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Preface

This volume contains a selection of revised papers from the 20th International
Conference on Inductive Logic Programming (ILP 2010) held in Firenze, Italy,
during June 27–30, 2010.

The ILP conference series started in 1991 and is the premier international fo-
rum on logic-based approaches to machine learning. The conference has recently
explored several intersections with statistical learning and other probabilistic
approaches, expanding research horizons significantly.

The 20th edition was structured with invited talks, regular talks, a poster
session, a panel session, and featured for the first time a tutorial day. The in-
vited speakers were Michael Kifer, Avi Pfeffer, and David Poole. Abstracts of
their talks can be found in this volume. Gianluigi Greco and Francesco Scarcello
presented a tutorial on “Structural Decomposition Methods: Identifying Easy
Instances of Hard Problems”; Volker Tresp presented a tutorial on “Multivari-
ate Models for Relational Learning.” Ivan Bratko, Luc De Raedt, Peter Flach,
Katsumi Inoue, Stephen Muggleton, David Poole, and Ashwin Srinivasan par-
ticipated in a panel session highlighting successes and future trends of ILP 20
years after the first meeting.

The overall program featured 16 oral presentations and 15 poster presenta-
tions. The presentations of both kind were selected on the basis of extended
abstracts. Following the recent tradition of the conference, a selection of the
papers accepted at ILP 2010 are published in this volume of the Lecture Notes
in Artificial Intelligence series and in a special issue of the Machine Learning
journal. From the initially submitted 44 extended abstracts (8 pages in LNCS
format), 31 were accepted for presentation at the conference. Each submission
was refereed by at least three Program Committee members and was accessible
for additional comments by the entire Program Committee (except in the cases
of conflict of interest) thanks to the open reviewing model supported by Easy-
Chair. Out of the accepted contributions 5 were selected for the special issue,
11 were published as a long paper (16 pages), and 15 more as a short paper
(8 pages) in the proceedings. These papers were prepared after the conference.
Supplementary materials for some of the accepted papers can be retrieved from
the conference website (http://ilp2010.dsi.unifi.it/).

ILP 2010 would not have taken place without the contribution of many peo-
ple. We would like to thank the invited and tutorial speakers, the panelists,
the Program Committee members, the additional reviewers, the authors of sub-
mitted papers, the participants, the local organizers (especially Marco Lippi)
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as well as the sponsors (the Artificial Intelligence journal, the Machine Learning
journal, the Association for Logic Programming, the University of Bari “Aldo
Moro,” the PASCAL 2 Network of Excellence, and the Office of Naval Research
Global) for their generous financial support.

March 2011 Paolo Frasconi
Francesca Alessandra Lisi
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Francesca A. Lisi Università degli Studi di Bari “Aldo Moro”, Italy

Program Committee

Erick Alphonse Université Paris-Nord, France
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José Santos and Stephen Muggleton

Stochastic Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Alireza Tamaddoni-Nezhad and Stephen Muggleton

Fire! Firing Inductive Rules from Economic Geography for Fire Risk
Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

David Vaz, Vı́tor Santos Costa, and Michel Ferreira

Automating the ILP Setup Task: Converting User Advice about
Specific Examples into General Background Knowledge . . . . . . . . . . . . . . . 253

Trevor Walker, Ciaran O’Reilly, Gautam Kunapuli,
Sriraam Natarajan, Richard Maclin, David Page, and
Jude Shavlik

Speeding Up Planning through Minimal Generalizations of Partially
Ordered Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
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Rule Interchange Format:
Logic Programming’s Second Wind?

Michael Kifer

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794-4400, USA
kifer@cs.stonybrook.edu

Abstract. Recent years have witnessed a strong upswing in the interest
in rule systems technologies—both in their own right and in combination
with existing Web standards. In particular, the Semantic Web is now
seen as a vast playing field for rules within the academia as well as the
industry. This renewed interest motivated the development of the Rule
Interchange Format (RIF), a recent W3C Web standard for exchanging
rules among different and dissimilar systems [1–5]. Despite its name, RIF
is not merely a format: it is a collection of concrete rule languages, called
RIF dialects, and a framework for defining new ones in harmony with
each other. This includes formal specifications of the syntax, semantics,
and XML serialization.

In this talk we argue that RIF is a major opportunity to re-introduce
rule based technologies into the mainstream of knowledge representation
and information processing, and to rekindle the interest in logic program-
ming. First, we will introduce the main principles behind RIF and then
discuss the application landscape that could emerge if this standard is
embraced by the relevant communities: Logic Programming, Semantic
Web, and Knowledge Representation. We will also reflect on the past
of logic programming and speculate on how it could benefit from and
contribute to RIF in the future.

References
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Practical Probabilistic Programming 

Avi Pfeffer 

Charles River Analytics, 625 Mount Auburn Street, Cambridge, MA 02140, USA 
apfeffer@cra.com 

Abstract. Probabilistic programming promises to make probabilistic modeling 
easier by making it possible to create models using the power of programming 
languages, and by applying general-purpose algorithms to reason about models. 
We present a new probabilistic programming language named Figaro that was 
designed with practicality and usability in mind. Figaro can represent models 
naturally that have been difficult to represent in other languages, such as 
probabilistic relational models and models with undirected relationships with 
arbitrary constraints. An important feature is that the Figaro language and 
reasoning algorithms are embedded as a library in Scala. We illustrate the use 
of Figaro through a case study.  

Keywords: Probabilistic modeling, representation languages, probabilistic 
programming. 

1   Introduction 

Probabilistic models are ever growing in richness and diversity. Models may be 
hierarchical, relational, spatio-temporal, recursive and infinite, among others. 
Developing the representation, inference, and learning algorithms for new models is a 
significant task. Probabilistic programming has the potential to make this task much 
easier by allowing the modeler to represent rich, complex probabilistic models using 
the full power of programming languages, including data structures, control 
mechanisms, functions and abstraction. The language provides inference and learning 
algorithms so the model designer does not need to implement them. Most importantly, 
a probabilistic programming language (PPL) provides the modeler with the language 
and tools with which to think of and formulate new models for complex domains. 

To this point, most of the research on PPLs has focused on improving the power of 
a language, both in terms of what it can represent and in terms of the algorithms it 
uses to reason about models written in the language. PPLs today can represent an 
extremely wide range of models and use increasingly sophisticated algorithms. 
However, there has been less focus hitherto on usability of the languages. Ultimately, 
the goal of PPL research is to provide languages that can be used by many people, not 
just experts in probabilistic programming. We present Figaro, a PPL that is designed 
to be usable without sacrificing any power. In designing the language for usability, we 
identified the following four goals: (1) Implement the language as a library that can 
be used by a wide range of programmers; (2) Naturally represent both directed and 
undirected models with arbitrary constraints; (3) Naturally represent models with 
interacting objects; (4) Modular, extensible algorithm specification. 
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An important characteristic of Figaro that distinguishes it from previous probabilistic 
programming languages is that it is a language not only for representing rich 
probabilistic models but also for constructing such models. It achieves this property by 
being embedded in Scala, which is an object-oriented and functional programming 
language that is interoperable with Java. Figaro inherits the object-oriented and 
functional nature of Scala. Languages such as IBAL [1] and Church [2] already 
demonstrated the power of functional probabilistic programming. As a result of its 
embedding, a Figaro program can be constructed by an arbitrarily complex Scala 
program. In particular, the Scala program can create data structures that cannot be 
achieved by an ordinary functional probabilistic program. Thus, the embedding in Scala 
achieves the first three goals: Figaro is an extensible library that can be used by many 
programmers; Figaro can represent undirected models with arbitrary constraints, and 
even directed cyclic models which have been very difficult to represent to this point; 
and Figaro can naturally capture object-relational models like probabilistic relational 
models while maintaining their object structure. The fourth goal is also achieved 
through the embedding in Scala. Figaro programs are Scala data structures that have 
declarative semantics as probabilistic models that are independent of any specific 
reasoning algorithm. Therefore, any reasoning algorithm can be written that respects the 
semantics and applied to the data structures. Figaro provides an extensible class library 
of such algorithms. 

We illustrate the use of Figaro through a case study, in which we implemented a 
system to infer the capabilities and intentions of an adversarial agent. Our system was 
given a history of past situations involving the agent and its goal was to reason about 
a new situation. Different situations provide the agent with different objectives and 
means with which to achieve them, but some objectives and means are shared across 
situations. In addition, different objectives share the same logical structure with 
different parameterizations, and the realization of that logical structure in a situation 
depends on which elements are related in that situation. Figaro was able to capture 
this rich structure easily, using the language to construct a specific model for each 
situation while sharing knowledge between situations, and exploiting the sharing of 
logical structure between objectives while relating each objective to the appropriate 
related objectives. 

References 
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Probabilistic Relational Learning and Inductive

Logic Programming at a Global Scale

David Poole

Department of Computer Science,
University of British Columbia

Vancouver, BC, Canada
http://www.cs.ubc.ca/~poole/

Abstract. Building on advances in statistical-relational AI and the Se-
mantic Web, this talk outlined how to create knowledge, how to evaluate
knowledge that has been published, and how to go beyond the sum of
human knowledge. If there is some claim of truth, it is reasonable to ask
what evidence there is for that claim, and to not believe claims that do
not provide evidence. Thus we need to publish data that can provide
evidence. Given such data, we can also learn from it. This talk outlines
how publishing ontologies, data, and probabilistic hypotheses/theories
can let us base beliefs on evidence, and how the resulting world-wide
mind can go beyond the aggregation of human knowledge. Much of the
world’s data is relational, and we want to make probabilistic predictions
in order to make rational decisions. Thus probabilistic relational learning
and inductive logic programming need to be a foundation of the seman-
tic web. This talk overviewed the technology behind this vision and the
considerable technical and social problem that remain.

Keywords: Statistical relational AI, Probabilistic Relational Learning,
Semantic Science, Lifted Probabilistic Inference, World-Wide Mind.

To make decisions, we should base them on the best information available; we
need to be able to find all relevant information and condition on it effectively. We
have called the technology to support decisions “semantic science” [7,8], based
on the semantic web, which is an endeavor to make all of the world’s knowledge
accessible to computers, and using scientific methodology to make predictions.
Figure 1 shows the main components of semantic science. Ontologies are used
to define the vocabulary of data and hypotheses. These are needed to enable
us to find and use all relevant information. Observational data, which depends
on the world and the ontologies, are published. Such data sets can be very
heterogenous, at widely varying levels of abstraction and detail. Hypotheses that
make probabilistic predictions are also published. Hypotheses are not created in
isolation, but depend on some training data. Hypotheses can be judged by their
prior plausibility and how well they predict the data. Given a new case, various
hypotheses are combined to form models that can be used to make predictions
on that case. Given a prediction, users can ask what hypotheses were used to

P. Frasconi and F.A. Lisi (Eds.): ILP 2010, LNAI 6489, pp. 4–5, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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make that prediction, and for each hypothesis, users can find the relevant data
to evaluate the hypothesis. In this way decisions can be based on all of the
applicable evidence.

Typically data is not just a set of mappings from features into a fixed set
of values, as is often assumed by traditional machine learning, but often refers
to individuals that are only referred to by name; it is the properties of these
individuals and the relationships among these individuals that is important for

Data

World

Ontologies

Training
Data Hypotheses/

TheoriesNew 
Cases

Models/
Predictions

Fig. 1. Semantic Science

prediction. Following the publication of
what could be argued was the first proba-
bilistic relational language [1,2,5], the combi-
nation of logical and probabilistic reasoning,
and probabilistic programming languages
[6] has blossomed. There are still many
open fundamental problems for representa-
tions, inference and learning. [3] proposed
the problem of lifted inference: carrying
out probabilistic inference reasoning about
classes of individuals as a unit, without
reasoning about them individually. Another
problem is where models refer to individuals

in terms of the roles they fill, but the data does not label the observed individuals
with roles [4]. There is still lots of exciting research to be done!
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Learning Multi-class Theories in ILP

Tarek Abudawood and Peter A. Flach

Intelligent Systems Laboratory, University of Bristol, UK
Dawood@cs.bris.ac.uk, Peter.Flach@bristol.ac.uk

Abstract. In this paper we investigate the lack of reliability and consistency of
those binary rule learners in ILP that employ the one-vs-rest binarisation tech-
nique when dealing with multi-class domains. We show that we can learn a
simple, consistent and reliable multi-class theory by combining the rules of the
multiple one-vs-rest theories into one rule list or set. We experimentally show
that our proposed methods produce coherent and accurate rule models from the
rules learned by a well known ILP learner Aleph.

1 Introduction

Inductive Logic Programming (ILP) is concerned with inducing first-order clausal mod-
els from examples and background knowledge. Symbolic rule learning systems in ILP,
such as FOIL [1], PROGOL [2] and Aleph [3], learn rules from positive and negative
examples. They are known for their ability to learn from complex structured data and
build effective classification models in a range of domains. Unfortunately, they strug-
gle in dealing with multi-class problems. In most situations they reduce a multi-class
problem into multiple binary problems following the pairwise one-vs-one or one-vs-rest
binarisation techniques.

Aleph, for example, can learn a multi-class theory in the one-vs-rest paradigm where
the outcome of its induction can be seen as a combination of several black-box models.
Each model induces rules for one specific (positive) class, and a default rule is added to
predict the remaining classes. This one-vs-rest approach is a commonly used machine
learning technique due to its simplicity in solving multi-class problems. It has been
proven to be powerful when compared to other multi-class approaches [4]. However,
we argue in this paper that the one-vs-rest technique is not suitable for first-order rule
learners as there is a strong bias toward the negative classes leading to unrealistic esti-
mates of predictive power. In addition, the lack of integrity between the different binary
models leads to inconsistent predictions.

We investigate the reliability (how much one can rely on the quality of a model)
and consistency (how consistent are the predictions of multiple related models) of one-
vs-rest binary models and illustrate the difference with a proper multi-class model in
Sect. 2. In Sect. 3 our goal is to investigate several methods to overcome the problems of
the current application of one-vs-rest technique in ILP rule learners. We experimentally
demonstrate the performance of our suggested methods in Sect. 4 and compare them
with the standard binary method of Aleph. In Sect. 5 we briefly revisit related work
before we draw the conclusion in the final section.

P. Frasconi and F.A. Lisi (Eds.): ILP 2010, LNAI 6489, pp. 6–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Motivation

In machine learning accuracy is commonly used for comparing the classification perfor-
mance and thus many researchers report their results in terms of accuracy, and compare
their results against accuracies of other algorithms. The accuracy of a model can be
interpreted as the expectation of correctly classifying a randomly selected example.

Pred.
c+ c− Tot.

Act.
c+ TP FN E+

c− FP T N E−

Tot. Ê+ Ê− E

(a)

Pred.
c1 c2 c3 . . . cn Tot.

Act.

c1 T P1 FN1 FN1 . . . FN1 E1

c2 FN2 TP2 FN2 . . . FN2 E2
c3 FN3 FN3 TP3 . . . FN3 E3
. . . . . . . . . . . . . . . . . . . . .
cn FNn FNn FNn . . . T Pn En

Tot. Êi Ê2 Ê3 . . . Ên E

(b)

Fig. 1. Contingency tables for a binary model (a) and a multi-class model (b)

Using the notation explained in Fig. 1, we introduce the following definitions.

Definition 1 (Recall). The recall of a given class ci, denoted Recalli or Recall+i , is
the proportion of examples of class ci that is correctly classified by a model (Recalli =
T Pi/Ei). The negative recall of class ci, denoted Recall−i , is the proportion of examples
of class ci incorrectly classified (Recall−i = 1−TPi/Ei). In case of two classes, positive
and negative, we denote the recall of the positive class as Recall+ = TP/E+ and of the
negative class as Recall− = T N/E−.

Definition 2 (Accuracy). Given two classes c+ and c−, the binary accuracy of a model
is defined as

Accuracybin =
T P+ TN

E
=

E+

E
Recall+ +

E−

E
Recall−

That is, binary accuracy is a weighted average of the positive and negative recall,
weighted by the class prior. This extends to multiple classes:

Accuracy =
n

∑
i=1

T Pi

E
=

n

∑
i=1

Ei

E
TPi

Ei
=

n

∑
i=1

Ei

E
Recall+i

For this reason we sometimes refer to accuracy as (weighted) average positive recall.

Definition 3 (Multi-Model Accuracy). Given n classes and n one-vs-rest models, one
for each class, the multi-model accuracy is defined as the average binary accuracy of
the n models:

Accuracymm =
1
n

n

∑
i=1

(
E+

i

E
Recall+i +

E−
i

E
Recall−i )

The following simple result is worth noting.
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Lemma 1. The accuracy of a single multi-class model is not equivalent to the multi-
model accuracy of the one-vs-rest models derived from the multi-class model.

Proof.

Accuracymm =
1
n

n

∑
i=1

(
E+

i

E
Recall+i +

E−
i

E
Recall−i ) (1)

=
1
n

n

∑
i=1

E+
i

E
Recall+i +

1
n

n

∑
i=1

E−
i

E
Recall−i (2)

=
1
n

Accuracy +
1
n

n

∑
i=1

E−
i

E
Recall−i (3)

In going from (2) to (3) we rely on the fact that the one-vs-rest models are derived from a
single multi-class model. If this isn’t the case (as in Aleph, for instance), then weighted
average positive recall is not the same as accuracy, which compounds the issue.

It can be seen from Lemma 1 that the two accuracies are different. Accuracy of a multi-
class model relies on the positive recalls weighted by the class priors. On the other hand,
the average accuracy of multiple binary models relies on the recalls of both classes
where the importance of the positive recalls is decreased n times, hence, there is an
increase of the importance of classifying a negative example n times. The following
example demonstrates why multi-model accuracy is misleading.

Example 1 (A random classifier). Let us consider a 3-class problem comprising 108
examples uniformly distributed among the classes. A random 3-class classifier would
result in the uniform contingency table shown in Fig. 2(a). On the other hand, if a
random binary classifier is applied to the three one-vs-rest binary problems we obtain
the three contingency tables in Figs. 2(b)-2(d). The accuracy of the multi-class model
is 0.33, while the multi-model accuracy of the binary models is 0.50.

Pred.
c1 c2 c3 Tot.

Act.
c1 12 12 12 36
c2 12 12 12 36
c3 12 12 12 36

Tot. 36 36 36 108
(a)

Pred.
c1 c2,3 Tot.

Act.
c1 18 18 36

c2,3 36 36 72
Tot. 54 54 108

(b)

Pred.
c2 c1,3 Tot.

Act.
c2 18 18 36

c1,3 36 36 72
Tot. 54 54 108

(c)

Pred.
c3 c1,2 Tot.

Act.
c3 18 18 36

c1,2 36 36 72
Tot. 54 54 108

(d)

Fig. 2. Four contingency tables on a three-class problem showing the predictions of a random
multi-class classifier (a) and three random one-vs-rest classifiers (b)-(d)

It is clear that the average accuracy of the binary models is 1.5 times more than the
accuracy of the multi-class model because the weight of the negative class is twice the
weight of the positive class. When having a proper multi-class model, there are only
credits for classifying examples correctly. Averaging the positive and negative recalls
for multiple one-vs-one theories could be misleading but it is even more harmful when
it comes to one-vs-rest theories as the problem is propagated.
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Another problem arising when inducing multiple independent binary theories is the
lack of integrity between the predictions of the different binary theories. This may cause
an example to have different possible predictions in several contingency tables because
each model produces predictions independently of the others. The predictions of the
models on each example should be consistent. For instance, by considering n one-vs-
rest models where each model is trained to predict one class as positive, then the pre-
diction for an example x on the i-th model should be be consistent with its prediction
on the j-th model, ĉi(x) = +ve and ĉ j(x) = −ve ∀ j �= i, where ĉ j(x) and ĉ j(x) express
the prediction of the i-th and the jth binary model respectively for example x.

If the predictions are inconsistent then such conflicts need to be solved to ensure the
consistency in the predictions for each example in all models. All one-vs-rest models
of support vector machines and naive Bayes [5] resolve these collisions by obtaining
n scores from each one of the n models and the model with the maximum score wins
the prediction [4]. A rule learner such as CN2 [6] learns ordered rule lists in one of its
settings to avoid such conflicts. In pairwise techniques voting methods [7, 8, 9, 10] can
be considered to integrate the predictions.

The discussion about unreliability and inconsistency holds generally when applying
one-vs-rest technique in any learning system but we would like to emphasise the impor-
tance of this issue particularly in ILP binary rule learning systems such as Aleph. This
is because we only induce rules for the positive class in each one-vs-rest model while
a default rule that always predicts the negative class is added in case an example can
not be classified by any induced rule. The default rules give credits for not classifying
negative examples which makes it easy to obtain high negative recalls without inducing
any rules for the negatives. For instance, one could obtain 0.67 multi-model accuracy
with three empty theories1 on the problem of Example 1. Hence, there is a need to in-
tegrate the different binary models of such rule learning systems in order to ensure the
reliability and consistency of their predictions.

3 Improved Learning of Multi-class Theories

In this section we investigate how one could improve the reliability of the all one-vs-
rest theories in ILP by combining their binary models into a single rule listor rule set
model. Our approach is different from the other first-order rule learning approaches in
various respects. First, it does not treat the n various models as independent black-box
models, but instead combines the rules of all the models into a single model. Secondly,
there is only one default rule and the class of the default rule is determined probabilisti-
cally according to the distribution of the uncovered training examples of all the classes.
Finally, a single prediction is obtained for each example in one multi-class contingency
table. Despite the simplicity of our approaches, their predictions are reliable, consistent
and accurate, as we will show in our experiments.

In any rule list model, the rules are ordered in the final theory according to a certain
criterion. When an unseen example is encountered, the rules are tried one by one in the
order of the list and the first rule that fires determines the class of the example. So the

1 An empty theory is a theory where a binary rule learner fails to induce any rule for the positive
examples.
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key idea is how to order these rules. One needs to evaluate the rules induced by the n
models and assign them scores. We adopt Chi2 as our multi-class evaluation measure
for the rules and used it to build a Multi-class Rule List (MRL) model.

Definition 4 (Chi-Squared [11]). The Chi-squared score of a rule r j of the i-th class is

defined as Chi2(r j) = ∑n
i=1

[eiE−eEi]2
eEi(E−e) where e is the number of examples covered by r j,

ei the number of examples correctly classified by r j, Ei is the total number of examples
of the i-th class, and E is the total number of examples.

MRL In this method, after learning rules for all classes, the rules are re-ordered on
decreasing Chi2. The ties are broken randomly. If a rule is added to the rule list,
then all examples it covers are removed from the training set and the rest of the
rules are re-evaluated based on the remaining examples until no further rule is left.
At the end, a single default rule is assigned predicting the majority class of the
uncovered examples.

In a rule set model, the rules are unordered and the class of a new example is deter-
mined based on the training statistics of all rules that fire for that particular example. For
instance, the CN2 rule learner [6] learns a rule set model and tags the rules with their
coverage over all the classes. If a new example is to be classified, CN2 sums up the cov-
erage of all rules that fire over each class and the class with the highest coverage wins.
We propose two methods to handle multi-class rule set theories, the Multi-class Rule
Set Intersection (MRSI) method and the Multi-class Rule Set Union (MRSU) method.
The descriptions of the two methods are discussed below.

MRSI In MRSI every rule from the multiple one-vs-rest models is evaluated over the
entire training set once, and the identifiers of the examples they cover are stored. A
default rule is formed based on the majority class of the uncovered training exam-
ples. If a new example is to be classified, all the rules are tried. For those rules that
fire, we determine the intersection of their training set coverage using the example
identifiers, and their class distribution gives us the empirical probability of each
class. The class with the maximum probability is predicted for the example. Again
the ties are broken randomly. In the case of an empty intersection, the majority class
is assigned to the example.

MRSU The MRSU method differs from the MRSI method in that it determines the
class of a new example based on the union of the training coverage of all rules that
cover the new example, instead of the intersection.

The MRSU method is closer in spirit to the CN2 method, which adds up the coverage
of all rules that fire. However, by using example identifiers we avoid double-counting of
examples that are covered by several rules, which means that we obtain proper empirical
probabilities rather than CN2’s estimates.

4 Empirical Evaluation

In this section we evaluate and compare our proposed single multi-class theory learning
methods (MRL, MRSU and MRSI) over 6 multi-class data sets and 5 binary data sets
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Table 1. Data sets used in the experiments. The group to the left are multi-class data sets while
the group to the right are binary data sets. Starred data sets are propositional; the rest is relational.

Data set no. Name Class dist. Data set no. Class. dist
1 Car* 1210, 384, 69, 65 7 Mutagenesis 125, 63
2 Diterpene 447, 355, 352, 155, 71 8 Amine (Alzheimer) 1026, 343
3 Ecoli* 143, 77, 52 9 Choline (Alzheimer) 1026, 343
4 English 50, 50, 50 10 Scopolamine (Alzheimer) 1026, 343
5 Protein 116, 115, 77, 73 11 Toxic (Alzheimer) 1026, 343
6 Scale* 288, 288, 49

(Table 1). We use Aleph as our base-learner, learning rules for each class in turn. We
then turn the rules learned by Aleph into coherent multi-class models using the tech-
niques proposed in this paper. We compare against the CN2 rule set method described
above.

For each data set, cross-validated accuracies (Table 2) and AUCs (Table 3) were
recorded. MRL method does not produce class probabilities and hence produces a single
point in a ROC plot: in this case, AUC boils down to the (unweighted) average of true
positive and true negative rates. MRSU, MRSI and CN2 produce class probabilities and
hence AUC evaluates their ranking performance in the usual way. A multi-class AUC
is obtained by averaging each one-vs-rest AUC weighted by the class prior.

Since averaging performance across data sets has limited meaning as the values may
not be commensurate, we report the ranks (1 is best, 4 is worst) of the accuracies and
AUCs on each data set. We use the Friedman significance test on these ranks at p = 0.05
with Bonferroni-Dunn post-hoc test on our three proposed methods. In the Friedman
test we record wins and losses in the form of ranks and ignore the magnitude of these
wins and losses. The use of the Friedman test to evaluate multiple classifiers on multiple
data sets is considered to be more appropriate than the conventional tests, see [12] for
further details. By looking at the average performance rank, and calculating the post-
hoc test and Critical Difference (CD = 1.78/2) with CN2 as control, on the multi-class
data sets, MRSI is significantly better than CN2 on both accuracy and AUC, while
MRSU performs significantly worse on AUC. If we take a look at the binary data sets
(CD = 1.95/2) we can see that both MRL and MRSI are significantly superior over
CN2 w.r.t. AUC while no statistical significance is reported regarding their accuracies.
The conclusion seems warranted that MRSI is preferable for multi-class data sets, while
MRL is preferable for binary data sets.

5 Related Work

As discussed earlier, many ILP rule learning systems including Aleph, PROGOL and
FOIL can only induce binary theories and multi-class theories are obtained by convert-
ing a multi-class problem into several binary problems. The rules of the final model
are, in practice, a combination of independent multiple binary theories. Inductive Logic
Constraint (ICL) [13] upgraded the propositional CN2 to handle multi-class first-order
theories. Our CN2 implementation is similar to ICL (learning from and handling multi-
class structural domains) but was built over Aleph. The experiments demonstrate that
we can improve over the CN2 probability estimation method.
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Table 2. Accuracies of our new multi-class methods (MRL, MRSU and MRSI) compared against
CN2 accuracy, with average ranks in brackets. The 6th column shows the multi-model accu-
racy as reported by Aleph, which is particularly optimistic for multi-class problems due to over-
emphasising the default rules. The right-most column shows the average positive recall, which
ignores the default rules but is still not equal to multi-class accuracy as conflicting predictions are
not taken into account.

MRL MRSU MRSI CN2 Aleph Standard
Multi-class accuracy Multi-model accuracy Average recall

1 81.43 (2.00) 81.32 (4.00) 83.98 (1.00) 81.38 (3.00) 86.90 82.18
2 83.70 (2.00) 83.55 (3.50) 84.86 (1.00) 83.55 (3.50) 91.52 82.91
3 90.43 (1.00) 86.77 (4.00) 89.75 (2.00) 88.92 (3.00) 90.27 86.46
4 60.67 (3.00) 58.00 (4.00) 64.00 (1.00) 62.67 (2.00) 72.44 48.00
5 80.48 (3.00) 80.69 (2.00) 79.70 (4.00) 80.94 (1.00) 89.91 70.82
6 80.64 (2.00) 72.51 (4.00) 83.68 (1.00) 76.20 (3.00) 79.04 71.20
Average 79.56 (2.17) 77.14 (3.58) 80.99 (1.67) 78.94 (2.58) 85.01 73.59
7 77.06 (2.00) 77.06 (2.00) 76.55 (4.00) 77.06 (2.00) 73.97 73.97
8 60.18 (4.00) 60.91 (3.00) 65.38 (1.00) 60.98 (2.00) 77.06 77.06
9 78.24 (1.00) 76.07 (3.00) 77.14 (2.00) 75.55 (4.00) 60.11 60.18
10 76.56 (2.00) 76.56 (2.00) 76.48 (4.00) 76.56 (2.00) 76.56 76.56
11 74.95 (3.00) 75.02 (2.00) 74.59 (4.00) 75.09 (1.00) 74.80 74.80
Average 73.40 (2.40) 73.12 (2.40) 74.03 (3.00) 73.05 (2.20) 72.50 72.51

Table 3. Average one-vs-rest AUCs of our multi-class methods (MRL, MRSU and MRSI) com-
pared against CN2, with average ranks in brackets. The AUCs reported for Aleph are for reference
only, as these arise from over-emphasising the default rules.

MRL MRSU MRSI CN2 Aleph Standard
1 83.03 (1.00) 75.21 (3.00) 73.92 (4.00) 75.39 (2.00) 82.80
2 88.72 (4.00) 89.65 (1.00) 88.90 (3.00) 89.58 (2.00) 88.66
3 91.97 (3.00) 92.63 (2.00) 93.38 (1.00) 91.43 (4.00) 86.78
4 70.50 (4.00) 72.67 (2.00) 74.15 (1.00) 72.60 (3.00) 66.33
5 87.28 (2.00) 86.62 (4.00) 89.03 (1.00) 86.63 (3.00) 83.29
6 82.05 (1.00) 74.03 (3.00) 81.41 (2.00) 73.27 (4.00) 76.38
Average 83.92 (2.50) 81.80 (2.50) 83.46 (2.00) 81.48 (3.00) 80.71
7 64.03 (1.00) 57.19 (4.00) 57.28 (2.00) 57.19 (3.00) 63.93
8 60.77 (1.00) 51.70 (3.00) 57.10 (2.00) 51.39 (4.00) 64.03
9 74.48 (1.00) 63.91 (3.00) 72.38 (2.00) 60.93 (4.00) 60.90
10 55.07 (1.00) 52.70 (3.50) 52.70 (2.00) 52.70 (3.50) 55.07
11 65.46 (1.00) 56.15 (3.00) 57.06 (2.00) 55.53 (4.00) 64.71
Average 63.96 (1.00) 56.33 (3.30) 59.30 (2.00) 55.55 (3.70) 61.73

While most of the ILP systems implement the covering approach (separate-and-
conquer), TILDE [14] implements a divide-and-conquer approach and induces a single
first-order logic multi-class theory that take a form of decision tree. Tree models handle
multiple classes naturally. We plan an experimental comparison with TILDE in future
work. Several papers suggested different approaches of dealing with multiple binary
models [4, 15, 7, 8, 9, 10, 5]. A comparison of many such approaches were made in [4]
suggesting a superiority of the one-vs-rest approach in general but they also pointed out
that the choice of the binarisation technique makes little difference once we learn good
binary models.

6 Concluding Remarks

In this paper we investigated the lack of reliability and consistency of the one-vs-rest
technique on multi-class domains. We showed that we could learn a simple and single
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multi-class rule list (MRLmethod) or rule set (MRSU and MRSI methods) model by
combining the rules of all one-vs-rest models and turn them into a coherent multi-class
classifier.

Our proposed methods generate consistent and reliable multi-class predictions and
we experimentally showed that they produce significant results, w.r.t. accuracy and
AUC, on both multi-class and binary domains when compared against the CN2 method.

When classification is made based on rule intersection, MRSI, the best accuracies
and AUCs were achieved taking the multi-class data sets into account. Multi-class rule
list, MRL, method seem to be suitable for two-class problems. The origin of this differ-
ence is subject of ongoing investigations.
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Abstract. We present a numerical refinement operator based on multi-
instance learning. In the approach, the task of handling numerical vari-
ables in a clause is delegated to statistical multi-instance learning schemes.
To each clause, there is an associated multi-instance classification model
with the numerical variables of the clause as input. Clauses are built in
a greedy manner, where each refinement adds new numerical variables
which are used additionally to the numerical variables already known to
the multi-instance model. In our experiments, we tested this approach
with multi-instance learners available in the Weka workbench (like MI-
SVMs). These clauses are used in a boosting approach that can take
advantage of the margin information, going beyond standard covering
procedures or the discrete boosting of rules, like in SLIPPER. The ap-
proach is evaluated on the problem of hexose binding site prediction, a
pharmacological application and mutagenicity prediction. In two of the
three applications, the task is to find configurations of points with cer-
tain properties in 3D space that characterize either a binding site or drug
activity: the logical part of the clause constitutes the points with their
properties, whereas the multi-instance model constrains the distances
among the points. In summary, the new numerical refinement operator
is interesting both theoretically as a new synthesis of logical and statisti-
cal learning and practically as a new method for characterizing binding
sites and pharmacophores in biochemical applications.

1 Introduction and Background

It has often been acknowledged that numerical learning in ILP is limited be-
cause of the choice of logic programming as representation language [1,2]. Func-
tion symbols are not interpreted in logic programming, they simply are seen as
functors of Herbrand terms. For instance, the + function symbol being not inter-
preted, both terms of the following equation cannot be unified and the equation
X+Y = 0 cannot be solved. To solve this problem, the hypothesis representation
language has been extended by a Constraint Programming Language (CLP) [3].
A large number of CLP languages have been proposed, some with complete and
efficient solvers. In ILP, the interpreted predicate symbols are often the same as
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the ones used in attribute-value learning, like =,≤,≥,∈, but also linear, non-
linear, arithmetic or trigonometric functions have been used [4].

The large family of systems able to learn constraints are all based on the
technique introduced in the classical INDUCE system [5] and later popularised
and developed in the system REMO [6] and other systems [7,3,1,4,2,8]. This
technique separates learning the logical part of the hypothesis from learning its
constraint part (usually nominal and numerical constraint variables). If we refer
to the covering test definition, for the positive examples, at least one of the pos-
sible matching substitutions between the logical part of the hypothesis and the
logical part of the positive example must satisfy the constraint part. Conversely,
for the negative examples, for all possible substitutions, none must satisfy the
constraint part. The key idea is to first compute the set of substitutions match-
ing the hypothesis’ logical part with the learning examples, and then from the
induced tabular representation, where constraint variables are attributes, learn
the constraint part of the hypothesis. Zucker and Ganascia note that such a
tabular representation is a multi-instance representation in the general case (the
constraints are satisfied by at least one matching substitution to a positive ex-
ample, and none to a negative example), and that multi-instance learners have
to be used to learn the hypothesis’ constraint part. The different approaches can
be compared with respect to the way they define the hypothesis’ logical part and
when they delegate learning to an attribute-value or a multi-instance learner.
INDUCE completely separates the two processes and first searches for a good
logical part (following an lgg-based approach), which is then specialized by con-
straints. A subsequent approach [6] sets the single logical part beforehand, either
user-specified or built from the examples. Model selection can then be used to
refine increasingly complex hypotheses. Anthony and Frisch [1] limit the con-
straint part, only allowing a constraint variable to appear in the clause’s head,
such that they only deal with a single matching substitution, limiting the interest
of delegating numerical learning to attribute-value learners. Other systems [7,4]
do not limit the logical part, but also do not use the link between θ-subsumption
and multi-instance problems and thus treat all matchings to a positive clausal
example as a positive attribute-value example. Recently, Srinivasan et al. [8] in-
dependently proposed the same approach as Zucker et al. [6], where the logical
part is restricted to one user-defined clause. Finally, an interesting approach, al-
though not too closely related, is MIR-SAYU [9], which learns drug activity from
a multi-instance representation of the drugs. The multi-instance representation
does not arise from multiple matchings like in INDUCE, but from the multiple
conformations that a drug can take in 3D-space: The authors use a rule-based
propositionalisation approach to solve the learning problem and obtain a multi-
instance representation by applying it to each conformation.

In this paper, we present an approach that does not limit the logical part of a
hypothesis: we search in the hypothesis space for a good logical part which, when
introducing constraint variables (presently limited to numerical ones), delegates
constraint learning to a multi-instance learner. This is different from the classical
INDUCE system and more recent approaches, given that intertwining logical
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and constraint learning should be able to improve search. This also introduces
some interesting properties that can be leveraged by a boosting approach (to
be explained below). In the following, we present the technical details of the
approach.

2 Method

Before we can describe the method in detail, we have to introduce some notation.
Let S = {(x1, y1), . . . , (xn, yn)} denote a training set of classified examples.
Each example is described by a set of tuples from several relations over nominal
and continuous variables, denoted by xi, and assigned to a class yi. We restrict
ourselves to binary classification problems in this paper (yi ∈ {+1,−1}). The
size of the training set is denoted by |S| = n. We follow standard multi-instance
terminology and make a distinction between examples and instances: an example
is defined as a bag of instances (to be defined later). As we follow a boosting
approach for the outer loop of the algorithm (see below), we have a weight wi

associated with each example, which is initialized to 1
n .

In the following we will deal with negation-free program clauses. Given a set
of clauses, we let t denote the index of the t-th clause Ct. Clauses are learned one
after the other, using a generalisation of boosting to real-valued weak hypotheses
[10]. The weak learner builds a clause Ct as a hypothesis, where t denotes both
the index of the clause and the index of the boosting iteration. The boosting
procedure constitutes the outer loop of the algorithm (for details we have to refer
to the original publication [10]), whereas the construction of clauses constitutes
the inner loop.

Due to the size of the search space, clauses are built in a greedy manner, with
one refinement after the other. A refinement consists of the addition of one or
several literals to the body of a clause according to the modes of a language bias
declaration. The refinement operator providing all specializations of a clause is
denoted by ρ(C).

In the following, our starting point is a clause C, which is to be refined in a
subsequent step:

C = class(X, Y ) : − p1(X, X1,1, . . . , X1,n1),
. . . ,

pk(X, Xk,1, . . . , Xk,nk
).

Upper-case characters X and Y denote, similar to the definition of the training
set S above, the identifier of a clausal example (X) and its class Y (either −1
or +1).

Given such a clause, its constraint variables can be obtained by a function

vars(C) = {X1,1, . . . , X1,n1 , . . . , Xk,1, . . . , Xk,nk
}.

Additionally, we have functions varsn(C) picking the nominal variables of a
clause and varsc(C) picking the continuous variables (vars(C) = varsn(C) ∪
varsc(C)).
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For simplicity and without loss of generality, we assume that exactly one
literal is added to clause C in the course of a refinement C′ ∈ ρ(C):

C′ = class(X, Y ) : − p1(X, X1,1, . . . , X1,n1),
. . . ,

pk(X, Xk,1, . . . , Xk,nk
),

pk+1(X, Xk+1,1, . . . , Xk+1,nk+1)

We also make the assumption that at least one additional continuous variable
is available after a refinement. In other words, for each C′ ∈ ρ(C) we assume
there exists an Xk+1,l ∈ varsc(C′).

It is clear that due to multiplicities (1 : n and m : n relationships between the
head variable X and the body variables) multi-instance problems over the body
variables arise. As our goal is to improve the capability of ILP learning systems to
handle continuous variables, we let the multi-instance problems range only over
those variables of a clause. The structure of a clause and the remaining variables
only serve to give us the definition of a multi-instance problem. To be more
precise, we obtain a dataset for multi-instance learning from first materializing
the relation from the body (ranging over all variables vars(C)) and subsequently
projecting it onto the variables {X} ∪ varsc(C).

Proceeding in this way, the question is (a) how to guide the search for suitable
clauses and (b) how to decide when to stop refining a clause.
For the former question, we decided to use the margin of the classifier (in the
sense of boosting). Consider the output of the clause together with the multi-
instance classifier is given by a function h(.), which tells us not only the class of
the prediction (its sign), but also its confidence. Then the mean margin of h(.)
can be defined as

μ̄h =
1
n

n∑
i=1

yih(xi) (1)

As to decide when to stop refining a clause, we need a criterion that acts as a
regularisation parameter for the multi-instance learner. A natural choice is to
limit the number of attributes in the datasets that are passed to it. It translates
to limiting the number of constraint variables that can be introduced in the
logical part, also regularising its complexity.

For the outer loop generating one clause including a multi-instance classifier
after the other, we employ a generalization of AdaBoost to real-valued weak
hypotheses [10]. For each example covered by a clause Ct, the function ht(.)
(defined in terms of the clause itself plus its multi-instance classifier ft(.)) will
provide a different prediction. For the examples not covered by the clause, the
weak hypothesis abstains on them and outputs a prediction of 0. In that sense,
this is more general than SLIPPER’s rules [11], which either abstain or predict
the positive class. The boosting algorithm will focus on those examples in the
later stages, forcing the weak learner to search for good logical structures that
can discriminate between them:
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h∗
t = max

1≤i≤n
|ht(xi)| (2)

μt =
1
h∗

t

n∑
i=1

wt,iyiht(xi) ∈ [−1, +1] (3)

wt+1,i ← wt,i × (
1 − μtyiht(xi)/h∗

t

1 − μ2
t

) (4)

αt =
1

2h∗
t

ln
1 + μt

1 − μt
(5)

Overall, the model that is learned is a sequence of clauses Ct along with
associated multi-instance models ft. Both Ct and ft give ht, the weak classi-
fiers that are boosted in the outer loop of the algorithm. Additionally, we have
the weights originating from the boosting iterations: ((h1, α1), . . . , (hT , αT )) =
(((C1, f1), α1), . . . , ((CT , fT ), αT )). In the following we call the described method
NuRMI (Numerical Refinement operator based on Multi-Instance learning).

3 Experiments

In this section we give an overview of the datasets we used in this study, describe
the experimental setup for our method and the two tested baseline methods.
Finally, we compare the results.

3.1 Datasets

First, we describe the datasets that we used in our experimental evaluation of
the methods.1

Hexose Binding Site Dataset. This dataset was compiled by Nassif et al.
[12]. It is composed of 80 protein-hexose binding sites (positive set/class) and
an equal number of non-hexose binding sites and non-binding surface grooves
(negative set/class) selected/extracted from Protein Data Bank [13]. For each
molecule we have the 3D coordinates of all atoms that have a distance of less
than 10

◦
A from the binding site center. Additionally, for each atom its charge,

hydrogen bonding and hydrophobic properties are provided.

Mutagenicity Dataset. We run our experiments on the (by now classical)
regression-friendly mutagenicity dataset introduced by Srinivasan et al. [14]. It
consists of 188 aromatic and heteroaromatic nitrocompounds with a discretized
mutagenicity endpoint (positive or negative log mutagenicity). In our experi-
ments, we use B2 background knowledge which focuses on numerical learning on
the partial charges.

1 We would like to thank David Page for providing the first and third dataset of our
study.
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Dopamine Agonists Dataset. The dopamine agonists dataset is also pro-
vided by Davis et al. [15]. It is composed of 23 dopamine agonists with 5 to 50
conformations for each molecule. The discretized activity levels of the dopamine
agonists represent the classes. Finally, we have 18 positively labeled instances
and 5 negatives. Available features are hydrogen acceptors/donors, hydrophobes
and basic nitrogen groups.

3.2 Experimental Setup

As a first comparison, we chose the Aleph (http://www.comlab.ox.ac.uk/
oucl/research/areas/machlearn/Aleph/) system and the relational decision
tree induction algorithm Tilde from the ACE Data Mining System (http://www.
cs.kuleuven.ac.be/~dtai/ACE/). Both algorithms serve as a baseline for our
newly developed algorithm NuRMI. It should be pointed out that neither Aleph
nor Tilde was particularly optimized on those datasets. On the other hand, we
also did not make any effort to optimize the NuRMI parameters. Therefore, the
compared systems should be considered to be at approximately the same level
of optimization.

The results for the dopamine dataset are obtained using leave-one-out cross-
validation, those for the hexose binding experiments and mutagenicity with ten-
fold cross-validation. For the Aleph results on dopamine, we used the parameter
settings from Davis et al. [15]. The clause length is set to 100, the minimum
accuracy of a clause is set to 80 %, and the minimum number of positives ex-
amples that a clause must cover is set to five. For results on the hexose binding
problem, the parameter settings from the reference paper by Nassif et al. [12]
were used. The maximal clause length is set to eight literals, with only one in the
head. The coverage of maximal five negative training examples is accepted with
the objective to cover with a rule as many positive examples as possible and to
avoid covering negative examples. Aleph’s heuristic search is used to speed up
the calculations. In Tilde, we used gain ratio as evaluation function for candidate
tests. The remaining parameters are Tilde’s default parameters.

3.3 Experimental Results

To investigate the performance of our algorithm compared to the reference clas-
sifiers Aleph and Tilde, we tested them on the above datasets.

The predictive accuracies estimated by cross-validation are given in Table
1. JRip, MiSVM and MiSMO are abbreviations of multi-instance learning algo-
rithms implemented in the Weka workbench [16] that were plugged into NuRMI.
The results show that on two of the three datasets NuRMI performs favorably.

On the dopamine dataset, we observe that both Aleph and Tilde perform
worse than a random-guessing classifier. In contrast, NuRMI outperforms the
baseline classifiers and apparently is the best choice on this dataset with a pre-
dictive accuracy of 82.61%. This suggests that the coverage measure used by
Aleph and the gain ratio splitting criterion used by Tilde to choose tests finally

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
http://www.cs.kuleuven.ac.be/~dtai/ACE/
http://www.cs.kuleuven.ac.be/~dtai/ACE/
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Table 1. Comparison of NuRMI prediction accuracy (%) with Aleph and Tilde. The
result of Progol (*) on the mutagenicity dataset is taken from Srinivasan et al. [14].
NuRMI results are given for one, three and five rounds of boosting.

Program dopamine hexose mutagenicity

NuRMI JRip 1 78.26 53.75 80.34
NuRMI JRip 3 78.26 51.25 81.39
NuRMI JRip 5 82.61 51.88 81.46

NuRMI MiSVM 1 65.22 58.75 66.47
NuRMI MiSVM 3 73.91 60.63 66.47
NuRMI MiSVM 5 73.91 61.25 66.47

NuRMI MiSMO 1 78.26 - 76.13
NuRMI MiSMO 3 78.26 - 81.92
NuRMI MiSMO 5 78.26 - 81.82

Aleph 48.00 67.50 -
Tilde 61.29 65.00 79.00
Progol - - 79.79*

do not result in rules which are able to generalize sufficiently well on this dataset.
On the mutagenicity dataset, only the JRip and MiSMO but not the MiSVM
NuRMI approach are able to improve upon the 79.79% reported for Progol. On
the hexose binding site data, all three classifiers are above the random guessing
baseline of 50%.

We observe that NuRMI, a combination of a coverage-based and a margin-
based method, is the most accurate on two of the three datasets tested. However,
this experimental comparison has to be extended to shed more light on the
relative advantages and disadvantages and also on the trade-offs involved.

4 Conclusion

We presented a novel approach to handling numerical refinements based on
multi-instance learning (NuRMI). It aims to combine the strengths of Inductive
Logic Programming (interpretability) and statistical learning (predictive power).
NuRMI generates clauses in a style typical for ILP systems, and evaluates them
based on multi-instance classifiers constructed on the numerical variables of a
clause. The confidence of the predictions of multi-instance classifiers also guides
search and thus drives the refinement steps. In experiments, we have tested the
usefulness of NuRMI for biochemical applications, in particular the characteri-
zation of binding sites and pharmacophores, and toxicity prediction (including
numerical node labels in graph-like representations of molecules). Although the
system still has a lot of unused flexibility, e.g., in the choice of (multi-instance)
base learners, our preliminary results already hint at the usefulness in the envis-
aged application domains.
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Approach to Understanding Images of Houses
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Abstract. Augmenting vision systems with high-level knowledge and reasoning
can improve lower-level vision processes, by using richer and more structured in-
formation. In this paper we tackle the problem of delimiting conceptual elements
of street views based on spatial relations between lower-level components, e.g.
the element ‘house’ is composed of windows and a door in a spatial arrangement.
We use structured data: each concept can be seen as a graph representing spa-
tial relations between components, e.g. in terms of right, up, close. We employ a
distance-based approach between logical interpretations to match parts of images
with known examples and provide an experimental evaluation on real images.

1 Introduction

In the context of image interpretation, the field of computer vision has developed many
techniques over the past decades for segmenting, classifying and recognizing objects
and scenes. Many of these techniques use a plethora of low-to medium-level and local
features such as lines, blobs, regions, interest points, and many more [1, 2], which are
mostly employed in feature-based, probabilistic classifiers [3–6]. However, many visual
scenes can best be described in terms of hierarchical structures, expressing the natural
composition of scenes into objects, parts of objects and lower-level substructures [7, 8].
For example, a typical house consists of windows, one or more doors, possibly a chim-
ney; all displayed in a particular configuration. Following the hierarchical aspect, the
chimney itself is composed of a specific arrangement of local features (e.g. “brick”-like
patterns). As a result, we advocate the use of high-level representations such as graphs,
and more generally using logical languages [9]. The use of such formalisms in vision
can improve feature-based approaches. Although high-level representations have been
considered before, the actual computational use of these languages for representation,
inference and learning has been less studied in computer vision (but see [10, 11]).

In this paper, we investigate how logical generalization techniques can help to recog-
nize and delineate substructures in an image. In order to do so, we propose a distance-
based technique for image interpretation. In a more general framework, our aim is to
employ a hierarchical representation of images where each image consists of several
layers of information. The base layer is a set of features generated by a vision system,
e.g. local patterns. A subsequent layer consists of objects, e.g. windows and doors, and
a higher level consists of configurations of objects, e.g. houses. In this paper we focus
on the delineation of meaningful substructures at one particular layer – the house level.

P. Frasconi and F.A. Lisi (Eds.): ILP 2010, LNAI 6489, pp. 22–29, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. (a) Annotated/labeled image (Eindhoven). (b) Annotated image (Eindhoven).

We represent a house as a set of objects and a set of spatial relations defined on them
(hence; a relational attribute graph). Each house is annotated with the locations and
shapes of windows and doors, such that each image structure is spatially embedded in
a 2D plane, and objects are related to each other with respect to this space.

Related to our work, several papers have explored structured models for building
facades [12, 13], but as far as we know, none of these models is based on distances
between logical structures. In [14] a distance measure is employed for images of docu-
ments, and similar problems were tackled using inductive rule learning [15]. However,
our approach builds on recent general results on distance metrics for structured data [17]
to show how easily they can be used for computer vision tasks. In addition, we focus
on a new problem; that of delineating houses in street view images. This can be very
useful to enhance GOOGLE Street View images, or for home delivery robots to better
localize the destination.

2 Setting

For our problem setting we work with street view images of houses. In the Netherlands
many streets exist along which houses are built in one block so as to minimize heat loss
and to keep a uniform architecture (Fig. 1). They exhibit some variation in doors and
windows appearance (e.g. windows having different frame colors), however often there
is considerable consistency in the way these elements are structured at the house level.
A surprisingly limited number of configurations define the concept house. The precise
location, shape or size of a composing elements may vary, but the overall configuration
remains intact. For example, the door is always on the left or right side of the house
and a window is always above a door. In this work we identify such structures from real
images. Utilizing this, we solve the delineation problem, where the goal is to distin-
guish individual houses in images that depict rows of adjacent houses, i.e. of repeated
structures. We can use the same setup for other knowledge levels (e.g. from lower-level
features to the concept window), but in this paper we stop at the level of houses.

Detecting house structures from images assumes access to manually labeled exam-
ples of houses. Each house is annotated with the bounding boxes and the labels of its
composing elements in the image, i.e windows and doors (Fig. 1(a)). This captures the
inherent structure of the concept of a house. The configuration is extracted from these
features by defining 2D spatial relations such as right, above, left, below, close and
touch on the labeled bounding boxes. In this way, any structure can be expressed in
terms of bounding boxes, their labels and spatial relations between them.
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In order to map images to logical representations, we introduce some terminology. A
logical atom is an expression of the form p(t1, . . . , tn) where p/n is a predicate symbol
and ti are terms. We assume a functor-free language, hence terms are built from con-
stants and variables. Constants are denoted in lower case and variables in upper case.
Ground atoms do not contain variables and will be called facts. A Herbrand interpreta-
tion i assigns to each fact in the language a truth-value. We identify i with the set of facts
{a1, . . . , aN} to which it assigns true. A substitution θ = {X1/t1, . . . , Xn/tn} is an
assignment of terms t1, . . . , tn to variables X1, . . . , Xn. Given i1 and i2 interpretations,
i1 θ-subsumes i2 iff there is a substitution θ such that i1 ⊆ i2.

Now we can describe an image Z as follows. First, we obtain a set of objects
{o1,o2, . . . ,on}, by assigning to each bounding box1 a constant oi. We derive a ground
atom for each object j in the form part(oj , label), forming the set O(Z). Second, we
use definitions of spatial relations between bounding boxes in our background knowl-
edge (BK) to derive a set of spatial relations that hold among the objects in O(Z). The
resulting set is denoted R(Z). An example of such an atom derived from the spatial
relation close right is cRight(oj ,ok, distance value), which says that object oj is
close2, on the right of object ok. The term distance value should be within a thresh-
old for the relation to be true. Similarly, cAbove and tRight define close above and
touch right, respectively. The BK can easily be extended, and enables to construct a
logical representation of visual data:

Definition 1. A visual interpretation V of an image Z is the union of a set of object
atoms O(Z) and the set of spatial relation atoms R(Z).

A visual interpretation can be seen as a graph; object atoms are attributed vertices and
relation atoms are directed (attributed) edges between the vertices. New relations can
be used to extend each visual interpretation, by defining them in the BK or adding new
attributes to the existing ones. The key point about visual interpretations is that they are
fully determined by the set of objects and the background knowledge. This implies that
for one image, we can construct multiple visual interpretations by considering different
subsets of the objects in the image, i.e. considering different subgraphs in the image.
These graphs – in the context of our application in vision – will typically be connected.

We can now use the visual interpretations as an instance space, and in effect, a con-
cept represents a set of visual interpretations. For example, some visual interpretations
will belong to the concept ’house’ whereas many others will not. For a particular image
and its corresponding set of objects o, the different possible instances will be the visual
interpretations of the subsets o′ ⊆ o. We denote ζ as the set of all labeled examples of
a concept, called prototypes (Fig. 1(a)).

Example 1. A visual interpretation of the image in Fig. 1(b) is:
Iimg = {part(o1, window), part(o2, door), part(o3, window), part(o4, window),

part(o5, door),part(o6, window), part(o7, window), part(o8, window),

part(o9, window), part(o10, window), cRight(o2,o1, 60.0), tRight(o3,o2, 1.0),

cRight(o4,o3, 10.0), cAbove(o9,o3, 68.0), cAbove(o10,o1, 73.0), cRight(o9,o10, 70.0),

1 Bounding box is a general term; in our experiments we employ polygon-like shapes.
2 In practice we use approximate measures to correct for slight deviations stemming from noise.
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prototype

o14

cAbove,70

o15

o13
o11

o12

cRight,60
tRight,1

cAbove,68
cRight,70

image

cRight,20

cRight,10

cAbove,70

o9

cAbove,72

o10

o3
o1

o2

cRight,61
tRight,3

cRight,65

cAbove,70

o7

cRight,60

tRight,1

o6

cRight,65

o5

cAbove,70

o8

o4

...

...
...

cRight,70

tRight,2

cAbove,70

Fig. 2. Graph representations of a prototype and an image interpretation

cRight(o8,o9, 20.0), cRight(o8,o4, 70.0), cRight(o7,o8, 60.0), cAbove(o7,o6, 70.0),

cRight(o6,o5, 65.0), tRight(o5,o4, 1, 0)}. The prototype house in Fig. 1(a) is:
ζi = {part(o11, window), part(o12, door), part(o13, window), part(o14, window),

part(o15, door), cRight(o12, o11, 60.0), tRight(o13,o12, 1.0), cAbove(o14,o13, 68.0),

cRight(o14,o15, 70.0), cAbove(o15,o11, 68.0)}.

Intuitively our goal is to look for known structures in a new image by trying to embed
prototypes as well as possible in the image. In this direction we define the following:

Definition 2. A matching between two interpretations i1 and i2, m(i1, i2), is a map-
ping such that each atom a1 ∈ i1 corresponds to at most one atom a2 ∈ i2 and vice
versa. To each matching we associate a dissimilarity score d(i1, i2), which indicates
how different the two interpretations are.

A possible matching between two interpretations (depicted as graphs) is shown in Fig. 2.
The quality of the matchings is evaluated by the dissimilarity score. In the next section
we will express this score in terms of a distance metric between interpretations. We
formulate the delineation problem in the following, general, way:

Definition 3. The delineation problem is defined as: given a set of prototypes ζ, a
visual interpretation V of image Z , a dissimilarity score d, find the set of matchings
between parts of V and any of the prototypes in ζ, such that all objects appearing in V
are matched once, and the score d over the matchings is minimized.

In effect, solving the delineation problem will carve up the visual interpretation of an
image into a set of known structures, i.e. individual houses in this paper.

3 Approach

We propose a possible scoring function d and show how to match prototypes in a new
image Z . We combine structure matching and distances on interpretations. Our method
consists of four steps. First, we define spatial BK, and the set of prototypes ζ. Second,
we determine all candidate parts of V . Third, we compute distances between all our
candidate structures and our prototypes. Fourth, we use the computed distances to find
the best delineation. We will now explain the steps.
Step 1 Generate visual interpretations. We first extract image features from Z and
generate a set of objects that together with BK forms a visual interpretation V . In ad-
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dition, we have a set of labeled prototypes ζ generated in the same manner. We try
to find groups of elements which are spatially close and we choose our BK relations
accordingly, with relations such as cRight (more details in the experimental section).
Step 2 Generate matching candidates. Here we investigate parts of a visual interpre-
tation that could be similar to a prototype. We only select sets of objects (and their
corresponding relations) that are connected, resulting in the set M . Each element m of
M is a possible candidate matching, and m must consist of at least two object atoms
and a relation atom and at most all atoms in V . To be able to find the best delineation
in case of noisy information, candidates with a small number of atoms are also needed.
For example, if the image contains only a part of a (hypothetical) house, containing
for example a door or window, they could be grouped with other elements or can be
regarded as configurations on their own to best fit the image.
Step 3 Compute distances. To compute the quality of a matching we use a distance
metric between two visual interpretations. It evaluates how well the two interpreta-
tions match structurally. Although other solutions exist ([16]), here we employ a recent
result of [17] which shows that one can construct a metric for any partially ordered hy-
pothesis space L (such as a subsumption lattice) under some mild assumptions. That
is, d is a metric if it is defined in terms of the generality order on the hypothesis
space, |.| an (anti-monotonic) and strict order preserving size function and d(x, y) =
|x| + |y| − 2|mgg(x, y)|, ∀x, y ∈ L. Here, mgg denotes the minimally general gen-
eralization of two hypotheses x and y. The result allows to derive distance metrics for
different types of objects, including graphs, and therefore this result can be used to
compute distances between interpretations. For example, one can choose a graph iso-
morphism as a partially ordered relation which induces a generality order on graphs,
where the size function can be the number of vertices (see also [18]). Here the mgg cor-
responds to the maximal common subgraph. Computing the distance between graphs
g1 and g2 is equivalent to calculating the distance between their corresponding visual
interpretations using mgg(g1, g2).

Compared to the least general generalization (lgg), which is obtained under θ-
subsumption, the mgg represents computing the lgg under the assumption of object
identity (OI) [19]. The lgg could also be used to find a common part between inter-
pretations (resp. graphs) but it allows for different variables in the lgg to unify. This
collapse of literals into one would violate the strictly ordering preserving condition
for the size function. The mgg on the other hand is not unique (we can find multiple
common parts) and is the result of exact structure matching, i.e. each constant in an
interpretation (resp. each node in a graph) must be matched against a different constant
(resp. node) in the other. Exact structure matching makes also more sense in our setting,
since we want to find specific structures and do not want for example to collapse two
windows into one. An illustration of mgg under OI-assumption is shown in Example 2.

Example 2. Let i1 = {cRight(o1, o2, 2)} and i2 = {cRight(o3, o4, 2), cRight(o5, o4, 2)}.
Under θ-subsumption mggθ ={cRight(X1, X2, 2), cRight(X3, X2, 2)} with θ1 ={X1/o1, X2/o2,
X3/o1}, θ2 = {X1/o3, X2/o4, X3/o5}. Under OI-subsumption there are two possible mggs:

mgg0
OI = {cRight(X1, X2, 2)} with θ0

1 = {X1/o1, X2/o2}, θ0
2 = {X1/o3, X2/o4} and

mgg1
OI = {cRight(X1, X2, 2)} with θ1

1 = {X1/o1, X2/o2}, θ1
2 = {X1/o5, X2/o4}.
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Algorithm 1. Step 4 Delineate the image
Require: prototypes ζ, distance function d, visual interpretation V and matchings M

1: compute Di =
∑

j

dij

|ζ| , ∀mi ∈ M

2: rank mi ∈ M according to Di, select the k-best, forming Mk = {(mi, Di)}
3: let S be all subsets of Mk such that ∀S′ ∈ S all object atoms in V appear exactly once in S′

4: rank all full solutions S′ ∈ S according to ds =
∑

(mi,Di)∈S′ Di

5: return the n-best solutions S∗
n = {S′}

Given the set mggall = {mgg(i1, i2)}, where i1 and i2 are interpretations we now define
the distance between them in the sense of structural matching as:

d(i1, i2) = min
m∈mggall

(|i1| + |i2| − 2|m|) (1)

where | . | is the number of atoms in the interpretation or in the mgg. In practice, we
use a normalized metric d(i1, i2) = min

m∈mggall

(1 − |m|/max(|i1|, |i2|)). Now we can

calculate dij = d(mi, ζj) which is the distance between matching mi and prototype ζj .
Step 4 Delineate the image. We use dij to find the best delineation (see Algorithm 1).
Di is the average of the distances from the candidate matching mi to all the prototypes
of a same concept3. Hence, it deals with the situation when among prototypes there
are noisy examples4. We select the first k pairs (mi, Di) with the smallest distance,
obtaining the set Mk. In a third step we perform a complete search among all subsets
of Mk and select the subsets S satisfying certain constraints. In this work we enforce
that the union of all object atoms in a subset S′ ∈ S is the set of object atoms in the
image interpretation V and the union of all relation atoms in S′ is included or equal to
the set of relation atoms in V . A possible variation is to allow more relaxed versions
of delineations where only some parts of the image are matched, or where matchings
can overlap. The constraints can then enforce that e.g. a tree cannot be part of a house.
Finally, we select from S the set S∗

n = {S′}, where S′ is among the n solutions that best
minimize the sum of distances ds. Once the delineation at the house level is obtained
we can use this information at a next layer (e.g. streets).

4 Experimental Setup and Results

For our experiments we use street view images from Eindhoven. In our dataset there
are two possible configurations depending on the position of the door (on the right or
left side of the house, see Fig. 1(a)). The image dataset was collected using GOOGLE

Street View, and we used the MATLAB toolbox for the LABELME image database [20]
to annotate our images. For each image we annotated the windows and the doors. For
the training images we annotated also the houses (Fig. 1(a)).

The data is represented in XML format and then translated into PROLOG format. We
use close to the right (cRight), close above (cAbove) and touch to the right (tRight)
as spatial relations. Thresholds are used on the distance between house elements for

3 In our case the concept of house.
4 This can happen when perfect examples are not available, but variations from prototypes are.
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Fig. 3. No complete occlusions: (a) Correct delineation. (b) Delineation obtained.

Fig. 4. Image with 5 occluded elements: (a) Correct delineation. (b) Delineation obtained.

Table 1. Delineation results. The accuracy increases as more top ranked solutions are considered.

n first solutions 1 2 3 4 5 6 7 8 9 10
Accuracy 0.73 0.76 0.83 0.9 0.93 0.93 0.93 0.93 0.93 0.96

close (10 ≤ θ ≤ θmax) and touch (θ < 10). θmax is defined relatively to the size
of the objects in the image. The amount k of best matchings is heuristically set to
min(200+20% · |M |, 500). Choosing a k too small leads to finding no solution, while

a high value can give a large search space, prevented by up-bounding k. However, the
best solutions are likely to be found among the first ranked candidates. We use 2 noise-
free house structures (Fig. 1(a)), one for each configuration, to delineate 30 new test
images of houses with the same characteristics as the prototypes, but also different in
appearance, size of house elements and distances between elements. Yet, they keep
the same repeated structure of the houses as in the examples and also contain several
occluded elements. We are able to delineate the houses for less occluded (Fig. 3) and
for noisier images (Fig. 4). For all images we considered the first 1 ≤ n ≤ 10 solutions,
based on the distance value ds. Table 1 shows the experimental evaluation in terms of
accuracy, i.e. the percentage of images with a correct delineation. A delineation of an
image is correct if all individual houses in that image are recognized.

5 Conclusions

In this paper we have introduced a simple technique in which logic and distances be-
tween relational interpretations are used for the recognition of known structures in im-
ages. We have shown that our algorithm can identify substructures that form individual
houses, effectively delineating a block of houses. Both the delineation problem, as well
as the logical decomposition utilizing distances are relatively novel aspects of our ap-
proach. Future work includes incorporating attribute values in the distance function,
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richer background knowledge bases, and more complex house structures. The most
prominent direction is that of replicating our approach in a hierarchical fashion, thereby
performing the interpretation process from low-level to high-level. Another, straightfor-
ward direction is to employ first-order kernels [21] as our distance function.
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Abstract. Logic Programs with Annotated Disjunctions (LPADs) are
a promising language for Probabilistic Inductive Logic Programming. In
order to develop efficient learning systems for LPADs, it is fundamental
to have high-performing inference algorithms. The existing approaches
take too long or fail for large problems. In this paper we adapt to LPAD
the approaches for approximate inference that have been developed for
ProbLog, namely k-best and Monte Carlo.

k-Best finds a lower bound of the probability of a query by identifying
the k most probable explanations while Monte Carlo estimates the prob-
ability by smartly sampling the space of programs. The two techniques
have been implemented in the cplint suite and have been tested on real
and artificial datasets representing graphs. The results show that both
algorithms are able to solve larger problems often in less time than the
exact algorithm.

Keywords: Probabilistic Inductive Logic Programming, Logic Programs
with Annotated Disjunctions, ProbLog.

1 Introduction

Statistical Relational Learning and Probabilistic Inductive Logic Programming
provide successful techniques for learning from real world data. Such techniques
usually require the execution of a high number of inferences in probabilistic
logics, which are costly tasks. In order to reduce the computational load, we
may resort to approximate inference that trades accuracy for speed. In this
paper we present two approaches for computing the probability of queries from
Logic Programs with Annotated Disjunctions (LPADs) [6] in an approximate
way. LPADs are particularly interesting because of their sound semantics, of
their intuitive syntax and because they allow to exploit many of the techniques
developed in Logic Programming for probabilistic reasoning. We present two
approaches inspired by those available for ProbLog [2]: k-best and Monte Carlo.
The first finds a lower bound for the probability of a query by considering only
the k most probable explanations, while the latter estimates the probability of
the query by the fraction of sampled possible worlds where the query is true.
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2 Logic Programs with Annotated Disjunctions

A Logic Programs with Annotated Disjunctions T [6] consists of a finite set
of disjunctive clauses of the form (H1 : α1) ∨ (H2 : α2) ∨ . . . ∨ (Hn : αn) ←
B1, B2, . . . Bm called annotated disjunctive clauses. The Hi, Bi and αi that ap-
pear in such a clause are respectively logical atoms, logical literals and real
numbers in the interval [0, 1] such that

∑n
i=1 αi ≤ 1. If

∑n
i=1 αi < 1, the head

of the annotated disjunctive clause implicitly contains an extra atom null that
does not appear in the body of any clause and whose annotation is 1−∑n

i=1 αi.
For a clause C of the form above, we define head(C) as {(Hi : αi)|1 ≤ i ≤ n}
if

∑n
i=1 αi = 1 and as {(Hi : αi)|1 ≤ i ≤ n} ∪ {(null : 1 − ∑n

i=1 αi)} otherwise.
Moreover, we define body(C) as {Bi|1 ≤ i ≤ m}, Hi(C) as Hi and αi(C) as αi.

In order to define the semantics of an LPAD T , we need to consider its ground-
ing ground(T ) that must be finite, so T must not contain function symbols if it
contains variables. More specifically, an atomic choice is a triple (C, θ, i) where
C ∈ T , θ is a substitution for the variables of C and i ∈ {1, . . . , |head(C)|}
meaning that the head Hi(C)θ : αi(C) was chosen for the clause Cθ. A composite
choice κ is a set of atomic choices that are ground (Cθ is ground) and consistent
((C, θ, i) ∈ κ, (C, θ, j) ∈ κ ⇒ i = j, meaning that only one head is selected for a
ground clause) whose probability P (κ) is given by P (κ) =

∏
(C,θ,i)∈κ αi(C). A

selection σ is a composite choice containing an atomic choice (C, θ, i) in σ for
each clause Cθ in ground(T ) and identifies a normal logic program wσ called a
possible world (or simply world) of T and defined as follows wσ = {(Hi(C)θ ←
body(C))θ|(C, θ, i) ∈ σ}.

