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Preface

The 8th Workshop on Algorithms and Models for the Web Graph (WAW 2011)
took place at Emory University in Atlanta, GA, May 27–29, 2011. This is an an-
nual meeting, which is traditionally co-located with another, related, conference.
WAW 2011 was co-located with the 15th International Conference on Random
Structures and Algorithms (RSA 2011). Co-location of the workshop and con-
ference provided opportunities for researchers in two different but interrelated
areas to interact and to exchange research ideas. It was an effective venue for
the dissemination of new results and for fostering research collaboration.

The World Wide Web has become part of our everyday life, and information
retrieval and data mining on the Web are now of enormous practical interest.
The algorithms supporting these activities combine the view of the Web as a
text repository and as a graph, induced in various ways by links among pages,
hosts, and users. The aim of the workshop was to further the understanding
of graphs that arise from the Web and various user activities on the Web, and
stimulate the development of high-performance algorithms and applications that
exploit these graphs. The workshop gathered the researchers who are working on
graph-theoretic and algorithmic aspects of related complex networks, including
citation networks, social networks, biological networks, molecular networks, and
other networks arising from the Internet.

This volume contains the papers presented during the workshop. There were
19 submissions. Each submission was reviewed by four Program Committee
members. Papers were submitted and reviewed using the EasyChair online sys-
tem. The committee members decided to accept 10 papers.

May 2011 Alan Frieze
Paul Horn

Pawe�l Pra�lat
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A Spectral Algorithm for Computing

Social Balance

Evimaria Terzi1 and Marco Winkler2,�

1 Boston University, USA
evimaria@cs.bu.edu

2 Julius Maximilians Universität Würzburg, Germany
marco.winkler@physik.uni-wuerzburg.de

Abstract. We consider social networks in which links are associated
with a sign; a positive (negative) sign indicates friendship (animosity) be-
tween the connected nodes. Recent work studies such large online signed
networks by applying theories that stem from the notion of social bal-
ance. Computing the social balance of a signed network requires counting
the distinct configurations of the signed edges within all possible trian-
gles that appear in the network. A naive algorithm for such counting
would require time that is cubic to the total number of nodes; such an
algorithm is infeasible for large signed networks that are generated from
online applications.

In this paper, we present an efficient spectral algorithm that computes
approximate counts of the signed-triangle configurations. The essence of
the algorithm lies in associating the eigenvalues of the adjacency matrix
of a signed network with its signed-triangle configurations. Our experi-
ments demonstrate that our algorithm introduces only a small error in
the computed quantities while, at the same time, it achieves significant
computational speedups.

1 Introduction

The interplay between positive and negative interactions between people defines
the smooth functioning of society. In a similar way, in the online world, positive
and negative relationships between users play a significant role in the function
and evolution of online social networks. For example, users on Wikipedia can vote
for or against the nomination of others as admins [4]. Users on Q&A systems
(e.g., Yahoo! answers) get promoted by other users if they answer questions
correctly; otherwise they get demoted. Users on Epinions can express trust or
distrust of others [9,18]; participants on Slashdot can declare others to be either
friends or foes [3,13,14]. Even the links between blogposts of different bloggers
can be positive when the one blogger endorses the statements of the other or
negative if the users express difference in opinions.

The focus of this paper is on computational problems that arise in signed
networks. In such networks, every link is annotated with either a positive or
� This was done while the author was visiting Boston University.

A. Frieze, P. Horn, and P. Pra�lat (Eds.): WAW 2011, LNCS 6732, pp. 1–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 E. Terzi and M. Winkler

a negative sign. The positive links represent friendship while the negative ones
represent antagonism. A basic tool in the study of signed networks is the notion of
social balance also referred to as structural balance [11]. The signed triangles of a
network are the very basic entities to be considered in social-balance studies. Up
to node permutation, there are four possible configurations of a signed triangle.
These configurations are shown in Fig. 1. The two triangles with an odd number
of plus edges are balanced(Fig. 1(a)): they satisfy the adages that “the enemy of
my enemy is my friend” and “the friend of my enemy is my enemy”. The two
triangles with an even number of plus edges (Fig. 1(b)) do not comply with this
logic of friendship, and are considered unbalanced. For balanced triangles, the
product of the edge signs is positive; for unbalanced triangles the same product
has a negative sign. This definition of balanced and unbalanced triangles has
its origins in social psychology studies [5,11] and it has been used as a basis for
studying the dynamics of network formation [1] as well as the behavior of users
in online social networks [15,16].

+ +

+

+

−

−

(a) Balanced triangles

−+

+

− −

−

(b) Unbalanced triangles

Fig. 1. Balanced and unbalanced configurations of signed triangles

Given an undirected and signed graph G = (V, E), a very natural question,
also associated with social-balance studies, is to compute the fraction of triangles
in G that are balanced. If we denote this quantity by b̂, then, the fraction of
unbalanced triangles is û = 1 − b̂.

A naive algorithm for computing b̂ in a given graph counts all possible triangles
in the graph and finds the ones that are balanced. For a graph with n nodes, such
an algorithm goes over all the possible

(
n
3

)
triangles of the graph and requires

time O(n3). This cubic running time makes this algorithm impractical for large
datasets.

The contribution of this paper is to associate the quantity b̂ with the eigen-
values of the network’s adjacency matrix. This connection allows us to develop
a spectral algorithm that can efficiently approximate the fraction of balanced
triangles. Our results highlight the relationship between the structural balance
of a network and its underlying structure, as expressed in the eigenvalue decom-
position of the matrix representation of the network. Although our methodology
applies to arbitrary networks, we present our results for complete graphs first.
Then, we show how they generalize to incomplete graphs. In incomplete graphs,
apart from the existing edges that are all signed by a “+” or a “-” sign, there are
also non-existing (i.e., neutral) edges. All signed networks coming from online
social networks are incomplete; in such large datasets it is unrealistic to assume
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that there is information about the positive or negative relationships between
all pairs of nodes. Our experiments show that algorithm works extremely well in
practice. As a by-product of our experimental evaluation we get a study of the
eigenvalue spectrum of the adjacency matrices of signed networks.

The rest of the paper is organized as follows: in Section 2 we review work
related to social-balance studies and spans scientific areas ranging from sociology
and physics to computer science. We give some basic definitions and describe
some computational tools in Section 3. In Section 4 we describe our methodology
for the special case of complete graphs; we extend it for incomplete graphs in
Section 5. Our experimental evaluation is given in Section 6 and we conclude
the paper in Section 7.

2 Related Work

The principles underlying structural balance are based on theories in social psy-
chology, and they date back to the work of Heider in the 1940s [11,12]. Cartwright
and Harary [5,6,10] generalized these principles and expressed them in terms of
graphs in the 1950s. All these studies focus on building psychological and so-
ciological models for social balance and, naturally, they do not consider the
computational aspects of these models.

More recent work focuses on mathematical models, that attempt to capture
how the structural balance of a network can evolve from dynamic changes to
the links’ signs over time [1,17]. This line of work mostly focuses on questions
related to the evolution of friendships and antagonisms between the nodes and
does not consider the algorithmic problems related to structural balance.

Analysis of online signed social networks, through the lenses of structural-
balance theories, has only appeared recently in the work of Leskovec et. al. [15,16].
More specifically, Leskovec et. al. have analyzed theories of balance and status in
the context of social-media sites, investigating the extent to which each theory
helped explain the linking behavior of users to these sites [16]. In a more recent
work, the same authors developed methods for predicting the sign of the edge
between users in signed online social networks [15]. Our work is complementary
to this; we provide algorithmic tools for computing basic quantities associated
with social balance. Such computations will allow the techniques developed in
the past to become more efficient.

The idea of associating the triangles of a network with the eigenvalues of its
adjacency matrix is not new: it has recently appeared in the work of Tsourakakis
et. al. [19,20]. However, Tsourakakis et. al. focus on unsigned networks and on
the computation of the total number of distinct (unsigned) triangles in them. On
the other hand, we consider signed networks and signed-triangle configurations,
and our goal is to count the proportion of balanced and unbalanced triangles in
such networks. In that respect, our task is more complicated and the techniques
developed by Trourakakis et. al. do not directly apply to our setting.
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3 Basics

For the rest of the paper we assume a social network G = (V, E) consisting of a
set of n nodes, i.e., |V | = n. The edges of the network are undirected and signed.
Each existing edge {i, j} ∈ E is labeled with either a plus or a minus sign. A plus
sign corresponds to feelings of friendship, while a minus sign indicates animosity
between nodes i and j. Not all edges need to be present; a non-existing edge
between two nodes corresponds to “neutral” feelings.

Given a graph G = (V, E), we use A to represent the n×n adjacency matrix
of G. If edge {i, j} is signed with a “plus” (“minus”), then Aij = 1 (Aij = −1).
If edge {i, j} does not exist, then Aij = 0. Since the graph G is undirected,
matrix A is symmetric. In addition to the adjacency matrix A, we also define
the connectivity matrix of G, which we denote by G. Matrix G is also symmetric
and Gij = 1 if nodes i and j are connected by an edge (irrespective of the sign);
otherwise Gij = 0.

Following traditional linear-algebra notation, we use trace (A) (trace (G)) to
denote the sum of the diagonal elements of A (G). That is, trace (A) =

∑n
i=1 Aii

and trace (G) =
∑n

i=1 Gii.
As shown in Fig. 1, there are four possible configurations of signed triangles

(up to node permutation). In the theory of social balance, the triangle configu-
rations with even number of minus signs are considered as balanced (Fig. 1(a)).
On the other hand, the two configurations with odd number of minus signs cor-
respond to unbalanced triangles (Fig. 1(b)). Notice that the product of the edge
signs is positive for a balanced triangle and negative for an unbalanced one. If
b and u denote the number of balanced and unbalanced triangles in G, we are
interested in computing the following two quantities: (1) the fraction of balanced
triangles in G, denoted by b̂ and (2) the fraction of unbalanced triangles in G,
denoted by û. Since b̂ + û = 1, computing b̂ suffices to achieve our goal.

Given a signed graph G = (V, E) with adjacency matrix A and connectivity
matrix G we know the following:

Proposition 1 ([19,20]). The number of distinct triangles that node i partici-
pates in is δi = 1

2G
3
ii.

Furthermore, we can associate the diagonal elements of A3 with the balanced
and unbalanced triangles a single node participates in. The following proposition
summarizes this relationship.

Proposition 2. For a node i, let bi be the number of balanced and ui the number
of unbalanced triangles i participates in. Then, 1

2A
3
ii = (bi − ui).

Proof. Consider the expansion of the diagonal elements of A3

A3
ii =

n∑
j=1

n∑
k=1

AijAjkAki. (1)

For balanced triangles, the product of the edge signs is positive, whereas for
unbalanced ones it is negative. For the case that any of the edges is missing
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(and therefore the triangle does not exist), the product yields zero. Therefore,
the sum over all possible configurations, i.e., the value of A3

ii, is increased by
one if the triangle of a path i → j → k is balanced. It is decreased by one, if
it is unbalanced. However, since the graph is undirected, each unique triangle is
counted twice in A3

ii; again, triangle {i, j, k} is counted both as i → j → k and
as i → k → j. Consequently we have to divide by two.

Propositions 1 and 2 will become useful in proving the main theorems of the
paper in Sections 4 and 5. We will also use the following results related to the
eigenvalue decomposition of any real symmetric matrix X1. First, recall that
every real, symmetric n×n graph has n real eigenvalues λ1, λ2, . . . , λn. We also
know the following:

Proposition 3 ([8]). For any n×n matrix X, the sum of the diagonal elements
of X is equal to the sum of its eigenvalues. That is, if λ1, λ2, . . . , λn are the
eigenvalues of X, then we have that trace (X) =

∑n
i=1 λi.

Proposition 4 ([8]). Let X be a real, n× n and symmetric matrix with eigen-
value decomposition X = UΛUT and diag (Λ) = (λ1, . . . , λn) . Then, for integer
k, the eigenvalue decomposition of matrix Xk is Xk = UΛkUT . Where Λk is a
diagonal matrix with diag(Λ) = (λk

1 , . . . , λk
n).

4 Balanced Triangles in Complete Networks

In this section, we show how the fraction of balanced triangles b̂ of a fully con-
nected signed network can be expressed as a function of the eigenvalues of the
network’s adjacency matrix. We express this relationship formally in Theorem 1.

Theorem 1. Let G = (V, E) be a fully connected signed network with adjacency
matrix A. If λ1, λ2, . . . , λn are the eigenvalues of A, then the fraction of balanced
triangles b̂ of G can be computed as follows:

b̂ =
1
2

+
1

4n(n − 1)(n − 2)

n∑
i=1

λ3
i . (2)

Before getting into the details of the proof, observe that in a fully-connected
signed graph all nodes participate in the same number of signed triangles. That
is, we have the following fact.

Fact 1. Every node i ∈ V participates in the same number of distinct triangles.
That is, if we denote this number by δi, we have that δ1 = δ2 = . . . = δn = δ
and δ =

(
n−1

2

)
.

1 Recall that both the adjacency and the connectivity matrices A and G are real and
symmetric.
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This is simply because every node participates in triangles formed by all combi-
nations of pairs of the remaining n − 1 nodes (excluding the node itself).

For every node i, the δ triangles it participates in can be partitioned into bi

balanced ones and ui unbalanced ones. That is,

δ = bi + ui , ∀i ∈ {1, 2, ..., n} . (3)

Due to Proposition 2, we have that

A3
ii

2
= bi − ui (4)

By (3) and (4), we obtain that

bi =
1
2
δ +

1
4
A3

ii and ui =
1
2
δ − 1

4
A3

ii.

Therefore, the total number of balanced and unbalanced triangles, denoted
by b and u, will be

b=
1
3

n∑
i=1

bi =
1
3

[
1
2
nδ +

1
4

trace
(
A3
)]

and u=
1
3

n∑
i=1

ui =
1
3

[
1
2
nδ − 1

4
trace

(
A3
)]

.

We divide both quantities by 3 because every triangle has three participating
nodes, and thus, is triple-counted. Consequently, the fraction of balanced trian-
gles in the network, b̂, is

b̂ =
b

b + u
=

1
4nδ

trace
(
A3
)

+
1
2

=
1

4n(n − 1)(n − 2)
trace

(
A3
)

+
1
2
.

The last derivation is due to the fact that δ =
(
n−1

2

)
. Using Propositions 3 and

4, we get the desired result.

Algorithmic implications: Equation (2) implies that we can compute the
fraction of balanced triangles by simply computing the eigenvalues of A and
take their third power (this is due to Proposition 4). However, computing all
the n eigenvalues of A still requires time O(n3). Fortunately, if one is content
with approximations of b̂, Theorem 1 can lead to an algorithm with significantly
smaller running time. Assume the permutation of the eigenvalues of A (i.e.,
λ1, . . . , λn) in decreasing order of their magnitude. Then, instead of using all
the n eigenvalues in the computation of b̂, we can compute b̂k by only using
the top-k eigenvalues with the largest magnitude. Therefore, computing these
eigenvalues requires time only O(n2k) – this is because the standard algorithms
for computing eigenvalue decomposition output the eigenvalues sequentially and
in decreasing order of their magnitude [8]. For small values of k, the savings
in terms of running time can be significant. Our algorithm can further leverage
the efficient approximation algorithms for computing eigenvalues of large ma-
trices [7]. Our experiments demonstrate that very small values of k (compared
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to n) suffice to give significant computational gains with insignificant accuracy
loses. This is because, as our experiments demonstrate, the effective rank of A
is small.

5 Balanced Triangles in Arbitrary Networks

Here we show that even when the signed graph is not a clique, we can express the
fraction of balanced triangles as a function of the eigenvalues of the adjacency
matrix A and the connectivity matrix G.

Theorem 2. Let G = (V, E) be a symmetric signed network (not necessarily
fully connected) with adjacency matrix A and connectivity matrix G. Also let
λ1, λ2, . . . , λn be the eigenvalues of A and μ1, μ2, . . . , μn the eigenvalues of G.
Then, the fraction of balanced triangles in G can be expressed as follows:

b̂ =
1
2

(
1 +

∑n
i=1 λ3

i∑n
i=1 μ3

i

)
. (5)

The main idea of the proof of Theorem 2 is similar to that of Theorem 1. The
only difference is that now, the number of triangles δi that a node i participates
in is different for every node i and can be computed using Proposition 1. If
bi and ui denote the number of balanced and unbalanced triangle that node i
participates in, then we have that

δi = bi + ui. (6)

Every balanced triangle contributes a (+1) (all three edges positive or two edges
negative and one positive). Thus, the diagonal entries of A3 are numbers of the
form

A3
ii

2
= bi − ui. (7)

Using Proposition 1 and Equations (6) and (7), we get

bi =
1
4
(
G3

ii + A3
ii

)
and ui =

1
4
(
G3

ii − A3
ii

)
.

The total numbers of balanced and unbalanced triangles of the graph, denoted
by b and u respectively, are then given by

b =
1
3

n∑
i=1

bi =
1
12
[
trace

(
G3
)

+ trace
(
A3
)]

u =
1
3

n∑
i=1

ui =
1
12
[
trace

(
G3
)− trace

(
A3
)]

.

As before, the division by 3 is due to the fact, that the summation goes over
all nodes in the network, what results in a triple-counting. It follows that the
fraction of balanced triangles in the network, is
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b̂ =
b

b + u
=

1
2

(
1 +

trace
(
A3
)

trace (G3)

)
.

Using Propositions 3 and 4, we can replace the quantities trace
(
A3
)

and
trace

(
G3
)

by
∑n

i=1 λ3
i and

∑n
i=1 μ3

i respectively, and get the desired result.

Algorithmic implications: Equation (2) implies that we can compute the frac-
tion of balanced triangles by computing the eigenvalues of A and take their third
power (this is due to Proposition 4). However, computing all the n eigenvalues of
A still requires time O(n3). Fortunately, if one is content with approximations
of b̂, Theorem 2 can lead to an algorithm with significantly smaller running time.
Instead of computing all the n eigenvalues of A and G, we can evaluate Equa-
tion (5) using only the k largest-magnitude eigenvalues of matrices A and G.
We call the algorithm that uses Theorem 2 and the first k eigenvalues of G and
A for computing b̂, the Spectral(k) algorithm. For small values of k, the run-
ning time of Spectral(k) is very small. Further computational improvements
can be achieved by leveraging more efficient approximation algorithms for eigen-
value computations [7]. Our experiments demonstrate that the values of k that
give satisfactory approximations of b̂ are very small because, as our experiments
show, the effective ranks of A and G are both small and similar.

6 Experiments

Our experiments both with real and synthetic datasets demonstrate that a very
small number of eigenvalues of the adjacency and the connectivity matrix suffices
to provide accurate approximations of b̂.

Datasets: For our experiments we use two real signed-graph datasets: Epin-
ions and Slashdot. We have downloaded both datasets from http://snap.
stanford.edu/data/2. Since both datasets were directed, we obtained their
undirected versions as follows: For every directed edge e(i → j) such that
e(j → i) does not exist, we create an undirected edge that retains the same
sign as the original directed edge. If both e(i → j) and e(j → i) exist and have
the same sign, we again, created undirected edge between i and j with the same
sign. If edges e(i → j) and e(j → i) have contradicting signs, we leave nodes
i and j to be disconnected. The resulting Epinions dataset has n = 131, 828
nodes and |E| = 711, 210 undirected edges; 83% of these edges are positive. The
resulting Slashdot dataset contains n = 77, 357 nodes and |E| = 468, 554 edges;
76% of these edges are signed positive.

We also generate synthetic scale-free (SF) graphs using the generative model
proposed by Barabási and Albert [2]. We convert the generated unsigned graphs
into signed graphs by randomly assigning a “+’ (or a “-”) sign to every edge of
the graph with probability equal to p+. The value of p+ is a parameter that we
vary for our experimental evaluation.
2 We used the file soc-sign-Slashdot081106.txt.gz for Slashdot.

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
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Fig. 2. Distribution of the cubed eigenvalues λ3
i and μ3

i of the adjacency matrix A
and the connectivity matrix G for the Epinions and the Slashdot graph, ordered by
magnitude in decreasing order

6.1 Evaluating Spectral on Real-World Signed Networks

Recall, that Theorems 1 and 2 indicate that, in order to compute b̂, it suffices to
know the sum of the cubed eigenvalues of the adjacency (A) and the connectivity
(G) matrices. Since our objective is to approximate these sums by considering
only some of the eigenvalues, we need to show that the first eigenvalues con-
tribute the major part to the total sum. Therefore, as a first experiment, we
examine the distributions of the cubed eigenvalues of A and G for the Epin-
ions and Slashdot datasets. Figures 2(a) and 2(b) show the result for the first
cubed eigenvalues of the Epinions and Slashdot graphs, ordered by magnitude.
There are two crucial features, which justify the approximation of the sum over
all eigenvalues by the ones with the largest magnitudes. First, the distribution
of the magnitude versus the rank is highly skewed and therefore the early sum-
mands contribute the most. Notice that the skew is identical for the eigenvalues
of A3 and G3 matrices, meaning that both matrices have the same effective
rank. Second, the signs of the eigenvalues switch between positive and negative.
Therefore, many of the eigenvalues in the tail cancel each other out.

To quantify how well the actual result of b̂ can be approximated, we evaluate
the relative error

Re
(
b̂, i
)

=
|̂bi − b̂|

b̂
. (8)

The term b̂i is the result of Spectral that considers the first i eigenvalues of
A and G. The exact result b̂ is obtained by counting all the existing triangles
using the exact cubic algorithm that we call Naive.

The relative error of the output of Spectral, as a function of the number
of considered eigenvalues, i, for the Epinions and the Slashdot datasets, are
shown in Figures 3(a) and 3(b) respectively. For the Epinions data, taking into
account 10, out of a total of 131, 828 eigenvalues, gives an approximation with
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Fig. 3. Relative error for the approximation of b̂ obtained by Spectral for the Epin-
ions and the Slashdot datasets, when considering only the i eigenvalues with the
largest magnitude
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Fig. 4. Running time (in seconds) of Spectral as a function of the number of consid-
ered eigenvalues

relative error less than 2%. Similarly, for the Slashdot data, taking into account
≈ 25 eigenvalues, out of the 77, 357 total eigenvalues, leads to an approximation
that has less than 2% relative error.

Figures 4(a) and 4(b) show the running time (in seconds) of the Spectral
algorithm on Epinions and Slashdot data, as a function of the number of
considered eigenvalues of G and A. One can see, that the running time of the
algorithm scales almost linearly to the number of eigenvalues. In numbers: for
the Epinions dataset, Naive needs 753 seconds for exact computation, while
Spectral gives an estimate with relative error less than 0.9% in 7 seconds.
For the Slashdot dataset, Spectral with only 10 eigenvalues runs in just 3
seconds and provides a solution with relative error less than 0.7%. Compare
this to the running time of Naive that is 262 seconds for the same dataset.
Note that although the error is not necessarily dropping as the number of
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considered eigenvalues increases, it never exceeds 1%. Since more eigenvalues
increase the running time of Spectral, using the top-10 magnitude eigenvalues
is a reasonable rule of thumb.3 Neither of our implementations were optimized
for run-time experiments, however, the times we report here are indicative of
the computational savings achieved by the Spectral algorithm.

6.2 Evaluating Spectral on Synthetic Signed Networks

Here, we further investigate the accuracy of Spectral for signed networks
that have different underlying topologies. For that, we generate SF graphs with
n = 3000 nodes and |E| = 30, 000 edges. We also examine the impact of the pa-
rameter p+ on the overall performance of the algorithm. Figure 5(a) shows the
relative error obtained by Spectral, as a function of the number of considered
eigenvalues. Every point is an average over four different network realizations
with the same set of generation parameters. As we can see, p+ hardly affects the
accuracy of the approximation. Consideration of approximately 100 eigenvalues
(out of the total of 3, 000) leads to an error of less than 2%. In Figure 5(b), we
observe that the eigenvalues of a SF graph with p+ = 80% exhibit the same two
crucial properties that were pointed out in real graphs. That is, the magnitude of
the eigenvalues are highly skewed. This skew is almost identical for both G and
A matrices and similar both for eigenvalues with positive and negative signs. It
turns out that, for SF graphs, the shape of these distributions is independent of
the value of p+.
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(a) Relative error of the approximation

of b̂ obtained by Spectral for n = 3000
and p+ ∈ {35%, 50%, 65%, 80%}, as
a function of the number of eigenvalues
considered.
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Fig. 5. Experiments with Scale-free graphs

3 We implemented Spectral using Mathematica and Naive using Java. The running
times of Naive reported here are generous, since we rearrange the input so that it
allows Naive to do efficient in-memory computations.
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7 Conclusions

Given a signed undirected network, we have presented a spectral algorithm for
computing the fraction of balanced triangles in the network. The basis of our
algorithm lies in the dependency between the the fraction of balanced triangles of
the network and the eigenvalues of the adjacency and the connectivity matrices
that describe the signed network. After establishing the form of this connection
theoretically, we have exploited it in order to device Spectral, a fast algorithm
that approximates the fraction of the balanced triangles in the network. In an
extensive experimental evaluation, both on real and generated signed networks,
we have demonstrated that the fraction of balanced and unbalanced triangles
can be approximated very efficiently using our algorithm. In addition to that,
our experiments also revealed certain interesting properties of the eigenvalues of
the adjacency and the connectivity matrices of signed networks. We view our
methodology as a useful computational tool for the studies of structural balance
in large online signed social networks.
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Abstract. Despite of the extreme success of the spectral graph the-
ory, there are relatively few papers applying spectral analysis to hyper-
graphs. Chung first introduced Laplacians for regular hypergraphs and
showed some useful applications. Other researchers treated hypergraphs
as weighted graphs and then studied the Laplacians of the correspond-
ing weighted graphs. In this paper, we aim to unify these very different
versions of Laplacians for hypergraphs. We introduce a set of Laplacians
for hypergraphs through studying high-ordered random walks on hy-
pergraphs. We prove the eigenvalues of these Laplacians can effectively
control the mixing rate of high-ordered random walks, the generalized
distances/diameters, and the edge expansions.

1 Introduction

Many complex networks have richer structures than graphs can have. Inherently
they have hypergraph structures: interconnections often cross multiple nodes.
Treating these networks as graphs causes a loss of some structures. Nonetheless,
it is still popular to use graph tools to study these networks; one of them is
the Laplacian spectrum. Let G be a graph on n vertices. The Laplacian L of G
is the (n× n)-matrix I − T−1/2AT−1/2, where A is the adjacency matrix and T
is the diagonal matrix of degrees. Let λ0, λ1, . . . , λn−1 be the eigenvalues of L,
indexed in non-decreasing order. It is known that 0 ≤ λi ≤ 2 for 0 ≤ i ≤ n−1. If
G is connected, then λ1 > 0. The first nonzero Laplacian eigenvalue λ1 is related
to many graph parameters, such as the mixing rate of random walks, the graph
diameter, the neighborhood expansion, the Cheeger constant, the isoperimetric
inequalities, expander graphs, quasi-random graphs, etc [1, 2, 6, 9, 10, 20, 21].

In this paper, we define a set of Laplacians for hypergraphs. Laplacians for
regular hypergraphs was first introduced by Chung [8] in 1993 using homology
approach. The first nonzero Laplacian eigenvalue can be used to derive several
useful isoperimetric inequalities. It seems hard to extend Chung’s definition to
general hypergraphs. Other researchers treated a hypergraph as a multi-edge
graph and then defined its Laplacian to be the Laplacian of the corresponding
multi-edge graph. For example, Rodŕıguez [25] showed that the approach above
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had some applications to bisections, the average minimal cut, the isoperimetric
number, the max-cut, the independence number, the diameter etc.

What are “right” Laplacians for hypergraphs? To answer this question, let
us recall how the Laplacian was introduced in the graph theory. One of the
approaches is using geometric/homological analogue, where the Laplacian is de-
fined as a self-joint operator on the functions over vertices. Another approach
is using random walks, where the Laplacian is the symmetrization of the tran-
sition matrix of the random walk on a graph. Chung [6] took the first approach
and defined her Laplacians for regular hypergraphs. In this paper, we take the
second approach and define the Laplacians through high-ordered random walks
on hypergraphs.

A high-ordered walk on a hypergraph H can be roughly viewed as a se-
quence of overlapped oriented edges F1, F2, . . . , Fk. For 1 ≤ s ≤ r − 1, we say
F1, F2, . . . , Fk is an s-walk if |Fi ∩ Fi+1| = s for each i in {1, 2, 3, . . . , k − 1}.
For example, a Hamiltonian s-cycle is a special s-walk which covers each vertex
exactly once. There are many papers [4, 5, 13, 14, 15, 16, 18, 19, 23, 24] study-
ing Hamiltonian s-cycles in hypergraphs. The detail definition of high-ordered
random walks will be given later. The choice of s enables us to define a set of
Laplacian matrices L(s) for H . For s = 1, our definition of Laplacian L(1) is the
same as the definition in [25]. For s = r − 1, while we restrict to regular hy-
pergraphs, our definition of Laplacian L(r−1) is similar to Chung’s definition [8].
We will discuss their relations in the last section. Our definition of Laplacians
are also closely related to the singular values used in an unpublished work of
Butler [3].

In this paper, we show several applications of the Laplacians of hypergraphs,
such as the mixing rate of high-ordered random walks, the generalized diameters,
and the edge expansions. Our approach allows users to select a “right” Laplacian
to fit their special need.

Our definition of Laplacians for hypergraphs depends on previous knowledge
of the Laplacian for weighted graphs and Eulerian directed graphs, which can
be found at the full version of this paper [22]. The definition of Laplacians for
hypergraphs will be given in section 2. In section 3, we will prove some properties
of the Laplacians of hypergraphs. In section 4, we will consider several applica-
tions using the Laplacians of hypergraphs. In last section, we will comment on
the future direction.

2 Definition of the s-th Laplacian

For a positive integer s and a vertex set V , let Vs be the set of all (ordered)
s-tuples consisting of s distinct elements in V . Let

(
V
s

)
be the set of all unordered

(distinct) s-subset of V . Let 1 be the row (or the column) vector with all entries
of value 1 and I be the identity matrix. For a row (or column) vector f , the
norm ‖f‖ is always the L2-norm of f .

