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Preface

Artificial Life, unlike artifical intelligence, had humble beginnings. In the case
of the latter, when the word itself was born, the first breathtaking results were
already out, such as The Logic Theorist, a computer program developed by Allen
Newell, Herbert Simon and Cliff Shaw in 1955–56. In artifical life, for a long while,
amibition seems to have dominated over the results, and this was certainly true
for the first, formative years. It was a bit unclear what exactly Artificial Life is. As
not uncommon in science, the first definition was attempted in the negative form,
just like when psychology (the study of the mental) was first defined as“anything
not physics” (meaning, not natural science) in the nineteenth century. A tempt-
ing early definion of Artificial Life was one that distinguished it from theoretical
and mathematical biology, modeling, evolution theory, and all the rest of what
consituted “an old kind of science” about life. This was not without grounds,
perhaps, and the parallel with artificial intelligence comes up again. Artificial
intelligence was conceptually based on “machine functionalism,” the philosophi-
cal idea that all operations, such as the mental operations of humans, are to be
captured as “mere functions,” or, in other words, as independent of their actual
physical realizations. Functionalism has put computers and algorithms in the fo-
cus of interest in all dealings with human intelligence, and artificial intelligence
was a computerized approach to the mind that was designed to capture human
mental operations in the functional sense. Now it was simply the case that the
functionalism of life was not yet born, and Artificial Life looked like the candi-
date that was needed for exactly that—to discover how computers can be used to
uncover the secrets of life. There were cellular automata, that John von Neumann
discovered back around 1950, that are capable of self-reproduction. Perhaps life
was just a step away. This and a new fascination with functionalism in Artificial
Life put computer scientists (who could technically master cellular automata
and computer math) into a central position—in Artificial Life as it could be.

But Artificial Life became different. Incidentally, the slogan “life as it could
be” was coined as a motto for Artificial Life, but now the same conditionals
apply to Artificial Life itself. The reason is that functionalism turned out to be
just one part of the story.

There is a well-known and much used (maybe over-used) phrase in biology,
called “Dobzhansky’s dictum,” which says that “nothing in biology makes sense
except in the light of evolution.”Evolution is, as rightly captured in the dictum,
central to the understanding of all things alive, and hence it is, and this had to be
discovered, central to the studies of Artificial Life as well. And soon it also turned
out that evolution cannot be readily reduced to algorithmic problems, or and
least not in that pure, detached sense as it was attempted in functionalism. Evo-
lution is complex in a sense recently acknowledged in the sciences of complexity:
there is no single principle, no simple set of rules, and no transparency. Instead,
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evolution is a combination of many heterogeneous, and sometimes contingent fac-
tors, many of which have to do with the complex ways of existence of organisms:
their body, their interaction, their development, their geo-spatial relations, their
temporal history, and so on. This brought biology and biologists back into the
equation, and Artificial Life has greatly benefited from that. Evo-devo (the in-
terplay between evolutionary and developmental biology), evolutionary robotics,
or systems biology are examples of fields where mathematical and algorithmic
thinking combined with “wet” reality started to produce new and fascinating
results. (Those who kept an eye on cognitive science and artificial intelligence
found that over all those years a similar process has taken place there as well.
Embodiment, or situated physical realization, has permeated and changed these
fields to the same extent, or even more, as it did Artificial Life).

Today, as a result of these processes, Artificial Life is a prolific field that com-
bines the best of computer science with the best of theoretical biology, math-
ematical modeling, and simulation. One way to express this is to say “Darwin
meets von Neumann” at last—where “real” biology and “pure” function are no
longer seen as contradicting, or even complementary. Rather, they permeate and
fertilize each other in a number of fascinating ways.

ECAL 2009 was the 10th Europan Conference of Artificial Life, which means
20 years of history. It was an occasion to celebrate the 20 years of develop-
ment of the field and also the new symbiosis referred to in the title. Famously,
2009 was also “Darwin year,” celebrating his 200th birthday and the 150 years
of the Origin of Species. Thus it was highly appropriate to dedicate the meet-
ing to Darwin—and von Neumann together. Five keynote lectures were deliv-
ered by eminent invited speakers, in the order of appearance they were: Peter
Hammerstein (Humboldt University, Berlin), Hod Lipson (Cornell), Nick Barton
(FRS, Edinburgh), Richard Watson (Southampton) and Eva Jablonka (Tel-Aviv
University)—their choice reflected the spirit of convergence alluded to above.

The conference featured 161 submissions, out of which 54 were accepted as
talks and 87 as posters (making up a total of 141 presentations). Adopting the
recent practice of many science meetings, submissions could be based either on
full papers or extended abstracts. The meeting was organized in a single track
over three days, with parallel (whole-day) poster sections, to give best visibility to
everyone’s work. We decided to publish all papers of the accepted presentations,
not making any difference between posters and talks. This resulted from different
factors: many excellent submissions had to be put into the poster section to keep
reasonable time limits for the talks, and often this included second or third papers
of some of the key speakers. Poster or talk was therefore not necessarily a quality
issue. But also, we decided to publish all poster papers because we wanted to
show the heterogeneity and the full spectrum of activities in the field, in order to
provide an authentic overview. The result is this volume in 2 parts, containing
116 full papers.

The conference was sponsored by the Hungarian Academy of Science in dif-
ferent ways, one of them the special rates we enjoyed when using the wonderful
historical building of the Academy in the very center of Budapest, just across
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the castle and the Chain Bridge. It is a building with a unique historical atmo-
sphere and one that has seen many major scientific events. The conference talks
were held in the Great Lecture Hall, which added to the impression that Artificial
Life—and ECAL—are coming of age. The other sponsor was Aitia International,
Inc., whose support is gratefully acknowledged. Aitia is the maker of MEME,
or Model Exploration ModulE, a platform for DoE (design of experiments) and
parameter sweeping, running on a cloud (https://modelexploration.aitia.ai/).

The publication process experienced several unexpected difficulties and de-
lays. The proceedings could never have been published without a final push by
Mark Jelasity, of Szeged University, a member of the Local Organizing Commit-
tee. It was his support and his offer for a hands-on contribution and equally his
expertise of LATEX and prior experience with Springer LNCS publications that
made the essential difference that helped cross the line. Mark was offered but
declined to be an Editor, lacking a scientific contribution to this conference and
bearing a responsibility for the selection process, and this is a decision we had
to respect. Nevertheless, here is a “big thank you,” Mark. Several other people
provided important help in the production of the volume, of whom Balazs Balint
(Collegium Budapest) and Chrisantha Fernando (Sussex) need special mention.
We thank the TenSi Congress Ltd. for the seamless technical organization of the
meeting. In the evaluation phase, important help was given by several members
of the Program Committee and also by additional reviewers, listed separately,
whose contribution is highly appreciated. The conference and the proceedings
have been the work of several people, and we thank all of them for making it hap-
pen. Finally, we thank Anna Kramer of Springer for her support and patience.

February 2011 George Kampis
István Karsai

Eörs Szathmáry (Editors)
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Francesco Biscani

To Grip, or Not to Grip: Evolving Coordination in Autonomous
Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Christos Ampatzis, Francisco C. Santos, Vito Trianni, and Elio Tuci

Development of Abstract Categories in Embodied Agents . . . . . . . . . . . . . 213
Giuseppe Morlino, Andrea Sterbini, and Stefano Nolfi

For Corvids Together Is Better: A Model of Cooperation in Evolutionary
Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Michela Ponticorvo, Orazio Miglino, and Onofrio Gigliotta

Protocells and Prebiotic Chemistry

Dynamical Systems Analysis of a Protocell Lipid Compartment . . . . . . . . 230
Ben Shirt-Ediss

The Role of the Spatial Boundary in Autopoiesis . . . . . . . . . . . . . . . . . . . . . 240
Nathaniel Virgo, Matthew D. Egbert, and Tom Froese

Chemo-ethology of an Adaptive Protocell: Sensorless Sensitivity to
Implicit Viability Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Matthew D. Egbert, Ezequiel A. Di Paolo, and Xabier E. Barandiaran

On the Transition from Prebiotic to Proto-biological Membranes:
From ‘Self-assembly’ to ‘Self-production’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Gabriel Piedrafita, Fabio Mavelli, Federico Morán, and
Kepa Ruiz-Mirazo

SimSoup: Artificial Chemistry Meets Pauling . . . . . . . . . . . . . . . . . . . . . . . . 265
Chris Gordon-Smith

Elongation Control in an Algorithmic Chemistry . . . . . . . . . . . . . . . . . . . . . 273
Thomas Meyer, Lidia Yamamoto, Wolfgang Banzhaf, and
Christian Tschudin



XIV Table of Contents – Part I

Systems Biology, Artificial Chemistry and
Neuroscience

Are Cells Really Operating at the Edge of Chaos?: A Case Study of
Two Real-Life Regulatory Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Christian Darabos, Mario Giacobini, Marco Tomassini,
Paolo Provero, and Ferdinando Di Cunto

Cotranslational Protein Folding with L-Systems . . . . . . . . . . . . . . . . . . . . . . 289
Gemma B. Danks, Susan Stepney, and Leo S.D. Caves

Molecular Microprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Simon Hickinbotham, Edward Clark, Susan Stepney, Tim Clarke,
Adam Nellis, Mungo Pay, and Peter Young

Identifying Molecular Organic Codes in Reaction Networks . . . . . . . . . . . . 305
Dennis Görlich and Peter Dittrich

An Open-Ended Computational Evolution Strategy for Evolving
Parsimonious Solutions to Human Genetics Problems . . . . . . . . . . . . . . . . . 313

Casey S. Greene, Douglas P. Hill, and Jason H. Moore

Gene Regulatory Network Properties Linked to Gene Expression
Dynamics in Spatially Extended Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Costas Bouyioukos and Jan T. Kim

Adding Vertical Meaning to Phylogenetic Trees by Artificial
Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Francesco Cerutti, Luigi Bertolotti, Tony L. Goldberg, and
Mario Giacobini

Transient Perturbations on Scale-Free Boolean Networks with Topology
Driven Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Christian Darabos, Mario Giacobini, and Marco Tomassini

Agent-Based Model of Dengue Disease Transmission by Aedes aegypti
Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Carlos Isidoro, Nuno Fachada, Fábio Barata, and Agostinho Rosa
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Abstract. Inspired by the basic processes of molecular biology, our pre-
vious studies resulted in defining self-organizing mechanisms made up of
simple processes. The goal of our paper is to introduce a configurable
molecule able to implement these mechanisms as well as their under-
lying processes. The hardware description of the molecule leads to the
simulation of an arithmetic and logic unit designed as a one-dimensional
organism dedicated to bit slice processors.

1 Introduction

Borrowing the structural principles from living organisms, we have already shown
how to grow cellular systems thanks to an algorithm for cellular division [2].
These cellular systems are endowed with self-organizing properties like configu-
ration, cicatrization, and regeneration.

In a previous work [3], the configuration mechanisms (structural and functional
growth), the cicatrization mechanism (cellular self-repair), and the regeneration
mechanism (organismic self-repair) were already devised as the result of simple
processes like growth, load, repair, reset, and kill. The goal of this paper is to de-
vise a configurable molecule able to perform these self-organizing mechanisms and
their underlying processes in order to design biologically inspired circuits.

Starting with the detailed architecture of the configurable molecule, Section 2
will point out how bit slice processors represent a perfect example of such bio-
logically inspired circuits. We introduce then digital simulations, based on the
hardware description of the configurable molecule (Section 3), in order to perform
the self-organizing mechanisms on a minimal slice. The simulations of Section 4
apply these mechanisms in the building and maintaining of an arithmetic and
logic unit made up of three slices. A brief conclusion (Section 5) summarizes our
paper and opens new research avenues.

2 Configurable Molecule

Our biologically inspired circuits are designed as two-dimensional arrays of con-
figurable molecules. Each molecule of these arrays is made up of a configuration
layer and an application layer.

G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part I, LNCS 5777, pp. 1–9, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Detailed architecture of the configurable molecule. (a) Configuration layer. (b)
Application layer.

The configuration layer, which implements the self-organizing mechanisms
and their constituting processes [4], results from the interconnection of the ten
following resources (Fig. 1a): (1) an input multiplexer DIMUX, selecting one
out of the four northward NDI, eastward EDI, southward SDI or westward
WDI configuration input data, (2) a 2N-level stack organized as N genotypic
registers G1 to GN (for mobile configuration data), and N phenotypic registers
P1 to PN (for fixed configuration data), (3) an output buffer DOBUF producing
the configuration output data DO, (4) an encoder ENC for the northward NSI,
eastward ESI, southward SSI, and westward WSI input signals, (5) a decoder
DEC defining the mode and the type of the molecule, (6) a register I for the
memorization of the input selection, (7) a register S for the transmission of
the signals, (8) a register M for the molecular modes, (9) a register T for the
molecular types, and (10) a generator GEN producing the northward NSO,
eastward ESO, southward SSO, and westward WSO output signals.

The application layer, which implements the logic design of the application un-
der development as well as its routing connections between neighboring and dis-
tant molecules, results from the interconnection of the five following resources
(Fig. 1b): (1) an input multiplexer AIMUX, selecting four inputs out of the four
northwardNAI, eastwardEAI, southwardSAI, westwardWAI application data,
and the routing data RO, (2) a 16-bit look-up table LUT, (3) a D-type flip-flop
DFF for the realization of sequential circuits, (4) an output multiplexer AOMUX
selecting the combinational or the sequential data as application output AO, and
(5) an output multiplexer ROMUX selecting the five outputs NRO, ERO, SRO,
WRO, and RO out of the four northward NRI, eastward ERI, southward SRI,
westward WRI routing input data, and the application output data AO.
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(a)
(b)

Fig. 2. Bit slice processor. (a) Minimal cell made up of six molecules. (b) Minimal
organism made up of two cells.

(g) (h) (i)(f) (j) (k) (l) (m) (n)

(a) (b) (c) (d) (e)

Fig. 3. Molecular modes. (a) Living. (b) Spare. (c) Faulty. (d) Repair. (e) Dead. Molec-
ular types. (f) Internal. (g) Top. (h) Top-left. (i) Left. (j) Bottom-left. (k) Bottom. (l)
Bottom-right. (m) Right. (n) Top-right.

Bit slice processors represent a perfect example of application for biologi-
cally inspired circuits. They are made up of identical slices and can be seen as
multicellular organisms made up of identical cells. Each slice computes at least
one data bit and corresponds to a cell made up of configurable molecules. The
minimal cell consists of two rows of three molecules with two columns of living
molecules dedicated to the slice specifications to the left and one column of spare
molecules to the right (Fig. 2a). The minimal multicellular organism is made up
of two identical cells and represents a bit slice processor computing at least two
data bits (Fig. 2b). The corresponding molecular modes and molecular types are
shown in Fig. 3.

3 Self-organizing Mechanisms

3.1 Configuration Test

Performed on a given array of molecules, the purpose of the configuration test
mechanism is to kill all the columns of molecules having at least a faulty one
among them. A molecule is faulty when the shift operation performed by its con-
figuration registers, the genotypic registers G1 to GN as well as the phenotypic
registers P1 to PN (Fig. 1a), presents an incorrect behavior. The configuration
test mechanism is made up of a growth process followed by a kill process for
each detected error and finally a reset process.

Executed using growth signals and according to a predefined test configuration
string, the growth process starts the building of tree shaped datapaths all over the
array until a faulty molecule is detected (Fig. 4a-b). The building of the datapaths
resumes after the death of the second left column of molecules (Fig. 4e-g).

As soon as a malfunction of its configuration registers occurs, the molecule
enters the dead mode and sends kill signals northward and southward in order to
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 4. Configuration test mechanism. (a-b,e-g) Growth process. (c-d) Kill process.
(h-k) Reset process.

trigger the death of the whole column of molecules. Fig. 4c-d illustrates the kill
process involved in the configuration test mechanism by the incorrect behavior
of the second lower left molecule.

At the end of the growth process, all the molecules of any column having at least
a faulty one are dead. Performed on the array resulting from the malfunction of the
second lower left molecule, the reset process starts from the lower left molecule and
propagates reset signals eastward and northward in order to destroy the datapaths
builded among the healthy molecules (Fig. 4h-k). This tissue, comprising now one
column of dead molecules, is ready for being configured.

3.2 Structural Configuration

The goal of the structural configuration mechanism is to define the boundaries
of the cell as well as the living mode or spare mode of its constituting molecules.
This mechanism is made up of a structural growth process followed by a load
process.

The growth process starts when an external growth signal is applied to the
lower left molecule of the cell. This molecule selects the eastward data input
(Fig. 5a) and according to the structural configuration data or structural genome,
each molecule of the cell generates then successively an internal growth signal
and selects an input in order to create a datapath among the molecules of the cell
(Fig. 5a-f). When the connection path between the molecules closes (Fig. 5g),
the lower left molecule delivers a close signal to the nearest left neighbor cell.
The structural configuration data is now moving around the datapath and ready
to be transmitted to neighboring cells.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 5. Structural configuration mechanism. (a-f) Growth process. (g-j) Load process.
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The load process is triggered by the close signal applied to the lower right
molecule of the cell. A load signal propagates then westward and northward
through the cell (Fig. 5g-j) and each of its molecules acquire a molecular mode
and a molecular type (Fig. 3). We finally obtain an homogeneous array of
molecules defining both the boundaries of the cell and the position of its liv-
ing mode and spare mode molecules (Fig. 5j). This array is ready for being
configured by the functional configuration data.

3.3 Functional Configuration

The goal of the functional configuration mechanism is to store in the homo-
geneous array, which already contains structural data (Fig. 5j), the functional
data needed by the specifications of the current application. This mechanism
is a functional growth process, performed only on the molecules in the living
mode while the molecules in the spare mode are simply bypassed. It starts with
an external growth signal applied to the lower left living molecule. According
to the functional configuration data or functional genome, the living molecules
then successively generate an internal growth signal, select an input, and create
a path among the living molecules of the cell (Fig. 6a-e). The functional config-
uration data is now moving around the datapath and ready to be transmitted
to neighboring cells.

(a) (b) (c) (d) (e)

Fig. 6. Functional configuration mechanism. (a-e) Growth process.

3.4 Control Test

In order to correct deterioration that could affect the mobile functional configu-
ration data, the control test mechanism is made up of a reset process followed by
a functional growth process. This mechanism is performed when the data moving
around the cell are different of the ones moving around its western and southern
neighbors. The comparison is realized by the lower left molecule of the cell.

When a difference occur, the lower left molecule starts the reset process and
propagates reset signals eastward and northward in order to destroy the datapath
build among the healthy molecules of the array. Fig. 7a-c displays the reset
process applied to previously configured array.

Performed according to the functional configuration data corresponding to the
specifications of the current application, the growth process rebuilds the datapath
among the living molecules of the cell. This process starting from the lower left
molecule is shown in Fig. 7d-h. It renews the mobile data moving around the
cell as well as the fixed data of its molecules.
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(a) (b) (c) (d) (e) (f)

(g) (h)

Fig. 7. Control test mechanism. (a-c) Reset process. (d-h) Growth process.

3.5 Processing Test

The processing test mechanisms are introduced in order to repair a cell having
molecules that present an incorrect behavior at the functional application level.
Depending on the number of faulty molecules in a same row between two spare
columns, the processing test mechanism results respectively in a cicatrization
mechanism or in a regeneration mechanism.

In order to introduce error detection at the application layer level, the archi-
tecture of this level has to be doubled. The detection is then made by comparing
the application data AO1 and AO2 of the their two output multiplexers AOMUX
(Fig. 1b).

Starting with the normal behavior of Fig. 6e, we suppose that the upper left
molecule becomes suddenly faulty and triggers a cicatrization mechanism. This
mechanism is made up of a repair process involving eastward propagating repair
signals (Fig. 8a-c) followed by a reset process, starting from the upper right
molecule, performed with westward and southward propagating internal reset
signals (Fig. 8d-f). This array, comprising now one molecule in the faulty mode
and two molecules in the repair mode, is ready for being reconfigured by the
functional configuration data. This implies a growth process bypassing the faulty
molecule (Fig. 8g-k).

Our cell comprises a single spare molecule per row and tolerates therefore
only one faulty molecule in each row. A second faulty molecule in the same
row will activate a regeneration mechanism and cause the death of the whole
cell. Starting with the normal behavior of the cicatrized cell (Fig. 8k), a new
molecule, the upper right one, detects an error. Being previously already in the

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 8. Cicatrization mechanism. (a-c) Repair process. (d-f) Reset process. (g-k)
Growth process.
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(a) (b) (c) (d)

Fig. 9. Regeneration mechanism. (a-d) Kill process.

repair mode, this molecule enters the lethal dead mode and triggers kill signals
which propagate northward, westward and southward (Fig. 9a-d). Finally, all
the molecules of the array are dead as well as the entire cell.

4 Arithmetic and Logic Unit Application

Even if the final goal is the self-organization of bit slice processors, we will use
a simplified application example in order to illustrate its basic mechanisms. The
circuit that perform arithmetic and logic operations on two 3-bit data A and
B can be considered as a one-dimensional artificial organism composed of three
identical cells. Each cell is made up of six application specific molecules (Fig. 10):
a C molecule computing the carry output, a G molecule computing the generate
carry signal, a P molecule computing the propagate carry signal, an R molecule
computing the result, an O molecule recovering the result performed by the
living organism, and a D molecule generating a deactivation signal in order to
bypass the cells of the neighboring spare organism to the right.

In order to build the multicellular organism of Fig. 11a, the configuration test
mechanism is performed on an array of five by six molecules and leads to an
entire column of dead molecules. The structural configuration mechanism and
the functional configuration mechanism are then applied at the cellular level.
Starting with the structural and functional configuration data of the basic cell,
these mechanisms generate successively the three identical cells of the minimal
organism. In this implementation, each individual cell of the organism presents
one column of dead molecules and one column of spare molecules.

The cicatrization mechanism (or cellular self-repair) results from the intro-
duction of the column of spare molecule (Fig. 11a), defined by the structural
configuration of the basic cell, and the detection of faulty molecules. Thanks to
this mechanism, the faulty molecule of the lower cell (Fig. 11b) is deactivated,

C

R

G

O

P

D

Ai

Ci S3 S1

Bi

M S2 S0

Ci+1

Oi

Fig. 10. Basic cell of the 3-bit data A and B arithmetic and logic unit
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(b)(a) (c)

Fig. 11. Arithmetic and logic unit. (a) One-dimensional organism made up of three
cells. (b) Graphical distortion resulting from the cicatrization mechanism applied to
the lower cell. (c) Scar resulting from the regeneration mechanism applied to the left
organism.

isolated from the network, and replaced by the nearest right molecule, which will
itself be replaced by the nearest right molecule, and so on until a spare molecule
is reached. The functional reconfiguration mechanism takes then place in order
to regenerate the organism. As shown in Fig. 11b, the regenerated organism
presents some graphical distortion.

Each individual cell of the organism having a single spare column (Fig. 11a),
this implementation allows at most one faulty molecule per row. When two of
them are detected in a given row, the regeneration mechanism (or organismic
self-repair) takes place and all the cells of the organism are considered faulty and
are deactivated. The functions of the faulty cells are thus shifted to the spare
cells to the right. Obviously, this process requires at least one spare organism
to the right. As shown in Fig. 11c, the repair of the faulty organism needs the
spare organism to the right and leaves a scar in the implementation.

5 Conclusion

This paper is a contribution to the embryonic project [1] which is dedicated to
the building of biologically inspired circuits in silicon. It supplies the detailed
architecture of a configurable molecule made up of a configurable layer and an
application layer.

Using the VHDL description language, we have realized the hardware imple-
mentation of the configuration layer and the application layer of the configurable
molecule. The hardware simulations of the minimal slice and of the arithmetic
and logic unit presented in the paper are performed on arrays of such molecules.

The configurable molecule, based on the VHDL descriptions of its layers, will
be implemented in the ubichip [5], a programmable circuit that draws inspiration
from the multi-cellular structure of complex biological organisms.
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Abstract. “Epigenetic Tracking” is an evo-devo method to generate
arbitrary 2d or 3d shapes; as such, it belongs to the field of “artificial
embryology”. The objective of this paper is to explore the implications
of the method for some relevant aspects of biology, namely junk DNA,
the “ontogeny recapitulates philogeny” theory and the process of ageing.
After presenting the latest experiments performed with 3d target shapes,
the mentioned aspects are investigated and the explanation provided by
Epigenetic Tracking is discussed.

1 Artificial Embryology and Epigenetic Tracking

The previous work in the field of artificial embryology falls into two broad cat-
egories: the grammatical approach, originated by Lindenmayer (Lindenmayer,
1968) and the cell chemistry approach, that draws inspiration from the early
work of Turing (Turing, 1952). Notable examples of grammatical embryoge-
nies are (Hornby and Pollack, 2002), (Cangelosi et al., 2003) and (Gruau et al.,
1996). Among cell chemistry embryogenies, we recall (Kauffman, 1969) and, more
recently, (Bongard and Pfeifer, 2001), (Miller and Banzhaf, 2003) and (Doursat,
2007). “Epigenetic Tracking” (E.T.) is the name of an embryogeny applied to
morphogenesis, i.e. the task of generating arbitrary 2d or 3d shapes (Fontana,
2008). In the present work, after reporting the results of the last experiments
performed with 3d shapes, we will explore the implications of E.T. for some
relevant aspects of biology: junk DNA, the “ontogeny recapitulates philogeny”
theory and the process of ageing.

2 Experiments

In this section we report the results of the latest experiments, conducted with
some 3d black-and-white target shapes (figure 1); all targets have a total num-
ber of cells ranging from 50.000 to 100.000, have been evolved with a Genome
composed of 200-300 instructions, in a number of generations around 20.000; to
our knowledge, no other method is able, by means of evo-devo techniques, to
generate target shapes with this size and variety. The time required to evolve
a shape grows linearly with the number of cells: as a result, any shape can be
considered within the reach of the method, that can therefore be proposed as a
possible solution to the problem of evo-devo morphogenesis. The remainder of
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Fig. 1. some development steps of the triceratops, the child, the Rufa bunny and anu-
bis; all shapes developed from single zygotes (with the exception of anubis, developed
from four zygotes)

this paper will be dedicated to investigating the method’s implications for key
topics such as junk DNA, the “ontogeny recapitulates philogeny” theory and the
process of ageing; junk DNA will be examined first.

3 Biological Implications

Junk DNA. In molecular biology, “junk DNA” is a collective label for the
portions of the DNA sequence of a genome for which no function has been iden-
tified. About 95% of the human genome has been designated as “junk”, including
most sequences within introns and most intergenic DNA. Some chromosomal re-
gions are composed of the now-defunct remains of ancient genes known as pseu-
dogenes (which were once functional copies of genes but have since lost their
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Fig. 2. Left: example of development in four steps steered by three instructions. Right:
the corresponding tree of CET values. Grey circles represent CET values that do not
match any instructions and instructions’ left parts that do not match any CET values
(junk elements); green circles represent CET values and instructions’ left parts that
match; brown squares represent instructions’right parts.

protein-coding ability) and as much as 25% of the human genome is recognis-
ably formed of retrotransposons. There are some hypotheses for how junk DNA
arose and why it persists in the genome, but none is conclusively established.

In E.T., at any given moment through the course of evolution, the set of all
CET values generated during an individual’s development (called “tree of CET
values”, abbreviated TCV) can be divided into i) CET values that activate an
instruction during development and ii) CET values that do not activate any
instruction during development. In the same way the individual’s Genome is
composed by i) instructions that become active during development and ii) in-
structions that do not become active during development. By analogy with real
genomes, elements in the two categories labelled with ii) can be defined as junk
CET values and junk instructions respectively. A schematic representation of
this distinction is given in figure 2, that on the left shows an example of develop-
ment in four steps and on the right shows the corresponding TCV and Genome
(grey circles represent junk elements). For ease of reference the set of CET val-
ues active during development will be called TCV-D (D for development), while
the set of CET values not active during development will be called TCV-I (I for
inactive); analogously, the set of instructions active during development will be
designated with GEN-D and the set of instructions not active during develop-
ment will be designated with GEN-I. We will argue that the presence of junk
in both the tree of CET values and the Genome is an inescapable phenomenon,
intimately linked to the functioning of the epigenetic tracking machine.

The variable CET, as we know, is structured as an array of N integers, where
N is the number of age steps. An alternative choice would be to use a scalar
CET value, along with a global counter, in the following way. Each time a pro-
liferation event takes place anywhere in the shape, the CET value assigned to
the first new driver cell is the value held by the global counter; subsequent
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values are determined adding one at each assignment and the global counter is
updated correspondingly, such that it always holds the first value not assigned
(being zero the zygote’s CET value). The major drawback of this apparently
simpler approach is the need for a global variable (the global counter), that has
to be accessible anytime by any cell to be updated, which makes it not biologi-
cally plausible. The introduction of an array version for the CET eliminates the
need of a global variable, restoring decentralisalised organisation and biological
plausibility.

Unfortunately, this solution brings about another problem: passing from a
single integer to an array of integers increases the size of the GA search space,
such that, for values of N not too small, evolution comes to a halt. The counter-
measure consists in a procedure called “Germline Penetration”: such procedure
acts on the Genome of each individual at the end of development, copying at
random (some) CET values occurred during development onto left parts of in-
structions in the Genome, as a “suggestion” for the GA for where to search in
the subsequent generation: with this procedure in place, the effectiveness of the
GA is restored. To avoid disrupting development, the copied instructions are set
as inactive, so that they start their “career” as junk instructions.

With the previous considerations in mind we can now turn our attention to
junk DNA. The epigenetic tracking machine, the way it is conceived, cannot do
its job without generating a lot of junk CET values: in our experiments, the
average ratio (CET values used / CET values generated) is around 5% (in the
development of anubis, for instance, 1890 CET values are generated and only 74
are used). The presence of such a high percentage of unused CET values looks
like a waste of resources and we could ask whether there is a way to reduce
it. The most straightforward way to reduce the amount of unused CET values
consists in decreasing the ratio between driver and normal cells in proliferation
events: for instance, instead of the value of 1:125 used in our experiments, we
could use a value of 1:500 or lower. This would cause the shape to have, at
any step, a sparser distribution of driver cells (a lower density of “yellow dots”)
and, as a result, the “sculpting” would become less precise and the evolution of
development would become harder.

So, there seems to be a trade-off between the precision of sculpting and the
density of driver cells (and hence the percentage of junk CET values): the second
aspect cannot be improved without worsening the first. Since the effectiveness
in evolving shapes is the primary objective of the method, in this regard we are
not prepared to make concessions: therefore, we must accept a certain amount
of unused CET values. The result of the discussion so far can be expressed
by saying that the following two facts have emerged as inherent, inescapable
characteristics of our method: i) the presence of a high percentage of junk CET
values, to allow for a sufficient precision of the sculpting process and ii) the
need to use the procedure called Germline Penetration, to allow the GA to work
with an array-structured CET variable (thus eliminating the drawbacks deriving
from the use of a scalar CET variable). Putting these two elements together, it
would not be surprising to observe (as we did in our experiments) that Germline
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Penetration acts like a shuttle, transferring junk CET values from the TCV
onto a corresponding number of junk instructions’ left parts in the Genome
(with the hope that they meet each other and will not be junk anymore!). In
conclusion, the presence of junk material in both the TCV and the Genome (the
second mirroring the first) is inescapably connected to the core of the epigenetic
tracking machine, a requirement essential to its evolvability.

We conclude this subsection with two observations of a more speculative
nature. Firstly, should we hypothesise the existence of a mechanism akin to
Germline Penetration also in biological systems, we would be naturally led to
think of mobile DNA elements, or transposons, as the actual device used to carry
the CET values from the biological equivalent of driver cells, spread through-
out the organism, to the germline cells, where they would deliver the recipe
of the current development as a suggestion for future improvements. Secondly,
we note that, by allowing the developmental history of an organism to influ-
ence its genome and therefore to be passed on to the subsequent generation, the
mechanism of Germline Penetration adds a Lamarckian touch to the Darwinian
evolution implemented by the Genetic Algorithm.

“Ontogeny Recapitulates Phylogeny”. In 1866, the German zoologist Ernst
Haeckel proposed that the embryonal development of an individual organism (its
ontogeny) followed the same path as the evolutionary history of its species (its
phylogeny); in other words, Haeckel’s recapitulation theory (also known as
“ontogeny recapitulates phylogeny”) claims that the development of advanced
species passes through stages represented by adult organisms of more primi-
tive species. Although modern biology rejects the literal and universal form of
Haeckel’s theory, the basic idea of recapitulation is still widespread.

In the epigenetic tracking framework, we have just seen that, at the end of the
development of a species X (consider for instance the last step -the Nth- in the
development of the triceratops in figure 1), many driver cells are present (the
yellow dots in the figure) that have not been activated during development: we
called their CET values junk CET values. If, in a subsequent generation, some
of these driver cells get activated by effect of genomic mutations (i.e. new in-
structions appear in the Genome that match their CET values), a corresponding
number of changes will affect the shape in the subsequent age step (the N+1th,
not present for species X), giving rise to a new species, Y. The consequence of
this evolutionary jump is that the development of species Y will pass through a
step (the Nth) that happens to coincide with the last step of the development
of species X (still the Nth), a sentence that could indeed be taken as a formal
description of the “ontogeny recapitulates phylogeny” theory.

Ageing. Ageing is the accumulation of changes in an organism over time, leading
to a steady decline in bodily functions: we will now show how E.T. can account
for the ageing phenomenon. As we know, for a given individual development
unfolds in N age steps; at the end of it the individual’s fitness is evaluated
and right afterwards the Genome content is handed over, after being processed
by the genetic operators, to the subsequent generation. The moment of fitness
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evaluation, that in nature corresponds roughly to the moment of reproduction,
has always coincided in our experiments with the end of the simulation; on the
other hand, we can imagine to let the global clock AS tick on and see what
happens, in the period after the moment of fitness evaluation. The distinction
between the periods (i.e. the sets of age steps) before and after fitness evaluation
can be thought to correspond to the biological periods of development (say,
until 25 years of age in humans -the average age of reproduction) and ageing
(from 25 years of age onwards); by analogy, such periods will be called “artificial
development” and “artificial ageing” respectively.

As pointed out several times, at the end of an individual’s development many
junk CET values are present, as well as many junk instructions; such stock of
junk represents a reservoir of events that can potentially be triggered after the
moment of fitness evaluation, in the period that we called artificial ageing. Since
these events occur after fitness evaluation, they are by definition not affecting the
fitness value; for this reason they will tend to have a random nature and their
effects on the overall fitness of the phenotype will be more likely to be detri-
mental than beneficial: they can be thought of as a random noise superimposed
on the phenotype created by the instructions subject to evolutionary pressure
(in nature, actually, an individual’s fitness does not depend only on character-
istics manifesting themselves before reproduction, but also on characteristics
appearing after reproduction, as also those can affect the survival chances of its
progeny; in other words the effect of changes on the fitness tends to decrease as
the age of their appearance increases, rather than going abruptly to zero right
after reproduction: we chose to ignore this “subtlety” for simplicity reasons).

The set of CET values not active during development (TCV-I) can therefore be
further subdivided into a set of CET values that become active during the ageing
period (TCV-A, A for ageing) and a set of CET values that are never active
(TCV-J, J for junk), so that TCV = TCV-D U TCV-A U TCV-J (analogous
distinction can be done also for the Genome). An example of artificial ageing
is reported in figure 3 for a “face” shape (picture of 100x100 size with 16 grey
shades); the left part shows steps 0-9, belonging to the period of development:
the shape grows from the single cell stage to the mature phenotype in step 9,
when fitness is evaluated; the right sequence refers to the period of ageing (steps
10-19), characterised by the accumulation of random events, whose global effect
causes a progressive deterioration of the quality of the image. In conclusion, the
phenomenon of artificial ageing can be thought of as the result of the cumulative
action of instructions activated after the moment of fitness evaluation, on which
natural selection has no (less) effect.

We wish to conclude this section dedicating a final comment to the role played
by junk in the phenomenon of artificial ageing. In previous paragraphs the sets
of CET values/instructions inactive during development, indicated with TCV-I
and GEN-I respectively, were shown to be a useful reservoir of instructions and
an indispensable tool to explore new evolutionary paths. In this subsection we
have shown how a part of it (TCV-A and GEN-A) is actually devoted to cause
random events that manifest themselves after the moment of fitness evaluation,
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Fig. 3. The “face”. On the left the period of development (steps 0-9): the shape grows
from a single cell to the mature phenotype in step 9, fitness is evaluated; on the right
the period of ageing (steps 10-19): the picture quality deteriores steadily under the
action of random instructions.

relegating to TCV-J and GEN-J the role of true junk. On the other hand, we
notice how the border between TCV-A and TCV-J (GEN-A and GEN-J) is
permeable (elements can move between the two sets) and the average size of
TCV-A (GEN-A) is proportional to the size of TCV-J (GEN-J). These consid-
erations bring us to deducting, in the epigenetic tracking “world”, a direct link
between the evolvability of a species and its susceptibility to ageing, being both
aspects mediated by the presence of a big stock of junk. The fact that bats
have unusually small genomes (i.e. little junk) and display a remarkably long
lifespan (i.e. they appear to age less) among mammals of comparable dimension
(Van den Bussche et al., 1995), could hint to the existence of a similar link also
in real biological systems.

4 Conclusions

In this work we have presented the last experiments performed with a method
called Epigenetic Tracking on 3d shapes. The method has subsequently been
utilised to interpret some key biological phenomena, namely junk DNA, the
“ontogeny recapitulates phylogeny” theory and ageing, that have sparked much
speculation over the last decades. Epigenetic Tracking has been shown able to
provide simple and straightforward explanations for such phenomena, being thus
validated as a useful theoretical biology tool in the evo-devo context. Finally, I
take the opportunity to thank my friend Perry for reviewing this paper.
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Abstract. In an animal, a crucial factor concerning the arrival of information
at the sensors and subsequent transmission to the effectors, is how it is dis-
tributed. At the same time, higher animals also employ proprioceptive feedback
so that their respective neural circuits have information regarding the state of the
animal body. In order to disseminate what this practically means for the dis-
tribution of sensory information, we have modeled a segmented swimming or-
ganism (animat) coevolving its nervous system and body plan morphology. In
a simulated aquatic environment, we find that animats artificially endowed with
proprioceptive feedback are able to evolve completely decoupled central pattern
generators (CPGs) meaning that they emerge without any connections made to
neural circuits in adjacent body segments. Without such feedback however, we
also find that the distribution of sensory information from the head of the ani-
mat becomes far more important, with adjacent CPG circuits becoming intercon-
nected. Crucially, this demonstrates that where proprioceptive mechanisms are
lacking, more effective delivery of sensory input is essential.

Keywords: animat, morphology, neural control, proprioception, behaviour.

1 Introduction

The state of a given animal’s external environment or niche, is presented to the ani-
mal via its sensory system. This generates informational cues regarding for example,
predator or prey items, allowing the animal’s nervous system to invoke either perva-
sive or evasive behaviours. Typically over time, the animal is able to learn and adapt1.
Higher animals also employ proprioceptive mechanisms enabling them to detect the
current state of the locomoting body, serving as a sensory feedback mechanism for the
underlying neural circuits. Previous studies have shown that central pattern generators
(CPGs) responsible for the periodic movement control are all affected and constrained
by such feedback, e.g. [13]. Other studies have highlighted how feedback can help
undulatory organisms surpass a ‘speed barrier’ [7,8]. The necessity of proprioception
in the peristaltic movements of drosophila larvae has also been established, without
which, locomotion is seen to be significantly degraded [17]. Typically such proprio-
ceptive mechanisms are ‘stretch receptors’ within the animal’s body wall, e.g. [6]. In

1 Note that in this paper, we have no concept of learning, rather behaviour is considered only in
reactive ‘braitenberg vehicle’ terms [4].
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order for the animal to respond correctly, all of this sensory information has to reach
the appropriate effectors.

We pick up on the point of proprioceptive feedback and its influence on sensory
information distribution. We model a segmented three dimensional aquatic organism
with movement mechanisms not dissimilar to the vertebrate lamprey. In an initial ex-
periment, the animat is endowed with a proprioceptive mechanism whilst in the second,
it is not. In both, the animat has an abstract visual system which it may or may not
utilise depending on how the neural circuits become interconnected. The goal is for the
animat to swim forwards towards a predefined target.

Whilst the field of physically realistic locomotion is old (see [9] for a review), the in-
corporation of some abstract visual system is novel. Beauregard and Kennedy model a
2D lamprey able to undertake tracking of a moving object [2]. Indeed, the visual system
that their model utilises provides a basis in our model. Ijspeert models a visual system
in a 3D simulated salamander able to track a moving object both in land and water [10].
In Biology, Deliagina et al. have found activity differences in the reticulospinal neu-
rons, a system within the lamprey transmitting signals from the brain to the spinal cord,
whenever the lamprey turns [5]. This highlights the functional significance of effective
information distribution from sensors to effectors. The rest of this paper is laid out as fol-
lows. Section 2 gives an overview of the simulation environment. Section 2.3 provides
experimental details. Section 3 presents our main findings. We conclude in Section 4.

2 Simulation Environment

The simulation environment has been implemented in C++. There are 2 main compo-
nents making up the system: the animat and the evolutionary setup. They are explained
below and an overview of the experimental setup also follows.

2.1 Animat

Geometry. The animat is soft-bodied being entirely constructed out of springs. These
springs are connected together to form cuboids which are then themselves connected
together to form the overall morphology, Fig. 1a.

Block

Strut
spring

Layer

(a) Animat construction

Tangent 1

Tangent 2

Normal

(b) Compass system
HEADS ON

INACTIVE ACTIVE

SIDE ON

(c) Motor system

Fig. 1. Animat geometry. The compass system is used to derive water forces. The motor system
shows how motor neurons ‘contract’ springs in pairs.
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The water force model. An external water force is applied to each face of a given
animat block. The force is derived from the velocity of the face which is taken to be
the average velocity of all four point masses, similar to, e.g. [16]. The force is com-
puted by initially splitting the velocity vector into its three components (as highlighted
in Fig. 1b):

t1 = t̂1 · v t2 = t̂2 · v n = n̂ · v (1)

where t̂1, t̂2 and n̂ are normalised tangent and vector components of the block face and
v is the velocity of the face. We then compute the three force components as follows:

Ξ(t1) = −γt1sgn(t1)(t1)
2 (2)

Ξ(t2) = −γt2sgn(t2)(t2)
2 (3)

Ξ(n) = −γnsgn(n)n2 (4)

where the γ parameters control the levels of application of each of the three components.
The actual water force, w, that can be applied to each of the four point masses making
up the block face is calculated as follows:

f = Ξ(t1)t̂1 + Ξ(t2)t̂2 + Ξ(n)n̂ (5)

w = fcdA (6)

where c is a viscosity coefficient, d is drag and A is the area of the block face. Note that
in our model we have set c and d to 1 since it is sufficient to tune the γ parameters.

Neural system. The neural system is based on a continuous time recurrent neural net-
work. The membrane potential, uj , of a neuron is modelled as follows [3]:

duj

dt
=

1
τj

(
−uj +

C∑
i=1

wjiai + Ij

)
(7)

where τj is a time constant, w is a vector of presynaptic connection weights and Ij

is an external input current. The value ai is a presynaptic neuron’s membrane activity
computed as follows:

ai =

{
tanh(ui − βi) |ui| > 0
0 otherwise

(8)

Note that given Eq. 8, the function is only employed if the neuron’s membrane potential
is not 0. We have this restriction in order to ensure that neurons need some initial input,
for example, from a sensor, before they can generate any kind of dynamic. Without it,
a neuron would always potentially have an activity, because the bias value, βj , would
allow for this. The weight values are computed from the interneuronal Euclidean dis-
tance as in [11,12]. Connectivity also comes about as a function of distance according
to the sigmoid,

σ(λ, s, dij) =
2

2 + exp((λ/s) ∗ dij)
(9)
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where λ is an evolved parameter, s is a scaling parameter set to 4.5 and dij is the
Euclidean distance between neurons i and j. A connection is established if the function
produces a value >0.5.

Motor system. Each motor is an excitatory neuron. Being position-fixed, it is also
considered part of the body plan. Each animat block has 4 motors, 1 associated with
each face of the block. A given motor actuates a vertical spring-pair of the block face,
see Fig. 1c. The amount of force applied to a spring pair is proportional to the membrane
potential of the associated motor neuron.

Sensory system. The animat has a very rudimentary sensory system consisting of 4
sensory neurons that remain position-fixed at the head of the animat (one at the top-
middle of each block face). Current is injected only into the closest sensor from the
target and is inversely proportional to the angle of the target from the given sensor.
Whilst there are no turning constraints required in our later experiments, this setup
paves the way for future experimentation. The input current injected into the closest
sensory cell is thus: Is = exp(φ+0.01).The value 0.01 ensures that there will be some
input current, even when the target angle, φ, is 0. Note that this sensory mechanism is
partially based on the exponentiated bearing-based tracking model employed in [2].

Proprioceptive feedback mechanism. The proprioceptive mechanism is based on
a notion of stretch receptor activity, for example, that found in the leech [6]. Also, as
with the sensory system outlined above, the proprioceptive mechanism is exponentiated
taking the amount of side spring distension as input (difference in length of spring from
resting length). This input current, IM , is then fed directly into the associated motor
neuron computed as IM = exp(Δd) where Δd is the level of spring distension.

2.2 Evolved Components

A mixed real-valued and Boolean evolutionary algorithm having discrete recombina-
tion, self-adaptive mutation (see [1]) and tournament selection with an elitist strategy
is used to evolve a genotype consisting of three main components: the body-plan, the
neural architecture, and the neural properties.

Body-plan. In the simulation, we consider the number of body segments, the length
of each segment and the symmetry of the active motor configuration (refer to [11] for
details of this latter aspect) to all be parts of the body-plan morphology. Note also
that when the length of a segment changes, the neural distribution’s spread within that
segment commensurately changes.

Neural architecture. Inside of each body plan segment, there are 6 interneurons, the
polar coordinate positions of which are randomly initialised and subsequently evolved.
Secondly, a set of λ values tuning the connectivity function as given in Eq. 9 are also
evolved depending on the type of connectivity: λII , λIE , λSE , λAA where
I=interneuron, E=effector neuron, S=sensory neuron; AA indicates connections
between interneurons in adjacent segments.
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Fig. 2. A sequence of overlaid screenshots at behavioural iterations 1, 245 and 384 (a total of
400 are permitted) for an evolved animat. The animat’s task is to swim towards the cube in the
direction indicated by the lower arrow.

Neural properties. These include the neuron time-constants, thresholds and whether
or not a neuron is inhibitory. A weight value between a neuron pair is derived according
to the distance between them, as in [11,12].

2.3 Experimental Overview

Our experiments address how sensory information should be distributed when we con-
sider proprioceptive mechanisms, especially in view of connectivity patterns that might
emerge between different neural circuits. We have therefore conducted two sets of
30 experiments for statistical significance with each individual experiment being al-
lowed to run for 500 generations. In the first setup, the animat is endowed with pro-
prioceptive feedback. In the second, it is not. In both, the animat is required to swim
forwards in order to reach a pre-defined target. The fitness function is simply f1 =
20.0 − dtarget,animat, see Fig. 2.

3 Results

In Fig. 3, we can see that animats endowed with the proprioceptive mechanism per-
formed significantly better than those that were not. We can secondly observe, that a
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(a) Proprioceptive (b) Non-proprioceptive

Fig. 4. Representative architectures to have evolved for each setup. For the proprioceptive individ-
ual, the architecture consists of decoupled neural circuits, with sparse connectivity. By contrast,
connectivity is far higher in the non-proprioceptive individual.
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Fig. 5. Box plots of wire lengths and neural oscillations to have emerged for the best individuals.
Both properties are observed to be of higher magnitude for the non-proprioceptive individuals.

Fig. 6. A boxplot showing how differing amounts of uniform noise used to replace the propri-
oceptive feedback mechanism, affects fitness. The ‘0-NP’ and ‘0-P’ cases left of the vertical
line are representative of fitness values for the non-proprioceptive and proprioceptive individuals
without such noise. Those to the right are representative of fitness values for the proprioceptive
individuals, after noise has replaced the normal feedback mechanism.
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higher number of connections were required in those animats without the propriocep-
tive mechanism. A higher number of connections equates to higher connectivity be-
tween neurons in adjacent neural circuits, higher connectivity within individual neural
circuits, and, the presence of some connections from the sensory neurons located in the
head of the animat. Representative neural architectures depicting two such animats are
given in Fig. 4. Finally, we relate such architectural distribution to total wire length and
total number of neuronal oscillations observing that for the animats without propriocep-
tive feedback, there is a marked increase in total wire length, see the left panel of Fig. 5.
This is to be expected given our prior observations regarding increased connectivity.
We secondly find that animats without proprioceptive mechanisms generate a higher
number of neuronal oscillations, refer to the right panel of Fig. 5.

Although it would appear that proprioception as it exists in our model benefits the
animat behaviour, it is difficult to know with any certainty whether the feedback mech-
anism is truly serving to modulate the neuronal dynamics as would be the case in true
proprioception, or, whether it is just triggering the network to reach a particular attrac-
tor state. In order to test this, we have performed a final set of experiments taking the
30 best proprioceptive individuals and replacing the feedback mechanism with varying
levels of noise. As mentioned in the model description (subsection 2.1), this feedback
mechanism works by injecting into an associated motor neuron, an input current that
is proportional to the level of spring distension. Replacing it with a uniform noise sim-
ply substitutes the input current for a float value generated from the range [-n,n]. The
smallest level of noise chosen was [-0.2,0.2], whilst the largest was [-2,2]. If the feed-
back is only serving to trigger the network then we can expect the animat to be robust
to arbitrary value. The results are presented in Fig. 6. We can see that up to a noise
range of [-1.2,1.2] the performance is slightly degraded but all performances up to this
point are approximately equal, whilst a noise range greater or equal to [-1.4,1.4] sees a
degradation in animat performance.

4 Discussion and Conclusions

We have observed that proprioception advances the animat’s ability to locomote for-
wards. Also, that replacing the proprioceptive mechanism with noise up to a point does
little in degrading undulatory behaviour (from [-0.2,0.2] to [-1.2,1.2]). This suggests
how under normal non-noisy circumstances, the feedback might be serving as a ‘trigger-
ing’ mechanism. However if the noise is advanced to too great a level (from [-1.4,1.4]
to [-2.0,2.0]), performance is seen to be degraded. This firstly suggests that the system
is not robust to high levels of this type of noise; secondly, that correct proprioception
has a fitness enhancing or at least a modulating effect on the neural dynamics given that
any level of noise is seen to degrade performance.

Interestingly, with proprioception, the neural architecture often evolves such that
the individual neural circuits become completely decoupled. Inferably, this stems from
a need to reduce interference between the neural circuits so that correct oscillatory
dynamics can result. Indeed, by artificially adding interconnections, performance is
degraded (results not shown). Therefore in some cases, centralized control, or inter-
connectivity between individual CPG ‘modules’, can be detrimental.
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Thirdly, since in the non-proprioceptive variant there are no feedback mechanisms,
the neural system has no way of directly relying on body-shape information. Yet in the
proprioceptive case, the actual body is allowed to become part of the process that yields
behaviour. This is fundamental because the neural system then has a direct informa-
tional link to the body, so strengthens the passive role of the body-physics (‘morpho-
logical computation’, [14]). This is evident on two levels. Firstly, the number of neural
oscillations which is lower in the proprioceptive case allows us to speculate that more of
the CPG dynamic could be offloaded to the passive body movements, see Fig. 5. Sec-
ondly, sparser neural connectivities in the proprioceptive case inferably demonstrates
less of a need for complex neural processing; when feedback mechanisms are avail-
able, computation can be more so aided by passive body physics thus allowing for a
reduction in neural computation. Note also, a higher level of connectivity in the non-
proprioceptive case may conversely compensate for a lack of sensory feedback.

There are a number of major extensions that we envisage. The first involves analysis
of the different body plan components, for example body plan segment length and num-
ber of body-plan segments, to see how they affect the performance of the animat. Work
has begun on this. A second undertaking will then incorporate an energy measure as we
did for a model of a radially symmetric organism in [12]. Finally, we might incorporate
a developmental process so that the model more realistically reflects biological systems.
The work of Schramm et al., is an interesting start in this direction [15].
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Abstract. A model for co-evolving behavior control and morphological
development is presented in this paper. The development of the mor-
phology starts with a single cell that is able to divide or die, which
is controlled by a gene regulatory network. The cells are connected by
springs and form the morphology of the grown individuals. The move-
ments of animats are resulted from the shrinking and relaxation of the
springs connecting the lateral cells on the body morphology. The gene
regulatory network, together with the frequency and phase shifts of the
spring movements are evolved to maximize the distance that the animats
can swim in a given time interval. To facilitate the evolution of swimming
animats, a term that awards an elongated morphology is also included
in the fitness function. We show that animats with different body-plans
emerge in the evolutionary runs and that the evolved movement control
strategy is coupled with the body plan.

1 Introduction

Brain-body co-evolution has attracted much attention in the research field of
artificial life [1] since the seminal work of Karl Sims [2]. The most attractive
aspect of the work is that a developmental model using a directed graph has
been adopted for both neural controller and body plan. However, no signifi-
cant progresses to understand biological principles have been made since Sims’
work due to the following two facts. First, the power of the models for brain-
body co-evolution remains practically unchanged [3,4,5]. A biologically plausible
model should be able to describe the biological development of both nervous
system and body plan. Whereas models for either detailed modeling of neural
development [6] or morphology [7] have been suggested, few models can achieve
a balanced depth in modeling the development of both neural controller and
body plan, and most of them are not able to perform biologically meaningful
behaviors. Second, most work on brain-body co-evolution was meant mainly for
improving the efficiency of generating a specific behavior, rather than under-
standing biological principles. An exception has been the work by Bongard and
Paul [8], which studied the correlation between morphological symmetry and
locomotive efficiency.
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Most recently, increasing effects have been made to relate the research in
brain-body co-evolution to biological principles. In [9], it is found that bilat-
erally symmetric body plan and neural architecture are favored in selection in
a brain-body co-evolution of an elongated organism. The advantage of being
able to evolve a bilaterally symmetric body plan or neural controller has been
reported independently [10,11]. By taking energy efficiency into account in a
hydra-like animat, it has been shown that a ring-like neural structure emerged
in the animat [12], which is analogous to the nerve ring in biological hydra.

However, in the afore-mentioned models, the developmental process of the
neural system and the body-plan is not included. To address this problem, we
adapted a biologically plausible cell growth model [13] for neural development
in a hydra-like animat with a fixed body plan [14]. In contrast to [6], the de-
veloped neural model is able to perform food grasping behavior by adjusting its
connectivity and weights.

In this paper, we use a modified cell growth model for morphological devel-
opment in a brain-body co-evolution environment, though behavior control is
modeled in an abstract manner and evolved using a direct coding. Nevertheless,
we believe that this work has made a solid step forward compared to [7] in that
the developed morphology is able to perform a swimming behavior.

2 The Computational Model

The growth of the animat morphology is under the control of a gene regulatory
network (GRN) and cellular physical interactions. The morphological develop-
ment starts with a single cell put in the center of a two-dimensional computa-
tional area (80x80). Once the morphological development is complete, a con-
troller is embedded in the morphology and the resulting swimming behavior is
evaluated using a physics simulation engine.

2.1 Chromosome for Morphological Development

The cell growth model is slightly modified from the one in [13,14]. The model
uses a GRN to regulate the developmental process. The GRN is defined by a
set of genes consisting of regulatory units (RUs) and structural units (SUs). SUs
define cellular behaviors, such as cell division and cell death, or the production
of transcription factors (TFs) for intra- and inter-cellular interactions. The acti-
vations of the SUs are defined by the associated RUs, refer to Fig. 1. Note that
single or multiple RUs may regulate the expression of a single or multiple SUs
and that RUs can be activating (RU+) or repressive (RU−).

Each RU and TF has a certain affinity value that determines whether a TF
can influence a RU. If the difference between the affinity values of a TF and a
RU is smaller than a predefined threshold ε (in this work ε is set to 0.2), the TF
can be bound to the RU to regulate. The affinity overlap (γi,j) between the i-th
TF and j-th RU is defined by:

γi,j = max
(
ε −

∣∣∣affTF
i − affRU

j

∣∣∣ , 0
)

. (1)
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Fig. 1. An example chromosome for the
development

Fig. 2. Illustration of a body plan con-
sisting of cells connected by springs. The
springs at the outside of the body are
able to change their natural length.

If γi,j is greater than zero and the concentration ci of the i-th TF is above a
threshold (ϑj) defined in the j-th RU, then the i-th TF influences the j-th RU.

Thus, the activation level contributed by this RU (denoted by aj , j = 1, ..., N)
sums up to aj =

∑M
k=1 |ck,−ϑj |, where M is the number of influencing TFs. The

expression level of the k-th gene, that is regulated by N RUs, can be defined by

αk = 100
N∑

j=1

hjaj(2sj − 1), (2)

where sj ∈ (0, 1). 2sj − 1 denotes the sign (positive for activating and negative
for repressive) of the j-th RU and hj is a parameter representing the strength
of the j-th RU. If αk > 0, then the k-th gene is activated and its corresponding
behaviors coded in the SUs are performed.

An SU that produces a TF (SUTF) encodes all parameters related to the TF,
such as the affinity value, the decay rate Dc

i , the diffusion rate Df
i , as well as

the amount of the TF to be produced:

A = β
2

1 + e−20·f ·α − 1, (3)

where f and β are both encoded in the SUTF.
A TF produced by a SU can be partly internal and partly external. To deter-

mine how much of a produced TF is external, a percentage (pex ∈ (0, 1)) is also
encoded in the corresponding gene. Thus, pex · A is the amount of external TF
and (1 − pex) · A is that of the internal TF.

External TFs are put on four grid points around the center of the cell, which
undergo first a diffusion and then a decay process:

Diffusion: ui(t) = ui(t − 1) + 0.1 · Df
i · (G · ui(t − 1)), (4)

Decay: ui(t) = min ((1 − 0.1 · Dc
i )ui(t), 1), (5)

where ui is a vector of the concentrations of the i-th TF at all grid points and
the matrix G defines which grid points are adjoining.

In our experiments we put two prediffused, external TFs without decay and
diffusion in the computation area. The first TF has a constant gradient in the
x-direction and the second in the y-direction.
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Table 1. Constants for the mechanical simulation environment

Mass of cells m 0.5 Short natural length of springs ls 1.2

Radius of cells r 0.5 Minimal periodic time Tmin 10

Damping constant d 1 Maximal periodic time Tmax 400

Spring strength c 5 Simulation length tsim 300.0

Normal natural length of springs ln 2

The SUs encode cellular behaviors and the related parameters. The SU for
cell division encodes the angle of division, indicating where the daughter cell
is placed. A cell with an activated SU for cell death dies at the end of the
developmental timestep.

2.2 Chromosome for Motor Control

To embed a motor controller into the developed morphology, cells must be con-
nected to a whole body plan. Cells are connected with a damped spring if the dis-
tance between them is smaller than 2.5. If a cell has fewer than two connections,
it is then connected to its nearest neighbor to ensure morphological stability, see
Fig. 2. The mechanical setups of the cells and springs are listed in Table 1.

The movement is defined by a change in the natural length of the springs
connecting the lateral cells, as depicted in bold in Fig. 2. To ease the movement,
the cell radius is set to 0.5 so that there is sufficient space between the cells
for them to move. The natural length of the springs switches between ln and ls
within one period T , which is subject to evolution. The morphology is split into
24 predefined segments and all springs in the same segment have the same phase
shift (ρ ∈ [0, T ]).

2.3 Physics Simulation Engine

We use BREVE [15] to simulate the behavior of the animats. In addition, we
use a simple model for simulating the effects of water forces, which has also
been adopted in [16]. In this model, the water forces for different elements i are
computed as follows:

F i = F i
T + F i

N , (6)
F i

T = −λT · sgn(vi
T ) · (vi

T )2, (7)
F i

N = −λN · sgn(vi
N ) · (vi

N )2, (8)

where λT and λN are the drag coefficients for each direction. λ depends on the
effective area, a shape coefficient of the element and the fluid density. vi

T and
vi

N are the velocities of element i in normal and tangential direction. We set
λT = 0.001 and λN = 2.5 in this work. The water forces are computed for cells
in the lateral of the body plan, represented by black circles in Fig. 2. The normal
and tangential vectors of the body parts (i-th sphere) can be calculated by:
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ti =
pi−1 − pi+1

|pi−1 − pi+1| (9)

ni =
(

0 −1
1 0

)
· ti, (10)

where pi is the position vector of the i-th cell and pi−1 and pi+1 are the positions
of the neighboring cells at the outer side of the morphology.

vi
N = ni · vi, (11)

vi
T = ti · vi, (12)

where vi is the velocity of the i-th cell.

3 Evolution of Swimming Behaviors

An extended (μ,λ) evolution strategy with individual strategy parameter adap-
tation has been employed in this work. The strategy parameters (σ) are bounded
to σm ∈ [1e−6, 1e−4] and σc ∈ [1e−6,∞] for the chromosome for morphological
development and that for behavior control, respectively. For the chromosome for
morphological development, we also use gene duplication and transposition in
addition to mutations. In one setup, gene deletion is also applied, refer to Table 2.

We minimize the following fitness function:

f = fswim + fshape, (13)

where fswim defines the distances between the center of masses of the body plan
at the beginning and the end of the simulation:

fswim = −
∣∣∣∣∣
(

n∑
i=0

xi(t = 0)

)
−
(

n∑
i=0

xi(tend)

)∣∣∣∣∣ (14)

and fshape awards elongated shapes:

fshape = max
{
min

i

{
xi(0)

}
,−30

}
− min

{
max

i

{
xi(0)

}
, 30

}
...

... − min
{
min

i

{
xi(1)

}
,−5

}
+ max

{
max

i

{
xi(1)

}
, 5
}

,
(15)

where the best reachable value for fshape is −50.
To limit the computational cost, a maximum of 501 cells is allowed. If this

number is exceeded before 20 iterations, the developmental process will be
stopped. To have a meaningful morphology, the number of cells should be larger
than 10. In case that the number of cells is larger than 500 or smaller than 10,
a strong penalty is applied.

In the experiments, we set μ = 30 and λ = 200. The developmental process
is computed for tdev = 20 iterations. We run the evolution with three slightly
different setups, which are listed in Table 2.
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Table 2. EA setups

initial # RUs initial # SUs ptransp pdup pdel

Setup 1 66 54 0.05 0.05 0

Setup 2 30 30 0.05 0.05 0

Setup 3 30 30 0.05 0.02 0.03

4 Results and Analysis

In the following, we analyze the fitness profile, the morphology and the control
strategy of three animats, picked out from generation 1518, 541 and 197 in the
three setups, respectively. We have plotted the fitness for swimming behavior
fswim and that for morphology fshape separately every 10 generations in Fig. 3.
The fshape of the three animats are −4.21, −50.0, and −9.42, respectively, while
the fswim are −97.38, −107.50, and −84.87, respectively. From Fig. 3, we can see
that the “fitnesses for shape” in both setups 1 and 3 have converged to a local
minimum around generation 150. As a result, the morphology from these two
setups is much smaller than that obtained from setup 2, refer to Fig. 4. Another
observation is that the fitness for swimming in setup 2 improves steadily in 450
generations and is better than that from setups 1 and 3. Actually, the best
animat evolved in setup 2 reached the border of the simulation area within the
predefined simulation time.

More interestingly, we found that animats have also evolved different strategies
for swimming. In setups 1 and 3, where the evolved morphology is very short,
a control period of T = 10 is evolved. By contrast, a period T = 16.3 has been
evolved for the animat in setup 2. In other words, the frequency of the rhythmic
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Fig. 3. Fitness profiles from the three setups, which are plotted every 10 generations
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Fig. 5. Evolved phase coordination strategies of the three individuals
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Fig. 6. Snapshots of the movement of the analysed individual from setup 1

t=9 t=18 t=22 t=27

Fig. 7. Snapshots of the movement of the analysed individual from setup 2

t=8 t=12 t=13 t=16

Fig. 8. Snapshots of the movement of the analysed individual from setup 3

movement of the shorter animats is much faster than that of the large one, which
makes sense for improving the swimming efficiency. In addition, different phase
coordination strategies have also been evolved for the three animats, as shown
in Fig. 5. From the phase shift patterns, we can see that animats from setups 1
and 2 produce undulatory movements, while the animat from setup 3 generates
peristaltic movements, similar to a caterpillar. A few snapshots of the resulting
movement patterns of the three animats are presented in Fig. 6, Fig. 7, and Fig. 8,
respectively (videos are available at www.rtr.tu-darmstadt.de/coevolution).