WT denotes the set of all the possible worlds of T . Since selections are com-
posite choices, we can assign a probability to possible worlds: P (wσ) = P (σ) =∏

(C,θ,i)∈σ αi(C). The probability of a closed formula φ according to an LPAD T
is given by the sum of the probabilities of the possible worlds where the formula
is true according to the WFS: P (φ) =

∑
σ∈WT ,wσ |=φ P (σ). It is easy to see that

P satisfies the axioms of probability.
In order to compute the probability of a query from a probabilistic logic

program, [6] proposed to first find a covering set of explanations for the query and
then compute the probability from the set by using Binary Decision Diagrams.
An explanation is a composite choice κ such that the query is true in all the
possible worlds consistent with κ. A set K of explanations is covering if each
possible world where the query is true is consistent with at least one of the
explanations in K.

The cplint system1 [5] applied this approach to LPADs. cplint first com-
putes a covering set of explanations for a query by using a Prolog meta-interpreter
that performs resolution and keeps a set of atomic choices that represents a par-
tial explanation. Each time the meta-interpreter resolves the selected goal with
a disjunctive clause, it adds a (possibly non-ground) atomic choice to the partial
explanation and checks for its consistency. If the program is range-restricted,
when the meta-interpreter reaches the empty goal, every atomic choice in the

1 http://www.ing.unife.it/software/cplint/

http://www.ing.unife.it/software/cplint/
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partial explanation becomes ground and an explanation is obtained. By enclos-
ing the meta-interpreter in a findall call, a covering set K of explanations is
found. Then cplint converts K into the following Disjunctive Normal Form
(DNF) logical formula F =

∨
κ∈K

∧
(C,θ,i)∈κ(XCθ = i). The probability of the

query is then given by the probability of F taking value 1. F is converted to a
Decision Diagram that is traversed by using a dynamic programming algorithm
to compute the probability. Specifically, cplint uses Binary Decision Diagram
(BDD) because of the availability of highly efficient packages for processing them.
Since disjunctive clauses may contain any number of logical heads, multivalued
variables are binary encoded by means of boolean variables to be used in BDDs.

3 Approximate Inference

In some domains, computing exactly the probability of a query may be imprac-
tical and it may be necessary to resort to some forms of approximations. [2,3]
proposed various approaches for approximate inference. With iterative deepen-
ing, upper and lower bounds for the probability of the query are computed and
their difference is gradually decreased by increasing the portion of the search
tree that is explored. With the k-best algorithm, only the k most probable ex-
planations are considered and a lower bound is found. With Monte Carlo, the
possible worlds are sampled and the query is tested in the samples. An estimate
of the probability of the query is given by the fraction of sampled worlds where
the query succeeds. All three approaches have been adapted to LPADs and in-
cluded in cplint. In the following we report only on the k-best and Monte Carlo,
since iterative deepening was not giving clear advantages with respect to exact
inference on the datasets tested.

3.1 k-best Algorithm

According to [3], using a fixed number of proofs to approximate the probability is
fundamental when many queries have to be evaluated because it allows to control
the overall complexity. The k-best algorithm uses branch and bound to find the k
most probable explanations, where k is a user-defined parameter. The algorithm
records the k best explanations. Given a partial explanation, its probability
(obtained by multiplying the probability of each atomic choice it contains) is
an upper bound on the probability that a complete explanation extending it
can achieve. Therefore, a partial explanation can be pruned if its probability
falls below the probability of the k-th best explanation. Our implementation
of the k-best algorithm interleaves tree expansion and pruning: a set of partial
explanations are kept and are iteratively expanded for some steps. Those whose
upper bound is worse than the k-th best explanation are pruned. Once the proof
tree has been completely expanded, the k best explanations are translated into
a BDD to compute a lower bound of the probability of the query. This solution
uses a meta-interpreter while ProbLog uses a form of iterative deepening that
builds derivations up to a certain probability threshold and then increases the
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Algorithm 1. Function solve

1: function solve(Goal, Explan)
2: if Goal is empty then
3: return 1
4: else
5: Let Goal = [G|Tail]
6: if G =(\+ Atom) then
7: V alid :=solve([Atom], Explan)
8: if V alid = 0 then
9: return solve(Tail, Explan)

10: else
11: return 0
12: end if
13: else
14: Let L be the list of couples (GL, Step) where GL is obtained by resolving
15: Goal on G with a program clause C on head i with substitution θ
16: and Step = (C, θ, i)
17: return sample cycle(L, Explan)
18: end if
19: end if
20: end function

threshold if k explanations have not been found. The meta-interpreter approach
has the advantages of avoiding to repeat resolution steps at the expense of a
more complex bookkeeping.

3.2 Monte Carlo Algorithm

In [3] the Monte Carlo algorithm for ProbLog is realized by using a vector with an
entry for every probabilistic fact. The entries store whether the facts have been
sampled true, sampled false or not yet sampled. The vector is initialized with
not yet sampled for all facts. Then a transformed ProbLog program is executed
that derives the goal and updates the vector each time a new probabilistic fact
is sampled.

ProbLog’s algorithm requires all the probabilistic facts to be ground in the
input program. While LPADs can be converted to ProbLog programs [1], the
result of the conversion may contain non ground probabilistic facts so ProbLog’s
Monte Carlo algorithm may not always be used.

Our Monte Carlo algorithm for LPADs uses a meta-interpreter that keeps a
partial explanation containing atomic choices for the disjunctive clauses sam-
pled up to that point. The meta-interpreter is realized by Function solve in
Algorithm 1 and returns 1 if the list of atoms of the goal is derivable in the
sample and 0 otherwise. In order to derive the selected literal G of the current
goal, solve finds all the matching clauses and builds a list of couples (new goal,
atomic choice) for each matching clause. Then, it calls Function sample cycle
in Algorithm 2 whose aim is to perform sampling steps for the matching clauses
until the truth of the selected literal is determined and a consistent set of ground



34 S. Bragaglia and F. Riguzzi

Algorithm 2. Function sample cycle

1: function sample cycle(L, Explan)
2: Derivable = 0
3: while Derivable = 0 and L �= ∅ do
4: Remove the first element (GL, (C, θ, i)) from L
5: repeat
6: if Cθ is ground then
7: if (C, θ) is already present in Explan with head j then
8: h := j
9: else

10: h :=sample(C)
11: end if
12: else
13: h :=sample(C)
14: end if
15: Explan := Explan ∪ {(C, θ, h)}
16: if h = i then
17: Derivable :=solve(GL, Explan)
18: else
19: Derivable := 0
20: end if
21: until consistent(Explan)
22: end while
23: return Derivable
24: end function

atomic choices is obtained. Each matching clause is sampled independently and
the resulting atomic choice is added to the partial explanation that is passed by
reference to future calls of solve and sample cycle.

Since a matching clause may be sampled when it is still not completely ground,
further grounding/sampling may lead to inconsistency in the partial explanation.
To address this problem, sampling is repeated until a consistent partial explana-
tion is found. The algorithm is guaranteed to terminate because the same head
will be eventually sampled for each couple of identical groundings of a clause.
Also note that the sampling distribution is not affected since inconsistency arises
independently of the success or failure of a query.

In Algorithm 2, consistent(Explan) returns true if Explan is consistent
while sample(C) samples a head index for clause C. solve is called repeatedly
to obtain the samples of truth values for the goal. The fraction of true values is
an estimation of the probability of the query of interest. The confidence interval
on those samples is computed every m samples and the simulation ends when
its value drops below a user-defined δ.

4 Experiments

We considered three datasets: graphs of biological concepts from [2], artifi-
cial graphs and the UWCSE dataset from [4]. All the experiments have been
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(a) Successes on biological graphs.
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(b) Execution times on biological
graphs.
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(c) Execution times on Lanes graphs.
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(d) Execution times on Branches
graphs.
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(e) Execution times on Parachutes
graphs.
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(f) Execution times on UWCSE
graphs.

Fig. 1. Experimental results

performed on Linux machines with an Intel Core 2 Duo E6550 (2333 MHz) pro-
cessor and 4 GB of RAM. The algorithms were implemented in YAP Prolog and
run on the data for 24 hours or until the program ended for lack of memory.
The values used for the parameters are k = 64 as the number of explanations
to consider for k-best and δ = 0.01 as the maximum confidence interval width
for Monte Carlo algorithm because they represent a good compromise between
speed and accuracy.

The biological networks represent relationships among biological entities. Each
edge is associated with a probability value that expresses the strength of the
relationship. Determining the probability of an indirect association among a
couple of entities is the same as computing the probability that a path exists
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between their nodes. The datasets are obtained from a network containing 11530
edges and 5220 nodes built around four genes responsible of Alzheimer’s disease.
Ten samples were extracted from the whole network each containing 50 graphs
of increasing size (from 200 to 5000 nodes). For our test purposes we queried
the probability that the genes HGNC 620 and HGNC 983 are related. Figure 1
presents the results of the experiments: the number of graphs for which the com-
putation succeeded is reported on Figure 1(a), while Figure 1(b) reports the CPU
time in seconds averaged over the graphs on which the algorithms succeeded as
a function of the number of edges. The experimental results suggest that k-best
does not improve with respect to exact because of the cost of keeping partial
explanations sorted in sparse graphs, but Monte Carlo can solve twice as much
problems than exact (up to 4000 edges). In terms of time, each algorithm per-
forms almost like its ProbLog counterpart. With regard to the average absolute
error, both k-best algorithms show a value of about 0.9%. Monte Carlo’s average
absolute error, however, is 4.9% for our implementation and 6.7% for ProbLog.

The artificial networks were used to evaluate the effective speedup in spe-
cific scenarios. The datasets contain graphs of increasing size that have different
complexity with respect to the branching ratio and the length of paths between
the terminal nodes. The graphs are built iteratively and are named after their
shape: lanes, branches and parachutes. Lanes graphs, for example, gain a new
parallel path a node longer than the previous graph. Branches are more complex
because every step adds a new set of paths a node longer than before by forking
at each node. Parachutes graphs are a trade-off between the two: they fork but
each step introduces only one node (open paths fall back on existing nodes).
Each dataset has a probability 0.3 on the edges and the path definition of lanes
and parachutes contain 300 graphs, while branches only 25. Figure 2 shows an
example for each dataset.

(a) Lanes. (b) Branches. (c) Parachutes.

Fig. 2. Examples of artificial graphs

Again, we queried the probability that a path exists between the terminal
nodes (0 and 1) of the graphs. Figures 1(c), 1(d) and 1(e) show that in almost
any case, our algorithms have performed better than their ProbLog equivalent,
with Monte Carlo always being the fastest. The average absolute error for k-best
and Monte Carlo is 0.001% and 3.170% respectively. ProbLog’s Monte Carlo is
not applicable because of the presence of a probability value in rules for path.
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On the UWCSE dataset, Monte Carlo took 3.873 seconds to solve the problem
with 20 students, while the algorithm CVE of [4] can solve at most the problem
with 7 students and taking around 1000 seconds. For 7 students Monte Carlo
takes 1.961 seconds and incurs in a 4.3% absolute error on the problem with
0 students, the only one for which we have the exact result (see Figure 1(f)).
ProbLog’s Monte Carlo was not applicable because the problem involves non
ground probabilistic facts. ProbLog’s k-best managed to solve the problem with
25 students thus resulting to be the fastest algorithm on this dataset. It incurs
into an absolute error of 4.7% on the problem with 0 students.

The source code of the algorithms together with more details on the datasets
and the experiments are available at the address http://sites.google.com/a
/unife.it/ml/acplint.
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Abstract. Probabilistic logic programming formalisms permit the def-
inition of potentially very complex probability distributions. This com-
plexity can often make learning hard, even when structure is fixed and
learning reduces to parameter estimation. In this paper an approximate
Bayesian computation (ABC) method is presented which computes ap-
proximations to the posterior distribution over PRISM parameters. The
key to ABC approaches is that the likelihood function need not be com-
puted, instead a ‘distance’ between the observed data and synthetic data
generated by candidate parameter values is used to drive the learning.
This makes ABC highly appropriate for PRISM programs which can have
an intractable likelihood function, but from which synthetic data can be
readily generated. The algorithm is experimentally shown to work well
on an easy problem but further work is required to produce acceptable
results on harder ones.

1 Introduction

In the Bayesian approach to parameter estimation a prior distribution for the
parameters is combined with observed data to produce a posterior distribution.
A key feature of the Bayesian approach is that the posterior provides a full
picture of the information contained in prior and data: with an uninformative
prior and little data we are not in a position to make confident estimates of the
parameters and this will be reflected in a flat posterior. In contrast when much
data is available the posterior will concentrate probability mass in small regions
of the parameter space reflecting greater confidence in parameter estimates.

Despite its attractive features the Bayesian approach is problematic because
in many cases computing or even representing the posterior distribution is very
difficult. One area in which this is often the case is statistical relational learning
(SRL). SRL formalisms combine probabilistic models with rich representation
languages (often logical) which allows highly complex probabilistic models to
be described. In particular, the likelihood function (the probability of observed
data as a function of the model’s parameters) is often intractable. This makes
Bayesian and non-Bayesian parameter estimation difficult since the likelihood
function plays a key role in both.
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In this paper an approximate Bayesian computation (ABC) method is pre-
sented which approximates the posterior distribution over the parameters for a
PRISM program with a given structure. The key feature of ABC approaches is
that the likelihood function is never calculated. Instead synthetic datasets are
generated and compared with the actually observed data. If a candidate param-
eter set generates synthetic datasets which are mostly ‘close’ to the real data
then it will tend to end up with high posterior probability.

The rest of the paper is set out as follows. In Section 2 an account of ap-
proximate Bayesian computation is given. In Section 3 the essentials of PRISM
programs are explained. Section 4 is the core of the paper where it is shown how
to apply ABC to PRISM. Section 5 reports on initial experimental results and
the paper concludes with Section 6 which includes pointers to future work.

2 Approximate Bayesian Computation

The ABC method applied in this paper is the ABC sequential Monte Carlo (ABC
SMC) algorithm devised by Toni et al [1] and so the basic ideas of ABC will
be explained using the notation of that paper. ABC approaches are motivated
when the likelihood function is intractable but it is straightforward to sample
synthetic data using any given candidate parameter set θ∗.

The simplest ABC algorithm is a rejection sampling approach described by
Marjoram et al [2]. Since this is a Bayesian approach there must be a user-defined
prior distribution π(θ) over the model parameters. Let x0 be the observed data.
If it is possible to readily sample from π(θ) then it is possible to sample from
the posterior distribution π(θ|x0) as follows: (1) sample θ∗ from π, (2) sample
synthetic data x∗ from the model with its parameters set to θ∗, (i.e. sample from
f(x|θ∗) where f is the likelihood function), (3) if x0 = x∗ accept θ∗. The problem,
of course, with this algorithm is that in most real situations the probability of
sampling synthetic data which is exactly equal to the observed data will be tiny.

A somewhat more realistic option is to define a distance function d(x0, x
∗)

which measure ‘how close’ synthetic data x∗ is to the real data x0. x∗ is now
accepted at stage (3) above when d(x0, x

∗) ≤ ε for some user-defined ε. With
this adaptation the rejection sampling approach will produce samples from

π(θ|d(x0, x
∗) ≤ ε)

As long as ε is reasonably small, this will be a good approximation to π(θ|x0).
Choosing a value for ε is crucial: too big and the approximation to the pos-

terior will be poor, too small and very few synthetic datasets will be accepted.
A way out of this conundrum is to choose not one value for ε, but a sequence
of decreasing values: ε1, . . . εT (ε1 > · · · > εT ). This is the key idea behind the
ABC sequential Monte Carlo (ABC SMC) algorithm:

In ABC SMC, a number of sampled parameter values (called parti-
cles) {θ(1) . . . θ(N)}, sampled from the prior distribution π(θ), is propa-
gated through a sequence of intermediate distributions π(θ|d(x0 , x

∗) ≤
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εt), t = 1, . . . T − 1, until it represents a sample from the target distri-
bution π(θ|d(x0, x

∗) ≤ εT ). [1]

An important problem is how to move from sampling from π(θ|d(x0, x
∗) ≤ εt)

to sampling from π(θ|d(x0, x
∗) ≤ εt+1). In ABC SMC this is addressed via

importance sampling. Samples are, in fact, not sampled from π(θ|d(x0, x
∗) ≤ εt)

but from a different sequence of distributions ηt(θ). Each such sample θt is then
weighted as follows wt(θt) = π(θt|d(x0,x∗)≤εt)

ηt(θt)
. η1, the first distribution sampled

from, is chosen to be the prior π. Subsequent distributions ηt are generated via a
user-defined perturbation kernels Kt(θt−1, θt) which perform moves around the
parameter space.

These are the basic ideas of the ABC SMC algorithm; full details are supplied
by Toni et al [1] (particularly Appendix A). As a convenience the description of
the ABC SMC algorithm supplied in that paper is reproduced (almost verbatim)
in Fig. 1.

S1 Initialise ε1, . . . εT .
Set the population indicator t = 0.

S2.0 Set the particle indicator i = 1.

S2.1 If t = 0, sample θ∗∗ independently from π(θ).

If t > 0, sample θ∗ from the previous population {θ(i)
t−1} with weights wt−1

and perturb the particle to obtain θ∗∗ ∼ Kt(θ|θ∗), where Kt is a perturbation
kernel.
If π(θ∗∗) = 0, return to S2.1
Simulate a candidate dataset x∗

(b) ∼ f(x|θ∗∗) Bt times (b = 1, . . . , Bt) and

calculate bt(θ
∗∗) =

∑Bt
b=1 1(d(x0, x

∗
(b)) ≤ εt).

If bt(θ
∗∗) = 0, return to S2.1.

S2.2 Set θ
(i)
t = θ∗∗ and calculate the weight for particle θ

(i)
t ,

w
(i)
t =

⎧⎨
⎩

bt(θ
(i)
t ), if t = 0

π(θ
(i)
t )bt(θ

(i)
t )∑

N
j=1 w

(j)
t−1Kt(θ

(j)
t−1,θ

(j)
t )

if t > 0

If i < N set i = i + 1, go to S2.1
S.3 Normalize the weights.

If t < T , set t = t + 1, go to S2.0

Fig. 1. ABC SMC algorithm reproduced from Toni et al [1]

Note, from Fig. 1, that rather than generate a single dataset from f(x|θ∗∗),
Bt datasets are sampled where Bt is set by the user. The quantity bt(θ∗∗) is the
count of synthetic datasets which are within εt. The intuitive idea behind ABC
SMC is that a particle θ∗∗ that generates many synthetic datasets ‘close’ to x0,
will get high weight and is thus more likely to be sampled for use at the next
iteration.
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3 PRISM

PRISM (PRogramming In Statistical Modelling) [3] is a well-known SRL formal-
ism which defines probability distributions over possible worlds (Herbrand mod-
els). The probabilistic element of a PRISM program is supplied using switches.
A switch is syntactically defined using declarations such as those given in Fig. 2
for switches init, tr(s0), tr(s1), out(s0) and out(s1).

The declaration in Fig. 2 for init, for example, defines an infinite collection of
independent and identically distributed binary random variables init1, init2, . . .
with values s0 and s1 and with distribution P (initi = s0) = 0.9, P (initi =
s1) = 0.1 for all i.

The rest of a PRISM program is essentially a Prolog program. Switches pro-
vide the probabilistic element via the built-in predicate msw/2. Each time a goal
such as :- msw(init,S) is called the variable S is instantiated to s0 with prob-
ability 0.9 and s1 with probability 0.1. If this were the ith call to this goal then
this amounts to sampling from the variable initi.

Although later versions of PRISM do not require this, it is convenient to spec-
ify a target predicate where queries to the target predicate will lead to calls to
msw/2 goals (usually via intermediate predicates). The target predicate is thus
a probabilistic predicate: the PRISM program defines a distribution over instan-
tiations of the variables in target predicate goals. For example, in the PRISM
program in Fig. 2 which implements a hidden Markov model, hmm/1 would be
the target predicate. A query such as :- hmm(X). will lead to instantiations such
as X = [a,a,b,a,a].

values(init,[s0,s1]). % state initialization

values(out(_),[a,b]). % symbol emission

values(tr(_),[s0,s1]). % state transition

hmm(L):- % To observe a string L:

msw(init,S), % Choose an initial state randomly

hmm(1,5,S,L). % Start stochastic transition (loop)

hmm(T,N,_,[]):- T>N,!. % Stop the loop

hmm(T,N,S,[Ob|Y]) :- % Loop: current state is S, current time is T

msw(out(S),Ob), % Output Ob at the state S

msw(tr(S),Next), % Transit from S to Next.

T1 is T+1, % Count up time

hmm(T1,N,Next,Y). % Go next (recursion)

:- set_sw(init, [0.9,0.1]), set_sw(tr(s0), [0.2,0.8]),

set_sw(tr(s1), [0.8,0.2]), set_sw(out(s0),[0.5,0.5]),

set_sw(out(s1),[0.6,0.4]).

Fig. 2. PRISM encoding of a simple 2-state hidden Markov model (this example is
distributed with the PRISM system)
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The switch probabilities are the parameters of a PRISM program and the
data used for parameter estimation in PRISM will be a collection of ground in-
stances of the target predicates which are imagined to have been sampled from
the unknown ‘true’ PRISM program with the ‘true’ parameters. PRISM con-
tains a built-in EM algorithm for maximum likelihood parameter and maximum
a posteriori (MAP) estimation [4]. In both cases a point estimate for each pa-
rameter is provided. In contrast here an approximate sample from the posterior
distribution over parameters is provided by a population of particles.

4 ABC for PRISM

To apply the ABC SMC algorithm it is necessary to choose: (1) a prior distribu-
tion for the parameters, (2) a distance function, (3) a perturbation kernel and
(4) also the specific experimental parameters such as the sequence of εt, etc. The
first of these three are dealt with in the following three sections (4.1–4.3). The
choice of experimental parameters is addressed in Section 5.

4.1 Choice of Prior Distribution

The ‘obvious’ prior distribution is chosen. Each switch has a user-defined Dirich-
let prior distribution and the full joint prior distribution is just a product of these.
This is the same as the prior used for MAP estimation in PRISM [4, §4.7.2]. To
sample from this prior it is enough to sample from each Dirichlet independently.
Sampling from each Dirichlet is achieved by exploiting the relationship between
Dirichlet and Gamma distributions. To produce a sample (p1, . . . , pk) from a
Dirichlet with parameters (α1, . . . αk), values zi are sampled from Gamma(αi, 1)
and then pi is set to zi/(z1 + · · · + zk). The zi are sampled using the algorithm
of Cheng and Feast [5] for αi > 1 and the algorithm of Ahrens and Dieter [6]
for αi ≤ 1. Both these algorithms are given in [7]. For Dirichlet distributions
containing small values of αi, numerical problems sometimes produced samples
where pi = 0 for some i which is wrong since the Dirichlet has density 0 for any
probability distribution containing a zero value. This problem was solved by the
simple expedient of not choosing small values for the αi!

4.2 Choice of Distance Function

The basic ABC approach leads to a sample drawn from π(θ|d(x0, x
∗) ≤ ε) rather

than π(θ|x0). For this to be a good approximation it is enough that f(x∗|θ) ≈
f(x0|θ) for all x∗ where d(x0, x

∗) ≤ ε. With this in mind d is defined as follows.
Let P (x0) be the empirical distribution defined by the real data x0. P (x0) as-
signs a probability to every possible ground instance of the target predicate. This
probability is just the frequency of the ground instance in the data divided by
the total number of datapoints. P (x∗) is the corresponding empirical distribution
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for fake data x∗. Both P (x0) and P (x∗) can be viewed as (possibly countably
infinite) vectors of real numbers. The distance between x and x∗ is then defined
to be the squared Euclidean distance between P (x0) and P (x∗). Formally:

d(x, x∗) =
∑
i∈I

(P (x0)(i) − P (x∗)(i))2 (1)

where I is just some (possibly countably infinite) index set for the set of all
ground instances of the target predicate. In practice most terms in the sum on
the RHS of (1) will be zero, since typically most ground instances appear neither
in the real data nor in fake datasets.

4.3 Choice of Perturbation Kernel

Recall that each particle θ∗ defines a multinomial distribution of the appropri-
ate dimension for each switch of the PRISM program. The perturbation kernel
Kt(θ|θ∗) has two stages. Firstly, Dirichlet distributions are derived from θ∗ by
multiplying each probability in θ∗ by a global value αt where αt > 0. Secondly,
a new particle is sampled from this product of Dirichlets using exactly the same
procedure as was used for sampling from the original prior distribution. Large
values of αt will make small moves in the parameter space likely (since the
Dirichlet distributions will be concentrated around θ∗) and small values of αt

will encourage larger moves. An attractive option is to start with small values
of αt to encourage exploration of parameter space and to progressively increase
αt in the hope of convergence to a stable set of particles giving a good approxi-
mation to the posterior.

5 Experimental Results

The ABC SMC algorithm has been implemented as a PRISM program which
is supplied in the supplementary materials. PRISM 2.0 beta 4, kindly supplied
by the PRISM developers, was used. As an initial test, ABC was done for the
simplest possible parameter estimation problem. A PRISM program represent-
ing a biassed coin (P (heads) = 0.7, P (tails) = 0.3) was written and data of 100
simulated tosses were produced. This resulted in 67 heads and 33 tails. ABC
was run several times with the following (more or less arbitrarily chosen) pa-
rameters: prior distribution π(θ) = Dir(1, 1), sequence of thresholds ε = (0),
number of synthetic datasets Bt = 50, perturbation kernel parameter αt = 2,
number of particles T = 50 and population size N = 50. As expected the
final population of (weighted) particles were always concentrated around the
maximum likelihood estimate P (heads) = 0.67, P (tails) = 0.33. Here are the
4 most heavily weighted particles with their weights from one particular run:
(0.646, 0.3534), (w = 0.051), (0.647, 0.353), (w = 0.044), (0.667, 0.332), (w =
0.044), (0.62, 0.38), (w = 0.037). Estimates of the posterior mean were simi-
lar for different ABC runs: here are such estimates from 5 runs: (0.663, 0.337),
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Fig. 3. Posterior distributions for HMM switch probabilities init, out(s0), out(s1),
tr(s0), tr(s1) as estimated by three different runs of ABC.
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(0.655, 0.345), (0.664, 0.336), (0.667, 0.333), (0.677, 0.323). Note that, in this triv-
ial problem, successful parameter estimation was possible by going directly for
a zero distance threshold ε = (0).

For a more substantial test, 100 ground hmm/1 atoms were sampled from
the PRISM encoded HMM show in Fig. 2. Dir(1, 1) priors were used for all 5
switches. The experimental parameters were αt = 10, Bt = 100, N = 200 and ε =
(0.1, 0.05). Ideally, different runs of ABC should generate similar approximations
to posterior quantities. To look into this, marginal posterior distributions for the
probability of the first value of each of the 5 switches were estimated using 3
different ABC runs. The results are shown in Fig. 3. These plots were produced
using the density function in R with the final weighted population of particles as
input. There is evident variation between the results of the 3 runs, but similarities
also. All 3 densities for init contain two local modes, all 3 for out(s1) put most
mass in the middle, all 3 for tr(s0) have a fairly even spread apart from extreme
values.

6 Conclusions and Future Work

This paper has described ABC SMC for PRISM programs and has shown some
initial results for a working implementation. Evidently, considerably more exper-
imentation and theoretical analysis is required to provide reliable approximations
to posterior quantities using ABC SMC. In the experiments reported above the
perturbation kernel Kt did not vary with t. It is likely that better results are
possible by reducing the probability of big perturbations as t increases. In addi-
tion the choice for the sequence εt thresholds was fairly arbitrary. Finally, it may
be that better results are achievable by throwing more computational resources
at the problem: most obviously increasing the number of particles, but also by
lengthening the sequence of εt thresholds to effect a smoother convergence to
the posterior.

Another avenue for improvement is the choice of distance function. The func-
tion introduced in Section 4.2 is a generic function that is applicable to any
PRISM program. It seems likely that domain knowledge could be used to choose
domain-specific distance functions which reflect the ‘real’ difference between dif-
ferent ground atoms. The function used here treats all distinct pairs of ground
atoms as equally different which will not be appropriate in many cases.
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Abstract. Traditionally, rule learners have learned deterministic rules
from deterministic data, that is, the rules have been expressed as logi-
cal statements and also the examples and their classification have been
purely logical. We upgrade rule learning to a probabilistic setting, in
which both the examples themselves as well as their classification can be
probabilistic. The setting is incorporated in the probabilistic rule learner
ProbFOIL, which combines the principles of the relational rule learner
FOIL with the probabilistic Prolog, ProbLog. We report also on some
experiments that demonstrate the utility of the approach.

1 Introduction

Rule learners are amongst the most popular and easiest to use machine learning
systems. They learn logical rules from deterministic examples but do not re-
ally take into account uncertainty. On the other hand, the graphical model and
statistical relational learning community are able to reason about uncertainty
but have not yet contributed many approaches to learning logical rules. This
paper wants to alleviate this situation by introducing a novel probabilistic rule
learning setting. In this setting, logical rules are learned from probabilistic data
in the sense that both the examples themselves and their classifications can be
probabilistic.

As a motivating example that we will use throughout this paper, consider the
following windsurfing problem. It is inspired by Quinlan’s play-tennis example.
The difference between playing tennis and going windsurfing is that windsurf-
ing typically needs to be planned ahead of time, say on the previous day. The
effect is that the weather conditions at the next day will still be uncertain at
the time of deciding whether to go surfing or not. The forecast might state that
tomorrow the probability of precipitation (pop) is 20%, the wind will be strong
enough with probability 70%, and the sun is expected to shine 60% of the time,
which could be represented by the facts

0.2::pop(t). 0.7::windok(t). 0.6::sunshine(t).

where the t indicates the identifier for the example. Past experience in this
case would consist of such descriptions together with a probability value for the
target predicate (e.g., 0.7::surfing(t)), which could indicate, for instance, the
percentage of persons in our team that enjoyed the activity, the percentage of
time that we enjoyed the surfing, etc. This type of data can be represented using
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a traditional attribute-value table, where the attributes are all Boolean and the
values are the probabilities with which the attribute is true.

The probabilistic rule learning problem, introduced in this paper, is now to
induce a set of rules that allows one to predict the probability of the example
from its description. For instance, for the surfing example, the following rules
could be induced:

surfing(X) :- not pop(X), windok(X).
surfing(X) :- not pop(X), sunshine(X).

where the argument X specifies the identifier of the example. The first rule states
that if the expected precipitation is low and the wind is ok, the surfing is likely
to be good. There is thus a declarative logical reading of these rules, but also a
probabilistic one: the lower the precipitation is and the higher the probability
of windok and sunshine the higher the probability that the surfing will be en-
joyable. Using the description of the example (0.2::pop(t). 0.7::windok(t).
0.6::sunshine(t).), we can compute the probability of surfing(t) under this
hypothesis. Assuming all facts in the description are independent, this reduces
to

P (surfing(t)) = P ((¬pop(t) ∧ windok(t))∨ (¬pop(t) ∧ sunshine(t))
= P ((¬pop(t) ∧ windok(t))

∨(¬pop(t) ∧ sunshine(t)∧ ¬windok(t)))
= 0.8× 0.7 + 0.8× 0.6× 0.3 = 0.704

where the rewriting is needed to make the two rules mutually exclusive.
Observe that although the windsurfing example is a toy example, this type of

probabilistic data arises naturally in many application domains, such as robotics,
vision, natural language processing and the life sciences. For instance, in a vision
context there might be uncertainty about the identity, features or class of the
object just observed; cf. also the experimental section. In the literature this kind
of evidence is known as soft evidence, which has been studied in the context of
probabilistic graphical models. The goal is there typically to calculate the most
likely state for the remaining distributions [1].

One might want to tackle the probabilistic rule learning problem with tradi-
tional rule learning techniques. Two approaches come to mind, but turn out to
be problematic. First, one might simply ignore the probabilities in the exam-
ple and take the most likely value instead. Applied to the above example, this
would yield the positive example (because 0.7 ≥ 0.5) with the description (not
pop(t). windok(t). sunshine(t).). Even though the two rules – in this case
– would predict the correct class, this approach necessarily leads to a loss of
information as only 0/1 values can be predicted, which also results in a loss of
prediction accuracy. Secondly, one might want to turn the probabilistic example
into a set of deterministic ones by sampling instances from the example. Indeed,
for each fact and the target predicate in the example one could sample possible
deterministic facts. Each fact p :: f would be sampled as true with probability p
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and as false with probability 1− p. This causes two problems. First, the gener-
ated examples may be inconsistent with one another as generated examples may
be identical except for their target class. This will cause problems to many rule
learners. Second, it requires one to sample a lot of deterministic instances from
a probabilistic one to avoid overfitting. If there are n facts and approximating
one attribute up to a certain accuracy requires k samples, approximating the
entire example with the same accuracy will require kn deterministic examples.
Although from these examples one could in principle learn the rules, and one
could use the rules to compute the probability of an example by classifying a set
of deterministic samples from that example, it should be clear that this approach
will lead to combinatorial problems.

A further approach that one might try is to consider the learning task as
a regression problem. In the inductive logic programming community several
techniques have been developed that integrate rule learning with regression,
cf. [2,3]. These can also be applied to learn a set of Prolog rules that would
compute the probability of an example. However, these rules typically contain a
(complicated) equation that allows one to compute the probability or value of
the example in terms of the probability of the features. While the performance of
such approaches is typically good, the resulting rules are much harder to interpret
than the logical ones that we induce. Furthermore, this type of approach is not
really integrated in a probabilistic logical or statistical relational learning system.

This paper is organized as follows: In Section 2, we review ProbLog and for-
mally introduce the problem; in Section 3, we analyze the problem of proba-
bilistic rule learning and compare it to the deterministic case; in Section 4, we
introduce the probabilistic rule learner ProbFOIL which integrates principles of
FOIL and ProbLog; in Section 5, we report on some preliminary experiments,
and finally, in Section 6, we conclude.

2 Problem Specification

We first introduce ProbLog, a probabilistic Prolog [4,5]. A ProbLog program
consists of a set of definite clauses D and a set of probabilistic facts pi :: ci,
which are facts ci labeled with the probability pi that their ground instances ciθ
are true. It is also assumed that the probabilities of all ground instances ciθ are
mutually independent.

Given a finite set of possible substitutions {θj1, . . . θjij} for each probabilistic
fact pj :: cj, a ProbLog program T = {p1 :: c1, · · · , pn :: cn} ∪ D defines a
probability distribution

P (L | T ) =
∏

ciθj∈L
pi

∏
ciθj∈LT \L

(1− pi)

over ground subprograms L ⊆ LT = {c1θ11, . . . c1θ1i1 , · · · , cnθn1, . . . , cnθnin}.
ProbLog is then used to compute the success probability

Ps(T |= q) =
∑

L⊆LT

P (q|L ∪D) · P (L|T )
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of a query q in a ProbLog program T , where P (q|L ∪ D) = 1 if there exists a
θ such that L ∪ D |= qθ, and P (q|L ∪ D) = 0 otherwise. In other words, the
success probability of query q corresponds to the probability that the query q is
entailed using the background knowledge together with a randomly sampled set
of ground probabilistic facts. An example ProbLog program and query is shown
above in the surfing example. For more details on ProbLog as well as on its
efficient implementation, we refer to [5].

We are now able to formalize the problem of inductive probabilistic logic pro-
gramming or probabilistic rule learning as follows:

Given:

1. E = {(xi, pi)|xi a ground fact for the unknown target predicate t;
pi ∈ [0, 1] the target probability of xi}, the set of examples;

2. a background theory B containing information about the examples in the
form of a probabilistic ProbLog program;

3. a loss function loss(H, B, E), measuring the loss of a hypothesis H (that is,
a set of clauses) w.r.t. B and E;

Find: argminH loss(H, B, E) = arg minH

∑
ei∈E |Ps(B ∪H |= e)− pi|

This loss function aims at minimizing the absolute difference between the predic-
tions and the observations. The reason for this choice is, on the one hand, that it
is the simplest possible choice and, on the other hand, that well-known concepts
and notions from rule learning and classification carry over to the probabilistic
case when this loss function is used as we shall show.

There are several interesting observations about this problem setting. First,
it generalizes both traditional rule learning and inductive logic programming
to a probabilistic setting. The propositional case illustrated in the windsurfing
example is an example of probabilistic rule learning. Furthermore, when the
background theory contains also relations and possibly clauses defining further
predicates we obtain an inductive probabilistic logic programming setting. In
both cases, the original setting is obtained by assuming that the background
theory is purely logical and having as only values for the examples 1 and 0;
1 corresponding to the positive examples and 0 to the negative ones. This is
in line with the theory of probabilistic logic learning [6] and the inductive logic
programming setting obtained would be that of learning from entailment because
examples are facts that are probabilistically entailed by the theory.

Second, as in traditional symbolic learning the goal is to find a set of logical
rules that satisfy certain constraints, while the rules themselves do not possess
any parameters. To the best of the authors’ knowledge this problem has not been
studied before. It is also interesting to position this problem in the context of the
literature on uncertainty in artificial intelligence. There one typically makes a
distinction between parameter learning and structure learning, the latter being
an extension of the former in that also in structure learning the parameters have
to be estimated. The probabilistic rule learning problem introduced above is
in a sense dual to the parameter estimation problem. Indeed, when estimating
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parameters, the structure of the model is assumed to be given and fixed, while
here the parameters (the probability values) are fixed and the structure, that is,
the rules are to be learned.

It is of course also possible to extend the problem setting so that induced
rules may contain new predicates defined by probabilistic facts with unknown
probability values. This can be realized by adding to each clause h :- b1, ..., bm

in a hypothesis a new literal l where l would be defined through a probabilistic
predicate that would be unique to the clause. This type of extension would
require both rule learning and parameter estimation. Although we are currently
exploring this setting, we will – in the present paper – not consider this setting
any further and focus instead on the pure probabilistic rule learning problem
because it is this setting that directly upgrades the well established rule-learning
problem.

3 Analysis

A key difference between the probabilistic and the deterministic setting is that
each example ei now has a target probability pi as opposed to a 1/0 value.
Furthermore, while in the deterministic case one obtains a 1/0 error, the proba-
bilistic case is more subtle. To clarify this, we use pi to denote the positive and
ni = 1−pi the negative part of the example ei, while ph,i and nh,i = 1−ph,i de-
note the positive and negative prediction w.r.t. the hypothesis h, and introduce
the following quantities:

1. the true positive part tpi = min(pi, ph,i),
2. the true negative part tni = min(ni, nh,i),
3. the false positive part fpi = max(0, ni − tni), and
4. the false negative part fni = max(0, pi − tpi).

These notions are graphically illustrated in Figure 1. If the prediction is perfect,
that is, if ph,i = pi, then nh,i = ni, then the true positive and negative parts
are maximal and the false positive and negative part are minimal, that is, 0.
However, if ph,i > pi the hypothesis h overestimates the positive part of the
example, and hence, the true positive part is still pi but the false positive part
will be non-zero. Dually, if ph,i < pi, the true negative part is still ni but the
false negative part will be non-zero. Furthermore, let us denote by

TP =
∑

i

tpi; TN =
∑

i

tni; FP =
∑

i

fpi; FN =
∑

i

fni

that is, the sum of the tpi, tni, fpi and fni, where the sum is taken over all
examples in the dataset and by

M = |E|; P =
∑

i

pi; N =
∑

i

ni

These notions can be displayed in a contigency table, cf. Table 1. It should be
clear that this probabilistic contingency table and the above introduces notions
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Table 1. A probabilistic contingency table

Predicted True Predictive False

Real True TP FN P
Real False FP TN N

M

Fig. 1. The true and false positive and negative part of a single example

directly generalize the deterministic case. To see this, consider that any positive
example classified as such will contribute a value of tpi = 1 to TP and fni = 0
to FN , and any positive example classified as negative will contribute tpi = 0
to TP and fni = 1 to FN . Thus we have the following property.

Property 1. The probabilistic contingency table generalizes the deterministic
one.

The different notions are graphically displayed in Figure 2, in which the x-axis
contains the examples and the y-axis their probability and all the examples
are ordered according to increasing target probability. The areas then denote
the respective rates. The deterministic case is illustrated in the figure 2 (right),
which shows that in this case the examples take on 1/0 values. Because the
TP and FP rates form the basis for ROC analysis, traditional ROC analysis, as
used in rule learning and classification systems can be applied to the probabilistic
rule learning setting that we study in this paper. The reason is that any given
hypothesis corresponds to a point in ROC space and can be interpreted in a
similar way as in traditional rule learning. Therefore, ROC analysis techniques
and measures such as AUC essentially carry over to the probabilistic case.

Using these notions we also define precision, recall (true positive rate) and
accuracy using the standard formulas.

precision = TP
TP+FP m-estimate = TP+m· P

N

TP+FP

recall = TP
TP+FN accuracy = TP+TN

TP+TN+FP+FN
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Fig. 2. The true and false positive part of an entire dataset for the probabilistic (left)
case, and for the deterministic case (right)

4 ProbFOIL: A Probabilistic First Order Rule Learner

We now develop a probabilistic rule learner called ProbFOIL, which is able to
induce probabilistic logic programs from examples. The rule learner is simple in
that it follows the standard and generally accepted principles of rule learners
(as described by [7,8]) but does not yet incorporate advanced pruning strategies.
Instead of incorporating very elaborated pruning techniques we restrict ourselves
to incremental reduced error pruning which is known to have a good trade-off
between complexity and quality and the m-estimate which is known to give
reliable results in the presence of noise.

While developing ProbFOIL (Algorithm 1) we started from the generic sepa-
rate and conquer paradigm (sometimes called the sequential covering algorithm)
and modified it as little as possible. Essentially, the algorithm repeatedly adds
clauses to the hypothesis in the outer loop until adding further clauses decreases
the quality of the hypothesis. Furthermore, while searching ffor the next clause
(lines 5-8) it searches greedily according to some local scoring function in which
it repeatedly adds literals to the current clause until some local stopping criterion
is satisfied. To determine the possible literals, a refinement operator ρ is applied
to the current clause; cf. [6]. We also employ list notation for the bodies of the
rules, where the notation [b, l] denotes the result of appending the literal l to the
body b. The post-processing step of the rule in lines 9-11 implements a kind of
post-pruning akin to that in IREP [9]. The resulting algorithm is very much like
the standard rule-learning algorithm known from the literature; cf. [7,8].

While the algorithm is similar to that of typical rule-learners, it is important to
realize that there are also some subtleties. First, adding clauses to the hypothesis
for the target predicate is a monotonic operation, that is, it can only increase
the probability of an individual example because adding a clause results in extra
possibilities for proving that the example is true. More formally:

Property 2. For all hypotheses H1, H2: H1 ⊆ H2 → TP (H1) + FP (H1) ≤
TP (H2) + FP (H2).
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Interpreted using Figure 2, adding clauses to a hypothesis can only increase the
FP and TP regions, that is, move them upwards, and at the same time reduce
the FN and TP ones. This explains why ProbFOIL stops adding clauses to the
hypothesis when adding the rule found last does not result in a better global
score. This is akin to the standard stopping criterion employed in many rule
learners. As the global scoring function we employ accuracy(H).

Secondly, notice that specializing a clause, that is, adding literals to a clause
can only decrease the probability of examples (and hence, decrease the TP and
FP regions).

Property 3. For all hypotheses H and clauses h ← l1, ..., ln and literals l: TP (H∪
{h ← l1, ..., ln})+FP (H∪{h ← l1, ..., ln}) ≤ TP (H∪{h ← l1, ..., ln, l})+FP (H∪
{h ← l1, ..., ln, l})

Thirdly, while traditional deterministic rule learners typically manipulate also
the set of examples (e.g. deleting the already covered examples), our probabilistic
rule learner takes into account all examples all of the time. In the deterministic
case, deleting the already covered examples is warranted because if one rule in
the hypothesis covers the example, the overall hypothesis will cover the example.
In the probabilistic case, this is more subtle as a given rule may only cover part
of the example, and therefore a multi-rule hypothesis may be needed to cover
the full positive part of an example. Our algorithm takes this into account in
the heuristics used in its inner loop, where it will make decisions based on the
extra parts of the examples that become covered by the new rule. In terms of the
visualization in Figure 2, this is the difference between the old and new TP and
FP parts. However, because each rule may only cover fractions of the examples,
we use the difference in m-estimate, i.e.,

localscore(H, c) = m-estimate(H ∪ {c})−m-estimate(H)

The m-estimate, on which the local scoring function is based, is a variant of
precision that is more robust against noise in the training data.

Finally, ProbFOIL stops refining rules when the current rule does not cover
any extra negative part any more, or when it does not cover any extra positive
part any more. More formally,

localstop(H, c) = (TP (H ∪ {c})− TP (H) = 0) ∨ (FP ({c}) = 0)

It should also be clear that standard extensions of rule-learning, such as those
for dealing with multiple classes, using beam-search, and look-ahead, can easily
be incorporated in ProbFOIL.

5 Experiments

We demonstrate our approach in two experiments. In the first experiment we
learned the rules for the surfing example, in the second experiment we learned
the underlying rules in the Eulisis game starting from image data. We used the
YAP-ProbLog implementation and computed all scores using exact inference.
All experiments were performed on a 3GHz Machine with 2GB of Ram.
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Algorithm 1. The ProbFOIL algorithm
1: h := t(X1, . . . , Xn) where t is the target predicate and the Xi distinct variables;
2: H := ∅; b := []; c := (h ← b);
3: repeat
4: b := []; initially the body of the rule is empty;
5: while ¬localstop(H ,h ← b) do � Grow rule
6: l := arg maxl∈ρ(h←b) localscore(h ← [b, l])
7: b := [b, l]

8: let b = [l1, . . . , ln]
9: i := arg maxi localscore(H,h ← l1, ..., li);

10: c := p(X1, . . . , Xn) ← l1, . . . , li;
11: if globalscore(H) < globalscore(H ∪ {c}) then
12: H := H ∪ {c}
13: until globalscore(H) > globalscore(H ∪ {c})
14: return H

5.1 Surfing

For the surfing example we generated a dataset of 20 training examples starting
from the two clauses listed in the introduction. The probabilities of the features
were randomly initialized, and we were able to rediscover the original rule set.
The runtime was less than 40 seconds. Afterwards we tried to rediscover the
original rule-set. The rule-set inferred was

1.) surfing(I):- windok(I),\+ pop(I)
2.) surfing(I):- \+ pop(I),sunshine(I).
3.) % surfing(I):- sunshine(I),\+ windok(I).

Please note that when calculating the score of a rule I is ground. This allows
to calculate the probability of negated literals. The last rule decreases the total
accuracy therefor it is in accordance to the algorithm not added to the final
rule-set and search is stopped. Runtime was less then 40 seconds.

5.2 Eulisis

For the second experiment we used the game of Eulisis [10]. Eulisis is a game
where the dealer has a secret set of rules in mind. For each partial sequence
of cards, the rules specify which cards are valid extensions of the sequence and
which ones are not. After a card is played, the players are told whether the card
is a valid extension or not. Using this information they have to guess the set of
secret rules. The concept represented by the rules has to be expressed in terms
of the suit, rank, color of the card, and whether it is is even or a face card.

We played this game against the computer by taking actual images of the
played cards (cf. also Figure 2). First, we presented the computer a sequence of
32 cards in a random order. For each card in the sequence the computer is told
whether the card is a positive extension of the present partial sequence or not,
and hence, each card played together with the previous card yields one example.
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0.13::sift(26,card(diamonds,’9’)).
0.24::sift(26,card(heart,’9’)).
0.09::sift(26,card(spades,’10’)).
0.40::sift(26,card(spades,’9’)).

Fig. 3. SIFT feature matches for spades nine and spades 10 (left). All matches for the
26th card which is a spades 9 bottom (right,bottom). Accuracy of the rule-set after
each iteration on the red implies even dataset (right,top).

The cards are classified using SIFT (sale-invariant feature transforms) features
[11] (corresponding to the start/end points of the thin lines in Fig 3). Each
SIFT feature identifies points of interest in the images. The main advantage of
SIFT features is that they are easy to calculate. While each image contains a
large number of features (typically around 1000) normally only a few (∼ 70) will
match with a prototype (thin lines in Fig. 3). On the other hand, if a consis-
tent transformation (scaling/rotation/translation) of only a small set of features
(∼ 10−20, thick lines in Fig. 3) between the image and the prototype can be cal-
culated, the probability of a miss-classification is extremely low. To calculate the
transformation we used the RANSAC (random consensus) algorithm [12], which
automatically eliminates false matches (like in the hair region in Figure 3). The
number of matched features is considered to be proportional to the probability
of the card being a match.

The output generated by the image analysis is highly interesting in our context
because it often results in confusions between similar cards. Typical confusions
occur between cards of the same suit (e.g, the 9 versus the 10) as well as between
numbered cards belonging to different suits. These confusions show that this is
a realistic setting for probabilistic rule learning.

We used two concepts to test the algorithm. The first sequence contains the
concept that states that the next card has to be red, that is,

trans(PrevPos,Curr) :- red(Curr).

Learning this concept took 45 seconds. ProbFOIL found this rule but also dis-
covered an extra rule
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trans(PrevPos,Curr) :- black(PrevPos).

The last rule is valid but only an artifact as it does not cover any example
neither positive nor negative. It disappears, when the m of the m-estimates is
set to zero.

The second concept to learn was that black cards have to be followed by odd
cards and red cards by even cards. The correct rule-set consists therefore of the
two rules:

trans(PrevPos,Curr) :- black(PrevPos),odd(Curr) and
trans(PrevPos,Curr) :- red(PrevPos),even(Curr)

Again, ProbFOIL learned some extra rules covering some very small noisy frac-
tions of examples:

trans(PrevPos,Curr) :- odd(Curr),even(Curr),red(Curr) and
trans(PrevPos,Curr) :- black(Curr),even(Curr),odd(Curr).

The last two rules are logically inconsistent as cards cannot be even and odd at
the same time, but due to the noise in the observations, they provide some extra
accuracy. In any case it is interesting to see how the accuracy evolves as more
rules are learned. This is graphically depicted in Figure 2 right. The accuracy
of the rule stating that everything is positive is 0.56, the accuracy of the differ-
ent rule-sets learned by ProbFOIL are in order of discovery 0.574, 0.671, 0.673,
0.673. This also implies that the target concept itself has only an accuracy of
0.671, and that the last two rules that are added only account for 0.2% accu-
racy. Thus the improvement of these last two rules is marginal and they would
typically be removed should we employ a kind of post-pruning.

6 Conclusions

We have introduced a novel setting for probabilistic rule learning and developed
the ProbFOIL algorithm for solving it using the probabilistic logic programming
system ProbLog. The result is a natural probabilistic extension of inductive
logic programming and rule learning. There are several remaining open questions
that we are currently exploring. First, it would be interesting to experimentally
compare the present approach to some alternative approaches (as sketched in
the introduction). Secondly, we are developing an approach to probabilistic rule
learning in which each rule contains an extra probabilistic predicate.
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Abstract. Structural activity prediction is one of the most important
tasks in chemoinformatics. The goal is to predict a property of interest
given structural data on a set of small compounds or drugs. Ideally,
systems that address this task should not just be accurate, but they
should also be able to identify an interpretable discriminative structure
which describes the most discriminant structural elements with respect
to some target.

The application of ILP in an interactive software for discriminative
mining of chemical fragments is presented in this paper. In particular,
it is described the coupling of an ILP system with a molecular visual-
isation software that allows a chemist to graphically control the search
for interesting patterns in chemical fragments. Furthermore, we show
how structural information, such as rings, functional groups such as car-
boxyls, amines, methyls, and esters, are integrated and exploited in the
search.

Keywords: Drug design, graphical mining, efficiency.

1 Introduction

Structural activity prediction is one of the most important tasks in chemoinfor-
matics. The goal is to predict a property of interest given structural data on a
set of small compounds or drugs. This task can be seen as an instance of a more
general task, Structure-Activity Relationship (SAR), where one aims at predict-
ing the activity of a compound under certain conditions, given structural data
on the compound. Ideally, systems that address this task should not just be ac-
curate, they should be able to identify an interpretable discriminative structure
which describes the most discriminant structural elements with respect to some
target.

In an invited talk to Computational Logic 2000 and ILP’2000 David Page [1]
highlighted the importance of interactive ILP systems for SAR problems. The
application of Inductive Logic Programming (ILP) in an interactive software
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for discriminative mining of chemical fragments is presented in this paper. In
particular, it is described a software application, called iLogCHEM , that allows
a chemist to graphically control the search for interesting patterns in chemical
fragments. iLogCHEM couples an ILP system with a molecular visualisation
software, thus leveraging the flexibility of ILP while addressing the SAR task
mentioned above. iLogCHEM can input data from chemical representations,
such as MDL’s SDF file format, and display molecules and matching patterns
using visualisation tools such as VMD [2]. It has been demonstrated [3] that
iLogCHEM can be used to mine effectively large chemoinformatics data sets,
such as the DTP AIDS data set [4].

The focus of this paper is on allowing domain expert users to participate in
the drug discovery process in a number of ways:

1. We propose the ability to incorporate user-provided abstractions of inter-
est to the chemoinformatics domain, that can be used to aid the discovery
process. As a first experiment, we have allowed users to specify a common
chemical structure, aromatic rings . The user has available in iLogCHEM ,
apart from the aromatic rings , functional groups such as carboxyl, amine,
ester, methyl, phenyl etc. This is supported through a macro mechanism (de-
scribed in more detail in Section 4) where the user provides a pattern which
is used to control rule refinement.

2. We propose an interactive refinement process where the user can interact
with the proposed model, adapting it, evaluating it, and using it to guide
(constrain) the search.

3. A common procedure in drug design is to introduce small variations in
well known molecules. This procedure leads to data bases with groups of
molecules that are very similar. When data sets are assembled from these
data bases there is a “similarity bias”. To attenuate that effect iLogCHEM
allows the user to compute the similarity between the data set molecules
and discard the more similar ones, retaining a set of “representative” ones.
A more detailed description of this facility is described in Section 3.

The rest of the paper is organised as follows. Section 2 provides a brief intro-
duction to the SAR problem and the issue of molecular representations. Section 3
introduces iLogCHEM and describes its main components. Section 4 describes
its ability to incorporate user-provided abstractions of interest to the chemoinfor-
matics domain through the use of what we have designated as macros. Section 5
explains the facilities for interactive search and refinement. Finally, conclusions
and future work are described in Section 6.

2 Background

Structure activity relationships (SAR) describe empirically derived relationships
between a molecule and its activity as a drug. In a typical SAR problem the
goal is to construct a predictive theory relating the structure of a molecule to
its activity given a set of molecules of known structure and activity.
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A problem that one has to address is how to describe molecules. Coordinate-
based representations usually operate by generating features from a molecule’s
3D-structure [5]. The number of features of interest can grow very quickly, hence
the problem that these systems need to address is how to select the most inter-
esting features and build a classifier from them. Coordinate-free representations
can use atom pair descriptors or just the atom-bond structure of the molecule.
In the latter case, finding a discriminative component quite often reduces to the
problem of finding a Maximum Common Substructure (MCS).

Exact MCS search in a molecule represented as a set of atoms and bonds
can be seen as a graph-mining task. In this case, a molecule is represented as a
graph GM = (V, E) where V , the vertices, are atom labels, and E, the edges, are
bonds. The search can be improved by adding atom and bond properties. The
earliest approaches to search for common substructures or fragments were based
on ideas from Inductive Logic Programming (ILP). ILP techniques are very
appealing because they are based on a very expressive representation language,
first order logic, but they have been criticised for exhibiting significant efficiency
problems. As stated by Karwath and De Raedt [6], “their application has been
restricted to finding relatively small fragments in relatively small databases”.
Specialised graph miners have therefore become quite popular. Systems such
as SUBDUE [7] started from the empty graph and then generate refinements
either using beam-search or breadth-first search. More recent systems such as
MoFa [8], gSpan [9], FFSM [10], Gaston [11], FMiner [12] and SMIREP [6],
perform depth-first search, and use compact and efficient representations, such
as SMILES, for which matching and canonical forms algorithms exist. Arguably,
although such systems differ widely, they all use three main principles: (i) only
refine fragments that appear in the database; (ii) filter duplicates; and (iii)
perform efficient homomorphism testing.

3 The iLogCHEM System

iLogCHEM is an interactive tool for discriminative mining of chemical frag-
ments. iLogCHEM uses a logic representation of the molecules, where atoms and
bonds are facts stored in a database. Although our representation is less com-
pact than a specialised representation such as SMILES, used in MOLFEA [13]
and SMIREP [6], it offers a number of important advantages. First, it is pos-
sible to store information both on atoms and on their location: this is useful
for interfacing with external tools. Second, iLogCHEM can take advantage of
the large number of search algorithms implemented in ILP. Third, given that
we implement the basic operations efficiently, we can now take advantage of the
flexibility of our framework to implement structured information.

The interaction with the system is made through a graphical user interface.
The system requires two input files: one is in SDF format with atom and bond
data on a set of molecules; the other is a file which labels (discriminates) the
compounds. We use SDF because it is highly popular and because it can convey
3D structure information. Other formats, such as SML can be translated to SDF
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through tools such as OpenBabel [14]. Also note that some datasets, such as the
DSSTox [15] collection of datasets with at most 2000 molecules, include 2D and
3D information in the SDF format. Furthermore, the user may choose from 22
1D descriptors, 300 molecular fingerprints and 242 2D descriptors, predefined
by chemists. These descriptors can be analysed with propositional tools, not
just ILP.

The input files (in SDF format) are processed and given as input to a rule
discovery algorithm, that is implemented as an extension of an ILP system (cur-
rently Aleph [16]). We significantly improved the ILP search algorithm for this
task, as explained in the next section. The ILP engine allows the introduction of
extra background knowledge for rule discovery. As an example, we take advan-
tage of this flexibility by allowing the user to introduce well-known molecular
structures in the search process. This is supported through a macro mechanism
(described in more detail in Section 4) where the user provides a pattern which
is used to control rule refinement.

The output of the ILP system will be a set of rules, or theory. Most of-
ten, chemists will be interested in looking at individual rules. iLogCHEM first
matches the rules against the database, and then allows the user to navigate
through the list of matches and visualise them. iLogCHEM uses VMD [2] to dis-
play the molecules and the matching substructures.

The key component of iLogCHEM is rule discovery. From a number of ILP
algorithms, we chose to base our work on Progol’s greedy cover algorithm with
Mode Directed Inverse Entailment algorithm (MDIE) [17], as implemented in
the Progol, April [18], and Aleph systems [16]. We rely on MDIE to achieve
directed search, and we use greedy cover removal as a natural algorithm for
finding interesting patterns. Figure 1 shows an example pattern for the HIV
data set. The pattern is shown as a wider atoms and bonds, and it includes a
sulphur atom and part of an aromatic ring.

Fig. 1. HIV Pattern
(wider atoms and
bonds) discovered by
ILP

Molecular Filtering. It is a common practise in drug
design to take a small molecule that exhibits some ac-
tivity and introduce small changes to it to improve its
activity. This procedure produces a large set of similar
molecules. Most of the available data for drug design suffer
from this “similarity bias”. Using iLogCHEM the similar-
ities between any two pairs of molecules can be computed
and retain only the “representative” ones, producing an
unbiased data set. iLogCHEM uses Tanimoto distance to
assess the similarity of two molecules. The user can specify
a threshold value to be used in the filtering procedure.

Pattern Enumeration. iLogCHEM enumerates pat-
terns (or sub-graphs) contained in an example molecule,
the seed. To do so it uses the LogCHEM algorithm [3],
based on the Aleph ILP system [16] to constrain the
search space. This algorithm keeps a trie with previously
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generated clauses, according to a Morgan normal form, and tries to optimise rule
evaluation for the specific domain of chemical compounds.

Fig. 2. An Example
Pattern from a Small
Organic Molecule: A-
alpha-C

Pattern Matching. Given a new pattern, we are in-
terested in finding out how many molecules support the
pattern. ILP systems rely on refutation for this purpose.
However, this introduces a problem. Consider the clause:
active(C) ←

atom(C, Id1, c)∧
atom bond(C, Id1, Id2, c, n, 2)∧
atom bond(C, Id1, Id3, c, n, 2)

that represents a N = C = N pattern. Figure 2 matches
the molecule A-alpha-C against the pattern. Clearly, there
is no match. Unfortunately, Prolog finds a match by matching the same nitro-
gen against the pattern twice. This problem, known as Object Identity [19], is
addressed by dynamically rewriting the rules so that different variables match
different atoms:
active(C) ←

atom(C, Id1, c)∧
atom bond(C, Id1, Id2, c, n, 1)∧
Id1 �= Id2∧
atom bond(C, Id1, Id3, c, n, 1)∧
Id1 �= Id3 ∧ Id2 �= Id3

iLogCHEM includes a number of further optimisations. Namely, we rewrite
bond information in such a way as to minimise backtracking. Also, by default,
iLogCHEM compiles every pattern, instead of interpreting them, as usual in
ILP [3].

4 Integrating Structural Information in the Search

The iLogCHEM system has the ability to integrate complementary information
in the pattern search process. Our work was motivated by two observations.
First, quite often chemists rely on well-known structures that are typically in-
fluential in the chemical properties of compounds. Second, global properties of
the compound may be good indicators of activity.

4.1 Macros

A first step forward stems from observing Figure 1: does the pattern include
part of the ring because only part of the ring matters or, as it is more natural
from the chemists point of view, should we believe that the whole ring is in
the pattern? Quite often discriminative miners will only include part of a ring
because it is sufficient for classification purposes. But this may not be sufficient
to validate the pattern.

The logical representation used in iLogCHEM makes it natural to support
macro structures, such as rings used in MoFa [8] in a straightforward fashion.
The next example shows such a description:
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macro(M,(atom(A1,c), bond(A1,A2,_),
atom(A2,c), bond(A2,A3,_),
atom(A3,c), bond(A3,A4,_),
atom(A4,c), bond(A4,A5,_),
atom(A4,c), bond(A4,A5,_),
atom(A5,c), bond(A5,A6,_),
atom(A6,c), bond(A6,A1,_))).

Initial experiments with iLogCHEM show that using such macros results in
similar accuracy, but returns easier to interpret rules.

iLogCHEM has available a library of functional groups that may be used as
macros to speed up search and are very useful to improve understandability of
the models. Some of the functional groups available include: aldehyde, amine,
methyl, ester, ketone, hydroxyl, cyano, carboxylic acid, etc

4.2 Molecular Properties

One of the major benefits of ILP for SAR is its ability to combine very diverse
sources of information. iLogCHEM allows the user to select chemical properties
of interest for a compound, and combine them with pattern generation. Proper-
ties of interest are obtained through the graphical interface, and then passed on
to the miner. In iLogCHEM the user may choose from a wide set of 1D molecu-
lar descriptors. As an example, consider this predicate clause for the CPDBAS
dataset [15]:

active(A) :-
logp(A,B), B =< -0.73333657,
atom(A,C,c), atom_bond(A,C,D,c,c,4), atom_bond(A,D,E,c,o,4).

The constant −0.73333657 is obtained from a seed example by saturation.
Experiments with NCTRER dataset show that this feature can be quite useful
in complementing graph search.

5 Interactive Search and Refinement

After choosing the data set of molecules and then filtering them out using Tan-
imoto distance the user may launch the ILP and obtain a first model. The user
may then choose to visualise each rule of the model and overlap a rule (pattern)
on the structure of a molecule covered by that rule (as shown in Figure 1).

Once amodel is constructed there are twopossible interactions the user can take.
The usermaydecide to do a “local and manual” searchor he can specify constraints
on the visualised pattern and ask the ILP system to produce a new model.

In the first case the user may incrementally produce changes in the pattern
(adding or deleting atoms and/or bonds) and then ask iLogCHEM to immedi-
ately evaluate the changed pattern. Whenever an evaluation is done the user can
see a list of the “positive and negative” molecules covered.

If “local and manual” search does not produce the desired results the user may
interactively (again adding/removing atoms and bonds) define a new pattern.
This new pattern can be converted into a clause and used as the starting clause
of the search space. That is, the user is commanding the system to find useful
refinements of the provided pattern.
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6 Conclusions

This paper reports on iLogCHEM , an interactive tool to be used in interactive
drug design tasks. iLogCHEM is designed to give users who have little knowledge
of, or interest in ILP the benefits of this learning mechanism. Thus, it can be
seen as step forward in “enhancing human–computer interaction to make ILP
systems true collaborators with human experts” [20].

iLogCHEM is founded on previous work to create an effective rule miner for
ILP [3]. The system was driven by expert requirements, extending the previous
work as follows by introducing i) a library of preexisting common patterns,
considered relevant by experts, that are immediately available for discovery; and
ii) the ability to define a new pattern graphically and then translate it to the
iLogCHEM internal representation. These new facilities enable the expert to: i)
look at the pattern highlighted on the molecule structure; ii) interact with the
visualisation tool and specify constraints not satisfied by the pattern presented;
and iii) rerun the ILP system with the specified constraints added to the data
set. These steps are the centre of the main loop of the interaction where the
expert guides the process of pattern discovery. Additionally the tool also allows
the expert user to specify a list of chemical structures (rings and functional
groups) that are used as macro operators. The use of chemical structures may
be very useful to achieve more compact and comprehensible models than the
ones described with atoms and bonds.
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Abstract. Biological processes where every gene and protein partici-
pates is an essential knowledge for designing disease treatments. Nowa-
days, these annotations are still unknown for many genes and proteins.
Since making annotations from in-vivo experiments is costly, computa-
tional predictors are needed for different kinds of annotation such as
metabolic pathway, interaction network, protein family, tissue, disease
and so on. Biological data has an intrinsic relational structure, including
genes and proteins, which can be grouped by many criteria. This hinders
the possibility of finding good hypotheses when attribute-value represen-
tation is used. Hence, we propose the generic Modular Multi-Relational
Framework (MMRF) to predict different kinds of gene and protein an-
notation using Relational Data Mining (RDM). The specific MMRF ap-
plication to annotate human protein with diseases verifies that group
knowledge (mainly protein-protein interaction pairs) improves the pre-
diction, particularly doubling the area under the precision-recall curve.

Keywords: Relational Data Mining, Human Disease Annotation, Multi-
Class Relational Decision Tree, First-Order Logic, Structured Data.

1 Introduction

Functional annotation consists of attaching biological information to gene and
genetic product sequences. For instance, identifying whether a gene is involved
in a biological process, a regulation network or a molecular function; or assigning
to a protein its expression profile or phenotype (tissue or disease association).
Knowing the processes in which genes and proteins are involved is an essential
knowledge to design disease treatments.

Nowadays, a gene/protein appears annotated in multiple distributed reposi-
tories. However, many proteins have still few or no annotation in a large number
of species, because experimental techniques are costly in resources and time.
This process is also overwhelmed by the high amount of data that need to be ac-
quired and managed. Therefore, computational prediction methods have shown
an useful alternative in the last years [16], in order to focus the experimental
verifications on the hypotheses (predicted annotations) that are more likely to
be true.
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Many diverse prediction techniques have been proposed to solve the genome1

annotation problem. Each method uses different kind and amount of input data,
and is focused on a particular prediction goal. This variability in methods makes
difficult a comparison among them. The simplest prediction approach is based
on sequence similary, as Blast2GO [1], only useful for Gene Ontology (GO) anno-
tation. Others predictors just include sequence and structure features [13]; while
more sophisticated methods integrate heterogeneous data sources, such as Fatigo
[1] and DAVID [5]. Some techniques simplify the data representation to numeri-
cal features, applying subsymbolic machine learning algorithms [10,12]; but oth-
ers preserve the intrinsic structure of biological data, applying Multi-Relational
Data Mining (MRDM). These techniques take advantages of the interpretable
symbolic representation, such as [4,7,21] in functional annotation and [19,20] in
other related bioinformatic domains.

Despite all these efforts, the proteome annotation problem remains open. We
do not know functions and tasks for all proteins, and many annotations are
neither verified by experts nor complete in all the biological fields of interest.
Particularly, there are few specialized predictors in disease annotation, being
an essential knowledge to design new drugs. Morbid OMIM (Online Mendelian
Inheritance in Man) [2] contains information on all known mendelian disorders
and associated genes. It is the most complete and updated repository about
genetic disorders. This repository is carefully curated and frequently referenced
by biological and medical scientists. For these reasons, we decide to use OMIM
instead of other less known disease vocabulary such as eVOC pathology [11].
Most annotation methods using OMIM perform search rather than prediction.
Some approaches predict new annotation [14], but none applies MRDM.

To summarize, genome and proteome annotation prediction is still an open
problem with regard to various kind of specific annotation. Disease annotation
is one of special interest. This paper proposes applying MRDM to a relevant
annotation domain: human disease prediction. Besides, we want to verify the
relevance of biological group relations using data integrated from different data
sources. This group data is very suitable to be exploited by relational learning.
We address this problem adapting a generic and flexible framework, MMRF [6],
which can easily predict different annotations.

Several facts support this proposal. First, MRDM have been succesfully ap-
plied to other related bioinformatic domains. Second, we use up to date data from
different biological databases used in many current science projects. Finally, we
have made a special effort in data collection, selecting only experimental data,
when it is possible, in order to avoid indirect redundancies coming from internal
predictions from other applications, which can bias the results.

This paper is organized as follows: Section 2 briefly explains the Modular
Multi-Relational Framework. The human protein OMIM disease prediction do-
main is described in Section 3. Section 4 presents and analyzes the application
results. Finally, in Section 5, conclusions and future work are summarized.

1 In annotation context, the terms gene and protein or genome and proteome are
indistinctly used.
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2 Modular Multi-Relational Framework

Modular Multi-Relational Framework (MMRF) [6] is a system originally de-
signed for gene Group function prediction domain, facing the problem from a
relational and flexible point of view. It has been applied to predict function
for S.cerevisiae (i.e.Yeast) genes grouped by complexes [7]. Now, we adapt the
framework since we have realized that group annotation problem is very com-
plex to face in a single step [7]. The changes aim to solve gene and protein
individual function annotation prediction problem, instead of group annotation.
Nevertheless, this MMRF layout can also be considered the first phase for the
group annotation problem. The complete process could be achieved obtaining
first annotations for individual group elements using MMRF, and then combin-
ing them for group annotations using an alternative method (for example, union
or intersection of individual annotations).