Let H be an r-uniform hypergraph (or an r-graph for short) with the vertex
set V (H) (or V for short) and the edge set E(H). We assume |V (H)| = n and
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E(H) ⊆ (Vr ). For a vertex subset S such that |S| < r, the neighborhood Γ (S) is
{T |S ∩ T = ∅ and S ∪ T is an edge in H}. Let the degree dS of S in H be the
number of edges containing S, i.e, dS = |Γ (S)|. For 1 ≤ s ≤ r − 1, an s-walk of
length k is a sequence of vertices

v1, v2, . . . , vj , . . . , v(r−s)(k−1)+r

together with a sequence of edges F1, F2, . . . , Fk such that

Fi = {v(r−s)(i−1)+1, v(r−s)(i−1)+2, . . . , v(r−s)(i−1)+r}

for 1 ≤ i ≤ k. Here are some examples of s-walks as shown in Figure 1.

v 1 vv 3
v v 5 v v 7642 v 1 vv 32 v 4 v 5 v 6 v 1 vv 32 v 4 v 5 v 6 v 7

v 8

A 1-walk in a 3-graph A 2-walk in a 3-graph A 2-walk in a 4-graph

Fig. 1. Three examples on an s-walk in a hypergraph

For each i in {0, 1, . . . , k}, the i-th stop xi of the s-walk is the ordered s-tuple
(v(r−s)i+1, v(r−s)i+2, . . . , v(r−s)i+s). The initial stop is x0, and the terminal stop
is xk. An s-walk is a s-path if stops (as ordered s-tuples) are distinct. If x0 = xk,
then an s-walk is closed.

A 1-cycle in a 3-graph A 2-cycle in a 3-graph

Fig. 2. An example of a loose cycle and a tight cycle in a 3-graph

An s-cycle is a special closed s-walk such that v1, v2, . . . , v(r−s)k are distinct
and v(r−s)k+j = vj for 1 ≤ j ≤ s (see Figure 2). An s-cycle is a loose cycle
if s ≤ r

2 (particularly s = 1); an s-cycle is a tight cycle if s > r
2 (particularly

s = r−1). An s-cycle is Hamiltonian if it covers each vertex in H exactly once. In
the literature, Katona and Kierstead [15] first studied Hamiltonian tight cycles.
Rödl-Ruciński-Szemerédi [23, 24], Kühn et al [16, 18, 19], and Hán-Schacht [14]
studied Hamiltonian s-cycles for a full range of s. Frieze and Dudek [4, 5, 13]
studied Hamiltonian s-cycles in random r-uniform hypergraphs.
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For 1 ≤ s ≤ r − 1 and x, y ∈ Vs, the s-distance d(s)(x, y) is the minimum
integer k such that there exists an s-path of length k starting from x and ending
at y. A hypergraph H is s-connected if d(s)(x, y) is finite for every pair (x, y). If
H is s-connected, then the s-diameter of H is the maximum value of d(s)(x, y)
for x, y ∈ Vs.

A random s-walk with initial stop x0 is an s-walk generated as follows. Let
x0 be the sequence of visited vertices at initial step. At each step, let S be the
set of last s vertices in the sequence of visited vertices. A random (r − s)-set T
is chosen from Γ (S) uniformly; the vertex in T is added into the sequence one
by one in an arbitrary order.

For 0 ≤ α ≤ 1, an α-lazy random s-walk is a modified random s-walk such
that with probability α, one can stay at the current stop; with probability 1−α,
append r − s vertices to the sequence as selected in a random s-walk.

For x ∈ Vs, let [x] be the s-set consisting of the coordinates of x.

2.1 Case 1 ≤ s ≤ r/2

For 1 ≤ s ≤ r/2, we define a weighted undirected graph G(s) over the vertex
set Vs as follows. Let the weight w(x, y) be |{F ∈ E(H) : [x] 	 [y] ⊆ F}|. Here
[x] 	 [y] is the disjoint union of [x] and [y]. In particular, if [x] ∩ [y] 
= ∅, then
w(x, y) = 0.

For x ∈ Vs, the degree of x in G(s), denoted by d
(s)
x , is given by

d(s)
x =

∑
y

w(x, y) = d[x]

(
r − s

s

)
s!. (1)

Here d[x] means the degree of the set [x] in the hypergraph H . When we restrict
an s-walk on H to its stops, we get a walk on G(s). This restriction keeps the
length of the walk. Therefore, the s-distance d(s)(x, y) in H is simply the graph
distance between x and y in G(s); the s-diameter of H is simply the diameter of
the graph G(s).

A random s-walk on H is essentially a random walk on G(s). It can be con-
structed from a random walk on G(s) by inserting additional random r − 2s
vertices Ti between two consecutive stops xi and xi+1 at time i, where Ti is
chosen uniformly from Γ ([xi] ∪ [xi+1]) and the vertex in Ti is inserted between
xi and xi+1 in an arbitrary order.

Therefore, we define the s-th Laplacian L(s) of H to be the Laplacian of the
weighted undirected graph G(s).

The eigenvalues of L(s) are listed as λ
(s)
0 , λ

(s)
1 , . . . , λ

(s)

(n
s)s!

in the non-decreasing

order. Let λ
(s)
max = λ

(s)

(n
s)s!

and λ̄(s) = max{|1−λ
(s)
1 |, |1−λ

(s)
max|}. For some hyper-

graphs, the numerical values of λ
(s)
1 and λ

(s)
max are shown in Table 1 at the end

of this section.
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2.2 The Case r/2 < s ≤ r − 1

For r/2 < s ≤ r − 1, we define a directed graph D(s) over the vertex set Vs as
follows. For x, y ∈ Vs such that x = (x1, . . . , xs) and y = (y1, . . . , ys), let (x, y)
be a directed edge if xr−s+j = yj for 1 ≤ j ≤ 2s− r and [x]∪ [y] is an edge of H .

For x ∈ Vs, the out-degree d+
x in D(s) and the in-degree d−x in D(s) satisfy

d+
x = d[x](r − s)! = d−x .

Thus D(s) is a Eulerian directed graph. We write d
(s)
x for both d+

x and d−x . Now
D(s) is strongly connected if and only if it is weakly connected.

Note that an s-walk on H can be naturally viewed as a walk on D(s) and vice
versa. Thus the s-distance d(s)(x, y) in H is exactly the directed distance from
x to y in G(s); the s-diameter of H is the diameter of D(s). A random s-walk on
H is one-to-one corresponding to a random walk on D(s).

For r
2 < s ≤ r − 1, we define the s-th Laplacian L(s) as the Laplacian of the

Eulerian directed graph D(s).
The eigenvalues of L(s) are listed as λ

(s)
0 , λ

(s)
1 , . . . , λ

(s)

(n
s)s!

in the non-decreasing

order. Let λ
(s)
max = λ

(s)

(n
s)s!

and λ̄(s) = max{|1−λ
(s)
1 |, |1−λ

(s)
max|}. For some hyper-

graphs, the numerical values of λ
(s)
1 and λ

(s)
max are shown in Table 1 at the end

of this section.

2.3 Examples

Let Kr
n be the complete r-uniform hypergraph on n vertices. Here we compute

the values of λ
(s)
1 and λ

(s)
max for some Kr

n (see Table 1).

Table 1. The values of λ
(s)
1 and λ

(s)
max of some complete hypergraphs Kr

n

H λ
(4)
1 λ

(3)
1 λ

(2)
1 λ

(1)
1 λ

(1)
max λ

(2)
max λ

(3)
max λ

(4)
max

K3
6 3/4 6/5 6/5 3/2

K3
7 7/10 7/6 7/6 3/2

K4
6 1/3 5/6 6/5 6/5 3/2 1.76759

K4
7 3/8 9/10 7/6 7/6 7/5 7/4

K5
6 0.1464 1/2 5/6 6/5 6/5 3/2 3/2 1.809

K5
7 0.1977 5/8 9/10 7/6 7/6 7/5 3/2 1.809

Remark: From the table above, we observe λ
(s)
1 = λ

(s)
max for some complete

hypergraphs. In fact, this is true for any complete hypergraph Kr
n. We point out

the following fact without the proof. For an r-uniform hypergraph H and an
integer s such that 1 ≤ s ≤ r

2 , λ
(s)
1 (H) = λ

(s)
max(H) holds if and only if s = 1 and

H is a 2-design.
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3 Properties of Laplacians

In this section, we prove some properties of the Laplacians for hypergraphs.

Lemma 1. For 1 ≤ s ≤ r/2, we have the following properties.

1. The s-th Laplacian has
(
n
s

)
s! eigenvalues and all of them are in [0, 2].

2. The number of 0 eigenvalues is the number of connected components in G(s).
3. The Laplacian L(s) has an eigenvalue 2 if and only if r = 2s and G(s) has a

bipartite component.

Proof: Items 1 and 2 follow from the facts of the Laplacian of G(s). If L(s) has
an eigenvalue 2, then G(s) has a bipartite component T . We want to show r = 2s.
Suppose r ≥ 2s + 1. Let {v0, v2, . . . , vr−1} be an edge in T . For 0 ≤ i ≤ 2s and
0 ≤ j ≤ s − 1, let g(i, j) = is + j mod (2s + 1) and xi = (vg(i,0), . . . , vg(i,s−1)).
Observe x0, x1, . . . , x2s form an odd cycle in G(s). Contradiction. �

The following lemma compares λ
(s)
1 and λ

(s)
max for different s.

Lemma 2. Suppose that H is an r-uniform hypergraph. We have

λ
(1)
1 ≥ λ

(2)
1 ≥ . . . ≥ λ

(�r/2�)
1 ; (2)

λ(1)
max ≤ λ(2)

max ≤ . . . ≤ λ(�r/2�)
max . (3)

Remark: We do not know whether similar inequalities hold for s > r
2 .

Proof: Let Ts be the diagonal matrix of degrees in G(s) and R(s)(f) be the
Rayleigh quotient of L(s). It suffices to show λ

(s)
1 ≤ λ

(s−1)
1 for 2 ≤ s ≤ r/2. The

eigenvalue λ
(s)
1 can be defined via the Rayleigh quotient λ

(s)
1 = inff⊥Ts1 R(s)(f)

where R(s)(f) =
∑

x∼y(f(x)−f(y))2w(x,y)∑
x f(x)2dx

.

Pick a function f : V (s−1) → R such that 〈f, Ts−11〉 = 0 and λ
(s−1)
1 =

R(s−1)(f). We define g : Vs → R as follows

g(x) = f(x′),

where x′ is a (s − 1)-tuple consisting of the first (s − 1) coordinates of x with
the same order in x. Applying equation 1, we get

〈g, Ts1〉 =
∑

x∈Vs

d(s)
x g(x) =

∑
x∈Vs

g(x)d[x]

(
r − s

s

)
s!.

We have ∑
x

g(x)d[x] =
∑

x

∑
F :[x]⊆F

g(x)

=
∑
x′

∑
F :[x′]⊆F

(r − s + 1)f(x′)

=
∑
x′

d[x′](r − s + 1)f(x′)

=
r − s + 1(

r−s+1
s−1

)
(s − 1)!

∑
x′

f(x′)d(s−1)
x′ = 0.
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Here the second last equality follows from equation (1) and the last one follows
from the choice of f . Therefore,∑

x

g(x)d(s)
x = (r − s + 2)(r − s + 1)

∑
x′

f(x′)d(s−1)
x′ .

Thus 〈g, Ts1〉 = 0. Similarly, we have∑
x

g(x)2d(s)
x = (r − s + 2)(r − s + 1)

∑
x′

f(x′)2d(s−1)
x′ .

Putting them together, we obtain∑
x

g(x)2d(s)
x = (r − s + 2)(r − s + 1)

∑
x′

f(x′)2d(s−1)
x′ .

By the similar counting method, we have∑
x∼y

(g(x) − g(y))2w(x, y) =
∑
x∼y

∑
F :[x]
[y]⊆F

(g(x) − g(y))2

=
∑

x′∼y′

∑
F :[x′]
[y′]⊆F

(r − s + 1)(r − s + 2)(f(x′) − f(y′))2

= (r − s + 1)(r − s + 2)
∑

x′∼y′
(f(x′) − f(y′))2w(x′, y′).

Thus, R(s)(g) = R(s−1)(f) = λ
(s−1)
1 by the choice of f . As λ

(s)
1 is the infimum

over all g, we get λ
(s)
1 ≤ λ

(s−1)
1 .

The inequality (3) can be proved in a similarly way. Since λ
(s)
max is the supre-

mum of the Rayleigh quotient, the direction of inequalities are reversed. �

Lemma 3. For r/2 < s ≤ r − 1, we have the following facts.

1. The s-th Laplacian has
(
n
s

)
s! eigenvalues and all of them are in [0, 2].

2. The number of 0 eigenvalues is the number of strongly connected components
in D(s).

3. If 2 is an eigenvalue of L(s), then one of the s-connected components of H
is bipartite.

The proof is trivial and will be omitted.

4 Applications

We show some applications of Laplacians L(s) of hypergraphs in this section.
The missing proofs of theorems in this section can be found at the full version
of this paper[22].
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4.1 The Random s-Walks on Hypergraphs

For 0 ≤ α < 1 and 1 ≤ s ≤ r/2, after restricting an α-lazy random s-walk on
a hypergraph H to its stops (see section 2), we get an α-lazy random walk on
the corresponding weighted graph G(s). Let π(x) = dx/vol(Vs) for any x ∈ Vs,
where dx is the degree of x in G(s) and vol(Vs) is the volume of G(s). We have
the following theorem.

Theorem 1. For 1 ≤ s ≤ r/2, suppose that H is an s-connected r-uniform
hypergraph H and λ

(s)
1 (and λ

(s)
max) is the first non-trivial (and the last) eigenvalue

of the s-th Laplacian of H. For 0 ≤ α < 1, the joint distribution fk at the k-th
stop of the α-lazy random walk at time k converges to the stationary distribution
π in probability. In particular, we have

‖(fk − π)T−1/2‖ ≤ (λ̄(s)
α )k‖(f0 − π)T−1/2‖,

where λ̄
(s)
α = max{|1 − (1 − α)λ(s)

1 |, |(1 − α)λ(s)
max − 1|, and f0 is the probability

distribution at the initial stop.

For 0 < α < 1 and r/2 < s ≤ r−1, when restricting an α-lazy random s-walk
on a hypergraph H to its stops (see section 2), we get an α-lazy random walk on
the corresponding directed graph D(s). Let π(x) = dx/vol(Vs) for any x ∈ Vs,
where dx is the degree of x in D(s) and vol(Vs) is the volume of D(s). We have
the following theorem.

Theorem 2. For r/2 < s ≤ r − 1, suppose that H is an s-connected r-uniform
hypergraph and λ

(s)
1 is the first non-trivial eigenvalue of the s-th Laplacian of H.

For 0 < α < 1, the joint distribution fk at the k-th stop of the α-lazy random walk
at time k converges to the stationary distribution π in probability. In particular,
we have

‖(fk − π)T−1/2‖ ≤ (σ(s)
α )k‖(f0 − π)T−1/2‖,

where σ
(s)
α ≤

√
1 − 2α(1 − α)λ(s)

1 , and f0 is the probability distribution at the
initial stop.

Remark: The reason why we require 0 < α < 1 in the case r/2 < s ≤ r − 1 is
σ0(D(s)) = 1 for r/2 < s ≤ r − 1.

4.2 The s-Distances and s-Diameters in Hypergraphs

Let H be an r-uniform hypergraph. For 1 ≤ s ≤ r − 1 and x, y ∈ Vs, the s-
distance d(s)(x, y) is the minimum integer k such that there is an s-path of length
k starting at x and ending at y. For X, Y ⊆ Vs, let d(s)(X, Y ) = min{d(s)(x, y) |
x ∈ X, y ∈ Y }. If H is s-connected, then the s-diameter diam(s)(H) satisfies

diam(s)(H) = max
x,y∈Vs

{d(s)(x, y)}.

For 1 ≤ s ≤ r
2 , the s-distances in H (and the s-diameter of H) are simply the

graph distances in G(s) (and the diameter of G(s)), respectively. We have the
following theorems.
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Theorem 3. Suppose H is an r-uniform hypergraph. For integer s such that 1 ≤
s ≤ r

2 , let λ
(s)
1 (and λ

(s)
max) be the first non-trivial (and the last) eigenvalue of the

s-th Laplacian of H. Suppose λ
(s)
max > λ

(s)
1 > 0. For X, Y ⊆ Vs, if d(s)(X, Y ) ≥ 2,

then we have

d(s)(X, Y ) ≤

⎡⎢⎢⎢⎢
log
√

vol(X̄)vol(Ȳ )
vol(X)vol(Y )

log λ
(s)
max+λ

(s)
1

λ
(s)
max−λ

(s)
1

⎤⎥⎥⎥⎥ .

Here vol(∗) are volumes in G(s).

Remark: We know λ
(s)
1 > 0 if and only if H is s-connected. The condition

λ
(s)
max > λ

(s)
1 holds unless s = 1 and every pair of vertices is covered by edges

evenly (i.e., H is a 2-design).

Theorem 4. Suppose H is an r-uniform hypergraph. For integer s such that
1 ≤ s ≤ r

2 , let λ
(s)
1 (and λ

(s)
max) be the first non-trivial (and the last) eigenvalue

of the s-th Laplacian of H. If λ
(s)
max > λ

(s)
1 > 0, then the s-diameter of an r-

uniform hypergraph H satisfies

diam(s)(H) ≤

⎡⎢⎢⎢⎢
log vol(Vs)

δ(s)

log λ
(s)
max+λ

(s)
1

λ
(s)
max−λ

(s)
1

⎤⎥⎥⎥⎥ .

Here vol(Vs) =
∑

x∈Vs dx = |E(H)| r!
(r−2s)! and δ(s) is the minimum degree

in G(s).

When r/2 < s ≤ r − 1, the s-distances in H (and the s-diameter of H) is the
directed distance in D(s) (and the diameter of D(s)), respectively. We have the
following theorems.

Theorem 5. Let H be an r-uniform hypergraph. For r/2 < s ≤ r − 1 and
X, Y ⊆ Vs, if H is s-connected, then we have

d(s)(X, Y ) ≤
⎢⎢⎢⎣ log vol(X̄)vol(Ȳ )

vol(X)vol(Y )

log 2

2−λ
(s)
1

⎥⎥⎥⎦+ 1.

Here λ
(s)
1 is the first non-trivial eigenvalue of the Laplacian of D(s), and vol(∗)

are volumes in D(s).

Theorem 6. For r/2 < s ≤ r − 1, suppose that an r-uniform hypergraph H

is s-connected. Let λ
(s)
1 be the smallest nonzero eigenvalue of the Laplacian of

D(s). The s-diameter of H satisfies

diam(s)(H) ≤
⎡⎢⎢⎢2 log vol(Vs)

δ(s)

log 2

2−λ
(s)
1

⎤⎥⎥⎥ .

Here vol(Vs) =
∑

x∈Vs dx = |E(H)|r! and δ(s) is the minimum degree in D(s).
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4.3 The Edge Expansions in Hypergraphs

In this subsection, we prove some results on the edge expansions in hypergraphs.
Note that there was some attempt to generalize the edge discrepancy theorem
from graphs to hypergraphs [3].

Let H be an r-uniform hypergraph. For S ⊆ (Vs ), we recall that the volume
of S satisfies vol(S) =

∑
x∈S dx. Here dx is the degree of the set x in H . In

particular, we have

vol
((

V

s

))
= |E(H)|

(
r

s

)
.

The density e(S) of S is vol(S)

vol((V
s)) . Let S̄ be the complement of S in

(
V
s

)
. We have

e(S̄) = 1 − e(S).
For 1 ≤ t ≤ s ≤ r − t, S ⊆ (Vs ), and T ⊆ (Vt ), let

E(S, T ) = {F ∈ E(H) : ∃x ∈ S, ∃y ∈ T, x ∩ y = ∅, and x ∪ y ⊆ F}.
Note that |E(S, T )| counts the number of edges contains x 	 y for some x ∈ S

and y ∈ T . Particularly, we have
∣∣∣E ((Vs), (Vt ))∣∣∣ = |E(H)| r!

s!t!(r−s−t)! .

Theorem 7. For 1 ≤ t ≤ s ≤ r
2 , S ⊆ (

V
s

)
, and T ⊆ (

V
t

)
, let e(S, T ) =

|E(S,T )|
|E((V

s),(V
t ))| . We have

|e(S, T ) − e(S)e(T )| ≤ λ̄(s)
√

e(S)e(T )e(S̄)e(T̄ ). (4)

Now we consider the case that s > r
2 . Due to the fact σ

(s)
0 = 1, we have

to use the weaker expansion theorem 7 in [22]. Note that
∣∣∣E ((Vs), (Vt ))∣∣∣ =

|E(H)| r!
(r−s−t)!s!t! . We get the following theorem.

Theorem 8. For 1 ≤ t < r
2 < s < s + t ≤ r, S ⊆ (

V
s

)
, and T ⊆ (

V
t

)
, let

e(S, T ) = |E(S,T )|
|E((V

s),(V
t ))| . If |x ∩ y| 
= min{t, 2s− r} for any x ∈ S and y ∈ T , then

we have
|1
2
e(S, T ) − e(S)e(T )| ≤ λ̄(s)

√
e(S)e(T )e(S̄)e(T̄ ). (5)

Nevertheless, we have the following strong edge expansion theorem for r
2 <

s ≤ r − 1. For S, T ⊆ (Vs ), let E′(S, T ) be the set of edges of the form x ∪ y for
some x ∈ S and y ∈ T . Namely,

E′(S, T ) = {F ∈ E(H) | ∃x ∈ S, ∃y ∈ T, F = x ∪ y}.
Observe that∣∣∣∣E′

((
V

s

)
,

(
V

s

))∣∣∣∣ = |E(H)| r!
(r − s)!(2s − r)!(r − s)!

.
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Theorem 9. For r
2 < s ≤ r−1 and S, T ⊆ (Vs ), let e′(S, T ) = |E′(S,T )|

|E′((V
s),(V

s))| . We

have
|e′(S, T ) − e(S)e(T )| ≤ λ̄(s)

√
e(S)e(T )e(S̄)e(T̄ ). (6)

5 Concluding Remarks

In this paper, we introduced a set of Laplacians for r-uniform hypergraphs.
For 1 ≤ s ≤ r − 1, the s-Laplacian L(s) is derived from the random s-walks
on hypergraphs. For 1 ≤ s ≤ r

2 , the s-th Laplacian L(s) is defined to be the
Laplacian of the corresponding weighted graph G(s). The first Laplacian L(1) is
exactly the Laplacian introduced by Rodr̀ıguez [25].

For r
2 ≤ s ≤ r − 1, the s-th Laplacian L(s) is defined to be the Laplacian of

the corresponding Eulerian directed graph D(s). At first glimpse, σ0(D(s)) might
be a good parameter. However, it is not hard to show that σ0(D(s)) = 1 always
holds. Our work is based on (with some improvements) Chung’s recent work
[11, 12] on directed graphs.

Let us recall Chung’s definition of Laplacians [8] for regular hypergraphs. An r-
uniform hypergraph H is d-regular if dx = d for every x ∈ Vr−1. Let G be a graph
on the vertex set Vr−1. For x, y ∈ Vr−1, let xy be an edge if x = x1x2, . . . , xr−1

and y = y1x2, . . . , xr−1 such that {x1, y1, x2, . . . , xr−1} is an edge of H . Let A
be the adjacency matrix of G, T be the diagonal matrix of degrees in G, and K
be the adjacency matrix of the complete graph on the edge set Vr−1. Chung [8]
defined the Laplacian L such that L = T − A + d

n (K + (r − 1)I).
This definition comes from the homology theory of hypergraphs. Firstly, L is

not normalized in Chung’s definition, i.e., the eigenvalues are not in the interval
[0, 2]. Secondly, the add-on term d

n (K+(r−1)I) is not related to the structures of
H . If we ignore the add-on term and normalize the matrix, then we essentially
get the Laplacian of the graph G. Note G is disconnected, then λ1(G) = 0
and it is not interesting. Thus Chung added the additional term. The graph
G is actually very closed to our Eulerian directed graph D(r−1). Let B be the
adjacency matrix of D(r−1). In fact we have B = QA, where Q is a rotation
which maps x = x1, x2 . . . , xr−1 to x′ = x2 . . . , xr−1, x1. Since dx = dx′ , Q and
T commute, we have

(T−1/2BT−1/2)′(T−1/2BT−1/2) = T−1/2B′T−1BT−1/2

= T−1/2A′Q′T−1QAT−1/2

= T−1/2A′T−1Q′QAT−1/2

= T−1/2A′T−1AT−1/2.

Here we use the fact Q′Q = I. This identity means that the singular values of
I−L(r−1) is precisely equal to 1 minus the Laplacian eigenvalues of the graph G.

Our definitions of Laplacians L(s) seem to be related to the quasi-randomness
[7, 17] of hypergraphs. We are very interested in this direction. Many concepts
such as the s-walk, the s-path, the s-distance, and the s-diameter, have their
independent interest.
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Abstract. An (α, β)-community is a subset of vertices C with each ver-
tex in C connected to at least β vertices of C (self-loops counted) and
each vertex outside of C connected to at most α vertices of C (α < β) [9].
In this paper, we present a heuristic (α, β)-Community algorithm, which
in practice successfully finds (α, β)-communities of a given size. The
structure of (α, β)-communities in several large-scale social graphs is ex-
plored, and a surprising core structure is discovered by taking the inter-
section of a group of massively overlapping (α, β)-communities. For large
community size k, the (α, β)-communities are well clustered into a small
number of disjoint cores, and there are no isolated (α, β)-communities
scattered between these densely-clustered cores. The (α, β)-communities
from the same group have significant overlap among them, and those
from distinct groups have extremely small pairwise resemblance. The
number of cores decreases as k increases, and there are no bridges of
intermediate (α, β)-communities connecting one core to another. The
cores obtained for a smaller k either disappear or merge into the cores
obtained for a larger k. Further, similar experiments on random graph
models demonstrate that the core structure displayed in various social
graphs is due to the underlying social structure of these real-world net-
works, rather than due to high-degree vertices or a particular degree
distribution.

1 Introduction

Much of the early work on finding communities in social networks focused on
partitioning the corresponding graph into disjoint communities [3, 5, 8, 10–14].
Algorithms often required dense graphs and conductance was taken as the mea-
sure of the goodness of a community [4, 7, 8, 15]. To identify well-defined com-
munities in social networks, one needs to realize that an individual may belong to
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multiple communities at the same time and is likely to have more connections to
individuals outside of his/her community than inside. For example, a person in
the theoretical computer science community is likely to have many connections
to individuals outside of the theoretical computer science community, who may
be his/her family members, or enroll in his/her institution, or attend his/her
religious group. One approach to finding such overlapping communities is that
of Mishra et al. [9], where the concept of an (α, β)-community was introduced
and several algorithms were given for finding an (α, β)-community in a dense
graph provided there is an advocate for the community. An advocate for a com-
munity is an individual who is connected to a large fraction of the members of
that community.

In this paper, we discuss the concept of (α, β)-community, and develop a
heuristic (α, β)-Community algorithm that in practice efficiently finds (α, β)-
communities of a given size. Further, we thoroughly explore the structure of
(α, β)-communities in several large-scale social networks. Surprisingly, in a Twit-
ter friendship graph with 112,957 vertices and 481,591 edges, there are 6,912
distinct (α, β)-communities of size 200 among the 45,361 (α, β)-communities re-
turned by the algorithm. Moreover, these (α, β)-communities are neatly cat-
egorized into a small number of massively overlapping clusters. Specifically,
the (α, β)-communities from the same cluster have significant overlap (> 90%)
among them, while the (α, β)-communities from distinct clusters have extremely
small (< 5%) pairwise resemblance. This leads to the notion of a core which is
the intersection of a group of massively overlapping (α, β)-communities, where
the core also shares a significant overlap (> 75%) with every member
(α, β)-community in that group.

The total number and average size of cores in the Twitter graph as functions
of the community size k are given in Table 1. Interestingly, as the size k increases,
some cores merge into larger ones while others simply disappear. Moreover, cores
may fracture when they merge into larger ones, with a fraction of vertices disap-
pearing from larger cores and reappearing later. Among the interesting questions
we explore in this paper are why (α, β)-communities correspond to well-defined
clusters and why there is no bridge of (α, β)-communities connecting one clus-
ter to another. A bridge is a sequence of intermediate (α, β)-communities where
adjacent subsets of the sequence have substantial overlap but the first and last
subsets have little overlap. Other intriguing questions include whether different
types of social networks incorporate fundamentally different social structures,
and what it is about the structure of social networks that leads to the structure
of cores as in the Twitter graph and why some networks do not display this
structure as in random graph models.

By taking the intersection of a group of massively overlapping (α, β)-
Communities obtained from repeated experiments, we can eliminate the random
factors and extract the underlying structure with multiple runs of the
(α, β)-Community algorithm. In social graphs, for large community size k, the
(α, β)-communities are well clustered into a small number of disjoint cores, and
there are no isolated (α, β)-communities scattered between these densely-clustered
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cores. The number of cores decreases as k increases and becomes relatively small
for large k. The cores obtained for a smaller k either disappear or merge into the
cores obtained for a larger k. Moreover, the cores correspond to dense regions of
the graph, and there are no bridges of intermediate (α, β)-communities connecting
one core to another. In contrast, the cores found in several random graph models
usually have significant overlap among them, and the number of cores does not
necessarily decrease as k increases. Extensive experiments demonstrate that the
core structure displayed in various large-scale social graphs is indeed due to the
underlying social structure of the networks, rather than due to high-degree ver-
tices or a particular degree distribution.

The rest of this paper is organized as follows. First, we introduce the defi-
nition of an (α, β)-community in Section 2 and show their frequent existence.
Then, we prove the NP-hardness of finding an (α, β)-community and present the
heuristic (α, β)-Community algorithm. In Section 3, we apply the algorithm to
various large-scale social graphs and random graphs to explore, analyze, and
demonstrate the core structure in social networks. We conclude in Section 4
with comments on the problems considered and future work.

2 Preliminaries

The concept of (α, β)-community was proposed by Mishra et al. [9] as a powerful
tool for graph clustering and community discovery. In [9], an (α, β)-community
refers to a cluster of vertices with each vertex in the cluster adjacent to at least
a β-fraction of the vertices in the cluster and each vertex outside of the cluster
adjacent to at most an α-fraction of the vertices in the cluster. In this paper,
we adopt a slightly different definition. Given a graph G = (V, E) with self-
loops added to all vertices, a subset C ⊆ V is called an (α, β)-community when
each vertex in C is connected to at least β vertices of C (self-loop counted)
and each vertex outside of C is connected to at most α vertices of C (α < β).
Similarly to that of [9], this definition acknowledges the importance of self-loops:
although a maximal clique should intuitively be a community, this cannot be
guaranteed without self-loops. An (α, β)-community in a graph G is called proper
if it corresponds to a non-empty proper subgraph of G.

Given a subset S ⊆ V , for a vertex v �∈ S, α(v) is defined as the number of
edges between v and vertices of S. Similarly, for a vertex w ∈ S, β(w) is defined
as the number of edges between w and vertices of S (self-loop counted). Then,
α(S) = max{α(v)|v �∈ S} and β(S) = min{β(w)|w ∈ S}.