5 Conclusion and Future Work

We have presented a model for co-evolving morphological development and mo-
tor control for swimming animats. The morphological development is based on
a cellular growth model regulated by a GRN, whilst the motor control is rep-
resented by the period and phase shifts of the springs. Compared to the direct
graph model used by Sims [2] and the L-system by Horn and Pollak [3], our
model for morphological development is biologically more plausible. From three

www.rtr.tu-darmstadt.de/coevolution
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slightly different setups of the evolutionary algorithm, three swimming patterns
have emerged, which are adapted to the different morphologies. As far as we
know, this is the first work to present a gene-regulated multi-cellular model for
morphological development of animats that can perform a functional behavior
and to disclose a coupling between the motor control strategy and the body plan.

In future work, we will include a GRN-based model for neural development so
that both the neural system and body morphology are subject to a developmental
process. By investigating brain-body co-evolution with such biologically plausible
models, we hope to gain deeper insights into the co-evolution of nervous systems
and morphologies in biology.

Acknowledgments. We would like to thank T. Steiner, M. Olhofer, D. Weiler
and N. Einecke for inspiring discussions.
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Abstract. We present a model of three-dimensional artificial embryogenesis in
which a multicellular embryo develops controlled by a continuous regulatory
network encoded in a linear genome. Development takes place in a continuous
space, with spherical cells of variable size, and is controlled by simulated physics.
We apply a genetic algorithm to the problem of the simultaneous evolution of
morphology and patterning into colour stripes and demonstrate how the system
achieves the task by exploiting physical forces and using self-generated mor-
phogen gradients. We observe a high degree of robustness to damage in evolved
individuals and explore the limits of the system using more complex variations
of the problem. We find that the system remains highly evolvable despite the
increased complexity of three-dimensional space and the flexible coding of the
genome requiring from evolution to invent all necessary morphogens and tran-
scription factors.

Keywords: artificial embryogeny, gene regulatory network, morphogenesis, em-
bryo patterning, positional gradients, French flag model, cellular differentiation.

1 Introduction

The field of artificial embryogenesis investigates how the compact genomes of living
organisms are able to encode the structure of extremely complex multicellular organ-
isms using a limited number of genes. As a rule, multicellular biological organisms
start their development from a single cell and form through cell division. Before each
division, a copy of the genome is made. Symmetry-breaking mechanisms cause the dif-
ferential expression of the genes in the descendant cells. However, the embryo is shaped
not only by the fact that different gene products are present at different concentrations
in different cells. Physical interactions between the cell components, as well as between
the cells and their environment result in emergent phenomena that allow bridging the
overwhelming discrepancy between the amount of information encoded in the genome
and the complex structure of the organism. Furthermore, living developing systems dis-
play a remarkable robustness to perturbations. On the one hand, this demands better
understanding, while on the other, it raises hopes of employing developmental models
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to solve various engineering problems and to overcome the limitations of evolvability
present in direct encoding schemes ([1,2]).

Many approaches to generating morphologies of artificial organisms have been pro-
posed, and have frequently been evaluated using the so-called French flag problem,
proposed more than 40 years ago by Lewis Wolpert ([3]), which consist of developing a
patterned embryo with three colours (blue, white, red) in three areas. Several recent pa-
pers present biologically-inspired models of cellular development in which each cell is
controlled by a gene regulatory network. In some, the development takes place on a 2D
lattice with cells occupying fixed locations (e.g., [4,5,6]). In others, for example those
using the Cellular Potts Model, the cells occupy multiple locations on a lattice, and
their shapes are determined by the simulated physical interactions of their membranes
([7,8]). Other approaches include elastic interactions between the cells ([9] and recently
[10]). Three-dimensional simulations ([11,9,12,13]) remain scarce, partly because it is
not always necessary to investigate underlying phenomena, and partly because more
degrees of freedom make 3D multicellular development a much more difficult task.

In this work, we attempt to scale the French tricolour problem to three dimensions
by evolving genomes which code gene networks regulating the development of multi-
cellular ellipsoidal bodies with multicolour patterning. Patterning (cell differentiation)
is understood as expressing particular gene products in different areas of the embryo.
The cells in our model form bodies through elastic interactions, are suspended in con-
tinuous space (no grid is used), and produce spatiotemporal gradients of morphogens,
perceived by other cells.

2 The Model

We employ an extended version of the system introduced in [12], where it was used
to evolve three-dimensional morphologies of multicellular organisms. The conceptual
framework remains unchanged, but many features that were found to be superfluous
were removed, facilitating a better understanding of and control over the whole system.
Furthermore, biological relevance was improved by modelling product accumulation
and degradation. An overview of essential features and concepts is provided, for ad-
ditional details please refer to [12]. As the main interest of our work is the emergent
properties of evolved regulatory networks, our system is designed to minimize limita-
tions imposed on topologies that can evolve. In our model, linear genomes can contain
any number of regulatory units. Regulatory units are composed of one or several reg-
ulatory elements and one of several genes (genetic elements that code products, which
include transcription factors and morphogens). Any number of connections between
regulatory units can exist.

2.1 Genome and Genetic Elements

The genome in our model is a list of genetic elements that fall into three classes: ele-
ments that code products (called genes); regulatory elements (called promoters); spe-
cial elements (that code the external inputs and outputs of the regulatory network). The
genome is parsed sequentially, and regulatory units are formed whenever a series of
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a special element:
external factor (0)

or effector (1)

a promoter:
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Fig. 1. The genome and the structure of a single genetic element. Each element consists of a type
field, a sign field, and a sequence of N real values used to determine affinity to other elements
(N = 2 was used in this paper).

promoter elements is followed by a series of genes, with special elements assigned to
input and output nodes at a later stage. By computing affinities between all gene prod-
ucts and all promoters, connections between regulatory units are formed, and, thus, a
gene regulatory network (GRN) emerges. Fig. 1 provides an overview of the process.
In our system, promoters come in two types: additive and multiplicative (see below).
The products can be either internal or external; only external products (morphogens)
can diffuse from one cell to another.

Each genetic element in our system encodes a point in N -dimensional space (Fig. 1).
Affinity between products and promoters is determined as a function of Euclidean dis-
tances between associated points in this space. The lower the Euclidean distance is
between these points, the higher the affinity is between gene products and promoters.
A cut-off distance is used to prevent full connectivity in the network. The product of
sign fields of the two elements determines the sign of the connection (activatory or in-
hibitory). One can imagine (or actually visualize if N < 3) that as genomes evolve (and
the element coordinates change), points in N -dimensional sequence space that corre-
spond to the elements approach one another or move away. Note, however, that this
space is used solely as a mechanism for determining connectivity and bears no relation
to the 3D space in which multicellular development takes place.

The activation of each promoter in a regulatory unit is the sum of the concentration of
all binding products weighted by their affinities. The sum of activations of all additive
promoters is multiplied by the product of activation of all multiplicative promoters.
The result (A) is fed to a sigmoid function fA(A) = 2

1+e−(A−1) . This is interpreted
as the production rate (positive or negative) of all products in a given regulatory unit,
i.e., dL

dt = fA(A) − L, where L is the current concentration. This results either in an
increase of concentration of a product (if the synthesis is higher than degradation) or
in increased degradation. The presence of a multiplicative promoter in a regulatory unit
results in a strict requirement for the presence of a binding product, otherwise the unit
is not expressed.

2.2 Development

Cells occupy continuous positions in 3D space and are modelled as elastic spheres (of
various sizes). If two cells overlap, a repulsive force proportional to the amount of
overlap is applied. In particular, after cell division the daughter cell overlaps with the
mother and will slowly move away. To maintain the coherent structure of the embryo,
adhesive forces are simulated: cells stick together whenever they are at a close distance.
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Fig. 2. Mechanics of the developmental model. Left: each cell has an internal orientation vector
H and two perpendicular helper vectors that can be rotated by three effectors (outputs of the
network) - see p. 19 of [14] for explanation of such a system. Right: simplified diffusion is
modelled without the use of a grid, by using past values of morphogen expressions. An outburst of
morphogen production in the embryo followed by quick degradation produces a wave travelling
through the system.

Furthermore, fluid drag is simulated to prevent erratic movements. Morphogen diffusion
(Fig. 2, right) is simulated by calculating the perceived levels of diffusive substances in
a given point in space as a function of distance and the historic values of production
from all the sources (the farther the source, the older value is used).

Special elements code either for the outputs of the network (effectors) or inputs. Ef-
fectors correspond to specific cell action (division, death, size increase of the daughter
cell, and rotation of the cell orientation vector; cell orientation determines where the
new cell is placed after division, similarly to 3D L-systems [14]). In addition, the com-
posite of the activation of colour effectors defines the cell colour. We use either two
(red, blue) or three (red, green, blue) colour effectors, so for example, cells that express
both red and blue are pink. Division or death of a cell occurs when the activation of the
corresponding effector is above a set threshold. Similarly, in some experiments cells
were coloured only when the activation of the colour effector was above a set threshold.

In all the experiments in this work, the GRNs are given as the input an external factor
that was present in all cells at the same concentration (set at 1) throughout development.
This input was necessary to initiate any activity, with the exception of experiments
where two maternal morphogen gradients were deployed in the environment and could
serve the same purpose. Direct regulatory connections between external factors and
effectors were not allowed to prevent trivial solutions.

At the time of division, the state of GRN is copied to the new cell, which can differ
from the mother only by its rotated orientation vector and size. As these properties
cannot directly influence the state of GRN, an external symmetry breaking mechanism
is necessary. Development is allowed to take 300 time steps, in each time step both the
position of the cells and the state of GRN in each cell is updated.

2.3 Genetic Algorithm and the Fitness Function

Genetic operators in our system act on the level of element fields (changing element
type, sign bit, or disturbing the coordinates of an associated point in space). Duplica-
tions and deletions of single elements or multiple elements are allowed. The results
shown in this work were obtained using a fairly standard genetic algorithm with a
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population size of 300, elitism, tournament selection, and multipoint crossover for sex-
ual reproduction (for 30% of the individuals in each generation). Evolutionary runs
were initiated with individuals consisting of 5 randomly created regulatory units, usu-
ally requiring a few thousand tries before a single individual capable of starting division
would appear (as this requires random emergence of connection from external factor
‘1’ to some regulatory unit and then to the division effector). Evolutionary runs where
terminated after no improvement over 500 generations was detected, resulting in runs
lasting for about 2000-3000 generations.

To assess the fitness of individuals, evolved morphology was compared to a target
shape at the voxel level. Each voxel outside the target and inside some cell decreased
the fitness. Each voxel inside the target and inside a cell increased fitness proportionally
to the correctness of colours expressed by this cell (i.e., 1 for perfect match, 0 for com-
pletely reversed pattern expression). Thus, both the correct morphology and patterning
were rewarded. To reward the emergence of multiple colours at the very early stages of
evolution, fitness was divided by the number of colour effectors minus the number of
colours present in the individual (as in [8]). We found this improved evolvability greatly.

3 Results and Discussion

We investigated the evolvability and scalability of the system by performing a series
of experiments, each repeated 10 times. In the first series of experiments, two colour
effectors were used, allowing the cells to be coloured red or blue if their activation (a
real value between 0 and 1) was above a threshold of 0.5, resulting in four possible
colours - with pink for expression of both effectors and white for no expression (rather
than black, so that actual French tricolour could be obtained). The target shape seen
in Fig. 3 (left) was used. Development was terminated after 300 time steps, with a
hard limit on the number of cells (i.e., cells could not divide after the limit was hit).
Obtaining correct morphology turned out to be a fairly trivial task for the GA, owing to
the exploitation of physics. Embryos would apply minor variations to the orientation of
division vectors and the repulsion of cells would take it from there, creating elongated
morphologies (Fig. 3, right).

The only input to the network in these experiments was a static external factor, per-
ceived in each cell at the constant level of ‘1’. The symmetry of the embryo develop-
ment is broken because, after division, cells shift in space and perceive slightly different
concentrations of morphogens. This results in self-emerging positional information (ex-
plored earlier by Knabe et. al. in [8]).

Fig. 3. Left: default target shape and colour pattern,right: small variations to orientations of
divisions generate an elongated shape by exploiting the physics of the system (same individual
as in Fig. 4)
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(a)

(b) (c)

Fig. 4. Development of the best individual with 2 colour effectors (a); below, self-generated gra-
dients of positional information employing two different morphogens (b,c): left - production level
of a morphogen in each cell (blue to red colour map), right - normalized morphogen density maps
in the space surrounding the embryo.

Fig. 4a presents snapshots from the development1 of the best individual obtained
in 10 runs, with a 200 cell limit. Typically, runs would result in 30-40% yield of three-
coloured individuals, the others would remain stuck in local suboptima. A more detailed
analysis of the individual shown in Fig. 4a allows locating the clear asymmetric pro-
duction of two distinct morphogens centred in the posterior and anterior of the embryo
and reveals gradients generated in space (Fig. 4bc). Only two gradients are shown in the
figure, even though two more morphogens with similar patterns were also present. Al-
though this is not the only possible solution for generating anterior/posterior axis (sin-
gle morphogen at one extreme of the embryo would suffice in principle), all analysed
individuals developed using the differential production of at least two morphogens.

One of the problems identified in early experiments was that when evaluated by their
similarity with target pattern after 300 steps, the patterns were rarely stable. Typically,
they would sweep through the embryo (driven by diffusing waves of morphogens) or
oscillate. We have managed to partially alleviate this by calculating overall fitness as
an average of similarity values taken every 5 simulation steps in the last 50. Individuals
that were largely stable through this period would then be obtained. However, in most
cases, the pattern degraded if development was allowed to continue beyond its default
lifetime of 300 steps. We note, however, that it is (sadly) a common feature of living
systems to degrade if their lifespan is extended beyond what they were selected for by
evolution.

In the next series of experiments, we investigated the stabilizing role of the gradi-
ents of substances present in the environment of the developing embryo. Two external
factors diffused from sources external to the embryo at its two extremes (similarly to
Bicoid and Nanos, which determine anterior/posterior axis in Drosophila embryo de-
velopment; see, e.g., [15]). This allowed for stable embryo patterning, but only if the
cells were additionally prevented from producing their own morphogens (which makes

1 Supplementary materials, including videos of development and gradient formation, are avail-
able at http://www.iopan.gda.pl/molbiol/ecal09patterning

http://www.iopan.gda.pl/molbiol/ecal09patterning
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(a)

(b)

(c)

Fig. 5. Robustness to damage: the effects of removing a single cell from the embryo at the 2- (a),
4- (b), or 8-cell stages (c) of development; in (c) only half of possible cases is shown. Removing
cells at further stages has a notable, albeit diminishing, effect. The same individual as in Fig. 4 is
shown.

(a) (b) (c) (d)

Fig. 6. More difficult evolutionary targets presented to the system (top); two best individuals out
of 10 runs for each target are shown below. Note that for (a) and (b) the lack of expression of
colour effectors is drawn as black.

those maternal factors the only inducers of differential expression). The dominant role
of self-produced morphogens can be explained by the fact that, in our system, mor-
phogens produced by the embryo can reach much higher concentrations than the diffu-
sive substances present in the environment.

Robustness to perturbations such as mutations or damage is one of the essential fea-
tures observed in developmental systems (see e.g. [2,4,16]). Although all the individuals
presented in this paper evolved in the absence of any developmental stochasticity, they
were found to respond extremely well to the removal of a single cell, even at the very
early stages of development (Fig. 5). This suggests that fault tolerance developed as
an effect of mutational robustness and can be considered to be an indication of good
evolvability ([17]).

To assess the scalability of the model, different approaches to patterning were eval-
uated. Fig. 6a shows the use of non-thresholded colour effectors. This turned out to be
a harder problem, which is understandable if one considers that it was now not only
necessary to reach a certain threshold of colour expression, but also to maximize (or
repress) it in a given section of the embryo. Rather surprisingly, evolutionary runs (ter-
minated after 500 generations without improvement) took much longer, taking even up
to 30 000 generations (compared to about 3 000 in the experiments with thresholding).
This indicates that the fitness landscape of this problem is actually much less rugged,
and provides many more opportunities to fine-tune individuals.
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The task can also be made harder by introducing the third colour effector (Fig. 6b),
making it necessary to both express a certain colour and repress the expression of two
others in each area. As expected, lower fitness was reached in general, but some tri-
coloured individuals were obtained. Fig. 6cd show solutions to other variations of the
patterning problem - the emergence of four areas or multiple stripes. Both tasks were
solved using two colour effectors. These problems are still within range but approaching
the limits of evolvability of the current setup.

4 Conclusions

We present a system capable of evolving solutions to the French flag problem using
simulated physics and self-generated gradients of morphogens dynamically diffusing in
the environment. The computational cost of adding a third dimension and implementing
simple physics was negligible compared to the cost of the simulation of a regulatory
network in every cell. Considering the availability of sophisticated physics engines, it
would be very interesting to see how this developmental system (and other comparable
models) would be able to exploit more complex simulated physics, such as flexible
cells. Thus, our further work will focus on maintaining the biologically-relevant features
of the network while introducing more elements to simulate the physical aspects of
multicellular development in our system.
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Abstract. This paper presents a model in the Artificial Embryogene (AE) 
framework. The presented system tries to model the main functions of the 
biological cell model. The main part of this paper describes the Gene 
Regulatory Network (GRN) model, which has a similar processing information 
capacity as Boole’s Algebra. This paper also describes how to use it to perform 
the Iris Classification problem which is a pattern classification problem. The 
aim of this work is to show that the model can solve this kind of problems. 

Keywords: Artificial Embryogeny, Genetic Algorithms. 

1   Introduction 

Nature presents a lot of different systems that can be used in Computer Science as an 
inspiration to develop new tools. Examples like Artificial Neural Networks (ANNs) 
or Genetic Algorithms are well-known. This work starts from the idea that any cell of 
a biological tissue has to communicate and process the signals of its environment. 
This behavior can be seen as distributed computation, where each cell plays the 
character of a single processor and it has to coordinate its computation with its 
neighbor cells. Nature just needs a few signals from the environment and the 
information contained in the DNA to develop and coordinate the most complicated 
structures. 

The objective of the present work is to develop a model inspired in embryological 
cells, which have features like self-organization, self-reparation, etc. To develop the 
computer adaptation, the biological model was simplified by identifying and 
modeling the essential elements. In this way, some parts of the computer adaptation 
have very similar functions to the biological ones (DNA, gene or cytoplasm, etc.). 
The main objective of this paper is to adapt this model in order to apply it to 
information processing problems and, in particular, to classification and pattern 
recognition problems.  

2   Background 

In 2003, Stanley and Miikmulainen [1] developed a methodology to classify the 
different AE models that appear in Evolutionary Computation (EC). These models are 
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based on abstractions of the embryological cells, which can be classified into two 
main types. On one hand, some works follow a grammatical approach, where the 
most important works are related to L-systems [2]. On the other hand, other studies 
have a chemical-oriented approach based on Turing’s ideas [3].  

The works related to the grammatical approach have been mostly used to develop 
ANN. Kitano’s work [4] shows how the connectivity matrix of an ANN is evolved 
with a set of rules. Another remarkable work is [5], in which the authors develop both 
the control and the structure of the robot using L-systems.  

For the chemical approach, the first work to be mentioned is [6], in which 
Kauffmann develops his Gene Regulatory Networks [6]. The objective of the works 
which follow this approach is usually its application to different problems, such as 
approximating a simple figure/structure in a 3D space, or the development of 
evolutionary hardware [7]. One of the most important works which tries to solve the 
previously mentioned problems is described in [8]. The most interesting part is the 
usege of fractal proteins for the communication among the cells of the model.  

The model presented in the current paper can be included into the chemical 
approach. The model has included most of the concepts present in the previously 
mentioned works, like the concept of operon or the cellular division and death. The 
most novel concept is that never before a chemical approach has been used to solve an 
information processing problem. 

3   Model 

Every cell of any biological tissue has as antecessor: a unique cell, called zygote, 
which generates other cells and they can coordinate their behavior using the 
information present in DNA. Each cell knows its purpose from its DNA and the 
proteins that it receives. Therefore, it can be considered that each cell of the tissue 
works as a processor and all of them operate with proteins using the DNA as operator 
set. Self-reparation, self-organizationand  parallel information processing are some 
features of the structures generated with this computation model [9].  

Below, the structures of the artificial model that arise from the study of the 
biological issues are explained. 

Protein 
Protein is the basic piece of information. In this model, proteins are a string of bits 
that identifies each one of the different proteins and has a time to live (TTL). Due to 
this, the system has a memory of previous generated proteins, until they are used or 
degraded. 

Cytoplasm  
Cytoplasm is the part of the artificial cell which has the responsibility of managing 
the information inside the cell. The responsibility of this part is to manage the proteins 
needed for a transcription in the cell and to check the concentration level of the 
proteins inside and outside the cell to decide which proteins will be communicated.  

Gene 
Each gene of the system represents a rule, where some conditions have to be fulfilled 
to perform a certain computation or process. The genes are strings of bits which 
contain two parts: promoters and a gene identifier.  
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• Promoter region. This part identifies the proteins needed to activate this gene. 
This section can appear several times and it is composed of two parts: 
o Promoter Sequence. This section identifies the required protein sequences to 

activate the gene.  
o Concentration lock. Each of the activation proteins needs a certain 

concentration level identified in this field in order to activate this gene. 
• Gene identifier. This part identifies which is the protein generated by the gene and 

the type of the gene. It is composed of two subparts.  
o Generated sequence. When the gene is activated, the result of that activation 

is a protein with this sequence.  
o Constitutive mark. This bit indicates if the gene is a constitutive gene 

(explained below).  

The required proteins have to be at least in a certain proportion inside the cell. This 
minimum concentration is stored in its concentration lock part. The protein does not 
need to be identical to the activation protein. As in Nature, high concentrations of 
similar proteins can activate a gene. This fact is modeled using the following 
condition: 

P r o te in  C o n c e n t r a t io n  P e r c e n ta g e ( D i s t a n c e 1 ) * C o n c e n t r a t io n  L o c k> = +  (1) 

In the previous condition, Protein Concentration Percentage represents the 
concentration of a protein inside the cell. Distance is the hamming distance between 
that protein and the activation protein. Finally, Concentration Lock is the 
concentration required for the promoter sequence. If the condition is met for all of the 
promoters, then the gene generates a protein with the gene’s generated sequence. 

This is the normal behavior of a gene but when it is marked as constitutive its 
behaviour changes drastically. A constitutive gene is constantly generating proteins, 
until its activation proteins appear. In this case, these are called inhibitor proteins. 
When the condition Eq. 1 is met by the inhibitor proteins, the gene stops producing 
proteins during a certain period. 

Operon 
Operon is a group of genes which codify a task. In Nature, these genes codify the most 
complex tasks and act all or none of them. This idea was adapted by a structure which 
applies conditions to a group of genes. This structure has the same parts as a gene and 
acts in the same way but, instead of a generated sequence, it has a group of genes. This 
allows the activation of those genes from that moment for a period of time. 

DNA 
The DNA is composed of genes and operons. Its responsibility is to select the allowed 
genes which can be activated, when the cell asks for them in a certain moment of its 
development. 

Cell 
Cells are the basic element of the system and contain all the previously described 
parts (DNA, Gene, etc.). The expression of the DNA can induce the cell to 
communicate with its environment. The expression of the DNA can also induce two 
special behaviors: division or death of the cell.  
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Cells define a concept to regulate the different actions, which is the cellular time or 
cellular cycles. These cellular cycles contain all the tasks that a cell can do at the 
same time. For example, a cell can communicate proteins to the environment many 
times, but it can only divide itself once in a cellular cycle. The steps of a cycle are the 
following: 

1. Update the concentration of the proteins and delete those whose TTL reaches zero. 
2. Process the DNA with the cytoplasm proteins to generate new proteins. 
3. Check the concentration of the proteins and execute the communications of the 

cell, or execute one of the special actions (divide and death) if it is necessary. 
In short, after the actualization of the proteins’ TTL, when a cell activates a gene, four 
different actions can be performed: storage the protein in the cytoplasm; 
communicationamong cells the proteins; division of the cell or death of the cell. All of 
these actions are performed by each cell in such a way that the cellular cycle is used 
to coordinate the actions. 

Environment 
The environment is where the cells are and it determines the type of communication 
among cells. The main purpose of the environment is to manage the free proteins. The 
free proteins are those which have been set out by a cell and no cell has already 
required them. The environment determines how these proteins move until they are 
required by a cell or when they are deleted because their TTL has expired. 

Communication Model 
Once the parts and the environment have been defined, the next step is to define how 
these elements interact among them. Each cell can communicate with its 
neighborhood by using the proteins. Proteins are set into the environment when their 
concentration inside the cell is higher than a certain threshold.  

  

Fig. 1. Reception Probability of a Protein 

The proteins set into the environment modify the return value of a probability 
function associated to its type. This function gives the probability of finding a protein 
in a point far away from the emission point. When a new protein is set into the 
environment, the probability associated to that point is increased. This function has 
two parameters: the number of proteins in the environment’s position and the distance 
between that point and the checked point. The probability of finding a protein 
decreases with the distance (Fig. 1). The decreasing value is represented in Fig. 1 by 
the darkness in the squares that surrounds the emission point. Cells check in each 
cellular cycle, the proteins that have any possibility to be caught by them. If the 
protein is taken by a cell, then the value of the function is decreased to represent the 
reduction of the amount. 
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4   Instruction Search Method 

To search the instructions with the shape of an artificial DNA strand, a Genetic 
Algorithm (GA) has been used [10]. The reasons for choosing a GA are: it is one of 
the most robust and adaptable methods and the features of a GA match the dynamics 
of the presented system.  
The GA’s DNA is not a fixed-length array of variables because the number of rules 
and the number conditions of these rules (promoter sequence) are unknown This 
paper proposes the subdivision of the DNA in functional sections, (see Fig. 2): 

 

Fig. 2. Compiling a DNA 

• Promoter sections are sections that codify a gene’s promoter region.  
• Gene sections identify a gene of the cellular system and codify the  gene identifier. 

This section is associated to the previous promoter sections that appear in the GA 
individual until another Gene identification section or Operon section is found. 

• Operon section is a mark of the creation of an operon of the cellular system. This 
operon has as promoters the previous promoter sections, until a Gene or operon 
identification section appears. The genes contained into the operon are those which 
have been identified before the operon. The operon contains the genes, until a 
maximum number of genes is reached, or it finds another operon identification 
section is found. 

These sections and the association show in Fig. 2 are able to search all the possible 
combinations of genes. To simplify the GA’s functioning, the sections used by the 
GA have all the fields of the three functional sections, but these sections have two 
extra bits to determine the type and which are the valid fields. The next step is to 
adapt the GA crossover and mutation operators to work with the variable length. 

 

Fig. 3. Crossover Example 

The crossover operator used is a one point crossover, which selects the crossover 
section according to the length of each individual. A random percentage over the 
length, which is the number of functional sections, is generated for each individual 
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and the section in that position is selected. Both parents randomly choose the same 
point inside the sections to make the crossover and the children are the combination 
of the parents’ genetic material as shows Fig. 3. 

The mutation operator can execute one of these three possible operations:  
• Add a new section to an individual.  
• Delete a section.  
• Change a bit inside a section.  

In the mutation operator, the operation which changes a bit needs more explanation 
because each section has two bits that identify its type at the beginning of the binary 
string. The first bit identifies if it is a promoter section or not. The second bit 
determines if it is an operon or a gene (when it is not a promoter). A change in any of 
these bits makes the information of the section to be reinterpreted in its new role 
because the new role activates different fields inside the section used by the GA. 
Other changes in bits only change the associated value of the field. Note that the GA 
sections have all the fields of the functional sections to simplify this step. 

Finally, the probabilities of executing each of the actions, empirically obtained, 
are: Addition (20%), deletion(20%) and change (60%). The percentage is the 
probability of executing each operation each time a mutation is executed. 

5   Test 

This DNA model defines a Gene Regulatory Network (GRN). This kind of structure 
has proved to have the same capacities as Bool’s Algebra [6]. 

To adapt the model to process information problems, the inputs and outputs of the 
system have to be defined. As inputs, some source points put in the environment new 
proteins each cellular cycle. The outputs are measured by setting some sinks which 
get the proteins from the environment. The final element of the system is the set of 
cells into the environment, which process the inputs and set the outputs. The objective 
of the test is to search DNA which minimizes the output error in the sinks when the 
inputs are present in the source points. The DNA is put into a cell and the input values 
are put in the source points. After a number of cellular cycles, the output values are 
checked in the sink points.  

The iris classification problem is a non-linear classification problem. Four 
parameters were measured in millimeters on 50 iris specimens from each of three iris 
species, Iris setosa, Iris versicolor and Iris virginica [11]. Given the four parameters, 
one should be able to determine which of the three classes a specimen belongs to. The 
patterns are distributed in three areas, one for each class. One of the types presents a 
clear difference with the other two, but the other two classes are very close and they 
present a conflict area with no clear differentiation. 

100 no protein registered

1  no desired protein

0 desired protein in the first position of the list

0.5 desired protein in the second position of the list

0.75 desired protein in the third position of 

fitness =
the list

0.85 desired protein in other position in the list

i

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∑
 

(2)
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The model tries to find a DNA which classifies the different patterns of iris 
flowers. To adapt the model to this problem, the values of the variables were 
normalized between 0 and 1. One sink and 4 source points, one for each variable, 
were used. The source points put into the environment 4 different proteins, one for 
each variable. The normalized value of a variable is the peek probability of receiving 
it around the source point. This probability decreases linearly from the source point to 
the surrounding area, and it determines the probability to find a protein in that point. 
Three sequences are identified as the desired outputs and they determine the predicted 
class of the input data: Iris Setosa (1111), Iris Versicolor (1001) and Iris Virginica 
(1010). These desired sequences will be the principal component of the fitness 
function. The GA will seach a DNA which maximizes the explresion of this desired 
sequences. The ordered list of received proteins is needed to check the position of the 
desired sequence. The function will add a different penalization depending on the 
position into the ordered list as shown in Eq. 2. The penalization was selected 
empirically. 

The letter i represents a pattern of the training set. The fitness is the addition of the 
penalizations for each pattern. These penalization values are determined by the 
position on the list. There are two special cases: when the desired protein is not 
present the penalization is 1 and when no protein is received then the error is 100.  

Finally, the GA used to search the DNA, which allows this classification, has 
shown a better behavior with a 70% crossover rate and a 30% mutation probability in 
populations with a size between 50 and 100 individuals. 

 

Fig. 4. Iris Flower correct classification. Correctly classified (left), wrongly classified (right). 

The best individual has a fitness of 8.85 and it is able to classify 140 of 150 
patterns. Fig 4 shows the three kinds of iris flowers represented by a star, a cross and 
a square. These results were obtained using only one cell to solve the problem. More 
cells would increase the complexity of the solution, but the resulted structure may 
classify better the patterns of the conflicted area by the cooperation among cells.  

6   Conclusions 

This paper presents a model which follows a different approach to previous works.  
It has two objectives. The first one is to be able to be applied to any kind of problem. 
The second one is to capture the interesting features of the biological model.  
 

Sepal Lenght
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These features, already mentioned in the text, (like self-organization, self-repairation, 
distributed control, parallel information processing, etc) are those that this model tries 
to take from Biology and to use in the resolution of problems. The presented system is 
the base to future developments in the knowledge area of self-organization and 
distributed computation. The systems built with this cellular model present a high 
self-organizing and distributed computation level. Future developments with this 
system could be framed into Autonomic Computing proposed by IBM in 2003[12] 
because they present many of the features that these systems require. This model 
could be the base for the communication between different elements in a Autonomic 
Computing system. 

Finally, the tests, in this paper, have shown how the model can be applied to solve 
different information processing problems. If these results are added to the previous 
ones [9], a new research area is found. The aim of this area is to develop self-
organizing structures which can process information. 
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Abstract. In Nature, the intrinsic cooperation between organism’s parts is capi-
tal. Most living systems are composed of organs, functional units specialized for
specific actions. In our last research, we developed an evolutionary model able to
generate artificial organs. This paper deals with the assemby of organs. We show,
through experimentation, the development of an artificial organism composed of
four digital organs able to produce a self-feeding organism. This kind of structure
has applications in the mophogenetic-engineering of future nano and bio robots.

1 Introduction

Most living systems are composed of different organs. Cooperation between organs
allows them to optimize the exploitation of environmental resources. Its role is crucial
for survival in a complex environment. Several works on digital organs development
already exist mainly based on two methods: shape generation, which is the most widely
discussed, and function generation.

Our previous research dealt with making isolated digital organs. We developed a
bio-inspired model able to produce organisms starting from a single cell. The aim was
to make an organ library. We now present the cooperation capacity of two kinds of
organs: producer-consumers and transfer systems. Assembling these organs produces a
self-feeding structure and gives the organism a potentially limitless survival capacity.

The paper is organised as follows. Section 2 gives the related work about artificial de-
velopment and artificial creature production. Section 3 summarizes the model, already
presented in [3]. Section 4 details the experimentation of a self-feeding structure with
particular emphasis on environmental parameters. Finally, we conclude by outlining
possible future work on this creature.

2 Related Works

Over the past few years, more and more models concerning artificial devolpment have
been produced. A common method for developing digital organisms is to use artificial
regulatory networks. Banzhaf [1] was one of the first to design such a model. In his
work, the beginning of each gene, before the coding itself, is marked by a starting
pattern, named “promoter”. This promoter is composed of enhancer and inhibitor sites
that allow the regulation of gene activations and inhibitions. Another different approach
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is based on Random Boolean Networks (RBN) first presented by Kauffman [9] and
reused by Dellaert [6]. An RBN is a network where each node has a boolean state:
activate or inactivate. The nodes are interconnected by boolean functions, represented
by edges in the net. Cell function is determined during genome interpretation.

Several models dealing with shape generation have recently been designed such as
[5,2,8]. Many of them use gene regulation and morphogens to drive the development.
A few produce their own morphogens whereas others use environment “built-in” mor-
phogens. Different shapes are produced, with or without cell specialisation. The well-
known French flag problem was solved by Chavoya [2]. This problem shows model
specialisation capacity during the multiple colour shifts.

In their models, produced organisms have only one function: filling up a shape. Other
models, most often based on cellular automata or artificial morphogenesis (creatures
built with blocks), are able to give functions to their organisms [10,7]. Here, creatures
can walk, swim, reproduce, count, display... Their goals are either led by user-defined
fitness objectives that evaluate the creature responses in comparison to those expected
or only led by their capacity to reproduce and to survive in the environment.

The next section presents our developmental model. It is based on gene regulatory
networks and an action selection system inspired by classifier rule sets. It has been
presented in details in [3].

3 Cell2Organ: A Cellular Developmental Model

3.1 The Environment

To reduce simulation computation time, we implement the environment as a 2-D toric
grid. This choice allows a significant decrease in the simulation’s complexity keep-
ing a sufficient degree of freedom. The environment contains different substrates. They
spread within the grid, minimizing the variation of substrate quantities between two
neighbouring crosses on the grid. These substrates have different properties such as
spreading speed or colour, and can interact with other substrates. Interactions between
substrates can be viewed as a great simplification of a chemical reaction: using dif-
ferent substrates, the transformation will create new substrates, emitting or consuming
energy. To reduce the complexity, the environment contains a list of available substrate
transformations. Only cells can trigger substrate transformations.

3.2 Cells

Cells evolve on the environment’s spreading grid. Each cell contains sensors and has
different abilities (or actions). An action selection system allows the cell to select the
best action to perform at any moment of the simulation. Finally, a representation of a
GRN is available inside the cell to allow specialization during division.

Each cell contains different density sensors positioned at each cell corner. Sensors
allow the cell to measure the amounts of substrates available on each cell corner. The
list of available sensors and their position in the cell is described in the genetic code.

To interact with the environment, cells can perform different actions: perform a sub-
strate transformation, absorb or reject substrates in the environment, divide (see later),
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wait, die, etc. This list is not exhaustive. The implementation of the model enables a
simple addition of actions. As with sensors, not all actions are available for the cell: the
genetic code will give the available action list.

Cells contain an action selection system. This system is inspired by the rule set of
classifier systems. It uses data given by sensors to select the best action to perform.
Each rule is composed of three parts: (1) The precondition describes when the action
can be triggered. A list of substrate density intervals describes the neighbourhood in
which action must be triggered. (2) The action gives the action that must be performed
if the corresponding precondition is respected. (3) The priority allows the selection of
only one action if more than one can be performed. The higher the coefficient, the more
probable is the selection of the rule.

Division is a particular action performable if the next three conditions are respected.
First, the cell must have at least one free neighbour cross to create the new cell. Sec-
ondly, the cell must have enough vital energy to perform the division. The vital energy
level need is defined during the specification of the environment. Finally, during the
environment modelling, a condition list can be added.

The new cell created after division is completely independent and interacts with the
environment. During division, the cell can optimize a group of actions. In nature, this
specialization seams to be mainly carried out by the GRN. In our model, we imagine a
mechanism that plays the role of an artificial GRN. Each action has an efficiency coef-
ficient that corresponds to the action optimization level: the higher the coefficient, the
lower the vital energy cost. Moreover, if the coefficient is null, the action is not yet avail-
able for the cell. Finally, the sum of efficiency coefficients must remain constant during
the simulation. In other words, if an action is optimized increasing its efficiency coeffi-
cient during division, another (or a group) efficiency coefficient has to be decreased.

The cell is specialized by varying the efficiency coefficients during division. A net-
work represents the transfer rule. In this network, nodes represent cell actions with their
efficiency coefficients and weighted edges representing efficiency coefficient quantities
that will be transferred during the division.

3.3 Obtained Creatures

To find the creature best adapted to a specific problem, we use a genetic algorithm. The
creature is tested in its environment. It returns the score at the end of the simulation.
Each creature is coded with a genome composed of three different chromosomes: (1)
the list of available actions, (2) an encoding of the action selection system and (3) an
encoding of the gene regulation network.

Different kinds of creatures have been generated thanks to this model. We can cite
for example organs like a transfer system able to transport a substrate from a point to
another or morphology developpement like a starfish or jellyfish. Their creatures have
been presented in [3]. All creatures have a common property: they are able to repair
themselves in case of injury [4]. This feature is an inherent property of the model. It
shows the phenotype plasticity of creatures produced.

In the next section, we present the features obtained by producing new organisms
and putting them in the same environment. We design an environment wherein the
organism will be composed of four organs. Once assembled, their organs will make a
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Fig. 1. Result of the cooperation of the 4 different organs. (a) Beginning of the simulation: 4 cells
that contain the genetic code of each organ are positioned in the environment. (b) Organ growth:
while the 2 producer-consumer organs have finished their development and start their work, the
transfer systems continue their growth. (c) All organs have finished their development and a self-
feeding structure is made. While producer-consumer organs continue their work, transfer systems
start the transfer to feed other organs with new substrates.

self-feeding structure that will allow the organism to maintain its life endlessly. Before
that, the organism must develop a sufficient metabolism to start the chain.

4 Experiment: Self-feeding Structure

In order to produce a cycle, the organism is composed of two kinds of organs: transfer
systems close to the one presented in [3] and organs able to transform a substrate into
another and to position precisely the produced substrate (that will be transferred).

4.1 Description of the Environment

In this experiment, the environment is composed of 3 different substrates: Water (rep-
resented in blue on the next figures) that will be used by the organism to develop its
metabolism, A and B (respectively represented in red and yellow on the next figures)
substrates that will be used by the organism to produce the self-feeding structure.

Three substrate transformations are available: Water → energy produces energy
using water ; A → B + energy produces B substrate using one unit of A ; B →
A + energy produces A substrate using one unit of B.

50 units of A substrates are positioned near PC1 and 50 units of B substrates near
PC2. Organ PC1 has to transform the substrate A into B and must position it at the
entrance of organ TS1, which transfers the B substrate on the entrance of organ PC2.
Organ PC2 has to permorm the opposite operation to that of organ PC1: it transforms
B substrate into A and has to put the result at the entrance of organ TS2, which drives
the A substrate back up near organ PC1. Because all their actions provide energy to
the cells, the obtained organism can work endlessly. With the purpose of producing the
self-feeding structure, each organ has first been developed individually. The organs have
the following list of actions: divide (all directions are available), absorb and reject all
kind of substrates and perform one of the substrate transformations presented before.
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Fig. 3. Evolution of A and B substrate quan-
tity ratio. The B substrate quantity decreases:
Organ PC2 is more efficient than PC1.

4.2 Results

We compute each different organ in separate environments. Four cells containing the
genetic code of their corresponding organ are then added to the environment. They
evolve with the aim of generating a self-feeding structure. Figure 1 shows the develop-
ment and the behaviour of the organism. It is interesting to notice that for each kind of
organ, different strategies emerge to reach the goal. For example, organ PC1 transfers
the initial substrate near the goal before transforming it into the final substrate whereas
organ PC2 transforms the substrate before transferring the result to the right place.

The organism obtained is the expected one1. The regulation network regulates cor-
rectly the size of the transfer systems whereas the organs that transform the substrate
develop the different action selection strategies to reach their goals. Organ TS1 and
Organ TS2 use serial absorption and rejection to move the substrate from the exit of an
organ to the entrance of the opposite organ.

Curves presented in figure 2 show the evolution of the number of cells and the wa-
ter quantity in the environment. Water quantity strongly decreases at the beginning of
the simulation, before the initialisation of the cycle (stage 1). Different organs use wa-
ter to start their metabolism. When the cycle starts (stage 2), organs use the cycle as
metabolism. Organs still consume water to produce energy that will be stocked for
the future. The curve presented in figure 3 shows the ratio of A and B substrates. B
substrate quantity slowly decreases. This proves an efficiency difference in the organs:
organ PC1 converts A into B more slowly than organ PC2 does the opposite. Even if
the difference is small, this curve shows that the cycle is not endless: after a long period
of time, B substrate will disappear and the cycle will be broken.

5 Conclusion and Future Works

In this paper, we present an original result of the developmental bio-inspired model
Cell2Organ. After making an artificial organ library, we test cooperation between or-
gans. The experimentation shows the development of an artificial organism, composed

1 Videos of this organism development and of each organ functioning seperately are available
on the website http://www.irit.fr/∼Sylvain.Cussat-Blanc
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of four digital organs. The cooperation of its organs creates a self-feeding structure. This
kind of structure, with the self-repairing properties presented in [4], could be interesting
for a morphogenetic-engineering approach of future bio and nano robots.

Continuations of this work are multiple. First of all, we are currently starting the
development of the organism with four cells, one for each organ. We want to develop
the organism starting from only one cell. With this purpose, we are working on a “pre-
organism” able to position cells on the four starting positions of the final organs. The
organism will have to switch it genome to the different organs’ genomes and, finally, to
resorb itself so as not to interfere with the organism’s evolution.

We are also working on making different layers of the simulated environment. A
physical layer will allow us to develop our organism at the same time in a physi-
cal world, with all its properties and the current “chemical” world to maintain the
metabolism of the creatures. A hydrodynamic layer will simulate substrate diffusions
more efficiently. For example, this layer will allow a cell to expulse a substrate with a
chosen strength to position it in a particular place. It will also simulate fluid flows. Cells
will have to adjust their behaviour according to new data.

Acknowledgment. Experiments presented in this paper were carried out using ProActive, a mid-
dleware for parallel, distributed and multi-threaded computing (see http://proactive.inria.fr), and
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Abstract. Weakly electric fish use active electrolocation to identify ob-
jects. They generate electric field by the electric organ discharge and
perceive the distortion of electric image with existence of certain ob-
ject. There have been many researches to comprehend the electrolocation
mechanism of electric fishes. It is known that the ratio between the max-
imal slope of electric image and its maximal amplitude can discriminate
object distances, regardless of object size and conductivity. In this paper,
we suggest that the temporal pattern with tail bending is another cue
to disciminate object distances. As a result, the electric field pattern for
a specific electroreceptor shows consistency, regardless of object size and
conductivity, when the distance is constant. Also, the lateral location of
an object significantly changes the temporal pattern of electric image.

Keywords: electric fish, electrosensory system, electrolocation,
biorobotics.

1 Introduction

Weakly electric fish generate electric field by the electric organ and identify ob-
jects with electroreceptors that sense the change of electric field. The mechanism
of electrolocation is related with interpretation of electric image. The electric im-
age can be regarded as a stimulus image that represent the perceived stimulus
through sensory cells [1].

One of challenging issues in the electrolocation is how electric fish disciminate
object distances. Rasnow [2] studied the distortion of electric image when spher-
ical objects are in the electric field generated by weakly electric fish, Apteronotus
leptorhynchus. The simulation result of electric image along the skin showed there
is certain relationship between electric images and object parameters, such as
rostrocaudal position, lateral distance, and conductance. Chen et al. [3] argued
that a rostrocaudal position of a given object along the fish body fixes the loca-
tion of peak amplitude of electric image, and another features of the object such
as size and distance influence the maximum level of amplitude.

G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part I, LNCS 5777, pp. 59–66, 2011.
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Fig. 1. Diagram for electrolocation of electric fish (black bar indicates the elec-
tric organ) (Source of the photograph is from www.fieldmuseum.org/research collec
tions/ecp/ecp sites/parker gentry/blghost.htm and the diagram is modified from [8])

Some researchers [4,5] suggested there exists a cue for distance discrimina-
tion. The ratio between maximal image slope and maximal image amplitude can
measure the distance of most objects, independently of size, material and shape.
Sicardi et al. [6,7] also argued that this relative slope is independent of the object
size and conductivity.

So far many researchers have handled object localization of electric fish with
a spatial distribution of electroreceptors. The experiments suggest that the rel-
ative activation of electroreceptors with a target object can achieve the distance
discrimination [5]. In this paper, we investigate temporal information of elec-
trosenses with a sweep of tail bending movement for the distance discrimination.
We argue that tail bending triggers the same temporal pattern of electric image
at a given electroreceptor with a fixed distance of object, independently of size
and material.
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2 Method

2.1 Modeling Electric Field

Our simulation model follows Chen et al.’s model [3] and Rasnow’s model [2] to
estimate the electric field intensity and transdermal potential differences on the
skin of electric fish. We assumed that the fish body length is set to 21cm and
positive poles are uniformy distributed with 10 poles per 1cm. One negative pole
and a number of positive poles form the electric field. Electric potential at the
location x, caused by these electric poles can be calculated as follows:

V (x) =
m∑

i=1

q/m

|x − xi
p|

− q

|x − xi
p|

(1)

where m is the number of positive poles and xi
p is the location of the i-th pole,

and q is the normalized potential value. From this, the electric field has a weakly
positive field over most of the side skin and relatively strong negative field at
the end of tail. The electric field can be derived from the gradient of electric
potential.

E(x) = −∇V (x) =
m∑

i=1

q/m

|x − xi
p|3

(x − xi
p) −

q

|x − xi
p|3

(x − xi
p) (2)

The potential perturbation of spherical objects [2] can be given as follows:

δV (x) = χ
a3E(xobj) · (x − xobj)

|x − xobj |3 (3)

where a is the radius of object and χ is the electrical contrast. The electric
contrast is related to the material, which is -0.5 for a perfect insulator and one
for a perfect conductor. If the impedance of the object exactly matches with
water, then the electrical contrast is zero.

The transdermal potential difference Vtd(xs) is related with the normal com-
ponent on the skin surface.

Vtd(xs) = E(xs) · n̂(xs)
ρskin

ρwater
(4)

where xs is the position of sensor and n̂(xs) is the normal component for an
electroreceptor.

Electroreceptors are distributed on the skin surface of electric fish. Here, we
assume electroreceptors are uniformly distributed and the normal vector at the
skin is orthogonal to the body axis, to simplify the analysis of electric image.
We examine the temporal change of the transdermal potential difference when
the tail bends. The tail bends from −45◦ to 45◦ approximately [3]. Bending tail
draws a circular arc around the pivot. A curvature radius R is Lθ, where L
is the tail length and θ is the bending angle. In this paper we investigate the
temporal change at each sensor with a variety of object sizes, conductivities,
lateral distances, and rostrocaudal distances.
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Fig. 2. Potential perturbation curve (a) figure without noise term (b) figure with ran-
dom noise

2.2 Relative slope

We can obtain the electric images to reflect the transdermal potential values on
the skin surface. The ratio of transdermal potential values without any object,
to the perturbation of electric field with an object composes the modulation
as electric image measurements [4,5]. In our simulation, uniform random noise
is added to the electric image. This noisy image has been filtered through the
butterworth low pass filter. The ratio between maximal slope and maximal am-
plitude of the electric image, called relative slope, can be exploited to determine
the distance of an object.

3 Experiments

3.1 Relative Slope

We first tested the relative slope property of electric image. Fig. 3 shows the
simulation result for the relative slope over varying distances with sphere ob-
jects. From the figures, we can easily observe that the relative slope is a good
measure to discriminate the distance, irrespective of object size and conduc-
tivity. This agrees with von der Emde et al.’s result [4]. The relative slope for
a small size of objects or long distances are greatly influenced by noise, since
their signal levels as well as the maximum amplitudes are relatively small. The
relative slopes at long distances show more deviations from the normal slope
pattern.

Through the simulation, it is apparent that the relative slope indicates the
object distance. However, the relative slope is affected by the rostrocaudal po-
sition of a target object as well as tail bending angle. Fig. 4 shows the relative
slope changes depending on the rostrocaudal position and tail bending move-
ment. Thus, we need prior information of the rostrocaudal position and bending
angle to determine the distance of an object.
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Fig. 3. Relative slope with object size and conductivity (a) relative slope with varying
object sizes and constant conductivity (0.5) (b) relative slope with varying conductiv-
ities and constant object size (sphere object with a radius of 2cm)
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Fig. 4. Relative slope with varying object positions (rostrocaudal positions); a sphere
object with a radius of 2cm and conductivity 0.5 is tested at the lateral distance of 20
mm, 30 mm, 40 mm and 50 mm (a) relative slope when the tail is not bent (b) relative
slope with the tail-bending angle 45◦

3.2 Temporal Pattern

We investigate another cue to discriminate the object distances, which is based
on temporal pattern of electric image. The relative slope mentioned above evalu-
ates the spatial distribution of electrosenses along a set of electroreceptors on the
skin surface. In contast, the temporal pattern at a given electroreceptor with a
sequence of tail bending movements provides another viewpoint to estimate the
distance.

We simulated the electric image with a sweep of tail movements, where the
tail bends from −45◦ to 45◦ and again from 45◦ to −45◦. Temporal patterns of
potential perturbation with sphere objects can be obtained from the negative
pole shift. The signals are normalized into the scale [0, 1], because the signal
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Fig. 5. Temporal pattern depending on lateral distances; a sphere object with radius
2cm was tested

amplitude varies depending on sizes and distances. In our simulation experi-
ments, the object size varies from 0.5cm to 2.5cm with interval 0.5cm, and the
conductivity changes from 1 to -0.5 with interval 0.25. Also, the object was
shifted along the rostrocaudal direction and the corresponding electric image
was calculated. We measured the sensor activations of three different electrore-
ceptors at 4cm, 12cm, 20cm from the mouth, respectively.

Fig. 5 shows the lateral distance significantly changes the temporal pattern.
We checked if another factors are involved with the pattern. Interestingly, Fig. 6
shows that the conductivity of objects have no effect on the temporal pattern for
a sweep of tail movement. The negative conductivity only changes the orientation
of temporal pattern, which leads to reverse orientation. The shape itself does
not change regardless of the conductivity level. The two patterns for positive
and negative conductivity have a mirror image each other. In addition, each
electroreceptor has the same temporal pattern for varying sizes of objects as
shown in Fig. 7.

In contrast, Fig. 8 displays that the rostocaudal position of a target object
significantly changes the temporal pattern. From the above experiments, we can
infer that the distances of a target object is directly involved with the temporal
pattern by a sweep of tail movement, irrespective of conductivity and size of
the object. The maximal slope in the normalized temporal pattern can be a
cue to discriminate object distances. The temporal pattern can be easily tested
with a few electroreceptors, while estimating the relative slope requires a large
distribution of electroreceptors on the skin surface.

The relative slope and the temporal variation gives us the information about
the position of a target object. This measure is independent of object size and
conductivity, but affected by rostrocaudal position and lateral distance from the
midline of electric fish. However, the rostrocaudal postion of a target object is
identified easily from the peak amplitude position in the electric image. If the
rostrocaudal position of a target object is determined in advance, the temporal
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Fig. 6. Temporal patterns with varying conductivities (from the electrosensor values
at a distance of 4cm, 12cm, 20cm from the mouth, respectively); sphere objects with a
radius of 2 cm were tested at the fixed distance of 5 cm (’o’: positive conductivity and
’x’: negative conductivity)
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Fig. 8. Temporal patterns with varying rostrocaudal positions of an object (from the
electrosensor values at a distance of 4cm, 12cm, 20cm from the mouth, respectively);
the sphere object was tested at varying rostrocaudal distances of 2.4cm (solid), 3.6cm
(dashed), 4.8cm (dotted), 6.0cm (dotdashed) from the mouth and at the fixed lateral
distance of 5cm
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pattern or the relative slope can be used to discriminate the lateral distance of
the object. Here, we do not argue which measure between the relative slope and
the temporal pattern is more effective to discriminate the object distance. It is
presumed that both measures depending on environmental situation help the
electric fish to guess the distance of a target object.

4 Conclusion

The relative slope, the ratio between the maximal slope and the maximal ampli-
tude of electric image over a distribution of electroreceptors, is a useful parameter
to discriminate the object distances, independently of size and conductivity of
the object. For object localization, the location of peak amplitude is the direc-
tion of an object and the relative slope provides the lateral distance as biologists
argued. In this paper, we suggest the temporal pattern even at one electrorecep-
tor also provides a cue to determine the object distance, irrespective of size and
conductivity. Active sensing allows to extract another type of localization infor-
mation. Possibly the object localization can be extended to shape recognition
of objects with electrolocation. For the future work, this kind of active sensing
approach with a few electrosensors can be applied to s mobile robots to search
for underwater objects.
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Adaptation in Tissue Sustained by

Hormonal Loops
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Abstract. When faced with the requirements for the design of an au-
tonomous adaptive system, many aspects of the system organisation need
be addressed. In living systems, the co–evolution with the environment
has provided the solution for such challenges in a form of inherent mech-
anisms which are employed when the environmental fluctuation occurs
leading to the organism achieving adaptation through some adaptive
process. In this paper we investigate such mechanisms, more precisely
the priniples on which their operation is based. In particular, the focus
is set on endocrine system within homeostatic processes. We postulate
that adaptation to a fluctuating environment can be achieved if initi-
ated and sustained by the hormone flow loops. Such statement is further
supported by simulations. Based on the recognised advantages of the
system organisation endowed with the ability to form hormonal loops,
the avenues of research are identified for further work.

1 Introduction

In the beginning there were catalytic cycles out of which the life emerged and
ever since, the cyclic processes have not stopped to weave more and more com-
plex creations. Cyclic processes can be recognised at different levels of the living
systems’ organisation and it can be said that they constitute the very basis of
life. The life–related processes presume interaction between the living system and
its environment [1,2] and it has been widely accepted that living systems have
not evolved but rather co-evolved with their environment [3,4]. As a result, the
living systems are capable of surviving within the environment despite its fluc-
tuating nature. When a fluctuation occurs, inherent mechanisms are employed
and the organism performs some structural or functional change – it adapts to
environmental fluctuation. An example of these mechanisms is represented by a
whole plethora of homeostatic processes. The body’s environment is continuously
monitored – sensed and, accordingly, adaptive processes are initiated, sustained
and regulated resulting in the preservation of the body’s internal equilibrium –
homeostasis. In doing so, various systems available in the body are engaged [5]
which are interrelated and interwoven in their operation. A prominent place be-
longs to the endocrine system for its communication and control role. It exhibits
ability to control processes within the living system, yet with the employment
of just tiny amounts of substances – hormones, for this purpose.
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Adaptive processes within living systems are addressed in a somewhat simpli-
fied view through the formalism of cybernetics [6]. In this view, the dynamics of
adaptive processes is recognised as regulated by feedback loops. In our investi-
gation, we postulate that the adaptation process can be initiated and sustained
by the formation of feedback loops of hormone flows within the system. Such
statement is further supported with simulations on a model of a modular system.
The results not only show successful adaptation, they also open new research
avenues towards the enhancement of the models of processes within some tissue
so as to perform adaptation task. Furthermore, considerations for the implemen-
tation of such adaptive system within some modular man–made system are also
presented.

2 Learning and Adopting from Living Systems

Ever-present environmental fluctuations influence physiological processes within
the living organism. Such processes are vital for the organism and therefore its
viability comes from the ability to adapt to a fluctuating environment. As men-
tioned, endocrine system, a system of organs and tissues which secrete special
substances – hormones, is prominent for the control and communication roles
within homeostatic processes. It reacts to the sensed fluctuation in the envi-
ronment by the secretion of special messengers – hormones, which are carried
around the body via bloodstream thereby reaching all the cells in the living
system. However, only the cells possessing the matching receptor will react to
the hormone. Tiny amounts of hormones can produce avalanche of reactions
which contribute to the system’s preservation of homeostasis. However tiny the
amounts of secreted hormones may be, they are regulated through special mech-
anisms based on feedback loops. Feedback loops are closed between the place
of the hormone secretion i.e. an endocrine gland or some tissue, and the target
tissue which the hormone affects [5]. Once secreted, hormones do not remain in
the organism forever. They have their lifetime after which they are cleared from
the organism through various mechanisms.

It can be said that the adaptation process in living systems occurs in stages,
the first being creation of inherent adaptive mechanisms as a result of co-
evolution with environment and the second employment of these mechanisms
when the change occurs, as has been recognised and studied from a more mech-
anistical standpoint in [7]. There, the investigated system preserves its homeosta-
sis by keeping essential variables within certain limits despite the disturbance
coming from the environment. Homeostasis for adaptation has been studied by
many researchers. Ashby has demonstrated homeostatic adaptation in practice in
the homeostat, a modular electro–mechanical structure. Gaian theory [3], views
the whole biosphere as a homeostatic system. Similar ideas may be found in
[8,9,10]. Within homeostatic processes, endocrine system has been investigated
in evolutionary robotics [11,12,13], modular self–reconfigurable robots [14], mul-
tiprocessor system for fault tolerance [15].
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3 The Model of the System Under Investigation

In order to simulate adaptive processes, a model of an adaptive man–made sys-
tem was created. It consists of a number of cells placed in a grid formation as
in figure 1(a) each of which is connected to its four immediate neighbours (east,
south, west and north) via local connections. These connections transmit not
only computational data but also the signals further referred to as hormones,
the name chosen due to the role they perform in the system – the messengers.
The assumed architecture lends itself to analysis through the formalism of cel-
lular automata, CA [16,17].

For each cell it is assumed that it performs some functionality which can be
adjusted by the set of tuning parameters. Further, it possesses a sensor for sensing
the fluctuations in its local environment i.e. variations in some environmental
parameter – temperature, pressure, to give a few less abstract examples.

The system is configured so as to perform certain functionality. Configuration
is implemented in a similar way as in [18] where each cell possesses two types of
identifiers – physical ID and encoding ID. The first refers to the cell’s position
within the grid and the second to the cell’s functional connectivity. In relation
to its encoding ID, i, the cell receives inputs from the cell with the encoding ID
i − 1 and yields output to the cell with the encoding ID i + 1. As an example,
figure 3(a) shows encoding ID values for one possible configuration.

Taking somewhat mechanistic approach, the system can be said to be in one of
the two states: it is either adapted (state 0) or adapting (state 1) to its environ-
ment, as shown in figure 1(b). When in state 0, each cell performs functionality
according to the cell’s tuning parameters which correspond to its local environ-
ment thereby contributing to the system performing correct functionality. On the
other hand, during adaptation process, tuning parameters within one or more of
the system’s cells do not correspond to its local environment and therefore the
functionality of the system as a whole deviates from the desired. In this state,
such cells go through the adaptation process in order to tune these parameters.

(a) Schematic view of the investigated
architecture with the hormonal loop
between S and R cell

(b) System States

Fig. 1. Schematic of the assumed system architecture and system state diagram
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In [19] we have shown how hormonal loops can initiate and sustain adapta-
tion in case of stochastic environmental fluctuations. Here, we briefly present the
formation of hormonal loops. Within the assumed system, the hormonal loops
are made out of two types of hormones: S hormone, which is secreted by the cell
whose local environment has changed (S cell) and R hormone, secreted by the
S cell ’s functionally related cell (R cell). We have chosen to refer to the cells
which secrete hormones as S cell and R cell for their ’Sensing the environmen-
tal fluctuation’ and ’Recognising incoming S hormone’ roles respectively. The
following sequence of events leads to the closing of the hormone flow loop:

- the cell (S cell) senses the environmental fluctuation
- S cell begins secreting S hormone
- S hormone reaches functionally related cell (R cell)
- R cell recognises S hormone
- R cell begins secreting R hormone
- R hormone reaches S cell

The amount of hormone is assumed to vary during its lifetime according to the
exponential decay function and the hormone is considered to be present in the
system as long as its amount is larger than some minimum value, min:

Q(n) = e−n/τ Q(n) > min (1)

The presence of both these hormones is a necessary condition for the adaptation
process to occur in the S cell. Adaptation process is performed through the ad-
justments of the cell’s tuning parameters until they reach the values correspond-
ing to its local environment leading to the cell performing correct functionality.
As shown in [19], the hormonal loops can be sustained for the needed amount
of time if the decay rate parameter τ in equation 1 is adjusted according to the
estimate of functional deviation in the functionally related cell.

Figure 2 shows the state diagram which describes the cell’s behaviour. It is an
extension of the state diagram presented in [19] to account for the flow of multiple
hormones. The following control variables are monitored to determine the cell’s
state transitions: the change in the environmental parameter (EE), the cell’s
S hormone present (SM), the cell’s R hormone present (RM), hormones from
functionally unrelated cells present (HO), the incoming S hormone recognised
(RR), the incoming R hormone recognised (FB). The hormone is recognised
by the cell if it comes from the functionally related cell. Control variables are
omitted from the figure for the sake of clarity.

The cell’s state depends on the presence or absence of hormone(s) (H), the
functionality it performs (A) and the value of the environmental parameter (E)
which is measured locally and whose variations represent environmental fluctu-
ations. Therefore, the cell’s state is represented as a 3-tuple (H, A, E) for which
possible values are as follows:

– H: L - no hormone present, S - sending S hormone, R - sending R hormone,
P - passing hormone not functionally related to the cell, SP - both S and P,
PR - both P and R;
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Fig. 2. The cell’s state diagram

– A: L0, L1, L2, L3 or L4 - functionality adapted to E0, E1, E2, E3 and E4
respectively, A - adapting or F - failed to adapt;

– E: E0, E1, E2, E3 and E4 - five different values of the environmental param-
eter under consideration.

Figure 2 shows the cell’s state diagram only for one set of the states correspond-
ing to one change of the environmental parameter i.e. from Ei to Ei+1. The
broader state diagram includes multiple such regions according to the number
of possible discrete values of the environmental parameter E. In comparison to
figure 1(b), it can be said that the system is in state 0 when each cell is in one of
the states 0 or 3. In these states, the cell does not contribute to any functional
deviation of the system as a whole. While one or more cells are in any of the
states pertaining to adaptation process, the system is in state 1.

4 Experimental Setup and Simulation Results

The main goal of the presented simulations is to demonstrate how creation of
hormonal loops initiated by environmental fluctuation can further initiate and
sustain adaptation process within the system tissue until adaptation is achieved.
For that purpose, the model of a system introduced in section 3 was used. It
has been monitored for certain number of discrete time ticks during which en-
vironmental parameter of randomly chosen cells was changed. The focus is on
monitoring hormonal loops created between functionally related cells which ini-
tiate and sustain adaptation process.
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(a) Hormonal loops between functionally re-
lated cells for the three S cells with sensed
variation in environment (52, 23, 32)

(b) Tick 33: Plot of the hormonal flow
within the system (loops are addition-
ally marked)

Fig. 3. Hormonal loops sustaining adaptation

The simulations were run for the configuration of the system as shown in
figure 3(a). The system states during simulations were monitored and shown
as sets of plots, one for each element of the 3–tuple which represents the cell’s
state. Different values of the parameter are assigned different colours so that the
adapted system has ’Functionality’ plot (A) and ’Environmental parameter’ plot
(E) with the matching colours for each cell. For the sake of clarity in the results
presented in figure 3(b), only three cells, shown in magenta when in state H:S,
have the value of the environmental parameter changed:

1. tick 1: cell (1,3), encoding ID 52, changes parameter E0 to E1

2. tick 10: cell (5,5), encoding ID 23, changes parameter E0 to E1

3. tick 20: cell (3,6), encoding ID 32, changes parameter E0 to E1

4. tick 25: cell (1,3), encoding ID 52, changes parameter E1 to E2

In this figure, it can be clearly seen that the loops of hormone flows have been
formed between these cells and their functionally related cells, shown in blue
when in state H:R. Monitoring of the simulation runs shows that the adaptation
process is initiated and sustained by these hormonal loops until adaptation is
achieved.

5 Discussion

Seeking inspiration for an effective adaptive technique for autonomous, adap-
tive man–made systems, we have investigated principles of adaptation initiated
and sustained by the loops of hormone flows which may be recognised in living
systems. The behaviour of the investigated system is such that it maintains its
homeostasis in the presence of environmental fluctuations which can endanger
system’s functionality. The sensed variation in environmental parameter initiates
hormone flows around the architecture which, upon closing the loops, initiate
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and sustain adaptation process. Due to such processes, the system’s functional-
ity, endangered by environmental fluctuation, is preserved.