MMRF preserves the same main properties as the original layout. It is de-
signed by modules for managing the high variability that the functional anno-
tation biological domain entails. This facilitates changing independiently data,
criteria and methodology. MMRF uses a multi-relational approach (in repre-
sentation and learning) for fitting the intrinsic relational structure of gene and
protein group data, and for integrating different data sources.

Figure 1 shows the new MMRF layout oriented to individual protein anno-
tation prediction. Module 2 is now called Selecting annotation where the an-
notation vocabulary is chosen and assigned to individual gene or protein. The
relational knowledge about belonging to specific biological groups (i.e.metabolic
pathways, regulation networks, etc.[6,7]) is handled in module 3.

Fig. 1. A new schema of the Modular Multi-Relational Framework (MMRF). The
rectangles represent modules and the ellipses represent data.
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3 MMRF Applied to Human Protein Disease Prediction

This section describes the MMRF module instantiations for applying the frame-
work to the Human Protein OMIM Disease Prediction domain.

1.Obtaining individual features. In this application, there are 7 features
derived from gene sequence (such as chromosome name and length, or transcript
count) and 27 features from protein sequence (including length, positive and neg-
ative charge from the sequence, aminoacid composition and whether the protein
contains a transmembrane, signal or coiled-coil domain). Also, 5 different kinds
of protein functional annotations are collected, related with protein family (from
Pfam), protein domain (from InterPro), biological process, cellular component
and molecular function. The last three come from Gene Ontology (GO), and
are only from experimental results, ignoring automated annotation, for avoiding
biases induced by overlaps with others annotation sources.

The numerical protein sequence features are computed with BioWeka [8] us-
ing as input the UniProt aminoacid sequences in FASTA format. Only Swiss-
Prot sequences are included, because the remainder (TrEMBL sequences) have
not been reviewed by experts. The rest of features are retrieved from Ensembl
project, through the BioMart tool [17]. See the module 1 instantiation schema
in Supplementary Material.

2.Selecting annotation. The annotation goal is genetic disorders using
gene-disease associations from Morbid OMIM [2]. We apply a manual OMIM
disorder categorization made by experts [9]. These disease categories have been
recently used in other studies [14]. Thus, the 4,927 OMIM disorders 2 are cate-
gorized in 23 disease classes based on the affected physiological system. Some of
the classes are: neurological, cancer, cardiovascular, inmunological or endocrine
disease (see a complete list in Supplementary Material). Therefore, this MMRF
application classifies proteins in these general disease categories [9]. However, a
simple modification in MMRF module 2 could easily build a particular predictor
for diseases at lower level, for instance, knowing in which specific kind of cancer
(leukemia, melanoma, breast cancer, etc.) a protein is involved.

3.Retrieving group data. Two sources of group data are included, though it
could be easily increased with others, as protein complexes or co-expresion data.
The first data source consist of protein-protein interaction pairs, retrieved from
BioGRID repository (2.0.59 Release) [18], which integrates important interaction
databases as MINT, IntAct or HPRD. We select BioGRID pairs from real binary
relations identified by evidences codes Co-crystal structure, Far Western, FRET,
PCA and Two-Hybrid. These interactions do not include pairs split off from
N -ary relations. It results in 21,687 proteins with 229,407 interactions among
them. The second data source comprises metabolic pathways, which correspond
to the 52 top-level human Reactome [15] pathways including 5,128 proteins, on
average 159.85 proteins per pathway. See the module 3 instantiation schema in
Supplementary Material.

2 From OMIM Morbid Map on November 17th, 2009.
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Data sources collected in modules 1 to 3 use different gene or protein identi-
fiers. The original identifiers are all mapped to Ensembl (gene or protein) IDs
using the cross-references from BioMart [17] queries.

4.Transforming to representation language. The knowledge represen-
tation language is a subset of first-order logic. All the collected data previously
described is represented as predicates in Prolog syntax (see Figure 2). Since for
humans, we can not assume the simplification 1-gene:1-protein, as simpler or-
ganism does, the representation language has to handle information level with
regard to gene and protein. These levels are related by the 1-gene:N-proteins re-
lation (represented as N binary predicates protein gene/2 per gene). Thus, the
different features are separately associated to genes (predicates with geneID as
key) or to proteins (predicates with protID as key) (see Figure 2). Moreover, the
group data has a different representation depending on the number of elements in
the group. Binary relations are represented as pairs (i.e. ppinteracion pair/2).
N-ary relations are represented with one group identifier plus N binary predi-
cates (i.e. protein in pathway/2), where each predicate relates a group element
with the group identifier.

gene(geneID,name,length,strand,trCount). gene biotype(geneID,bioType).
protein(protID,length,posCharge,negCharge). protein class(protID,omimID).
aa composition(protID,aaID,proportionAA). protein gene(protID,geneID).
go annotation bioProcess(protID,goID). transmembrane domain(protID).
ppinteraction pair(protID,protID). ncoils domain(protID).
protein in pathway(groupID,protID). pfam domain(protID,pfamID).
...

Fig. 2. Fragment of the knowledge representation language in proteome disease pre-
diction domain

The instantiation of module 5.Relational Learning consist of applying the
algorithm Tilde [3], implemented in the ACE tool, using a multi-class and
multi-label learning, inspired by other works [21]. The instantiation of module
6.Interpretation and Analysis consist of evaluating the result with Precision-
Recall curves (PRC). For more details, see a previous MMRF application [7],
which shares the same instantiations of modules 5 and 6.

4 Results and Discussion

This section describes the results of predicting human protein diseases with
MMRF. The whole data set comprises 6,958 protein-disease annotations, for
5,640 different proteins (examples) and 21 diseases (classes). Each protein can
be associated with more than one disease, ranged from 1 to 5, in this set. On
average, there are 331.3 annotations per disease. There are at least 40 proteins
per class (the two classes with less than this minimum have been ignored).
On average, there are around 5% positive vs 95% negative examples per class,
although the protein class distribution is not equitable (see Supplementary Ma-
terial). Each of the four majority classes has more than 10% of all annotations.
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The background knowledge also includes related proteins without disease asso-
ciations, but belonging to a metabolic pathway or having an interaction with a
disease protein.

We compare two configurations, which differ in module 3 instantiation, it
means on group relational data used for learning. The first one (a.-Without
groups) does not included neither pathway nor protein-protein interaction data.
The second configuration (b.-With groups) includes both kind of data from
biological groups. In addition, we analize the learning implications of relational
knowledge representation for groups.

The results shown in Table 1 and Figure 3 come from three folds cross vali-
dation experiments. Table 1 shows several quantitative measures and Precision-
Recall curves appear in Figure 3 for the two configurations. All of them are the
average results about overall 21 classes.

Table 1. Quantitative results from human
protein disease prediction with MMRF.
AU(PRC): Area Under Precision-Recall
Curve. MSE: Mean Squared Error.

Relational knowledge
a) without groups b) with groups

AU(PRC): 0.282 0.625

Correlation: 0.290 0.599

MSE: 0.049 0.034

Fig. 3. Precision-Recall curves from
human protein disease prediction with
MMRF, in different configurations

Table 1 and Figure 3 point out that prediction with group data (configuration
“b”, on the right) improves the double upon without groups (configuration “a”,
on the left), in both AU(PRC) and correlation. Hence, this comparison asserts
that knowledge about proteins belonging to a biological group is very relevant
in disease annotation prediction.

Figure 4 presents a fragment of a relational decision tree from configuration
with group data (b). The first tree node (see line 3) determines that
ppinteraction pair/2 (a protein-protein interaction relation) is the most dis-
criminative predicate. This fact confirms the relevance of group knowledge to
predict annotations. Moreover, in the first ’yes’-branch (line 4), the second node
includes a typical feature in protein function prediction: the positive charge of
protein sequence [12] (variable Y ), partially supporting the model reliability.
Besides, in the first ’no’-branch (line 11), the most relevant query includes a
N:1 relation (predicate protein gene/2 relates a protein with the gene it comes
from), emphasizing the high influence of relational knowledge on the prediction.
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1: class(-A,-B,-C,-D,-E,-F,-G,-H,-I,-J,-K,-L,-M,-N,-O,-P,-Q,-R,-S,-T,-U,-V)
2: [0.011436170212766] 3760.0
3: ppinteraction_pair(A,-W),not(W=A) ?
4: +--yes: [0.0188476036618201] 1857.0
5: | protein(W,-X,-Y,-Z),Y>=0.107506 ?
6: | +--yes: [0.0219123505976096] 1004.0
7: | | ppinteraction_pair(W,W) ?
8: | | +--yes: [0.0569948186528497] 386.0
9: | | | transmembrane_domain(W) ?
10:...
11:+--no: [0.00420388859695218] 1903.0
12: protein_gene(A,-M26),gene(M26,-N26,-O26,-P26,-Q26),O26>=84418 ?
13: +--yes: [0.00981996726677578] 611.0
14: ...

Fig. 4. Fragment of a relation decision tree in configuration with groups

Therefore, the importance of protein-protein interaction and protein-gene re-
lations indicates that Relational Data Mining is essential in this domain. This is
because to propositionalize this kind of data would be very complex or resulting
in having redundant data. For instance, for protein binary relations, the single
attribute-value table should have thousands of Boolean attributes, one per each
protein. In addition, it should repeat all the gene features as attributes for all
proteins that come from the same gene. Furthermore, attribute-value learning
can not represent knowledge or retrieve hypotheses about features of related
genes and proteins, as tree fragment in Figure 4 shows.

5 Conclusions and Further Work

This work highlights the relevance of biological group data for annotation pre-
diction, particularly in proteome disease association. Since the most efficient
and viable representation of this group knowledge is with relations, relational
learning and the Modular Multi-Relational Framework are confirmed as very
suitable for solving the proteome annotation problem. This is particularly rele-
vant since the data comes from the integration of multiple up to date biological
databases. Besides, the hypotheses learned through Relational Data Mining are
mostly unfeasible to achieve in attribute-value learning and it holds the advan-
tage of being readable for biology experts. This work has two main differences
from a previous MMRF application [7]. For the annotation goal, diseases from
OMIM morbid are used instead of general functions of GO Slim. Moreover the
organism has been changed from yeast to human, which is more complex but
more interesting. Thus, the obtained predictor let us select a subset of unknown
protein-disease association (the most likely predictions) to be verified by in-vivo
experiments.

As further work, many alternatives appear. It would be interesting to make
a comparison between this overall classes predictor and 21 independent predic-
tors, one per each disease class. Other possibilities would be related to biological
MMRF applications. For instance, including new group data, such as protein



74 B. Garćıa-Jiménez, A. Ledezma, and A. Sanchis

complexes or co-expression data; applying the predictor to annotate unknown
proteins; or changing the prediction goal to a different annotation field, as pre-
dicting if a protein belongs to a metabolic pathway.
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Abstract. ProbLog is a recently introduced probabilistic extension of
Prolog. The key contribution of this paper is that we extend ProbLog
with abilities to specify continuous distributions and that we show how
ProbLog’s exact inference mechanism can be modified to cope with such
distributions. The resulting inference engine combines an interval calcu-
lus with a dynamic discretization algorithm into an effective solver.

1 Introduction

Continuous distributions are needed in many applications for building a natural
model. Probabilistic logic programming languages, such as ProbLog and CP-
Logic [1], have, so far, largely focused on modeling discrete distributions and
typically perform exact inference. The PRISM [2] system provides primitives for
Gaussian distributions but requires the exclusive explanation property which
complicates modeling. On the other hand, many of the functional probabilistic
programming languages, such as BLOG [3] and Church [4], can cope with contin-
uous distributions but only perform approximate inference by a Markov Chain
Monte Carlo approach. Typical statistical relational learning systems such as
Markov Logic and Bayesian Logic Programs have also been extended with con-
tinuous distributions. The key contribution of this paper is a simple probabilistic
extension of Prolog based on the distribution semantics with both discrete and
continuous distributions. This is realized by introducing a novel type of prob-
abilistic fact where arguments of the fact can be distributed according to a
continuous distribution. Queries can then be posed about the probability that
the resulting arguments fall into specific intervals. We introduce the semantics of
using continuous distributions in combination with comparison operations and
show how ProbLog’s inference mechanism, based on Binary Decision Diagrams
(BDDs) [5], can be extended to cope with these distributions. The resulting
language is called Hybrid ProbLog.

Similarly to Hybrid ProbLog, Hybrid Markov Logic Networks (HMLNs) [6]
aim at integrating Boolean and numerical random variables in a probabilistic-
logic modeling framework. The kind of modeling supported by HMLNs is quite
different in nature from the kind of modeling for which Hybrid ProbLog is de-
signed. In an HMLN, one defines equations that function as soft constraints for
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relationships among numerical and logical variables. For example, one could ex-
press that the temperature on day d is typically around 20◦ Celsius using the
weighted equality w temperature(d) = 20, where larger weights w lead to a
larger penalty for deviations of temperature(d) from 20. All weighted formulae
containing temperature(d), together, implicitly define a probability distribution
for the random variable temperature(d) due to HMLN semantics. However, one
cannot directly specify this distribution to be Gaussian with, for example, mean
20 and standard deviation 5. No exact inference methods have been developed
for HMLNs.

It is also instructive to compare Hybrid ProbLog with Hybrid Bayesian Net-
works [7]. Apart from one being a logical-relational, and the other a purely
propositional framework, there is also a key difference in the interaction between
continuous and discrete random variables permitted. In Hybrid Bayesian Net-
works, the distributions of continuous variables (usually Gaussian) are typically
conditioned on discrete variables, but continuous variables cannot be parents
of discrete ones. In Hybrid ProbLog this order is reversed: continuous variables
are at the roots of the directed model, and the discrete (Boolean) variables are
conditioned on the continuous ones. Thus, Hybrid ProbLog provides modeling
capabilities and exact inference procedures that, for the propositional case, are
in some sense complementary to Hybrid Bayesian networks.

This paper has three main contributions. (1) An extension of ProbLog with
continuous distributions, (2) formal study of its semantics, and (3) an efficient
inference algorithm based on dynamic discretization.

The rest of this paper is organized as follows. Section 2 reviews basic concepts
from ProbLog. Section 3 introduces the syntax and semantics of Hybrid ProbLog.
Section 4 describes our exact inference algorithm. Before concluding, we evaluate
the algorithm in Section 5.

2 ProbLog

ProbLog [8] is a recent probabilistic extension of Prolog. A ProbLog theory
T = F ∪ BK consists of a set of labeled facts F = {p1 :: f1, · · · , pn :: fn}
and a set of definite clauses BK that express the background knowledge. The
facts pj :: fj in F are annotated with a probability pj stating that fjθ is true
with probability pj for all substitutions θ grounding fj . The resulting facts fjθ
are called atomic choices and represent random variables; they are assumed to
be mutually independent. It is not allowed to use a probabilistic fact in the
heads of clauses in BK. Let Θ = {θj1, . . . θjij |j = 1, . . . n} be a finite1 set of
possible substitutions for the variables in the probabilistic facts where ij is the
number of substitutions for fact j, then a ProbLog theory describes a probability
distribution over Prolog programs L ⊆ LF where LF = FΘ and FΘ denotes the
set of all possible ground instances of facts in F :

PP (L|F ) :=
∏

fjθjk∈L

pj

∏
fjθjk∈LF \L

(1− pj) . (1)

1 Throughout the paper, we assume that FΘ is finite, but see [2] for the infinite case.



78 B. Gutmann, M. Jaeger, and L. De Raedt

The success probability of a query q then is

Ps(q|T ) :=
∑

L⊆LF :
L∪BK|=q

P (L|F ) . (2)

ProbLog also defines a probability distribution Pw over possible worlds, that
is Herbrand interpretations. Each total choice L ⊆ LF can be extended to a
possible world by computing the least Herbrand model of L. This possible world
is assigned the probability Pw = P (L|F ). Thus a set of total choices represents
an assignment of truth-values to all atomic choices.

3 Hybrid ProbLog

A Hybrid ProbLog theory T = F ∪ F c ∪ BK is a ProbLog theory extended by a
set of continuous probabilistic facts2 of the form

F c = {(X1, φ1) :: f c
1 , · · · , (Xm, φm) :: f c

m}
where Xi is a Prolog variable, appearing in the atom f c

i and φi is a density
function. The fact (X, gaussian(2, 8)) :: temp(D, X), for example, states that the
temperature for day D is Gaussian-distributed with mean 2 and standard devi-
ation 8. The syntax allows one to specify multivariate distributions, i.e.,

((X, Y), gaussian([1, 0], [[1, 0.5], [0.5, 1]]) :: f(X, Y) .

In this paper, however, we restrict ourselves to the univariate case. From a user’s
perspective, continuous facts are queried like normal Prolog facts, and the value
of the continuous variable is instantiated with a value drawn from the underlying
distribution. Hybrid ProbLog adds the following predicates to the background
knowledge of the theory to process values stemming from continuous facts:

– below(X,c) succeeds if X is a value from a continuous fact, c is a number
constant, and X < c

– above(X,c) succeeds if X is a value from a continuous fact, c is a number
constant, and X > c

– ininterval(X,c1,c2) succeeds if X is a value from a continuous fact, c1 and
c2 are number constants, and X ∈ [c1, c2]

Unification with number constants is not supported for the values of continuous
facts, i.e. the call temp(d, 0) fails. But one can express the same using

temp(d, T), ininterval(T, 0, 0) .

Similarly, standard Prolog comparison operators are not supported and one has
to use the corresponding comparison predicate from the background knowledge:

temp(d1, T), T > 5

2 We denote facts, values, and substitutions related to the continuous part of T by
the superscript c.
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has to be written as
temp(d1, T), above(T, 5) .

Arithmetic expressions are not supported, i.e the query

temp(d1, T), Fahrenheit is 9/5 ∗ X + 32, Fahrenheit > 41

is illegal. There is no equivalent predicate for that in the background knowledge.
Also, the comparison of two continuous facts is not supported, i.e. the query

temp(d1, T1), temp(d2, T2), above(T1, T2)

is illegal. The latter restriction, in particular, prevents two or more continuous
variables getting “coupled”, i.e. there is a dependency that requires one to always
consider the values of both variables simultaneously. Furthermore, disallowing
arithmetic expressions ensures that one can partition the underlying Rn space
into simple intervals rather than into complex-shaped continuous sets. Despite
being fairly restrictive, our framework allows for non-trivial programs.

Example 1 (Gaussian Mixture Model). The following theory encodes a Gaussian
mixture model. The atom mix(X) can be used later on as if it were a simple
continuous fact, which means the variable X can be processed using above/2,
below/2 and ininterval/3.

0.6::heads. tails :- problog not(heads).
(X, gaussian(0, 1))::g(X). mix(X) :- heads, g(X).
(X, gaussian(5, 2))::h(X). mix(X) :- tails, h(X).

The predicate problog not/1 is provided by the ProbLog inference engine. It
allows one to negate an atom, similar to Prolog’s \+, but can only be applied
on ground probabilistic facts.

The following theory shall be used as running example throughout the paper to
define the semantics of Hybrid Problog and to explain the inference algorithm.

Example 2 (Weather). This theory models weather during winter time. The
background knowledge states that a person catches a cold when the temper-
ature is below 0◦ Celsius or when it is colder than 5◦ Celsius while it rains.

0.8::rain. catchcold :- rain, temp(T), below(T, 5).
(T, gaussian(2, 8))::temp(T). catchcold :- temp(T), below(T, 0).

The semantics of Hybrid ProbLog theory T = F∪F c∪BK is given by probability
distributions over subsets of the facts fi (called subprograms), and over sample
values for the numeric variables in the continuous facts f c

i (called continuous
subprograms). The subprograms L ⊆ LF are distributed as in ProbLog (cf.
Equation (1)), and the continuous subprograms are distributed as described in
Section 3.1. Combining both gives one the success probability of queries in a
Hybrid ProbLog theory as described in Section 3.2.
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3.1 Distribution Over Continuous Subprograms

Let Θc = {θc
j1, . . . θ

c
ji′j
|j = 1, . . . , m} be a finite set of possible substitutions

for the non-numeric variables in the continuous facts (Xj , φj) :: f c
j where i′j

is the number of substitutions for fact j. Each substitution instance f c
j θc

jk is
associated with a random variable Xjk with probability distribution φj . The
Xjk are assumed to be independent. Let X denote the |Θc|-dimensional vector
of the random variables, and f(x) their joint density function. A sample value
x for X defines the continuous subprogram Lx := {f c

j θc
jk{Xjk ← xjk} | j =

1, . . . , m; k = 1, . . . i′j} where {Xjk ← xjk} is the substitution of Xjk by xjk.

Example 3 (Continuous Subprogram). Consider the following set of continuous
facts where the second fact is non-ground. That is, one can obtain several ground
instances where each instance has a continuous value drawn independently from
the same distribution.

(X, gaussian(1, 2)) :: h(X). (X, gaussian(4, 3)) :: f(X, Y).

When one applies the substitutions θc
1,1 = ∅, θc

2,1 = {Y ← a}, θc
2,2 = {Y ← b}

together with the point x1,1 = 0.9, x2,1 = 2.3, x2,2 = 4.2, one obtains the
continuous subprogram Lx = {h(0.9), f(2.3, a), f(4.2, b)}.
The joint distribution of X thus defines a distribution over continuous sub-
programs. Specifically, for a |Θc|-dimensional interval I = [aθc

11
, bθc

11
] × . . . ×

[aθc
mi′m

, bθc
mi′m

] (which may also be open or half-open in every dimension), one
obtains the probability of the set of continuous subprograms with continuous
parameters in I:

PP (X ∈ I|F c) :=

bθc
11∫

aθc
11

· · ·
bθc

mi′m∫
aθc

mi′m

f(x) dx (3)

Example 4 (Joint Density). In Example 3, the joint density function is f(x) =
f(x1,1, x2,1, x2,2) = ϕ1,2(x1,1)× ϕ4,3(x1,2)× ϕ4,3(x2,2) where ϕμ;σ is the density
of a normal distribution N (μ, σ).

3.2 Success Probabilities of Queries

The success probability Ps(q) of a query q is the probability that q is provable
in L∪Lx∪BK, where L is distributed according to (1), and x according to f(x)
respectively. The key to computing success probabilities is the consideration of
admissible intervals, as introduced in the following definition.

Definition 1. An interval I ⊆ R|Θc| is called admissible for a query q and a
theory T = F ∪ F c ∪ BK iff

∀x, y ∈ I, ∀L ⊆ LF :
(
L ∪ Lx ∪ BK

)
|= q ⇔

(
L ∪ Ly ∪ BK

)
|= q (4)
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If (4) holds, we can also write L ∪ LI ∪ BK |= q.
A partition A = I1, I2, . . . , Ik of R|Θc| is called admissible for a query q and

a theory T iff all Ii are admissible intervals for q and T .

In other words, an admissible interval I is “small enough” such that the val-
ues of the continuous variables, as long as they are in I, do not influence the
provability of q. Within an admissible interval, the query either always fails or
always succeeds for any sampled subset L ⊆ LF of probabilistic facts.

Example 5 (Admissible Intervals). Consider the Hybrid ProbLog theory consist-
ing out of a single continuous fact:

(X, gaussian(1, 2)) :: h(X)

For the query h(X), ininterval(X, 5, 10), the interval [0, 10] is not admissible
in this theory. The reason is, that for x = 4 ∈ [0, 10] the query fails but for
x = 6 ∈ [0, 10] it succeeds. The intervals [6, 9), [5, 10], or (−∞, 5), for example,
are all admissible. Note, that the inference engine allows one to evaluate con-
junctive queries and that the predicate ininterval/3 is automatically added to
the background knowledge.

Definition 2 (Discretized Theory). Let T = F∪F c∪BK be a Hybrid ProbLog
theory, then the discretized theory TD is defined as

F ∪ {f c{X ← f c} | (X, φ) :: f c ∈ F c}
∪ BK
∪ {below(X, C), above(X, C), ininterval(X, C1, C2)}

where f c{X ← f c} is the atom resulting from substituting the variable X by the
term f c.

The substitutions simplify the inference process. Whenever a continuous variable
is used in a comparison predicate, the variable will be bound to the original con-
tinuous fact. Therefore, one can use a standard proof algorithm without keeping
track of continuous variables. The discretized theory still contains probabilistic
facts if F is not empty, thus it is a ProbLog theory. Definition 2 allows one to
merge the infinite number of proofs, which every Hybrid ProbLog theory has,
into a potentially finite number of proofs. This property is needed to compute
the admissible intervals efficiently.

Example 6 (Proofs in the discretized theory). The discretized theory TD for Ex-
ample 2 is

0.8::rain. catchcold :- rain, temp(T), below(T, 5).
temp(temp(T)). catchcold:- temp(T), below(T, 0).
below(X, C). above(X, C). ininterval(X, C1, C2).

The discretized theory contains two proofs for the query catchcold. For each
proof, one can extract
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– fi the probabilistic facts used in the proof
– ci the continuous facts used in the proof
– di the comparison operators used in the proof

The proofs of catchcold can be characterized by:

f1 = {rain} c1 = {temp(temp(T))} d1 = {below(temp(T), 5)}
f2 = ∅ c2 = {temp(temp(T))} d2 = {below(temp(T), 0)}

It is possible, though not in Example 6, that the same continuous fact is used
by several comparison operators within one proof, i.e. fi = {below(f(X), 10),
above(f(X), 0)}. In such cases, one has to build the intersection of all intervals
to determine the interval in which all comparison operators succeed, i.e. fi =
{ininterval(f(X), 0, 10)}. If that intersection is empty, the proof will fail in the
original non-discretized theory. Building the intersections can also be interleaved
with proving the goal.

The following theorem guarantees that an admissible partition exists for each
query which has finitely many proofs in the discretized theory.

Theorem 1. For every theory T , every query q that has only finitely many
proofs in TD, and all finite sets of possible substitutions for the probabilistic
facts and the continuous facts Θ, Θc, there exists a finite partition of R|Θc|that
is admissible for T and q.

Proof. This follows from the fact that conditions defined by below/2, above/2,
and ininterval/3 are satisfied by intervals of sample values, and finite combi-
nations of such conditions, which may appear in a proof, still define intervals. ��
Algorithm 2 can be used to find admissible partitions. The algorithm has to
be modified as described in Section 4 to respect interval endpoints. Given an
admissible partition A one obtains the success probability of a query q as follows:

Ps,A(q|T ) :=
∑

L⊆LF

∑
I∈A:

L∪LI∪BK|=q

PP (L|F ) · PP (X ∈ I|F c) (5)

The following theorem shows that the values of Ps are independent of the
partition A and therefore we can write Ps(q|T ) instead of Ps,A(q|T ).

Theorem 2. Let A and B be admissible partitions for the query q and the theory
T then Ps,A(q|T ) = Ps,B(q|T ).

Proof. Proven directly, by showing that for two admissible partitions one can
construct a third partition that returns the same success probability. Using the
definition for the success probability (5) we get:

Ps,A(q|T ) :=
∑

L⊆LF

∑
I∈A:

L∪LI∪BK|=q

PP (L|F ) · PP (X ∈ I|F c) (6)

Ps,B(q|T ) :=
∑

L⊆LF

∑
I∈B:

L∪LI∪BK|=q

PP (L|F ) · PP (X ∈ I|F c) (7)
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Since A and B are both finite, one can construct a partition C such that it
subsumes both A and B, that is

∀I ∈ A : ∃I1, . . . , In ∈ C : I = I1 ∪ . . . ∪ In and
∀I ∈ B : ∃I ′1, . . . , I ′n′ ∈ C : I = I ′1 ∪ . . . ∪ I ′n′

BecauseA is admissible and by construction of C, we can represent any summand
in (6) as a sum over intervals in C. That is, for each L ⊆ LF and each I ∈ A
there exist I1, . . . , In ∈ C such that

PP (L|F ) · PP (X ∈ I|F c) =
n∑

i=1

PP (L|F ) · PP (X ∈ Ii|F c) . (8)

Because A is a partition and by construction of C, the intervals needed to cover
I ∈ A are disjoint from the intervals needed to cover I ′ ∈ A if I �= I ′. Therefore

∑
I∈A:

L∪LI∪BK|=q

PP (L|F )·PP (X ∈ I|F c) =
∑
I∈C:

L∪LI∪BK|=q

PP (L|F )·PP (X ∈ I|F c) (9)

for any subprogram L ⊆ LF . From (9) and the definition of the success proba-
bility (5) follows

Ps,A(q|T ) = Ps,C(q|T ) .

Similarly, one can show that

Ps,B(q|T ) = Ps,C(q|T ) . ��
Theorem 1 and 2 guarantee that the semantics of Hybrid ProbLog, i.e. the frag-
ment that restricts the usage of continuous values, is well-defined. The imposed
restrictions provide a balance between expressivity and tractability. They allow
one to discretize the space Rn of possible assignments to the continuous facts
in multidimensional intervals such that the actual values within one interval do
not matter. In turn, this makes efficient inference algorithms possible. Compar-
ing two continuous values against each other would couple them. This would
require a more complicated discretization of Rn in the form of polyhedra which
are harder to represent and to integrate over. Allowing arbitrary functions to be
applied on continuous values, eventually, leads to a fragmentation of the space
in arbitrary sets. This makes exact inference virtually intractable.

4 Exact Inference

In this section we present an exact inference algorithm for Hybrid ProbLog.
Our approach generalizes De Raedt et al.’s BDD algorithm [8] and generates a
BDD [5] that is evaluated by a slight modification of the original algorithm. The
pseudocode is shown in Algorithm 1, 2 and 3. In the remainder of this section, we
explain the inference steps on Example 2 and calculate the success probability
of the query catchcold.
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Algorithm 1. The inference algorithm collects all possible proofs and partitions
the Rn space according to the constraints imposed by each proof. The interme-
diate variables f ′

u and c′u are superfluous and have been added to simplify the
explanations in this section.
1: function SuccessProb(query q, theory T )
2: {(fi, ci, di)}1≤i≤m ← FindAllProofs(T, q) � Backtracking in Prolog
3: for cθ ∈ ∪1≤i≤mci do � Iterate over used ground continuous facts
4: Acθ ←CreatePartition({d1, . . . , dm})
5: {bcθ,I}I∈Acθ ←CreateAUXBodies(Acθ)
6: end for
7: u ← 0 � # disjoint proofs
8: for i = 1, 2, . . . , m do � Go over all proofs
9: (ĉ1θ̂1, . . . , ĉtθ̂t) ← ci � All cont. facts of proof i (this simplifies notation)

10: (d̂1, . . . , d̂t) ← di � Intervals in proof i (this simplifies notation)
11: for (I1, . . . , It) ∈ Aĉ1θ̂1

× · · · × Aĉtθ̂t
do � Go over all possible intervals

12: if (d1 ∩ I1 �= ∅) ∧ . . . ∧ (dt ∩ It �= ∅) then
13: u ← u + 1 � Add one more disjoint proof
14: f ′

u ← fi � Probabilistic facts stay the same
15: c′u ← ci � Continuous facts stay the same
16: d′

u ← {dom(ĉ1θ̂1) = I1, . . . , dom(ĉtθ̂t) = It} � Domains are adapted
17: f ′′

u ← fi ∪ {bcθ,I |cθ ∈ c′u, I ∈ d′
u} � Add aux. bodies to the facts

18: end if
19: end for
20: end for
21: BDD ←GenerateBDD(

∨
1≤i≤u

∧
f∈f ′′

i
f) � cf. [9]

22: return Prob(root(BDD)) � cf. [8]
23: end function

1. All proofs for catchcold are collected by SLD resolution (Line 2 in Algo-
rithm 1).

f1 = {rain} c1 = {temp(T)} d1 = {T ∈ (−∞, 5)}
f2 = ∅ c2 = {temp(T)} d2 = {T ∈ (−∞, 0)}

Each proof is described by a set of probabilistic facts fi, a set of continuous
facts ci, and an interval for each continuous variable in ci. When a continuous
fact is used within a proof, it is added to ci and the corresponding variable
X is added to di with X ∈ (−∞,∞).
When later on above(X,c1) is used in the same proof, the interval I stored
in di is replaced by I ∩ (c1,∞), similarly for below(X,c2) it is replaced by
I ∩ (−∞, c2), and for ininterval(X, c1, c2) it is replaced by I ∩ [c1, c2],

2. We partition R1 because one continuous fact is used. The loop in Line 3 of
Algorithm 1 iterates over (∪1≤i≤mci) = {temp(T)}. When calling the func-
tion CreatePartition({d1, d2}) (cf. Algorithm 2) we obtain the admissible
partition {(−∞, 0), [0, 5), [5,∞)} which is used to disjoin the proofs with
respect to the continuous facts (Line 8-20 in Algorithm 1):
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Algorithm 2. This function returns a partition of R by creating intervals touch-
ing the given intervals. Partitions of Rn can be obtain by building the cartesian
product over the partitions for each dimension. This is possible due to the re-
strictions imposed in Section 3.
1: function CreatePartition(Set of intervals D = {d1, . . . dm})
2: C ← ⋃m

i=1{lowi, highi} � lowi and highi are interval endpoints of di

3: C ← C ∪ {−∞,∞} � add upper and lower limit of R
4: (c′1, . . . , c

′
k) ←SortAndIgnoreDuplicates(c)

5: Result ← { (−∞, c′2], (c
′
k−1,∞) } � c′1 = −∞ and c′k = ∞

6: for i = 2, . . . , k − 1 do
7: Result ← Result ∪ { (c′i−1, c

′
i] }

8: end for
9: return Result

10: end function

f ′
1 = {rain} c′1 = {temp(T)} d′1 = {T ∈ (−∞, 0)}

f ′
2 = {rain} c′2 = {temp(T)} d′2 = {T ∈ [0, 5)}

f ′
3 = ∅ c′3 = {temp(T)} d′3 = {T ∈ (−∞, 0)}

3. We create one auxiliary fact per continuous fact and interval. They are de-
pendent, i.e. temp(T)[−∞,0) and temp(T)[0,5) cannot be true at the same time.
We have to make the dependencies explicit by adding, conceptually, the fol-
lowing clauses to the theory and replacing calls to continuous facts and
background predicates by the bodies bcθ,I :

call temp(T)(−∞,0) :- temp(T)(−∞,0)

call temp(T)[0,5) :- ¬temp(T)(−∞,0), temp(T)[0,5)

call temp(T)[5,∞) :- ¬temp(T)(−∞,0),¬temp(T)[0,5), temp(T)[5,∞)

Only one of the clauses can be true at the same time. The bodies encode
a linear chain of decisions. The probability attached to an auxiliary fact
temp(T)[l,h) is the conditional probability that the sampled value of T is in
the interval [l, h) given it is not in (−∞, l)

P
(
temp(T)[l,h]

)
:=

⎡
⎣

h∫
l

N (2, 8, x) dx

⎤
⎦ ·

⎡
⎣1−

l∫
−∞

N (2, 8, x) dx

⎤
⎦
−1

(10)

where N is the density of the Gaussian specified for temp/1 in the pro-
gram. This encodes a switch (cf. [11]) such that the success probability of
call temp(T)[l,h] is exactly

∫ h

l N (2, 8, x) dx. To evaluate the cumulative den-
sity function, we use the function Phi as described in [10]. If we want to use
any other distribution, we have to only replace the evaluation function of the
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Algorithm 3. To evaluate the BDD we run a modified version of De Raedt et
al.’s algorithm that takes the conditional probabilities for each continuous node
into account. For Gaussian-distributed continuous facts we use the function
Phi [10] to evaluate

∫ hi

li
N (x, μi, σi) dx which performs a Taylor approxima-

tion of the cumulative density function (CDF). If the program uses distributions
other than Gaussians, the user has to provide the corresponding CDF.
1: function Prob(node n)
2: if n is the 1-terminal then return 1
3: if n is the 0-terminal then return 0
4: Let h and l be the high and low children of n
5: ph ← Prob(h)
6: pl ← Prob(l)
7: if n is a continuous node with attached interval [a, b] and density φn then

8: p ←
[∫ hn

ln
φn(x) dx

]
·
[
1 − ∫ ln

−∞ φn(x) dx
]−1

9: else
10: p ← pn � the probability attached to the fact in the ProbLog program
11: end if
12: return p · ph + (1 − p) · pl

13: end function

density, as all the rest of the algorithm does not depend on the particular
distribution. Adding the bodies of the auxiliary clauses to f ′

i yields the final
set of proofs (Line 17 in Algorithm 1):

f ′′
1 = {rain, temp(T)(−∞,0)}

f ′′
2 = {rain,¬temp(T)(−∞,0), temp(T)[0,5)}

f ′′
3 = {temp(T)(−∞,0)}

The proofs are now disjoint with respect to the continuous facts. That is,
either the intervals for continuous facts are disjoint or identical. With re-
spect to the probabilistic facts, they are not disjoint and summing up the
probabilities of all proofs would yield a wrong result. One would count the
probability mass of the overlapping parts multiple times [8].

4. To account for that, we translate the proofs into a Boolean expression in
disjunctive normal form (cf. Line 21 in Algorithm 1) and represent it as
BDD (cf. Figure 1). This step is similar to ProbLog’s inference mechanism(

rain∧ temp(T)(−∞,0)

)

∨
(
rain∧ ¬temp(T)(−∞,0) ∧ temp(T)[0,5)

)

∨
(
temp(T)(−∞,0)

)

5. We evaluate the BDD with Algorithm 3 and get the success probability
of catchcold. This is a slight modification of De Raedt et al.’s algorithm
(cf. [8,9] for the details) that takes into account the continuous nodes.
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temp(T)(−∞,0)

rain

temp(T)[0,5)

01

1 0

1 0

1 0

Prob = 1 Prob = 0

p =

⎛
⎝

5∫
0

N (x, 2, 8) dx

⎞
⎠

⎛
⎝1 −

0∫
−∞

N (x, 2, 8) dx)

⎞
⎠

−1

≈0.409

Prob =1 · 0.409 + 0 · (1 − 0.409) ≈ 0.409

p =0.8

Prob =0.409 · 0.8 + 0 · (1 − 0.8) ≈ 0.327

p =

⎛
⎝

0∫
−∞

N (x, 2, 8) dx

⎞
⎠

⎛
⎝1 −

−∞∫
−∞

N (x, 2, 8) dx)

⎞
⎠

−1

≈0.401

Prob =1 · 0.401 + 0.327 · (1 − 0.401) ≈ 0.597

Fig. 1. This BDD [5] encodes all proofs of catchcold in the theory from Example 2. The
dashed boxes show the intermediate results while traversing the BDD with Algorithm 3.
The success probability of the query is returned at the root and is 0.597.

The function CreatePartition (cf. Algorithm 2) does not necessarily return
an admissible partition as it ignores the interval endpoints by creating right-open
intervals. For instance, if one obtains two proofs which impose as constraint the
intervals [1, 2] and [2, 3), the minimal admissible partition is

{(−∞, 1), [1, 2), [2, 2], (2, 3), [3,∞)} .

The function CreatePartition, however, returns the inadmissible partition

{(−∞, 1), [1, 2), [2, 3), [3,∞)} .

With respect to the interval [2, 3), the first proof succeeds for x = 2 but fails for
any other value in [2, 3) – which is not allowed for admissible intervals (cf. Defini-
tion 1). Though, when calculating the success probability, one can ignore interval
endpoints. Since the calculation involves integrals of the form

∫ hi

li
φ(x) dx, it is

irrelevant whether intervals are open or closed (cf. Equation (10)). Also, an in-
tegral over a single point interval has value 0.

However, when one wants to know whether there is a proof with specific values
for some or all continuous facts, one has to be precise about the interval endpoints
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Fig. 2. The query s(5, 2) succeeds, if both values f(Val1, 1) and f(Val2, 2) lie in one of
the intervals [0, 1

1
], [0, 1

2
], . . ., [0, 1

5
]. These areas correspond to the thick-lined squares

starting at (0, 0). Since they overlap, one has to partition the space R2 in order to
disjoin the proofs. Due to the restrictions of Hybrid ProbLog program, i.e., continuous
variables cannot be compared against each other, one can obtain an admissible partition
for each dimension independently. Algorithm 2 returns the partitions shown by the
dotted lines. The horizontal lines partition the space of f(Val2, 2) and the vertical the
space of f(Val1, 1).

and use a modified algorithm. Admissibility can be ensured, for instance, by
creating for each pair of constants the open interval (li, hi) and the single point
interval [li, hi]. For the former example this is

{(−∞, 1), [1, 1], (1, 2), [2, 2], (2, 3), [3, 3], (3,∞)} .

5 Experiments

We implemented Hybrid ProbLog in YAP 6.0.7 and set up experiments to answer
the question

How does the inference algorithm (cf. Algorithm 1) scale in the size of
the partitions and in the number of ground continuous facts?

In domains where exact inference is feasible, the number of continuous facts and
comparison operations is typically small compared to the rest of the theory. Our
algorithm is an intermediate step between SLD resolution and BDD generation.
Therefore, it is useful to know how much the disjoining operations cost compared
to the other inference steps. We tested our algorithm on the following theory:

(Val, gaussian(0, 1)) :: f(Val, ID).
s(Consts, Facts) :- between(1, Facts, ID), between(1, Consts, Top),

High is Top/Consts,

f(Val, ID), ininterval(Val, 0, High).
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Fig. 3. Runtimes for calculating the success probability of s(Consts, Facts) for varying
the number of constants s(1, 1), · · · s(100, 1). As the graphs show, most of the time is
spent on disjoining the proofs, that is partitioning the domains. The BDD time stays
more or less constant, this is due to the fact that the resulting Boolean expression,

i.e. ¬s(Val, 1)(−∞,0) ∧
(
s(Val, 1)[0, 1

n
) ∨ s(Val, 1)[ 1

n
, 1
n−1

) ∨ . . . ∨ s(Val, 1)[ 1
2
,1)

)
, is rather

simple. This can be detected and exploited by the BDD package.

The query s(Consts, Facts) has Consts× Facts many proofs where both ar-
guments have to be positive integers. The first argument determines the number
of partitions needed to disjoin the proofs with respect to the continuous facts
and the second argument determines how many continuous facts are used. The
query s(5, 2), for instance, uses two continuous facts, f(Val1, 1) and f(Val2, 1),
and compares them to the intervals [0, 1], [0, 1

2 ], · · · [0, 1
5
]. Figure 2 shows the

resulting partitioning when proving the query s(5, 2). In general, one obtains
(Consts+ 1)Facts many partitions of the space RFacts.

The success probability of s(Consts, Facts) is independent of Consts. That
is, for fixed Facts and any c1, c2 ∈ N

Ps(s(c1, Facts)|T ) = Ps(s(c2, Facts)|T )

We ran two series of queries3. First, we used one continuous fact and varied the
number of constants from 1 to 100. As the graph in Figure 3 shows, the disjoin
3 The experiments were performed on an Intel Core 2 Quad machine with 2.83GHz

and 8GB of memory. We used the CUDD package for BDD operations and set the
reordering heuristics to CUDD REORDER GROUP SIFT. Each query has been
evaluated 20 times and the runtimes were averaged.
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Fig. 4. Runtimes for calculating the success probability of s(Consts, Facts) for varying
the number of dimensions s(5, 1), . . . , s(5, 100). In this setting, most of the time is spent
in the BDD package, that is building the BDD based on the script and traversing it.
The runtime for our disjoin operation grows only linearly. This is due to the fact that
the partitions of Rn can be factorized into each dimensions because we do not allow
comparisons between two continuous variables.

operation – that is finding all partitions, generating the auxiliary bodies and
rewriting the proofs – runs in O(Consts2) when everything else stays constant.
In this case, due to compression and pruning operations during the BDD script
generation [9] (the input for the BDD package), building and evaluating the BDD
runs in quasi-linear time. In the second run, we varied the number of continuous
facts by evaluating the queries s(5, 1), · · · , s(5, 100). As Figure 4 shows, our
algorithm (depicted by the Disjoin graph) runs in linear time. The runtime for
the BDD operations grows exponentially due to the reordering heuristics used
by the BDD package.

6 Conclusions and Future Work

We extended ProbLog with continuous distributions and introduced an exact
inference algorithm. The expressivity has been restricted to make inference
tractable. Possible directions for future work include comparisons between two
continuous facts and applying functions on continuous values. We are working
on upgrading existing ProbLog parameter learning methods to continuous facts.
ProbLog is available for download at http://dtai.cs.kuleuven.be/problog.

http://dtai.cs.kuleuven.be/problog
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Abstract. One of the main characteristics of Semantic Web (SW) data is that it
is notoriously incomplete: in the same domain a great deal might be known for
some entities and almost nothing might be known for others. A popular example
is the well known friend-of-a-friend data set where some members document ex-
haustive private and social information whereas, for privacy concerns and other
reasons, almost nothing is known for other members. Although deductive rea-
soning can be used to complement factual knowledge based on the ontological
background, still a tremendous number of potentially true statements remain to be
uncovered. The paper is focused on the prediction of potential relationships and
attributes by exploiting regularities in the data using statistical relational learning
algorithms. We argue that multivariate prediction approaches are most suitable
for dealing with the resulting high-dimensional sparse data matrix. Within the
statistical framework, the approach scales up to large domains and is able to deal
with highly sparse relationship data. A major goal of the presented work is to
formulate an inductive learning approach that can be used by people with little
machine learning background. We present experimental results using a friend-of-
a-friend data set.

1 Introduction

The Semantic Web (SW) is becoming a reality. Most notably is the development around
the Linked Open Data (LOD) initiative, where the term Linked Data is used to describe
a method of exposing, sharing, and connecting data via dereferenceable Unique Re-
source Identifiers (URIs) on the Web. Typically, existing data sources are published in
the Semantic Web’s Resource Description Framework (RDF), where statements are ex-
pressed as simple subject-property-object (s, p, o) triples and are graphically displayed
as a directed labeled link between a node representing the subject and a node repre-
senting the object (Figure 1). Data sources are interlinked with other data sources in
the LOD cloud. In some efforts, subsets of the LOD cloud are retrieved in reposito-
ries and some form of logical reasoning is applied to materialize implicit triples. The
number of inferred triples is typically on the order of the number of explicit triples.
One can certainly assume that there are a huge number of additional true triples which
are neither known as facts nor can be derived from reasoning. This might concern both

P. Frasconi and F.A. Lisi (Eds.): ILP 2010, LNAI 6489, pp. 92–104, 2011.
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triples within one of the contributing data sources such as DBpedia1 (intralinks), and
triples describing interlinks between the contributing data sources. The goal of the work
presented here is to estimate the truth values of triples exploiting patterns in the data.
Here we need to take into account the nature of the SW. LOD data is currently dynami-
cally evolving and quite noisy. Thus flexibility and ease of use are preferred properties
if compared to highly sophisticated approaches that can only be applied by machine
learning experts. Reasonable requirements are as follows:

– Machine learning should be “push-button” requiring a minimum of user interven-
tion.

– The learning algorithm should scale well with the size of the SW.
– The triples and their probabilities, which are predicted using machine learning,

should easily be integrated into SPARQL-type querying.2

– Machine learning should be suitable to the data situation on the SW with sparse
data (e.g., only a small number of persons are friends) and missing information
(e.g., some people don’t reveal private information).

Looking at the data situation, there are typically many possible triples associated with
an entity (these triples are sometimes called entity molecules or, in our work, statistical
unit node set) of which only a small part is known to be true. Due to this large degree of
sparsity of the relationship data in the SW, multivariate prediction is appropriate for SW
learning. The rows, i.e., data points in the learning matrix are defined by the key entities
or statistical units in the sample. The columns are formed by nodes that represent the
truth values of triples that involve the statistical units. Nodes representing aggregated
information form the inputs. The size of the training data set is under the control of the
user by means of sampling. Thereby the data matrix size, and thus also training time,
can be made independent or only weakly dependent on the overall size of the SW. For
the experiments in this paper we use the friend-of-a-friend (FOAF) data set, which is a
distributed social domain describing persons and their relationships in SW-format. Our
approach is embedded in a statistical framework requiring the definition of a statistical
unit and a population. In our experiments we compare different sampling approaches
and analyze generalization on a test set.

The paper is organized as follows. In the next section we discuss related work, In Sec-
tion 3 we discuss how machine learning can be applied to derive probabilistic weights
for triples whose truth values are unknown and introduce our approach. In Section 4 we
present experimental results using a friend-of-a-friend (FOAF) data set. Finally, Sec-
tion 5 contains conclusions and outlines further work.

2 Related Work

The work on inductive databases [1] pursues similar goals but is focussed on the less-
problematic data situation in relational databases. In [2] the authors describe SPARQL-
ML, a framework for adding data mining support to SPARQL. SPARQL-ML was

1 http://dbpedia.org/
2 SPARQL is a new standard for querying RDF-specific information and for displaying querying

results.

http://dbpedia.org/
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Fig. 1. Example of an RDF graph displaying a social friendship network in which the income of
a person is an attribute. Resources are represented by circular nodes and triples are represented
by labeled directed links from subject node to object node. The diamond-shaped nodes stand for
random variables which are in state one if the corresponding triples exist. Nodes representing
statistical units (here: Persons) have a darker rim.

inspired by Microsoft’s Data Mining Extension (DMX). A particular ontology for spec-
ifying the machine learning experiment is developed. The SRL methods in [2] are
ILP-type approaches based on a closed-world assumption (Relational Bayes Classi-
fier (RBC) and Relational Probabilistic Trees (RPT)). This is in difference to the work
presented here, which maintains more of an open-world assumption that is more ap-
propriate in the context of the SW. Another difference is that in our work, both model
training and statement prediction can be performed off-line, if desired. In this case in-
ferred triples with their associated certainty values can be stored , e.g., in a triple store,
enabling fast query execution.

Unsupervised approaches (examples that are suitable for the relational SW domain
are [3–6]) are quite flexible and interpretable and provide a probability distribution
over a relational domain. Although unsupervised approaches are quite attractive, we
fear that the sheer size of the SW and the huge number of potentially true statements
make these approaches inappropriate for Web-scale applications. Supervised learning,
where a model is trained to make a prediction concerning a single random variable
typically shows better predictive performance and better scalability. Typical examples
are many ILP approaches [7, 8] and propositionalized ILP approaches [9, 10]. Multi-
variate prediction generalizes supervised learning to predict several variables jointly,
conditioned on some inputs. The improved predictive performance in multivariate pre-
diction, if compared to simple supervised learning, has been attributed to the sharing of
statistical strength between the multiple tasks, i.e., data is used more efficiently see [11]
and citations therein for a review). Due to the large degree of sparsity of the relation-
ship data in the SW, we expect that multivariate prediction is quite interesting for SW
learning and we will apply it in the following.
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3 Statistical Modeling

3.1 Defining the Sample

We must be careful in defining the statistical unit, the population, the sampling pro-
cedure and the features. A statistical unit is an object of a certain type, e.g., a person.
The population is the set of statistical units under consideration. In our framework, a
population might be defined as the set of persons that attend a particular university. For
learning we use a subset of the population. In the experimental section we will explore
various sampling strategies. Based on the sample, a data matrix is generated where the
statistical units in the sample define the rows.

3.2 The Random Variables in the Data Matrix

We now introduce for each potential triple a triple node drawn as a diamond-shaped
node in Figure 1. A triple node is in state one (true) if the triple is known to exist and is
in state zero (false) if the triple is known not to exist. Graphically, one only draws the
triple nodes in state one, i.e., the existing triples.

We now associate some triples with statistical units. The idea is to assign a triple to
a statistical unit if the statistical unit appears in the triple. Let’s consider the statisti-
cal unit Jane. Based on the triples she is participating in, we obtain (?personA, typeOf,
Person), (Joe, knows, ?personA), and (?personA, hasIncome, High) where ?personA is
a variable that represents a statistical unit. The expressions form the random variables
(outputs) and define columns in the data matrix.3 By considering the remaining sta-
tistical units Jack and Joe we generate the expressions (columns), (?personA, knows,
Jane) and (Jack, knows, ?personA). We will not add (Jane, knows, ?personA) since
Jane considers no one in the data base to be her friend. We iterate this procedure for
all statistical units in the sample and add new expressions (i.e., columns in the data
matrix), if necessary. Note that expressions that are not represented in the sample will
not be considered. Also, expressions that are rarely true (i.e., for few statistical units)
will be removed since no meaningful statistics can be derived from few occurrences.
In [12] the triples associated with a statistical unit were denoted as statistical unit node
set (SUNS). The matrix formed with the N statistical units as rows and the random
variables as columns is denoted as Y .

3.3 Non-random Covariates in the Data Matrix

The columns we have derived so far represent truth values of actual or potential triples.
Those triples are treated as random variables in the analysis. If the machine learning
algorithm predicts that a triple is very likely, we can enter this triple in the data store.
We now add columns that provide additional information for the learning algorithm but
which we treat as covariates or fixed inputs.

First, we derive simplified relations from the data store. More precisely, we consider
the expressions derived in the last subsection and replace constants by variables. For

3 Don’t confuse a random variable representing the truth value of a statement with a variable in
a triple, representing an object.
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example, from (?personA, knows, Jane) we derive (?personA, knows, ?personB) and
count how often this expression is true for a statistical unit ?personA, i.e., we count the
number of friends of person ?personA.

Second, we consider a simple type of aggregated features from outside a SUNS.
Consider first a binary triple (?personA, knows, Jane) . If Jane is part of another bi-
nary triple, in the example, (?personA, hasIncome, High) then we form the expression
(?personA, knows, ?personB)∧ (?personB, hasIncome, High) and count how many rich
friends a person has. A large number of additional features are possible but so far we
restricted ourselves to these two types. The matrix formed with the N statistical units
as rows and the additional features as columns is denoted as X .

After construction of the data matrix we prune away columns in X and in Y which
have ones in fewer than ε percent of all rows, where ε is usually a very small number.
This is because for those features no meaningful statistical analysis is possible. Note
that by applying this pruning procedure we reduce the exponential number of random
variables to typically a much smaller set.

3.4 Algorithms for Learning with Statistical Units Node Sets

In a statistical setting as described above, the statistical unit node set (SUNS) is defined
mostly based on local neighborhoods of statistical units. By adding aggregated infor-
mation derived from the neighborhood, homophily can also be modeled. For instance,
the income of a person can be predicted by the average income of this person’s friends.

As we will see in the experiments, the resulting data matrices are typically high-
dimensional and sparse. In this situation, multivariate prediction approaches have been
most successful [11]. In multivariate prediction all outputs are jointly predicted such
that statistical strength can be shared between outputs. The reason is that some or
all model parameters are sensitive to all outputs, improving the estimates of those
parameters.4

We apply four different multivariate prediction approaches. First, we utilize a re-
duced rank penalized regression (RRPP) algorithm to obtain an estimated matrix via
the formula

Ŷ = Ur diagr

(
dk

dk + λ

)
UT

r Y

where dk and Ur are derived from a r-rank eigen decomposition of the kernel matrix

K ≈ UrDrU
T
r . Ur is a N × r matrix with r orthonormal columns, diagr

(
dk

dk+λ

)
is a diagonal matrix containing the r largest eigen values and λ is a regularization
parameter. The kernel matrix K can be defined application specifically. Typically, as
in the following application, one works with a linear kernel defined by K = ZZT ,
where Z = [αX, Y ] is formed by concatenating X and Y and where α is a positive
weighting factor.5

4 Although the completion is applied to the entire matrix, only zeros —representing triples with
unknown truth values— are overwritten.

5 Alternatively, we can define a linear kernel solely based on the input attributes K = XXT ,
when α → ∞, or solely based on the output attributes K = Y Y T , when α = 0.
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Fig. 2. Entity-relationship diagram of the LJ-FOAF domain

Besides RRPP we investigate three other multivariate prediction approaches based
on matrix completion, i.e., singular value decomposition (SVD), non-negative matrix
factorization (NNMF) [13] and latent Dirichlet allocation (LDA) [14]. All approaches
estimate unknown matrix entries via a low-rank matrix approximation. NNMF is a
decomposition under the constraints that all terms in the factoring matrices are non-
negative. LDA is based on a Bayesian treatment of a generative topic model. After
matrix completion of the zero entries in the data matrix, the entries are interpreted as
certainty values that the corresponding triples are true. After training, the models can
also be applied to statistical units in the population outside the sample.

4 Experiments

4.1 Data Set and Experimental Setup

Data Set. The experiments are based on friend-of-a-friend (FOAF) data. The purpose
of the FOAF project [15] is to create a web of machine-readable pages describing peo-
ple, their relationships, and people’s activities and interests, using W3C’s RDF tech-
nology. The FOAF ontology is based on RDFS/OWL and is formally specified in the
FOAF Vocabulary Specification 0.916.

We gathered our FOAF data set from user profiles of the community website Live-
Journal.com7. All extracted entities and relations are shown in Figure 2. In total we col-
lected 32,062 persons and all related attributes. An initial pruning step removed little
connected persons and rare attributes. Table 1 lists the number of different individuals
(top rows) and their known instantiated relations (bottom rows) in the full triple set,
in the pruned triple set and in triples sets in different experiment settings (explained
below). The resulting data matrix, after pruning, has 14,425 rows (persons) and 15,206
columns. Among those columns 14,425 ones (friendship attributes) refer to the prop-
erty knows. The remaining 781 columns (general attributes) refer to general informa-
tion about age, location, number of blog posts, attended school, online chat account and
interest.

6 http://xmlns.com/foaf/spec/
7 http://www.livejournal.com/bots/

http://xmlns.com/foaf/spec/
http://www.livejournal.com/bots/
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setting 1 setting 2 setting 3 setting 4

Fig. 3. Evaluated sampling strategies

Data Retrieval and Sampling Strategies. In our experiments we evaluated the gener-
alization capabilities of the learning algorithms given eight different settings. The first
four settings are illustrated in Figure 3. A cloud symbolizes the part of the Web that
can effectively be accessed (in our case the data set given in Table 1). Crosses represent
persons that are known during the training phase (training set) and circles represent
persons with knows relations that need to be predicted.

Setting 1 describes the situation where the depicted part of the SW is randomly acces-
sible, meaning that all instances can be queried directly from triple stores. Statistical
units in the sample for training are randomly sampled and statements for other ran-
domly selected statistical units are predicted for testing (inductive setting). In this
setting, persons are rarely connected by the knows relations. The knows relation in
the training and test set is very sparse (0.18%).

Setting 2 also shows the situation where statistical units in the sample are randomly
selected, but this time the truth values of statements concerning the statistical units
in the training sample are predicted (transductive setting). Some instances of the
knows relation of the selected statistical units are withheld from training and used
for prediction. Prediction should be easier here since the statistics for training and
prediction match perfectly.

Setting 3 assumes that the Web address of one user (i.e., one statistical unit) is known.
Starting from this random user, users connected by the knows relation are gathered
by breadth-first crawling and are then added as rows in the training set. The test
set is gathered by continued crawling (inductive setting). In this way all profiles
are (not necessarily directly) connected and training profiles show a higher con-
nectivity (1.02%) compared to test profiles (0.44%). In this situation generalization
can be expected to be easier than in setting 1 and 2 since local properties are more
consistent than global ones.

Setting 4 is the combination of settings 2 and 3. The truth values of statements
concerning the statistical units in the training sample are predicted (transductive
setting). Instances of the knows relation are withheld from training and used for
prediction.

Settings 5-8 use the same set of statistical units as settings 1-4 respectively. The dif-
ference is that in settings 1-4 the data matrix only contains friendship relations
to persons in the sample whereas in settings 5-8, the data matrix contains friend-
ship relations any persons in the population. In settings 5-8 we remove those users
(friendship attributes) who are known by less than ten users (statistical units),
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i.e., ε = 10. We ended up with a large number of ones in the data matrix when com-
pared to settings 1-4. The concrete numbers of the statistical units and the friendship
attributes are shown in Person (row) and Person (col) respectively in Table 1.

Evaluation Procedure and Evaluation Measure. The task is to predict potential
friends of a person, i.e., knows statements. For each person in the data set, we randomly
selected one knows friendship statement and set the corresponding matrix entry to zero,
to be treated as unknown (test statement). In the test phase we then predicted all un-
known friendship entries, including the entry for the test statement. The test statement
should obtain a high likelihood value, if compared to the other unknown friendship en-
tries. Here we use the normalized discounted cumulative gain (NDCG) [16] (described
in the Appendix) to evaluate a predicted ranking.

Benchmark methods. Baseline: Here, we create a random ranking for all unknown
triples, i.e., every unknown triple gets a random probability assigned. Friends of friends
in second depth (FOF, d=2): We assume that friends of friends of a particular person
might be friends of that person too. From the RDF graph point of view the knows
relation propagates one step further alongside the existing knows linkages.

4.2 Results

In settings 1 and 2 we randomly sampled 2,000 persons for the training set. In addition,
in setting 1 we further randomly sampled 2,000 persons for the test set. In setting 3,
4,000 persons were sampled, where the first half was used for training and the second
half for testing. Setting 4 only required the 2,000 persons in the training set. In settings
5-8 we followed the same sampling strategies as in settings 1-4 respectively and ex-
tracted all users known by the sampled users to form the friendship attributes. In each
case, sampling was repeated 5 times such that error bars could be derived. Table 1 re-
ports details of the samples (training set and, if applicable, test set). The two benchmark
methods and the four multivariate prediction approaches proposed in Section 3.4 were
then applied to the training set. For each sample we repeated the evaluation procedure
as described above 10 times. Since NNMF is only applicable in a transductive setting,
it was only applied in setting 1, 3, 5 and 7. Moreover, the FOF, d=2 is not applicable
in settings 5-8, since it is impossible for many statistical units to access the friends of
their friends.

Figures 4 and 5 show the experimental results for our FOAF data set. The error bars
show the 95% confidence intervals based on the standard error of the mean over the
samples. The figures plot the NDCG all score of the algorithms against the number of
latent variables in settings 1, 2, 5, 6 in Figure 4 and in settings 3, 4, 7, 8 in Figure 5.
The best NDCG all scores of all algorithms in different settings are shown in Table 2,
where r indicates the number of latent variables achieving the best scores.

First, we observe that the experimental results in settings 5-8 are much better than
those in settings 1-4. This can be attributed to the fact that in settings 5-8 columns were
pruned more drastically and a more dense friendship pattern was achieved.

Another observation is that all four multivariate prediction approaches clearly out-
perform the benchmark algorithms in all settings, although in settings 1 and 2 NNMF
and SVD are only slightly better than FOF, d=2.
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(a) (c)

(b) (d)

Fig. 4. Comparison between different algorithms. NDCG all is plotted against the number of
latent variables: (a)-(d) for settings 1, 2, 5, 6 respectively.

Furthermore, we observe that LDA and RRPP outperform NNMF and SVD in each
setting, and that LDA and RRPP are not sensitive to the number of latent variables
as long as the chosen number is reasonably high. LDA reaches its maximum NDCG
score, for instance, with r = 150 latent variables in setting 4 and the performance
does not deteriorate when the number of latent factors is increased. The score of RRPP
keeps increasing and does not drop down in the observed range of the number of latent
variables. In contrast, NNMF and SVD are sensitive with respect to the predefined
number of latent variables.

Comparing the results over different settings we can observe that for the multivariate
prediction approaches one obtains best performance in setting 4, next best performance
in setting 2, then follows setting 1 and 3 is the most difficult setting. The corresponding
order can be seen in settings 5-8. The baseline method, random guess, is independent
to the settings and achieves almost the same score in all settings. The fact that the
scores in settings 4 and 8 are the best indicates that a link-following sampling strategy
in general gives better performance than random sampling. Similar results in statistical
comparisons between random and link-following sampling have been obtained in other
works, e.g., [17].
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(a) (c)

(b) (d)

Fig. 5. Continue Figure 4: (a)-(d) for settings 3, 4, 7, 8 respectively

Finally, we observe that the prediction performance in setting 1 is only slightly worse
than the prediction performance in setting 2, while the prediction performance in setting
4 is much better than in setting 3. This phenomenon occurs in settings 5-8 too. We
attribute this to the general statistics in the training and the test set which are very
different both in setting 3 and setting 7. In Table 1 it is apparent that for instance, in
setting 3 the knows relation in the training data set (1.02%) is significantly more dense
than in the test data set (0.44%). Intuitively speaking, the people in the training know
each other quite well, but the people in the test do not know the people in the training
as much.

5 Conclusions and Outlook

The paper describes extensions to the SUNS approach introduced in [12]. The SUNS
approach is based on multivariate prediction which is quite suitable for the typical SW
data situation. In our experiments based on the FOAF data set, LDA and RRPP showed
best performance, and the performance is insensitive to the rank of the approximation,
resp. to the number of latent variables. This can be explained by the fact that LDA, in
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contrast to NNMF, is a Bayesian approach and by the fact that the RRPP, in contrast
to SVD, is regularized. Thus LDA or RRPP can be default methods being insensitive
to exact parameter tuning. All four approaches exploited the benefits of multivariate
prediction since approaches based on single predictions (not reported here) did not even
reach the performance of the benchmark approaches.

The proposed approach can be extended in many ways. One might want to allow the
user to specify additional parameters in the learning process, if desired, along the line
of the extensions described in [2]. Another extension concerns ontological background
knowledge. So far, ontological background knowledge was considered by including
logically inferred statements into learning. Ongoing work explores additional ways of
exploiting ontological background information, e.g., for structuring the learning matrix.

Finally we want to demonstrate how learned probabilistic statements can be queried.
The following SPARQL query illustrates a query for LiveJournal users who live in
Munich and might want to be Trelena’s friend:

1 PREFIX ya: http://blogs.yandex.ru/schema/foaf/
2 PREFIX foaf: http://xmlns.com/foaf/0.1/
3 PREFIX dc: http://purl.org/dc/elements/1.1/
4 SELECT DISTINCT ?person
5 WHERE
6 {?person ya:located ?city .
7 ?person foaf:knows <http://trelana.livejournal.com/trelana>
8 WITH PROB ?prob .
9 FILTER REGEX(?city, "Munich") .

10 }
11 ORDER BY DESC(?prob)

The query includes the predicted knows triples for Trelena and rates them by predicted
probability.

Acknowledgements. We acknowledge funding by the German Federal Ministry of
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Appendix

Details on the NDCG Score

We use the normalized discounted cumulative gain (NDCG) to evaluate a predicted
ranking. NDCG is calculated by summing over all the gains in the rank list R with a log
discount factor as

NDCG(R) =
1
Z

∑
k

2r(k) − 1
log(1 + k)

,

where r(k) denotes the target label for the k-th ranked item in R, and r is chosen such
that a perfect ranking obtains value 1. To focus more on the top-ranked items, we also
consider the NDCG@n which only counts the top n items in the rank list. These scores
are averaged over all ranking lists for comparison.

http://www.foaf-project.org/
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Abstract. The Robocup 2D simulation competition [13] proposes a dy-
namic environment where two opponent teams are confronted in a sim-
plified soccer game. All major teams use a fixed algorithm to control its
players. An unexpected opponent strategy, not previously considered by
the developers, might result in winning all matches. To improve this we
use ILP to learn action descriptions of opponent players; for learning on
dynamic domains, we have to deal with the frame problem. The induced
descriptions can be used to plan for desired field states. To show this we
start with a simplified scenario where we learn the behaviour of a goal-
keeper based on the actions of a shooter player. This description is used
to plan for states where a goal can be scored. This result can directly be
extended to a multiplayer environment.

Keywords: ILP, Action Descriptions, Answer Sets, Nonmonotonic Rea-
soning, Robocup Simulation Environment.

1 Introduction

RoboCup [13] is an international joint project created to promote AI and robotics
research, by providing a standard problem (a simplified soccer game) where dif-
ferent technologies can be integrated and examined. The RoboCup competition
includes real robot competitions and a software agent competition. In this last
case, the soccer players must interact with a simulated environment based on
incomplete and partially incorrect data1.

The RoboCup simulated league is based on rcssserver, a soccer simulation
environment. In rcssserver, a match is carried out in a client/server style: the
server provides a virtual field and simulates all movements of a ball and players,
while each client controls the movements of one player from a partial perception
of its environment (referee messages, player body status, etc.). Time is discretized
in simulation cycles. The server introduces noise in the visual sensor data as well
as in the movement of objects and parameters of commands.
� This paper has been funded by the Ministry of Science and Education of Spain

through project TIN2007-64330.
1 http://sserver.sourceforge.net/wiki/index.php/Main_Page
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Currently teams use fixed strategies to control its players. If an opponent uses
an unexpected strategy, then the controlled team might show a low performance.
To overcome this limitation, we propose a technique to learn action descriptions
for opponent players, based on the actions performed by the team. This allows
for planning for desired field states (for instance, a state where a goal can be
scored). This means that an optimal, specific strategy will be available for each
opponent team.

To test the proposed method, we solve the problem of placing a shooter player
in a field position where a goal can be scored, in an environment with an op-
ponent goalkeeper. This is achieved in two steps. First, a model to decide if a
goal can be scored from a given field state is proposed, based on the position of
the shooter player and the opponent goalkeeper. Then, an action description for
the movement of the opponent goalkeeper is learned. The resulting model can
be used to plan for optimal shooting situations.

This requires to learn in a dynamic domain, so it is suitable to solve the frame
problem. We do so by applying the method proposed on [11], using the system
IAction [12].

The paper is organized as follows. Section 2 introduces the concept of ac-
tion description, and briefly describes the method [11] for learning on dynamic
domains. Section 3 proposes a solution to automatically model the behaviour
of opponent players, exemplifying it on the award-winning team CMUnited99
[14] goalkeeper. Finally, section 4 briefly reviews previous work and presents the
conclusions.

2 Action Descriptions for Dynamic Domains

We follow the method on [11] that represents dynamic domains using action de-
scriptions. An action description represents the properties of a dynamic domain
as fluents. These properties will change depending on performed actions. For
example, shooting the ball in the correct direction will increase the score count.
Both, actions and fluents, will be represented as predicates.

Each step on the evolution of the dynamic domain is represented by a situa-
tion. A narrative represents a particular example of the evolution of the domain
from an initial situation s0 to a final situation sn. Different narratives represent
different examples of the evolution of the environment, depending on the initial
state of the environment and the actions performed.