A maximal clique is guaranteed to be an (α, β)-community since self-loops
are counted by the definition. Every graph that is not a clique must contain
an (α, β)-community (or, a maximal clique) as a proper subgraph. Starting with
any vertex, it is either a proper (α, β)-community (i.e. a maximal clique) or there
must be another vertex connected to it (i.e. not a maximal clique). Then, a pair
of two vertices connected by an edge is either a proper (α, β)-community (i.e.
a maximal clique) or there must be a third vertex connected to both (i.e. not
a maximal clique). Continue this argument until a proper (α, β)-community is
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found or all vertices are included in a clique, contradicting the assumption that
the graph is not a clique. Thus, we have the following theorem:

Theorem 1. Every graph other than a clique contains a proper (α, β)-community.

Proof. Omitted due to space limitations (see [6]).

Algorithm 1. (α, β)-Community(G = (V, E), k)
1: S ← a random subset of V of k vertices
2: while β(S) � α(S) do
3: S ← Swapping(G,S)
4: A ← {v �∈ S | α(v) = α(S)}
5: B ← {v ∈ S | β(v) = β(S)}
6: if {(ai, bj) �∈ E | ai ∈ A, bj ∈ B} �= ∅ then
7: pick such a pair of vertices (ai, bj)
8: S ← (S − {bj}) ∪ {ai}
9: else if {ai ∈ A | (ai, ak) �∈ E,∀ak ∈ A, k �= i} �= ∅ then

10: pick such a vertex ai

11: S ← S ∪ {ai}
12: else if {bj ∈ B | (bj , bk) �∈ E,∀bk ∈ B, k �= j} �= ∅ then
13: pick such a vertex bj

14: S ← S − {bj}
15: else
16: S ← S ∪ A
17: end if
18: end while
19: return S

Algorithm 2. Swapping(G = (V, E), S)

1: while β(S) < α(S) do
2: A ← {v �∈ S | α(v) = α(S)}
3: B ← {v ∈ S | β(v) = β(S)}
4: pick a vertex a ∈ A and a vertex b ∈ B
5: S ← (S − {b}) ∪ {a}
6: end while
7: return S

Given a graph G with a self-loop added to each vertex and an integer k, define
community as the problem of finding an (α, β)-community of size k in G. Given
a graph G and an integer k, define clique as the problem of determining whether
there exists a clique of size k in G.

Theorem 2. The community problem is NP-hard.

Proof. Omitted due to space limitations (see [6]).
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Next, we give a heuristic algorithm for finding an (α, β)-community of size k
in a graph G = (V, E). A mathematical description of this (α, β)-Community
algorithm, along with a subroutine called Swapping, is given above. See [6] for
more details.

3 Experimental Results

3.1 Social Graphs

Twitter. The Twitter dataset [1, 2] corresponds to a directed friendship graph
among a subset of Twitter user accounts. Each vertex represents an individual
Twitter user account, and each edge represents a following relation from one user
to another. For simplicity, we convert this directed graph into an undirected
graph, ignoring the direction of the edges and combining multiple edges with
the same pair of endpoints. Further, we iteratively remove from the graph the
isolated and degree-one vertices in order to get rid of the insignificant outliers.
This effectively reduces the number of vertices and edges, resulting in a smaller
graph with 112,957 vertices and 481,591 edges. Then, the average degree of the
Twitter graph is 8.52. Finally, self-loops are added to this graph in accordance
with the definition of (α, β)-community.

For a given size k, the heuristic (α, β)-Community algorithm is applied to
the Twitter graph for finding (α, β)-communities starting with a number of (e.g.
500) random subsets of size k. Theoretically, the algorithm is not guaranteed to
terminate within a reasonable period of running time, thus we specify an upper
bound (e.g. 1,000) on the number of iterations the algorithm can execute. How-
ever, from what we have observed in the experiments, the case of not finding any
(α, β)-community within 1,000 iterations is extremely rare. In other words, 500
(α, β)-communities are obtained most of the time with 500 runs of the algorithm.

(a) Core (b) Chain

Fig. 1. The overlapping structure

To shed a light on how many (α, β)-communities there are in the Twitter
graph, 45,361 runs of the algorithm are performed for k = 200 and 6,912 dis-
tinct (α, β)-communities are obtained. Surprisingly, many (α, β)-communities
are observed to massively overlap with each other and differ only by a few ver-
tices. Moreover, such a great number of (α, β)-communities are all clustered into



Detecting the Structure of Social Networks Using (α, β)-Communities 31

Table 1. Cores of the Twitter graph

k 25 50 100 150 200 250 300 350 400 450 500

number of cores 221 94 19 9 4 4 4 3 3 3 3

average core size 23 45 73 112 151 216 276 332 364 402 440

a small number of disjoint groups. Specifically, every pair of (α, β)-communities
from the same group shares a resemblance higher than 0.9, while every pair of
(α, β)-communities from distinct groups shares a resemblance lower than 0.06.
Here, the pairwise resemblance r(A, B) between two sets A and B is defined as:

r(A, B) =
|A ∩ B|
|A ∪ B| .

The overlapping (α, β)-communities form a “core” structure rather than a “chain”
structure, as illustrated in Fig. 1. The intersection of all (α, β)-communities in
each group bears an over 75% resemblance with every single (α, β)-community
in that group. For k = 200, all 6,912 (α, β)-communities found by the 45,361
runs of the algorithm cluster into four “cores”. The “cores” correspond to dense
regions of the graph while being exclusively disjoint, and in contrast to what we
would have expected, there are no isolated (α, β)-communities scattered between
these densely-clustered “cores”.

For a group of pairwise similar (α, β)-communities, we formally define the
core to be the intersection of those (α, β)-communities. The number of cores
can be determined by computing the resemblance matrix of all obtained (α, β)-
communities. Intuitively, (α, β)-communities can be categorized according to the
resemblance matrix in a way that every pair of (α, β)-communities in the same
category is similar to each other, i.e. the pairwise resemblance is large. A pair-
wise resemblance is considered to be sufficiently large if it is greater than 0.6,
while in practice we frequently observe resemblance greater than 0.9. Based on
each category, a core is formed by taking the intersection of all member (α, β)-
communities. Therefore, the number of cores is equal to that of such intersec-
tions, i.e. the number of blocks along the diagonal of the resemblance matrix.
The number and average size of cores in the Twitter graph as functions of the
community size k are given in Table 1.

The number of cores decreases as the size k increases. This number is rel-
atively small when k becomes large and will eventually decrease to one as k
further increases, indicating that (α, β)-communities are well clustered into a
small number of cores before gradually merging into one large core. For exam-
ple, the (α, β)-communities are clustered into 9 cores for k = 150 and 4 cores for
k = 200, where in both cases the cores are disjoint from each other. As the size
k increases, the cores obtained for a smaller k either disappear or merge into the
cores obtained for a larger k. A layered tree diagram is constructed to illustrate
this phenomenon in Fig. 2(a).

Each level of the diagram, indexed by the size k, consists of cores extracted
from collections of pairwise similar (α, β)-communities by taking their respective
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intersections. For each pair of cores in adjacent levels, a directed edge is added
from the lower level to the upper level if the fraction of overlap is significant,
i.e. a substantial fraction (e.g. 60%) of vertices in the core of the lower level is
contained in the core of the upper level. If the fraction of overlap is smaller than
one, a dotted arrow with this fraction labeled is added to represent a partial
merge. Otherwise, a solid arrow with the label “1” omitted is added to represent
a full merge. As shown in Fig. 2(a), the fraction of overlap is close to one as we
move up the levels, that is, a core of some lower level is (almost) entirely merged
into a core of the next higher level.

(a) Twitter (b) Slashdot

Fig. 2. Tree diagrams indexed by the size k. (Each circle represents a core obtained for
a given size, in which the integer denotes the β-value of the core. Each dotted arrow
represents a partial merge with the fraction of overlap labeled, and each solid arrow
represents a full merge).

The definition of (α, β)-community does not prevent a community from having
more edges connecting it to the rest of the graph than those connecting within
the community itself. Empirically, there are many more vertices outside of an
(α, β)-community, and the edges connecting the community to the rest of the
graph are almost always more than those connecting within itself. This definition
gives an intuitive criterion as to whether to classify a subset of vertices as a
community, i.e. the number of edges connecting each vertex in the community
to vertices of the community should be strictly greater than that connecting
any vertex outside of the community to vertices of the community. Moreover, by
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taking the intersection of a number of massively overlapping (α, β)-communities,
the set of (α, β)-communities which differ only by a few vertices is reduced to an
underlying core. Thus, each (α, β)-community consists of one of a small number
of cores and a few random peripheral vertices, and these peripheral vertices are
what gives rise to such a large number of (α, β)-communities.

Before proceeding to our experiments on other social networks, we provide a
detailed discussion on the core structure. There might be a generic bias in the
(α, β)-Community algorithm which is attracted to dense regions of the graph,
and thus it is possible that (α, β)-communities located in sparse regions of the
graph are never found by the algorithm.

A natural question is what causes the Twitter graph to display this core
structure, and further, why the graph shows only a small number of disjoint cores
for a large size k. As we will show later, this is due to the fact that a definite
social structure, as opposed to randomness, exists in the Twitter network. To
take a closer look into this, we simplify the Twitter graph by removing low-
degree vertices, i.e. vertices of degree lower than 19, and then obtain a smaller
graph with 4,144 vertices and 99,345 edges. The smallest β-value for most (α, β)-
communities is given by 19, thus removing vertices of degree lower than 19 will
get rid of insignificant low-degree vertices without destroying the fundamental
structure of the graph. Again, the (α, β)-Community algorithm is applied to
this graph with minimum degree 19 for k = 200, 250, 300, 350, 400, and exactly
two disjoint cores are obtained in each case. Between any two adjacent levels in
the corresponding tree diagram, the two cores of the lower level are completely
contained in those of the upper level. One possible reason for such a small number
of cores could be that the vertices of the cores are more “powerful” in pulling
other vertices toward them. If we remove the two cores from the graph and
repeat the experiment for k = 200, the returned (α, β)-communities are no
longer clustered and form a large number of scattered communities.

Another question is why there are exactly two distinct cores in the simplified
Twitter graph. For instance, define C1 and C2 as the two cores obtained for
k = 200. C1 corresponds to a fairly dense subgraph with 156 vertices and 3,029
edges, where the minimum degree is 23 and the average degree is 38.8. C2 has
159 vertices and 2,577 edges, where the minimum degree is 19 and the average
degree is 32.4. Consider the bipartite graph with the two sets of vertices being the
vertices of C1 and the vertices of C2. Surprisingly, there are only 105 cross edges
between C1 and C2, where 110 (70%) vertices of C1 and 100 (63%) vertices of C2

are not associated with any cross edges. Thus, the cores C1 and C2 correspond
to two subsets of vertices that are densely connected internally but sparsely
connected with each other. As a result, they are returned by the algorithm as
the cores of two groups of massively overlapping (α, β)-communities.

It is observed that, in addition to the merging of cores, some cores existing
for a smaller k simply disappear from the tree diagram as k increases. In other
words, few vertices of these disappearing cores are contained in the cores of the
next higher level. The cores take on more vertices as the community size k in-
creases, and there may be two cores taking on the same set of vertices. Thus, the
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Swapping algorithm should run into one of the following two situations: either
1) most vertices of the two cores merge into a new core with some peripheral
vertices discarded, or 2) most vertices of one core plus a small fraction of the
other form a new core with the latter one disappearing. To verify that one of the
above two cases happens, consider the two cores obtained for k = 150 that later
disappear for k = 200, as shown in Fig. 2(a). Let C be one of the two disappear-
ing cores, and recursively perform the following process: enlarge C by adding a
random vertex v �∈ C, run the (α, β)-Community algorithm on this enlarged C
to find an (α, β)-community of one size larger, and update C to be this obtained
(α, β)-community. This process is repeated a number of times until the size of
C is increased to 200. Empirically, any obtained (α, β)-community of size 200
contains only a small fraction of vertices of the initial core, while the initial core
was completely contained in the (α, β)-communities of size up to about 170. A
core may fracture when merging into some other core of a larger size. What hap-
pens is that, as vertices are added to one core A, they are also well connected to
another core B. As k further increases, these vertices of A will be included in a
larger core C that completely contains B, leading to the disappearance of A. If
we continue to increase k, the vertices that have disappeared may reappear in a
larger core that completely contains C, since they are well connected to the rest
of that core.

A bridge between two (α, β)-communities or two cores S1 and Sm is a se-
quence of intermediate (α, β)-communities S2, · · · , Sm−1, where the pairwise re-
semblance is large between adjacent subsets but small between the first and last
subsets, i.e. r (S1, Sm) < 0.3 and r (Si, Si+1) > 0.6 for all i ∈ {1, 2, · · · , m − 1}.
The length of the bridge is thus given by m− 1. Recall that for k = 200, (α, β)-
communities are all clustered into four disjoint cores, and there is little overlap
between any two (α, β)-communities from distinct cores. It is possible that there
exists a bridge in the Twitter graph, but the bias of our algorithm may prevent
it from being found. Thus, although no bridge is detected in this experiment, a
subsequent question is whether the graph contains any bridge between two cores
at all.

Next, the following experiment is designed to determine whether there exists
a bridge between two cores. Pick any two cores obtained for k = 200 and re-
cursively perform the following steps: randomly choose r vertices from one core
and 200 − r vertices from the other to form an initial subset of size 200, and
apply the (α, β)-Community algorithm to this subset. If every iteration returns
an (α, β)-community that substantially overlaps with one core but is disjoint
from the other, then it implies that there does not exist any bridge between
the two cores. During 100 runs of the algorithm, 99 of them return such an
(α, β)-community that significantly overlaps with one core but is disjoint from
the other. Only one trial returns an (α, β)-community C that contains 95.54%
of one core A and 26.22% of the other core B. However, no other intermediate
(α, β)-communities can be found between B and C using the above method,
which demonstrates the non-existence of a bridge.
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Table 2. Cores of the Slashdot graph

k 30 40 50 60 70 80 90 100 150 200 250

number of cores 29 10 3 3 3 3 3 3 2 1 1

average core size 25 33 41 53 62 72 85 97 148 197 244

Another approach to finding a bridge is to search for (α, β)-communities that
fall between cores. Generate random subsets of size 200 and run the (α, β)-
Community algorithm recursively. As we have seen before, four disjoint cores
are obtained with 500 runs of the algorithm, and for another 45,361 runs, the
(α, β)-community obtained at the end of each iteration is compared with the four
cores to check whether it is an intermediate (α, β)-community. This approach is
also useful for estimating the total number of (α, β)-communities of a given size.
Among the 45,361 runs, no intermediate (α, β)-communities are found, however,
only 6,912 distinct (α, β)-communities are returned, which indicates a relatively
small number of (α, β)-communities of size 200 and/or a generic bias of our
algorithm towards some particular communities over others.

Overall, the above experiments have suggested that there is no bridge between
cores, that is, there is not likely to exist a sequence of intermediate (α, β)-
communities that connects two cores with substantial overlap between adjacent
pairs. The non-existence of such a bridge demonstrates the underlying social
structure of the Twitter network with (α, β)-communities neatly categorized
into a few densely-clustered disjoint cores.

Slashdot. Slashdot is a technology-related news website known for its profes-
sional user community. The website features contemporary technology-oriented
news submitted by users and evaluated by editors. In 2002, Slashdot introduced
the Slashdot Zoo feature, which allows users to tag each other as friends or foes.
The social network based on the common interest shared among Slashdot users
was obtained and released by Leskovec et al. [8] in February 2009.

The Slashdot graph contains 82,168 vertices and 504,230 edges, with an av-
erage degree of 12.3. Similarly, the (α, β)-Community algorithm is applied to
this dataset and the statistics are given in Table 2. The number of cores de-
creases as the community size k increases and becomes relatively small for large
k, behaving the same as it did in the Twitter graph. The cores returned by the
algorithm are almost disjoint from each other and correspond to dense regions of
the graph, with few edges connecting the bipartite graph induced by the vertices
of each pair of cores. This indicates that (α, β)-communities are well clustered
into a small number of cores for large k, which correspond to dense regions of the
graph and share little overlap among them. For example, the (α, β)-communities
are clustered into three nearly disjoint cores for k = 100, where only 171 edges
connect the two cores of size 93 and 100 that have 2,142 and 1,105 internal edges,
respectively. Before eventually merging into one large core as k further increases,
these densely-clustered cores emerge as the underlying social structure displayed
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by the Slashdot network. It is also observed that, as k increases, the cores ob-
tained for a smaller k either disappear or merge into the cores obtained for a
larger k. A layered tree diagram is constructed to illustrate this phenomenon in
the Slashdot graph, as shown in Fig. 2(b).

arXiv hep-ph Coauthor and Citation. Similar patterns of the core structure
can also be observed in the arXiv hep-ph Coauthor and Citation graphs. See [6]
for detailed experimental results.

3.2 Random Graphs

To demonstrate that the structure we have found in social graphs is not merely
a random artifact, a similar set of experiments is carried out for random graphs.
Random graph models do not produce clusters as social graphs do. The cores
obtained by the (α, β)-Community algorithm usually have significant overlap
among them, and correspond to dense regions due to the way the graph was
generated. This contrast between social graphs and random graphs again veri-
fies the existence of community structure in various large-scale social networks.
See [6] for more details.

4 Conclusion

In social networks, the (α, β)-communities returned by the (α, β)-Community
algorithm for a given size k are well clustered into a small number of disjoint
cores, each of which is the intersection of a group of massively overlapping (α, β)-
communities. Two (α, β)-communities from the same group share a significant
overlap and differ by only a few vertices, while the pairwise resemblance of
two (α, β)-communities from different groups is extremely small. The number of
cores decreases as k increases and becomes relatively small for large k. The cores
obtained for a smaller k either disappear or merge into the cores obtained for a
larger k. Further, the cores correspond to dense regions of the graph. There are
no isolated (α, β)-communities scattered between these densely-clustered cores,
nor bridges of (α, β)-communities connecting one core to another. Various large-
scale social graphs have been explored thoroughly, all of which display the core
structure rather than the chain structure.

By constructing random graphs with a power-law degree distribution or the
same degree distribution as the social graphs, it is demonstrated that neither
high-degree vertices nor a particular degree distribution can result in the core
structure displayed in large-scale social graphs. The cores found by the (α, β)-
Community algorithm in random graphs usually have significant overlap among
them and are increasingly scattered across the graph as the size k increases,
which implies the non-existence of well-defined clusters in random graphs and
verifies the existence of underlying structure in various social networks.
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Abstract. We study clustering on graphs with multiple edge types. Our main
motivation is that similarities between objects can be measured in many dif-
ferent metrics, and so allowing graphs with multivariate edges significantly in-
creases modeling power. In this context the clustering problem becomes more
challenging. Each edge/metric provides only partial information about the data;
recovering full information requires aggregation of all the similarity metrics.
We generalize the concept of clustering in single-edge graphs to multi-edged
graphs and discuss how this generates a space of clusterings. We describe a meta-
clustering structure on this space and propose methods to compactly represent
the meta-clustering structure. Experimental results on real and synthetic data are
presented.

1 Introduction

Graphs are widely recognized as the standard modeling language to represent relations
between entities of a complex system. Entities in the data are represented as nodes while
relationships between entities are represented as edges between nodes. For instance, an
email network would have email accounts as nodes, and the email exchanges between
two accounts form an edge between the two nodes. Proteins (nodes) are connected in
a protein interaction network by an edge if the proteins are part of the same system
function.

In many real-world problems, connections or similarities between entities can be de-
fined by many different relationships, where connections/similarities are quantified by
boolean (a connection exists or not), or continuous variables. For example, similarity
between two scientific articles can be defined based on authors, citations to, citations
from, keywords, titles, where they are published, text similarity, etc.... Relationships
between people can be based on the nature of the relationship (e.g., business, fam-
ily, friendships) or the means of communication (e.g., email, phone, personal meet-
ings). Electronic files can be grouped by their type (Latex, C, html), names, the time
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they are created, or the pattern they are accessed. In these examples, there are multi-
ple graphs that define relationships between the subjects. In sociology these graphs are
called “graphs with multiple relations, multivariate graphs, or multiplexed graphs.”[5]
For brevity we use “multiweighted graphs.” These multiweighted graphs differ from
traditional multigraphs. In our case we have a fixed number of labeled edges rather than
a multigraph which has a variable number of unlabeled edges.

This paper studies the community detection problem on networks with multiple
edges-types/relations. Clustering is a method to reduce the complexity of a singly-
weighted graph while still retaining much of its information. Groups of vertices (clus-
ters) are formed which are well connected within the cluster and sparsely connected
between clusters. This technique is a critical enabler in unsupervised machine learn-
ing and continues to be a very active area of research. Almost all methods however,
require a singly-weighted graph. It is convenient to aggregate multi-weighted edges to
a single composite edge. However, the choice of the aggregation function should be
done cleverly, and we should be able to analyze the inevitable loss of information in the
results.

Consider the situation where several edge types share redundant information yet as
an ensemble combine to form some broader structure. For example scientific journal ar-
ticles can be connected by text similarity, abstract similarity, keywords, shared authors,
cross-citations, etc.... Many of these edge types reflect the topic of the document while
others are also influenced by the location of the work. Text, abstract, and keyword simi-
larity are likely to be redundant in conveying topic information (physics, math, biology)
while shared authorship (two articles sharing a common author) is likely to convey both
topic and location information because we tend to work with both those in our same
field and with those in nearby institutions. We say that the topic and location attributes
are latent because they do not exist explicitly in the data. We can represent much of
the variation in the data by two relatively independent clusterings based on the topic of
documents and their location. This compression of information from five edge types to
two meaningful clusterings is the goal of this paper.

1.1 Contributions

The community detection problem on networks with multiple edge types bears many
interesting problems. In our earlier work we studied how to compute an aggregation
scheme that best resonates with the ground-truth data, when such data was available [12].
In this work we study the following questions: Is there a meta-clustering structure, (i.e.,
are the clusterings clustered) and if so how do we find it? How do we find significantly
different clusterings for the same data? Our main contributions in this paper are as
follows.

– We describe how the space of clusterings can be searched using sampling methods,
and investigate the structure of this space. We introduce the meta-clusters: while
the clusterings vary with how we aggregate various similarity measures, these clus-
terings gather around a small number of clusters. That is clusterings are nicely
clustered.

– We propose methods to efficiently represent the space of clusterings with minimal
loss of information. More specifically, if we can produce a handful of clusterings
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that represent the meta-clusters, then these small number of clusters can be used for
data analysis, providing a more accurate and thorough information of the data, at a
reasonable increase in processing times.

– We apply our proposed techniques to a data set collected from scientific articles
in the arXiv database, and show that or proposed techniques can be successfully
adopted for analysis of real data.

1.2 An Illustrative Problem

We construct a simple multiweighted network to demonstrate latent classes. For illus-
tration, we assume our graph is perfectly embedded in R

2 as seen in Fig. 1a. In this
example each point on the plane represents a vertex, and two vertices are connected by
an edge if they are close in distance. The similarity/weight for each edge is inversely
proportional to the Euclidean distance. We see visually that there are nine natural clus-
ters. More interestingly we see that these clusters are arranged symmetrically along
two axes. These clusters have more structure than the set {1, 2, 3, ..., 9}. Instead they
have the structure {1, 2, 3} × {1, 2, 3}. An example of such a structure would be the
separation of academic papers along two factors, {Physics, Mathematics, Biology} and
{West Coast, Midwest, East Coast}. The nine clusters (with examples like physics arti-
cles from the West or biology articles from the Midwest) have underlying structure.

(a) 270 vertices arranged in nine clus-
ters on the plane. Edges exist between
vertices so that close points are well
connected and distant points are poorly
connected.

(b) Two 1D graphs arranged to suggest
their relationship to the underlying 3x3
community structure. Both have clear
community structures that are related
but not entirely descriptive of the under-
lying 3x3 communities.

Fig. 1. Illustrating clusters (a) underlying structure and (b) low-dimensiona/partial views

Our data sets do not directly provide this information. For instance with journal arti-
cles we can collect information about authors, where the articles are published, and their
citations. Each of these aspects provides only a partial view of the underlying structure.
Analogous to our geometric example above we could consider features of the data as
projections of the points to one dimensional subspaces. Distances/similarities between
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the points in a projection have only partial information. This is depicted pictorially in
Fig. 1b. For instance, the green projection represents a metric that clearly distinguishes
between columns but cannot differentiate between different communities on the same
column. The red projection on the other hand provides a diagonal sweep, capturing par-
tial information about columns and partial information about rows. Neither of the two
metrics can provide the full information for the underlying data. However when consid-
ered as an ensemble they do provide a complete picture. Our goal is to be able to tease
out the latent factors of data from a given set of partial views.

In this paper, we will use this 3 × 3 example for conceptual purposes and for illus-
trations. Our approach is construct many multi-weighted graphs by using combinations
of the partial views of the data. We will cluster these graphs and analyze these clusters
to recover the latent structure.

2 Background

A weighted graph is represented as a tuple G = (V, E), V a set of vertices and E a set
of edges. Each edge ei is a tuple ei = {va, vb, wi | va, vb ∈ V, wi ∈ R} representing a
connection between vertices va and vb with weight wi. In this work we replace wi ∈R

with wi ∈R
k with k being the number of edge types. We will construct functions that

map multiweighted edges wi ∈ R
k to composite edge types f(wi) = ωi ∈ R. In this

paper f will be linear ωi =
∑

αiwi.

2.1 Clustering

Intuitively, the goal of clustering is to break down the graph into smaller groups such
that vertices in each group are tightly coupled among themselves and loosely coupled
with the remainder of the network. Both the translation of this intuition into a well-
defined mathematical formula and design of associated algorithms pose big challenges.
Despite the high quality and the high volume of the literature, the area continues to
draw a lot of interest due to the growing importance of the problem and the challenges
posed by the size and mathematical variety of the subject graphs.

Our goal here is to extend the concept of clustering to graphs with multiple edge
types without getting into the details of clustering algorithms and formulations, since
such a detailed study will be well beyond the scope of this paper. In this paper, we used
Graclus, developed by Dhillon et al[3], which uses the top-down approach that recur-
sively splits the graph into smaller pieces and FastCommunity developed by Clauset
et al[2] which uses an agglomerative approach which optimizes the modularity metric.
For further information on clustering see Lancichinetti et al.[6].

2.2 Variation of Information of Clusterings

At the core of most of our discussions will be similarity between two clusterings. Sev-
eral metrics and methods have been proposed for comparing clusterings, such as varia-
tion of information [9], scaled coverage measure [13], classification error [7,8,9], and
Mirkin’s metric [10]. Out of these, we have used the variation of information metric in
our experiments.
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Let C0 = 〈C1
0 , C2

0 , . . . , CK
0 〉 and C1 = 〈C1

1 , C2
1 , . . . , CK

1 〉 be two clusterings of

the same node set. Let n be the total number of nodes, and P (C, k) = |Ck|
n be the

probability that a node is in cluster Ck in a clustering C. Similarly the probability
that a node is in cluster Ck in clustering Ci and in cluster Cl in clustering Cj is

P (Ci, Cj , k, l) = |Ck
i ∩Cl

j |
n . The entropy of information or expectation value of learned

information in Ci is defined

H(Ci) = −
K∑

k=1

P (Ci, k) log P (Ci, k)

the mutual information shared by Ci and Cj is

I(Ci, Cj) =
K∑

k=1

K′∑
l=1

P (Ci, Cj , k, l) log P (Ci, Cj , k, l),

Given these two quantities Meila defines the variation of information metric by

dV I(Ci, Cj) = H(Ci) + H(Cj) − 2I(Ci, Cj). (1)

Meila [9] explains the intuition behind this metric a follows. H(Ci) denotes the average
uncertainty of the position of a node in clustering Ci. If, however, we are given Cj ,
I(Ci, Cj) denotes average reduction in uncertainty of where a node is located in Ci. If
we rewrite Equation (1) as

dV I(Ci, Cj) = (H(Ci) − I(Ci, Cj)) + (H(Cj) − I(Ci, Cj)) ,

the first term measures the information lost if Cj is the true clustering and we know
instead Ci, and the second term is the opposite.

The variation of information metric can be computed in O(n) time.

2.3 Previous Work

Similar problems have been approached in previous work. Mucha et al.[11] looked
at community detection when multiple edge types are sampled in time and strongly
correlated. Dunlavy et al. [4] described this problem as a three dimensional Tensor and
used a PARAFAC decomposition (SVD generalization) to identify dominant factors.

3 Searching the Space of Clusterings

From a multiweighted graph G = (V, E) with edges ei ∈ E = (va, vb, 〈w0
i , w1

i , . . . , wk
i 〉)

we can build a composite edge-type ωi =
∑

j αjw
j
i . This composite edge-type along

with the vertex set V define a graph Gαj indexed by the vector αj . We may apply a tra-
ditional clustering algorithm C to this graph to obtain a clustering C(Gαj ) = Cαj . This
process identifies with each point αj ∈ R

k a clustering Cαj . Thus a multiweighted
graph is imbued with a space of clusterings.
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We expect that different regions of this space will have different clusterings. How
drastic these differences are will depend on the particular multiweighted graph. How
can we characterize this space of clusterings? Are there homogeneous regions, easily
identifiable boundaries, groups of similar clusterings, etc...? We investigate the exis-
tence of a meta-clustering structure. That is we search for whether or not several clus-
terings in this space exhibit community structure themselves. In this section, we present
our methods for these questions on the 3 × 3 data. We will later provide results on a
larger data set.

3.1 Sampling the Clustering Space

To inspect the space of clusterings we sample in a Monte Carlo fashion. We take points
αi ∈ R

k such that |αi| = 1, and compute the appropriate graph and clustering at each
point. We may then compare these clusterings in aggregate.

As our first experiment, we take 16 random one-dimensional projections of the points
laid out in the plane shown in Fig. 1 and consider the projected-point-wise distances in
aggregate as a multiweighted graph. From this multiweighted graph we take 800 sam-
ples of the linear space of clusterings. These 800 clusterings approximate the clustering
structure of the multiweighted graph.

The results of these experiments are presented in Figure 2(a). In this figure each row
and column corresponds to a clustering of the graph. Entries in the matrix represent
the variation of information distance between two clusterings. Therefore dark regions
in this matrix are sets of clusterings that are highly similar. White bands show infor-
mational independence between regions. The rows/columns of this matrix have been
ordered to have more similar clusterings closer to each other so as to highlight the clus-
ters of clusterings detected.