It can be argued if such preservation of functionality is an emergent prop-
erty. Is viability of the tissue endowed with the ability to form hormonal loops
emergent in the presence of environmental fluctuation? Functionality of the sys-
tem is a property of the system as a whole. On the other hand, the hormone
flow is determined by the cell’s behaviour and each cell has only connections to
its immediate neighbours. However, the messaging system inspired by hormonal
communication and control makes it possible for functionally related cells to
communicate and contribute to the maintenance of functionality irrespective of
their placement within the architecture. So, the system’s functionality will not
be lost despite fluctuating environment – maintenance of its functionality will
emerge as a result of the processes supported by hormonal loops.

Hormonal loops are formed between the cells i.e. at the higher hierarchical level
of organisation than the cell-level. It is a challenging task to investigate this phe-
nomenon further for the self-sustainability of the multicellular system. In particu-
lar, further investigation should address models of self-referring and autonomous
tissue – the qualities we sought in adaptive and autonomous man–made system.
For such investigation, artificial chemistries (AC) [20] represent suitable tools for
further experimenting. AC systems, already recognised as tools for emergence–
based technologies, can be endowed with hormonal flows initiated by environmen-
tal fluctuations thereby setting the grounds for the development of a novel system
for adaptive information processing within fluctuating environment.

Another challenge is deeper investigation into possible technologies which
could support implementation of the adaptive system which exhibits presented
principles of adaptation. When we look into today’s electronics systems, it has
already been recognised that silicon technology will soon not be able to meet the
needs of the near–future computational demands (the wall will be met soon!).
Therefore, new technologies will necessarily take its place [21], [22]. As it appears,
all these technologies are extremely sensitive to environmental fluctuations – a
small variation in temperature or pressure, for example, may lead to completely
undesired outcome of the computation based on some chemical reaction. En-
dowed with the system which enables its tissue to adapt to such fluctuating
environment, they would make a promissing alternative.
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Abstract. In this paper, an expression of embodiment on computation
and its effect are explored. By introducing the notion of latent state
space, embodiment is formalized as an extension of state space and its
projection process and resulting misidentification of states. Implement-
ing this structure in the game of life, we investigate the relationships
between the original system and misidentification of states by means of
informational structures. As a result, we observe that, in particular case,
misidentification affects the system’s behavior and is relevant to maintain
the property of the original system.

Keywords: Game of Life, Cellular Automata, Embodiment.

1 Introduction

The aim of this paper is to explore the concept of embodiment in the theoret-
ical sense. Recently, the term “embodiment” is used in the wide range of fields
and contexts but it is still a difficult concept to deal with. In robotics, intro-
ducing the embodied agent, lots of cognitive phenomena have been realized by
the direct interaction with the environment, constructing its functionality (i.e.
internal network architecture) in a bottom up manner [1]. The method suggests
that our body regulates the way to interact with the environment and simultane-
ously shapes and determines our functionality to accompany a certain cognitive
phenomena [2].

On the other hand, philosophers offer another aspect of body [3]. Let’s re-
mind the famous thought experiment proposed by Dennett [4]: Imagine a brain
floating around in a vat of chemicals and nourishments, and kept stimulated by
various electrodes that carry information about the world. Moreover, imagine
that the technician had copied the brain’s functional structure and all of the
information in it to a computer program and it still accompanies experience and
cognition. This type of understanding to cognition and experience constitutes
the functionalist perspective. This means that as long as the information and
the program was running appropriately, we need neither body nor even brain.
In those cases, the necessity of the body is just to do something actually, to
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take action in some way in the world. Now, let’s invert this story as follows.
To maintain the function of the brain in the vat, we should keep filling up the
chemicals and nourishments from outside. Even if the information and the func-
tional structure in the brain was copied to the program, to run the software,
the underlying hardware should be constantly powered by electricity. But those
examples are only the part of the whole story. If we press forward this line of
thought, pursuing the origin of the source constituting the body, a grounding
point would never come and it would spread all over the environment. This is
called the frame problem, in this case, the problem to define the constitution of
the body. So we can say that the first story, the functionalist stance, would not
require body or even brain in principle, and for the second story, body would be
absorbed into the environment.

One important lesson that we can learn from these stories are that the concern-
ing system which constitutes the consistent explanation is realized because of our
appropriate selection of the frame. It means that the composer of the system is ig-
noring the underlying assumption and setting some limitation to their execution
environment. But in the case of the real cognitive system, the execution environ-
ment seems not to be given in a fixed manner, but rather managing it on their own
right and realizing their cognition through their body. That is, because of the body
exposed in the constant connection with the environment and being unable fully
to escape from its infection, the concerning system (or its functionality) would not
be consistently expressed but rather defined in an ad hoc manner and functioning
in the world. In this paper, we concern those double-barreled bodies that carry
the role as an interface. Our aim is to understand the real cognitive phenomena
by positively extending the concept of body in robotics. Dealing with those bod-
ies, we could understand the primitive form of cognition, which is maintaining the
identical functionality, and simultaneously openned up to the change in principle,
such as development, learning, and adaptive behavior [5]. Delicate problem here is
that the body of the concerning system won’t be expressed by simply expanding
its frame, the frame of the original system. This way of equipment would carry
on exactly the same problem that we have wanted to solve. What we here have to
express is the original system which is constantly exposed to the expansion of the
frame. To express the formal structure of those conceptions, in this paper, we use
cellular automata (CA) model. Particularly, to determine the behavioral modali-
ties of the effect of embodiment, we use the famous CA model, the “Game of life”
(GL) [6].

The GL is a well studied CA which has attracted much interest in the last
decades. Defined as a two-dimensional square lattice, the model consists of an ar-
ray of cells, each of which is in the state either off (0) or on (1) state. A cell interacts
with the eight neighboring cells in accordance with a transition function, which
is defined as follows: (i)If a cell is in state 0 and three of its neighbors are in state
1, then the cell’s state becomes 1. (ii)If a cell is in state 1 and two or three of its
neighbors are in state 1, then the cell’s state remains 1. (iii)In all other cases, a
cell’s state becomes/remains 0. The transitions of cells take place simultaneously
in discrete time steps. Many important characteristics of GL have been revealed
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such as computational universality, a 1/f power spectrum, and self-organized crit-
icality. Moreover, GL has been often used and chosen to demonstrate a particular
biological characteristic because of its rich and complex behaviors. In this paper,
we use GL to determine the relevance of embodiment to the system.

This paper is organized as follows. In the next section, we explain our moti-
vation and how we express the embodiment in CA by introducing the notion of
latent state space. In section 3, by implementing the latent state space in GL,
we observe its behavior and analyze the informational structure it accompanies.
Finally we give discussions and conclusion in section 4.

2 Expression of Embodiment Exemplified in CA

Let’s consider a computing process on PC. Even in this case, we can find the body
discussed in the previous section. Computation is a system which is mathemat-
ically defined and it corresponds to the information or the functional structure
in the previous examples. This computation is connected to the environment
through a device, a computer. Generally, various effects have been discussed,
but one of the most famous example is the bit infection, constant growth of the
undefined bits from the low order digit, and the resulting over flow of the com-
putation. Although any computing process is latently exposed to the danger of
miscalculation, they are well protected and limited by designers of computers.
In this paper, we release this limitation in incremental steps, and observe the
effect to the system. This could be considered as an example of embodiment
on computation. In the next subsection, we will implement the analogy of this
example into the computational process of CA.

2.1 Latent State Space: A Formal Expression of Embodiment

In order to express the above motivations, we here introduce the notion of latent
space. Although it is originally introduced by using lattice theory [7,11], we
avoid lattice theory in this paper. Let us consider a cellular state space Ω =
{0, 1}. Given a positive integer K, let ΩK be the K-fold Cartesian product of
Ω. ΩK is called a latent state space relative to the state space Ω. Let πk :
ΩK → Ω be a projection map to k-th coordinate (k = 0, 1, · · · , K − 1). That is,
πk(x0, · · · , xk, · · · , xK−1) = xk. πk gives rise to an equivalence relation θk on ΩK :
xθky ⇔ πk(x) = πk(y). Since we have an isomorphism ΩK/θk

∼= Ω, we have K
alternative isomorphic representations for the state space Ω. This vagueness of
the representation of Ω is the key to the following constructions.

Consider that two cells (numbered 0 and 1) are interacting with each other.
They changes their states by following an intercellular interaction rule f : Ω2 →
Ω between them. The state of cell 0 is denoted by w0 ∈ Ω and the state of cell
1 is denoted by w1 ∈ Ω. Suppose K = 2. In order to express vagueness of states
w0, w1 ∈ Ω, we shall associate an element xi ∈ Ω2 and a projection πki such
that πki(xi) = wi with wi for i = 0, 1. Each cell receives an input (w0, w1) to it
as (x0,x1) ∈ Ω2×Ω2. Then it observes both x0 and x1 by a single projection π0

or π1 and make a identification of the input in order to follow the rule f . In this
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setting misidentification of an input to a cell can occur. For example, consider
the case (w0, w1) = (0, 0),x0 = (0, 1),x1 = (1, 0), k0 = 0 and k1 = 1. If cell 0
choose π0 then it identifies the original input (0, 0) as (0, 1). If cell 0 chooses π1

then it identifies the original input (0, 0) as (1, 0). Thus, in this example, for any
choise of projection the cell makes misidentification.

2.2 Model Description

In this subsection, we implement the above structure into GL. We define the data
of a cell at site (i, j) and time t by the triplet (xt

i,j , w
t
i,j , k

t
i,j) with πkt

i,j
(xt

i,j) =
wt

i,j , where xt
i,j ∈ ΩK , wt

i,j ∈ Ω and 0 ≤ kt
i,j < K. xt

i,j is called a latent state of
the cell. wt

i,j is called a state of the cell. The projection to the kt
i,j -th coordinate

πkt
i,j

is called an observation. Next we describe the rule dynamics in our formal-
ism. Suppose that the transition function of GL is expressed as f : Ω9 → Ω. A
cell at site (i, j) and time t receives an input (wt

i−1,l, w
t
i,l, w

t
i+1,l)l=j−1,j,j+1 ∈ Ω9

to it as a 9-tuple of latent states (xt
i−1,l,x

t
i,l,x

t
i+1,l)l=j−1,j,j+1. The number

of possible observation is K. Since we external observers describe the behav-
ior of cells by introducing the state space Ω, the degree of misidentification
of an input should be minimized in the actual realized observation. Motivated
by this consideration, we define the time evolution of cellular data as follows;
define σt

i,j,k :=
∑

m=i−1,i,i+1

∑
l=j−1,j,j+1

d(wt
m,l, πk(xt

m,l)), δt
i,j := min

0≤k<K
σt

i,j,k and

St
i,j := {k|σt

i,j,k = δt
i,j}, where d is a metric on Ω given by setting d(0, 1) = 1.

The update of the data of a cell at site (i, j) and time t is performed by the
following three steps.

(i)Choosing an observation. An element of St
i,j is chosen by following the

equiprobability distribution on St
i,j . We write the chosen element kt+1

i,j .
(ii)Updating material factor xt

i,j . For k �= kt+1
i,j , πk(xt+1

i,j ) = πk(xt
i,j). For

k = kt+1
i,j , πkt+1

i,j
(xt+1

i,j ) = f((πkt+1
i,j

(xt
m,l)m=i−1,i,i+1,l=j−1,j,j+1). These equations

determines xt+1
i,j uniquely since xt+1

i,j = (π0(xt+1
i,j ), · · ·, πK−1(xt+1

i,j )).
(iii)Updating formal state wt

i,j . wt+1
i,j = πkt+1

i,j
(xt+1

i,j ).

The above three steps defines the time evolution of the cellular data from
(xt

i,j , w
t
i,j , k

t
i,j) to (xt+1

i,j , wt+1
i,j , kt+1

i,j ). We call the time evolutionary system de-
fined above “Embodied Game of Life” (EGL). Note that if K = 1 then any EGL
is just an usual GL. In what follows, we only adopted the periodic boundary con-
dition and the random initial condition to run the system. The random initial
condition here means as follows. For each cell at site (i, j), first its initial state
w0

i,j is chosen to be 0 or 1 with probability 0.5. Second its initial observation πk0
i,j

is chosen from the set of all observations {π0, · · ·, πK−1} with equiprobability.
Then a coordinate of its initial latent state πk0

i,j
(x0

i,j) is automatically deter-
mined by πk0

i,j
(x0

i,j) := w0
i,j . Finally the value of πk(x0

i,j) is chosen to be 0 or 1
with probability 0.5 for k �= k0

i,j . Thus an initial condition for a site is specified.
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Moreover, if the value of δt
i,j is not 0, it means that the cell’s identification of

inputs contains mistake. Hence we call those cells mistake cells.

3 Behavior of EGL

In this section first we observe behaviors of some examples of EGL in order
to find a clue of the effect of embodiment. Particularly, we concentrate on the
behaviors of the system (on-cells, cells with state 1) and mistake cells. Second we
analyze the information structure of the system and characterize the relevance
of the embodiment.

3.1 An Observation

Fig.1 shows the time evolution of EGL and mistake cells. As time evolves, not
just a pattern of EGL but also the one of mistake cells showed various be-
haviors. Especially, we observed that the mistake cells often interrupted the
clouds generated by on-cells to be mixed each other. Moreover, we observed
those cells stabilizing the pattern of on-cells to extra-ordinary ways. For exam-
ple, in K > 1, T = 1000, various different fixed patterns were observed compared
with GL (K = 1).

To observe the global property of the system, we performed a spectrum anal-
ysis. In [8], it is shown by spectral analysis that the GL displays 1/f noise.
Fig.2(b) shows the results. We can see that, in K = 2, the original property of
GL is maintained and otherwise they show a Lorentzian spectrum. In the next
subsection, to understand how the mistake cells and the on-cells are related each
other, we analyzed the informational structure among them.

K=1

K=2

T=2

T=50

T=100

T=1000

T=0

K=5 K=10K=3

Fig. 1. Time evolution of a 30 × 30 random pattern for K = 1, 2, 3, 5, 10. For each
diagram, right side represents the time evolution of mistake cells. All the diagrams are
generated by setting the same initial pattern.
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Fig. 2. Power spectrum at K = 1, 2, 3, 4, 5, 10, 15 and 19. We employed arrays with
100× 100 cells and the number of time steps was set to 4096. In the case of K = 1 and
K = 2, 1/f spectrum was obtained.

3.2 Relevance of Mistake in EGL

To quantify the properties of the space-time patterns of the system according
to the change of K, we used a measure called input entropy, which is defined as

follows: E(t) = −
512∑
i=1

(
Qi(t)

N × log Qi(t)
N

)
, where N is a system size and Qi(t) is

the number of the ith pattern consists of 9 bits in t. We calculated the input
entropy of on-cells (Eo(t)) and mistake cells (Em(t)) and observed their behavior.
Fig.3(a) shows some typical examples of time series of input entropy. We can
clearly see that as K grows, the value of the Eo(t) remains almost the same
but the time deflection of it gradually gets smaller. On the other hand, for the
mistake cells, although the time deflection of the Em(t) remains almost the same,
the mean value gradually gets smaller. These features could be extracted from
Fig.3(b). The classification of space-time patterns can be described with respect
to input entropy as follows [9]: (i) Ordered: Low averaged input entropy and
low standard deviation. (ii) Complex: Medium averaged input entropy and high
standard deviation. (iii) Chaotic: High averaged input entropy and low standard
deviation. Since the GL is known to be complex, the results implicates that
as K grows, the system gradually loses its complexity. On the other hand, the
mistake cells are classified as ordered in the first place but especially in K = 2,
its standard deviation is larger than others.

To pursue the relation between the on-cells and the mistake cells furthur, we
used a measure that aims at extracting directed flow (transfer of information)
between time series, called transfer entropy. Given two time series xt and yt,
transfer entropy essentially quantifies the deviation from the generalized Markov
process: p(xt+1|xt) ≈ p(xt+1|xt, yt), where p denotes the transition probability.
If the deviation from a generalized Markov process is small, then the state of Y
can be assumed to have little relevance on the transition probabilities of system
X . If the deviation is large, however, then the assumption of a Markov process
is not valid. The incorrectness of the assumption can be expressed as follows:
T (Y → X) =

∑
xt+1

∑
xt

∑
yt

p(xt+1, xt, yt) log p(xt+1|xt,yt)
p(xt+1|xt)

, where the sums are over
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Fig. 3. (a)Time evolution of an input entropy of on-cells and mistake cells for K =
1, 2, 3, 10 and 16. Orbits are overlaid for 10 trials in each diagrams. (b)The mean of
input entropy vs the averaged standard deviation of input entropy. Data of on-cells
and mistake cells for K = 1 − 19 is plotted. Each dot is the average over 10 trials.
For the mean of input entropy, calculating the average input entropy for each trial,
we got the mean over those values. (c)The plots of transfer entropy according to K.
Data of T (Eo → Em) and T (Em → Eo) for K = 1 − 19 is plotted. Each dot is the
average over 10 trials. By discretizing the state into intervals which length 0.1 each, we
calculated the transition probabilities for each trial and obtained the concerning value.
We employed arrays with 50 × 50 cells and the number of time steps was set to 1000.

all amplitude states, and the index T (Y → X) indicates the influence of Y on
X . The transfer entropy is explicitly nonsymmetric under the exchange of X
and Y , and can thus be used to detect the directed exchange of information be-
tween two systems. The method is frequently applied in the field of sensorimotor
coupling system research to quantify the informational structure over the redun-
dant network architecture [10]. Since the input entropy reflects the complexity
of patterns, we here analyze the information transfer between Eo and Em (i.e.
T (Eo → Em) and T (Em → Eo)).

Fig.3(c) is the results. At first, we can see that the information transfer from
Em to Eo is larger than that from Eo to Em in each case. And especially in
K = 2, it is clear that the strength of T (Em → Eo) is relatively larger than
the others. On the other hand, T (Eo → Em) remains almost the same value in
each case. This would suggest that, in K = 2, the complexity of the patterns
of mistake cells affect the dynamics of on-cells and is relevant to the system’s
maintenance of the original property of GL revealed in the previous subsection.

4 Discussions and Conclusion

In this paper, by introducing the notion of latent state space, we discussed the
formalization which expresses the embodiment on computation, and implement-
ing the construction to the GL, we examined the behavioral modality of the
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system. In the previous work, the same formalization has been applied to the
elementary CA and shown that it enhanced the class 4 behaviors [11]. Similar
study could be also found in [12]. In those studies, it is said that the main driving
mechanism of those behaviors is the expression of the original system which is
exposed to the expansion of the frame. In this paper, we aimed to determine
the informational structure between mistake cells (influences from outside of the
frame) and the original system. As a result, we observed that, in particular case
(K = 2), there exists a situation that the property of the original system is
maintained by the influence from mistake cells. This could be an example of
the system whose property is not constituted by the static function but rather
maintained by the structural change of its functionality. On this point, further
study is expected for the future work. Especially, by examining the behavior
to the external perturbation, the system’s adaptability or robustness would be
precisely explored.
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Abstract. An artificial developmental process may reflect the principle
of a process starting with a zygote which develops to a multicellular
organism. An organism goes through an interwoven process of shaping
the form and behaviour. Metamorphosis is a stage in the development of
many species, e.g. insects, which include a large variation of phenotypic
shape and behaviour in the life-time of the organism. Here principles
from metamorphosis are included as a developmental stage that can be
exploited by evolution to produce artificial organisms with variation in
behaviour at different developmental stages. The target developmental
system is a cellular system close to a non-uniform cellular automaton.
As such, Darwin’s discovery is exploited for evolving genomes for the
construction (development) of von Neumann’s cellular machines, Darwin
meets von Neumann.

1 Introduction

Artificial developmental systems include system with some kind of mapping pro-
cess that produce a phenotype out of the genotypic information by some kind
of indirect iterative mapping process. The input information to the developmen-
tal process may include information from the adaptive process of evolution (the
genome), environmental information (the conditions in which the organism de-
velops) and intermediate phenotypic properties (cues provided by the emerging
phenotype), —See [1].

In nature the developmental process is cellular, a process starting from a zy-
goth developing to an adult (multicellular) phenotype. A cellular process refer
to communication, inter– and intracellular, autonomous processing of informa-
tion in each cell, and that the cell is both the constructor and construct of the
phenotype. The developmental process, the process of constructing the pheno-
type, may consists of stages, e.g. zygote, blastula, embryo, nymphs, larva, pupa,
juvenile and adult, depending on the strategy adapted by the species, —See[2,3].

In living organisms functionality may be viewed as the purpose, i.e. reproduc-
tion, and the behaviour as the means of achieving the functionality. As such, the
complexity of the organism, i.e. the behaviour, is given by the need to obtain an
organism with a complexity necessary to achieve the purpose. In the artificial
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counter part a machine have a purpose and hence a functionality. The behaviour
of the machine fulfils the purpose. The complexity of the machine most be at a
level that makes the machine work, —See[4].

Taking the view of machines at a complexity level that makes them work into
artificial development raises the question of what is needed to make (develop) a
machine that work. Here this question is used as inspiration to look into, and
trying to, include, inspiration from insect metamorphosis. Metamorphosis is an
evolved biological adaptation implying stages. Stages in metamorphosis separate
resources to deal with specialised tasks. The different tasks enables a kind of
resource ”optimisation” as resources can be aimed at obtaining intermediate
organism properties on the developmental path to a reproductive adult [5].

Herein metamorphosis is taken as inspiration to reduce the resources usage in
artificial development [6] and to enable artifacts with different behavioar given
by life phases and/or external infuence. The stage vice development, including
different phenotypic properties, is taken into the mapping process as stage where
the resources used is relieved of functional requirements, i.e. fitness. The exper-
imental approach shows how evolution and development (EvoDevo [7,3]) can
exploit this stage’s relive in pressure to be exploited for generating the general
form of the ”adult” phenotype from the non/different functional early pheno-
typic form.

2 Metamorphosis: Form and Function

As stated the process of development is an iterative process of creating and form-
ing of the phenotypic structure. This implies an alteration of the phenotype dur-
ing development, e.g. by growth, cell division and differentiation. The phenotype
includes an inherent plasticity. This may be divided in two. Individual plasticity,
i.e. phenotypic plasticity [8], an ability to adapt form and function of the devel-
oping phenotype depending on environmental conditions. As such, phenotypic
form and function of artificial organisms can depend on environmental condi-
tions as to be robust to environmental changes [9]. A second form of plasticity
relates to the change of phenotypic form during development, i.e. developmen-
tal plasticity [10]. Metamorphosis is an evolved developmental plasticity [5] that
enables development of phenotypes that include intermediate phenotypes with
form and function that largely deviate from the adult (reproductive) phenotype.

In the view of evolution the origin of metamorphosis possible relates to ex-
ploitation of available resources by introducing a stage to transform one pheno-
typic form/function capable of exploiting available resources to a form for the
actual function (purpose) of reproduction. The pupa stage in this transformation
include an extreme expression of plasticity hence also a increased activation of
genes. However, at this stage the functionality (or purpose) is not reproduction
but the transformation to a functional (reproductive) phenotype.

By introducing stages in artificial development that is relieved of an actual
functionality requirement, except for the emergence of a functional phenotype
at a later stage in development, this intermediate stage can as in insect meta-
morphosis be concentrated on producing a form for a functional phenotype.
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Introducing such a stage hopefully reduces the resources needed to develop a
functional phenotype. This reduction in resources is here given as a time slot in
development where there is no requirement of functionality. As such, this time
slot in developmental time is exploitable (by evolution) to transform an early
phenotypic form, e.g. larva, to an functional adult form.

3 EvoDevo: Darwin Meets von Neumann

In this work the structures targeted are developing structures capable of com-
putation. The computational architecture is based on Cellular Automata (CA)
originating from von Neumann [11]. von Neumann’s Self-Reproducing Automata
is in itself close to artificial development [12], cells with a finite number of
states that can self-replicate, i.e. an expanding cellular structure. Herein the
developmental phenotypes is based on a cellular computational machine [13]. A
non-uniform CA is developed, i.e. the structure/form, emerges out of a set of
developmental rules capable of cellular growth, differentiation and cell death.
The developmental rules are evolved using a Genetic Algorithm (GA), a princi-
ple inspired by Darwin [14].

As stressed in Section 1 organisms have a functionality (purpose). The func-
tionality here is the output of the non-uniform CA phenotype, i.e. an emerging
behaviour given by running the CA.

Fig. 1 is an example of development of a cellular machine and it’s behaviour.
The phenotype is an emerging non-uniform Cellular Automata (top). Develop-
ment of the structure goes through steps, Development Steps (DS), where the
structure is formed by growth (expanding the number of cells) and differenti-
ation (changing the rule of a given cell). The different colours in the emerging
phenotype represent what CA rule the cell contains. White cells are considered

Fig. 1. Snapshot of the development of phenotypic structure (top) and the correspond-
ing emergent behaviour (bottom) shown as space-time pattern
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empty. The dashed lines indicate that there exists events that are not shown in
the figure, e.g. the phenotypic structure between DS 8 and DS 98 are not shown.
The behaviour of the system in Fig. 1 (bottom) is the state space produced from
an initial state executed by the developing non-uniform CA. The space time
plots for the behaviour consists of 100 State Steps (SS) for each development
step. This implies that there exists 10 000 space time plots describing the be-
haviour of the system. It is important to note that in this system a behaviour
exists from the first cell throughout the life-time of the organism. This opens for
a adaptive system that can respond to externally enforced changes.

The evolution of a developing cellular machine in such a system exploits Dar-
win’s discovery for evolving genomes for the construction (development) of von
Neumann’s cellular machines, Darwin meets von Neumann [15].

4 The EvoDevo System

The system as a whole is close to an Evolutionary Developmental (EvoDevo)
approach —see e.g. [3,7]. This implies a developmental system with a possibil-
ity to include information from the environment, intermediate structures and
behaviour in addition to the genetic information carried in the genome. The de-
tails of the system are only discussed in brief. For a complete description of the
system —see [9] (developmental model) and [16] (evolutionary algorithm).

The development model is based on cellular development. This implies that
the genome is present and processed autonomously in every cell. In the model,
the cell also contains the functional building blocks. Fig 2(a) illustrates the
developmental system — the cell. The cell is divided into three parts: the genome,
development process and the functional component of the cell.

The genome consists of a set of rules. Rules are restricted to expressions
consisting of the type and state of the target cell and the types and state of the
cells in its von Neumann neighbourhood. There are two types of rules i.e. change
and growth rules. Cell growth is a mechanism to expand the organism.

(a) Components of the cell.
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(b) Gene regulation for a single rule.

Fig. 2. The basic cell and a rule showing the gene regulation
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Differentiation changes a cell’s type i.e. its functionality. The result part of a
change rule give the cell the target cell is going to be changed into. Cell death
is a result of a change rule changing a cell type into empty whilst the state
information is keept. As such, a cell can be killed off, but the state information
in the cell is still avilable to neighbouring cells.

Each rule, shown in Fig. 2(b), consists of a result and a condition. The condi-
tional part provides information about the cell itself (type and state) and each of
the neighbouring cells. State information provides a way to include information
relating to the functionality of the organism at a given point in time as well as
information about the external environment — the empty cells in the environ-
ment also have state information. As such, a cell is represented in the condition
of a rule by two genes representing its type and its state. However, a target cell
is only represented by one gene: it’s type for change rules or growth direction
for growth rules. The state of cell may be 0, 1 or Don’t Care (DC).

The functional components of the cell consists of a look-up table (LUT) defin-
ing functionality and a flip-flop as a memory element. The output value is syn-
chronously updated and sent to all its four neighbours and as a feedback to itself.
Available cell types were based on Sippers universal non-uniform CA [13] and
threshold elements [17]. For further details on LUT definitions see [9].

One update of the cell’s type under the execution of the development process
is termed a development step (DS). A development step is thus a synchronous
update of all cells in the cellular array. The update of the cell’s functional com-
ponents i.e. one clock pulse on the flip-flop, is termed a state step (SS). A devel-
opment step is thus made up of a number of state steps. An example of execution
of developmental and state steps for the model can be seen in Fig. 1.

5 Experiment: Metamorphosis Enforced

In the previous section the principles of a EvoDevo system was described. In
order to target the system to an abstract approach the metamorphic stage in
the process of development was introduced by defining a portion of the available
developmental steps differently and enforcing a portion of the cells to output a
logical ”1”, a square three cell wide frame of 176 cells. As such, there is no internal
regulation controlling developmental stages, rather defined enforced changes that
can be exploited by evolution.

In the experiment the main behaviour (or functionality of the adult) is a
sequential counter. Counting is based on the state information of the entire
cellular space and the sequential operation of the functional components of the
cells, i.e. the look-up table and flip-flop. A counting sequence is defined in the
cellular array as the number of logical ”1” in the cellular array increasing by one
for each state step.

An organism witch goes through metamorphosis can in the early stage opti-
mise its resources to reach an intermediate phenotype. Here this is represented as
an entry in the fitness function counting the number of cell expressing a logical
”1”, i.e. a static pattern. In the metamorphic process there is no requirement
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(a) DS 0 (b) DS 49 (c) DS 99 (d) DS 199

Fig. 3. The developing phenotypic structure at different development steps
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Fig. 4. Gene activation and lifetime behaviour

for functionality. The adult stage, the final targeted functionality, targets the
counting behaviour described. As such, the organism goes through an initial
developmental phase (larva) producing a static bit patter, the next step is the
metamorphic transformation from bit patter generator to a functional counter
behaviour. In the last phase (adult) the organism perform it’s counter to the
end of the apportioned number of development steps.

As stated, there is no functional requirement in the metamorphic stage. To
further differentiate this stage to be exploitable by evolution each development
step is here set to include zero state steps. As such, the change in state informa-
tion between development steps is not present. This implies that the resources
for a trajectory in the state space are reduced from 100 to 1 node for each
development step.

The experiments was done using a genome consisting of 32 rules evolved for a
maximum of 100 000 generations. As such, herein the target is to evolve devel-
opmental rules that can exploit the different stages as to produce a functional
adult phenotype in the apportionated 200 DS, the functionality is given by 100
SS on each DS. The size of the cellular array was set to a maximum of 32 x
32 cells. In the experiment the state information of all empty cells ,except the
initial zygote, was set to a logic ’1’.
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Fig. 3 shows an example of how the phenotypic structure develops. The initial
configuration of the first single cell at DS 0 is shown in Fig. 3(a). The intermedi-
ate phenotypic form and function (bit pattern) for the first stage of development
is shown in Fig. 3(b). This stage is the final development step targeting a bit
pattern functionality. From DS 49 the organism goes through metamorphosis to
a new phenotypic form shown in Fig 3(c). Between DS 49 and DS 99 there is
no functional requirement to the developing organism. The phenotype shown in
Fig 3(d) is the final phenotypic form considered.

The gene activation plot for the development of the organism in Fig. 3 is shown
in Fig 4(a). The plot show the gene activation level, i.e. number of expressed rules
in the organism, There are active rules, i.e. changes expressed in the phenotypic
structure in the initial stage of development, DS 0 to DS 49. In this phase the
structure shown in Fig. 3(b) is the outcome of development.

In the Metamorphic stage, DS 49 to DS 99, the gene activity is at its peek
before decreasing when the metamorphic stage end. In the plot shown there is
gene activity early in the adult stage finalizing the phenotypic structure and
behavioar.

In Fig. 4(b) the counter sequence behaviour is plotted for the life-time of an in-
dividual together with the total number of cells outputing a logical ”1”. Here the
metamorphosis is at its most prominent. At the early stage there are hardly any
stable counter behaviour but the number of cells outputting a logical ”1” encreases.
This stage was not intended to include counter behaviour, it targets to maximize
the number of logical ”1” in the array. When the metamorphic stage is reached
there are no counting behaviour at all, as the number of state steps for this stage is
set to one. The absence of state steps provide a reduction in resources (state steps)
and a more stable ”environment” caused by an preservation of the regulatory input
from the functional components of the cells. At DS 99 - 100 the effect of the meta-
morphosis emerges as the adult behaviour emerges, a counter sequence of length
33. As such, if the behaviour is considered, it shows how the development creates
a functional adult emerging at the end of the metamorphic stage.

6 Conclusion

In this work it is shown that metamorphosis can be included by defining a part
of the available life-time of the organism as a specialised developmental stage.
The introduction of such a stage can be exploited to create a phenotypic form
that can produced functionality that may change during the life-time of the
organism. Here the experiment shows example of how different functionalities
can be targeted at different stages of development. In the example shown the
metamorphic effect was clearly shown in form of gene activation and the change
in behaviour throughout the life-time of the organism. In ongoing work the
abstract approach are extended to evolve organisms that are sensible to external
environmental variations as to produce different targeted functions. As such, the
metamorphic stage is exploited as a transition phase for reshaping the phenotype
to express different functionalities.
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15. Kampis, G., Szathmáry, E. (eds.): Darwin Meets von Neumann, International Con-
ference on the Simulation and Synthesis of Living Systems. Springer, Heidelberg
(2009)

16. Tufte, G.: Cellular development: A search for functionality. In: Congress on Evo-
lutionary Computation (CEC 2006), pp. 2669–2676. IEEE, Los Alamitos (2006)

17. Beiu, V., Yang, J.M., Quintana, L., Avedillo, M.J.: Vlsi implementations of thresh-
old logic-a comprehensive survey. IEEE Transactions on Neural Networks 14(5),
1217–1243 (2003)



G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part I, LNCS 5777, pp. 91–98, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Local Ultrastability in a Real System Based on 
Programmable Springs  

Santosh Manicka and Ezequiel A. Di Paolo 

Center for Computational Neurosciences and Robotics,  
University of Sussex, United Kingdom 

santosh.manicka@gmail.com, ezequiel@sussex.ac.uk 

Abstract. A way to move gradually towards an objective is by making sure at 
every step that there is as little deviation as possible while adapting to obstacles. 
This has inspired us to model a local strategy to eventually attain viability 
(equilibrium) in a real complex dynamical system, amidst perturbations, using 
ultrastability to make sure that the path to viability itself is viable. We have 
tested this approach on a real actuator powered by a technology called “pro-
grammable springs” that allows for real-time non-linear programmable actua-
tion. Our experiment involves a problem in adaptation similar to the pole-
balancing problem. To solve it, we use ultrastability in a novel way, looking at 
the viability of dynamical transitions of the system in its phase space, to tweak 
the local properties of the actuator. Observations show that our approach is in-
deed effective in producing adaptive behaviour although it still requires further 
testing in other platforms, thus supporting the original hypothesis that ultrasta-
bility can be an effective adaptive mechanism [3] and laying a foundation for a 
promising new perspective in ultrastable robotics. 

Keywords: Ultrastability, programmable springs, dynamical systems. 

1   Introduction 

The study of adaptive behaviour is central to the study and synthesis of intelligence 
[1]. The field has seen numerous models of adaptation, a majority of them designed 
from a learner-perspective. They involve a process that helps the learning system 
adapt to the intricacies of the task at hand based on some kind of optimisation.  These 
models attempt to minimize the difference in the achievable performance of the sys-
tem and the ideal performance for a given task [2]. In general, adaptation as a process 
is problem-centric. 

Ashby gave a different perspective to adaptation: to learn is to act with stability in 
the face of environmental challenges [3]. The challenge in this case is on the viability 
of the system itself. In Ashby's words, there are certain 'essential variables' in a  brain-
like networked system that must not exceed certain 'critical values' [3]. When the en-
vironment poses a challenge to the system and some of its essential variables exceed 
their critical values, viability is compromised. Ashby proposed a method called 'ul-
trastability' to deal with such situations. As essential variables move to critical values, 
an adaptive mechanism kicks in and tries new connection parameters for the network 
that defines the system. The mechanism remains active as long as the values remain 
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critical, and stops acting once the essential variables are viable again. Ashby argued 
that the system in principle could find the new parameters through random search [3]. 
He implemented his idea in a 'Homeostat', an electromechanical device demonstrating 
various forms of learning [3]. It is worth noting that as a concept of adaptation, ul-
trastability is not performance-based, but it is based on the integrity of the system: its 
consequences for performance are implicit – an idea arguably closer to how adaptive 
mechanisms might work in natural organisms. After this breakthrough in the 1950's, 
only very few researchers have used ultrastability in synthetic adaptation [4]. Indeed, 
after the Homeostat, very few real ultrastable systems have been designed. Ultrasta-
bility can, in principle be applied to any complex dynamical system. One of our moti-
vations is to test its generality by applying it to a different kind of electromechanical 
system.  

A problem with practical applications of ultrastability is the efficiency of random 
search in large parameter spaces that characterises real complex dynamical systems, 
e.g., the mammalian brain. Ultrastability in such cases could take an impracticably 
long time to find the survival parameters. A solution to this problem could be to em-
ploy a 'controlled random' search which we describe here. The system used to test it is 
a real actuator powered by a novel technology called “programmable springs” devel-
oped at Sussex [5]. This technology employs a non-linear programming of the actua-
tor's behaviour using a 'force-profile', a graph that indicates how much force should be 
exerted by the actuator under various conditions. In principle, they can be used to 
design the actuator to exhibit any complex rotary motion [5]. Programmable springs 
are a potentially rich technology for intelligent robot actuators as the profiles can be 
dynamically programmed, but one issue that needs to be addressed is that of the best 
method to program them adapted to specific needs. This is another motivation for our 
work. We describe an experiment using programmable springs for an adaptation  
problem where ultrastability, if used as proposed originally, might be impractical, 
time-wise. We implement a novel “controlled random search” flavour, wherein ul-
trastability is triggered both when the essential variables are off viability limits and 
their path towards viability is without a “viability structure” that we refer to as 'devia-
tion'. When triggered, ultrastability mutates small 'pieces' of the force-profile that are 
deemed responsible for the deviated behaviour as observed in its real-time phase 
space, thus trying out new behaviour. It will also be argued that the proposed method 
can be generalized to other problems in adaptation as well. 

2   Methods 

Our experimental apparatus consists of a see-saw platform. Its rotary motion about the 
centre is controlled by a “programmable spring” (Fig.1). It is basically a rotary elec-
tromechanical actuator with angle-sensing capability and a control software that can 
exert a specific force and damping in a particular direction (clockwise or anti-
clockwise) when the see-saw platform is inclined at a certain angle (negative, when 
the left end of the platform is lower than the right end and positive, otherwise). The 
net exerted force determines the angular velocity, which in combination with the an-
gle of inclination forms the axes of the system's phase space. A 'force surface' over the 
actuator’s phase space for the profile in Fig.3 is depicted in Fig.2. The light grey areas 
indicate forces in the anti-clockwise direction and the dark grey areas indicate forces  
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Fig. 1. The apparatus  Fig. 2. Force surface for the profile in Fig.3 

in the clockwise direction. The intensity of each shade indicates the intensity of the 
force exerted at that point. Black areas indicate zero force.    

After the apparatus is switched on, the initial inclination of the platform and the 
shape of the force profile determine its ensuing behaviour. With a force surface sym-
metrical about the angle velocity axis and a uniform gradient along the angle axis, the 
platform reaches an 'equilibrium' point that corresponds to a horizontal inclination of 
the platform, regardless of where it is released from (Fig.4a). However, with the same 
profile, when a metal ball is introduced onto the platform, it reaches a point off the 
equilibrium point (Fig.4b). It can be seen that the perturbed behaviour finishes on the 
same side as the starting point simply because the underlying force profile is not robust 
enough to not give in to the weight of the ball (the light grey arrows in fig.4b show the 
same). In order to reach the equilibrium point in the latter case, one solution could be 
to restructure the force profile in such a way that the resulting behaviour looks similar 
to a symmetrical trail that naturally leads to stable equilibrium in the absence of per-
turbation (dark grey arrows in fig.4b). Thus by adopting a “natural” trail structure as a 
behavioural guide, a force profile that can adapt to perturbations could be found. De-
vising a method to accomplish this is the challenge addressed in this work. 

 

Fig. 3. A sample force profile. 'Positive damping' damps clock-wise rotation and 'negative 
damping' damps anti-clockwise rotation 
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Fig. 4a. Actuator's behaviour without  
        perturbation 

Fig. 4b. Actuator's behaviour with a perma-
nent perturbation 

In all the explanations that follow, the metal ball shall be considered a part of the 
apparatus. The proposed adaptation method consists of 3 steps: (1) actuation, (2) be-
haviour analysis and (3) profile mutation. Starting with a random profile, the actuator 
is activated and its trails in the phase space are captured for a predetermined length of 
time. The actuator is then paused and its behaviour during that period is analyzed by 
breaking the trail into individual 'transitions' like the light and dark grey arrows in 
Fig.5 below. In the analysis, we consider a random subset of these transitions with a 
predetermined number of samples (Parameter V). Any transition similar to the dark 
grey arrows (henceforth referred to as 'ideal transitions') are considered deviating with 
respect to a 'guide trail' as described in the previous paragraph, following which, the 
responsible tiny part of the profile is slightly mutated, that is randomly restructured in 
the spirit of ultrastability. The whole process is then repeated until a profile is found 
such that its trail spends a considerable length of time near the stable equilibrium 
point called as the 'Global Viability Zone' or 'GVZ' (the central square in Fig.5).  

 

Fig. 5. A-B arrows are ideal transitions. The square is the GVZ and the circles are the TVZ's. 
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Each actual transition considered for analysis in a trail is compared with a corre-
sponding ideal transition and if they are considerably different then the actual transi-
tion is considered deviating. An ideal transition at any point in the phase space is  
constructed as follows: if n is the starting point of a transition, draw an arc clock-wise 
from n with the stable equilibrium point (SEP) as the centre through a fixed angle α, 
the parameter W (Fig.5). The point n+1 where the arc ends is referred to as the 'Ex-
pected Destination Point' (EDP). Then, a 'Transition Viability Zone' (TVZ) is con-
structed around the EDP whose radius is proportional (by a fixed  'TVZ radius factor', 
the parameter X) to the distance between n and EDP. If the actual destination point 
(ADP) in the actual transition is not within the TVZ, then the transition is deemed 
deviating. The EDP computation method captures the essence of approaching of the 
trail towards the SEP. The TVZ then acts as a “cushion” for the transitions so they 
don't have to be perfectly circular (in fact they can't be as they have to head in to-
wards the SEP) and gives way to the formation of spiral trails. Again, the cushion lets 
spiral-like trails to emerge, thus giving room for complex behaviour. When a profile 
mutation is required because of a deviating transition, the responsible point on the 
force profile is looked-up and mutated as follows: if the absolute value of the angle 
velocity of the ADP is greater than that of EDP, then the absolute value of the force 
and damping values at that point are decreased and increased otherwise. The magni-
tude of mutation to be performed is computed as follows:  

Magnitude =  A × B / C,  

where, A = Random number in (0, Initial mutation range (Parameter Z)),  

B =  ADP-to-EDP distance,  
C = Mutation range factor (Parameter Y). 

The mutation range factor is manually set (an appropriate value was estimated by trial 
and error in our experiments). Mutations of proportionally lesser magnitude are also 
performed in the same direction on a few points near the chosen point in the profile in 
order to get a 'smooth effect', for the sake of gracefulness. After a predetermined ini-
tial mutation range is set, it is periodically tuned according to how well the adaptation 
is happening. After every few iterations of the actuation-analysis-mutation cycle, the 
current profile is scored and if it is better than the last evaluated profile, then the  
mutation range is narrowed a bit so the adaptations accumulated until then are more 
likely to be conserved, otherwise it is widened a bit so new adaptations could be ex-
plored. The method for scoring a profile is as follows: 
       Profile score = D - (2 × E) 
                                       F 
where, D = time spent by the trail in the GVZ, 

E = standard deviation of the time spent in each quadrant of the phase space, 
F = total time spent in the phase space. 

As it can be seen, a number of control parameters are manually set before starting 
each experiment. A number of experiments were conducted by varying them. The 
following section will present the results from the most successful experiment.  
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3   Experiments 

This experiment was run for about 10 hours at the end of which 842 profiles were 
generated. The following values were chosen for the parameters: V=250, W=30°, X=2, 
Y=80 and Z=100. Fig.6 below shows how the factors D, E (described above) and the 
profile score change with time. As it can be seen, there is a gradual improvement in 
factor A and the profile score over time. Since B seems to be almost constant, it can 
be assumed that A has more or less solely contributed to the improvement in profile 
score. The improvement in A can be attributed to the gradual approach of the average 
point in each quadrant visited by the evolving trails, towards the SEP (note the circles 
marked in Fig.7 where this approach has been captured). Fig.8 below shows the be-
haviour of the 600th profile that had the highest profile score of all. The trail indicates 
that it has developed some kind of 'one-arm strategy', with one active arm at a time 
(the two ellipses). Though it could give the indication that during these one-sided 
times, the ball is stuck on that side whereas in fact, it was not. This is supported by 
direct observation. Also, though not quite distinctly highlighted in fig.8, sudden drops 
in the angle velocity are also present. They characterise something we would like to 
call the 'braking behaviour' which actually let the ball roll smoothly on the platform 
thus performing a pause-and-pass act. Such an act in principle can enable the ball to 
gradually settle at the centre of the platform. Though it never fully successfully hap-
pened, the repeated braking behaviour indicates a trend to bring the ball to the centre. 

Overall, the results show that the system develops a tendency towards reaching a 
dynamic equilibrium where the ball actuator behaves in such a way that the ball stead-
ily sways about the centre of the platform and thus not simply succumbing to its 
weight. Experiments with other control parameter values resulted in different kinds of 
behaviours that could be in part explained by the choice of those values. Also, a 
slightly different approach to the mutation method was tried in it the direction of the 
mutation was also randomly chosen in a whole-hearted spirit of ultrastability, thus 
encouraging rapid exploration. The results (not presented here) showed emergence of 
interesting behaviours in a very short period of time. However, they quickly disap-
peared as the learned adaptations got easily eroded by the ensuing explorations. 

 

Fig. 6. Trends in profile score, time spent in the GVZ (A) and standard deviation of the time 
spent in each quadrant of the phase space (B) 
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Fig. 7. A frontal view of the time evolution of the quadrant-wise average of the trails. The bold 
box is the latest average. 

 

Fig. 8. Behaviour of a top scorer profile in the phase space. The bold ellipses mark approxi-
mately the average trajectories, each one slightly biased to one of the two sides of the platform. 

4   Discussion 

The objective of this work was to test ultrastability as an adaptive mechanism in a real 
system and to tailor it to suit the structure of the powering mechanism based on “pro-
grammable spring”. Due to the continuous nature of the force profile and the need to 
adaptively shape the profile in a controlled fashion, the notion of viability zone in 
ultrastability was extended to the properties of the dynamical transitions in the phase 
space rather than defining it only for the state of the whole system. This is a novel 
conception of how ultrastability may be used. Our method was tested with a balancing 
problem. The ideal outcome of the experiments is a force profile adapted to the 'struc-
ture' of the perturbations (the dynamics of the moving ball) wherein the ball would be 
brought to a stand still in the middle of the platform, regardless of its initial position. 
With respect to this, the actual outcome could be treated as only partially successful. 
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One reason for this is the highly sensitive physical aspects of the system – even a 
slight movement of the ball off the centre can throw the system off balance and trig-
ger behavior that keeps the ball in continuous motion. Repeated use also creates  
mechanical noise that cannot be easily removed and that the system has to adapt to 
further. Moreover, interesting behaviours might emerge if the EDP (Fig.5) were to be 
computed from a 'spiral-in' towards the SEP rather than from a circle as proposed in 
this work as the inward bias might encourage a stronger control around the SEP. Fu-
ture research in this direction could take into consideration these design factors in 
order to achieve improved performance. With regard to the time to adaptation, our 
current approach takes quite a long time to find a suitable profile because the actua-
tion, analysis and mutation steps happen one after the other. If they could be per-
formed in parallel then the performance should in principle improve. 

To summarize, it was shown that ultrastability can be used as an effective adaptive 
mechanism in a programmable spring based real electromechanical system. Our ex-
tended version of ultrastability can shape the dynamical phase space transitions of the 
system, moving beyond the conventional approach of monitoring only the state of the 
system. We believe that this approach can be used as an adaptive mechanism for other 
problems too with a proper, choice of the various parameters used in the method. For 
instance, if the actuator were to be used in a wheel that has to rotate continuously, 
then the SEP would be a line horizontal to the angle-axis depending on the desired 
velocity and the direction of rotation and the shape of a TVZ may be a rectangle in-
clined at various angles to the SEP line. We thus believe that the combination of a 
generic programmable spring technology and a generic adaptation mechanism based 
on ultrastability is a promising and workable tool for designing adaptable robots.  
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Abstract. The environment greatly influences acquirement of the be-
havior on the artificial life creature (AC) and artifact object (AO). How-
ever, the conventional studies like Karl Sims’ ones have not accurately
considered in an environmental influence. Instead, these influences are
considered by replacing them into a simple environment. In this study,
we accurately model the under-water environmental influence. And we
propose a simulation method for artificial creature swimming in consid-
eration of buoyancy and water drags as a virtual water environment. As
a result of simulation, we verify that it is possible for AC and AO to ac-
quire swimming behavior in the under-water environment. Additionally
we show the analysis of the acquired swimming behavior.

Keywords: Physics modeling, Artificial Life, Animation, Simulation.

1 Introduction

A lot of simulations on the computer have been done for studying on acquisition
of behaviors, evolution, and learning methodologies on a virtual artificial life
creature and object. Terzopoulos et al.[1] realized a behavior of an artificial fish
whose controller learns swimming in the virtual water environment. Sims[2][3]
showed that the virtual creature is able to acquire its morphology and behavior
simulationaly by an evolutionary methodology based on the creature’s competi-
tion. There have been a lot of studies based on Sims’ studies. Chaumont et al.[4]
applied Sims’ model to evolution of virtual catapults. Miconi [5] observed coevo-
lution of virtual creatures by fighting each other in Sims’ virtual environment.
In these studies, the experimental environment is set as an ideal environment in
a computer simulation space. This is because they considered that the method-
ology of evolving learning behavior in an ideal environment is more important
than acquisition of the similar behavior in a realistic environment. Therefore,
the influence force from the environments to the virtual creature is not precisely
analyzed. Instead, the implemented force adopted the simple calculation meth-
ods for reducing the computing time. On the other hand, in a field of numerical
fluid dynamics, a lot of fluid simulations have been accurately investigated by a
finite element method and a particle method. Koshizuka et al.[6] suggested the
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MPS method. They made it easy to create animation on the the water surface.
Usami[7] did a simulation of swimming motion on Anomalocaris model in the
virtual two-dimensional water environment using the particle method. But, the
finite element method and the particle method require a great deal of computing
time. So, it is unsuitable to do a real-time simulation for acquisition of behaviors
in virtual environment using these methods. However, we insist that the virtual
environment needs to obey the physical laws for the virtual creature to acquire
a more natural policy of adaptive behaviors. In this study, we accurately model
the under-water environmental influence and aim at doing simulation for the
behavior of the virtual creatures in the realistic under-water environment. As a
result of simulation, we verify that it is possible to acquire a swimming behavior
for the virtual creatures in the virtual under-water environment.

2 Construction of Virtual Water Environment

We assume that the buoyancy and drag act as the force that a virtual object
receive from the fluid effect. We construct a virtual under-water environment by
modelling two forces acting on the object in the water. These two force com-
pare to the buoyancy and drag, respectively(Fig.1). The simulation is performed
by calculating movement of the object which obeys a physics law, resulting in
an animation. We use the ”PhysX (offered by the NVIDIA)”[8] as a physical
calculating engine. PhysX is applied to calculate a basic physical operation, for
example, gravity, and collision among the objects. In the virtual under-water
environment, the density ρ of the water is 998.203[kg/m3] and acceleration of
the gravity g is 9.80665[m/s2].

Fig. 1. Virtual Water Environment
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Gravity

Buoyancy

Fig. 2. Buoyancy Modeling

Direction of Movement

Drag

Fig. 3. Drag Modeling

Based on Archimedes’ principle, we model the buoyancy as a force whose
strength is equal to the weight of the water volume which an object occupied
in the water. This force acts on the center of mass in the opposite direction of
gravity(Fig.2). The strength of a buoyancy in the water, FBuoyancy[N], is given
by Eq.(1).

FBuoyancy = ρV g (1)

where ρ[kg/m3] is a density of the water, V [m3] is a volume of the given object,
and g[m/s2] is an acceleration of the gravity.

We model the drag as uniformly distributed forces to the surface of the
object(Fig.3). In a hydrodynamic field, using the dynamic pressure of a flow
1
2ρU2[kg/(m · s2)] derived analytically as the strength of a drag in the water, the
drag, FDrag[N], is given by Eq.(2).

FDrag = CD
1
2
ρU2S (2)

where CD is a scalar quantity called the drag coefficient, and S[m2] is the refer-
ence area of the object. The drag coefficient depends on the shape of the object.
In this study, the drag coefficient of a sphere is 0.47 and the drag coefficient of a
rectangular solid is 1.50. The reference area of the object is the projection area
of the object to the plane which is perpendicular to a flow.

3 Virtual Flounder Model

We examine how a virtual creature acquire adaptive swimming behaviors against
the under-water resistance in our constructed virtual water environment. It is
assumed that the creature must move towards the given light source as efficiently
as possible. Evolutionary computing (EC) is adopted to obtain the adaptive
behavior. This basic concept comes from Sims’ proposed research. We create the
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virtual creature by connecting a rigid body with actuators. The modeled virtual
creature can act by controlling actuators. Two kinds of virtual creatures are
prepared for this examination. Both of them imitate a rowing type of fish, which
can swim by waving their body upside and down. After evaluation of the virtual
creatures by EC, the obtained behavior is compared with that of an existing fish
such as a flounder and a ray.

Fig.4 shows one virtual creature model, ”Flounder1 Model”, that we modeled.
Flounder1 Model consists of four rectangular plates in the same size and two
spheres in the same size as well. Their density is 998.2030[kg/m3]. Fig.5 shows
another model, ”Flounder2 Model”. Flounder2 Model consists of rectangular
plates with different sizes and two spheres in the same size. Their density is the
same as Flounder1 Model. These virtual creatures have two sensors at their eyes
(spheres) , which can detect the angle between a light source and themselves
and three actuators are set between rectangle plates(Fig.4 and Fig.5).

In this study, we control actuator sets implemented with the virtual creature.
Actuators are controlled by outputs of the three-layer feed-forward artificial
neural network (ANN). Table 1 shows the input and output parameters of ANN.
We assume that each actuator generates an oscillating angular velocity in a sine
function form. The output of i-th actuator (i = 1, 2, 3) is expressed by Eq.(3),
where t is an elapsed time. ωi is an angular velocity and φi is an initial phase
delay. ANN controls (R and ωi) in Eq.(3).
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ωi = R sin(ωt + φi) (3)

The number of the neurons in the hidden layer is two times the number of the
neurons in the input layer. Synaptic weights of ANN and an initial phase delay
of each actuator are initialized by a random value at first. The virtual creature
enables itself to swim towards a light source by optimizing ANN synaptic weights
and the initial phase delay φi.

Table 1. Setting of Input and Output for ANN

Relative angle of actuator i between plates in each time (θxi, θyi, θzi)
Relative actuator i angular velocity between plates in each time (ωxi,
ωyi, ωzi)
Initial phase that is decided by actuator i beforehand (φi)

Input Sine and cosine of the angle θα for front projection between light source
and sensor j in each time (sin θα, cos θα)
Sine and cosine of the angle θβ for plane projection between light source
and sensor j in each time (sin θβ, cos θβ)

Output Relative actuator i ideal angular velocity in each time (R, ω)

Table 2. Experimental Conditions

The number of the neuron of the input layer 29
ANN The number of the neuron of the hidden layer 58

The number of the neuron of the output layer 6

Genotype Wij

Phenotype d
Population 20

GA 1 Step 1/60[sec]
Simulation Step 900
Generation 500
Crossover Probability 0.9
Mutation Probability 0.05

4 Experiments

We carry out experiments to examine how the virtual creature can acquire swim-
ming behaviors towards a light source, and analyze the acquired swimming be-
haviors. We optimize the synaptic weights of ANN and the initial phase delay
of each actuator using a real number type of the genetic algorithm (GA). Table
2 shows experimental conditions.

An evaluated value for GA as a fitness function Feval is an accumulated dis-
tance d between the position of the sensor and the position of light source during
swimming simulation steps in each generation given by Eq.(4).
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Feval =
Step∑
t=0

s num∑
j=0

|xL − xtj | (4)

where Step is the number of steps used for the swimming simulation at each
generation, S num is the number of sensors, xL is the position of the light source,
and xtj is the position of the sensor j at each simulation step t. We use a rank
selection as a reproduction operation based on the evaluated value and an elite
preserving operation in GA. We sort the individuals in ascending order of their
evaluated value and preserve the best five individuals. The others are modified
by crossover and mutation operations. The virtual creatures evolve, learn, and
acquire the swimming behaviors in the under-water resistance towards the light
source by minimizing this evaluated value.

5 Results

Fig.6 shows a snapshot of an example of swimming behaviors that the 500th gen-
eration elite individual has acquired, drawn in every 150 step. Fig.7 shows the
relation of the generation number and the mean of evaluated values in five times
experiments on two models. Fig.8 shows outputs of actuators between 0-100 steps

Start
Light

Fig. 6. A Snapshot of One Example of acquired swimming behavior
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after learning in ”Flounder1 Model”. Fig.9 shows them after learning in ”Floun-
der2 Model”. We upload the movies to URL[9] that each model acquired as the
swimming behavior. From a result of Fig.7, as the number of the generations pro-
ceeds, both models decrease the evaluation values. Flounder2 Model resembling
an existing fish in a shape, Then Flounder1 Model decreases the evaluation value
faster. From results of Fig.8 and Fig.9, we can observe the following; (1) the
actuator equipped with a head (front) plate generates the propulsive force lead-
ing to others, (2) the actuator equipped with a body (center) plate generates the
propulsive force following the front one slightly late, (3) the actuator equipped
with the tail (back) generates no propulsive force. This means the angular velocity
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propagates from the front to the back. From these result, we prove that it is pos-
sible for the virtual creature to acquire the swimming behavior like a real fish in
the rowing types under the water environment by using GA.

6 Conclusion

In this paper, we constructed the virtual water environment by introducing two
forces comparing to buoyancy and drag by use of the physically calculating engine.
And we performed experiments that the virtual creature acquires swimming be-
haviors in the constructed environment. As a result of experiments, we show that
it is possible for the virtual creature to acquire the swimming behaviors under the
water resistance. In addition, we analyzed the acquired swimming behavior.

In a future, we would like to experiment that virtual creatureacquires swimming
behaviors avoiding collision with obstacles in our constructed virtual water envi-
ronment. We would like quantitatively to analyze the acquired swimming behav-
iors and verify the mechanism of the acquired swimming behavior. Furthermore,
we would like to develop a general topology expression for presenting more sophis-
ticated and various types of virtual creatures and explore ”Life as it could be”.
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Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 25–36.
Springer, Heidelberg (2008)

6. Koshizuka, S., Nobe, A., Oka, Y.: Numerical analysis of breaking waves using the
moving particle semi-implicit method. International Journal for Numerical Methods
in Fluids 26(7) (1998)

7. Usami, Y.: Re-examination of Swimming Motion of Virtually Evolved Creature
Based on Fluid Dynamics. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey,
I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 183–192. Springer,
Heidelberg (2007)

8. Nvidia physx, http://www.nvidia.com/object/nvidia_physx.html
9. Movie acquired swimming behavior,

http://autonomous.complex.eng.hokudai.ac.jp/researches/

physics-modeling/movies/nakamura/

http://www.nvidia.com/object/nvidia_physx.html
http://autonomous.complex.eng.hokudai.ac.jp/researches/physics-modeling/movies/nakamura/
http://autonomous.complex.eng.hokudai.ac.jp/researches/physics-modeling/movies/nakamura/


G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part I, LNCS 5777, pp. 107–114, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Evolving Amphibian Behavior in Complex Environment 
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Abstract. In this study, we aim to evolving autonomous virtual creatures which 
have complex shapes in a complex environment. We implement a basic physics 
law and fluid influences with a virtual environment and evolve artificial crea-
tures in plural environments (on the ground, in the water). Each model, which is 
evolved in a different environment, obtains an effective moving behavior in 
each environment (looks like walking, and swimming). 

Keywords: Physics Modeling, Artificial Neural Network, Genetic Algorithm, 
Computer Graphics. 

1   Introduction 

The computer-aided animation using the computer graphics (CG) technology be-
comes more important in various fields such as physics, engineering, entertainment, 
and medical science. In order to create the realistic object motion, Physics modeling 
(PM)-based animation has attracted much attention to researchers and many re-
searches have been presented in this decade. Well-known works are “smoothed parti-
cle hydrodynamics (SPH)”[1], and “moving-particle semi-implicit method (MPS)”[2]. 
These two methods are used for simulating and animating the fluid motion (water, 
flame, and smoke) in a field of production engineering, movies, and game indus-
tries[3]-[8]. On the other hand, the PM-based animation for artificial-beings, which 
can autonomously behave as exiting organisms in the earth, is still undergoing re-
search matter. A motion capture method is mostly adopted to create the animation for 
the artificial-beings. However, this method consumes lots of time and requires a ex-
pert knowledge. One approach is the agent-based animation to overcome problems 
that the motion capture method has. The agent in a virtual environment can autono-
mously behave itself under restriction of physics lows.  Such an agent is realized by 
equipping it with sensors, controllers, actuators, in physics modeling. We can also let 
the agent to evolve by giving some tasks.  

This study aims at establishing a new computer aided animation method using the 
agent-based and PM-based animation. The specific problem we treat in this paper is 
to acquire an adaptive amphibian behavior in a complex environment and to auto-
matically create the animation of its behavior. The amphibian is regarded as the agent. 
Therefore, we provide it with sensors, controllers and actuators. An artificial neural 
network (ANN) is used for the controllers. Evolution of the amphibian is realized by 
ANN learning. Evolutionary computation (EC) is introduced into ANN learning. The 
most different aspect comparing with conventional researches is to deal with a  
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complex environment under restriction of the physics laws. We implement the New-
tonian dynamics (ND) and fluid influences (FI) with the environment. The amphibian 
behavior must obey ND and FI. Forces against the amphibian, coming from ND and 
FI, are figured out by adopting PM with ease. Numerical experiments prove that we 
can obtain the adaptive behaviors, walking and swimming, for the amphibian in the 
complex environment and automatically create its behavior animation simultaneously.  

2   Construction of Virtual Environment 

When we detail with our constructed virtual environment, all experiments described 
below is performed under this environment. 

We use a dynamics engine for implementing the basic physics law with our con-
structed environment. The adopted engine is PhysX, presented by NVIDIA[9]. PhysX 
allows us to simulate physical dynamics and phenomenon such as rigid-body dynam-
ics, elastic-body dynamics, fluid dynamics by using particle physics, and collision 
detection. It consumes much time to compute the fluid simulation by using the parti-
cle physics, since all particles motion must be computed. Therefore it is unsuitable for 
our approach because one of our goal is to make the real-time animation, which needs 
to compute physical dynamics repeatedly. Therefore, we regard fluid influenced 
forces as external forces. These forces act on objects instead of the forces coming 
from environment.  

We introduce two forces caused by fluid. One is a buoyancy, and the other is a 
drag force. The buoyancy is given by Eq.(1). In the fluid the buoyancy artificially 
generated acts on the center of mass of the floating object (see Fig.1(a)). The Drag 
force affected by the fluid is given by Eq.(2). This drag force acts on points randomly 
selected on the surface of the floating object (see Fig.1(b)). 

VgFbuoyancy ρ=  (1) 

2

2

1
AvCF ddrag ρ=  

(2) 

 

(a) buoyancy.  

 

 
 

 
(b) drag force.  

Fig. 1. Influence forces caused by fluid 
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3   Virtual Creature 

We have developed a tool, which is capable of modeling a virtual creature and simu-
lating it interactively. Two fluid forces are implemented with this tool as environment 
forces. We model a salamander using this tool. The salamander can behave itself 
under the water and air resistances, namely a complex environment. Then, we exam-
ine the salamander behavior by evolving it in the complex environment. 

Our salamander consists of twenty rigid solid objects whose geometric and physi-
cal data are shown in Table 1. 

 

(a) Figure of the salamander model. 

 

 

(b) Sensors and actuators. 

Fig. 2. Salamander model  

Table 1. Data of components of the salamander model 

Body Value 
Density 1000=ρ  
Restitution coefficient 1.0=ε  
Static friction 5.0=sμ  

Dynamic friction 4.0=dμ  

Limbs Value 
Density 1200=ρ  
Restitution coefficient 1.0=ε  
Static friction 9.0=sμ  

Dynamic friction 8.0=dμ  

 
The salamander has two optical sensors and thirteen actuators (see Fig.2(b)). The 

optical sensors detect a light strength L from a light source placed in a virtual space. L 
is defined by Eq.(3), where Sensorθ  is an angle between the light source and the sensor 

direction and R is an angular range of the sensor. This value becomes an input of the 
salamander controller. The controller is modeled by an artificial neural network 
(ANN). A detail of ANN is explained in the next section. 

