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Abstract A zoonosis or zoonose is any infectious disease that can be transmitted

from non-human animals, both wild and domestic, to humans. Infectious diseases

transmitted from humans to non-human animals is sometimes called reverse zoonosis

or anthroponosis. Sixty one percent of the pathogens known to affect humans

are zoonotic. Biofilm formation is used as a mechanism by zoonotic and environmen-

tal pathogens to infect animals and humans. It has been suggested that biofilms

are involved in 65–80% of infections treated by doctors in developed countries.

Microorganisms can resist extreme temperatures, antibiotic treatments and low levels

of nutrients by forming biofilms. Therefore the selection of the right antibiotics to treat

human and animal infections caused by biofilms is paramount. It is apparent that

more research into biofilm infections in humans and animals, biofilm resistance

mechanisms and new strategies for effective treatment need to be developed.

1 Introduction

As mentioned throughout this book, biofilm is a term used to refer to a “vast number

of microbial aggregates” as reported by Julian Wimpenny in (2000). However,

through the last decade different definitions of biofilms have been reported in

the literature as new discoveries in biofilmology are being made. Today biofilms

can be defined as a community of microbial organisms which become adherent to

each other to form microcolonies. The presence of microcolonies is used as a
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biomarker for the existence of biofilms. Microcolonies are encased in a matrix of

extracellular polymeric substances (EPS) and have been identified in the sputum of

cystic fibrosis patients (Bjarnsholt et al. 2009), in chronic wounds (Cochrane et al.

2009) and on catheters (Percival et al. 2005).

Biofilm aggregates have also been found in anthropogenic and natural aquatic

environments and are known to harbour pathogenic organisms that may be trans-

mitted to humans (Jennings et al. 2003; Knulst et al. 2003). Consequently, the

dissemination of a biofilm known to harbour pathogens is considered to be a public

health hazard, particularly in hospital environments. In fact, recent findings have

suggested that biofilm dissemination is akin to metastasis of a tumour and as such

the detached biofilm fragments might cause serious problems when they detach

within the circulatory system of both humans and animals (Stoodley et al. 2001).

Detached biofilm fragments once in the circulatory system are free to colonise new

niches and as such have been linked to conditions such as endocarditis.

From an evolutionary and natural selection process, the ability of a microorgan-

ism to form a biofilm is very important since this phenotypic state will aid in and

promote a greater flexibility in microbial adaptation (O’Toole and Kolter 1998;

Van Loosdrecht et al. 2002; Costerton et al. 2003).

2 Biofilm Formation and Composition

Bacterial components such as flagella,membrane proteins, pili and fimbriae have been

shown to have a role to play in attachment to surface and therefore in biofilm formation

(Cloete et al. 1989; Prakash et al. 2003; Lelieveld 2005). The presence of flagella

and fimbriae is very important in adhesion as they are able to overcome the repulsive

forces bacteria encounter when they first attach to a surface (Corpe 1980; Korber et al.

1989; O’Toole and Kolter 1998; Pratt and Kolter 1998; Giron et al. 2002).

Proteomic studies involving Pseudomonas aeruginosa biofilms have enabled

identification of the stages bacteria go through during adhesion and biofilm forma-

tion, a commonality shared by most if not all prokaryotes. The non-specific binding

of bacteria to a surface followed then by multiplication of the adherent micro-

organisms is the first steps to biofilm formation, as discussed in Chap. 2. Following

microbial adhesion the microorganisms multiply, produce EPS culminating in the

formation of microcolonies. These microcolonies are maintained and supported at

the surface by fluid flow and overtime result in the formation of a “mature” biofilm.

The architecture of the “mature” biofilm is affected by the abundance, or limited

availability, of nutrients and pH. Biofilms are highly heterogeneous and within

in vitro models they have been shown to be complex, being composed of features

such as stacks, mushrooms, water channels and streamers. Within a natural biofilm

a similar architecture to that found in the in vitro biofilm has been hypothesised to

occur. However, within these natural biofilms a more diverse microflora composed

of fungi, bacteria, algae and protozoa have been reported which have displayed

features significantly different to those observed in pure culture models. A biofilm
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is able to modulate its internal environment significantly aiming to add stability and

protection for the inherent microorganisms present. Whilst the biofilm matrix is in a

constant nutritional and biochemical flux a balance between the inherent microbiota

of the biofilm is achieved through microbial commensalism, antagonism, mutual-

ism and competition (Lelieveld et al. 2001; Sauer et al. 2002; Prakash et al. 2003;

Bartram 2007).

Microbial biofilms which are formed on the surfaces of normal human tissues are

purported to offer protection to the host. This phenomenon has been named as the

“mucus blanket”. It covers the trachea and intestine aiding protection from invasive

pathogens (Lambe et al. 1991; Costerton et al. 2003). Biofilms formed by commen-

sal bacteria attached to gut epithelial cells represent a barrier against foodborne

pathogens by preventing their attachment (Lee et al. 2000).

Dental plaque on teeth, in both healthy and diseased mouths, is a known biofilm.

The microbial composition of these biofilms has been shown to have important

implications to health and disease in both animals and humans (Bradshaw et al.

1996; Parsek and Fuqua 2004). In fact, it has been shown that intrauterine infections

can be caused by microorganisms initially present in the oral cavity (Fardini et al.

2010). Preterm birth can be caused by infection of the intrauterine environment.

Traditionally it has been stated that intrauterine infections predominantly originate

from the vaginal tract. However, thanks to technological advances, microbial

species that do not belong to the vaginal microflora have been identified in

intrauterine infections. Fardini et al. (2010) systemically examined what proportion

of the oral microbiome could translocate to the placenta using pregnant mice.

Several bacterial species that have been associated with intrauterine infections in

humans were identified and the majority of these species were oral commensal

organisms. Interestingly, some bacterial species were present with a higher preva-

lence in the placenta than in oral cavity samples and therefore it was concluded that

the placental translocation was species specific.

Many areas of the human body constitute anatomical barriers for preventing the

formation of biofilms such as epithelial cells found within the bladder (Uehling

1991). Some organs like the liver need to be maintained in aseptic conditions and as

such biofilm development is rare on these organs (Sung et al. 1992).

The formation of biofilms is a dynamic and complex process generating an

architecture which aims to protect the inherent microorganisms from chemical

or physical removal in some areas and allowing them to colonise new niches

(Wimpenny et al. 2000; Allison 2003; Hall-Stoodley et al. 2004; Clutterbuck et al.

2007). Studies have shown that adverse conditions promote biofilm formation and

also dispersal (van derWende and Characklis 1990; Stoodley et al. 2002). It has been

suggested that biofilm formation might select in favour of virulent microbial strains

(Declerck 2010). It is well documented that some bacteria might help other

microorganisms to resist adverse conditions. For example, in biofilms composed

ofPseudomonas fluorescens their presence has been shown to increase the resistance
of Salmonella typhimurium to chlorine (Leriche and Carpentier 1995). In addition to

this, Staphylococcus aureus, a common causative agent of community-acquired and

hospital-acquired infections, has been shown to be able to survive and colonise a
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range of environments due to its metabolic versatility and potential to form

a recalcitrant biofilm (O’Neill et al. 2007).

Genetic and environmental factors influence biofilm formation. The genes

expressed in bacteria present in biofilms are reported to differ significantly from

the genes expressed in the same bacteria in free-living form. In fact, expression of

particular genes such as those that regulate flagella, surface-adhesion proteins and

the formation of the extracellular matrix seems essential for biofilm formation

compared to planktonic phenotypes (Cramton et al. 1999; Whitchurch et al. 2002;

Valle et al. 2003; Hall-Stoodley et al. 2004). Advances in molecular technologies

such as microarrays and proteomics have been used to investigate gene expression

in cells forming biofilms advancing further our understanding of biofilms (Sauer

et al. 2002; Tremoulet et al. 2002; Wagner et al. 2003).

3 Exploring Public Health Aspects and Zoonotic Potential

of Biofilms

Biofilms have been present since prehistoric times, especially in hydrothermal

environments (Hall-Stoodley et al. 2004). They have a role to play in nutrient

cycling and from an environmental perspective they can be beneficial in different

ways. In addition, biofilms are useful for water treatment, bioremediation and

providing colonisation resistance against pathogens on natural mucosal surfaces

(Lebeer et al. 2007; McBain 2009). However, they also have adverse effects by

causing infections of humans and animals. In fact it has been suggested that

biofilms are involved in 65–80% of infections treated by doctors in developed

countries (Ghannoum and O’Toole 2004). Zoonotic and environmental pathogens

use biofilm formation as a mechanism to infect animals and humans.