(a) (b)

Fig. 2. The Meta-clustering information (a) VI distances between 800 sampled clusterings. Ver-
tices are ordered to show optimal clustering of this graph. Dark blocks on the diagonal represent
clusters. The white band is a group of completely independent clusterings. (b) Three Clusterings
treated as nodes in a graph. Similar clusterings (top two) are connected with high-weighted edges.
Distant clusterings are connected with low-weighted edges.
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3.2 Meta-clusters: Clusters of Clusterings

While it is interesting to know that significantly different clusterings can be found, the
lack of stable clustering structure is not helpful for applications of clustering such as for
unsupervised learning. We need to reduce this set of clusterings further. We approach
this problem by applying the idea of clustering onto this set of clusterings. We call this
problem the meta-clustering problem.

We represent the clusterings as nodes in a graph and connect them with edge-weights
determined by the inverse of the variation of information metric [9]. We inspect this
graph to see if it contains clusters. That is, we cluster the graph of clusterings to see
if there exist some tightly coupled clusters of clusterings within the larger space. For
instance in Fig. 2(b) the top two clusterings differ only in the position of a single vertex
and thus are highly similar. In contrast the bottom clustering is different from both and
is weakly connected.

Figure 2(a) reveals the meta-clustering structure in our experiments. The dark blocks
around the diagonal correspond to meta-clusters. We can see two big blocks in the up-
per left and lower right corners. Furthermore, there is a hierarchical clustering structure
within these blocks, as we see smaller blocks within the larger blocks. In this experi-
ment, we were able to observe meta-clusters. As usual, results depend on the particular
problem instance. While we do not claim that one can always find such meta-clusters,
we expect that they will exist in many multi-weighted graphs, and exploiting the meta-
clustering structure can enable efficiently handling this space, which is the topic of the
next section.

4 Efficient Representation of the Clusterings

In this section we study how to efficiently represent the meta-clustering structure. First
we will study how to reduce a cluster of clusterings into a single averaged or repre-
sentative clustering. Then, we will study how to select and order a small number of
meta-clusters to cover the clustering space efficiently.

4.1 Averaging Clusterings within a Cluster

To increase the human accessibility of this information we reduce each cluster of clus-
terings into a single representative clustering. We use the ”Cluster-based Similarity Par-
titioning Algorithm” (CSPA) proposed by Strehl et. al [14] to combine several cluster-
ings into a single average. In this algorithm each pair of vertices is connected with an
edge with weight equal to the number of clusters in which they co-occur. If va and vb

are in the same cluster in k of the clusterings then in this new graph they are connected
with weight k. If they are never in the same cluster then they are not connected. We
then cluster this graph and use the resultant clustering as the representative. In Fig. 3
we depict the addition of three clusterings to form an average graph which can then be
clustered.

We perform this process on the clusters of clusterings found in section 3.2 and pre-
sented in Fig. 2(a) to obtain the representative-clusterings in Fig. 4. We see that the
product of the first two representative-clusterings identifies the original nine clusterings
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Fig. 3. Showing the CSPA [14] averaging procedure for clusterings. Each clustering is displayed
as a block diagonal graph (or permutation) with two nodes connected if and only if they are in
the same cluster. Then an aggregate graph (right) is formed by the addition of these graphs. This
graph on the right is then clustered using a traditional algorithm. This clustering is returned as
the representative-clustering.

Fig. 4. Representative-Clusterings of the four dominant clusters-of-clusterings from Fig. 2(a).
Clusterings are displayed as colorings of the original points in the 2-d plane. These are ordered
to maximize cumulative set-wise information. Notice how the first two representative-clusterings
recover the original nine clusterings exactly.

with little error. We see also that the two factors are identified perfectly by each of these
clusterings individually.

4.2 Ordering by Set-Wise Information Content

In Fig. 4, the original 3x3 community structure can be reconstructed using only the first
two representative-clusterings. Why are these two chosen first? Selecting the third and
fourth representative-clusterings would not have had this pleasant result. How should
we order the set of representative-clusterings?

We may judge a set of representative-clusterings by a number of factors: (i) How
many of our samples ascribe to the associated meta-clusters, what fraction of the space
of clusterings do they cover? (ii) How much information do the clusterings cover as
a set? (iii) How redundant are the clusterings? How much informational overlap is
present? We would like to maximize information while minimizing redundancy. In Fig.
4 we ordered the representative-clusterings to maximize setwise information. Minimiz-
ing redundancy came as a fortunate side-effect. Notice how each of the clusterings in
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order is independent from the preceding ones. Knowing that a vertex is red in the first
image tells you nothing about the color of the vertex in the second. The second therefore
brings only novel information and no redundancy.

To compute the information content of a set of clusterings we extend the Variation
of Information metric in a natural way. In section 2.2 we introduced the mutual infor-
mation of two clusterings as follows:

I(Ci, Cj) =
K∑

k=1

K′∑
l=1

P (Ci, Cj , k, l) log P (Ci, Cj , k, l),

where P () is the probability that a randomly selected node was in the specified clusters.
This is equivalent to the self-information of the Cartesian product of the two clusterings.
Its extension to a set of clusterings I(Cα, Cβ , . . . , Cω) is

K∑
a=1

K′∑
b=1

. . .
K′′′∑
z=1

P (Cα, Cβ , . . . , Cω , a, b, . . . , z) log P (Cα, Cβ , . . . , Cω, a, b, . . . , z).

For a large number of clusterings or large K this quickly becomes inconvenient.
In these cases we order the clusterings by adding new clusterings to the set based on
maximizing the minimum pairwise distance to every other clustering currently in the
set. This process is seeded with the informationally maximal pair within the set. This
does not avoid triple-wise information overlap but works well in practice.

5 Physics Articles from arXiv.org

ArXiv.org releases convenient metadata (title, authors, etc...) for all articles in their
database. Additionally, a special set of 30 000 high energy physics articles are released
with abstracts and citation networks. We apply our process to this network of papers
with edge types Titles, Authors Abstracts and Citations.

Articles are connected by title or abstract based on the cosine similarity of the text
(using the bag of words model[1]). Two articles are connected by author by the number
of authors that the two articles have in common. Two articles are connected by citation
if either article cites the other (undirected). We inspect this system with the following
process discussed in greater detail above.

These graphs are normalized by the L2 norm and then the space of composite edge
types is sampled uniformly. That is ωj =

∑4
i=1 αiwi, where αi ∈ (−1, 1) , wi ∈

{titles, abstract, authors, citation}. The resulting graphs are then clustered using Clauset
et al’s FastModularity[2] algorithm. The resulting clusterings are compared in a graph
which is then clustered to produce clusters of clusterings. The clusters of clusterings
are averaged [14] and we inspect the resultant representative-clusterings.

The similarity matrix of the graph of clusterings is shown in Fig. 5(a). The presence
of blocks on the diagonal imply clusters of clusterings. From this process we obtain
representative-clusterings. The various partitionings of the original set of papers vary
considerably (large VI distance) yet exhibit high modularity scores implying a variety
of high-quality clusterings within the dataset.
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(a) (b)

Fig. 5. (a) The pairwise distances between the sampled clusterings form a graph. Note the dark
blocks along the diagonal. These are indicative of tightly knit clusters. (b) A dendrogram of this
graph. We use the ordering of the vertices picked out by the dendrogram to optimally highlight
the blocks in the left image.

Table 1. Commonly appearing words (stemmed) in two distinct representative-clusterings. Clus-
ters within each clustering correspond to well known subfields in High-Energy Physics (Tra-
ditional Field Theory/Lattice QCD, Cosmology/GR, Supersymmetry/String Theory). This data
however does not show a strong distinction between the clusterings. Furher investigation is
warranted.

Cluster Statistically Significant Words in Clustering 1

1 quantum, algebra, integr, equat, model, chern-simon, lattic, particl, affin
2 potenti, casimir, self-dual, dilaton, induc, cosmolog, brane, anomali, scalar
3 black, hole, brane, supergrav, cosmolog, ads/cft, sitter, world, entropi
4 cosmolog, black, hole, dilaton, graviti, entropi, dirac, 2d, univers
5 d-brane, tachyon, string, matrix, theori, noncommut, dualiti, supersymmetr, n=2

Cluster Statistically Significant Words in Clustering 2

1 potenti, casimir, self-dual, dilaton, induc, energi, scalar, cosmolog, gravit
2 integr, model, toda, equat, function, fermion, casimir, affin, dirac
3 tachyon, d-brane, string, orbifold, n=2, n=1, dualiti, type, supersymmetr
4 black, hole, noncommut, supergrav, brane, sitter, entropi, cosmolog, graviti

Analysis of this dataset is challenging and still in progress. We can look at articles
in a clustering and inspect attributes like the country (by submitting e-mail’s country
code), or words which occur more often than statistically expected given the corpus.
Most clusterings found show a separation into various topics identifyable by domain
experts (example in Table 1) however a distinction between clusterings has not yet been
found. While the VI distance between metaclusterings presented in Fig. 5(a) is large
it has so far proven difficult to identify the qualitative distinction for the quantitative
difference. More in depth inspection by a domain expert may be necessary.
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6 Conclusion and Future Work

We investigated clustering in the context of network data with multiple relationships
between nodes. We found that a rich clustering structure can exist with clusters of clus-
terings. In an example we found that by reducing this clustering structure we uncov-
ered latent classes which explained the underlying graph very compactly. We presented
a simple method that works well on simple cases. In the future it will be interesting
to apply these methods to more challenging problems and see which aspects become
interesting. There is much room for growth in this topic. Ongoing work includes more
intelligent sampling (intentionally finding distinct clusterings), effects of adding non-
linear combinations of edge-types, and searching the space for clusterings with desired
attributes.
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Abstract. We study a problem of quick detection of top-k Personalized
PageRank (PPR) lists. This problem has a number of important appli-
cations such as finding local cuts in large graphs, estimation of similarity
distance and person name disambiguation. We argue that two observa-
tions are important when finding top-k PPR lists. Firstly, it is crucial
that we detect fast the top-k most important neighbors of a node, while
the exact order in the top-k list and the exact values of PPR are by far
not so crucial. Secondly, by allowing a small number of “wrong” elements
in top-k lists, we achieve great computational savings, in fact, without
degrading the quality of the results. Based on these ideas, we propose
Monte Carlo methods for quick detection of top-k PPR lists. We demon-
strate the effectiveness of these methods on the Web and Wikipedia
graphs, provide performance evaluation and supply stopping criteria.

1 Introduction

Personalized PageRank (PPR) or Topic-Sensitive PageRank [15] is a general-
ization of PageRank [10], and is a stationary distribution of a random walk on
an entity graph, with random restart from a given personalization distribution.
Originally designed for personalization of the Web search results [15], PPR found
a large number of network applications, e.g., in finding related entities [11], graph
clustering and finding local cuts [1,4], link predictions in social networks [20] and
protein-protein interaction networks [23]. The recent application of PPR to the
person name disambiguation problem lead to the first official place in the WePS
2010 challenge [21]. In most of applications, e.g., in name disambiguation, one is
mainly interested in detecting top-k elements with the largest PPR. This work
on detecting top-k elements is driven by the following two key observations:

Observation 1: Often it is extremely important to detect fast the top-k elements
with the largest PPR, while the exact order in the top-k list as well as the exact
values of the PPR are by far not so important. Application examples are given
in the above mentioned references.

Observation 2: We may apply a relaxation that allows a small number of
elements to be placed erroneously in the top-k list. If the PPR values of these
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elements are of a similar order of magnitude as in the top-k list, then such
relaxation does not affect applications, but it enables us to take advantage of
the generic “80/20 rule”: 80% of the result is achieved with 20% of efforts.

We argue that the Monte Carlo approach naturally takes into account the
two key observations. In [9] this approach was proposed for the computation of
the standard PageRank. The estimation of the convergence rate in [9] was very
pessimistic. The implementation of the Monte Carlo approach was improved in
[13] and also applied there to PPR. Both [9] and [13] only use end points of the
random walks to compute the PageRank values. Moreover, [13] requires extensive
precomputation efforts and is very demanding in storage resource. In [5] the
authors have further improved the realization of the Monte Carlo method [13].
In [2] it is shown that Monte Carlo estimation for large PageRank values requires
about the same number of operations as one iteration of the power iteration
method. In this paper we show that the Monte Carlo algorithms require an
incomparably smaller number of operations when our goal is to detect a top-k list
with k not large. In our test on the Wikipedia entity graph with about 2 million
nodes typically few thousands of operations are enough to detect the top-10 list
with just two or three erroneous elements. Hence, we obtain a relaxation of the
top-10 list with just about 1-5% of operations required by one power iteration.
Experimental results on the Web graph appear to be even more striking. In the
present work we provide theoretical justifications for such remarkable efficiency.
We would like to emphasize that the Monte Carlo approach allows easy online
and parallel implementation and does not require the knowledge of the complete
graph.

We consider the present work as an initiation to a new line of research on quick
detection of top-k ranked network central elements. A number of interesting
questions will be addressed in the future research: What is the difference in
performance between the randomized algorithms, like the presented Monte Carlo
algorithms, and the non-randomized algorithms, like algorithms in [1] and [7]?
What are efficient practical stopping criteria for the randomized algorithms?
What is the effect of the graph structure on the performance of the randomized
algorithms?

2 Monte Carlo Methods

Given a directed or undirected graph connecting some entities, the PPR π(s, c)
with a seed node s and a damping parameter c is defined as a solution of the
following equations

π(s, c) = cπ(s, c)P + (1 − c)1T
s ,

n∑
j=1

πj(s, c) = 1,

where 1T
s is a row unit vector with one in the sth entry and all the other elements

equal to zero, P is the transition matrix associated with the entity graph and n
is the number of entities. Equivalently, PPR can be given by [19]

π(s, c) = (1 − c)1T
s [I − cP ]−1. (1)
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When the values of s and c are clear from the context we shall simply write π.
We note that PPR is often defined with a general distribution v in place of 1T

s .
However, typically v has a small support. Then, due to linearity, the problem of
PPR with distribution v reduces to computing PPR with distribution 1T

s [16].
In this work we consider two Monte Carlo algorithms. The first algorithm

is inspired by the following observation. Consider a random walk {Xt}t≥0 that
starts from node s, i.e, X0 = s. Let at each step the random walk terminate
with probability 1 − c and make a transition according to the matrix P with
probability c. Then, the end-points of such a random walk has the distribution
π(s, c).

Algorithm 1 (MC End Point). Simulate m runs of the random walk {Xt}t≥0

initiated at node s. Evaluate πj as a fraction of m random walks which end at
node j ∈ 1, . . . , n.

Next, we exploit the fact that the element (s, j) of the matrix [I − cP ]−1 equals
to the expected number of visits to node j by the random walk initiated at state
s with the run time geometrically distributed with parameter c [2]. Thus, the
formula (1) suggests the following estimator for the PPR

π̂j(s, c) = (1 − c)
1
m

m∑
r=1

Nj(s, r), (2)

where Nj(s, r) is the number of visits to state j during the run r of the random
walk initiated at node s. This leads to our second Monte Carlo algorithm.

Algorithm 2 (MC Complete Path). Simulate m runs of the random walk
{Xt}t≥0 initiated at node s. Evaluate πj as the total number of visits to node j
multiplied by (1 − c)/m.

As outputs of the proposed algorithms we would like to obtain with high prob-
ability either a top-k list of nodes or a top-k basket of nodes.

Definition 1. The top-k list of nodes is a list of k nodes with largest PPR
values arranged in a descending order of their PPR values.

Definition 2. The top-k basket of nodes is a set of k nodes with largest PPR
values with no ordering required.

It turns out that it is beneficial to relax our goal and to obtain a top-k basket
with a small number of erroneous elements.

Definition 3. We call relaxation-l top-k basket a realization when we allow at
most l erroneous elements from top-k basket.

In the present work we aim to estimate the numbers of random walk runs m suf-
ficient for obtaining top-k list or top-k basket or relaxation-l top-k basket with
high probability. In particular, we demonstrate that ranking converges consid-
erably faster than the values of PPR and that a relaxation-l with quite small l
helps significantly.
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Throughout the paper we illustrate the theoretical analysis with the help
of experiments on two large graphs: the Wikipedia entity graph and the Web
graph. There is a number of reasons why we have chosen the Wikipedia entity
graph. Firstly, all elements of PPR can be computed with high precision for the
Wikipedia entity graph with the help of BVGraph/WebGraph framework [8].
Secondly, the Wikipedia graph has already been used in several applications re-
lated to finding top-k semantically related entities. Thirdly, since the Wikipedia
entity graph has a very small average distance [24], it represents a very challeng-
ing test for the Monte Carlo methods. In just 3-4 steps the random walk can be
very far from the starting node. Since the Monte Carlo approach does not require
the knowledge of a complete graph, we can apply our algorithms to the actual
Web graph. However, computing the exact values for the Pesonalized PageRank
of web pages is infeasible in our experiments. We can only obtain correct top-k
lists by Monte Carlo methods with very high probability as in [2,13] using an
ample number of crawls.

Illustrating example with Wikipedia: Following our recent work [21] we
illustrate PPR by application to the person name disambiguation problem. One
of the most common English names is Jackson. We have selected three Jack-
sons who have entries in Wikipedia: Jim Jackson (ice hockey), Jim Jackson
(sportscaster) and Michael Jackson. Two Jacksons have even a common given
name and both worked in ice hockey, one as an ice hockey player and another as
an ice hockey sportscaster. In [3] we provide the exact lists of top-10 Wikipedia
articles arranged according to PPR vectors. We observe that an exact top-10
list identifies quite well its seed node. Next, we run the Monte Carlo End Point
method starting from each seed node. Notice that to obtain a relaxed top-10 list
with two or three erroneous elements we need different number of runs for differ-
ent seed nodes (50000 runs for Michael Jackson vs. 500 runs for Jim Jackson
(ice hockey)). Intuitively, the more immediate neighbours a node has, the
larger number of Monte Carlo steps is required. Indeed, if a seed node has many
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Fig. 1. The number of correctly detected elements by MC End Point
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Fig. 2. The number of correctly detected elements by MC End Point (a) and MC
Complete Path (b)
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Fig. 3. The number of correctly detected elements by MC End Point

immediate neighbours then the Monte Carlo method easily drifts away. In Fig-
ures 1-2.(a) we present examples of typical runs of the Monte Carlo End Point
method for the three different seed nodes. An example of the Monte Carlo Com-
plete Path method for the seed node Michael Jackson is given in Figure 2.(b).
As expected, it outperforms the Monte Carlo End Point method. In the following
sections we shall quantify all the above qualitative observations.

Illustrating example with the Web: We have also tested our two Monte
Carlo methods on the Web. To see the difference in comparison with a
“smaller” Wikipedia graph we have chosen the official Web page of Michael
Jackson http://www.michaeljackson.com and the Web page of the hockey
player statistics Jim Jackson hosted at http://www.hockeydb.com. In Fig-
ures 3.(a) and 3.(b) we present examples of typical runs of the Monte Carlo
Complete Path and End Point methods for, respectively, the Michael Jackson
Web page and the Jim Jackson Web page as a seed node. We have performed
enough steps (6×105) to make sure that the top-k lists of nodes are stabilized so
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that we could say with very high certainty that we know the correct top-k lists.
We observe that in comparison to the Wikipedia graph we need longer runs.
However, the amount of computational saving is still very impressive. Indeed,
according to even modest estimates, the size of the Web is more than 1010 pages.
However, to get a good top-k list for the Michael Jackson page we need about
105 steps with MC Complete Path. Thus, we are using only 10−5 fraction of
computational resources which are needed for just one power iteration!

3 Variance Based Performance Comparison and CLT
Approximations

In the MC End Point algorithm the distribution of end points is multinomial
[17]. Namely, if we denote by Lj the number of paths that end at node j after
m runs, then we have

P{L1 = l1, L2 = l2, . . . , Ln = ln} =
m!

l1!l2! · · · ln!
πl1

1 πl2
2 · · ·πln

n . (3)

Thus, the standard deviation of the MC End Point estimator for the kth element
is given by

σ(π̂k) = σ(Lk/m) =
1√
m

√
πk(1 − πk). (4)

An expression for the standard deviation of the MC Complete Path is more
complicated. Define the matrix Z = (zij) = [I − cP ]−1 and let Nj be the
number of visits to node j by the random walk with the run time geometrically
distributed with parameter c. Further, denote by Ei(·) a conditional expectation
provided that the random walk starts at i = 1, . . . , n. From (2), it follows that

σ(π̂k) =
(1 − c)√

m
σ(Nk) =

(1 − c)√
m

√
Es{N2

k} − Ei{Nk}2. (5)

First, we recall that

Es{Nk} = zsk = πk(s)/(1 − c). (6)

Then, from [18], it is known that Es{N2
k} = [Z(2Zdg − I)]sk, where Zdg is a

diagonal matrix having as its diagonal the diagonal of matrix Z and [A]ik is the
(i, k)th element of matrix A. Thus, we write

Es{N2
k} = 1T

s Z(2Zdg − I)1k =
1

1 − c
π(s)(2Zdg − I)1k

=
1

1 − c

(
1

1 − c
πk(s)πk(k) − πk(s)

)
. (7)

Substituting (6) and (7) into (5), we obtain

σ(π̂k) =
1√
m

√
πk(s)(2πk(k) − (1 − c) − πk(s)). (8)
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Since πk(k) ≈ 1 − c, we can approximate σ(π̂k) with

σ(π̂k) ≈ 1√
m

√
πk(s)((1 − c) − πk(s)).

Comparing the latter expression with (4), we see that MC End Point requires
approximately 1/(1−c) walks more than MC Complete Path. This was expected
as MC End Point uses only information from end points of the random walks.
We would like to emphasize that 1/(1 − c) can be a significant coefficient. For
instance, if c = 0.85, then 1/(1 − c) ≈ 6.7.

Now, for the MC End Point we can use CLT-type result given e.g. in [22]:

Theorem 1. [22] For large m and
∑n

i=1 li = m, a multivariate normal density
approximation to the multinomial distribution (3) is given by

f(l1, l2, . . . , ln) =
(

1
2πm

)(n−1)/2

×
(

1
nπ1π2 · · ·πn

)1/2

exp

{
−1

2

n∑
i=1

(li − mπi)2

mπi

}
.

(9)

For the MC Complete Path, we note that N(s, r) = (N1(s, r), . . . , Nn(s, r)),
r = 1, 2, . . . , form a sequence of i.i.d. random vectors. Hence, we can apply the
multivariate central limit theorem. Denote

N̂(s, m) =
1
m

m∑
r=1

N(s, r). (10)

Theorem 2. Let m go to infinity. Then, we have the following convergence in
distribution to a multivariate normal distribution

√
m
(
N̂(s, m) − N̄

)
D−→ N (0, Σ(s)),

where N̄(s) = 1T
s Z and Σ(s) = E{NT (s, r)N(s, r)}−N̄T (s)N̄(s) is a covariance

matrix, which can be expressed as

Σ(s) = Ω (s) Z + ZT Ω (s) − Ω (s) − ZT1s1T
s Z. (11)

where the matrix Ω(s) = {ωjk(s)} is defined by

ωjk(s) =
{

zsj , if j = k,
0, otherwise.

Proof. See [3].

We would like to note that in both cases we obtain the convergence to rank
deficient (singular) multivariate normal distributions.

Illustrating example with the Web (cont.): In Table 1 we provide means
and standard deviations for the number of hits of MC End Point for top-10
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Table 1. MC End Point for the Jim Jackson Web page: means and Standard Deviations

nr. runs 10000 100000
rank mean std mean std

1 0.79104 0.012531 0.79748 0.004834
2 0.006329 0.001622 0.006202 0.000569
3 0.005766 0.001075 0.005885 0.000354
4 0.006365 0.002103 0.006561 0.000704
5 0.005183 0.001664 0.005518 0.00055
6 0.005541 0.003766 0.005801 0.001257
7 0.007617 0.003633 0.006243 0.001266
8 0.007566 0.012384 0.005854 0.003969
9 0.006186 0.001468 0.006182 0.000547
10 0.00672 0.003492 0.006223 0.001132

nodes with the Jim Jackson Web page as the seed node for the number of runs
m = 104 and m = 105. We observe that the means are very close to each other
and the standard deviations are significant with respect to the values of the
means. This shows that a direct application of the central limit theorem and the
confidence intervals technique will lead to inadequate stopping criteria. In the
ensuing sections we discuss metrics and stopping criteria which are much more
efficient for the present problem.

4 Convergence Based on Order

For the two introduced Monte Carlo methods we aim to calculate or estimate
a probability that after a given number of steps we correctly obtain top-k list
or top-k basket. These are the probabilities P{L1 > · · · > Lk > Lj , ∀j >
k} and P{Li > Lj , ∀i, j : i ≤ k < j} respectively, where Lk, k ∈ 1, . . . , n,
can be either the Monte Carlo estimates or the ranked elements or their CLT
approximations. We refer to these probabilities as the ranking probabilities and
we refer to complementary probabilities as misranking probabilities [6]. Because
of combinatorial explosion, exact calculation of these probabilities is infeasible
in non-trivial cases. Thus, we propose estimation methods based on Bonferroni
inequality. This approach works for reasonably large values of m.

Drawing correctly the top-k basket is defined by the event
⋂

i≤k<j{Li > Lj}.
Applying the Bonferroni inequality P {⋂s As} ≥ 1 −∑s P

{
Ās

}
to this event,

we obtain P
{⋂

i≤k<j{Li > Lj}
}

≥ 1 −∑i≤k<j P
{
{Li > Lj}

}
. Equivalently,

we can write the following upper bound for the misranking probability

1 − P

⎧⎨⎩ ⋂
i≤k<j

{Li > Lj}
⎫⎬⎭ ≤

∑
i≤k<j

P {Li ≤ Lj} . (12)

We note that the upper bound for the misranking probability is very useful,
because it will provide a guarantee on the performance of our algorithms. Since
in the MC End Point method the distribution of end points is multinomial (see
(3)), for small m we can directly use the formula

P{Li ≤ Lj} =
∑

li+lj≤m, li≤lj

m!
li!lj !(m − li − lj)!

πli
i π

lj
j (1 − πi − πj)m−li−lj . (13)
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For large m it is computationally intractable. Hence, we now turn to the CLT
approximations for the both MC methods. Denote by Lj the original number
of hits at node j and by Yj its CLT approximation. First, we obtain a CLT
based expression for the misranking probability for two nodes P {Yi ≤ Yj}. Since
the event {Yi ≤ Yj} coincides with the event {Yi − Yj ≤ 0} and a difference of
two normal random variables is again a normal random variable, we obtain
P {Yi ≤ Yj} = P {Yi − Yj ≤ 0} = 1 − Φ(

√
mρij), where Φ(·) is the cumulative

distribution function for the standard normal random variable and

ρij =
E[Yi] − E[Yj ]√

σ2(Yi) − 2cov(Yi, Yj) + σ2(Yj)
.

For large m, the above expression can be bounded by P {Yi ≤ Yj} ≤ 1√
2π

e−
ρ2

ij
2 m.

Since the misranking probability for two nodes P {Yi ≤ Yj} decreases when j in-
creases, we can write

1 − P

⎧⎨⎩ ⋂
i≤k<j

{Yi > Yj}
⎫⎬⎭ ≤

k∑
i=1

⎛⎝ j∗∑
j=k+1

P {Yi ≤ Yj} +
n∑

j=j∗+1

P {Yi ≤ Yj∗}
⎞⎠ ,

for some j∗. This gives the following upper bound

1−P

⎧⎨⎩ ⋂
i≤k<j

{Yi > Yj}
⎫⎬⎭ ≤

k∑
i=1

j∗∑
j=k+1

(1−Φ(
√

mρij))+
n − j∗√

2π

k∑
i=1

e−
ρ2

ij∗
2 m. (14)

Since we have a finite number of terms in the right hand side of expression
(14), we conclude that

Theorem 3. The misranking probability of the top-k basket goes to zero with
geometric rate, 1 − P

{⋂
i≤k<j{Yi > Yj}

}
≤ Cam, for some C > 0, a ∈ (0, 1).

We note that the multinomial distribution, ρij has a simple expression

ρij =
πi − πj√

πi(1 − πi) + 2πiπj + πj(1 − πj)
.

For MC Complete Path σ2(Yi) = Σii(s) and cov(Yi, Yj) = Σij(s) where Σii(s)
and Σij(s) can be calculated by (11). Similarly the Bonferroni inequality can be
applied to the top-k list (see [3]).

5 Solution Relaxation

In this section we analytically evaluate the relation between the number of ex-
periments m and the average number of correctly identified top-k nodes. We
use the relaxation by allowing the latter number to be smaller than k. We aim
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to mathematically justify the observed “80/20 behavior” of the algorithm: 80
percent of the top-k nodes are identified correctly in a very short time.

Let M0 be a number of correctly identified elements in the top-k basket. In
addition, denote by Ki the number of nodes ranked not lower than i. Formally,
Ki =

∑
j �=i 1{Lj ≥ Li}, i = 1, . . . , k, where 1{·} is an indicator function.

Placing node i in the top-k basket is equivalent to the event {Ki < k}, and thus
E(M0) = E

(∑k
i=1 1{Ki < k}

)
=
∑k

i=1 P (Ki < k). Direct evaluation of P (Ki <

k) is computationally intractable in realistic scenarios, even with Markov chain
representation techniques [12]. Thus, we use approximation and Poissonisation.

The End Point algorithm is merely an occupancy scheme where each inde-
pendent experiment (random walk) results in placing one ball (visit) to an urn
(node of the graph). Under Poissonisation [14], we assume that the number of
random walks is a Poisson random variable M with given mean m. Because the
number of hits in the Poissonised model is different from the number of original
hits, we use the notation Yi instead of Lj for the number of visits to page j. Note
that Yj is a Poisson random variable with parameter mπj and is independent of
Yi for i �= j. The imposed independence of Yj ’s greatly simplifies the analysis.

Next to Poissonisation, we also apply approximation of M0 by a closely related
measure M1: M1 = k −∑k

i=1(K ′
i/k), where K ′

i denotes the number of pages
outside the top-k list that are ranked higher than node i = 1, . . . , k. Note that
K ′

i is the number of mistakes with respect to node i that lead to errors in the
identified top-k list. Then the sum in the definition of M1 is simply the average
number of such mistakes with respect to each of the top-k nodes.