⎩
⎨
⎧ ≤

=
otherwise

R
L Sensorθ ( )

0:

cos: RSensorπθ
  (3) 
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4   Artificial Neural Network (ANN) 

ANN is a well-known brain model. It consists of a set of neurons (units) and set of 
synapses (arcs). Learning is performed by adjusting a set of weights assigned to arcs. 
A single unit is connected mutually and it has a number of inputs and outputs (see 
Fig.3). The input signal of each unit is defined by Eq.(4). The output signal of each 
unit is defined by Eq.(5). 

∑=
j

jjii vwu  (4) 

 

( ) 1
1

−−+= τiu
i ev  

iu : input value of neuron 

(5) 

Fig. 3. Single unit model 
iv : output value of neuron 

jiw : synaptic weight 

 

Fig. 4. Structure of ANN  

Table 2. Components of the salamander 

From each sensor Value 
Light strength ∈L  [0, 1] 
Environmental pressure ∈σ  [0, 1] 
Cosine of angle between sensors and vertical axis ∈)cos( Verticalθ  [-1, 1] 

Sine of angle between sensors and vertical axis ∈)sin( Verticalθ  [-1, 1] 

From each actuator Value 
Cosine of angle of each degree of freedom ∈)cos( Actuatorθ  [-1, 1] 

Sine of angle of each degree of freedom ∈)sin( Actuatorθ  [-1, 1] 

Cosine of a phase of the added torque ∈− )cos( 1tθ  [-1, 1] 

Sine of a phase of the added torque ∈− )sin( 1tθ  [-1, 1] 

Normalized gain of the torque  
∈−

max

1

A

At  [0, 1] 

 
Fig.4 shows a structure of ANN we adopt. ANN consists of an input layer, an out-

put layer and a hidden layer. The arcs of the Input layer are connected with sensors of 
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a salamander. They receive signals from sensors. The arcs of the output layer are 
connected with inputs of an actuator. The actuator set in the salamander converts 
signals given by its output into driving torques. These torques tT  given by Eq.(6), 

where 1+tθ given by Eq.(7) is a angle to determine the following step torque. 

)sin( φθ += ttt AT  (6) 

tttt Δ+=+ ωθθ 1  (7) 

The detail of sensors and actuators used in the salamander is shown in table 2. 

5   Optimization of ANN 

Since ANN controls actuators, a salamanders behavior is dominated by ANN. There-
fore, adapting the salamander to an environment depends on adjustment of weights 
assigned to arcs in ANN. This adjustment is so called learning. However, it is difficult 
to define a learning signal to train ANN when the virtual creature has complicated 
shapes and it virtually lives in the complex environment. For learning, we adopt Ge-
netic Algorithm (GA) with real number encoding. GA optimizes weights to acquire 
adaptive behaviors. A chromosome is represented by a set of weights. Table 3 shows 
parameters for optimization. 

Table 3. Parameters of the optimization 

Population of chromosome =pN 20 

Crossover probability =CrossoverP 0.4 

Mutation rate =MutationP 0.01 

Simulation time =T 2000 [step] (33.3 [sec]) 

 
The optimization process consists of the following steps.  

1. Simulate each virtual creature in a constructed environment according to ANN 
generated by each chromosome. 

2. Evaluate behaviors of each creature by use of a given fitness function. 
3. Reproduce new creatures. 
4. Perform GA operations (selection, crossover, and mutation). 
5. Return to step 2 and repeat until the termination condition is satisfied. 
 
The mutation operation randomly chooses a chromosome (a set of weights) and  
extract a gene (a weight) from it with the mutation rate MutationP and replace the gene to 

a random number [-1.0, 1.0]. The crossover operation chooses a couple of chromo-
somes with the crossover probability CP and selects one of the output unit and its 

neighborhood arcs (which are connected to the selected unit directly). Then these 
selected arcs of one chromosome are swapped to these of other chromosome. 

We treat a learning problem what behavior a salamander can acquire when it 
moves towards a given goal. It is expected that walking, running, or swimming 
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emerges from the acquired behavior in the given environment. In this problem, a light 
source is set as the goal and salamander sensors detect the light (Fig.5). Since actua-
tors equipped with the salamander is controlled by output layer signals of ANN, 
weights assigned to arcs in ANN are optimized such as the salamander moves towards 
the light source. As described above, GA is applied to optimize the weights. A fitness 
function, which takes consideration in three fundamental behavior evaluations, is 
described below. 
 

1. Move from a current place to a goal via a path as short as possible. 
2. Consume energy as efficient as possible. 
3. A goal is always observed in the center of sight. 
 

The first evaluation is formulated so as to minimize the cumulated distance D be-
tween the salamander’s current place and the light source during the salamander mov-
ing. The second one is formulated by minimizing the consumed energy E , which is 
measured by cumulated torques generated by actuators. The third one is formulated so 
as to maximize the cumulated cosine value S of the angle between the sensor and the 
light source during the salamander moving. These three evaluations are expressed in 
Eqs. (9)-(11) 
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Fig. 5. Light source and evaluated values LightP : Position of the Light source  

itP , : Position of sensors 

SN : Number of sensors 

AN : Number of actuators 

 
As a result, the fitness function is expressed as a summation of Eqs. (9)-(11) with 
weights 1C , 2C and 3C  in Eq.(12). 

SCECDCSEDf 321),,( +−−=  (12) 

6   Experimental Result and Discussion 

Simulation experiments are performed in the following settings.  
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(a) Achieved motion on the ground. The 
salamander moves by swinging legs alterna-
tively back and forth. 

(b) Achieved motion in the water. The 
salamander moves by swinging its tail. 

Fig. 6. Traces of the motions of the salamander model 

 

Fig. 7. Recorded position 

 

Fig. 8. Actuator outputs of the salamander 
 
 

(1) (2) (3) 
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1. A salamander is set on the ground. Also, the friction and air influence are im-
plemented with the environment. 

2. A salamander is set in the water environment. 
 

Fig.6 shows traces of motions after the salamander moved on the ground or in the 
water after learning. The salamander acquires effective motions to reach the goal as 
fast as possible. These motions look like a “walk” behavior on the ground (see 
Fig.6(a)) and like a “swim” behavior in the water (see Fig.6(b)).  

Fig.8 shows some actuator outputs of the salamander which were recorded at posi-
tions as shown in Fig.7. When the salamander moves like “walking” on the ground, 
actuators generate an opposite phases each other between point(1) and point(2). In 
contrast, actuators generate similar phases in the water. Consequently, “swimming” 
like behavior is realized by rapid vibration propagation from a head to a tail. 

7   Conclusion and Future Work 

We aim at establishing a new computer aided animation method. For this purpose, the 
agent-based and PM-based animation method is introduced. Furthermore, we take 
consideration in a complex environment, which is dominated by the Newtonian  
dynamics and fluid influences. Under these circumstances, we treat problems that 
amphibian behaviors can be acquired adaptively and make its behaviors the animation 
automatically. Numerical experiments proved that the amphibian put on the ground 
acquires “walking” and put in the water “swimming”. These behaviors are similar to 
realistic existing organ’s behaviors, such as a salamander one in nature. These behav-
iors are instantly presented in animation. In future work, we would like to introduce 
multi-agent based animation, where the agents collision, competition, and cooperation 
are considered. 
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Abstract. This paper evaluates the Collective Neuro-Evolution (CONE)
method, comparative to a related controller design method, in a sim-
ulated multi-robot system. CONE solves collective behavior tasks, and
increases task performance via facilitating behavioral specialization.
Emergent specialization is guided by genotype and behavioral special-
ization difference metrics that regulate genotype recombination. CONE
is comparatively evaluated with a similar Neuro-Evolution (NE) method
in a Gathering and Collective Construction (GACC) task. This task re-
quires a multi-robot system to gather objects of various types and then
cooperatively build a structure from the gathered objects. This collective
behavior task requires that robots adopt complementary and specialized
behaviors in order to solve. Results indicate that CONE is appropriate
for evolving collective behaviors for the GACC task, given that this task
requires behavioral specialization.

1 Introduction

In fields of research such as multi-robot systems [11], it is desirable to reproduce
the underlying mechanisms that result in replicating the success of biological
collective behavior systems. One such mechanism is emergent behavioral special-
ization [10]. In the study of controller design methods that solve various collective
behavior tasks emergent specialization is not used as a problem solving mecha-
nism, but rather emerges as an ancillary result of the system accomplishing its
given task. Collective behavior tasks are those requiring cooperative behavior.

This paper applies and tests the Collective Neuro-Evolution (CONE) method.
CONE is a novel controller design method that solves collective behavior tasks
via purposefully facilitating emergent behavioral specialization is currently lack-
ing. CONE adapts a set of Artificial Neural Network (ANN) controllers for the
purpose of solving collective behavior tasks. The advantage of CONE is that
it increases collective behavior task performance or attains collective behavior
solutions that could not otherwise be attained without specialization.

In line with state of the art methods for controller design [6], this research
supports NE as an appropriate approach for controller design within continu-
ous and partially observable collective behavior task environments. NE has been
successfully applied to solve a disparate range of collective behavior tasks that
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include multi-agent computer games [2], pursuit-evasion games [12], and coor-
dinated movement [1]. Such collective behavior tasks require different agents
(controllers) to adopt complementary specialized behaviors in order to solve.

The Gathering and Collective Construction (GACC) case study presented in
this paper is an initial step towards elucidating that specialization that emerges
during controller evolution, can be used as part of a collective behavior problem
solving process. Experiments elucidate that CONE, comparative to Multi-Agent
ESP, is able to effectuate behavioral specialization in a set of ANN controllers,
where such specialization increases collective behavior task performance.

Research Goal: To demonstrate that CONE is appropriate for deriving be-
havioral specialization in a team of simulated robots, where such specialization
gives rise to successful collective construction behaviors.

Hypothesis: CONE facilitates emergent behavioral specialization when evolv-
ing a team’s collective behavior (in tasks that require specialization), where such
specialization contributes to a higher task performance, comparative to the task
performance of Multi-Agent ESP evolved teams.

GACC Task: This task requires that a team of simulated robots search an
environment and gather a set of atomic objects and then use these objects in
the cooperative construction of a complex object. Task performance is measured
as the number of atomic objects delivered to a home area in a given sequence.

GP 3

GP 1

SP 11

SP 12

SP 13

SP 31

SP 32

SP 33

SP 34

GP 2

SP 21

SP 22

SP 23

ANN 1

ANN 2

ANN 3

Task Environment

GP: Genotype Population
SP: Sub-Population

Fig. 1. CONE / Multi-Agent ESP Example. Three ANN controllers are derived
from three populations and evaluated in a collective behavior task. CONE: Double
ended arrows indicate self regulating recombination occurring between populations.
Multi-Agent ESP: Recombination only occurs within sub-populations.
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2 Neuro-Evolution Methods

2.1 Multi-Agent ESP: Multi-Agent Enforced Sub-populations

Multi-Agent ESP is the application of the ESP NE method [8] to collective be-
havior tasks. Multi-Agent ESP creates n populations for deriving n ANN con-
trollers. Each population consists of u sub-populations, where individual ANNs
are constructed as in ESP. This process is repeated n times for n ANNs, which
are then collectively evaluated in a task environment. Figure 1 illustrates an
example of Multi-Agent ESP using three populations (controllers). Multi-Agent
ESP is comprehensively described in related work [12].

2.2 CONE: Collective Neuro-Evolution

Due to space constraints, this section only presents an overview of the novel
contributions of Collective Neuro-Evolution (CONE). For a comprehensive de-
scription of CONE, refer to related work [10]. CONE is a cooperative co-evolution
method that adapts a group of ANN controllers. Given n genotype populations,
CONE evolves one controller from each population, where controllers must co-
operate to solve collective behavior tasks. Controllers are collectively evaluated
in a task environment according to how well they solve the given collective be-
havior task. Each controller is a feed-forward ANN with one hidden layer that is
fully connected to the input and output layers. Each hidden layer neuron of each
controller is encoded as one genotype. CONE evolves the connection weights of
hidden layer neurons, and then combines these neurons into complete controllers.
An example of CONE using three controllers (and thus three genotype popula-
tions) is presented in figure 1. Unlike related methods such as Multi-Agent ESP,
CONE uses genotype and behavioral specialization (GDM and SDM, respec-
tively) difference metrics to regulate genotype between and within populations.
CONE is an extension of Multi-Agent ESP that includes the following.

1. GDM: Adaptively regulates genotype recombination between populations,
based on neuron (genotype) connection weight similarities [10].

2. SDM: Adaptively regulates recombination based on behavioral specializa-
tion (CONE uses a specialization metric described in related work [7]) sim-
ilarities exhibited by controllers [10].

3. Controller size adaptation: Adapting the number of hidden layer neurons
in each controller facilitates of the evolution of behavioral specialization by
CONE, via allowing different controllers to evolve to different sizes. That is,
controllers of varying sizes and complexity are often appropriate for solving
a set of sub-tasks of varying complexities [10].

2.3 Common Methods

The following describes the procedure used to construct controllers, and evaluate,
recombine and mutate genotypes in Multi-Agent ESP and CONE.



118 G. Nitschke

– Constructing Controllers: Both CONE and Multi-Agent ESP initialize n
populations. Population Pi (i ∈ {1, . . . ,n} contains ui sub-populations. Each
sub-population (Pij) contains m genotypes. Pij contains genotypes encoding
neurons (strings of floating point values) assigned to position j in the hidden
layer of ANNi. ANNi is derived from Pi, where j ≤ ui.

– Evaluate all Genotypes: Systematically select each genotype g in each
sub-population of each population, and evaluate g in the context of a com-
plete controller. This controller (containing g) is evaluated together with n-1
other controllers. Other controllers are constructed via randomly selecting
a neuron from each sub-population of each of the other populations. The
evaluation results in a fitness being assigned to g.

– Multi-Agent ESP Recombination: After all neurons (genotypes) have
been assigned a fitness [12], each neuron in the elite portion (table 1) is
recombined with another neuron (randomly selected from the elite portion).
Offspring genotypes completely replace each sub-population.

– CONE Recombination: The SDM is applied to each pair of controllers.
For every pair of controllers within a Specialization Distance (SD in table 1)
the populations from which these controllers were derived become candidates
for recombination. The GDM is then applied to each pair of sub-populations
between each pair of behaviorally similar populations (controllers). For each
pair of sub-populations within a given Genetic Distance (GD in table 1)
the elite portions of the sub-populations are recombined (using one-point
crossover [3]). For every population that is not within the SD of another,
or each sub-population that is not within the GD of another (in another
population within the SD),recombination occurs within each sub-population.

– Mutation: After recombination, burst mutation with a Cauchy distribution
[8] is applied to each genotype’s gene with a given probability (table 1).

3 GACC Task: Experimental Design

Experiments test 30 robots with N building blocks (n type A, p type B, and q
type C atomic objects) and a home area in a bounded two dimensional continu-
ous environment. The home area (located at the environment’s center) is where
gathered objects are delivered and where the complex object is constructed. A
complex object is the structure to be built from N atomic objects. The com-
plex object can only be constructed if robots cooperate place objects of a given
type in a predefined sequence. Two, three, and four robots are required to use
type A, B, and C objects to construct the complex object. Experiments mea-
sure the impact of the Multi-Agent ESP or CONE method and an environment
upon the number of atomic objects delivered in the correct sequence to the home
area by the team. The experimental objective test the task performance and the
contribution of specialization to performance in teams evolved by each method.

Team Fitness Evaluation: Team fitness (G) equals the total number of atomic
objects delivered in the correct sequence to the home area. Individual fitness (gv)
equals the number of atomic objects delivered in the correct sequence by robot η
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Table 1. GACC Simulation and Neuro-Evolution Parameters

Simulation and Neuro-Evolution Parameters
Number of robots / Genotype populations 30
Robot movement range / cost 0.001 / 0.01
Object/Robot/Home area detection sensor range 0.05
Object/Robot/Home area detection sensor accuracy 1.0
Object/Robot/Home area detection sensor cost 0.01
Robot initial energy 1000 units
Initial robot positions Random (Excluding home area)
Environment width / height 1.0
Total number of type A, B, and C objects Variable (table 2)
Atomic Object distribution (Initial positions) Random (Excluding home area)
Generations / Epochs 250 / 10
Iterations per epoch (Robot team lifetime) 3000
Mutation (per gene) probability / Mutation range 0.05 / [-1.0, +1.0]
Genotype / Specialization distance (CONE) [0.0, 1.0]
Population elite portion 50%
Weight (gene) range [-10.0, +10.0]
Genotype length (Number of connection weights) 42
Genotypes per population 500

over the course of its lifetime. The goal of the team is to maximize G. Robots
do not maximize G directly, instead each robot η attempts to maximize its own
private fitness function gη, where gη guides controller evolution.

Simulation: Table 1 presents the simulation and NE parameter settings. These
parameter values were determined experimentally. Minor changes to these values
produced similar results for both Multi-Agent ESP and CONE. Each experiment
consists of 250 generations. One generation is a robot team’s lifetime. Each
robot lifetime lasts for 10 epochs. One epoch is 3000 simulation iterations, and
represents a task scenario that tests different robot starting positions, and object
locations in an environment. Team task performance is calculated as an average
taken over all epochs of a team’s lifetime. The best task performance is then
selected for each run, and an average is calculated over 20 runs.

4 Robot Sensors, Actuators, and Controller

Detection Sensors: Each robot has eight object ([S-0, S-7]), eight robot ([S-8,
S-15]), eight home area ([S-16, S-23]) detection sensors, and three object demand
([S-24, S-26]) sensors (figure 2). Each of the eight detection sensors covers one
quadrant in a robot’s 360 degree sensory Field Of View (FOV). Table 1 presents
sensor range, accuracy, and cost.
– Object Detection Sensors: Object detection sensors need to be explicitly

activated with one of three settings (A, B, C), for detecting type A, B,
and C objects, respectively. This constitutes one action and consumes one
simulation iteration. Sensor q returns the closest object type (for the current
sensor setting) in quadrant q, divided by the squared distance to the robot.

– Robot Detection Sensors: The function of these constantly active sensors
is to prevent collisions, and provide each robot with an indication of the
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current state of other robots within this robot’s sensory FOV. State refers
to if another robot is carrying an object and the type of the object being
carried. Sensor q returns a value equal to the object type carried by the
closest robot (A:1, B:2, C:3), divided by the squared distance to this robot.

– Home Area Detection Sensors: Sensor q returns a value inversely pro-
portional to the distance to the home area, divided by the squared distance
to this robot. Home area sensors are constantly active.

– Object Demand Sensors: These constantly active sensors indicate the
current demand for object types A, B, C. During the construction process,
the complex object broadcasts a signal that is received by each robot’s object
demand sensors, indicating the next required object type.

Movement Actuators: Two wheel motors control each robot’s heading at a
constant speed. Movement actuators need to be explicitly activated (motor out-
puts MO-4 and MO-5 in figure 2). This is one action which takes one simulation
iteration. A robot’s heading is determined by normalizing and scaling motor out-
put values (vectors dx and dy) by the maximum distance a robot can traverse
in one iteration (dmax). That is: dx = dmax(o1 - 0.5), and dy = dmax(o2 - 0.5).
Where: o1 and o2 are values of motor outputs MO-4 and MO-5, respectively.

Fig. 2. Robot ANN Controller. For clarity, not all sensory input neurons are
illustrated.

Object Gripper: Each robot is equipped with a gripper turret for gripping and
transporting objects to the home area. The gripper has three actuator settings
(A, B, C) for gripping and transporting type A, B, and C objects, respectively.
The gripper needs to be explicitly activated which takes one iteration.

ANN Controller: Each robot uses a recurrent ANN controller [4], which fully
connects 34 sensory input neurons to 10 hidden layer neurons to eight motor
output neurons (figure 2). Hidden and output neurons are sigmoidal [9] units.
Sensory input neurons [SI-26, SI-33] accept input as the previous activation state
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of the hidden layer. At each iteration, one of seven actions is executed by a robot.
The motor output with the highest value is the action executed.

1. MO-0: Activate all object/obstacle detection sensors with setting A.
2. MO-1: Activate all object/obstacle detection sensors with setting B.
3. MO-2: Activate all object/obstacle detection sensors with setting C.
4. MO-3, MO-4: Calculate direction from motor outputs dx, dy.
5. MO-5: Activate gripper with setting A (figure 2).
6. MO-6: Activate gripper with setting B (figure 2).
7. MO-7: Activate gripper with setting C (figure 2).

5 Results and Discussion

Two experiment sets were run. In experiment set 1, robot teams were evolved
in nine simple environments. Each simple environment contained a distribution
only type A objects, and there was no predefined sequence for object delivery
to the home area. In experiment set 2, robot teams were evolved in ninecomplex
environments. Each complex environment contained a distribution of type A,
B, and C objects. Table 2 presents the distribution of each object type for each
environment, and the required sequence that object types must be delivered
to the home area in order for the complex object to be constructed. These
distributions were derived according to the supposition that if an environment
contains multiple object types, there will be a requirement for controllers to
specialize to different behaviors in order to efficiently accomplish the task.

Simple Environment Experiment Set: Both Multi-Agent ESP and CONE
evolved teams that yielded comparable performance for all simple environments.
This result was supported by an independent t-test [5] (P values are not pre-
sented due to space constraints). This indicates that environments containing
only one object type are not appropriate for encouraging the evolution of be-
havioral specialization, and that an optimal team behavior in this experiment
set is for all controllers to adopt a non-specialized behavior. That is, in the sim-
ple environment experiment set, there is no requirement for different controllers
to converge to complementary behavioral specializations in order to accomplish

Table 2. Distribution of objects for each complex environment. Env: Environment.

Env Object-A
Number

Object-B
Number

Object-C
Number

Complex Object Build Sequence

1 1 2 7 CCACBCBCCC
2 2 4 4 CAACBBBCBC
3 3 6 1 BABAABCBBB
4 16 2 2 BAAAABAAAACAAAAAAAAC
5 4 14 2 BBBABABBBBABABBBCBCB
6 7 2 11 BACACACACACACACCCCCB
7 12 13 5 CBAABCAACAABBBAACABABBBAACBBBB
8 13 14 3 BABABABAAACABABAABBBBCAACABBBB
9 4 15 11 CBBBCBCACBBBCACCACBBBCACBBBBBC
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Fig. 3. Average Number of Objects Delivered in Correct Order to Home Area in each
Complex Environment by Multi-Agent ESP and CONE evolved teams

the task. This result supports the hypothesis that CONE only evolves and uses
behavioral specialization in tasks that require specialization.

Complex Environment Experiment Set: Figure 3 presents, for each com-
plex environment, the average number of atomic objects delivered to the con-
struction zone in the correct order, by Multi-Agent ESP and CONE evolved
teams. Task performance results presented in figure 3, indicates that CONE
evolved teams yield a significantly higher average task performance compara-
tive to Multi-Agent ESP evolved teams in six out of the nine environments.
This is supported by an independent t-test. In each complex environment, the
fittest CONE evolved team consisted of multiple castes (robot sub-groups spe-
cialized to gathering and construction with either type A, B, or C objects). This
result supports the hypothesis that CONE is appropriate for deriving behav-
ioral specialization which leads to a higher collective behavior task performance
(comparative to Multi-Agent ESP evolved teams) is achieved.

6 Conclusions

This paper described the application of the Multi-Agent ESP and CONE neuro-
evolution methods for the purpose of automating controller design in a team
of simulated robots. CONE effectively facilitated specialization in the behaviors
of the robots which (comparative to Multi-Agent ESP teams) lead to a higher
task performance in a process in a gathering and collective construction task.
This research suggests that the controller design process used by CONE is able to
leverage and use emergent specialization in tasks that benefit from a behaviorally
specialized problem solving approach.
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Abstract. Active perception refers to a theoretical approach to the
study of perception grounded on the idea that perceiving is a way of
acting, rather than a process whereby the brain constructs an inter-
nal representation of the world. In this paper, we complement previous
studies by illustrating the operational principles of an active categorisa-
tion process in which a neuro-controlled anthropomorphic robotic arm,
equipped with coarse-grained tactile sensors, is required to perceptually
categorise spherical and ellipsoid objects.

Keywords: Active perception, categorisation, evolutionary robotics.

1 Introduction

Categorical perception is a fundamental cognitive capacity displayed by natu-
ral organisms, and it can be defined as the ability to divide continuous signals
received by sense organs into discrete categories whose members resemble each
other more than members of other categories [1]. Most of the work in litera-
ture focuses on categorization processes that are passive (i.e., the agents can
not influence their sensory states through their actions) and instantaneous (i.e.,
the agents are demanded to categorise their current sensory state rather than a
sequence of sensory states distributed over a certain time period). Active cat-
egorical perception can be studied by exploiting the properties of autonomous
embodied and situated agents, in which categorical perception is strongly influ-
enced by the agent action [see also 2, 3, on this issue].

The works described in [4, 5, 6, 7, 8, 9, 10] contributed to the study of active
categorisation by showing that relatively complex categorisation tasks can be
solved by autonomous agents equipped with simple sensory-motor and cogni-
tive apparatus that lacks some of those elements previously assumed necessary
to recognise and categorise various types of objects or environmental circum-
stances. By following this line of investigation, the work described in [11] focuses
on the study of categorical perception in a task in which a simulated anthropo-
morphic robotic arm is demanded to actively categorize un-anchored spherical
and ellipsoid objects placed in different positions and orientations over a pla-
nar surface. Populations of evolving robots are left free to determine the way in
which they categorize the shape of the objects within the limits imposed by the

G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part I, LNCS 5777, pp. 124–131, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



On the Dynamics of Active Categorisation of Different Objects Shape 125

experimental scenario and by the computational power of their neural controller.
This implies that the robots are left free to determine (i) how to interact with
the external environment (by eventually modifying the environment itself); (ii)
how the experienced sensory stimuli are used to discriminate the two categories;
and (iii) how to represent in the categorisation space each object category. The
analysis of the obtained results indicates that the robots are indeed capable of
developing an ability to effectively categorize the shape of the objects despite
the high similarities between the two types of objects, the difficulty of effec-
tively controlling a body with many degrees of freedoms (hereafter, DOFs), and
the need to master the effects produced by gravity, inertia, collisions etc. More
specifically, the best individuals display an optimal ability to correctly categorize
the objects located in different positions and orientations already experienced
during evolution, as well as an excellent ability to generalize their skill to objects
positions and orientations never experienced during evolution.

This paper complements the results and analysis shown in [11] by describing
interesting operational aspects of the categorisation ability of the best evolved
agent. In particular, we look at (i) how the robot acts in order to bring fourth
the sensory stimuli which provide the regularities necessary for categorizing the
objects in spite of the fact that sensation itself may be extremely ambiguous,
incomplete, partial, and noisy; (ii) the dynamical nature of sensory flow (i.e.,
how sensory stimulation varies over time and the time rate at which significant
variations occur); (iii) the dynamical nature of the categorization process (i.e.,
whether the categorization process occur over time while the robot interacts with
the environment).

2 Methods

In this Section, we provide only a minimal description of the methods employed
to design successful controllers. More details on the methods of this study can be
found in [11]. The simulated robot consists of an anthropomorphic robotic arm
with 7 actuated DOFs and a hand with 20 actuated DOFs (see Fig. 1a). Propri-
oceptive and tactile sensors are distributed on the arm and the hand (see Fig. 1b
and 1c). The robot and the robot/environmental interactions are simulated using
Newton Game Dynamics (NGD), a library for accurately simulating rigid body
dynamics and collisions (more details at www.newtondynamics.com). The active
joints of the robotic arm are actuated by two simulated antagonist muscles im-
plemented accordingly to the Hill’s muscle model, as detailed in [12]. The agent
controller consists of a continuous time recurrent non-linear network (CTRNN)
with 22 sensory neurons, 8 internal neurons, and 18 motor neurons [see Fig. 1d
and also 13]. τiẏi = −yi + gIi for i = 1, .., 22 is the equation used to update the
state of sensory neurons. τiẏi = −yi +

∑m
j=n ωjiσ(yj + βj) for i = 23, .., 30; with

n = 1, and m = 30 is the equation used to update the state of internal neurons,
and for i = 31, .., 48; with n = 23, and m = 30 is used to update the state of
motor neurons. yi represents the state of a neuron, τi the decay constant, g is
a gain factor, Ii the intensity of the perturbation on sensory neuron i, ωji the

www.newtondynamics.com
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Fig. 1. (a) The simulated robotic arm. The kinematic chain (b) of the arm, and (c)
of the hand. In (b) and (c), cylinders represent rotational DOFs; the axes of cylinders
indicate the corresponding axis of rotation; the links among cylinders represents the
rigid connections that make up the arm structure. Ji with i = 1, .., 12 refer to the joints
whose state is both sensed and set by the arm’s controller. Ti with i = 1, .., 10 indicate
the tactile sensors. (d) The architecture of the arm controller. The circles refer to the
artificial neurons. Continuous line arrows indicate the efferent connections for the first
neuron of each layer. Dashed line arrows indicate the correspondences between joints
and tactile sensors and input neurons. The labels on the dashed line arrows refer to
the mathematical notation used to indicate the readings of the corresponding sensors.

strength of the synaptic connection from neuron j to neuron i, βj the bias term,
σ(yj +βj) the firing rate. τi with i = 23, .., 30, βi with i = 1, .., 48, all the network
connection weights ωij , and g are genetically specified networks’ parameters. τi

with i = 1, .., 22 and i = 31, .., 48 is equal to ΔT . There is one single bias for all
the sensory neurons. The activation values yi of motor neurons determine the
state of the simulated muscles of the arm [see 12, for a detailed description of
the functional properties of the arm]. The activation values yi of output neu-
rons i = 47, 48 are used to categorize the shape of the objects. In particular, in
each trial k, the agent represents the experienced object (i.e., the sphere S or
the ellipsoid E) by associating to it a rectangle RS

k or RE
k whose vertices are:

(min0.95T<t<T σ(y47(t) + β47), min0.95T<t<T σ(y48(t) + β48)) for the bottom left
vertex, and (max0.95T<t<T σ(y47(t)+β47), max0.95T<t<T σ(y48(t)+β48)) for the
top right vertex, with T = 400 time steps (i.e., 4 simulated seconds) correspond-
ing to the length of a trial. The sphere category, referred to as CS , corresponds
to the minimum bounding box of all RS

k ; the ellipsoid category, referred to as
CE , corresponds to the minimum bounding box of all RE

k .
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A simple generational genetic algorithm is employed to set the parameters
of the networks [see 14]. The initial population contains 100 genotypes. Gener-
ations following the first one are produced by a combination of selection with
elitism, and mutation [see also 11, for details]. Cell potentials are set to 0 when
the network is initialised or reset (i.e., at the beginning of each trial), and cir-
cuits are integrated using the forward Euler method with an integration step-size
ΔT = 0.01 [see 15]. During evolution, agents have been rewarded by an eval-
uation function which seeks to assess their ability to recognise and distinguish
the ellipsoid from the sphere. Note that, rather than imposing a representation
scheme in which different categories are associated with a priori determined
state/s of the categorization neurons (i.e., neurons 47 and 48), we left the robots
free to determine how to communicate the result of their decision. That is, the
agents can develop whatever representation scheme as long as each object cat-
egory is clearly identified by a unique state/s of the categorisation neurons.
More precisely, we scored agents on the basis of the extent to which the catego-
rization outputs produced for objects of different categories are located in non-
overlapping regions of a two dimensional categorization space C ∈ [0, 1]× [0, 1].

3 Results

Results of post-evaluation tests illustrated in [11] shows that the best evolved
agent (hereafter, A1) possesses a close to optimal ability to discriminate the
shape of the objects as well as an excellent ability to generalize their skill in
new circumstances. Moreover, in [11] it is shown that A1, for one of the two
positions experienced during evolution (i.e., position A, angle of joints J1, ..., J7

are {−50◦,−20◦,−20◦,−100◦,−30◦, 0◦,−10◦}), exploits only tactile sensation
to categorise the objects. In this Section, we take advantage of this latest re-
sult by running tests that further explore the dynamics of the decision of A1

in position A, beyond the qualitative description illustrated in [11]. In particu-
lar, our interest is in finding out whether there are distinctive and functionally
different temporal phases during the categorisation process. How long does the
agent need to interact with the object before been able to tell whether is touch-
ing a sphere or an ellipsoid? Does the discrimination process occur at a specific
moment, as a response to a sensory pattern that encode the regularities which
are necessary for discriminating, or does it occur over time by integrating the
information contained in several successive sensory states? Note that movies of
the best evolved strategies can be found at http://laral.istc.cnr.it/esm/
active_perception.

To answer these questions we begin by using a slightly modified version of the
Geometric Separability Index (hereafter, referred to as GSI) originally proposed
in [16]. GSI represents an estimate of the degree to which tactile sensor readings
experienced during the interactions with the sphere or with the ellipsoid are
separated in sensory space. We built four hundred data sets, one for each time
step with the ellipsoid (i.e., {ĨE

k }180
k=1), and four hundred data sets, one for each

time step with the sphere (i.e., {ĨS
k }180

k=1). Where, ĨE
k is the tactile sensor readings

http://laral.istc.cnr.it/esm/active_perception
http://laral.istc.cnr.it/esm/active_perception
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j : H(ĨE
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k , ĨS
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Fig. 2. (a) The Geometric Separability Index (GSI); (b) the formal definition of GSI;
(c) the number of tactile ambiguities; (d) the percentage of success in pre-substitution
tests (see triangles) and post-substitution tests (see empty circles)

experienced by A1 while interacting with the ellipsoid at time step t of trial k;
and ĨS

k is the tactile sensor readings experienced by A1 while interacting with
the sphere at time step t of trial k. Trial after trial, the initial rotation of the
ellipsoid around the z-axis changes of 1◦, from 0◦ in the first trial to 179◦ in the
last trial. Each trial is differently seeded to guaranteed random variations in the
noise added to sensors readings. At each time step t, the GSI is computed as
shown in Fig. 2b, where H(x, y) is the Hamming distance between tactile sensor
readings. |x| means the cardinality of the set x. GSI=1 means that at time step
t the closest neighbourhood of each ĨE

k is one or more ĨE
k . GSI=0 means that at

time step t the closest neighbourhood of each ĨE
k is one or more ĨS

k .
As shown in Fig. 2a, the GSI(t) tends to increase from about 0.5 at time

step 1 to about 0.9 at time step 200, and to remain around 0.9 until time step
400. This trend suggests that during the first 200 time steps, the agent acts
in a way to bring forth those tactile sensor readings which facilitate the object
identification and classification task. In other words, the behaviour exhibited
by the agent allows it to experience two classes of sensory states, rather well
separated in the sensory space, which correspond to objects belonging to two
different categories. However, the fact that the GSI does not reach the value
of 1.0 indicates that the two groups of sensory patterns belonging to the two
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objects are not fully separated in the sensory space. In other words, some of the
sensory patterns experienced during the interactions with an ellipsoid are very
similar or identical to sensory patterns experienced during interactions with
the sphere and vice versa. This is confirmed by the graph shown in Fig. 2c,
which refers to the number of tactile ambiguities at each time step. A tactile
ambiguity is defined as the condition in which mES = 0. This means that some
of the patterns are experienced during interactions with both an ellipsoid and
a sphere. This implies that A1 can not determine the category of the current
object solely on the basis of the current sensory stimuli. Thus, it follows that the
most plausible hypothesis about the categorization process is that it involves an
ability to integrate sequences of experienced sensory states over time. To test
this hypothesis we employ substitution tests.

A substitution test is a post-evaluation test in which one type of sensory in-
formation experienced by the agent during the interactions with an ellipsoid is
replaced with the corresponding type of sensory information previously recorded
in trials in which the agent was interacting with a sphere. In this case, we replace
tactile sensation at specific interval of time during each trial. In a first series of
tests, referred to as pre-substitution tests, substitutions have been applied from
the beginning of each trial up to time step t where t = 1,..,400. In a second
series of tests, referred to as post-substitution tests, substitutions have been ap-
plied from time step t, where t = 1,..,400, to the end of a trial t=400. Each test
has been repeated at intervals of 20 time steps. The test is repeated for 180 trials
in which the orientation of the ellipsoid object around the z-axis varies from 0◦,
in the first trial, to 179◦, in the last trial. In a substitution test, a 400 time steps
trial k can: (i) successfully terminate if the RE

k , built as illustrated in Sec. 2, com-
pletely falls within the bounding box CE , previously built by running specific
post-evaluation tests, and corresponding to the ellipsoid category for agent A1;
(ii) unsuccessfully terminate with a sphere response if the RE

k completely falls
within the two-dimensional space delimited by the bounding box CS previously
built by running specific post-evaluation tests, and corresponding to the sphere
category for agent A1; (iii) unsuccessfully terminate with a none response, if the
RE

k , completely falls outside the two-dimensional space delimited by the bound-
ing boxes CS

i ∩ CE
i . The results of pre-substitution tests and post-substitution

tests are illustrated in Fig. 2d, which shows that, regardless of the rotation of
the ellipsoid, pre-substitutions which do not affect the last 100 time steps do
not cause any drop in performance. For pre-substitution tests that involve more
than 300 time steps the amount of performance drop is higher for longer substi-
tution periods (see triangles in Fig. 2d). Similarly, the agent does not incur in
any performance drop if post-substitutions affect less than 100 time steps. For
post-substitution tests that affect more than the last 100 time steps the amount
of performance drop is higher for longer substitution periods (see empty circles
in Fig. 2d). Overall, the results shown in Fig. 2 as well as the trajectories of the
average decision outputs shown in [11] indicate that, for what concerns position
A, the interactions between the agent and the objects can be divided into three
temporal phases that are qualitatively different from the point of view of the
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categorization process: (i) an initial phase whose upper bound can be approx-
imately fixed at time step 250, in which the categorization process begins but
in which the categorization answer produced by the agent is still reversible; (ii)
an intermediate phase whose upper bound can be approximately fixed at time
step 350, in which very often a categorization decision is taken on the basis of all
previously experienced evidences; and (iii) a final phase in which the previous
decision (which is now irreversible) is maintained. As also noticed by looking at
the trajectories of the average decision outputs shown in [11], during the initial
phase the robot starts to differentiate the categorization output produced for
different type of objects by accumulating the evidences provided by the experi-
enced sensory states. The fact the sensory states provide sufficient information
for discriminating the two categories is demonstrated by the fact that the GSI
increases from the chance level (0.5) up to a value of about 0.9 at the end of
the initial phase (see Fig. 2a). The fact that the categorization decision formed
by the agent during the initial phase is not definitive yet is demonstrated by
the fact that substitutions of the critical sensory stimuli performed during this
phase do not cause any drop in performance (see Fig. 2d, triangles). The fact
that the intermediate phase corresponds to a critical period is demonstrated by
the fact that pre-substitutions and post-substitutions affecting this phase pro-
duce a significant drop in performance (see Fig. 2d). The fact that the robot
take an ultimate decision during the intermediate phase is demonstrated by the
fact that post-substitutions affecting the last 80 time steps, approximately, do
not produce any drop in performance (see Fig. 2d, empty circles).

4 Conclusion

This paper illustrates post-evaluation tests that complement the results shown
in [11] concerning the perceptual categorisation ability of a simulated
autonomous agent. The analysis indicates that one fundamental skill that al-
lows the best evolved agent to distinguish sphere from ellipsoid objects consists
in the ability to interact with the external environment and to modify the en-
vironment itself so to experience sensory states which are as differentiated as
possible for different categorical contexts. On the one hand, this result repre-
sents a confirmation of the importance of sensory-motor coordination, and more
specifically of the active nature of situated categorization, already highlighted in
previous studies [e.g., 7, 8]. On the other hand, the results demonstrate that, in
this specific scenario, sensory-motor coordination needs to be complemented by
other additional mechanisms. In fact, the best evolved robot does not succeed
in acting in a way to experience at any time step separated sensory states for
different object categories. The categorization process displayed by this agent is
realized dynamically by integrating the evidences provided by the experienced
sensory stimuli over time.
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Abstract. Evolutionary robotics uses evolutionary computation to op-
timize physically embodied agents. We present here a framework for per-
forming off-line evolution of a pluripotent robot controller that manages
to form multicellular robotic organisms from a swarm of autonomously
moving small robot modules. We describe our evolutionary framework,
show first results and discuss the advantages and disadvantages of our
off-line evolution approach. In detail, we explain the single parts of the
framework and a novel homeostatic hormone-based controller, which is
shaped by artificial evolution to control both, the non-aggregated single
robotic modules and the joined high-level robotic organisms. As a first
step we present results of this evolutionary shaped controller showing
the potential for different motion behaviours.

1 Introduction

Recently evolutionary robotics (ER) has become a fascinating field that ex-
ploits evolutionary computation (EC) to optimize physically embodied agents.
In some studies robot controllers were adapted by EC in simulated worlds [1].
In contrast to that, other studies [2] showed evolution of single robots and small
robot groups in a process of on-line evolution, where a sort of genetic algorithm
(GA) was optimizing artificial neural networks (ANN) during runtime of the
real robot(s). The advantages and disadvantages of both approaches are clear:
On-line evolution profits from the fact that real hardware is used in real-world
environments but suffers from lower number of generations. Off-line evolution
profits from computational speed (parallel processing, grids) but suffers from dif-
ferences between models and reality [3]. As an intersection of these approaches,
the swarm-bots project [4] used a set of simulation tools of varying levels of
detail (physics, robot model) to perform off-line evolution of ANNs, which were
finally tested on real robotic hardware.

In former studies we used an evolutionary strategy [5] to shape algorithms
that aggregated robots autonomously in various group sizes at target areas [6].
� Supported by: EU-IST-FET project ‘SYMBRION’, no. 216342; EU-ICT project

‘REPLICATOR’, no. 216240.
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Fig. 1. Schematic overview of the parts of our framework for swarm-level off-line evo-
lution of a robotic swarm. See text for details

The projects SYMBRION [7] and REPLICATOR [8] have goals far beyond pure
swarm robotics: Hundreds of robot modules will autonomously explore the en-
vironment, collect and distribute information. In specific situations the swarm
of robots will aggregate, the robotic modules will join together to various body
shapes and will overcome obstacles and barriers which a single robot module
would not be able to overcome.

In the article at hand, we describe our approach to the above mentioned set
of challenges by means of off-line evolution. This approach is chosen to achieve
real robot behavior (planned future work) as we expect that a high number
of generations will be needed using artificial evolution (AE). Our evolutionary
framework is structured in several software components, thus, experiments could
be performed in several variants with little overhead. The main components of
our framework are: simulation environment, runtime controller and its genome,
genetic component and evolutionary engine. The interplay between these com-
ponents is depicted in Fig. 1 and they are described in detail in section 2.

2 Framework for Off-Line Evolution

2.1 Simulation: Symbricator3DSimulator

The simulation environment for our experiments is Symbricator3D (Fig. 2(a)),
based on “Delta3D”[9], which is an open source gaming and simulation engine.
Our evolutionary framework is implemented within this software package. The
simulation is equipped with an embedded physics engine (ODE) which keeps
the gap between simulation and real-world as small as possible. For our ambi-
tion to transfer the results of the off-line simulation onto real robots the actors
in the simulation are close representatives of the robots used in the projects
SYMBRION and REPLICATOR. These cubic robots with a side length of ap-
proximately 5cm (for a schematic graphic see Fig. 2(b)) are still in development.
However, the most important design parameters are already implemented into
the simulation. The actuation is performed by two screws, which allow motion in
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(a) (b)

Fig. 2. (a) Screenshot of the simulation environment in Symbricator3D. (b) Schematic
graphic of the robot. Double arrows symbolise the diffusion between the compartments,
arrows with a circle mark the effect of a hormone on the actuators (i.e., the screws that
are indicated at the sides of the robot).

all horizontal directions. Their position and orientation is indicated in Fig. 2(b).
Hinges establish connections between single modules and allow a 3D formation
of the robot organism by changing the angle between the connected modules. It
is equipped with 12 distance sensors.

2.2 Controller

One major novelty of our framework is the use of a robot controller that controls
the movements of the modules during the swarm phase and that also regulates
the body formation process of the robotic organisms. In addition, the very same
controller is used to control the body movements of the joined high-level organ-
isms. In nature, the aggregation of the slime mould Dictyostelium discoideum
shows that this is achieved by one chemical signal (“cAMP”) and a fixed set
of rules executed by each slime mould amoeba. The robot receives information
by its sensors and moves and turns by activating its screws. The basic idea of
our artificial homeostatic hormone controller (AHHS, [10]) is that it mimics the
endocrine processes that lead to internal homeostasis in real organisms. The vir-
tual hormones are described by their chemical/physical properties: production
rate, decay rate and diffusion coefficient. In the genome (see Sec. 2.3), a table
of rules describes how sensors affect hormones, how hormones affect actuators,
and how hormones interfere with each other. We plan to use this system also
within the joined robot organism, by allowing the hormones to diffuse also from
one robot to another. The spreading of the hormone through the aggregated or-
ganism controls the body-formation process. In addition, the hormones are used
to generate a synchronized movement of the organism’s body. The AHHS-based
controller is used not only in the robotic organism, but also during the swarm
phase of the organism. We already developed several AHHS controllers by hand
that were tested successfully. These controllers allow the robots to perform basic
navigation tasks. In this paper, we present the performance of the controller
shaped by AE as a first result of our evolutionary framework.
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2.3 Genome

The genome of the AHHS consists of two logical entities: hormone chromosome
and rule chromosome. The hormone chromosome appears once in the genome
for each hormone and the rule chromosome appears arbitrarily often for each
hormone (depending on how many rules are active/possible per hormone).

The hormone chromosome contains the following parameters:

– hormone ID
– fixed decay rate
– diffusion coefficient
– maximum value of hormone (value at which a saturation is reached)
– base production rate (amount that is produced per time step without sensory

stimulation)

The rule chromosome contains the following parameters:

– rule type: condition to be met or triggering action
1. always: Action triggered independent from threshold σ
2. greater than: Action triggered if greater than threshold σ
3. smaller than: Action triggered if smaller than threshold σ

– trigger type: type of triggered action (hormone concentration θ, actuator
value α, dependent dose δ, fixed dose β, sensor value γ)
1. never triggered: No action performed.
2. actuator influences hormone: if (α(t) > σ) then θ(t + 1) = θ(t) +

α(t)δ + β
3. sensor influences hormone: if (γ(t) > σ) then θ(t+1) = θ(t)+γ(t)δ+β
4. hormone influences actuator: if (θ(t) > σ) then α(t+1) = α(t)δ +β
5. hormone influences other hormone: if (θ1(t+1) > σ) then θ2(t+1) =

θ2(t) + θ1(t)δ + β)
6. hormone influences itself: θ(t + 1) = θ(t) + θ(t)δ + β

All these values are integer values allowing fast execution of these rules on limited
(embedded) hardware.

2.4 Evolutionary Engine and Genetics

The evolutionary engine represents the implementation of an evolutionary algo-
rithm (EA) [11] adapted to our swarm and joined robot organism. The evolvable
individual consists of one genome setting and its associated robot module(s). The
evaluation function is adapted to the specific task (e.g., value of distance sen-
sors, movement). In our experiments the evolving population consists of 20 single
robot modules, exploring the environment consecutively. The parent selection is
non-linear proportional to the fitness of individuals and the mutation rate set to
0.2 per hormone and rule. Elitism is set to 3.

The evolutionary process operates at various places on the configuration of
our AHHS-controller: It alters the rule set, the basic properties of sensor input
and of actuator output. In addition, it alters the basic virtual chemical/physical
properties of hormones. All these modifications significantly change the behavior
that is produced by the controller. Due to hormone-to-hormone interactions,
various complex behaviors emerge, thus our controller is “pluripotent”.
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3 Evaluating the AHHS-Controller

To test the functionality of the evolutionary framework and the evolvability of
the AHHS controller a task called “explore the environment” was performed. The
controller had to learn to activate the screws of the actuators correctly to cover
some distance. Furthermore there were obstacles placed in the environment.
Thus, the AHHS-controller had to react on the input of the distance sensors as a
next step. The fitness could be increased, on the one hand, by moving (standing
at the wall with activated screws was not rewarded) and, on the other hand, by
gaining distance from the starting point.
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Fig. 3. Fitness progress of the best individual per generation over 50 generations.
Arrows in (b) and (c) mark generations from which trajectories of the best individual
are plotted in Fig. 4.

Eight runs were performed with the settings described in section 2.4. When
evaluating all eight runs, jumps of the median of the maximum fitness are ob-
served at generation 6 and 20 (Fig. 3(a)). Exemplarily, run 2 (Fig. 3(b)) shows
this stepwise evolution. In this run, the controller activates only one screw such
that the robot circulates around the starting point during the first 20 genera-
tions (Fig. 4(a)) or no actuator is activated at all. For the next 10 generations
the robot drives a straight line, but the controller has not learned to react on
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(a) run 2, gen. 6, ind. 2 (b) run 2, gen. 22, ind. 7

(c) run 2, gen. 50, ind. 14 (d) run 6, gen. 50, ind. 19

Fig. 4. Trajectories of the robot of run 2 (a, b and c) and 6 (d); gen.: generation
number, ind.: number of the individual in the population.

sensory input and collides with the wall (Fig. 4(b)). After 50 generations in run
2 the sensor inputs lead to turning the robot and to wall following behaviour
(Fig. 4(c)). In run 6 the evolution led to stronger turning induced by sensory
input and therefore to a avoidance behaviour (Fig. 4(d)). This behaviour reached
the overall maximum of the fitness value of 23.47 (Fig. 3(c)).

Post evaluation of the hormones and rules revealed the mechanism of the con-
troller that steers the fittest robot. As depicted in Fig. 5(a) three hormones are
responsible for the motion behaviour of the robot: Two hormones are produced
and reach different equlibria (H0 → 9, H2 → 84, see Fig. 5(b)) and activate
the screws for straight driving by different activation factors. Straight driving
requires symmetric activation of the screws. As hormone 0 and hormone 2 have
very different set points, AE had to precisely adapt the dependent dose and
fixed dose (see 2.3). Sensor 3 reports values below the threshold (S3 < 97) at
open space. Thus, it always triggers extensive secretion of hormone 7. Near ob-
stacles the sensor value exceeds the limit of 97 units, therefore the production
of hormone 7 ceases. As soon as hormone 7 falls below a threshold of 142 the
left screw gets deactivated and the robot turns away from the wall. The evolved
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Fig. 5. (a) Schematic overview of the sensor-hormone-actuator interaction in the wall
follower controller (see Fig. 4(c)). (b) Values of the three participating hormones
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Fig. 6. The value of the critical hormone in (a) the wall follower controller (compare
Fig. 4(c)) and (b) the wall avoider controller (compare Fig. 4(d))

controller is already a complex network of 3 hormones and 4 rules. The dynamics
of the hormone concentrations which steer the wall follower and wall avoider are
plotted in Fig. 6.

4 Conclusions

Our aim is to evolve robot controllers that regulate a swarm of robots which
connect autonomously in various body shapes. In addition the controllers should
coordinate the body movements of the connected organism. As a first approach
towards this challenging task, we developed a framework for AE and present here
first results which suggest that the AHHS controller is successfully adaptable
by AE. For coordinated body movement of multi-modular robotic organisms,
hormone-inspired controllers were suggested in [12]. In contrast to our AHHS
controller, these hormones are implemented via simple message transfer instead
of concentrations of molecules in a fluid. Other studies used hormone-like gradi-
ents to aggregate complex body forms starting from single simple modules [13].



Evolving a Novel Bio-inspired Controller in Reconfigurable Robots 139

In contrast to those approaches we focus on mimicking fluid diffusion processes,
as it is found in real organisms.

Finally, as our AHHS controller is not fixed in size and in complexity (except
for limitations in computing time and memory), we interpret that our AE offers
almost open ended evolution. In our studies, a simple AHHS produced already
interesting and different motion behaviours: circling, wall following, wall avoid-
ing. The post evaluation showed that only a fraction of the resources were used
to accomplish the task. Further tests will reveal the possibilities of the controller
in more complex tasks.
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Abstract. The topic of evolutionary trends in complexity has drawn
much controversy in the artificial life community. Rather than investi-
gate the evolution of overall complexity, here we investigate the evolution
of topology of networks in the Polyworld artificial life system. Our in-
vestigation encompasses both the actual structure of neural networks of
agents in this system, and logical or functional networks inferred from
statistical dependencies between nodes in the networks. We find interest-
ing trends across several topological measures, which together imply a
trend of more integrated activity across the networks (with the networks
taking on a more “small-world” character) with evolutionary time.

1 Introduction

The nature of evolutionary trends in complexity has been subject to much debate
[1], with interest surrounding whether the evolutionary growth in complexity of
organisms in the natural world is the outcome of natural selection or some sort
of random walk [2,3]. Indeed, this question has been explored in artificial life
systems: e.g. previous work with Polyworld has demonstrated that evolution
can and does select for increased complexity in a driven fashion in some circum-
stances, but also selects for complexity stability under other conditions [4,5].

Here, our interest lies not so much in the evolution of (any particular measure
of overall) complexity, but rather the manner in which the topology of neu-
ral networks adapt under evolutionary pressure. Specifically, we investigate the
topology of neural networks of agents in the Polyworld artificial life system. We
examine both the actual structure of these networks, and their logical structure.

� The authors thank the sponsors of the Guided Self-Organisation Workshop 2008
(GSO-2008), who partially supported this work: the Australian Research Council’s
Complex Open Systems Research Network (COSNet) and Research Network in En-
terprise Information Infrastructure (EII), The University of Sydney, and CSIRO
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The logical structure of the neural networks is explored by inferring functional
networks [6,7] from statistical dependencies between the time series of each node
in the underlying structural network. Here, we use mutual information [8] and
transfer entropy [9] to measure the statistical dependencies between the neurons.
We then examine the trends in several measures of the topology of the structural
and functional networks with respect to evolutionary time: in particular, we
measure the assortativity, modularity, clustering coefficient and closeness of the
networks. We find several interesting trends in the topologies, with the trends in
the structural and transfer entropy-based functional networks being most similar.
These networks become more non-assortative, less modular but more clustered,
and adopt shorter average path lengths with evolutionary time. These trends are
significant in that they imply the networks are taking on a more “small-world”
[10] character over evolutionary time.

2 Polyworld

Polyworld [11] is a computational ecology evolving populations of haploid agents,
each using a suite of primitive behaviors (move, turn, eat, mate, attack, light, fo-
cus) under continuous control of an Artificial Neural Network (ANN) employing
summing and squashing neurons with synapses that adapt via Hebbian learning.
The wiring diagram of the ANN is encoded in the organism’s genome, via a sta-
tistical description of the number of neural groups of excitatory and inhibitory
neurons, synaptic connection densities, ordered-ness of connections, and learning
rates. Input to the ANN consists of pixels from a rendering of the scene from
each agent’s point of view, like light falling on a retina. The agent morphologies
are simple and fixed, but agents’ interactions with the world and each other are
fairly complex, as they replenish energy by seeking out and consuming food or by
killing and eating other agents. They reproduce when two collocated agents si-
multaneously express their mating behaviors, using a number of crossover points
and a mutation rate that are also contained in the parental genomes [11].

Bounds on the agent population, both high and low, are maintained by al-
tering the energy consumption of the agents (as in [5]). As the population ap-
proaches the upper bound, the amount of energy depleted by all agent behaviors,
including neural activity, is increased in a continuous fashion. Reciprocally, as
the agent population approaches the minimum, energy depletion is decreased,
and agent lifespans may be artificially extended.

The simulation is initially seeded with a uniform population of agents that
have the minimum number of neural groups and a nearly minimal number of
neurons and synapses. While predisposed to some potentially beneficial behav-
iors, such as running towards food (green) and away from aggression (red; see
[11] for details on color use in Polyworld), these seed organisms are not a viable
species. I.e., without evolution they cannot sustain their numbers through their
reproductive behaviors and will inevitably die out.

As simulations progress both the structural architecture of the ANNs and
the activation of every neuron at every time step are recorded for every agent.
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Here we use these neural activation recordings to determine functional networks
for each agent and compare functional network characteristics to the underlying
structural network characteristics.

3 Inferring Functional Networks

Two remote neural nodes are defined to be functionally connected where they
exhibit statistical dependence in time [6,7]. The nodes considered could be voxels
in BOLD recordings (e.g. [7]), or neurons in an artificial neural network (as are
used here). A functional network is then formed from a set of functional con-
nections. Inferring functional networks from time-series of node states therefore
involves two distinct steps: i. making some measure of the statistical dependence
or closeness between each node pair, then ii. deciding whether each closeness
value should constitute a link between the node pair. The closeness measure and
the inferred links can be either directional or undirectional.

Functional networks may be used to infer the underlying structural network
where this is unknown. More importantly, functional networks provide insight
into the logical structure of the network and how this changes as a function of
network activity (regardless of whether the underlying structure is known).

In this work, we use information-theoretical measures [8] for the closeness of
each pair X and Y . The mutual information between X and Y measures the
average reduction in uncertainty about x (or entropy H of x) that results from
learning the value of y, or vice versa:

I(X ; Y ) =
∑
x,y

p(x, y) log2

p(x, y)
p(x)p(y)

. (1)

In this way, I(X ; Y ) is a symmetric measure of the common information between
X and Y . Though it has been previously used to measure directed information
transfer from one variable to another, this is not valid: it is a symmetric measure
of statically shared information (which is useful in its own right).

Alternatively, the transfer entropy [9] was introduced as a directed measure
of dynamic information transfer from one variable to another. It quantifies the
information provided by a source node about a destination’s next state that was
not contained in the past of the destination. Specifically, the transfer entropy
from a source node Y to a destination X is the mutual information between
the previous state of the source yn and the next state of the destination xn+1,
conditioned on the past k states of the destination x

(k)
n :

TY →X(k) =
∑

xn+1,x
(k)
n ,yn

p(xn+1, x
(k)
n , yn) log2

p(xn+1|x(k)
n , yn)

p(xn+1|x(k)
n )

. (2)

The transfer entropy may be measured for any two time series X and Y and is
always a valid measure of the predictive gain from the source, but only represents
physical information transfer when measured on a causal link [12].
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Here, we compute functional networks for each agent from the Polyworld sim-
ulation using both mutual information and transfer entropy as separate measures
of closeness. The continuous activation levels are first discretised in four levels,
and a history length k = 1 is used for the transfer entropy (this renders it more
towards an inference of causal effect than information transfer [13,12]).

Several options are then available for deciding whether each pair of areas
should be considered functionally connected based on their closeness. One could
assign links to a given number or percentage of pairs based on the largest close-
ness values, or could use an approach based on the statistical significance of the
closeness measure, e.g. [14]. Here, the number of functional links was designed
to match the proportion of links in the underlying structural network, and the
largest such closeness values were assigned links. A (directed) link exists in the
structural network between two neurons where the source neuron is an input
to the target neuron. We consider both processing and input neurons in the
functional network.

4 Network Topological Measures

Analysis of the topology of functional networks provides useful information about
the dynamic behaviour of the network [7,14]. In this section, we introduce the
measures of topology used to analyse the functional networks here. All were
calculated using [15].

Assortativity is the tendency observed in networks where nodes mostly con-
nect with similar nodes. Typically, this similarity is interpreted in terms of de-
grees of nodes. Assortativity has been formally defined as a correlation function
of excess degree distributions and link distribution of a network [16,17]. The
concepts of degree distribution p(k) and excess degree distribution q(k) for undi-
rected networks are well known [17]. Given q(k), one can introduce the quantity
ej,k as the joint probability distribution of the remaining degrees of the two
nodes at either end of a randomly chosen link. Given these distributions, the
assortativity of an undirected network is defined as:

r =
1
σ2

q

⎡
⎣∑

jk

jk (ej,k − q (j) q (k))

⎤
⎦ , (3)

where σq is the standard deviation of q(k). Assortativity distributions can be
constructed by considering the local assortativity of all nodes in a network [18].

Closeness centrality of a node v is defined as the mean geodesic distance
(shortest path length) between the node and all other nodes in the network [19].
(Sometimes the quantity is inverted so that the nodes which are ‘most central’ to
the network G would get higher values). Closeness centrality is formally defined
as CC (v) =

∑
dG(v, t) where v �= t and dG(v, t) is the shortest path distance

between nodes v and t.
Network modularity is the extent to which a network can be separated into

independent sub-networks. Formally [20], modularity quantifies the fraction of
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links that are within the respective modules compared to all links in a network.
[20] introduces an algorithm which can partition a network into k modules and
measure the partition’s modularity Q. The measure uses the concept that a good
partition of a network should have a lot of within-module links and a very small
number of between-module links. The modularity can be written as:

Q =
∑k

s=1

[
ls
L
−
(

ds

2L

)2
]
, (4)

where k is the number of modules, L is the number of links in the network, ls is
the number of links between nodes in module s, and ds is the sum of degrees of
nodes in module s. To avoid getting a single module in all cases, this measure
imposes Q = 0 if all nodes are in the same module or nodes are placed randomly
into modules.

The clustering coefficient of a node characterizes the density of links in the
environment closest to a vertex. Formally, the clustering coefficient C of a node
is the ratio between the total number y of links connecting its neighbours and
the total number of all possible links between all these z nearest neighbours [21]:
C = 2y/ (z (z − 1)). The clustering coefficient C for a network is the average C
over all nodes.

5 Results and Discussion

We constructed the functional networks for each agent, and evaluated each mea-
sure of network topology on these and the underlying structural networks (which
had between 13 and 159 neurons, and 52 on average). We then averaged each
measure over sets of 100 sequential agents ordered by birth. The results are
plotted with respect to evolutionary time in Fig. 1. Clearly, all measures reach
a relatively steady state within 5000 – 12000 steps in evolutionary time. This
aligns with previous studies of trends in the complexity of the neural networks
in Polyworld [5] where the complexity is driven upwards over the initial 5000 or
so steps of evolution before the agents find a “good enough” solution. At this
point the drive for evolutionary change somewhat stagnates, as is reflected in
the steady state of the measures here.

In general, the transfer entropy-inferred functional networks show similar
trends to the structural networks across all measures. Interestingly, the transfer
entropy-inferred functional networks had a slightly smaller overlap (mean 17.6±
0.1%) with the underlying structural networks than the mutual information-
inferred functional networks (mean 19.1± 0.1%). It is possible that the transfer
entropy performs better at inferring the general interaction structure between
modules or regions in the structural network (thereby capturing the general
topological trends) without necessarily inferring the precise links any better.

As shown in Fig. 1(a), the structural networks tend to exhibit a negative assor-
tativity: this is not surprising as it is a known general characteristic of biological
networks evolved under external pressure [22]. This is because negative assorta-
tivity supports connectivity between diverse elements in the network, an impor-
tant feature for producing complex behaviour. Unsurprisingly also, the mutual
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Fig. 1. Trends in structural and functional networks versus evolutionary time. Mea-
sures are plotted for structural networks (red line), mutual information-inferred func-
tional networks (violet ×), and transfer entropy-inferred functional networks (blue �).
Error bars indicate the standard error of the mean.

information-inferred networks exhibit positive assortativity (since mutual infor-
mation is maximised for similar elements), while the transfer entropy-inferred
networks exhibit negative assortativity (since transfer entropy is minimised for
similar elements). More interestingly, the structural and transfer entropy-inferred
networks become more neutrally assortative over time (i.e. less negatively assor-
tative). While this may seem surprising, it is possibly an artifact of the elements
in the network becoming more closely coupled as they evolve and therefore be-
come more similar, or perhaps reflects the increased clustering occurring over
evolutionary time.

Fig. 1(b) and Fig. 1(c) show that the structural and transfer entropy-inferred
networks become less modular but more clustered as they evolve. This is not a
contradiction: it indicates that the boundaries between modules are becoming
blurred with previously separated modules becoming more strongly clustered
both within themselves and across each other (i.e. finding the right balance
between functional integration and segregation to give rise to complex behaviour).
The mutual information-inferred networks however exhibit a decrease in
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clustering coefficient. Again, this seems to be a relic of the mutual information
measure being maximised for similar elements: stronger coupling across clusters
in the underlying network is likely to diversify the activity of previously similar
nodes, thereby reducing clustering in this functional network.

Finally, Fig. 1(d) shows that the closeness centrality is reduced with evolution-
ary time for all networks. Given the previous results, this is unsurprising as all
imply diversification of connectivity across the network with evolutionary time.
In fact, taken together these results (in particular the higher clustering and lower
shortest path lengths) suggest that the networks are becoming more small-world
[10] with evolutionary time. Again this is unsurprising but significant, since the
same effect is observed in many natural systems (including biological cortical
networks and networks optimised for complexity [23], as well as functional net-
works inferred from neural networks in [14]) due to the advantages bestowed by
this property. Importantly though, recall that all measures reach a steady state
here: the neural networks do not continually improve on these desirable features,
but stop developing once a good enough solution is found.