An action description can be represented using several kinds of rules. Action
laws take the following form:
e (S ,N) :− a (S ,N) , prev (S ,PS) , PRECOND(PS ,N) .

where e(S, N) is a fluent and a(S, N) is an action. S and PS are situation vari-
ables, N represents a narrative. prev(S, PS) defines situation S as the successor
of the situation PS. PRECOND(PS, N) represents a conjunction of fluents
f1(PS, N), ..., fn(PS, N) and might be missing.
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Intuitively, these rules state that when action a is performed on situation S
and fluents f1, ..., fn are true on the previous situation PS, then the effect fluent
e will be true on the situation S.

Frame axioms take the following form:
e (S ,N) :− a (S ,N) , prev (S ,PS) , e (PS ,N) , PRECOND(PS ,N) .

Frame axioms are needed to explain the target fluent e when it persists from
the previous situations. Both type of rules are needed to cover the examples. We
need a frame axiom for each combination of fluent and action. When a domain
is described with frame axioms it is said that we have the frame problem. To
solve the frame problem we need a compact description of the persistence of the
fluents. This is solved on Stable Models [6] using inertia axioms instead of frame
axioms. Two single inertia axioms for a fluent replace all frame axioms with such
fluent in the head.

Inertia axioms take the following form:
e (S ,N) :− prev (S ,PS) , e (PS ,N) , not ne (S ,N) .
ne (S ,N) :− prev (S ,PS) , e (PS ,N) , not e (S ,N) .

Where ne(S, N) is the literal complementary to e and not represents negation
as failure (NAF ). The first rule should be read as: the fluent e will be true on
S if e is true on the previous situation PS and we cannot prove that e is false
on S.

2.1 Efficient Induction of Action Laws with IAction

We use the method [11] to efficiency learn on dynamic domains. This method
uses causality to get solutions to the frame and ramification problems in induc-
tion. Causality allows to translate the nonmonotonic induction problem to a form
where monotonic methods of ILP can be used to provide a complete method for
induction of action descriptions without the frame problem. Without this the
methods defined on monotonic formalisms will have the frame problem. A possi-
ble alternative solution would be to apply some existing restricted nonmonotonic
induction methods, but it is not known how to use these methods for learning
without the frame problem.

A nonmonotonic induction method would include the inertia axioms in the
background to provide solutions free from the frame problem. On monotonic ILP
methods the frame axioms are induced to cover the fluents on the examples that
persist. Nevertheless we could avoid the induction of the fluents that persist by
not providing those persistent examples and selecting, as a target, the caused
fluents only.

Consider a simplified Robocup domain with one player. There are two fluents
in this domain: goal (resp. ngoal) represents that a goal has been scored and
hasball (resp. nhasball) represents that the player has the ball. Three actions
are considered: shoot, wait (do nothing), getball. We want to learn how to score
a goal. Table 2.1 shows a possible narrative for this domain. Note that the tar-
get is missing for situation 3. This is called a missing segment. A missing segment
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Table 1. Transformation of an input narrative by method [11]

situation 0 1 2 3 4

goal ngoal ngoal ngoal ? goal

hasball nhasball nhasball nhasball hasball hasball

actions shoot(1, 1) wait(2, 2) getball(m34, 3) shoot(m34, 4)

causedE+ pgoal(m34)

causedE− npgoal npgoal npgoal

represents that there is a positive example on causality on some situation inside
it, similar cases have already been considered in machine learning under Multiple
Instance (MI) learning.

Missing example instances in the target predicate are common in learning.
It is precisely because of these missing instances that alternative solutions to
induction provide different generalizations; in this sense, more missing instances
allow more generalization in the solution. Induction in action seems to behave
the other way around, missing examples instead of facilitating induction turn it
more complex. Note also that there is no problem with missing examples when
induction is directly applied on a monotonic ILP method. But recall also that
all these solutions have the frame problem. This points out the close relation-
ship between dealing with missing examples and solving the frame problem in
induction.

To be able to efficiently learn action rules without the frame problem a trans-
formation on the input is defined.

Step 1: For every fluent f on the domain, add the constraint : −f(S), nf(S).
This representation avoids the CWA of LP for fluents and allows the reference
to the negative fluent without using NAF, thus inside definite LP. The CWA for
fluents is not interesting, because when some fluent instance cannot be proved
it is better to assume it persisted than to assume it is false.

Step 2: Define an extra argument for every action, e.g. shoot(ES,S), being
ES the new argument and S the argument defining the situation. Define a new
constant (e.g. m34 ) for every action on the missing segment and the immediate
situation after the missing segment. For any other action the ES argument is
that of the situation, e.g. wait(2,2).

Step 3: For every missing segment with complementary target instances at
the situations immediately before and after the segment, a caused instance is
defined as follows: If the situation inmediately after the segment has a fluent
f (resp. nf ), define pf(es) (resp. pnf(es)), where es is the constant name of
the missing segment. A single instance of causality is extracted from a missing
segment, and the instance is at the segment es as a whole.

Step 4: For the target fluent f(S) define the fluent npf(S) (also npnf(S) for
nf(S)).

Step 5: Apply a complete monotonic induction method of ILP, e.g. IE, with
target fluent pf(S) instead of the original target f(S), e.g. pgoal instead of goal.
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The causality of the target fluent will be induced in the form of action laws. In our
example this action law will be induced: pgoal(ES) : −shoot(ES, S), prev(S, PS),
getball(PS).

A simple transformation provides descriptions of actions in Stable Models [6].
For every induced causal action law put the head directly on the original target
f(S), instead of the causal fluent pf(S): f(S) : −prev(S, PS), f(PS), not nf(S).
Complete the solution adding the inertia axioms for f(S) and nf(S).

3 Modeling Opponent Behaviour

To solve the problem of adapting to specific opponent strategies, we propose to
learn an action description on opponent behaviour. This action description can
then be used as input to a suitable non-monotonic formalism (e.g. Stable Models
[4]) to solve planning and prediction problems on the domain.

To exemplify this approach, a simplified scenario with an opponent goalkeeper
and a shooter player is proposed. The objective is to model the behaviour of
the goalkeeper based on the behaviour of the player. This is, we want to learn
action rules for modeling how the goalkeeper is going to move, depending on the
actions of the player. This action description is then combined with a generic
action description describing the effects of the shooter actions on the possibility
of scoring a goal. The resulting theory can be used plan for states where a goal
can be scored.

3.1 Discretization of the Environment

The values of the properties of the field in rcssserver are represented as real
numbers. We discretize the positions and angles with a precision of 10−1: the
field is divided in approximately 420000 squares.

Because we do not know the internal state of the oponent player it is possible,
from the point of view of the shooter agent, that there are two different situations
si and sj where the field state S and the action taken a are the same but the
effects of the action are different. So we cannot learn an action rule for one of
the situations without being inconsistent with the other. For dealing with these
non-deterministic effects we remove from the evidence all conflicting situations
but that with the highest probability, estimated from the available examples.
This preprocessing will remove only a 2% of the evidence that will be used in
this work.

3.2 Representation

In the movement model used by rcssserver, a player moves by performing a dash
action that results in an acceleration. The player speed is only modified by a small
decay on each simulation cycle or or by another dash action. If the objective of
a player is to move to a certain point, then it will apply dash actions periodically
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to maintain its speed. Thus, we represent the movement of an opponent player
as the distance covered after applying a certain action. By default, an opponent
player will maintain its speed and direction.

To explain changes on the player speed, a simplified set of possible shooter
actions, based on that required by rcssserver, will be used. The selected fluents
encode the position and direction of the players in the field. Every predicate
representing a fluent or an action will have at least a term S (situation) and a
term N (narrative). For example, the action move(s3, n4) represents that the
shooter will perform the action move on the situation 3 of the narrative 4.

The background used for the learning task is defined using the set of actions
and fluents described below.

Actions:
– move(S, N): The shooter moves on its current direction at maximum speed.
– turn(S, N, right/left): The shooter rotates clockwise/counterclockwise 45o.
– wait(S, N) : The shooter stays still.

Fluents:
– at(P, S, N, X, Y ): player P is at position (X, Y ). [0,0] represents the center of the field. Positions

left or down the center take negative values.
– angle(P, S, N, A): angle of player P is A.
– speedx(P, S, N, Vx): horizontal speed of the player X is Vx. Positive values represent movements

to the right, negative values represents movements to the left. Speed range is [-1.1,1.1], currently
discretized in 23 values.

– speedy(P, S, N, Vy): vertical speed of the player X is Vy . Positive values represent upward
movements, negative values represent downward movements.

Given a simplified environment with one goalkeeper (team 1) and a player
(team 2), we want to learn how the goalkeeper will move (direction and speed)
depending on the movements of the player on the field. The target predicates will
be the speed and direction of the goalkeeper on the x-axis (speedx) and on the
y-axis (speedy). The constant goalie represents the goalkeeper of the opposite
team and the constant shooter represents the shooter player. Negative examples
represent that a goalkeeper can only move on the current direction with a speed
classified in the same discretization value.

Evidence on goalkeeper behaviour has been extracted by developing a custom
shooter player. A test set of 2000 narratives has been generated.

3.3 Learning Results

The following is an example of the learned rules.

speedx ( goa l i e , S ,N,−0.9) :− turn (S ,N, l e f t ) , prev (S ,PS) , at ( shooter , S ,N,X,Y) ,
l e s s e q u a l (X, 3 0 . 0 ) , l e s s e q u a l (Y, 1 0 . 0 ) , g r e a t e r equa l (Y, −10.0) ,
at ( goa l i e , S ,N,X2 ,Y2) , l e s e qu a l (X2 , 4 4 . 5 ) , ang le ( shooter , S ,N,A) ,
g r e a t e r equa l (A,−45) , l e s s e q u a l (A, 4 5 ) .

The intuitive meaning of this rule is that the goalkeeper moves forward if the
player turns his back against the goal, on a certain distance.

The learning process also produces the required inertia axioms for the learning
target. For example:
speedx (P, S ,N,V) :− prev (S ,PS) , speed (P,PS ,N,V) , not −speed (P, S ,N,V) .

Meaning that the horizontal speed is assumed to persist unless an action
causes it to change.
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Fig. 1. Performance of goalie speed prediction

Validation. To assess the performance of this proposal, the following metrics
have been defined: (1) Accuracy (ACC): proportion of cases where, given an state
and action, the speed of the opponent player is predicted correctly, (2) Change
recall (CREC): proportion of cases where, given an state and action for which
the speed is expected to change, the new speed value is predicted correctly.

Metric values are calculated as follows. A set of narratives of size t is randomly
generated, and an action description learned from it. Then, this description is
tested again the test set. Figure 1 shows the results of this validation. Standard
error is within ±0.02 for all cases.

The results show that the method achieves high levels of accuracy with re-
stricted evidence and time. This performance is achieved because of the chosen
default assumption on the goalkeeper speed: the speed will be the same unless an
action causes it to change. The accuracy on predicting speed change, however,
is lower. This indicates the need for more evidence and learning time for the
method to make more significant predictions on the changes of the goalkeeper
speed. An enhanced representation for the background information (for instance,
considering distances between players and key points of the field, such as the
goal) could allow for a more compact description and more general rules, thus
achieving higher accuracy values under the same restrictions on input evi- dence
size and learning time. This is proposed as future work.

Also, the movement of the opponent goalkeeper might depend on the posi-
tion of other opponent players. The method can be directly extended to this
multiplayer environment, by encoding the position of other players using the
representation explained above. Preliminary results with the CMUnited99 goal-
keeper in presence of two other opponent players, show that rules using the new
information can be found.

4 Previous Work and Conclusions

There are several works for inducing the effects of actions on dynamic domains.
Moyle and Muggleton [9] study the induction of Event Calculus programs, a
particular action formalism. The methods proposed there are different to [11]
and rely on working with negation as failure in the background (for inertia)
during induction. Benson [1] describes the system TRAIL. Given an action and
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a possible effect on the domain (called Teleo-Operator), TRAIL tries to find a
set of preconditions under which that actions causes that effect. Later, it uses
this information to build a Teleo-Reactive tree to decide which actions should
be applied to achieve a certain goal.

There are also several proposals for learning action strategies in dynamic
domains, some of which have been applied to the Robocup Simulation Envi-
ronment. Driessens and De Raedt [3] learn clauses with actions in the head to
describe the behaviour of a preexisting team in order to validate its implementa-
tion. Torrey and Maclin [15] use ILP to learn clauses with actions in the head as
a step for transferring knowledge between reinforcement learning tasks. Khardon
[5] proposes to learn production rules representing action strategies.

In other line of work, Matsui et al. [7] use ILP to learn rules to decide if a
certain action will be successful for a certain field state.

In this paper we have used the method on [11] to learn action descriptions
on the behaviour of opponent players in the Robocup Simulation Environment,
studying the case of predicting the movement of a goalkeeper based on the
actions of a shooter player. With these descriptions, a suitable non-monotonic
formalism, like Stable Models [4], can be used to plan for desired states. Current
ILP methods are not suitable for learning in dynamic domains: most of the
solutions have the frame problem. Results show that the proposed method has
the potential to reach high accuracy values.
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Abstract. Meta-level abduction discovers missing links and unknown nodes from
incomplete networks to complete paths for observations. In this work, we extend
applicability of meta-level abduction to deal with networks containing both pos-
itive and negative causal effects. Such networks appear in many domains includ-
ing biology, in which inhibitory effects are important in signaling and metabolic
pathways. Reasoning in networks with inhibition is inevitably nonmonotonic, and
involves default assumptions in abduction. We show that meta-level abduction
can consistently produce both positive and negative causal relations as well as
invented nodes. Case studies of meta-level abduction are presented in p53 signal-
ing networks, in which causal rules are abduced to suppress a tumor with a new
protein and to stop DNA synthesis when damage is occurred.

1 Introduction

Abduction and induction are both ampliative reasoning, and play essential roles in
knowledge discovery and development in science and technology. The use of prior or
background knowledge in scientific applications has directed our attention to theory
completion [12] rather than classical learning tasks such as concept learning and clas-
sification. There, abduction is used to complete proofs of observations from incomplete
background knowledge. In theory completion, the larger the knowledge base becomes,
the more inference steps are required.

In scientific domains, background knowledge is often structured in a network form. In
biology, a sequence of signalings or biochemical reactions constitutes a network called
a pathway, which specifies a mechanism to explain how genes or cells carry out their
functions. However, information of biological networks in public-domain databases is
generally incomplete in that some details of reactions, intermediary genes/proteins or
kinetic information are either omitted or undiscovered. To deal with incompleteness of
pathways, we need to predict the status of relations which is consistent with the sta-
tus of nodes [27,29,8,21], or insert missing arcs between nodes to explain observations
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[30,10,28,1]. These goals are characterized by abduction as theory completion, in which
status of nodes or missing arcs are added to account for observations.

A method to discover unknown relations from incomplete networks has been in-
troduced in [6] based on meta-level abduction. Given a network representing causal
relations, called a causal network, missing links and nodes are abduced in the network
to account for observations. The method can be implemented in SOLAR [14,15], an
automated deduction system for consequence finding, using a first-order representation
for algebraic properties of causality and the full-clausal form of network information
and constraints. Meta-level abduction by SOLAR is powerful enough to infer miss-
ing rules, missing facts, and unknown causes that involve predicate invention [13] in
the form of existentially quantified hypotheses. In [6], meta-level abduction has been
applied to discover physical skills in cello playing examples. and a thorough experi-
mental analysis with a variety of problem instances has been presented in [15, Table 3].
However, all those examples of meta-level abduction in [6,15] contain only one kind of
causal effects, which are positive, and it was left open how to deal with both positive
and negative effects. Then, in this work, we extend applicability of meta-level abduc-
tion to deal with networks expressing both positive and negative causal effects. Such
networks are often used in biological domains, where inhibitory effects are essential in
gene regulatory, signaling and metabolic networks.

We will present axioms for meta-level abduction to produce both positive and neg-
ative causal relations as well as newly invented nodes. Reasoning in networks with
inhibition is inevitably nonmonotonic, and involves default assumptions in abduction.
Then, applications to p53 signal networks [19,28] are presented as case studies of our
framework, in which meta-level abduction discovers theories explaining how tumor
suppressors work and how DNA synthesis stops. Such abstract signaling networks, al-
though simple, provide one of the most fundamental inference problems in Systems
Biology: Given an incomplete causal network, infer possible connections and functions
of the target gene/protein. Meta-level abduction in this paper is crucial for this task:
First, suggestion of possible additions to prior networks enables scientists to conduct
hypothesis-driven experiments with those focused cases. Second, it is quite hard to ob-
serve activity levels or quantities of proteins in living organisms [1].

The rest of this paper is organized as follows. Section 2 offers the essential and new
perspectives of meta-level abduction and its use for rule abduction. Section 3 then ex-
tends meta-level abduction to allow for two types of causal effects, in which positive
and negative rules are called triggers and inhibitors, respectively. Section 4 presents
case studies of meta-level abduction applied to completion of sub-networks in p53 sig-
nal networks. Section 5 discusses related work, and Section 6 gives a summary and
future work.

2 Meta-level Abduction

This section revisits the framework for meta-level abduction [6].
We suppose a background theory represented in a network structure called a causal

graph or a causal network. A causal graph is a directed graph representing causal
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relations, which consists of a set of nodes and (directed) arcs (or links).1 Each node
in a causal graph represents some event, fact or proposition. A direct causal relation
corresponds to a directed arc, and a causal chain is represented by the reachability be-
tween two nodes. The interpretation of a “cause” here is kept rather informal, and just
represents the connectivity, which may refer to a mathematical, physical, chemical, con-
ceptual, epidemiological, structural, or statistical dependency [17]. Similarly, a “direct
cause” here simply represents the adjacent connectivity, while its effect is direct only
relative to a certain level of abstraction.

We then consider a first-order language to express causal networks. Each node is
represented as a proposition or a (ground) atom in the language. When there is a direct
causal relation from a node s to a node g, we define that connected(g, s) is true. Note
that connected(g, s) only shows that s is one of possible causes of g, and thus the exis-
tence of connected(g, t) (s �= t) means that s and t are alternative causes for g. The fact
that a direct causal link cannot exist from s to g is represented in an (integrity) constraint
of the form ← connected(g, s), which is equivalent to the formula ¬connected(g, s).
If a direct causal relation from s has nondeterministic effects g and h, it is represented
in a disjunction of the form (1). On the other hand, the relation that “g is jointly caused
by s and t”, written intuitively as (g ← s ∧ t) in the object level, is expressed in a
disjunction of the form (2) at the meta level, cf., (g ← s ∧ t) ≡ (g ← s) ∨ (g ← t).

s�OR

g

�h

�
connected(g, s) ∨ connected(h, s)

(1)

g � AND

s
�

t
� connected(g, s) ∨ connected(g, t)

(2)

A complex relation of the form (g ∨ h ← s ∧ t) can be decomposed into two relations,
(s-t ← s ∧ t) and (g ∨ h ← s-t), where s-t represents the intermediate complex. Any
other direct causal relation in a causal network can be represented in this way using
intermediate complexes and combinations of positive and negative connected literals
and disjunctions of the form (1) and (2).

Expression of causal networks is thus done at the meta level using the meta-predicate
connected. In this way, (i) each literal in the object level is represented as a term in the
meta level, and (ii) each rule in the object level is represented as a (disjunctive) fact
in the meta level. The point (ii) can not only hold for rules given in the axioms, but
can also be applied to express inferred rules at the meta level. Now, to express inferred
rules, we introduce another meta-predicate caused. For object-level propositions g and
s, we define that caused(g, s) is true if there is a causal chain from s to g. Then, the
causal chains are defined transitively in terms of connected as:

caused(X, Y ) ← connected(X, Y ). (3)

caused(X, Y ) ← connected(X, Z) ∧ caused(Z, Y ). (4)

1 Precisely speaking, our causal networks bring us more information than directed graphs since
negation, disjunctive effects and joint causes are all represented in a network.
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Other algebraic properties as well as some particular constraints (e.g., ¬caused(a, b))
can also be defined if necessary. Variables in object-level expressions like g(T ) and
s(T ) can be allowed in the meta-level expression like connected(g(T ), s(T )).

Reasoning about causal networks is realized by deduction and abduction from the
meta-level expression of causal networks together with the axioms for causal relations
including (3) and (4). In deduction, if a meta-level expression of the form caused(g, s)
for some facts g and s can be derived, it means that the rule (g ← s) can be derived at
the object level [6, Section 3.3]. In abduction, if an observation O is given as a causal
chain caused(g, s), which corresponds to the object-level rule (g ← s), we want to
explain why or how it is caused. Here, g and s are called the goal fact and the source
fact, respectively. O can be given as either a real observation (called an empirical rule)
or a virtual goal to be achieved. An abductive task is then to discover hidden rules that
establish a connection from s to g by filling the gaps in causal networks.

Logically speaking, a background theory B consists of the meta-level expression of
a causal network and the axioms for causal relations in the meta-level containing (3)
and (4). When B is incomplete, there may be no path between g and s in B, that is,
caused(g, s) cannot be derived from B. Then, abduction infers an explanation (or hy-
pothesis) H consisting of missing relations (links) and missing facts (nodes). This is
realized by setting the abducibles Γ , the set of candidate literals to be assumed, as the
atoms with the predicate connected: Γ = {connected( , )}. A set H of instances of
elements of Γ is an explanation of O if B ∪ H |= O and B ∪ H is consistent. An
explanation H of O is minimal if it does not imply any explanation of O that is not log-
ically equivalent to H . Minimality of explanations in meta-level abduction corresponds
to minimal additions in causal graphs, and are reasonable according to the principle of
Occam’s razor. For example, suppose the observation O = caused(g, s)∧caused(h, s),
that is, the multiple causal chains between two goal facts g, h and the source fact s. Ex-
amples of minimal explanations of O containing one intermediate node are as follows.

H1 : ∃X(connected(g, X)∧ connected(h, X) ∧ connected(X, s)),
H2 : ∃X(connected(g, X)∧ connected(X, h) ∧ connected(h, s)).

Here, H1 corresponds to the three rules {(g ← χ), (h ← χ), (χ ← s)}, hence rule
abduction is realized here. Moreover, these hypotheses contain existentially quantified
variables, where χ can be regarded as either some existing node or a new unknown
node. In this way, predicate invention [13] is partially realized in meta-level abduction.
As H1 and H2 represent different connectivities, we can enumerate different types of
network structures that are missing in the original causal network.

A hypothesis of the form (2) can be obtained by adding a meta-level axiom:

connected(X, Y ) ∨ connected(X, Z) ← jointly connected(X, Y, Z). (5)

to B and the atoms with the predicate jointly connected( , , ) to Γ .
Besides the use in rule abduction, meta-level abduction can also be applied to

fact abduction [6], which has been focused on almost exclusively in AI literature.2

2 In [25], fact abduction and rule abduction are classified as factual abduction and law-
abduction, respectively. Our meta-level abduction also gives a realization of 2nd order ex-
istential abduction, which is most important to produce new theories with new concepts [25].
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Abduction of facts in the object level can be formalized as query answering in the meta
level. Suppose that each abducible a in the object level is declared as abd(a). Given a
query of the form ← caused(g, X), answer extraction for X can be realized by giving
the clause of the form:

ans(X) ← caused(g, X) ∧ abd(X).

Here, ans is the answer predicate [9] and the variable X is used to collect abducibles
which cause the g. Furthermore, by combining rule abduction and fact abduction in
the form of conditional query answering [9], which extracts answers in a query with
additional abduced conditions, meta-level abduction enables us to abduce both rules
and facts.

All types of meta-level inferences in this section, including generation of existen-
tially quantified hypotheses in meta-level abduction as well as conditional query an-
swering to abduce rules and facts, can be realized by SOLAR [14,15]. SOLAR is a
consequence-finding system based on SOL resolution [3] and the connection tableaux.

In SOLAR, the notion of production fields [3] is used to represent language biases
for hypotheses. A production field P is a pair 〈L, Cond〉, where L is a set of literals
and Cond is a certain condition. A clause C belongs to P = 〈L, Cond〉 if every literal
in C is an instance of a literal in L and C satisfies Cond. The set of subsumption-
minimal clauses derived from a clausal theory Σ and a production field P is called
the characteristic clauses of Σ with respect to P , and is denoted as Carc(Σ,P).
The new characteristic clauses of a clause C with respect to Σ and P are defined
as Newcarc(Σ, C,P) = Carc(Σ ∪ {C},P) \ Carc(Σ,P).

Given the background clausal theory B and the observations O, each abductive ex-
planation H of O can be computed by inverse entailment [3]: B∪{¬O} |= ¬H , where
¬O =

∨
L∈O ¬L and ¬H =

∨
L∈H ¬L are clauses because O and H are sets of liter-

als. Similarly, the condition that B ∪ H is consistent is equivalent to B �|= ¬H . Given
the abducibles Γ , any literal in ¬H is an instance of a literal in Γ = {¬L | L ∈ Γ}.
Hence, the set of minimal explanations of O with respect to B and Γ is characterized
as {H | ¬H ∈ Newcarc(B,¬O, 〈Γ 〉) }.

3 Reasoning about Positive and Negative Causal Effects

So far, links in a causal network have been of one kind, and connected(g, s) in the meta
level, i.e., (g ← s) in the object level, just represents that g directly depends on s some-
how. However, mixing different types of causalities in one type of links often makes
analysis of actual causes complicated [17]. Here, we solve one of the most important
problems of this kind: diagrams with two types of causalities, i.e., positive and negative
causal effects. With this regard, from now on we can understand that each arc of the
form connected(g, s) in Section 2 only represents positive effects.

We extend applicability of meta-level abduction to deal with networks expressing
both positive and negative causal effects. Such networks are seen in biological domains,
where inhibition effects negatively in gene regulatory, signaling and metabolic path-
ways. Now we consider two types of direct causal relations: triggered and inhibited .
For two nodes g and t, the relation triggered(g, t) represents a positive cause such that
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t is a trigger of g, written as g ←− t in a causal network, whose meaning is (g ⇐ t) in
the object level, where ⇐ represents that the causation ← appears if it is not prevented
and its precise meaning will be defined later in Section 3.2. On the other hand, the rela-
tion inhibited(g, s) represents a negative cause such that s is an inhibitor of g, written
as g |—– s in a causal network, whose meaning is (¬g ⇐ s) in the object level.

As in Section 2, negation, disjunctive effects and conjunctive causes can be defined
for triggered and inhibited , cf., (1) and (2), and complex causal relations can be repre-
sented using those combinations and intermediate complexes. For instance, g is jointly
triggered by t1 and t2 can be expressed as triggered(g, t1) ∨ triggered(g, t2). The no-
tion of causal chains is also divided into two types: the positive one (written promoted )
and the negative one (written suppressed ), respectively corresponding to triggered and
inhibited . Now our task is to design the axioms for these two meta-predicates.

3.1 Alternating Axioms for Causality

Suppose first that there is no inhibitor in a causal network, that is, all links are positive.
In this case, the axioms for promoted should coincide with (3) and (4):

promoted(X, Y ) ← triggered(X, Y ). (6)

promoted(X, Y ) ← triggered(X, Z) ∧ promoted(Z, Y ). (7)

Next, let us interpret the meaning of an inhibitor as a toggle switch of signals flowed in
the inhibitor, just as an inverter in a logic circuit [26]. Then, in the presence of inhibitors,
we need one more axiom which blocks an adjacent inhibitor for X in order to promote
X :

promoted(X, Y ) ← inhibited(X, Z) ∧ suppressed(Z, Y ). (8)

As for the axioms of the negative causal chain suppressed , we can consider the follow-
ing axioms, which are the counterpart of positive ones (6), (7) and (8):

suppressed(X, Y ) ← inhibited(X, Y ). (9)

suppressed(X, Y ) ← inhibited(X, Z) ∧ promoted(Z, Y ). (10)

suppressed(X, Y ) ← triggered(X, Z) ∧ suppressed(Z, Y ). (11)

That is, a negative causal chain to X can be established if negative influence is propa-
gated to X either directly by an adjacent inhibitor (9–10) or indirectly by (11).

One nice property with the axiomatization by (6–11) is that all possible paths from a
source to a goal, which is either positive or negative, can be obtained by meta-level ab-
duction. Meta-level abduction on causal networks with positive and negative links can
now be defined by letting the abducibles Γ be those atoms with the predicates triggered
and/or inhibited : Γ = {triggered( , ), inhibited( , )}, and observations or goals are
given as literals either of the form promoted(g, s) or of the form suppressed(g, s).
Hence, given positive and negative observations, we can abduce both positive and neg-
ative causes, and new nodes are produced whenever necessary.

Proposition 3.1. (Completeness) If there is a negative (resp. positive) causal chain
from a source s to a goal g (g �= s) in a causal network N , then there is an explanation
E of suppressed(s, g) (resp. promoted(s, g)) from N∪{(6–11)} and Γ such that there
exist an odd (resp. even) number of direct inhibitors in E.
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Conversely, it can be shown that the axiomatization (6–11) is sound: if there is an
explanation of suppressed(s, g) (resp. promoted(s, g)) from N ∪ {(6–11)}, then there
is a negative (resp. positive) causal chain from a source s to a goal g in the causal
network N . However, this axiomatization can be inconsistent in the sense that both
promoted(g, s) and suppressed(g, s) can be explained at the same time. This incon-
sistency is, however, inevitable in this monotonic representation since we can answer
to any virtual query supposing a source s and a goal g. Then, to prevent derivations of
promotion and suppression simultaneously for the same s and g, the following integrity
constraint can be placed at the meta level.

← promoted(X, Y ) ∧ suppressed(X, Y ). (12)

The role of (12) is to derive nogoods, i.e., minimal incompatible combinations of in-
stances of abducibles. Unfortunately, introduction of (12) can make those axioms in-
consistent. For instance, it is easy to see that, for

N0 = {triggered(g, t), triggered(s, t), inhibited (g, s)}, (13)

N0 ∪ {(6–11), (12)} is inconsistent. Also, the p53 network (23) given in Section 4
becomes inconsistent if it is combined with this axiomatization.

The problem arises when two antagonistic direct causal relations appear simultane-
ously for the same node g as follows.

g

t
�

s
/

triggered(g, t)

inhibited(g, s) (14)

Our intuition on the diagram (14) is as follows. (1) If the trigger t is present and the
inhibitor s is not present, then g is triggered by t; (2) Else if s is present and t is not
present, then g is inhibited by s. These two cases are rather clear, but what happens for
g if both t and s are somehow caused? The biological literature in this case indicates
that: (3) If both t and s are present, then g is inhibited by s. Namely, an inhibitor is
preferred to a trigger. The last inference is nonmonotonic: a trigger of g works if there
is no inhibitor for g, but if an inhibitor is added then the trigger stops. We next show
another axiomatization which reflects this principle of inhibitor preference.

3.2 Axiomatization with Default Assumptions

We now depart from the monotonic axiomatization of causal chains (6–11) to make
reasoning about networks that are nonmonotonic. In the following new definitions of
promoted and suppressed , we will associate an extra condition for each trigger to work.

promoted(X, Y ) ← triggered(X, Y ) ∧ no inhibitor (X). (15)

promoted(X, Y ) ← triggered(X, Z) ∧ no inhibitor (X) ∧ promoted(Z, Y ). (16)

promoted(X, Y ) ← inhibited(X, Z) ∧ suppressed(Z, Y ). (17)

suppressed(X, Y ) ← inhibited (X, Y ). (18)

suppressed(X, Y ) ← inhibited (X, Z) ∧ promoted(Z, Y ). (19)

suppressed(X, Y ) ← triggered(X, Z)∧no inhibitor (X)∧suppressed(Z, Y ). (20)

← promoted(X, Y ) ∧ suppressed(X, Y ). (21)



Hypothesizing about Causal Networks with Positive and Negative Effects 121

The new axiom set for positive and negative causal chains (15–20) are the same as the
monotonic version (6–11), except that each trigger to X (triggered(X, )) must not be
inhibited (no inhibitor (X)) to give the positive effect to X in (15), (16) and (20). Here,
inclusion of no inhibitor (χ) in association with triggered(χ, ψ) makes those three
axioms default rules: the meaning (χ ⇐ ψ) in the object level is now given that the
causation γ = (χ ← ψ) is true if γ is consistent with the union of the background theory
B and a constructing hypothesis H . The literal of the form no inhibitor ( ) is thus
treated as a default, which can be assumed during inference unless contradiction occurs,
and constraints can also be added to reject inconsistent cases with these assumptions.
Finally, the integrity constraint (21) is the same as (12) and prohibits the presence of
both positive and negative causes between any pair of nodes X and Y .

Meta-level abduction is now defined in the same way as in Section 3.1. Abduction
of joint triggers or joint inhibitors can also be realized in the same way as
jointly connected in (5) by adding the meta-level axioms

triggered(X, Y ) ∨ triggered(X, Z) ← jointly triggered(X, Y, Z).
inhibited(X, Y ) ∨ inhibited (X, Z) ← jointly inhibited(X, Y, Z).

to the background theory B and the literals of the form jointly triggered( , , ) and of
the form jointly inhibited( , , )) to the abducibles Γ . However, we do not need both
of them if an intermediate complex is created; abduction of jointly inhibited(g, s, t)
can be simulated by abduction of jointly triggered(s-t, s, t) ∧ inhibited(g, s-t).

As for default assumptions of the form no inhibitor ( ), default reasoning can be
implemented by assuming those literals whenever necessary during inference, and con-
sistency of such assumptions are checked each time they are added to the current set
of abduced literals. This is a simple yet powerful method for default reasoning in the
case of so-called normal defaults [23,18]. Hence, the abducibles Γ now also contain
the literals of the form no inhibitor ( ), and are defined as

Γ = { triggered( , ), inhibited( , ), jointly triggered( , , ), no inhibitor ( )}.
When we are sure that there is no inhibitor for a node t, we can include the fact
no inhibitor (t) in the background theory B. For instance, no inhibitor (s) can be de-
clared as a fact in B if s is a terminal source node. Moreover, we can add a meta-level
constraint

← no inhibitor (X) ∧ inhibited (X, Y ). (22)

This constraint (22) blocks to assume a default no inhibitor (g) for any node g to which
an inhibitor is connected.

Consistency of the background theory in the meta level containing a causal net-
work, the new axioms (15–20) and constraint (21) is now always guaranteed. This is
because, unlike the axioms (6–11), the new axioms contain additional defaults of the
form no inhibitor ( ). For the causal network N0 (13), B0 = N0 ∪ {(15–20), (21)}
is now consistent. Still, both promoted(g, t) and suppressed(g, t) can be explained
from B0 and Γ , but their explanations are not the same: {no inhibitor (g)} explains
the former, while {no inhibitor (s)} explains the latter. Again, the role of (21) is
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Table 1. Correspondence between object-level inference and meta-level consequence finding

object-level inference top clause in SOLAR production field in SOLAR
rule verification ← caused(g, s). 〈∅〉
fact abduction ans(X) ← caused(g,X). 〈{ans( )}〉
fact prediction ans(X) ← caused(X, s). 〈{ans( )}〉
rule prediction none 〈{promoted ( , ), suppressed ( , )}〉
rule abduction ← caused(g, s). 〈{¬triggered ( , ),¬inhibited( , )}〉

abducing rules and facts ans(X) ← caused(g,X).
〈{¬triggered ( , ),¬inhibited( , ),
ans( )}〉

fact prediction + rule abduction ans(X) ← caused(X, s).
〈{¬triggered ( , ),¬inhibited( , ),
ans( )}〉

rule prediction + rule abduction none
〈{¬triggered ( , ),¬inhibited( , ),
promoted ( , ), suppressed ( , )}〉

to identify each nogood to prune all incompatible combinations of defaults and ab-
ducibles. That is, abducing literals with the predicates triggered and inhibited involves
default assumptions of the form no inhibitor ( ), and any inconsistent set of abducibles
can be detected by subsumption checking with nogoods. In the network N0, the set
{no inhibitor (g),no inhibitor (s)} is a nogood.

In abduction, completeness is guaranteed as in Proposition 3.1. This is easily proved
as each explanation obtained with the monotonic axioms (6–11) can be extended by
incorporating defaults of the form no inhibitor (t) in the corresponding explanation
from the axioms (15–20). Soundness of abductive explanations is similarly guaranteed.

Abduction with default assumptions has been implemented in SOLAR [7]. Member-
ship of a clause C in an extension of a default theory [23,18] is guaranteed for each
consequence

C ← no inhibitor (t1) ∧ · · · ∧ no inhibitor (tm)

if {no inhibitor (t1), . . . ,no inhibitor (tm)} is not a nogood.
Abduction of rules with positive and negative effects can be further combined with

fact abduction to allow mixed forms of inferences. Table 1 summarizes the correspon-
dence between object-level and meta-level inferences. All types of meta-level infer-
ences, involving generation of existentially quantified hypotheses, can be realized by
SOLAR. Recall that, in the context of inverse entailment, the negation of an observa-
tion is set to a top clause, and the negation of each abducible is given in a production
field in SOLAR. In Table 1, “ ← caused( , )” in a “top clause” column is instantiated
by either “ ← promoted( , )” or “ ← suppressed( , )”, and “ans( )” is an answer
predicate to collect answer substitutions. In abducing object-level facts, a top clause
can be further conditioned with an abducible literal “abd(X)” if the list of abducibles is
given in the background theory B. In Table 1, “Rule verification” is to prove if a given
causal chain can be derived or not. “Fact prediction” is to compute ramification of a
source s, i.e., to derive facts that can be caused by s. “Rule prediction” is to enumerate
possible causal chains from the given causal network, so a top clause is not provided in
this case and characteristic clauses are computed by SOLAR.
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4 Case Study: p53 Signal Networks

In this section, we see that meta-level abduction can be well applied to completion of
signaling networks. The importance of network completion in signaling networks has
been recognized since it is hard to observe activity levels and quantities of proteins in
living organisms [1]. Moreover, reporter proteins/genes are usually employed in sig-
naling pathways, but designing and introducing reporter proteins are hard tasks. This
is contrasted to the case of genetic networks, in which expression levels of most genes
can be observed using DNA microarray/chip technologies.

As case studies of meta-level abduction, we use two signaling networks, both of
which contain the p53 protein [19] but use it for different purposes. Although these net-
works are rather simple, they illustrate one of the most fundamental inference problems
in Systems Biology: Given an incomplete causal network, infer possible connections to
promote or suppress some functions of biological systems. Those target functions are
suppression of tumors in cancer and switching DNA synthesis on and off.

4.1 Enumerating Tumor Suppressors

This subsection examines the p53 signal network presented in [28] by meta-level ab-
duction. The p53 protein plays a central role as a tumor suppressor and is subjected to
tight control through a complex mechanism involving several proteins [19].

The p53 protein has the transactivator domain, which bounds to the promoters of
target genes, then leads to protect the cell from cancer. The level and activity of p53
in the cell is influenced by its interactions with other proteins. Tumor suppression is
enabled if the interacting partners of p53 do not inhibit the functionality of the trans-
activator domain. Mdm2 binds to the transactivator domain of p53, thus inhibiting the
p53 from tumor suppression. UV (ultraviolet light) causes stress, which may induce the
upregulation of p53. However, stress can also influence the growth of tumors.

These relations can be represented in solid lines of the causal network in Fig. 1. The
corresponding formulas in the meta level can be simply represented by the clauses:

triggered(cancer, uv), triggered(p53, uv),
inhibited(cancer, a), triggered(a, p53), (23)

inhibited(a, b), triggered(b, p53) ∨ triggered(b, mdm2),

where a (“A” in Fig. 1) is the inhibitory domain of p53, and b (“B” in Fig. 1) is the
complex p53-mdm2.

Now, we consider a tumor suppressor gene X such that mutants of X are highly
susceptible to cancer. Suppose in some experiments that exposure of the cell to high
level UV does not lead to cancer, given that the initial concentration of Mdm2 is high.
A high level of gene expression of the X protein is also observed. Those initial con-
ditions are represented as two facts, source(uv) and source(mdm2), that is, both UV
and Mdm2 can be abduced whenever necessary. The meta-predicate source thus be-
haves like the abducible predicate abd. Some meta-level axioms can be introduced,
e.g., no inhibitor (X) ← source(X). Our objective is to hypothesize about the vari-
ous possible influences of X on the p53 pathway thereby explaining how the cell can
avoid cancer.
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Fig. 1. Causal network of the p53 pathway

The observation is now expressed as ∃S(suppressed(cancer, S)∧ source(S)). Let

Γ = { triggered( , ), inhibited( , ), jointly triggered( , , x) },
be the abducibles, expecting that a mutant of X bound to some Z is produced in sup-
pressing the cancer from some source. The background theory B is defined as the set
consisting of the rules above, the causal axioms (15–20) and constraints (21,22), and
domain constraints for pruning such as ¬inhibited (uv, Z) and ¬inhibited (mdm2, Z).
In SOLAR, as in Table 1, the top clause is given as:

ans(S) ← suppressed(cancer, S) ∧ source(S).

The production field P is set as: P = 〈Γ ∪ {ans( ),no inhibitor ( )}, Cond 〉, where
Cond is the length conditions such that each number of literals of the form
¬triggered( , ), ¬inhibited( , ) and ¬jointly triggered( , , x) must not respectively
exceed 1 in each produced clause. Then, SOLAR produces the 24 new characteristic
clauses in 8 seconds using a PC with Core 2 Duo 3GHz and 4GB RAM.

In these 24 consequences of SOLAR, the following two clauses are included:

ans(uv) ← triggered(x, uv) ∧ jointly triggered(Y, p53, x)
∧ inhibited(b, Y ) ∧ no inhibitor (Y ) (24)

ans(uv) ∨ ans(mdm2) ← triggered(x, uv) ∧ jointly triggered(Y, mdm2, x)
∧ inhibited(b, Y ) ∧ no inhibitor (Y ) (25)

Both (24) and (25) give conditional answers. The consequence (24) represents a def-
inite answer indicating that the p53-X complex has the unique source UV since both
p53 and X are caused by the same source UV. On the other hand, (25) represents a
disjunctive answer: X is activated by UV but Mdm2 itself is assumed to be a source,
hence the Mdm2-X complex has two sources. In fact, it takes more time to find the con-
sequence (25) than to find (24) in SOLAR. Those two formulas respectively correspond
to the following hypotheses:

(I) triggered(x, uv) ∧ ∃Y (jointly triggered(Y, p53, x) ∧ inhibited(b, Y )),
(II) triggered(x, uv) ∧ ∃Y (jointly triggered(Y, mdm2, x) ∧ inhibited(b, Y )).
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The variable Y in (I) or (II) represents a new complex synthesized from X and either
p53 or Mdm2, respectively. Those two hypotheses are actually suggested in [28]: (I) X
directly influences p53 protein stability: Stress caused by UV induces high expression
of X, which then binds to p53, so p53 is stabilized and formation of Mdm2-p53 complex
is prevented; (II) X is a negative regulator of Mdm2: Stress induces high expression of
X, which then binds to Mdm2, which competes against inhibiting the Mdm2-p53 inter-
action (depicted in dashed lines in Fig. 1). In both cases, p53 (or “A”) can be functional
as a tumor suppressor. In the biological viewpoint, however, the hypothesis (I) seems
preferred because p53 has more chances to be bound to other proteins.

The new node Y in (I) and (II) is automatically invented in our method, while all
ground candidate nodes and links to be added must be prepared as abducibles in [28].

The p53 regulatory network includes a complex array of upstream regulators and
downstream effectors. The results obtained in this section are important in the sense
that the activation/inhibition mechanism of p53 is linked to some proteins that might
not have been found out yet. Meta-level abduction is thus crucial for this discovery
task, and inferred hypotheses can suggest scientists necessary experiments with gene
knockout mice as minimally as possible.

4.2 Recovering Links in CDK Networks

The next case study is completion in the switch network of cyclin-dependent kinases
(CDKs) [26]. CDKs are kinase enzymes that modify other proteins by chemically
adding phosphate groups to them (phosphorylation), and are involved in the regulation
of the cell cycle. A CDK is activated by association with a cyclin, forming a cyclin-CDK
complex (Fig. 2). The Cdk2/cyclin E complex inactivates the retinoblastoma (Rb) pro-
tein, which then releases cells into the synthesis phase. Cdk2/cyclin E is regulated by
both the positive switch called CAK (cdk activating kinase) and the negative switch
p21/WAF1. p21/WAF1 is activated by p53, but p53 can also inhibit cyclin H, which is
a source of the positive regulator of cdk2/cyclin E. The negative regulation from p53
works as a defensive system in the cells: when DNA damage occurs, it triggers p53,
which then turns on the negative regulation to stop DNA synthesis, so that the damage
should be repaired before DNA replication to prevent passing damaged genetic materi-
als onto the next generation.

For the CDK network in Fig. 2, we have used meta-level abduction to infer miss-
ing links. Experimental problems are designed by removing some links from Fig. 2,
and then verifying if those links can be recovered or not in explaining the observa-
tion suppressed(dna synthesis, dna damage). The objective of this experiment is to
show how meta-level abduction can be well applied to complete missing links. Recov-
ery of removed links is a good testbed for this purpose because the existing natural
system can be considered as an ideal solution. Yet, looking at other hypotheses, we can
notice that the same functions can be realized in different ways.

Table 2 shows experimental results. All experiments are done in the environment on
a Mac Mini with Core 2 Duo 1.83GHz and 2GB RAM. The table shows 6 problems,
each of which is given a network obtained by removing the links shown in the table.
The “#H” columns shows the number of new characteristic clauses (minimal hypothe-
ses) by SOLAR. The unit of “Time” is second. “Depth” is the maximal search depth
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Fig. 2. Causal network of the CDK pathway

of SOLAR, and computation stops when no new consequences are derived at the mini-
mum three successive depths k, k + 1 and k + 2, then we assume that all consequences
have (probably) been found at depth k. The running time to obtain the set of new char-
acteristic clauses is measured after the set of characteristic clauses (minimal nogoods)
is computed. It takes 4 to 12 seconds to get all characteristic clauses.

The results of recovering removed links are shown in the bottom row. Here, the
result indicates a hypothesis consisting of the links that are closest to the original
links. For instance, when the links {(2), (4)} are removed, then there exists the hy-
pothesis containing exactly the same links as the removed ones in the 12 hypotheses.
For a link (N), the recovered link (Ng) means that a more general hypothesis than
(N) is obtained. For example, when {(1), (2)}, i.e., inhibited(dna synthesis, rb) ∧
inhibited(rb, cyclin e/cdk2) is removed, a more general hypothesis {(1g), (2g)},
which is ∃X(inhibited(dna synthesis, X) ∧ inhibited(X, cyclin e/cdk2)), is re-
covered. We can observe that two consecutive links are replaced by general ones with
existentially quantified variables at recovery, but links that are not connected are recov-
ered as they are. Notice that only (4) is recovered when {(4), (6)} is removed. This is
because SOLAR outputs only minimal hypotheses, and only (4) is enough to explain
the observation. Actually, the negative regulation by p53 has the two paths to suppress
cdk2/cyclin E via (4) and (6). Although this is a biologically robust system, our result
indicates that only (4) is logically sufficient to realize this function.

5 Discussion and Related Work

This paper extends the method of rule abduction in [6] to deal with positive and negative
causal links. Although few works on rule abduction exist previously, they focus on pos-
itive effects only unlike this paper. Poole [18] firstly considers abducible rules, which
specify predefined patterns of rules for use in abduction. This is a very strong bias,
and it is generally impossible to prepare all patterns of rules in advance and to perform
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Table 2. Results of recovering links in the CDK pathway

Removed
(1) (1), (2) (1), (3) (2), (4) (4), (6)

(1), (2), (3)
links (4), (5)

Depth #H Time #H Time #H Time #H Time #H Time #H Time
3 1 0.6 1 0.6 1 0.7 1 0.7 1 0.7 1 1.1
4 2 0.6 3 0.6 3 0.7 4 0.7 5 0.8 4 1.5
5 3 0.7 4 1.3 5 1.2 8 1.3 6 1.2 12 1.9
6 3 1.3 4 1.7 6 1.6 11 1.9 8 1.8 25 2.8
7 4 1.7 5 2.3 7 2.3 12 2.9 8 2.9 37 3.5
8 4 2.2 5 3.2 7 3.5 12 3.9 8 5.0 37 5.7
9 4 2.5 5 3.8 7 4.2 12 6.0 8 5.5 37 6.9

Recovered
(1) (1g), (2g) (1), (3) (2), (4) (4)

(1g), (2g), (3g)
links (4), (5)

predicate invention. Work on Robot Scientist [10] adopts abduction to complete bio-
chemical pathways without inhibition, and reaction edges in pathways are represented
in a more complex manner [22]. Applications of SOLAR to complete metabolic path-
ways are also discussed in [20], but joint causes are not considered. CF-induction [4]
can both abduce and induce rules, and its applications to complete causal rules as well
as network status in metabolic pathways are shown in [29], but hypothesis enumeration
and predicate invention are not easy tasks for CF-induction.

In ILP, some previous attempts contribute to induction of causal rules [11,16,5].
Moyle [11] requires the complete initial state as input and needs to compute a complete
set of narrative facts in advance, and thus cannot account for observations handled in
this paper. Otero [16] considers the case of incomplete narratives, but assumes that the
truth value of a goal fluent changes only once in an incomplete narrative. Our algorithm,
on the other hand, can induce any case in which the fluent value has changed more
than once in intermediate situations. These previous works in ILP need either frame
axioms or inertia rules in logic programs. The former causes the frame problem and the
latter requires induction in nonmonotonic logic programs. Inoue et al. [5] uses an action
language, but requires regular inference that searches the space of possible hypotheses.

There are several work on completing biological networks. Metabolic pathways are
completed in [24] and are revised in [21] using answer set programming, although they
do not invent new nodes. The work [24] does not consider inhibition. For revision [21],
real deletion is generally impossible in biological networks unless they are subject to
change. Hence, we only add new links and nodes by abduction, yet nonmonotonic fea-
tures of inhibition are controlled by our method due to the axiomatization (15–20). Ab-
duction in metabolic pathways with inhibition is considered in [27], although the prob-
lem in [27] is different from network completion and no new links/nodes are abduced.
For gene regulatory networks, Gat-Viks and Shamir [2] determine a class of regulation
functions, by which regulators determine transcription, and analyze their complexity.
Zupan et al. [30] construct networks from mutant data using abduction, but use experts’
heuristic rules for construction. Finally, completion of signaling networks is analyzed
by Akutsu et al. [1], in which unknown Boolean functions are guessed in a Boolean
network whose topology is known. This contrasts with our setting that a network is
incomplete and its topology is not fixed. Tran and Baral [28] use an action language
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which formalizes notions such as causal rules, trigger rules and inhibition rules to
model cell biochemistry, and apply it to hypothesize about signaling networks. As dis-
cussed in Section 4, all ground candidate nodes and links to be added are prepared as
those abducible causal/trigger/inhibition rules in advance in [28].

6 Conclusion

The method of meta-level abduction [6] has been greatly extended in this paper to allow
representation of positive and negative causal effects. With this extension, nonmono-
tonic reasoning in causal networks and abduction of positive and negative links are now
possible. We have also shown an application to signaling pathways, and expect that
the proposed method can be applied to abduction in other types of biological networks
[2,27,29,21]. It is important to evaluate logically possible hypotheses, and some sta-
tistical methods can be applied. For example, hypotheses can be ranked according to
frequencies of literals appearing in them and corresponding paths [8], and can be given
their scores according to their fitness with observed data [2].

Problem solving with meta-level abduction consists of (i) design of meta-level ax-
ioms, (ii) representation of domain knowledge at the meta level, and (iii) restriction of
the search space to treat large knowledge. This work supposes an incomplete network
for the point (ii), whose representation is rather tractable. In fact, we have made great
effort on the point (i), yet another axiomatization is possible for controlling inference in
a different way. Possible extensions include introduction of time for causal chains and
application of majority logic for determining values in competing cases. The point (iii)
is achieved by introducing more constraints, and it is a future work to explore useful
methods for inducing such constraints.

References

1. Akutsu, T., Tamura, T., Horimoto, K.: Completing Networks Using Observed Data. In:
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Abstract. Existing ILP (Inductive Logic Programming) systems are
implemented in different languages namely C, Progol, etc. Also, each
system has its customized format for the input data. This makes it very
tedious and time consuming on the part of a user to utilize such a sys-
tem for experimental purposes as it demands a thorough understand-
ing of that system and its input specification. In the spirit of Weka [1],
we present a relational learning workbench called BET(Background +
Examples = Theories), implemented in Java. The objective of BET is to
shorten the learning curve of users (including novices) and to facilitate
speedy development of new relational learning systems as well as quick in-
tegration of existing ILP systems. The standardized input format makes
it easier to experiment with different relational learning algorithms on a
common dataset.

Keywords: BET, ILP systems, Golem, Progol, FOIL, PRISM, TILDE.

1 Introduction

There have been several Inductive Logic Programming (ILP) system implemen-
tations. Each system has its own specifications for input data. Different sys-
tems do not necessarily agree on their inputs. This often makes comparisons
across different implementations tricky, owing to either a difference in names
or semantics of parameters and/or a difference in the choice of the program-
ming language. Very often, the primitives and core components employed, such
as theorem provers, SAT solvers, inference engines, etc., are also different across
different implementations, rendering the computation and accuracy comparisons
less reliable. This paper discusses a Workbench for ILP called BET. BET is de-
veloped in Java and it standardizes the specification of input using XML (eX-
tensible Markup Language). It provides a common framework for “building”
as well as “integrating” different ILP systems. The provision for implementing

P. Frasconi and F.A. Lisi (Eds.): ILP 2010, LNAI 6489, pp. 130–137, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cse.iitb.ac.in/~bet


BET : An ILP Workbench 131

algorithms in a common language (Java) improves the feasibility of comparing
algorithms on their computational speeds. Whereas, the input standardization
enables sound comparison of accuracies (or related measures) and also allows
for experimenting with multiple ILP systems on the same dataset without any
input conversion required to the system specific format.

BET includes several evaluation functions and operator primitives such as
Least General Generalization (LGG) [9], Upward cover, Downward cover, etc.
These features facilitate the rapid development of new relational learning systems
and also ease out the integration of existing relational systems into BET. BET
also allows a user to choose from multiple theorem provers as plug and play
components. Presently, YAP (Yet Another Prolog) [12] and SWI-Prolog [13] are
included in the basic package. The initial version of BET has three relational
systems implemented namely FOIL [4], Golem [3] and TILDE [2][10] and four
relational systems integrated namely Progol [11], FOIL, Golem and PRISM [5][6]
(Though PRISM is not a standard ILP system, it has been integrated with the
specific intension of learning probabilities in order to associate uncertainity with
theories learnt using ILP systems).

We proceed with an overview of BET and the motivation to develop such a
system in Section 2. Section 3 focuses on the design of the BET system. Section
4 explains how new relational learning systems can be integrated/implemented
in BET. Section 5 compares BET with existing workbenches and highlights the
advantages of BET. We summarize BET in Section 6.

2 Overview

A principal motivation for developing a system like BET is the reduction of the
learning curve for both expert-users and novices as well as programmers in the
area of relational learning, particularly ILP. For example, with BET, the end-
user will need to understand only the standardized input parameters for BET.
This reduces the time overheads involved in comparing different algorithmic
implementations as well as in experimenting with individual implementations.
More specifically, a user need not convert datasets from one format to another
while switching between ILP systems. Further, the standardized APIs in BET
make development of algorithms within BET much easier. Figure 1 shows the
block diagram of BET.

Any ILP system in BET takes four files as its input namely positive examples,
negative examples, background knowledge and language restriction files, and it
outputs in the form of theories. There are primarily two important components
of BET namely the BET GUI and the BET Engine. The BET Engine is the
back-end engine at the core of BET and the BET GUI communicates with the
BET engine through the medium of a properties file. BET users can experiment
with the system using the GUI whereas programmers can use the APIs provided
and extend BET with new ILP or relational learning systems. Section 5 explains
how BET could be extended.
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Fig. 1. Block diagram of BET

3 Design of BET

Almost all ILP algorithms as well as systems require following five inputs: posi-
tive examples, negative examples, background knowledge, mode declarations and
hyper-parameters for tuning the system. The clauses learnt may be customized by
means of the mode declarations, though some algorithms/systems may not allow
for the specification of mode declarations (example is Confidence-based Concept
Discovery system [7]). In this Section, we discuss the need for having a standard
for the input, and eventually specify the BET standard input file formats.

3.1 Need for Standard Format

There is little or no consensus between the input specifications of ILP systems.
For example, FOIL has its standard input specification which is completely differ-
ent from that of Golem or Progol. FOIL accepts the positive examples, negative
examples and background knowledge in a single file. On the other hand, Golem
takes three files as input viz. positive example file (.f ), negative example file (.n)
and the background knowledge file (.b) which includes the mode declarations.
Another ILP system Progol has an input format that is slightly similar to Golem,
but has many more setting parameters.

Clearly any end user, desiring to experiment with a new ILP system, is re-
quired to understand its input format thoroughly, convert the data in hand to
that format and only then can he/she use it. BET assists the end user with a
standardized input specification that is generic enough and can be converted to
the specification of any existing ILP system. Section 3.2 will discuss about BET
standard formats.

3.2 BET Standard Format

As already stated, BET’s inputs are comprised of four XML files namely posi-
tive examples, negative examples, background knowledge and language restric-
tion file. Sample positive example, negative example, background knowledge and
language restriction files for learning the ancestor relation are shown in Table 1,
Table 2, and Table 3 respectively in the document available at [15]. The hyper-
parameters can be specified in Language Restriction file. The format for each
file is as follows:
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Positive Example File: The file consists of clauses which represents positive
examples for the relation (predicate) for which the theory needs to be learned.

Negative Example File: This file consists of clauses which represents negative
examples of the predicate (relation) for which the theory needs to be learned.
There may be some ILP systems which do not consider any negative examples
during construction of theory, but may utilize negative examples for pruning the
theories that have been learned.

Background knowledge File: The background knowledge (BGK) file contains
all the domain specific information which is required by the ILP system in order
to learn the target predicate. All this information should be in the form of
clauses. It can also contain rules instead of just facts.

Language Restriction File: The structured search space (lattice or simply a
partial order) of clauses which needs to be searched in order to arrive at a rea-
sonably good hypothesis is almost infinite. Language Restrictions endow an ILP
system with the flexibility of reducing the search space. There are three generic
parts to the Language Restriction viz. Mode declaration, Type and Determi-
nation. Also we can specify the system-specific hyper-parameters like stopping
threshold, minimum accuracy, etc. in this file only. Each of them, is explained
below.

Type: Type defines the type of constants. For example, the constant john is of
type person, constant 1 is of type integer. Type specification can be done in
the language restriction file.

Mode Declarations: Mode declarations declare the mode of the predicates
that can be present in any of clausal theories. The mode declaration takes the
form mode(RecallNumber,PredicateMode), where

RecallNumber: bounds the non-determinacy of a form of predicate call.
PredicateMode: has the following syntax

predicate(ModeType,ModeType,...)
predicate(<+/-/#>Type,<+/-/#>Type,...)

+Type : the term must be an input variable of type Type.
-Type : the term must be an output variable of type Type.
#Type : the term must be a ground constant of type Type.

Determination: This component of mode declarations provides information
regarding which predicates need to be learned in terms of which other predicates.

Hyper-parameters: Hyper-parameters are very much system specific and we
can find the different parameters for a system by doing system-name –help or
through the graphical interface for that particular system.
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4 Class Diagram and Components of BET

The class diagram of BET is shown in Figure 1 in the document available at
[15]. The major components of BET are explained in subsequent sections.

ClauseSet: ClauseSet refers to a set of clauses, which is often referred to in the
description of ILP algorithms. The ClauseSet interface defines the signature of
the methods used to access the ClauseSet object.

LanguageRestriction: LanguageRestriction is an interface for mode declara-
tions, determinations and types.

InputEncoder: InputEncoder is mainly used for integrating legacy systems
(i.e. ILP systems written in native code) into BET. Any wrapper around an
integrated legacy system will require conversion of the BET standard data format
to the format accepted by the legacy system. Any legacy system which requires
to be integrated into BET has to implement InputEncoder interface and provide
a method of converting the standard BET file format to the format accepted by
the legacy system.

TheoryLearner: TheoryLearner is an important component of BET. It is re-
sponsible for learning the theory (hypothesis) from the input. TheoryLearnerhas
objects of type InputEncoder and EvalMetric (explained next) as its data mem-
bers. In case the ILP system is completely implemented in Java (i.e., if it is not a
legacy system), it can use a dummy implementation of the InputEncoder inter-
face and pass the object to the TheoryLearner class. The dummy implementation
of InputEncoder interface is mainly used to access the BET input files.

EvalMetric (Evaluation Metric): Any ILP algorithm will try to explore the
structured space (subsumption lattice or partial order) of clauses, by traversing
the graph using refinement operators. At every point in the space, the algorithm
has to decide whether a clause in the space is good enough to be present in the
hypothesis. For this purpose, the covers relation is employed.

If the covers relation is defined by Entailment (|=), then the ILP system is
said to learn from entailment [9]. Some other ILP systems learn from proof traces
[9], while few others learn from interpretations [9], etc.

Any implementation of EvalMetric will specify the covers relation, i.e., def-
inition of an example being covered by background knowledge (with candidate
hypothesis).

TheoremProver: The theorem prover is the backbone of most ILP systems.
BET has two different theorem provers namely YAP and SWI-Prolog. YAP is
perhaps the fastest theorem prover as of today. YAP is built in C and doesn’t
have any JNI (Java Native Interface), so the YAP process is run by spawning
a process through a BET program. SWI-Prolog is also built in C, but it does
support JNI (Java Native Interface). SWI-Prolog has a standard interface called
JPL which comes bundled with SWI-Prolog itself.
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5 Support for Building ILP Systems in BET

It is very easy to integrate1 an existing system into BET. Also the implementa-
tion2 of a new system within BET is faster than implementing it from scratch.
The following section briefs on how to integrate and implement a system in BET.

5.1 Integrating a Legacy System in BET

Legacy systems can be integrated into BET as follows:

– Implement the interface InputEncoder, which should provide a functionality
to convert files from BET standard format to the format accepted by the
legacy system.

– Extend the TheoryLearner class and override the method learnTheory.

5.2 Implementing a New ILP System in BET

– A dummy implementation of the interface InputEncoder is required for this
purpose, since the TheoryLearner class expects an object of InputEncoder
while creating its object.

– Extend the TheoryLearner class and override the method learnTheory.
– Different types of Evaluation Metric, Theorem provers (YAP, SWI-Prolog)

can be used in implementing the ILP system.

6 Related Work

Aleph and GILPS (Generic Inductive Logic Programming System) are two earlier
efforts put in to develop a workbench like BET for Inductive Logic Programming.
Aleph [8] is developed by Ashwin Srinivasan, whereas the GILPS [14] workbench
is developed by Jose Santos.

6.1 Aleph

Aleph is written in Prolog principally for use with Prolog compilers like Yap
and SWI-Prolog compiler. Aleph offers a number of parameters to experiment
with its basic algorithm. These parameters can be used to choose from different
search strategies, various evaluation functions, user-defined constraints and cost
specifications. Aleph also allows user-defined refinement operators.

6.2 GILPS

GILPS implements three relational systems namely TopLog, FuncLog and Pro-
Golem. GILPS requires at least YAP 6.0 for its execution. Many of its user
predicates and settings are shared with Aleph.
1 The authors of this paper took two weeks to integrate PRISM in BET and one week

individually for integrating Golem and FOIL.
2 The authors of this paper implemented TILDE, FOIL and Golem in BET within a

week for each algorithm.
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6.3 Advantages of BET over Existing Systems

BET offers following advantages over existing systems (Aleph, GILPS ,etc.):

– BET is more likely to find use in the larger applied machine learning and
Mining communities who are less familiar with prolog and where it is im-
portant to interface learning tools in Java (such as BET) with applications
largely written in procedural languages (very often Java). This can also make
diagnosis and debugging easy. As against this, GILPS and Aleph assume fa-
miliarity with Prolog and cannot be easily invoked from applications written
in Java.

– In the spirit of Weka, BET provides a nice framework for the integration of
legacy systems as well as for the implementation of new systems. In fact,
while the basic BET framework was provided by the first two co-authors,
the remaining co-authors used that framework to implement several ILP
algorithms. This is something that Aleph and GILPS do not cater to as
well.

– BET allows saving the learned models as serialized files which can later be
used for finding models for new problems.

– BET provides a choice of theorem prover where as GILPS can work only
with YAP.

– BET comes with a YAP installer and all the “integrated” systems.
– BET has classes to convert the background knowledge, positive examples

and negative examples files into XML format. Language restriction file needs
little human intervention for this purpose.

– BET provides a standard input/output format which enables end-user to
experiment with multiple relational systems with the same datasets. Aleph
uses three different files namely (.f), (.n) and (.b) whereas GILPS takes input
as prolog files (.pl).

7 Summing Up BET

The standardized input format of BET makes it more convenient for user to
have only one input format for all relational systems. The ability of BET to
write learned classification/regression models as serialized files allows for saving
the model and reusing the model at a later stage for classification or regression
on new problems. The BET graphical user interface makes experimentation with
implemented algorithms and integrated systems much more easier. Use of JAVA
as an implementation language makes BET extensible and platform indepen-
dent. The only visible disadvantage of BET is that the JAVA implementation
of relational systems are slower as compared to their C/C++/Progol counter-
parts, but we chose Java over C++ owing to ease of extending and platform
independence of the former over the latter.
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Abstract. We study reducibility of examples in several typical inductive
logic programming benchmarks. The notion of reducibility that we use is
related to theta-reduction, commonly used to reduce hypotheses in ILP.
Whereas examples are usually not reducible on their own, they often
become implicitly reducible when language for constructing hypotheses
is fixed. We show that number of ground facts in a dataset can be almost
halved for some real-world molecular datasets. Furthermore, we study the
impact this has on a popular ILP system Aleph.

1 Introduction

In this paper, we are interested in identification of learning examples which
are not distinguishable given a fixed hypothesis language. We propose a notion
of safe reduction and show how it can be exploited in order to obtain smaller
examples equivalent to the original ones.

2 Preliminaries

Let us first state some notational conventions used in this paper. The set of
literals in a clause C is written as lits(C), |C| = |lits(C)| is the size of C. The
set of variables in a clause C is written as vars(C) and the set of all terms by
terms(C). A substitution θ is a mapping from variables of a clause C to terms
of a clause D.

Let us now define θ-reduction [4], which will be later utilized for reduction
of training examples. In order to define θ-reduction, we need the notion of θ-
subsumption [5]. Let us denote the set of variables contained in a clause C by
vars(C). We say that a clause C θ-subsumes clause D (denoted by C �θ D) if
and only if there is a substitution θ : vars(C) → vars(D) such that Cθ ⊆ D. It
holds that θ-subsumption implies entailment, but not vice-versa, i.e. if C �θ D
then C |= D, but if C |= D then C �θ D may or may not be true.

Definition 1 (θ-Reduction). Let C and D be clauses. We say that C and D
are θ-equivalent (denoted by C ≈θ D) if and only if C �θ D and D �θ C.
If there is a clause E such that C ≈θ E and |E| < |C| then C is said to be
θ-reducible.

P. Frasconi and F.A. Lisi (Eds.): ILP 2010, LNAI 6489, pp. 138–145, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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For example, C = east(T ) ← hasCar(T, C)∧hasLoad(C, L1)∧hasLoad(C, L2)∧
box(L2) is θ-reducible because C ≈θ E where E = east(T ) ← hasCar(T, C) ∧
hasLoad(C, L) ∧ box(L). In this short paper, we will work within the learning
from entailment setting [1].

Definition 2 (Learning from Entailment). Let H and e be clausal theories.
Then we say that H covers e under entailment (denoted by H �E e) if and only
if H |= e.

For example, let e = east(t1) ← hasCar(t1, c1) ∧ hasLoad(c1, l1) ∧ box(l1) and
let H = ∀T∀C : east(T ) ← hasCar(T, C). Then we may easily check that H
covers e under entailment (i.e. H �E e). In what follows we will refrain from
writing the universal quantifiers in clauses.

3 Reducing the Examples

The learning task that we study in this paper is fairly standard. We are given
a set of positive and negative examples encoded as first-order clauses and we
would like to find a classifier separating the positive examples from the negative
examples. This task could be solved by numerous ILP systems. We aim at finding
a reduction procedure that would allow us to reduce the number of atoms in the
examples while guaranteeing that the coverage of individual hypotheses would
not be changed. This is formalized by the next definition which introduces the
concept of safe reduction under intepretations.

Definition 3 (Safe Reduction under Entailment). Let e and ê be two in-
terpretations and let L be a language specifying all possible hypotheses. Then ê is
said to be a safe reduction of e under entailment if and only if ∀H ∈ L : (H �E

e) ⇔ (H �E ê) and |ê| < |e|.
Clearly, any hypothesis H which splits the positive examples from the nega-
tive examples correctly will also split the respective safely reduced examples
correctly. Also, when predicting classes of test-set examples, any deterministic
classifier that bases its decisions on the queries using solely the covering relation
�E will return the same classification even if we replace some of the examples
by their safe reductions1. On the other hand, even the classifiers constructed by
a deterministic learner on reduced and non-reduced examples may be different.
For example, ILP systems that restrict their search space by bottom clauses
may return different hypotheses for reduced and non-reduced examples. How-
ever, if the search is performed exhaustively, every hypothesis discovered for the
reduced data will have to cover the same set of examples as some corresponding
hypothesis discovered for the non-reduced data.

Let us now look at possible candidates for safe reduction. For example, θ-
reduction ê of a ground example e is a safe reduction because trivially ê = e.
1 This is also true for propositionalization approaches that use the �E relation to

construct boolean vectors which are then processed by attribute-value-learners.
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Assuming that in practical learning tasks, examples are very often ground, θ-
reduction alone does not seem to help us very much. It turns out that we need
some additional assumptions in order to be able to reduce even ground examples.
Before we present the (admittedly very simple) kind of safe reduction that will
be in the center of our interest in this paper, we go through the next simple
motivating example.