The measure M1 is more tractable than M0 because its average value E(M1) =
k− 1

k

∑k
i=1 E(K ′

i) involves only the average values of K ′
i and not their distribu-

tions, and because K ′
i depends only on the nodes outside the top-k list. Then,

we can make use of the following convenient measure μ(y):

μ(y) := E(K ′
i|Yi = y) =

n∑
j=k+1

P (Yj ≥ y), i = 1, . . . , k,

which implies E(K ′
i) =

∑∞
y=0 P (Yi = y)μ(y), i = 1, . . . , k. Therefore, we obtain

the following expression for E(M1):

E(M1) = k − 1
k

∞∑
y=0

μ(y)
k∑

i=1

P (Yi = y). (15)

Illustrating example with Wikipedia (cont.): Let us calculate E(M1) for
the top-10 basket corresponding to the seed node Jim Jackson (ice hockey).
Using formula (15), for m = 8 × 103; 10 × 103; 15 × 103 we obtain E(M1) =
7.75; 9.36; 9.53. It took 2000 runs to move from E(M1) = 7.75 to E(M1) = 9.36,
but then 5000 runs is needed to advance from E(M1) = 9.36 to E(M1) =
9.53. We see that we obtain quickly 2-relaxation or 1-relaxation of the top-
10 basket but then we need to spend a significant amount of effort to get the
complete basket. This is indeed in agreement with the Monte Carlo runs (see
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e.g., Figure 1). In the next theorem we explain this “80/20 behavior” and provide
indication for the choice of m.

Theorem 4. In the Poisonized End Point Monte Carlo algorithm, if all top-k
nodes receive at least y = ma > 1 visits and πk+1 = (1 − ε)a, ε > 1/y, then

(i) to satisfy E(M1) > (1 − α)k it is sufficient to have

n∑
j=k+1

(mπj)y

y!
e−mπj

[
1 +

∞∑
l=1

(mπj)l

(y + 1) · · · (y + l)

]
< αk.

(ii) Statement (i) is always satisfied if m > 2a−1ε−2[− log(επk+1αk)].

Proof. See [3].

From (i) we can already see that the 80/20 behavior of E(M1) (and, respectively,
E(M0)) can be explained mainly by the fact that μ(y) drops drastically with y
because the Poisson probabilities decrease faster than exponentially.

The bound in (ii) shows that m should be roughly of the order 1/πk. The term
ε−2 is not defining since ε does not need to be small. For instance, by choosing
ε = 1/2 we can filter out the nodes with PPR not higher than πk/2. This often
may be sufficient in applications. Obviously, the logarithmic term is of a smaller
order of magnitude.

We note that the bound in (ii) is quite rough because in its derivation (see [3])
we replaced πj , j > k, by their maximum value πk+1. In realistic examples, m
can be chosen much smaller than in (ii) of Theorem 4. In fact, in our examples
good top-k baskets are obtained if the algorithm is terminated at the point when
for some y, each node in the current top-k basket has received at least y visits
while the rest of the nodes have received at most y − d visits, where d is a
small number, say d = 2. Such choice of m satisfies (i) with reasonably small
α. Without a formal justification, this stopping rule can be understood since we
have mπk+1 = ma(1 − ε) ≈ ma − d, which results in a small value of μ(y).

Acknowledgments. We would like to thank Brigitte Trousse for her very
helpful remarks and suggestions.
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Abstract. Research on self-organizing networks, especially in the con-
text of the Web graph, holds great promise to understand the complexity
that underlies many social systems. We argue that models of social net-
work structure should begin to consider how structure arises from the
“content” of networks, a term we use to describe attributes of network
actors that are independent of their structural position, such as skill,
intelligence, or wealth. We propose a rank model of how content (oper-
ationalized as attribute rank relative to other individuals) may change
amongst agents over time within a stochastic system. We then propose
a model of network self-organization based on this rank model. Finally,
we demonstrate how one may make inferences about the content of net-
works when attributes are unobserved, but network structures are readily
measured. This approach holds promise to enhance our study of social
interactions within the Web graph and in complex social networks in
general.

1 Why Network Content Matters

Research on the Web graph has been very influential in social science research
regarding the structure and function of complex social networks. While the struc-
ture and emergence of networks has been a long-standing theme in disciplines
such as sociology [1][2], political science [3][4], and economics [5], coupling the-
oretical models with rigorous models of network self-organization (e.g., [6] and
[7]) is still an emerging area of research. Indeed, research on complex networks,
especially in the context of the Web graph, has broad applicability in the so-
cial sciences and can help to inform methods to unpack the complexity that
characterizes many social systems.

At the same time, the social sciences can also contribute to modeling work
in mathematics and computer science, since it offers concrete theories about the
factors that drive network relationships. Thus, social science theory can help to
discipline researchers’ focus on particular models that are likely to be more real-
istic in particular contexts. In research on the Web graph it is important to focus
on social drivers of network structure since the Web is, after all, a self-organizing
network created and manipulated by human beings. Interactions within the Web
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graph are both a direct reflection of human behavior (e.g., when organizations
decide to reference one another due to shared interests or resources), but also
hold promise as indicators for latent forms of socially-relevant relations such as
trust or agreement [8].

In this paper we argue that modeling work on social networks should take
seriously the role of network content—meaning the inherent attributes of network
actors [9]—in driving network self-organization. Some research has begun to do
this by asking, for example, how network structures are influenced by the fitness
of actors [10], strategies [11], or the spatial positioning of agents [12]. These types
of “content” models of network structure are important supplements to classical
modeling approaches that emphasize the importance of structural drivers such
as node degree or other measures of centrality. This is because many social
science theories are ultimately concerned with attributes of individual actors—
why are some powerful and others marginalized, why do political organizations
behave the way they do, and how are behaviors, norms, or beliefs learned from
others within a network. Thus, to understand complex social networks one must
consider structure, but also how structure is dependent upon, and co-evolves
with, network content. This will allow researchers to move towards coherent
theories of emergent behaviors within social networks.

We contribute to this endeavor in two ways. First, this paper posits a simple,
mathematically tractable, yet reasonable model of network self-organization that
accounts for the ways in which network content drives network structure. This
is a contribution in of itself, and builds heavily upon earlier modeling work in
this area by �Luczak, Pra�lat, Wormald (e.g., [13], [14], [15], [16]) and especially
by Pra�lat and Janssen (e.g., [17] [18]). The model outlined here is a “rank”
model where link formation probabilities are based on externally-determined
prestige labels relative to other agents in the system; this general approach was
first proposed by Fortunato, Flammini and Menczer in [19]. Thus, this paper is
concerned with at least preliminary models of network self-organization.

Second, and more importantly, we investigate how this network model may be
used to estimate network content—that is, the rank of nodes—based on observed
structure alone. This is an important area for research, since in many applica-
tions of social network analysis we may know the structure of the network (for
example, if networks amongst organizations are measured using hyperlink data),
but attributes of actors remain a latent, unobserved variable. Our research builds
on prior work to estimate node attributes from observed structure [12], although
this research involved a different model and was focused on predicting distances
between nodes rather than the attributes of the nodes themselves. We find that
making inferences about node ranks is eminently doable, and this research es-
tablishes a baseline for methods of statistically inferring node attributes from
network structure only. We illustrate the use of this approach through compu-
tational simulation, which provides a starting point for future work emphasizing
mathematical proof.

The progression of this paper is as follows. We first discuss how the content
of a network may be thought of in terms of the rank of vertices—while this is
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just one of many possible approaches, it has direct applicability to models of the
Web graph and of attendant social network structures as well. The model we
consider is stochastic, involving the random entry into and exit from the system
of vertices over time, and we present some essential results regarding the shifting
of ranks over time using the differential equations method [20]. We then overlay a
network model on top of the basic ranking model, which provides a starting point
for thinking about how network relations are chosen based on rank. We then
present the results of simulations that show how we may determine the content
(rank) of vertices based on observations of the structure only. While simulations
are used here justify the essential prediction method, future versions of this
paper will present rigorous results through mathematical proof. Moreover, due
to space limitations, proofs of theorems stated in this paper have been omitted
but will be included in a future version.

2 A Rank Model of Content

In this section, we formally define a ranking model that reflects the “content”
of actors within a hypothetical social system. This model not only specifies the
process by which attributes are assigned to individual agents, but also specifies
the way in which these attributes shift over time as actors enter or exit the
system. Our focus is on modeling systems where the total number of actors is
large but fixed (for example, if at each time step an agent is removed uniformly at
random and immediately replaced by a new one). This type of behavior is most
consistent for well-established systems. Such stochastic systems are also usually
more challenging to model than, say, systems that are “young” or “middle-aged”
and hence growing over time, with agents being added to the system at a faster
rate than they are removed.

2.1 Model Overview

At each time t, we have exactly n objects in a set Vt. Moreover, at each time t,
each object v ∈ Vt has rank rt(v) ∈ [n] (we use [n] to denote the set {1, 2, . . . , n}).
In order to obtain a proper ranking, the rank function rt : Vt → [n] is a bijection
for all t, so every object has a unique rank. In agreement with the common use
of the word “rank”, high rank refers to a object v for which rt(v) is small: the
highest ranked object is ranked number one, so has rank equal to 1; the lowest
ranked object has rank n. The initialization and update of the ranking is done
according to a ranking scheme. Various ranking schemes can be considered, and
might lead to different behavior. We first give the general model, and then list
a few natural ranking schemes.

The model produces a sequence {(Vt, rt)}∞t=0 of sets Vt of n objects and ranking
functions rt, where t denotes time. To initialize the model, let V0 be any set of n
objects and let r0 be any initial rank function r0 : V0 → [n] which is consistent
with the ranking scheme. For t ≥ 1 we form (Vt, rt) from (Vt−1, rt−1) according
to the following rules:
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(i) Choose uniformly at random an object ut ∈ Vt−1 and delete it.
(ii) Add a new object v. (We refer to the time step t in which object v was

added as time in which v was born.)
(iii) Assign an initial rank to v, update Vt and the ranking function rt : Vt → [n]

according to the ranking scheme.

One can define a number of different ranking schemes. In this paper, we focus
on the random initial rank scheme but the concept of the ranking by age will
also be important. Therefore, let us define the following two schemes. In order
to distinguish them, we will use at for the ranking by age and rt for the random
initial rank.

(i) Ranking by age: The newly added object v obtains an initial rank n; its
rank decreases by one each time an object with smaller rank is removed.
Formally, for each v ∈ Vt−1 \ {ut}, at(v) = at−1(v) − γ, where γ = 1 if the
rank of the object deleted in step t is smaller than at−1(v), and 0 otherwise.

(ii) Random initial rank: The object added at time t obtains an initial rank
Rt which is randomly chosen from [n] according to a prescribed distribution.
Ranks of all objects are adjusted accordingly. Formally, for each v ∈ Vt−1 \
{ut}, rt(v) = rt−1(v) + δ − γ, where δ = 1 if rt−1(v) > Rt and 0 otherwise,
and γ = 1 if where the rank of ut, the object deleted in step t, is smaller
than rt−1(v), and 0 otherwise.

The results are generally about the behavior of ranking functions, where the
asymptotics are based on n tending to infinity. We say that an event holds
asymptotically almost surely (aas), if it holds with probability tending to one
as n → ∞. We will sometimes use the stronger notion of wep in favour of the
more commonly used aas, since it simplifies some of our proofs. We say that an
event holds with extreme probability (wep), if it holds with probability at least
1 − exp(−Θ(log2 n)) as n → ∞. Thus, if we consider a polynomial number of
events that each holds wep, then wep all events hold. To combine this notion
with asymptotic notations such as O() and o(), we follow the conventions in [21].

The coupon collector problem can give us insight into when all objects from
the initial set V0 will be deleted. Namely, let L = n(log n + ω(n)) where ω(n) is
any function tending to infinity with n. It is a well-known result that aas after
L steps all original objects will have been deleted.

2.2 Ranking by Age

To understand the influence of age, we need to understand the behavior of the
age rank function at(v) defined before (in short, at(v) − 1 equals the number
of objects in Vt that were born earlier than v). We assume (without loss of
generality) that v was born at time 0, so a0(v) = n. For t > 0, at(v) decreases
by one precisely when in time step t + 1, the object u which is deleted was older
than v, so at(u) < at(v). We obtain that

E(at+1(v) − at(v) | Gt) = −at(v) − 1
n − 1

,
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conditional on the fact that v is not deleted. To analyze this random variable,
we use the differential equations method. Defining a real function z(x) to model
the behaviour of axn(v)/n, the above relation implies the following differential
equation

z′(x) = −z(x)

with the initial condition z(0) = 1.
The general solution is z(x) = exp(−x+C), C ∈ R and the particular solution

is z(x) = exp(−x). This suggests that a random variable at(v) should be close to
the deterministic function n exp(−t/n). The following theorem precisely states
the conditions under which this holds. This theorem is proved in [17].

Theorem 1. Let at(v) be the age rank of object v at time t. Then wep, for every
t in the range 0 ≤ t ≤ tf = 1

2n log n − 2n log log n, we have

at(v) = n exp(−t/n)(1 + O(log−1/2 n))

conditional upon the object v surviving until time tf .

2.3 Randomly Chosen Initial Rank

In this section, we consider the case where the rank Ri of the object v added at
time i is chosen at random from [n]. The ranks of existing objects are adjusted
accordingly. We make the assumption that all initial ranks are chosen according
to the same distribution. In particular, we fix a continuous bijective function
F : [0, 1] → [0, 1], and for all integers 1 ≤ k ≤ n, we let

P(Ri ≤ k) = F

(
k

n

)
.

Thus, F represents the limit, for n going to infinity, of the cumulative distri-
bution functions of the variables Ri. To simplify the calculations while exploring
a wide array of possibilities for F , we assume F to be of the form

F (x) =

{
(2x)s/2 if 0 ≤ x ≤ 1/2
1 − (2(1 − x))s/2 if 1/2 < x ≤ 1

, where s ≥ 1.

This distribution has the advantage of allowing us to generalize our results
to a broad class of realistic initial distributions, ranging from situations where
initial ranks are distributed uniformly at random (when s = 1) to situations
where agents enter the system with a mediocre rank with higher probability
(when s > 1; in this case the highest probability rank is n/2). See Figure 1 (a)
to see the differences in distributions across s = 1.0, s = 1.2, and s = 1.5. This
functional form is reasonable because it reflects the notion that many types of
attributes follow a Normal distribution in social systems; it tends to be unlikely
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that new agents will be “born” into the system with a very low rank or a very
high rank. If rank represents a type of dynamic fitness where agents compete for
better ranks, entering agents are unlikely to have very poor ranks because then
they may not be able to enter the system at all, and they are also unlikely to enter
with very good ranks, which are obtained only through a history of competition
in the system. Our functional form for F (x) reflects these possibilities.

Case s = 1: The case s = 1 represents the uniform distribution of the Ri. The
random variable rt(v) is sharply concentrated around the initial rank Ri. The
following result was obtained in [17].

Lemma 1. Suppose that object v obtained an initial rank R ≥ √
n log2 n. Then,

wep
rt(v) = R(1 + O(log−1/2 n))

to the end of its life.

Case s > 1: In this case, the initial rank is biased towards the middle range
ranks. The rank function exhibits more complex behaviour in this case. Due to
the symmetry of the function F (x), without loss of generality we can assume
that an initial rank is at most n

2 . For ranks close to n
2 we clearly cannot predict

the behaviour; the final rank can be bigger or smaller than the initial rank.
However, if the initial rank is separated a bit from the middle rank, then we get
a concentration.

Theorem 2. Suppose that an object v obtained an initial rank

r0(v) = R <
n

2
−√

n log2 n

at time 0. Then wep, for every t in the range 0 ≤ t ≤ tf = 1
2n log n−2n log log n

conditional upon the object v surviving until time t,

r(v, t) =
n

2

(((
2R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

(1 + O(log−1/2 n)) (1)

provided

n

2

(((
2R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

≥ √
n log2 n .

Figure 1 (b),(c) presents the behaviour of different initial ranks for one specific
value of s = 1.2 as well as the behaviour of one specific initial rank R = 0.4n for
different values of s. (Both rank and time is scaled by n.)
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(a) (b) (c)
s = 1.0, 1.2, 1.5 R = 0.1, 0.2, 0.3, 0.4 s = 1.2, 1.3, 1.4, 1.5

Fig. 1. (a) Different distributions: f(x) = P
(
x ≤ R/n ≤ x + 1

100

)
; (b) The behaviour

for different initial ranks (s = 1.2); (c) The behaviour for different values of s (R = 0.4)

3 A Rank Model of Network Structure

In this section, we introduce the network on top of the process discussed in pre-
vious sections. We need two more parameters, the attachment strength α ∈ (0, 1)
and initial degree d ∈ N. This time, the model produces a sequence {(Gt, rt)}∞t=0

of graphs Gt = (Vt, Et) on n vertices and ranking functions rt : Vt → [n]. To
initialize the model, let G0 be any graph on n vertices and let r0 be any initial
rank function r0 : V0 → [n] which is consistent with the ranking scheme. For
t ≥ 1 we form Gt from Gt−1 according to the following rules:

(i) Choose uniformly at random a vertex ut ∈ Vt−1 and delete it.
(ii) Add a new vertex vt together with d edges from vt to existing vertices chosen

randomly with weighted probabilities. The edges are added in d substeps.
In each substep, one edge is added, and the probability that vi is chosen as
its endpoint (the link probability), is proportional to rt−1(vi)−α.

(iii) Assign an initial rank to vt, update Vt and the ranking function rt : Vt → [n]
according to the ranking scheme.

In [17], it has been shown that the uniform distribution for the initial rank (that
is, the specific case of s = 1 in our model) generates wep a power-law degree
distribution with exponent 1+1/α. Here, we will show that it is also the case for
s > 1. However, there is a constant factor difference. Let Zk denote the number
of vertices of degree k, and Z≥k =

∑
l≥k Zl.

Theorem 3. Let 0 < α < 1 and d ∈ N, log4 n ≤ k ≤ nα/2 log−3α n. Then wep

Z≥k = (1 + o(1))21−s

(
d(1 − α)
k(1 + α)

)1/α

n.

The proof is a consequence of the following result.
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Theorem 4. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n], and let vi be the vertex
whose age rank at time L equals a(vi, L) = i = xn. Let R be the initial rank of
vi, and assume that

√
n log2 n < R < n

2 − √
n log2 n. Then the expected degree

of vi is given by

E deg(vi, L) = (1 + O(log−1/2 n))
d(1 − α)2α

1 + α

((
2R

n

)1−s

− 1

) −α
1−s (

x−α − x
)
,

provided x = o(1) or R/n = o(1); otherwise E deg(vi, L) = O(1). Moreover, if
E deg(vi, L) ≥ log4 n, then wep

deg(vi, L) = E deg(vi, L) + O(
√

E deg(vi, L) log n),

and if E deg(vi, L) < log4 n, then wep deg(vi, L) = O(log4 n).

4 The Discovery of Content through Structure

While the Web graph is a useful platform for social networks research, the notion
that networks self-organize as a function of network content suggests the need
to observe both structure as well as attributes of the nodes. While structures
may be observed directly, for example through hyperlink data, in most cases
attributes (ranks) of agents embedded in the network are latent, unobserved
variables. However, given a realistic model of the process by which the network
was generated, it is possible to infer likely attributes of network agents.

Consider, for example, the degree of a given node. Given the model outlined
here, this degree is a function of two factors related to content: first, the length
of time the node has been in the system, and second, the initial rank assigned to
the node when it was “born” into the network. Agents with smaller initial ranks
tend to have larger degrees, and older vertices also tend to have larger degrees.
Despite this correlation, however, the true relationship is quite complicated and
it would seem to be a lost cause to try to infer only one of these attributes
(age or rank) based on degree only. Fig 3 presents the relation between age and
degree for vertices of degree at least d/2 when networks are simulated according
to the model described here (n = 20, 000, d = 100, s = 1.5, and α = 0.8). Young
vertices have small degree (there is no time to accumulate neighbours, even if
the initial rank is good) but old vertices can still have small degree (because
they have an unattractive rank).

As noted above, networks generated according to this rank model are char-
acterized by power-law degree distributions, which is readily observed within
simulated networks. Fig 2 presents the cumulative degree distribution on a log-
log scale: y(x) is the number of vertices of degree at least x.

It turns out, however, that it becomes feasible to estimate these properties
when we broaden our focus from the degree of a single agent to properties of their
second neighborhood. Consider, for example, the following coefficient defined
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Fig. 2. Power-law degree distribution generated by the rank model
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Fig. 3. Degree of v vs. the age rank of v (rescaled)

for a vertex v of non-zero degree that is proportional to the average degree of
neighbours of v:

c2(v) =
∑

u∼v deg(u)
deg(v)

.

We put c2(v) = 0 if deg(v) = 0. Clearly old nodes have more old neighbours
compared to younger nodes. In other words, there is a correlation between the
age of v and ages of its neighbours. On the other hand, ranks are generated
independently, so a distribution of ranks of the neighbours of v should be similar
to the distribution we use in the model. The more neighbours v has, the better
correlation we should see. Older vertices should have larger coefficients c2(v)’s.
See Fig. 4(a) for the relation for vertices of degree at least d/2.

This process can even be carried further to develop even more finely-tuned
estimates of agents’ unobserved attributes. We can take a look at third, fourth,
and higher-order neighborhoods by defining, recursively, for i ≥ 3

ci(v) =
∑

u∼v ci−1(u)
deg(v)

,

provided that deg(v) > 0; otherwise, ci(v) = 0. Again, in this case older vertices
should have larger coefficients and the error should decrease for, say, i = 3 and
i = 4. See Fig. 4(b-c) for the results for c3(x) and c4(x).
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Fig. 4. ci(x) vs. the age rank of v

Even upon casual examination, these scatterplots reveal a strong, nearly lin-
ear, relationship between the average degree of neighbors (or higher-order ci

coefficients) and the age of node. Inferring rank rather than age may be accom-
plished in a similar way.

One way of viewing the increasing predictive power of these structural char-
acteristics is to perform an simple OLS linear regression with node age as the
dependent variable (the unobserved variable to be inferred in real-world applica-
tions) and degree or various ci measures as possible independent variables. Using
this approach, we find that predicting age as a linear function of average degree
becomes more precise as we move to higher-order neighborhoods. For example,
the R2 statistic when age is predicted using degree only is 0.01, meaning that
node degree explains only 1% of the variance in actual node age. When the av-
erage degree of neighbor (c2) is used as an independent variable, a linear model
explains 35% of the variance on age (R2 = 0.35). R2 jumps to 0.77 for c3, and
0.83 for c4.

These regression models provide at least heuristic evidence that one can
achieve fairly accurate predictions of age when one examines the degree of neigh-
bors, and neighbors of neighbors, and so forth. And while these linear models
are suggestive of strong patterns, the scatterplots also make it clear that the
accuracy with which we can predict age depends on the degree of the node. In
particular, it seems that for low-degree nodes age may be predicted with fair
accuracy (in particular because, having just entered the system, the number of
relationships is a more direct result of initial rank) while the relationship between
ci and age for high-degree nodes is less precise.

It is also interesting to note that going from the second neighborhood to the
third neighborhood provides a smaller marginal benefit in terms of predictive
power, as measured by the R2 values. While examination of the third neighbor-
hood provides the strongest inferences regarding age, of course there will be an
upper bound on the “depth” of neighborhoods that may be examined, plus there
is likely to be an optimal neighborhood to examine in terms of maximizing the
predictive power of this method. These issues, along with the strength of pre-
dictions that may be made for small- versus high-degree agents, will be sorted
out through mathematical proof in a journal version of this paper.
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5 Conclusion

This paper outlined a model of network self-organization that is driven by the
“ranks” of individual agents in terms of an arbitrary attributes that are in-
herently individual phenomenon, such as wealth, power, beliefs, skills, or any
other actor-level variables that are likely to play an important role in network-
ing behavior. This is a stochastic model involving the formation and deletion of
network ties, and adjustment in ranks, as actors dynamically enter and exit the
system over time.

This research builds upon prior work in ranking and associated models of
network self-organization, and continues the enterprise of linking these network
models to enhance our understanding of the dynamics of real-world social sys-
tems. An important area for future research is to carefully consider how network
structure evolves as a function of network content. Of course, this not only
requires models of networks per se, but also requires models of attributes of in-
dividuals and how these attributes are manifest in network structure. The World
Wide Web provides an excellent platform for the study of such networks because
it yields large-scale, high-quality network data that contains traces of real-world
interactions amongst social or political agents.

On the other hand, network content is often exceedingly difficult to observe
and can be a limiting factor on our ability to study complex, self-organizing so-
cial networks. However, given realistic models of how network structure is driven
by content, it seems that we are able to make reasonable inferences regarding
the attributes of individuals based on structure only. This research provides a
platform for more research, emphasizing analytical proof, the exploits the poten-
tial “reversibility” of mathematical models to infer latent, unobserved variables
that are crucial to the development of network theory in the social sciences.
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Abstract. In the frequency allocation problem, we are given a cellular
telephone network whose geographical coverage area is divided into cells,
where phone calls are serviced by assigned frequencies, so that none of the
pairs of calls emanating from the same or neighboring cells is assigned the
same frequency. The problem is to use the frequencies efficiently, i.e. min-
imize the span of frequencies used. The frequency allocation problem can
be regarded as a multicoloring problem on a weighted hexagonal graph,
where each vertex knows its position in the graph. We present a 1-local
33/24-competitive distributed algorithm for multicoloring a hexagonal
graph, thereby improving the previous 1-local 7/5-competitive algorithm.

1 Introduction

A fundamental problem concerning cellular networks is to assign sets of fre-
quencies (colors) to transmitters (vertices) in order to avoid unacceptable in-
terferences [2]. The number of frequencies demanded at a transmitter may vary
between transmitters. In a usual cellular model, the transmitters are the centers
of hexagonal cells and the corresponding adjacency graph is an induced sub-
graph of the infinite triangular lattice. An integer d(v) is assigned to each vertex
of the triangular lattice and will be called the demand (or weight) of the vertex
v. The vertex weighted graph induced by the subset of the triangular lattice of
vertices of positive demand is called a (vertex weighted) hexagonal graph. The
phenomenon of hexagonal graphs and its multicoloring arises naturally in studies
of cellular networks.

A proper multicoloring of G is a mapping f from V (G) to subsets of integers
such that |f(v)| = d(v) for any vertex v ∈ V (G) and f(v)∩f(u) = ∅ for any pair
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of adjacent vertices u and v in the weighted graph G. The minimum number of
colors needed for a proper multicoloring of G, χm(G), is called the multichromatic
number. Another invariant of interest in this context is the (weighted) clique
number, ω(G), see formal definition in Section 2. It is well known that χm(G) ≥
ω(G) and that it is NP-complete problem to decide whether χm(G) = ω(G) [6].
There was a lot of work done on finding approximation algorithms that imply
upper bounds for the multichromatic number of hexagonal graphs.

An assumption that naturally arises in hexagonal graphs which model cellular
networks is that each vertex is aware of its location. In this paper so called k-
local algorithms for multicoloring hexagonal graphs are studied. An algorithm is
k-local if the computation at any vertex v uses only the information about the
demands of vertices at distance at most k from v.

A framework for studying distributed online assignment in cellular networks
was developed in [5]. A distinction between online and offline algorithms was
introduced and the definition of p-competitive algorithm was given as well. In
the offline version of the problem the demands are fixed and known in advance
while in the online version the demands may change over time, motivated by
the fact that the number of calls within the cell in the network changes. Here
we will consider only the offline version as we develop an algorithm that mul-
ticolors a hexagonal graph with known demands at vertices. Online version is
only mentioned in the corollary that follows directly using result of [5]. Finally,
an algorithm is p-competitive if it uses at most p times as many colors (fre-
quencies) overall as the optimal offline algorithm would. In the same paper [5],
a 3/2-competitive 1-local, 17/12-competitive 2-local and 4/3-competitive 4-local
algorithms were outlined. Later, a 4/3-competitive 2-local algorithm was devel-
oped in [9]. The best ratio for 1-local case was first improved to 13/9 [1], and
later to 17/12 [12] and to 7/5 [13]. In this paper we develop a new 1-local algo-
rithm which uses no more than 33

24ω(G) + O(1) colors, implying the existence of
a 33/24-competitive algorithm.

It may be worth mentioning that the approximation bound for multicoloring
algorithms on hexagonal graphs χm(G) ≤ (4/3)ω(G) + O(1) [6,8,9] is still the
best known, both for distributed and not distributed models of computation. In
view of this one can naturally take 4/3 as (maybe too ambitious) goal ratio for
1-local algorithms. With this assumption, our improvement from 7/5 to 33/24
can be calculated by the following formula

7
5 − 33

24
7
5 − 4

3

=
3
8

= 37.5%

which is a considerable improvement. Evaluating the previous improvements
from 3/2 to 13/9 to 17/12 to 7/5 by the same formula gives 33.3%, 25% and
20%, respectively.

Our algorithm substantially differs from the algorithms in [1] and [9] which are
composed of two stages. At the first stage, a triangle-free hexagonal graph with
weighted clique number no larger than �ω(G)/3� is constructed from G, while at
the second stage an algorithm for multicoloring a triangle-free hexagonal graph
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is used (see [1], [4], [10], [14]). Our improvement is based on the idea to borrow
some colors used in the first stage and to use them for the demands of the second
stage (see [13]). This in particular implies that the second stage of our algorithm
cannot be applied as a stand-alone algorithm for the multicoloring arbitrary
triangle-free hexagonal graphs.

The main result of this paper is

Theorem 1. There is a 1-local distributed approximation algorithm for mul-
ticoloring hexagonal graphs which uses at most 33

24ω(G) + O(1) colors. Time
complexity of the algorithm at each vertex is constant.

In [5] it was proved that a k-local c-approximate offline algorithm can be easily
converted to a k-local c-competitive online algorithm, so we have:

Corollary 1. There is a 1-local 33/24-competitive online algorithm for multi-
coloring hexagonal graphs.

The paper is organized as follows: in the next section we formally define some
basic terminology. In Section 3 we present an overview of the algorithm, while
in Section 4 we provide a proof of Theorem 1.

2 Basic Definition and Useful Facts

A vertex weighted graph is given by a triple G(E, V, d), where V is the set of
vertices, E is the set of edges and d : V → N is a weight function assigning
(non-negative) integer demands to vertices of G.

Following the notation from [6], the vertices of the triangular lattice T can be
described as follows: the position of each vertex is an integer linear combination
xp+yq of two vectors p = (1, 0) and q = (1

2 ,
√

3
2 ). Thus vertices of the triangular

lattice may be identified with pairs (x, y) of integers. Given the vertex v we will
refer to its coordinates as x(v) and y(v). Two vertices are adjacent when the
Euclidean distance between them is one. Therefore each vertex (x, y) has six
neighbors: (x− 1, y), (x− 1, y + 1), (x, y + 1), (x + 1, y), (x + 1, y − 1), (x, y − 1).
For simplicity we refer to the neighbors as: left, up-left, up-right, right, down-right
and down-left.

Assume that we are given a weight function d : V → {0, 1, 2, . . .} on vertices
of triangular lattice. We define a weighted hexagonal graph G = (V, E, d) as
an induced subgraph by vertices of positive demand on the triangular lattice,
(see Figure 1). Sometimes we want to consider (unweighted) hexagonal graphs
G = (V, E) that can be defined as induced by subsets of vertices of the triangular
lattice. In both cases we can assume that every vertex of hexagonal graph G
knows its coordinates (x, y) in the triangular lattice.