Biofilm formation is one of the most important virulence factors for the devel-

opment of staphylococcal infections. A number of factors are known to induce

biofilm formation in staphylococci, including MRSA and MSSA. The presence of

glucose is an example, while sodium chloride seems to induce biofilm formation

in MSSA isolates. Sodium chloride is known to activate the transcription of ica
operon and MSSA biofilm formation is dependent on icaADBC operon while

MRSA biofilm formation is icaADBC independent (Fitzpatrick et al. 2005;

O’Neill et al. 2007).

The formation of biofilms allows microorganisms to survive hostile

environments and to resist conventional treatments. In fact, the formation of biofilms

seems to be the preferred method of growth for microbial organisms (Costerton et al.

1999; Watnick and Kolter 2000; Webb et al. 2003; Parsek and Fuqua 2004). By

forming biofilmsmicroorganisms can resist the constraints of extreme temperatures,

antibiotic treatments and low levels of nutrients (Prakash et al. 2003; Bartram 2007).

They are also highly resistant to acid treatments, dehydration exposure to UV light

and phagocytosis (Jefferson 2004; Hall-Stoodley and Stoodley 2005). Whilst UV

light has been successfully used against pathogenic microorganisms such asGiardia
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muris, Bacillus subtilis, Cryptosporidium parvum and Legionella pneumophila in

experimental conditions, it has shown to be ineffective against biofilms in water

systems (Zhang et al. 2006).

Human infections associated with biofilm formation frequently involve micro-

bial colonisation of medical devices (Lynch and Robertson 2008). Microorganisms

can form biofilms in hospital water and medical equipment used to treat humans

and animals. In fact, biofilm formation has been associated with persistent

infections in medical tools such as Mycobacterium avium infection in an intravas-

cular catheter (Schelonka et al. 1994). Changes induced by biofilm formation in

intravascular catheters are known to result in total obstruction of the catheter which

has led to the development of novel anti-biofilm agents (Stickler et al. 1993;

Percival et al. 2009). Biofilm infections of medical devices seem more commonly

associated with urinary catheters (Darouiche 2001; Donlan and Costerton 2002;

Kite et al. 2004). Several pathogens of public health importance such as E. coli,
S. aureus, Clostridium perfringens and Candida have been isolated from biofilms

contaminating medical devices. In particular, S. aureus infections tend to be more

acute producing an acute immune response and significant tissue damage (Lynch

and Robertson 2008). Biofilm infections of Candida albicans have been associated

with high mortality (Kojic and Darouiche 2004: Ramage et al. 2005). Biofilm-

forming S. aureus and S. epidermidis have been isolated from humans (Krepsky

et al. 2003), dialysis medical devices (Chaieb et al. 2005), bovine mastitis

(Vasudevan et al. 2003) and food processing environments (Moretro et al. 2003).

Biofilm formation has been suggested as a risk factor for chronic bovine

intramammary infections caused by S. aureus. In fact, chronic mastitis caused by

S. aureus can be very difficult to treat due to antibiotic resistance (Taponen et al.

2003; Cucarella et al. 2004; Fox et al. 2005). Furthermore, S. aureus could be

present in milk and dairy products derived from animals with clinical or subclinical

mastitis. Dairy cattle suffering from clinical mastitis should be milked last and/or

using separate milking equipment if possible. In fact, animals suffering from

mastitis should be treated and their milk should not be used for human or animal

consumption. However, subclinical mastitis might not be diagnosed posing a risk to

public health; the use of pasteurisation and decontamination technologies has been

recommended as part of food safety assurance systems applied to the production of

milk and dairy products.

Staphylococcus epidermidis present on human skin and P. aeruginosa, an

environmental microorganism, can cause serious chronic infections in compro-

mised hosts (Costerton et al. 1995). S. aureus and S. epidermidis are responsible

for medical device-associated biofilm infections. S. aureus (like P. aeruginosa) can
regulate virulence factors via two quorum-sensing (QS) systems (Yarwood et al.

2004). The production of adhesins by Staphlococci has been considered as the

best-understood mechanism of biofilm development (McKenney et al. 1998).

S. epidermidis has been recognised as a nosocomial pathogen causing human and

medical device-related biofilm infections. Tormo et al. (2005) demonstrated that

SarA represents an important regulatory element for S. epidermidis virulence factors
including biofilm formation. Genetic expression profiling of a S. epidermidis biofilm
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proved that this microorganism exhibited a varied range of genes expressed to

increase protection from antibiotics and from the host immune system during

biofilm infections (Yao et al. 2005). Regulatory genes such as agr and sarA are

responsible for the production of virulence factors by S. aureus and for the

expression of specific genes during different stages of infection and biofilm forma-

tion (Dunman et al. 2001). In fact, genes can be expressed or repressed during

biofilm formation and the use of transcriptome analysis identified 84 genes that

were repressed and 48 genes that were induced for S. aureus biofilm growth

(Beenken et al. 2004). Furthermore, mutations affecting sarA can inhibit S. aureus
biofilm formation while mutations affecting agr seemed to have a neutral or even

increasing effect on S. aureus biofilm formation (Beenken et al. 2003). Vectors

called staphylococcal cassette chromosome (SCC) contain the mecA gene respon-

sible for methicillin resistance that gets integrated into Staphylococci genetic

material to produce the MRSA phenotype (Baba et al. 2002; Boyle-Vavra et al.

2005; Jemili-Ben Jomaa et al. 2006). It has been recognised that mecA genes may

spread between humans via S. epidermidis (Silva et al. 2001) and 40% of healthcare

workers may carry the mecA gene on their hands (Klingenberg et al. 2001).

Furthermore, the zoonotic potential of the mecA mobile genetic element responsi-

ble for methicillin resistance exhibited by some microorganisms such as Stapy-

lococci has been recognised (Epstein et al. 2009) although more consideration

should be given to this zoonotic potential (Guardabassi et al. 2004; Morris et al.

2006; Vengust et al. 2006). In fact, the types of SSCmec found in pets are similar to

those found in humans (Malik et al. 2006). MRSA can be embedded in biofilms

conferring antimicrobial resistance properties. Furthermore, MRSA may form part

of biofilm infections in humans.

Biofilms are also responsible for chronic infections in the urinary tract. Manage-

ment of urinary infections and the use of a combination of antibiotics (fluoroquino-

lone and macrolide or fluoroquinolone and fosfomycin) should be considered to

treat biofilm infections in the urinary tract (Kumon 2000). Raad et al. (2007)

investigated the efficacy of different antibiotics against MRSA present in biofilms.

These authors concluded that newer antibiotics such as daptomycin, minocycline

and tigecycline should be used in combination with rifampin for antibiotic treat-

ment against MRSA infections. The incidence of MRSA infections is increasing

and the emergence of human MRSA infections in hospitals represents a major

public health concern (Panlilio et al. 1992; O’Neill et al. 2007). In fact, cross-

infection of MRSA between animals and humans has been recognised (Baptiste

et al. 2005; Witte et al. 2007) indicating the possibility that mecA genes could

spread across species (Boost et al. 2007).

Staphylococcus intermedius has been isolated from pigeons, dogs, dog bites-

wound sites (Talan et al. 1989; Futagawa-Saito et al. 2006), from human patients

after invasive procedures (Vandenesch et al. 1995) and a human patient with otitis

externa (Tanner et al. 2000). S. intermedius produces many virulence factors such

as coagulase, clumping factor, leukotoxin, enterotoxins and biofilm formation

(Raus and Love 1983; Futagawa-Saito et al. 2006). The production of extracellular

proteases has been recognised as an important virulence factor in S. aureus and
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S. intermedius (Karlsson and Arvidson 2002). Meticillin-resistant S. intermedius
(MRSI) is emerging as a pathogen of concern due to mecA gene acquisitions

(Bannoehr et al. 2007). In fact, the zoonotic potential of MRSI and biofilm-forming

S. intermedius from dogs to humans has also been recognised (Tanner et al. 2000;

Futagawa-Saito et al. 2006; van Duijkeren et al. 2008).