6 Conclusion

We have measured functional networks to represent the logical activity of neural
networks of agents in the Polyworld artificial life system. Topological analysis
of these functional networks, and the underlying structural networks, revealed
clear trends with evolutionary time. The structure and activity in the networks
becomes more integrated over time, as may be expected in the evolution of
complex distributed processes. In particular, both the structural and functional
networks take on more of a small-world character as the evolution progresses.

Our results also showed interesting differences between the use of mutual
information and transfer entropy in inferring functional networks. The trans-
fer entropy-inferred functional networks have topological trends more similar to
those of the underlying structural networks, and also provided more intuitive
insights into network activity.

In extending this work, it would be desirable to evaluate the statistical sig-
nificance of the trends observed here. One method for doing this would be to
contrast the results here (where evolution is driven by genetic mixing) with
those produced by passive genetic drift (along the same lines as the comparison
of trends in complexity in [5]).
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Abstract. Behaviour responds to both input from the external environment and
input from within the organism’s body. Input from the external environment has
mainly the function to regulate the execution of the organism’s activities while
input from the body is used to decide which activity to execute. We evolve arti-
ficial organisms which to survive and reproduce have to both eat food and drink
water in equivalent quantities and therefore at any given time they have to decide
whether to look for food or water. We show that in some environments the appro-
priate behaviour can evolve with no need for the organism’s brain to know the cur-
rent level of energy and water in the body while in other environments the brain
needs this information from the body in the form of hunger and thirst. We discuss
how the body and the body’s interactions with the brain are part of the overall
adaptive pattern of an organism and must co-evolve with brain and behaviour.

1 Introduction

To survive and reproduce minimally complex organisms must be able to both execute
effectively a number of diverse activities and to decide which activity to execute at any
given time. These are two distinct abilities. Consider an organism that to survive has to
both eat and drink. The organism’s body includes a store of energy and a store of water
and at each time step a fixed quantity of energy and water is consumed to keep the
organism alive - if any of the two stores reaches zero level the organism dies. To remain
alive the organism must be able to find food (energy) and water in the environment. The
organism must also look for food or water when the level of either is low. Clearly, the
individuals that survive must possess both abilities.

We call these two components of the adaptive pattern of organisms the cognitive
(or tactical) component and the motivational (or strategic) component. Most research
aimed at constructing artificial organisms that resemble real organisms is dedicated to
studying the cognitive component of behaviour, that is, to endowing artificial organisms
with the ability to execute a single activity aimed at some specific goal, although this
single activity may be a complex one with a hierarchical structure of sub-abilities. The
cognitive component of behaviour can be interpreted as the ability to respond to stimuli
from the environment with the appropriate movements; but the behaviour of organisms
is also caused by the internal states of the organism’s body or brain. In fact, the sight of
food should induce a behaviour of approaching and eating the food only if the organism
is hungry. Otherwise, the food should be ignored. This simple example indicates the
importance of the organism’s internal states in determining the organism’s behaviour.

G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part I, LNCS 5777, pp. 148–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Recently research sought to capture the motivational and emotional aspects of be-
haviour with artificial organisms [1,2,3,4,5,6,7]. Studying behaviour by constructing
embodied artificial organisms (robots) should facilitate an examination of the motiva-
tional and emotional aspects of behaviour since motivation and emotion appear intrin-
sically linked to the body beyond the brain and to the interactions between the body and
the brain [4,8,9,10,11]. Robots have an “external body” (size, shape, sensory and motor
organs) but not an “internal body” with its organs and systems. The study of motivation
and emotion requires the development of both an external and an internal robotics [12].

We might say that organisms live in, and have to adapt to, two environments: the
environment which is outside their body and the “internal environment” constituted
by their own body. However, the two environments have a critical difference. While
the external environment is what it is mainly independent from the organism (except
for human technology), the internal environment clearly is part of the overall adaptive
pattern of the organism and it evolves with the organism’s behavior [13].

In this paper we will describe a number of simple simulations showing that the ex-
istence of a communication channel between the energy and water stores inside the
organism’s body and the organism’s brain can be adaptive in some stereotypical envi-
ronments but not in all environments. In some environments organisms may need to
feel hungry and thirsty to survive but hunger and thirst are adaptations and they may
not be particularly useful in other environments.

2 The Simulation Scenario

Our organisms are a simulated version of the Khepera robot [14] and we use the
Evorobot* simulation tool (developed by Stefano Nolfi; cf. http://laral.istc.cnr.it/
evorobotstar/). They have a cylindrical body, sensors with which they can detect food
and water tokens, and two wheels that can be moved independently at different veloc-
ities. The organisms have energy and water stores with a level that can go from 1 (full
store) to 0 (empty store). When they are born both stores are completely filled up but a
fixed amount of energy and water is consumed at each time step.

The simulated organism lives in a walled environment of 1000x1000 pixels and its
body occupies a circle of 75 pixels of diameter. When the organism’s body reaches the
wall, its orientation is changed randomly. The environment contains food and water
tokens each of witch occupies a circle of 30 pixels. When the center of the organism’s
body enters in a token circle, the token disappears (and is replaced by a new token in
another randomly chosen location) and the organism’s relative body level is increased.

The entire lifetime of an organism is made up of 10 epochs each lasting 1500 time
steps. However, most of the time, the actual lifetime is shorter than that because an
epoch is terminated if either the energy or water store of the organism goes to zero. At
the beginning of each epoch the organism is placed at the center of the environment
with a randomly chosen orientation.

The behaviour of the organisms is controlled by a neural network with 4 input (sen-
sory) units, 2 output (motor) units and 4 hidden units. Each of the 4 input units sends
its connections to all hidden units, and each hidden unit sends its connections to each
output unit. In the simulations in which the organism’s nervous system is informed of
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the levels of energy and water in its body, the organism’s neural network has 2 addi-
tional sensory units that send connections to all 4 hidden units. We will call these units
“motivational units” (hunger and thirst units). 2 of the 4 sensory units detect the food
tokens and the other 2 detect the water tokens; in each pair one unit gets activated by
tokens seen on the right (RU for right unit), and the other one by tokens seen on the left
(LU for left unit), according to the following expressions:

When a food/water token appears in the visual field of the organism, the activation
levels of the corresponding sensory units vary with the logarithm of the inverse square
distance, d, of the token from the organism; the activation depends also on the angular
position of the token in the organism’s visual field, φ - the left and right half-fields are set
to be oriented, respectively, 60o to the left and 60o to the right with respect to the frontal
direction; σ determines the eye angular view spread and its value is 45o. K , A and B
are constant values set up to ensure activation spans the interval [0, 1] (A = 1.596,
B = 0.110, K = 0.75/Log(N) in environments (1), (2), (3), and K = 0.5/Log(N) in
Env. (4), where N is the total number of tokens in the environment (see below for envi-
ronment descriptions)). Each of the activation values of the two output unit determines
(linearly) the separate speed of the corresponding wheel and therefore the trajectory
followed by the organism. The 2 motivational units, when present, are internal sensory
units informing the neural controller of the level of energy (hunger unit) and water
(thirst unit), in the organism’s body. The activation value of each of these units maps
linearly the level of the corresponding resource (1 for full store, 0 for empty store).

Each simulation starts with a population of 100 randomly generated organisms. At
the end of the 10 epochs comprising their life, each organism is assigned a fitness which
is simply the total duration (number of time steps) of its life. The individuals which eat
food and drink water in sufficient and comparable quantities live longer in each epoch
and therefore are more likely to have offspring - the 20 robots with highest fitness are
selected for reproduction. Each robot generates 5 offspring inheriting the same genome
of their (single) parent, with the addition of random mutations (each one of the bits
of the genome has a 4% probability of being mutated). Each simulation lasts for 1000
generations and is repeated 10 times starting from randomly generated organisms.

We have run four different simulations in four different stereotypical environments
(for other details see Tab. 1). Env. (1) contains 5 food tokens and 5 water tokens. Env.
(2) contains 5 food tokens and only 1 water token. Env. (3) is “seasonal”: it contains 5
food tokens and only 1 water token in 5 of the 10 epochs of an individual’s lifetime, and
5 water tokens and only 1 food token in the other 5 epochs. In all these 3 environments
the tokens are randomly distributed. Env. (4) contains 3 food tokens and 3 water tokens
but the tokens are distributed in patches, with all the food tokens located inside a square
of 60 pixels of side and the same for the water tokens, while the centers of the two
patches are at a distance of 600 pixels.

We have evolved two different populations in each of the four environments. The
organisms of one population (Sim for “simple”) do not have the motivational circuit
while the organisms of the other population (Mot) do have this circuit.
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3 Results

3.1 Fitness

Figure 1 and Table 2 show the fitness distributions of the 1000 individuals of the final
generation of the 10 replications of the evolution in all four environments and their
mean and standard deviations, separately for the Sim and the Mot organisms (the Mem
organisms will be discussed later in the section “Motivation as memory”).

We see that in environments (1) and (2) the two populations reach comparable levels
of fitness, whereas in environments (3) and (4) the Mot populations perform better: the
presence of the information coming from the body stores correlates with higher adaptive
skills in the environments (3) and (4), but not in environments (1) and (2).

Balanced environment (same quantity of food and water tokens): the organisms can
adapt to this environment by developing a simple behaviour which consists in approach-
ing whatever token is closest, regardless of it is a food or a water token. This behaviour
ensures both foraging efficiency and diet balancing and does not require the knowledge
of the current bodily levels of energy and water.

Unbalanced environment (food is five times scarcer than water): in this environment
too it is possible for the organisms to develop an effective and balanced behaviour with
no need for their nervous system to be informed about the current bodily levels of
energy and water: they can simply evolve a tuned preference for food.

Seasonal environment (food tokens are five times scarcer than water tokens in half
of the seasons and the opposite is true in the other half of the seasons): in a seasonal
environment the behavioural strategies of the organisms living in a “static” environment
like (1) and (2) are suboptimal, because they are not capable of coupling with the ever

Table 1. Environment features (seasonal envi-
ronment: outside the brackets one season, in-
side brackets the opposite season)

Table 2. Fitness data in all the four environ-
ments at last generation of evolution. “Ave”
is the population’s mean fitness, “Best” is the
best individual’s fitness.

Fig. 1. Fitness distributions of the populations of the last generation of evolution in all the four
environments (from left to right): (1) balanced, (2) unbalanced, (3) seasonal, (4) patched. Com-
parison between Sim, Mot and Mem populations.
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changing environmental conditions (remember that our organisms haven’t got any type
of “season sensor”). In Env. (3) the communication channel between the body stores and
the brain results a strong adaptive tool (see Fig. 1, and Tab. 2, third column), consenting
our organisms to counterbalance the environmental biases of seasons by going after
food when energy in their body is low and going after water when water is low.

Patched environment (food and water are equally abundant but the tokens are dis-
tributed in two separate patches, one with food tokens and the other one with water
tokens): in this environment too the organisms cannot simply go after the token which
is closest to them like the organisms living in Env. (1) because if an organism happens
to be in a food patch this behavioural strategy would imply eating a lot of food but
possibly running out of water and dying, and vice versa if the organism finds itself in a
water patch. For the organisms living in Env. (4) it is advantageous to feel hunger and
thirst in order to be able to abandon a food patch if they are thirsty and a water patch if
they are hungry (see next section for more details).

3.2 Experimental Tests

To test this interpretation of the fitness results we have tested the individuals of the
last generation in each of the four simulations with and without motivational units in
controlled, “experimental”, conditions, identical for all individuals. We examined the
behaviour of each individual in a situation in which the individual is exposed to a sin-
gle food and water token at the same time, with the two tokens located one at 45o to
the left and the other at 45o to the right with respect to the organism facing orientation
(in all conditions we exchanged the position of the food and water tokens). In different
conditions the food and water tokens are located at 5 different distances from the or-
ganisms, where the ratio of the distances from the organism of the two tokens is varied
between 1 (equal distances) to 5 (one token five times closer to the organism than the
other token). Furthermore, for the organisms which receive information from the body
(hunger and thirst), in each condition energy and water can have the following pairs of
levels: 0.25/1, 0.33/1, 0.5/1, 0.5/0.5, 1/0.5, 1/0.33, 1/0.25, i.e., the organisms can have
the same level of hunger and thirst (0.5/0.5) or they can be much more hungry than
thirsty, or vice versa.

Fig. 2. Average food choice fraction as a function of the logarithm of the ratio between the dis-
tance of the food token and the distance of the water token from the organism in all the four
environments (from left to right): (1) balanced, (2) unbalanced, (3) seasonal, (4) patched. The
test is performed on the Mot individuals of the last generation of evolution for several (see legend)
values of energy and water in the body.

The quantitative results of our analysis of the behaviour of the Mot organisms living
in different environments are shown in Fig. 2, and can be summarized as follows:
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Balanced environment: the organisms tend to go to the nearest token, regardless of
it is food or water (negative slope of the curves) - this is not much affected by the levels
of the two body stores (the curves are all close to each other).

Unbalanced environment: the organisms tend to prefer the food tokens, less abundant
in their environment (the curves are shifted upwards). The organisms have learnt to use
the information coming from the body: they increase their preference for food when
they are more hungry than thirsty, and they decrease it when the opposite is true (the
filled dots curves are above the empty dots ones); at full stores (1/1) the organisms
show no preference for any of the two types of tokens when food is roughly 3 times
more distant than water.

Seasonal environment: the organisms choose to go to the nearest token if they are
equally hungry and thirsty (black filled squares) but the bodily state strongly biases their
preference towards the more needed resource.

Patched environment: in this environment too, the levels of the two body stores in-
fluence the choice behaviour of the organisms in the adaptive way (filled dots curves
mostly above the empty dots ones) even though the data are more noisy.

These results allow us to say that Mot individuals have learnt how to use the infor-
mation arriving from within the body as this is a useful adaptation in environments (2),
(3) and (4). This ability leads to an adaptive advantage in the seasonal and the patched
environments, but not in the unbalanced environment (space precludes an in depth dis-
cussion of this point here). It is worth noting that, even if the difference in the average
population’s fitness between Sim and Mot organisms in the patched environment is not
very great, the strategies they have evolved to survive are different. The Sim organisms
developed a - not very efficient - “back and forth” strategy: they go straight towards
the patch they see, and they spin when they don’t see anything. In contrast, the Mot
organisms show a sort of ”restricted area search” (ARS) behaviour [15]: they remain in
the patch they are in (eating or drinking) and they abandon it to reach the other one only
when the relative body store is almost empty.

4 Motivation as Memory

There might be an alternative interpretation for our results, based on memory rather than
motivation. The present state of the body might function, if it is communicated to the
brain, as a sort of memory of what the organism has done recently. When the energy
level is high and the water level is low, this means that the organism recently has eaten
and not drunk and therefore it should drink rather than eat, and the opposite when the
energy level is low and the water level is high. Since memory of recent behaviour is
useful in environments (3) and (4) but not in environments (1) and (2), the existence of
a motivational circuit results in higher fitness in environments (3) and (4) only.

To test this alternative interpretation we have added an explicit memory mechanism
to the neural network of our organisms consisting of two parts. The network’s hidden
units are now leaky neurons and have fully recurrent connections [16]. A population of
organisms endowed with this new neural network but without the motivational circuit
has been evolved in all four environments.

The results show that in all four environments the organisms possessing the memory
mechanism reach a higher fitness level compared to those without it (see Mem data
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in Fig. 1 and Tab. 2). In other words, while the motivational circuit leads to a higher
performance only in environments (3) and (4), the memory circuit leads to a higher
performance in all four environments. This seems to indicate that memory and moti-
vation are two distinct mechanisms, with separate effects on organism performance.
The memory circuit has a positive influence on the cognitive component of organism
behaviour, causing a more effective manner of approaching tokens in the environment
and therefore being useful in all sorts of environments (data not shown). In contrast, the
motivational circuit has a positive influence on the motivational component of the or-
ganisms’ behaviour, leading to more effective “decisions” on whether to approach food
or water and therefore being useful only in the particular environments in which such
decisions are critical for survival, i.e., in our environments (3) and (4).

A further proof in favor of a distinction between memory and motivation is that
evolved organisms endowed with both our memory circuit and our motivational circuit
reach a higher level of performance in environments (3) and (4) with respect to both the
organisms possessing only the memory circuit and the organisms possessing only the
motivational circuit (data not shown). This clearly indicates that the two circuits have
distinct functional roles and that in the appropriate environments these functional roles
can have separate and additive beneficial influences on organism performance.

5 Discussion

Evolving a system that informs an organism’s brain of the current state of the organ-
ism’s body depends on the environment in which the organisms happen to live. All our
organisms need to both eat and drink in more or less equal quantities in order to survive
and have offspring. However, possession of a communication channel between body
and brain that informs the brain of the current level of energy and water in the body is
only advantageous in some environments. Examples of such environments are an envi-
ronment in which food and water abundances change seasonally and an environment in
which food and water are distributed in patches. In these environments it is critical for
the organisms to evolve a motivational system that tells the brain how much energy and
water is currently contained in the body so that behaviour can be determined by both
input from the external environment and input from within the body.

It is interesting to note that while the external environment is given, the internal envi-
ronment is not given but co-evolves with the brain. To adapt to the external environment
means to develop the appropriate sensory organs and the appropriate neural processing
system that allow the organisms to survive and reproduce in that environment. To sur-
vive in our seasonal and patched environments the organisms have to develop both a
body that sends the appropriate input to the brain and a brain that responds appropriately
to this input from their body.

We conclude by indicating two directions of future research. The role of an evolving
body in the general process of adaptation can be studied in other ways. For example
we could take into account the fact that the rate of consumption of energy and of water
is not a given but is part of the entire adaptive pattern of the particular organism, and
therefore can co-evolve with the rest of the organism, i.e., with its sensory organs, brain,
and behaviour. A second direction of research concerns other aspects of competition
between motivations (for a study of action selection in a social environment see [17]).
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We are currently running simulations in which the organisms have two motivations:
eating food and avoiding being captured by a predator. These simulations seem to indi-
cate that there are two types of individuals which tend not to have offspring: individuals
that are not very good at finding food (a tactical or cognitive problem) and individuals
that are too afraid of the predator to look for food (a strategic or motivational problem).
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Abstract. We introduce a technique that allows a robot to increase its resiliency 
and learning skills by exploiting a process akin to self-reflection. A robot  
contains two controllers: A pure reactive innate controller, and a reflective con-
troller that can observe, model and control the innate controller. The reflective 
controller adapts the innate controller without access to the innate controller’s 
internal state or architecture; Instead, it models it and then synthesizes filters 
that exploit its existing capabilities for new situations. In this paper we explore 
a number of scenarios where the innate controller is a recurrent neural network. 
We demonstrate significant adaptation ability with relatively few physical trials.  

Keywords: Self-modeling, self-reflection, machine learning, evolutionary robotics. 

1   Introduction 

The process of self-reflection underlies much of humans’ and primates’ ability to 
adapt to vastly varying conditions with little or no physical experimentation. In this  
 

 

Fig. 1. (a) Minsky’s brain chain, from [7]. (b) A proposal of nested brains architecture. (c) The 
robot contains an innate brain, and a reflective brain which can model and modulate the I/O of 
the innate brain. (d) Schematic of robot and environment consisting of moving sources of blue 
and red light. 
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work, we are interested in exploring robotic systems that use similar processes to 
model their own thinking, and then learn how to change their behavior with little 
recourse to physical trials or hand-crafted simulators. Understanding self-reflective 
processes may help make more robust adaptive systems that operate in rapidly chang-
ing physical environments, and shed light on these processes in nature [8]. 

In previous work we have explored how a real robot enhances its adaptation by ex-
ploiting self-models of its own morphology [4]. The robot was able to continuously 
improve its internal models while exploiting propioceptive data collected during its 
functioning. These models were used to explore new compensatory behaviors.  The 
results suggested that a robot might be more resilient when self-modeling certain 
source of perturbation, gaining the capabilities of self-representation, prediction, and 
aided exploration of the source.  

Here we wish to take this concept a step further, by having a robot model its own con-
troller as well. Just as a robot benefits from modeling its own morphology and then using 
that model to determine how to best compensate for a new situation, can a robot benefit 
from modeling its own controller, then use it to compensate for a new situations? 

The first question to answer is why a robot would need to model its own controller 
at all, instead of directly accessing and manipulating it. The reasons for this are many 
fold: First, there are many aspects of a control system that cannot be easily modeled, 
even if its architecture is perfectly known: Sensor and actuation lag time, noise, and 
computational errors and delays, for example. Second, the controller may change in 
unanticipated ways due to failure or change in the environment. Modeling an existing 
controller also takes time and effort, and direct manipulation of a controller could 
require an unwarranted increase in software and hardware complexity. Finally, in 
some cases the controller of a robot is simply inaccessible – either locked by design, 
or obfuscated by legacy code. The ability to modify performance of an existing con-
troller without directly accessing it also serves as a safe adaption strategy, since the 
original controller is never modified and therefore its behavior can be restored at any 
time. This process may also shed light on the evolution of more opaque controllers 
such as biological nervous systems. 

The approach we use here is based on the assumption that there are two controllers; 
one reflecting on the other, in the same way that metacognition is the ability to reflect 
upon one’s own mental processes and to self-regulate them. Such metacognitive 
processes are recognized to be present in humans, non-human primates, and a few 
other mammals [3,10]. It has been recently demonstrated to exist in the rat as well [2], 
suggesting that it might be applicable to simpler systems such as robots. 

The theoretical framework for human metacognition was initially laid out by  
Nelson and Narens [9]. They proposed that mental activity occurs at a higher meta 
(reflective) level and at a lower object (innate) level. The reflective level contains 
simulations of the object level and interacts by means of two information streams: 
monitoring and control. Monitoring is the process of observing the processing of the 
object level and control is the process of modifying the object level. A thought expe-
riment in metacognition was proposed by Minsky [6]. Minsky suggested dividing an 
artificial brain in two parts. While the input-outputs of the first part (A-brain) are 
connected to the external world, the second part (B-brain) is only connected to the  
A-brain; thus A is the only world seen by B (Figure 1a). As proposed by Minsky, the 
B-brain might help to the A-brain even without having access to the real world, and 
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by just looking at the activity of the A-brain. Simple questions such as Are you re-
peating? Are you feeling better? And How do you think? might help to produce a 
better brain state in the world.  

Other studies have examined metacognition in computation [1] with a focus on 
monitoring a set of variables that are known to be relevant to a specific problem solv-
er or a learning process. An example of this is adjusting learning coefficients, such as 
weights, during a machine learning task.  

We started our investigation in machine self-reflection [11] with the architecture 
presented in Figure 1b. A simulated wheeled robot (Figure 1c,d) was driven by a pure 
reactive innate brain. We showed how self-models generated by the reflective brain 
were useful to produce compensatory resilient behaviors when filtering the innate 
outputs. In this paper we investigate self-reflection upon time varying causal innate 
controllers implemented with recurrent neural networks (RNN). We also investigate 
the effect of filtering the inputs and outputs of the innate controller and the effect of 
adding time correlated noise to the outputs during monitoring.  

The remainder of this paper is as follows: Section 2 describes the innate causal  
controller. Section 3 describes the process of self-modeling causal controllers using 
recurrent neural networks. Section 4 presents results on the synthesis of input and 
output modifiers as well as the effect of adding different amounts of noise to the in-
nate controller outputs. Section 5 contains the conclusions of this investigation. 

2   Innate Causal Brain 

First, we synthesized an innate robot controller under a highly dynamic environment 
that contains sources of blue and red light moving in random circular patterns. We 
evolved the controller such that the robot seeks blue light while avoiding red light. A 
RNN implemented a controller that mapped the robot sensor inputs to motor outputs, 
as shown in Figure 2F, referred to as the Innate-NN. Four input neurons are fed by the 
light sensors zk: k = {0…3}. The network contains two hidden nodes and two output 
nodes that generate the left u0 and right u1 motor signals. The output yk of neuron k is 
computed as 
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where φ(⋅) is the sigmoid activation function, xj are the input signals, wkj are the con-
nection weights and θk is the threshold of neuron k. The controller is represented by a 
genome i of Ni = 33 scalar parameters (in the range [−1, 1]): 24 connection weights, 8 
activation thresholds, and one motor scaling factor α. The reward perceived by a 
robot is defined in equation (2) by assigning a positive (negative) reward to the 
amount of blue (red) light intensity that is collected during the evaluation of controller 
i under environment e after a period of T time steps. 
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To avoid exploiting the peculiarities of a unique environment, we used a set of 
Ne=3 randomly generated environments and we defined the fitness of a candidate 
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Figure 2G show this network when considering 10 hidden units, 100 connection 
weights, 16 activation thresholds and one output scalar factor α. 

In this self-modeling stage, let us also introduce an unanticipated environmental 
change. Suppose that the environment reward suddenly changes: Now the blue light is 
bad (like poison) and the red light is good. The innate controller is now unoptimal, 
and fitness reward is decreasing. 

We allowed the robot to operate freely under an environment e executing its In-
nate-NN controller and we collected vector time series of sensor Ze = {Zt

e : t ∈ T}, 
motor Ue  = {Ut

e : t ∈ T} and reward F  = {Ft : t ∈ T}. We fed the inputs of each can-
didate Self-model-NN controller c with the recorded time series of sensor data Ze, 
resulting in a predicted motor actuation data Uc,e = {Ut

c,e : t ∈ T} (Figure 2C). We 
then measured the quality of each candidate self-model controller c by its ability to 
reproduce the same input-output patterns as those observed during the operation of the 
Innate-NN controller on different environments. To find the best self-model, we mi-
nimized the distance D(c) described by equation 4.  
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Figure 3 shows the convergence of self-models to innate behavior (in red). After 
100000 generations self-model controllers are able to drive the robot very similarly as 
the innate controller does over the training scenario (a,c,d) and even predict the beha-
vior of the innate controller under the test scenario (b,e,f). The similarity of motor 
commands (c,e) increases when minimizing the distance D(c), resulting robot trajec-
tory becomes closer to the innate trajectory (a,b). Examples of the convergence of 
resulting sensor channels are shown in (d,f).  

4   Synthesis of Input-Output Modifiers  

In this section we describe the synthesis of the input-output modifier RNN’s that are 
illustrated in Figure 2H,I. During the controlling stage (Figure 2A) modifiers are in 
charge of filtering the innate sensor and motor signals. The challenge is how to train 
these modifier networks in such a way that (i) the reward of the robot goes up again 
and (ii) by only exploiting past experience, without any new trials.  

The method is as follows: Given the time series of sensor Ze
 and motor Ue data, we 

can estimate the quality of candidate modifiers by integrating the observed fitness 
variation ΔFt, described in equation 5, only in while the modified controller motor 
action Ut is similar to the already recorded motor action Ut

e that was tested in reality 
at a given time t. We estimate this similarity by means of the binary function γ1(Ut) 
defined in equation 7 as function of a threshold β = 0.06 or by using the continuous 
function γ2(Ut) defined in equation 8.        

Equation 6 shows the normalized fitness related to each candidate modifier. The 
confidence of the estimation is proportional to the integral across time of γ(Ut) which 
represents either γ1(Ut) or γ2(Ut). Intuitively, the idea is to use the information of fit-
ness variation that was already monitored during the robot operation.    
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Fig. 3. Convergence of self-models as result from the genetic minimization of D(c). The innate 
target behavior is shown in red. The self-model behavior is shown under training (a,c,d) and  
(b,e,f) test scenarios. The similarity of motor commands (c,e) increases when minimizing the 
distance D(c), resulting robot trajectory becomes closer to the innate trajectory (a,b). Examples 
of the convergence of resulting sensor channels are shown in (d,f). 
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Figure 4 below shows activation patterns of γ1(Ut) (a,b) and γ2(Ut) (c) for candidate 
modifiers explored during self-reflection. The domain axes represent time during 
evaluation of the innate robot behavior in reality and time during self-reflection. The 
value of 1.0 (black in c) corresponds to maximum similarity while 0.0 (white in c) 
represent the highest discrepancy. Time segments showing increasing levels of simi-
larity and high expected fitness are extracted during self-reflection (a). This process is 
enhanced when adding time correlated noise to the output of innate controllers during 
fitness monitoring (b). Results indicate that there is no a priori correlation between 
the activations of γ(Ut) and the resulting fitness of a candidate. 

We initialized the input/output modifiers such that their action is transparent at the 
beginning of self-reflection. We call this a nulling stage that consists on performing  
 

 

 

(a) 

(b) (c)

Fig. 4. Activations of γ1(Ut) (a,b) and γ2(Ut) (c). The value of 1.0 (black in c) corresponds to 
maximum similarity while 0.0 (white in c) represent the highest discrepancy. The effect of 
adding time correlated noise to the outputs of the innate controller during evaluation in reality 
is illustrated in (b). Binary activations illustrated in (c) are a good example of how different
time structures are extracted during self-reflection. 
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Table 1. Comparisons of self-reflection versus classical ER techniques. When the environment 
changes (blue is bad and red is good) the innate controller drives the robot to obtain very low 
fitness (-644). Recovery using self-reflection allows achieving a fitness of 56 after four hard-
ware trials. A traditional innate recovery would have taken 40.000 trials to achieve similar 
results. 

Design Option Num. of physical trials Resulting fitness 
Output Modifier, self-ref. 4 trials. 56.2 ± 40 
Output Modifier, classic ER. 2000 trials.  30.4 ± 55 
Input Modifier, self-ref. 4 trials. 35.8 ± 66 
Input + Output Modifier, self-ref. 10 trials.  60.3 ± 123 
Innate formation. 150.000 trials. -644.3 ± 52 
Innate recovery, classical ER. 40.000 trials. 73.7 ± 80 

 
genetic search over the modifier search space until their output accurately mimic 
corresponding inputs. The solutions are then used as seeds for the actual modifier 
synthesis search process. 

5   Conclusions 

We conclude that: (1) Accurate self-models of RNN innate controllers can be ob-
tained using the proposed method. (2) Resulting self-models allow prediction of the 
robot innate behavior even under environments whose dynamics differs from the 
training scenario. (3) Self-reflection allow our robot to recover quickly; investing 4 or 
10 hardware trials to achieve a level of fitness that otherwise would have taken thou-
sands of trials with traditional ER techniques. (4) There is an advantage of inducing 
motor noise while monitoring the innate robot behavior. (5) We notice the need of 
pre-calibration of the modifiers prior self-reflection. The large amount of hardware 
trials is one of the main limitations of ER. Self-reflection appears as a promising al-
ternative to expand the domain of applications of this field. 
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Abstract. We explore the problem of resource allocation in a system
made up of autonomous agents that can either carry out tasks indi-
vidually or, when necessary, cooperate by forming physical connections
with each other. We consider a group transport scenario that involves
transporting broken robots to a repair zone. Some broken robots can be
transported by an individual ‘rescue’ robot, whereas other broken robots
are heavier and therefore require the rescue robots to self-assemble into a
larger and stronger composite entity. We present a distributed controller
that solves this task while efficiently allocating resources. We conduct a
series of real-world experiments to show that our system can i) transport
separate broken robots in parallel, ii) trigger self-assembly into compos-
ite entities when necessary to overcome the physical limitations of indi-
vidual agents, iii) efficiently allocate resources and iv) resolve deadlock
situations.

Keywords: self-assembly, task allocation, swarm intelligence, search
and rescue, cooperation, group transport, autonomous robots, multi-
robot systems, swarm robotics.

1 Introduction

Self-assembling robotic systems are made up of autonomous agents that are
able to physically connect to one another to form larger composite entities.
Self-assembling systems in which the individual agents are themselves simple
independent mobile robots potentially share the benefits both of distributed
multi-agent robotic systems and of more conventional monolithic robots. In com-
mon with distributed multi-agent systems, such self-assembling systems are well
suited to parallel task execution, and tend to be relatively inexpensive, robust
and scalable. However, by connecting to each other and working together, such
systems can also overcome the individual physical limitations of the system’s
constituent agents and thus carry out tasks that in the past might have required
a larger traditional monolithic robot.

However, there is an intrinsic problem of resource allocation that must be
solved before self-assembling systems can achieve this kind of flexibility and
realise their potential. In particular, a self-assembling system must be able to
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determine when parallel or collective behaviour is more appropriate, and then
be able to distribute resources to reflect this analysis. This problem of resource
allocation has been largely ignored in the self-assembly literature. There is a
large body of literature on task allocation in non-self-assembling multi-robot
systems. However, little of this work is directly applicable to self-assembling
systems, where the parameters of the task must determine the nature and extent
of physical cooperation at the expense of parallel execution.

In this paper, we explore the problem of resource allocation using a real world
group transport scenario. In our scenario, dedicated ‘rescue’ robots must find
broken, immobile robots and transport them to a designated repair zone. The
broken down robots can either be single agents or pre-assembled composite
robotic entities. A single broken down agent can be transported by a single
rescuing agent, whereas a broken down composite entity is sufficiently heavy
that multiple rescue robots must self-assemble in order to effect the rescue. The
system has no a priori knowledge either of the number of rescue robots or of the
number and size of the broken entities.

We present a distributed controller that solves the above task while efficiently
allocating resources. Each rescue robot tries to move any broken robots that
it finds, and independently determines whether or not the object is success-
fully being moved. Based on this determination, the rescuing robot uses local
communication to either attract or repel other rescue robots. We present a se-
ries of experiments with real robots using our controller. The contributions of
this study are as follows. Firstly, we demonstrate a new use of self-assembly as
a response mechanism. Secondly, we demonstrate a distributed task allocation
mechanism based on local attraction and repulsion that is applicable to groups
of mobile self-assembling agents. Finally, we demonstrate a group transport con-
trol mechanism that improves on previous implementations in both efficiency
and flexibility.

2 Related Work

Kube and Zhang [5,6] conducted a series of experiments in which a group of
physical robots was transporting a heavy object. They observed that the robots
could end up pushing the same object in opposing directions. As a result of this,
the transport object could become stuck. To resolve this problem, they integrated
into their control policy a recovery mechanism that was inspired by the group
transport of the ant species Pheidole crassinoda [9]. In this species, ants were
reported both to undergo changes in their group transport arrangements and
to recruit nest mates if an object resisted motion (Kube and Zhang’s robots
mimicked the group transport rearrangement behaviour).

In simulation, Perez-Uribe et al. [8] investigated a system in which a group
of robots is required to find and transport multiple objects of two sizes: small
and large. The allocation of robots to the objects was irreversible, thus creating
a deadlock potential in the case of an immovable object.
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Ijspeert et al. [4] studied a system of physical robots in which two physically
cooperating robots could pull long sticks out of the ground (the sticks could not
be removed by a single robot). When a single robot tried to remove a stick, it
would wait for another robot to arrive. The optimal waiting time was computed
as a function of the environmental parameters.

Groß and Dorigo [1,2,3] used computer simulations to study the transport
of heavy objects by groups of self-assembling robots. The control policies were
designed by evolutionary algorithms. In [2,3], it was assumed that only a single
transportable object was present. The system in [1] could in principle cope with
multiple objects, however, each robot would always attempt to transport the
closest object within its perceptual field. The allocation of robots was irreversible
and did not depend on the objects’ resistance to motion.

Tuci et al. [10] conducted an experiment with physical robots that could self-
assemble and transport a heavy object. The transporters were programmed to
suspend their transport whenever they perceived an unconnected robot (allowing
the latter to join the group). Thus, if a robot permanently failed to join the
pulling structure, a deadlock occurred.

3 Platform and Experimental Setup

The platform we use is the swarm-bot robotic platform [7]. The swarm-bots
platform consist of a number of autonomous robots called s-bots, see Fig. 1
(left). The s-bot is 12 cm high without its camera turret, and has a diameter of
12 cm. Each s-bot is equipped with a gripper that enables physical connections
between s-bots. The turret holding the gripper can rotate independently of the
chassis, that contains a differential drive system composed of combined tracks
and wheels. This allows an s-bot to exert force in any direction when grasping
another s-bot or object.

Each s-bot is equipped with torque sensors on its track motors that let the
robot determine whether it is successfully moving a gripped object that it is
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Fig. 1. Left: The s-bot. Centre: S-bot LEDs off and on. Right: The arena.
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trying to transport. If the s-bot is moving the object, the s-bot’s tracks will be
rotating and the motor torque will be low. If, however, the object is not moving
(for example, because it is too heavy) the rescue robot’s tracks will be blocked
and the torque will be high.

The s-bot camera records panoramic images reflected in a hemispherical mir-
ror mounted above the s-bot chassis in a transparent perspex tube. Each s-bot
has a semi-transparent ring housing eight sets of RGB coloured LEDs. Depend-
ing on light conditions, the camera can detect illuminated LEDs on other s-bots
up to 50 cm away. A strong external light source can be seen up to 4 m away.

Our experimental setup requires ‘rescue’ s-bots to search the arena shown
in Fig. 1 (right), to find broken robots and then to transport them to the desig-
nated repair zone (darker floor). A light source is located two meters outside of
the arena beyond the repair zone (not shown in Fig. 1). Transporting s-bots per-
form phototaxis to ensure that they transport the broken robots in the correct
direction towards the repair zone.

All of our experiments involve either one or two rescuing robots and either
one or two broken robots. We use two types of broken robot. We refer to a single
broken s-bot as a 1-s-bot broken robot (a single rescuing s-bot is able to transport
a 1-s-bot broken robot). We refer to a broken robot that is a composite entity
made up of two physically connected s-bots as a 2-s-bot broken robot (the rescuing
s-bots must team up in order to collectively transport a 2-s-bot broken robot).
We consider broken robots to be immobile. However, we make the simplifying
assumption that broken robots are still able to use their LEDs to signal that
they require assistance.

4 Controller

The desired behaviour of our multi-agent system is for the rescue s-bots to
locate and transport the broken robots to the repair zone. Ideally, based on
the properties of the broken robots (size, weight), only the minimum required
number of rescue s-bots should be allocated to transport each broken robot, thus
leaving as many rescue s-bots as possible idle or available for other tasks.

We designed our distributed controller to use only local sensing and commu-
nication. The control logic executed independently by each rescue s-bot is shown
in Fig. 2. A rescue s-bot searches for any broken robots by performing a random
walk with its blue LEDs illuminated (Random Walk). Broken robots signal that
they need help by illuminating their red LEDs. When a rescue s-bot detects red
LEDs without any nearby green LEDs, it assumes that it has seen a broken robot
that is not currently being rescued and heads towards the red LEDs (Goto Red
Entity). If more than one red entity is seen, the rescuing s-bot picks one of the
red entities at random. It then grips the broken robot (Grip Red Entity) and
tries to pull the broken robot to the repair zone by heading towards the light
source (Pull Towards Light) with its green LEDs illuminated.

As long as a rescue s-bot is successfully pulling a broken robot (low track
torque), it stays green. This tells other rescue s-bots within camera range not
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Fig. 2. Control logic that each rescue s-bot executes independently

to go towards the broken robot it is pulling. However, if the rescue s-bot fails to
move the broken robot (high track torque measured consistently for 5 seconds),
the rescue s-bot stops pulling and illuminates its red LEDs (Wait For Help). At
this point, the rescue s-bot is indistinguishable from the broken robot that it is
still gripping. Thus, other rescue s-bots will approach and grip either the broken
robot or any rescue s-bots that are attached to the broken robot and are in
state Wait For Help. When a new rescue s-bot attaches, it will turn green as it
attempts to pull the broken robot. Any attached s-bots in state Wait For Help
are prompted by the sight of green LEDs to try to pull again. If the new larger
number of attached rescue s-bots is now sufficient to move the broken robots, all
of the rescue s-bots will stay green and thus prevent any further rescue s-bots
from approaching. Otherwise, after 5 seconds of high torque, they will realise that
the broken robot is still not movable, and will switch to state Wait For Help.
This process repeats itself, with progressively more rescue s-bots attaching to
the broken robot until there are enough rescue s-bots to move the broken robot.
In this way, the system automatically finds the minimum group size capable of
moving a broken robot.

If there are several large composite broken robots present, and a small number
of rescue s-bots, it is possible that the individual rescue s-bots might randomly
distribute themselves among the broken robots in such a way that none of the
large broken robots can be moved. To prevent this type of deadlock situation,
a rescue s-bot in state Wait For Help has a low probability of detaching. A
detached robot returns to state Random Walk and thus turns blue, which signals
to any s-bot that might be gripping the detached robot that it should in turn
detach. Rescuing robots also detach if they no longer detect any red LEDs—
in our experiments, the broken robots detect arrival in the repair zone using
ground sensors, and switch off their red LEDs. Together, these two detachment
mechanisms ensure that as long as there are enough rescue s-bots present in the
environment to move any given broken robot, the rescue s-bots will eventually
combine forces to move the broken robot.

5 Results

We carried out four sets of real-world experiments. Each set of experiments is
defined by the number of rescuing s-bots, the number of broken robots and the
size of the broken robotic entities. The rescuing robots have no a priori knowledge



170 R. O’Grady et al.

of the experiment configuration. Videos of the experiments can be found on the
web at: http://iridia.ulb.ac.be/supp/IridiaSupp2009-011.

Rescuing Broken Robots in Parallel
We conducted 5 trials of an experiment with two rescue s-bots and two 1-s-
bot broken robots (photos A1-A4 are of a single trial). In each experiment, the
system successfully allocated a single rescue robot to each of the broken robots
and the broken robots were transported in parallel to the repair zone.

A1 A2 A3 A4

This experiment shows that when possible the system correctly ‘chooses’ par-
allel execution (the incorrect choice would be for two rescue s-bots to assemble
to the same broken robot).

Physical Cooperation to Rescue a Broken Robot
We conducted 5 trials of an experiment with two rescue s-bots and a single 2-s-
bot broken robot (photos B1-B4 are of a single trial). In each trial, one rescue
s-bot found the broken robot, then tried and failed to move the broken robot
alone. The attached rescue s-bot waited for help, and after the other rescue s-bot
attached, together the two rescue s-bots succeeded in transporting the broken
robot to the repair zone.

B1 B2 B3 B4

In one of the trials, the initial attachment configuration of the rescue s-bots
failed to move the broken robot. One of the rescue s-bots detached based on the
probabilistic time out twice, but reattached both times. In the final configuration
the rescue s-bots succeeded in transporting the broken robot to the repair zone.

This experiment shows that the system correctly allows the rescue s-bots
to physically coordinate in order to solve a task that is beyond the physical
capacities of a single s-bot.

Efficiency Gains Through Group Size Regulation
We conducted 5 trials of an experiment with two rescue s-bots and a single 1-
s-bot broken robot (photos C1-C4 are of a single trial). In each trial, a single
rescue s-bot connected to the broken robot, and successfully transported it to the
repair zone. The other s-bot continued to explore the arena without attempting
to attach to the moving broken robot.

http://iridia.ulb.ac.be/supp/IridiaSupp2009-011
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C1 C2 C3 C4

This experiment shows that the system correctly allocates the minimum num-
ber of rescue s-bots (in this case 1 s-bot) to a task, and leaves other rescue s-bots
free to potentially carry out other tasks.

Reallocation of Resources in a Deadlock Situation
We conducted 5 trials of an experiment with a single rescue s-bot and two broken
robots: one 1-s-bot broken robot and one 2-s-bot broken robot (photos D1-D4
are of a single trial). In this experiment, we initially ‘break’ the 2-s-bot broken
robot (i.e., illuminate its red LEDs). We allow the rescuing s-bot to find and
attach to the heavy broken robot before we ‘break’ the 1-s-bot broken robot.
D1 D2 D3 D4

In four out of the five trials, the rescue s-bot probabilistically timed out, ex-
plored the arena, found and attached to the 1-s-bot broken robot and successfully
transported it to the repair zone (in one of these successful trials the rescue s-bot
first re-attached to the 2-s-bot broken robot and timed out again). In a single
trial, the rescue s-bot failed to detach correctly due to a hardware failure.

This experiment shows that the system correctly resolves a deadlock situation
where a rescue s-bot is attempting an impossible task, and manages to reallocate
resources (the rescue s-bot) to another task that is feasible.

6 Conclusion

In this study, we presented a distributed controller that for the first time tack-
les the problem of resource allocation in a self-assembling robotic system. We
conducted real world experiments in a group transport rescue scenario which
showed that our distributed control logic displays several important properties.
In particular, our system was able to maximise parallel execution (and hence ef-
ficiency) by allocating the minimum number of agents required to solve tasks of
varying magnitudes. In addition, the system included a reset mechanism which
allowed it to resolve potential deadlock situations (when all agents are distributed
among tasks in a sufficiently sparse way that none of the tasks are solvable). We
discovered that this mechanism also allowed for potentially beneficial random
reconfiguration of spatial arrangements within a single transport rescue group.
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We are currently working on testing the scalability of the system with larger
numbers of robots in simulation, and on abstracting the fundamental dynamics
of our system so as to apply them to other self-assembly scenarios.
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Abstract. We propose an experimental study where simplistic organ-
isms rise from inanimate matter and evolve solely through physical in-
teractions. These organisms are composed of three types of macroscopic
building blocks floating in an agitated medium. The dynamism of the
medium allows the blocks to physically bind with and disband from each
other. This results in the emergence of organisms and their reproduction.
The process is governed solely by the building blocks’ local interactions
in the absence of any blueprint or central command. We demonstrate
the feasibility of our approach by realistic computer simulations and a
hardware prototype. Our results suggest that an autonomous evolution
of non-biological organisms can be realized in human-designed environ-
ments and, potentially, in natural environments as well.

Keywords: Adaptation, artificial life, evolution, evolutionary robotics,
morphology, origin of life, self-assembly, self-organization, self-replication.

1 Introduction

In this paper, we argue that artificial evolution of living organisms could, or
should, take place in worlds that obey the laws of physics, and where possible, in
the natural world. If this were the case, the evolutionary processes would not only
be validated but could explore deeply the world’s own dynamics and its nonlinear
nature [1]. A step towards this direction was made by Floreano and Mondada [2],
who proposed an approach to evolve—without human intervention—the brain
of a robot that interacts with its physical world. The brain, an artificial neural
network, was modeled in software, but as Thompson [3] showed, it could be
embedded into an electronic circuit as well. Sims [4,5] investigated computer
simulations to evolve both body and brain of organisms (see also [6]). Funes and
Pollack [7] investigated computer simulations to evolve static support structures
made of realistic components (LEGO bricks), which allowed them to build and
test the best solutions in reality. Lipson and Pollack [8] extended this approach
by an automatic procedure to manufacture the solutions, in this case, robotic
lifeforms.

Different from natural evolution, the aforementioned approaches to artificial
evolution are not to the extent self-organized as we would like them to be. For
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example, they all share a central computer algorithm that decides whether or-
ganisms might reproduce or not. Moreover, they make use of dedicated computer
algorithms that can produce new organisms on demand, for example, by recom-
bining or varying existing solutions. By contrast, natural evolution is an
autonomous, decentralized, and self-organized process that is fully embedded into
the physical world. To the best of our knowledge, up to now the study of self-
organized evolutionary processes has considered only fairly abstract models, where
the genotypes (and genetic operators) are either software entities lacking embod-
iment [9,10,11,12,13,14] or entities having a rudimentary embodiment only [15].

Our work builds on recent advances in systems capable of macroscopic self-
assembly [16,17]. In these systems, as the result of a self-organized process, a set
of centimeter-sized building blocks can form composite entities. Several macro-
scopic self-assembly systems—ranging from purely mechanical parts to fully
autonomous robots—proved capable of replicating connected composite enti-
ties [18,19,20,21,22]. However, these composite entities did not undergo change,
and thus could not evolve (but see [23]). By contrast, we investigate a self-
assembling system that is capable of producing a population of embodied or-
ganisms (i) which are subject to change through artificial evolution, and (ii)
which respond to stimuli in their environment. The defining characteristics of
our system are:

1. it is composed of pre-existing building blocks: energy modules, interaction
modules, and boundary modules;

2. the modules (and composite entities) float passively in an agitated medium;
3. the energy and interaction modules self-assemble into composite entities;
4. the energy modules transform and store energy provided by the environment;
5. the interaction modules respond to stimuli in their environment;
6. the boundary modules attach to composite entities and thereby form pro-

tecting membranes, which inhibit further growth;
7. modules within a same composite entity share their energy;
8. modules without energy are not powered and can thus not actively bind with

other modules (however, they can passively bind with active modules);
9. composite entities with an intact membrane replicate by self-assembly;

10. composite entities can break into multiple parts.

In the following we refer to composite entities with an intact membrane as or-
ganisms. Note that organisms (i) need energy, for example to maintain their
connectivity (see item 8), and (ii) can replicate (see item 9). In this study, the
organism (phenotype) is identical to the genotype.

The paper is organized as follows. Section 2 describes the simulator that we
use to model the physical process. Section 3 explains the process itself. Sections 4
and 5 detail respectively the computational results and a hardware prototype.
Section 6 discusses the findings and concludes the paper.

2 Simulation Model

The simulator models the kinematics and dynamics of rigid bodies in two dimen-
sions (2-D) using the open-source Enki simulation toolkit [24]. The 2-D space
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is modeled continuously. Time progresses in discrete steps. The environment is
a bounded squared world of side length 250 cm. At any moment in time, it is
partitioned into distinct regions where light is either present (day regions) or not
present (night regions). The world is populated by physical objects (modules or
composite entities). The objects cannot move on their own, but float passively
on the ground. Kinetic energy is provided by the flow of air. The flow is com-
posed of two components: a flow in random directions of velocity 280 cm/s and
a counter-clockwise circular flow of velocity 160 cm/s around the world’s center.
The forces exerted by the flow of air result in random or circular motion patterns.
In nature, such motion patterns could result from ocean currents, gravitational
fields, or Brownian motion. The combination of circular motion patterns with a
squared world is expected to provide nonlinearity to the dynamics of the system.

The system’s basic building blocks, the modules, are modeled as squares of
side length 7 cm and of mass 49 g. The modules can physically connect with each
other and thereby form composite entities. Each module controls the connectivity
of each of its four sides by activating or deactivating it. If the sides of two separate
modules are well aligned with each other, a connection is established provided
that at least one of the two sides is activated.

The system has three types of modules:

1. The energy module, or e-module, harvests, stores, and provides energy. The
energy consumption is 1 unit/s for modules of all types. When part of a
same composite entity, e-modules share instantaneously their energy with
all other modules via a power line. They also balance their energy storage
over time.

2. The interaction module, or i-module, allows composite entities to respond
to stimuli in their environment. In this study, the i-module can (i) adjust
the friction (coefficient) it has by contact with the ground and (ii) perceive
whether it is located in a day or night region. The module’s behavior is
hard-wired as follows: the friction coefficient is 0.2 in day regions, and it is
0.02 in night regions or whenever the module is powered off. The i-module
is powered on whenever it receives energy through its power lines.

3. The boundary module, or b-module, allows composite entities to be encapsu-
lated by a protecting membrane (boundary). Once a b-module has attached,
the composite entity is prevented from further growth. The b-module is pow-
ered on whenever it receives energy through its power lines.

3 Origin of Organisms, Replication, and Variation

At the beginning of a trial, the modules are randomly distributed in the world
(see Fig. 1a). When an e-module retrieves energy from the environment, it gets
automatically powered on. It then activates all four of its connection sides. Recall
that a connection between two modules can be established only if at least one of
the interacting connection sides is active. As the i- and b- modules do not have
energy on their own, at this stage any growth is seeded by at least one e-module.
When a separate e- or i- module connects with another module during the
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(a) (b)

(c) (d)

Fig. 1. Left: (a–d): illustration of the growth and replication process. Center/right:
generic hardware prototype capable of simulating all aspects of the e-, i-, and b-
modules. Center: squared base with four connection sides. The inset shows a hatch
in the bottom plate, which controls the mobility of the module, which floats on an air
table. Right: fully assembled prototype (battery removed).

growth phase, it deactivates its two lateral connection sides. As a consequence,
the modules form polymers (i.e., linear chains) of arbitrary length. Once a b-
module connects to either end of such a polymer, a signal propagates to the
other end, and thereby a membrane is established (see Fig. 1b). The membrane
prevents further extensions on either side of the polymer during its lifetime. The
self-assembly process thus results in linear organisms that are composed of ≥ 1
e-modules, ≥ 0 i-modules, and 1 b-module.

Organisms attempt to replicate at any moment in time. To do so, the b-
module activates one lateral connection side. Once a module of correct type has
attached to this side, the b-module sends a signal to the next module in the
organism chain. The replication process then proceeds by copying elements, one
by one, similar to the Watson-Crick base pairing. In our case, modules pair only
with modules of the same type (see Fig. 1c). Mismatches in type are recognized
and the modules released. Once the replication has completed, the two organisms
split apart (see Fig. 1d).

In some situations composite entities (including organisms) break apart. First,
this happens when a composite entity has no energy left (i.e., selection occurs
via the environment). Second, this can happen when a module of a compos-
ite entity detects a local inconsistency. For example, this is the case when two
b-modules connect at about the same time to both ends of a polymer. Third,
composite entities can break apart when experiencing a high impulse during
collision. The composite entity then splits into two or more parts. The afore-
mentioned situations can lead to variations of the organisms (and composite
entities). The resulting composite entities can form new polymer structures (if
lacking a membrane), for example, by recombining with each other.

The exact logic governing the local interactions during growth and self-
replication is coded in the form of finite state machines (FSM). The entire pro-
cess is regulated by local information only. Communication between two adjacent
modules is limited to a single byte per time step in each direction (regardless of
the size of the composite entity).
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4 Results

To assess our system, we put 150 modules—50 per type—at random positions
in the world. At the beginning, the energy storage of each e-module was empty.
Its capacity was limited to 300 units. When powered, modules of all types con-
sumed 1 unit/s. Energy was provided at a rate of 1.41 units/s by a single day
region covering the entire world. After 36000 s (10 h) had elapsed, energy was
provided at a rate of 1.90 units/s by three non-overlapping day regions covering
each a 7/36th circular segment of the entire world. The day regions were sepa-
rated by equally-sized night regions (i.e., 5/36th circular segments of the world),
which provided no energy. The day and night regions moved at a constant speed
similar to the sun relative to the Earth. If a module could remain motionless it
would experience a “sunrise” every 1200 s followed by a “sunset” 700 s thereafter.
The circular air flow, which was driving the modules, was exactly opposing the
circular movement of the day and night regions.

Figure 2 (left) shows a snapshot taken from an experiment at time 2700 s. In
general, almost all of the organisms that emerged were not capable of harvesting
enough energy to stay alive; typically they died shortly after becoming alive or
when reproducing. In the first phase (10 h), the energy was uniformly distributed
in the world. Consequently, mobility was not relevant for energy retrieval. This
certainly explains the lack of i-modules (which control ground friction as a re-
sponse to light) in the organisms that evolved at this stage [see Fig. 2 (center)].
We repeated the phase 1 evolution ten times and in all cases a few organisms of
adequate structure emerged spontaneously and then replicated rapidly until the
initial supply of modules was exhausted. In the evolutionary run shown in Fig. 2
(center/right), the population converged to a single species represented by eight
identical individuals (seven of which were generated by self-replication). Each in-
dividual consisted of 4 e-modules and 1 b-module. The remaining 18 e-modules
were attached to these organisms in the form of base pairs.

In the second phase, which started when 36000 s (10 h) had elapsed, energy
was not uniformly distributed. At the beginning of phase 2, we observed the
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Fig. 2. Left: snapshot taken in a simulation trial (green: organisms, some of which are
replicating, blue: polymers without membrane, yellow/turquoise/red: e/i/b-modules).
Center: mean composition (i.e., modular makeup) of organisms over time. Right: total
number of organisms and number of those produced by replication over time.
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extinction of the aforementioned species [Fig. 2 (right)]. During phase 2 new or-
ganisms emerged. The most successful ones comprised 6 e-modules, 1 i-module,
and 1 b-module. The i-modules enabled the organisms to increase the relative
time spent within the day regions. Preliminary analysis suggests that the posi-
tion of the i-module within the organism was also a crucial factor for survival. As
can be seen in Fig. 2 (right), some of the organisms in phase 2 were produced by
self-replication. However, different from phase 1 these organisms did not spread
in the entire population. A possible explanation for this is that the mean density
of energy had dropped from 1.41 units/s in phase 1 to 1.1083̄ units/s in phase
2. Recall that 1 unit/s is consumed already by the e-module itself. In addition,
the environment in phase 2 was highly unpredictable as energy was supplied
only in certain regions, which changed over time. The limited size of these re-
gions certainly created competition between the organisms, which—due to their
embodiment—could not occupy the same positions.

5 Hardware Implementation

We have designed and built a generic hardware prototype, which can simulate
all aspects of the e-, i-, and b-modules. The prototype is shown in Fig. 1 (cen-
ter/right). It has a size of 7 cm times 7 cm, a total weight of 59 g, and can float
on an air table. The module’s base [see Fig. 1 (center)] was fabricated using a
3D printer. Its slanted edges facilitate self-alignment when colliding with other
modules. A module can attach to other modules on each of its four sides. The
connection mechanism is similar to the one reported by Klavins’ group in [25].
Each side has two permanent magnets. One magnet is fixed in position with the
north pole pointing outwards. The other magnet can be rotated by means of
a servomotor, which gives basic control on the level of attraction or repulsion.
A hatch in the base can be opened or closed in order to allow the module to
immobilize itself: when the hatch is opened, air from the table flows through the
opening and as a consequence the module’s ground friction increases. The hatch
is actuated by a fifth servomotor, which lies flat on the base. The module con-
tains a printed circuit board with a dsPIC33F microcontroller. For inter-module
communication, the module has four infrared transmitters. A fifth transmitter
(light sensor) is mounted on top of the module, pointing upwards. A 350mAh
lithium polymer battery provides energy.

6 Discussion

In this paper, we proposed a self-assembling system that can allow non-biologi-
cal evolutionary processes to take place in the physical world. The evolutionary
process is fully autonomous, decentralized, and self-organized. It is governed by
the organisms’ physical interactions with each other and with their environment.
The physical interactions are in turn determined by a number of factors. For
example, the motion of an organism (which is made possible by the flow of air in
the environment) is affected by the organism’s mass, center of mass, moment of
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inertia, the orientation-dependent surface area, geometry, and the non-uniform
friction—all parameters that vary with the organism’s modular makeup.

First results obtained in computer simulations are very promising and indicate
the feasibility of such evolutionary process. In particular, the system proved ca-
pable of generating a population of organisms that had qualities of living beings
(e.g., response to stimuli) and that were well adapted to their environment, even
when the latter was subject to gradual or sudden changes. Clearly, most of the
system’s behavior is yet to be explored. For example, we suppose that the role
of variations were very limited in the experiments we reported (only a few or-
ganisms broke apart and recombined to new solutions). However, we expect the
role of variation to become more important when the environment complexity
and the organisms’ sizes further increase—under these circumstances it should
be more difficult to assemble an appropriate solution from scratch.

We have constructed a hardware prototype that implements the required key
functionalities apart from energy sharing and energy retrieval. In principle, these
functionalities can be simulated in a physical setting by using the prototype’s
onboard battery and light sensor. As onboard batteries will limit the time of
operation, we plan to equip the modules with solar panels and energy sharing
facilities [26]. The system should then be capable of exhibiting an autonomous
physical evolution in a human designed environment. The ultimate goal would be
to design a system that can evolve physical organisms in natural environments.
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Abstract. In areas such as evolutionary robotics and artificial life, simu-
lating artificial robots and organisms are significant challenges to acquire
their proper behaviors that achieve given tasks. This study proposes An-
imated Robot (”Anibot”), which can behave by obeying physical laws in
a virtual 3D environment. Especially, we aim to obtain a control system
in evolution which makes it possible to behave ”Anibot” autonomously.
This paper focuses on a virtual modular robot with a flexible structure
and simulating it for learning and controlling. The experimental results
show that the modular robot can move toward a light source as its goal
in different circumstances. In addition, we discuss an adaptive ability
in the different circumstances and a motion mechanism of an obtained
behavior.

Keywords: Physics-modeling, Learning, Neural network, Modular robot.

1 Introduction

In areas such as evolutionary robotics and artificial life, designing a body shape
and controlling behavior for autonomous robots have been studied actively. Re-
cently, the designing must take consideration in interaction between robots and
their surrounding environment. There are many studies to acquire autonomous
behaviors for them by computer simulations [1,2,3]. Sims [1] proposed a method
for creating a virtual creature. In this methodology, the geometric morphology
for a model structure and a neuro system for controlling a creature are both gen-
erated automatically using the genetic algorithm (GA). Therefore, it is expected
that the creature adapts to the surrounding environment by use of physical sim-
ulation. Similarly, in the area of artificial life, behavior emergence and evolution
of the artificial creature on a computer are significant problems.

This study has focused on a computer simulation that aims to have robots
achieved given tasks autonomously for a virtual robot in a specific virtual 3D en-
vironment. For the purpose of this simulation, we have proposed Animated Robot
(”Anibot”) and developed a modeling tool to design ”Anibot” [4]. ”Anibot” is a
virtual autonomous robot and it can behave by obeying physical laws in the virtual
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Fig. 1. Body system of modular robot (plan view)

3D environment. A difference between ”Anibot” and a conventional animation is
that ”Anibot” has not only sensors, actuators to control autonomous behavior,
but also physical properties such as a mass, a material property and so on.

Especially, this study focuses on a modular robot which is linked by simple
modules, and its experiment to acquire a control system. A feature of the modu-
lar robot is that its behavior is obtained by an each module movement based on
local communications between linked modules. In many studies, it is attracted
how to control each modules autonomously [5,6,7,8]. Its self-reconfigurable prop-
erty is also attracted. Murata et al.[6] develop a self-reconfigurable modular
robot M-TRAN. M-TRAN is the modular robot which is connected by lattice
type modules. This robot can change their module structure by ducking and
separation. Therefore, it is expected for robots to adapt to several environments
by changing its configuration. It has also a self-repairing ability in troubling
some module by replacement of disabled parts with spare modules. Controlling
the modular robot is generally studied by use of a rule-based control which is
described by the specific behavior rule for each module. However the rule-based
controlling approach has only allowed the robots relatively to control simple mo-
tion at present, for instance locomotion on a flat or an irregular ground, climbing
over the wall and so on. This study adopts an evolutionary heuristic approach to
control a modular robot. In particular, if this evolutionary approach is confirmed
to generate distributed functions from an acquired behavior, it is expected that
this approach is useful for a modular robot control [9].

The rest of this paper is composed as follows. Section 2 explains a virtual
modular robot to examine its behavior. Section 3 illustrates learning experiments
to acquire behaviors in moving it toward a goal, a light source, and shows some
experimental results. Section 4 discusses their results and Section 5 concludes
this study with some remarks and gives some directions toward the future work.

2 Modular Robot

2.1 Morphology

An intended modular robot is modeled by connecting rectangular modules with
spring joints (Figure 1). It behaves by maintaining an initial state topology since
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Table 1. Properties of shape and material
for modular robot

type value

module number of modules 32
density [kg/m3] 2,700
restitution coeff. 0.300
dynamic friction coeff. 0.400
static friction coeff. 0.600

joint number of short springs 32
number of long springs 32
natural length (short) [m] 0.200
maximum length (short) [m] 0.400
minimum length (short) [m] 0.050
natural length (long) [m] 0.450
maximum length (long) [m] 0.900
minimum length (long) [m] 0.1125
spring factor [N/m] 500
damping factor [Ns/m] 0.400

Table 2. Input-output parameters of
neuro controller

variable

input vA (velocity vector of A)
vB (velocity vector of B)
uAL (unit orientation vector

from pA to pL)
uBL (unit orientation vector

from pB to pL)
uAO (orientation vector

from pA to pOa)
uBO (orientation vector

from pB to pOb)
l (current length of spring i)
l0 (natural length of spring i)
vi (current elastic velocity

of spring i)

output Ai (amplitude for spring i)
ωi (angular frequency

for spring i)

this study does not consider a topology change. Each module is connected to
four modules surrounding it via four springs and is likely to behave itself by push
and pull movements using the friction with ground. The behavior of this model
is controlled by manipulating elastic velocities of each spring. Accordingly, all
modules of this model move by propagating spring forces to the whole modules
efficiently. In addition, Table 1 shows physical properties used for this model.

2.2 Control System

This model makes a movement using mainly an expansion and a contraction of
springs. The elastic velocities of each spring are calculated by Eq. (1).

vi(t + Δt) = vi(t) + Ai(t) sin(ωi(t)Δt + θi(t)) (1)

where vi(t) is an elastic velocity of spring i at time t, Ai(t) is an amplitude, ωi(t)
is an angular velocity, θi(t) is an accumulated phase (θi(0) = φi, θi(t + Δt) =
θi(t)+ωi(t)Δt) and φi is a specific initial phase of spring i. If vi(t) > 0, the spring
is expanded, if vi(t) < 0, it is shrunk. Thus, the behavior of the whole model is
controlled by manipulating Ai(t) and ωi(t) for each spring i. The movement of
spring is controlled by neuro controllers equipped with springs. This study adopts
an approach that each neuro controller actuates each spring independently.