Let us recall that a proper multicoloring of G = (V, E, d) is a mapping f from
V (G) to subsets of integers such that |f(v)| = d(v) for any vertex v ∈ V (G)
and f(v) ∩ f(u) = ∅ for any pair of adjacent vertices u and v in the weighted
graph G. The minimum number of colors needed for a proper multicoloring of



1-Local 33/24-Competitive Algorithm for Multicoloring Hexagonal Graphs 77

Fig. 1. An example of a hexagonal graph (with base coloring)

G, χm(G), is called the multichromatic number. The (weighted) clique number,
ω(G), is the maximal clique weight on G, where the weight of a clique is the sum
of demands on its vertices. As cliques in hexagonal graphs have at most three
vertices, the weighted clique number is the maximum weight over weights of all
triangles, edges and weights of isolated vertices.

There exists an obvious 3-coloring of the infinite triangular lattice which gives
partition of the vertex set of any hexagonal graph into three independent sets.
Let us denote a color of any vertex v in this 3-coloring by bc(v) and call it a base
color (for simplicity we will use red, green and blue as the base colors and their
arrangement is given in Figure 1), i.e. bc(v) ∈ {R, G, B}.

An induced subgraph of the triangular lattice without 3-clique is called a
triangle-free hexagonal graph. A corner in a triangle-free hexagonal graph is
a vertex which has at least two neighbors and none of which are at angle π.
A vertex is a right corner if it has an up-right or a down-right neighbor, otherwise
it is a left corner (see Figure 2). A vertex which is not a corner is called a
non-corner.

Lemma 1. [11] Consider a 3-coloring (R,G,B) of the triangular lattice. Every
odd cycle of the triangle-free hexagonal graph G contains at least one non-corner
vertex of every color.

As the elegant proof of Sudeep and Vishwanathan [11] is very short, we recall it
for completeness and for future reference.

Proof. Assume without loss of generality that there exists an odd cycle in the
graph which does not have a non-corner vertex colored red. Notice that in the
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Fig. 2. All possibilities for: (a) - left corners, (b) - right corners

3-coloring of the triangular lattice, a corner has all its neighbors colored by the
same color (they are at the angle 2π/3). Hence, if all neighbors of a red colored
corner are blue, we can recolor this corner by green color and vice-versa. That
gives a valid 2-coloring of an odd cycle, a contradiction. ��
Notice that a graph G after removing non-corners of one color is bipartite. For
any weighted bipartite graph H , χm(H) = ω(H) (see [8]), and it can be optimally
multicolored by the following 1-local procedure.

Procedure 1. Let H = (V, E, d) be a weighted bipartite graph and let a bi-
partition V = V ′ ∪ V ′′ be given. We get an optimal multicoloring of H if we
assign to each vertex v ∈ V ′ a set of colors {1, 2, . . . , d(v)}, and with each vertex
v ∈ V ′′ we associate a set of colors {m(v) + 1, m(v) + 2, . . . , m(v) + d(v)}, where
m(v) = max{d(u) : {u, v} ∈ E}.

Proof. The procedure is 1-local, because each vertex v uses only its weight func-
tion d(v) or calculates value m(v) which is taken from its neighbors. From def-
inition of m(v) we can clearly see that no conflict occurs in this multicoloring.
Since in a bipartite graph the only cliques are edges and isolated vertices, the
largest number of color used is

max{max{d(v) : v ∈ V ′}, max{d(v) + m(v) : v ∈ V ′′}} =

= max{max{d(v) : v ∈ V ′}, max{d(v) + max{d(u) : {u, v} ∈ E} : v ∈ V ′′}} =

= max{max{d(v) : v ∈ V ′}, max{d(v) + d(u) : {u, v} ∈ E}} = ω(G).

��
Notice that in any weighted hexagonal graph G, a subgraph of the triangular
lattice T induced by vertices with positive demands d(v), the only cliques are
triangles, edges and isolated vertices. Recall that by definition all vertices of T
which are not in G must have demand d(v) = 0. Therefore, the weighted clique
number of G can be computed as follows:

ω(G) = max{d(u) + d(v) + d(t) : {u, v, t} ∈ τ(T )},
where τ(T ) is the set of all triangles of T .



1-Local 33/24-Competitive Algorithm for Multicoloring Hexagonal Graphs 79

For each vertex v ∈ G, define base function κ as

κ(v) = max{a(v, u, t) : {v, u, t} ∈ τ(T )},
where

a(u, v, t) =
⌈

d(u) + d(v) + d(t)
3

⌉
,

is an average weight of the triangle {u, v, t} ∈ τ(T ). Clearly, the following fact
holds.

Fact 1. For each v ∈ G,

κ(v) ≤
⌈

ω(G)
3

⌉
We call vertex v heavy if d(v) > κ(v), otherwise we call it light. If d(v) > 2κ(v)
we say that the vertex is v very heavy.

To color vertices of G we use colors from an appropriate pallet. For a given
color c, its palette is defined as a set of pairs {(c, i)}i∈N. A palette is called a base
color palette if c ∈ {R, G, B} is one of the base colors, and it is called additional
color palette if c /∈ {R, G, B}. In algorithm we will use 5 additional color pallets
of different size (without explicitly naming the colors).

Very important invariant in the algorithm will be the parity of the coordinates.
Let p(x) = x mod 2 be the parity function, which we will use for coordinates.

In our 1-local model of computation we assume that each vertex knows its
coordinates as well as its own demand (weight) and demands of all its neighbors.
In the next section, we will demonstrate how each vertex can color itself properly
in constant time, using only this information.

3 Algorithm

Our algorithm consists of three main phases. In the first phase (Step 1 and 2
below) vertices take κ(v) colors from its base color palette, so use no more than
ω(G) colors. After this phase, all light vertices in G are fully colored, i.e. ev-
ery light vertex v ∈ V (G) already received all needed d(v) colors. The vertices
that are heavy but not very heavy induce a triangle-free hexagonal graph with
weighted clique number not exceeding �ω(G)/3�. Very heavy vertices in G are
isolated in the remaining graph and therefore are easily and fully colored. How-
ever, they have to be treated separately (Step 2).

In the second phase we construct two types of bipartite graphs. First (Step 3
below) we construct three bipartite graphs by removing each color types of
noncorners and use Procedure 1 for optimal satisfying 1/8 of demands in the
remaining graph. Next (Step 4 below) we divide the vertices in the triangular
lattice into two sets of well separated parallel lines. Finally (Step 5 and 6 below),
by using this partition we construct two bipartite graphs and use Procedure 1 for
optimal satisfying 3/8 of demands of all vertices except some corners which have
to be satisfied in a separate way – by using free colors from base color palettes.

More precisely, our algorithm consists of the following steps:
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Algorithm

Input: Weighted hexagonal graph G = (V, E, d), where all vertices know its
position in the graph.

Output: A proper multicoloring of G, using at most 33/24 ·ω (G)+O(1) colors.
Step 0 For each vertex v ∈ V compute its base color bc(v)

bc(v) =

⎧⎨⎩
R if (x(v) + 2y(v)) mod 3 = 0
G if (x(v) + 2y(v)) mod 3 = 1
B if (x(v) + 2y(v)) mod 3 = 2

,

and its base function value

κ(v) = max
{⌈

d(u) + d(v) + d(t)
3

⌉
: {v, u, t} ∈ τ(T )

}
.

Step 1. For each vertex v ∈ V assign to v min{κ(v), d(v)} colors from its base
color palette. Construct a new weighted triangle-free hexagonal graph G1 =
(V1, E1, d1) where d1(v) = max{d(v)− κ(v), 0}, V1 ⊆ V is the set of vertices
with d1(v) > 0 (heavy vertices in G) and E1 ⊆ E is the set of all edges in G
with both endpoints from V1 (G1 is induced by V1).

Step 2. For each vertex v ∈ V1 with d1(v) > κ(v) (very heavy vertices in G)
assign the first unused κ(v) colors of the base color palettes of its neighbors
in T . Construct a new graph G2 = (V2, E2, d2) where d2 (v) is the difference
between d1(v) and the number of colors assigned in this step, V2 ⊆ V1 is the
set of vertices with d2(v) > 0 and E2 ⊆ E1 is the set of all edges in G1 with
both endpoints from V2 (G2 is induced by V2).

Step 3. For each class of noncorners (red, green, blue) do as follows:
– construct bipartite graph GnR = (VnR, EnR, dnR) where dnR(v)= d2(v)/8,

VnR ⊆ V2 is the set of vertices from G2 without red noncorners, and
EnR ⊆ E2 is the set of all edges in GnR with both endpoints in VnR (EnR

is induced by VnR)
– construct bipartition of graph GnR:

• V ′
nR is the set of blue vertices and red corners with all neighbors

green,
• V ′′

nR is the set of green vertices and red corners with all neighbors
blue.

– Apply Procedure 1 for weighted graph GnR by using colors from new
additional color palette.

Do analogous for graph GnB (G2 without blue noncorners) and GnG (G2

without green noncorners).
Step 4. Divide vertices of infinite triangular lattice into two sets (two sets of

horizontal lines):

Ve = {v ∈ τ(T ) : p(x(v)) = p(y(v))}
Vo = {v ∈ τ(T ) : p(x(v)) �= p(y(v))}

Step 5. Using sets Ve and Vo do as follows:
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5a. • Construct a bipartite graph G̃ = (Ṽ , Ẽ, d̃) where d̃(v) = 3d2(v)
8 ,

Ṽ ⊆ V2 consist of vertices from Ve and noncorners from Vo, and
Ẽ ⊆ E2 is the set of all edges in G2 with both endpoints in Ṽ (Ẽ is
induced by Ṽ ).

• Construct bipartition of graph G̃:
∗ Ṽ ′ is the set of vertices with both coordinates even

({v ∈ Ṽ : p(x(v)) = p(y(v)) = 0}), noncorners with neighbors
with both coordinates odd, and noncorners u with both neigh-
bors in Vo and p(x(u)) = 0.

∗ Ṽ ′′ is the set of vertices with both coordinates odd
({v ∈ Ṽ : p(x(v)) = p(y(v)) = 1}), noncorners with neigh-
bors with both coordinates even, and noncorners u with both
neighbors in Vo and p(x(u)) = 1.

• Apply Procedure 1 for weighted graph G̃ by using colors from new
additional color palette.

5b. For each corner v ∈ Vo assign 3d2(v)
8 colors from the free base color

palettes. Left corners take unused odd colors and right corners take un-
used even colors.

Step 6. Switch the sets Ve and Vo and do the same as in Step 5.

4 Correctness Proof

Due to space limitations we omit a detailed proof and give in part only informal
sketch of it.

At the very beginning of the algorithm there is a 1-local communication when
each vertex finds out about the demands of all its neighbors. >From now on, no
further communication will be needed. Recall that each vertex knows its position
(x, y) on the triangular lattice T .

In Step 0 there is nothing to prove.

In Step 1 each heavy vertex v in G is assigned κ(v) colors from its base color
palette, while each light vertex u is assigned d(u) colors from its base color
palette. Hence the remaining weight of each vertex v ∈ G1 is

d1(v) = d(v) − κ(v).

Note that G1 consists only of heavy vertices in G, therefore G1 is a triangle-free
hexagonal graph, and the proof of that can be found in [1].

In Step 2 only vertices with d1(v) > κ(v) (very heavy vertices in G) are col-
ored. Each very heavy vertex in G has enough unused colors in its neighborhood
to be finally multicolored. If vertex v is very heavy in G then it is isolated in G1

(all its neighbors are light in G) (see [13]). Without loss of generality we may
assume that bc(v) = R. Denote by

DG(v) = min{κ(v) − d(u) : {u, v} ∈ T, bc(u) = G},
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DB(v) = min{κ(v) − d(u) : {u, v} ∈ T, bc(u) = B}.
Obviously, DG(v), DB(v) > 0 for very heavy vertices v in G. Since in Step 1
each light vertex t uses exactly d(t) colors from its base color palette, we have
at least DG(v) free colors from the green base color palette and at least DB(v)
free colors from the blue base color palette. If vertex v could assign those colors
to itself, we would have G2 with ω(G2) ≤ �ω(G)/3�. Formally it can be proved
that in G1 for every edge {v, u} ∈ E1 holds:

d1(v) + d1(u) ≤ κ(v), d1(u) + d1(v) ≤ κ(u),

and the proof can be found in [12].
From these facts we can observe that

ω(G2) ≤
⌈

ω(G)
3

⌉
.

In Step 3 each vertex v has to decide whether it is a corner in G2 or not. Only
heavy neighbors of v can still exist in G2. Unfortunately, in 1-local model v does
not know which of his neighbors are heavy (and still exist in G2) and which were
light in G. Vertex v knows only where its neighbors u with d(u) ≤ a(v, u, t1)
and d(u) ≤ a(v, u, t2), are located. We call these vertices slight neighbors of v.
They must be light in G and as such they are fully colored in Step 1. There-
fore, v knows where it cannot have neighbors in G2 and presumes that all its
neighbors which are not slight, still exist in G2. Based on this knowledge, it can
decide whether it is a corner or not. In each triangle in τ(T ) containing v at
least one neighbor of v is slight, so v has at least three such neighbors. If vertex
v has more than four slight neighbors, then it is a non-corner. If vertex v has
four slight neighbors, then the remaining two are not slight. In this case if an
angle between those two are π, then v is a non-corner, otherwise it is a corner –
a right corner if its down-left, up-left and right neighbors are slight, and a left
corner if its down-right, up-right and left neighbors are slight. If vertex v has
three slight neighbors, then it is a corner and the distinction between left and
right is determined in the same way as above.

According to proof of Lemma 1 it is obvious that V ′
nR and V ′′

nR are the bipar-
tition of GnR.

The problem is that, under 1-locality assumption, vertices cannot calculate
value of d′ of their neighbors, which is needed in Procedure 1 to calculate value
m(v) = max{�d′(u)/8� : {u, v} ∈ E′}. However, this procedure can work fine in
this model of calculation, by using d′v(u) instead of d′(u), which is the number
of expected demands on vertex u in vertex v after Step 2. The proof of this fact
can be found e.g. in [13].

In Step 4 there is nothing to prove.
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In Step 5a it is easy to check that Ṽ ′ and Ṽ ′′ gives the bipartition of G̃. The
problem with 1-locality assumption in Procedure 1 we can solve as in Step 3.

In Step 5b we take the corners and use again the base color palettes. If ver-
tex v ∈ G2 is a corner, it means that it has three slight neighbors with the
same base color. Without loss of generality, assume that bc(v) = R and its slight
neighbors’ base color is blue. Recall function DB from Step 2 – we have DB(v)
free colors from blue base color palette. We claim that if v is a corner in G2

with three slight neighbors colored blue, then d2(v) ≤ DB(v) (see proof in [13]).
Therefore, vertex v has as much as d2(v) free colors from the blue base color
palette at his disposal. Since left corners take unused odd colors and right cor-
ners take unused even colors, no conflict occurs, because no two left corners can
be connected.

During Step 3 each noncorner participate in exactly two from three rounds and
receives �2d2(v)/8� colors while each corner participates in all three rounds and
receives �3d2(v)/8� colors. During Steps 5 and 6 each vertex receives �3d2(v)/8�
colors twice, so in both Steps it receives �6d2(v)/8� colors. Combining all Steps
each noncorner receives �8d2(v)/8�, so as many as it needs, and each corner
receives �9d2(v)/8�, so even more than it needs. Therefore, at the end, all of the
demands are satisfied.

Ratio

We claim that during the first phase (Steps 1 and 2) our algorithm uses at most
ω(G) + 2 colors. To see this, notice that in Step 1 each vertex v uses at most
κ(v) colors from its base color palette and, by Fact 1 and the fact that there are
three base colors, we know that no more than 3 �ω(G)/3� ≤ ω(G) + 2 colors are
used. Note also that in Step 5b we use only those colors from base color palettes
which were not used in Step 1, so altogether no more than ω(G) + 2 colors from
base color palettes are used in total in the first and second phase.
To count the number of colors used in the second phase (Steps 3-6) notice that
we can divide the demands of each vertex in G2 into eight equal parts. In Step 3
we introduce three new palettes that contain �ω(G2)/8� colors each. In Step 5 we
introduce next palette that contain �3ω(G2)/8� colors, and repeat this operation
in Step 6.

Let A(G) denote the number of colors used by our algorithm for the graph G.
Thus, since ω(G2) ≤ �ω(G)/3� ≤ ω(G)/3 + 1, the total number of colors used
by our algorithm is at most

A(G) ≤ ω(G) + 2 + 3
(

ω(G2)
8

+ 1
)

+
(

3ω(G2)
8

+ 1
)

+
(

3ω(G2)
8

+ 1
)

=

= ω(G) + 2 +
9ω(G2)

8
+ 3 < ω(G) +

9ω(G)
24

+ 2 + 5 =
33
24

ω(G) + 7.

The performance ratio for our strategy is 33/24, hence we arrived at the
statement of Theorem 1.
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5 Conclusion

We have given a 1-local 33/24-approximation algorithm for multicoloring hexag-
onal graphs. This implies a 33/24-competitive solution for the online frequency
allocation problem, which involves servicing calls in each cell in a cellular net-
work. The distributed algorithm is practical in the sense that the frequency
allocation for each base station is done locally, based on the information about
itself and its neighbors only, and the time complexity is constant.

According to goal ratio 4/3, the improvement of the result is the biggest
since paper [5] in 2000. Present authors strongly believe that with this kind
of method the competitive ratio achieved here cannot be improved, since Mc-
Diarmid and Reed conjecture implies that 9/8 is the best possible competitive
ratio on triangular-free hexagonal graphs. There has to be found a significant
new idea to solve this problem with better ratio.
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Abstract. We propose a generative model for social networks, both undirected
and directed, that takes into account two fundamental characteristics of the user:
background (specifically, the real world groups to which the user belongs); and
behavior (namely, the ways in which the user engages in surfing activity and
occasionally adds links to other users encountered this way). Our experiments
show that networks generated by our model compare very well with data from a
host of actual social networks with respect to a battery of standard metrics such
as degree distribution and assortativity, and verify well known predictions about
social networks such as densification and shrinking diameter. We also propose
a new metric for social networks intended to gauge the level of surfing activity,
namely the correlation between degree and Page rank.

1 Introduction

Digital social networks are important for several reasons: They have become crucial
human resources; they are growing in ubiquity and economic importance; they consti-
tute a fascinating and productive research subject; and they can teach us much about
human behavior and relationships. Regarding this last point, it would be desirable to go
the other way around, namely to use rudimentary models of human behavior in order to
understand social networks. In this paper we develop a generative model for social net-
works based on a minimalistic set of assumptions about the nature of human relations
and behavior.

Our premise is that social networks reflect two basic aspects of human life: identity
— or “background” — and behavior. There are of course many well known and useful
models of social networks (see the subsection on related work below); however, we are
not aware of any one that explicitly evokes categories related to identity and behavior.
We capture identity by the association of humans with groups: cities, neighborhoods,
professions, sports clubs, religious groups, fan clubs, bars frequented, etc. We are not
thinking of these as digital groups, but as a description of an individual and his/her
relationship with the real world. Note that certain groups constitute a partition of the
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universe of potential users (e.g., countries) while others (e.g. fan clubs) may overlap
and fail to cover everybody. That is, we think of the underlying universe as the union
of cliques, and we call the resulting undirected graph the world. We emphasize again
that this is not the social network we are interested in, but the ground truth underlying
it. User behavior in the formation of a social network entails the process of acquiring
new relationships, that is, adding links.

The social network is created in discrete steps. At each step one new user/node ar-
rives (this is the clock whereby time is measured in the network creation process). Upon
arrival, the node is connected to a subset of the nodes already in the network, determined
by a random process as follows: first, a node is connected only to people with whom it is
connected in the world; second, the smaller the groups two nodes share, the higher the
connection probability — for example, two fans of an esoteric band, or two Alaskans,
have a higher probability of being connected than two scientists or two Indians. During
each such step, another important activity takes place: Every node, with some small
probability, takes a random walk by “surfing” the existing network, and adds a link (a
directed or undirected edge, depending on the network being modeled) to one of the
other nodes encountered; the probability of taking a random walk at a step decreases
with the node’s age. To model social networks, such as Facebook, in which remote
surfing is disabled or problematic, the length of the random walk can be restricted to
two. Each node has two characteristics, extroversion, which determines the intensity of
adding links to others, and quality, which affects the probability that a visiting node will
add a link to it; we assume that these are uniformly distributed (perhaps the distribution
least likely to seed the statistical behavior of our model).

We validate our model by comparing the networks it generates to a diverse suite of
social networks. We use a wide range of metrics, most of them proposed in the litera-
ture and some new. We find very satisfactory agreement, and make a few observations
about the structure of social networks that have not been mentioned before. In par-
ticular, the generated networks are assortative and have high clustering coefficient, in
agreement with data and expectation. With respect to clustering, we observe (both in
data and our networks) that clustering diminishes in high-degree nodes. Furthermore,
we notice that our model verifies certain well known predictions about the evolution of
social networks, such as decreasing effective diameter and densification [17]. We also
find agreement in other metrics, such as degree distribution and betweenness centrality.
Finally, we propose a new metric for directed networks whose intention is to capture
the degree to which links are the result of surfing activity by the nodes: the correlation
between in-degree and Page rank of the nodes, with high correlation indicating high
probability that links are the result of surfing activity. We believe that this metric is of
some interest and use in the study of social networks — for example, it sharply differ-
entiates between Twitter and Flickr. We also compare our model and its agreement with
data to that of other models, such as the forest fire model of [17]. Finally, we also derive
some analytical results that help

Related Work. Non-digital social networks had been studied for a long time in the so-
cial sciences, see the recent textbook [9], Milgram’s “small world” experiment [20] and
more recent work on small worlds [11]. With the advent of digital social networks nu-
merous researchers have studied and measured social networks [21],[14],[6] and have
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identified several statistical characteristics, such as degree of clustering [10] and the
presence of assortativity [25]. Also, researchers have analyzed the temporal evolution
of social networks and have made several interesting observations, such as the shrinking
of the diameter and the densification of the network [17]. With respect to models of so-
cial networks, Watts and Strogatz [29] presented a simple “rewiring” model that exhibits
small world characteristics (with small diameter and big clustering coefficients). Other
models choose graphs that conform to a given degree distribution, as in the configura-
tion model described in [23], or by preferential attachment [13],[1]. Leskovec et al [17]
proposed a forest-fire model to explain the decreasing diameter phenomenon that they
observed at citation graphs. Leskovec et al [19] proposed a mathematically tractable
model based on Kronecker multiplication and presenting many of the observed prop-
erties of social networks. Kumar et al [14] analyzed the evolution of social networks
and categorized users according to connectivity properties. A different approach was
proposed in [27] where the authors presented a game-theoretic approach on modeling
social networks. Another interesting work is presented in [15] where a mathematically
tractable model based on ideas that are rooted in sociology is proposed, albeit without
a comparison with real data. In [10] there was presented a dynamic model of network
formation where each node would connect uniformly at random to another pre-existing
node and then it would connect to some of the neighbors of the pre-existing node.
Also in a very recent study [3] postulates that nodes have “zones of influence” and are
connected if these overlap, in a manner quite reminiscent of the cliques of the World
in this paper. For mathematical analyses of some of the above models see to [2],[12]
and [22],[24].

2 The Model

We start by describing informally, and motivating, our model. The nature of relation-
ships in the real world depends on people’s identity/background, as well as their behav-
ior. For us, identity is captured by the groups to which a person belongs — groups of
geography, professional affiliation, interests, hobbies, etc. Certain of these groups form
a partition of the population (e.g., neighborhoods), while others overlap and do not ex-
haust the population (e.g., bars frequented). Note that there are digital systems of this
sort, usually called affiliation networks [15],[30]; here, we do not think of these groups
as digital networks, but instead as the underlying truth about the world, the attribute
combinations of the people who will join our network. Once a new person joins a so-
cial network, it is natural that s/he will be connected with people s/he knows from the
various groups to which s/he belongs. It is natural to assume that the smaller the group,
the higher the probability of knowing that person well enough to link to them (and this
is captured in Step 5 of our algorithm, see Algorithm 1 below).

But after somebody has joined a social network, they are likely to explore it and,
depending on how extroverted they are, and on how interesting or high-quality the other
nodes they visit appear to them, they may initiate links to these other nodes. But it is
natural to assume that the interest in creating new links wanes as time goes by (see,
for example, the study of the Cyworld social network [7]). These two aspects are both
captured in the first and second probabilities used in Step 6 of our algorithm below. And
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these are the two sources of links in our network: Initial links coming from connections
in the World, and links acquired while the user is surfing the network.

In our algorithm (see Algorithm 1 below), there is a first phase, during which we
construct the World, a set of groups (cliques) over the users. We start by generating
random groups which partition the users (say, into cities, then into professions, etc.);
the number of partitions is a parameter (Step 1). We also generate a few more random
groups/cliques, which however do not constitute partitions of the universe (Step 2).
These groups will determine, once the network generation process has started, how
newly arriving nodes get initially connected to others that have previously arrived. The
sizes of these cliques are power-law distributed, with power-law exponent γ (taken in
our experiments to be between 2 and 3).

Upon arrival (Step 4), a node is assigned two values, both sampled uniformly from
[0, 1]: extroversion and quality; these will influence how often links will be created from
and to (respectively) the node. Then the node (Step 5) is linked to some of the previously
arrived nodes with whom s/he is connected in The World via a common group, with the
probability of connection decreasing with the size of the common group.

Finally, new links are created at each step by each node taking random walks in the
network, and linking to the nodes encountered with probability influenced by the visited
node’s quality and the visitor’s own extroversion. This is a crucial part of our model, for
many reasons. It is here that user behavior influences the network. Since the intensity
of the process is inversely proportional to the node’s age, it not hard to see that about
N log N edges are added this way. Finally, in directed networks, this process has the
effect of bringing the in-degree of a node in line with its Page rank [5]: recall that the
Page rank is precisely the frequency with which a node is visited in a particular random
walk, and this is both verified and captured by a metric that we propose.

Our algorithm is based on the following parameters (shown in bold):

– N is the number of nodes.
– F is the number of partitions generated in Step 1 below.
– γ is the power-law exponent of the distribution of cliques in The World.
– r is a parameter regulating the expected number of random walks that a node will

perform at a given time.
– d is the expected depth of each random walk.

Algortithm 1

– First Phase: Generation of the World
1. Repeat F times: generate a random partition of the universe N = {0, 1, . . . , N−

1} into sets whose sizes are power-law distributed with exponent γ.
2. Suppose the previous step generated s sets; generate s random subsets of the

universe with power-law distributed sizes.
– Second Phase: Generation of the Network

3. Repeat for t = 0, 1, . . . , N − 1:
4. A node t joins the network, with extroversion xt and quality qt, both generated

uniformly at random from [0, 1].
5. For i = 0, . . . , t−1 add a link (directed or undirected, depending on the nature

of the network desired) from t to i with probability 1 − min
max , where min is the
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size of the smallest clique the two nodes have in common, and max is the size of
the maximum clique in The World. If there is no common clique, the probability
is 0.

6 For each node i < t repeat r times: start a random walk with probability
1

(t−i+1) . If during the random walk node j is visited, a link from i to j is added

with probability xi ∗ qj , and the random walk halts with probability (1 − 1
d )

(Note: In the depth-two version motivated by networks such as Facebook, the
random walk is made to stop deterministically at depth two.)

In our experiments we choose parameters to best fit the comparison data. The typical
parameter values where, F = 1, γ = −2.35, r = 10 and d = 10. It is interesting that,
while the power law exponent γ does not affect much the network structure, varying F
results in huge differences.

3 Metrics

The following are metrics used widely in the literature for measuring and comparing
networks:

Degree distribution: The distribution of the network’s degrees (in the case of directed
networks, of both in- and out-degrees) is an important characteristic of a network. As
most such distributions in practice are power-law distributed, this distribution is typi-
cally summarized by the effective exponent of the power-law γ, found by regression.

Diameter and average path length: The diameter of a network is the largest distance
between any two connected nodes. In Internet-like networks it grows slowly, while
for social networks it has been found to shrink very slowly [17]. We also measure, in
addition to the diameter, the average shortest path length, and the effective diameter as
defined in [17].

Clustering: Clustering measures how likely it is, given that ij and jk are links, that ik
is also a link (the network could be either undirected or directed). Social networks tend
to be highly clustered, more so than Internet-like graphs (since, arguably, clustering is
a social network’s raison d’ être).

Betweenness Centrality: Betweenness centrality captures a node’s importance in terms
of connecting other nodes; it was first proposed by Freeman [8]:

CeB
i (g) =

∑
k �=j:i�=(j,k)

Pi(kj)/P (kj)
(N − 1)(N − 2)/2

. (1)

where Pi(kj) is the number of shortest paths between k and j that go through i. In order
to make calculations on large graphs we have implemented the betweenness centrality
algorithm proposed in [4].
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Assortativity coefficient and neighbor degrees: The assortativity coefficient [25] cap-
tures correlations between the degrees of neighboring nodes:∑

link(i,j)(di − d̄)(dj − d̄)∑
iεN (di − d̄)2

. (2)

where di is the degree of node i and d̄ is the average degree. A related measure is the
average degree of the neighbors of a vertex of degree d, Knn(d) (also termed as average
neighbour connectivity):

Knn(d) =
maxdegree∑

i

P (i|d) . (3)

where P (i|d) is the conditional probability that given a node with degree d will be
connected with a node of degree i. Average neighbor degree of the whole graph is the
average of (3) for all the degrees. Positive assortativity implies an increasing Knn(d)
function, that is, high-degree nodes tend to connect to other high-degree nodes, and
similarly for low-degree nodes.

Explicit Page rank: We introduce a new metric for directed networks, Page rank ex-
plicitness. Page rank [5] is a well known and useful measure of the “importance” of a
document/node in a web-like directed graph, roughly the steady-state distribution of a
restarting random walk. In social networks one would expect that, since user behavior is
random walk-like and link addition is easier, a node’s in-degree (din) would be highly
correlated than usual with Page rank (r). In our model, Step 6 clearly has the effect of
bringing closer the in-degree and the Page rank. We call this effect explicit Page rank,
and we measure it in terms of the Pearson correlation coefficient of the in-degrees and
Page ranks of the nodes; in Page rank calculations we use a damping factor d = 0.85.

Thus ExplicitPagerank =
∑N

i=1(din(i)− ¯din)(r(i)−r̄)√
ΣN

i=1(din(i)− ¯din)2ΣN
i=1(r(i)−r̄)2

. This measure is between

−1 and 1, with 1 standing for perfect correlation (positive multiple). In most directed
networks this correlation is expected to be high (it is theoretically predicted to be very
high in expectation for random graphs, for example), but differences of, say, between
.7 and .95, can be revealing. We propose this measure as an indication of the degree
to which surfing behavior affects the structure of the network (but one should keep in
mind that it is also very high in random graphs).

