from the origin to the
target not include climbing steps have some incentive for drops.1 As a result,
from the beginning of the execution the number of potential paths providing a
non-negligible incentive for drops to be taken, and thus simultaneously compet-
ing for the drops preferences, is huge. This improves the deepness of the analysis
but delays the formation of champion paths. In general, solutions constructed
by RFD are better, though ACO obtains acceptable solutions faster.

In this paper we develop an hybrid ACO-RFD method aiming at getting the
best features of both methods. In order to enable both methods, each graph node
will be decorated with an altitude value, whereas each edge will be endowed with
a pheromone trail value. Hybrid drop-ant entities are released in this environ-
ment, and both pheromone trails and altitudes will have some weight in deciding
where these entities will move next. After moving, both the pheromone trail and
the altitude of the place will be modified according to each method. The resulting
hybrid method will be influenced by some values taken as they are (pheromone
trails) and also by some derivative values (differences of altitudes).

Though the tendency of RFD to provide better solutions in longer times has
been observed in NP-hard problems of different nature, such as the Traveling
Salesman Problem [8] and the Minimum Load Sequence [7], it has been observed
that RFD performs particularly well in problems consisting in creating a kind
of covering tree over a given graph (see [10]). These are problems where the goal
is constructing a tree covering some graph nodes, in such a way that a given
property is met or a given value is minimized/maximized. In order to adapt
RFD to these problems, we assign the lowest altitude to one of the nodes to be
covered (it becomes the sea) and we make drops rain at the rest of nodes to be
covered. Eventually, the gravity makes drops form a tree of joining tributaries
from departure points to the sea, which plays the role of tree root. In this paper
we will consider one of such NP-hard problems as a benchmark problem to test
our hybrid method, in particular MDV (Minimum Distances tree in a Variable-
cost graph, see [9, 10]; this problem will be introduced in Section 3). Let us note
that, in this particular problem, RFD does not only provide better solutions than
ACO, but it also takes comparable or even lower times to get these solutions.
Thus, in this paper the goal of hybridizing RFD and ACO will be improving the
results of RFD for a problem where RFD fits particularly well, and ACO will
play the role of supporting method in this particular hybridization. Interestingly,
the introduction of the ACO part in the RFD scheme does not reduce the times
required to get reasonable solutions, as one would expect, but it improves the

1 One of the improvements applied to the basic RFD scheme consists in allowing drops
to climb increasing gradients with some low probability (see [8]). In this case, even
paths with climbing steps would provide some incentive for drops.
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quality of final solutions indeed. The reasons for this behavior will be discussed
in next sections. Studying the hybridization in problems where none of both
methods is dominant is left as future work. Since the hybridization improves
the results in a stress benchmark case where one method dominates the other,
we think that the application of the hybrid method to more balanced problems
(where the hybridization should fit more naturally) is very promising.

The rest of the paper is organized as follows. In the next section we briefly
present the RFD method. Then, in Section 3 we describe the MDV problem, while
in Section 4 we introduce the hybrid method and we compare the results obtained
by each method (RFD, ACO, and RFD-ACO hybrid) when applied to the MDV
benchmark. Finally, in Section 5 we present our conclusions.

2 Brief Introduction to River Formation Dynamics

In this section we briefly introduce the basic structure of River Formation Dy-
namics (RFD) (for further details, see [8, 10]). Given a working graph, we asso-
ciate altitude values to nodes. Drops erode the ground (they reduce the altitude
of nodes) or deposit the sediment (increase it) as they move. The probability
of the drop to take a given edge instead of others is proportional to the gradi-
ent of the down slope in the edge, which in turn depends on the difference of
altitudes between both nodes and the distance (i.e. the cost of the edge). At
the beginning, a flat environment is provided, that is, all nodes have the same
altitude. The exception is the destination node, which is a hole (the sea). Drops
are unleashed (i.e. it rains) at the origin node/s, and they spread around the flat
environment until some of them fall in the destination node. This erodes adja-
cent nodes, which creates new down slopes, and in this way the erosion process
is propagated. New drops are inserted in the origin node/s to transform paths
and reinforce the erosion of promising paths. After some steps, good paths from
the origin/s to the destination are found. These paths are given in the form of
sequences of decreasing gradient edges from the origin to the destination. Several
improvements are applied to this basic general scheme (see [8, 10]).

Compared to a related well-known evolutionary computation method, Ant
Colony Optimization, RFD provides some advantages. On the one hand, local
cycles are not created and reinforced because they would imply an ever decreasing
cycle, which is contradictory. Though ants usually take into account their past
path to avoid repeating nodes, they cannot avoid to be led by pheromone trails
through some edges in such a way that a node must be repeated in the next
step.2 However, altitudes cannot lead drops to these situations. Moreover, since
drops do not have to worry about following cycles, in general drops do not
need to be endowed with memory of previous movements, which releases some
computational memory and reduces some execution time. On the other hand,
when a shorter path is found in RFD, the subsequent reinforcement of the path
is fast: Since the same origin and destination are concerned in both the old and
2 Usually, this implies either to repeat a node or to kill the ant. In both cases, the last

movements of the ant were useless.
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the new path, the difference of altitude is the same but the distance is different.
Hence, the edges of the shorter path necessarily have higher down slopes and
are immediately preferred (in average) by subsequent drops. Finally, the erosion
process provides a method to avoid inefficient solutions because sediments tend to
be cumulated in blind alleys (in our case, in valleys). These nodes are filled until
eventually their altitude matches adjacent nodes, i.e., the valley disappears. This
differs from typical methods to reduce pheromone trails in ACO: Usually, the
trails of all edges are periodically reduced at the same rate. On the contrary, RFD
intrinsically provides a focused punishment of bad paths where, in particular,
those nodes blocking alternative paths are modified.