This study deals with an easy task that the model mainly moves toward a
light source as its goal. The modular robot is set to acquire proper behaviors in
evolution for achieving given tasks. Therefore, their neuro controllers are defined
as an Artificial Neural Network (ANN). These controllers are input by sensor
signals perceiving a direction of the light source and obstacles and a situation of



184 K. Yoneda et al.

Module A

Module B

Spring i

Light source

pA

pB

pL

uAL

uBL

(a) Light sensor of modules

Module A

Module B

Spring i

uAO

uBO Obstacles

pOm is shortest point from
module to obstacle.M

pOa

pA

pB

pOb

(b) Obstacle sensor of modules

Fig. 2. Sensor system of modular robot

Module A

vA

uAL

uAO

Module B

vB

uBL

uBO

Spring i

l

l0
vi

Spring i

A ti( )
�i( )t

linear transfer function
sigmoid transfer function

hidden layer output layerinput layer

outputcalculateinput

Fig. 3. ANN structure of neuro controller

the actuator and it outputs some parameter values to calculate an elastic velocity
of their spring (Table 2). The light sensor to perceive the goal is installed on each
module. Additionally, each module has sensors which measure its velocity and
perceive obstacles around it (Figure 2). Figure 3 shows a configuration diagram
of an ANN which has a feed-forward network with hierarchic structure.

3 Simulation Experiments

Simulation experiments are carried out to achieve tasks for a given model de-
scribed in previous section. Specifically, two tasks are described as follows:

1. move toward a light source on a flat ground (Figure 4(a)).
2. move toward a light source through a circumstance surrounded by several

obstacles (Figure 4(b)).

These experiments examine an adaptive ability in different circumstances. Es-
pecially, in the 2nd experiment when the light is hidden by obstacles between a
module and a light source, its module cannot perceive the goal. Thus the 2nd
experiment is more difficult than the 1st one.
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Table 3. Experimental condition

type value

GA number of populations 20
number of generations 200
probability of crossover 0.900
probability of mutation 0.010
probability of inversion 0.300

simulation step time [sec] 1/60
the number of steps

8,200
in simulation

weighting coeff. α
0.8

in Equation (3)

Obstacle
l = ea

- da�

l = 0b

da

Module A

Module B

Light source

Fig. 5. Behavior evaluation of model

3.1 Experimental Condition

The purpose of experiments is to acquire proper behaviors that accomplishes
given tasks. Actuators determine the behaviors. Each actuator has a controller
implemented with ANN. We set that all ANN has the same synaptic weights.
Differences among actuators are initial phases. Therefore, the synaptic weights
assigned to one ANN and initial phases of all actuators are optimized to acquire
the proper behaviors. A real number type of GA is adopted for this optimiza-
tion. Experimental conditions for GA and simulation are shown in Table 3. All
experiments described under-below are assumed to use these conditions.

Obtained behaviors are evaluated by Eq. (2)

f =
Ns∑
t=0

Nm∑
m=1

lm (2)

where

lm =
{

e−αdm (if module m receives light)
0 (otherwise) (3)

dm is a distance measured from the m-th module to a light source, lm is a light
intensity which the m-th module receives from the light source, Ns is the number
of steps a simulation, and Nm is the number of modules of which a virtual robots
consists. In Eq. (3), α is a constant. Eq. (2) plays a role of a fitness function
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(a) the 10th generation (b) the 200th generation

Fig. 6. Experiment 1st results

(a) the 10th generation (b) the 200th generation

Fig. 7. Experiment 2nd results

in GA and it evaluates how much all modules receive accumulated intensities
during one simulation. A photo-tactic behavior is evaluated by Eq. (2). If the
m-th module does not receive a light, a behavior of the m-th module is not
evaluated (Figure 5). Finally results that GA optimizes so as to maximize Eq.
(2) become obtained behaviors.

3.2 Experimental Results

Ten trials are attempted in each experiment under the same condition. Figure 6
and 7 show snapshots of behaviors for the best trials obtained in two experi-
ments, respectively. The obtained behaviors of the model at the 10th and 200th
generations in both experiments are shown. In each generation, motions at 2,000,
5,000 and 8,000 steps are drawn. In these snapshots, ”X” mark indicates a posi-
tion of a light source. It is confirmed that the model can arrive at a light source
along the elapsed time. For these experiments, moving images are put on our
website [10]. Moreover, Figure 8 and 9 show diagrams with the evaluated value
of behaviors along the vertical axis and the number of generation along the hor-
izontal axis in both experiments. The evaluated values for the best, worst and
average trial are plotted in both diagrams. From both results, it is confirmed
that a highly evaluated value is obtained as the GA generation is updated. In
the 1st experiment, it is seen that the model can arrive at the goal at a low
number generation (Figure 6(a)). In particular, in the behaviors obtained at the
200th generation, it is confirmed that three movements, such as start, move and
stop, emerged. In the 2nd experiment, it is hardly seen that the model can pass
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through the gate by about the 100th generation because obstacles sometimes
interrupt a light against the module. However, as the GA generation is updated,
it is seen that behaviors are capable of achieving a given task.

4 Discussion

This study aims to generate motion rules in evolution for a virtual modular robot.
In this section, we introduce time-frequency analysis into spring movements of
the obtained behavior as a basic analysis. The analysis method is a wavelet
transformation which makes it possible to observe spring length changes through
time. Figure 10 shows analysis results for an arbitrary spring at the 10th, 50th,
100th and 200th generations. The horizontal axis and the vertical axis show an
elapsed time and a frequency, respectively. The spring length frequency-resolved
by the wavelet transformation appears in gray color. As the color changes from
black to white gradually, the spring length increases larger. It is observed that
there are remarkable differences at a high frequency range on the spring length
among generations. As the generation number proceeds, a large spring length in
this range appears at a higher frequency. This means the evolved neuro-controller
diminishes unnecessary spring vibration. However, it is not identified why this
phenomenon is caused. We need to investigate this phenomenon in more detail
as a future work.
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5 Conclusions and Future Work

We focus on a virtual modular robot and its physical simulation. Emergence
of behaviors for the virtual modular robot in simulation can be regarded as a
learning problem how the robot acquires the proper behavior. Evolutionary com-
putation is a successful approach to this learning problem. The results prove that
the defined modular robot can acquire behaviors in two different circumstances.
The wavelet transformation give us some information on the whole motion. How-
ever, since we adopt a module unit with an actuator which works locally, it is
difficult to analyze the whole model motion. It is too complex to analyze the
obtained behavior. The followings are rest as some challenges in a future work.

1. Analyzing a motion mechanism that the model generates a locomotion.
2. Considering to a synchronous phenomenon in changing of each spring length

through time.
3. Examination of a propagation mechanism generated as an elastic motion

between neighboring springs.
4. Extracting control rules to move the robot from our experimental analysis.
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Abstract. This paper describes an evolutionary robotics experiment,
which aims at showing the possibility of learning by guidance in a dy-
namic cognition perspective. Our model relies on Continuous Time Re-
current Neural Networks and Hebbian plasticity. The agents have the
ability to be guided by stimuli and we study the influence of a guidance
on their external behavior and internal dynamic when faced with other
stimuli. The article develops the experiment and presents some results
on the dynamic of the systems.

1 Positioning

Works in cognitive science show that cognition comes from the interaction be-
tween brain, body and environment [13,11,1]. Then, a cognitive system can be
considered as an autonomous complex system disturbed by the environment,
whose representation lies in sensory-motor invariants. This leads to different
theoretical proposals in robotics and in artificial life [7,2,4]. Following these per-
spectives, some applications propose the use of dynamic systems [9,8,6]. Through
interactions, these systems evolve between attractors and present plenty of dif-
ferent possible evolutions. These dynamic properties are the basis for adaptation,
decision, memorization and also creation processes [12]. Different works address
the sensory-motor invariants acquisition in such systems by pregiven adaptive
behavior using Continuous Time Recurrent Neural Networks (CTRNN) which
can approximate any dynamic system [5]. For example, [3] build photo-taxic
robots which can adapt to sensors inversion at an ontogenetic scale.

We address the problem of learning behavior for such a system thanks to a
specific interactive loop : a guidance signal. Indeed, learning by guidance is a
more complex kind of adaptation because it can lead to different final behaviors.
It is characterized by irreversibility which is a crucial property for ontogeny.
Consequently, our concern is to establish experiments which will enable us to
move from the status of self-adaptation to that of evolution induced by training,
while preserving the use of an artificial dynamic cognition approach. However,
evolutionary approaches are confronted with what [4] call the hard problem of the
enactive artificial intelligence because it is necessary to associate phylogenetic
mechanisms with the clarification of ontogenetic principles.
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Before starting our explanation, we must mention that our work is similar
to [6] who studies associative learning in evolved CTRNN. However, it is differ-
ent because we use guidance to initiate the learning instead of discrete reward.
Indeed, guidance is an evolutive mean to interact with the agent and to shape
progressively its behavior. Here, we can use the metaphor of a child learning to
ride a bike while being guided by an adult. If the child keeps his equilibrium, the
adult stops to guide him progressively. Inversely, if the child loses his balance,
the adult holds him. Progressively, the child will learn a new ability.

The section 2.1 presents our base experiment of learning by guidance. Models
are then described in section 2.2 and section 2.3 presents the genetic algorithm
used to set the parameters. The results are presented in the section 2.4.

2 Experiment

2.1 Principle

Let us consider an entity equipped with sensors functionally comparable to
“eyes and ears”. Its “ear” detects signals that make it change its orientation
(right/left). Each “eye” detects the presence of one kind of light (A) or (B), but
it initially does not display any particular behavior in presence of these lights.
The signal sent to the ear will act as a guidance, so that an association between
the signal received by the eyes and the one received by the ears is carried out
dynamically in the interaction. In order to do so, we associate the presence of
a light with a guidance moderated according to the effective behavior (for ex-
ample: send signal turn to the right when light (A) is present and the entity is
not turning to the right). The goal is that this guidance can attenuate gradually
and that in the long term will no longer be necessary.

We study the behavioral enrichment at the individual level, i.e. at the onto-
genetic level. Our artificial agents are equipped with a CTRNN. They have an
effector to turn in both directions and three sensors that respectively detect a
signal which corresponds to our guidance, the A light and the B light. The net-
work is fully-connected. The agents must react to the guidance signal by turning
to the right if the signal is negative and to the left if it is positive. We asso-
ciate in an arbitrary way a light (A/B) with a side (left/right). The experiment
consists in alternatively presenting the lights while guiding the agents according
to the chosen association. The guidance signal is only present when the agent
does not turn to the side associated with the light presented. However, a delay is
introduced into the guidance mechanism to enable the dynamics of the system
to take into account changes of perception. Thus, the guidance signal is not only
delayed but also variable: it increases gradually if the agent behavior does not
change. This adaptability leads us to speak about interactive guidance.

We seek to highlight the acquisition of a new behavior. This implies that the
light presented does not condition a priori the behavior of the agents and thus
that guidance must be necessary at the beginning of the experiment. If a new
behavior conditioned by the light appears, then guidance became useless at the
end of the experiment.
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2.2 Model

The sensors mentioned previously and engines are coupled to the CTRNN. From
then on, the term sensitive neuron will be used to designate a neuron which has
an input coming from a sensor and the term motor neuron will be used to
designate a neuron whose output is used by an effector. The cell potential yi is
governed by equation 1, where τi is the decay constant (range [0.5,2.1]), wi,j is
the weight of synaptic connection from node i to node j (range [-8,8]), and Ii

is an input from a sensor for a sensitive neuron. The firing rate zi is calculated
by using the equation 2, where bi is the bias of the node i (range [-1,1]). The
effector activation is computed by mapping the firing rate to the interval [-1,1]
and multiplying by a gain (range [0,40]). In the same way, the input of the
sensitive nodes is computed by multiplying the sensed value by a gain (range
[0,40]). The sensed values are 1 or 0 on the “eyes” sensors depending on the
presence of lights (A) and (B). For the “ear”, the sensed value is negative for
signal “turn to the left”, positive for signal “turn to the right” and 0 for no signal.

τi
δyi

δt
= −yi +

∑
j

wj,izj + Ii (1)

zi =
1

1 + e−(yi+bi)
(2)

δwi,j = η(αzizj + βzj + γzi) (3)

The network plasticity, inspired from [14], corresponds to an hebbian rule
(see equation 3), where η, α, β, γ are parameters (all in range [-1,1]) for each
connection.

2.3 Parameters Setting

The parameters are: gains associated with the sensors and effector; for each neu-
ron i, the decay constant τi and the bias bi; for each connection, the parameters
η, α, β and γ. They are determined by a genetic algorithm. The criteria to op-
timize by the algorithm is not a specific task but an ontogenetic development.
The fitness used by the genetic algorithm is computed in 3 independent phases
giving 3 scores : f1, f2 and f3. In short, the three phases are:

1. Guidance reaction checking. During a trial, the entity is guided towards a
side. The score of an entity for a trial is the time it has turned to the signaled
side. This phase is made up of 20 trials alternating guidance towards the right
and towards the left. Score f1 is computed using equation 4.

f1 = min
i∈[0.20]

{
vali|vali =

∫ tei

tsi
ΔTurn(t)dt

tei − tsi

(
1−

∫ tei

tsi
ΔEnergy(t)dt

tei − tsi

)}
(4)
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where vali is the score of the trial i which starts at tsi and stops at tei.
ΔTurn is the fitness component corresponding to the correlation between
the guidance signal and the motor activity given by the equation 5.

ΔTurn(t) =
{

1− ‖ M(t)− S(t) ‖ : M(t)S(t) > 0
0 : else

(5)

where M(t) is the activity of the motor neuron mapped to the range [-1,1] and
S(t) is the guidance signal. ΔEnergy is used to avoid oscillating behaviors.

ΔEnergy(t) =
{

0 : M(t− 1)M(t) > 0
1 : else

(6)

2. Guidance according to an association. Lights (A/B) are arbitrarily associated
to sides (left/right). The duration of each light presentation is arbitrarily
chosen in the range [1.5,4.5]. During a presentation, only one light is in
the environment of the entity. After a time during which the behavior of the
entity can stabilize (10 lights presentations), the guidance starts according to
the association previously decided. This second phase is made up of 50 light
presentations. For each presentation, the type of light is randomly chosen.
Score f2 is computed using equation 7.

f2 = (min{ScoreA, ScoreB})
×mini∈[10.50]

{
vali|vali =

∫ tei
tsi

ΔT urn2(t)dt

tei−tsi

(
1−

∫ tei
tsi

ΔEnergy(t)dt

tei−tsi

)}
(7)

ΔTurn2 is given by equation 8.

ΔTurn2(t) =
{

1 : M(t)C(t) > 0
0 : else

(8)

where C(t) stands for the association (C(t) = 1 when the presented light at
time t is associated with side left and C(t) = −1 else). ScoreA and ScoreB

are defined with equation 9.

ScoreX =
EsX − EeX

EsX
, X ∈ {A, B} (9)

ScoreX measures the progress of the agent in associating the previously
chosen side to light X. EsX and EeX are respectively the mean value of the
score at the beginning of the experiment and the mean value at the end.

EsX =

∑20
i=10

1
tei−tsi

∫ tei

tsi
ΔLight

X(t)dt∑20
i=10 X(t)

, X ∈ {A, B} (10)

EeX =

∑50
i=40

1
tei−tsi

∫ tei

tsi
ΔLight

X(t)dt∑50
i=40 X(t)

, X ∈ {A, B} (11)
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where X(t) is 1 when light X is present, 0 else, and ΔLight
X(t) is

ΔLight
X(t) =

{
S(t) : C(t)M(t) > 0 and X(t) = 1, X ∈ {A, B}

0 : else
(12)

3. Guidance according to the inverse association. The association used in phase
2 is inverted, then the same process is used to get a score f3. By carrying
out this inversion, we want to make sure the score of the agent depends on
guidance associated with the light and not on a predisposition of the agent.

Between each phase, the neural network is reset. The final score of an agent is
given by equation 13. A “good” agent is an agent which one can immediately
guide and which is able to take into account a guidance to progressively associate
a light with a side. The algorithm preserves the best individuals, in the propor-
tion of a third. The second third is obtained by cloning the best individuals,
each one of these clones systematically undergoing a mutation. All the parame-
ters have the same mutation rate. The mutation consists in varying very slightly
one of the parameters selected in a random way. The population is supplemented
with a third of new individuals.

f = a ∗ f1 + b ∗min(f2, f3) (13)

2.4 Results

The results presented here were obtained by applying the genetic algorithm to
populations of 50 individuals, controlled by 6 neurons networks, during 30,000
generations. Each agent has 208 parameters which are directly encoded into
genes (real values). Figure 1 illustrates how the best agent found by the genetic
algorithm reacts to a guidance scenario when no light is in the environment.
One guidance pulse is always sufficient to change the motors direction, however
it may be necessary to repeat this guidance to stabilize the motor on the expected
side. Figure 2 illustrates the protocol we used to observe the performance of the

-5
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0.2

20 25 30 35 40

Fig. 1. Motor activity according to a guidance scenario. The first graph plots the
motor activity and the second graph plots the guidance signal. Grey areas correspond
to guidance towards the right whereas white areas correspond to guidance towards the
left. The periods lasts are randomly chosen.
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Fig. 2. Protocol used to observe the agents

evolved agents. The experimenter decides on an association light-side. Phase A
starts at time 10 in order to allow the network to reach a stationary mode. Lights
are presented alternatively and there is no guidance. It allows us to check the
non correlation between the motor activity and the lights before the training.
Phase B, starting at time 40, corresponds to the training according to the chosen
association. Lights are presented to the agent. The experimenter guides it if it
is necessary. If the agent progresses, the experimenter intervenes less and less.

0
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Fig. 3. Different time periods of one simulation show the ontogenetic evolution of the
motor activity according to lights presentation

Figure 3 shows the activity of the best evolved agent interacting with a virtual
experimenter using the protocol described by figure 2. The association chosen is
light A/left - light B/right. From top to bottom, the first graph corresponds to
light presentations: 0 for light A, 1 for light B. A positive activity on the motor
neuron (second graph) means that the agent is turning to the left, a negative
activity that it is turning to the right. The third graph plots the guidance. At
the end of phase A (left part on Figure 3), changes of lights induce a change in
the motor activity. However, there is no direct correlation between the motor
and the lights even if the agent exhibits a tendency to turn to the right. At the
beginning of phase B (central part of Figure 3), the guidance causes the motor
to turn towards the desired side, but it is necessary to repeat the guidance. At
the end of phase B (right part of Figure 3), there is no need to guide the agent
anymore as the motor activity is correlated to the lights (Obviously, changing
side of the motor takes a little time, during which some little oscillations occur).
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Fig. 4. Motor activity compared to guid-
ance during some short time periods

Fig. 5. Activity of the internal neurons
(Y4 and Y5) compared to activity of the
guidance sensitive neuron (Y3)

Figure 4 plots the motor activity compared to guidance during short time
periods taken on the whole episode (not all time periods for the sake of clarity),
but only when light A is in the environment. Light A has to be associated to
side left, that means a positive motor activity. Set A1 corresponds to a short
interval extracted from phase A, i.e. before the training. During this period,
the motor activity is distributed between negative and positive values. Set B1
corresponds to the beginning of the training phase. At this time, motor activity
is more negative with a high need of guidance. Set B2 is extracted from the
end of the training. Motor activity is concentrated mostly on positive values.
Set C corresponds to the first presentation of light A after the training period.
During the considered time, motor activity is positive. Figure 5 illustrates how
neural dynamics is shaped by training. Dynamics of neural outputs y3, y4, y5 are
represented at stages of presentation of light A. Y3 is the output of neuron n3
which owns the guidance signal as input. It is surprising to observe that during
phase A, this output varies widely. During phase B (guidance), trajectory joins
a smaller space. Finally, this space is approximately kept during phase C (end
of learning). This dynamic can be interpreted as the fact that during phase A,
the system is very receptive to stimuli coming from guidance. Oscillations al-
low to explore a lot of states of the system. At the opposite, during guidance,
the system falls into another lesser extended attractor, corresponding to an as-
sociation side/light. However, this attraction depends on the guidance signal
which depends itself on an arbitrary choice of the association used during the
experiment. Similar curves are obtained for the presentation of light B.

3 Prospects

This work has focused on the evolution of the dynamics of a CTRNN during an
associative learning task involving guidance. We have shown how an external in-
fluence, i.e. the guidance, may impact the internal dynamics. From a dynamical
approach of artificial intelligence, it addresses the problem of sensory-motor ac-
quisition of a dynamic system at an ontogenetic scale. To follow an enactive-like
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perspective, a long term goal is to reach co-evolutive mechanisms. This work
is a contribution in this direction, as it addresses the question of influencing
the drift of a dynamic system through a external signal. Obviously, the task
presented here is voluntarily very simple because we are more interested in the
training than in the learned behavior itself. To treat more complex tasks, it will
be necessary to increase the sensory-motor capacities of the entity. For example,
the design of an entity should require consideration of the entity’s shape [10],
the evolvability of the morphology of the neural network and the imagination of
slight variations of the complexity of the task.

Acknowledgements. This work is supported financially by the Conseil Régional
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Abstract. The parallelization of evolutionary computation tasks using
a coarse-grained approach can be efficiently achieved using the island
migration model. Strongly influenced by the theory of punctuated equi-
libria, such a scheme guarantees an efficient exchange of genetic material
between niches, not only accelerating but also improving the evolutionary
process. We study the island model computational paradigm in relation
to the evolutionary robotics methodology. We let populations of robots
evolve in different islands of an archipelago and exchange individuals
along allowed migration paths. We show, for the test-case selected, how
the exchange of genetic material coming from different islands improves
the overall design efficiency and speed, effectively taking advantage of a
parallel computing environment to improve the methodology of evolu-
tionary robotics, often criticized for its computational cost.

Keywords: Stochastic Optimisation, Evolutionary Robotics, Island
Model, Parallel Computing.

1 Introduction

The theory of punctuated equilibria is a theory in evolutionary biology which
essentially states that evolution proceeds with rapid changes after long periods
of stasis [9]. The theory inspired Cohoon et al. [4] in formulating the island mi-
gration model, a coarse-grained parallelisation approach to global optimisation
(GO). More specifically, the authors originally focused on the parallelization of
genetic algorithms. Thus, the underlying mechanisms of this stochastic global
optimization technique inspired by Darwinian evolution, namely recombination,
mutation and selection, are complemented by migration. Initially isolated pop-
ulations, while evolving in parallel, exchange individuals at a certain rate, thus
interacting with each other. As a result, not only do GA populations evolve
faster, but their performance is also improved. The island model paradigm has
also been applied to the parallelisation of other evolutionary algorithms, as dif-
ferential evolution (DE [11]) and applied on difficult and high dimensional global
optimisation problems [5].
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Evolutionary Robotics. In the past years the application of artificial evolution
to the optimisation of neuro-controllers for autonomous robots has been gaining
a lot of momentum. The approach called Evolutionary Robotics (ER) is, essen-
tially, a methodological tool to automate the design of robots’ controllers [10]. It
is typically based on the use of artificial evolution to find sets of parameters for
artificial neural networks that guide the robots to the accomplishment of their
task. With respect to other design methods, ER has the theoretical advantage
that it does not require the designer to make strong assumptions concerning
what behavioural and communication mechanisms are needed by the robots.

However, to-date, the complexity of the tasks solved by agents controlled by
evolved neuro-controllers is lower than the complexity achieved by other methods
using hand-coded controllers driven by expert knowledge. Also, even if automatic
techniques could in principle reduce the human effort required to design con-
trollers, this is usually not the case [8]. In other words, the complexity achieved
by automatic approaches seems incommensurate with the effort expended in
setting up and configuring the evolutionary system. Therefore, despite the the-
oretical advantages of automating the design problem for autonomous agents,
the robotics control community cannot yet claim to having reaped its benefits.
More effort should be put by researchers in reducing the computation time re-
quired until a solution to a problem at hand is obtained with these techniques,
and at the same time in creating a framework that can generate more complex
solutions without a significant effort overhead on the side of the experimenter.
Various approaches in the literature have explored the possibility of enhancing
the efficiency of automatic design tools, such as incremental evolution and sym-
biotic evolution, but the focus of such methods is not on creating a generic and
simple design framework and certainly not on the algorithmic side.

Evolution in robotic islands. Typically, ER researchers launch a number
of independent evolutionary runs, each differentiated by a different initial ran-
dom seed. Subsequently, for each run, the best individual of the last generation,
or alternatively the best individual encountered throughout evolution is identi-
fied and analysed (post-evaluated). Thus, some of the runs end up successful,
and others not. By successful run we mean a run where the fitness obtained
is the maximum, or one where a neuro-controller is produced that is able to
drive the robots to the accomplishment of their task. Every evolutionary run is
characterised by the prevalence of a certain genetic material that gets spread
through recombination and survives through selection. Variation of genetic ma-
terial within the population comes through random mutation only.

This paper introduces the idea of adding the island model paradigm to the
ER arsenal, thus using the island model to evolve artificial neural networks con-
trolling robots. In this case, the experimenter will still be launching multi-start
evolutionary runs, only this time, the dynamics of the stochastic search in a
single run will not be fully determined by the initial random seed, but also co-
determined by the migration among runs and information exchange. Populations
will be invaded with genetic material shaped elsewhere. Migrants might represent
solutions radically different than the solutions developed in a given population.
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The analogies between the biological observations and the effect of migration in
GO still hold when the application is the ER methodology. In particular, explo-
ration arises from migration and exploitation from isolated evolution in islands.
Finally, while in GO the island model introduces new local minima and optimis-
ers to a pool of solutions, in ER migration represents introducing new ways of
solving the task in a pool of existing solutions. This is because a solution is, apart
from a fitness number, the behavioural capabilities of autonomous, simulated or
real agents that are evaluated in a given environment and with respect to a
given task. This paves the way to addressing more complex ER scenaria, includ-
ing evolving populations for different tasks in different islands, and then letting
migration perform the mixing of genetic material and behavioural capabilities.

2 Simulating Evolution in an Archipelago

The simulation environment we used for this study has been developed entirely
by the European Space Agency’s Advanced Concepts Team and is freely avail-
able as an open source project named Parallel Global Multiobjective Optimiser
(PaGMO). The code, entirely written in C++ and tested on Windows XP,
Ubuntu, and Leopard OS, implements the asynchronous island model paradigm
for generic optimisation purposes. It defines Individuals, Populations, Islands
and Archipelagi as C++ objects, providing an easy-to-use computational en-
vironment where to simulate the concurrent evolution of populations. PaGMO
objects can also be instantiated directly from Python and each island can be
assigned the same or a different algorithm to evolve its population. The evolu-
tion in each island is assigned to a different thread of the underlying operating
system so that parallelisation is obtained when multiple processors are available.
Communication (migration) between threads (islands) occur in an asynchronous
fashion. An archipelago is defined by the islands it contains, but also by their
geographical location which determines the possible migration routes an indi-
vidual can take. We describe such migration routes as a graph where the nodes
represent different islands and the edges represent the possible connections be-
tween islands. We refer to this graph as the migration topology. An island is
defined by a population of individuals, by an evolutionary strategy (or a global
optimisation algorithm) and by a task (or a global optimisation problem). A
population is defined by the individuals it contains and, finally, an individual is
defined by its chromosome. Such a generic framework facilitates studies on the
island model impact on optimisation algorithms in general and population based
meta-heuristics in particular.

Evolutionary robotics and stochastic global optimisation. Here we
briefly describe ER problems and their mathematical structure, as encountered
in the literature, trying to highlight those elements that make of ER prob-
lems a very special case of optimisation problems. We indicate with N (x) a
generic robot controller tasked to translate robot sensory inputs into actuation
commands. The controller is defined by a number of parameters we indicate
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with x ∈ RN . The ultimate aim is choosing the best x. To this aim, a function
f(x, s) is constructed that maps the chromosome to a fitness value identify-
ing how well the robot is able to solve a given task using the controller N (x)
during a particular experiment defined by s. Typically, s includes the robots’
initial conditions/configuration, but also variables defining uncertain environ-
ment characteristics and sensory noise; s is a stochastic variable with known
distribution. The objective function assigns a value to the decisions taken by the
controller N both in terms of achieving or not the task required and in terms of
their optimality. The generic ER problem can thus be written as:

find: x ∈ Rn

to maximize: J(x) = E[f(x, s)] (1)

where E[·] indicates the expected value of its argument. One wants to find a
controller N allowing the robot to solve an assigned task for all (or almost all)
possible realisations of the experimental set-ups s and that is optimal with re-
spect to the expected value of the defined objective function. The ER problem
described above shares a lot of similarities with problems studied in stochas-
tic programming and indeed some of the techniques used there are also used
by ER researchers. The sample average approximation (SAA) method [6], for
example, may be used to approximate the objective function so that J(x) ≈
1
n

∑n
j=1 f(x, sj) where a sample S = s1...sn is considered, where each sj is an

independent identically distributed random variable (expected value is the aver-
age) and has the same probability distribution as s. The SAA is not an algorithm,
but just an approximation method and one has still to solve the resulting prob-
lem (no longer stochastic) with an appropriate numerical procedure. Typically
in ER an evolutionary algorithm is used to solve the SAA approximated prob-
lem (genetic algorithm or evolutionary strategies). This is not a necessary choice
and global optimisation heuristics based on paradigms other than the darwinian
evolution may, in principle, be able to solve the problem. Once the approximated
problem is solved, its solution x̂ is a candidate solution to the original stochas-
tic programming problem and its quality as such needs to be assessed. This is
done by performing one evaluation of J(x) using a different and typically larger
sample S′ (called in ER works post-evaluation of a solution).

The evolutionary strategy adopted. In this paper we use differential evo-
lution [11] as a global optimisation heuristic to solve the ER task considered. In
PaGMO terms this means that each island will be assigned a population which
will evolve, before each migration happens, via an instance of DE for N genera-
tions. The objective function for the evolution is the SAA approximation of the
chosen task. The sample s (and thus the objective function) is changed every
m = N generations to avoid the optimiser to take advantage of particularities of
one particular sample. One iteration of DE is made of three phases: mutation,
crossover and selection. In the mutation phase, and for every individual in the
population of size NP, a so-called mutant individual is formed. To create such a
mutant we use the DE2 variant of the algorithm (see [11]):

vi,G+1 = xr1,G + F · (xr2,G − xr3,G);



Robots in the Galapagos: Migration Effects on Neuro-Controller Design 201

where G is the generation number, r1−3 are 3 different, randomly selected indi-
viduals, and F > 0 is the constant amplification factor. Exponential crossover
is then performed between the mutant and the original individual with a step
probability CR. In the experiments, we used F = 0.8, CR = 0.8, NP = 30 and
sample size n = 40, with the sample changing every m = 50 generations .

Migration and topology. Setting up an experiment which involves optimi-
sation with the island model requires making cross-related choices about the
following parameters [3]: (1) the number of islands, (2) the archipelago topology
which defines feasible migration paths between islands, (3) the migration rate
which tells how many individuals migrate at a time, (4) the migration frequency
which determines how often migration occurs, and (5) the migration algorithm.
The latter includes defining if the migration is synchronous (all islands are forced
to migrate at the same time during which no optimisation is performed) or
asynchronous (every island performs migration as soon as it is ready to do so),
which individuals from the population migrate, how they are distributed among
neighbour islands, and which (if any) individuals in the destination population
are replaced by migrants and under what conditions. All these choices have an
impact on the overall robustness of the archipelago, however fine-tuning these
parameters is out of scope of this paper. That is why we decided to make choices
commonly found in the existing literature (see for instance [7,12]), as this should
be sufficient to demonstrate that the island model can enhance the potential of
ER as an optimisation technique.

In our experiments, the archipelago consists of 10 islands connected with a
one-way ring topology (see figure 1a). Of course, there is an infinite number of
other possible choices which could include lattices, hypercubes, and even more
complex networks, like small-world Barabasi-Albert model networks (see figure
1b) for large numbers of islands. We decided to use an asynchronous migration
algorithm as it is more suitable to model modern large-scale distributed compu-
tational environments in which synchronisation of all nodes is either impossible
or extremely expensive. Every island migrates its best individual every 50 gener-
ations of DE with probability 0.4. On arrival, the migrating individual replaces
a random individual in the destination population if it has a better fitness value.

(a) (b) (c)

Fig. 1. (a) Example of a ring topology with 10 nodes; (b) a Barabasi-Albert model
topology with 64 nodes; (c) a snapshot of the robot and the task
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The following pseudo-algorithm defines the computations performed by each
island (thread):

1: create a starting population Pi of dimension NP
2: while !stopping-criteria
3: generate a sample s and the SAA approximated problem
3: evolve Pi for N generations using DE
5: migrate the best individual to the neighbour island
6: insert the migrating individual from the neighbour island

into Pi (if available)

3 Test Bed: Evolving Self-assembling Robots

The task we consider as a test-bed is described in detail in [1,13] and it can be
roughly summarised as follows. Two robots are initialised at a given distance
between a lower and an upper bound with given initial orientations; the robots
do not have means for explicit communication; they are only able to sense their
distance to their group mate. The agents should coordinate their movements in
order to allocate roles and connect to each other via the gripping mechanism (see
figure 1c). The controllers are evolved in a simulation environment which models
some of the hardware characteristics of the s-bot , a small mobile autonomous
robot with self-assembling capabilities. The network N (x) used to control the
robots is a Continuous Time Recurrent Neural Network (CTRNN [2]), with
a fixed feed-forward architecture comprising an arrangement of 11 input neu-
rons, 10 hidden neurons and 3 output neurons. Decay constants (τ), connection
weights between two neurons (ω) and bias terms (β) are genetically specified pa-
rameters. Each CTRNN is thus encoded by a vector x comprising 263 real values.
A random population of CTRNNs is generated by initialising each component
of x to values randomly chosen from a uniform distribution in [−10, 10].

The control is homogeneous since the robots share the same dynamical con-
troller (i.e., the CTRNN). We consider the problem in the form of Eq.(1) where
the function f(x, s) assesses the ability of the two robots to approach each other
and physically assemble through the gripper, without interfering or dictating
the role allocation strategy the robots should use. The experimental conditions
s include the robots’ initial conditions (i.e. orientations and mutual distance)
and the sensory noise. The value of f(x, s) can vary between 0 and 100. The
maximum value corresponds to collision-free successfull robot self-assembly. The
samples S used to obtain the SAA approximation to the problem contain 40
experimental conditions sj generated consistently with [1,13].

4 Experiment and Results

The problem defined above has been solved in [1,13], where an evolutionary
strategy ((μ, λ)-ES) was also employed, and the resulting neuro-controller was
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(a) (b)

Fig. 2. (a) Best fitness across generations for sequential and island model setups; (b)
Boxplot of the average fitness of all successful individuals after post-evaluation

successfully transfered to real robots. In order to study the effects of the is-
land model and migration in particular, we create an archipelago of ten islands
containing different populations of 30 CTRNN. We allow each population to
evolve with DE in each island for 10,000 generations, i) with no migration (this
is equivalent to a set of 10 independent sequential runs of DE), and ii) allowing
migration using a ring topology as described in section 2.

The comparison is done with respect to the maximum fitness achieved during
evolution and in terms of the number of generations elapsed up to that point. The
maximim fitness is defined as the best fitness across all individuals and across
all the islands. In figure 2a we can see the results for the two experiments. When
no migration is allowed (sequential algorithm), DE manages to reach around
80% of the maximum fitness. When migration takes place, the island model
implementation of DE does reach the value of 100.1

The quality of the candidate solutions found x̂ needs to be assessed once
the evolution has completed as explained previously. This is needed to exclude
the possibility that the solutions discovered have taken advantage of favourable
conditions during evolution. We post-evaluate successful individuals (with fitness
100) on a set S′ of 1,000 experimental conditions, all differing with respect
to the random noise applied on sensors/actuators, initial robot positions and
orientations. In figure 2b we show a boxplot of the average fitness obtained
by all successful individuals in post-evaluations. The best scoring individual
in these tests achieved an average fitness score over 96, which confirms that
the quality of the solution obtained with the presented framework is very high
across almost all possible realisations of the experimental set-up s. Still, as we
can see from the boxplot, this is not the case with all individuals that scored
maximum during evolution, as some achieve considerably lower fitness values in
post-evaluations.

1 Notice that for the sequential case we have prolonged the evolution for 5,000 gener-
ations more but without achieving the maximum—results not shown on the graph.
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5 Conclusion

In this article, we have introduced the island model paradigm to the evolution-
ary robotics methodology. We have presented one test case where migration of
genetic material across evolving populations not only accelerates evolution but
also creates better individuals, managing to obtain solutions to the problem at
hand. Future work will include a more thorough understanding of how the par-
allel version improves the algorithm performance, the effect of migration on the
population diversity, the generation and analysis of a more statistically sound
sample of experiments, as well as the exploitation of the island model for solving
more complex tasks with ER.
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Abstract. In evolutionary robotics, as in the animal world, performing
a task which is beneficial to the entire group demands the coordination
of different individuals. Whenever time-dependent dynamic allocation of
roles is needed and individual roles are not pre-defined, coordination can
often be hard to achieve. In this paper, we study the evolution of role
allocation and self-assembling strategies in a group of two homogeneous
robots. We show how robot coordination and individual choices (who will
grip whom) can be successfully restated in terms of anti-coordination
problems, showing how conventional game theoretical tools can be used
in the interpretation and design of evolutionary outcomes in collective
robotics. Moreover, we highlight and discuss striking similarities between
the way our physical robots allocate roles and the way animals solve
conflicts. Arguably, these similarities suggest that evolutionary robotics
may offer apart from automatic controller design for autonomous robots
a viable alternative for the study of biological phenomena.

Keywords: anti-coordination game, evolutionary robotics, collective
behavior, evolutionary game theory.

1 Introduction

Robotics has largely drawn inspiration in the past decades from biology. Bio-
inspired robotics refers to mimicking natural mechanisms at the hardware or
the collective behaviour level. For example, social insects have often served as
a source of inspiration for research on self-organized cooperative exploration in
groups of robots using swarm intelligence techniques. Recently, the influence
arrow that links biology to robotics has become bi-directional, as roboticists
are implicitly or explicitly trying to answer questions related to biology, and in
particular animal behaviour. This is because “robots can be used as models of
specific animal systems to test hypotheses regarding the control of behaviour” [27].

Our view is that Evolutionary Robotics models (ER [17]) can be particularly
suitable for testing hypotheses concerning both the nature and the evolution
of the underlying mechanisms that underpin the agents’ behaviour. Such mod-
els can be complementary to other analytical modelling tools at the disposal
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of biologists, such as (Evolutionary) Game Theory models (EGT, see [13], for
example). While ER searches for the mechanisms to solve a problem given a fit-
ness function, EGT defines high-level descriptions of any evolutionary process,
useful for objectively identifying the conditions under which certain strategies
can emerge as an evolutionary outcome. Recently, for example, ER models have
contributed to the research on the evolution of communication and cooperation
by proposing a low-level description and mechanisms at the neuronal level to
realise signaling behaviour [12,9,2].

As a basis for our discussion we use the evolution of role allocation and self-
assembling strategies in a group of two homogeneous robots (see [1,26]). The
way in which we address the problem of having the agents coordinate to assume
different roles (who will grip whom) is similar to anti-coordination problems. Co-
ordination and anti-coordination problems are studied by biologists, either by
direct observation of the behaviour of animals, or with the use of analytical mod-
elling tools, as in [14], where “limited-war” type conflicts between conspecifics
are studied. Game theory models allow biologists to predict the outcome of
coordination/anti-coordination problems given the set of behavioural strategies
available to the agent and the payoff corresponding to all the possible combi-
nations of actions among the actors [13,10,22]. However, such analytical tools
may be less suitable for testing hypotheses concerning the nature and the evo-
lution of the underlying mechanisms that underpin the agents’ behaviour. For
example, as noticed by [3], we do not know the exact mechanisms (e.g., rules,
signals and cues) involved in the formation of assembled structures in natural
organisms. Should we assume that agents possess means for explicitly commu-
nicating each other’s “intentions” in order to coordinate their actions? In order
to address such questions, we believe that ER models can be suitable modelling
tools, complementary to other analytical tools at the disposal of biologists.

Potential synergies between ER and EGT models are not limited there. We
believe that the use of population dynamics and EGT provides a clear way of
understanding (and designing) online adaptation and role allocation in popu-
lations of robots—central challenges in most collective robotics problems. This
can provide a solid unified framework for the study of complex self-organized
behavior in populations of robots.

2 Description of the Task and the Evolutionary Process

The task considered is described in detail in [1,26], and can be roughly sum-
marised as follows:

– Two homogeneous robots are initialised at a random distance between a
lower and an upper bound with random initial orientations;

– The robots do not have means for explicit communication;
– The agents should coordinate their movement in order to allocate roles and

connect with each other via the gripping mechanism.

The controllers are evolved in a simulation environment which models some of
the hardware characteristics of the s-bot (a small mobile autonomous robot with
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self-assembling capabilities [15]). Each simulated s-bot is provided with an omni-
directional camera mounted on its turret (see figure 1), returning the distance
to the other s-bot in each of eight 45◦ sectors, up to a distance of 50 cm. The
actuators controlled by the neural controller are the two wheels and the gripper
actuator (open/close gripper). Artificial evolution was used to train networks
which are cloned on two homogeneous robots. The network used is a Continuous
Time Recurrent Neural Network (CTRNN [5]), with a feed-forward architecture,
and the evolutionary algorithm used to set the parameters of the networks is the
(μ,λ) evolutionary strategy ((μ,λ)-ES).

The fitness assigned to each genotype after evaluation of the robots behaviour
is the average of the fitness achieved in 40 trials with predefined robot initiali-
sations in order to ensure that successful controllers can cope with a large and
representative sample of all possible initialisations. Notice that this set comprises
both symmetrical and asymmetrical initial conditions, that is, when robots share
the same initial perceptions, or not, respectively. In each trial, a group is re-
warded by the following evaluation function, which assesses the ability of two
robots to approach each other and assemble through the gripper, without dic-
tating the role allocation strategy the robot should use:

F = A ·C · S (1)

A is the aggregation component used for bootstrapping purposes, computed as
follows (with d the robot-robot distance at the end of the trial):

A =

{
1.0

1.0+atan( d−16
16 )

if d > 16 cm;

1.0 otherwise;
(2)

C is the collision component aiming to gradually and smoothly punish collisions
(with n the number of robot-robot collisions), computed as follows:

C =

⎧⎪⎨
⎪⎩

1.0 if n = 0;
0.0 if n > 20;

1.0
0.5+

√
n

otherwise;
(3)

S is the self-assembly component, computed at the end of a trial as follows (with
K(t) a bootstrapping component):

S =

{
100.0 if robots are assembled;
1.0 + K(t) otherwise;

(4)

3 Successful Strategies Tested on Real Robots

One of the evolved neurocontrollers was first extensively tested in simulation un-
der varying noise conditions to ensure its robustness and its generalisation ca-
pabilities with respect to various initial conditions. Subsequently, this controller
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(a) (b) (c) (d) (e)

Fig. 1. Snapshots from a successful trial. (a) Initial configuration. (b) Starting phase.
(c) Role allocation phase. (d) Gripping phase. (e) Success (grip).

was downloaded to two s-bots, and tested against different environmental condi-
tions, with a very high success rate (see [1,26]).1

For all trials, histories of interactions can be described by transitions between
a few phases which exhaustively “portray” the observed phenomena. The robots
leave their respective starting positions (see figure 1a) and during the starting
phase (see figure 1b) they approach each other. The robots then move from the
starting phase to what we call the role allocation phase (RA-phase, see figure 1c),
in which each s-bot tends to remain on the right side of the other. They slowly
move by following a trajectory corresponding to an imaginary circle centred in
between the s-bots. Moreover, each robot rhythmically changes its heading by
turning left and right. The RA-phase ends once a robot (s-bot -gripper) stops
oscillating and heads towards the other (s-bot -grippee), which instead orients
itself to facilitate the gripping (gripping phase, see figure 1d). The s-bot -gripper
approaches the s-bot -grippee’s turret and grips it. A successful trial terminates
when the robots are connected (see figure 1e).

4 Self-assembly as an Anti-coordination Game

The results of post-evaluation analyses illustrate that the role allocation is the
result of an autonomous negotiation phase between the robots [1,26]. The out-
come of any action an agent chooses depends on the action of the other and none
of the two agents can predict its final role from its initial perception. According
to [11], in coordination and anti-coordination problems, “two (or more) agents
must choose one of several alternative actions”. The author continues by stress-
ing that “the outcome of any action an agent might choose depends on the action
of the other agents”, as in every frequency dependent process [18]. In [1,26] it is
shown that the system is characterised by two basic operational principles:

– For almost all asymmetrical initial configurations, the experimenter can pre-
dict the result of the role allocation;

– For all symmetrical initial configurations, we cannot predict who will grip
whom and the agents assume both roles with 50% probability, as random
noise in sensors/actuators is the element that breaks the symmetry.

1 Videos available at http://iridia.ulb.ac.be/supp/IridiaSupp2008-002

http://iridia.ulb.ac.be/supp/IridiaSupp2008-002
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This kind of scenario can be described as an anti-coordination problem, in which
the agents have to estimate the strategy of their opponent. If the agents had the
means to directly and precisely access the other’s strategies, the role allocation
would be immediate. However, our agents are deprived of any such information
and must interact to assess and estimate each other’s strategy.

The robots manage to coordinate their actions, “hovering” around the condi-
tions that lead to assuming the s-bot -gripper role (oscillatory movement). The
way the robots solve the anti-coordination problem bears striking similarities
to how animals solve conflicts. In fact, the conflict between two strategies as
attack and flee (or surrender), approach or avoid, is very common in nature. For
example, gulls during fights adopt in turns agonistic (aggressive) postures which
are abandoned as the birds turn broadside to the antagonist. Eventually, one
bird will abandon the offensive and will adopt an appeasement posture or run
away [25]. The similarity of this behaviour with the one of our robots is striking:
it has even been observed that fighting birds walk parallel or around each other,
as our robots circle around each other (see figure 1c). Similar coordination rit-
uals are observed in gulls mating, in the “dance-fighting” observed in the male
starling [7], in the fighting behaviour but also the mating “zig-zag dance” of the
stickleback [24], and in the parallel walks engaged in by red deer stags [6], which
allow for each animal to assess the other’s size and strength and to investigate
possible asymmetries [16]. Parallels can also be drawn between our system and
simultaneous hermaphrodites, as snails, slugs and fish species, where individuals
take single mating decisions (“one-shot” games) that require anti-coordination,
since assuming the same role will end up costly for both [4].

Obviously, the way in which our robots solve the self-assembly task is deter-
mined by the way in which we set up our evolutionary process. By isolating the
particular part of the fitness function related with the gripping decision, one
immediately obtains a payoff matrix of a simple anti-coordination game, i.e., a
simple version of the “Hawk-Dove” game2 [13,14]. The fitness function selectively
rewards the robot group to achieve self-assembly: the robots must coordinate to
decide who will grip whom. A failure to take a decision will result in low fitness
scores. The same goes if both robots decide to assume the s-bot -gripper role; the
robots will collide and will be therefore punished by the fitness function. If we
make a simplification and we assume that i) correct role allocation yields the
maximum fitness (100), ii) a failure in the decision-making (with both robots
playing s-bot -gripper) leads to a fitness score of 0, and iii) in case of failure to
allocate the roles during the length of a trial, robots receive just the aggregation
fitness component (A  1), the payoff matrix would be the one in table 1.

Let’s assume that each controller defines an abstract behaviour p, which in
turn defines the probability of choosing to grip or not to grip. From table 1, it
is trivial to see that p = 1/2 is the only evolutionary outcome of this system,
whenever A → 0. In other words, this problem has only one solution (the action

2 This game is based on the principle that the outcome where neither player yields to
the other is the worst possible one for both players.
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Table 1. The payoff matrix of the game our robots are evolved to play. One robot
chooses a strategy from the columns, and the other from the rows. The payoff refers to
the fitness score assigned to the group after the end of the trial. A is the aggregation
component of the fitness function (see equation 2).

s-bot-gripper s-bot-grippee

s-bot-gripper 0 100

s-bot-grippee 100 A

of every agent is optimal according to what the other agent does): that the
agents should do the opposite of what the other is doing and thus allocate roles.
More specifically, the circular movement with oscillations can be seen as the
sum of two components: assuming the s-bot -gripper role and abandoning it. A
premature decision on behalf of one robot to assume the s-bot -gripper role might
lead to a decision-making error and the robots would end up receiving a fitness
score of 0. Thus, a robot has to assume this role while the other assumes the
s-bot -grippee role. This solution is optimal regardless of the selection type (group
or individual); even if we were using heterogeneous pairs of robots which were
not evaluated collectively but individually, this solution would still be optimal.

Describing the fitness function in game theory terms offers us the opportunity
to view the experiment from a more high-level point of view and to realise that
our experimental setup is very close to an anti-coordination game. This clarifies
the outcome selected by evolution and shows that the solution found is not just
a random one in a possible universe; instead, the principles characterising this
solution could only be the ones they are. Also, this way of looking at our fitness
function after understanding the basic mechanisms underpinning behaviour in
our two robot system helps by providing a more high-level description of our
system, that sometimes may be obscured by the complexity involved in the
effort to break down its behaviour to a set of transparent rules or states.

Furthermore, even if it provides an excellent starting point, it is important to
note that the complexity offered by the above one-shot analysis fails to embrace
the complexity of the online decision process. The reason is twofold: first, robots
do not play mixed strategies, but, instead, reactions to environmental inputs
are preassigned by evolution; second, the online decision process and continu-
ous integration of inputs from the environment, implies not a one-shot game,
but a repeated anti-coordination game, in which more complex strategies can
emerge. This is particularly relevant in the analysis of the case of symmetric
initial configurations. In these cases, robots negotiate on-the-fly their strategies,
as they have the possibility to wait in order to assess the other’s decision and,
at the same time, reshape their own strategy. In order to ease the differentia-
tion and facilitate the convergence to complementary roles, evolution produced
a new strategy characterized by the “dancing” movement (RA-phase, see fig-
ure 1c) which amplifies the effect of noise as a symmetry breaking factor. As
expected, whenever the same decision process is studied in the absence of noise
(in simulations, not shown) the RA-phase continues indefinitely.
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5 Conclusions

We have introduced the idea of the feasibility of ER models as models for biolog-
ical behaviour, complementary to game theory models. Using the game theoret-
ical framework to design the rules of the game, the properties of the interaction
space between agents and the costs and benefits they may share, we can practi-
cally build a fitness function within the ER framework incorporating these rules.
This can be particularly beneficial when identifying the relative importance that
should be given to different fitness components in order to obtain a systematic
evolution of the desired behaviour. Subsequently, artificial evolution can pro-
pose bias-free low-level bechavioural mechanisms instead of high-level strategies
to achieve the solutions to the “game” specified.

In this manuscript, only pairwise interactions were considered. However, both
engineering and biological applications are often characterised by more than
two individuals engaging in coordination and co-existence dilemmas [19]. In this
case, allocation of roles and online social dynamics becomes even more intricate.
Factors such as selection pressure, interaction structure, population size and av-
erage number partners [20,19,8] are known to play decisive roles, making a game
theoretical analysis necessary to understand and design efficient populations of
controllers. Similarly, to achieve coordination of actions, information needs to
be transmitted and properly interpreted. Recent advances in dynamics of sig-
naling and information processing [21,23] are able to capture the most essential
aspects by means of simplified models based in game theory. Hence, also here,
a high level population-based perspective for ER may provide a unified frame-
work for the study of the evolution of communication, filtering, integration and
resultant action. This is an open field of research that can complement the al-
ready present momentum that ER research on the evolution of communication
has generated [12,9,2], offering a novel way of doing robotics, inspired by biology
and population dynamics and less biased by the experimenter.
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Abstract. In this paper we demonstrate how a neuro-robot situated in an  
environment containing parallelepiped objects that vary in shape, size, and ori-
entation can develop an ability to recognize and label the category of the objects 
and generalize to new objects. The analysis of the dynamical system constituted 
by the robot and the environment in interaction allowed us to understand how 
adapted agents solve the categorization problem at the level of the detailed 
mechanisms and at the level of the general strategy. 

Keywords: Categorization, dynamical systems, evolutionary robotics. 

1   Introduction 

In this paper we demonstrate how a simulated neuro-robot situated in an environment 
containing parallelepiped objects that vary in shape, size, and orientation can develop 
through an evolutionary method [1] an ability to recognize and label the category of 
the objects (i.e. to discriminate whether the objects have a square or rectangular base). 
Since the sensors of the robots only provide information about a limited portion of the 
object, the categorization processes requires an ability to integrate sensory-motor 
information over time. 

The goal of the paper is to study how a robot can associate sensory-motor values 
which vary continuously in state and time to abstract categories such us square or 
rectangle (a capacity that might represent a prerequisites for the development of  
several cognitive skills such us language [2]). Since the aim of the paper is not to 
investigate the role of active perception (i.e. how the possibility to co-determine the 
experienced stimuli through actions can be exploited to enable or to simplify the cate-
gorization process, c.f. [3-6]), the ability of the robot to explore the objects by travel-
ing around them and to label their category have been evolved in two successive 
phases. The analysis of the coupled robot/environment system, also through the use of 
mathematical tools of dynamical system theory, allowed us to understand how the 
adapted agents solve the categorization problem both at the level of the detailed 
mechanisms and at the level of the general strategy. Moreover, the analysis conduced 
allowed us to elucidate the relation between the solution developed by the robots and 
the solution that might appear intuitive from the point of view of a human external 
observer that consists in measuring and comparing the length of two adjacent sides of 
the object and that involves a form of relational categorization, c.f. [7]. 
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2   The Experimental Scenario  

The experiment involves a Khepera robot [8] situated in an arena that contains a 
square or a rectangular parallelepiped (Fig. 1). The robot is provided with eight infra-
red proximity sensors (which detect obstacles up to a distance of ~4cm) and two  
motors which control the desired speed of the two corresponding wheels. The experi-
ments have been carried out in simulation by accurately modelling the robot/ 
environment interactions through a sampling technique [1]. 

 
 

 

 

Fig. 1. Left: The position of the eight infrared sensors on the robot’s body. Centre: The trajec-
tory produced by an adapted robot that is traveling around a R object of 56x28 cm. Right: the 
activation of the left and right motors (M0-M1) controlling the two corresponding wheels and 
of the eight infrared sensors (I0-I7) during the behavior shown in the central picture. M is a 
neuron used in the second experiment that is set to 0.8 or 1.0 depending on whether M1 is 
below or above 0.9.  

Each robot is evaluated for 40 trials during which it is allowed to interact with 20 
square (S) and 20 rectangular (R) parallelepipeds of different sizes. The ratio between 
the length of the long and short sides in R objects is always ½. The depth and the 
width of the objects vary for each trial within [20, 80] cm and are selected so to en-
sure that each side length occurs with the same probability in the S and R objects 
during the 40 trials. At the beginning of each trial, the robot is positioned at the center 
of the south side of the object, oriented towards west, and the state of the internal 
neurons of the robot (see below) is set to 0.0. Each trial lasts 1000 time-steps and each 
step lasts 100ms.  

The robot’s control system consists of a neural network composed by two modules: 
a motor module (Fig. 2, left) that regulates the speed of the two wheels, and a categori-
zation module (Fig. 2, right) that determines the robot’s categorization output (label).  

The motor module is composed by eight infrared sensory neurons (I0-I7) directly 
connected to two motor neurons (M0-M1). The categorization module is composed 
by two neurons (M0-M1(t-1) that encode the state of the two corresponding motor  
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Fig. 2. The architecture of the robot’s neural controller. The arrows between blocks indicate 
that all neurons of the second block receive connections from all neurons of the first block (or 
of the same block in the case of the three internal neurons). 

neurons at time t-1), three internal neurons with recurrent connections (H0-H2), and 
one categorization output neuron (C).  

The desired speed of the two wheels is set on the basis of the output of neurons 
M0-M1 normalized in the range [-10, 10]. The sensory neurons (I0-I7) are relay units 
which encode the state of the corresponding infrared sensors normalized in the range 
[0.0, 1.0].  The neurons (M0-M1(t-1)) encode the state of the motor neurons at time t-1. 
The motor neurons (M0-M1) and the categorization unit (C) are updated according to 
the standard logistic function. The sensors, the neural controller, and the motors are 
updated every 100ms (the time step duration). The three internal neurons are leaky 
integrators which are updated on the basis of the following equations:  
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With Aj being the activity of the jth neuron, tj being the bias of the jth neuron, wij the 
weight of the incoming connections from the ith to the jth neuron, Oi the output of the 
ith neuron, Oj

(t-1) the output of the jth neuron at the previous time step, τj the time 
constant of the jth neuron.  

The characteristics of the robot’s body and of the architecture of the robot’s neural 
controller are fixed. The connection weights, the biases, and the time constants of the 
internal neurons are adapted through an incremental evolutionary method (Nolfi & 
Floreano, 2000) that includes two phases.  

The initial population consists of 100 randomly generated genotypes which encode 
the free parameters of 100 corresponding individuals. Each parameter is coded with  
8-bit and is normalized in the interval [−5.0, +5.0] for the biases and the synaptic 
weights, and in the interval [0.0, 1.0] for the time constants. Each subsequent popula-
tion is obtained by selecting and retaining the best 20 individuals (the èlite) of the 
previous population and by applying mutations (with 3% probability of flipping a bit) 
to 4 copies of each best individual.  

During the first phase of the evolutionary process the free parameters of the motor 
neural module has been adapted for the ability to circumnavigate the object. More pre-
cisely, the fitness of the individuals has been calculated by computing the number or 
times the robot approaches a new corner of the object (i.e. every time the robot navi-
gates from one corner to the next). This phase has been continued for 100 generations 
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during which the robot develop an ability to circumnavigate objects of different size by 
displaying a wall following behavior (see Fig. 1, centre).  

During the second phase the free parameters of the motor neural module are fixed 
on the basis of the parameters of the best individual obtained during the previous 
phase while the parameters of the categorization neural module have been evolved  
for the ability to label the category of the object. More precisely, the fitness of the 
individuals consists of the average absolute difference between the output of the cate-
gorization unit (C) and the desired value (i.e. 0.0 and 1.0 for S and R objects, respec-
tively) calculated in each time step during the second half of each trial. The second 
phase is continued for 2000 generations and replicated 20 times starting from differ-
ent randomly initialized genotypes.  

2   Results 

The analysis of the fitness at the end of the evolutionary process indicates that the 
evolved robots display close to optimal performance (more than 95% of correct 
categorizations) in 3 out of 20 replications, and good but sub-optimal performance in 
the other replications of the experiment. Moreover, we observed that the best adapted 
individuals display a remarkable ability to generalize their skill (within limits) to 
objects that differ, respect to those experienced during the adaptive process, either in 
size and/or in the ratio between their shorter and the longer sides.  

Fig. 3 (left), shows the results of a test in which the best adapted robot is evaluated 
for 10,000 trials in a test condition in which we systematically varied the length of the 
north/south and east/west side within [10, 200] cm. As shown in the figure, in fact, the 
robot categorizes correctly S and R objects in the range [20, 100] cm.  

The analysis also demonstrates that the adapted robot displays the two constituting 
properties of categorical perception: labelling, i.e. the capacity to partition stimuli 
varying in a continuous manner into well distinct classes, and discrimination, i.e. the 
tendency to better distinguishing between classes than within classes [5, 9-10]. More 
specifically, the presence of sharp boundaries between the two categories 
demonstrates that the robot partitions objects varying in a continuous manner into two 
well differentiated categories. As can be seen in the figure, objects are partitioned 
between the two classes on the basis of whether the ratio between their shorter and 
longer sides is higher or lower that ~0.7 in a way that is substantially independent 
from the size of the objects within the [20, 100] cm range. The sharp transition 
between the two categories shows that the output of the categorization unit (C) varies 
more for objects of different categories than for objects of the same category. These 
labelling and discrimination properties show that the robot categorizes objects (with 
side/ratios that differ from those experienced during the adaptive process) on the basis 
of the similarity between their sides/ratio and the sides/ratio of the S and R objects 
experienced during the adaptive process. In other words the analysis shows that the 
robot generalizes its skill also for objects with different sides/ratio. Moreover, the 
symmetry of the figure with respect to L1 and L2, that represent the length of  
the north/south and east/west sides, demonstrates that the robot categorizes 
rectangular objects correctly independently from whether they are oriented vertically 
or horizontally. 
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Fig. 3. Categorization outputs produced in interaction with objects with sides varying within 
[10, 200] cm. The L1 and L2 axis represents the length of the east/west and north/south sides of 
the objects, respectively. The greyscale colour represents the value of the categorization unit at 
the last time step averaged over 10,000 trials (0.0 = black, 1.0 = white). The central and the 
other two shorter lines inside the bottom-left square represent the size variation of the S and R 
objects experienced during adaptive process. Left: Results for the best individual of the basic 
experiment. Right: Results for the best individual of the simplified experiment (see section 2.1).  

2.1   Dynamical Analysis of the Coupled Robot-Environmental System 

To understand how the evolved robots categorize the two classes of objects we ana-
lysed the coupled dynamical system constituted by the robot and the environment. To 
overcome the problems due to the high dimensionality of the system we decided to 
analyse a slightly simplified version of the model. More specifically, in consideration 
of the fact that the two input neurons of the categorization module (M0-M1(t-1))  
encode redundant information, we ran a second experiment in which the categoriza-
tion module includes only one neuron (M) whose activation state is set to 0.8 or 1.0 
when the activation of the motor neuron M1 at time t-1 is lower or greater than 0.9, 
respectively (see Fig. 1, right).  

The obtained results indicate that the simplified model leads to qualitatively and 
quantitatively similar results (see Fig.3, right). Fig. 4 displays the dynamics of the 
three internal neurons of the categorization module of the best adapted individual, 
produced when the state of the M neuron is fixed to 0.8 or 1.0 (left and right figures, 
respectively). Fig. 5 displays the typical trajectories of the same three internal neurons 
produced by the coupled dynamical system constituted by the robot and the environ-
ment in interaction.  

One first thing to notice is that the state space includes four transient attractor 
points of which two (ACR/ASR) are located on the top and two (ACQ/ASQ)  
are located on the bottom of the state space. The attractors are transient since they 
manifest themselves when the M unit assumes one of the two possible values. More 
specifically, ACR and ACQ manifest themselves when the robot is negotiating a  
corner (i.e. when M=0.8) and ASR and ASQ manifest themselves when the robot is 
travelling along a side of the object (i.e. when M=1.0). The ACR and ASR attractors 
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are located nearby in the top part of the state space while the ACQ and ASQ attractors 
are well separated in the bottom part of the state space.  

Secondly the top and the bottom part of the state space (with the exception of the 
small corner area near P0) trigger the R and S categorization answers, respectively.  

The third thing to notice is that the basin of attractions of ACR, ACQ and ASQ are 
confined in their relative areas (i.e. in the top part of the state space for ACR and in 
the bottom part for ACQ and ASQ). The basin of attraction of ASR, instead, extends 
from the bottom to the top part of the state space and can thus bring the internal state 
of the robot from the bottom to the top part of the state space. 

The fact that at the beginning of the trial the internal state starts from P0 and then 
move quickly toward the ASQ and ACQ transient attractors implies that, after few 
time steps, the robot starts to produce S as a default categorization answer. Moreover 
it implies that for squared objects the state of the internal neurons remains in the bot-
tom part of the state space (from which an S categorization answer is produced) while 
for rectangular objects, at a certain point, the state moves along the ASR basin of 
attraction from the bottom to the top part of the state space (from which an R catego-
rization answer is produced). The fact that the ASQ and ACQ basins of attraction are 
confined on the bottom part of the state space (i.e. the fact that they cannot bring the 
state of the internal neurons from the top to the bottom part of the state space) implies 
that the R categorization answer is irreversible.  

Overall, these considerations imply that, to understand how categorization occurs 
we should understand the conditions that determine whether the state of the internal 
neurons remains in the bottom part of the state space or it moves and then remains on 
the top part of the state space. In other words the conditions that determine whether 
the robot keeps producing the default answer (S) or it starts producing the alternative 
answer (R). 

When the robot travels along a side of the object, the state space is dominated by 
the ASQ and ASR attractor points. Since the state of the internal neurons is initially 
set to P0, however, during the initial phase of the trial the trajectory of the internal 
state is affected only by the basin of attraction of ASQ, that is located on the bottom 
part of the state space. As soon as the robot negotiates a corner of the object, the pre-
vious attractors are replaced by ACQ and ACR. Since the bottom part of the state 
space is dominated by the basin of attraction of ACQ, the state of the internal neurons 
then starts moving toward the ACQ attractor point. The periodic alternation of the two 
transient attractors thus leads to a stable or quasi-stable limit cycle, in which the state 
of the internal neurons move toward the ASQ and ACQ attractors located on two 
opposite sides of the bottom part of the state space. During the exhibition of this limit 
cycle the state of the internal neurons never fully reaches the two attractor points due 
to the limited time duration of each attractor, the inertial nature of the internal neu-
rons, and the fact that the internal state moves more quickly toward the latter than 
toward the former attractor. Whether or not the basin of attraction of ASR succeeds in 
breaking this limit cycle dynamics and in bringing the internal state in the top part of 
the state space depends from the following factors. 