4 Results: Undirected Networks

Table 1 below summarizes the results of experiments with our algorithm, and compar-
isons with data from Facebook — in particular, networks capturing the relationships
between community members at four large U.S. universities (UNC, Princeton, Okla-
homa and Georgetown), obtained from [28].

Overall, we see remarkable consistency in the data, and good agreement with the
results of our algorithm. Regarding assortativity, It has been observed that social net-
works have positive assortativity (in contrast to scientific networks which have negative
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Table 1. Comparisons of Facebook graphs and our algorithm

Princeton Georgetown Oklahoma UNC our model (1) our model (2) Forest Fire

Number of nodes 6596 9414 17425 18163 9000 18000 9000
Number of edges 293320 425638 892528 766800 394512 917512 300130
Average degree 88.93 90.42 102.442 84.43 87.66 100.275 66.69
Max Degree 628 1235 2568 3795 847 1313 4330
Degree exponent (γ) -1.13 -1.26 -1.40 -1.46 -1.19 -1.34 -0.99
Average neighbour degree exponent 2.62 2.47 2.22 2.77 1.97 2.17 1.265
Assortativity coefficient 0.091 0.075 0.073 0.0007 0.066 0.085 -0.34
Avg Node Betweenness 2.525E-4 1.856E-4 1.01E-4 9.913E-5 1.031E-4 6.002E-5 1.856E-4
Betweenness Slope 4.652E-6 4.49E-6 2.77E-6 6.051E-6 2.751E-6 1.306E-6 4.49E-6
Clustering coefficient 0.244 0.231 0.235 0.206 0.21 0.256 0.561
Diameter 9 11 9 7 7 7 10
Average path length 2.67 2.75 2.767 2.801 2.27 2.42 2.67

(a) Oklahoma (b) Georgetown

(c) Princeton (d) UNC

(e) Our algorithm 9000 nodes (f) Forest Fire model

Fig. 1. Average degree of the nearest neighbours as a function of the degree d (Knn(d))

assortativity) [25], and we can see that this is true for the Facebook data and also for
our model. Although assortativity values are close to 0 we can verify the assortative
nature of the networks by observing (Fig. 1) the increasing Knn(d) function.
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(a) Oklahoma (b) Georgetown

(c) Princeton (d) UNC

(e) Our algorithm 9000 nodes (f) Forest Fire model

Fig. 2. Betweenness vs. Degree

(a) Shrinking diameter. (b) Densification of the graph with expo-
nent γ = 2

Fig. 3. Temporal graph evolution plots. Shrinking diameter and densification laws.
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(a) UNC log-log (b) UNC normal

(c) Georgetown log-log (d) Georgetown normal

(e) Our algorithm 18000 log-log (f) Our algorithm 18000 normal

(g) Forest Fire model

Fig. 4. Frequency vs Degree

An interesting observation that can be seen from Fig. 2 is that both in Facebook
graphs and the graphs produced by our model a small part of the higher degree nodes
can be considered as central, and there exists no clear increasing trend between a nodes
degree and a nodes betweenness centrality. A node with a high betweenness centality
value is expected to be the mediator of the information transfer in a network. We observe
that very few nodes take that role.
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It has been also observed that social networks present high clustering coefficients
(compared to clustering coefficients exhibited by a pure random network). Our data and
the generated graphs do exhibit such behavior. For example, the clustering coefficient of
our Georgetown data set is many times higher than the value 90.42/425638 = 0.00002,
the clustering coefficient of a random graph with the same number of nodes. The same
is true for all other data sets. Another important observation we make in both the graphs
generated by our model and the Facebook data sets is that clustering correlates nega-
tively with degree; that is, two neighbors of high degree nodes are less likely to be
connected to each other than two neighbors of a low degree node, and this again makes
sense for social networks.

Social networks usually have a very small diameter, and in fact it has been also
observed that a social network’s diameter shrinks as the network grows, up to a point,
and from that point on it is stable. As we can see from Fig. 3(a), the same phenomenon
is present in the graphs generated by our model. We can see from our datasets that all
Facebook networks have a small diameter. Also we have observed that the networks

(a) Oklahoma (b) Georgetown

(c) Princeton (d) UNC

(e) Our algorithm 9000 nodes (f) Forest Fire model

Fig. 5. Clustering vs. Degree distributions
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(a) Flickr (b) Youtube

(c) Twitter (d) Epinions

(e) Our algorithm 100000 nodes (f) Slashdot

(g) Forest Fire

Fig. 6. Log-log frequency vs. in-degree plots for our directed graphs

produced by our algorithm have a stable and small diameter. Also, both the networks
produced by our algorithm and the Facebook data sets have a rather small average path
length of about 2.7.

The frequency vs. degree distributions shown on Fig. 4 for the Facebook graphs
are very similar to the ones produced from our algorithm. Even though there is no clear
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power law distribution, there are fat tails in a log-log scale diagram, that is, the majority
of the nodes have small degrees.

It has also been observed [17] that as social networks grow, they become more and
more dense. As we can see from Fig. 3(b), the same effect is apparent in our model, and
the graph follows a relation e(t) ∝ n(t)α where e(t) and n(t) are the number of edges
and nodes at time t and α is an exponent which in our case is close to 2.

5 Results: Directed Networks

Our algorithm seems to generate equally well undirected and directed graphs. To val-
idate our algorithm on directed social networks (“information networks”) we obtained
data from Flickr [21], Youtube [21], Epinions [18], Slashdot [26] and Twitter (the lat-
ter obtained from public accessible user profiles). In order to compute the efecctive
diameter [17] we used the SNAP library [16]. Table 2 summarizes the experiments.

Table 2. Comparisons of Directed graphs and our algorithm

Flickr Youtube Twitter Epinions Slashdot our model Forest Fire

Number of nodes 1846198 1157827 460622 75879 82170 100000 100000
Number of edges 22613981 4945382 950046 508837 948465 1734653 1881680
Average degree 12.24 4.29 2.06 6.7 11.54 17.34 18.81
In-Degree exponent (γ) -1.56 -1.52 -1.97 -1.72 -1.75 -1.89 -1.453
Assortativity coefficient 0.004 -0.03 -0.03 -0.01 -0.04 -0.06 0.033
Ratio of nodes in the largest scc 0.69 0.44 0.62 0.42 0.86 0.89 1.0
Diameter 12 12 14 10 9 12 13
Effective Diameter 7.53 7.57 7.91 5.88 5.671 6.98 7.25
Page rank correlation 0.7 0.97 0.92 0.95 0.97 0.92 0.623

In all directed networks examined, in-degrees seem to be distributed by some power
law (see the figures). It has been noted in [10] that information networks are expected
to have much smaller average degree than undirected social networks, because in an
information network (that is, networks where the edges represent information flow and
not social relations) very few nodes have high degrees. This fact can be verified from
Table 2. Also as expected all the networks present small diameter and effective diameter.
On all networks, (both data and generated) a very large fraction of the nodes belongs to
the “giant” strongly connected component.

In all the directed social networks except Flickr, we observe a high correlation be-
tween Page rank and in-degree, and this agrees with the networks generated by our
algorithm (this could be expected, since in our algorithm many of the edges are short-
cuts of random walks). What is the difference between Flickr and the other networks
considered here, which could explain this discrepancy? In networks such as Youtube,
Slashdot, Twitter, and Epinions we believe that the users add new edges as they surf
the network. For example whilst surfing, a Youtube user may observe an uploader with
many videos of his taste and consequently decide to follow him. On the other hand in
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(a) Flickr (b) Youtube

(c) Twitter (d) Epinions

(e) Our algorithm 100000 nodes (f) Slashdot

(g) Forest Fire

Fig. 7. Log-log correlation between in-degree of a node and in-degree of the nodes that the node
is pointed by

Flickr users share photos with friends, and thus we could have expected that the random
walk behavior is a little less prevalent.

Because of the directed nature of networks we had to expand the definition of the
Knn(d) distribution. Thus we have considered two different measures: The correlation
of a node’s in-degree and the in-degree of the nodes that point to it Knn in(d); and the
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(a) Flickr (b) Youtube

(c) Twitter (d) Epinions

(e) Our algorithm 100000 nodes (f) Slashdot

(g) Forest Fire

Fig. 8. Log-log correlation between in-degree of a node and in-degree of nodes that the node
points

correlation of a node’s in-degree and the in-degree of the nodes that the node points
to, Knn out(d). These two measures are shown in Fig. 7 and Fig. 8. As we can see
from Fig. 7 in all networks there is a tendency for low in-degree nodes to be pointed by
low in-degree ones (decreasing Knn in(d)). In Fig. 8, three kinds of networks (Flickr,
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Epinions and the networks generated by our model) have an increasing Knn out(d)
function contrary to the rest of the networks.Regarding assortativity we found that, sur-
prisingly, all of the networks except for Flickr tend to be disassortative. This is contrary
to the widely held belief that all social networks present positive assortativity.

6 Comparison with the Forest Fire Model

We have seen that our model largely succeeds in capturing many of the salient char-
acteristics of the data sets. We further test it by comparing its agreement with data to
that of the Forest Fire model of [17], one of the best known models of social networks.
In the Forest Fire model once a node t is added to the network it is connected to an
“ambassador” node w chosen uniformly at random. Then x edges out of w and y edges
into w are chosen at random, where x and y are drawn from given geometric distribu-
tions (whose parameters are the main inputs to the generation algorithm), and the other
endpoints of those edges are joined with t in the same way. Then the process is repeated
recursively with those x new nodes, skipping any node we have seen before so no node
is ever visited twice, until the recursion dies out for lack of fresh nodes.

We implemented the Forest Fire model and, through extensive experimentation,
chose parameters that maximize the model’s fit with our Facebook data sets. Since
these data sets are undirected, we treat the Forest Fire model’s edges as undirected.

In Table 1 we summarize the results of this comparison. We notice that, like our
algorithm, the Forest Fire model also produces a network with high clustering coef-
ficients, and also captures the decreasing trend of the clustering coefficient with the
degree (Fig. 5(f)). Also similarly to our model, networks generated by Forest Fire have
short average path lengths and effective diameter. The authors of the Forest Fire model
also note that it exhibits densification and shrinking diameter over time. We can also ob-
serve from Fig. 2(f) that the betweeness centrality values in the Forest Fire graphs are
small and only a small part of the higher degree nodes have large values, in accordance
both with our model and the Facebook datasets.

So far the Forest Fire model is in good agreement both with our model and the
Facebook networks. In other aspects, Forest Fire fares distinctly worse than our model.
The graphs it produces have a decreasing Knn(d) function (Fig.1(f)) and a very negative
assortativity coefficient, whereas social networks are by nature assortative (where high-
degree nodes tend to connect with other high-degree nodes), and our model captures
this aspect. Also, the degree distribution in the Forest Fire model (Fig. 4(g)) clearly
follows a power law, a contrast with the Facebook datasets (and our model). .

The results of the comparison between the directed versions of our model and the
Forest Fire model are presented in Table 2. On the negative side, the nodes of the Forest
Fire network form a giant strongly connected component (in contrast to both our model
and our data), and the correlation between page rank and in-degree is lower than the
one that in our model and most data sets. However, the Forest Fire model comes es-
pecially close to the Flickr network both in terms of the knn distributions and positive
assortativity, and also in terms of low page rank correlations.
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7 Some Analytical Observations

Our model is conceptually simple and one can therefore predict analytically some of its
behavior.

Degree distribution. Consider the i-th node in the directed version of our model. Its
in-degree and out-degree, call them ai and bi, are the sum of two parts: ai = a′

i + a′′
i ,

and similarly for bi = b′i + b′′i , where by a′′
i we denote the part of the in-degree due

to edges of the random walk. It is easy to see that a′
i (b′i) is the sum of n − i (respec-

tively, i − 1) Bernoulli variables that are not independent, but have dependence of the
variety (selection without replacement) that can be analyzed by Hoeffding’s inequality.
Therefore, a′

i is exponentially concentrated with mean c(n−i), and similarly for b′i with
mean c(i − 1), where c is a random variable depending only on the World (ignoring,
for simplicity, the partition aspect of the sets comprising the World). Therefore, the a′

i’s
(seen now as an ensemble) are power-law distributed, and so are the b − i’s; however,
for the undirected version the part of the degrees that is not due to the random walk,
a′

i + b′i, is exponentially concentrated with the same mean c(n − 1).
Now for the random walk edges making up a′′

i and b′′i : Out of i we start a total of
r(1+ 1

2 + 1
3 + · · ·+ 1

n−i+1 ) ≈ r log n random walks in expectation, and therefore draw
xi · · · log(n − i)/2d edges out of i, again in expectation. A very similar analysis holds
for the a′′

i ; however, the quantity πi enters the formula, the stationary distribution of the
graph at various times t, seen as a Markov chain. This is the reason why one expects
the in-degrees to be aligned with Page rank in the directed case.

Densification and shrinking diameter. It is easy to see that the expected number of
edges added at step i is a superlinear function of i, and hence densification is expected.
As for shrinking diameter, let us consider the undirected case. At step t, we have a
graph whose degrees are highly concentrated around the expectation ct for some c < 1.
Treating this as a regular graph of degree ct, we can postulate that its diameter grows
as d(t) = log t

log ct . For c < 1, this is a slowly decreasing function.

8 Conclusions and Open Problems

We have presented a new generative model for social networks that attempts seriously
to take into account characteristics of user behavior and identity. The networks gener-
ated by our model agree reasonably well with actual social and information networks,
both directed and undirected, with respect to the measures studied in the literature, and
confirm empirical predictions about the growth of certain key parameters (diameter and
density). We also introduced a new measure, correlation between degree and Page rank,
which we believe is a useful way of gauging the extent to which the structure of the
network is the result of surfing behaviour.

One obvious open problem is to formalize more the distinction between “social net-
works” and “information networks”, with an eye of providing analytical evidence of
their different natures.
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Abstract. Motivated by numerous models of representing trust and dis-
trust within a graph ranking system, we examine a quantitative vertex
ranking with consideration of the influence of a subset of nodes. An
efficient algorithm is given for computing Dirichlet PageRank vectors
subject to Dirichlet boundary conditions on a subset of nodes. We then
give several algorithms for various trust-based ranking problems using
Dirichlet PageRank with boundary conditions, showing several applica-
tions of our algorithms.

1 Introduction

PageRank has proven to be a useful tool for ranking nodes in a graph in many
contexts, but it is clear that many refinements can be made for specific purposes.
For example, PageRank can be manipulated by link spammers to boost certain
nodes’ ranking, and it interprets all links between nodes as positive votes for
importance even if some links are meant to show distrust.

As an illustrative example, consider the following problem. Suppose an agent
v in a social network wants to compute a quantitative ranking among all nodes,
but v has a subset of neighbors X who v trusts. v wants to compute a personal
ranking of the nodes in the network, but v wants to make sure that there is no
large disparity with its trusted neighbors.

Another trust that ranking systems do not take into account arises from a
distinction between types of social networks. Some networks, such as Facebook,
model closer relationships between people: a social friendship where edges form
presumably only between people who know each other personally. This is in di-
rect contrast with systems such as Twitter where the act of “following” someone
indicates no such connection. The close-knit network indicates a higher degree
of trust.

When agents participate in both networks, it is useful to be able to rank
the nodes of the larger network based on the smaller. A node v can compute
a ranking among its own personal trust network and then use this to calculate
a ranking of nodes in the larger network, many of which do not appear in the
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more personal network. Current ranking mechanisms such as PageRank compute
a global ranking and therefore are not suitable for this situation.

In this paper, we consider a tool that can model these and many other scenar-
ios: Dirichlet PageRank vectors with boundary conditions. Given a graph G and
a subset of nodes S, we first compute a PageRank vector pr subject to Dirichlet
boundary conditions pr(v) = 0 for vertices v on the boundary of S. For example,
Dirichlet boundary conditions can be used to model and propagate the distrust
of specified vertices in the graph. We then generalize Dirichlet PageRank to use
arbitrary boundary conditions pr(v) = σ(v) for boundary nodes v, providing a
general framework for a variety of ranking models. Our algorithms are efficient,
giving approximate solutions.

1.1 Related Work

The idea of ranking nodes in a graph has a rich history starting from the intro-
duction of PageRank by Brin and Page [5]. The original PageRank was meant
for Web Search, but many researchers have developed more tailored ranking sys-
tems such as personalized PageRank [13,14], giving a ranking relative to some
specified starting distribution s.

One pitfall with PageRank as a ranking system is the fact that all edges
contribute positively. In practice, an edge such as a link from one Web page
to another can also represent a negative interaction or distrust between the
nodes. Several related mathematical models of propagating trust and distrust in
a network ranking system are given [11]. There are numerous empirical results.
Another algorithm [12] relies on a small hand-picked set of trusted nodes, but
one must be careful not to allow malicious nodes to be included.

There are many other algorithms derived from PageRank that use specific
tweaks to model trust or distrust in ranking schemes. [1] considers axioms that a
ranking system should satisfy and develops several ranking systems accordingly.
[4] and [16] systematically model distrust by modifying the PageRank equations
to consider negatively-weighted edges, and [15] gives an algorithm with a similar
flavor using random walks. Many of these algorithms are closely related, but
rigorous analysis is desired for capturing specific phenomena. We will show that
these related models can be represented by Dirichlet PageRank with appropriate
boundary conditions.

Another area of research concerns spam nodes when they are identified. It
has been shown that if agents can collude [2] or easily create pseudonyms [6],
they can artificially boost their ranking in PageRank and other ranking systems.
There is some work done in how to penalize these vertices [3], and our Dirichlet
PageRank can be efficiently used to achieve the same goal.

1.2 Results in This Paper

Motivated by the continual development of new PageRank-based algorithms and
analysis of Dirichlet eigenvectors in [9], we develop and analyze Dirichlet PageR-
ank algorithms. For a connected graph G, we examine a Dirichlet PageRank
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equation and compute the unique solution with Dirichlet boundary conditions
pr(v) = 0 for vertices v on the boundary of a specified vertex subset S.

After giving the algorithm for computing Dirichlet PageRank vectors, we gen-
eralize the boundary conditions to arbitrary values pr(v) = σ(v) for boundary
vertices v. We give an efficient algorithm ApproxDirichPR to compute approxi-
mate Dirichlet PageRank vectors with any boundary condition σ. We also give
a full analysis leading to the following theorem, where | · | is the L1-norm, and
vol(S) is twice the number of edges in the specified vertex subset. (Detailed
definitions are given in Section 2.)

Theorem 1. For any ε ∈ (0, 1) and any jumping constant α ∈ (0, 1), the algo-
rithm ApproxDirichPR outputs an ε-approximate Dirichlet PageRank vector p̃rS

in time O(vol(S) log 1
ε

α ), which, compared to the exact Dirichlet PageRank prS,
satisfies:

p̃rS(v) ≤ prS(v), ∀v ∈ S

|prS − p̃rS | <
εvol(S)

α
.

We illustrate several applications of Dirichlet PageRank with boundary condi-
tions below. Many of the specific PageRank variations are covered by this general
framework, and we will show how its use can allow the efficient consideration of
several models in [1,3,4].

1.3 Several Applications of Dirichlet PageRank

• Diminishing known spammers’ influence. A first application concerns
the adjustment of PageRank in the presence of known spammers. For example,
on the Web, many web pages can be identified as spammers based on content or
user reports. We would like a network ranking scheme to take this into account,
penalizing these nodes and others that heavily link to them. We will show that
Dirichlet PageRank is useful for this problem.
• Considering trusted friends’ opinions. While adjusting PageRank to take
into account known spammers is relatively simplistic, there are plently of more
subtle or complex problems that Dirichlet PageRank can handle well. For ex-
ample, a single node in a graph may want to compute a personalized ranking
of nodes, but it has a set of trusted friends or neighbors whose own rankings
are to be valued accordingly. While previously-studied personalized PageRank
vectors do not take this effect into account, we can use Dirichlet PageRank with
boundary conditions to compute a more informed ranking. We will present an
algorithm PRTrustedFriends for this problem.
• Validating rank for newly-created nodes. The previous application of
adjusting PageRank to account for trusted friends can be logically extended to
validating a new vertex’s ranking within a larger network. Suppose that a new
person enters a social network but is unsure about who to trust and distrust
within the network. Personalized PageRank is a useful tool for quantitative in-
formation, but it raises the question of whether or not this ranking is susceptible
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to unknown spammers. Without a specific set of trusted friends, it may seem
hopeless for the newcomer, but the new vertex can use Dirichlet PageRank with
boundary conditions to validate and adjust its own ranking with a randomly-
selected pool of established nodes within the network. We will give the details
in an algorithm PRValidation.
• Reconciling rank in personal and global social networks. Additional
interesting questions arise when analyzing different types of social networks.
While social networks are often treated on their own, there are many different
types of networks with wide participation. Some, like Facebook, offer a more
personal viewpoint on network structure, where edges are formed only by mutual
consent between two people who usually know each other. This is in contrast
with a network such as Twitter, where connections are much more impersonal.
Here, people “follow” each other based not only on friendship, but also interest
in subject matter, celebrity appeal, advertising, and many conceivable other
reasons.

With the vast array of information available on a network such as Twitter,
it is important for a user to know who is trustworthy or worth following. This
is a difficult problem, but a user does have some information at hand; its own,
more close-knit, smaller social network or even a trusted subgraph of the larger
network. Using Dirichlet PageRank, a user can compute a ranking on the smaller
network, and then use boundary conditions appropriately to infer a ranking on
the remaining nodes in the larger network, taking its personal associations into
account. We will develop an algorithm PRTrustNetwork for this problem.

Finally, we can use similar ideas to tackle the problem in reverse: suppose a
global ranking of the nodes in a larger, loose social network such as Twitter is
known, and a user wants to develop a personalized ranking for a small subgraph
or its own trusted network taking the global ranking into account. We again can
use Dirichlet PageRank with appropriate boundary conditions, as outlined in an
algorithm PRInferRanking.

The rest of the paper proceeds as follows. In Section 2, we outline necessary
background on PageRank and Dirichlet boundary conditions. Section 3 devel-
ops the theory of PageRank with Dirichlet boundary conditions, and Section 4
extends this theory for arbitrary boundary conditions σ. We develop and an-
alyze the ApproxDirichPR algorithm in Section 5 and give algorithms for the
previously-discussed applications in Section 6.

2 Preliminaries

For a connected undirected graph G = (V, E) with n vertices and m edges, let
A be the adjacency matrix and D be the diagonal degree matrix where Dii is
the degree of the i-th vertex. The typical random walk on G is defined by the
transition probability matrix D−1A.

The normalized Laplacian L is defined as:

L = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2.
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Let S denote a subset of V consisting of vertices in G. The vertex boundary
δS is defined as: δS = {v|v /∈ S, (u, v) ∈ E, where u ∈ S}, and the edge boundary
∂S is defined as: ∂S = {(u, v)|u ∈ S, v /∈ S}. The volume vol(S) denotes the sum
of the degrees of vertices in S.

The restricted Laplacian LS is the submatrix of L restricted to S × S. And
the restricted Green’s function GS,β is defined as: GS,β(βIS + LS) = IS , where
β ≥ 0. Note that LS is positive definite [9], so GS,β is well-defined. The PageRank
vector pr is defined as:

pr = αs + (1 − α)prW,

where α is called the jumping constant, s is the seed vector, and W = 1
2 (I+D−1A)

is called the lazy random walk transition matrix. PageRank was first introduced
in [5] to measure the importance of Web pages, and recently it has been applied
to many fields, such as measuring trust in social networks [1].

3 PageRank with Dirichlet Boundary Conditions

Let S be a subset of G; for a function (or vector) f : V → R, we say f satisfies
the Dirichlet boundary condition if f(v) = 0 for all v ∈ δS.

The PageRank vector satisfying the Dirichlet boundary conditions is defined
by the equations:

pr(v) =
{

αs(v) + (1 − α)
∑

u∈V pr(u)Wuv if v ∈ S
0 otherwise . (1)

Let prS , sS denote the vectors pr and s restricted to S, and WS , DS , AS denote
the respective matrices restricted to S × S. Dirichlet boundary conditions are
also applied to PageRank vectors in [7].

Theorem 2. For a connected graph, the above PageRank equation (1) has one
and only one solution. With β = 2α

1−α , it is given by

prS = βsSD
−1/2
S GS,βD

1/2
S .

Proof. Since pr(v) = 0 when v /∈ S, the PageRank equation (1) is equivalent to

prS = αsS + (1 − α)prSWS .

And since
W =

1
2

(I + D−1A) = I − 1
2

(D−1/2LD1/2),

and D is diagonal matrix, we have

prS = αsS + (1 − α)prS(I − 1
2

(D−1/2
S LSD

1/2
S )).

Solving for prS gives the theorem. ��
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Let pr′ be the original PageRank vector with no boundary conditions. Suppose
GS is the subgraph of G consisting of vertices of S and only those edges between
vertices in S. Let pr′′ be the PageRank of GS .

It is easy to see that for every v ∈ S, pr(v) ≤ pr′(v); however, since we only
care about the relative ranking of the vertices and not the value itself, and the
L1-norm of these vectors is arbitrary (depending on the boundary condition), it
is more interesting to compare the relative magnitudes of the PageRank values
of different sets of nodes among these 3 definitions of PageRank on the subset S.

Define
So = {v ∈ S|∃u /∈ S : (u, v) ∈ E}, Si = S \ So,

and assume that neither of these two sets are empty.
Let Wii be W restricted to Si × Si, W0i be W restricted to So × Si, and

w0 = (1 − α)1WT
0i , wi = 1− (1 − α)1WT

ii .

Lemma 1
pr′So

wT
0

pr′Si
wT

i

≥ prSo
wT

0

prSi
wT

i

≥ pr′′So
wT

0

pr′′Si
wT

i

Proof. Let W ′′ be the lazy random walk transition probability matrix of GS ;
then the following equations hold:

pr′Si
= αsSi + (1 − α)

(
pr′Si

Wii + pr′So
W0i

)
, (2)

prSi
= αsSi + (1 − α)

(
prSi

Wii + prSo
W0i

)
, (3)

pr′′Si
= αsSi + (1 − α)

(
pr′′Si

W ′′
ii + pr′′So

W ′′
0i

)
. (4)

Let c1 = αsSi1
T . Then we have

prSo
wT

0

prSi
wT

i

=
prSi

wT
i − c1

prSi
wT

i

.

(2) - (3) gives

(pr′Si
− prSi

) (I − (1 − α)Wii) = (pr′So
− prSo

) ((1 − α)W0i)

Let c2 = (pr′Si
− prSi

) (I − (1 − α)Wii) 1T . Since ∀v ∈ S, pr(v) ≤ pr′(v) implies
that pr′Si

− prSi
is nonnegative, c2 is also nonnegative. Then we have

pr′So
wT

0

pr′Si
wT

i

=
pr′Si

wT
i − c1

pr′Si
wT

i

=
prSi

wT
i + c2 − c1

prSi
wT

i + c2
.

Since for every v ∈ So, the degree decreases by at least 1 from G to GS , W ′′
v,u ≥

Wv,u(1 + 1
d ), where d is the maximum degree of vertices in So of GS . And for

v ∈ Si, there is no change in degree from G to GS , so Wii = W ′′
ii . Hence we have

pr′′Si
(I − (1 − α)Wii) = αsSi + pr′′So

((1 − α)W ′′
0i)

≥ αsSi + pr′′So
((1 − α)W0i) (1 +

1
d

).
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So
pr′′So

wT
0

pr′′Si
wT

i

≤ prSi
wT

i − c1

(1 + 1
d )prSi

wT
i

,

and the lemma follows from

prSi
wT

i + c2 − c1

prSi
wT

i + c2
≥ prSi

wT
i − c1

prSi
wT

i

≥ prSi
wT

i − c1

(1 + 1
d )prSi

wT
i

��

Intuitively, since pr′′ ignores all the boundary edges, pr′′So
is inaccurate and un-

derestimated. On the other hand, we want to decrease the influence of boundary
nodes, so we want the result PageRank on So not to be overestimated compared
with pr′So

. Lemma 1 shows that prSo
is bounded between pr′′So

and pr′So
; therefore

it is preferred in such cases.

4 Dirichlet PageRank with Given Boundary Conditions

In some cases, we want to further decrease or increase the influence of the bound-
ary nodes, or we already have some estimation of the PageRank on the boundary
of some vertex set S and want to approximate the PageRank of S very quickly.
Then instead of setting p(v) = 0 for all v /∈ S, we can set them according to
arbitrary boundary conditions σ.

The Dirichlet PageRank with given boundary conditions σ is defined by the
equations:

pr(v) =
{

αs(v) + (1 − α)
∑

u∈V pr(u)Wuv if v ∈ S
σ(v) otherwise , (5)

where σ(v) ≥ 0, ∀v and |σ| ≤ 1.
Let WδS denote W restricted to δS × S.

Theorem 3. For a connected graph, the above PageRank equation (5) has one
and only one solution. With β = 2α

1−α , it is given by

prS = (βsS + 2σδSWδS)D−1/2
S GS,βD

1/2
S .

Proof. Notice that

prS = αsS + (1 − α) (prSWS + σδSWδS) (6)

=
1 − α

2
(βsS + 2σδSWδS) + (1 − α)prSWS .

Then it is straightforward to see the theorem holds by following the steps as in
the proof of Theorem 2. ��
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5 Algorithms and Analysis

To solve the PageRank equations (1, 5) with boundary conditions, as implied by
Theorem 2 and Theorem 3, all it requires are vector-matrix multiplication and
solving a linear system:

x(βIS + LS) = y.

Since D is diagonal, the complexity of solving the PageRank is just the com-
plexity of solving the linear system. And since the matrix βIS +LS is diagonally
dominant, it can be solved approximately in nearly linear time with a Spielman-
Teng Solver [17]. Here, we show a simpler algorithm ApproxDirichPR to solve
the PageRank equations with boundary conditions approximately, which is faster
and has a better approximation ratio as long as α is not too small.

The basic outline of our algorithm ApproxDirichPR is as follows: we initialize
prS as 0 and maintain a residue r, which is the difference between the right side
and left side of equation 6. Then we gradually move mass from r to prS while
maintaining the following invariant:

prS + r = αsS + (1 − α) (prSWS + σδSWδS)

until for every v ∈ S, r(v) ≤ ε′dv. In the beginning, we set ε′ = 1; after every iter-
ation, we decrease ε′ by half until ε′ ≤ ε which is the given desired approximation
ratio.