When there are several departing points (i.e. it rains at several points), RFD
does not tend in general to provide the shortest path (i.e. river) from each
point to the sea. Instead, as it happens in nature, it tends to provide a tradeoff
between quickly gathering individual paths into a small number of main flows
(which minimizes the total size of the formed tree of tributaries) and actually
forming short paths from each point to the sea. For instance, meanders are
caused by the former goal: We deviate from the shortest path just to collect
drops from a different area, thus reducing the number of flows. On the other
hand, new tributaries are caused by the latter one: By not joining the main flows,
we can form tailored short paths from each origin point. Solving the problem
considered in this paper, MDV, requires encouraging the latter of both behaviors.
Interestingly, we can make RFD tend towards either of these choices by setting
a single parameter. In particular, if we reduce the erosion caused by high flows,
then the incentive of drops to join each other is partially reduced, and thus each
drop tends to follow its own shortest path (see [9] for details). Thus, adapting
RFD to MDV is straightforward.

3 Problem Definition

In this section we briefly describe the problem to be solved in this paper, MDV
(Minimum Distances tree in a Variable-cost graph). A formal definition of the
problem and a proof of its NP-completeness can be found in [10]. MDV can be
stated as follows. Let us consider a variable-cost graph, i.e. a graph where costs
are assigned to edges, and the cost of traversing a given graph edge depends on
the path traversed so far. That is, if we traverse e after following a path σ then the
cost of adding e to the path is ce,σ; in general, we have ce,σ �= ce,σ′ for any other
path σ′. Besides, let us consider a subset of graph nodes required to be covered,
called origin nodes, and a specific node called destination node. Then, the goal
of MDV is constructing a tree in this graph such that the addition of the costs
of paths connecting origin nodes with the destination node through the tree
is as small as possible. Let us note that nodes not being origin nodes or the
destination node may be included in the tree or not, depending on whether they
are useful to minimize the cost of paths or not.

The previous minimization problem appears in any engineering domain where
a set of origins must be joined with a destination d in such a way that distances
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from each origin to d are minimized (in order to improve the quality of service,
QoS). Let us suppose that we wish to construct a local area network for a
new complex of facilities in such a way that computers in all offices and build-
ings are connected to the company central server. A tree topology is chosen
for the network due to the ease to further extend such a topology with new
switches/routers/networks without needing to change networking devices (see
the role of the tree topology in networking in e.g. [5, 6]). Improving the QoS
implies minimizing distances from each node to the central node. Let us note
that using variable-cost graphs allows to consider that the cost of an edge (in
terms of QoS loss) depends on the origin of the path we have traversed before
reaching the edge. For instance, the QoS of an edge denoting a fast but not
very reliable wire is not high for transmitting data coming from a node typically
running real-time applications (in this case, meeting some minimal speed in all
situations is critical). However, the QoS of this edge may be high for transmitting
data coming from an e-mail server (a high bandwidth is good for transmitting a
huge amount of e-mails, though it is acceptable if the connection is rarely down).

MDV allows to represent the dependencies of edge costs on the path traversed
so far as follows. We assume that the cost of a path of edges e1, . . . , en from
a given origin node o to a given destination node d depends on the evolution
of a variable through the path. Initially, a value vo is assigned to this variable
at node o. Then, the cost added to the path due to the inclusion of edge e1
is an amount depending on vo. After traversing e1, the value of the variable is
updated to a new value v1. Next, the cost of adding e2 to the path depends on
v1. After taking e2, the value of the variable is updated again, and the process
continues so on until we obtain the whole cost of the path e1, . . . , en. Thus, an
MDV problem instance consists of a directed graph, a set of nodes considered as
origin nodes, the destination node, the initial value given to the variable at each
origin node, the way in which the variable value changes its value at each edge,
and the way in which the cost of each edge depends on the variable value (for a
formal definition, see [10]).

4 Implementation of the Hybrid Method and
Experimental Results

In this section we introduce the RFD-ACO hybrid method and we present some
experimental results. In order to obtain the best characteristics of ACO and
RFD, we combine them in the following manner. Instead of using ants and
drops to traverse the nodes of the graph, we create a new entity called ant-drop
that contains all the attributes of the ant as well as all the attributes needed
for defining a drop. This implies that the ant-drop consumes more memory
resources than an ant or a drop, though many attributes are common to both
entities indeed. When the ant-drop has to decide its new destination, it takes
into account the pheromone trails deposited in all outgoing edges as well as the
altitude gradients of these edges. The probability pij of going from a node i to
another node j through edge ij is calculated as follows: First, we compute the
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probability pant
ij an ant would have to take edge ij, as well as the probability

pdrop
ij a drop would have to take such an edge. Both probabilities are computed

as if the method were pure ACO or pure RFD, respectively (i.e. taking into
account only pheromone trails and only altitudes, respectively). Then, pij is
calculated by taking into account the relative weight we give to each method in
our hybridization. Let wACO be the weight of the ACO method and wRFD be
the weight of RFD where wACO +wRFD = 1. The probability for an ant-drop to
take the edge ij is pij = pant

ij · wACO + pdrop
ij · wRFD. After moving, pheromone

values and altitudes are updated as each individual method would do.
Let us note that the relative weights of each method, i.e. wRFD and wACO, do

not need to be fix along the execution. On the contrary, we start the execution
considering wRFD = 1 and next this value is slowly reduced until 0. Then, the
value is slowly raised again up to 1. Though we observed that considering fix
values of wRFD and wACO provides worse results than fluctuating like this, we
also observed that different patterns of temporal fluctuation provide very similar
results.