Animals might serve as reservoirs for pathogens causing periodontal disease in

humans. Porphyromonas gingivalis and Tannerella forsythia are highly prevalent

in humans with periodontitis. Interestingly, Porphyromonas and Tannerella spp.

can be present in the oral cavity of cats. A recent study conducted by Booij-Vrieling

et al. (2010) determined the presence and prevalence of Porphyromonas gulae, P.
gingivalis and Tannerella forsythia, and in the oral microflora of cats and their

owners by culture and polymerase chain reaction (PCR). This study suggested that

the isolates the owners were P. ingivali and those isolated from cats were P. gulae.
However, in one cat/owner couple the T. forsythia isolates were identical. There-

fore, it was hypothesised that transmission of T. forsythia from cats to owners

is possible and that cats may be a reservoir for this pathogen (Booij-Vrieling

et al. 2010).

Periodontal disease in humans has been associated with chronic obstructive

pulmonary disease (COPD). Leuckfeld et al. (2010) found high amounts of

Veillonella in the subgingival microflora of COPD subjects. These authors

identified subgingival Veillonella isolates by phenotypic and genetic methods in

order to assess if Veillonella strain properties correlated with periodontal disease or

COPD. The majority of the subgingival Veillonella isolates examined were

identified as Veillonella parvula. Furthermore, a subgingival and pulmonary isolate

obtained from one COPD subject was found to be genetically identical strains of

V. parvula. Small cocci co-aggregating with larger cocci on the airway epithelium

of this patient were observed by electron microscopy. However, no correlation

between the subgingival Veillonella strains and the presence of periodontitis or

COPD was found. These authors concluded that subgingival V. parvula can trans-

locate to the lungs but no particular Veillonella genotype could be associated with

periodontal disease or COPD.

L. pneumophila is considered responsible for 90% of human legionellosis cases

causing pneumonic and non-pneumonic disease (Yu et al. 2002). Legionella grows

at high temperatures and hot springs represent natural habitats for this microorgan-

ism (Mashiba et al. 1993). However, L. pneumophila can transfer from natural

habitats to other environments where it can form biofilms and parasitise protozoans

as survival mechanisms (Declerck et al. 2005, 2007; Bartram 2007). Legionella
forms associations with other microorganisms already forming part of biofilms

(Watnick and Kolter 2000). L. pneumophila can form algal-bacterial biofilms

(Hume and Hann 1984). Furthermore, L. pneumophila shows necrotrophic growth

as another survival mechanism (Temmerman et al. 2006). The survival of

Legionella forming biofilms also depends on relationships and interference with

other microorganisms. In fact, P. fluorescens SSD, known as the best bacteriocin

producer, had the ability to inhibit L. pneumophila present in biofilms (Guerrieri

et al. 2008). L. pneumophila can survive, replicate and detach from biofilms using
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infected amoebae such as Naegleria spp. which possess an additional flagellate

stage. Furthermore, infected amoebae can release very small vesicles containing

L. pneumophila that get transported over considerable distances posing a risk to

human health (Berk et al. 1998; Greub and Raoult 2004; Weissenberger et al. 2007).

Legionella can spread by aerosols and human infection may result from inhalation.

In fact, this organism can colonise hot and cold water systems (at temperatures

of 20–50�C), humidifiers, whirlpool spas and other water-containing devices.

L. pneumophila can survive in air-conditioned systems and has caused fatal

casualties in hotels and hospitals (Wright et al. 1989). Biofilms including

Legionella can be found in poorly maintained buildings and water systems

representing a risk for public health (WHO 2005).

Burkholderia pseudomallei (also known as Pseudomonas pseudomallei) causes
melioidosis, a disease affecting humans mainly in Southeast Asia and Australia.

This microorganism can be very persistent in the environment (Stone 2007).

Humans can be infected through a break in the skin or through the inhalation of

aerosolised B. pseudomallei cells. B. pseudomallei can be transmitted from infected

rodents to humans through biofilms contaminating soil and water causing persisting

chronic disease. The mean incubation period for acute melioidosis is 9 days

(with a range between 1 and 21 days). Human infection can present a wide range

of symptoms; however, the bacteria can hide in the body and some patients may

remain symptom free for a very long time (Stone 2007). However, bacteria might

detach from biofilms and cause acute infections and bacteraemias. In fact, this

seemed to be the cause when hundreds of people stressed by seasonal starvation

died of acute melioidosis in northeast Thailand (Vorachit et al. 1995). Glanders is

primarily a disease of animals such as horses, mules and donkeys and occasionally

cats, dogs and goats and is caused by Burkholderia mallei. Glanders disease and

melioidosis can cause similar symptoms in humans. These microorganisms are

being studied at laboratories worldwide due to their potential use in biological

warfare (Wheelis 1998). However, Glanders is rare in humans; it is sporadic and

usually an occupational disease affecting people in frequent contact with infected

animals such as animal caretakers, abattoir workers, veterinarians and laboratory

personnel (Al-Ani and Roberson 2007). In 2000, a human case of Glanders disease

was reported in a laboratory worker in the USA (Srinivasan et al. 2001). B. mallei is
usually sensitive to most common antibiotics (tetracyclines, novobiocin, ciproflox-

acin, gentamicin, streptomycin and the sulphonamides) although resistance to

chloramphenicol has been reported.

Immune compromised individuals and people with medical devices are more at

risk of suffering infections from biofilm formation. However, host defences are

usually not effective against biofilms (Khoury et al. 1992). In fact, cells involved in

immune defence mechanisms can actually aid in the formation and maintenance

of biofilms when emigrating to the injured body area (Walker et al. 2005).

P. aeruginosa biofilm infection in children suffering from cystic fibrosis has

shown to increase mortality rates (Ghannoum and O’Toole 2004).

Some bacteria such as S. aureusmight even be able to use the immune reaction

as a virulence mechanism (Gresham et al. 2000). Staphylococci bacteria growing
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in biofilms have been associated with resistant infections in humans (Vuong and

Otto 2002). In fact, in vitro experiments have shown that bacteria present in

biofilms can be 10–100 times more resistant to treatments in comparison with

the same strain free floating bacteria (Amorena et al. 1999; Olson et al. 2002).

Observational studies have been employed to investigate the role of biofilms in

causing infections by studying biofilms extracted from infected tissues or

contaminated materials recovered from patients. However, in many cases of

biofilm chronic infections, it was very difficult to culture bacteria or to recover

bacteria from biofilms by using traditional microbiological methods. Therefore,

diagnosis and treatment of these infections may prove difficult (Costerton et al.

2003; Lynch and Robertson 2008).

4 Biofilms in Veterinary Medicine and Zoonotic Infections

Microorganisms of veterinary and medical importance are frequently found in

biofilms. In animals, biofilm infections might be caused by environmental and

even commensal microorganisms such as S. aureus. S. aureus has been reported

to be a concern in postoperative wound biofilm infections (Galuppo et al. 1999) and

mastitis (Melchior et al. 2006a, b). In some cases, the same microorganisms can be

responsible for biofilm infections in animals and humans. Such bacteria have

included Acinetobacter baumannii which have been reported to be responsible for

wound infections in humans, dogs, cats and horses (Boerlin et al. 2001; Tomaras

et al. 2003). A. baumannii has also been isolated and the cause of catheter-related

infection in horses (Vaneechoutte et al. 2000). Actinobacillus equuli is a Gram-

negative bacterium commensal of equine oral cavity and upper respiratory tract

found to be responsible for sleepy foal disease (Rycroft and Garside 2000) and

postoperative wound infections in horses resistant to antibiotics (Smith and Ross

2002). Actinobacillus lignieresii, A. equuli and Actinobacillus suis can be present in
the oropharyngeal flora of cattle, horses and pigs, respectively, and therefore may

cause bite wound infections in humans (Weyant et al. 1996). In fact, A. equuli was
isolated from a 53-year-old butcher affected with septicaemia and presented at

hospital suffering acute septic shock (Ashhurst-Smith et al. 1998).

Aeromonas hydrophila is a Gram-negative organism causing septicaemia

and pneumonia in humans, pigs, cattle and horses (Lallier and Higgins 1988;

Zong et al. 2002). Pasteurellosis is considered one of the most important zoonosis;

Pasteurella haemolytica has been involved in human infections (Takeda et al.

2003). Pasteurella can cause infections in animals. Aspiration of P. haemolytica
biofilms by feedlot cattle results in severe respiratory infections that might be lethal

in 2% of the animals (Morck et al. 1987; Morck et al. 1990).

Aspergillosis is a term used to define a range of infections caused by the fungus

of the Aspergillus spp. that mainly affects mainly birds but also other animal species

and man. It is considered a zoonosis although transmission to humans usually

occurs through contaminated soil or organic material in the environment.
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Aspergillosis infections in humans can have serious consequences especially in

inmunocompromised patients (Seidler et al. 2008). Aspergillus biofilms has been

reported on cardiac devices resulting in endocarditis in numerous immunocompro-

mised patients (Lynch and Robertson 2008).