Algorithm 1. ApproxDirichPR
Input: G, S, α, s, σ, ε
Output: prS

prS ⇐ 0, ε′ ⇐ 1, r ⇐ αsS + (1 − α)σδSWδS

while ε′ > ε do
while r(v) ≥ ε′dv for some v do

prS(v) ⇐ prS(v) + r(v)
For each neighbor u of v, r(u) ⇐ r(u) + (1 − α)r(v)/2dv

r(v) ⇐ (1 − α)r(v)/2
end while
ε′ ⇐ ε′/2

end while

Now that we have presented our algorithm, we will prove Theorem 1.

Proof. (of Theorem 1) Since a FIFO queue can be used to store every vertex
v such that r(v) ≥ ε′dv, each iteration of the inner loop can be done in O(dv)
time. For each iteration of the outer loop, since |r| ≤ 2ε′vol(S) at the beginning,
and r(v) will decrease at least αε′dv, let T be the number of iterations and
vi, 1 ≤ i ≤ T be the vertex selected at the i-th step, we have

T∑
i=1

αε′dvi ≤ 2ε′vol(S),
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so
T∑

i=1

dvi ≤
2vol(S)

α
.

There are log 1
ε iterations of the outer loop, so the running time is O(vol(S) log 1

ε

α ).
The output p̃rS satisfies:

p̃rS + r = αsS + (1 − α) (p̃rSWS + σδSWδS) ,

where 0 ≤ r(v) < εdv∀v ∈ S, and the exact solution prS satisfies:

prS = αsS + (1 − α) (prSWS + σδSWδS) .

Subtracting these two equations gives:

prS − p̃rS = α
r

α
+ (1 − α) ((prS − p̃rS)WS) ,

which is also a PageRank equation. Since r is nonnegative,

p̃rS(v) ≤ prS(v), ∀v ∈ S.

And by the properties of PageRank that |prα,s| ≤ |s| and |prS | ≤ |pr|, we have

|prS − p̃rS | ≤ | r
α
| <

εvol(S)
α

. ��

6 Applications of Dirichlet PageRank

6.1 Adjusting Spammers’ Influence

One downfall of pure link-based ranking systems such as PageRank is that they
interpret all nodes as honest agents and all links as votes or validation between
nodes. However, real-world networks such as the World Wide Web often contain
malicious nodes or spammers. It then becomes an important question to find rank-
ing systems that better represent the true, honest ranking of nodes in the graph.

There are many schemes developed to try to combat this problem
[1,3,4,6,11,12,15,16], but it turns out that many of them can be modeled us-
ing Dirichlet PageRank with different boundary conditions. This will allow for
the efficient consideration of many different models by simply considering dif-
ferent boundary conditions. For example, [3] outlines an algorithm SpamRank
which penalizes spam nodes. Using Dirichlet boundary conditions, we can pe-
nalize known spammers v by enforcing the condition pr(v) = 0. One can adjust
their ranking even further by enforcing pr(v) = −1.

Another paper [4] concerns propagating trust and distrust within a network,
using a weighted random walk W with a trusted seed vertex s. Here, the authors
start by assigning rank pr(s) = 1, a condition covered by Dirichlet PageRank
with the boundary condition σ(s) = 1. There is a subtle difference in the way
distrust is handled (the original algorithm does not allow for the propagation of
trust scores less than 0), but it should be clear that Dirichlet PageRank allows
us to efficiently consider these and many other models.
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6.2 Adjusting Rank Based on Trust

While it is interesting to be able to devise ranking systems that take known
spammers into account, it is also important to calculate a ranking based on vari-
ous concepts of trust in a network. There are numerous scenarios to consider, and
Dirichlet PageRank with boundary conditions will be a useful algorithmic tool.

Consider the following problem: in a network G, node v wants to compute
a personalized ranking of the nodes, but v trusts its own friends and wants its
ranking on the top ρ fraction of nodes to be similar to its friends’. Presumably
one’s friends’ actions carry a lot of weight in one’s own decisions. Vertex v can
efficiently compute a personalized PageRank vector as its ranking function using
algorithms from [10], but PageRank alone will not take into account the implied
trust between v and its friends. But using Dirichlet PageRank with boundary
conditions, we can take v’s trusted friends into account. We illustrate this in the
algorithm PRTrustedFriends.

Algorithm 2. PRTrustedFriends
Input: G = (V, E), v, α, ρ, ε
Output: p

p ⇐ SharpApproximatePR(v,α, ε) [10]
p′ ⇐ 1∑

u∼v p(u)

∑
u∼v p(u)SharpApproximatePR(u,α, ε)

S ⇐ arg maxS⊆V,|S|≤ρ|V |
∑

s∈S p(s)
p ⇐ ApproxDirichPR(G,V \ S, α, v, p′, ε)

A natural extension of PRTrustedFriends is a similar problem where v is
a newcomer to a network and is therefore unsure about what other nodes are
trustworthy. In such a scenario, the only available information to v is the network
itself. For ranking purposes, v can select a small sample of nodes to compare with
its own ranking; if these nodes are well distributed, they provide a good control
to ensure that v’s own ranking function is too distorted by the presence of nearby
spam or malicious nodes. We give the algorithm PRValidation.

Algorithm 3. PRValidation
Input: G = (V, E), v, k, α, ρ, ε
Output: p

p ⇐ SharpApproximatePR(v,α, ε) [10]
v1, . . . , vk ⇐ i.i.d. samples from V according to p
p′ ⇐ 1∑k

i=1 p(vk)

∑k
i=1 p(vk)SharpApproximatePR(u,α, ε)

S ⇐ arg maxS⊆V,|S|≤ρ|V |
∑

s∈S p(s)
p ⇐ ApproxDirichPR(G,V \ S, α, v, p′, ε)

A third, more complex situation arises in the context of different types of
social networks. Although the problem setup here appears rather complicated,
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it is a natural model for a common social phenomenon: a distinction between
different types of social graphs.

Suppose that a vertex v is part of two networks G1 = (V1, E1) and G2 =
(V2, E2) with V1 ⊆ V2. We interpret G1 as a closely-knit social network where
edges represent a deeper connection with the implication that the endpoints
share mutual trust for one another. G2 is a larger network where nodes form
edges for looser reasons; for example, acquaintanceship or curiosity. We assume
that v does not know much about the many sources of information present in
G2. An important question for v is: which nodes in G2 are trustworthy? Is there
some way to rank the vertices of G2?

One effective way of finding such a ranking of vertices in G2 for a node v is
by computing the ranking on G1 and then computing Dirichlet PageRank on G2

using G1’s ranking as the boundary condition. This is outlined in the algorithm
PRTrustNetwork.

Algorithm 4. PRTrustNetwork
Input: G1 = (V1, E1), G2 = (V2, E2), v ∈ V1 ∩ V2, α, ε
Output: q

p ⇐ SharpApproximatePR(v,α, ε) [10] for G1

q ⇐ ApproxDirichPR(G2, V2 \ V1, α, v, p, ε)

Dirichlet PageRank can also be used to solve a related problem if a global
ranking for G2 is already known or pre-computed. Suppose that such a ranking
exists, and v ∈ G2 wants to be able to rank its own more personal network or
neighborhood G1 taking this into account. One way to do this is to compute
a Dirichlet PageRank vector for G1, but using the nodes adjacent to G1 as a
boundary with rank given by the global ranking on G2. This procedure is given
in the following algorithm PRInferRanking.

Algorithm 5. PRInferRanking
Input: G2 = (V2, E2), G1 = (V1, E1) ⊆ G2, v ∈ V1, p, α, ε
Output: q

∂E1 ⇐ {(w, x) ∈ E2|w ∈ V1, x /∈ V1}
∂V1 ⇐ {w ∈ V2 \ V1|w is an endpoint of an e ∈ ∂E1}
q ⇐ ApproxDirichPR((V1 ∪ ∂V1, E1 ∪ ∂E1), V1, α, v, p, ε)

From the examples above, we see that Dirichlet PageRank with boundary
conditions is a useful tool, especially in modeling trust and distrust in a network
ranking system. It is of interest to further take advantage of the efficient com-
putation and approximation of Dirichlet PageRank vectors. More applications
and directions remain to be explored.
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12. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating Web spam with
TrustRank. In: VLDB 2004 (2004)

13. Haveliwala, T.: Topic-sensitive PageRank: A context-sensitive ranking algorithm
for Web search. IEEE Transactions on Knowledge and Data Engineering 15,
784–796 (2004)

14. Jeh, G., Widom, J.: Scaling personalized Web search. In: WWW 2003 (2003)
15. Kamvar, S., Schlosser, M., Garcia-Molina, H.: The EigenTrust algorithm for repu-

tation management in P2P networks. In: WWW 2003 (2003)
16. de Kerchove, C., Dooren, P.: The PageTrust algorithm: how to rank Web pages

when negative links are allowed? In: Proceedings of the SIAM International
Conference on Data Mining (2008)

17. Spielman, D.A., Teng, S.-H.: Nearly-Linear Time Algorithms for Precondi-
tioning and Solving Symmetric, Diagonally Dominant Linear Systems (2008),
http://arxiv.org/abs/cs.NA/0607105

http://arxiv.org/abs/cs.NA/0607105


Efficient Generation of Networks with Given

Expected Degrees

Joel C. Miller1,2 and Aric Hagberg3

1 Center for Communicable Disease Dynamics, Harvard School of Public Health,
Boston, MA 02115, USA

2 Fogarty International Center, National Institute of Health,
Bethesda, MD 20892, USA

joel.c.miller.research@gmail.com
3 Theoretical Division, Los Alamos National Laboratory, Los Alamos,

NM 87545, USA
hagberg@lanl.gov

Abstract. We present an efficient algorithm to generate random graphs
with a given sequence of expected degrees. Existing algorithms run in
O(N2) time where N is the number of nodes. We prove that our algo-
rithm runs in O(N +M) expected time where M is the expected number
of edges. If the expected degrees are chosen from a distribution with finite
mean, this is O(N) as N → ∞.

1 Introduction

Random graph models are regularly used for studying random processes on net-
works. Such processes include rumor spreading or the spread of epidemics on
social networks [15,13,9], and web searchers seeking information on the World
Wide Web [4,14]. Capturing the degree distribution is one of the most important
goals in creating a model and some well-understood graph models have been de-
veloped where the degree distribution is controlled. In this paper we focus on
the model of Chung and Lu [5] which generates a random graph with a given
sequence of expected degrees.

Because application networks are often very large, efficient random graph
generation is important to evaluate the models and processes. Although many
theoretical results are known about the Chung-Lu model [2,12,5,6,7,8], the algo-
rithms used for generating such graphs are inefficient. In this paper we introduce
a new algorithm which generates Chung-Lu random graphs with expected run-
time that is O(N + M) where N the number of nodes and M is the expected
number of edges. For sequences with finite average degree M = O(N) and the
expected runtime is O(N), a significant improvement over previous algorithms
that require O(N2) runtime.

We begin by showing a fast algorithm for generating Erdős–Rényi graphs. This
approach is by itself not a significant result (indeed closely related algorithms
exist already [1]), but it serves as an example to motivate our algorithm for
generating Chung-Lu graphs which uses an additional rejection sampling step.

A. Frieze, P. Horn, and P. Pra�lat (Eds.): WAW 2011, LNCS 6732, pp. 115–126, 2011.
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Once we introduce the main algorithm, we prove that it generates Chung-Lu
graphs and that its expected runtime is O(N+M). We conclude with a discussion
of other applications and implications of this algorithm.

1.1 Model Description

The basic random graph model is the Erdős–Rényi graph G(N, p) with N nodes
0, 1, . . . , N −1. Each pair of nodes has an edge with probability p, and edges be-
tween a pair of nodes are assigned independently of one another. The expected
degree of a node is κ = p(N − 1). Typically we consider graphs for which κ
is O(1) as N → ∞, so p is small and the graph is sparse. Under such condi-
tions, the expected degree approaches pN as N → ∞. The obvious algorithm to
generate G(N, p) graphs requires considering each of the O(N2) pairs of nodes
independently and assigning an edge with probability p. However, it has been
shown that the runtime can be reduced to O(N + M) where N is the number
of nodes and M the number of edges [1].

The degree distribution resulting from the Erdős–Rényi model is binomial,
and in the large N , constant pN limit it approaches a Poisson distribution with
mean pN . Many real world graphs have much more pronounced heterogeneity
in degrees [16,2]. This has led to models which attempt to incorporate more
heterogeneity. Some of these models retain independence of edges but allow
nodes to have different expected degrees.

Of these models the most prominent was introduced by Chung and Lu [6]. In
the Chung-Lu model each node u is assigned a weight wu which we can assume
is chosen from a distribution with density ρ. We do not need to restrict wu to be
an integer. We define w =

∑
u wu/N to be the average weight. Two nodes u and

v with weights wu and wv are then joined by an edge with probability pu,v =
wuwv/Nw. Looking at all nodes v �= u, we anticipate that the expected degree of
u is

∑
v �=u wuwv/Nw = wu − w2

u/Nw. In a large graph this typically converges
to wu. So the weight wu represents the expected degree of node u in a large
graph. A number of theoretical results are known about this model [2,12,6,8,7].
For a Chung-Lu model graph, we will use M = Nw/2 as our estimate for the
expected number of edges. This is an upper bound, but usually this is only a
small effect.

We note that it is possible that wuwv/Nw > 1. In this case, we set pu,v = 1,
and the expected degree of u will be less than wu − w2

u/Nw. Other approaches
have been introduced to produce related graphs that avoid this difficulty. For
example, we could define pu,v = 1 − exp(−wuwv/Nw) or pu,v = wuwv/(Nw +
wuwv) [17,3,12]. Typically as N grows the difference between these approaches
is negligible because wuwv/N → 0 and thus the leading order terms for pu,v

are the same.1 We will focus our attention on the Chung-Lu graphs, though our
algorithm can be easily translated to the others. A fast algorithm to generate
approximate Chung-Lu graphs in the bipartite case appears in Ref. [10].
1 In distributions for which the average squared weight is infinite, but the average

weight is finite, wuwv/N may not tend to zero for the highest weight nodes, in
which case these models differ.
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2 Erdős–Rényi Case

We begin by describing our algorithm in a simpler context. The Erdős–Rényi
network is a special case of Chung-Lu networks in which all nodes have the same
weight w and therefore pu,v = p = w/N for all pairs u and v. We first describe
the obvious inefficient O(N2) algorithm, and show how it can be naturally sped
up to an algorithm that is O(N + M).

Let the the nodes be numbered 0, 1, . . . , N − 1 and begin by setting u = 0.
Then for each v = 1, 2, . . . , N − 1 we generate a random number r. If r < p,
then we place an edge from u to v. Once all possible choices for v have been
considered, we set u = 1, and then consider each v = 2, 3, . . . , N − 1. We
continue this process until all possible choices for u have been considered. This
algorithm is O(N2) because it considers each pair of nodes separately.

This algorithm is slow because considerable effort is spent on node pairs which
never form edges. The algorithm can be sped up by skipping these pairs. Re-
turning to the first pass through the algorithm described above with u = 0, let
v1 be the first neighbor with which u forms an edge. The value of v1 is u + 1 + δ
where δ is the number of pairs considered that do not form edges before the first
successful edge formation. Similarly, the second neighbor v2 is v1 +1+ δ where δ
is the new number of pairs that do not form edges. The probability of a partic-
ular value of δ is (1 − p)δp (in fact, δ is geometrically distributed). Thus, rather
than considering every node after u as above, we can find the next neighbor in
a single step by choosing r uniformly in (0, 1) and setting δ = �ln r/ ln(1 − p)�,
taking δ = 0 if p = 1. The full procedure for p < 1 is presented in Algorithm 1.

Algorithm 1. G(N, p) Graph
Input: number of nodes N , and probability 0 < p < 1
Output: G(N, p) graph G(V, E) with V = {0, . . . , N − 1}

E ← ∅
for u = 0 to N − 2 do

v ← u + 1
while v < N do

choose r ∈ (0, 1) uniformly at random

v ← v +
⌊

log(r)
log(1−p)

⌋
if v < N then

E ← E ∪ {u, v}
v ← v + 1

Theorem 1. Algorithm 1 runs in O(N + M) time where M is the number of
edges in the output graph and N the number of nodes.

Proof. The proof of this theorem is relatively straightforward. We simply count
the number of times that each loop executes.
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The outer loop is executed N−1 times. To calculate the number of executions
of the inner loop we separate those “successful” iterations where the new v is at
most N−1 from those “unsuccessful” iterations with v ≥ N . In each pass through
the outer loop, the inner loop executes once unsuccessfully. The total number of
successful executions of the inner loop is exactly the number of edges that are
generated which is O(M). Combining the total number of passes through the
outer loop with the number of successful and unsuccessful passes through the
inner loop the runtime is O(M + N). ��
This runtime is exact in the sense that the time taken to generate a given graph
is O(M + N) where M is the actual number of edges in the graph produced: in
a worse-case scenario the bound above remains correct, but M is large. For the
Chung-Lu graphs our results are less precise: we bound the expected runtime in
terms of the expected number of edges.

An algorithm similar to Algorithm 1 is described in [1] which avoids the
unsuccessful iterations of the inner loop. However, our approach lends itself to
the generalization we describe below.

3 Chung-Lu Case

Having set the framework with the Erdős–Rényi case we now describe an algo-
rithm to create Chung-Lu networks where not all nodes have the same weight.
As before, we want to skip as many nodes as possible, but this is more difficult
because the probabilities that any pair of nodes have an edge are not fixed. To
simplify this, we assume that we have a list W of the weights in the network,
and that this list is sorted in descending order.

The obvious O(N2) algorithm considers each pair u and v and assigns an
edge with probability pu,v = wuwv/Nw. We present a slightly different O(N2)
algorithm, which is easily modified the same way we altered the Erdős–Rényi
algorithm to create an O(M + N) algorithm.

Starting with u = 0, we consider every v = 1, 2, . . . , N − 1 in turn. As v
increases, pu,v decreases monotonically, so we can avoid recalculating p for each
v by setting p = pu,u+1 = wuwu+1/Nw initially and discarding each v with
probability 1 − p. When we arrive at the first node v1 which is not discarded,
we call v1 a potential neighbor. We have selected v1 with probability p, but the
probability of an edge between v1 and u is actually q ≤ p. We calculate q = pu,v1 ,
and then assign an edge with probability q/p. We then set p = q and continue
on, discarding nodes with probability 1− p until we have considered all possible
nodes. We then increase u by 1 and repeat. This algorithm is O(N2).

In the algorithm just described, p is fixed at each step until a potential neigh-
bor is identified. The same method used in the Erdős–Rényi approach can quickly
identify the potential neighbors vi without considering each intermediate v in
turn. Starting with u = 0 and using p = pu,u+1, we choose a random number
r uniformly in (0, 1) and find the first potential neighbor v1 = u + 1 + δ where
δ = �ln r/ ln(1 − p)�. If p = 1, we take δ = 0. Once v1 is identified, we assign an
edge between u and v1 with probability q/p where q = pu,v1 . We then set p = q
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and continue, jumping immediately to the next potential neighbor v2, possibly
placing an edge. Again resetting p, we continue until there are no more nodes
to consider. We then increase u by 1 and repeat. Ultimately, u takes all possible
values, and the set of edges is complete. Note that for given u the value of p
decreases monotonically, so the expected value of δ increases monotonically.

The Chung-Lu graph generating procedure is presented in Algorithm 2.

Algorithm 2. Chung-Lu Graph
Input: list of N weights, W = w0, . . . , wN−1, sorted in decreasing order
Output: Chung-Lu graph G(V, E) with V = {0, . . . , N − 1}

E ← ∅
S ←∑

u wu

for u = 0 to N − 2 do
v ← u + 1
p ← min(wuwv/S, 1)
while v < N and p > 0 do

if p �= 1 then
choose r ∈ (0, 1) uniformly at random

v ← v +
⌊

log(r)
log(1−p)

⌋
if v < N then

q ← min(wuwv/S, 1)
choose r ∈ (0, 1) uniformly at random
if r < q/p then

E ← E ∪ {u, v}
p ← q
v ← v + 1

Proposition 1. Algorithm 2 generates Chung-Lu graphs.

Proof. We need to prove that an edge is assigned from node u to node v with
probability pu,v that is independent of other edges.

Consider a given u and v > u. Let p̂ represent the value of p when the inner
loop reaches (or passes) v while assigning edges for u. This is the probability
with which v is selected as a potential neighbor. The value of p̂ is influenced by
other edges which have been assigned to u. Our goal is to show that regardless
of the value of p̂, an edge is placed between u and v with probability pu,v.

Because of the ordering of the weights we know that p̂ ≥ pu,v. If v is selected
as a potential neighbor, then with probability q = pu,v/p̂ ≤ 1, v will become an
actual neighbor of u. Thus the probability that an edge exists between u and v
is p̂q = pu,v. This is independent of p̂, so it is independent of any previous edges
that have been assigned. By similar argument it has no influence on what later
edges will be assigned. ��

3.1 Efficiency

For the Chung-Lu algorithm it is more difficult to bound the number of steps
because of the rejection sampling: in some cases a potential neighbor vi is
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identified, but upon closer inspection no edge is placed to vi. We refer to these
as excess potential neighbors. Let m be the number of actual neighbors and l the
number of excess potential neighbors generated in a particular realization. Let
L be the expected value of l. We define M = Nw/2, and because each node’s
expected degree is at most its weight we know that the expected value of m
is at most M . For many relevant weight distributions, the expected value of m
approaches M as N → ∞. L is more difficult to bound. We will prove that
L = O(N + M), and so the algorithm executes in O(N + M) expected time.

Theorem 2. Algorithm 2 executes in O(N + M) expected time where M =
Nw/2 and N is the number of nodes.

Proof. We follow a similar argument to the Erdős–Rényi case, and conclude
that the runtime is O(N +m+ l) where m is the actual number of edges created
and l the number of excess potential neighbors. We will show that the expected
value of l is L = O(N + M), and since the expectation of m is at most M , the
expected runtime is O(N + M). However, the calculation of L is considerably
more technical, and is the focus of our proof. We will bound the probability that
each node is selected as an excess neighbor of another node. Summing this gives
a bound on L.

Consider a given u and v > u. Let ρu,v(p̂) be the a priori probability that the
value of p is p̂ when the inner loop reaches (or passes) v while assigning edges
for u. Define Pu,v =

∑
p̂ ρu,v(p̂)p̂, the a priori probability that v will be chosen

as a potential neighbor of u. The probability that v will be selected as an excess
potential neighbor is Pu,v − pu,v. We seek to calculate Pu,v.

We know that Pu,u+1 = pu,u+1. We look to find Pu,v+1 − Pu,v for all v. This
requires calculating the change in ρu,v(p̂) from v to v + 1. If v is not chosen as
a potential neighbor, there is no change to p, but if v is chosen, then p changes
from p̂ to pu,v and so the change in p is pu,v − p̂. This occurs with probability
p. So the change in Pu,v is the expected change in p, which we define to be
ΔPu,v = Pu,v+1 − Pu,v. To make ΔPu,N−1 defined, it is convenient to set Pu,N

to be the value P would take for node N if the node list were extended by adding
an additional node with weight 0. Note that ΔPu,v ≤ 0. We have

ΔPu,v = Pu,v+1 − Pu,v ,

=
∑

p̂

ρu,v(p̂)p̂ (pu,v − p̂) ,

= Pu,vpu,v −
∑

p̂

ρu,v(p̂)p̂2 ,

≤ Pu,v (pu,v − Pu,v) , (1)

using Jensen’s inequality to say that the expectation of p2 is at least the square
of the expectation of p. Note that Pu,v decreases monotonically with v and that
Pu,v cannot be less than pu,v.
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We now define ζ(u) to be the number of excess potential neighbors node u is
expected to have,

ζ(u) =
N−1∑

v=u+1

Pu,v − pu,v . (2)

From our bound (1) for ΔPu,v, we can bound ζ(u) as

ζ(u) ≤
N−1∑

v=u+1

−ΔPu,v

Pu,v
.

By analogy with the integral − ∫ b

a φ′(x)/φ(x) dx, we anticipate that this sum-
mation behaves like a logarithm, and we use this to bound the sum. We use
the inequality for x > −1 that ln(1 + x) ≤ x, implying −x ≤ − ln(1 + x). For
simplicity, we extend the range to include x = −1 by allowing for infinity. Then

−ΔPu,v

Pu,v
≤ − ln

(
1 +

ΔPu,v

Pu,v

)
,

≤ − ln
Pu,v + ΔPu,v

Pu,v
,

≤ − ln
Pu,v+1

Pu,v
,

≤ ln Pu,v − ln Pu,v+1 .

So ζ(u) is bounded by a telescoping summation,

ζ(u) ≤ ln Pu,u+1 − ln Pu,N .

It is difficult to bound Pu,N away from zero. So instead we break the sum in
Eq. (2) into terms for which P can be easily bounded away from zero and those
for which it is more difficult. Set x to be the first node such that wx < 1, so
wx−1 ≥ 1. Assume for now u < x. We have

ζ(u) ≤
x−1∑

v=u+1

−ΔPu,v

Pu,v
+

N−1∑
v=x

Pu,v − pu,v .

The first summation is at most

ln Pu,u+1 − ln Pu,x = ln[Pu,u+1/Pu,x] .

We have

Pu,u+1 = pu,u+1 = min(wuwu+1/Nw, 1) ≤ wuwu+1/Nw ,

while
Pu,x ≥ min(wuwx−1/Nw, 1) ≥ wu/Nw .
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Thus Pu,u+1/Pu,x ≤ wu+1. The first summation is at most ln wu+1, which in
turn is at most ln wu.

The second summation can be bounded by observing that the expected num-
ber of excess potential neighbors in [x, N − 1] is at most the expected number
of potential neighbors in [x, N − 1]. Assuming that u has at least one potential
neighbor v ≥ x, the probability for any later node to be a potential neighbor is
at most wuwv/Nw < wu/Nw. There are N − 1 − x nodes in this region, which
is bounded by N , so u has at most 1 + Nwu/Nw expected further potential
neighbors in [x, N − 1]. This gives an upper bound on the second sum. So if
u < x, ζ(u) ≤ 1 + ln wu + wu/w.

If u ≥ x, then the approach used above for the second summation gives an
upper bound of ζ(u) ≤ 1 + wuN/Nw.

Both bounds for u < x and u ≥ x can be replaced by

ζ(u) ≤ 1 + wu +
wu

w
,

for any u. This is a significant overestimate, but will not weaken our final bound,
and we discuss it further in the next section. We sum ζ(u) over all nodes and get

L =
N−1∑
u=0

ζ(u) ,

≤
N−1∑
u=0

1 + wu +
wu

w
,

≤ N + Nw +
Nw

w
,

≤ 2M + 2N .

Therefore L = O(N + M), and we have that O(N + M + L) = O(N + M). So
the algorithm executes in O(N + M) expected time. ��

4 Examples

We demonstrate the runtime of Algorithm 2 using three different weight distri-
butions. The first has weights chosen uniformly in (1, 50), giving an average of
25.5. The second has all weights equal to 25. The third has weights chosen from
a power law distribution with exponent γ = −2.1, and every weight above 100
is set to 100, giving an average of about 4.7. We generate graphs on N nodes
where the weights are chosen from each of these distributions. In Fig. 1 we show
that the execution time is O(M + N). In contrast, the standard algorithm for
generating these scales like O(N2).

The proof of Theorem 2 shows that the total expected excess neighbors is L =
O(M + N). Reducing L reduces the runtime so we now look at L more closely.
The bound used for L is fairly crude. It was derived by replacing ln wu+1 with wu

and assuming that every node would have at least one neighbor of weight w < 1.
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Fig. 1. Performance of Algorithm 2 showing linear scaling in the number of nodes and
edges N +m. The 3 curves are data for weights chosen from the following distributions
(red circles) uniform on (1,50); (green triangles) constant w = 25; and (blue squares)
power law with exponent γ = −2.1. (a) Running time vs number of nodes and edges.
(b) Estimate of the coefficient.

Analyzing the algorithm closer, we see that to have larger L, there is a competition:
a node is more likely to be an excess potential neighbor if the weights before it are
large, but its weight is small. However, such a node reduces the probability that
nodes after it become excess potential neighbors. Thus heterogeneity in weights
plays a role in determining the number of excess potential neighbors.

To investigate this further, we show the total number of excess potential
neighbors generated by the algorithm in Fig. 2. In Fig. 2(a) we consider the
same three distributions as before. We find that L/M , the number of excess
potential neighbors created for each edge is largely independent of the number
of nodes, and that if all nodes have the same weight L = 0. Although we have
proven that L ≤ 2M + 2N , the numerical experiments suggest that stronger
bounds are possible and depend on the heterogeneity in weights.

In Fig. 2(b) we show the interplay of heterogeneity and average weight more
closely. We considered two classes of distributions. In one, w is chosen uniformly
in (w−5, w+5), and in the other w is chosen uniformly in (1, 2w−1). We see that
the number of excess potential neighbors generated per node L/N decreases in
the first case and increases slowly in the second case. In both cases M increas-
eslinearly with w, so L/M decreases to zero. The excess potential neighbors
become a negligible contribution to runtime as graph size increases.
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Fig. 2. Fraction of “excess potential neighbors” l/m generated by Algorithm 2. (a)
The fraction l/m vs total number of edges in the graph m for weights from the three
distributions of Fig. 1. (b) The fraction l/m for uniformly distributed sequences with
fixed variance: w chosen uniformly from (w − 5, w + 5) (blue circles), and with fixed
coefficient of variance std(W )/w: w chosen uniformly from (1, 2w−1) (green triangles).

5 Discussion

We have developed an algorithm for creating Chung-Lu random graphs in O(M+
N) expected runtime. Our algorithm may be generalized to other contexts. In
particular, it may also be used to generate the random graphs introduced in
Refs. [17,3]. This algorithm requires first that there is a single parameter w
assigned to each node which determines the probability that any two nodes
share an edge, and second that the nodes may be ordered in such a way that if
u appears before v1 which appears before v2, then the probability that u has an
edge with v1 is at least the probability that u has an edge with v2. It is possible to
generate many other graph models in this manner, including models which have
assortative mixing (nodes with similar weights are preferentially connected).

Some graph models, such as the configuration model, do not assign edges
independently, and so have somewhat different generation algorithms. In the
configuration model each node is assigned a degree a priori, and then nodes
are wired together subject to the assigned degrees as a constraint. An efficient
algorithm to do this begins by placing nodes into a list once for each edge the
node will have. The list is then shuffled, and adjacent nodes are joined by an
edge. Consequently edges may be repeated, nodes may have edges to themselves,
and if the sum of degrees is odd, a node is left unpaired. Typically the number
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of such edges is small compared to the number of nodes, so these are simply
discarded. It is possible to avoid these cases, but even the most efficient known
algorithms that produce true graphs with the imposed degree distribution are
substantially slower than O(N + M) [11].
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