After the hybrid method is executed for some time, we start a post-processing
for constructing the solution of MDV, that is, a tree. We consider any origin node
and we do as follows: We select the outgoing edge with highest pij , we add this
edge to the solution tree, and we traverse the edge to reach the node it leads to.
We do the same for this node, and so on until the destination is reached. Next
we take another origin node and we do the same until we reach a node already
included in the tree (and we join the branch to the current tree, thus introducing
a tributary) or the destination is reached. We do the same for all origin nodes
and, finally, a tree leading all origin nodes to the destination will be given.

Next we report some experimental results. We compare the results obtained
by using an ACO method, the solutions given by RFD, and the solutions found
by the hybrid method (from now on, HYB). All experiments were performed
in an Intel Core Duo T7250 processor with 2.00 GHz. Problem instances are
graphs with 100, 150, and 200 nodes. These graphs were randomly generated in
such a way that the cost of the edges, which depends on the actual value of the
variable, is always between 1 and 10. Variables can take up to 5 possible values.
For each edge and each variable value, the cost of traversing the edge for this
value, as well as a new variable value after traversing the edge, were randomly
generated. In particular, features such as monotonicity or injectivity were not
required in these correspondences.

In order to report solutions that are not biased by a single execution, each
algorithm was executed thirty times for each graph. Table 1 summarizes the best
solution found by each method among the 30 executions, as well as the arithmetic
mean. As we can see, for all graphs the hybrid method obtains the best solutions,
considering both mean results and best results. Regarding the time needed to
obtain good solutions in specific executions, Figure 1 and Figure 2 show the cost
of the best solution found by each algorithm for each execution time (in seconds),
where the input of the three algorithms was the graph with 100 and 200 nodes,
respectively. As we can see, the hybrid method obtains the best solution after



430 P. Rabanal and I. Rodríguez

Fig. 1. MDV results for a 100 nodes graph Fig. 2. MDV results for a 200 nodes graph

Table 1. Summary of results

Method Graph size Best result Arithmetic mean
RFD 100 nodes 593.75 615.66
ACO 100 nodes 589.11 614.25
HYB 100 nodes 563.59 585.15
RFD 150 nodes 666.33 684.59
ACO 150 nodes 702.68 738.03
HYB 150 nodes 636.88 655.98
RFD 200 nodes 858.83 873.12
ACO 200 nodes 993.81 1082
HYB 200 nodes 848.56 870.98

some time passes. However, it is a little bit slower than RFD because of the
extra costs needed to handle the information of both ACO and RFD.

The improvement of the solutions quality in the hybrid method is due to
the way in which this method analyzes the search space. By combining both
methods, the hybrid method avoids getting stuck in solutions that are a local
optimum for one method but not for the other one. The alternation in the
weight of each method along time allows each method to be dominant for some
time. Though both methods are based on driving entities in a different way, the
underlying evolutionary computation model is related. Hence, the mechanics of
both methods are partially compatible, which in turn allows both methods to
partially collaborate in the formation of solutions.

5 Conclusions and Future Work

In this paper we have presented an hybrid evolutionary computation approach
where two previous methods, RFD and ACO, are mixed. In brief, the result-
ing method consists in driving entities in terms of both some absolute values
(pheromone trails) and some derivative values (the differences of altitudes). As
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a benchmark problem, we have considered MDV, an NP-complete problem where
RFD provides better solutions than ACO and takes equal or smaller times to
provide them. Interestingly, despite of considering a problem where one of the
methods dominates the other, the hybrid method makes an improvement with
respect to both individual methods. In particular, the inclusion of the ACO ap-
proach into the RFD scheme allows the resulting hybrid method to improve
the quality of solutions. This is particularly remarkable, because previous ex-
periments showed that, in other more balanced problems such as the Traveling
Salesman Problem (TSP), the strong point of ACO with respect to RFD was
not the quality of final solutions (which was lower), but the smaller time needed
to construct reasonable solutions.

The mixture of RFD and ACO has proved its usefulness for solving MDV, which
is a problem where a direct combination of the features of both methods would
not be expected to be an improvement (ACO neither provides better solutions
nor is faster than RFD for MDV). Thus, we think that the hybrid approach is
particularly promising to solve other problems where a combination of features
of both methods would be an improvement indeed (such as TSP). Hence, our
next step will be applying the hybrid method to TSP.
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Abstract. Many insects return home by using their environmental land-
marks. They remember the image at their nest and find the homeward
direction, comparing it with the current image. There have been robotic
researches to model the landmark navigation, focusing on how the im-
age matching process can lead an agent to return to the nest, starting
from an arbitrary spot. According to Franz’s navigation algorithm, an
agent estimates the changes of image for its own movement, and eval-
uates which directional movement can produce the image pattern most
similar to the snapshot taken at the nest. Then it finally chooses the best
image-matching direction. Based on the idea, we suggest a new naviga-
tion approach where the image is divided into several sectors and then
the sector-based image matching is applied. It checks the occupancy and
the distance variation for each sector. As a result, it shows better per-
formance than Franz’s algorithm.

Keywords: landmark navigation, bio-inspired navigation, biorobotics,
image matching.

1 Introduction

Many insects and animals can return home accurately by using their own navi-
gation system, after exploring to find the food. It is well known that desert ants,
fiddler crabs, and honeybees use the path integration algorithm, also called dead
reckoning [1, 2]. For path integration, the current moving speed and the angular
information with the reference, for example, light compass are measured and
integrated all through traveling, and the conclusive direction is selected for re-
turning home. Without any help of a specific external landmark, the animals
and insects can implement the path integration for their navigation.

However, the insects use both landmark navigation and path integration be-
cause it is difficult to arrive home accurately by using only the path integration
algorithm [3]. For landmark navigation, the visual environment near the nest is
used for homing as the information of the goal position.