Candida spp. has been recovered from humans, animals and the environment

(Beran and Steele 1994) and zoonotic concerns have been raised (Marshall 2003).

Candida spp. have been responsible for hospital-acquired infections and associated
with catheter-related infections (Hawser and Islam 1999; Chandra and Ghannoum

2004). C. albicans, in particular, has also been associated with biofilm formation in

medical devices and high mortality (Kojic and Darouiche 2004). Kuhn et al. (2002)

suggested that C. albicans produces quantitatively more biofilm than other Candida
species. Candida forms complex three-dimensional biofilms offering optimal spa-

tial construction for the establishment of microniches throughout the biofilm.

Candida biofilms present multiple resistance mechanisms making the organism

resistant to a range of antifungal products (Douglas 2003; Ramage et al. 2005).

Candida and Aspergillus are emerging as dangerous pathogens (patient survival

rate as low as 50%) although their prevalence of implant infections has been shown

to be only around 8% (Anderson and Marchant 2000).

M. avium and M. intracellulare (M. avium-intracellulare complex, MAIC) are

slow-growing, atypical mycobacteria, ubiquitous in the environment. M. avium
produces granulomatous lesions that are indistinguishable from the tubercular

lesions produced by M. tuberculosis and M. bovis (Greene and Gunn-Moore

1990; Zeiss et al. 1994). M. avium and M. intracellulare are potentially zoonotic

and have been found growing in biofilms in drinking water systems (Falkinham

et al. 2001). Therefore, samples should be collected from pipe biofilms when testing

water systems. M. avium adheres to surfaces, grows at low levels of oxygen and is

resistant to heavy metals forming biofilms on metallic surfaces (Falkinham et al.

2004). Mycobacterium ulcerans causes necrotising skin lesions in humans,

a disease known as Buruli ulcer (BU) considered an emerging disease (Walsh

et al. 2009). M. ulcerans has been found in biofilms attached to aquatic plants

(Marsollier et al. 2002). It has been suggested that insect bites may play a role in

transmitting M. ulcerans (Marsollier et al. 2005). Mycobacterium marinum and

M. ulcerans sequences for the 16S rRNA gene are highly similar (Portaels et al.

1996). M. marinum causes disease in fish usually called “fish tank granuloma”

(Walsh et al. 2009). M. marinum can infect humans through skin lesions and

produce superficial and self-limiting lesions in hands, forearms, elbows and knees

(Steitz et al. 1997). Demangel et al. (2009) propose that M. ulcerans originated

fromM. marinum by transfer of a virulence plasmid carrying genes for mycolactone

production. Recently, some closely related mycolactone-producing mycobacteria

have been discovered causing public health concern (Chemlal et al. 2002; Gauthier

and Rhodes 2009). Mycobacterium haemophilum causes bone, joint, skin and

pulmonary infections in immunocompromised adult humans and lymphadenitis in

children (Kiehn and White 1994; Samra et al. 1999).M. haemophilum infections in

animals have been reported including a case of pulmonary infection in a royal

python (Hernandez-Divers and Shearer 2002) and zebrafish infections (Kent et al.
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2004; Whipps et al. 2007). M. haemophilum was isolated from infected fish at a

research facility (University of Georgia) where biofilm samples obtained were also

positive for M. haemophilum (Whipps et al. 2007). The possibility of the biofilm

acting as a reservoir for infection was considered. M. haemophilum has been

isolated from biofilms growing in water distribution systems (Falkinham et al.

2001). Overall, aquatic Mycobacteria can affect many species of fish and represent

a potential zoonotic risk to humans. Water and associated biofilms have been

recognised as natural habitats for Mycobacterium spp. (Pedley et al. 2004). There-

fore, the implementation of programmes for the prevention, reduction or elimina-

tion of these pathogens (living free or as part of biofilms) in aquatic facilities is

paramount. M. avium paratuberculosis (MAP) causes Johne’s disease in animals

including primates; however, its role in Chrones disease in humans is still contro-

versial. The identification of MAP in blood extracted from patients suffering from

Chrones disease in a case-control study suggested that MAP has a role in the

pathogenesis of this disease although more research seems necessary to clarify its

role (Naser et al. 2004). Bull et al. (2003) observed that the identification of MAP in

the majority of tested individuals with chronic intestinal inflammation suggested

causality and the fact that MAP causes chronic inflammation of the intestine of a

broad range of animal species made this organism the ideal suspect for Chrones

disease. Animals can be infected with MAP for years without showing clinical

symptoms and shed MAP in their milk and in faeces contaminating the environ-

ment. MAP may survive in the environment for a very long time and possible

amplify within environmental protozoa (Grant et al. 2002; Ayele et al. 2005). In

this way, MAP may be transmitted to humans through drinking water or aerosols

(Hermon-Taylor et al. 2000; Fazakerley et al. 2001; Percival et al. 2000; Bull et al.

2003). Aerosol droplets can concentrate bacteria and in that way mycobacteria can

spread via aerosols (Pickup et al. 1999; Beard et al. 2001; Whittington et al. 2004).

M. avium subsp. paratuberculosis infection in livestock is endemic in areas of

Wales; furthermore, this microorganism has been isolated from the river Taff in

Wales. Epidemiological data suggested that the inhalation of M. avium subsp.

paratuberculosis from the river Taff might be responsible for the clustering pattern

of Crohn’s disease observed in Cardiff (Pickup et al. 2005).M. avium subspecies has

been isolated from environments worldwide (Falkinham 1996); they are known to

persist in biofilms in drinking water distribution systems (Falkinham et al. 2001;

Torvinen et al. 2007). It has also been suggested that potable hot water systems may

contain M. avium concentrations greater than expected (du Moulin et al. 1988).

In fact, M. avium may survive traditional water disinfection treatments and can

be more resistant to chlorine when growing in biofilms (Taylor et al. 2000; Steed

and Falkinham 2006). MAP ability to form biofilms seems to vary between isolates

and under different conditions (Carter et al. 2003; Johansen et al. 2009). MAP has

also been found to survive in biofilms in food-producing animals watering systems.

Therefore, the control of biofilms on farms should be included in any farm manage-

ment programmes (Cook et al. 2010).

Commensal and biofilm-forming environmental microorganisms such as Listeria
monocytogenes, Campylobacter, E. coli, Salmonella, S. aureus, S. epidermidi,
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Pasteurella multocida, P. haemolytica, Streptococcus suis, S. agalactiae,
Actinobacillus pleuropneumoniae and Mycoplasmas cause more than half of the

infections in mildly compromised individuals (Costerton et al. 1999; Donlan 2001;

Prakash et al. 2003).

Treatment of biofilm infections can prove difficult. Antibiotics can be effective

against planktonic cells released from biofilms but cannot eliminate biofilms

(Marrie et al. 1982). This fact could explain recurring symptoms, after cycles of

antibiotic treatments, until the sessile bacterial population is removed or eliminated

(Costerton et al. 1985). Studies of polymicrobic biofilms revealed symbiotic

interactions and enhanced transfer of antimicrobial resistance genes (Hansen

et al. 2007; Seidler et al. 2008).

Some of the major zoonotic microorganisms that are known to be avid biofilm

formers and therefore of public health importance are presented below.

4.1 Listeria monocytogenes

L. monocytogenes is a Gram-positive pathogen that can cause severe infections

among pregnant women and immunocompromised patients (Farber and Peterkin

1991). L. monocytogenes can form biofilms on a variety of surfaces, such as stainless

steel and rubber (Blackman and Frank 1996; Meyer 2003). Borucki et al. (2003)

demonstrated that L. monocytogenes are able to form biofilms in static conditions.

Rieu et al. (2008) using laser-scanning confocal microscopy (LSCM) compared

L. monocytogenes biofilms grown under two different environmental conditions

(static growth media and flow conditions). They reported that L. monocytogenes
formed biofilms under flow conditions which appeared to be more organised with

rounded microcolonies surrounded by a network of knitted chains compared to static

conditions. Furthermore, biofilms formed by L. monocytogenes under different

conditions depended on different patterns of gene expression (Hefford et al. 2005;

Rieu et al. 2008).

4.2 Helicobacter

Helicobacter species have been isolated from the stomachs of several animals such

as cats, dogs, pigs, birds, mice, chickens, ferrets and monkeys (Mirkin 2009).