Example 1. Suppose that we have one positive example e+
1 = east(t1) ←

hasCar(t1, c1) ∧ hasLoad(c1, l1) ∧ hasCar(t1, c2) and one negative example
e−2 = east(t2) ← hasCar(t2, c3). Our task is to learn a non-recursive defini-
tion of predicate east/1. Let the language L contain all non-recursive Horn
clauses free of functions and constants and containing only predicate east/1 in
the head and predicates hasCar/2 and hasLoad/2 in the body. Because of the
non-recursivity and function-freeness assumptions we can check whether H �E e
is true by testing θ-subsumption between the hypothesis and the example. Let
e′ be a clause obtained by variabilizing the clause e. Since constants are not
allowed in the hypothesis language L, it holds that H �θ e ⇔ H �θ e′. Next, let
ê′ be θ-reduction of e′. It also holds H �θ e ⇔ H �θ ê′. Clearly, if H �θ e, there
is a substitution θ such that Hθ ⊆ e. If we replace the constants in θ by the
respective variables used when variabilizing e and obtain a substitution θ′, it will
also hold Hθ′ ⊆ e′. Finally, since there is a substitution θR1 such that e′θR1 ⊆ ê′

(because e′ ≈ ê′), it must also hold H �θ ê′ because Hθ′θR1 ⊆ ê′. Similarly, we
could justify the implication in the other direction, i.e. H �θ e ⇐ H �θ ê′.

Applied to the example e+
1 , we have that ê+

1 = east(T 1) ← hasCar(T 1, C1)∧
hasLoad(C1, L1) is a safe reduction of e+

1 w.r.t. the language L. Notice that
it is important to have a fixed hypothesis language to perform this kind of
reductions. For example, if we allowed the constants c1, c2 and c3, ê+

1 would
no longer be a safe reduction of e+

1 because the hypothesis H = east(T ) ←
hasCar(T, c1) ∧ hasCar(T, c2) would cover e+

1 but not ê+
1 .

We are now ready to describe the reduction method. The method expects the
examples encoded as first-order clauses and a description of the hypothesis
language on its input. The hypothesis language specification should provide in-
formation about which predicates and constants can be used to build the hy-
potheses. It starts by variabilizing the constants which are not in the hypothesis
language but appear in the examples. After that, examples are reduced using
θ-reduction and these reductions are output by the algorithm. In order to justify
correctness of this procedure, we need the next almost trivial proposition.

Proposition 1. Let L be a hypothesis language and let e be a clause. (i) Let ẽ
be a clause obtained from e by variabilizing the constants which are not contained
in the hypothesis language. Then (H �E e) ⇔ (H �E ẽ) for any H ∈ L (ii) Let
ê be θ-reduction of ẽ. Then (H �E e) ⇔ (H �E ê) for any H ∈ L.

The first part of Proposition 1 justifies the step of the reduction, in which some
constants are replaced by variables, and the second part justifies the step, in
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which the examples are reduced using θ-reduction. Optionally, we may perform
also a third step in which the variables introduced in the first step are converted
back to constants.

Example 2. Let us have a hypothesis language for the task of predicting muta-
genicity of molecules L. Let us have one example

e = pos(m) ← bond(a1, a2, 2) ∧ bond(a2, a1, 2) ∧ a(m, a1, c) ∧ a(m, a2, c)
∧bond(a1, a3, 1) ∧ bond(a3, a1, 1) ∧ a(m, a3, h) ∧ a(m, a4, h) ∧ bond(a2, a5, 1)
∧bond(a5, a2, 1) ∧ a(m, a5, h) ∧ bond(a2, a6, 1) ∧ bond(a6, a2, 1) ∧ a(m, a6, h).

In the hypothesis language L we do not consider the names of atoms (i.e. con-
stants a1, a2 etc). We start by performing the first step of the reduction pro-
cedure, i.e. by variabilizing the constants that do not appear in the hypothesis
language L. We replace constant a1 by variable A1, a2 by A2 and so on and
obtain a clause ẽ. After this step, we compute the θ-reduction of ẽ, which is

ê = pos(m) ← bond(A1, A2, 2) ∧ bond(A2, A1, 2) ∧ atm(m, A1, c)∧
∧a(m, A2, c) ∧ bond(A1, A3, 1) ∧ bond(A3, A1, 1) ∧ ∧a(m, A3, h)∧

bond(A2, A5, 1) ∧ bond(A5, A2, 1) ∧ a(m, A5, h),
.

The θ-reduction of ê is witnessed by the substitution θ = {A4/A3, A6/A5}. It is
easy to check that eθ ⊆ ê. Clause ê is a safe reduction of e.

4 Experiments

In this section, we discuss reducibility of examples from real-life datasets using
typical hypothesis languages. We show that, in the most extreme case, some
examples are reduced to one tenth of their original length. Then we study the
effect example reductions have on Aleph. The θ-reduction is performed by an
algorithm built upon the θ-subsumption system ReSumEr2 [3]. Reduction run-
times were in all cases under 30 seconds, which is a negligible amount of time
compared to time consumed by Aleph as we will see. In all of the experiments we
deal only with ground examples and non-recursive clauses. Therefore, for these
experiments, we do not need the whole logical formalism. It would suffice to
consider only θ-subsumption (homomorphism).

4.1 Mutagenesis

The first set of experiments which we performed was done with the well-known
Mutagenesis dataset [6]. In the encoding which we used and which is also usually
used in the experiments with most ILP systems, every molecule is described using
predicates atm(M, A, T, T 2) and bond(A, B, BT ). For example, let us have a
literal atm(mol, atom1, c, 22). Here, mol is an identifier of the molecule, atom1
is an identifier of the atom, the third argument denotes the atomic type, here c
means carbon, and the constant 22 in the fourth argument means that atom1
is an aromatic atom. Similarly, bond(atom1, atom2, 1) denotes a single bond
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Fig. 1. Compression rates (number of facts in reduced example / number of facts in
original example) obtained for three real-life datasets (Mutagenesis [6], Mutagenesis
with function groups, PTC [2] and CAD [7]). The bars show maximum, average and
minimum obtained compression.

between atoms atom1 and atom2. Each atomic bond is represented by two such
bond/3 literals. In this case, when testing H �E e with a single non-recursive
clause H , the covering relation �E corresponds to homomorphism testing (or θ-
subsumption testing2). We let the hypothesis language L contain only constants
corresponding to atomic types and numbers. After applying the safe reduction
procedure, the number of literals in the examples decreased to 86% on average.
The most succesful reduction decreased the number of literals in an example to
40% of the original count.

Next, we enriched the examples and the hypothesis language L by description
of function groups such as benzene, phenathrene etc. This corresponds to another
frequently used setting. Interestingly, the reduction rates differed only by a very
small number from the previous case. The number of literals decreased to 87%
on average and, for the most succesful reduction, the number of literals in one
example decreased to 42% of the original count of literals.

4.2 Predictive Toxicology Challenge

The next experiment was performed with the Predictive Toxicology Challenge
dataset (PTC). PTC dataset consists of molecules marked according to their
carcinogenicity for female mice, male mice, female rats and male rats. Since
the examples are almost the same for all of the four cases (with the exception
of a few molecules contained in only some of the four datasets), we performed
our experiments only for female mice. The atoms in this dataset are described
at a cruder level compared to the Mutagenesis dataset. Only the basic types
2 Checking homomorphism of labeled hypergraphs, checking θ-subsumption of clauses

and solving constraint satisfaction problems is essentially the same thing.
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Fig. 2. The example from the Mutagenesis dataset which was compressed most by the
reduction procedure. Left: The original example. Right: The reduced example. Note
that every bond is represented by a pair of bond/3 literals.

like carbon and not aromatic carbon are used. A consequence of this is that
higher reduction rates are possible. After applying the safe reduction procedure,
the number of literals in the examples decreased to 62% on average. The most
succesful reduction decreased the number of literals in an example to just 8%
of the original count.

4.3 CAD

The last experiment was performed with the CAD dataset [7]. This dataset con-
tains 96 class-labeled product-structures desings. After applying the safe reduc-
tion procedure to the examples from the CAD dataset, the number of literals in
them decreased to 77% on average. The most succesful reduction decreased the
number of literals in an example to 56% of the original count.The reason for smaller
difference between average and maximum reduction rates as compared to the pre-
vious two datasets was that the designs contain next/2 literals which express a
sort of ordering of the elements, which limits applicability of the θ-reduction.

4.4 Aleph with Reduced and Non-reduced Data

Finally, we decided to compare performance of Aleph on reduced and non-
reduced versions of the datasets. We set the maximum number of explored nodes
to 100000 and the noise parameter to five percent of the number of examples in
the respective dataset. For both versions of the Mutagenesis dataset (without
function groups and with function groups), it took Aleph longer to produce a
theory for the reduced data, however, the predictive accuracy was higher for the
reduced data. In fact, the Mutagenesis dataset was the only dataset where Aleph
obtained statistically significant improvement in predictive accuracy (two-sided
paired t-test with α = 0.05). For PTC dataset, reduction caused a speedup of
factor 2.63. For the CAD dataset, Aleph obtained a reasonable speed-up and
slightly higher predictive accuracy than for the non-reduced dataset. The reason
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Table 1. Accuracy of Aleph (estimated by 10-fold cross-validation) on the reduced
and non-reduced datasets. Muta is non-reduced Mutagenesis, Muta-R is reduced
Mutagenesis, Muta-FG is Mutagenesis with function groups, Muta-FG-R is reduced
Mutagenesis with function groups etc.

Muta Muta-R Muta-FG Muta-FG-R PTC PTC-R CAD CAD-R
Accu. 68.8 ± 6.6 71.6 ± 7.5 73.3 ± 11.3 73.8 ± 10.7 63.3 ± 6.7 63.6 ± 4.7 85.4 ± 9.7 88.7 ± 9.9
Run. [s] 356 378 298 339 17108 6522 244 168

why not only runtimes but also accuracies were affected by the safe reduction is
that through the reduction of examples we also reduce bottom clauses, which,
in turn, means smaller search space for Aleph.

Not only can we use the techniques introduced in this paper to reduce the
examples, we may also use them to obtain an upper bound on the training set
accuracy. Clearly, if we variabilize the constants that do not appear in the hy-
pothesis language L in two examples e1 and e2 and obtain examples ê1 and ê2

and if it holds ê1 �E ê2 and ê2 �E ê1 then these two examples are indistin-
guishable using the hypotheses from L. If they have different classification then
we have an unremovable term added to the training set error. For example, on
the PTC dataset, the calculated upper bound was 98.5%. A more complicated
calculation may be used to obtain a much tighter upper bound for the partic-
ular case of hypotheses in the form of clausal theories. The bound used in this
subsection applies also to propositionalization approaches.

5 Conclusions

We have shown that when a hypothesis language is fixed, even ground examples
may become reducible. In other words, we have shown that, in many experiments
commonly performed with ILP systems, there is a lot of redundant information in
the examples. We have also shown how the underlying principles of the reduction
procedure can be used to compute an upper bound on the training-set accuracy.
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Appendix

Lemma 1 (Plotkin [5]). Let A and B be clauses. If A �θ B then A |= B.

Proposition 1. Let L be a hypothesis language and let e be a clause. (i) Let ẽ be
a clause obtained from e by variabilizing the constants which are not contained
in the hypothesis language. Then (H �E e) ⇔ (H �E ẽ) for any H ∈ L (ii) Let
ê be θ-reduction of ẽ. Then (H �E e) ⇔ (H �E ê) for any H ∈ L.

Proof. We will start by showing validity of the implication (H |= e) ⇒ (H |= ẽ).
For contradiction, let us assume that there is a model M of the clausal theory H
such that M |= e and H |= ẽ. Then there must be a substitution θ grounding all
variables in ẽ such that3 M |= eθ and M |= ẽθ. Now, we will construct another
model M ′ of H in which e will not be satisfied. We take each constant c in e
that has been replaced by a variable V in ẽ and update the assignment φ of
the constants c to objects from the domain of discourse so that φ(c) = φ(V θ).
Clearly, we can do this for every constant c since every constant in e has been
replaced by exactly one variable. Now, we clearly see that M ′ |= e. However,
we are not done yet as it might happen that the new model with the modified
φ would no longer be a model of H . However, this is clearly not the case since
none of the constants c appears in H and therefore the change of φ has no
effect whatsoever on whether or not H is true in M ′. So, we have arrived at
a contradiction. We have a model M ′ such that M ′ |= H and M ′ |= e which
contradicts the assumption H |= e. The implication (H |= e) ⇐ (H |= ẽ)
follows directly from Lemma 1. We have ẽ �θ e therefore also ẽ |= e and finally
H |= ẽ |= e. (ii) In order to show (H �E e) ⇒ (H �E ê), it suffices to notice
that H �E e and e �θ ê imply H �E ê. The implication (H �E e) ⇒ (H �E ê)
may be shown similarly as follows: H �E ê and ê �θ e imply H �E e.

3 We are applying θ also to e because e need not be ground.
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Abstract. It is well known that for certain relational learning problems,
traditional top-down search falls into blind search. Recent works in In-
ductive Logic Programming about phase transition and crossing plateau
show that no general solution can face to all these difficulties. In this con-
text, we introduce the notion of “minimal saturation” to build non-blind
refinements of hypotheses in a bidirectional approach.

We present experimental results of this approach on some benchmarks
inspired by constraint satisfaction problems. These problems can be spec-
ified in first order logic but most existing ILP systems fail to learn a
correct definition, especially because they fall into blind search.

1 Introduction

The main characteristics of an ILP system are given by the definition of a search
space, a refinement operator and a heuristic function able to choose, at any step,
the best candidate among possible refinements. In this context, the refinement
operator plays a central role and approaches are usually divided into two main
strategies: on one hand top-down searches start with a general clause and build
specializations, on the other hand bottom-up searches start with a specific clause
and generalize it. Then, in most cases, the refinement operator allows to organize
the search space as a lattice, starting either from a general clause called top (�)
or a specific one called bottom (⊥). The most common top clause is defined by
a clause having a literal built with the target predicate as head and an empty
body; usual bottom clauses are built from a seed example and are obtained by
a “saturation-like” operation [13].

In this paper, we propose a bidirectional search where the main process con-
sists in reducing the search space. At any step, our search space is defined by
a pair (�i,⊥i) bounding the space, and our refinement operator produces new
bounds (�i+1,⊥i+1) where �i+1 is more specific than �i and ⊥i+1 is more gen-
eral than ⊥i. The search stops when �i = ⊥i which corresponds to the learned
rule. In our approach, at any step the clause �i can be deduced from ⊥i and
conversely ⊥i can be deduced from �i. For this reason, our main process can be
viewed either as searching for �i+1 from �i (top-down) or searching for ⊥i+1

from ⊥i (bottom-up).
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This work has been motivated by a family of problems hard to solve for most
existing ILP approaches: learning constraint problems (CP) that consists in find-
ing a characterization of solutions (or non-solutions) of constraint problems. The
goal is to generate a Constraint Satisfaction Problem (CSP) adapted to the prob-
lem to solve. We have shown in [8] that this problem can be transformed into a
learning problem specified by positive and negative examples which are respec-
tively non-solutions and solutions of the constraint problem, thus, learning the
negation of the constraint problem. This point is detailed in Section 5. These
examples are defined as interpretations in a subset of FOL, and additional back-
ground knowledge is provided (also described in FOL). The goal is then to learn
discriminant rules, and in theory any ILP system could be used.

For example, let us consider the classical graph coloring problem expressing
that a graph is well colored when two adjacent nodes have two different colors:
negative (resp. positive) examples are well-colored graphs (resp. bad colored
graphs), expressed in FOL, with predicates node, edge, col. Then a discriminative
rule defining a bad-colored graph could be:

badcol(G) ← node(G, X), node(G, Y ), col(X, C), col(Y, C), edge(X, Y ).
This rule indicates that a graph is not well-colored if there exists two adjacent
nodes with the same color. From a learning point of view, we can notice that this
rule has a particularity. It is a discriminative one but, if we remove any literal
from its body, the obtained rule has no longer a discriminative power.

The main motivation of this work is that, in practice, we observe that most
systems fail on this task or find a solution after an exhaustive search. This failure
can be explained since the considered problems contain specific difficulties that
are well known in the ILP community, called blind search. Recent works on phase
transition problems in ILP [6,7,14] and blind search or crossing “plateau” [1,3,2]
indicate that searching a solution may have to cope with hard problems. These
analysis show that there is no general solution to ILP learning problems, and
some efforts must be done to both propose solutions and analyze their conditions
of success and limitations. In this paper, we propose a new approach for learning
first order clauses, and we characterize the situations where it can be successfully
used.

The approach we present in this paper is based on a special saturation called
“minimal saturation”. The main drawback of standard saturation is that it helps
defining a search space which may be very large and redundant. Our work relies
on the fact that the saturation produces a clause naturally structured in layers.
We propose to consider the layers one by one: at each step we search for a
minimal subpart of a layer such that the associated saturation is discriminant.
In doing so, the method tries to find a discriminating rule with a reduced size.

The paper is organized as follows. Section 2 introduces some basic notions
whereas the formalization of the saturation used in our algorithm described in
Section 3. In Section 4, we discuss the cases that seem adapted to our method
and the cases that do not benefit to our search strategies. Section 5 presents the
benchmarks and experiments we have made.
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2 Preliminaries, Notations and Saturation

The language used to define concepts is composed of a set of terms (constants and
variables) and a set of predicates. Predicates have mode declaration describing
for each argument, its domain specifying what type of constants can be used: by
the symbol +, if it is an input, or, by the symbol − for an output. For example,
the predicate sum with arity 3 and the semantic of which is X+Y=Z where X,Y
and Z denote its arguments could have the mode sum(+, +,−).

An atom is an expression of the form p(t1, t2, . . . , tk) where p is a k-arity
predicate and t1, t2, . . . , tk are terms. A literal is an atom or the negation
of an atom. We denote by input(l) and output(l), the sets of terms containing
respectively the inputs and outputs of a literal l. We use the same notation for a
formula f : input(f) =

⋃
l∈f input(l) and output(f) =

⋃
l∈f output(l). Moreover,

the set of terms composing a literal is denoted by terms(l). The “variabilization”
of a formula f , denoted vars(f), is the operation consisting in substituting all
the constants of f with variables such that each constant is replaced by a distinct
variable. As said in the introduction, the saturation is a structure organized in
several layers where each layer contains literals. layer(l) gives the number of
the layer in which the literal l appears. Finally, considering sets of positive and
negative examples, p(f), resp. n(f), denote the number of positive and negative
examples covered by a formula f .

2.1 Saturation of an Example

In this section, we present and formalize the saturation operator consisting in
finding all ground literals describing an example. It has been first introduced
in [13]. We present a simplified version where recall numbers[10], limiting the
number of times a predicate is used are not considered. We propose to illustrate
the construction with the following toy example, close to Michalski’s trains:

Example
In this example, each train is composed of cars. Each car has different features

as its number of wheels and its size. A car carries geometrical objects, described
by their shape and their quantities. For instance, two examples corresponding to
a positive and a negative example of a target concept are described as follows:

t+1 : {has car(t+1 , c1), has car(t+1 , c2), has car(t+1 , c3), wheels(c1, 2),
wheels(c2, 3), wheels(c3, 5), long(c1), long(c2), long(c3),
load(c1, circle, 3), load(c2, circle, 6), load(c3, triangle, 10)}

t−2 : {has car(t−2 , c1), has car(t−2 , c2), has car(t−2 , c3), wheels(c1, 1),
wheels(c2, 4), wheels(c3, 3), long(c1), long(c2), short(c3),
load(c1, circle, 4), load(c1, rectangle, 2), load(c2, triangle, 5)
load(c2, circle, 3), load(c3, circle, 2)}

Let us suppose that the modes are defined by: has car(+,−), long(+), short(+),
wheels(+,−) and load(+,−,−). Let us assume that the target definition corre-
sponds to trains having at least two cars containing objects with the same shape
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and such that one of the two has a greater number of objects and a greater number
of wheels than the other:

An example is represented with the predicate goodtrain with a single argument
which is the ID of train, as for instances : goodtrain(t+1 ). Literals describing
the train are then given as ground facts in the background knowledge as it is
the case in several systems like Aleph. The background knowledge also contains
intensional predicates described by of Horn clauses.

goodtrain(T ) : −has car(T, C1), has car(T, C2), C1 �= C2,
wheels(C1, W1), wheels(C2, W2),
load(C1, O, L1), load(C2, O, L2),
W1 < W2, L1 < L2

The saturation of an example is based on information given by domains and
modes of predicates. It is obtained by adding as many literals as possible w.r.t.
the background knowledge such that all literals form a connected formula. The
set of literals, composing the saturation, is organized in ordered layers: a literal
is in a layer k if all the input terms needed to its introduction have already been
introduced in previous layers, and at least one of them has been introduced in
the layer k − 1. The saturation could be large and in the state-of-the-art, it is
often parameterized by a maximal depth: the building steps when this depth is
reached. This maximal depth is denoted by i.

Before defining the saturation, we introduce following notation:
litsOfLayer(S, k) denotes the set of literals of a sets belonging to a layer k.
It is defined by: litsOfLayer(k) = {l | layer(l) = k}

To define the saturation, we first define a layer k, called satk(Sl), where Sl is
a set of literals describing previous layers (all layers j < k):

satk(Sl) = {l | input(l) ⊆ terms(Sl)
∧ l �∈ Sl

∧ input(l) ∩ output(litsOfLayer(Sl, k − 1)) �= ∅}
Then, we can formalize, given a set Sl of literals introduced in layers before

k, the set of literals belonging to layers k, k + 1, . . . , i:

sat(Sl, k, i) = satk(Sl) ∪ sat(Sl, k + 1, i) 1 ≤ k ≤ i
sat(Sl, k, i) = ∅ k > i

Finally, the saturation of an example e of a target concept p with the maximal
layer i can be written:

sat(p(e), i) = {p(e)} ∪ sat({p(e)}, 1, i)

Let us remark that the predicate p has the mode: p(−).

Example (cont.)
We consider that we have in the background knowledge, along the description

of the examples, the predicate �= comparing cars and geometrical forms with mode
�= (+, +), and the predicate < comparing either numbers of wheels or numbers
of object with the mode < (+, +).
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The saturation of the example t+1 with the maximal depth equal to 3 is:

Layer Literals
0 goodtrain(t+1 )
1 has car(t+1 , c1), has car(t+1 , c2), has car(t+1 , c3)
2 wheels(c1, 2), wheels(c2, 3), wheels(c3, 4),

long(c1), long(c2), long(c3),
load(c1, circle, 3), load(c2, circle, 5), load(c3, triangle, 10),
c1 �= c2, c1 �= c3, c2 �= c3

3 2 < 3, 2 < 4, 3 < 4,
triangle �= circle,
3 < 5, 3 < 10, 5 < 10

3 Minimal Saturation to Search

In this section, we present our rule learning algorithm. A search state is a set of
literals corresponding to a clause. The states are organized as a lattice with two
bounds � and ⊥, and a partial order to compare the generality of search states.
For the partial order, we say that a state s1 is more general than an other s2 if s1

is a subset of s2 (with possible renaming of variables). The search is biased using
a positive example s, called a seed. Considering the target concept p, we set �
to {p(s)} and ⊥ to sat(p(s), i) where i is the maximal layer of the saturation.
This search space is often used in the state-of-the-art algorithms.

With the assumption that ⊥ = sat(�, i) rejects all negative examples, the
search space contains at least one rule discriminating negative examples. It covers
at least one positive example, the seed. The goal is to discover a better rule than
⊥, i.e. a rule that covers more positive examples and always no negative ones.
Given a step k in the learning algorithm, we aim to set the layer k such that
this layer would be shorter as possible. When the assumption is not satisfied,
the refinement algorithm throws an exception to specify the insolubility of the
learning problem.

Our learning algorithm is a bidirectional search where we progressively refine
two hypothesis H� and H⊥ keeping the relation H⊥ = sat(H�, i) always correct.

This section is divided into two parts: first we present our refinement operator
and then, the algorithm, iterating the refinement steps.

3.1 Refinement Operator

Let us first recall that we have two hypothesis H� and H⊥ with the relation
H⊥ = sat(H�, i) where i denotes the maximal depth of the saturation. For the
kth application of the refinement operator, it aims at building a new couple of
hypothesis (H ′

�, H ′
⊥) such that H ′

⊥ = sat(H ′
⊥, i) and such that the layer k is a

minimal subset of literals from the layer k of H⊥.
This operator searches for a subset of literals of the layer k, such that the

corresponding H⊥ discriminates some positive examples from all the negative
examples, this subset will be added to H�.
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To formalize the refinement operator, we start by defining the set of candi-
date couples (H ′

�, H ′
⊥) that are correct refinements of a current pair of hypothe-

ses (H�, H⊥). Let ρ(H�, H⊥, k, i) denote this set, where k represents the layer
wherein the refinement searches for a subset and i the maximal depth:

ρ(H�, H⊥, k, i) = {(H ′
�, H ′

⊥) | H ′
� = H� ∪ Sk

∧ Sk ⊂ litsOfLayer(H⊥, k)
∧ H ′

⊥ = sat(H ′
�, k + 1, i)

∧ n(H ′
⊥) = 0}

Let us notice that when Sk = ∅, H ′
� = H ′

⊥ (H ′� have no literals in layer k
and therefore subsequent layers are empty).

This set contains only couples (H ′
�, H ′

⊥) where H ′
� is more specific than H�,

H ′
⊥ is more general than H⊥ and H ′

⊥ rejects all negative examples.
To determine the subset of literals, we search the smallest one with a greedy

breadth first search as explained in Section 3.2.

3.2 Refinements Selection

In this section, we described how we choose among all the refinements in ρ. Our
strategy is to select the smallest one in term of Sk, i.e. a hypothesis H� with
the smallest number of literals of layer k. If there are several ones, we return
the one covering the maximum number of positive examples. The number of
candidates is exponential comparing to the size of litsOfLayer(H⊥, k). To avoid
to generate all of them, we search the smallest one with a breadth-first search.
The refinement algorithm can be written as follows:

Algorithm : refine(H�, H⊥, k, i)
1. for j from 0 to |litsOfLayer(H⊥, k)|
2. Sρ = ∅
3. for each subset Sk of litsOfLayer(H⊥, k) s.t. |Sk| = j
4. H ′

� = H� ∪ Sk

5. H ′
⊥ = H ′

� ∪ sat(H ′
�, k + 1, i)

6. if n(H ′
⊥) = 0 then

7. Sρ = Sρ ∪ {(H ′
�, H ′

⊥)}
8. if Sρ �= ∅ then
9. return argmax(H′

�,H′
⊥)∈Sρp(H ′

⊥)
10. throw inconsistent bottom clause

We can notice that the algorithm starts with the empty subset (for j = 0).
In this case, H� = H ′

� = H ′
⊥, and if this rule is correct then the rule learning

algorithm will stop since there are no literals in layers up to k (See section 3.3).

Example (cont.)
To illustrate the refinement operator, let us consider as the current couple of

hypotheses : (H�, H⊥) = (vars({goodtrain(t+1 )}), vars(sat({goodtrain(t+1 )}, 3))
and then the refinement produced with refine(H�, H⊥, 1, 3). H⊥ corresponds to
the “ variabilized” version of the saturation computed in the previous example in
section 2.1.
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The algorithm begins with subset of the first layer of size 1. All subsets produce
the same couple with a correct substitution and we obtain for ρ(H�, H⊥, 1, 3)
such that |Sk| = 1, the unique couple:

Layer Literals
0 goodtrain(V1)
1 has car(V1,V2)
2 wheels(V2, V3),

load(V2, V4, V5),
long(V2)

3

where H ′
� is in bold characters and H ′

⊥ contains the saturation of H ′
� (layers

0 to 3 in the array). This couple is not correct because H ′
⊥ covers the negative

example t−2 .
With subsets of size 2 ( i.e. |Sk| = 2), ρ(H�, H⊥, 1, 3) produces:

Layer Literals
0 goodtrain(V1)
1 has car(V1,V2),has car(V1,V6)
2 wheels(V2, V3), wheels(V6, V7),

load(V2, V4, V5), load(V6, V4, V8),
long(V2), long(V6),
V2 �= V6

3 V3 < V7, V5 < V8

Layer Literals
0 goodtrain(V1)
1 has car(V1,V2),has car(V1,V9)
2 wheels(V2, V3), wheels(V9, V10),

long(V2), long(V9),
load(V2, V4, V5), load(V9, V11, V12),
V2 �= V9

3 V3 < V10, V11 �= V4, V5 < V12

Just the first one rejects the negative example and the corresponding couple of
hypotheses will be returned by the refining algorithm.

3.3 Learning a Rule

An interesting rule is a rule rejecting all negative examples (consistency) and
covering a maximum number of positive examples. With our approach, the rule
we compute could not be the better one in terms of the number of covered
positive examples, because we search for minimal layers to limit the complex-
ity of our refinement algorithm. During the bidirectional search, we intend to
progressively refine the couple of hypotheses (H�, H⊥), until the two hypothe-
ses converge (H� = H⊥). In order to obtain it, we progressively refine each
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layer starting from k = 1 to k = i where i is the maximal layer. We initialize
the search with a couple corresponding to a seed example s and its saturation,
where constants are replaced by variables. The following algorithm describes the
search for a rule for the target concept p, where the search space is biased by
the seed s:

Algorithm : learnrule(p, s, i)
1. H� = {vars(p(s))}
2. H⊥ = vars(sat(p(s), i))
3. for each layer k from 1 to i
4. (H�, H⊥) = refine(H�, H⊥, k, i)
5. return H�

4 Advantages and Limitations

Our algorithm has been motivated by specific applications of Machine Learn-
ing to Constraints Modelling. To compute a refinement, it searches among the
subsets of literals contained in a layer the smallest one that corresponds to a
bottom hypothesis rejecting all negative examples. To be efficient our algorithm
must stop before enumerating all the subsets. This means that it is dedicated to
problems characterized by the following properties: the saturations of the exam-
ples can be structured into several layers and there exists discriminating rules
involving few literals in each layer. For instance, it is not adapted to the classical
mutagenesis benchmark [9]: the saturation of an example is composed of only
two layers, most of the literals of the discriminating rules occurring in the first
layer.

The learning problems we are interested in are difficult for top-down ap-
proaches because search is blind: a choice must be made between refinements
with the same heuristic values. In some cases, this can be avoided by consid-
ering bottom-up approaches. However, the complexity of the coverage test for
examples depends on the size of the saturation, becoming too expensive when
the saturation is large. Our method intends to avoid the “plateau” phenomenon
for top-down approaches evaluating a rule in a bottom-up way (by means of its
saturation) but limiting the size of hypotheses in a top-down way. Preferring
a bidirectional search, our aim is to build a minimal saturation, which can be
easily tested on examples while guiding the search.

5 Application to Constraint Satisfaction Problem and
Experiments

Constraint Programming (CP) is a very successful formalism to model and to
solve a wide range of decision problems, from arithmetic puzzles to timetabling
and industrial scheduling problems. One of our motivations for this work is to
learn CSP models described in a first order language, defining the solutions of a



154 M. Lopez, L. Martin, and C. Vrain

Graph coloring problem
n(X), n(Y ), col(X, A) ∧ col(Y, B) → A �= B ∨ ¬adj(X, Y )

Simplified school timetable
timetable(L1, T1, R1, S1) ∧ timetable(L2, T2, R2, S2)

→ L1 = L2 ∨ R1 �= R2 ∨ S1 �= S2∧
timetable(L1, T1, R1, S1) ∧ timetable(L2, T2, R2, S2)

→ T1 �= T2 ∨ L1 = L2 ∨ S1 �= S2

Simplified jobshop
schedule(J, T, B, E, M) → B < E∧

schedule(J1, T1, B1, E1, M1) ∧ schedule(J2, T2, B2, E2, M2)
→ J1 = J2 ∨ M1 �= M2 ∨ B1 > E2 ∨ E1 < B2∧

schedule(J1, T1, B1, E1, M1) ∧ schedule(J2, T2, B2, E2, M2)
→ J1 = J2 ∨ E1 < B2 ∨ prev(T1, T2)

N-queens problem
position(Q1, L1, C1) ∧ position(Q2, L2, C2) → Q1 = Q2 ∨ L1 �= L2∧
position(Q1, L1, C1) ∧ position(Q2, L2, C2) → Q1 = Q2 ∨ C1 �= C2∧

position(Q1, L1, C1) ∧ position(Q2, L2, C2) ∧ gap(L1, L2, I1) ∧ gap(C1, C2, I2)
→ Q1 = Q2 ∨ I1 �= I2

Fig. 1. Some examples: all variables are universally quantified

CSP[8]. We have shown that this can be transformed into the problem of learning
a logic program of the negative concept, composed of the non-solutions of the
CSP. The process is detailed in[8], but let us illustrate it by our graph coloring
problem. Finding a color for each vertex such that two adjacent vertices do not
have the same color can be described by the rule:

node(X) ∧ node(Y ) ∧ col(X, A) ∧ col(Y, B) → A �= B ∨ ¬adj(X, Y )

Considering the negative concept of bad-colored graphs, adding a target con-
cept badcol(G), where G is the ID of a graph and adding G also to the extensional
predicates, we obtain the following datalog rule:

badcol(G) ← node(G, X) ∧ node(G, Y )
∧col(G, X, A) ∧ col(G, Y, B)
∧A = B ∧ adj(F, X, Y )
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Propal Our algorithm
benchmark # learned rules time (s) acc. # learned rules time (s) acc.

Graph coloring 1 0 100% 1 0.17 100%
School timetable 3 11 98,33% 2 0.69 100%

Job-shop 6 103 87,78% 5 7.37 100%
N-queens - - - 3 29.11 100%

Aleph1 Aleph2
Graph coloring 1 0.24 100% 1 0.14 100%

School timetable 1 1.24 100% 1 0.31 100%
Job-shop 3 1051.03 100% 6 1130.88 96%
N-queens 3 489.49 100% 3 4583.84 61.67%

Fig. 2. Experiments with CSP benchmarks

This explains why we focus on the negative concept of the constraint problem.
Figure 1 presents classical CSP problems and the models we aim at learning.
Let us notice that these models are independent of the size of the CSP (number
of queens for instance). We have built random benchmarks for these problems.
In doing so, we have generated a set of solutions and non-solutions. To produce
solutions, we have chosen a random size for each problem (e.g. for the graph
coloring problem, the number of vertices and colors), and then solved the CSP.
For negative ones, we have proceeded in a similar way but constraints have been
relaxed and we have checked that there is at least one unsatisfied constraint.
The examples have been produced using a random heuristic when solving the
CSP.

We have tested different state-of-the-art ILP systems on these benchmarks:
Foil[11], Beth[16], Aleph[15], ICL[12], Propal[5]. Foil performs a Top-down search
starting from the most general hypothesis and progressively specializing by
adding new literals w.r.t. the θ-subsumption. As in our work, Beth keeps a
kind of bottom clause in addition to a hypothesis, but it is used to avoid a com-
plete computation of the saturation whereas ours attends to bound the search
space and is used to evaluate refinements. Aleph is a large ILP system allow-
ing the use of various top-down or bottom-up strategies. ICL searches for a
theory in a disjunctive normal form with a beam search. Propal uses a data
driven strategy, i.e. the refinement operator uses a negative example that must
be rejected in the possible refinements. Only Propal (the version described in
[4], faster than the version given in [5]) and Aleph with certain configurations
have succeeded. The first configuration of Aleph, called Aleph1, corresponds to
a breadth-first search with a maximum of 200 000 visited search nodes and an
infinite open list. The second one, called Aleph2, only differs from the search
strategy which is a heuristic search. We use the default heuristic of Aleph, called
coverage, and consisting in the difference between positive examples and neg-
ative ones1. We have implemented a prototype for our learning algorithm and
Figure 2 presents the results obtained with these systems. The more complicated

1 We have tested all the heuristics implemented in Aleph with similar results
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the target concept, the more Propal and Aleph2 find incorrect theory. For the
n-queens problems, Propal has been stopped after ten hours. This illustrates the
difficulty of top-down approaches when search is blind. Moreover, Propal has
to face combinatorial explosion when searching for near-misses. Aleph1 succeeds
with all the benchmarks. However, significant computation times is required for
complicated benchmarks. Our method has succeeded on all the benchmarks: it
finds accurate theories in a short amount of times. These good results can be
explained by the structure of the target concepts as described in Section 4.

Our prototype, as well as the benchmarks, can be obtained by sending a mail
to the authors.

6 Conclusion

In this paper, we have presented a new learning algorithm to build logic pro-
grams. Our method aims at finding a minimal saturation. It consisting in finding,
for each layer of the saturation of a seed, a minimal subset of literals such that
the obtained rule discriminates some positive examples from negative ones. This
approach is not always efficient, but in certain cases where other state-of-the-art
algorithms fail, it can succeed avoiding the blindness faced by top-down strate-
gies and the consuming coverage tests with bottom-up strategies. Our approach
is efficient when the saturation of seed examples produces a bottom clause struc-
tured in several layers and when there exists a discriminating rule involving few
literals of each layer. We experiment our algorithm on learning problems inspired
by constraint programming. These problems present aforesaid features and our
algorithm succeeds when other systems fail. These results are encouraging and
we aim at testing on other benchmarks.

In future works, we wish to improve the refinement operator by replacing the
greedy breadth-first search for layer subsets. This part of our algorithm is the
principal limitation of our approach. For example, we could guide the search for
subsets with classical heuristics or using a beam search.

Another improvement would be to handle numeric variables. So, we could test
our learning algorithm with a large range of acknowledged learning problems.
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relational learning. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI),
vol. 5194, pp. 6–23. Springer, Heidelberg (2008)
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Abstract. In several recent papers ILP has been applied to Systems
Biology problems, in which it has been used to fill gaps in the descrip-
tions of biological networks. In the present paper we describe two new
applications of this type in the area of plant biology. These applications
are of particular interest to the agrochemical industry in which improve-
ments in plant strains can have benefits for modelling crop development.
The background knowledge in these applications is extensive and is de-
rived from public databases in a Prolog format using a new system called
Ondex (developers BBSRC Rothamsted). In this paper we explore the
question of how much of this background knowledge it is beneficial to in-
clude, taking into account accuracy increases versus increases in learning
time. The results indicate that relatively shallow background knowledge
is needed to achieve maximum accuracy.

1 Introduction

Systems Biology is a rapidly evolving discipline that seeks to determine how
complex biological systems function [6]. It works by integrating experimentally
derived information with mathematical and computational models. Through an
iterative process of experimentation and modelling, Systems Biology aims to
understand how individual components interact to govern the functioning of the
system as a whole. In several recent papers [13,3], Inductive Logic Programing
(ILP) has been applied to Systems Biology problems, in which it has been used
to fill gaps in the descriptions of biological networks.

Two new industrial applications of this type in the area of plant biology are
being explored within the Syngenta University Innovation Centre (see Section 2).
This centre of excellence in Systems Biology aims to address biological research
questions related to the improvement of plant strains involved in crops. The
centre uses mathematical and computational modelling techniques developed at
Imperial College London [2]. The background knowledge in these applications is
generated by a system called Ondex [7]. Ondex is unique in its ability to generate
large amounts of Prolog background knowledge on cell biochemistry by parsing,
filtering and combining various publicly-available databases.

P. Frasconi and F.A. Lisi (Eds.): ILP 2010, LNAI 6489, pp. 158–170, 2011.
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In this paper we use Ondex to explore the performance effects of varying
the amount of background knowledge available to an ILP learning engine. This
is done by generating variations of background knowledge using the Relation
Neighbours Filter in Ondex together with a tehnique for sampling Relations.
The effects of varying the background knowledge are measured on both learn-
ing time and predictive accuracy. The experimental results indicate that while
learning time increases monotonically with the amount of background knowl-
edge, relatively shallow degree of background knowledge is required to achieve
maximum accuracy.

The paper is arranged as follows. In Section 2 we introduce the applications
on which the experiments were conducted. We then describe the Ondex system
for generating the background knowledge in Section 3. The experiments are
then described in Section 4. Finally we conclude and describe further work in
Section 5.

2 Application Descriptions

2.1 University Innovation Centre (UIC) Overview

Agricultural research relies on understanding interactions of genes and chemicals
in a biological context. The search for a new biological trait to use in a conven-
tional or genetic modification breeding programme is complex. It can take up
to ten years and millions of dollars to bring such a development to market. The
same is true for the search for new agrochemicals. Part of this development pro-
cess is an assessment of the safety of the gene or chemical to the environment
and its potential toxicity to both mammals and beneficial organisms. Systems
Biology takes a new, integrated, approach to address these important challenges.
Syngenta [1] is a leading Agrichemical company with a number one position in
chemicals and is number three in high value seeds. Syngenta has established
a “University Innovation Centre” (UIC) on Systems Biology at Imperial Col-
lege London [2] to implement a “systems approach” to agricultural research.
The centre has begun with two pioneer projects, tomato ripening and predictive
toxicology.

2.2 Tomato Application

The characteristics of the tomato fruit that reaches the consumer are defined
by the combination of its biochemical and textural properties. Metabolic com-
ponents (volatiles, pigments, sugars and amino acids) define the appearance
and flavour whilst structural properties (cell adhesion, cell size, cuticle thick-
ness, water content) define mouth-feel and texture perception. Together these
components determine fruit quality and are crucial in influencing the success of
commercial varieties.

At the genetic and biochemical level the regulation of fruit development and
ripening remains poorly understood. In this project we are applying ILP to
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deepen our understanding of the metabolic processes controlling tomato fruit de-
velopment. By applying machine learning techniques to transcript and metabo-
lite profiling data we are developing metabolic networks and building a predictive
model of tomato ripening and fruit quality. Through the coordinated analysis
of gene expression and metabolite changes across fruit development we aim to
identify new genetic targets that play a role in controlling the ripening process.
Such knowledge will allow us to focus on these genetic control points in breeding
new tomato varieties, thus producing the most favourable combination of fruit
quality characters in the ripe fruit.

2.3 Predictive Toxicology

An assessment of the potential to cause cancer is a key component of the risk
assessment on a new Crop Protection Active Ingredient. The two year and 80
week bioassays in rats and mice, respectively, provide the Hazard Information
to evaluate this risk. If tumours are observed in these trials, an assessment of
their relevance for human risk may then be required. This typically makes use
of the IPCS/HESI Human Relevance Framework, where the first step is the
development of a mode-of-action case to describe the series of causal key events
that lead to rodent tumours. The second step is to examine the plausibility of
these key events occurring in humans and so guide an assessment of the relevance
of the rodent findings.

This project aims to build a model that integrates the metabolic and gene
expression regulatory networks that underlie initial key events in liver tumour
promotion induced by model non-genotoxic carcinogens. It is envisaged that
cycles of hypothesis generation informed by model building and experimental
testing will allow the identification of those regulatory components that are
key components in liver tumour promoting modes of action. Ultimately this
will allow us to improve mechanistic understanding and so provide key data to
explain the basis of the thresholds in dose and species specificity in response,
thereby allowing more informed human health risk assessments.

3 Ondex: A Biological Background Knowledge Generator

Data integration in the life sciences still remains a significant challenge for bioin-
formatics [5]. Rather than developing a bespoke data integration solution for
assembling the background knowledge for the machine learning task, the open
source data integration framework Ondex [7] was selected as a general solution
to bringing all the required data together. Ondex uses a graph-based approach
with a data warehouse for integrating biological data. The nodes in the graph
represent biological concepts, e.g. enzymes and metabolites. Edges in the graph
represent relations between biological concepts, e.g. a set of enzymes catalyses
a biochemical reaction. Both nodes and edges in the graph can have additional
attributes, e.g. an enzyme name or an amino acid sequence. One of the reasons
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for choosing the Ondex system as a background knowledge generator is the nat-
ural correspondence between its graph representation and the requirement of
generating background knowledge as Prolog clauses for ILP learning.

Data from key biological pathway and gene function information resources
including KEGG [11], LycoCyc [4] were transformed into a semantically con-
sistent graph representation using Ondex. In order to create a non-redundant
and coherent knowledge base, mapping methods were used to identify equivalent
and similar entities among the different data sources. Once the databases were
integrated, the resulting knowledge base was available for further analysis and
visualization using the graph-based methods built in Ondex.

A key feature of the Ondex user client is that it allows the extraction of sub-
graphs based on certain criteria. For example, it is simple to extract sub-graphs
selected on by the class of biological concepts or relations, or where concepts
posses a particular attribute, or from a graph-neighbourhood around particular
nodes of interest. Such criteria can be combined in a workflow to manipulate the
information to be included into the background knowledge. In order to support
ILP learning, a general background knowledge generating utility was built that
respected an agreed Prolog syntax, with Ondex concept class names and rela-
tion type names becoming predicate symbols and attributes becoming Prolog
term structures. Every concept and relation was given a unique ID as the first
argument in each predicate, which was used by other predicates to associate
attributes with concepts and relations. The translation of attributes of concepts
and relations were defined using the Ondex-generated Prolog code export utility.
By following agreed conventions it was also possible to translate Prolog format
back into an Ondex graph, thus enabling the results of the machine learning
process to be imported back into Ondex where they could be visualised in the
context of the original knowledge base.

4 Experiments

Two independent experiments were conducted in the study to empirically inves-
tigate the null hypothesis: variations of background knowledge (BK) do not lead
to increased predictive accuracy.

4.1 Materials and Methods

Tomato Application. An initial ground background knowledge base was de-
rived from LycoCyc database [4,9] and exported as Prolog format using the
Ondex system. The knowledge base depicts the relational structure of tomato
biological network (shown in Fig. 1), including the fundamental components,
e.g. compounds, reactions, enzymes, and their relations, e.g. consumed by, pro-
duced by, catalysed by, etc. Two types of raw data were provided by the do-
main experts in the experiments using gene mutants to study altered tomato
ripening - concentration changes of metabolites and gene transcripts for four
genotypes during 13 time slices. The data were expressed in terms of binary
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Fig. 1. Illustration of the relational background knowledge, where a set of compounds
{Substrate}m

1 are consumed by a reaction r, which produce a set of compounds
{Product}n

1 ; r is catalysed by a set of enzymes with an EC number {Enzyme}/EC
which is aggregated from a set of gene transcripts; the ILP learning is to abduce inhi-
bition/activation occured in r.
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Fig. 2. Illustration of biological network structure and k-compound-neighbours (k-cn,
k ≥ 1) of a centroid compound C, where {S}, {P}, {E}, r stand for a set of substrate
compounds, product compounds, enzymes and a reaction, respectively

(up/down-regulation) for the purposes of applying ILP. In order to deal with
the many-to-one relationships among gene transcripts, enzymes and reactions,
a set of relevant transcriptomic data were further ‘compressed’ into one value
using SUM aggregate for a reaction. Three datasets were chosen for modeling
tomato aspartate and the connected subnetwork. Each contains the concentration
changes of 10 metabolites as learning examples and 16 transcripts as observed
facts on a particular time point1.

Variations of the background knowledge were generated using the Ondex re-
lation neighbours filter (RNF), which extracts a subset from an original network
given a set of centroid nodes and some distance k. In our experiments, the subnet-
work consists of k-compound-neighbours (k-cn, as illustrated in Fig. 2) , which
is defined based on a corresponding k-reaction-neighbours (k-rn) as follows.

0-cn = {centroid compounds}
k-rn =

⋃
c∈(k−1)-cn

(r | consumed by(c, r)) +
⋃

c∈(k−1)-cn

(r | produced by(c, r))

k-cn =
⋃

r∈k-rn

(c | consumed by(c, r)) +
⋃

r∈k-rn

(c | produced by(c, r))

1 They respectively represent three time points - 15 days post anthesis, the breaker
point when the fruit starts to change colour, and 7 days after the breaker stage.
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Table 1. Algorithm of sampling relation neighbours filter (SRNF)

1.0-cn={learning examples};
2.for each distance k = 1, . . . , K, where K is a distance threshold corresponding to

the original background knowledge base
2.1.k-rn={}, for each c ∈ (k − 1)-cn

k-rn = k-rn ∪{r | consumed by(c, r) ∨ produced by(c, r)};
2.2.ks-rn = sample(k-rn,sr), where sr is a manually set sampling rate;
2.3.k-cn={}, for each r ∈ ks-rn

k-cn = k-cn ∪{c | consumed by(c, r) ∨ produced by(c, r)};
2.4.output k-cn.

Furthermore, a sampling relation neighbours filter (SRNF) is developed in
order to generate a series of evenly varied variations, containing sampled subsets
of k-rn in which the size of k-cn can be controlled by a given sampling rate. The
algorithm of SRNF is shown in Table 1.

The datasets and variations of ground background knowledge were given to
the abductive ILP [13] system Progol5.0 [10] together with a set of non-ground
rules, which describe the underlying transitive behaviour of concentrations of
metabolites and enzymes. Progol5.0 was then required to derive inhibition on
reactions. Predictive performance was tested and evaluated against variations of
the background knowledge (k-cn).

Predictive Toxicology Application. In the Predictive Toxicology applica-
tion, the metabolomic and genomic data reported in [14] were integrated with
the KEGG Rattus norvegicus (rat) database using Ondex. The data integration
was performed in the following four steps. The first step was to extract rela-
tional information from the KEGG database using the Ondex KEGG parser.
After parsing an XML version of KEGG database, unnecessary information was
discarded using Ondex’s filtering functions. We constructed an initial model by
keeping the 6 meta concepts (Gene, Protein, Enzyme, Enzyme Classification, Re-
action and Compound) and 6 relations as shown in Figure 3. Note that a meta
concept is a set of unique concepts. For example, the meta concept Compound
is a set of compounds collected in KEGG COMPOUND database.

The second step was to define new relations at the meta-concept level in order
to build our own models. In this paper we design mappings from Gene to Enzyme
Classification (EC) to map the effects of the gene expressions at the EC level.
The following shows a chain of meta concepts in Prolog.

project(Gene, EC) : − is encoded by(Protein, Gene), is a(Enzyme, Protein),
catalyzed by(Reaction, Enzyme),
part of catalyzing class(Reaction, EC)

In the above formula, the new predicate, project/2, can be used to define the
projection from Gene to EC. In the Predictive Toxicology application, this pro-
jection forms a many-to-one mapping. Part of the projections is included in
Appendix 1.
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Fig. 3. The 6 meta classes and with their associated relations

The third step was to integrate the parsed Ondex model with the numerical
gene expression data at the EC level. We applied the Ondex tab delimited file
parser and stored the parsed numerical data as attribute values in the associ-
ated concepts. The gene expression data at day 14 at 1000 ppm of Phenobar-
bital (PB) [14] were mapped onto EC using the above projections. The SUM
aggregated expression data were used to calculate the fold changes in expression
relative to time-matched controls. The numerical fold changes were transformed
into binary (up/down-regulation) for our ILP experiments.

The final step was to combine the metabolomic data with the above integrated
Ondex model. We exported the constructed Ondex model into Prolog using the
Ondex Prolog export utility. The metabolomic data were manually encoded in
Prolog and combined with the Ondex Prolog code. A part of our Ondex Prolog
model is shown in Appendix 2. The metabolite changes (increase or decrease) at
day 14 at 1000 ppm of PB [12] were combined with the exported Ondex Prolog.

In the Predictive Toxicology application, a new filter was designed for generat-
ing variations of background knowledge. This is called a minimum spanning tree
filter (MiST) in which the projected expression data at the EC level are treated
as weights. Intuitively the filter keeps informative reactions in the pathway and
filters non-informative reactions out of the pathway. The notion of the informa-
tive reaction is based on the level of the projected gene expressions. If a member
of EC, ec, is associated with a strongly expressed gene, we treat the reaction
catalysed by ec as informative regardless of up-regulation or down-regulation.
We implement this idea by defining the weight as w = e|1/log(fc)| in which fc
is a numerical fold change value. Figure 4 shows the MiST algorithm which is
based on Kruskal’s algorithm [8].

We created 20 variations of background knowledge by applying the Ondex
relation neighbours filter (RNF) followed by the MiST filter. More precisely, after
parsing the KEGG rat database in step 1, we applied the RNF filter to the parsed
Ondex model for each neighbourhood distance k = 1, ..., 10. The resulting 10
variations of background knowledge are referred to as the background knowledge
by RNF. In Appendix 3, we show a visualisation of the background knowledge
generated using RNF (k = 1) in Figure 9 and its meta-level view in Figure 10.
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Fig. 4. MiST algorithm in the minimum spanning tree filter

For each of these variations, we performed step 2 and step 3 in order to
compute the weights at the EC level. We applied the MiST filter for each of the
variation and the resulting 10 variants are referred to as the MiST background
knowledge.

The variations of the background knowledge, the integrated examples, and
non-ground Prolog rules were given to the abductive ILP system Progol5.0.
Note that the same non-ground Prolog rules were applied for the Tomato and
Predictive Toxicology experiments. Progol5.0 executed abductive inferences in
order to generate hypotheses of inhibition on reactions for each variation of the
background knowledge.

4.2 Results and Discussion

Tomato Application. Leave-one-out cross validation was used to evaluate the
experiments, in which predictive accuracy and running time were computed for
variation of the background knowledge. Fig. 5(a) shows that the sizes of k-cn
generated by RNF increased sharply when k ≤ 2 but only have minor changes
when k > 2; whereas the sizes of k-cn generated by SRNF increase gradually
and evenly with increasing values of k. Fig. 5(b) indicates that the running time
increases linearly with the size of the background knowledge. Fig. 6 shows that
(1) all the experiments get at least default predictive accuracy; (2) maximum
accuracy could be achieved with relatively shallow bcakground knowledge (i.e.
smaller k); (3) the sizes of background knowledge generated by SRNF at which
the predictive accuracy reaches its maximum value s smaller than those gener-
ated by RNF for two datasets, and are almost level in the third dataset.
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In addition, we define a k-model to be the learning result (inhibition/activation
abduced) using k-cn. A k-model will be referred to as stable if it is equivalent
to a K-model (see step 2 of Table 1) with maximum accuracy. The vertical lines
in Fig. 5 show that SRNF generates a smaller size background knowledge with
less running time to reach the least k values of which k-model starts to be stable
than RNF for all the three datasets (k ≥ 3 for RNF and k ≥ 7 for SRNF). In
summary, it is possible to find more stable, shallow and fine (or smaller) back-
ground knowledge that achieves maximum predictive accuracy with less running
time by using SRNF rather than RNF. SRNF also enables us to investigate the
finer changes between variation of BK in a controllable way. The null hypothesis
set for the experiments has been rejected by these results.
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Predictive Toxicology Application. Leave-one-out cross validation was per-
formed for the selected 9 metabolites. In Figure 7, the sizes of variation of
BKs by RNF increased gradually whereas the MiST sizes remained constant.
Figure 8 shows that (1) the predictive accuracies of the MiST approach were
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Fig. 7. Size of variations of BKs Fig. 8. Predictive accuracy by RNF and
MiST

always higher than the results of RNF in which RNF only provided the de-
fault accuracy and (2) the best predictive accuracy by MiST was achieved at
neighbourhood distance 1.

In the Predictive Toxicology application, the null hypothesis for the experi-
ments has been rejected by these empirical results.

5 Conclusions and Further Work

This paper explores the application of ILP to Systems Biology. These applica-
tions involve modelling interations between components of biological systems
using abductive inductive logic programing. We also introduce a powerful new
system called Ondex which can be used to generate Prolog background knowl-
edge iby parsing and filtering public dataases on cell biochemistry. Two industrial
applications are described which are being studied in the Syngenta University
Innovation Centre. With the extensive background knowledge generated, we ex-
plore the question of how variations of background knowledge affect learning
time and predictive accuracy of the same ILP learning system.

Through two independent experiments in tomato biology and predictive tox-
icology, we conclude that relatively shallow background knowledge can be used
to achieve maximum accuracy. In addition the experiments indicate that use of
neighbourhod further reduces the learning time required to achieve maximum
accuracy.

In further work we aim to improve the non-ground background knowledge rules
used in the experiments. We also intend to extend the results using datasets of all
time points, and investigate the biological significance of the learned theories.
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Appendix 1: Sample of projection/2

%
%project(KEGG GeneID, EC_Number).
%
project(’RNO:24788_GE’,’1.1.1.14’).
% rno:24788 is mapped onto EC1.1.1.14
project(’RNO:24534_GE’,’1.1.1.27’).
% rno:24534 is mapped onto EC1.1.1.27
project(’RNO:24533_GE’,’1.1.1.27’).
% rno:24533 is mapped onto EC1.1.1.27

Appendix 2: Sample of Ondex Prolog in the Predictive Toxicology
domain

enzyme(’4400’,’derived enzyme’,’KEGG’,’IMPD’).
% ’4440’ is an Ondex ID
concept_name(’4400’,’Nrk1’).
% ’4400’ has the concept name ’Nrkl’
reaction(’14366’,’irreversible’,’KEGG’,’IMPD’).
% ’14366’ is an Ondex ID
concept_name(’14366’,’cpd:C05841 => cpd:C05841’).
% ’14366’ for the reaction ’cpd:C05841 => cpd:C05841’
part_of_catalyzing_class(’4400’,’4401’,’IMPD’).
% ’4401’ is classified into EC ’4401’
concept_name(’4401’,’2.7.1.-’).
% ’2.7.1.-’ is an EC
catalyzed_by(’14366’,’4400’,’IMPD’).
% ’14366’ is catalyzed by ’4400’
relation_day14_1500mg(is_related_to,’28501’,’22436’,’1.1385442’).
% ’28501’ is an Ondex ID
% ’22436’ is an Ondex ID
% ’1.1385442’ is an expression level
probe(’28501’,’UC’,’IMPD’).
% ’28501’ is for a probe
concept_name(’28501’,’1396933_s_at’).
% ’1396933_s_at’ is a probe name
gene(’22436’,’UC’,’IMPD’).
% ’22436’ is for a gene
concept_name(’22436’,’RNO:191574_GE’).
% ’RNO:191574_GE’ is a gene name

Appendix 3: Sample of Ondex Models
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Fig. 9. Visualised concepts in the Predictive Toxicology domain by Ondex (neighbour
distance k = 1). Each node represents a concept and a directed edge represents a binary
relation between two concepts. Users can edit the constructed model by (1) clicking
the object in the view and (2) applying Ondex utilities such as filters and relation
collapsers.

Fig. 10. Meta View of the Ondex model in Figure 9. Users can edit models also at this
meta level.
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Abstract. Many SRL models pose logical inference as weighted satisfi-
ability solving. Performing logical inference after completely grounding
clauses with all possible constants is computationally expensive and ap-
proaches such as LazySAT [8] utilize the sparseness of the domain to deal
with this. Here, we investigate the efficiency of restricting the Knowledge
Base (Σ) to the set of first order horn clauses. We propose an algorithm
that prunes the search space for satisfiability in horn clauses and prove
that the optimal solution is guaranteed to exist in the pruned space.
The approach finds a model, if it exists, in polynomial time; otherwise it
finds an interpretation that is most likely given the weights. We provide
experimental evidence that our approach reduces the size of search space
substantially.

Keywords: First Order Logic, Horn Clauses, MaxSAT, Satisfiability.

1 Introduction

Representing sets of objects and their relationships in a compact form has been
the focus of researchers for more than a decade. Weighted first order formulas
proved to be one such representation which also allows inference and learning in
a structured way. Inference in these sets of formulas are mostly done by Satisfi-
ability testing. We summarize some of the works that addressed the problem of
satisfiability in the next paragraph.

Traditional SAT solvers in propositional logic try to find an assignment for
all the literals that makes all the clauses true. They return a model if it exists
or return unsatisfiable. SAT solvers such as DPLL [6] give exact solutions but
employ backtracking and take exponential time in the worst case. Local search
methods for satisfying the maximum number of clauses (Max-SAT) has been im-
plemented in GSAT [1], WalkSAT [2] etc. Weighted Max-SAT problems assign
weights to the clauses and aim to minimize the sum of the weights of unsatisfied
clauses. Teresa et. al. proposed a Lazy approach [9] which uses some bound com-
putation and variable selection heuristic for satisfiability. MiniMaxSAT [4] uses a

P. Frasconi and F.A. Lisi (Eds.): ILP 2010, LNAI 6489, pp. 171–180, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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depth-first branch-and-bound search approach for satisfiability. Satisfiability of
first order logic (universally quantified Conjunctive Normal Form (CNF)) can be
done by grounding all the clauses (exponential memory cost) and then running
satisfiability as in propositional case. Since, many learning techniques require
the repeated use of inference and satisfiability, complete grounding of the clauses
becomes a bottle neck. Lifted inference [5] techniques used first order variable
elimination for probabilistic inference but have not proved their applicability in
large domains. As there could be many contradictions in real world, it is bet-
ter to perform weighted satisfiability. Weighted satisfiability solvers are used for
MPE/MAP inference in relational domains [7]. But the complete grounding issue
remained unsolved. A LazySAT approach [8] that doesn’t ground all clauses was
proposed for satisfiability in domains where majority of ground atoms are false.
Their approach, a variation of WalkSAT, keeps track of all the clauses that can
be affected when a literal in an unsatisfied clause is flipped. Recently in [10], the
ground clauses that are satisfied by the evidence are excluded. The approach,
which is depended only on the evidence set, processes each clause independently
and does not find the dependent clauses transitively. Mihalkova et. al. cluster
query literals and perform inference for cluster representatives [12]. Queries are
clustered by computing signatures using a recursive procedure based on adja-
cent nodes. Inference is performed for each cluster representative by running
MaxWalkSAT on corresponding Markov Network constructed recursively. Alen
Fern mentions about the applicability of Forward Chaining in horn clauses [11]
but has not given any algorithm or proof for doing so. In the case of contradict-
ing clauses, it is not straight forward to do forward chaining. The objective of
our work is stated in the next paragraphs.

We address the issue of complete grounding by restricting our domain to first
order horn clauses and pruning the search space for satisfiability. Our approach
caters to several real world applications that use the horn clausal language.

If a set of horn clauses are fully satisfiable, then a minimal model can be found
using TΣ operator (referred to as the immediate consequence operator TP in [3])
in polynomial time. However weighted unsatisfiable problems require to find the
most likely state based on the weights. We propose an extension to the minimal
model approach wherein we find (i) the relevant set of ground horn clauses which
has a potential to be part of a contradiction and (ii) an interpretation near to
the result. MaxSAT algorithm can be used on this subset of clauses, (optionally)
starting from the interpretation returned, to get the most likely state. We also
prove that local search for optimality in the pruned space cannot affect the
satisfiability of the rest of the clauses. Our experiments show that the approach
reduces search space substantially and helps maxSAT to converge in short time.

The paper is organized as follows. Section 2 explains the conventional TΣ

operator and the proposed Modified TΣ operator. In section 3, we give an
overall procedure for satisfiability and also state and prove our claims. Results
are discussed in section 4. We conclude our work in section 5.
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2 Satisfiability in Horn Clauses

If any of the atoms in the body part of a horn clause is false, then the clause
is satisfied because of its inherent structure of having atmost one positive atom
and all others negative. The groundings of a set of first order horn clauses (Σ)
with all the constants give a large set in which majority of the atoms are false
in real world. This makes a large subset of these clauses satisfied by default. We
can neglect these clauses and restrict our attention to the clauses that have a
potential to be part of a contradiction. We call this set, the relevant set (RS).

We propose an algorithm, Modified TΣ, to identify the relevant set along
with the truth assignments that are almost near to the result. Local search for
optimality can be done on this set, starting with the interpretation returned,
rather than considering the huge set of clauses and arbitrary truth assignments.
Next we explain TΣ before going to the Modified version.

2.1 TΣ Operator

TΣ Operator provides a procedure to generate an interpretation from another.
It builds on the concept that for satisfiability in horn clauses, all the unit clauses
should be True and if the body of a clause is True, then the head should also be
True. Let Ik be the interpretation at the kth step of the operation. Then,

Ik+1 = Ik ∪ TΣ(Ik) (1)

where, TΣ(I) = {a : a ← body ∈ Σ and body ⊆ I} (2)

If we start with I = ∅, and iteratively apply the above function assignment (with
respect to the set of clauses), we will eventually converge at an interpretation
that is the minimal model of the formulae if one exists. If there is no model for
this set, the operation will reach a contradiction and will return Unsatisfiable.

In weighted satisfiability problems, if the given set is unsatisfiable, we need to
get a most likely state based on the weights. MaxSAT algorithms can do this op-
timization. Since applying MaxSAT to the complete groundings is expensive, we
improve the above method to prune the search space for MaxSAT. Modified TΣ

Step described in the next section helps us to prune the search space.

2.2 Modified TΣ Step

Modified TΣ operation returns a model if one exists; Otherwise returns the set
of clauses to be used by a local search algorithm and an initial interpretation for
the local search. The method is given in Algorithm 1 and is explained below.

Start with applying TΣ to the set of ground clauses until it converges in a
model or some contradiction is attained. In the former case, we can stop and
return the current interpretation as the solution. If we land up in a contradiction,
we get an atom whose truth value determines the set of clauses satisfied. We
assign true to the atom and proceed further till no more clauses can be visited.
All the clauses discovered by Modified TΣ irrespective of whether satisfied or
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Algorithm 1. Modified TΣ(Σ, DB)
Input: Σ, the set of first order clauses with weights; DB, evidence set given.
Output: RS, the set of clauses to be considered for optimization; TS, truth
assignments of all atoms in RS except those in DB.
1. TS := ∅
2. RS := ∅
3. for each unit clause c in Σ do
4. for each grounding c′ of c do
5. if c′ /∈ RS then
6. Add c′ to RS
7. end if
8. if c′.head /∈ {TS ∪ DB} then
9. Add c′.head to TS
10. end if
11. end for
12. end for
13. repeat
14. for each non unit clause c in Σ do
15. for each grounding c′ of c where c′.body ⊆ {TS ∪ DB} do
16. if c′ /∈ RS then
17. Add c′ to RS
18. end if
19. if c′.head /∈ {TS ∪ DB} then
20. Add c′.head to TS
21. end if
22. end for
23. end for
24. Until no new clauses are added to the set RS
25. Return {RS, TS}

not form the relevant set. The interpretation got at the end of the algorithm can
optionally be used as initial truth assignment for the optimization step. Note
that the truth values for evidences given are always true and cannot be changed.

Any weighted satisfiability algorithm can be applied on the Relevant Set of
clauses and the (optional) initial truth values to get a minimum cost interpreta-
tion. We now discuss weighted satisfiability approach using Modified TΣ.

3 Modified Weighted SAT

In the new approach, Modified TΣ operation is used to find relevant subset
as well as initial truth assignment. Then weighted MaxSAT version given in
Algorithm 2 is used. Algorithm 3 gives the overall algorithm.
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Claim 1. All the unsatisfied clauses will be in RS.

Proof. A horn clause c′ is unsatisfied if c′.body ⊆ {TS∪DB} and c′.head /∈ {TS∪
DB}. Step 6 in Modified TΣ adds all clauses c′ of the form (c′.head ∨ ¬True)
to RS irrespective of whether it is satisfied or not. Step 17 in Modified TΣ adds
all clauses c′ where c′.body ⊆ {TS ∪DB}. This covers both the cases of c′.head
is True and c′.head is False. All other clauses c′′ where c′′.body � {TS ∪DB}
are satisfied by default. So set of unsatisfied clauses is a subset of RS. ��
Claim 2. Any flip done in any maxSAT step to make an unsatisfied clause
satisfiable only affects the satisfiability of clauses in RS.

Proof. Let us prove this by contradiction.
Suppose a clause, c′ = (l1 ∨ ¬l2 ∨ ¬l3 ∨ . . . ∨ ¬ln) is not satisfied by the current
assignments in {TS ∪ DB}. This happens only when l1 /∈ {TS ∪ DB} and
∀i = 2 . . . n li ∈ {TS ∪ DB}. To make c′ satisfied, there are two cases. case 1:
flip l1, case 2: flip any of l2, l3, . . . , ln.
case 1: Flip l1 (False to True). Assume that flipping l1 will affect the state of
a clause c′′ /∈ RS. Since c′′ /∈ RS, c′′.body � {TS ∪ DB}. Otherwise step 17 in
Modified TΣ would have covered c′′ and it would have been in RS. Also all the
unit clauses are covered by step 6 in Modified TΣ.

Now let c′′.head = l1. Since flipping c′′.head to True changes the state of c′′,
c′′.body ⊆ {TS ∪ DB}. If this is the case, c′′ should have been covered by step
17 in Modified TΣ and would have been in RS. Hence the assumption that
c′′ /∈ RS is wrong.

Now let l1 ∈ c′′.body and flipping it to True changes the state of c′′. Then
c′′.body\ l1 ⊆ {TS∪DB}. But applying our approach to c′ would have made l1 ∈
TS and transitively c′′.body ⊆ {TS ∪DB} and c′′ ∈ RS. Hence the assumption
that c′′ /∈ RS is wrong.
case 2: Flip any li ∈ {l2, l3, . . . , ln} (True to False). Assume that flipping li
will affect the state of a clause c′′ /∈ RS. Since c′′ /∈ RS, c′′.body � {TS ∪DB}.
Otherwise step 17 in Modified TΣ would have covered c′′ and it would have
been in RS. Also all the unit clauses are covered by step 6 in Modified TΣ .

Now let c′′.head = li. Since flipping c′′.head to False changes the state of
c′′, c′′.body ⊆ {TS ∪ DB}. If this is the case, c′′ should have been covered by
step 17 in Modified TΣ and would have been in RS. Hence the assumption that
c′′ /∈ RS is wrong.