Various models to explain how the insects navigate with environmental land-
marks have been suggested [4–7]. According to the snapshot model [7], an agent
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Fig. 1. Estimation process in the image matching method. DA: dot product result of
H · image(A) where H is the home snapshot and A is one estimated position, DB :
dot product result of H · image(B) where B is another estimated position; R is the
landmark distance and d is the moving distance of an agent.

remembers the snapshot image at its nest and compares it with new images
at the current location. Then it chooses the best matching direction with the
snapshot. Afterwards, many different navigation models have been introduced.
Average landmark vector model (ALV) draws a vector for each landmark, and
the agent recognizes the visual environment as a summation of the local vectors
[8]. The agent goes towards the direction of the difference between the two vec-
tors, one landmark vector at the current position and the other landmark vector
at the nest. The algorithm easily finds appropriate direction for any position, but
if one small landmark is missing by noise, the navigation direction is significantly
influenced.

The image matching algorithm suggested by Franz et al. [9] includes the esti-
mation process of new predictive images at possible movements. An agent con-
siders all possible directions from the current position and each direction implies
a new predictive image. This image is compared with the snapshot image at the
nest. The best matching direction is the direction that the agent chooses. For
this approach, it is assumed all landmarks are in the equal distance far away
from the agent in order to generate the predictive image for each directional
movement. Fig. 1 shows an example of this image matching method. If there is
no reference compass, all possible head directions of the agent should be consid-
ered to estimate the best image matching direction. In spite of the equidistance
assumption, it was shown that the approach can guide the agent to the nest
when the nest is surrounded by landmarks. However, an agent may misjudge
the homing direction, depending on the moving distance and estimation of the
landmark distance. Also if large landmarks are available, the matching process
tends to choose the direction biased by large landmarks.

In this paper, we suggest a new navigation algorithm, called sector-based
approach. The omnidirectional snapshot image is divided into several sectors.
Predictive images are generated at the current position as Franz showed, and the
predictive images and the snapshot image are compared sector by sector. Each
sector evaluates the occupancy state of landmarks and the landmark distance
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(a) (b)

Fig. 2. Sector division; the visual environment surrounded by four landmarks is divided
into four non-overlapping sectors (a) honeybee heads for the front (b) The orientation
of the bee changes the sector occupancy (modified from [5])

for both the home snapshot and the predictive image. Then the parameters are
compared each other and the agent chooses the direction with the best matching
score. We will first introduce our sector-based method in details and demonstrate
the simulation experiments in the robotic environment.

2 Method

In this paper, we propose a new navigation algorithm with sector-based image
matching. Anderson [5] used sector-based analysis to unravel the honeybee’s
navigation. The visual information is divided to separate parts, called sectors.
To compare the two images, or estimate how close they are, the two images
are divided into sectors, respectively. Then each sector in a image is compared
with a sector in the other image, one by one. Here, occupancy and distance
are the factors evaluating the matching degree between a pair of sector images.
The occupancy checks if at least one landmark is found and the distance factor
evaluates the distance difference between objects, if a sector is occupied. The
distance can be estimated by the bearing angles of objects. By comparing sector
by sector for the two images, an agent can determine the matching level of the
two images.

The sector-based analysis calculates the matching score over a pair of images,
and Anderson [5] applied it to see the distribution of the matching score around
the honeybee’s home. However, how an agent chooses the movement direction has
not been handled. In this paper, we use the sector-based image matching process
to select the next movement based on the image snapshot. If predictive images
are generated for possible directional movements from the current position with
equidistance assumption, each predictive image is compared with the snapshot
image at the nest, using the sector-based image matching. Here, an agent plans
to head towards a place that is similarly surrounded by the landmarks.

In Fig. 2(a), the visual environment is divided into four sectors. Four land-
marks surround the robot and when the robot heads towards the front, the robot
recognizes that all sectors are occupied, since each sector includes one landmark
image.

When the robot turns its head direction to the left as shown in Fig. 2(b),
two front landmarks belong to the same sector, and thus the occupancy changes
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Fig. 3. Estimation process in the sector-based matching method

from 1 1 1 1 to 1 0 1 1 (sectors are counted from the head direction). Also, we
can represent the distance for each occupancy as given below:

(a) (b)

Occupancy 1 1 1 1 1 0 1 1

Distance a b b a b 0 b a

The matching score between the two images is calculated as follows:

Matching score mi = Occupancy matching× (1−Distance difference), (1)

where there are N viewpoints (head directions). The degree of distance difference
is normalized into the range [0, 1]. The matching score mi, for i = 1, ..., N for each
head direction is calculated, and the maximum score becomes the representative
value at a specific point. It is called a local maximum fj (Equation (2)).

fj = max
i

mi, j = 1, . . . , M, (2)

where M is the number of possible moving directions to build predictive images.
Then we finally estimate the best matching direction, the j∗-th angular direction,
which equals the homing direction for the agent to choose.

j∗ = arg max
j

fj (3)

Using Franz’s predictive model with equidistance assumption, the robot tries to
estimate the matching score for possible directional movements. The matching
score fj is evaluated for each direction. The robot chooses the best matching
direction by finding the global maximum value. Fig. 3 illustrates this estimation
process, where predictive images are generated for each directional movement,
and images are obtained with the assumption that all landmarks are in the same
distance far away from the current position, and each moving distance for all
directions is fixed.