Helicobacter spp. DNA has been detected in the oral cavity of dogs representing

a risk factor for Helicobacter spp. infections in humans (Recordati et al. 2007).

Vertical faecal-oral transmission of H. pylori infection of Mongolian gerbil pups

from an infected mother has been demonstrated (Oshio et al. 2009).

Helicobacter spp. cause stomach problems in humans and may also cause other

conditions such as liver disease, clotting, heart attacks and certain skin conditions

(Meining et al. 1998). A large number of different species of Helicobacter have
been isolated from animals with transmission likely to human. These have included
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H. helmannii (Mention et al. 1999), H. rappini, H. felis, H. cinaedi, Helicobacter
sp. strain Mainz (Vandamme et al. 2000), H. fennelliae, H. pullorum, H. hills,
H. hepaticus, H. billis and H. canis (Ferenci 2000). One of the most researched

Helicobacter spp. in both animals and humans is Helicobacter pylori a bacterium

well known to form biofilms both within in vivo and within in vitro conditions.

H. pylori is a Gram-negative microaerobic rod of public health importance

because it causes gastric ulcers, gastritis and contributes to the development of

gastric cancer (Amieva & El-Omar 2008; Kandulski et al. 2008). In fact, H. pylori
has been considered as carcinogenic since 1994 and can be found all over the world

but seems more prevalent (90% prevalence) in developing countries (van

Duynhoven and de Jonge 2001). Human infection by H. pylori can occur through

multiple pathways.

Cole et al. (2004) observed that the presence of mucin increased the number of

planktonic H. pylori and suggested that H. pylori biofilm formation might be more

difficult in the mucus-rich stomach of humans and animals. However, Carron et al.

(2006) photographically documented the presence of mature dense H. pylori
biofilms on samples of human gastric mucosa obtained from patients undergoing

esophagogastroduodenoscopies. Animals constitute a reservoir for H. pylori and
the possibility of transmission through the food chain has been considered. In fact,

H. pylori might survive in foods in a viable but non-culturable form (VBNC) and

therefore difficult to isolate from foods leading to underestimation of its prevalence

(Dimola and Caruso 1999; van Duynhoven and de Jonge 2001). Quaglia et al.

(2008) have detected H. pylori DNA in raw goat, sheep and cow milk by using a

Nested Polymerase Chain Reaction (Nested-PCR) assay. In addition these flies

have been shown to potentially transmit H. pylori mechanically through excreta.

It has been suggested therefore that flies might contaminate food with H. pylori
(Gr€ubel et al. 1997).

H. pylori can survive up to 1 year in fresh water as viable coccoid forms that are

non-culturable but represent a public health hazard (Shahamat et al. 1989; Adams

et al. 2003; Konishi et al. 2007). It has been demonstrated that the consumption

of environmental water or dirty water is a risk factor for human infections with

H. pylori (Goodman et al. 1996; Ahmed et al. 2007). In fact, H. pylori infections in
humans seem to be correlated with biofilm formation and access to contaminated

water (Percival and Thomas 2009). Biofilms can provide a protective environment

for H. pylori to survive in water and even to reach concentrations that could cause

harm to humans (Gião et al. 2008). They have also been documented to survive with

amoeba and as such its transmission could be similar to that of M. avium.

4.3 Campylobacter

Campylobacter spp. are Gram negative, microaerophilic but reported to be unable

to grow in air and outside an animal or human host (Park 2002). However,

Campylobacter are very robust and can survive environmental stresses. In fact
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Campylobacter sp. are considered to be the main pathogen causing human gastro-

intestinal infections in developed countries (Kalmokoff et al. 2006; Murphy et al.

2006). The majority of human Campylobacter infections are caused by C. jejuni
and C. coli, with C. jejuni being the more common species isolated from human

cases of campylobacteriosis (Skirrow 1994).

Trachoo et al. (2002) suggested that C. jejuni might form VBNC forms within

biofilms isolated from chicken houses. As with all microorganisms, biofilm forma-

tion protects Campylobacter organisms from the environment and therefore

enhances their survival. Trachoo and Frank (2002) demonstrated that the effective-

ness of sanitizers against C. jejuni was decreased by the presence of biofilms.

However, C. jejuni biofilms are inactivated by chlorine (Dykes et al. 2003).

Campylobacter jejuni can form different types of biofilms when surviving in

different environmental conditions. This variability in biofilm formation could

partly explain the survival of Campylobacter in the environment and the high

incidence of Campylobacter-related infections (Gaynor et al. 2005; Joshua et al.

2006). C. jejuni biofilms have been isolated from water and in fact, C. jejuni can
form biofilms in a variety of materials used in animal production watering systems

(Reeser et al. 2007).

Biofilms with low levels of oxygen will promote the growth of microaerophilic

bacteria such as Campylobacter. Furthermore, the presence of organic material will

also assist on the survival and growth of Campylobacter in environmental biofilms

(Humphrey et al. 1995; Kusamaningrum et al. 2003).

4.4 Salmonella

Salmonella causes abdominal pain, diarrhoea and fever. Most individuals infected

with Salmonella recover without treatment and require oral fluid replacement in

4–7 days. However, some patients need to be hospitalised and treated with

antibiotics when suffering from persistent diarrhoea and sometimes bacteraemia

or septicaemia can develop. Salmonellosis can be fatal in immunocompromised

patients (CDC 2008).

Salmonella species are known to colonise the intestines of mammals, birds and

reptiles and when shed into the environment they have been reported to survive for

long periods in water, soil and foods. Most human infections with Salmonella in

developed countries are related to the consumption of contaminated foods (Angulo

et al. 1999). Salmonella serotype typhimurium and Salmonella serotype enteritidis
seem to be the most common serotypes involved in human infections (Rodrigue

et al. 1990; Rubino et al. 1998; Herikstad et al. 2002; Galanis et al. 2006).

Salmonella enteritidis are known to form biofilms under a number of conditions

and on different materials (Austin et al. 1998; Bradshaw and Marsh 1999). Inter-

estingly Salmonella have been reported to form biofilms on gallstones which is

known to enhance their proliferation in these organs. The use of antibiotics has been

shown not to eradicate Salmonella from infected gallstones (Lai et al. 1992) and

82 A.B. Garcı́a and S.L. Percival



surgery is considered an unfeasible solution for individuals with Salmonella
infected gallstones in developing countries (Crawford et al. 2008).

It has been demonstrated that S. enterica serovar typhimurium can compete and

outgrow even displace E. coli when forming biofilms on HEp-2 epithelial cells

(Esteves et al. 2005). Research directed to the study of “biofilm genes” has been

conducted with a number of potentially pathogenic Gram-negative bacteria includ-

ing Salmonella (Solano et al. 2002), E. coli (Pratt and Kolter 1998) and Vibrio
cholera (Watnick and Kolter 1999).

4.5 Shigella

Shigella is a Gram-negative, rod-shaped bacteria usually transmitted via faecal

contamination through humans, food, water and flies and therefore associated with

poor hygienic conditions (Troller 1993; ICMSF 1996). Poor staff hygiene in food

processing establishments may lead to food contamination. Gunduz and Tuncel

(2006) have isolated Shigella from a feeding unit and an aging tank in an ice-cream

processing plant which were shown to pose a risk to public health.

4.6 Giardia and Cryptosporidium

Giardia and Cryptosporidium are parasitic protozoa causing disease in humans and

animals frequently transmitted through contaminated water (Brandonisio 2006;

Cheng et al. 2009). Wildlife and livestock can contribute to the maintenance of

these parasites in the environment (Paziewska et al. 2007) although in a study

conducted by Heitman et al. (2002) genetic differences that may indicate host

specificity were discovered by genetic characterisation of Cryptosporidium isolates

collected from humans, dogs, cats, pigs, steer, calfs and beaver hosts.

Cryptosporidium has been responsible for disease outbreaks related to

contaminated water in developed countries. The interaction of Cryptosporidium
oocysts with biofilms present in water distribution systems has been reported but

further investigation is required for this (Angles et al. 2007). Biofilms can provide a

protective environment for the accumulation of C. parvum oocysts assisting on the

propagation of this pathogen and the contamination of the environment and water

systems (Searcy et al. 2006; Wolyniak et al. 2009). Epidemiological studies

revealed that water contamination with animal faeces was the main suspected

source of an outbreak of Cryptosporidium in Lancashire (UK) in 2000. Further-

more, the persistence of Cryptosporidium oocysts after switching to another water

source indicated the possibility of oocysts being protected by biofilm formation

(Howe et al. 2002). Ecological studies, epidemiological data and risk assessment

form the basis for the implementation of effective water treatment to protect public

health (Szewzyk et al. 2000). Giardia are known to attach to the intestinal epithelial

Zoonotic Infections: The Role of Biofilms 83



surface forming part of biofilms. Pathogens need to attach to the intestinal lumen

and overcome the forces produced by intestinal mucus to remove not properly

attached microorganisms (Costerton et al. 2003).