The first factor concerns the fact that the position and the extension of the limit  
cycles that emerge from the robot/environmental interaction vary along the ACQ and 
ASQ dimension depending on the length of the last sides of the object negotiated by 
the robot.  
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Fig. 4. Flow and phase portrait of the categorization module of the best adapted individual, 
produced when the state of M is fixed to 0.8 and 1.0 (left and right pictures respectively) that 
correspond to the states experienced by the robot when it travels along a corner or a side of the 
object, respectively.  The three axes represent the state of the three internal neurons. The letter 
A stands for “attractor” (i.e. fixed point attractor), D for “saddle” (i.e. repellor), C for “corner”, 
S for “side”, Q for “cube/square” and R for “rectangle”; so for example ASR indicates the fixed 
attractor point that manifests itself when M=1.0 (when the robot is travelling along a side of the 
obejct) and that triggers a R answer.  

 

Fig. 5. Sample trajectories produced by the coupled dynamical system constituted by the robot 
and the environment in interaction. The left and right pictures display the same 3D structure 
from two different points of view. The three axes represent the state of the three internal neu-
rons. The darker and lighter lines indicate the trajectory produced when the M neuron assumes 
a value of 0.8 or 1.0, respectively. P0 indicates the initial state of the internal neurons. The 
decision plane that intersects the DC saddle point indicates the border between the basins of 
attractions of the ACR and ACQ attractor points. In the right picture, the categorization plan 
indicated with C=0.5 separates the two areas or the state space that trigger an S or R categoriza-
tion answers, respectively.  
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The extent to which the internal state approaches the ACQ attractor point primarily 
depends from the distance between the state of the internal neurons and the attractor 
at the beginning of the negotiation of the corner, which in turn is inversely propor-
tional to the time duration of ASQ attractor that manifested itself while the robot was 
travelling along the previous side. We say “primarily” since the extension of the limit 
cycle toward the ACQ attractor also depends from the length of sides negotiated be-
fore the last one, thanks to the same effects described above for the last side (although 
the impact of previous stimuli tends to become progressively less important over 
time). The length of the last side negotiated by the robot (and, secondarily, the length 
of the sides negotiated before the last one) thus determines whether, while moving 
toward the ACQ attractor point, the internal state overcomes the BS point so to enter 
(after the negotiation of the corner) into the basin of attraction of the ASR attractor 
point located on the top part of the state space. The extent to which the internal state 
approaches the ACQ attractor also depends from the amount of time in which the 
attractor manifests itself that, however, is approximately the same for all corners (in-
dependently of whether they belong to square or rectangular objects). 

The second factor that determines whether the state of the internal neurons crosses 
the decision plane that intersect the DC saddle point and enters (and then remains) 
into the top part of the state space or not, depends from the time duration of ASR (i.e. 
from the length of the current side) and from the extension of the limit cycle toward 
ACQ (that is inversely proportional to the length of the previous side, primarily, and 
of the sides before the previous, secondarily). 

This type of analysis reveals also why the robot’s generalization ability is limited 
within the range described earlier. Additional information on this point as well as 
additional explanatory material is available from http://laral.istc.cnr.it/esm/abstract-
categorization/.  

3   Conclusions 

In this paper we demonstrated how a simulated neuro-robot can develop an ability to 
associate sensory-motor stimuli which vary continuously in state and time to abstract 
categories. The analysis of the coupled dynamical system constituted by the robot and 
the environment in interaction demonstrates that the problem is solved by exploiting 
dynamical processes occurring at different time scales and the fact that the stimuli 
experienced by the robot can act as parameters that lead to sharp transitions in the 
robots’ internal dynamic. More specifically, the slow dynamic that originates from the 
inertial nature of the internal neurons allows the robot to detect and to keep trace in its 
internal state of the duration of previously experienced events (e.g. the time duration 
of the action produced by the robot along a side of the object). On the other hand, the 
sudden alternation of different type of stimuli lasting for certain time durations allows 
the robot to sudden rearrange its internal dynamic in crucial phases (e.g. to perform an 
implicit comparison between the length of current and previous events). Moreover, it 
is exploited to produce sharp transitions in the robot’s internal dynamic (e.g. to chan-
nel the state of the internal neurons toward different areas of the state space associated 
to different categories).  
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At a more general level of description, the solution developed by the evolved ro-
bots demonstrates how the problem admits different solutions, including solutions that 
are more parsimonious and robust with respect to those that can be identified by an 
external observer. In particular, the problem faced by the robot is solved without fully 
partitioning the quantity to be compared (with particular reference to the length of the 
previous side) and by exploiting all available regularities (e.g. the overall size of the 
object and the fact that, in the domain of the experiment, very large and small objects 
always belong to the square category).  
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Abstract. In this paper we describe a model of cooperation in evo-
lutionary robotics (ER) derived by animal research on Corvids. In re-
cent years many researchers have proposed models of ER which are
bio-inspired. The main source of inspiration has come from social in-
sects, such as ants. Inspiration may come also from other representatives
in the animal kingdom such as primates or corvids, thus producing dif-
ferent models that can address different issues. The work presented here
starts from works inspired by social insects and then describes an ER
model inspired by tasks in corvids, that addresses the evolution of coop-
eration, showing how different bio-inspired models can be useful to study
different issues.

1 Introduction

In the first years of its life, evolutionary robotics (ER), [1, 2, 3] the fruitful
technique for creation of autonomous robots based on the mechanism of Dar-
winian evolution, focused on the emergence of quite simple behavior such as
obstacle avoidance or garbage collection [4] and on definition of its methods and
techniques, for example the “simulate-and transfer” method [5]. These efforts
were meant to give a clear identity to this new-born discipline, which in subse-
quent years, was able to carve for itself an interesting and stimulating niche in
the survey of scientific literature about robotics and its application to cognitive
science.

After this infancy period, researchers in ER started to look for methods which
could lead to more and more complex behaviors. At this point they could choose
between two alternatives: augmenting complexity inside the robot or augment-
ing complexity outside the robot. These alternative are expressed effectively by
Izquierdo-Torres at the University of Sussex [6]: “Nature has been able to evolve
(several times) natural systems which produce complex spatio-temporal patterns
from agents with very simple behaviors by exploiting the interactions between
the agents and their environment (...). In social insects large numbers of simple
agents collectively achieve remarkable feats through exploiting a few principles.
They offer a spectacular existence proof of the possibility of using many simple
agents rather than one or a few complex agents to perform complex tasks quickly
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and reliably”. In other words, complex behaviors may result from one or two quite
complex agents or from many very simple agents that interact with their envi-
ronment and self-organize under evolutionary pressure. If we quickly review ER
literature it seems quite evident that this second option overcame the first one.
Collective robotics [7, 8] is nowadays a consolidated frame of reference which aims
at building multi-agent system in which robots are able to accomplish certain
tasks by coordination among autonomous agents. In a certain sense, skills are
distributed over a colony that must cooperate and communicate (also indirectly,
in this case we refer to stigmergy in biological literature). In collective robotics
agents self-organize producing complex, apparently intelligent structures, with-
out need for any planning, control, or direct communication between agents. The
main metaphor used is the swarm (shoaling, swarming or flocking), a term that
is applied to fish, insects, birds and microorganisms, such as bacteria, and de-
scribes a behavior of an aggregation of similar organisms in which group size is a
relevant factor. In the swarm the single agent is not important, only the swarm
itself is relevant. This metaphor applied to robotics generated the emergent field
of swarm robotics [9, 10, 11, 12] that studies robotic systems composed of swarms
of robots. The agents in the swarm are in close interact and cooperate to reach
their goal, just like what happens in social insects. If we consider the phenomena
of waggle dance of the honey bee, the nest-building of the social wasp and the
construction of the termite mound, we must admit that is amazing that these
seemingly uncommunicative, very simple creatures are able to manifest these be-
haviors. They are able to do this by relying on simple mechanisms that produce
notable effects, such as the above cited stigmergy and self-organization. The
swarm metaphor emphasizes the decentralization of the control, limited communi-
cation abilities among agents, use of local information, emergence of global behav-
ior and robustness that are particularly consonant with ER principles. In a swarm
robotic system, although each single robot of the swarm is fully autonomous, the
swarm as a whole can solve problems that the single robot cannot cope with be-
cause of physical constraints or limited capabilities.

Social insects are undoubtedly a precious source of inspiration, but we should
not restrict our attention on it, as challenging cues may derive from others repre-
sentatives of the animal kingdom. In other word, following McFarland distinction
[13], we should pay attention not only to eusocial behaviors (found in many in-
sect species and resulting from genetically determined individual behavior) but
also to cooperative behavior. In the case of cooperative behavior there are not
many very simple agents that interact, but two or more quite complex indi-
viduals that work together to reach a goal that would be otherwise impossible
to obtain. In nature there are many cases of this kind of cooperation: for ex-
ample we can observe coalitions (help provided during conflicts) and alliances
(long-term association) in many animals: primates (chimps, baboons, macaques,
vervets, capuchins), carnivores (lions, cheetahs, hyenas) and dolphins. Between
other animals coalitions and alliances have been described also in corvids [14]. In
this case what we observe is a small number of corvids, each of which is capable
of refined cognitive abilities, that cooperate. They are an example of the first
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alternative we described, increased complexity inside the agent, that has not
been exploited as much as the second one.

In the next section, we propose a basic simulation based on cooperation tasks
in corvids that will allow us to discuss the importance of different kind of coop-
erative models in ER.

1.1 Cooperation in Corvids

Corvids (Corvidae) family include various birds species characterized by high
complexity in cognitive functions: they can be compared with primates both on
brain relative dimensions, cognitive abilities and on social organization complex-
ity [15, 16, 17]. They are capable of long term cache recovery, object permanence
[18], tool manipulation, theory of mind like-abilities [19] and social reasoning.
In nature we can observe them in dyads as well as in small or large colonies.
Corvids are also able to cooperate in order to obtain a goal [20]. In the present
study we propose a model that replicates in the main aspects the “loose string”
paradigm derived from the Game Theory, applied to comparative research. In
the “loose string” task two agents, for example two rooks (Corvus frugilegus),
must cooperate to obtain a reward, i.e. food, which is clearly visible, but not di-
rectly reachable. The dyad gets the reward if the two tips of a string are pulled at
the same time. In the present study we model this task with artificial organisms
to study cooperation in artificial organisms.

In cooperation it is crucial to distinguish if dyads are “coordinated trough
communication or acting apart together” [21] It seems therefore quite relevant
trying to understand if communication allows dyads to cooperate indeed.

1.2 The “Loose String” Task

In the “loose string” task two members of a dyad are trained to pull a string
to reach a reward. In a first phase, the agents, for example, corvids such as
rooks [20], are trained separately to pull the string which allows the bird the get
the food by itself. In the cooperation testing phase, the two birds could get the
reward only if they pulled the string at the same time (see Fig. 1). In this task
the members of the dyad exchange signals mainly on the visual channel (private
communication) thus indicating each other where they are. We reproduced this
natural experimental task with simulated robots.

2 Materials and Method

2.1 The Experimental Set-Up

The experimental setup involves two robots situated in a rectangular arena (1200
cm * 800 cm). Robots begin each trial at one end of the arena. On the other
hand there are two target areas which robots must reach at about the same
time. This task represents a situation in which the robots should coordinate
themselves/cooperate to get a reward.
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Fig. 1. The loose string task: two rooks must pull the string together to get the reward

To verify if the task required coordination or could be solved just acting apart
together [21] we have run two simulations: in the first one robots could exchange
signals on their relative position (see next section), in the second one they didn’t
communicate at all.

2.2 The Robot and Its Artificial Neural Controller

The robots are two e-Puck robots [22], with a diameter of 7.5 cm provided with
2 motors which control the 2 corresponding wheels, 8 infrared proximity sensors
located around the robot’s body, a ground sensor and a turret to send and
receive signals on distance and angle of the other robot. The neural controller
of each robot is provided with sensory neurons, internal neurons with recurrent
connections and motor neurons. These neurons allow to receive and produce
signals that can be perceived by another robot. In detail in the sensory layer
there are neurons that encode activation of infrared sensors, ground sensor and
distance/angle sensors; in the hidden layers there are 4 hidden neurons with
recurrent connections; in the output layer there are two units that control wheels.

2.3 The Evolutionary Algorithm

An evolutionary technique is used to set the weights of the robots’ neural con-
troller. The initial population consists of 100 randomly generated genotypes that
encode the connection weights of 100 corresponding artificial neural networks.
Each genotype is translated into 2 neural controllers which are transferred in 2
corresponding simulated robots. The 20 best genotypes of each generation are
allowed to reproduce by generating 5 copies each, with 2 % of their bits replaced
with a new randomly selected value. The evolutionary process lasts 100 genera-
tions (i.e. the process of testing, selecting and reproducing robots is iterated 100
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times). The experiment is replicated 10 times each consisting of 4 trials (1000
cycles each) with different starting direction face on one hand of the arena.

We used the following fitness function to evolve robots: if both robots are on
the target areas they are rewarded. This reward corresponds to (minus) time
lapse between reaching the target area by the first robot and by the second one.
We thus reward reaching the target area at the same time.

3 Results

3.1 Fitness Values

In this section we compare the fitness values for two experimental conditions:
with and without signals exchange. For each condition there are 10 replications
with different seeds.

We compare the fitness value gained by the best robot of the last generation
for each seed. The mean value for “with” condition is higher than in “with-
out” condition: 97.16 (s.d. 18.23) versus 69.60 (s.d. 28.78); this difference was
statistically significant: t test (9) = 2.83, p = 0.019.

Moreover, as the standard deviation is lower in “with” condition, the presence
of signals allows better and comparable results with different starting conditions.

3.2 Behavioural Analysis

In this section we describe two prototypical dyads, one “with” and one “without”
signals accomplish the task.

Their trajectories are depicted in Figures 2 and 3. The dyad “with” is able
to coordinate: they wait for each other at the starting position, adjust their
face-direction and go straight-on together up to the target areas. In the dyad
“without”, on the contrary, each robot gets to the target area on its own, thus
the time lapse is higher. In other word, in presence of signals the robots are

Fig. 2. Trajectories of the dyad “with” signals
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Fig. 3. Trajectories of the dyad “without” signals

able to use this primitive form of communication (“I know where you are”) to
solve efficiently the task, while in absence of signal exchange neither this simple
cooperative behaviour can emerge.

4 Discussion and Conclusions

Results show that cooperation between robots is regulated by interaction be-
tween robots, with communication/signalling as a medium. In our simulative
scenario the communication leads to a coordinated cooperation behavior in the
task solved by natural organisms such as corvids.

What we would like to suggest with the simple experiment described above is
to establish a strong link with phenomena and tasks derived from experiments
on animal behavior in order to get insight from this kind of data reciprocally. For
this reason we modeled a well-defined experimental set-ups, that has been widely
used in animal behavior literature and try to compare what happens in corvids’
cooperation with what happens in robots’ cooperation. This exchange can be
fruitful both for researchers working with natural organisms and for researchers
working with artificial organisms. One of the hint for artificial-lifers may be the
following: it is worth modeling more complex forms of cooperation. Different
models of cooperation, in fact, may be used to study different issues: the first
kind of models we introduced, with many simple agents, is useful to study self-
organization, stigmergy and other issues related to biology. The second kind of
models allows us to study, for example, how signals can be used, how the other
agent’s position is represented, in other words issues that are more related to
psychology and cognition.

In this respect the present experiment is similar to the one described by
Marocco and Nolfi [23]. In that paper authors describe how a population of
simulated robots evolved for the ability to solve a collective navigation problem.
In order to achieve this they evolve communication skills. What is different
in our study is the theoretical focus: our experiment is just a simple example



228 M. Ponticorvo, O. Miglino, and O. Gigliotta

to underline that taking inspiration from complex organisms may be a fruitful
scientific strategy.

In experiments about rooks, for example, authors talk about personality, a
concept that cannot be dealt with swarm metaphor. Nonetheless understanding
these problems, even if very difficult to face also with the models we have intro-
duced above, could receive beneficial if modeling is inspired by complex natural
occurring forms of cooperation, such as grooming in primates or human cooper-
ation. More complex cooperation modeling should couple with insect metaphor,
which is so powerful for many reasons. First of all, modeling insects’ eusocial
behavior is favorite because insects are much more similar to evolved robots in
ER if compared with other animals. A simulated or physical e-puck robot can
be imagined as an ant, for example, much more easily than as a primate. More-
over, this kind of modeling permits to address problems that represent nowadays
the heart of research in robotics in general and in collective robotics in particular,
such as dynamical systems, distributed control, embodiment and situatedness,
adaptive systems, coordination between autonomous agents, self-organization,
etc. On the other side, trying to model agents or robots that are complex inside,
would require a strong investment in cognitive science and from cognitive science
that doesn’t seem to be as strong as the previous one. The principal drawback
in this kind of modeling is that, with actual techniques, it is still too difficult
to build an agent that resembles in complexity natural organisms and this can
be discouraging. One may object, for example, that the agents we used in our
simulation are not at all comparable with corvids. This is undoubtedly true. In
spite of this, this kind of bio-inspired models may be the first step in direction
of modeling cooperation between complex agents: cooperation modeling may
deepen our understanding of cooperation in group-living organisms and under-
standing cooperation in group-living organisms may allow to better understand
how to build efficient artificial organisms.
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Abstract. This paper develops phase portraits explaining the dynamic
behaviour of the lipid compartment in a recently proposed stochastic
protocell model. The protocell model is being used to investigate - in a
bottom-up way - the possible roots of cellular autonomy, and the lipid
compartment sub-system plays an integral part in determining the cellu-
lar dynamic. Whilst motivation is to ground the early model simulation
results, the analysis here also reveals an interesting finding: simple ad-
dition of an ’osmotic buffer’ to the lipid compartment not only widens
it’s range of stability, but also causes a profound change in the deep dy-
namical structure of the whole cellular system. Relevant to the origins of
life, this bifurcation increases the robustness of the compartment to per-
turbation and instantly grants a richer behavioural repertoire including
more reliable divide cycles.

1 Introduction

In recent work, Ruiz-Mirazo and Mavelli have presented a stochastic protocell
model involved in a wider research programme investigating the minimal origins
and graded appearance of cellular autonomy [6,7]. The membrane of the model
is crucial in determining the system-wide dynamic, and in it’s simplest form, as
a bare lipid compartment, can be analysed quite readily. This work takes up this
challenge and reveals 3-dimensional phase portraits for non-buffered and buffered
lipid compartments. These dynamical pictures can be used to consolidate the
’grass roots’ of the protocell model and explain many of the early results [4].
Additionally, insight gained here is hoped to carry across and leverage future
analysis of the more complex lipid-peptide elaborations of the protocell. A more
elaborate version of this work can be found in [1].

2 Compartment System for Analysis

The lipid compartment of the protocell model is based on an abstract notion of
a lipid bi-layer (Fig. 1). The bi-layer is assumed to self-organise itself and then
exist as a dissipative structure (within limits), continuously exchanging lipid
molecules L with the core and environment through four flux events.
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Fig. 1. Lipid compartment system for analysis

Usefully, this scenario enables the compartment to be accurately identified as
a dynamical system of three variables: Lcore, Lmem and Lenv, the number of lipid
molecules in the core, membrane and environment respectively.

Dynamics of the protocell model run on a modified version [5] of Gillespie’s
Stochastic Simulation Algorithm (SSA), [2,3]. The protocell system is defined
as a series of events, and the SSA actions these events at rates defined by their
propensity or ’natural tendency’ values1. The dynamical characteristics of the
compartment system are accordingly determined by how lipid movement around
the four flux events changes the propensity (rate) of those flux events.

Before beginning, a quick review of relevant formulae is necessary. Lipid is
released from the membrane (events 1 and 2) at propensity linearly dependent
on the number of lipid molecules in the membrane Lmem

alipid release = KLLmem (1)

where release constant KL = 0.001. Conversely, lipid is absorbed from the core
and environment into the membrane (events 3 and 4) at propensity

alipid uptake = KLμ[L]env/coreSμ (2)

where uptake constant KLμ = 1.0, [L]env/core represents the respective molar
concentrations of lipid molecules in the environment and core, and Sμ is the
membrane surface area, which in the case of a pure lipid bi-layer membrane is
equal to

Sμ =
Lmemα

2
(3)

where the head area of lipid molecules α = 0.5nm2.

1 The only knowledge of the SSA required for this analysis.
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The fifth event in the system2 is an instantaneous flow of water through the
membrane ensuring an isotonic relationship between core and environment. The
volume of the core Vcore is constantly resized3 so that the total molar concen-
tration of osmotic species L and B in the core is equal to the same total in the
environment:

Lcore + Bcore

NAVcore
=

Lenv + Benv

NAVenv
at all times (4)

where Bcore and Benv are the number of buffer B molecules in the core and
environment respectively, Venv = 5.23e−16 litres and NA is Avogadro’s constant.
Buffer molecules cannot permeate the membrane (but do exert osmotic pressure
across it).

Finally, viability of the compartment is ensured between two mechanical lim-
its 0.9 ≤ φ ≤ 1.1 × 3

√
2 where stability parameter Φ is defined as the ratio

between the membrane surface area and the core surface area, calculated from
the (assumed spherical) core volume:

Φ = Sμ/ 3
√

36πV 2
core (5)

Outside the lower and upper viability limits, the compartment bursts or di-
vides respectively.

3 Lipid Space

Starting the analysis, Lipid Space is defined as the 3-space containing all com-
binations of Lenv, Lmem and Lcore. In order to become informative, firstly the
viability region is drawn on this state space, showing the range of lipid states
corresponding to a stable cell compartment. Secondly, the lipid dynamics are
super-imposed: these arrows and equilibrium planes/lines show the likely phase
or flow of the space at different points - where each state will probably evolve to
in time4.

4 Viability Region

The viability region of the compartment is plotted onto the Lipid Space by
substituting (3) and (4) into the stability criterion (5). The new equation defines
a plane in Lipid Space
2 Event 5 is not implemented as a Gillespie event controlled by propensity, but is

rather a condition ensured to be always true.
3 The core volume is determined independently of the membrane surface area

enclosing it.
4 Phase spaces in this analysis are stochastic. Rather than dictating the definite time

evolution of the system (i.e. like phase arrows on a deterministic phase plot), phase
arrows here just indicate the nett ’persuasion’ acting on the system at a point. The
absence of arrows does not mean there is no pull, rather it means that pull in all
directions is equally likely.



Dynamical Systems Analysis of a Protocell Lipid Compartment 233

a3=a4

a1=a2

a4

a3

a1

a2

1

2

3

4 UPTAKERELEASE

RELEASE

UPTAKE

2 nett forces acting in Event Space Movement directions possible

(a) Event Space for non-buffered compartment.

a1=a2

a4

a3

1

2

3

4 UPTAKERELEASE

RELEASE

UPTAKE

3 nett forces acting in Event Space Movement directions possible

a1

a2

(b) Event Space for buffered compartment.

Fig. 2. Nett reigning forces acting in Event Space for (a) non-buffered and (b) buffered
compartments. Buffered compartments have a richer dynamical structure because three
forces steer movement in Event Space, rather than just two opposing forces.

Lmem =
2Φ

α

3

√
36π

[
Lcore + Bcore

Lenv + Benv
Venv

]2

(6)

Setting the stability factor to the burst limit Φ = 0.9 and plotting Lmem for
all values of Lcore and Lenv gives the burst plane. Setting the stability factor to
the divide limit Φ = 1.1 × 3

√
2 and doing the same gives the divide plane. The

’sandwich’ region in the Lipid Space between the two planes is the set of lipid
states yielding a stable cell5.

5 Non-buffered cells, regardless of size, share the same two viability planes. However,
buffered cells of different radii require different numbers of buffer molecules in the
core to achieve a specific initial [B]core concentration, and so have different shaped
viability planes.
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5 Equilibrium States

The first step in developing the lipid dynamics is to identify the equilibrium
states in the Lipid Space. A cell compartment is said to be in ’lipid equilibrium’
when the membrane is absorbing lipid from the core and environment at the
same rate it is releasing it to them. Equating (2) with (1), then substituting
surface area (3) gives

[L]core/env =
2KL

KLμα
=

2(0.001)
1(0.5)

= 0.004M (7)

So, as Mavelli and Ruiz-Mirazo state ([4], p1793), the concentration of lipid
in the core and environment has to be 0.004M to achieve equilibrium. Now going
further, when equilibrium states are plotted for non-buffered cells on the Lipid
Space, they fall on a plane. A plane is defined because whereas the fixed volume
environment requires exactly

Lenv = 0.004NAVenv = 1259832 (8)

lipid molecules to achieve [L]env=0.004M, the core can theoretically contain any
number of lipids: in the absence of buffer, osmotic balance (4) resizes the core
volume ensuring [L]core = [L]env at all times6.

For buffered compartments, the equilibrium plane transforms into a line in
the Lipid Space. The presence of buffer molecules (internal, external or both)
makes the osmotic criterion (4) more general, and there becomes scope for
[L]core �= [L]env. To achieve [L]core=0.004M then, Lcore has to additionally as-
sume a specific value too

Lcore =
KBcore

1−K
(9)

where

K =
0.004NAVenv

Lenv + Benv

Of note, in both non-buffered and buffered cases, lipid equilibrium is indepen-
dent of the number of lipids in the membrane Lmem.

6 Event Space

In addition to moving in Lipid Space, the compartment system can also be
thought to move in a 2-dimensional Event Space. Whereas Lipid Space repre-
sents the exact lipid state of the system, Event Space represents which of the
four flux events have occurred from an initial lipid state7.
6 Of course, the Lcore value has to remain within the cell viability region though.
7 Event Space utilises the positive and negative X and Y axes to represent the four

different events. The events do not require their own dimensions because event 4
(positive X) is simply the reverse of event 1 (negative X), and event 2 (positive Y)
the reverse of event 3 (negative Y).
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Fig. 3. Event Space slices with phase arrows super-imposed taken at positions A-D in
the Lipid Space (top) of a 50nm 0.02M buffered compartment. For comparison, A’ and
D’ show slices A and D for a non-buffered compartment.
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Fig. 4. Illustration of (a) non-buffered and (b) buffered compartment phase portrait.
Addition of buffer causes a spectacular (and favourable) bifurcation in the deep dy-
namical structure of the lipid compartment system: a ’gully’ plane emerges as a strong
basin of attraction to the equilibrium states
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Event Space is an intuitive technique for drawing phase arrows onto
3-dimensional Lipid Space. As each flux event changes the compartment state
in a pre-defined way, then Event Space and Lipid Space have a straightforward
geometric mapping. Additionally, plotted in Lipid Space, an Event Space plane
shows which range of lipid states (from an initial state) a compartment can nat-
urally enter into through it’s own lipid flux (when no external processes change
lipid numbers in the system).

Plates A, B, C and D of Figure 3 are event space ’slices’ taken through the
Lipid Space (top of figure) of a 50nm radius compartment with 0.02M internal
and external buffer8. Phase arrows have been drawn on each event space grid by
calculating the propensities for the four flux events at each event point (x,y) and
then drawing an arrow pointing in the mean vector direction of the next likely
event. The size of arrow heads depict relative dynamic force. As comparison, the
phase at points A and D for a 50nm non-buffered compartment are shown on
plates A’ and D’ respectively.

Consolidating these results9, Figure 4 illustrates the general 3-dimensional
phase portraits for buffered and non-buffered compartments. Interestingly, the
dynamical structure in each case is profoundly different.

7 Compartment Dynamics

7.1 Non-buffered Dynamics

On the one hand, non-buffered compartment dynamics are fairly unremarkable.
The single molecular species - lipid - controlling the osmotic balance across the
membrane proves to be a limitation.

With no buffer, moving lipid around the system through the four flux events
only ever results in two nett reigning forces in Event Space (Fig. 2a). Propensities
for uptake events 3 and 4 always match (a3 = a4) because osmotic equalisation
(4) ensures [L]core = [L]env at all times. Likewise propensities for release events
1 and 2 always match (a1 = a2) by definition of the model. Therefore, dynamic
forces can push the system in just two movement directions in Event Space.

The limited dynamics mean that, when a sudden lipid increase or decrease is
added to the environment from equilibrium conditions, a non-buffered compart-
ment will flow straight to a divide or burst condition respectively. Secondly of
note, the equilibrium condition is weakly held. In the local vicinity of the equi-
librium plane, the nett dynamic forces acting on the system (for a 50nm radius
compartment) are minute. Therefore ’at equilibrium’ a non-buffered compart-
ment is actually prone to wander and is quite unstable.

7.2 Buffered Dynamics: Bifurcation!

Introducing an osmotic buffer changes the dynamical structure of the compart-
ment system in a spectacular way. The phase arrows in the Lipid Space become
8 A common configuration used in the Ruiz-Mirazo and Mavelli protocell work.
9 And other results/phase plots not shown.
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totally re-organised and now flow to a ’gully’ which acts as a basin of attraction
to the equilibrium states that, as mentioned before, now fall on a line (Fig. 4b).
The bifurcation is caused by the buffer molecules participating in the osmotic
balance (4) enabling [L]core to become de-coupled from [L]env. The knock-on
effect from a dynamics perspective is that propensities for uptake events 3 and
4 need not necessarily be equal anymore, and three nett reigning forces oper-
ate in Event Space (Fig. 2b). Combinations of these three forces can produce a
nett dynamic force pushing the system in any possible direction in Event Space,
and this simple fact endows the compartment with potential for richer overall
dynamics.

The ’gully’ flows directly left and right on Event Space plots A-D (Fig. 3) and
therefore occurs when the propensity for lipid release events 1 and 2 is equal to
the propensity for lipid uptake event 3. When drawn on Lipid Space, the latter
condition describes a plane with equation

Lenv =
2KLNAVenv(Lcore + Bcore)

KLμLcoreα
−Benv (10)

and passes through the line of equilibrium states.
With respect to non-buffered systems, the ’gully’ feature of buffered compart-

ments grants:

1. Increased robustness to external lipid peturbations. The gully creates
a wide basin of attraction, providing a reliable route back to the equilibrium
states from a wide variety of other lipid states. Equilibrium is strongly held.

2. A more reliable divide cycle. The gully provides a slower, more controlled
route to compartment divisions or bursts, and thus a stable divide cycle can
be established ([4],p1797,Fig. 5). Conversely, a non-buffered compartment
cannot sustain a divide cycle.

3. A richer dynamical substrate. Buffered dynamics create a platform
which other cellular processes can leverage to create further complex
behaviour.

8 Brief Conclusions

This analysis forged an analytical/geometric way to think about the dynamic
behaviour of the (bare) lipid compartment belonging to the Ruiz-Mirazo and
Mavelli protocell model. A huge difference was found in the dynamic portraits
of non-buffered and buffered compartments. The latter were found both more
robust and enabled for richer dynamic behaviour, and these properties stemmed
from buffer species being able to regulate water flow across the membrane in
addition to lipid. In this way, addition of buffer could suggest an extremely
rudimentary yet extremely effective improvement a bare lipid compartment could
make at the very beginning of the road to increased levels of autonomy.
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Abstract. We argue that the significance of the spatial boundary in au-
topoiesis has been overstated. It has the important task of distinguishing
a living system as a unity in space but should not be seen as playing the
additional role of delimiting the processes that make up the autopoietic
system. We demonstrate the relevance of this to a current debate about
the compatibility of the extended mind hypothesis with the enactive ap-
proach and show that a radically extended interpretation of autopoiesis
was intended in one of the original works on the subject. Additionally we
argue that the definitions of basic terms in the autopoietic literature can
and should be made more precise, and we make some progress towards
such a goal.

1 Introduction

The idea of autopoiesis is a venerable part of the artificial life tradition. Ideas
from the theory of autopoiesis formed part of the foundations on which the field
of artificial life was built [2] and have been widely cited ever since.

However, over its lifetime the idea of autopoiesis has meant different and in
many cases quite incompatible things to different authors. An important part
of the subject’s maturation will be to determine more precisely whether these
alternative interpretations are compatible with each other and what, if anything,
forms their common theoretical core.

We suggest that much of the conflict in this field comes from the conflation of
two concepts that should be kept distinct: the physical boundary of an autopoietic
system, which is produced by the system and makes an important contribution
to the working of the system; and what we call its operational limits, which de-
termine which processes are part of the system. The goal of this paper is to make
these concepts, and the distinction between them, as clear as possible. Failure
to do this in the past has lead to a kind of internalism in which the network of
processes that constitute an organism is seen to lie entirely within its physical
boundary, an idea that sits uncomfortably with the conception of cognition as
relational. We believe that by clarifying this distinction and introducing new
terminology for it we will make a direct contribution towards current modelling
and theoretical work.
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Enaction and the Extended Mind. One particular point of relevance for this
discussion is a current debate about whether the extended mind hypothesis [3] is
compatible with the ‘enactive’ approach developed by Varela and colleagues [9],
in which both autopoiesis and an extended approach (in which cognitive pro-
cesses can take place outside an organism’s physical bounds) play central roles.
The possibility of incompatibility between the two was first raised by Wheeler
in a talk at last year’s Artificial Life conference [10,11], which has subsequently
been the target of a critical analysis by Di Paolo [5].

Wheeler’s argument forms a useful point of departure for clarifying the way in
which enactive cognitive science conceives of the complex relationship between
life and mind, as well as its operational understanding of cognition. It progresses
with the following steps:

1. Autopoiesis is a non-negotiable component of enactive cognitive science.
2. Autopoiesis is a type of self-organization defined by the production of a

physical boundary that distinguishes the system as a material unity.
3. One interpretation of the primary literature is that “autopoiesis = life =

cognition.”
4. It seems to follow from steps 2 and 3 that the enactive approach is committed

to the claim that the cognitive system is co-extensive with the living system,
entailing that both are bounded by the living system’s physical membrane.

5. Since cognition is therefore internal to the physical boundary of the autopoi-
etic system, the enactivist cannot endorse the extended mind hypothesis.

Since the autopoietic and enactive traditions have always insisted on the rela-
tional nature of cognition as emerging out of the dynamics of a brain-body-world
systemic whole, this conclusion might come as a surprise. Is the enactive ap-
proach really committed to the claim that cognition is something that happens
within the spatial bounds of an organism?

One way to dissolve this particular incompatibility is to admit that the “life =
cognition” slogan has outlived its usefulness. This is the approach pursued by
Di Paolo [5], who emphasises the non-reducibility (non-intersection) but mu-
tual interdependence of the metabolic (constitutive) and cognitive (relational)
domains of discourse in the autopoietic tradition. On this view the enactive ap-
proach to cognition is committed to neither an internalist nor an externalist
position: “as relational in this strict sense, cognition has no location.” [5, p. 19,
original emphasis].

Though compatible with Di Paolo’s argument, our position has a different
focus. It is Wheeler’s interpretation of autopoiesis as a self-sustaining network
of molecular processes that occur within a physical boundary (step 2 above) that
gives him the original motivation for his argument. This internalist interpretation
of autopoiesis may indeed be held by some of the idea’s current proponents,
but we argue for a different interpretation, in which the physical ‘constitutive’
processes by which an organism’s structure is produced need not all take place
within its physical boundary. By spelling out in detail the distinction between
the spatial boundary and the operational limits we arrive at a view of enactive
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cognitive science that cannot be considered ‘internalist’ neither on the cognitive
nor the physical, metabolic level.

The Changing Definition of Autopoiesis. It is important to be clear that
autopoiesis is not a well-defined concept, even though it sometimes appears to be.
Much of the primary and secondary literature is written in a style that suggests
the theory being discussed is fully developed and quite formally defined; but in
fact the meaning of many of the key terms, including the word ‘autopoiesis’ itself,
change quite fluidly from publication to publication (see [1]). For instance, in [7]
autopoiesis is explicitly presented as a theory that applies to all life, whether
multicellular or unicellular, whereas in [8] and later publications the idea is said
to apply only to single cells, with multicellular organisms requiring a special
‘second-order’ autopoiesis.

In order for the theory to be moved forward it is important to continue to
work on these definitions. It is not enough to quote one of the varying definitions
that Maturana and Varela gave, since these were neither precise nor unchanging.
Moreover they depend on the meanings of words such as ‘process’ which as far
as we are aware were never defined in any of the primary literature [6]. Our
approach is to try to reveal some of the key concepts by stripping away some of
the convoluted and overly formal language, focusing instead on sharpening our
(pre-formal) intuitions.

2 Defining Operational Closure and Its Limits

What is a process? Since the word ‘process’ has such a key role in all of
Maturana and Varela’s definitions of autopoiesis it is surprising that little seems
to be written about its precise meaning (though see [4]). A related under-asked
question is what it means for a process to be enabled by or dependent upon
another process. Since our discussion below also hinges heavily on the concept,
we will briefly summarise our (somewhat tentative) intuitions about what a
definition might look like here.

A tentative definition of a process might be that it is something that happens
repeatedly, or which tends to happen whenever the right conditions are met
(examples of processes that meet this definition include: the fermentation of
sugar into alcohol; diffusion of heat from hot to cold bodies). There are several
properties that are shared by every process, at least in the physical/chemical
domain: every such process transforms something into something else (a chemical
reaction transforms its reactants into its products; a transport process transforms
the spatial distribution of a substance; friction transforms kinetic energy into
heat). All such processes also have conditions which must be met in order for
them to take place, or which affect the rate at which they occur. These can be
trivial (e.g. simply the presence of the reactants) or more complex (such as the
presence of enzymes and a specific temperature).

Note that on this definition, processes are separate from the dynamics: the
dynamics are the ways in which variables change over time, whereas processes
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are things that cause them to change. Thus one can model the dynamics of a
system without modelling the processes that underly them.

Importantly, the operation of a process can modify the conditions that deter-
mine whether another process takes place. Rather than a process B depending
directly upon another process A, we have a situation in which process A pro-
duces something which is a required condition for process B to occur. Process B
then depends on A, via the conditions that process A helps to generate. These
relationships of dependence can form networks of processes with the interesting
property of operational closure which we shall now discuss.

Operational Limits and Spatial Boundaries. In this section we introduce
the term operational limits to describe which processes should be seen as an
operational part of a system. We discuss the relation between operational limits
and spatial boundaries and show why the two notions are often conflated, despite
being quite distinct.

To define the operational limits of a sys-

Fig. 1. A hypothetical network of
processes connected by interdepen-
dencies. Lettered circles represent
processes and arrows represent ‘en-
able’. M represents a process that
generates the spatial boundary.

tem, it is necessary to understand the no-
tion of operational closure. Figure 1 depicts a
hypothetical system of processes that are de-
pendent upon or enabled by each other. These
interdependencies are depicted in the figure
as arrows connecting the processes. Given such
a network of processes and relationships of
dependence we can define which parts of the
network are operationally closed. However, be-
fore we give this definition, we think that it
is important to point out that its application
requires, as a precondition, the identification
of all of the processes and relationships of de-
pendence. As we mentioned in the previous
section, at this stage, neither ‘process’ nor
‘dependence’ (sometimes referred to as ‘con-
ditioning’ or ‘enabling’) are well defined. Thus
far, researchers have depended upon intuitive
understanding of these phenomena, but they are in need of formalization if we
are to consider operational closure rigorously defined.

Definition. Given a collection of processes C, we can identify an operationally
closed subset of those processes, S such that for every constituent process P ,
the following conditions are true.

1. Another process P ′ requires conditions produced by process P .
2. Process P is conditioned by another process P ′′.
3. P ′ and P ′′ ∈ S.
4. P ′ and P ′′ can be (but are not required to be) the same process.
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In graph theory terms, this defines a strongly connected subgraph of the directed
graph of process dependencies. Assuming that all of the processes and interde-
pendencies are included in Figure 1, processes w, x, y and z are not part of any
operationally closed network. This is the case because each one of these pro-
cesses does not depend upon another process which is in turn dependent upon
the original process. Take as a case in point, process x which is dependent upon
w which is not dependent upon any process in the system. An absence of cyclical
dependence indicates an absence of operational closure. In contrast, processes a,
b, c and M form an operationally closed network. Process c depends upon b
which depends upon a which depends upon M which depends upon c, closing
the loop and making the set of four processes operationally closed. A second,
smaller operationally closed loop exists, consisting only of processes M, b, and c.
These are the only operationally closed loops within this system.

It is not difficult to find examples of processes that have cycles of depen-
dency on a variety of scales from subsystems of an organism to relationships of
dependence on an ecological or global scale. Furthermore, operationally closed
networks of processes may or may not involve organisms at all. This is not prob-
lematic for the theory of autopoiesis as autopoietic systems are the subset of
operationally closed systems that produce a spatially bounded structure.

Let us now consider this spatial boundary. There is no requirement that any
of the above processes occur inside or outside of the spatial boundary. It may
be tempting to think that because processes a, b, c and M are all inside the
operational limits, they are also inside the spatial boundary, but this is not
necessarily the case. It might be that only processes a, b, and z are inside the
spatial boundary. The spatial boundary is not the same as the operational limits.

In a way cell membranes, or spatial boundaries in general, seem similar to the
operational limits in that they define a boundary inside which certain processes
lie and others do not. For this reason, it has been tempting for some authors
to depict spatial boundaries on relational diagrams as a circle surrounding a
number of processes, similar to the depiction of the operational limits of an
organization. To do this however is to commit the error of conflating operational
limits with spatial boundaries. Figure 1 is not drawn in physical space – it is a
relational diagram of processes. As such, it is inappropriate to depict boundaries
in their spatial form (e.g. as an encircling). It is only appropriate to depict them
as yet another process (e.g. process M in our diagram) or set of processes that
has various interdependencies with the other processes in the network.

On one hand this error does not seem too serious if, for example, one is
drawing informal diagrams intended to get a point across. However, there are a
number of serious conceptual errors that can be caused by confusing the spatial
and relational domain. For example, processes can span the spatial boundaries
of an organism (e.g. ion pumps in cell-membranes or the production of heat by
warm-blooded animals affecting the animal’s environment). This possibility is
lost when spatial boundaries and process relationships are conflated and physical
and relational structures are plotted in the same space.
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A related error is the inappropriate inflation of the importance of the spatial
boundary. The spatial boundary is undoubtedly important in maintaining the
conditions necessary for many ongoing processes in living organisms. While these
are indeed important contributions, we do not believe that they are of a different
type of contribution than the other enabling processes that form living organisms.
In fact, we believe that the inflation of the importance of the spatial boundary
runs contrary to one of the more provocative ideas to come from the autopoietic
school of thought. Namely, that the spatial boundary of the organism is not
actually equivalent to the limits of the organism – that the organism, as an
autopoietic system, includes processes that are not occuring within its spatial
boundary.

3 Extended Autopoiesis

In this section we defend our claim that the operationally closed network that
constitutes an autopoietic unity can include processes that occur outside of its
spatial boundary by showing that this was the interpretation intended in one of
the earliest pieces of literature on the subject, Maturana and Varela’s Autopoiesis
and Cognition [7].

This does not validate our claim entirely; what matters to science is what is
useful to us in the present day, not the precise words that were first written 37
years ago. However the original exposition is quite clear and we hope that by
re-examining it with a simple example we can better express our own perspective.

In [7], Maturana and Varela introduce us to the concept of homeostatic ma-
chines. These are defined as machines which maintain constant, or within a lim-
ited range of values, some of their variables, a definition which will be familiar to
most of us. However this definition is followed by an important clarification which
we take as fundamental to how the rest of the theory is to be interpreted. Since
the clarification of this definition is so important we quote the whole paragraph:

“There are machines which maintain constant, or within a limited range
of values, some of their variables. The way this is expressed in the or-
ganization of these machines must be such as to define the process as
occurring completely within the boundaries of the machine which the
very same organization specifies. Such machines are homeostatic ma-
chines and all feedback is internal to them. If one says that there is a
machine M , in which there is a feedback loop through the environment so
that the effects of its output affect its input, one is in fact talking about
a larger machine M ′ which includes the environment and the feedback
loop in its defining organization.” [7, section 1.2.a]

This can be clarified with an example. Let us consider a mechanical thermostat.
This is an archetypal example of a homeostatic machine (though of course it is
not autopoietic). The variable which it keeps within bounds is the temperature
of a room. However, according to the quoted paragraph it is not correct (in the
autopoietic language) to think of the thermostat as being the box on the wall
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that is connected to a heater and contains a thermocouple, because this machine
(machine M) has a feedback loop that runs through the environment. When the
temperature drops, the thermocouple breaks a connection, which causes the
heater (not part of machine M) to be switched off, causing the temperature to
drop again. Since the thermostat relies on this feedback loop for its operation, we
should actually define the thermostat as a larger machine (machine M ′) which
includes the heater, the air in the room, and the feedback loop that passes
through them.

Why is this so important? The above quoted paragraph is positioned directly
before the definition of an autopoietic machine is spelled out1, and just below
that we are given the following key statement:

“Therefore, an autopoietic machine is an homeostatic (or rather relation-
static) system which has its own organization (defining network of rela-
tions) as the fundamental variable which it maintains constant.” [ibid.]

Autopoietic systems, then, are to be seen as homeostatic machines. It follows
that their definition must be expanded in the same way if they rely on a feedback
loop that runs through their environment.

Wheeler [10] gave the example of an earthworm, which builds tunnels held
open by a sticky secretion that helps to digest its food. We can try to see the
worm as an autopoietic system (and hence an homeostatic system) whose oper-
ational limits are defined by its physical boundary (its skin). However, the worm
relies on the effects of its secretions; this is a feedback loop which runs through
its environment. The above quoted paragraph from [7] thus compels us to rede-
fine the system so that it includes not only the worm itself but also the secretions
and their effects. On this view the autopoietic system that constitutes the worm
is not coextensive with the unity that we refer to as “the worm,” it is much
bigger. This will be the case for most if not all organisms, since most organisms
rely not only on sensory-motor loops that run through their environment but
also on nutrients that are recycled externally to them.

4 Future Considerations

In the past, because it is easily visualizable, because terminology was confusing,
and perhaps because of difficulties associated with translation, we have seen the
1 The full definition of autopoiesis as given in [7] is as follows. Note that this version

of the definition hinges on the constitution of a concrete unity in space but does not
specify that this unity must be bounded by a distinct membrane.

An autopoietic machine is a machine organized (defined as a unity) as a net-
work of processes of production (transformation and destruction) of compo-
nents that produces the components which: (i) through their interactions and
transformations continuously regenerate and realize the network of processes
(relations) that produced them; and (ii) constitute it (the machine) as a con-
crete unity in the space in which they (the components) exist by specifying
the topological domain of its realization as such a network.
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physical boundary of an autopoietic system as playing a special role in both
the physical and the relational domains. But here we have argued that in the
relational domain the spatial boundary should take its place among the other
enabling conditions. In the physical domain it plays an important role in helping
to define the organism as a distinct unity but it plays no special role in the
relational domain, except perhaps in that it enables a great number of processes.

We have shown some of the implications of this for the debate about the
compatibility between autopoiesis and the extended mind hypothesis, and we
believe that it is relevant to much current theoretical and modelling work.

We have also begun working towards precise definitions of some basic concepts
in the autopoietic theory, which were previously absent. The definitions we have
outlined are tentative. However we have tried to express them in such a way that
the intended interpretation is clear. We hope that future authors will try to give
similarly precise definitions of basic terms. The theory of autopoiesis can only
become stronger as a result.
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(eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 649–658. Springer, Heidelberg
(2001)

5. Di Paolo, E.A.: Extended life. Topoi 28(1), 9–12 (2009)
6. Froese, T., Virgo, N., Izquierdo, E.: Autonomy: A review and a reappraisal. In:

Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL
2007. LNCS (LNAI), vol. 4648, pp. 455–464. Springer, Heidelberg (2007)

7. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the
Living. Kluwer Academic Publishers, Dordrecht (1980)

8. Maturana, H.R., Varela, F.J.: The Tree of Knowledge: The Biological Roots of
Human Understanding. Shambhala Publications, Boston (1987)

9. Thompson, E.: Mind in Life: Biology, Phenomenology and the Sciences of Mind.
The Belknap Press of Harvard University Press, Cambridge (2007)

10. Wheeler, M.: Autopoiesis, enactivism, and the extended mind (abstract). In: Bul-
lock, S., et al. (eds.) Proc. ALIFE XI, p. 819. MIT Press, Cambridge (2008)

11. Wheeler, M.: Minds, things and materiality. In: Renfew, C., Malafouris, L. (eds.)
The Cognitive Life of Things: Recasting the Boundaries of the Mind. McDonald
Institute for Archaeological Research Publications, Cambridge (in press)



Chemo-ethology of an Adaptive Protocell

Sensorless Sensitivity to Implicit Viability Conditions

Matthew D. Egbert, Ezequiel A. Di Paolo, and Xabier E. Barandiaran

Evolutionary and Adaptive Systems Group,
CCNR, University of Sussex, Brighton, BN1 9QJ, UK
mde@matthewegbert.com, ezequiel@sussex.ac.uk,

xabier.academic@barandiaran.net

Abstract. The viability of a living system is a non-trivial concept, yet
it is often highly simplified in models of adaptive behavior. What is lost
in this abstraction? How do viability conditions appear in the first place?
In order to address these questions we present a new model of an au-
topoietic or protocellular system simulated at the molecular level. We
propose a measurement for the viability of the system and analyze the
‘viability condition’ that becomes evident when using this measurement.
We observe how the system behaves in relation to this condition, generat-
ing instances of chemotaxis, behavioural preferences and simple (yet not
trivial) examples of action selection. The model permits the formulation
of a number of conclusions regarding the nature of viability conditions
and adaptive behaviour modulated by metabolic processes.

1 Connecting Biological Organization and Adaptivity

Conceptualizing adaptivity (the capacity of a system to cope flexibly with its en-
vironment in order to survive and reproduce) is far from trivial. The widespread
strategy is to model adaptivity as the optimization of certain parameters (cap-
tured by the notion of fitness) or as the maintenance of certain variables (often
called essential variables—[1]) within viability limits. As a consequence, models
of adaptive behavior generally fall under one of two categories (or a combination
of both). Externalist : Optimization techniques are used to constrain the behav-
ior of a system to achieve the desired adaptive coupling with its environment
in relation to a set of parameters or “fitness” criteria. This category includes
different types of supervised learning algorithms for NN, simulated annealing or
artificial evolution techniques to design control architectures (as used in Evo-
lutionary Robotics, [2]) or, simply, hand design. Internalist : Models belonging
to this class incorporate a set of internal variables often interpreted as energy
sensors, pain or pleasure indicators, etc. These “value modules” are then coupled
to other control mechanisms in order to tune the behavior of the system (as in
reinforcement learning) or to choose between competing possibilities for action
(acting as an action selector [3,4]).

In both cases the parameters or functions to be optimized are explicitly rep-
resented either as an external fitness function or as an internal value mod-
ule, abstractly measuring how well adapted/adapting the system is. There is
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generally no reference or feedback to the processes from which these criteria
emerge. How those boundaries of viability or optimal values come to be there
in the first place is rarely addressed and modelled. As Randall Beer recognizes,
“this explicit separation between an animal’s behavioral dynamics and its via-
bility constraints is fundamentally somewhat artificial. (. . . ) However (. . . ) we
can assume that its viability constraint is given a priori, and focus instead on
the behavioral dynamics necessary to maintain that existence. [5, p.265]”.

At first sight, and for many cases, this abstraction seems reasonable. For
instance it is obvious that above a certain temperature value an organism will die
or that without a certain quantity of resources it would cease to exist. However,
these conditions (or value functions) are often variable and difficult to determine,
they show temporal variability and subtle interactions with other processes (e.g.
you can survive at a low temperature for some time but not for “too long”
and this in turn might depend on your diet, etc.). Critically, the behavior of
organisms might be sensitive to these conditions in many and sophisticated ways
that are lost when a priori abstractions are made. For instance, organisms might
display a complex dynamic interplay between internal and behavioral adaptive
modulations where mechanisms of self-repair, growth, digestion and maintenance
are integrated with behavior generating mechanisms in many subtle ways [6].

What happens when we remove this somewhat artificial and explicit “sepa-
ration between an animal’s behavioral dynamics and its viability constraints”?
To address this question requires reference to more fundamental aspects of bio-
logical organization such as the the modelling of energy consumption processes,
metabolic organization, generation of movement, etc. However, on this side of
the relationship between behavioral adaptivity and living organization (dealing
with the emergence of viability conditions) life is usually modelled without in-
cluding behavioral adaptivity. These models emulate the biochemical processes
that make viability conditions and value functions be there in the first place.
They describe life as a networked set of chemical reactions (metabolism) con-
tinuously re-producing the conditions required for their existence. Standing in
far-from-thermodynamic-equilibrium conditions and, therefore, in a continuous
need for matter and energy for their maintenance, minimal protocells [7] (or
autopoietic systems [8]) come to capture the fundamental root of adaptivity:
the need to actively compensate for a decaying or precarious existence that
also defines the fragile limits (viability conditions) of their otherwise dissipating
organization. However, these types of models tend to place the system in envi-
ronments which do not require any system-level regulation of interactions with
the environment (behavior) to maintain themselves (e.g. [9]). A few recent mod-
els (see [10,11]) have begun incorporating mechanisms of system level behavior,
e.g. motion, upon which the autopoietic processes depend. Yet, many aspects of
the interplay between behavior and metabolism are still to be explored.

In this paper we present a model of minimal metabolism and motility in
a protocellular system simulated at the molecular level. The model is rather
minimal yet capable of raising conceptual issues around the nature of viability
conditions, temporal aspects of adaptive processes and the mutual dependence



250 M.D. Egbert, E.A. Di Paolo, and X.E. Barandiaran

between metabolism and behavior. Section 2 presents details of the model. Sec-
tion 3 presents a set of experiments with the protocell behaving adaptively by
performing chemotaxis and showing emergent forms of action selection without
explicit sensors. Finally we conclude with section 4 addressing some theoretical
implications and future extensions of the present model.

2 A Chemo-ethological Model of an Adaptive Protocell

We take a chemo-ethological approach in our explorations: a combination of as-
pects of artificial chemistry and forms of behavioral modelling and analysis. Our
model is a modified version of a model presented in [11] and can be thought of
as a highly simplified model of a protocell[7]. It takes place in a two-dimensional
arena 256 units square. The model is simulated at the molecular level. It com-
prises three types of interactants: metabolites, resources and a membrane that
encapsulates the reaction network. The interactants are governed by a set of
chemical reactions giving rise to a self-maintaining metabolic network. Interac-
tions between the metabolites and the membrane endow the system with an
ability to move around the environment which contains generators of the neces-
sary resources.
Metabolites. A metabolite is specified by five attributes, x, y, s, d and T .
x and y represent the metabolite’s spatial position and s represents the size
of the metabolite, which affects its rate of thermal motion (more below). The
type of a metabolite, T , indicates which chemical reactions the metabolite can
participate in. The final metabolite parameter, d, represents the stability of the
metabolite. Each iteration, there is a chance (p = 5d ×10−3) that the metabolite
disintegrates. As one would expect, metabolites of the same type have the same
s and d values. The metabolites are simulated as if in Brownian motion using
the following equations: xt+δt = xt + δt(gx + 0.75vx), yt+δt = yt + δt(gy +
0.75vy). Here vx and vy represent the 2D velocity of the membrane. gx and gy

represent displacement due to thermal motion and are selected each iteration
from a Gaussian distribution (mean 0, std. 0.1/s) where s represents the size of
the metabolite and indirectly its rate of thermal motion.
Reactions. Metabolites are governed by the reactions shown in Table 1. Each
reaction has a rate (ρ) which determines the likelihood of the reaction occurring.
Reactions are simulated by picking 2 metabolites within the simulation N times
(where N is proportional to the number of metabolites in the simulation) and
performing their reaction if they are within 2 units of distance from each other.
Metabolites never exist outside of a cell membrane as they are created inside the
cell and can not move through the membrane.
Resources. There are three types of resource (R0, R1, and R2) that react
with the metabolites (see Table 1). Resources are represented by a 64 × 64
lattice of squares of width 4.0 units, the nodes of which are updated according
to the following differential equation which simulates diffusion. dφ(r, t)/dt =
D∇2φ(r, t) + q(r). Where φ(r, t) ∈ [0, 3] represents the concentration of the
resource at location r at time t, and q(r) represents the addition of resources
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Table 1. Metabolite Types & Chemical Reactions. ρf and ρb represent the rate of
chemical reactions in the forward and backward directions respectively.

Metabolite Types Reactions
Name Size Stability ΔPhosph. Δvel. # R1+R2↔P1+P2 ρf ρb κ

X 0.8 0.005 0.00 0.0 0: Z +R0↔ Z + Z 1 × 10−2 0 0.7
Y 0.8 0.005 0.00 0.0 1: X +R1↔X + Y 1 × 10−2 0 0.7
Z 0.5 0.001 0.15 0.1 2: Y +R2↔Y + X 1 × 10−2 0 0.7

3: X + Y ↔ Z + Z 5 × 10−3 1 × 10−3 n/a

to the environment at resource generators which are placed in different areas
depending on the experimental scenario. The local concentration of resource is
increased by a fixed amount every iteration. Resources can act as one of the
reactants in a chemical reaction. The parameter κ indicates the quantity of
resource consumed by the reaction.
Membrane and Motion. The membrane is specified by three attributes: x, y,
and p. It is circular and centered at x and y with the parameter p representing
the number of phospholipids in the membrane which is directly proportional
to the circumference, relating the radius of the membrane to the number of
phospholipids thus: r = 20p/2π. The number of phospholipids in a membrane
decays exponentially according to the equation dp/dt = −5p× 10−4.

Upon contact with the membrane, metabolite Z both imparts an outward
radial velocity to the membrane and becomes part of the membrane as a quantity
of phospholipids. The other metabolites simply bounces off the membrane, being
returned to a position slightly closer to the center of the cell. Each iteration the
membrane’s location is updated according to its velocity which is reduced each
iteration by a fixed drag constant.

3 Exploring the Dynamics of the Protocell

Measuring Viability Conditions. The first, simplest scenario that we ex-
amine with our model is one in which the environment contains a fixed quantity
of homogeneously distributed R0. Inside this environment there is one protocell
containing a number of Z metabolites. Z is auto-catalytic in the presence of R0

(see Table 1). Also note that Z contributes phospholipids to the membrane and
that this contribution is the only process that counteracts the continual degrada-
tion of the membrane. It follows that if R0 is sufficiently high, the autocatalysis
of Z will be sufficient to completely compensate for the degradation of the mem-
brane. If not, the membrane will shrink until the cell dies1. Therefore, a good
candidate for a viability condition across different environmental situations is
1 The relationship between resource availability and membrane size is not as simple

as it might first appear. A smaller membrane requires less Z-production to maintain
its size, but also has non-linear effects upon the levels of resource that are available
to the protocell.
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the rate of production of Z in relation to the rate at which the membrane de-
grades, ΔV ≡ d(Z/p)/dt (where Z is the number of Z metabolites and p is the
number of phospholipids in the membrane). Furthermore, ΔV = 0 is an interest-
ing reference as protocells that maintain a negative ΔV for an extended period
of time will die, unlike those that maintain a ΔV of 0 or greater.

This can be seen in Figure 1 which
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Fig. 1. System Viability

depicts values of ΔV for agents in the
fixed resource environment2. Thinner
trajectories plotted in grey tended to
die. Note the ‘viability boundary’ lo-
cated at ΔV = 0, dividing those tra-
jectories that tend to live from those
that tend to die. The viability mea-
sure, ΔV can be thought of as a mea-
sure of what would happen should the
protocell remain in its current situa-
tion for a long time. Negative values
indicated a propensity towards death
and positive values indicate the oppo-
site. Note that this viability condition
of the system is not explicitly encoded (unlike classical approaches) but is rather
a statistical measure of spatially distributed molecular processes.
Experiment 1: Chemotaxis and its effect on viability. For the first ex-
periment we move into a more complex scenario where rather than having a
fixed homogeneous concentration of R0, we utilize a R0 generator which rotates
through four different locations, moving every 5000 iterations. Figure 2 (left)
shows the behavior of the protocell, which performs chemotaxis towards the gen-
erator. This motion is the result of the asymmetrical distribution of R0 within the
protocell. The portion of the protocell that has a higher concentration of R0 will
produce more Z. Accordingly, more Z particles will collide with the membrane
in this area of the protocell, inducing an overall up-gradient motion.

Figure 2 (right) shows how ΔV oscillates above and below (ΔV = 0). This plot
indicates how the system is behaving adaptively; not in relation to an a priori
and somewhat artificial parameter, but in relation to the very conditions upon
which the system’s ongoing survival depends. When the generator disappears,
the ΔV becomes increasingly negative. This tendency is inverted by the system
as it approaches the next generator. The protocell compensates for the negative
tendency of ΔV by behaving (i.e. changing the conditions such that the ΔV
becomes positive again).
Experiment 2: Oscillatory behavior between two generators. In our
second experiment, we designed an environment in which even if resources are

2 To generate this plot, the simulation was initialized with protocells with different
starting conditions (#Z = {50, 100, 150}, p= {8, 10, 12}, R0 = {0.3, 0.4..0.8}) and
we plotted the mean trajectory of 25 runs in ΔV over time (data was also smoothed
using a 250 iteration running-mean low-pass-filter).
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Fig. 2. Experiment 1, the protocell’s response to a moving resource generator
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Fig. 3. Experiment 2, Dependence upon two different resources

fixed, the protocell can not survive without behaving – thereby forcing the system
into a continuous transient of viability. We accomplished this by introducing two
stationary resource generators; one of R1 and one of R2. The protocell oscillates
back and forth between both generators (see Figure 3 left). Again the motion
towards the relevant resource-source is produced primarily by the asymmetry
within the cell of the production of Z. In this scenario, Z is only produced by an
interaction between X and Y3. It is accordingly produced more in areas of the
cell that are high in both X and Y than areas that have low concentrations of one
of these metabolites. If the cell is located at e.g. the generator of R0, there tends
to be lots of Y throughout the cell and the concentration of X is the limiting
factor in the production of Z. Thus more Z is produced in areas of the cell
where there is more X. As before, the asymmetrical concentration of Z induces
a motion towards the area that results in the production of the most Z. As the
3 In the absence of R0 metabolite Z is the product of only one reaction, X + Y → Z

+ Z. Thus, if Z is to be produced we will require some of both X and Y. Metabolites
X and Y are reflexively autocatalytic, i.e. X catalyzes the production of R0 → Y
and Y catalyzes the production of R1 → X (see reactions 1 and 2 in Table 1). As
generators of R0 and R1 are separated spatially, it is necessary for the cell to move
back and forth between the two resources if it is to maintain non-zero populations
of X and Y.
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Fig. 4. Experiment 3, the protocell moves to utilize the most profitable resources,
maximizing its viability

cell moves up the R1 gradient to its generator, the concentration of Y decreases
and becomes the limiting factor in the production of Z. A symmetrical process
causes the cell to move back towards the original resource generator. These two
process result in the oscillation of the cell between resource generators. We can
again observe how the system behaves adaptively in relation to viability (Figure
3 right): when the ΔV starts to decay behavioral shifting towards the other
generator inverts the tendency.
Experiment 3: Preference behavior towards better generator. First,
two generators (R1 and R2) are presented, like in experiment 2, (see Figure 4
left) and at iteration 5000 a generator of R0 is added at location 0, 50. Soon
after the protocell moves towards the new resource. However, as the original two
resources R1 and R2 start to grow, they become a better quality resource and
the protocell returns to them. We could interpret this behavior as an instance
of action selection sensitive to viability.

4 Conclusions

We were able to observe how our model protocell behaves in relation to the
conditions of long-term viability, generating instances of chemotaxis and simple
(yet not trivial) examples of action selection without explicit sensors or motor
and without an explicit encoding of viability conditions (as previous models of
adaptive behavior assumed necessary). The adaptive nature of the behavior is
shown not only in that ΔV tendencies were inverted through behavior but also
because the behavior was not purely reactive nor stimulus driven. Going one
step farther, the system could be interpreted as actually evaluating the value of
its interactions with the environment with respect to their effect upon viability.

The model highlights the temporal aspects of the notion of viability which
should be associated with tendencies of the entire situation (metabolic and en-
vironmental) rather than with regions of prohibited states. We have described
the conditions under which the protocell is non-viable in the long term, and
yet we see it move into those conditions and out of them in transients that are
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brief enough to keep the protocell alive. This theoretical possibility (which would
probably be less obvious otherwise) is highlighted by allowing a self-sustaining
metabolism to move in its environment in a metabolically-regulated action. Be-
havior can adaptively invert the negative tendencies becoming a necessary con-
dition for the maintenance of the system. In experiment 2, where the protocell
requires two resources that are spatially separate, the long-term tendency of an
unmoving cell at any point in space is certain death – no location presents a
sufficient level of combined resources. However, in this environment, the cell can
survive if it moves. Thus, adaptive behavior, typically conceived as something
added on top of metabolism and that confers certain advantages to an already
stable self-sustaining entity, turns out in this case to be an essential ingredient
for the very conditions that keep the system alive. We conclude that we should
remain open to seeing agency as implicated in metabolism and metabolism as
implicated in agency.