Now let li ∈ c′′.body and flipping it to False changes the sate of c′′. Then
before flipping, c′′.body ⊆ {TS ∪DB} which must have been covered by step 17
in Modified TΣ and c′′ ∈ RS. Hence the assumption that c′′ /∈ RS is wrong. ��
Claim 3. If α is the cost of an optimal solution to RS, then α is the cost of an
optimal solution to Σ

Proof. let β and γ be the cost of optimal solutions to Σ and RS respectively.
That is β should be the sum of costs of RS and Σ \RS. Increase in cost occurs
only because of contradictions and this is in the set RS (proved in claim 1). The
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best possible solution to the non contradicting part is zero. We get a minimum
cost solution for RS part using MaxSAT and any modification to that can result
(proved in claim 2 that this doesn’t affect Σ \ RS) an increase in cost only in
RS. Therefore β = 0 + γ and thus β = γ ��
Algorithm 2. Modified Weighted MaxSAT(Σg, TS, DB, target)
Input: Σg, all grounded clauses with weights; TS, initial truth assignment; DB,
the evidence given; target, the upper bound of cost.
Output: TS, An interpretation that is the best solution found.
1. atms := atoms in Σg

2. repeat
3. cost := sum of weights of unsatisfied clauses
4. if cost ≤ target
5. Return Success, TS
6. end if
7. c := a randomly chosen unsatisfied clause
8. for each atom a ∈ c and a /∈ DB do
9. compute DeltaCost(a), the cost incurred if a is flipped
10. end for
11. af := a with lowest DeltaCost(a)
12. TS := TS with af flipped
13. cost := cost + DeltaCost(af )
14.until the cost is no more decreasing
15.Return Failure, TS

Algorithm 3. Weighted HornSAT(Σ, DB, target)
Input: Σ, the set of first order clauses with weights; DB, evidence set given;
target, maximum cost expected for the optimization step if required.
Output: TS, An interpretation when combined with DB gives the (local) op-
timum solution.
1. {RS, TS} := Modified TΣ(Σ, DB)
2. if {TS ∪ DB} is a model for Σ then
3. Return TS
4. else
5. TS := Modified Weighted MaxSAT(RS, TS, DB, target )
6. end if
7. Return TS

4 Results

We implemented new HornSAT algorithm with Modified TΣ in java. We have
done our experiments in AMD Athlon 64 bit dual core machine (2.90 GHz) with
2.8 GB RAM and running Ubuntu 8.04.

Our results show that, for satisfiablility, the Modified TΣ method gives a
fewer number of groundings to optimize and that the optimization step converges
in a short time when the search space is pruned.
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Table 1. Results with uwcse KB and different evidence sets
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language
181 atoms

508788 6908 90.452 70.265 70.265 2475736 1823778 6896

language
87 atoms

177738 3205 81.463 37.892 37.892 2329459 1098285 2351

AI 766
atoms

Memory
Error

182690 NA 344.584 344.584 NA 7507578 7462967

Fig. 1. Comparison of the approaches when applied to uwcse KB. a. All 181 atoms
from language dataset are given. b. 87 atoms from language dataset are given. c. All
766 atoms from AI dataset are given. In this experiment, complete grounding approach
failed and didnot give any result.

We used the uwcse knowledge base and dataset provided by alchemy [13] for
our experiments after making small modifications to make the clause set horn.
The constants given as the evidence set is considered as the complete domain
for each variables. We have run three experiments on each dataset. First exper-
iment does the complete groundings and runs MaxWalkSAT. Second grounds
the clauses with pruning and runs traditional MaxWalkSAT with random truth
assignments. The third experiment runs MaxWalkSAT on the pruned clauses set
with the initial truth assignment returned by Modified TΣ. Evidence set of dif-
ferent sizes are used and the comparison is given in Table 1. Figures 1.a, 1.b, 1.c
portrays the results when 181 atoms of uwcse language dataset, 87 atoms of uwcse
language dataset and 766 atoms of uwcse AI dataset are used respectively as evi-
dence set. Experimental results show that the proposed method outperforms the
traditional approach in terms of memory and speed. Implementation and other
details are available at www.cse.iitb.ac.in/~naveennair/HornSatisfiability/
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5 Conclusion and Future Work

Several ground clauses formed as a result of propositionalization of first order
horn formulae are satisfied by default and it is a wastage of resources to consider
them for optimization. We presented an algorithm that prunes the search space
and proved that the optimal solution must lie in the pruned space. Experiments
indicate the scope for efficient inference using MaxSAT for the set of horn clauses.

The algorithm can be extended for general clauses by assigning true value arti-
ficially to all non-negated atoms if all the negated atoms are true and proceeding
like in Algorithm 1.

Acknowledgments. We would like to thank Dr. Ashwin Srinivasan, IBM India
Research Laboratory for his helpful comments.
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Glossary

Atoms: They are predicates in pure form, for eg: parent(ann,mary), female(X).

Body: Right side of (:-) (if) is called body of the clause.

Clause: Disjunction of literals for eg: (parent(ann,mary) ∨ ¬ female(ann)) ≡
(parent(ann,mary) :- female(ann)).

Clause Representation: Any clause can be written in the form of

Comma separated positive literals :- Comma separated negated
literals,

where (:-) is pronounced as if. For example in propositional logic the clause
a ∨ b ∨ ¬ c ≡ a,b :- c.

Conjunctive Normal Form (CNF ): Every formulae in propositional logic or
first-order logic is equivalent to a formula that can be written as a conjunc-
tion of disjunctions i.e, something like (a (X) ∨ b (X))∧(c (X) ∨ d (X))∧· · ·.
When written in this way the formula is said to be in conjunctive normal
form or CNF.

Constants: A constant symbol represents an individual in the world. In first
order logic it is represented by small letter eg: jane, 1, a etc.

Definite Clause: Clauses with exactly one positive literal eg: p(X) :- c(X),d(Y).

Facts: Body less horn clauses, for eg: female(ann); daughter(mary).

Functions: Take input as tuple of objects and return another object eg: moth-
erOf(ann), parentOf(mary).

Ground Clause: Clauses formed as a result of replacing each variable by all
possible constants in each predicate of a clause.

Head: Left side of (:-) (if ) is called head of the clause.

Herbrand Interpretation: A (Herbrand) interpretation is a truth assign-
ment to all the atoms formed as a result of replacing the variables in a
predicate by all the possible constants (objects).

Herbrand Model: a Herbrand model is simply a Herbrand interpretation
that makes a wellformed formula true.

Horn Clause: Clause with atmost one positive literal for eg: (:- parent(ann,joan),
female(joan).) , (parent(ann,kan) :- female(mary).)
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In a horn clause in CNF, all the atoms preceeded by a ¬ form the body
part and the atom not preceded by a ¬ is the head. Here ¬A means (not)A.

Knowledge Base: A Knowledge Base is a set of clauses which represents a
theory.

Literals: They are predicates in either pure form or negated form, for eg:
¬parent(ann,mary).

MaxSAT: It is a local search method used for satisfying the maximum number
of clauses, which starts with random truth assignments to all ground atoms
and improve the solution step by step by flipping one literal at a time which
makes some clauses satisfied and some others unsatisfied.

Model: An interpretation which makes the clause true. For eg: P : −Q, R, the
models are M = φ, {P, Q, R}.

Statistical Relational Learning (SRL): Statistical relational learning deals
with machine learning and data mining in relational domains where obser-
vations may be missing, partially observed, and/or noisy.

Variables: Starts with the capital letters for eg: X,Abs, etc.

Weighted MaxSAT: Given a first order Knowledge Base (σ), find a Herbrand
Interpretation that maximizes (or minimizes) the sum of weights of satisfied
(unsatisfied) clauses.
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Abstract. We propose an algorithm for multi-relational pattern mining
through the problem established in WARMR. In order to overcome the
combinatorial problem of large pattern space, another algorithm MAPIX
restricts patterns into combination of basic patterns, called properties. A
property is defined as a set of literals appeared in examples and is of an
extended attribute-value form. Advantage of MAPIX is to make patterns
from pattern fragments occurred in examples. Many patterns which are
not appeared in examples are not tested. Although the range of patterns
is clear and MAPIX enumerates them efficiently, a large part of patterns
are out of the range. The proposing algorithm keeps the advantage and
extends the way of combination of properties. The algorithm combines
properties as they appeared in examples, we call it structure preserving
combination.

1 Introduction

This paper studies multi-relational pattern mining obeying the line of Warmr
[2, 3]. Warmr generates and tests candidate patterns with a pruning technique
similar to Apriori [1]. In spite of the cut-down procedure it has the exponentially
growing space of hypothesis with respect to the length of patterns and the num-
ber of relations. Another algorithm Mapix restricts patterns into conjunctions
of basic patterns, called properties. A property is an extended attribute-value
form consisting of literals that refer to parts of objects and a literal that de-
scribes a property of or a relation among the parts. For example for a person
(or his/her family) a basic pattern consists of referential literals (or an extended
attribute), for example “one of his/her grandchildren”, and a descriptive literal
(or an extended attribute value), for examples “it is male” and then it describes
a basic property, for example “this person has a grandson”.

Mapix finds patterns made of properties appeared in samples relying on type
and mode information of relations. The search can be seen as a combination
of bottom-up and top-down search, it constructs properties from samples in a
bottom-up way and tests patterns combining the properties in a top-down way.

The properties of Mapix and their conjunctions are natural but the range
in which Mapix generates patterns is still narrow. There seems another natural
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range of patterns to be generated. We propose another way to combine prop-
erties. For example, for a person of a family, “having a son” and “having a
granddaughter” are properties and by combining them we may have “having a
son and a granddaughter”. But it may not represent a real situation of the family
precisely, in which it may happen that “having a son who has a daughter”.

We propose an algorithm by using a structural combination [4] of basic pat-
terns. We propose to use preserved structure in a sample and give a simple
algorithm. Our algorithm generates patterns in a larger pattern space.

2 Patterns and Mapix Algorithm

Datalog is used to represent data and patterns. Datalog clauses are of the form
∀(h ← b1 ∧ . . . ∧ bn) without functors, where ∀F means all variables in F are
universally quantified and ∀ is omitted when understood. For c = h ← b1∧. . .∧bn,
head(c) denotes the head atom h and body(c) denotes the body conjunction
b1 ∧ . . . ∧ bn. A fact is a clause without body. A substitution is described by
θ = {v1/t1, . . . , vn/tn} for variables vi and terms ti. Pθ for a formula P means
replacing every variable vi with ti.

For our mining task a Datalog DB R is given and one of extensional relations
is specified for a target (It corresponds to the concept key of Warmr). A fact of
the target relation is called a target instance.

A query is a clause without head ← b1 ∧ . . .∧ bn, equivalently an existentially
quantified conjunction ∃(b1 ∧ . . . ∧ bn), where ∃Q means all variables in Q are
existentially quantified. When a formula is clearly meant to be a query ∃ is
dropped. A query q is said to succeed wrt R when R |= ∃q.

The following gives patterns, among which we are interested in frequent ones.

Definition 1 (pattern). A pattern is a Datalog clause whose head is of the
target predicate. For a target instance e and a pattern P , P (e) denotes a query
∃(body(P )θ) where θ is the mgu (most general unifier) of e and head(P ). When
P (e) succeeds we say that e possesses P .

Definition 2 (frequent pattern). The frequency of P is the number of target
instances which possess P . P is frequent if its frequency exceeds supmin ·N , where
supmin is a given minimal support and N is the number of all target instances.

Example 1 (running example). Let us consider a DB Rfam on families (Fig. 1).
It includes four relations, parent(x, y) meaning x is a parent of y, female(x) for
a female x, male(x) for a male x, and grandfather(x) meaning x is someone’s
grandfather. We use gf, p, m, f for the relations for short. We also abbreviate
person01 as 01. Let gf be a target.

Then, for example the following formula is a pattern.

P = gf(A) ← m(A) ∧ p(A, B) ∧ f(B)

For a target instance ε = gf(01), P (ε) denotes a query,

P (ε) = ∃((m(A) ∧ p(A, B) ∧ f(B))θ) = ∃(m(01) ∧ p(01, B) ∧ f(B)).
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grandfather

person01

person07

person12

person19

person20

parent

person01 person02

person02 person03

person02 person04

person03 person05

... ...

male

person01

person05

person07

person10

...

female

person02

person03

person04

person06

...

Fig. 1. The family DB Rfam, including grandfather, parent, male and female, of which
grandfather is a target. The persons with ∗ are female and others are male.

where θ is the mgu of ε and head(P ). The query P (ε) succeeds by an assignment
{B �→ 02} then e possesses P . ��
Many ILP algorithms assume modes for predicates to restrict patterns. Some
arguments of a predicate have a role as input (denoted by +) and some as output
(−). We give parent(+,−), male(+), and female(+) to the predicates in Rfam.

We distinguish between two classes of predicates. Predicates with at least one
〈−〉-arg. are called path predicates, e.g. parent(+,−), which have a role like a
function generating a term from others. Predicates without 〈−〉-arg. are called
check predicates, e.g. male(+) and female(+), which have a role describing a
property of given terms. An instance of a path/check predicate in DB is called
a path/check literal. We do not give mode for target predicate.

Using these concepts Mapix extracts basic patterns, called properties, from
DB and generalize them to basic patterns, called property items.

Definition 3 (property). A property of a target instance e wrt DB R is a
minimal set L of ground atoms in R satisfying

1. L includes exactly one check literal, and
2. L can be given a linear order where every term in a 〈+〉-arg. of a literal in

L is occurred in some precedent literals in the order or e.

Definition 4 (variablization). For a ground formula α a formula β is a vari-
ablization of α when

1. β does not include any ground term, and
2. there exists a substitution θ = {v1/t1, · · · , vn/tn} that satisfies

(a) α = βθ and (b) t1, . . . , tn in θ are all different terms in α.

We assume to use new variables never used before when variablizing.

Definition 5. For a set L = {l1, · · · , lm} of ground literals and a target instance
e var(e ← L) denotes a variablization of e ← l1 ∧ . . . ∧ lm.
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Table 1. Properties and property items of ε = gf(01)

pr0={m(01)} it0=gf(A)←m(A)
pr1={p(01,02),f(02)} it1=gf(A)←p(A,B)∧f(B)
pr2={p(01,02),p(02,03),f(03)} it2=gf(A)←p(A,B)∧p(B,C)∧f(C)

({p(01,02),p(02,04),f(04)})
pr3={p(01,02),p(02,03),p(03,05),m(05)} it3=gf(A)←p(A,B)∧p(B,C)∧p(B,D)∧m(D)
pr4={p(01,02),p(02,04),p(04,06),f(06)} it4=gf(A)←p(A,B)∧p(B,C)∧p(C,D)∧f(D)

When L is a property of e, var(e ← L) is called a property item of e. Possessing
P by e and a query P (e) are defined as in Definition 1.

Example 2. L={p(01,02),p(02,03),f(03)} is a property of ε=gf(01). Then it =
var(ε←L)=gf(A)←p(A,B)∧p(B,C)∧f(C) is possessed by ε, i.e. Rfam |= it(ε). ��
Then, Mapix algorithm is as follows:

1. It samples an appropriate number of target instances from a target relation.
2. For each sampled instance it extracts property items hold on DB.
3. It executes an Apriori-like level-wise frequent pattern mining algorithm by

regarding the satisfaction of a property item as possession of it.

As discussed in [5] the size of sampled instances in step 1 can be constant with
respect to the size of all examples.

Example 3. Table 1 shows property items produced from gf(01). Only these are
frequent for min sup 60% even if we sample all instances, when another infrequent
property items gf(A) ← p(A, B) ∧ p(B, C) ∧m(C) is extracted from gf(20).

In step 3 Mapix combines property items by a simple conjunction. For ex-
ample it2 (means having a granddaughter) and it4 (means having a great-
granddaughter) are combined to the following pattern, which we write as 〈it2, it4〉,
〈it2, it4〉 = gf(A)←p(A,B)∧p(B,C)∧f(C)∧p(A,D)∧p(D,E)∧p(E,F )∧f(F ),

which means having a granddaughter and a great-granddaughter but neither
having a child who has a daughter and a granddaughter nor having a grand-
daughter who has a daughter. We call such a conjunction a property itemset.

3 Ideas and an Algorithm

We propose an algorithm based on Mapix in order to produce rich combinations
of properties. It keeps efficiency by seeing only combination appeared in samples.

In order to explain our idea, we introduce the shadow of a property item,
which is a set of properties that produce the property item.

Definition 6. For a database R and a property item it, the set defined below is
called the shadow of the property item,

shadow(it,R) = {‘e ← L’ ∈ T × 2R | L is a property and var(e ← L)∼it},
where T is the target relation in R, 2X is the power set of a set X, and P∼Q
means P and Q are θ-equivalent, i.e. P θ-subsumes Q and Q θ-subsumes P .
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Example 4. For Rfam and it2, the shadow of it is

shadow(it2, Rfam) = {
gf(01) ← {p(01, 02), p(02, 03), f(03)}, gf(01) ← {p(01, 02), p(02, 04), f(04)},
gf(07) ← {p(07, 08), p(08, 09), f(09)}, gf(12) ← {p(12, 13), p(13, 15), f(15)},
gf(12) ← {p(12, 14), p(14, 16), f(16)}, gf(19) ← {p(19, 20), p(20, 21), f(21)},
gf(19) ← {p(19, 20), p(20, 22), f(22)}, gf(20) ← {p(20, 21), p(21, 24), f(24)} }

Definition 7 (combinable property itemset). A property itemset 〈iti1 , . . . ,
itin〉 is combinable, if there exists a target instance e and

〈e ← pri1 , . . . , e ← prin〉 ∈ shadow(iti1 , R)× . . .× shadow(itin , R),

such that
⋂

j=1,...,n(terms(prij ) − terms(e)) �= ∅, where terms(p) is the set of
all terms in p. 〈e ← pri1 , . . . , e ← prin〉 is called a combinable shadow tuple.

Definition 8 (combined property item). When a property itemset is =
〈iti1 , . . . , itin〉 is combinable and 〈e ← pri1 , . . . , e ← prin〉 is a combinable shadow
tuple of it,

var(e ← ⋃
j=1,...,n prij )

is called a combined property item produced from is. A property item that is not
combined is called atomic.

Example 5. A property itemset 〈it2, it4〉 is combinable, because the shadow of
it2 (see the example above) and the shadow of it4

shadow(it4, Rfam) = { gf(01) ← {p(01, 02), p(02, 04), p(04, 06), f(06)},
gf(07) ← {p(07, 08), p(08, 09), p(09, 11), f(11)},
gf(19) ← {p(19, 20), p(20, 21), p(21, 24), f(24)} }

have five combinable shadow tuples

〈gf(01)←{p(01,02), p(02,03), f(03)}, gf(01)←{p(01,02), p(02,04), p(04,06), f(06)}〉,
〈gf(01)←{p(01,02), p(02,04), f(04)}, gf(01)←{p(01,02), p(02,04), p(04,06), f(06)}〉,
〈gf(07)←{p(07,08), p(08,09), f(09)}, gf(07)←{p(07,08), p(08,09), p(09,11), f(11)}〉,
〈gf(19)←{p(19,20), p(20,21), f(21)}, gf(19)←{p(19,20), p(20,21), p(21,24), f(24)}〉,
〈gf(19)←{p(19,20), p(20,22), f(22)}, gf(19)←{p(19,20), p(20,21), p(21,24), f(24)}〉

and they produce the following two combined property items.

it2-4 = gf(A) ← p(A, B) ∧ p(B, C) ∧ f(C) ∧ p(C, D) ∧ f(D).
it2-4’ = gf(A) ← p(A, B) ∧ p(B, C) ∧ f(C) ∧ p(B, D) ∧ p(D, E) ∧ f(E).

it2-4 means having a granddaughter who has a daughter and it2-4’ means hav-
ing a child who has a daughter and a granddaughter. Every tuple produces a
combined property item equivalent to one of the above. All frequent combined
property items produced from Rfam are shown in Table 2.
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Table 2. All frequent property items and combined property items in Rfam for min
sup=60%

it0 = gf(A) ← m(A).
it1 = gf(A) ← p(A,B) ∧ f(B).
it2 = gf(A) ← p(A,B) ∧ p(B, C) ∧ f(C).
it3 = gf(A) ← p(A,B) ∧ p(B, C) ∧ p(C, D) ∧ m(D).
it4 = gf(A) ← p(A,B) ∧ p(B, C) ∧ p(C, D), f(D).
it1-2 = gf(A) ← p(A,B) ∧ f(B) ∧ p(B, C) ∧ f(C).
it1-3 = gf(A) ← p(A,B) ∧ f(B) ∧ p(B, C) ∧ p(C, D) ∧ m(D).
it2-3 = gf(A) ← p(A,B) ∧ p(B, C) ∧ f(C) ∧ p(C,D) ∧ m(D).
it2-3’ = gf(A) ← p(A,B) ∧ p(B, C) ∧ f(C) ∧ p(B,D) ∧ p(D, E) ∧ m(E).
it2-4 = gf(A) ← p(A,B) ∧ p(B, C) ∧ f(C) ∧ p(C,D) ∧ f(D).
it2-4’ = gf(A) ← p(A,B) ∧ p(B, C) ∧ f(C) ∧ p(B,D) ∧ p(D, E) ∧ f(E).
it3-4 = gf(A) ← p(A,B) ∧ p(B, C) ∧ p(C, D) ∧ f(D) ∧ p(B, E) ∧ p(E, F ), m(F ).
it1-2-3 = gf(A) ← p(A,B) ∧ f(B) ∧ p(B, C) ∧ f(C) ∧ p(C, D) ∧ m(D).
it1-2-3’ = gf(A) ← p(A,B) ∧ f(B) ∧ p(B, C) ∧ f(C) ∧ p(B, D) ∧ p(D, E) ∧ m(E).
it2-3-4 = gf(A) ← p(A,B)∧p(B, C)∧f(C)∧p(C, D)∧f(D)∧p(B, E)∧p(E,F )∧m(F ).
it2-3-4’ = gf(A) ← p(A,B)∧p(B, C)∧p(C, D)∧f(D)∧p(B,E)∧f(E)∧p(E, F )∧m(F ).

With atomic property items combined property items work to make other
patterns by conjunction. For example, it1 and it2-4 make the following pattern,

〈it1, it2-4〉 = gf(A) ← p(A, B)∧ f(B)∧p(A, C)∧p(C, D)∧ f(D)∧p(D, E)∧ f(E),

which means having a daughter and a granddaughter who has a daughter. ��
Here we propose a new algorithm for all frequent patterns made from con-

junction among atomic and combined property items extracted from samples:

1. It samples target instances from a target relation.
2. For each sampled instance it extracts atomic property items hold on DB.
3. By using an Apriori-like level-wise algorithm it enumerates all frequent con-

junctions of the atomic property items.
4. It produces all combined property items from the frequent combinable con-

junction.
5. Again by the level-wise algorithm it enumerates all frequent conjunctions of

atomic and combined property items.

The detail of the algorithm is given in Table 3.

4 Experiments and Concluding Remarks

We have done two experiments. The first one was with Rfam, where we aim to
see the varieties of patterns extracted. Table 4 shows the numbers of patterns
enumerated and runtime for our algorithm as well as Mapix and the algorithm
in [4] according as the minimum support threshold is changed. Our algorithm
produced more patterns than others. There was no duplication in the patterns
enumerated by three algorithms in the sense of θ-equivalence.
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Table 3. A proposing algorithm

input R : a DB; T : target relation; supmin: the min. sup. threshold;
output Freq: the set of patterns whose supports are larger than supmin

1. Select an appropriate size of subset T ′ ⊆ T ;
2. Items := ø; P := ø; Freq:= ø;
3. For each e ∈ T ′ do P:=P ∪ {e ← pr | pr is a property of e}
4. For each ‘e ← pr’ ∈ P do
5. If ∃I ∈ Items, I∼var(e ← pr) then S[I]:=S[I] ∪ {e ← pr};
6. else I ′ = var(e ← pr); S[I ′]:={e ← pr} ; Items:=Items ∪ {I ′};
7. k:=1; F1

1 :={〈I〉 | I ∈ Items and supp(I) ≥ supmin}; Freq:=F1
1 ;

8. While F1
k �= ø do

9. Ck+1:=Candidate(F1
k ,F1

k ); F1
k+1:={IS ∈ Ck+1 | supp(IS) ≥ supmin};

10. Freq:=Freq ∪ F1
k+1; k:=k+1;

11. Combined := Candicomb(Freq);
12. k:=1; F2

1 :={〈I〉 | I ∈ Combined and supp(I) ≥ supmin}; Freq:=Freq ∪ F2
1 ;

13. While F2
k �= ø do

14. Ck+1:=Candidate(F1
k ,F2

k ); F2
k+1:={IS ∈ Ck+1 | supp(IS) ≥ supmin};

15. Freq:=Freq ∪ F2
k+1; k:=k+1;

16. Return Freq;

Candidate(F1
k ,F2

k ):
input F1

k ,F2
k : sets of frequent property itemsets of a level;

output Ck+1 : the set of candidate property itemsets of the next level where at least
a property itemset is used from F2

k ;
1. Ck+1 := ø
2. For each pair 〈〈I1, . . . , Ik〉, 〈I ′

1, . . . , I
′
k〉〉 ∈ F2

k × {F1
k ∪ F2

k}
where I1 = I ′

1, . . . , Ik−1 = I ′
k−1, and Ik < I ′

k do
3. Ck+1 := Ck+1 ∪ {〈I1, . . . , Ik−1, Ik, I ′

k〉};
4. For each IS ∈ Ck+1 do
5. If k = 1 and (I�I ′ or I ′�I), where IS = 〈I, I ′〉 then remove IS from Ck+1;
6. For each I ∈ IS do if IS − {I} �∈ F1

k ∪ F2
k then remove IS from Ck+1;

7. Return Ck+1;

Candicomb(Freq):
input Freq : the set of frequent property item sets made of atomic items;
output Combined : the set of combined property items produced from

all property itemsets in Freq;
1. Combined := ø;
2. For each 〈I1, . . . , In〉 ∈ Freq for n ≥ 2 do
3. For each 〈e1 ← pr1, . . . , en ← prn〉 ∈ S[I1] × · · · × S[In] do
4. If e1 = . . . = en and

⋂
j=1,...,n

(terms(prj) − terms(ej)) �= ø then

5. Combined := Combined ∪ {var(e1 ← ⋃
j=1,...,n

prj)};
6. For each I ∈ Combined do
7. If ∃I ′ ∈ Combined, I ′ �= I ∧ I ′∼I then Combined := Combined − {I};
6. Return Combined;
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Table 4. Experiment with Rfam. All
examples were used.

min sup 20% 40% 60% 80%
Mapix #patterns 55 31 23 11

[5] time (sec) 0.04 0.01 0.01 0.01
algo. #patterns 441 153 51 15
in [4] time (sec) 6.23 0.45 0.06 0.03
our #patterns 4601 1063 109 17
algo. time (sec) 9.55 0.54 0.08 0.01

Fig. 2. The number of patterns and
runtime as the number of sampled ex-
amples in Bongard.

The second experiment was with
the data of Bongard. Fig. 2 shows
the number of patterns and runtime
when the number of examples to ex-
tract properties changes. These are the
average of 10 times execution. We used
all examples to count frequency but
sampled limited number of examples
to extract properties. By 80 examples
our algorithm produced the same set of
patterns (802 patterns) as the case us-
ing whole 392 examples. The 802 pat-
terns had no duplication. Fig. 2 also
shows the grow of runtime according
to the sample size.

Our algorithm enumerates larger
range of patterns, made of property
items and combined property items in
which property items are combined as
in examples. The algorithm in [4] uses
structural combination but it has lim-
itation. It treats property items only
in a single example then it composes
all examples as an artificial large ex-
ample. Instead of our shadow the al-
gorithm keeps the conjunction of all
equivalent property items because the
conjunction is equivalent to each prop-
erty item. By the method patterns be-
comes larger. Our algorithm overcome
these limitation by the shadow and simple algorithm, but has the large time
complexity to the size of examples sampled. In fact it took 6556 seconds for
Bongard when it samples all examples. The sufficient size of examples, however,
can be suppressed because it depends only on the minimum support threshold.
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Abstract. In this paper we describe the non-covering inductive logic
programming program HYPER/N, concentrating mainly on noise han-
dling as well as some other mechanisms that improve learning. We per-
form some experiments with HYPER/N on synthetic weather data with
artificially added noise, and on real weather data to learn to predict the
movement of rain from radar rain images and synoptic data.

1 Introduction

In this paper we describe the non-covering ILP program HYPER/N, which is
based on HYPER [1], but with added mechanisms for handling noisy data as
well as some mechanisms that improve the computational efficiency. A non-
covering ILP algorithm works with hypotheses as a whole, whereas covering
ILP algorithms such as FOIL [6], Progol [5], and Aleph [8] build hypotheses by
iteratively adding clauses to the hypothesis using greedy search. Advantages of
a non-covering approach are the better ability to learn recursive hypotheses and
the ability to learn multiple predicates simultaneously. The main disadvantage
is a high combinatorial complexity. Besides that, HYPER’s main disadvantage
is lack of mechanisms to enable the learning from noisy data. We addressed this
deficiency in HYPER/N.

The rest of the paper is organized as follows. In Section 2 we provide some
related work. In Section 3 HYPER/N’s mechanisms and improvements in com-
parison with HYPER are described. In Section 4 we perform experiments with
HYPER/N and other systems in a weather prediction domain. Experiments were
done on both synthetic data and real weather data. Synthetic data enabled con-
trolled experiments with variable degree of noise in data. Section 5 summarizes
the results.

2 Related Work

Not much work has been done in the field of learning from noisy data using non-
covering ILP algorithms. In [4] a non-covering ILP system Lime is presented,
which uses a Bayesian heuristic for inducing a hypothesis with the maximum pos-
terior probability. In the experiments in [4] Lime, equipped with this heuristic,
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handled noise better than both FOIL and Progol. In [3] non-covering ILP system
HYPER was used in a simple robotic domain, where an autonomous robot learns
about the environment by performing experiments and collecting sensory data.
The experiments were done with a real robot using an over-head camera to de-
termine the position. So there was some noise in the measured coordinates. This
noise was successfully handled by defining predicates in background knowledge
in such a way that they tolerated some inaccuracy in numerical data.

3 HYPER/N

HYPER [1] is a non-covering ILP program. It starts with some overly general
hypotheses that are complete also inconsistent, and it builds a refinement graph
from them using three basic types of refinements of hypotheses:

– by matching two variables of the same type in a clause, e.g. X1 = X2,
– by refining a variable in a clause into a background term (list, constant, ...),
– by adding a background literal to a clause.

Since each refinement is a specialization, a successor of a hypothesis in the refine-
ment graph only covers a subset of cases covered by the hypothesis’ predecessor,
it suffices that, during search, we only consider complete hypotheses. An incom-
plete hypothesis can never be refined into a complete one [1].

The main advantages of HYPER in comparison to other ILP programs is
the ability to learn recursive and multi-predicate hypotheses well. The main
disadvantage of HYPER are the high combinatorial complexity and inability to
learn from noisy data. To a certain degree we have solved this in the improved
version of HYPER, called HYPER/N.

Before we continue let us define what kind of noise we want HYPER/N to
handle. Noise is considered as incorrectly classified examples, a positive example
that is classified as a negative example and vice versa.

3.1 Handling of Noisy Data in HYPER/N

The first thing we had to do, for HYPER/N to handle noisy data, was to re-
lax the conditions for completeness and consistency. Let us assume that in our
learning set there are Nnoise noisy examples. We say that a hypothesis is approx-
imately complete if it covers all but Nnoise positive examples, and approximately
consistent if it covers Nnoise negative examples. Before the start of learning the
user must estimate the number of noisy examples in absolute terms (e.g. 13
noisy examples) or relative terms (e.g. 8% of learning examples are noisy). Too
low estimations often result in no learned hypotheses, and too high estimations
result in many learned hypotheses, since there are several possible coverings of a
positive learning example set with such approximately complete hypotheses. It is
up to the user to experiment with the estimations of noise to find an appropriate
value.
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As mentioned in the previous paragraph, HYPER/N can learn several dif-
ferent hypotheses. HYPER/N stores all the approximately complete and ap-
proximately consistent hypotheses found in a list of potentially good hypotheses
together with the sets of positive examples, covered by those hypotheses. Let us
assume that at one step of learning we have a list of potentially good hypotheses
H = {H0, H1, ..., Hi} and a list E = {EH0 , EH1 , ..., EHi} of sets of positive ex-
amples, covered by those hypotheses. For any new approximately complete and
approximately consistent hypothesis Hj , Hj /∈ H , with a set of covered positive
examples EHj , we check: EHj � EHi for all EHi ∈ E. If true, hypothesis Hj

is added to the list H and set EHj is added to the list E. With this we avoid
storing hypotheses that cover same sets or subsets of positive examples as some
other hypothesis, that is already stored in the list.

In HYPER learning simply stops when a complete and consistent hypothesis
is found. But when learning from noisy data with HYPER/N, there is a high
possibility that a complete and consistent hypothesis will not be found. Therefore
before the learning starts, the user must set a maximum number of refinements.
If a complete and consistent hypothesis is found before the number of refinements
reaches this limit, such hypothesis is returned as a result. Otherwise an entire
list of potentially good hypotheses is returned when HYPER/N reaches the
maximum number of refinements. After that it is up to the user to decide what
to do with the result – use it as a final solution or try different parameter values.

3.2 Learning Multiple Clauses from Noisy Data

Described modifications work fine if we are learning hypotheses consisting of
only one clause. But if we want to learn a hypothesis consisting of two or more
clauses, a certain problem arises. At each refinement HYPER first looks for a
clause that alone covers at least one negative example [1]. But if we have a
situation as illustrated in Fig. 1, where the first clause covers one noisy negative
example, it may happen that learning will get stuck at that point.

Let us assume that no possible refinement exists that would exclude the noisy
negative example from being covered by the first clause. HYPER always selects
the first clause that covers a negative example for refinement. In the case of
noise-free data this is sensible, but it is obvious that in the case of noisy data,

Fig. 1. Illustration of a problem that arises when learning hypotheses with more than
one clause. HYPER always chooses the first clause for refinement that alone covers a
negative example. This may cause the learning to get stuck that point.
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the second clause is much more promising for refinement than the first one.
HYPER/N avoids such cases by refining all clauses with highest cost, calculated
by (1), where n is the number of negative, and p the number of positive examples
covered by the clause alone.

clause cost =
n

p + n
if n + p > 0 otherwise clause cost = 0 . (1)

Breaking down the hypotheses into separate clauses and evaluating them sepa-
rately is against HYPER’s philosophy because HYPER works with hypotheses
as a whole. It can also give us some dubious results when evaluating clauses
from recursive hypotheses, since a general clause without a base clause usually
covers no examples (positive and negative). Because of that we also tested an-
other approach, similar to the ‘gain’ heuristic [2]. We evaluated hypothesis H
with and without clause C. We counted that clause C covers all examples that
were covered with hypothesis H and are not covered anymore with hypothesis
H \ {C}. By counting this way we obtained p and n, and calculated clause cost
using (1). While this approach may be more in line with HYPER’s philosophy,
HYPER/N had much more trouble learning recursive hypotheses (longer search
or even no hypotheses learned at all) than by breaking down hypotheses into
separate clauses and then evaluating them.

3.3 Some Additional Improvements

The next issue was to alleviate HYPER’s shortsightedness. For this reason we
implemented a lookahead with user-specified depth. When refining a hypothesis,
HYPER/N refines also all hypothesis’ refinements, ignoring heuristic estimates
and repeats this for a specified number of levels. After that it removes all dupli-
cates, adds all refined hypotheses to the list of “open” hypotheses and repeats
this cycle with the next best hypothesis (one with lowest heuristic estimate).

A final improvement addresses the issue of high complexity. In certain cases,
prior to learning the user knows certain constraints regarding the target theory.
For example when learning in the weather domain we cannot have two differ-
ent measurements of air pressure from one weather station at the same time.
HYPER/N enables the user to provide such constraints as Prolog programs,
which further increases HYPER/N’s flexibility while at the same time decreases
complexity, since all such hypotheses that do not satisfy the constraints are
automatically discarded.

4 Experiments with Weather Data

We tested how HYPER/N performs at learning in a weather domain. In this
domain we have a series of radar images (part of which is displayed in Fig.2),
taken in 10 minute intervals, indicating the intensity of rain (none, light, medium,
heavy and extreme) as well as a database with the synoptic measurements (air
temperature, air pressure, wind direction, ...). Synoptic measurements were taken
in 1 hour intervals at best. Spacial data was represented on a rectangular grid of
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Fig. 2. Excerpt from a sequence of radar images, used for learning

cells. Besides this data we provided HYPER/N also with neighbor relations be-
tween cells and with successor in time relation. Many relations between synoptic
measurements also exist and we have some prior knowledge about this domain.
Therefore ILP seems appropriate for this domain since as ILP’s strengths lie in
relational learning and providing background knowledge in a very natural way.

The first thing we did was to verify how HYPER/N handles noise in the
weather domain. The easiest way to do this was with synthetic data where we
could control the amount of noise. We generated 200 learning examples using
the following theory:

rain(any_type,[X,Y],T1) :-
succ(T,T1), rain(any_type,[X1,Y1],T),
neighbor(north,[X1,Y1],[X,Y]), wind_dir(north,T).

rain(light,[X,Y],T1) :-
succ(T,T1), rain(any_type,[X1,Y1],T),
neighbor(east,[X1,Y1],[X,Y]), wind_dir(east,T).

where rain(any_type,[X,Y],T) indicates that rain of any type (light, medium,
heavy or extreme) is falling in the cellwith coordinates[X,Y] at time T,succ(T,T1)
indicates that T1 is T’s successor in time, neighbor(north,[X1,Y1],[X,Y]) indi-
cates that the cell with the coordinates [X,Y] is the north neighbor of the cell with
the coordinates [X1,Y1] (similar holds for neighbor(east,[X1,Y1],[X,Y])) and
wind_dir(north,T) indicates that in the time T the wind is blowing towards the
north (similar holds for wind_dir(east,T)). This theory says that rain in a cell
will move to its neighbor cell in the wind direction.

To simulate noise, we changed the direction of rain movement in n examples.
When the expected amount of noise was set to n, HYPER/N always learned
the original theory. Under these conditions, HYPER/N managed to learn the
correct hypothesis for the values of n up to approximately 50% of the number of
positive learning examples. Setting the expected noise level lower than n resulted
in no hypotheses learned when HYPER/N reached the number of maximum
refinements (usually 1000 refinements). Setting it higher (approximately n +
5 and more) resulted in several different hypotheses learned. Neither of those
hypotheses was good as a whole.



Learning from Noisy Data Using a Non-covering ILP Algorithm 195

The next step was to run HYPER/N on actual radar images. Since those
images have resolution of 300 by 400 pixels, where each pixel represents 1km2

in nature, we had for complexity reasons to reduce the amount of data. We
discretized the images in smaller, 5 by 5 pixels cells, to decrease the number of
learning examples (from 120.000 to 4.800 – for one radar image). Experimentally
we found that in the weather domain HYPER/N could handle up to a few
thousand learning examples. Increasing this number considerably resulted in
very slow learning. Increasing the cell size was not an option since rain movement
was not visible in too large cells, so we focused only on a smaller region around
a weather station that produced synoptic measurements most regularly (in 1
hour intervals). So we selected a sequence of images (3.400 learning examples),
where the rain mass is first moving towards the north, and after 3 hours started
moving towards the east. HYPER/N induced the following hypotheses:

rain( rain_predicted, [X,Y],T1) :-
succ( T, T1), rain( rain_observed, [X1,Y1],T),
wind_dir( D, T), neighbor( D, [X1,Y1], [X,Y]).

and

rain(rain_predicted,[X,Y],T1) :-
succ(T,T1), rain(rain_observed,[X,Y],T).

The first hypothesis says that the rain moves in the direction in which the
wind blows. The second hypothesis says that the rain “stays where it was”. The
learning times were in the order of an hour when the maximum number of clauses
was “wastefully” set to 2 (1 would suffice).

We evaluated these hypotheses on 7.400 test data (74 radar images where each
contains 100 cells in the observed area) where rain moves in several different
directions. The first hypothesis (the one that says that the rain moves in the
direction in which the wind blows) had a classification accuracy of 83%. The
second one (the one that says that the rain stays where it was) had a classification
accuracy of 89,8%. For comparison – a hypothesis that always predicts rain has
a clasification accuracy of 46,3% and hypothesis that always predicts no rain has
clasification accuracy of 53,7%.

For comparison with other ILP systems, we experimented with Aleph [8],
Progol [5] and Alchemy [7] on the same reduced set of real weather data. We here
present the most successful trials, obtained with Aleph. We ran Aleph with both
the “classical” covering algorithm, and a non-covering approach with learning
first-order decision trees. We did not get any success with the other non-covering
algorithm in Aleph, called “theory induction”, which induces a whole theory at
once (rather than clause by clause) which would be most relevant for comparison
with HYPER.

In the covering algorithm, an appropriate setting of parameter “noise” was
400, which resulted in a theory whose first clause is:

rain( YesNo, Place, Time) :-
succ_start( Time0, Time), rain( YesNo, Place, Time0).



196 A. Oblak and I. Bratko

The first clause is equivalent to HYPER/N’s second theory. Then followed a
large set of empty-body clauses that covered the false positive examples by sim-
ple enumeration. Aleph’s theory has test set accuracy 0.888, very similar to
HYPER/N’s 0.898. The small difference is due to the clauses that cover single
false positive examples. A user might sensibly remove these spurious clauses,
leading to the same result as HYPER/N second theory. We did not succeed in
making Aleph with covering induce HYPER/N’s first theory as alternative.

Inducing class probability trees with parameter lookahead set to 1 just re-
sulted in the unsatisfactory root-only tree. Setting lookahead to 2 or 3 gives tree
structured rules:

rain( YesNo, Place, Time) :-
succ_start( Time0, Time), rain( YesNo, Place, Time0),
random(YesNo, [0.534425-no, 0.465575-yes]).

rain( YesNo, Place, Time) :-
not (succ_start( Time0, Time), rain( YesNo, Place, Time0) ),
random(YesNo, [0.507671-no, 0.492329-yes]).

The rules are sensible again (similar to theory 2 by HYPER). The class proba-
bility distribution in the first rule is confusing - it would best be omitted because
when the body of the rule is satisfied, YesNo is already instantiated. Setting
lookahead = 4 results in a theory that contains the same idea as theory 1 by
HYPER/N. In conclusion, Aleph with appropriate settings and used in a “con-
structive” way induced theories similar to those by HYPER/N. Aleph was much
faster than HYPER/N, with learning times in the order of a minute.

We were not able to obtain any success with Alchemy. A typical result is the
following theory (after notational modification) that is hard to understand or
use:

not neighbor( Dir, [X1,X2], [X1,X1]) v
not rain( Type, [X1,Y], Time) v not rain(Type, [X2,Y], Time)

It should be admited that we had problems using these systems, specially
with searching for good parameter setting. Better settings may exist than those
we used.

5 Conclusion

In the paper we presented the mechanisms in HYPER/N that enable learning
from noisy data and on larger domains than HYPER. We studied HYPER/N
performance by experimnets in a real weather domain. In comparison with other
popular ILP programs such as Aleph [8], FOIL [6] and Progol [5] as well as
Alchemy [7], HYPER/N’s advantage is its better ability to learn recursive clauses
and to learn multiple predicates simultaneously. Experiments in the weather do-
main show how important it is to correctly assess the degree of noise in the data.
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The accuracy and appropriate structure of induced theories largely depend on
this estimate. Future work will surely include automation of some mechanisms,
such as finding an appropriate value for the expected amount of noise, to make
it more robust and user friendly.
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Abstract. Learning first-order recursive theories remains a difficult
learning task in a normal Inductive Logic Programming (ILP) setting, al-
though numerous approaches have addressed it; using Higher-order Logic
(HOL) avoids having to learn recursive clauses for such a task. It is one
of the areas where Higher-order Logic Learning (HOLL), which uses the
power of expressivity of HOL, can be expected to improve the learn-
ability of a problem compared to First-order Logic Learning (FOLL).
We present a first working implementation of λProgol, a HOLL system
adapting the ILP system Progol and the HOL formalism λProlog, which
was introduced in a poster last year [15]. We demonstrate that λProgol
outperforms standard Progol when learning first-order recursive theories,
by improving significantly the predictive accuracy of several worked ex-
amples, especially when the learning examples are small with respect to
the size of the data.

1 Introduction and Motivations

[3] describes Higher-order Logic (HOL) as “a natural extension of first-order
logic (FOL) which is simple, elegant, highly expressive, and practical” recom-
mends its use as an “attractive alternative to first-order logic”. HOL allows for
quantification over predicates and functions and is intrinsically more expressive
than FOL. Much of logic-based Machine Learning research is based on FOL and
Prolog, including Inductive Logic Programming (ILP). Yet, HOL, and has been
seldom used. According to [9], “the logic programming community needs to make
greater use of the power of higher-order features and the related type systems.
Furthermore, HOL has generally been under-exploited as a knowledge represen-
tation language”. In [9], the use of HOL in Computational Logic, which has been
“advocated for at least the last 30 years” is illustrated: functional languages, like
Haskell98; Higher-order programming introduced with λProlog [11]; integrated
functional logic programming languages like Curry or Escher; or the higher-order
logic interactive theorem proving environment “HOL”. It is also used in IBAL
and for Deep Transfer Learning.

We have decided to adapt ILP within a HOL framework, developing Higher-
order Logic Learning (HOLL). ILP seems to be rather intuitively adaptable to a
FOL formalism. We present a first working implementation of λProgol, a HOLL
system adapting the ILP system Progol and the HOL formalism λProlog. We
decided to choose Higher-order Horn Clauses (HOHC) [13] as a HOL formalism,
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since it is one of the logical foundations of λProlog. As a ILP system, we chose
to adapt Progol [12], which is a popular and efficient implementation. We want
to determine whether HOLL can outperform FOLL and study the trade-off that
there may be between learnability and searching costs (the use of Henkin seman-
tics as in [17], seems to alleviate these and maintain the structure of the search
space).

There have been attempts to use HOL for logic-based Machine Learning such
as by Harao starting in [6], Feng and Muggleton [4] and Furukawa and Goebel
[5]. They provide different higher-order extensions of least general generalization
in order to handle higher-order terms in a normal ILP setting, whereas we use
λProlog, a HOL framework, as a logical foundation to extend first-order ILP to
a higher-order context. The main similar work is [9] by Lloyd and Ng, where
higher-order machine learning is also developed. It uses a typed higher-order
logic, but, although similar, “a different sublogic is used for λProlog programs
than the equational theories proposed” in [9]. It details a learning system, called
ALKEMY . A main difference is that Lloyd’s approach is not based on Logic
Programming and therefore on ILP. According to Flach, “it is almost a rational
reconstruction of what ILP could have been, had it used Escher-style HOL rather
than Prolog”; whereas we intend, through the use of higher-order Horn clauses
to keep the Horn clauses foundations of LP and ILP and to extend it.

HOLL will be tested and assessed on new problems and applications not learn-
able by ILP (which includes the learning of higher-order predicates), but also on
how well it performs on problems already handled by ILP to compare it with
existing ILP systems in order to determine if it can outperform FOLL. It would
be therefore of interest to look at learning problems not handled well by ILP.
One of these is learning tasks involving recursion. According to [10], “learning
first-order recursive theories is a difficult learning task” in a normal ILP setting.
However, we can expect a higher-order system to learn better than a first-order
system on such problems, because we could use higher-order predicates as back-
ground knowledge to learn recursive theories (a similar approach is already used
for some recursive functions in the Haskell prelude); and it will be sounder, more
natural and intuitive, hence probably more efficient than meta-logical features
which come from functional languages. We can for example use the higher-order
predicate trans as background knowledge to learn naturally the recursive predi-
cate ancestor (see Sect. 3). More generally, the expressivity of HOL would make
it possible to represent mathematical properties like symmetry, reflexivity or
transitivity, which would allow to handle equational reasoning and functions
within a logic-based framework. We could also represent such properties in the
following fashion (in the case of symmetry) : R@X@Y <= [sym@R,R@Y@X],
and, abduce for example that the move of the bishop in chess is symmetric:
sym@bishop_move.

About the use of probability in a logic-based setting, [14] advocates for prob-
ability to be captured directly in the theory itself, which can be done naturally
and directly with HOL, as opposed to almost all approaches having a clear sep-
aration between the logical statements and the probabilities.
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2 λProgol: A Higher-Order ILP System

In this section, λProgol, a higher-order ILP formalism is presented. It is based
upon Progol and Mode-Directed Inverse Entailment as defined in [12]. How-
ever, it generalizes this approach on HOHC and λProlog. λProlog, developed
by Miller and Nadathur, is a higher-order logic programming language handling
polymorphic typing, scoping over names and procedures, modular programming,
abstract data types, the use of lambda terms as data structures and, more im-
portantly for this paper, higher-order programming. λProlog is based on HOHC,
introduced in [13] and defined as “a generalization of Horn clauses to a higher-
order logic” and a “basis for logic programming”. According to [13], HOHC can
be “characterized as those obtained from first-order goal formulas and definite
sentences by supplanting first-order terms with the terms of a typed λ-calculus
and by permitting quantification over function and predicate symbols”.

Since our implementation is in Prolog, a λProlog interpreter in Prolog is
needed. It is based on a theorem proving procedure for HOHC outlined in [13],
based on Huet’s unification algorithm in typed λ-calculus [8], and whose sound-
ness is proved. The main differences in the λProgol algorithm, compared to
Progol, come from this interpreter and from the fact that it requires background
knowledge and examples to be not Horn clauses but λProlog clauses.

Definition 1. λProlog Interpreter.
A λProlog clause is of the form (HeadAtom⇐ [BodyAtom1, . . ., BodyAtomn]),

where HeadAtom has to be rigid. A λProlog formula is one of the following: (1)
A variable or a constant, (2) (X/F), where F is a formula, (3) (F1@F2) where
F1 and F2 are formulae, (4) (sigma F), where F is a formula, (5) (pi F), where
F is a formula. sigma and pi represent respectively the existential and universal
quantifiers. / represents abstraction and @ represents function application as it
is defined in λ-calculus [1] and in λProlog. Atomic formulas must have the form
(h@t1@ . . .@tl), where h is either a variable or constant and t1 . . . tl are terms.
If h is a constant, it is a rigid atom; if h is a variable, it is a flexible atom. A
list is of the form cons@el1@ . . .@elm@nil. nil is the empty list.

The λProgol algorithm is constituted by three algorithms (Algs. 1, 2 and 3)
which are very similar to the Progol algorithms (only Alg. 1 will be detailed in
this paper). The mode declarations and mode language are identical to Progol
(Definitions 20, 21, 22 in [12]) except that the mode atoms can be different
because λProlog atoms are different from FOL atoms. The construction of ⊥i,
which is the least general element of the bounded sub-lattice for each example e
is described in Alg. 1. i represents the maximum variable depth determining how
many times step 5 is executed; Recall determines how many times the λProlog
interpreter is called for each instantiation of the clause in step 4. The line 5.a.i
in the algorithm is specific to λProgol, it is to prevent the call of flexible atoms
by the λProlog interpreter. Indeed, the type pred is set to correspond to higher-
order predicate, which can be uninstantiated (i.e. still variable) when called by
the λProlog interpreter. The call to pred(u) instantiates these variables.
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Algorithm 1. Construction of⊥i.

1. Given natural numbers i, λProlog clauses B, λProlog clause e and set of mode
declarations M .

2. Let k = 0, hash : Terms → N be a hash function which uniquely maps terms to
natural numbers, e be a ∧ b1 ∧ . . . ∧ bn, ⊥i = 〈〉 and InTerms = ∅.

3. If there is no modeh in M such that a(m) � a then return the empty clause �.
Otherwise let m be the first modeh declaration in M such that m subsumes a with
substitution θh. For each v/t in θh

(a) if v corresponds to a #type then replace v in m by t
(b) otherwise replace v in m by vk where k = hash(t) and
(c) add t to InTerms if v corresponds to +type.
Add m to ⊥i.

4. If k = i return ⊥i else k = k + 1.
5. For each modeb m in M , let {v1, . . . , vn} be the variables of +type in m and

T (m) = T1× . . .×Tn be a set of n-tuples of terms such that each Ti corresponds to
the set of all terms from InTerms of the type associated with vi in m (t is tested
to be of a particular type by calling type(t) with the λProlog interpreter).
(a) For each 〈t1, . . . , tn〉 in T (m) and θ = {v1/t1, . . . , vn/tn}. Repeat recall times:

i. for every variable u in mθ of type pred, add the call pred(u) to the λProlog
interpreter

ii. if the λProlog interpreter succeeds on goal mθ with answer substitution
θ′then for each v/t in θ and θ′ if v corresponds to a #type then replace v
in m by t otherwise replace v in m by vk where k = hash(t) and add t to
InTerms if v corresponds to −type. Add m to ⊥i.

6. Goto step 4.

best(s), prunes(s), terminated(s) are defined like in Progol to find a clause with
maximal compression. ρ(s) is currently defined like in Aleph. Alg. 2 corresponds
to the search for a single clause in the subsumption lattice and Alg. 3 is a
simple cover set algorithm as in, respectively, Algs. 42 and 44 in [12], except
that the unflattening is not done. Currently, only the cover searching has been
implemented.

An implementation of λProgol has been made, has been tested, and is available
at [16]. Our first choice of implementation was based on λProlog but revealed to
be too inconvenient and inefficient to use; instead the current implementation is
in Prolog, which is more convenient and more efficient; a requirement is the use
of a λProlog interpreter, which was implemented using a depth-first approach.

3 Results and Applications

In this section, we present the initial results that we have obtained so far about
learning recursive theories. Learning first-order recursive theories remains a dif-
ficult learning task in a normal Inductive Logic Programming (ILP) setting,
although numerous approaches have addressed it. These approaches are listed in
[10] and include FOIL and Progol. MPL and ATRE [10] are two multiple predi-
cate learning systems that address this problem. In [7], IGOR II, an analytical
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inductive functional system “specialised to learn recursive programs” is described
and is compared to GOLEM and the search-based inductive functional system
MagicHaskeller.

Since we are interested in determining if learning within a higher-order context
can improve the learning of a given problem, we have decided to compare λProgol
with the first-order system it is based upon, i.e. Progol. Both systems having
almost the same learning algorithms, the comparison will stress the difference
between FOLL and HOLL on a given learning task.

To ensure the fairness of the comparison and the soundness of the learning,
we compare Progol and λProgol in standard settings. We will therefore neither
include the presence of meta-logical features for Progol, nor the use of clauses
of the type holds(...) that make use of first-order variables in order to simulate
higher-order variables. In order for Progol to learn recursive clauses, we will use
implicational searching instead of cover searching.

The learning task (used in [10]) we are going to develop consists of learning the
predicate ancestor given a genealogical tree defined by facts for the predicates
parent and married as background knowledge and positive and negative exam-
ples of the predicate ancestor. It is illustrative of how the power of expressivity
of HOL could be used to improve the learnability of a problem.

The genealogical tree used for this experiment is described in Fig.1 and in
[2]. It contains 119 members over 11 relations of the Romanov imperial Russian
dynasty. The Progol input file (except the ancestor examples) is described in
Ex. 1. ((...) corresponds to parts that have omitted).

Example 1. Progol input file for learning ancestor.
Mode declarations:
:- modeh(*,ancestor(+person,+person))?
:- modeb(*,parent(+person,+person))?
:- modeb(*,parent(+person,-person))?
:- modeb(*,ancestor(+person,-person))?
Type declarations:
person(X) :- male(X). person(X) :- female(X).
female(eudoxia_streshneva). female(maria_dolgorukova). (...) female(anastasia_1).
male(michael_I). male(alexis_I). (...) male(michael_3). male(alexei_3).
Background Knowledge:
parent(michael_I,alexis_I). (...) parent(alexandra_fyodorovna,alexei_3).
married(michael_I,eudoxia_streshneva). (...) married(michael_3,natalya_wulffert).

In Ex. 1, we can note that modeb(*,ancestor(+person,-person)) suggests a recur-
sive definition for ancestor, and that the presence of only parent in the modebs
declarations will force Progol to learn ancestor with parent and not married.
The λProgol input file (except the ancestor examples) is described in Ex. 2.

Example 2. λProgol input file for learning ancestor.
Mode declarations:
:- modeh(*,ancestor@(+person)@(+person)).
:-modeb(*,(#pred_secondorder)@(#pred_person_person)@(+person)@(+person)).
Type declarations:
pred_secondorder(trans).
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Fig. 1. Left: Comparison between Progol and Lambda Progol on the Ancestor example.
Right: Part (around one third) of the Romanov dynasty tree used in the experiments.

pred_person_person(parent). pred_person_person(married).
person(X) :- male(X). person(X) :- female(X).
female(eudoxia_streshneva). female(maria_dolgorukova). (...) female(anastasia_1).
male(michael_I). male(alexis_I). (...) male(michael_3). male(alexei_3).
Background Knowledge:
trans@R@X@Y <= [R@X@Y]. trans@R@X@Z <= [R@X@Y,trans@R@Y@Z].
parent@michael_I@alexis_I <= []. (...) parent@alexandra_fyodorovna@alexei_3
married@michael_I@eudoxia_streshneva <= []. (...) married@michael_3@

natalya_wulffert

In Ex. 2, we can observe that the modeh is similar to the one in Progol. There
is only one modeb however as the learning is not recursive, the modeb asks for a
constant second order predicate that has for arguments a constant (first-order)
predicate over two persons, and two input persons. The use of the predicate
parent is not mandatory and the predicate married will be tried, contrary to
what is done in Progol. Compared to the Progol input, the types of the second-
order predicate trans and the predicates parent and married, the other types are
identical. As for the background knowledge, the definition of trans is added and
the rest corresponds to the same parent and married facts in λProgol notations.

To compare the two systems, we created files containing positive and negative
examples of ancestor. These files contain an equal number of positive and nega-
tive examples generated randomly and they contain respectively 6 (described in
Ex. 3.), 10, 16, 20, 26 and 30 examples in total.
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Example 3. Progol and λProgol example files for learning ancestor.
Progol example file:
:-ancestor(natalia_naryshkina,alexis_I). :-ancestor(joseph_austria,paul_I).
:-ancestor(charlesleopold_mecklenburg,marie_mecklenburg).
ancestor(maria_feodorovna,alexei_2). ancestor(catherine_II,tatiana_1).
ancestor(eudoxia_streshneva,konstantin_1).
λProgol example file:
false <= [ancestor@natalia_naryshkina@alexis_I]. false

<= [ancestor@joseph_austria@paul_I].
false <= [ancestor@charlesleopold_mecklenburg@marie_mecklenburg].
ancestor@maria_feodorovna@alexei_2 <= []. ancestor@catherine_II@tatiana_1

<= []. ancestor@eudoxia_streshneva@konstantin_1 <= [].

We then compared the respective predicative accuracy of Progol and λProgol on
these examples by doing a leave-one-out cross-validation. The results of this ex-
periment is shown in Fig.1. All the input files and the outputs of the experiment
can be found at [16]. In Progol, the definition of ancestor should be the two fol-
lowing clauses: ancestor(A,B) :- parent(A,B). and ancestor(A,B) :- parent(A,C),
ancestor(C,B). However, during the cross-validation, Progol has rarely found this
definition. It sometimes returns incorrect recursive definitions; but also non re-
cursive definitions like ancestor(A,B) :- parent(A,C), parent(C,D), parent(D,E).
The latter is due to the finiteness of the genealogical tree used. It often can-
not induce clauses that compress the data. To learn the definition correctly,
Progol needs to find the following positive examples: ancestor(X,Y) such that
parent(X,Y) (for the base case) and both ancestor(A,C) and ancestor(B,C) such
that parent(A,B) or parent(B,A) (for the recursive step). The larger the input
and the smaller the number of examples, the smaller the probability to learn the
definition correctly. Hence the difficulty to learn and the observation that the
accuracy seems to decrease with the number of examples. On the other hand,
λProgol learns the correct definition in all the cases, which is ancestor@X@Y
⇐ [trans@parent@X@Y] (from this definition, we can obtain, by unfolding and
with the closed world assumption, the Progol definition). This definition is non
recursive and can be learned from any given positive example.

On this example consisting of learning a recursive definition from large data
with few examples, we have showed that HOLL can outperform FOLL. Moreover,
the same predicate trans, as background knowledge, could be used to learn the
predicate less_than given the predicate successor. mappred, which “given a
predicate of two arguments and two lists, checks that corresponding elements of
these two lists are related by the given predicate”, and foreach, which “given
a predicate of one argument and list, checks that every element of that list
satisfies that predicate” can be used to learn predicates defined over lists. The
high-order property of sortedness for an order R, which can be represented by
the following: sorted@(cons@X@nil) <= [] and sorted@(cons@X@(cons@Y@Z))
<= [R@X@Y,sorted@Y@Z] can be used to learn words sorted lexicographically
for example. Similarly, we can use the same higher-order predicate to both learn
to reverse a list and to sum the elements of a list depending on the context. But
a higher-order predicate can be used to learn an other higher-order predicate
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like trans. This is only a few of examples of HOLL which can outperform FOLL
and these learning problems have been tested and can be found at [16].

4 Future Works

We intend to continue the tests and comparisons of λProgol against already ex-
isting ILP systems to determine how HOLL may outperform FOLL as it was
shown above. We aim to present theoretical results for HOLL. ILP theory seems
to be rather intuitively adaptable within a HOL framework. For λProgol, we
will have to prove that higher-order inverse entailment is possible and to gen-
eralize correctness and complexity results for the Progol Bottom Clause and
Search algorithms. In [17], a model-theoretic semantics for HOHC is provided.
We also want to investigate tasks and discoveries not learnable by first-order
ILP. It could be of interest to look at HOL theorem provers, or integrated func-
tional logic programming languages and Mathematical Discovery. Further ob-
jectives may be to investigate abduction within λProgol, introduce Probability
and adapt Probabilistic Logic Learning within HOL, look at applications such
as Bioinformatics, where ILP has been successfully applied, and consider other
logics within λProlog.
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Abstract. In the Relational Reinforcement Learning framework, we propose an
algorithm that learns an action model (or an approximation of the transition func-
tion) in order to predict the resulting state of an action in a given situation. This
algorithm learns incrementally a set of first order rules in a noisy environment
following a data-driven loop. Each time a new example is presented that con-
tradicts the current action model, the model is revised (by generalization and/or
specialization). As opposed to a previous version of our algorithm that operates
in a noise-free context, we introduce here a number of indicators attached to each
rule that allows to evaluate if the revision should take place immediately or should
be delayed. We provide an empirical evaluation on usual RRL benchmarks.

Introduction

In this paper1, we propose an algorithm that simultaneously tackles the problems of
incrementality and indeterminism in action model learning when using relational rep-
resentations for states and actions. A relational representation is expected to have better
generalization capabilities, improved scaling-up and transfer of solutions since it does
not rely on a number of attributes describing states nor on their order.

When a system is involved in a sensori-motor loop with its environment, it perceives
its state, chooses and performs an action before perceiving its new situation, acting
again and so on. Action models permit to anticipate the outcomes of any action in a
given state. Such models are necessary for planning and may be used in Reinforcement
Learning (RL) to speed up the overall learning of the optimal action [13].

This work takes place at the intersection of Relational Reinforcement Learning ([5],
see [14] for a review) and Planning in first order logics [12]. In both fields, automatically
acquiring action models from experience is a major concern.

The main originality of our work is that it tackles both incremental learning and
learning in non deterministic environments. In [11], we already proposed incremental
algorithms in the deterministic case, with a convergence proof. By incremental learn-
ing, we mean revising the model each time a new example contradicting the current
action model is presented to the system, without storing every example and periodi-
cally re-running batch learning. Incremental learning is suitable for designing adaptive
systems. In the deterministic case, the order of the provided examples might be mislead-
ing and yield inadequate generalization (or specialization) choices, in particular when

1 This work was partially supported by the ANR project HARRY.

P. Frasconi and F.A. Lisi (Eds.): ILP 2010, LNAI 6489, pp. 206–213, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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an action has disjunctive preconditions. The system therefore has to be provided with
mechanisms for reconsidering early inadequate decisions.

The deterministic assumption is quite a strong one as, in real world applications,
the outcomes of actions are often stochastic (noise, inadequate representations, partial
observability treated as stochasticity, etc.). Furthermore, indeterminism and incremen-
tality should be tackled together, considering that in a non deterministic context, the
order in which examples are presented to the system is even more critical.

On the one hand, several works in the Relational RL framework [2] or in the plan-
ning field [7,1,12,17,15] propose to learn action models incrementally, but they all only
consider deterministic environments. On the other hand, other works [10,9,18] address
stochasticity, but are limited to batch learning. Based on KWIK [8], [16] addresses
stochastic problems but can hardly be considered as incremental : all examples are
stored and a new batch-learning is performed each time. Other related work do nei-
ther tackle incrementality nor indeterminism such as INTHELEX [6]. Figure 1 gives an
overview of related work.

Fig. 1. Incrementality together with indeterminism

In Section 1, we detail our learning framework by describing the relational first order
representation of the state and action spaces and introducing the general mechanisms
of the algorithm presented in Section 2. Here, we provide an overview of the proposed
incremental generalization and specialization mechanisms. Before concluding, the al-
gorithms are empirically tested on the regular RRL benchmark environment.

1 Learning Problem

1.1 Action Model

An action model is a theory of the transition function T : S ×A → Π(S) of a Markov
Decision Process (MDP) with a set S of possible states and a set A of possible actions.
Here, Π(S) denotes a probability distribution over the state space. Unlike in the deter-
ministic case, the outcomes of the same action in the same state might be different from
time to time, due to noise or other concerns.

An example x for the learning process is composed of a given state, a chosen action
and the resulting new state. We respectively note them as x.s, x.a and x.s′. The effect



208 C. Rodrigues, P. Gérard, and C. Rouveirol

x.e of an action describes what has changed in the state after applying the action, i.e.
x.e = δ(x.s, x.s′). Rather than strictly learning a model of the transition function, we
model what changes when the action applies, by taking advantage of x.s, x.a and x.e.
Let us denote this model T .

Due to the model complexity, we have chosen not to learn the whole distribution
probability over possible effects for a given action in a given state. We rather restrict
the model T to most likely outcomes. We assume in this paper this will be sufficient to
distinguish between noise and relevant information in most cases.

1.2 Relational Representation

Examples. Examples are described by a Datalog-like language (no function symbol but
constants). Objects are denoted by constants (denoted in the following as a, b, f . . .).
Variables are denoted by upper-case letters (X , Y . . .). In a noise-free context, when
an agent emits an action, the effect part completely describes the effects of the action:
literals not affected by the action remain unchanged. The effect, as usual in a STRIPS-
like notation, is composed of two literal sets: x.e.add is the set of literals getting true
when the action is performed, and x.e.del is the set of literals getting false when the
action is applied. The examples can be noted x.s/x.a/x.e.add, x.e.del, with no negated
atoms in x.s, x.a and x.e.add, and x.e.del described as a conjunction of negated literals.

Fig. 2. In a simplified blocks world with only on and move predicates, states and action yielding
to example x1: on(a, f), on(b, f), on(c, a)/move(c, b)/on(c, b),¬on(c, a)

Rules. Most works in RRL use instance based methods [3] or decision trees [4] to si-
multaneously represent an action model and the value function associated to this model.
Existing instance based methods use predefined distances suited to the problems. Deci-
sion trees are top-down methods which – in the incremental case — highly rely on the
order of presentation of the examples, thus leading to over-specializations.

In this paper, we propose a rule-based representation of the action model T , because
inadequate generalization/specialization choices in an incremental context can be easily
reconsidered when actions are represented by independent rules and that no ad-hoc prior
knowledge is needed, as it is the case for instance based approaches.

Each rule r is composed of a precondition r.p, an action r.a and an effect r.e. The
precondition is represented by a conjunction of positive literals, which have to be sat-
isfied so as to apply the rule. The action is a literal defining the performed action. As
for examples, the effect is composed of two literal sets, r.e.add and r.e.del. An action
r.a has no other effects but those described by r.e. In order to be well formed, a rule
r must be such that i) r.e.del ⊆ r.p ii) r.e.add ∩ r.p �= ∅ iii) r.a and r.e must be
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connected. Finally, all variables occurring in r.a should also occur in r.p and r.e, but
r.p and r.e may refer to objects/variables not occurring in r.a. Rules can be denoted
r.p/r.a/r.e.add, r.e.del. There is no negated literal in r.p, and each literal of r.e.del is
negated.

This extended STRIPS formalism we adopt in this work is more expressive than the
regular STRIPS language, as considered for instance in [15]. For a given action and
effect, it is possible to associate several preconditions, each expressed as a conjunction
of literals. This is not the case in [15], which only accepts conjunctive preconditions
for an action. Moreover, our formalism accepts action rules where variables/objects not
occurring in the action literals may occur in preconditions and/or effects. Learning here
includes learning the ”schema” of STRIPS-actions (number of rules, exact variables
involved in the action).

1.3 Matching and Covering

The following matching relationships all make use of OI-subsumption (subsumption
under Object Identity) [6] as a generality relation. A formula G OI-subsumes a formula
S iff there exists a substitution σ such that Gσ ⊆ S, where σ is an injective substitution
(two different variables of the domain of σ are assigned to different terms). For instance,
p(X, Y ) does not OI-subsume p(a, a) because X and Y cannot be assigned to the same
constant.

The pre-matching relation
sa∼ allows to decide whether a given rule may apply to

predict the outcomes of a given example. For any rule r, state s and action a, r
sa∼ (s, a)

iff there exists injective substitutions σ and θ such that i) r.aσ = a ii) r.pσθ ⊆ s.
The post-matching relation

ae∼ permits to decide whether a given rule may explain a
given state modification when a given action is performed. For any rule r, and action
a and effect e, r

ae∼ (a, e) iff there exists an inverse substitution ρ−1, and two injective
substitutions σ and θ such that i) r.aρ−1σ = a ii) r.eρ−1σθ = e.