4.7 E. coli

Reisner et al. (2006) conducted an extensive analysis of E. coli biofilm formation

and reported very different responses to various environmental conditions and great

variation between diverse E. coli isolates to form biofilms in vitro. In fact, an

association between pathogenic E. coli strains and increased biofilm formation

capabilities was not observed like it has been reported in other microorganisms

such as Enterococcus faecalis (Mohamed et al. 2004).

4.8 E. coli 0157

E. coli 0157 infections in humans can be severe in immunocompromised patients

and children. Animals are known to act as reservoirs for E. coli 0157 contaminating

the environment. Humans can become ill through direct contact with carrier

animals or contaminated food or water. Investigations into an outbreak of E. coli
0157 in people visiting a farm in Pennsylvania revealed that 13% of the farmed

cattle were carrying E. coli 0157 and these isolates had the same distinct molecular

pattern that was found in isolates from 51 patients tested in the case-control study

(Crump et al. 2002). The possibility of E. coli 0157 requiring another microorgan-

ism such as Pseudomonas aeuroginosa to assist in its ability to form biofilms has

been investigated (Klayman et al. 2009).

4.9 Yersinia

Yersinia can cause illness in humans through the consumption of contaminated raw

or undercooked meat, seafood, tofu and contaminated water. Y. pseudotuberculosis
can cause lymphadenitis and septicaemia and Y. enterocolitica causes gastrointes-

tinal syndromes (Naktin and Beavis 1999; Gerald 2009). Yersinia entercolitica
can form biofilms and its flagella play an important role in biofilm formation.

Y. enterocolitica and Y. pseudotuberculosis are motile but Y. pestis is non-motile

(Kim et al. 2008).

Yersinia pestis is responsible for plague syndromes in humans. Y. pestis infects
rodents and is transmitted to humans by fleas. Y. pestis produces dense biofilms on

the hydrophobic surface of spines inside the proventriculus in the flea’s foregut

(Jarrett et al. 2004). However, it has been suggested that Y. pestis strains that are
unable to form biofilms can also cause plague (Eisen et al. 2007).
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4.10 Clostridium botulinum

C. botulinum is a Gram-positive, anaerobic, spore-forming rod responsible for

botulism. This microorganism produces a potent neurotoxin which causes flaccid

paralysis. Different Clostridium species are known to produce seven types of toxins

(A–G). Clostridium produce spores and these are known to be resistant to

antimicrobials and aids survival in the environment and in foods (Hirsh and

Birbenstein 2004). Foodborne botulism is a severe condition (high mortality rate

if not treated properly) caused by ingestion of contaminated foods. The botulinum

toxin is only destroyed at high temperatures (80�C for 10 or more minutes) and

therefore represents a highly significant public health concern. C. botulinum type

C forms biofilms and survives in biofilms within grass; this has been suggested to be

the cause of equine dysautonomia (Grass Sickness) (Hirsh and Birbenstein 2004).

Clostridium spores have been implicated in food poisoning cases. The hydro-

phobicity of Clostridium spores plays a key role in their adhesion to surfaces,

biofilm formation and increased resistance to sterilisation treatments (Wiencek

et al. 1990). Hydrophobic interactions have been associated with the adhesion of

bacteria to surfaces and biofilm formation (Rosenberg and Kjelleberg 1986).

4.11 Clostridium perfringens

C. perfringens is an ubiquitous bacteria, Gram-positive, anaerobic that can be found

in the environment, in animals (Narayan 1982; Songer 1997), as part of the

microbiota in human intestine (Carman et al. 2008) and has the ability to form

biofilms enabling it to adapt to different environments (Varga et al. 2008).

C. perfringens biofilms have been shown to provide recalcitrance to antibiotics

and may contribute to antibiotic-associated diarrhoea (Asha et al. 2006; Varga et al.

2008). Some strains of C. perfringens such as type C, D and E can colonise the guts

of mammals and cause enteric infections in livestock (Songer 1997) and can also

form biofilms (Varga et al. 2008).

C. perfringens biofilms exhibited a dense extracellular matrix containing

carbohydrates and type IV pilin proteins (Varga et al. 2008). These authors

observed that biofilm formation increased in absence of glucose or carbohydrates

which could represent a survival mechanism for C. perfringens in low nutrient or

starvation conditions. However, other survival mechanisms have been observed in

stressful conditions such as endospore production and enhanced motility (Varga

et al. 2004; Mendez et al. 2008).

4.12 Streptococcus sp.

Some members of the genus Streptococcus are part of the normal microflora in the

human body but sometimes they might produce opportunistic infections such as
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dental caries. However, exogenous pathogens of the genus Streptococcus can cause

a wide range of infections from mild conditions to life-threatening illnesses

(Cvitkovitch et al. 2003).

Streptococcus-related infections are considered zoonotic with some Streptococ-
cus sp. more commonly associated with human infections than others (Acha and

Szyfres 2003). The most frequently detected Streptococci in human infections have

included Streptococcus equi subsp. zooepidemicus and S. equi subsp. equi (Krauss
et al. 2003). Other Streptococci of human significance have included S. pyogenes
which are known to produce several illnesses including a toxic shock-like syndrome

(Demers et al. 1993). S. pyogenes are known to form biofilms which assits in their

tolerance to antimicrobial treatments (Baldassarri et al. 2006).

Streptococcus pneumoniae and Enterococcus (Streptococcus) faecalis have

been shown to have increased resistance to antibiotics and are known to cause

serious problems in immunocompromised and hospitalised people (Appelbaum

1992). Raw milk and eggs are considered a source for Streptococcus infections in
humans (Gerald 2009).

4.13 Streptococcus suis

S. suis type 2 can be isolated from carrier adult pigs’ upper respiratory tract and

tonsils and may cause disease in young pigs and humans. S. suis is usually isolated
from infected pig carcases but it can also be found in the faeces of infected herds

(Huang et al. 2005). S. suis type 2 has been isolated from human patients

(associated to the pig industry) which suggests an occupational zoonosis route.

However, a few cases have been detected in humans with no known contact with

the swine industry (Zanen and Engel 1975; Clifton-Hadley 1983; Sriskandan and

Slater 2006). S. suis human infections have been reported in New Zealand,

Australia, Argentina, several Asian and European countries and Canada (Lun

et al. 2007). In fact, S. suis is one of the most common causes of bacterial

meningitis in Hong Kong (Hui et al. 2005). The possibility of the emergence of

a new more virulent S. suis strain has been raised based on epidemiological

studies of outbreaks caused by this particular strain in China (Sriskandan and

Slater 2006).

S. suis can form biofilms as reported by Grenier et al. (2009). Grenier et al.

(2009) characterised a biofilm formed by S. suis type 2, isolated from a pig with

meningitis, and observed that S. suis strain 95–8242 produced a dense biofilm when

sucrose, glucose or fructose was used as the primary nutrient source. Within this

study S. suis 95–8242 was shown to be more resistant to penicillin G and ampicillin

when grown as a biofilm compared to its planktonic counterpart.

Fittipaldi et al. (2007) have used selective capture of transcribed sequences

(SCOTS) and identified 28 genes preferentially expressed by S. suis when

interacting with cells of the porcine brain microvascular endothelial cells, some

of these genes were considered potential new virulence factors.
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4.14 Vibrio

V. cholera can form biofilms on crustacean shells, aquatic organisms and aquatic

plants to reach an infective dose. Consequently, these biofilms have been reported

to act as reservoir for V. cholera in a non-culturable coccoid form (Hall-Stoodley

and Stoodley 2005; Alam et al. 2007). In addition to V. cholera, Vibrio parahae-
molyticus has been isolated from seafood and associated with foodborne illness

(D’Mello 2003).

4.15 Aeromonas

Aeromonas sp. are Gram-negative and rod shaped. They are motile aquatic bacteria

considered important pathogens in reptiles, amphibians and fish. In particular, they

are known to be a major problem in fish farming. Fish are thought to act as a

reservoir of A. hydrophila possibly leading to infection in mammals (Lallier and

Higgins 1988; Lynch et al. 2002).