Table 1 shows how the images are predicted at the current position. The robot
can move to all directions from the current position P (500, 450), and the robot
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Table 1. Predictive images for possible movements (four directions, north, south, east,
west); robot’s current position at P(500,450) when home is at H(500,500)

Ratio
Direction P image 0.1 0.2 0.3 0.4 0.5

North

South

East

West

predicts possible images distorted from the snapshot image (P image in Table 1)
at the current position. These images are compared with the snapshot at home.
If the robot moves further to the south, the landmark images in the northern
area becomes closer. The ratio ρ = d/R is obtained from the moving distance d
and the landmark distance R; we assume R = 100cm in this paper. Thus, the
larger ratio means the larger movement in the preferred direction.

The sector-based approach follows the basic scheme of Franz’s image match-
ing process, and needs to consider all possible head directions to find the best
matching direction. If the reference compass is available, the algorithm becomes
simpler. Here, the sector-based approach estimates the matching score, sector by
sector, rather than pixel by pixel comparison. It can show more robust navigation
for noisy environments.

3 Experiments

We tested our sector-based image matching and Franz’s pixel-based image match-
ing. We assumed that five cylindrical landmarks are in the environment, and the
home position is at (500,500), as shown in Fig. 4. A robot is supposed to return
home after exploration. According to our sector-based approach, the robot pre-
dicts images for all possible directions and then compares the predictive images
and the snapshot at the nest. Sector-based comparison between the two images
determines the best matching direction. Here, we assumed that there are 72
directions available (5 degree resolution) and four non-overlapping sectors are
investigated. By equidistance assumption, the robot thinks all landmarks are in
the same distance of R = 100cm. Fig. 4(a)-(b) shows the vector map where the
arrow represents the best matching direction that the robot chooses. When the
robot is placed at an arbitrary position, it ultimately returns home by applying
the sector-based matching repeatedly. The ratio ρ = d/R also influences the per-
formance. The high ratio ρ = 0.5 triggers more consistent directional movement
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Fig. 4. Vector map; 72 moving directions and 72 head directions were tested and
(500,500) is the home position (a) ρ = 0.1 with sector-based approach (b) ρ = 0.5
with sector-based approach (c) ρ = 0.1 with Franz’s method (d) ρ = 0.5 with Franz’s
method

to the nest, as shown in Fig. 4(b). With Franz’s method, there is a catchment
area where the robot can enter the nest. Especially in the boundary area between
objects, it shows low performance.

In our experiments, no reference compass is given. The robot should decide
the next directional movement purely depending on image information. Thus,
the robot tries to match the images with all possible head directions. Here, we
tested varying number of head directions. The new head direction implies a new
viewpoint over the landmarks as shown in Fig. 2. The occupancy and distance
difference for each sector change depending on the head direction. Fig. 5 shows
that more viewpoints lead the robot to follow the homeward direction easily.

For more detailed comparison between Franz’s and the sector-based matching
method, we calculated the angular errors between the estimated direction and
the desired direction. Here, the desired direction is the direction in the direct
route from a given position to the nest position (500,500). The best matching
direction has been calculated for a number of samples within a given distance
from the nest, and the direction is compared with the desired direction. Fig.
6(a) shows that the error tends to decrease at far distances, and the distance
ratio influences the performance. The sector-based approach shows much better
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Fig. 5. Vector map by sector-based algorithm (R = 100, ρ = 0.1, 72 moving directions);
(a) 6 head directions tested (b) 36 head directions tested
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Fig. 6. Comparison between sector-based approach and Franz’s approach; the perfor-
mance is measured with the angular difference between estimated direction and the
desired direction (a) varying ratios and distances with the sector-based approach (b)
varying ratios and distances with the Franz’s approach

performance than Franz’s approach. In Fig. 6(b), there is a large fluctuation of
performance depending on the robot position, and the distance ratio also sig-
nificantly influences the performance, since the ratio specifies the next position
to be checked. High ratio in an area around the nest yields a wrong decision
of moving direction. Pixel-based matching may not be effective unless we know
prior information of the distance from the nest. In contrast, the sector-based ap-
proach shows consistently good result for large distances, while the performance
degrades in the area close to the nest. In spite of the equidistance assumption, the
sector-based approach can guide the robot to homeward direction under a large
range of distance ratios. It is more efficient and robust than Franz’s approach.

4 Conclusion

In this paper, we develop a new image matching approach, called sector-based
landmark navigation. We follow the predictive image matching suggested by
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Franz et al. [9], where the snapshot image at the current position is converted
into a collection of predictive images depending on the directions which the
robot moves in. All the predictive images are compared with the snapshot image
at the nest, sector by sector. This sector-based image matching significantly
improves the performance of trajectories to return home from an arbitrary spot.
We showed the sector-based image matching is significantly better than Franz’s
pixel-based matching method. In addition, the sector-based approach allows to
acquire a desired performance level under a low resolution of images.

Here, we handled only four sectors for the image matching process. We can
consider varying number of sectors, which can affect the efficiency of the pro-
posed algorithm. Furthermore, how the sectors are divided may be another fac-
tor to influence the performance. For example, if there is an overlap between
neighbor sectors, it can possibly improve the navigation performance for noisy
environments. We leave those studies for the future work.

If the reference compass is available, the sector-based algorithm becomes more
efficient, since we do not need to check all the head directions to match images. It
will substantially reduce the computation time of the algorithm. For the future
work, we can compare the sector-based approach and Franz’s approach when
the reference compass is given.
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Abstract. We present in this paper a new combined clustering algo-
rithm based on two biomimetic models : artificial ants and self-organizing
map (SOM). We describe the main principles of our method that aims
at auto-organizing a group of homogeneous ants (data’s). We show how
these principles can be applied to the problem of data clustering.