The above relations can be extended to matching between rules r and examples x, by
adequately taking into account x.s, x.a and x.e instead of s, a and e in the definitions.

The covering relation ≈ permits to check whether an example can be accurately
predicted by the model. For any rule r and example x, r ≈ x iff r

sa∼ (x.s, x.a) and
r

ae∼ (x.a, x.e) for the same injective substitutions σ and θ.
An example x contradicts a rule r (x � r) if r pre-matches (x.s, x.a) for σ and θ

substitutions, and r does not post-match (x.a, x.e) with the same substitutions. In such
a case, the rule incorrectly predicts the outcomes of the action.

2 Incremental Relational Learning of an Action Model

2.1 Sketch of the Algorithm

The system takes examples as defined in Section 1. The examples are presented incre-
mentally, each one possibly yielding an update of the action model. The method we
propose is example-driven and bottom-up. The starting point is thus an empty rule-set;
the interactions between the system and its environment produce rules by computing
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least general generalization (lgg) under Object Identity between examples, and between
rules and examples. This approach is different from — descendant — decision trees.

General rules are produced as the lgg of two rules/examples. When a lgg takes place,
the resulting generalization keeps track of which rules/examples it comes from, each
rule r therefore has a list of ancestors r.anc. Each ancestor rule might have ancestors
as well, yielding a hierarchical structure.

This structure is used when specializing, in case an inadequate generalization is de-
tected (see below). In that case, the corresponding rule is removed and replaced by one
of its rule ancestors; specialization is called recursively until a trusted rule ancestor is
reached.

Example ancestors that have been rejected during specialization are re-injected in
the system for learning, and thus may lead to further revisions of the model. So as
not to explore the same over-generalizations again, a tabu list is associated with such
examples.

Let us suppose we observe a blocks world with three blocks and the floor f . By
observing several moving actions, let us suppose the system has learnt the two following
(correct) rules:

r1 : cl(X), cl(Y ), on(X, Z), bl(X), bl(Y ), bl(Z) /
move(X, Y ) / on(X, Y ),¬cl(Y ),¬on(X, Z), cl(Z)

for stacking the top X of a two blocks stack on a single block Y , provided that both X
and Y are clear of blocks and

r2 : on(X, f), cl(X), cl(Y ), on(Y, Z), bl(X), bl(Y ) /
move(X, Y ) / on(X, Y ),¬cl(Y ),¬on(X, f)

for stacking a block X initially on the floor on another block Y (X and Y should also
be clear of blocks). Let us now assume that the following noisy example occurs:

xn : on(a, f), cl(a), cl(c), on(c, b), on(b, f), bl(a), bl(b), bl(c) /
move(a, c) / on(a, c), cl(f),¬cl(c),¬on(a, f)

The (action,effects) of this example can be post-matched with r1, yielding the following
(incorrect) generalization

rg : cl(X), cl(Y ), on(X, Z), bl(Y ), bl(X) /
move(X, Y ) / on(X, Y ),¬cl(Y ),¬on(X, Z), cl(Z)

while r2 has to be specialized as it pre-matches the noisy example while not predicting
the observed effects.

2.2 Conservative Generalizations and Specializations

Unlike in the deterministic case, examples may contradict each other, and a rule should
not be specialized as soon as it is contradicted a given example (that may be noisy).
Noisy examples may also induce over-generalizations. Thus, specializations and gener-
alizations should be ”cautious” and conservative. Therefore, we propose in the follow-
ing an algorithm that delays actual generalizations and specializations until sufficient
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evidence has been collected. To that end, we attach basic estimates to each rule. They
are combined to help decision making about when to generalize/specialize. To each rule
r in T , we associate three basic estimates:

– r.nsa the number of examples pre-matched by the rule since its creation
– r.nae the number of post-matched examples
– r.nsae the number of covered examples

Initial values for r.nsa, r.nae and r.nsae is 1. (r.nae − r.nsae) is the number of times
a rule post-matched an example without pre-matching it: if the rule was requested to
predict (it wasn’t because it is too specific), it would have predicted well. If this value is
high wrt r.nae, it means that the rule could probably be generalized. The generalization
trend r.gen ∈ [0, 1] of a rule is defined as r.nae−r.nsae

r.nae
. A rule is generalized with an

example only if r.gen > θgen, where θgen is a threshold parameter of the system.. In
addition, such a modification is decided only if the rule has been sufficiently evaluated,
ie r.nae > θevl, where θevl is another parameter of the system.

Similarly, a rule should be specialized if it doesn’t prove to be accurate enough to
predict well. Rule accuracy r.acc is defined as r.nsae

r.nsa
. If accuracy drops below a given

threshold θspc, and if r.nsa > θevl, then r is specialized.

2.3 Covering and Elimination of Irrelevant Rules

When a new example x is not covered by any rule, the algorithm updates T to make it
complete. If no relevant generalization is identified, the example is simply added as a
rule in the rule set, without ancestors.

This process ensures covering all examples including noisy ones, and may introduce
many irrelevant rules that might be difficult to generalize, and that the algorithm should
be able to identify and delete.

So as to limit the complexity of the model, we bound the number of rules in T
with a parameter N . Any new but supernumerary rule replaces another among most
untrusted ones. To that end, a confidence estimate r.cnf is associated with each rule.
To be trusted, a rule should have been evaluated often enough, and its accuracy should
be high. Therefore, r.cnf = 0 if r.nsa < θevl, and is equal to r.acc otherwise.

2.4 Prediction with the Model

The above mechanisms allow for contradictions between rules. As a result, when an
example is provided for prediction, more than one rule may pre-match the current state
and action. Among these rules, only one among the most confident ones is used to
compute the predicted effect.

3 Empirical Study

For the experimental study, we use a blocks world, used as a benchmark in most RRL
works. States and actions are described with literals and objects. Objects are either
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blocks (a, b ...) or the floor f . Predicates on/2 and cl/1 are used to describe the blocks
layout. A predicate bl/1 states whether an object is a block. A block is moved on top of
an object using the action predicate move/2.

Examples are generated in sequence : each episode stops after 10 time steps or when
the goal is reached (stacking all blocks), sequential actions are randomly chosen. Every
ten learning examples, twenty random examples are generated and used to estimate the
accuracy of the model. The error is the percentage of unpredicted examples (at least
one effect literal is uncorrectly predicted). Results are averaged over five experiments.

So as to introduce indeterminism, a perception noise is added : the states as observed
by the system may be randomly altered. With probability ε, random predicates are added
to or removed from the state. The number of additions/removals is randomly chosen
between 1 and nε. Since the examples are provided in sequence, any noisy state st

affects two examples : xt and xt+1. This kind of noise offers a high variety of possible
irrelevant observations. This perceptual noise is different from the action-noise studied
in [9] where it only consists in sometimes letting a block drop onto the table instead of
getting stacked.

Figure 3 shows the evolution of the error along time steps, when the number of
blocks grows. The amount of noise is fixed : ε = 10%. Figure 4 shows the evolution of
the error along time steps, when the noise grows. The number of blocks is here fixed to
6. System parameters are θgen = θspc = 0.9, θevl = 3 and N = 20 (max number of
rules). Environment parameter nε is 2.

Fig. 3. 10% noise: 4, 6 and 8 blocks Fig. 4. 6 blocks: 0, 10 and 20% noise

The irregularity of the curves is due to the number of random samples used for eval-
uation wrt the size of the environments. Thanks to good generalization capabilities,
error appears loosely dependent on the problem size. Our method is quite resistant to
high level of noise, but the convergence speed drops with 20% noise. Indeed, with such
an amount of noise, it is highly probable that when an action is observed, both initial
and resulting states are corrupted. Together with a noise affecting several literals, very
misleading and unlikely examples are presented for learning.

4 Conclusion

We have proposed in this paper an algorithm that tackles both problems of noise and
full-incrementality for action model learning. Only very few examples are stored and
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the model might be revised for each new example. Unlike the deterministic case, this
work is based on heuristics rather than careful enumerations. Simple estimates help
to perform conservative and delayed generalizations and specializations of rules. The
presented system proves to be efficient even with a fairly large amount of perception
noise, and when the size of the problem grows. Future work will aim at proposing a fully
incremental rule based system for regression, so as to approximate value-functions.
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Abstract. Entailment is an important problem in computational logic
particularly relevant to the Inductive Logic Programming (ILP) commu-
nity as it is at the core of the hypothesis coverage test which is often
the bottleneck of an ILP system. Despite developments in resolution
heuristics and, more recently, in subsumption engines, most ILP systems
simply use Prolog’s left-to-right, depth-first search selection function for
SLD-resolution to perform the hypothesis coverage test.

We implemented two alternative selection functions for SLD-resolution:
smallest predicate domain (SPD) and smallest variable domain (SVD);
and developed a subsumption engine, Subsumer. These entailment engines
were fully integrated into the ILP system ProGolem.

The performance of these four entailment engines is compared on a
representative set of ILP datasets. As expected, on determinate datasets
Prolog’s built-in resolution, is unrivalled. However, in the presence of
even little non-determinism, its performance quickly degrades and a so-
phisticated entailment engine is required.

Keywords: Entailment engines, Coverage testing, SLD-resolution.

1 Introduction and Motivation

Inductive Logic Programming (ILP) systems construct hypotheses from a rich
hypothesis language and thus have to traverse a large hypothesis search space.
This search requires having to test some metric of the candidate hypothesis on
the provided examples. A metric typically used is coverage: positive examples
covered minus negative examples covered. Evaluating coverage of a single candi-
date hypothesis requires thus, potentially, testing the coverage of the candidate
clause on all training examples. Moreover, each one of these coverage tests can
be very expensive to compute as it is a query in first-order logic.

This problem is well known to ILP researchers and several techniques have
been proposed to alleviate it. Just to name a few, these techniques range from
combining queries in query packs [1] to take advantage of the similar structure
of the candidate clauses, transforming the clause before execution [4] so that the
transformed clause is more efficient to evaluate, improving the indexing mech-
anism [3] of the Prolog engine, to stochastic estimation of the clause coverage
[14], [7].
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Another approach to improve the coverage test efficiency is to use a custom
resolution engine instead of Prolog’s left-to-right, depth-first search implemen-
tation of SLD-resolution. In the 1980’s there was extensive research on this sub-
ject. In [15] it is noted that Prolog’s default evaluation order of goals in a clause
can lead to intolerable inefficiencies. The authors, motivated by a AI planning
application, propose a “cheapest-first” heuristic that is akin to ours smallest
predicate domain, letting the resolution engine choose, during evaluation, the
predicate that has fewer solutions. They also recognize the potential overhead of
this re-ordering procedure Later, [10] even proposes a machine learning approach
to automatically decide the goal order in a query.

In some scenarios a full resolution engine is not needed (see section 2.1 for
a discussion) and one can do the coverage test with a θ-subsumption engines.
Subsumption engines optimized to perform subsumption efficiently on complex
non-determinate clauses, have been developed recently, e.g. Django [9], Resumer2
[8] and Subsumer [13].

In section 2.2 we present two alternative heuristics for SLD-resolution. These
heuristics, together with the subsumption engine Subsumer and Prolog’s built-in
SLD-resolution were integrated in the ILP system ProGolem [11]. By empirically
evaluating the performance of these entailment engines on a representative set of
ILP problems, we try to characterize the properties an ILP problem must have
for it to pay off to use sophisticated entailment engines.

This characterization has immediate applicability to ProGolem as it already
implements these four entailment engines and could choose dynamically the most
suitable algorithm for each pair 〈hypothesis, example〉.

2 The θ-Subsumption Problem

θ-subsumption is an incomplete approximation to logical implication [12]. While
implication is undecidable in general, θ-subsumption is a NP-complete problem
[5]. A clause C θ-subsumes a clause D (C  θ D) if and only if there exists a
substitution θ such that Cθ ⊆ D.

Example 1. C : h(X0)← l1(X0, X1), l1(X0, X2), l1(X0, X3), l2(X1, X2), l2(X1, X3)
D : h(c0) ← l1(c0, c1), l1(c0, c2), l2(c1, c2)
Cθ subsumes D with θ = {X0/c0, X1/c1, X2/c2, X3/c2}.

The θ-subsumption problem is thus, given two clauses, C and D, find a substi-
tution θ such that all literals of C can be mapped into a subset of the literals of
D.

Prolog performs entailment using SLD-resolution [6] which is, in general,
stronger than pure subsumption (see 2.1). Within SLD-resolution all mappings
from the literals in C onto the literals in D (for the same predicate symbol) are
constructed left-to-right in a depth-first search manner.

As all Prolog programmers know, the order of the literals in C has a significant
impact on the (in)efficiency of the query evaluation.
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2.1 Subsumption versus Resolution

Selective Linear Definite clause resolution (SLD-resolution) is the inference rule
in logic programming. It allows the Prolog interpreter to derive all logical con-
sequences of a query. In order to use subsumption to decide if an example e is
covered by a clause C, one needs to encode all literals related to that example
in a single saturated clause Se (see below). When used to implement ILP’s cov-
erage test, θ-subsumption generates the same solutions as SLD-resolution when
the underlying prolog program (i.e. background knowledge in the ILP setting)
is pure Prolog.

If the background knowledge contains non-pure Prolog constructs (e.g. non-
constructive arithmetic operators, cuts, ...) subsumption will only find a subset,
usually empty, of the solutions that SLD-resolution finds.

Unfortunately many real-world ILP datasets express their background knowl-
edge in non-pure Prolog. Often the problem lies with real number arithmetic.
For instance, consider the program in Figure 1.

:- modeh(1, active(+molecule)). active(mol1). logp(mol1, 3.14).

:- modeb(1, logp(+molecule,-real)). gteq(X, X):- !.

:- modeb(1, gteq(+real,#real)). gteq(X, Y):- X>=Y.

Fig. 1. Simple ILP program with non-pure background knowledge

The saturated clause for active(mol1) is active(mol1) ← logp(mol1, 3.14),
gteq(3.14, 3.14). Suppose now we have an hypothesis active(X) ← logp(X, Y ),
gteq(Y, 3.05). This hypothesis does not subsume the ground bottom clause as
there is no literal gteq(3.14, 3.05) in it. However, were we to use SLD-resolution
we would be able to prove the hypothesis with the binding X = mol1, Y = 3.14.

The culprit of the problem is that the ground bottom clause did not capture
the full information available in the gteq/2 clause. There are two problems, the
cut in the first gteq/2 clause prevents retrieving more solutions, to the ground
bottom clause of mol1, when the second argument is unbound or equal to the
first argument. The most serious problem is that the >= comparison operator
is not constructive. That is, >= /2 requires both arguments to be instantiated,
not returning in backtracking numbers that verify the condition when one or
both of the arguments are unbound.

In situations like these one cannot use a θ-subsumption engine but need in-
stead a resolution engine.

Throughout this paper we sometimes use the terms entailment, subsumption
and resolution almost interchangeably although they are not equivalent. This
abuse of terminology is justified because, for the purpose of our experiments,
those expressions are equivalent. From the perspective of an ILP system, what
matters is whether a clause covers (i.e. entails) an example or not. Both sub-
sumption and resolution engines perform this entailment test with the same
result as long as the background knowledge is pure Prolog.
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2.2 Entailment Algorithms in ProGolem

ProGolem implements four entailment engines. Three are variants of SLD-
resolution and one is the subsumption engine Subsumer described in [13]. The
three variants of SLD-resolution are Prolog’s built-in left-to-right depth-first
search heuristic for SLD-resolution (hereafter Left-to-right) and two alterna-
tive selection functions for SLD-resolution. Smallest Predicate Domain (SPD-
resolution for simplicity) and Smallest Variable Domain (SVD-resolution).

In SPD-resolution the literal with fewest number of solutions at each mo-
ment is picked. Note that in Prolog the literals are always picked left-to-right in
the order given in the clause. This is the same as the “cheapest-first” heuristic
described in [15].

SVD-resolution is more sophisticated, it computes the consistent domains of
each variable and at each moment binds the variable with smallest domain with
one of its possible values.

Subsumer improves upon SVD-resolution by decomposing a clause dynami-
cally in independent components but is no longer a resolution engine. It is a
θ-subsumption engine requiring the subsumee clause (the example) to be given
as a ground bottom clause. Note that in this case the background knowledge is
only used once to create the ground bottom clauses and is never called during a
subsumption test (see Section 2.1).

2.3 Time Complexity

Let N be the length of an hypothesis H and M be the length of an example
E. The worst case complexity of SLD/SPD-resolution is O(MN ) as we need to
map each literal of H (ranging from 1..N) to a literal in E (ranging from 1..M).

In practice, since the SLD/SPD-resolution tests the consistency of the match-
ing while constructing the substitution (thus bounding other variables) and not
just at the end, for clauses C with too many literals (i.e. M ≈ N) the subsump-
tion problem may become overconstrained and thus be easier than when M is a
fraction of N .

An alternative way, employed by SVD-resolution and Subsumer, to tackle the
subsumption problem is to map variables of H to terms in E rather than literals
to literals. Let V be the set of distinct variables in H and T the set of distinct
terms in E. We can map the θ-subsumption problem to the problem of finding
a mapping from V to T . This approach has worst case complexity O(|T ||V |).

However, it is not easy in practice to antecipate whether the literal or variable
mapping works better as the average case complexity depends essentially on how
constrained the search gets when a literal or a variable is bound. Note that when
we map a literal all its variables get bound at the same time.

3 Empirical Evaluation

In this section we extensively compare the four entailment engines described in
Section 2.2. We have not used Django or Resumer2 as it would not be practi-
cal and, as shown in [13], Subsumer is a good representative of sophisticated
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subsumption engines. It outperforms Django and is competitive with Resumer2.
ProGolem with all the datasets and scripts to replicate these experiments can
be found at: http://www.doc.ic.ac.uk/∼jcs06/papers/ilp10.

3.1 Materials and Methods

The ProGolem ILP system [11] was used with a representative set of well-known
ILP datasets to generate hypotheses. Datasets PT.02, PT.15 and PT.31 are
less known. These are problems 02, 15 and 31 of the Phase Transition (PT)
framework [2], representing instances from the Yes, No and PT regions.

ProGolem is a bottom-up ILP engine that, among many other settings, al-
lows the user to choose which entailment engine to use. Since we wanted to use
a θ-subsumption engine, only pure Prolog was allowed in the background knowl-
edge. That meant removing or disabling cuts and non-constructive arithmetic
operators in some of datasets’ (e.g. mutagenesis) background knowledge.

For the resolution algorithms the examples are provided in the background
knowledge as usual in ILP. For the subsumption engine each example is a single
(saturated) clause with all facts known to be true about it. Below is a small
excerpt of a ground bottom clause for the mutagenesis dataset. The full clause
has 77 literals.

active(d112)←atm(d112, d112 9, h, 3, 0.136), atm(d112, d112 8, h, 3, 0.136), . . .
atm(d112, d112 1, c, 22,−0.125), bond(d112, d112 6, d112 9, 1), . . .
bond(d112, d112 1, d112 7, 1), bond(d112, d112 1, d112 2, 7).

Table 1 summarizes important statistics on the datasets used. The columns are:
number of examples, average example length, average number of distinct pred-
icate symbols per example, average number of solutions per predicate symbol
(assuming its input variables are bound) and average number of distinct terms
per example. The latter four columns have the respective standard error associ-
ated. The figures in Table 1 were generated by computing the full ground clauses
for each example in each dataset.Recall is the maximum number of alternative
solutions a predicate may return.

As can be seen from Table 1, from the eight datasets selected, three are highly
non-determinate (PT.XX) with exactly 100 solutions per distinct predicate sym-
bol. Datasets Alzheimers-amine, Proteins and Pyrimidines are non-determinate
with each predicate symbol having at most one solution. Carcinogenesis and
Mutagenesis have a medium degree of non-determinism.

ProGolem was also used to induce theories for these datasets with all the
intermediate hypotheses being collected to be later evaluated by the different
entailment engines. When inducing theories, ProGolem’s recall was set to 20.
This is to limit the complexity of the hypotheses generated.

Since ProGolem is a bottom-up ILP system it is biased towards generating
longer clauses. However, because some of these datasets are rather simple and all
hypotheses were collected (including ones after negative reduction), many short
hypotheses were generated as well. Many of those could have been generated
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Table 1. Relevant statistics for the examples used per dataset

Dataset |Ex| Examples Len. Pred. Symb. Sols per P. S. Terms per Ex.

Alz-amine 686 31±0 20±0 1±0 23±0
Carcinogenesis 298 115±4 11±0 5±1 54±1
Mutagenesis 188 83±2 2±0 41±2 48±1
Proteins 2028 287±1 42±0 1±0 36±0
Pyrimidines 2788 50±0 10±0 1±0 22±0
PT.02 400 701±0 7±0 100±0 20±0
PT.15 400 1503±1 15±0 100±0 39±0
PT.31 400 804±0 8±0 100±0 28±0

Table 2. Relevant statistics for the hypothesis used per dataset

Dataset |Hyps| Hypotheses Len. Pred. Symb. Lits per P. S. Terms per Hyp.

Alz-amine 328 28±1 18±0 1±0 21±0
Carcinogenesis 161 43±3 6±0 4±0 29±2
Mutagenesis 382 43±1 2±0 21±1 33±0
Proteins 464 75±3 19±0 3±0 21±0
Pyrimidines 1730 42±0 10±0 4±0 32±0
PT.02 444 131±8 5±0 24±0 20±0
PT.15 68 163±32 7±1 25±1 36±1
PT.31 156 119±13 5±0 23±0 27±0

by a classical top-down ILP system like Aleph or Progol. For instance, one of
the simpler hypothesis generated for the mutagenesis dataset was active(A) ←
bond(A, B, C, 1), bond(A, C, D, 2).

Table 2 summarizes the information on the hypotheses collected. The columns
have an identical meaning to Table 1 except that column “Literals per Predicate
Symbol” is the average number of times a given (distinct) predicate symbol
appears on the hypothesis. Note that in a hypothesis the terms are usually
variables and not just constants or function symbols.

3.2 Results and Discussion

Each entailment engine was used to test the Boolean coverage of a random sam-
ple of 20.000 pairs 〈hypothesis, example〉 from each dataset. Table 3 presents
the average times, with respective standard errors, in milliseconds, per subsump-
tion test. Whenever the subsumption test required more than 5 seconds it was
aborted. The “Timeout” column has the percentage of subsumption tests in
these circumnstances. To compute the average time all the timed out tests were
ignored.

Table 3 shows large differences in the entailment test costs on the non-
determinate datasets. On the determinate datasets Prolog’s left-to-right
implementation of SLD-resolution is unrivalled but the time required by SPD-
resolution is still competitive. As the degree of non-determinism grows, so does
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Table 3. Entailment average times with respective standard error, in ms, per dataset
per entailment engine

Dataset Entailment engines
Left-to-right SPD-resolution SVD-resolution Subsumer

Avg time Timeout Avg time Timeout Avg time Timeout Avg time Timeout

Alz-amine 0.0±0.0 0.00% 0.1±0.0 0.00% 0.3±0.0 0.00% 0.9±0.0 0.00%
Carcinogenesis 3.2±0.5 0.45% 0.5±0.1 0.01% 0.8±0.1 0.00% 1.8±0.3 0.01%
Mutagenesis 224±5.0 36.9% 19±1.4 0.27% 35±1.8 0.74% 9.9±0.8 0.03%
Proteins 0.1±0.0 0.00% 0.4±0.0 0.00% 21±0.1 0.00% 8.8±0.0 0.00%
Pyrimidines 0.1±0.0 0.00% 0.2±0.0 0.00% 0.3±0.0 0.00% 1.9±0.0 0.00%
PT.02 1987±9.6 98.8% 721±8.0 25.8% 421±6.3 8.53% 26±0.3 0.00%
PT.15 771±8.9 97.7% 360±6.2 64.3% 327±6.1 60.3% 142±2.5 0.37%
PT.31 2289±9.9 98.8% 405±6.1 52.1% 543±7.6 43.3% 76±1.4 0.03%

the advantage of Subsumer compared with the other entailment engines. It is
important to note that Subsumer rarely timed out. However Subsumer’s main
drawback is its overhead on the determinate datasets and being unable to handle
non-pure background knowledge.

4 Conclusions and Future Directions

Prolog’s built-in left-to-right, depth-first search selection function for SLD-
resolution is unrivalled on determinate datasets. However, when the dataset is
even mildly non-determinate, Prolog’s built-in resolution should not be used as
the performance rapidly degrades and a large fraction of the entailment tests
time out. For medium to highly non-determinate datasets Subsumer should be
used. However, Subsumer is only applicable if the background knowledge is pure
Prolog. If that is not the case then SPD-resolution should be employed.

These conclusions are not specific to ProGolem. They are valid for top-down
ILP systems as well. Therefore it would be beneficial to integrate at least SPD-
resolution and Subsumer in other ILP systems, e.g. Aleph.

It could be interesting to study if there are performance gains in using a
specific entailment engine per pair 〈hypothesis, example〉 or whether looking at
global properties of the dataset is enough to choose the best engine.

To fully take advantage of these powerful entailment engines on complex non-
determinate problems such as the Phase Transition framework [2] one needs to
improve the search control strategy of the ILP system. Being able to explore
complex hypotheses is a necessary condition but is only half the way to enable
ILP systems to learn theories on complex non-determinate domains.
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Abstract. The research presented in this paper is motivated by the
following question. How can the generality order of clauses and the rele-
vant concepts such as refinement be adapted to be used in a stochastic
search? To address this question we introduce the concept of stochastic
refinement operators and adapt a framework, called stochastic refinement
search. In this paper we introduce stochastic refinements of a clause as a
probability distribution over a set of clauses. This probability distribu-
tion can be viewed as a prior in a stochastic ILP search. We study the
properties of a stochastic refinement search as two well known Marko-
vian approaches: 1) Gibbs sampling algorithm and 2) random heuristic
search. As a Gibbs sampling algorithm, a stochastic refinement search
iteratively generates random samples from the hypothesis space accord-
ing to a posterior distribution. We show that a minimum sample size can
be set so that in each iteration a consistent clause is generated with a
high probability. We study the stochastic refinement operators within the
framework of random heuristic search and use this framework to char-
acterise stochastic search methods in some ILP systems. We also study
a special case of stochastic refinement search where refinement opera-
tors are defined with respect to subsumption order relative to a bottom
clause. This paper also provided some insights to explain the relative
advantages of using stochastic lgg-like operators as in the ILP systems
Golem and ProGolem.

1 Introduction

Most ILP systems are traditionally based on clause refinement through a lat-
tice defined by a generality order (e.g. subsumption). However, there is a long-
standing and increasing interest in stochastic search methods in ILP for searching
the space of candidate clauses (e.g. [11,15,12,18,10,8]). The research presented
in this paper is motivated by the following question. How can the generality
order of clauses and the relevant concepts such as refinement be adapted to
be used in a stochastic search? To address this question we introduce the con-
cept of stochastic refinement operators and adapt a framework, called stochastic
refinement search.

Refinement of a clause is defined as a set of clauses. In this paper we introduce
stochastic refinement of a clause as a probability distribution over a set of clauses.
This probability distribution can be viewed as a prior in a stochastic ILP search.
In this paper we define the concept of stochastic refinement search. In general
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a stochastic refinement search can be viewed as a Markov chain. We study the
properties of a stochastic refinement search as two well known Markovian ap-
proaches: 1) Gibbs sampling algorithm and 2) random heuristic search. As a
Gibbs sampling algorithm, a stochastic refinement search iteratively generates
random samples from the hypothesis space according to a posterior distribution.
We have shown that a minimum sample size can be set so that in each iteration
a consistent clause is generated with a high probability.

We define a special case of random heuristic search [17] called monotonic
random heuristic search and then we show that due to the generality order de-
fined by the refinement operators, a stochastic refinement search can be viewed
as a monotonic random heuristic search. The advantage of studying stochastic
refinement search as a random heuristic search is that we can use the theoreti-
cal results from random heuristic search in order to analyse the behaviour and
convergence of the search. We also study a special case of stochastic refinement
search where refinement operators are defined with respect to subsumption or-
der relative to a bottom clause [16]. This paper also provides some theoretical
insights to explain the relative advantages of using stochastic lgg-like operators
as in the ILP systems Golem and ProGolem.

This paper is organised as follows. In Section 2 we review some of the basic
concepts from ILP which are used in the definitions and theorems in this paper.
In Section 3 stochastic refinement operators are introduced and their properties
are discussed. The framework of stochastic refinement search is discussed in
Section 4 and this framework is used to characterise stochastic search methods
in some ILP systems. In Section 5 we consider a special case where a stochastic
search is used to explore a refinement graph bounded by a most specific (bottom)
clause. Section 6 concludes the paper.

2 Preliminaries

We assume the reader to be familiar with the basic concepts from logic pro-
gramming and inductive logic programming [9]. This section is intended as a
brief reminder of some of the concepts used in definitions and theorems in this
paper.

The general subsumption order on clauses, also known as θ-subsumption, is
defined as follows.

Definition 1 (Subsumption). Let C and D be clauses. We say C subsumes
D, denoted by C � D, if there exists a substitution θ such that Cθ is a subset of
D. C properly subsumes D, denoted by C � D, if C � D and D �� C. C and D
are subsume-equivalent, denoted by C ∼ D, if C � D and D � C.

Remark 1. Let C be a set of first order clauses and � be the subsumption order as
defined in Definition 1. Every finite subset of C has a most general specialisation
(mgs) and a least general generalisation (lgg). Thus 〈C,�〉 is a lattice.

The following definition is a reminder of the concept of unary refinement oper-
ators and related properties.
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Definition 2 (Unary refinement operator). Let 〈G,�〉 be a quasi-ordered
set. A (downward) unary refinement operator for 〈G,�〉 is a function ρ : G →
2G, such that ρ(C) ⊆ {D|C � D}, for every C ∈ G.

– The sets of one-step refinements, n-step refinements and refinements of some
C ∈ G are respectively: ρ1(C) = ρ(C), ρn(C) = {D| there is an E ∈ ρn−1(C)
such that D ∈ ρ(E)}, n ≥ 2 and ρ∗(C) = ρ1(C) ∪ ρ2(C) ∪ ..

– A ρ-chain from C to D is a sequence C = C0, C1, . . . , Cn = D, such that
Ci ∈ ρ(Ci−1) for every 1 ≤ i ≤ n.

– ρ is locally finite if for every C ∈ G, ρ(C) is finite and computable.
– ρ is proper if for every C ∈ G, ρ(C) ⊆ {D|C � D}.
– ρ is complete if for every C, D ∈ G such that C � D, there is an E ∈ ρ∗(C)

such that D ∼ E (i.e. D and E are equivalent in the �-order).
– ρ is weakly complete if ρ∗(�) = G, where � is the top element of G.
– ρ is non-redundant if for every C, D, E ∈ G, E ∈ ρ∗(C) and E ∈ ρ∗(D)

implies C ∈ ρ∗(D) or D ∈ ρ∗(C).
– ρ is ideal if it is locally finite, proper and complete.
– ρ is optimal if it is locally finite, non-redundant and weakly complete.

We can define analogous concepts for the dual case of an upward unary refine-
ment operator.

Example 1. Figure 1 shows part of a (downward) unary refinement graph for
the subsumption order. In this graph clause p(x, y) is refined either by unifying
variables or by adding literals. The refinement operator presented by this graph
is not complete as it does not include all possible refinements. It is proper as the
graph does not contain cycles. It is redundant because it does not have a tree
structure and there is more than one path from p(x, y) to p(x, x) ← q(x, z).

The following definition for binary refinement is adapted from [5].

Definition 3 (Binary refinement operator). Let 〈G,�〉 be a quasi-ordered
set. A (downward) binary refinement operator for 〈G,�〉 is a function ρ : G2 →
2G, such that ρ(C, D) ⊆ {E|C � E, D � E}, for every C ∈ G.

– The sets of one-step refinements, n-step refinements and refinements of some
C ∈ G are respectively: ρ1(C, D) = ρ(C, D), ρn(C, D) = {E| there is an
F ∈ ρn−1(C, D) and an H ∈ ρn−1(C, D) such that E ∈ ρ(F, H)}, n ≥ 2 and
ρ∗(C, D) = ρ1(C, D) ∪ ρ2(C, D) ∪ ..

– A ρ-chain (C, D) to E is a sequence (C, D)=(C0, D0), (C1, D1), . . . , (Cm, Dm),
such that E = Cm or E = Dm and Ci, Di ∈ ρ(Ci−1, Di−1) for every
1 ≤ i ≤ m.

– ρ is locally finite if for every C, D ∈ G, ρ(C, D) is finite and computable.
– ρ is proper if for every C, D ∈ G, ρ(C, D) ⊆ {E|C � E, D � E}.
– ρ is complete if for every B, C, D ∈ G such that C � B, D � B there is an

E ∈ ρ∗(C, D) such that B ∼ E (i.e. B and E are equivalent in the �-order).
– ρ is weakly complete for 〈G,�〉 if ρ∗(�, �) = G, where � is the top element

of G.
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C : p(x, y)

ρ(C) : p(x, x) p(x, y) ← q(x, z) p(x, y) ← r(w, y)

ρ2(C) : p(x, x) ← q(x, z) p(x, y) ← q(x, x) p(x, y) ← q(x, z), p(x, y) ← r(w, y),
r(w, y) q(x, z)

ρ3(C) : p(x, x) ← q(x, y) p(x, y) ← q(x, x), p(x, y) ← q(x, x), p(x, y) ← r(y, y),
q(x, y) r(w, y) q(x, z)

ρn(C) : . . . . . . . . . . . .

ρ∗(C) = ρ0(C) ∪ ρ1(C) ∪ ρ2(C) . . .

Fig. 1. Part of a unary refinement graph representing (downward) refinements of a
clause

– ρ is non-redundant if for every B, C, D, E, F ∈ G, F ∈ ρ∗(B, C) and F ∈
ρ∗(D, E) implies B, C ∈ ρ∗(D, E) or D, E ∈ ρ∗(B, C).

– ρ is ideal if it is locally finite, proper and complete.
– ρ is optimal if it is locally finite, non-redundant and weakly complete.

We can define analogous concepts for the dual case of an upward binary refine-
ment operator.

3 Stochastic Refinement Operators

In this section we introduce the concept of stochastic refinement operators. Ac-
cording to Definition 2 (and Definition 3), refinement of a clause (or a pair of
clauses) is a set of clauses. In the following we define stochastic refinement as a
probability distribution over a set of clauses.

Definition 4 (Stochastic unary refinement operator). Let ρ be a (down-
ward) unary refinement operator for the quasi-ordered set 〈G,�〉 and C ∈ G. A
(downward) stochastic unary refinement operator is a function σ : G → 2G×[0,1]

defined as follows: σ(C) = {〈Di, pi〉|Di ∈ ρ(C), pi ∈ [0, 1] and
∑

pi = 1 for
1 ≤ i ≤ |ρ(C)|}.
– A σ-chain from C to D, denoted by C

σ−→ D, is a sequence C = C0,
C1, . . . , Cm = D, such that 〈Ci, pi〉 ∈ σ(Ci−1) for every 1 ≤ i ≤ m and
the probability of this σ-chain is p(C σ−→ D) =

∏m
i=1 pi.

– n-step stochastic refinements of C is defined as: σn(C) = {〈D, p〉|D ∈
ρn(C) and p =

∑
x∈X p(x) where X is the set of σ-chains from C to D}.



226 A. Tamaddoni-Nezhad and S. Muggleton

C : p(x, y)

ρ(C) : p(x, x) p(x, y) ← q(x, z) p(x, y) ← r(w, y)
(a)

C : p(x, y)

σ(C) : p(x, x) p(x, y) ← q(x, z) p(x, y) ← r(w, y)

0.5 0.3 0.2

(b)

Fig. 2. (a) Refinement of a clause is defined as a set of clauses (b) Stochastic refinement
of a clause is defined as a probability distribution over a set of clauses

– stochastic refinements of C is defined as: σ∗(C) = {〈Di, pi〉|Di ∈ ρ∗(C),
pi ∈ [0, 1] and

∑
pi = 1 for 1 ≤ i ≤ |ρ∗(C)|}.

– σ inherits the standard properties (i.e. local finiteness, properness and com-
pleteness) from ρ.

Example 2. Figure 2.a shows refinement of a clause as a set of clauses. Stochastic
refinement of a clause is defined as a probability distribution over a set of clauses
(Figure 2.b).

Example 3. Figure 3 shows part of a stochastic refinement graph. This graph
shows the probabilities of clauses in σn(C) as defined in Definition 4. For exam-
ple, there are two σ-chains from C to D4. Hence, the probability of D4 in σ2(C)
is 0.5 × 1.0 + 0.3 × 0.4 = 0.62.

According to Definition 4, σ(C) and σ∗(C) represent probability distributions.
In the following we show that σn(C) is also a probability distribution.

Theorem 1. n-step stochastic refinements of a clause represent a probability
distribution.

Proof. Let σn(C) be n-step stochastic refinements of clause C as defined in
Definition 4 such that σn(C) = {〈D1, p1〉, 〈D2, p2〉, . . . 〈Dm, pm〉}. We will show
that

∑m
i=1 pi = 1. The proof is by induction on n. For n = 1 the theorem

is true by definition of σ(C). Assume that the theorem is true for k then the
sum of probabilities p1, p2, . . . , ps at level k is 1:

∑s
i=1 pi = 1. Suppose that

each node with probability pi at level k is extended into t nodes with prob-
abilities qi1, qi2, . . . , qit. Then the sum of probabilities at level k + 1 will be:∑s

i=1

∑t
j=1 piqij =

∑s
i=1 pi(qi1 + qi2 + · · ·+ qit). But qi1 + qi2 + · · ·+ qit = 1 and∑s

i=1 pi = 1 and therefore the sum of probabilities at level k + 1 will be 1 and
this completes the proof. �
In the following we define analogous concepts for stochastic binary refinement
operators.
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C : C

σ(C) : 〈D1, 0.5〉 〈D2, 0.3〉 〈D3, 0.2〉

σ2(C) : 〈D4, 0.62〉 〈D5, 0.12〉 〈D6, 0.06〉 〈D7, 0.2〉

σn(C) : . . . . . . . . . . . .

0.5 0.3 0.2

1.0 0.4 0.4 0.2 1.0

Fig. 3. Part of a stochastic refinement graph

Definition 5 (Stochastic binary refinement operator). Let ρ be a (down-
ward) binary refinement operator for the quasi-ordered set 〈G,�〉 and C, D ∈ G.
A (downward) stochastic binary refinement operator is a function σ : G2 →
2G×[0,1] defined as: σ(C, D) = {〈Ei, pi〉|Ei ∈ ρ(C, D), pi ∈ [0, 1] and

∑
pi = 1

for 1 ≤ i ≤ |ρ(C, D)|}.
– A σ-chain from (C, D) to E, denoted by (C, D) σ−→ E, is a sequence

(C, D) = (C0, D0), (C1, D1), . . . , (Cm, Dm), such that E = Cm or E = Dm

and 〈Ci, pi〉, 〈Di, qi〉 ∈ σ(Ci−1, Di−1) for every 1 ≤ i ≤ m and the probability
of this σ-chain is p((C, D) σ−→ E) =

∏m
i=1 piqi.

– n-step stochastic binary refinements of some (C, D) ∈ G2 is defined as:
σn(C, D) = {〈E, p〉|E ∈ ρn(C, D) and p =

∑
x∈X p(x) where X is the set of

σ-chains from (C, D) to E}.
– stochastic binary refinements of some (C, D) ∈ G2 is defined as:

σ∗(C, D) = {〈Ei, pi〉|Ei ∈ ρ∗(C, D), pi ∈ [0, 1] and
∑

pi = 1 for 1 ≤ i ≤
|ρ∗(C, D)|}.

– σ inherits the standard properties (i.e. local finiteness, properness and com-
pleteness) from ρ.

Example 4. Figure 4 shows stochastic binary refinement of a pair of clauses as
a probability distribution over a set of clauses.

As for σn(C), it can be shown that σn(C, D) is a probability distribution.

Theorem 2. n-step stochastic binary refinements of a pair of clauses represent
a probability distribution.

Proof. Let σn(C, D) be n-step stochastic binary refinements of clause C and D as
defined in Definition 5 such that σn(C, D) = {〈D1, p1〉, 〈D2, p2〉, . . . 〈Dm, pm〉}.
We will show that

∑m
i=1 pi = 1. The proof is similar to the proof of Theorem 1

except that we need to show that the sum of probabilities at level k + 1 will be:∑s
i=1

∑t
j=1

∑u
l=1 piqjrijl =

∑s
i=1

∑t
j=1 piqj(rij1 + rij2 + · · · + riju) where the

binary refinement of two nodes with probabilities pi and qj at level k is extended
into u nodes with probabilities rij1, rij2, . . . , riju. But rij1 + rij2 + · · ·+ riju = 1
and

∑s
i=1

∑t
j=1 piqj =

∑s
i=1 pi(q1, q2, . . . , pt) =

∑s
i=1 pi = 1 and therefore the

sum of probabilities at level k + 1 will be 1 and this completes the proof. �
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(C, D) : C D

σ(C,D) : 〈E1, 0.4〉 〈E2, 0.4〉 〈E3, 0.2〉

Fig. 4. Stochastic binary refinement of a pair of clauses is defined as a probability
distribution over a set of clauses

4 Stochastic Refinement Search

Different stochastic search methods have been used to explore the space of can-
didate clauses in ILP. Examples of these search methods are simulated annealing
(e.g.[11,13]), genetic algorithms (e.g. [15]) and randomised restarted search (e.g.
[18]). In this section we define a general framework which can be used to char-
acterise some of stochastic search methods in ILP.

Definition 6 (Stochastic refinement search). Let G and σ be defined as
in Definition 4 and S0 be a sample from G with size s. A stochastic refinement
search involves a sequence S0

σ−→ S1
σ−→ S2

σ−→ . . . where Si+1 is generated from Si

such that for each Ci+1 ∈ Si+1 there exists Ci ∈ Si such that 〈Ci+1, p〉 ∈ σ(Ci).
Similarly a stochastic refinement search can be defined for a stochastic binary
refinement operator σ (Definition 5) where for each Ci+1 ∈ Si+1 there exist Ci

and Di ∈ Si such that 〈Ci+1, p〉 ∈ σ(Ci, Di).

Figure 5 shows stochastic refinement search with unary and binary stochastic
refinement operators. In Definition 6, the initial sample S0 corresponds to the
starting point of the search as in simulated annealing or an initial population as
in genetic algorithms. These are usually generated randomly. The sample size s
is equal to one in simulated annealing and it is the population size in a genetic al-
gorithm. Stochastic refinement operator σ corresponds to task-specific operators
or search transition rules in an stochastic ILP search algorithm. These operators
generate new clauses from the clauses in the previous search state or popula-
tion. For example, in the simulated annealing search used in ILP (e.g.[11,13]),
the transition operators can be viewed as downward stochastic unary refinement
operators which stochastically choose the next literal to be added to the body
of a given clause. Crossover operators of a genetic algorithm search used in ILP
(e.g. [15]) can be viewed as stochastic binary refinement operators. Note that
some stochastic refinement searches (e.g. genetic algorithms) use both stochastic
unary and binary refinement operators.

According to Definition 6 a stochastic refinement search is a sequence of ran-
dom samples with the property that the current state depends only on the pre-
vious state. Hence, in general a stochastic refinement search can be viewed as a
Markov chain. In this section we study the properties of a stochastic refinement
search as two well known Markovian approaches: 1) a Gibbs sampling algorithm
and 2) a random heuristic search.
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(a) (b)

Fig. 5. A stochastic refinement search with (a) unary stochastic refinement operator
(b) binary stochastic refinement operator

4.1 Stochastic Refinement Search as a Gibbs Sampling Algorithm

As noted in [8], some stochastic machine learning algorithms can be viewed
as Gibbs-MAP algorithms. According to [3], most machine learning algorithms
can be viewed as approximations to the following general Bayesian statistical
inference algorithms.

MAP - returns the hypothesis having maximum posterior probability.
Gibbs - randomly samples hypotheses according to the posterior distribution.
Bayes Prediction - classifies unseen instances based on weighted joint predic-

tion of the entire hypothesis space.

All of the above assume a Bayes’ prior distribution over the hypothesis space.
In the case of Gibbs this is used for sampling. Stochastic refinement search intro-
duced in this paper assumes a prior distribution over the hypothesis space which
is defined by stochastic refinement operators. A stochastic refinement search can
be viewed as a Gibbs-MAP algorithm. A Gibbs-MAP algorithm is a Gibbs-like
approximations to MAP based on sampling. It has been shown (e.g. [1]) that the
sequence of samples in a Gibbs sampling algorithm constitutes a Markov chain.
It has also been shown [2] that average-case error bounds for Gibbs algorithms
are comparable to other Bayesian algorithms. A stochastic refinement search is
a Gibbs-MAP algorithm which is aimed at maximising posterior probability by
iteratively generating new samples from the hypothesis space. In a stochastic
refinement search each new sample generated from the previous sample using
stochastic refinement operators. There is a trade-off between the efficiency and
accuracy which can be controlled by the sample size. In this section we show
how with a proper sample size one could guarantee that with a high probability
a consistent and compressive clause can be generated at each generation. We
give examples of stochastic refinement search methods with unary and binary
refinement operators.

The Quick Generalisation (QG) algorithm described in [8] is a Gibbs-MAP
algorithm, which by construction, generates consistent clauses (by stochasti-
cally pruning Progol bottom clauses). A sampling algorithm based on the QG
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algorithm returns the clause with highest positive compression from a sample
of s calls to QG. In the QG sampling algorithm described in [8], the sample
size s is set by the user so that at least one of the clauses has positive com-
pression. In this setting, the algorithm simply returns a consistent clause with
the highest positive compression. The QG sampling algorithm can be viewed as
a stochastic refinement search with unary refinement operator which randomly
samples from “fringe” clauses (i.e. maximally general consistent clauses in the
hypothesis space). As shown in [8], a minimum sample size for a QG sampling
algorithm can be estimated based on the percentage of consistent clauses which
have positive compression.

In the following we show that a minimum sample size can be also estimated
for a stochastic refinement search with a binary operator. Golem [4] and Pro-
Golem [6] can be viewed as stochastic refinement search methods which use
lgg-like binary operators. Unlike in QG, the stochastic refinements in Golem
and ProGolem do not guarantee to generate consistent clauses. However, the
following theorem shows how the sample size and the probability of generating
a consistent clause are related. This can be used to set a minimum sample size
such that with a high probability at least one consistent lgg is generated.

Theorem 3. Let k be an upper bound on the number of clauses in a target
theory, c be a natural number and E+ and E− be the set of positive and negative
examples respectively. Suppose that s = ck pairs of clauses are randomly sampled
from E+. Then the probability that there is a pair of clauses C1 and C2, such
that lgg(C1, C2) is consistent with E−, is at least 1 − e−c.

Proof. First suppose that the k clauses in the target theory have disjoint coverage
and each covers the same number of clauses. In this case, there are k partitions
each covered by one clause in the target theory. The probability that a randomly
selected pair of clauses belong to the same partition is 1

k . If we randomly sample
s = ck pairs of clauses, the probability that there is no pair of clauses belonging
to the same partition is (1 − 1

k )ck. If the coverages are of different sizes then
the probability that there is not a pair of clauses covered by the same clause
in the target theory is less than (1 − 1

k )ck. This is because the product of the
probabilities are maximum if the coverages have the same size. Similarly, if the
coverages are not disjoint then the probability that there is not a pair of clauses
covered by the same clause in the target theory is less than (1− 1

k )ck. Also note
that the maximum value for (1 − 1

k )ck is limk→∞(1 − 1
k )ck = e−c. Then the

probability that a randomly selected pair of clauses C1 and C2 are both covered
by the same target clause is at least 1− e−c. But if C1 and C2 are both covered
by the same target clause C then lgg(C1, C2) is consistent because by definition
lgg(C1, C2) is more specific than C which is consistent. Hence, the probability
that there is a pair of clauses C1 and C2 such that lgg(C1, C2) is consistent is
at least 1 − e−c. �

Example 5. Consider the Golem algorithm as described in [4]. Suppose that the
upper bound on the number of clauses in the target theory is k. Then according
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to Theorem 3, by selecting a minimum sample size s = 2k, the probability that
a consistent lgg is generated is at least 1 − e−2 = 0.86.

4.2 Stochastic Refinement Search as a Random Heuristic Search

It has been shown [17] that many stochastic search methods including simulated
annealing, stochastic beam search and genetic algorithms are instances of a gen-
eral framework called random heuristic search. The basic conditions are that the
search space (Ω) be finite and that the search transition rules (τ) be Markovian
and expressible as the result of s independent identically distributed random
choices. The finiteness condition is not a serious limitation in most cases, includ-
ing ILP, since in practice it is common to use a depth bound which leads to a
finite search space. In this section we show that a stochastic refinement search
is a special case of random heuristic search. First we define a random heuristic
search. The following definition is adapted from [17].

Definition 7 (Random heuristic search). Let Ω = {x0, x1, . . . , xn−1} be a
search space and P0 be a sample from Ω with size s. A random heuristic search
involves a sequence P0 −→ P1 −→ P2 −→ . . . where each sample Pi+1 is generated
from previous sample Pi. Each sample Pi can be represented by a probability
vector pi = 〈t0, t1, . . . , tn−1〉 such that tj is the proportion of xj in Pi. Hence, a
random heuristic search P0 −→ P1 −→ P2 −→ . . . can be also denoted as a sequence
of corresponding probability distributions p0

τ−→ p1
τ−→ p2

τ−→ . . . where pi is the
probability vector for Pi and this sequence is generated by iterating a transition
rule τ : Δn → Δn where Δn = {〈s0, s1, . . . , sn−1〉|

∑n−1
j=0 sj = 1, sj ≥ 0 for all

sj}.
Example 6. Suppose in Definition 7 we have Ω = {0, 1, 2, 3, 4, 5} and P0 =
{1, 0, 3, 1, 1, 3, 2, 2, 4, 0}. Then, P0 can be represented by the probability vec-
tor p0 = 〈0.2, 0.3, 0.2, 0.2, 0.1, 0.0〉. Here the proportional representation given
by p0 determines the sample P0 once the sample size is known.

Note that in Definition 7, Δn serves as both the space of samples of Ω and the
space of probability distributions over Ω.

From Definitions 6 and 7 it is clear that a stochastic refinement search is an
instance of random heuristic search. Figure 6 shows stochastic refinement search
versus random heuristic search. As shown in this figure, a stochastic refinement
operator σ operates on the elements of a sample Si while a transition rule τ
works directly on the corresponding sample distribution pi. A main difference
between a stochastic refinement search and a random heuristic search is that in
general, a random heuristic search does not consider any ordering over Ω or for
the transition rule τ . However, a stochastic refinement search is a directed search
due to the generality order defined by the refinement operators. In the following
we define a monotonic random heuristic search and show that an upward (or
downward) stochastic refinement search can be viewed as a monotonic random
heuristic search.
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(a) (b)

Fig. 6. (a) Stochastic refinement search (b) Random heuristic search. A stochastic
refinement operator σ, operates on the elements of a sample Si while a transition rule
τ works directly on the corresponding probability vector pi.

Definition 8 (Monotonic random heuristic search). Let the search space
Ω and the random heuristic search P0 −→ P1 −→ P2 −→ . . . , . . . be defined as in
Definition 7 and ≤ be a binary relation on Ω such that 〈Ω,≤〉 is a quasi-ordered
set. If for each i, x ∈ Pi is replaced by x′ ∈ Pi+1 and we have x ≤ x′ then the
random heuristic search P0 −→ P1 −→ P2 −→ . . . is said to be monotonic with
respect to ≤.

The following Proposition follows directly from Definitions 2, 6 and 8.

Proposition 1. A stochastic refinement search is a monotonic random heuristic
search.

Proof. According to Definitions 2 and 6, for each i, Ci ∈ Si and Ci+1 ∈ Si+1 we
have Ci � Ci+1 and therefore according to Definition 8 a stochastic refinement
search is a monotonic random heuristic search with respect to �.

The advantage of studying stochastic refinement search as a random heuristic
search is that we can use the theoretical results from random heuristic search in
order to analyse the behaviour and convergence of the search. In Definition 7,
each state Pi+1 of the search only depends on the previous state Pi. Hence, it can
be shown that a random heuristic search can be described as a Markov chain.
This property has been used [17] to estimate the probability that a particular
population is generated in the next iteration. An analysis of the convergence
of random heuristic search, which can also be applied to stochastic refinement
search, has been discussed in [17].

4.3 Examples of Stochastic Refinement Search

In this section we discuss examples of ILP systems which use some form of
stochastic refinement. In each case we characterise some aspects of the stochastic
refinement with respect to the results presented in this paper.
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Golem - Golem [4] is a bottom-up ILP system which employs determinate least
general generalisation under relative subsumption (RLGG). Golem combines
random sampling and a hill-climbing search to construct RLGGs with new
randomly sampled positive examples at each iteration. The refinement in
Golem can be viewed as an upward binary stochastic refinement. As shown
in Example 5, with a sample size s = 2k where k is the upper bound for
number of clauses in the target theory, the probability that there is a pair
of clauses C1 and C2, such that RLGG(C1, C2) is consistent, is at least
1 − e−2 = 0.86. The RLGG is constructed with new sampled examples at
each iteration until it converges to a consistent clause which covers a partition
of positive examples.

SFoil - SFoil [11] is a top-down stochastic ILP system which combines Foil
with a stochastic search in the form of simulated annealing. The stochastic
search is used to choose the next literal to be added to the body of the
clause. Hence, the refinement in SFoil can be viewed as downward unary
stochastic refinement. The behaviour of the search can be analysed using
the framework of random heuristic search. The following analysis is adopted
from [17]. The sample size for simulated annealing is s = 1 and given a
population (i.e. probability vector p) and an objective function f , the next
population (i.e. probability vector q) is obtained by the following stochastic
procedure: 1) sample q from a neighborhood N(p) of p 2) if f(q) < f(p) then
the next generation is q, otherwise the next generation is q with probability
e(f(p)−f(q))/Tt where Tt is the temperature at generation t. Then the heuristic
function h which determines the stochastic transition between two distinct
states i, j is defined as follows: h(t, j)i = [i∈N(j)]

|N(j)| ([f(i) < f(j)] + [f(i) ≥
f(j)]e(f(j)−f(i))/Tt) where [expr] returns 1 if expr is true and 0 otherwise.

GA-Progol - GA-Progol [15] is a stochastic ILP system in which the A∗-like
search of Progol is replaced by a genetic algorithm. The stochastic refine-
ment in GA-Progol includes both unary stochastic refinement (mutation)
and binary stochastic refinement (crossover). GA-Progol also uses stochastic
lgg and mgs operators relative to a bottom clause (lgg⊥ and mgs⊥). As for
simulated annealing, a simple genetic algorithm can be characterised [17]
within the framework of random heuristic search.

Aleph - Aleph [14] implements several randomised search methods including
randomised local searches such as GSAT, Walksat, simulated annealing and
also a randomised rapid restart search [18]. Randomised local searches in
Aleph can be characterised as stochastic refinement search. Note that in
some cases the stochastic refinement operators in Aleph are bi-directional
and therefore the corresponding stochastic searches are non-monotonic.

QG - Quick Generalisation (QG) algorithm [8] constructs maximally general
consistent clauses by stochastically pruning Progol bottom clauses. A
sampling algorithm based on the QG algorithm returns the clause with high-
est positive compression from a sample of s calls to QG. The algorithm can
be made arbitrarily efficient by choice of sample size (down to 1). The QG
sampling algorithm can be viewed as a stochastic refinement search with
unary refinement operator which randomly samples from “fringe” clauses
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(i.e. maximally general consistent clauses in the hypothesis space). A min-
imum sample size for a QG sampling algorithm can be estimated based on
the percentage of consistent clauses which have positive compression.

ProGolem - ProGolem [6] implements an efficient (and non-determinate) vari-
ant of Golem’s RLGG for the subsumption relative to ⊥. ProGolem combines
bottom-clause construction in Progol with a Golem control strategy which
uses Asymmetric Relative Minimal Generalisation (ARMG) in place of de-
terminate RLGG. ARMG in ProGolem can be viewed as stochastic binary
refinement operator relative to ⊥. Stochastic refinement relative to a bottom
clause is discussed in Section 5. ProGolem combines random sampling and
a beam search to construct ARMGs with new examples at each iteration.

5 Stochastic Refinement Relative to a Bottom Clause

In this section we study a special case of stochastic refinement search where a
refinement space bounded by a most specific (bottom) clause is explored. This
refinement space defines the search space of the ILP systems Progol and Aleph
and different variants of these systems including stochastic variants described
in the previous section (e.g. QG, ProGolem). The lattice structure and refine-
ment operators for the subsumption order relative to ⊥ were studied in [16]. It
was shown that the refinement space of a Progol-like ILP system can be char-
acterised using the subsumption order relative to ⊥. It was also shown [16,6]
that, unlike for the general subsumption order, efficient lgg-like operators can
be implemented for the subsumption relative to a bottom clause (e.g. lgg⊥ and
armg⊥). The following definitions are a summary of the subsumption order rel-
ative to ⊥.

Definition 9 (
−→L⊥). Let

−→⊥ be the bottom clause and
−→
C a definite ordered clause

as defined in [16].
−→� is

−→⊥ with all variables replaced with new and distinct
variables. θ� is a variable substitution such that

−→�θ� =
−→⊥ .

−→
C is in

−→L⊥ if
−→
C θ�

is a subsequence of
−→⊥ .

Definition 10 (Subsumption relative to ⊥). Let
−→⊥ , θ� and

−→L⊥ be as
defined in Definition 9 and

−→
C and

−→
D be ordered clauses in

−→L⊥. We say
−→
C

subsumes
−→
D relative to ⊥, denoted by

−→
C �⊥

−→
D , if

−→
C θ� is a subsequence of−→

D θ�.

5.1 Divisibility of the Subsumption Lattice Relative to ⊥
In this section we review the concept of a divisible lattice as described in [5] and
we show that the subsumption lattice relative to ⊥ is a divisible lattice. The
following definitions are adapted from [5] for refinement relative to ⊥.

Definition 11. Let 〈G,�〉 be a lattice, ⊥ be the bottom element and ρ be an
upward refinement operator for this lattice. Then the depth of a clause in a unary
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refinement graph, denoted by d
(1)
⊥ , is defined as follows: d

(1)
⊥ (C) = minn[∃D ∼

C, D ∈ ρn(⊥)]. Similarly, the depth of a clause in a binary refinement graph,
denoted by d

(2)
⊥ , is defined as follows: d

(2)
⊥ (C) = minn[∃D ∼ C, D ∈ ρn(⊥,⊥)].

Definition 12. Lattice 〈G,�〉 is said to be divisible with respect to ρ if for all
E ∈ G there are C, D ∈ G such that E ∼ lgg(C, D) and d

(1)
⊥ (E) = d

(1)
⊥ (C) +

d
(1)
⊥ (D) and |d(1)

⊥ (C) − d
(1)
⊥ (D)| ≤ 1.

Theorem 4. Let lattice 〈G,�〉 be divisible with respect to ρ. Then for all C ∈
G\{⊥} we have d

(2)
⊥ (C) ≤ �log2(d

(1)
⊥ (C))� + 1.

Proof. The proof is similar to the proof of this theorem for general downward
binary refinement operators (Theorem 16 in [5]). �

Theorem 5. Lattice 〈−→L⊥,�⊥〉 is divisible with respect to ρ⊥ where ρ⊥ is an
upward refinement operator for this lattice.

Sketch proof. We need to show that the conditions in Definition 12 hold for
refinement operator ρ⊥. The proof follows from previous results on refinement
operators relative to ⊥ that there are finite chains of upward covers from

−→⊥ to−→
C ,

−→
D and

−→
E and from

−→
E to

−→
C ,

−→
D (Lemma 6 and Lemma 7 in [16]) and that

the refinement steps from
−→⊥ to

−→
E = lgg⊥(

−→
C ,

−→
D) is defined from the refinement

steps from
−→⊥ to

−→
C and

−→
D (Proposition 5 in [16]). �

From Theorem 5 and Theorem 4 it follows that the minimum length of σ-chains
for upward stochastic binary refinement operator relative to ⊥ is logarithmi-
cally related to the minimum length of σ-chains for upward stochastic unary
refinement operator relative to ⊥.

Proposition 2. Let S0
σ1−→ S1

σ1−→ S2
σ1−→ . . . and S0

σ2−→ S′
1

σ2−→ S′
2

σ2−→ . . .
be stochastic refinement searches such that σ1 is an upward unary and σ2 an
upward binary stochastic refinement operators relative to ⊥. Then the minimum
length of σ2-chains from S0 to a target clause is logarithmically related to the
minimum length of σ1-chains from S0 to the target clause.

Proposition 2 suggests that a stochastic refinement search which uses a binary
refinement operator relative to ⊥ (e.g. lgg⊥, armg⊥) requires logarithmically
less refinement steps to find a target clause compared to a stochastic refine-
ment search which uses a unary refinement operator. In other words, a binary
stochastic refinement has a logarithmic convergence relative to a unary stochas-
tic refinement.

The ILP system ProGolem [6] uses Asymmetric Relative Minimal Generali-
sation (ARMG or armg⊥), which as mentioned in Section 4.3, can be viewed
as stochastic binary refinement operator relative to ⊥. ARMGs are constructed
by adding randomly sampled positive examples at each iteration. According to
Theorem 3, when using lgg with a proper sample size one could guarantee that
with a high probability a consistent clause is generated. This theorem is also
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true for ARMG and it can be shown that with a high probability a consistent
ARMG can be generated. According to Proposition 1, we have a monotonic
increase in the positive coverage and Proposition 2 suggest that the stochastic
binary refinement search used in ProGolem should have a logarithmic conver-
gence. The logarithmic convergence described in Proposition 2 is consistent with
quick convergence of ProGolem on different datasets (e.g. Fig. 5.b in [6]).

6 Conclusions

The refinement graph theory has been viewed as the main theoretical founda-
tion of ILP [9]. Since the publication of this theory, there have been attempts
to build ILP systems based on stochastic and randomised methods. However, to
date there are very little theory to support the developments of these systems.
We believe this paper is a first step in this direction. In this paper we discussed
how the refinement theory and relevant concepts such as refinement operators
can be adapted for a stochastic ILP search. Stochastic refinement is introduced
as a probability distribution over a set of clauses which can be viewed as a prior
in a stochastic ILP search. We gave an analysis of stochastic refinement operators
within the framework of stochastic refinement search. We studied the properties
of a stochastic refinement search as two well known Markovian approaches: 1) a
Gibbs sampling algorithm and 2) a random heuristic search. We have shown that
a minimum sample size can be set so that in each iteration a consistent clause is
generated with a high probability. A stochastic refinement search can be viewed
as a monotonic random heuristic search. The advantage of studying stochastic
refinement search as a random heuristic search is that we can use the theoreti-
cal results from random heuristic search in order to analyse the behaviour and
convergence of the search. This paper also provided some theoretical insights
to explain the relative advantages of using stochastic lgg-like operators as in
the ILP systems Golem and ProGolem. The proposed framework in this paper
can be extended in several ways. For example, it is possible to define stochastic
refinement operators and stochastic refinement search for theories. This is es-
pecially important as the search space of theories are more complex and more
difficult to search and randomised and stochastic methods should work better.
As another future work, we intend to explore methods for learning probabilities
in stochastic refinement operators. This could be similar to learning probabilities
for a Stochastic Logic Program (SLP) [7], especially that stochastic refinement
operators can be easily implemented as SLPs.
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Abstract. Wildfires can importantly affect the ecology and economy
of large regions of the world. Effective prevention techniques are funda-
mental to mitigate their consequences. The design of such preemptive
methods requires a deep understanding of the factors that increase the
risk of fire, particularly when we can intervene on these factors. This
is the case for the maintenance of ecological balances in the landscape
that minimize the occurrence of wildfires. We use an inductive logic pro-
gramming approach over detailed spatial datasets: one describing the
landscape mosaic and characterizing it in terms of its use; and another
describing polygonal areas where wildfires took place over several years.
Our inductive process operates over a logic term representation of vec-
torial geographic data and uses spatial predicates to explore the search
space, leveraging the framework of Spatial-Yap, its multi-dimensional in-
dexing and tabling extensions. We show that the coupling of a logic-based
spatial database with an inductive logic programming engine provides an
elegant and powerful approach to spatial data mining.

1 Introduction

Wildfires are an unavoidable event in Nature and play an important role in wild-
land ecosystems. Naturally caused wildfires are, however, a small percentage of
all the wildland fires. Preventing and mitigating the consequences of wildfires
that result from the increased pressure of human activity in wildland areas has
been the goal of fire control programs for more than a century. Prevention tech-
niques range from measures aiming to reduce human infractions, to the altering
of stored fuels, through controlled burns, in wildlands to affect future fire risk
and behavior. In addition to the straightforward impact of fuels and weather
conditions in the occurrence of fires, the role of topography is also relevant. Here
we understand topography in a broader sense, as a discipline concerned with
local detail of space, including not only relief but also vegetation and human-
made features. In areas where human intervention has importantly reshaped
this topography, as happens in many European regions where native forests
have been replaced by fast-growing trees and pasture areas, the impact of this
human-designed organization of landscape can potentially affect the occurrence
and behavior of wildfires. In this paper we focus on this landscape organization
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factor, which has been given little attention by fire control programs. While some
aspects of the human-made organization of landscape can obviously affect fire
behavior, such as the existence of major roads cutting through forest areas, that
act as barriers to the propagation of fire, there are also potentially less obvious
correlations between this local organization of the landscape and the occurrence
of fires, which can profit from machine learning techniques. Understanding such
correlations can then guide the human intervention in the landscape towards
more efficient prevention and mitigation of the consequences of wildfires.

In this paper we propose the use of inductive logic programming (ILP) to
design logic theories that correlate the local organization of the landscape with
the occurrence of fires, using the framework of Spatial-Yap [1] to have term-based
representation of vectorial geographic data. In addition, Spatial-Yap provides a
logic-based approach to a geographic information system and is able to render the
inductive engine with spatial relationship predicates that are used to formulate
theories on-the-fly based on spatial reasoning. We use detailed spatial databases
that contain vectorial representations of the landscape organization in the north
of Portugal. We overlay these databases with another spatial database that keeps
historical records of wildfires taking place over several years in the same region.

The remainder of this paper is organized as follows. The next section presents
related work on the use of ILP with spatial datasets. Section 3 describes our fire
dataset and the methodology we used. In Section 4 we report preliminary results,
together with a discussion of these results. Finally, Section 5 ends the paper.

2 Related Work

Over the past years, the use of spatial data has increased in many areas of
computer science. Relational Database Management Systems (RDBMS) were
among the first systems to tackle this kind of data, both through extensions to
support spatial data, and by providing functions to manipulate the data.

The Open Geospatial Consortium (OGC) proposed a standard to extend SQL-
92 in “OpenGis Simple Features Specification for SQL” (OGC99) [2]. The pur-
pose of this specification is to define a standard SQL schema that supports
storage, retrieval, query and update of simple geospatial feature collections. Ex-
amples of RDBMS systems that conform to this standard are Oracle Spatial and
PostgreSQL, through the PostGIS module.

The development of such sophisticated geographical databases has led to in-
terest in spatial data mining, defined to be the branch of data-mining where the
spatial neighbors of an object may have an influence on the object [3]. A typical
task would be to find clusters of correlated objects [4], but a large number of
different applications are possible.

Arguably, spatial learning can be considered as an instance of multi-relational
learning, with a very specific type of domain knowledge, and should be an impor-
tant application for ILP. Malerba [3] and his group have exploited this approach
with very interesting results. In their approach, multi-relational data-mining
techniques are applied by working at a higher conceptual level of the geographic
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information [5]. Their approach follows a two step algorithm. First, system such
as INGENS [6] extract relevant concepts and features from a spatial database,
by applying and expanding on standard GIS tools. Second, this relational repre-
sentation of spatial data can be mined by ILP techniques: ATRE [7] implements
a sequence coverage algorithm that learns a classifier, and SPADA [8] is an
association-rule learner that can find strong spatial association rules.

The INGENS work raises a number of interesting questions. One important
problem, discussed by Malerba [5], is the computational cost of performing fea-
ture extraction: although spatial facts are rarely updated, attribute expansion
can be expensive in terms of time and space, with often time being spent comput-
ing unnecessary attributes. One would expect this problem to grow as databases
grow in size and complexity.

One possible approach to this problem is to couple a database to a deductive
system: MYDDAS [9] couples YapTab [10] and MySQL extended with geome-
try types to form Spatial-Yap [1] (unfortunately MySQL has never evolved to
conform with OGC99). In this paper we take the next step and actually couple
tightly Prolog inference with the geographical data itself. In order to perform
inference with logic programming, we need to address well the three key com-
ponents of geographical data-mining:

1. Spatial terms for representing and storing spatial objects.
2. Spatial predicates, to manipulate (e.g., intersect two spatial terms) and to

query spatial terms toward finding interesting properties such as area or
distance between two spatial terms.

3. Effective indexing of spatial terms, not only because of the usual mammoth
size of such terms, but also because of the number of different terms in the
database and the complexity of spatial predicates.

We address the first problem by simply using Prolog terms to represent the
three main geometry types, as they are presented in OGC99 standard: Point,
Linestring and Polygon; and collection types. We support the OGC defined
attributes and restrictions, as can be consulted in the OGC99 document [2].
Our representation is thus similar to the Well Known Text of OGC99, with
spatial terms conforming with the grammar in Figure 1.

We further define a set of spatial predicates that provide an interface to the
GEOS API [11], that conforms to the OGC99 standard and is also used by
PostGIS. Table 1 summarizes these predicates.

This machinery provides the foundation for a logic programming geographi-
cal information system. The next step was based on the observation that spatial
data does not benefit from most of the traditional indexing techniques (namely
the ones used in the logic programming), as most of them are based on single
dimension indexing structures.The RDBMS community addressed this problem
by proposing novel data-structures, namely R-Trees which have become stan-
dard [12].