In humans, Aeromonas sp. are known to cause gastroenteritis (from mild to

cholera-like symptoms) and other infections such as endocarditis, septicaemia,

haemolytic uraemic syndrome, peritonitis, respiratory infections, myonecrosis,

osteomyelitis, ocular infections and meningitis. A. hydrophila and E. coli have
been reported to grow well in biofilms detected in drinking water systems (Walker

et al. 2000). As well as water Aeromonas sp. have also been isolated from foods

(seafood, raw milk, meat and vegetables) as they are well known to form biofilms

utilising QS mechanisms. By using an N-acylhomoserine lactone (AHL)-dependent

QS system (bacterial communication system) the ability of Aeromonas to form

biofilm has been shown to be significantly enhanced.

5 Control of Food-Borne andWater-Borne Biofilms of Zoonotic

Importance

Biofilms are known to provide a protective environment for pathogenic bacteria,

parasites and viruses aiding their dissemination in water systems leading to disease

in animals and humans (Howe et al. 2002; Helmi et al. 2008). Microbial cells in

biofilms can easily detach voluntary or involuntary from biofilms to aid their

dispersal which represents a very important survival strategy (Sauer et al. 2002).

Consequently, bacterial cells which reside in the planktonic phase are thought to be

in a phase of moving from one surface to another (Parsek and Fuqua 2004). It is

plausible to suggest that these dispersal strategies are therefore the cause of food

and water contamination and therefore animal and human infection/disease (Zottola

and Sasahara 1994; Piriou et al. 1997).
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A dynamic equilibrium between attachment and detachment processes occurs in

wastewater biofilms which are composed of bacteria, viruses and parasites. There-

fore, the microbial concentrations within a biofilm may be regulated purposely to

enhance the survival of the biofilm community (Skraber et al. 2007). In fact

biofilms have been compared to tissues of higher evolutioned organisms. If patho-

genic bacteria detach from biofilms this is potentially dangerous particularly if the

infective dose reaches immunocompromised hosts (Storey et al. 2004). Understand-

ing better the particular phases of biofilm formation, proliferation and detachment

could prove very useful for investigating the control of biofilms (Ghannoum and

O’Toole 2004; Hall-Stoodley et al. 2004; Sawhney and Berry 2009).

As mentioned previously, biofilm formation causes public health problems in

food processing and water systems (Lelieveld 2005; Alakomi et al. 2002). How-

ever, there are positive applications for biofilms, in particular, they may be used for

water treatment (Bryers 2000; Wuertz et al. 2003). However, water-borne

pathogens can form part of biofilms and exchange genetic material with other

microorganisms present. The use of markers to detect biofilms in water has been

suggested (Committee on Indicators for Waterborne Pathogens 2004). The use of

chlorine dioxide for biofilm control and general disinfection in water distribution

systems has been proposed (O’Leary et al. 2002).

The formation of biofilms has been observed in various food processing

industries such as raw and cooked/fermented meats, raw and smoked fish, seafood,

chicken and turkey, milk and dairy products and yeast (Sharma and Anand 2002;

Bagge-Ravn et al. 2003; Carpentier and Chassaing 2004; O’Brien et al. 2004).

Pathogenic organisms such as Listeria and Shigella can form biofilms in food

processing establishments (Gunduz and Tuncel 2006). These authors isolated a wide

range of microorganisms such as Proteus, Enterobacter, Shigella, Escherichia,
Edwardsiella, Aeromonas, Pseudomonas, Staphyloccus, Bacillus, Listeria and others
from an ice-cream processing plant. These authors also observed that the

microbiological burden decreased after the cleaning of food producing areas. How-

ever, they neglected to remove biofilms and Shigella was still present in one of the

tanks after cleaning and disinfection, proving this constitutes a significant public

health issue. In this same study, L. monocytogenes was found on the conveyor belt of
the packaging machine indicating the possibility of food contamination. Again

despite cleaning in place because of the existence of recalcitrant biofilm the effec-

tiveness of these cleaning agents was clearly proved.

Important public health pathogens such as S. typhimurium, C. jejuni, E. coli
O157:H7, L. monocytogenes and Yersinia enterocolitica have been found in

biofilms causing severe problems in the food industry (Griffiths 2003). In fact,

some pathogens of zoonotic importance such as L. monocytogenes and S. aureus are
difficult to remove from biofilms (Lelieveld 2005). L. monocytogenes has been

isolated from dairy and meat processing plants (Wong 1998). Listeria has been

found to be particularly resistant to disinfectants and temperatures (Wirtanen and

Salo 2004). In fact, Listeria can survive for up to 10 years in food processing

establishments due to the presence of persistent strains with enhanced attachment

properties (Lundén et al. 2002). A dramatic and lethal foodborne epidemic caused
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by Listeria forming biofilms in a food plant and contaminating food products

occurred in the USA in 1998. In 2000, USDA required Listeria testing in food

processing establishments (Drexler 2002). Bjerklie (2003) tested 41 meat

processing establishments and found L. monocytogenes on or in 39% of the floors

tested, 29% of floor drains, 34% of cleaning equipment, 24% of wash areas and

20% of food-contact surfaces. Listeria and other pathogens of public health impor-

tance forming part of biofilms can survive sanitation procedures in food premises

(Arnold 1998). In fact, resistance to chlorine and heat treatments increases when

microorganisms such as Listeria and Salmonella attach to surfaces (Wirtanen

and Mattila-Sandholm 1992; Dhir and Dodd 1995). C. jejuni, E. coli O157:H7,
L. monocytogenes and S. typhimurium forming biofilms were more resistant to

trisodium phosphate treatment (Somers et al. 1994). Some sanitizers have been

shown to be ineffective against bacteria in biofilms formed during milk processing

(Mosteller and Bishop 1993). Biofilms may also form in pasteurisation equipment

contaminating pasteurised product (Langeveld et al. 1995).

The presence of biofilms on materials and equipment used in the food industry

poses a risk to human health. In fact, biofilms may recontaminate previously treated

and/or cooked food products (Lelieveld 2005). Food contamination may result in

human foodborne illness and lowers product shelf-life producing economic losses

(Criado et al. 1994).

The presence of biofilms in crates used to transport poultry has been documented.

The biofilms in crates are difficult to remove by pressure washing, even from well-

designed smooth crates (Mead 2005). It seems very important to understand biofilm

formation conditions and properties in order to successfully implement sanitation

strategies in the poultry industry and protect public health. Poultry production can

be an intensive and heavily contaminated operation due to the high number of

animals being processed in commercial processing establishments. Furthermore,

the use of water at several stages of the process will facilitate the formation of

biofilms. Therefore, biofilms can be very prevalent and efforts should be directed to

prevent and/or eliminate biofilms in poultry processing. Biofilm control and elimi-

nation strategies should be considered as part of HACCP implementation and food

safety systems in the food industry. Several factors such as plant and equipment

design, maintenance, cleaning and disinfection products and techniques will influ-

ence the formation and/or elimination of biofilms in food establishments. Control

measures to prevent and eliminate biofilms in the food industry involve adequate

design, good manufacturing practices including effective cleanliness of surfaces

and proper staff training (Husu et al. 1990; Eklund et al. 1995; Autio et al. 1999;

Miettinen et al. 1999, 2001; Lyytik€ainen et al. 2000; Wirtanen 2002; Aarnisalo et al.

2003; Lundén 2004; Miettinen and Wirtanen 2006; Wirtanen and Salo 2004).

Some surfaces are preferred by microorganisms to form biofilms. The identifi-

cation of factors that make different surfaces resistant or susceptible to biofilm

formation seems crucial to control biofilms in the food industry. Some types of

rubber materials seem to inhibit microbial attachment. Although the presence of

some elements such as zinc and sulphur can partially explain this fact, there are

other factors associated with rubber that contribute to the inhibitory effect (Arnold
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and Silvers 2000). However, proper maintenance of rubber material will also

influence the effect on biofilm formation (Arnold and Bailey 2000). The effects

of corrosion on metallic surfaces and biofilm formation have also been investigated.