1 Introduction

The initial goal of this work is to build a new clustering algorithm and to apply
it to several domains. Data clustering is identified as one of the major prob-
lems in data mining. Popularity and different variations linked to the clustering
problem have given birth to a several methods of resolution [1]. These methods
can both use heuristic or mathematics principles. We propose in this paper a
new approach which builds a tree-structured clustering of the data. This method
simulates a new biological model: the way ants build structures by assembling
their bodies together. Ants start from a point (support) and progressively be-
come connected to this point, and recursively to these firstly connected ants.
Ants move in a distributed way over the living structure in order to find the
best place where to connect. This behavior can be adapted to build a tree from
the data to be clustered. To simulate the started point (support), we provide an
original initial organization of the data (ants) by using another biological model
which has inspired researchers for more than several years. Self-organizing map
(SOM) is biomimetic method introduced by Kohonen and inspired from human
neural network [2]. The SOM method is an unsupervised method which auto-
organizes data sets in a 2D grid (map) and which uses a local neighborhood
function to preserve the topological properties of the real model.

The numerous abilities of ants have inspired researchers for more than ten
years regarding designing new clustering algorithms [3][4]. The initial and pio-
neering work in this area is due to Deneubourg and his colleagues [3]. The authors
have been interested in the way real ants sort objects in their nest by carrying
them and dropping them in appropriate locations without a centralized control
policy. The next step toward data clustering has been done in [4]. These authors
have adapted the previous algorithm by considering that an object is a datum
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and by tuning the picking/dropping probabilities according to the similarities
between data. These ants based algorithms inherit from real ants interesting
properties, such as the local/global optimization of the clustering, the absence
of need of a priori information on an initial clustering or number of classes, or
parallelism. Furthermore, the results are presented as a visualization, a property
which is coherent with an important actual trend in data mining called ”visual
data mining” where results are presented in a visual and interactive way to the
domain expert.

2 From Real to Artificial Ants : ‘AntTree Algorithm’

2.1 Biological Inspiration

The self-assembly behavior of individuals can be observed in several insects like
bees or ants for instance (see a survey with spectacular photographs in [5]). We
are interested here in the complex structures which are build by ants. We have
specifically studied how two species were building such structures, namely the
Argentina ants Linepithema humiles and ants of gender Oecophylla and that
we briefly describe here [6][7]: these insects may become fixed to one another
to build live structures with different functions. Ants may thus build ”chains of
ants” in order to fill a gap between two points. These structures disaggregate
after a given time.

2.2 Artificial Ants

For our classic algorithm called AntTree [8] each ant ai, i ∈ [1, N ] represents one
data di. An ant ai is moving over the support denoted by a0 or over an other
ant denoted by apos (see the ants colored in gray on figure 1). The similarity
measure used will be defined in section 3.1. For instance we call it Sim(i, j).
The main principles of our deterministic algorithm are the followings: at each
step, an ant ai is selected in a sorted list of ants (we will explain how this list is
sorted in the following section) and will connect itself or move according to the
similarity with its neighbors. While there is still a moving ant ai, we simulate
an action for ai according to its position (i.e. on the support or on another ant).
In the following we consider that apos denotes the ant or the support over which
the moving ant ai is located, and a+ is the ant (daughter) connected to apos

which is the most similar to ai (see figure 1).
For clarity, consider now that ant ai is located on an ant apos and that ai

is similar to apos. As will be seen in the following, when an ant moves toward
another one, it means that it is similar enough to that ant. So ai will become
connected to apos provided that it is dissimilar enough to ants connected to apos.
ai will thus form a new sub-category of apos which is as dissimilar as possible from
the other existing sub-categories. For this purpose, let us denote by TDissim(apos)
the lowest similarity value which can be observed among the daughters of apos.
ai is connected to apos if and only if the connection of ai decreases further this
value. The test that we perform consists in comparing ai to the most similar
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Disconnection of a  
group of ants

Fig. 1. Disconnection of ants

ant a+. If these two ants are dissimilar enough (Sim(ai, a
+) < TDissim(apos)),

then ai is connected to apos, else it is moved toward a+. Since this minimum
value TDissim(apos) can only be computed with at least two ants, then the two
first ants are automatically connected without any tests. This may result in
”abusive” connections for the second ant. Therefore the second ant is removed
and disconnected as soon as a third ant is connected (for this latter ant, we
are certain that the dissimilarity test has been successful). When this second
ant is removed, all ants that were connected to it are also dropped, and all
these ants are placed back onto the support (see figure 1). This algorithm can
thus be stated, for a given ant ai, as the following ordered list of behaviour
rules:

R1 (no ant or only one ant connected to apos): ai connects to apos

R′
1 (2 ants connected to apos, and for the first time):

1. Disconnect the second ant from apos (and recursively all ants connected to it)
2. Place all these ants back onto the support a0

3. Connect ai to apos

R2 (more than 2 ants connected to apos, or 2 ants connected to apos but for the second
time):
1. let TDissim(apos) be the lowest dissimilarity value between daughters of apos

(i.e. TDissim(apos) = Min Sim(aj , ak) where aj and ak ∈ {ants connected to
apos}),

2. If ai is dissimilar enough to a+ (Sim(ai, a
+) < TDissim(apos)) Then ai con-

nects to apos

3. Else ai moves toward a+

When ants are placed back on the support, they may find another place where
to connect using the same behavior rules. It can be observe that, for any node
of the tree, the value TDissim(apos) is only decreasing, which ensures the ter-
mination and convergence of the algorithm. One must notice that no param-
eters or predefined thresholds are necessary for using our algorithm: this is
one major advantage, because ants based methods often need parameter tun-
ing, as well as clustering methods which often require a user-defined similarity
threshold.
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3 Artificial Ants and Self-Organizing Map

To avoid data sorting and to provide an initial organization of the ants, we
propose in this work to hybridize the artificial ant algorithm with a cluster-
ing method which uses the self organizing map. This clustering approach named
AntTree-N-W (N: neighborhood, W: ward distance) has the advantage to present
a topological organization of data in 2D map. In addition it permit us to clus-
ter a large number of data. Self-organizing maps provide an initial organization
of ant on the grid, where each group of ants are represented by an ant ”pro-
totype”. Until this point, hybrid model seems to be standard, but in our case
we define a measure of similarity between ant prototype taking into account
their proximity on the grid ”map”. Below we present a global definition of SOM
map.