We extended Prolog indexing through User Defined Indexing (UDI) [13], a
new extension to Prolog indexing where the programmer is able to define the
indexing mechanism based on what the terms in the arguments of a predicate
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SpatialTerm = Point | LineString | Polygon
| MultiPoint | MultiLineString | MultiPolygon | GeometryCollection ;

Point = "point" PointTerm ;

LineString = "linestring(" PointTermList ")" ;

Polygon = "polygon(" PointTermListList ")" ;

MultiPoint = "multipoint(" PointTermList ")" ;

MultiLinestring = "multilinestring(" PointTermListList ")" ;

MultiPolygon = "multipolygon(" PointTermListListList ")" ;

GeometryCollection = "geometrycollection(" SpatialTermList ")" ;

PointTerm = "(" Number "," Number ")" ;

Fig. 1. EBNF of Spatial Terms

Table 1. Spatial Predicates

Type Predicate

Predicates for
testing spatial
properties

ogc is empty(+Geom)

ogc is simple(+Geom)

ogc equals(+Geom1,+Geom2)

ogc disjoint(+Geom1,+Geom2)

ogc touches(+Geom1,+Geom2)

ogc within(+Geom1,+Geom2)

ogc overlaps(+Geom1,+Geom2)

ogc crosses(+Geom1,+Geom2)

ogc intersects(+Geom1,+Geom2)

ogc contains(+Geom1,+Geom2)

ogc relate(+Geom1,+Geom2,?PatternMatrix)

Predicates that
support spatial
analysis

ogc envelope(+Geom,?GeomEnvelope)

ogc boundary(+Geom,?GeomBoundary)

ogc buffer(+Geom,+Distance,?GeomBuffer)

ogc convex hull(+Geom,?GeomConvexHull)

ogc intersection(+Geom1,+Geom2,?GeomIntersection)

ogc union(+Geom1,+Geom,?GeomUnion)

ogc difference(+Geom1,+Geom,?GeomDifference)

ogc symmetric difference(+Geom1,+Geom2,?GeomSymDiff)

ogc distance(+Geom1,+Geom2,?Distance)

Specific type
predicates

Linestring
Multilinestring

ogc length(+Geom,?Length)

ogc is closed(+Geom)

ogc is ring(+Geom)

Polygon
Multipolygon

ogc area(+Geom,?Area)

ogc centroid(+Geom,?GeomPoint)

ogc point on surface(+Geom,?GeomPoint)
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are meant to represent. This allows users to provide an indexing function that
selects a subset of the clauses of a predicate, given a set of constrained variables
or bound Prolog terms.

In this work, we use spatial terms [1]. As discussed above, these are simple
geometry types based on 2D points. Notice that the simplicity of the primitives
does not mean that the terms themselves are simple. For example, the polygons
shown in the figures of this paper are represented in Prolog with several hundred
points each.

The key idea in R-Trees is to use the Minimum Bounding Rectangle (MBR)
to index data. Each leaf nodes stores an object (or at least a pointer), and is
keyed by the object’s MBR. Inner nodes are keyed by an MBR that is the union
of all MBRs below. Notice, that in contrast to single dimension indexing, keys
cannot be sorted as there is no order. Nevertheless, on most datasets the tree will
maintain a form that allows the search algorithm to quickly discard irrelevant
regions.

Figure 2 shows an example R-Tree designed to store the boundaries of Euro-
pean countries. Figure 2(a) details part of the index structure, and Figure 2(b)
graphically depicts the actual boundaries and MBRs that define the R-Tree. No-
tice that although European countries do not overlap, their MBRs do. The tree
has height 3. The root node (Level 3) contains two MBRs, R1 and R2, shown
as the wider (blue) lines. Notice that there is some overlap, as we cannot find a
disjoint balanced union of MBRs that covers the whole of Europe. The overlap
is even more evident on Level 2, Also observe that whereas Iceland, Greece and
Portugal belong to a single box for each level, the central Alps region in Europe
is covered by a large number of overlaping MBRs at all levels.

The main query we use in this application is the overlaps binary constraint,
&&, also the key operator on the Postgis spatial RDBMS [14]: A && B constraint
is satisfied if A’s bounding box overlaps B’s bounding box.

A query using this operator is shown next:

?- country(spain,P1), P2 && P1, country(Country,P2).

The first sub-goal instantiates P1 to the polygon for spain. Thus, P2 && P1
are called with P1 bound and P2 will be attributed a value by overlap( ,P1).
The benefit is that the second call to country will only search the database for
countries that have overlapping boundaries with spain.

We should remark that && only approximates overlapping, based on MBRs.
In our implementation we perform intersection explicitely, although intersection
could naturally be performed within the constraint solver. For example:

?- country(spain,P1), P2 && P1, country(C,P2),
intersection(P1,P2,P3).

The query searches for countries that intersect with Spain. The overlapping
constraint prunes the results to Portugal, France and Andorra, but only the
latter will eventually succeed. Notice that the same result would be achieved
without the use of UDI, but with a high penalization in time:
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R1 R2
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R16 R17 R18 R19 R20 R21
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PORTUGAL SPAIN ANDORRA

Level 3

Level 2

Level 1

Level 0

(a) R-Tree Structure

MBR’s: Level 3 Level 2 Level 1 Level 0

(b) MBR Containment

Fig. 2. R-Tree of Europe Countries
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?- country(spain,P1), country(C,P2), overlap(P1,P2),
intersection(P1,P2,P3).

Our results show that using this form of indexing is fundamental in operating
effectively with spatial data.

3 The Fire DataSet

Portugal being the smallest of the five southern Europe countries, is the most
affected by fire in terms of occurrences and relative burnt area. From 1980 to
2004, 30% of the country was burnt (equivalent to 1 fire per 20ha). The closest
cases (Italy and Spain) present values of fire occurrence, density and burnt area
inferior by 1/3 and 1/5 respectively.

Given the increasing trend of burnt area and with the increasing changes
in temperature and precipitation, it is of the outmost importance to narrow
the problematic areas in order to effectively promote fire control and landscape
management. Recent efforts have provided detailed information of burnt areas
between 1990 and 2007.

Initial work on this area has focused on a parish-based approach, where the
goal has been to study differences between different regions in the country [15],
In related work, Stojanova et al use geographic and weather data to predict
forest fires [16]. A number of different classifiers and regression techniques were
applied, with best results obtained through bagging decision trees.

The motivation for our work was the need to consider different sources of data,
given that we have both parish data and the COS’90 database, a detailed land
cover map, produced by the National Center for Geographic Information. The
COS’90 database was obtained by visual interpretation of aerial photographs
from 1990 followed by polygon vectorization, with 3 digit nomenclature for each
polygon. The nomenclature describes the principal and secondary type of use,
e.g., PE2 would express a polygon with a mixed forest based on Pine Tree and
Eucalyptus covering up to 75% of the area. The order of the first letters informs
that Pine Tree is dominant, the digit informs that we have between 30% to 50%
of coverage.

We further remark that polygons vary widely in size. Moreover, polygons do
overlap with each other, and we have cases of polygons that are contained in
other polygons. We do not exploit such overlaps in this work.

Given the fine grained level of this dataset and the absence of detail in burnt
areas polygons, e.g., a given burnt area polygon may represent several fires oc-
curring with a spawn of several months within a year, we have abstracted the
burnt area by tagging the COS’90 polygons with a burnt label for each year,
making this layer our base layer. We have only used burnt information from 1991
to 1999, an acceptable spawn given the base date of COS’90.

Additional data information can be obtained by considering a second layer
with socioeconomic information. In Portugal this data is available through statis-
tics taken over parishes.
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Fig. 3. COS’90 Polygons in Viana do Castelo

We focus on the Viana do Castelo district (county) - see Figure 3. This dis-
trict is one of the most heavily forested in Portugal, and has suffered from a
wide diversity of fires. Previous work indicates that different regions have very
different patterns: Viana do Castelo is typical of the North of Portugal and is
one of the most affected sub-regions of the country. The district has 290 parishes
and 15091 COS’90 polygons.

Notice that the relation between parishes and polygons can be quite complex.
Figure 4 shows a situation where a large polygon overlaps a number of parishes.
The opposite is also possible, and a small polygon can be easily contained in a
parish.

3.1 Methodology

In this work we are interested in exploring spatial predicates on-the-fly during
the ILP search process. We thus rely on spatial indexing to obtain more effi-
cient execution of queries involving spatial predicates. Notice that even with
spatial indexing, geographical queries are typically very expensive. We further
use tabling to reduce recomputation to the minimum. As an example of this type
of optimization, consider the neighbor relation:

:- table neighbor/2.
neighbor(ID1,ID2) :-
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Fig. 4. Polygons and Parishes. Notice the irregular structure of the polygon and how
it crosses over a number of parishes.

cos90(ID1,R1,P1), R2&&R1, cos90(ID2,R2,P2), ogc_touches(P1,P2).

Logically, it would be sufficient to express the cos90 polygons and then use
ogc touches. Assuming that R1 is bound, the && constraint selects polygons
such that R2 overlaps R1, R1 and R2 are the Minimum Bounding Rectangle
(MBR) for the polygons P1 and P2 respectively. This is a necessary but not
sufficient condition for the actual polygons to touch. The relation ogc touches
holds true if and only if the two polygons touch.

Notice that && does not introduce any new logical information. On the other
hand, && is implemented very effectively by using UDI with R-Trees. In contrast,
ogc touches is extremely expensive: it needs to compare two complex polygons.
Our approach reduces very significantly the number of calls to ogc touches and
makes the whole computation feasible.

However, it is clear that the neighbor operation will be used quite often, and
may have to be recomputed every time we run a rule. We use tabling to avoid
this problem. More precisely, we use tabling with local scheduling so that all
solutions to the query are computed the first time the query is run.

A second interesting problem arises from the need to join the two base layers:
how do parishes match COS’90? Both cover the same area, but they have dif-
ferent granularity and they have different information associated with it. They
even overlap each other as seen in the example in Figure 4. In general, we do not
expect to find an ideal solution to this problem: but in order to use this data
we have used a weighted average based on the area of the intersection of both
layers.
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expbox(ID1,Class,ID2,Distance) :-

expbox(ID1,Class,0,ID2,Distance), !.

expbox(ID1,CL,0,ID2,DISTANCE) :-

cos90(ID1,R1,P1), R2&&R1,

findall((ID2,D),

(cos90(ID2,R2,P2),class(ID2,CL),ogc_distance(P1,P2,D)), L),

mindistance(L,ID2,DISTANCE).

expbox(ID1,CL,Expand,ID2,Distance) :- Expand > 0,

cos90(ID1,R1,P1), expand(R1,Expand,R1E), R2&&R1E,

findall((ID2,D),

(cos90(ID2,R2,P2),class(ID2,CL),ogc_distance(P1,P2,D)), L),

mindistance(L,ID2,Distance).

expbox(ID1,CL,Expand_,ID2,Distance) :-

Expand is Expand_ + 10000, expbox(ID1,CL,Expand,ID2,Distance).

Fig. 5. Neighbor Search in the Background Knowledge

Spatial distance between two spatial objects corresponds to the minimum dis-
tance between any two points of each spatial object. Hence to find the minimum
distance to a water class polygon, for example, we would need to calculate the
distance to each water class polygon. In this case, indexing is not straightfor-
ward, but is still worthwhile. The R-Tree indexing structure abstracts spatial
objects to its Minimum Bounding Rectangle, and is stored in a form that allows
us to discard spatial objects far from the search rectangle. Using the indexing
structure we can speedup minimum distance calculations by expanding gradu-
ally the search rectangle, starting from the MBR of the base polygon, until a
matching polygon is found. A version of the algorithm is presented in Figure 5.

3.2 The Background Knowledge

We can now present the background knowledge used in this experiment. We
combine a number of different information sources.

The class/2 relation identifies all the activities pertaining to the polygon. It
is defined in Prolog as:

class(ID,C) :-
pol(ID, CL),
sub_atom(CL,_,_,_,C), C \= ’’.

The area relation corresponds to the ogc area/2 relation discussed above, and
gives the polygon’s area. The neighbor/2 relation corresponds to ogc touches
and gives the connection between different polygon.

As an example of temporal correlated information, we also have relations
saying whether a polygon was burnt in the previous year or whether it was
burnt ever.
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Besides class and neighbor information, we use information from parishes,
currently the amount of cattle on a certain parish. As a polygon may intersect
several different parishes, we estimate the cattle in a polygon using a weighted
average of cattle based on the intersection area.

Last, we use the geq/2 and leq/2 relations to handle numeric data.

4 Results and Discussion

Our task is to predict whether a polygon will catch fire. We recall that forest
fires are complex events with a large variety of causes. We would not expect to
be able to predict exactly which polygons will take fire. On the other hand, it is
worthwhile to find rules that are highly indicative of vulnerability to fire.

We use the ILP system Aleph [17] running under the Prolog system YAP-
6 [18] to search for fire risk areas. As discussed above we performed this study
on the years from 1991 to 1999. In each year, positive examples (COS’90 polygons
with fire occurrence) range from 180 to 1834 occurrences. We used as negative
examples the remainder of 15091 polygons in the dataset. The dataset is therefore
highly skewed.

We follow two different types of approaches: first, we use cross-validation over
the different years; second, we try to predict the next year. In the latter case, we
can learn with multiple years: we use up to three consecutive years. To evaluate
runs on the same year we used stratified 10-fold cross validation. Results can be
seen in Figure 6.

Figure 6(a) shows system performance at every year. Given that the dataset
is very skewed, we use precision and recall as a measure of performance. Recall
performance on the test set tends to range around 50%, and precision around
10%. We find these values quite acceptable, given the nature of the problem and
the skew of the dataset (only about 2% of the examples are positives). Notice
that the results vary significantly according to each year. In general, precision
tends to be best for the years with most fires. In contrast, recall tends to be
worse for these years: this is because we learn less rules in these years. The
results for 1998 are quite interesting. This year about 1800 polygons burned
(10% of COS’90), and the following single rule is highly predictive:

burnt(A,E) :-
burnt_before(A,E).

Figure 6(b), 6(c), and 6(d) show next year validation performance with
one year, two year, and three year training. Because years are widely different,
testing the rules on the next year tends to have poorer performance than using
the same year. On the other hand, as we use more years to train the system, recall
and precision improve and approach same year training. Moreover, performance
becomes more stable and less sensitive to variations in a year (on the other hand,
we cannot take advantage of special years such as 1998). In general, with 3 year
training we get a recall over 60%, with a precision of about 10%.
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(a) Single Year, cross validation. (b) Single year, next year validation.

(c) Two years, next year validation. (d) Three years, next year validation.

Fig. 6. Results

Two examples that give a flavor of the rules learned by our system:

burnt(A,_) :-
class(A,’II’), water_pol(A,_,B), B >= 6736.85994035496.

burnt(A,E) :-
parish(A,B), sheep(B,_,_,C), C >= 34,
neighbor(A,D), burnt_last_year(D,E), class(D,’II’).

The first rule refers to a polygon classified as “improductive” i.e. fallow land.
The rule states that such land is quite likely to burn if more than 6Km away from
a water source. The second rule applies to a polygon that is in a rural area with
a high increase in sheep population, and close to fallow land that often burns.
Rules also have a geographic interpretation. Figure 7 graphically shows coverage
for the second rule. Notice that most polygons covered by the rule are in the
interior, more precisely, on the mountain regions of Viana. Notice also that the
rule mostly refers to contiguous regions. In general the found rules most often
refer to previous fire activity, to types of vegetative cover such as fallow lands,
brush, pine and oak, to herding and to distance to water. Also, a high percentage
of rules refer to neighboring polygons.

Exporting the Rules As a way of evaluating the usefulness of our rules, we exper-
imented with applying rules learned in Viana do Castelo on a different district
(county). We experimented with Braga district, the southern neighboring dis-
trict to Viana. Braga shares many of the traits in Viana, but is a larger and
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Fig. 7. Positive and Negative Coverage of Rule2 in Viana do Castelo

(a) Single Year, next year validation in
Viana do Castelo.

(b) Single Year, next year validation in
Braga.

Fig. 8. Comparing Results in Braga and Viana do Castelo

more complex region. It is also more heavily populated, with a smaller portion
of forest area. Otherwise, the types of occupation are similar in both regions.

Figure 8 compares results for rules learned in one year and applied to the next
year in Viana and Braga. Notice that there is a strong correlation between the
two curses. On the other hand, the results are somewhat worst for Braga than
for Viana, as expected, but still better than default accuracy.

5 Conclusions

In this paper we have presented an ILP approach to spatial data mining, ad-
dressing the pressing problem of wildfire prevention through the understanding
of the impact of landscape organization. Our work leverages the machinery we
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developed in previous research, namely in the construction of an OGC-compliant
logic-based geographic information system. A fundamental contribution of this
work results from the coupling of an ILP system with a logic-based geographic
information system. This coupling avoids the off-line materialization step of spa-
tial features using external geographic information systems, allowing the search
process to dynamically explore spatial relationship predicates in the formula-
tion of clauses. The use of multi-dimensional indexing and tabling prove to be
also crucial for the computational feasibility of our approach, providing an addi-
tional contribution for the use of ILP in the context of spatial data mining with
real-world datasets.
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Abstract. Inductive Logic Programming (ILP) provides an effective method of 
learning logical theories given a set of positive examples, a set of negative 
examples, a corpus of background knowledge, and specification of a search 
space (e.g., via mode definitions) from which to compose the theories. While 
specifying positive and negative examples is relatively straightforward, 
composing effective background knowledge and search-space definition requires 
detailed understanding of many aspects of the ILP process and limits the 
usability of ILP. We introduce two techniques to automate the use of ILP for a 
non-ILP expert. These techniques include automatic generation of background 
knowledge from user-supplied information in the form of a simple relevance 
language, used to describe important aspects of specific training examples, and 
an iterative-deepening-style search process.  

Keywords: Advice Taking, Human Teaching of Machines. 

1   Introduction 

Inductive Logic Programming (ILP) provides a method to learn logical theories that 
cover most of a given set of positive examples and as few as possible of a set of 
negative examples. Unlike many other supervised learning approaches, ILP often 
needs a complex corpus of background knowledge beyond just information provided 
as part of the example description (i.e., the example features). This information is 
vital to both forming the hypothesis space and guiding the search; effective use of ILP 
depends upon this background knowledge. The ILP-setup problem of articulating 
background knowledge can be difficult and requires detailed understanding of the ILP 
algorithm, greatly limiting ILP’s usability by non-experts. 

At least two possible solutions to this problem exist. One is a two-step process in 
which an ILP expert closely works with a domain expert in the first step to tailor the 
general-purpose ILP system to a specific domain, such as drug design (e.g., [3]). In 
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the second step, domain experts, who are not ILP experts, can then use the tailored 
system. A second solution to this ILP-setup problem, which retains the general-
purpose nature of the ILP system, is to allow a teacher to, as naturally as technically 
possibly, explain why specific examples are positive or negative through some advice 
language. This teacher-provided advice supplies hints about the concept being 
learned, beyond the traditional labeling of examples. Given this teacher-provided 
advice, the automated learner can generate background knowledge and set appropriate 
search parameters. This paper is the first study to explore this second approach, 
although some prior ILP work is related and is reviewed in Section 5. 

Consider the following sample dialog between the teacher and the learner. Assume 
the formula (p(X) ∧ q(X,Y)) ∨ r(X)1 is a relevant piece of background knowledge for 
concept C. The teacher might express this indirectly via the following dialogue about 
a small number of training examples: 

“In example 1, object a is a positive instance of concept C because p(a) is true.”  

Note that, in human instruction, the teacher might say this to mean simply that p is relevant to C rather than the complete definition of C. 

“In example 2, object b is a positive instance of C because r(b) is true.” 

Note here that an algorithm that induces background knowledge from these 
statements needs to map both objects a and b to the same variable.  

“In example 3, object d is a negative instance of C because q(d, d) is false.” 

Note that the teacher is telling the learner about relevant background 
knowledge through a negative example. The piece of advice in this case needs 
to be negated. In addition, the machine learner does not know whether the 
advice is about (1) all possible choices for the second (or first) argument of q, 
(2) restricting the choice of the second argument to be the same as the first, or 
(3) just the specific choice of constant d as the second (or first) argument. 

Although (p(X) ∧ q(X, Y)) ∨ r(X) may be the formula necessary to define the 
concept, formulas such as (p(X) ∨ q(X, Y)) ∧ r(X), or p(X) ∧ q(Y, X) ∧ r(X), or p(X) ∧ (q(X, d) ∨ r(X)), or yet still others are also consistent with this human-provided 
advice. 

Allowing the teacher to provide such advice permits the use of ILP in an 
unexplored setting in which only a few examples, along with teacher-provided 
annotations, are sufficient to learn the target concept. However, in a setting with few 
examples, while the target concept might be complex, such as (p(X) ∧ q(X, Y)) ∨ r(X), a simple clause, say p(X), by itself might be sufficient to discriminate between 
examples. Thus, in this setting the advice should motivate the learner to prefer 
formulas that use all the teacher-mentioned predicates (i.e., p, q and r ), rather than 
just the simplest formula consistent with the labeled examples. 

Below, we present an algorithm to convert teacher-provided advice into ILP 
background knowledge. We designed this algorithm with the sparse example setting 
in mind. Motivations for the algorithm we present include the following: 

                                                           
1 We use standard Prolog notation for constants and variables throughout this paper, but use 

standard logical notation otherwise. 
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1. High accuracy of the learned concept definition on teacher-labeled 
training examples. 

2. Robustness in the presence of a small number of training examples and 
perhaps a total lack of negative examples. 

3. Inclusion of most, if not all, teacher-mentioned predicates in the learned 
concept definition. 

4. Flexible combination and generalization of the teacher’s advice within 
and across examples. 

5. Robustness to teacher errors, both in data labeling and advice. 
6. Learned concepts may need to include predicates not mentioned in 

teacher-provided advice but supplied as part of example descriptions. 

Our primary motivation is to allow human users of ILP systems to express their 
knowledge about the learning task at hand in whatever means seems most natural to 
them, from explaining (partially or fully) why some specific examples are positive or 
negative members of the concept being learned, to simply stating the proper 
categories (i.e., positive or negative) for other examples. We present our approach as 
a “batch” system that is given a set of labeled examples and possibly some advice 
about the examples, and then produces a set of one or more logical clauses (“inference 
rules”) that best capture the concept being taught. However, we envision our approach 
as being best situated in a setting where the human-machine dialog is continual; the 
human teacher provides some initial training, the algorithm then learns, after which 
the teacher can provide additional guidance and the process repeats until an 
acceptable concept description results (where ‘acceptable’ can either be based on 
inspection of the learned clauses, or, more likely, on the quality of the predictions of 
the learned clauses for new examples). 

ILP systems search a space of possible clauses composed from background 
knowledge; the space is typically defined declaratively by a set of mode definitions. 
For this work, we used an implementation that closely follows the Aleph ILP system 
[19], although we present general techniques with few Aleph dependencies. We made 
one major changes to the default Aleph implementation, wrapping Aleph in an 
iterative-deepening style search algorithm, as further explained in the next section. 

As mentioned above, we address the problem of effectively incorporating, into the 
ILP framework, teacher-provided advice; a human teacher usually provides the latter 
and this interaction can be viewed from the wider perspective of human-machine 
interaction. Such teaching refers to humans teaching computers concepts and/or 
behaviors, through as natural and human-like dialog as possible. In our setting, the 
taught concepts take the form of logical theories and the teacher provides relevance 
advice about specific examples. The relevance advice takes a number of different 
forms, from simple “this feature is important” advice to complex statements that can 
be mapped to a grounded form of the concept being taught. The advice can be 
provided by a human familiar with the advice language but with no ILP experience, 
i.e., a non-expert. In the experiments we report later in this paper, all the instruction 
was provided by non-ILP-experts, all who are independent from this paper’s authors. 

Figure 1 illustrates, using propositional logic for simplicity, how advice-generated 
background knowledge can help focus ILP’s search. A common ILP search strategy is 
to build clauses in a top-down manner, successively adding various literals that might  
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target  q, r, …, z 

target  true 

target  q, r, … , y 

target  q target  p … 

… … … 

Standard ILP Search  

    With Advice 

… 

…  

Fig. 1. An illustration of a top-down ILP search for a inference rule to predict the literal 
predicate, whose definition is the conjunction of literals q through z. Finding a long clause such 
as this can be quite hard, but if a teacher gives advice (possibly across multiple examples) that 
the conjunction of literals q through y is relevant, then finding the correct definition is much 
easier. 

improve a rule. If a long clause is needed, the search space can be exponentially large, 
and if there are only a few training examples, many possible rules can accurately 
match the training examples. However, good background knowledge can quickly lead 
to the consideration of long clauses, as the figure shows. It can also help choose 
among many equally performing rules. 

Section 3 discusses the conversion of this teacher-provided advice into ILP 
background knowledge. To accommodate differing amounts of advice, and different 
levels of concreteness of advice, we employ a control structure, explained in  
Section 2, which is capable of exploring successive layers of the hypothesis space, 
from a layer that tightly follows the advice to an outermost, rarely-used layer that 
effectively ignores the advice. Section 4 presents a discussion of our empirical study. 
Section 5 discusses the relationship to prior work within ILP. 

2   The Onion 

Our ILP advice algorithm generates a number of hypotheses, some of which we deem 
less likely than others. Additionally, since we assume the teacher has little to no ILP 
expertise, we must utilize a method to select ILP parameters automatically, in a way 
that consistently supports the motivations discussed above. We developed the ONION, 
a control structure that iteratively searches a set of successively larger and less likely 
ILP search spaces.  

Algorithm 1 presents the basic structure of the ONION. Essentially, the ONION 
iterates over a set of ILP parameter settings and priority levels, performing an ILP 
search for each. When a given ILP search returns a theory, the ONION evaluates that 
theory against a set of acceptance criteria (such as minimum accuracy and coverage, 
i.e., precision and recall), and if the theory is acceptable, the ONION returns it. 
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Algorithm 1 THE ONION 
1: For each set of criteria C in {C1, C2, …, Cn} for an acceptable theory 
2:     For each priority level P in {High, Medium, Low, None} 
3:        For each set of Aleph parameter settings S in {S1, S2, …, Sm} 
4:           Only consider literals or generated clauses whose relevance is a least P 
5:           Call Aleph with parameter settings S 
6:           If Aleph’s learned theory meets criteria C then Return theory 
7: Return FAIL 

  

 

We order the sets of acceptance criteria and possible settings from most restrictive 
to least restrictive, while we order the generated background according to a priority. 
We discuss how we assign that priority in the next section. The priority level “None” 
is given to those literals not mentioned by the teacher’s advice, but which appear in 
the descriptions of examples. 

3   Converting Advice to Background Knowledge 

Teacher advice provides a method for the user to instruct our learning algorithm. The 
advice takes the form of logical statements. From this information, we construct new 
background knowledge representing sub-concepts. We also generate the necessary 
ILP modes (these modes specify the types of arguments and state, for the arguments 
of a new literal being considered for addition to a clause, which need already appear 
in the clause, which can be new variables, and which should be constants). 
Additionally, we attach priorities to all of the generated background knowledge for 
use by our ONION algorithm. Currently, we assume the teacher talks about a specific 
example (either positive or negative) and specifies the advice in a ground format that 
we then variablize into a general form. It is straightforward to extend our system to 
allow the teacher to provide generalized advice, but we believe that for most users it 
will be easier to explain why specific examples are or are not members of the concept 
being taught and that is the interaction style on which we focus. 

Although we assume that the user understands basic logic (i.e., the meaning of 
AND, OR, and NOT), we attempt to allow the user to communicate advice in a natural, 
and possibly somewhat inaccurate manner. Thus, although we specify the exact 
logical format of the advice below, our system attempts to rectify common user 
misunderstandings, such as predicate/function confusion. We also do not expect the 
user to understand the algorithmic details of the underlying ILP system. 

Table 1 shows two training examples and three pieces of teacher provided advice 
for a sample concept ReadyToFly. The ReadyToFly concept indicates, as one might 
guess, that an airplane is ready to fly. We will be using this simple concept to 
demonstrate our approach. We define the concept as: 

readyToFly(Plane)  fueled(Plane) ∧ gearDown(Plane) ∧ ¬ damaged(Plane). 

Algorithm 2 details the process of creating background knowledge from the 
teacher-provided advice. The process proceeds in several phases. The first phase  
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Table 1. ReadyToFly concept. Training data includes two examples, one positive, one 
negative, along with three pieces of teacher provided advice, two pieces for the first example 
and one for the second. 

Advice # Ground Example Pos/Neg Teacher Advice 
1 readyToFly(plane1)  Positive fueled(plane1) 
2 readyToFly(plane1)  Positive gear_down(plane1) 
3 readyToFly(plane2)  Negative damaged(plane2) 

(lines 4 to 10), variablizes the ground advice statements via applying anti-substitution, 
i.e., a mapping from occurrences of ground terms to variables. For our purposes, we 
only need to map constants to variables. The anti-substitution may be either a direct-
mapping that maps all occurrences of the same constant to the same variable and 
occurrences of distinct constants to distinct variables, or an indirect-mapping, where 
occurrences of the same constant can be mapped to different variables. 

Indirect-mappings address cases where two constants are coincidentally equivalent. 
This occurs regularly in examples with numeric constants, where common numbers 
such as 1.0 may perform two different roles. Later, when we assign priorities to 
generated background knowledge, those created with indirect-mappings receive a 
lower priority than those created with direct-mappings. Indirect mapping anti-
substitutions perform what is sometimes called “variable splitting” in ILP [18], where 
two occurrences of the same term are generalized to different variables. It is well-
known that variable splitting can lead to an increase in run-time that is exponential in 
the number of occurrences of the same term within a formula. In practice, such 
multiple occurrences are rare, except in the case of very common constants within a 
domain, for example, the 1.0 case discussed above. To prevent this exponential worst-
case increase, in practice, we limit the maximum number of variable splittings (cases 
of two occurrences of the same term being mapped to distinct variables) by an anti-
substitution to some small constant k. Alternative approaches to controlling the cost 
of variable splitting, such as employing domain-specific heuristics about commonly-
occurring constants, are a direction for future research. 

Table 2 depicts both a direct and indirect anti-substitution. As shown, we perform 
the same anti-substitution on both the example and the piece of advice, linking 
variables in the example to variables in the advice. Although not shown in Table 2 we 
generalize all advice for a single example at the same time. Thus, constants can be 
tied together across different advice for the same example, but are not tied across 
advice for different examples. 

Table 2. Direct and indirect anti-substitutions. Direct anti-substitutions generalize equivalent 
term to the same variable. Indirect anti-substitutions generalize equivalent terms to different 
variables. 

Ground Example & Advice Anti-substitution Type 
readyToFly(plane1)  fueled(plane1) readyToFly(X)  fueled(X) Direct 

readyToFly(X)  fueled(Y) Indirect 
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Algorithm 2  GENERATEBACKGROUNDKNOWLEDGE 
1: Given: Labeled examples, some of which have associated advice 
2: Do:        Infer generalized background knowledge 
3:  
4: For each example ei  {e1…en} 
5:    Given advice Ai associated with example ei 
6:    if ei is positive example then create an associated implication ei  Ai 
7:    else create an associated implication ei  ¬ Ai 
8:  
9:    Generate all non-equivalent formulas via anti-substitution  
10:        from the implication to yield the set of formulas Fi 
11:  
12: Let F denote the set F1  F2  … Fn 
13: Standardize apart all formulas in F 
14: Let  be the most general unifier of all consequents of formulas in F 
15: For each Fi 
16:    Apply θ to all formulas in Fi to yield F’i 
17:    Collect all antecedents from formulas in F’i to yield Gi 
18:  
19: Let H = {}, a set of generated rule antecedents 
20: For each generalized advice-piece Gi  
21:    Let H = H  Gi    // Per-piece antecedents 
22:  
23: For each example ej  {e1…en} with associated advice 
24:    Let Kj =  { g  G | g was generated from example ej advice} 
25:    Let H = H  Kj  // Per-example antecdents 
26:  
27:  
28:  
29: For each generated logical combination h  H, introduce a new predicate  
30:  p and assert p(V1, V2, …, Vk)  h,  where V1, V2, …, Vk are variables  
31:  generalized from constants in the example literal 
32:    If p  h is a Mega-Rule then assign p  h High priority 
33:    else if p  h is per-example then assign p  h Medium priority 
34:    otherwise assign p  h Low priority 
35:  
36: Return set of all generated implications p  h along with priorities 

  

Given the generalizations from the first phase, the second phase of 
GENERATEBACKGROUNDKNOWLEDGE (lines 12 to 17) performs a unification 
to merge variables that arose from constants found in the examples themselves. For 
instance, if we consider the direct anti-substitutions of all pieces of advice, we have 
readyToFly(A) ⟵ fueled(A); readyToFly(A) ⟵ gear_down(A); and readyToFly(B) ⟵ damaged(B). After the unifications, the implications would be readyToFly(X) ⟵ 
fueled(X); readyToFly(X) ⟵ gear_down(X); and readyToFly(X) ⟵ damaged(X) 
where X is shared. This allows distinct constants from different examples that played 
the same role to be merged into a single variable. 
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In the third phase (lines 19 to 27), we generate compound logical formulas by 
connecting the generalizations for different pieces of advice with the AND and OR 
logical connectives. We generate three different styles of formulas: per-piece, per-
example, and “Mega Rules”. The per-piece formulas correspond to the individual 
pieces of advice specified by the teacher. The per-example formulas aggregate all the 
advice provided for a single example into one formula with the individual pieces of 
advice joined via AND connectives. The per-example formulas allow the teacher to 
provide many small pieces of advice about an example instead of requiring the 
teacher to compose a single complex piece of advice. Finally, Mega Rules attempt to 
capture all of the advice into one logical statement, by conjoining direct-mapping 
generalizations of all advice from all positive and negative examples.   

More specifically, we do the following to produce our Mega Rules: 

Let Fi be the logical formula that our algorithm produces by conjoining 
(“ANDing”) all of the relevance statements about positive example i.2  

Let Gj be the logical formula that our algorithm produces by conjoining all of the 
relevance statements about negative example j. 

We make the following Mega Rules, where i ranges over the positive examples 
with advice and j over those negative examples with associated advice: 

     ( F1  ∧  …  ∧  Fi )   ∧   ¬( G1 ∨  …  ∨  Gj  )   →   example 

     ( F1  ∧  …  ∧  Fi )   ∧   ¬( G1  ∧  …  ∧  Gj )   →   example 

     ( F1  ∨  …  ∨  Fi )   ∧   ¬( G1 ∨  …  ∨  Gj  )   →   example 

     ( F1  ∨  …  ∨  Fi )   ∧   ¬( G1  ∧  …  ∧  Gj )   →   example 

The above are all ways to explain a collection of teacher-provided advice, though 
some are more natural than the others. In the first one, our algorithm interprets the 
teacher as using each positive example to provide aspects of a conjunctive concept 
and each negative example to state properties that members of the concept lack (“this 
is a bird because it has wings, this other example is a bird because it lays eggs, this 
third example is not a bird because it has leaves, this fourth example is not a bird 
because it is made of metal. …”). The third and fourth lines are appropriate for 
disjunctive concepts (“Alice got to work by taking the bus. Bob got to work by 
walking. … Carl did not make it to work because he slept all day.”). In addition to the 
rules shown above, we also generate four additional Mega Rules in which we negate 
positive advice and do not negate the negative advice.  

When only direct-mapping generalizations exist, only a handful of formulas are 
generated, providing excellent scalability. When indirect-mappings occur, we 
generate additional rules in which we substitute all combinations of the indirectly-
mapped advice pieces into the per-piece and per-example formulas. This process 
scales exponentially in the number of indirect-mapping generated.  

                                                           
2 We conjoin statements about the same example because we assume the teacher is telling us 

various properties of that example that all hold, though it would be reasonable to extend our 
algorithm by disjunctively combining them as another alternate interpretation. By allowing 
only one or two ways to combine advice about the same example, we avoid the combinatorics 
that would arise by combining in all logically possible ways. 
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Table 3. Generated Background Knowledge. Three types of background knowledge are created 
during advice processing: per-piece, per-example, and mega-rule background knowledge. Per-
piece is composed of single pieces of advice. Per-example is composed of all advice piece for a 
single example. Mega-rules use all provided advice combined via various logical operators. 

Generated Background Knowledge Type Priority 
readyToFly(X)   

fueled(X) ∧ gear_down(X) ∧ ¬ damaged(X) 
Mega-Rule High 

readyToFly(X)   
( fueled(X) ∨ gear_down(X) ) ∧ ¬ damaged(X) 

Mega-Rule High 

readyToFly(X)  fueled(X) ∧ gear_down(X) Per-Example Medium 
readyToFly(X)  ¬ damaged(X) Per-Example Medium 
readyToFly(X)  fueled(X) Per-Piece Low 
readyToFly(X)  gear(X, down) Per-Piece Low 

 
 

In the final phase (lines 29 to 34) we convert each of the generated formulas back 
into an implication (as a precursor to creating ILP background knowledge). During 
this phase, we assign a search priority with a preference for longer formulas, i.e., 
those that use as much of the user-provided advice as possible. Mega Rules receive 
the highest priority, followed by per-example formulas, and finally per-piece 
formulas. The ONION uses these priorities to order the ILP search. 

Table 3 shows several of the implications generated for the sample concept. The 
head of the generated clause exposes all of the variables from the logical formula. 
Variables tied to the example during the generalization phase become input variables 
for the clause. In many situations, it is also advantageous to expose variables 
occurring in the body of the rule as output variables. However, exposing additional 
variables increases the size of the ILP search space. In absence of other information, 
for each formula, we expose only a single output variable. For any given formula, we 
determine the output variable by considering all of the literals that we derived from 
positive pieces of advice and selecting the last variable that occurs. This approach 
scales well. However, in some cases, variables that would be helpful may not be 
exposed in the head of the generate clause. Clauses derived from formulas with OR 
connectives have the additional requirement that the selected output variable must 
occur in all of the OR-ed subformulas. Determining whether a variable occurs in all of 
the subformulas requires us to determine if two variables are equivalent. If argument-
type information is available, we require only that type of the output variable match in 
all of the subformulas. In the absence of typing information, we disallow output 
variables for disjunctive formulas. 

Statements about negative examples can be ambiguous. Imagine a teacher says an 
example is negative because color = blue. Does this mean the example is negative 
because it is blue or because it is not? Because the teacher is talking about specific 
examples that are observable by our learning algorithm, we address this in an obvious 
way. Namely, we evaluate the teacher’s statement on the current example, and we 
then, if necessary negate the advice so that it says something that is true. Hence if the 
current example is red, we standardize the advice about color to color ≠ blue. 
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Finally, we assign input variables both an ILP input mode of ‘+’ (the argument 
must already be in the clause being constructed) and a constant mode of ‘#’, plus we 
assign output variables both an output mode of ‘–’ (a new variable can be introduced) 
and a constant mode of ‘#’. Additionally, our algorithm also works when the ground 
advice contains logical functions. We convert the functions into Skolem-constants and 
perform generalizations over all possible combinations of the Skolem-constants. 

4   Experiments 

We performed several experiments to demonstrate the performance of the ONION with 
and without advice. In addition to measuring learning on our test beds, we also 
conducted comprehensive empirical analyses to study the performance of the ONION 
when there is noise in the labels on examples, as well as in the advice. These 
experiments are designed to demonstrate the effectiveness of the ONION in the 
absence of advice, its robustness to noise, and how the system is capable of 
generalizing advice about specific examples to all the available examples leading to 
improved learning and accuracy. The improvements in generalization performance 
can be significant, especially in the presence of a very small number of examples.  

4.1   Test Beds 

We used learning tasks developed by an independent third party under the Bootstrap 
Learning (BL) project [12] funded by the United States Defense Advanced Research 
Projects Agency (DARPA). In the BL setting, the machine learner induces concepts 
that build upon one another through a “ladder” of tasks, which are organized as self-
contained lessons; lower rungs of the lesson ladder teach simpler concepts, which are 
learned first and then used to learn − i.e., bootstrap − more complex concepts. The 
lessons in the project incorporate a wide variety of natural teacher instruction 
methods, including providing domain descriptions, pedagogical examples, telling of 
general instructions, demonstration, and feedback. Our role in the project is 
supervised learning from examples. For our experimental setup considered here, we 
use 14 lessons from two domains of the BL project: Unmanned Aerial Vehicle (UAV) 
and Armored Task Force (ATF). 

For each of the 14 lessons, third-party domain-experts, under the direction of 
DARPA and not under our control, generated "lessons" to teach these tasks. The 
lessons consist of a sequence of messages from the teacher to the learner. Teacher 
instruction includes providing training examples (up to 100 examples for each task) 
and expert advice for certain examples to help the student learn these tasks 
effectively. For each lesson, we wrote software that converted the messages into ILP 
facts and examples expressed in predicate calculus. The mean accuracy of always 
guessing the majority category across each of these 14 lessons is 57%.While we had 
access to the UAV and ATF testbeds during algorithm development, during Fall 2009 
our algorithm was applied by DARPA to a “hidden” testbed, to which we had no 
access. Our approached produced 100% accuracy on learning in that testbed. Since a 
variant of that testbed will be used Spring 2011, at the time of this writing we have no 
knowledge of the testbed and, hence, cannot report anything more about it here. 
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Methodology. We are interested in studying the behavior of our advice algorithm, 
along with the ONION, with respect to several criteria: (1) its ability to learn diverse 
concepts across domains without the intervention of an ILP expert, (2) its ability to 
effectively exploit teacher advice in order to learn concepts with only a small number 
of examples, (3) its robustness to teacher errors of commission in the examples 
(mislabeled examples) and (4) its robustness to teacher errors of omission in the 
advice (incomplete or missing literals). Our experimental study consists of three 
experiments that we describe below. For each lesson we have 100 training examples 
and 100 test set examples. During our experiments, we split the training set to 
generate a tuning set, used by the ONION for evaluating parameter settings. For runs 
with more than 25 examples, we place two-thirds of the data provided to our learner 
into a training set and one-third the data into a tuning set. For runs where fewer than 
25 training examples, we do not use a separate tuning set, instead relying directly on 
training-set accuracy to tune parameters in the ONION. In all experiments there were 
an equal number of positive and negative examples. 

Because there is an intended pedagogical order to the examples, some of which 
have associated advice, we did not perform 10-fold cross validation within each 
lesson (in addition, since we have data simulators, cross validation is not necessary – 
instead we simply use fresh samples of 100 examples as our test sets). The results 
presented for each experiment are the test-set accuracies averaged over all 14 tasks. 

Across all of these tasks, we used the same parameter choices in the ONION. That 
is, over all of the experiments that we report here, our ILP system was run unchanged. 
Our ONION approach was able to find good parameter settings, trading off computer 
time for the ability to operate without intervention from an ILP expert. 

4.2   Results and Discussion 

Experiment A. In our first experiment, we compare the performance of the ONION 
with and without advice over all the 14 tasks. Figure 3 shows the results, where we 
plot learning curves, i.e., test-set accuracy as a function of increasing numbers of 
training examples. (As mentioned earlier, our implementation is not an on-line, 
incremental learner. We simply run in “batch mode” for various numbers of training 
examples.). 

In the case where the learner is not given any advice, the ONION is able to 
generalize across tasks and domains, and obtain an average test-set accuracy of 74.0% 
when using all 100 training examples. Even when using smaller fractions of training 
data, the ONION is able to effectively select parameters and automate the setup task to 
obtain learning rates in excess of 57%, which is equivalent to random guessing. The 
main results in Figure 3 however, are the test-set accuracies achieved by the ONION in 
the presence of advice. Even when using only four training examples per lesson, the 
ONION with advice achieves an average test-set accuracy of 93.8%, and reaches 100% 
with only ten examples. 

Experiment B. Experiment A involved advice from a 3rd party who was careful to 
create rich and accurate advice. However, real teachers are likely to make errors. In 
our 2nd experiment we simulate errors of omission by dropping literals from advice. 
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Fig. 3. Experiment A: Testset accuracy as a function of the number of training examples 
(“learning curves”), with and without advice 
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Fig. 2. Experiment B: Impact of errors of omission in advice. The x axis indicates the 
probability value used in the advice-removal process (see text). 
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Fig. 4. Experiment C: The impact of mislabeled examples under various conditions. The x-axis 
indicates the percentage of training data that is mislabeled.  
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We randomly drop literals as follows. For each advice rule we flip a weighted coin, 
and it if comes up ‘heads’ we delete the last literal in the rule. If we deleted the last 
literal, we flip the coin again and consider deleting the second-from-last literal; this 
continues until either the rule’s literals are exhausted or the coin comes up ‘tails.’ In 
the later case, we place the possibly truncated advice rule in our “noisy” advice set. 
We choose to remove from the end of advice rules, since prefixes of conjunctive rules 
are likely to be partially coherent, whereas dropping literals from the middle of multi-
literal (i.e., conjunctive) statements may lead to nonsensical advice. A topic for future 
research is to create more realistic models of imperfect advice. 

Figure 2 shows the results of our errors-of-omission experiment, where we plot the 
test-set accuracy as a function of the probability of randomly removing each literal as 
specified above. For each selected probability-of-removing, we generated 30 
independent “noisy” advice sets for each of our 14 lessons. The impact of noisy 
advice depends on the number of training examples, so we perform this experiment 
using 2 and 100 training examples.  

The behavior of the system with different training set sizes is nearly identical with 
the test-set accuracy dropping steadily as increasing fractions of advice literals are 
removed. However, with advice-omission rates as high as 50%, and with a small 
number of examples, the ONION is able to produce average test-set accuracies of over 
80%. This demonstrates that even partial advice can be effective for learning, and that 
the ONION is able to leverage this information effectively even in the presence of 
significant imperfections in advice. 

Experiment C. In this final experiment, we compare the performance of the ONION 
with and without advice in the presence of mislabeled training examples. Figure 4 
shows the results; we plot test-set accuracy as a function of the percentage of 
mislabeled examples. We generate the noisy examples by first removing examples 
that have advice attached from the set of training examples. With the remaining 
training examples, we randomly select a fraction of the examples and flip their labels. 
We then replace the examples with attached advice into the training set. Care was 
taken to guarantee that the final fraction of mislabeled examples was correct when the 
examples with advice added back into the training set. This approach to noise 
generation limited the range of noise available, especially for small training sets. For 
instance, if we have a training set size of four and two of those were examples with 
advice attached, the minimum amount of noise that can be considered is 25% (the 
result of flipping a single, non-advice, example). 

For experiment C, we generate 30 independent sets of mislabeled examples and, 
separately, ran with and without advice using each of these noisy data sets. The 
results are averaged over all random 30 runs and over all 14 tasks. As expected, the 
example noise reduces the performance of both the advice-free and with-advice cases. 
The main result from Figure 4 is that our advice algorithm, combined with the ONION, 
performs well even in the presence of large amounts of data noise. In contrast, the no-
advice case degrades more quickly to about the level of random guessing (57%). 

In summary, our experiments demonstrate that our advice-taking ILP system can 
learn well from advice about a small number of specific examples, while being robust 
to errors in advice and example labels. They also show that our ONION approach can 
be an effective method even when users provide no advice. 
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5   Related Work 

ILP research has a rich history of developing systems capable of initiating human-
computer interaction and using them guide and constrain the search. The most notable 
such systems include MARVIN [15], MIS [16], DUCE [10], CIGOL [9] and CLINT 
[2] where the algorithm can ask the human one or more questions that would guide 
the search. For example MIS relied on the human answering queries by providing the 
labels of examples, together with a proof, or derivation, for each positive response. In 
contrast, in our present work the human initiates the input by providing advice, either 
in general or in association with the original training data.  

Another general area of related work is theory refinement or theory revision (e.g., 
[7, 13, 19, 20]) where the user provides an initial logical theory that explains many 
and not all examples, and the learning system must modify this theory. As a result the 
search is constrained to prefer theories close to the original theory, similar to the 
present work. But a key distinction is that the advice in our present work is example-
specific, which can substantially ease the burden on the user, as compared to 
expressing abstract rule(s) underlying the concept. 

Our work is closely related to argument-based machine learning (ABML [8]) that 
takes as input user-provided advice about specific examples, in the form of an 
argument. A key distinction is that the present work does not assume the arguments 
are exactly correct and therefore may combine various pieces of different arguments 
in order to construct rules. Another distinction is that to our knowledge ABML has 
been applied strictly to propositional-rule learning. 

Automatic parameter selection for machine learning methods has been explored 
earlier [5], where the goal is to use the expected error for each parameter setting to 
guide the selection of the parameters for decision trees. Lavrac et al. [6] proposed a 
feature selection framework for ILP that worked well in propositional learning and 
special cases of relational learning. This was later extended by Alphonse and Matwin 
[1] using powerful statistical feature-selection techniques to control the dimensionality 
of the search space. The key idea in their work is to reduce ILP examples to non-
recursive Datalog clauses by removing irrelevant literals. Muggleton [11] theoretically 
shows that as the number of predicates in the background theory increases, the size of 
the search space of an ILP system can increase greatly. This necessitates the 
intervention of an ILP expert who can reduce the search space. In such a context, 
relevance information becomes crucial. Srinivasan et al. [17] conducted an empirical 
study in several biomedical domains and concluded that when not all the background 
knowledge can be used, the relevance information from the expert is very useful in 
construction of good domain models.  

6   Conclusions and Future Work 

Not surprisingly, teacher advice is useful to learning. The key challenge is the need to 
generalize hints and advice the teacher gives about specific examples so that it 
accurately applies to future examples. We present a formal approach to incorporating 
this into the wider framework of ILP. The empirical results show that our system is 
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able to learn well, across multiple concepts, from a combination of training examples 
and teacher-provided hints. Running our ILP system without these hints − i.e., only 
using the training examples – also produces reasonable accuracies on held-out (“test 
set”) examples. Another key challenge is effective parameter selection and the 
automation of the ILP-setup task. The final challenge is to ensure that the system is 
robust to noise, both in examples and in advice. 

We evaluated our algorithms, holding all default parameter settings constant, on 14 
tasks from two domains designed by third-parties not under our control; these human 
teachers provided training examples as well as relevance information. In our 
experiments, we demonstrated that our system, the advice-taking ONION, is capable of 
(1) effectively automating the ILP-setup task over different tasks from significantly 
different domains, (2) exploiting teacher hints and relevance information to learn 
concepts with near-perfect test-set accuracies even if given only a small set of training 
examples, (3) performing effective parameter selection to learn concepts well when 
there is no teacher advice, (4) being robust to example-label noise that can arise from 
teachers’ errors of commission, and (5) being robust to advice noise that is likely to 
arise from teachers’ errors of omission.  

Currently, we are focusing on improving our layered approach, to more robustly 
automate ILP in tasks that are more complicated. Also, we are currently looking at 
further exploiting teacher-provided feedback beyond statements about which features 
and objects are relevant, such as allowing teachers to provide corrections to previous 
advice statements. A possible future direction is to explore the possibility of refining 
the learned theories using teacher feedback in the lines of theory refinement for ILP 
[8, 11, 12, 13, 14]. Refining teacher's advice is important as it renders the ILP systems 
more robust to teacher errors that occur naturally in human teaching. Another future 
direction is deploying our approach in the context of probabilistic-logic learning [4]. 
A final appealing direction of this research is to embed it into some user interface 
where a human can train their software by a combination of making simple English 
statements, pulling down menus and selecting items, and gesturing at objects (e.g., 
clicking with the mouse, a pen, or even one’s finger) to indicate relevance and objects 
of discourse (“this object should not be near that one”). 

In this work, we considered the problem of simplifying the use of ILP for non-ILP 
experts. More precisely, we considered a human teacher who is trying to teach an ILP 
learner using a mixture of examples and advice about these examples. We outlined 
the challenges and presented solutions for the generation of background knowledge 
from teacher advice, utilizing a layered ILP-search approach. 

Acknowledgements 

The authors gratefully acknowledge the support of the DARPA’s Bootstrap Learning 
program via the United States Air Force Research Laboratory (AFRL) under grant 
HR0011-07-C-0060. Views and conclusions contained in this document are those of 
the authors and do not necessarily represent the official opinion or policies, either 
expressed or implied, of the US government, DARPA, or AFRL. 



268 T. Walker et al. 

References 

1. Alphonse, E., Matwin, S.: Feature subset selection and inductive logic programming. In: 
Proceedings of the 19th Intl. Conf. on Machine Learning, pp. 11–18 (2002) 

2. De Raedt, L.: Interactive Theory Revision: An Inductive Logic Programming Approach. 
Academic Press, London (1992) 

3. Finn, P., Muggleton, S., Page, D., Srinivasan, A.: Discovery of pharmacophores using the 
inductive logic programming system Progol. Machine Learning 30, 241–270 (1998) 

4. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT Press, 
Cambridge (2007) 

5. Kohavi, R., John, G.: Automatic parameter selection by minimizing estimated error. In: 
Proceedings of the 12th International Conf. on Machine Learning, pp. 304–312 (1995) 

6. Lavrac, N., Gamberger, D., Jovanosk, V.: A study of relevance for learning in deductive 
databases. Journal of Logic Programming 40, 215–249 (1999) 

7. Mangasarian, O., Shavlik, J., Wild, E.: Knowledge-based kernel approximation. Journal of 
Machine Learning Research 5, 1127–1141 (2004) 

8. Mozina, M., Zabkar, J., Bratko, I.: Argument based machine learning. Artificial 
Intelligence 171, 922–937 (2007) 

9. Muggleton, S., Buntine, W.: Machine invention of first-order predicates by inverting 
resolution. In: Proceedings of the 5th Intl. Conf. on Machine Learning, pp. 339–352 (1988) 

10. Muggleton, S.: DUCE, an oracle based approach to constructive induction. In: Proceedings 
of the International Joint Conf. on Artificial Intelligence, pp. 287–292 (1987) 

11. Muggleton, S.: Inverse entailment and Progol. New Generation Comp. 13, 245–286 (1995) 
12. Oblinger, D.: Bootstrap learning - external materials (2006),  

http://www.sainc.com/bl-extmat 
13. Pazzani, M., Kibler, D.: The utility of knowledge in inductive learning. Machine 

Learning 9, 57–94 (1992) 
14. Richards, B., Mooney, R.: Automated refinement of first-order Horn-clause domain 

theories. Machine Learning 19, 95–131 (1995) 
15. Sammut, C.: Learning Concepts by Performing Experiments. Ph.D. Dissertation, 

Department of Computer Science, University of New South Wales (1981) 
16. Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press, Cambridge (1983) 
17. Srinivasan, A., King, R.D., Bain, M.E.: An empirical study of the use of relevance 

information in inductive logic programming. JMLR 4, 369–383 (2003) 
18. Srinivasan, A., Muggleton, S., King, R.: Comparing the use of background knowledge by 

inductive logic programming systems. In: Proc. 5th ILP Workshop (1995) 
19. Srinivasan, A.: The Aleph Manual,  

http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/
aleph.html 

20. Towell, G., Shavlik, J.: Knowledge-based artificial neural networks. Artificial 
Intelligence 70, 119–165 (1994) 

21. Walker, T.: Broadening the Applicability of Relational Learning. Ph.D. Dissertation, 
Computer Sciences Department, University of Wisconsin – Madison (forthcoming, 2011) 



Speeding Up Planning through Minimal

Generalizations of Partially Ordered Plans
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Abstract. We present a novel strategy enabling to exploit existing plans
in solving new similar planning tasks by finding a common generalized
core of the existing plans. For this purpose we develop an operator yield-
ing a minimal joint generalization of two partially ordered plans. In three
planning domains we show a substantial speed-up of planning achieved
when the planner starts its search space exploration from the learned
common generalized core, rather than from scratch.

1 Introduction

Automated planning has been a core area in artificial intelligence research for
decades [1]. Nevertheless, novel planning algorithms are still being designed and
several international annual competitions demonstrate the perpetual improve-
ment in their performance. Of course, this unceasing progress also indicates the
persisting room for improvement. To this end, a lively research direction aims at
improving a planner by exploiting experience obtained in previously completed
planning tasks. This general strategy has a clear motivation in that a typical
deployment of a planner is in repetitive planning tasks only slightly varying in
their initial conditions and desired goals. The specific approaches to exploiting
previous plans differ mainly in two respects: what kind of knowledge they extract
from the old plans, and what techniques they employ for that extraction.

As for the former aspect, a popular state-of-the-art approach is to look for
structures (e.g. sequences) of actions that are frequently found in the plans [2–
4]. Such actions are then glued into a single macro-operator made available to
the planner. In other approaches [5, 6], control rules are extracted serving as
heuristics for the choice of a suitable action given the preceeding actions already
in the plan.

As for the latter aspect, techniques for analyzing previous plans may roughly
be projected onto a spectrum between the ‘deductive’ and ‘inductive’ extremes.
An example of the deductive approaches is [4] which determines the dependence
structure in plans and suggests action sets which can act as macro-operators.
Halfway in the spectrum are algorithms which search frequent action-set patterns
in a narrowly prescribed form [3]. Lastly, established machine learning algorithms
have also been explored in this context, such as for learning Markov chains for
probabilistic description of action sequences [6].

P. Frasconi and F.A. Lisi (Eds.): ILP 2010, LNAI 6489, pp. 269–276, 2011.
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270 R. Černoch and F. Železný

Here we are mainly interested in learning from plans using the expressive for-
malism of first-order logic. This is a natural choice since planning problem de-
scriptions and plans themselves are typically encoded in fragments of first-order
logic. Previous research in this direction explored the application of explana-
tion based learning [7]. Also ILP applications in the planning area have been
reported, dating back to early works on relational reinforcement learning [8].
ILP has also been employed for the already mentioned standard task of learning
control rules [9, 10].

By commonsense assessment of all the above reviewed approaches, we think
they share one important deficiency. If we apply a planning algorithm repeatedly
with only slightly varying task descriptions, we may expect the resulting plans to
also vary only slightly. In other words, they may share a very large core structure,
perhaps even containing the majority of actions inside the plans. Under such
circumstances, it is clearly underambitious to use old plans only for seeking small
nuggets such as control rules or search heuristics. Indeed, it is more adequate to
directly determine the entire common core of the plans rather than just learn
heuristics to guide their reconstruction. Finding such largest common cores is
the goal pursued by the current study. The way such findings will be exploited by
the planner is also different from the current approaches. Rather than producing
new macro-operators or control rules, the discovered core plan structure will
directly be used as an initial incomplete plan to be refined by the planner towards
satisfying all initial conditions and goals of the current task. In other words,
rather than equipping the planner with new operators or heuristics, we will
advise a specific place in its search space where to begin the plan refinement.

Finding shared plan cores does not simply correspond to detecting the largest
set of actions found in all input plans. Roughly, there are two factors making
the problem more complicated and interesting. First, we must respect action
dependencies reflected by a partial order defined on each input plan. Second,
in learning a plan core, we should be able to abstract e.g. from domain-specific
object names by means of variables. The presence of a candidate structure in
a plan will thus be checked in a way more resembling θ-subsumption than the
subset relation.

In terms of description complexity, plan cores will obviously be larger than
learned control rules or heuristic functions. It is unrealistic to expect that top-
down (general-to-specific) learning approaches would scale to searching among
candidate structures possibly containing tens or hundreds or more actions. We
therefore base our approach on a bottom-up strategy where input plans are jointly
generalized. The central operator we develop and employ for this purpose is one
that produces a minimal joint generalization of two partially ordered plans. The
operator is obviously inspired by Plotkin’s least general generalization [11] of
clauses. Unlike operators previously developed for totally ordered clauses [12, 13],
here we work with partial orders.

The paper is organized as follows. In the next section we explain the method
for the joint generalization of partially ordered plans. In Section 3 we evaluate
the method empirically and in Section 4 we conclude the paper.
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2 Method

A plan is simply a partially ordered set of actions, where an action is a first-order
atom such as pickup(block, lefthand).

Definition 1. A plan P = (A,≤) consists of a set of atoms A = {a1, ..., an}
and a reflexive, transitive and antisymmetric relation ≤ on A.

Note that terms in actions need not be ground. In fact, in what follows we
specifically aim at generalizing plans and in so doing, we will turn constants
into variables. Such generalized non-ground plans will act as a starting point for
further refinements conducted by a planner in a new learning task, and variables
will be grounded only as a result of these refinements.

Further in the text we will denote the transitive reduction of ≤ as ≤0. Using
the antisymmetry of ≤, the transitive reduction ≤0 is always unique. We now
proceed to defining a generality order on plans using the well known concept of
OI-substitution [14], in which the variable-term mapping is injective.

Definition 2. Let K = (AK ,≤K), L = (AL,≤L) be plans. Plan K subsumes
plan L iff there is an object-identity (OI) substitution θ such that

AKθ ⊆ AL and ≤0
K θ ⊆ ≤0

L .

We will denote the subsumption relation as K �θ L.

Example 1. Consider the following plans:

L = ({m = pick(box), n = move(a,b), o = drop(box)}, {m ≤ n, n ≤ o})
K1 = ({p = pick(Z ), q = move(a,b)}, {p ≤ q})
K2 = ({r = pick(X ), s = drop(Y )}, {r ≤ s})

Obviously we can see that K1�θL, where θ = {Z\box}. Then note that K2 �/ θ L,
because subsumption is defined through the transitive reduction ≤0 rather than
the partial order ≤ itself.

The reason for relying on OI-substitution as opposed to its standard counterpart
is straightforward. If we had used standard substitution, several actions in a
generalized plan could correspond to a single action in the more special (training)
plans. This would be counter-intuitive: if all training plans contain a pick action
only once, we do not want the generalized plans to contain this action multiple
times (e.g., contain both pick(box, X, robot)) and pick(box, room, Y )).

Example 1 emphasizes the fact that the definition of � subsumption uses the
transitive reduction ≤0 rather than the transitive relation ≤ itself. The reason
is that generalized plans should not contain two preceding actions regardless of
what happens in-between. Instead we seek sets of actions, which are executed in
a block without being interleaved by any other actions.

Using the generality order we now define common generalization of plans.



272 R. Černoch and F. Železný

Definition 3. Let G, K, L be plans. Plan G is a generalization of K and L
(G = K �L) iff G�θ K, G�θ′ L and the order of generalized actions is preserved:

∀a, b ∈ AG. (a ≤G b) → (a θ ≤K b θ) ∧ (a θ′ ≤L b θ′)

The generalization G of K and L is called a minimal generalization iff
G = K � L and there is no G′ such that G �= G′, G � G′ and G′ = K � L.

Example 2. In general, there can be multiple minimal generalizations of two
plans. Consider the plans

K = ({P(a,b), P(c,d)}, P(a,b) ≤ P(c,d))
L = ({P(a,d)}, ∅)

for which we want to find minimal generalizations. If P(a,d) from L is identified
with P(c,d) from K, their minimal generalization is G1 = P(X , d). Alterna-
tively we can identify P(a, d) with P(a, b), which gives a minimal generalization
G2 = P(a,Y ). Note that neither G1 �G2 nor G2 �G1 and no more specific gen-
eralizations can be found. Hence both G1 and G2 are minimal generalizations of
K and L.

This process described above will give rise to the the definition of least general-
ization with respect to a given mapping1 between atoms of generalized plans.

Definition 4. Let K, L, G be plans. Let there be an injective partial function
f : AK → AL. Then we say that G is the least generalization of K and L with
respect to f iff G = K � L, G �θ K and G �θ′ L, where θ and θ′ are obtained
from the anti-unification algorithm on pairs (k, f(k)), where k ∈ domain(f).

The definition of least generalization with respect to a mapping is practical
for finding minimal generalizations. It reduces the task to finding a correspon-
dence between atoms in plans, because the θ substitutions are obtained from the
deterministic anti-unification algorithm. Relying on the above introduced con-
cepts, we designed an algorithm for finding minimal generalizations of 2 plans
(K and L):

1. The essential phase constructs the mapping f : AK → AL with a depth-first
search approach. Initially f is empty. A pair of actions from K and L is
added to f if they share the predicate symbol (which represents the action
name). Then the relations ≤′{K,L} are constructed as subsets of ≤{K,L} on
all atoms present in A{K,L}.
If these relations satisfy the conditions in Definitions 2 and 3, the algorithm
iterates with the newly constructed f . Otherwise the new f is discarded and
the algorithm backtracks.
The first phase ends if it is not possible to add any more actions into f .

2. The atoms AG in the generalized plan G are obtained from the anti-unification
algorithm on pairs of atoms in f .

3. The relation ≤G is taken directly from ≤′
K and ≤′

L. Note the given the con-
ditions in Definitions 2 and 3, both relations should have the same structure.

1 The mapping corresponds to the concept of selection used in ILP literature.
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3 Experiments

Here we test whether our plan-generalization approach allows to reduce planning
times when compared to two baseline planning regimes.

Materials. In all experiments, we employ the Plan-space algorithm [1] as a rep-
resentative of planning algorithms using the classical STRIPS representation
based on first-order logic. Plan-space is a backward-chaining planning algorithm
with the “least-commitment strategy”: 2 actions are not ordered unless they are
required to. Hence the produced plan is a partially-ordered set of actions unlike
the case of state-space planning.

We have used 3 different planning domains (gold-miner, rover, and gripper)
each containing a single “etalon” problem. A problem is a tuple (I, G) where I
is the set of initial conditions and G is the set of goals. The etalon problem for
domain d is denoted (Id, Gd). As further experimental material, we use random
planning problems (I, G) generated from the etalon problems in such a way that
I = Id while G contains goals randomly sampled from Gd. Given that the etalon
problems are solvable, it follows that these randomly generated problems are
also solvable.

Table 1. Properties of the etalon problem in all domains

Domain Initial propositions Goal propositions Plan length Time to solve

gripper 9 7 9 7m

goldminer 26 5 9 42m

rover 18 8 8 1h 15m

Step 4.

Domain specification

training prob. testing prob.

Planner

Planner
Planner

training
plans

Generalize plan core

P

N plans
in total

Planner Step 6.

Step 5.

Fig. 1. Workflow of the testing process

Protocol. We tested our approach using the following workflow (refer to Fig. 1)
reflecting its anticipated use. For each domain d, each S ∈ {20%, 40%, 60%, 80%}
and each N ∈ {3, 4, 5}:
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Fig. 2. Relative runtimes corresponding to Steps 4 (‘learned cores’) and 6 (‘single
plans’) of the experimental protocol. The runtime for Step 5 of the protocol, i.e. for
planing from scratch, corresponds to 100% in the figure.

Table 2. Effects of plan cores on the variance of runtimes. The values are standard
deviations divided by the mean of the runtimes from Steps 5 and 4 of the protocol,
factorized over S.

S From scratch Plan-core

20% 209% 499%

40% 486% 498%

S From scratch Plan-core

60% 441% 656%

80% 158% 630%

1. We generate the set P of all planning problems (Id, G) such that G ⊆ Gd and
|G|
|Gd|

.= S. The latter condition states that the goal sets of the two problems
are similar to the degree of S.

2. We randomly pick N problems from P to act as the training problems. For
each of these problems, the planner generates its optimal plan. These plans
constitute the training set. We further pick another, testing problem from P .

3. Plan cores are obtained by generalizing the training plans according to the
method described in Section 2. Since the method produces multiple possi-
ble joint generalizations, we randomly pick 30 distinct plan cores from the
resulting set for evaluation.

4. For each of the 30 plan cores, the planner is launched on the testing problem,
starting from a partially constructed plan corresponding to the plan core,
and runtime needed to generate a plan is measured, and then averaged over
the 30 plan cores.

5. As in Step 4 but the planner starts from scratch rather than from the learned
plan core.

6. As in Step 4 but the planner starts from a partially constructed plan corre-
sponding to a single plan randomly selected from the training plans, rather
than from the learned plan core.
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Fig. 3. Average runtimes for learning (top) and planning (bottom) as a function of the
number of training plans

Considering Step 1, simple statistical reasoning yields that the smaller the
value of S is, the less the training problems generated in Step 2 will be mutually
similar, and the less the testing problem will be similar to the training problems.

By comparing results from Steps 4 and 5, we shall assess the influence of
our approach to exploiting existing plans, against the situation where existing
plans are completely ignored. However, comparing results of Steps 4 and 6 is
also important, since Step 6 represents a trivialized variant of our approach,
in the sense that it does not require joint generalization of training plans. By
this comparison, we thus evaluate the added value brought by the extra theory
developed in Section 2.

Results. Fig. 2 shows the resulting runtimes factorized by the 3 strategies cor-
responding to Steps 4, 5, 6 and the value of S, and averaged over the remaining
parameters d and N . Planning procedures not terminating in 1 hour were cur-
tailed and assigned the 1 hour runtime value.

Despite the small slowdown for S = 60% and the increased variance in run-
time, the overall results show that plan cores improved the efficiency of the
planner. The overall average result with plan cores achieved 39% runtime of
the original. Importantly, results for the scenario where the planner used single
training plans instead of generalized plan cores show approximately 10× increase
in runtime, which justifies the usage of the learning algorithm.

Of relevance, the absolute time needed for learning is rather negligible in com-
parison to planning runtimes. This follows from Fig. 3 which plots the runtimes
for learning and runtimes for planning using generalized plan cores, factorized
by N (i.e., the number of used training plans) and averaged over S and d. Ex-
pectedly, the learning times grow and the planning times fall as N increases and
its optimal value is, in general, a matter of trade-off.

4 Conclusions

We presented a novel strategy enabling to exploit existing (training) plans in
new similar planning tasks by finding a common generalized core of the training
plans. In experiments, we showed a substantial speedup of planning resulting
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from using this strategy. We tested our method in the envisioned application
scenario where new planning tasks differ only slightly from the completed tasks
used for learning. In particular we assumed that the old and new tasks share the
same initial conditions and their goal sets are randomly sampled from the same
base. In future work, it would be interesting to refine and test our method also
in different instantiations of the similarity assumption, e.g. by allowing that the
initial conditions of the new tasks may be different from those of the completed
tasks.
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