Attachment of bacteria to metallic surfaces is facilitated by corrosive treatments

(Arnold and Suzuki 2003). Therefore, proper maintenance of surfaces and equip-

ment used in food processing and the use of materials resistant to corrosion seem

important measures to reduce and control biofilm formation. Effective sanitation

strategies are crucial for the control of biofilms in the food industry. Some materials

such as Teflon seem easier to effectively clear of biofilms than others like stainless

steel (Marriott 1999). Thorough cleaning before disinfection of surfaces and equip-

ment is crucial to removed attached microorganisms and for the effectiveness of

sanitation procedures in the food industry. The use of mechanical energy has been

shown to be most effective against biofilms (Gibson et al. 1999). Food producers

should use mechanical equipments which do not create aerosols. The use of non-

aerosol generating detergents and sanitizers will be more effective when used

together with mechanical methods (Meyer 2003). The use of sanitizers such as

acidic quaternary ammonia, chlorine dioxide and peracetic acid has been found

more effective to remove attached microorganisms (Krysinski et al. 1992). The

use of antimicrobial coatings on equipment surfaces, such as bacteriocins and

silver ions, will help in controlling the formation of biofilms (Kumar and

Anand 1998; Meyer 2003). Special treatments such as the use of specific enzymes

might be necessary to eliminate pathogens from biofilms in the food industry

(Oulahal-Lagsir et al. 2003). However, some decontamination technologies used

in or on foods might potentially provide stressful conditions promoting biofilm

formation and increasing pathogens’ virulence (Samelis and Sofos 2003). It has

also been suggested that the use of chemical sanitizers may exert a selective

pressure on attached pathogens selecting for resistant strains (Langsrud et al. 2003).

Furthermore, a steady increase in the prevalence of antibiotic-resistant strains

isolated from food processing environments has been observed (Teuber et al. 2003;

Nayak et al. 2004) and antibiotic-resistant strains also exhibited cross-resistance to

other antimicrobial agents, such as sanitizers (Langsrud et al. 2003; Lundén et al.

2003). This phenomenon could be linked to the transfer of genetic material such as

plasmids coding for antibiotic resistance between microorganisms present in

biofilms. Biofilms might then represent a reservoir for antimicrobial-resistance

genes (Watnick and Kolter 2000; Jefferson 2004; Parsek and Fuqua 2004; Weigel

et al. 2007). Human infections with antibiotic-resistant pathogens represent a

serious public health problem. Salmonella enterica serovars are increasingly resis-

tant to commonly administered antibiotics (Boyle et al. 2007). Recommendations

have been made to limit the use of antibiotics in farm animals and to adopt non-

antimicrobial farm management strategies (Angulo et al. 1999).

More research seems necessary in the control and prevention of biofilm forma-

tion including a balance between benefits and risks of using particular decontami-

nation technologies in order to select optimum treatments and improve food safety.

In general, decontamination technologies currently used reduce pathogen preva-

lence on fresh meat (Sofos 2005).
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6 Further Research and Biofilm Control Strategies

The use of new technologies for the study of biofilms can provide interesting and

useful information for the control of biofilm infections. Pathogens such as

L. pneumophila, C. jejuni and C. parvum have been identified in biofilms by using

episcopic differential interference contrast (EDIC) microscopy together with epi-

fluorescence using gold nanoparticles or fluorophores (EDIC/EF) revealing 3D

biofilm structure (Keevil 2003). LSCM is also a powerful technology to

study biofilm architecture and 3D structure and used to study P. aeruginosa and S.
aureus biofilms (Klausen et al. 2003; Jefferson et al. 2005; Pamp and Tolker-Nielsen

2007). However, biofilm structure can be diverse in response to environmental

conditions (Wimpenny et al. 2000).

New molecular technologies such as the SCOTS can offer advantages for the

study of genetic regulation of biofilm formation (Osaki et al. 2002).

Bioengineering has also been successfully used to produce bacteriophages that

can induce the production of biofilm-degrading enzymes during infection to act

against the biofilm matrix and cells (Lu and Collins 2007). The use of artificially

engineered biofilms has been proposed to capture pathogens present in water

to monitor the hygienic status of drinking water (Bauman et al. 2009). Biofilm

engineering can contribute to the elimination of biofilms and to the control of

biofilm infections. Nanotechnologies such as the use of fluoride nanomaterials

might present a solution to inhibit biofilm formation (Lellouche et al. 2009). The

use of current electric fields and ultrasonic radiation can render biofilms more

susceptible to conventional antibiotic treatments (Costerton et al. 1994; Rediske

et al. 1998).

The use of microemulsions and nanoemulsions has also been tested to control

biofilms. Teixeira et al. (2007) used emulsions to inactivate biofilms formed by

P. aeruginosa, Salmonella spp., S. aureus, E. coli 0157:H7 (VT-) and L. mono-
cytogenes. All biofilms were inhibited by the used emulsions except the one formed

by L. monocytogenes. Essential oil compounds have been proved successful against

biofilms of L. monocytogenes and E. coli 0157:H7 representing a potential solution
for the treatment of biofilms in the food industry (Pérez-Conesa et al. 2006).

The study of biofilms’ structure, architecture, cellular spatial arrangement

(Davey and O’Toole 2000) and synergistic and antagonistic or inhibitory interac-

tions between biofilm cells will provide new insights into biofilm infections and the

development of effective treatments (Reisner et al. 2006). A synergistic effect was

observed in mixed biofilms of P. aeruginosa and MRSA involved in catheter-

associated urinary tract infections (CAUTI). In fact, P. aeruginosa was producing

more exotoxin A when forming biofilms with MRSA (Goldsworthy 2008).

Adhesion to surfaces is the first necessary step for the production of biofilms

(Klemm and Schembri 2004) and therefore actions taken to prevent adhesion of

microorganisms could provide interesting solutions for the prevention of biofilms.

Several factors play a role in biofilm formation and bacterial adhesion such as

environmental conditions, the capacity of microorganisms to adhere to surfaces and
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also the nature of the surface (Katsikogianni and Missirlis 2004). Bacterial attach-

ment to inert surfaces can be reduced by using aqueous extract of fish muscle

proteins (FMPs) to precondition the surface (Bernbom et al. 2006). This type of

proteinaceous coating from fish muscle was used against biofilm formation by UTI

E. coli and Klebsiella strains on different materials. A 100-fold reduction in biofilm

formation was observed although the effect depended also on other variables such

as the growth medium, the particular bacterial strain and the extract (Vejborg and

Klemm 2008).

Antibiotic resistance is one of the main global public health concerns (Croft et al.

2007). Antibiotic resistance associated with biofilm infections can be explained by

several factors associated with biofilm formation such as the different growth

phases of cells forming biofilms and the presence of the extracellular matrix

(Stewart and Franklin 2008).

Further research into genetic control of MRSA biofilm formation will increase

our understanding of the pathogenesis of MRSA infections involving biofilms and

will be useful for the development of novel therapies to treat persistent infections

(O’Neill et al. 2007).

Oritavancin is a semisynthetic lipoglycopeptide with bactericidal properties

against Gram-positive microorganisms such as methicillin-resistant S. aureus
(MRSA), vancomycin-resistant S. aureus (VRSA) and others (Belley et al. 2009).

Oritavacin can produce loss of membrane integrity in susceptible biofilm cells

(McKay et al. 2006) being this its principal antibacterial mechanism against

stationary phase S. aureus cells (Belley et al. 2009).

The selection of the right antibiotics to treat human and animal infections caused

by biofilms is paramount (Clutterbuck et al. 2007). Furthermore, more research into

biofilm infections in humans and animals, biofilm resistance mechanisms and new

strategies for effective treatment should be developed. New therapies need to

overcome significant difficulties encountered when treating biofilm infections

(Belley et al. 2009). It has been suggested that prophylactic use of microbicides

in medical devices can be effective against biofilm formation and associated

infections.

The use of antibiotics as part of any prophylactic strategy is controversial but

they are routinely used in immunocompromised patients. It has been suggested that

the most effective treatment of biofilm infections associated with medical devices

combines removal of an infected material and systemic antibiotic and/or antifungal

therapy. However, fungal infections can be very difficult to treat. New experimental

therapies to prevent and/or treat biofilm-related infections of medical devices are

being developed such as new materials and intelligent implants. Future research

into biofilm-related infections and the use of new imaging technologies and bio-

markers will assist on the fight against biofilm infections (Lynch and Robertson

2008). Compounds that can interfere with QS systems or cellular communication

systems represent an important alternative for the treatment of biofilm infections.

One of the main advantages is that these products are very unlikely to create

selective pressure for more virulent or resistant microbial strains (Morten et al.

2003).
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7 The Future

Future research should include genetic investigations into regulatory genes

involved in biofilm formation and survival mechanisms, bioengineering and new

technologies for the study of biofilms. Biofilm control strategies should be based on

risk assessment and assessment of the effectiveness of control methods. Further-

more, new treatments and therapies should be developed and their effectiveness on

the fight against biofilms adequately assessed.
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