Self-organizing maps are increasingly used as tools for visualization, as they
allow projection over small areas that are generally two dimensional.

The basic model proposed by Kohonen consists on a discrete set C of cells
called map. This map has a discrete topology defined by undirected graph, usu-
ally it is a regular grid in 2 dimensions. We denote p the number of cells. For
each pair of cells (c,r) on the map, the distance δ(c, r) is defined as the length
of the shortest chain linking cells r and c on the grid. For each cell c this dis-
tance defines a neighbor cell; in order to control the neighborhood area, we
introduce a kernel positive function K (K ≥ 0 and lim

|x|→∞
K(x) = 0). We de-

fine the mutual influence of two cells c and r by K(δ(c, r)). In practice, as for
traditional topological map we use smooth function to control the size of the
neighborhood as K(δ(c, r)) = exp(−δ(c,r)

T ). Using this kernel function, T be-
comes a parameter of the model. As in the Kohonen algorithm, we decrease T
from an initilal value Tmax to a final value Tmin. Let Rd be the euclidean data
space and A = {di; i = 1, . . . , N} a set of observations, where each data (ant)
di = (d1

i , d
2
i , ..., d

n
i ) is a continuous vector in Rn. For each cell c of the grid, we

associate a referent vector wc = (w1
c , w2

c , ..., wj
c , ..., w

d
c ) of dimension n (referent

ant). We denote by W the set of the referent vectors. The set of parameter W ,
has to be estimated from A iteratively by minimizing a cost function defined as
follows :

J (φ,W) =
∑
di∈A

∑
r∈C

K(δ(φ(di), r))||di − wr||2 (1)

where φ assign each observation z to a single cell in the map C. In this expression
||z − wr||2 is square of the Euclidean distance.

The cost function (1), is minimized using an iterative process with two steps.

1. Assignment step which leads to the use of the following assignment function:

∀d, φ(x) = arg min
c

(
||d− wc||2

)
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2. Optimization step the referent ant vector wc as the mean vector as:

wc =

∑
di∈A

K(δ(c, φ(di)))di∑
di∈A

K(δ(c, φ(di)))
,

3.1 A New Similarity Measure

At the end of learning, SOM provide a partition of p groups. This partition
will be denoted by P = {P1, . . . , Pc, . . . , Pp}. Each subset Pc is associated to a
referent ant wc ∈ Rn. This partition is used as input of AntTree-N-W algorithm.
In order to take into account the ant topology provided by self-Organizing Map,
we define a new measure between ants group. Connecting two ”referent”ant ,
infer merging the associated group of ants. The most widely considered rule for
merging groups in continuous space may be the method proposed by Ward [9]
which is defined as follows:

DistW =
(

ncnr

nc + ncr

)
||wc − wr||2 (2)

where nc and nr represent respectively the size of groups Pc and Pr.
It is necessary to weight the Ward measure by the loss of inertia with value

that measures the topological modification after merging two subsets. We pro-
pose to quantify this topological modification by as follows:∑

u∈C

K(δ((c, r), u))) where δ((c, r), u) = min{δ(c, u), δ(r, u)}

This quantity allows to quantify the topological modification, but do not allow
to take into account the referent proximity on the map. Thus we propose to
subtract value that measures this proximity as follows:

DistN−W =

(∑
u∈C

K(δ((c, r), u)))

)
ncnr

nc + ncr

||wc − wr||2

− K(δ(c, r))(nc + nr)||wc − wr||2 (3)

This measure is composed with two terms. The first term computes the inertia
loose after connecting Pc and Pr. The second term brings subsets corresponding
to two referent neighbors on the map, in order to maintain topological order
between subsets. Small proximity between two neighbor c and r infers small
δ(c, r), thus the neighbor function K(δ(c, r)) becomes high. Hence, the second
term reduces the first term depending on the neighbor function. It’s obvious that
for null neighborhood our measure computes only Ward criterion. The criterion
we proposed allows to obtain a regularized Ward criterion, and this regular-
ization is obtained with the topological order used. Finally the new measure
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defines a dissimilarity matrix which take into account the inertia loss and the
topological order. AntTree has the advantage to have a low complexity (near the
n log(n)) [8]. Those times will be further reduced since AntTree will be applied
on the referent ant provided by the SOM algorithm. Thus, the tree structured
obtained is as the best representative of referent ant set W = {w1, ...,wp} (with
the new similarity measure (3)). Each node parent of the tree is more represen-
tative of their node son. So the algorithm, AntTree-N-W can be described as
follows:

– Input: W = {w1, ..., wp}, set of referents ant which are positioned on the map
using SOM algorithm,
• Compute the new distance defined in (expression 3),
• Building the tree using AntTree algorithm,

– Output: Tree structure of referents

The tree obtained provides a clustering P = {P1..., Ps} where the value s rep-
resent the number of clusters founded (each sub-tree represent one cluster) pro-
vided by AntTree-N-W using map position of referent ants

4 Validation

We have evaluated and compared our algorithms on a set of 19 databases
(table 1). Art1 to Art6 are artificial and have been generated with Gaussian
and uniform distributions. The others are real and extracted from the machine
learning repository [10,11]. To evaluate the quality of clustering using map po-
sition, we adopt the approach of comparing the results to a ”ground truth”. We
use the clustering accuracy for measuring the clustering results. The index is
classification rate, usually named purity measure which can be expressed as the
percentage of elements of the assigned class in a cluster.

We compare our map clustering process AntTree-N-W with classic version of
AntTree. We also compare the impact of using the new measure of similarity.
We thus compare AntTree-N-W with AntTree-W using classic Ward index (ex-
pression 2). Concerning the number of cluster, we observe a clear improvement
when we use AntTree-N-W even if there are cases where the number of found
cluster is real bad.

Table 1. Databases used in the experimentation

Datasets ClR d N Datasets ClR d N
Atom 2 3 800 Tetra 4 3 400
Ring 2 3 1000 Twodi. 2 2 800
Dem-c. 2 2 600 WingN. 2 2 1016
Engyi. 2 2 4096 Art1 4 2 400
Glass 7 9 214 Art2 2 2 1000
Hepta 7 3 212 Art4 2 2 200
Lsun 3 2 400 Art5 9 2 900
Pima 2 8 768 Art6 4 8 400
Target 6 2 770
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Table 2. Comparison between Hierarchical Clustering of map using Ward criterion
and a new measure. The number following the good classification rate (purity rate)
indicates the number of subsets provided by map clustering.

Datasets/ % AntTree-W AntTree-N-W AntTree
Atom (2) 85.87 (5) 99.9 (7) 83.5(8)
Ring (2) 97.8 (6) 81.5 (5) 71.5(6)

Demi-c. (2) 58.833 (2) 72.67 (4) 74 (3)
Engyt. (2) 74.14 (5) 88.04 (7) 95.1 (10)
Glass (7) 38.32 (5) 59.81 (6) 45.33 (9)
Hepta (7) 43.4 (4) 43.4 (4) 72.6 (6)
Lsun (3) 55 (3) 93 (5) 94(4)
Pima (2) 67 (5) 72.4 (5) 66.67 (8)
Target (6) 83.25 (5) 94.42 (6) 81.81 (9)
Tetra (4) 62.5 (3) 81.75 (5) 93.5 (3)

Twodi. (2) 100 (4) 100 (5) 99.87 (7)
WingN. (2) 95.67 (3) 87.11 (5) 93.60 (6)

Art1 (4) 50.5 (4) 84.75 (4) 76.5 (8)
Art2 (2) 94.9 (4) 97.7 (4) 97.9 (6)
Art4 (2) 100 (3) 100 (5) 98 (4)
Art5 (9) 31.78 (4) 50.33 (6) 51.55 (8)
Art6 (4) 24.25 (2) 78.75 (4) 93 (4)

Table 2 lists the classification accuracy obtained with different methods; the
purity rate results were provided. Using a new measure DistN−W , we observe
that the results are generally better than the clustering map using traditional
ward measure. Taking into account the topological order improves significatively
the results. With our hybrid model (with the new measure 3) no index is neces-
sary to obtain the optimal partition.

5 Conclusions and Perspectives

We have presented in this paper a new model for data clustering which is in-
spired from the self-assembly behavior observed in real ants. This approach is
competitive with the precedent standard method which proves the interest to
hybridize AntTree with SOM method. The first results that we have obtained are
encouraging, both in terms of quality and processing times. The self-assembly
model introduces a new ants-based computational method which is very promis-
ing. There are many perspectives to study after this series of results. The first
consists on approving the similarity measure which seems to be an important
tool in clustering map process. As far as clustering is concerned, we would like
to introduce some heuristics in order to evaluate their influence on the results,
like removing clusters with a small number of instances.
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Barata, Fábio I-345
Barrett, Enda I-450
Baxter, Paul I-402
Beckmann, Benjamin E. II-134
Bellas, Francisco II-200
Bersini, Hugues II-262
Bertolotti, Luigi I-329
Beurton-Aimar, M. I-361
Biscani, Francesco I-197
Bleys, Joris II-150
Bodi, Michael II-118, II-367
Bonani, Michael I-165, I-173
Bouyioukos, Costas I-321
Bown, Oliver II-254
Browne, Will I-402
Bullock, Seth I-353

Caamaño, Pilar II-200
Cases, Blanca II-408
Castillo, Camiel II-399
Catteeuw, David II-326
Caves, Leo S.D. I-289, I-377
Cederborg, Thomas I-458
Cerutti, Francesco I-329
Christensen, Anders Lyhne I-165
Clark, Edward I-297
Clarke, Tim I-297
Clune, Jeff II-10, II-134
Connelly, Brian D. I-490
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Steels, Luc II-150

Stepney, Susan I-289, I-297, I-369, I-377
Sterbini, Andrea I-213
Stradner, Jürgen I-132
Suzuki, Einoshin II-416
Suzuki, Ikuo I-99, I-107, I-181
Suzuki, Reiji II-94
Suzuki, Yasuhiro I-394

Takahashi, Tatsuji II-238
Takano, Shigeru II-416
Tatnall, Adrian II-334
Thenius, Ronald I-132, II-69, II-118,

II-367
Tomassini, Marco I-281, I-337
Tonelli, Paul II-302
Trianni, Vito I-205, II-270
Tschudin, Christian I-273
Tuci, Elio I-124, I-205, II-270
Tufte, Gunnar I-67, I-83

Ullrich, Alexander II-19

Vallée, F. I-361
van der Horst, Johannes II-334
van Dijk, Sander G. II-342
Van Segbroeck, Sven I-434
Virgo, Nathaniel I-240, II-230

Watson, Richard A. II-27, II-45, II-53,
II-110

Watson, Tim II-77
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