Several measures of long-term viability could be tested instead of the one
we have used here and this is a matter for further exploration, as is also the
possibility of more complex behaviors enabled by more sophisticated metabolic
networks and by the possibility of different forms of environmental couplings.
For instance, it may be possible to explore conditions where the cell is able to
perform delayed satisfaction “decisions” and other memory-related tasks, such as
habituation to noxious stimuli. Such experiments may help us elucidate further
the notion of viability as a temporally extended concept once the system is
allowed to behave plastically.
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Abstract. A model is here presented to analyse how vesicles may turn into pro-
tocells that synthesize their own lipid components and the consequences that 
this may have on the properties of the resulting membrane (in particular, on its 
permeability), as well as on the overall stability of the system. 

Keywords: Protocell dynamics, Gillespie algorithm, self-assembly, autopoiesis. 

1   Introduction 

We are engaged in an effort to understand major transitions in the development of 
plausible prebiotic compartments, towards proper biological membranes: i.e., mem-
branes that can support (and be supported by) complex metabolic networks. Until 
recent years, most theories of the origin of life [de Duve 1991; Eigen 1992; Kauffman 
1993] considered that compartmentation was a relatively late landmark, because it 
leads to several difficulties. In particular, it hinders free accessibility of substrates to 
the enclosed reaction domain. Nevertheless, at the same time, a closed membrane can 
have a positive effect because --for the same reason-- it should contribute to avoid the 
dilution or free diffusion of potentially beneficial products of those reactions, provid-
ing an aqueous environment where compound concentration levels may progressively 
increase.   

An additional problem for the hypothesis of an early compartmentation is related to 
the fact that all phospholipids that constitute present day biomembranes are rather 
complex molecules, whose synthesis is enzymatically controlled [Peretó et al. 2004] 
and, thus, highly improbable in prebiotic conditions. However, other types of amphi-
philic (lipid-like) compounds, like simple isoprenoids [Ourisson & Nakatani 1994] or 
fatty acids [Monnard & Deamer 2002], have been proposed as a more tenable starting 
point and have been shown to self-assemble spontaneously into stable vesicles (closed 
bilayers). In particular, fatty acid vesicles are being extensively investigated (for a 
good, recent review, see: [Morigaki & Walde 2007]) and it is being found that  
their dynamic properties are quite different from those of standard liposomes (i.e., 
phospholipid vesicles). Among other things, it has been demonstrated that they can 
catalyze their own formation [Walde et al. 1994; Bloechliger et al. 1998] and be 
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grown and reproduced in in vitro conditions [Berclaz et al. 2001; Hanczyc et al. 2003; 
Chen & Szostak 2004a-b], which is very difficult to achieve with standard liposomes. 
Given these interesting properties, even experiments of competition/selection  
among different vesicle populations have been carried out [Cheng & Luisi 2003; 
Chen et al. 2004]. 

Another important feature of this type of vesicles is that they are much more 
‘leaky’ -- i.e., permeable to different substances, as compared to standard liposomes. 
This seems quite reasonable, because it allows us to conceive the compartment of 
primitive protocells or vesicles as an easier barrier to cross, at least initially. Experi-
mental confirmation of this fact has been reported by the group of Szostak [Mansy et 
al. 2008], in an interesting work showing how the permeability of vesicles changes 
depending on the type of lipid (or lipid mixture) used – see also [Deamer 2008]. Pre-
vious studies by Deamer and colleagues (see, e.g.: [Monnard & Deamer 2001]) had 
shown that the length of the hydrophobic chain of the lipid used had an important 
effect in the permeability of the bilayer (as it is expectable: the longer the chain, the 
smaller the permeability). But the series of experiments recently carried out in 
Szostak’s lab makes clear that there are other relevant features affecting permeability, 
like the irregularities on the surface (caused by the different polar heads), or the fluid-
ity and packing density of the hydrophobic tails.  

All these in vitro experiments are assuming a scenario in which some type of pre-
biotic lipids are already present in the environment, studying the properties of the 
vesicles that they typically form by spontaneous self-assembly. Nevertheless, at some 
point in protocell evolution a critical transition had to occur in which self-assembling 
membranes became also self-produced. In that transition, the naturally occurring lipid 
(e.g., a fatty acid) would be progressively substituted by an internally synthesized 
different one (e.g., a phospholipid). As that conversion in the composition of the 
membrane takes place, its properties will also change. In particular, its permeability to 
the different compounds coming in and out will certainly be modified, and this can 
have critical effects for the stability of the whole system. 

The aim of the present work is to develop a realistic model that addresses this 
problem, namely, the transformation of a self-assembling vesicle into a self-producing 
protocell, focusing on the consequences that the induced permeability changes may 
have in the viability of the latter. In order to do so, we make use of our platform 
‘ENVIRONMENT’ [Mavelli & Ruiz-Mirazo 2007; Mavelli et al. 2008], which has 
been recently adapted to deal with membranes whose permeability is composition-
dependent, as explained below.  

2   Methods: Lipid-Composition-Dependent Permeability in 
ENVIRONMENT 

‘ENVIRONMENT’ is an object-oriented (C++) platform that has been developed to simulate 
stochastically (by means of a Monte Carlo algorithm: the Gillespie method [Gillespie 
1976; 1977]) chemically reacting systems in global non-homogeneous conditions, in 
which diverse aqueous and lipidic domains are defined. Our general objective is to  
elaborate a computational tool that allows exploring in silico the complex, self- 
organizing dynamics of systems where chemical reactions get coupled with compartment  
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self-assembly and diffusion/transport processes. The general features of this platform 
have been already described elsewhere [Mavelli & Ruiz-Mirazo 2007; Ruiz-Mirazo & 
Mavelli 2008; Mavelli et al. 2008], so here we will just briefly discuss its main novelty: 
i.e., the approach used to simulate solute permeability as a function of the membrane 
composition. A more detailed explanation can be found in the supporting material (avail-
able at: http://www.ehu.es/ias-research/ruiz-mirazo/).   

In this first approximation to the problem, we shall assume that the solute diffusion 
coefficient of a mixed membrane Mix

XD  depends linearly on the membrane composi-

tion, according to the formula: 

 ( )1 2 1
2

Mix S
X X X XD D D D χ= − −  

where j
XD (j=1,2) are the diffusion coefficients of solute X across the pure membrane 

of amphiphiles 1 and 2, respectively, and ( )2 2 2 2S a N Sμχ = is the surface contribution 

of the second amphiphile (
2a  the area of its polar head, 

2N  the total number of that 

amphiphile in the membrane and Sμ  the total surface of the membrane -- factor 2 to 

account that it is a bilayer). We are aware that, in reality, things are much more com-
plex (certainly non-linear), but the lack of adequate experimental data on this question 
--to our knowledge-- does not make easy a more accurate approximation.  

3   Main Modelling Assumptions and Protocell Scenario 

In our model, even if the initial shape of vesicles/proto-cells will be taken as spherical 
(for the sake of standardizing initial conditions), it is not assumed that they must stay 
spherical all the time, or that they divide when they double their initial size (as it is 
typically done). Instead, we consider that there is a relatively free relationship be-
tween volume and surface, within the following limits: 

1) The actual surface of a protocell must be bigger than the theoretical spherical 
surface that corresponds to the actual volume at each iteration step. Otherwise the 
protocell will burst (in a simulated ‘osmotic crisis’ -- or massive water inflow). 

2) The actual surface of a protocell must be smaller than the theoretical surface 
that corresponds to two equal spheres of half the actual volume at each iteration step. 
Otherwise the protocell divides, giving rise to two statistically equivalent ones.   

So these are the conditions for system stability in the model: i.e., they define the 
range of possible states in which our protocells will not break or divide (for more 
details, see: Mavelli et al. 2008). In terms of Φ, the ‘reduced surface’ of the system 
(i.e., the ratio between the actual surface Sμ  and the surface of an ideal sphere of 

volume Vcore : 23/ 36 coreS Vμ πΦ = ) those conditions can be expressed as 31 2≤ Φ ≤ . 

Besides, if one takes into account that the membrane is a relatively elastic structure, 
two additional parameters can be introduced as follows:  

     ( ) 31 1 2ε η− ≤ Φ ≤ +    

where ε  and η  are the burst and fission tolerance, respectively. Although  

these two parameters may change as functions of the membrane composition  
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[Ruiz-Mirazo & Mavelli 2008], in all simulation runs reported below they were 
fixed equal to 0.21 and 0.1 (respectively), so the actual stability range becomes 
0.79 1.386≤ Φ ≤ .  

Under these general conditions and modelling assumptions, in the present work we 
explored a scenario in which already formed vesicles become protocells thanks to a series 
of internal reactions (an autocatalytic cycle that represents a rather elementary proto-
metabolism, as depicted in Fig. 1) that transform a precursor amphiphile (l) --a fatty acid, 
for instance, making up the initial membrane--, into a more complex lipid molecule (L) --
say, a phospholipid--. The critical aggregation concentration (cac) or relative solubility of 
this new lipid is much lower than that of the precursor (as when comparing real fatty 
acids and phospholipids) so most of what is internally produced is rapidly incorporated to 
the growing membrane, whose composition changes accordingly. 

 

Fig. 1. Reaction scheme through which a single chained lipid (l), with the addition of two 
externally fed molecules (X and Y) and the contribution of a series of metabolites (catalysts Ai; 
i=1-6, at least one of whose initial concentration should be non-zero) is transformed into a more 
complex, double chained lipid (L), producing some waste (W) or leaving group, as well as one 
of the intermediary metabolites (to make the cycle properly autocatalytic – Ganti 2002). (a) The 
spontaneous decay of L into l (or 2l), with or without the intervention of W, was introduced to 
find conditions under which the final stationary state of the membrane is not pure. B is a non-
reactive species (osmotic buffer), which is important to include for general stability reasons.  

As a result of this transformation the membrane is expected to become less perme-
able to the different chemical species that can cross it (the nutrient molecules, X and 
Y, and the waste product W). And, similarly to what occurred in our previous work 
[Mavelli & Ruiz-Mirazo 2007; Ruiz-Mirazo & Mavelli 2008], the accumulation of a 
non-functional compound, W, within the boundaries of the system is a big threat to  
its stability. Therefore, if the lipid conversion (from l to L) is complete and, as a  
consequence, the permeability --i.e., rate of release-- of W decreases significantly,  
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there are high chances that the system will undergo an ‘osmotic crisis’. In order to 
counterbalance the strength of the autocatalytic cycle in this sense, we introduced 
different types of decay processes (back from L to l), searching for stationary states in 
which the membrane composition turns out to be mixed -- see more details below. 

4   Results    

As illustrated in Fig. 2, there are three main possible outcomes in the time evolution 
of the protocells in our model: they can get into a self-reproducing regime (subse-
quent growth and splitting processes), find --or tend asymptotically to-- a self-
maintaining state, or suffer an osmotic burst. This depends on a series of factors, 
among which we have chosen to study here, in particular, the following two: changes 
in the permeability to the waste (Pw) and rate of decay of L into l (kd). Almost all the 
remaining variables, initial size of the vesicle, kinetic constants, values of initial con-
centrations... were kept the same in all reported simulation runs (further details: 
http://www.ehu.es/ias-research/ruiz-mirazo/Suppl_info_Piedrafita_etal_2009.pdf). 

 

Fig. 2. Time course of the ‘reduced surface’ (Φ) between its two critical values (0.79 -- 1.386) 
for three different cases: self-reproduction (in black), self-assembly (dark grey) and osmotic 
burst (light grey). The graph also shows the two main parameters that determined the outcome 
of our simulations in this work: the permeability coefficient  (x10-8 cm/s) to the waste for each 
of the lipids (in brackets the less permeable one) and the constant of decay of L into l (in all 
these cases: L+W → 2l).  

First of all we analysed the situation when there is no decay at all. In that case, the 
forced conversion of l into L involves the progressive accumulation of W within the 
protocell, until it typically breaks down. This can only be overcome if bigger values 
of the permeability are set (allowing for a faster waste release) or if the overall rate of 
the internal production cycle, for whatever reason, starts going down, eventually ceas-
ing to operate (for instance, due to the limited amount of available l, as in Fig. 3A). 
More interesting dynamics were found when some type of spontaneous decay of  
the complex lipid was included in the reaction scheme so, at the same time as L is  
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Fig. 3. Time evolution of the relative membrane surface contribution of l and L (χSl and χSL, 
respectively -- left column) and of the external and internal waste concentration (Wenv and 
Wcore, respectively -- right column). A) No spontaneous decay of L, with Px, Py = 24 x10-8 (cm 
s-1), and Pw = 0.25x10-8 (cm s-1). Although there is no sudden osmotic crisis, the internal cycle 
progressively ceases to operate, leading to the eventual equilibration between Wcore and Wenv. 
Then, in B) and C) a decay process consuming L and W is included, giving rise to a single 
molecule of l (B) or two molecules of l (C), with different outcomes. For both simulations kd = 
10 (M-2 s-1) and Px, Py, Pw = 40(4) x10-8 (cm s-1). Finally, we considered a decay process that 
produces 2l without consumption of W (D and E). Px/y = 24x10-8 (cm s-1) and Pw = 1(0.01) x10-8 

(cm s-1). The difference now is in the rate of decay (kd): equal to 1 (D) or 0.1 (M-1 s-1) (E). 

produced, part of it converts back, irreversibly, into l. If the decay reaction involves 
also the waste or leaving group (e.g., L + W → l), the system could, at the same time, 
cut down its excessive production. However, this does not ensure the stability of the 
protocell, because the total amount of lipid (L+l) internally produced may not be 
enough for a membrane that needs to grow in parallel to proto-metabolism (Fig. 3B).  

Alternatively, the stoichiometry may favour a rapid enough growth of the mem-
brane if the overall amount of lipid molecules synthesized increases, with or without 
the participation of W (e.g., L (+ W) → 2l), assuming that either X or Y is acting as 
lipid precursor structurally close to l (Fig. 3C-D). Nevertheless, kinetic parameters, 
like the rate of decay of L (kd), keep an important influence on the evolution of the 
system, particularly when it is close to a critical point, as shown in Figs. 3D-E. If kd 
is relatively high it means that the synthesized complex lipid L decays rapidly into l, 
so the conversion of the membrane does not effectively occur, and its permeability  
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remains quite high (Fig. 3D). In contrast, if kd is smaller, the membrane is trans-
formed into a more impermeable bilayer, with higher content of L, which can be 
lethal (Fig. 3E). 

5   Discussion and Final Remarks  

In this paper we have assumed that the transition from self-assembling compartments, 
made of a naturally occurring precursor lipid, to self-producing or autopoietic proto-
cells [Varela et al. 1974], with a membrane made of an internally synthesized, more 
complex lipid, might take place through a robust, Ganti-type autocatalytic cycle 
[Ganti 2002] that helps transform one into the other. We have shown how such a 
simple cycle-reaction network may support that kind of conversion and, depending on 
the initial conditions and kinetic parameters chosen, different types of membrane 
(mixed or pure) are obtained. However, this kind of reaction scheme is, at the same 
time, perhaps too powerful, in the sense that it seems to lead, sooner or later, to the 
complete conversion of the membrane; i.e., apparently, it does not favour stationary 
states of coexistence or mixture of the two membrane lipids -- although a wider  
exploration of parameter space is being carried out to check this.  

The reason why such a scenario would be more interesting to study is because, as 
we already mentioned, the complete transformation of the membrane may not be the 
best strategy in the development of functionalized compartments, given their expected 
higher stability and lower permeability. So, in order to counterbalance the strength of 
the internal proto-metabolic cycle, some spontaneous decay of the complex lipid into 
its precursor was introduced. Nevertheless, it was not easy to drive the system to a 
mixed-composition stationary state: either L or l eventually displaced the other (some-
times after a considerably long transition period in which both did coexist). Again, 
further work and longer simulation runs need to be performed. 

Anyhow, if the present state of affairs is confirmed, we may be led to the conclusion 
that either (i) this type of reaction scheme is not the most suitable for the transition we 
are trying to model here (from ‘self-assembly’ to ‘self-production’), so different alter-
natives ought to be proposed and carefully analysed; or (ii) the type of reaction scheme 
would be correct, but needs to involve other compounds, not just lipids. This second 
possibility would be coherent, for instance, with our previous claims [Ruiz-Mirazo & 
Moreno 2004; Ruiz-Mirazo & Mavelli 2007; 2008] that peptides are crucial for the 
development of functional compartments. In other words, the suggestion would be that 
it may not be possible to seal precursor, leaky vesicles through the synthesis of new, 
more impermeable types of lipid, unless the system is capable to synthesize, in parallel, 
other compounds (e.g., peptides) by means of which it can regulate the transport of 
substances in and out, as well as the potential osmotic imbalances that can --and surely 
will-- be created in its relation with the environment.  
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Abstract. Theories of the Origin of Life can be categorised as ‘template
replication first’ and ‘metabolism first’. A key question for metabolism
first theories is the mechanism for transfer of inherited information. Ear-
lier work presented a mechanism based on catalytic cycles, along with
supporting results from the SimSoup artificial chemistry simulator1. The
current paper presents an enhanced SimSoup model that is closer to real
chemistry and more open ended. Molecules and the types of Interactions
between them are constructed by the model itself using simple rules
based on valence theory. Results of a preliminary run of the model are
presented. Most of the Molecules produced are of a few simple types
with low molecular weight. There is a ‘long tail’ of many low frequency
Molecules, many of which are more complex with high molecular weight.

1 Introduction

1.1 Motivation

There is currently no complete and generally accepted explanation of the Origin
of Life. Evolution requires inherited information to be passed from parent to off-
spring; contemporary organisms do this using template replicating molecules (eg
DNA). However, the mechanism requires the assistance of highly evolved pro-
teins, which would not have been present in the prebiotic world. Metabolic the-
ories of the Origin of Life propose that early organisms were metabolic systems
that transmitted inherited information without the use of template replicators.

The motivation for the SimSoup project is to show that a metabolic net-
work has sufficient information carrying properties to enable evolution to begin
without the assistance of highly evolved molecules such as proteins or DNA.

1.2 Conceptual Background

The conceptual background for SimSoup includes the following:-

– The metabolic theories of Aleksandr Oparin (Oparin [8]), Stuart Kauffman
(Kauffman [7]), Freeman Dyson (Dyson [2]), Fernando and Rowe (Fernando
and Rowe [3]), and more specifically the Lipid World and the GARD model
of Doron Lancet’s group (Segré et al. [10]).

1 SimSoup has been implemented as a computer simulation. The C++ source code is
available at Ref [11].

G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part I, LNCS 5777, pp. 265–272, 2011.
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– Network theory, particularly the work of Sanjay Jain and Sandeep Krishna
(Jain and Krishna [6]).

– Günter Wächtershäuser’s chemo-autotrophic Iron-Sulphur World (Wächters-
häuser [13] [14]).

– Chemical bond theory, as presented in Pauling [9].

2 The SimSoup Artificial Chemistry Model

2.1 SimSoup as a Network Simulator

The following summarises the model presented in Gordon-Smith [4] and [5]:

– Chemical Network: A network is defined in which the nodes are Molecule
Types and connections are Interaction Types. Molecule Types have Mass
and Potential Energy, but no other properties. Interaction Types take three
forms: Construction (A + B → C), Fission (A → B + C), and Transforma-
tion (A → B). Each Interaction Type must conserve Mass, and has an Acti-
vated Complex Energy that is used along with the Potential Energies of the
Molecule Types to determine the forward and reverse Rate Constants. This
makes the model thermodynamically realistic.

– Network Dynamics: Interactions take place between Molecules in a well
stirred Reactor. Each bimolecular Interaction Type (Construction) occurs at
a rate equal to the product of the Rate Constant and the concentrations of
the two Reactants. Each unimolecular Interaction Type (Fission or Trans-
formation) takes place at a rate equal to the product of the Rate Constant
and the concentration of the (single) Reactant.

– Compound Interactions: Interaction Types can be combined in ways that
have catalytic properties. For example, A + X → I followed by I + B → J and
finally J → X + C together make up a Compound Interaction with overall

scheme A + B
X−→ C, with X operating as a catalyst, and I and J as inter-

mediates.
– Trackers and Cycle Detection: A Tracker is an object that can be at-

tached to a Molecule. As Molecules take part in Interactions, the Trackers
are passed from Reactant Molecule to Product Molecule. This enables cycles
to be detected and monitored.

– Data Series Plots: These show the real-time behaviour of a range of vari-
ables that are monitored as the simulation runs.

– Manhattan Plot: This shows the variability in the composition of the
material in the Reactor over time.

2.2 SimSoup Extended as a Network Explorer

A More Open-Ended Approach - Adding Molecular Structure: In the
earlier model of Section 2.1, the chemical network is defined as part of each
model scenario. This limits the scope for the system to generate novelty. To deal
with this, SimSoup has been enhanced as follows:
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– Each Molecule Type has a structure.
– Molecules can Join or Split to form Molecules of different types.
– Joining and Splitting occur in ways that depend on the structural properties

of the Reactant(s).

The rules that determine the structure of Molecules and the way in which they
Join and Split are designed to be analogous to real chemistry, while keeping the
model conceptually simple and computationally tractable. The key objective is
to produce an open ended model in which the opportunities for novelty are similar
to those that exist in real chemistry.

Overview of Molecular Structure in SimSoup: Molecules are two dimen-
sional rigid structures built from Atoms that are bonded together such that they
occupy fixed positions on a square ‘Board’ (similar to a chess board). Each square
may contain at most one Atom. Bond angles are always 90◦ or 180◦, and bond
lengths are all equal. Atoms bond together in a way that is broadly consistent
with valence bond theory in real chemistry, and with comparable bond energies.

Atom Types: SimSoup Atoms are of different types, with an Atom Type being
characterised by Mass, plus the following properties:-

– NElecFullShell: Number of electrons to fill the outer electron shell.
– NValElec: Number of (valence) electrons in the outer shell.

This is by analogy with real chemistry, in which the ability of atoms to bond
depends on shell structure. Atoms with full shells include stable noble gases,
which rarely bond to other atoms.

A SimSoup Atom can bond to other Atoms, with the maximum number of
bonds that can be supported being NPossBond = NElecFullShell−NValElec.2

NElecFullShell and NValElec (and so NPossBond) for SimSoup Atom Types are
based on real chemistry. The Atom Types modelled are Hydrogen, Carbon, Ni-
trogen and Oxygen, with values of 1,4,3 and 2 respectively for NPossBond.

Bonds, Bond Order and Bond Energy: SimSoup models single, double and
triple order (covalent) bonds, so that each of the following is possible: O H,
C O, O C O, C N. Bond Energies are the averages for bonds in real

chemistry, taken from Pauling [9] and Atkins [1].

Example Molecular Structures: Figure 1 shows some simple Molecules that
have been produced by SimSoup, and the real molecules to which they are analo-
gous. The analogy is not perfect. For example, real methane is three dimensional
and tetrahedral with bond angle 109.5◦, and the bond angle in real water is
104.5◦, rather than 90◦. In addition, there are two forms of ‘water’ in SimSoup,
the second being linear: H O H. The correspondence is closer for acetylene
and hydrogen cyanide, which are linear both in real chemistry and in SimSoup.
2 Real atoms sometimes do not have such a simple limit on the number of possible

bonds. The five bonds in phosphorous pentachloride provide an example.
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(a) ‘Methane’
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(b) ‘Water’

H C C H

(c) ‘Acetylene’

H C N

(d) ‘Hydrogen Cyanide’

Fig. 1. Example SimSoup Molecules

Joining Molecular Structures: Whenever a Molecule Type becomes actu-
alised in the Reactor (the number of Molecules of the type present changes from
zero to one), it is checked against all the other actualised Molecule Types to
determine, in each case, whether a join is possible.

Two Molecules can Join (in a Construction Interaction) subject to the follow-
ing rules:

– Two Atoms cannot occupy the same Board position in the joined Molecule.
– No Atom can have more than NPossBond bonds.
– Bond Energies are the averages for the corresponding real chemistry bonds.
– When a pair of Atoms is considered for bonding, the highest order bond that

is feasible (within the constraint on NPossBond for each Atom) is formed.
– Molecules Join in a way that maximises total Bond Energy. If multiple Joins

with the same (highest) energy are possible, the first one found is selected.
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Fig. 2. (a) Example Construction showing Reactants and most stable (highest total
bond energy) Product. The new bonds created are labelled with the bond energy (kJ
mol−1) in each case. (b) to (e) show some of the possible alternative Products.
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Fig. 3. Illustration of the SimSoup Splitting algorithm

Figure 2 shows an example Interaction Type (a Construction) in which two
Molecules Join to form a single Product. The figure also shows several (but not
all) of the ‘rejected’ Products with lower total bond energies. The Product in
Figure 2(a) is the only one that entails the formation of two new Bonds.

Splitting Molecular Structures: When a Molecule Type is actualised for
the first time, a Fission Interaction Type is determined. This defines the two
Products into which a Molecule of the type can Split. The Products are identified
by finding a set of Bonds that, if broken, would Split the Molecule into two
unconnected parts. Where there are multiple ways in which the Molecule can be
split, as is usually the case, the split identified is one that entails breaking bonds
with the lowest possible total energy.

The splitting algorithm works on Molecules of arbitrary complexity. It uses
techniques of graph theory3, and is illustrated in Figure 3. The major steps are:

– Represent the Molecule Type to be split as an ‘Atom Oriented Graph’.
– Transform this into a ‘Face Oriented Graph’.
– Use the Dijkstra shortest paths algorithm to find a least energy cyclic path

in the Face Oriented Graph. The path edges identify the Bonds to break.

The remainder of this section explains the algorithm.

Representing The Molecule as an Atom Oriented Graph: Each node in this graph
represents an Atom in the Molecule to be split, and each edge represents the
(single or multiple) Bond between the Atoms that the edge connects. Each edge
has a weight indicating Bond Energy. Figure 3(b) shows the Atom Oriented
Graph for the Molecule Type in Figure 3(a). The thicker edges represent double
bonds. The numbers by the edges are the Bond Energies (kJ mol−1).

3 The SimSoup implementation makes use of the Boost Graph Library code.
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The Atom Oriented Graph is always planar in SimSoup4; that is, it can be
embedded in a flat plane in such a way that the edges intersect only at their
endpoints. A planar embedding divides the plane into regions or faces. One face
is unbounded or external5. In Figure 3(b), face F2 is the external face.

It can be shown that for any single component planar graph, separating the
graph into two components requires a ‘cut’ that starts on one face, crosses one
or more edges, and returns to the starting face. The task is to find a ‘least energy
cut’ that breaks the bonds with the least total energy.

It can be seen from Figure 3(b) that the structure will split with the breaking
of two different bonds. Although the least energy cut crosses two edges, the
energy is less than for the alternative cut that starts and finishes on face F2 and
removes only the one edge for the C O double bond.

The Role and Usage of the Face Oriented Graph: For a Molecule of arbitrary
complexity there will typically be many faces and many possible cuts, and it is
not immediately obvious how to find the least energy cut.

The problem can be dealt with by transforming the Atom Oriented Graph
to a form that enables the well known Dijkstra shortest paths algorithm to be
used. This is the purpose of the transformation to the Face Oriented Graph.

The vertices in the Face Oriented Graph correspond to the faces in the Atom
Oriented Graph. The edges correspond to the edges in the Atom Oriented Graph,
but the vertices (or vertex) to which an edge is connected correspond(s) to the
face(s) on either side of the edge in the Atom Oriented Graph. For example,
the C C bond in Figure 3(b) separates faces F1 and F2; it corresponds to the
lowest edge in Figure 3(c) that joins vertices F1 and F2.

The problem of finding a least energy cut of the Atom Oriented Graph is
equivalent to finding a cyclic path through the Face Oriented Graph whose edges
have a total Bond Energy less than or equal to that for any other cyclic path.

SimSoup uses Dijkstra’s shortest path algorithm to find such a path, with
the energy of each edge being interpreted as its ‘length’. Each edge in the Face
Oriented Graph is considered in turn, and Dijkstra’s algorithm is used to find
a (different) least energy path (if any) between the edge’s endpoints, thereby
completing a cycle. The cycle ‘length’ is the energy of the edge plus the total
energy of the (different) shortest path. By considering each edge in this way,
a ‘shortest’ cycle with the lowest total energy is found. The edges in the cycle
identify the bonds to break to split the Molecule Type.

3 Preliminary Results

Some preliminary output6 is included in Figure 4. The figure shows some Molecule
Types present in the SimSoup Reactor at the end of a run. The run was setup such
4 This is a result of the ‘Board’ layout of Molecules and the fact that Bonds are always

with Atoms in neighbouring board squares.
5 The external face has no particular significance. If the graph were embedded in the

surface of a sphere there would be no external face.
6 Results were produced using SimSoup revision 97, source code available at Ref [11].
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(a)
NMols = 93

(b)
NMols = 64

(c)
‘Hydrogen
Cyanide’
NMols = 43

(d)
‘Water’
NMols = 33

(e)
NMols = 6

(f) NMols = 4 (g) NMols = 1

Fig. 4. Molecule Types in a preliminary model run, and number (NMols) in each case

that 10 Atoms of (each of) Hydrogen, Carbon, Oxygen and Nitrogen were added
at intervals of 100 timesteps. After 5000 timesteps, there were 74 Molecule Types
actualised in the Reactor. This was about 1% of the total number of Molecule
Types that had been actualised during the run. The total number of Molecule
Types discovered was 33383, not all of which had been actualised.

Of the 74 Molecule Types present, a few of the 11 most frequent are shown
(Figure 4(a) to 4(f)), along with the number of Molecules (NMols) in each case.
For the other 63 Molecule Types, only one of each was present. Several of these
were larger Molecules with more than 15 Atoms. Figure 4(g) shows an example
with 60 Atoms.

4 Conclusions and Prospects

4.1 Conclusions

The SimSoup model represents chemistry at the level of elementary reactions
(unimolecular and bimolecular), with catalysis as a property of the network.
The model has been extended to represent molecular structure in a way that is
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analogous to real chemistry.7 This makes it capable of exploring the behaviour
of a vast space of (artificial) metabolic networks in a very open ended way.

Output from a preliminary model run has been presented. Most of the Mol-
ecules produced are small and of only a few types. The remaining Molecules exist
in low numbers, but are more diverse and typically have a transient existence.
At the end of the run, there were 74 Molecule Types present in the Reactor, but
in excess of 7000 different Molecule Types had been actualised during the run.

4.2 Prospects

Possible avenues for future investigation using SimSoup include:

– High activity networks and the role played by catalytic cycles.
– The ability of such networks to ‘remember’ perturbations and thereby carry

inherited information.
– The role of molecular structure in (non template based) inheritance.
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10. Segré, D., Dafna, B., Deamer, D., Lancet, D.: The Lipid World. Origins Life Evol.
Biosphere 31, 119–145 (2001)

11. SimSoup Source Code, http://code.google.com/p/simsoup/
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Abstract. Algorithmic chemistries intended as computation models
seldom model energy. This could partly explain some undesirable phe-
nomena such as unlimited elongation of strings in these chemistries, in
contrast to nature where polymerization tends to be unfavored. In this
paper, we show that a simple yet sufficiently accurate energy model can
efficiently steer resource usage, in particular for the case of elongation
control. A string chemistry is constructed on purpose to make strings
grow arbitrarily large. Simulation results show that the addition of en-
ergy control alone is able to keep the molecules within reasonable length
bounds, even without mass conservation, and without explicit length
thresholds. A narrow energy range is detected where the system neither
stays inert nor grows unbounded. At this operating point, interesting
phenomena often emerge, such as clusters of autocatalytic molecules,
which seem to cooperate.

1 Introduction

Algorithmic Chemistries [1,2] are artificial chemistries where algorithms or com-
plex functions emerge as the outcome of stochastic interactions among simple
molecules. The role of energy in these chemistries has not been sufficiently em-
phasized so far. Yet energy plays a crucial role in all chemical processes related
to life. Living organisms need a permanent intake of energy in order to drive
essential chemical reactions, which otherwise would rarely occur spontaneously.
At the same time, energy limitations are important selection factors in evolution.

This paper illustrates one of the potential roles of energy in algorithmic
chemistries: that of controlling resource usage in a natural way, in particular,
to restrict the lengths of polymers in a string-based artificial chemistry to rea-
sonable bounds, without resorting to arbitrary thresholds.

The paper is structured as follows: Section 2 briefly describes the energy
framework used. Section 3 shows elongation control in an evolution scenario
with a population of artificial cells based on a constructive chemistry that is
particularly aggressive in elongating. The emergence of autocatalytic clusters is
observed for a range of energy injection rates. Discussions and conclusions follow
in Sects. 4 and 5.
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2 Energy Framework

Most algorithmic chemistries operate at the microscopic level of individual mo-
lecular collisions, since the outcome of the reaction is computed from the informa-
tion carried within the molecules [1,2,3]. Moreover, many algorithmic chemistries
are constructive [1,3,4], producing new molecular species all the time. This is in
contrast to many simulations of real chemistry, where the molecular species and
their reactions are known beforehand, and where a deterministic approach based
on ODEs (ordinary differential equations) is often sufficient.

We propose an energy framework aimed specifically at algorithmic chemistries,
especially constructive ones. It provides a microscopic level stochastic simulation
of chemical reactions in a well-stirred vessel under energy constraints, such that
the qualitative behavior is similar to real chemistry, yet still sufficiently abstract
to incur an acceptable computational cost.

The framework is divided into three steps: collision, reaction, and energy
balancing. The first step selects molecules for collision using existing algorithms
such as [5,6].

The second step (reaction) decides whether a reaction will be effective or
elastic. This step is based on the fact that the kinetic rate coefficient for a given
chemical reaction stems from the activation energy Ea necessary for a reaction to
take place, according to the Arrhenius equation: k = Ae−

Ea
RT for a reaction such

as X +Y
k→ Z, where A and R are constants, and T is the absolute temperature.

Since the framework operates at the microscopic level, the quantity Ea must be
rescaled to a single reaction, obtaining εa. Moreover, the kinetic energy εk of
the colliding reactants must be modeled with low computation penalty. We do
this by tracking the overall kinetic energy Ek in the vessel of N molecules rather
than the velocity of individual molecules and by drawing εk from an exponential
distribution, based on results from statistical mechanics [7]: εk ∼ Exp(Ek/N).
The reaction is effective if εk > εa. It can be easily demonstrated that this
procedure leads to Arrhenius behavior at the macroscopic level (mathematical
derivation omitted for conciseness).

The third step implements energy conservation, i.e. the first law of thermo-
dynamics, by making sure the energy amounts are properly balanced before
and after the reaction. Figure 1 shows a typical energy diagram for a reaction.
Energy is conserved as it proceeds from reactants (left side) to products (right
side): εk +εp,i = εo +εp,o. Since εp,o < εp,i in the example, the remaining energy

k

reactants transition complex products

potential energy

kinetic energy

p,i

Mi Mo

a

p,o

o

Fig. 1. Energy diagram of an exothermic reaction. The total energy is conserved.
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is released, returning to the pool Ek, and the reaction is exothermic. Conversely,
the corresponding reverse reaction (from right to left) is endothermic, absorb-
ing energy.

Parameters such as the mapping from molecule to potential energy, as well as
the mapping from reaction to activation energy, are left open to be instantiated
by the designer to a specific artificial chemistry. Section 3 will show a simple
instance of the framework, able to solve the string elongation problem.

2.1 Related Work

Related energy models aim mostly at the study of real chemistry or biology, es-
pecially the origin of life. These existing models do not seem directly appropriate
in an algorithmic chemistry context. Some are too complex (down to the quan-
tum level [8]), others too simplified or too specific (e.g. focusing on equilibrium
states [9], or on catalytic reactions [10]). Most are unable to handle construc-
tive systems: Many require the designer to specify rate and energy parameters
for each species and reaction exhaustively [11]; or assign kinetic coefficients at
random [12,13], without considering the reactants’ composition or shape. Some
handle shape explicitly [9,14] but not activation energy.

3 Elongation Control in an Algorithmic Chemistry

A simple string rewriting chemistry is used to illustrate the role of energy in
length control. It is a subset of [15] selected on purpose to show a very aggres-
sive elongation behavior. The chemistry consists of polymers strings s = Σ∗ of
arbitrary length over an alphabet of 4 symbols Σ = {A, M, s, n}. The first sym-
bol of a string implicitly defines the string rewriting operation applied to this
molecule as follows

AΨ + MΩ −→ ΨΩ (join)
sαβΩ −→ αΩ + βΩ (split)

nΩ −→ Ω (neutral)

where α, β are arbitrary symbols and Ψ , Ω are strings. Strings starting with A or
M are in normal form while strings starting with s or n are transient molecules
that immediately undergo as many reduction steps as necessary to reach their
normal form. For example, the following two rewriting steps are considered one
reaction step (the intermediate product sAMsAM is immediately reduced):

AsAM + MsAM −→ (sAMsAM −→)AsAM + MsAM

Strings in this chemistry tend to increase in length due to the join reaction.
Moreover, contrary to nature, mass (in number of symbols) is not conserved,
and the split operation nearly doubles the mass of the input.
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3.1 Evolution Experiments

The initial population consists of C = 100 identical reaction vessels (or “cells”)
containing a manually-designed molecular organization that catalyzes its own
production: {AsssAM, MsssAM}. In the absence of resource constraints its
concentration rises exponentially.

Using a cell growth-division metaphor, cells divide whenever the number
of “membrane” molecules (here: molecules starting with symbol M) reaches a
threshold of N = 1000, in which case the following operations are carried out:
(i) A new offspring cell is generated, (ii) half of the molecules of the dividing
cell are randomly selected to move to the offspring, (iii) one of the migrated
molecules is randomly mutated, and finally, (iv) the new cell displaces one of
the already existing cells, maintaining a constant cell population. Natural se-
lection arises because higher production of membrane molecules leads to earlier
division. Thus the most efficient autocatalytic set is expected to survive.

We simulate three scenarios, shown below: one with no restrictions, one with
a fixed length threshold, and one with energy control.

Unbounded Growth of Unconstrained System: A significant fraction of
all mutations lead to a set of molecules with infinite closure [4] that has the
potential to reach an infinite sequence space when reacting among each other.
Consequently, without any length restriction, such a mutation may easily result
in the accumulation of ever-growing strings. The resulting exponentially rising
CPU and memory requirements prevent the simulation of such systems to be
carried out on today’s computers. We performed 20 simulations, none of which
survived 10 generations without exhausting our machine’s resources.

Low Efficiency Under Arbitrary Length Thresholds: We tried two simple
methods to prevent strings from growing infinitely: to destroy molecules longer
than a certain threshold l = 10, 20, 30, 100 (arbitrarily chosen); or to truncate
molecules longer than l. Both methods prevent elongation but have an unde-
sired side effect: After several generations, the number of A and M symbols
becomes unbalanced due to the stochastic distribution of molecules during cell
division. The initial selective advantage of producing more Ms than As goes
along with ceasing the production of As necessary for sustained replication. On
the other hand, some cells first create additional As while still producing Ms.
Consequently, the rate of reactions among As and Ms rises due to the law of
mass action. Since these reactions still generate Ms, the membrane production
rate increases, too. Such mutants quickly take over the population since their
reproductive ratio is about 500 times higher compared to the original program
(see Fig. 2(a)). However, this high productivity comes along with a lower effi-
ciency, measured as the surface to volume ratio, where the surface is the number
of membrane molecules and the volume is defined as the total number of sym-
bols in the cell. At the same time the average molecule length almost reaches
threshold l, indicating that the cells fully exploit the length restriction. A typical
representative for l = 20 is the following multiset:
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{278 MsssssssssssssssssAM, 241 MsssssssssssssssssAA,

1974 AsssssssssssssssssAM, 553 AsssssssssssssssssAA}
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Fig. 2. Simulation results with length restriction (left) and energy control (right). Top
to bottom: Average reproductive ratio and average efficiency, both normalized w.r.t.
the values of the initial program; and average molecule length.

Emergence of Self-Replicating Clusters Under Energy Control: Instead
of externally applying hard length restrictions, the energy framework embeds a
notion of resource awareness into the chemistry itself. Less energy slows down
reactions and hence the production of new symbols. This method turns out to
be very effective in restricting the length of evolved solutions.

We limit the total energy (kinetic plus potential energy) of the system and use
a model that, unlike in nature, allows mass to be freely converted to energy and
vice-versa: The potential energy of each molecule s is set to its length: εp(s) = |s|.
The activation energy of each reaction r is set to the difference of potential energy
between products and reactants: εa(r) = max(0, εp(Mo)− εp(Mi)), where Mo is
the product multiset and Mi is the reactant multiset. Hence, in this chemistry,
reactions that build up mass are endothermic, requiring kinetic energy, whereas
reactions that destroy symbols are exothermic. Cells receive a constant inflow
of energy needed for their growth, whereas the total energy of a displaced cell
is lost.

We started with a moderate energy injection rate of ρE = 105 units/s, which
results in linear growth. After 100 generations most of the cells still run the initial
program; no better solution could be found. Unlike before, now the system cannot
increase the reaction rate by excessively producing A molecules. Any production
of molecules decreases the temperature and makes endothermic reactions less
frequent. Thus a low energy injection rate successfully eliminates mutants with
infinite closures.
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When increasing energy injection by two orders of magnitude to ρE = 107

units/s, a qualitatively different phenomenon arises: The initial program is able
to grow exponentially after each cell division because sufficient energy is avail-
able. During cell growth kinetic energy is shared by an exponentially increasing
number of molecules. This cools down the cell which gradually returns back to
linear growth. Arising mutants that contain syntactically infinite closures start
to explore the sequence space by generating longer molecules, but due to the
energy restriction the cells are limited in doing so extensively. The existence
of longer strings leads to viable mutants that incorporate these new molecules
while still being able to survive, i.e. they still have comparable reproduction ra-
tios; the average reproductive ratio remains more or less constant over the whole
simulation run (see Fig. 2(b)).
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Fig. 3. Simulation results with energy control for ρE = 107 units/s

One of the inventions that is often observed in cells after 100 generations
is a cluster of molecules of different lengths that all react among each other,
as depicted in Fig. 3(a). These molecules are structured as repeated sequences
of the duplicate and split pattern Φ := sssAM . In Fig. 3(a), Φn represents a
string that is the n-fold concatenation of the Φ pattern. The numbers next to the
molecules denote their concentration in one of the observed vessels. The cluster
contains a lot of very short molecules (A and M), which do not contain the
necessary information to replicate themselves. However, they react with a small
number of larger molecules that contain multiple copies of the copy and split
motif. These longer molecules are maintained at a lower concentration, which
exponentially decreases with their length. Even though the cells start to produce
larger strings, the average molecule size remains constant and the population
maintains its efficiency as shown in Fig. 2(b). Finally, Fig. 3(b) shows the length
distribution of a typical simulation run after 100 generations. The cluster consists
of molecules of size 5n+1: 1, 6, 11, . . ., visible on the upper left part of Fig. 3(b).
Cells containing such clusters are prominently present in the population.

When we further increase the inflow of kinetic energy to ρE = 108 units/s, the
cells grow exponentially without energy shortage. Consequently, mutants start
to explore the sequence space more aggressively and without hindrance which
leads to the same symbolic imbalance as in the fixed length threshold cases.



Elongation Control in an Algorithmic Chemistry 279

4 Discussion

Our results indicate that energy control not only helps keeping reasonable re-
source bounds but also helps to improve the qualitative behavior of the chem-
istry and steer its evolution. The elongation control experiments show that string
length can be kept under control, in spite of an instruction set which is rather
aggressive in terms of elongation. The obvious but not optimal solution of a hard
length restriction is not needed. Moreover, qualitatively different phenomena are
observed according to the amount of energy injected.

A similar elongation phenomenon was described in [3], where a solution based
on multi-level selection is also applied. Our method, however, avoids counting
on hardware-dependent parameters such as CPU run time.

The experiments reveal a connection between the injected energy and the
exploratory capability of a population of cells: If the injected energy flow is too
low, the cells grow linearly and the population does not find better solutions. For
very high energy injection rates our cells exhibit unbounded growth which leads
to symbolic imbalances resulting in a very high reproductive ratio of the affected
cells. This is followed by the sudden death of the whole population. Even if the
mechanisms behind this behavior are not comparable with those that trigger
the elongation catastrophe in [3], interestingly, the resulting effect of the “rise
and fall of the fittest” is the same. There exists a range of moderate energy
injection rates for which the system is able to survive and explore sequence
space. “Clusters” of molecules emerge, which altogether form an autocatalytic
set. Even though the closure of the set is syntactically infinite, the dynamics of
the energy-aware algorithm makes reactions that form long strings more unlikely.
This nicely reflects the nature of biochemical reaction system where more and
more complex molecules evolve over time in the presence of enough energy.

5 Conclusions

The importance of energy has not been emphasized yet enough, in the context
of algorithmic chemistries aimed at performing emergent computation tasks on
traditional von Neumann computers. We attempt to fill this gap with an energy
framework allowing such algorithmic chemistries to behave thermodynamically
and kinetically similar to real chemistry, yet in a simplified form. In spite of
“copying” nature’s energy model, the framework still allows for exploration of
“life-like computations”, since the degrees of freedom to parametrize the chem-
istry still remain very large.

We illustrated the framework’s usefulness in a string elongation control task.
Even a very aggressive string rewriting chemistry can be restrained by restrict-
ing energy alone. Only then and only for a narrow range of energy injection
rates the chemistry’s state space exploration can be controlled accurately. An
interesting topic deserving further investigation is how to derive the optimum
energy injection rate automatically.

For the future we also aim at evolving programs where the quality of the
computed solution is rewarded with energy. Mass and energy conservation could
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be combined in a more realistic setup. Other exploration venues include com-
putations by artificial metabolisms, as well as the evolution of chemical Carnot
cycles [16] with their ability to build up information.
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Abstract. It has been suggested that the cells of living organisms are
functioning in a near chaotic regime called critical, which offers a trade-
off between stability and evolvability. Abstract models for regulatory
networks such as Kauffman’s Random Boolean Networks certainly point
in that direction. In this work, we applied the essence of these models
to investigate the dynamical behavior of two real-life genetic regulatory
networks, deduced in two different organisms. Moreover, a novel, more
biologically accurate, way individual genes respond to activation signal-
ing is investigated. We perform numerical simulation and successfully
identify contexts in which our model’s response can be interpreted as
critical, thus most biologically plausible. We also discover that results
are comparable in both studied organisms.

1 Introduction

Today, it is widely accepted that genes, considered as static elements of informa-
tion, are the central pillar of biological evolution, and therefore of life as we know
it. On the contrary, much is still unknown about genes as part of a dynamical
biological system. Highly complex regulating interactions take place amongst
genes to permit the evolution of the organism overtime. These interactions can
be represented as genetic regulatory networks (GRNs), showing the influence of
a gene on the others. Sadly, interactions within these networks are very subtle,
intricate, and ill-understood. Nevertheless, GRNs are the next big thing, and are
at the center of tremendous research efforts in the biological community. The
quantity and quality of results in the field, thanks to modern high-throughput
molecular genetics methods, are bound to follow the same exponential trend as
the gene sequencing did in its time. In the meantime, however, it is possible,
and useful, to abstract many details of the particular kinetic equations in the
cell and focus on the system-level properties of the whole network dynamics.
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A possible dynamical model for GRNs was proposed in the late 60’s by
Kauffman [1] and is known as Random Boolean Networks (RBNs). This ab-
straction is very attractive from its simplicity, yet unveils interesting dynamical
phenomena about how the network structure and the gene-on-gene interactions
are at the center of the resilience to transcriptional errors, and evolvability of
GRNs. The dynamics of RBNs can be discriminated in two regimes: the ordered
regime, where the system tends towards less changes in the gene activations,
thus more stability to transient faults, and the chaotic regime, where gene acti-
vation changes frequently, thus less stability and more evolvability. It has been
suggested that biological cells operate at the border between order and chaos, a
regime called critical or edge of chaos [2,3,4]. A way to visualize this phase tran-
sition makes use of Derrida plots [5], which provide an absolute way of classifying
RBN systems according to their dynamical behavior.

In a previous work [6], we have highlighted the weaknesses of Kauffman’s
original assumptions, that is, the random topology of the networks and the total
synchronicity of events. The new model, although more faithful to present knowl-
edge about biological networks, still suffered one identical flaw as the original
one, that is, the gene-on-gene interactions are drawn at random. In the present
paper, as substrate for RBNs we use two subnetworks of real-life GRNs where
the interactions between the genes are known with a good level of confidence. In
addition, we take advantage of extra information, namely the actual activating
or repressing effect of the genes, to extend the RBN update function proposed
by Li et al. [7] and Stoll et al. [8]. This fills another gap of the original model
where the nodes’ update function are completely random. We analyze under
which conditions real-life GRNs, as a structure for RBNs, can be considered as
lying at the edge of chaos.

Section 2 will describe RBNs with more details, including their original update
functions, the regimes, and the Derrida plots. In Section 3, we describe the
embryonic stem (ES) cell and the yeast cell-cycle GRNs that we use as a base for
RBNs. Section 4 is devoted to describing the model and the computer simulations
in details, results of which will be interpreted and analyzed in Section 5. In the
final section we summarize our contribution to the field and outline some path
our research may take.

2 Random Boolean Networks and Regimes

Random Boolean Networks (RBNs) have been introduced as a highly simplified
model of GRNs. Each node has a connectivity K and represents the Boolean
state Si of a gene. Each directed edge illustrates the influence of a gene on
another. Nodes also possess a distinct random function that decides state changes
according to the state of all genes that have an incoming edge. The probability
p set to the update function with which a gene’s state at the next time-step is
active can be adjusted, but then remains constant during the simulations. The
state S of the system is defined as the ensemble of all the nodes states Si. The
state changes are fully deterministic, synchronous and instantaneous. Therefore,
these systems, when starting from an arbitrary state S at time t = 0, will go



Are Cells Really Operating at the Edge of Chaos? 283

through a set of transient states before eventually cycling in a subset of states
called an attractor. In our research, we aspire to inject modern knowledge into
the original RBN model, making it more biologically plausible.

Firstly, even if their exact values are unknown, it is clear that gene update func-
tions should not be random. Gene expression rests on the combined effect of in-
coming proteins that can have a activating (+) or repressing (−) action on their
target genes. Stoll et al. [8] have proposed a simple additive dynamical rule that
characterizes the temporal evolution of the state variable. They consider that both
the activating and repressing factors have the same weight, and thus, the state of
a target gene at the next time-step Si(t + 1) will be: active (1) if it receives a ma-
jority of activating components from already active genes, inactive (0) it receives
a majority of repressing components, or the state of the target gene will remain
unchanged in case the number of activating and repressing inputs are equal.

Another questionable assumption of the original RBNs model is the totally
random interaction among genes with a fixed connectivity K. Thanks to the
recent developments in high throughput genomic and biochemical techniques,
small parts of real-life GRNs have been discovered with data sufficiently reliable
to specify highly probable interaction, with different confidence rates. We have
selected the core transcriptional network in embryonic cells published by Chen
et al. [9] and a portion of the yeast cell-cycle by Li et al. [7] as a substrate for
our RBN model. The next section describes these two networks in detail.

Original RBNs go through a phase transition by tuning parameters such as
K and probability p of expressing a gene. Considering current knowledge about
GRNs, some of Kauffman’s properties of the model are now subject to criticism.
In Aldana’s scale-free model [10], where the output degree distribution follows
a power-law p(k) ∼ k−γ , this phase transition is obtained by adjusting γ. In
our case, we use real-life networks and not hand-made ones, and thus we cannot
tune any property of the network topology to obtain the desired critical regime,
or even identify the regime of one of our networks. Instead we use a dynamical
property of the whole system, called Derrida plots, proposed by Derrida et al.
[5], used by Kauffman [11] and widely accepted, as a visual way of discriminating
the regime in which RBN-like dynamical systems evolve.

This representation can be seen in Figures 2 and 3, and is meant to illus-
trate a convergence versus a divergence in state space that can in turn help
characterizing the different regimes. It uses the Hamming distance H , defined as
the normalized number of positions that are not identical when comparing two
(binary) strings. These plots show the average H(t) between any two states sa

and sb and H(t + 1) of their respective consecutive state s′a and s′b at the next
time-step. Derrida plots of system in the chaotic regime will remain above the
main diagonal H(t) = H(t + 1) longer, crossing the main diagonal earlier and
remaining closer to it as the systems approaches the critical regime. Systems
in the critical regime remain on the main diagonal before diverging beneath it.
Ordered systems remain under the main diagonal at all times. Other possible
ways of determining the actual regime of a system would require either scaling
of the system size or analyzing the systems’ response to failure, but neither is
an option in the present work.
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3 Real-Life Regulatory Network Cases

The first real-life regulatory network used in our model, proposed by Chen et al.
[9], is a part of the transcriptional regulatory network in embryonic stem (ES)
cells inferred from ChIP-seq binding assays and from gene-expression changes
during differentiation. We added activating informations (+ and − signs) from
gene co-expression data and eliminated redundancies from this network. We
attributed to each regulatory interaction the sign of the correlation coefficient
between the expression profiles of the two genes involved in the time-course
experiments on differentiation of ES cells reported in [12]. The second one, as
described by Li et al. [7] and used by Stoll et al. [8], is the yeast cell-cycle. Both
networks, depicted in Figure 1, have eleven genes.

(a) (b)

Fig. 1. Genetic Regulatory Networks. A representation of (a) the transcriptional reg-
ulatory network in ES cells and (b) the yeast cell-cycle regulatory network. Arrows
point from transcription factor to the target gene.

We have statistically studied both networks’ degree distributions, conclud-
ing that none of the input or output degree distributions show any similarities
with either Kauffman’s original random topologies, or with Aldana’s scale-free
Boolean networks. Thus the need to use Derrida plots to determine the regime
of our model. In this work, we abstract details of the genes themselves, as their
individual properties do not have any consequences on the systems dynamics,
beyond their activating or repressing effect.

4 Model and Simulations

In the original RBN model, each node was assigned a deterministic distinct
random update function (RUF). Nowadays, we believe that the Boolean function
is closer to an additive function where the influence of the genes upstream to the
one concerned, along with its own current activity state, could be summed in a
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way that takes into account the activating or repressing effect of each influencing
node. Inspired by the work of Stoll et al. [8], we propose an update function
shared by all genes that takes into account the fact that activating and repressing
components could have unbalanced effects. A gene would require a majority
by more than one active gene to switch states, and therefore, we introduced
a threshold parameter (T ) which has to be met in order for a gene to become
active. Thus a gene’s activation state at the next time-step is now given by:

Si(t + 1) =

⎧⎨
⎩

1 (active) if
∑

j S+
j > T × (

∑
j S+

j +
∑

j S−
j )

0 (inactive) if
∑

j S+
j < T × (

∑
j S+

j +
∑

j S−
j )

S (t) otherwise

Where S+
j is the state of a promoter of the target gene and S−

j is a repressor
gene. Moreover, as some gene of our model might not have any repressors, and,
if activated, should not remain in that state permanently, we add a decay com-
ponent. In the case where an active gene has no repressor at all, we switch it to
inactive manually at the next time-step. This update function is equivalent to
Stoll’s in the case where T = 0.5. Moreover, it can be easily proven that all rules
in this class correspond to a subset of the RUFs. We call our model for update
function the Activator Driven Additive function (ADA).

Just the same way the probability p can change Kauffman’s original systems’
regime from chaotic to ordered for a given connectivity K and set of RUFs, the
T parmeter in our model can change its regime. In the following section, we
show for which values of T , respectively p, our model of real-life topology-based
Boolean Networks using ADA, respectively RUFs, exhibits a phase transition,
comparing the dynamics of the two update functions.

The space of all possible states for a given RBNs, i.e. with a single set of RUFs,
is 2N , where N is the number of genes in the system. In our case, N = 11,
therefore there are 211 = 2048 possible states. In the case of ADA, where all
nodes share the same function, exhaustive enumeration is possible. On the other
hand, the set of possible RUFs, even for a reasonably small subset of genes,
makes exhaustive enumeration impossible for original RBNs. Therefore, in the
case of RUF, we make a statistical sampling using numerical simulation of 100
different sets of RUFs for each value of p. At first, T , respectively p, varies in the
interval [0.1, 0.9] by steps of 0.1. After we have identified the values of interest
Ti, respectively pi, we have narrowed the interval to [Ti − 0.05, Ti + 0.05] and
[pi − 0.5, pi + 0.05] with a finer step of 0.01 to identify as close as possible the
values Tc, respectively pc, that are closest to the critical region.

5 Results and Analysis

In this section, we plot the Derrida curves of each case. Figure 2 which shows
Derrida plots with steps of 0.1 and then Figure 3 is a finer version, where we
adapted the scale to best show the regions of interest with a step of 0.01. As
there is only 211 possible states, and thus Hmax = 11, we computed average
Hamming distances over exhaustive enumeration of all states. In other words,
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Fig. 2. Derrida plots of Random Update functions (a) and (b), and of Activator Driven
Additive, ADA, functions (c) and (d). Derrida plots for real-life networks, (a) and (c)
ES cell and (b) and (d) yeast cell-cycle, as substrate for RBN with RUFs. All values
of p ∈ [0.1, 0.9] in (a) and (b), and T ∈ [0.1, 0.9] in (c) and (d) are shown.

we identified all pairs of states {Sa; Sb} that are at a distance H(Sa, Sb) = 1 and
computed the average Hamming distance of their subsequent states H(S′

a; S′
b),

and then moved on to H = 2, H = 3, . . . , H = 11. Figure 2 shows both an SE
cell and yeast cell-cycles with original model’s RUFs and with ADA.

In Figure 2(a)-(b), curves group in pairs according to their values of p, as the
RUF functions are symmetrical for values of p ≡ 1−p. If not for sampling reasons,
pairs of curves would superpose. In the case of transcriptional regulatory network
in ES cell, Figure 2(a), the interesting values of pi ≈ 0.1−0.2, and symmetrically,
pi ≈ 0.8 − 0.9. These are the values we chose to investigate with finer steps
in Figure 3(a). As for the case of the yeast cell-cycle regulatory network in
Figure 2(b), we identified pi to approximately the same values, developed in
Figure 3(b). We have conducted the same analysis on Figure 2(c)-(d). In the case
of ADA, there is no symmetry to speak of. The interest regions of T values are
Ti ≈ 0.7 for ES cells. For yeast cell-cycles, we see two regions worth investigating
Ti ≈ 0.2−0.3 and Ti ≈ 0.7. We show results of finer values of T in Figure 3(c)-(d).

A second set of computer simulations around pi, the results of which are
shown in Figure 3(a)-(b), reveal that in the case of ES cells the critical threshold
value is close to pc ≈ 0.13, and symmetrically pc ≈ 0.87. As for yeast pc ≈ 0.17,
symmetrically pc ≈ 0.83. Finally, the in depth examination of ADA simulation
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Fig. 3. Derrida plots of Random Update functions (a) and (b), and of Activator Driven
Additive, ADA, functions (c) and (d). Derrida plots for real-life networks, (a) and (c)
ES cell and (b) and (d) yeast cell-cycle, as substrate for RBN with RUFs. Only values
close to the critical gene expression value pc and Tc are shown.

results for values of Ti demonstrate that results become undistinguishable when
the step between T values becomes small. This phenomenon is shown in Figure
3(c), where all the curves of T = {0.67, 0.68, 0.69, 0.70} are superposed. This is
due to the fact that the ADA function is less sensitive to T for genes with a
low input degree. Nevertheless, results remain valid and in the case of ES cells,
Tc ≈ 0.68 and in the case of yeast in Figure 3(d), Tc ≈ 0.25 or Tc ≈ 0.6. In this
last value of Tc = 0.6, several values of very close values of T coincide. From these
results, we can conclude that in the present specific cases, both the threshold in
ADA and the probability of gene expression in RUF have comparable values in
the two GRNs studied in this paper.

6 Conclusions and Future Work

Taking into account recent years’ advances in the field of cellular biology, we have
proposed to identify under what conditions Kauffman’s hypothesis that living
organism cells operate in a region bordering order and chaos holds. This property
conferes to creatures and plants both the stability to resist transcriptional errors
and external disruptions, and, at the same time, the flexibility necessary to
evolution. We studied two particular cases of genetic regulatory networks found
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in literature in terms of complex dynamical systems derived from the original
RBN model. In order to do that, we compared the behavior of these systems
under the original update function and an novel additive function that we believe
is closer to the actual role of living organisms. Results show that there exist
values in both update functions that allow the models to operate in the critical
region, and that these values are comparable in two different real-life GRNs.

Further investigations of the models at hand will include a full analysis of the
attractor space that could offer further evidence of the models’ adequacy to real-
life situations. In addition, we will extend the current fully synchronous timing
of state changes with a more biologically plausible one we have proposed in [6],
where the topology drives the sequence of individual gene possible activation.
Furthermore, we intend to explore the fault tolerance of our models.

Acknowledgements. M. Tomassini and Ch. Darabos gratefully acknowledge fi-
nancial support by the Swiss National Science Foundation under contract 200021-
107419/1.
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Abstract. A protein molecule adopts a specific 3D structure, necessary
for its function in the cell, through a process of folding. Modelling the
folding process and predicting the final fold from the unique amino acid
sequence remain challenging problems. We have previously described the
application of L-systems, parallel rewriting rules, to modelling protein
folding using two complementary approaches: a physics-based approach,
using calculations of interatomic forces, and a knowledge-based approach,
using data from fragments of known protein structures. Here we describe
a model combining these two approaches creating an adaptive stochas-
tic open L-systems model of protein folding. L-systems were originally
developed to model growth and development. Here we also describe ex-
tensions of our L-systems models to investigate cotranslational protein
folding, i.e. folding during protein biosynthesis on the ribosome, which
is increasingly thought to play an important role. We demonstrate that
cotranslational folding fits very naturally into the L-systems framework.

Keywords: Cotranslational protein folding, L-systems.

1 Introduction

Proteins are crucial for life. They carry out numerous essential molecular func-
tions in the cell. The function of a protein molecule is determined by its specific
3D shape or conformation. A newly formed protein in the cell rapidly folds to
its functional conformation. The thermodynamic hypothesis [1] states that this
final fold, the native state of a protein, is its lowest free energy state. The native
state of a protein, under physiological conditions, is determined solely by its
amino acid sequence. Many features of protein folding are now well understood
[2]. However, predicting the native state of a protein from its amino acid se-
quence alone and modelling the folding process at the atomic level on timescales
greater than a microsecond are still not computationally feasible [3].

Proteins may be the simplest example of a biological complex system. They
exhibit emergent properties at a range of spatial scales including: the partial
double bond characteristic of the peptide bond; patterns of hydrogen bonding;
secondary structure such as helices and sheets; and the compact and hydrophobic
nature of the protein core. Each property is the result of interactions at lower
spatial scales. These and other emergent properties of proteins allow them to fold
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to stable conformations with specific biological functions. Protein folding itself
can be viewed as an emergent phenomenon that results from underlying local
interactions. We use L-systems [4,5,6], parallel rewriting rules, to investigate
what global protein-like characteristics emerge from modelling protein folding at
a local level using local interactions represented by local rewriting rules. We have
previously described the use of L-systems in modelling protein folding using a
physics-based approach [7], using a calculation of local interatomic forces to guide
rewriting rules, and a knowledge-based approach [8], using data from fragments
of known protein structures. Here we describe an L-systems model that combines
these two complementary approaches.

Most computational models of protein folding start with a fully formed protein
chain. However, in the cell protein folding may occur during protein synthesis
(cotranslational protein folding [9]). L-systems provide a natural framework for
modelling growth. Here we also describe the extension of our L-systems models
for cotranslational protein folding, i.e. protein folding during the “growth” of
the chain.

Firstly, in section 2, we give a brief overview of how we use L-systems to
model proteins. In section 3 we summarise the physics-based L-systems model
(see [7] for more detail) and the knowledge-based L-systems model (see [8] for
more detail). Section 4 describes the integration of these two approaches into a
combined model leading to an adaptive stochastic L-systems model. Section 5
describes the extension of our L-systems models to incorporate cotranslational
protein folding.

2 Modelling Proteins with L-systems

Lindenmayer systems, or L-systems, were originally developed for the mathemat-
ical modelling of plant growth and development [4,5,6]. An L-system consists of
a set of parallel rewriting rules, or productions, and an initial string called the
axiom. The productions replace a symbol, or module, called the predecessor, with
a string called the successor (e.g. a → ab replaces a with ab) repeatedly for a
number of specified derivation steps.

The axiom in our L-systems models consists of the amino acid sequence of a
protein using the single letter amino acid code. We then use context-free produc-
tions to rewrite each amino acid letter in the axiom with a string that represents
its component atoms and bonds using a bracketed system to capture the 3D
structure (Fig. 1) of amino acid specific side chains.

For the folding process, we use context-sensitive productions to rewrite the
structural state of each amino acid (captured as parameters in the L-system
representation), depending on its local environment. The details depend on the
particular model used.

We use deterministic L-systems in our physics-based model to rewrite the
conformation of each amino acid depending on local interatomic forces. The
interatomic forces are calculated using open L-systems, which allow an L-system
to communicate with an environmental model.
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Fig. 1. Local conformations of a polypeptide. Left: an amino acid residue within a
polypeptide (a chain of amino acids) consists of an -NH-CαHR-CO- backbone structure,
where R represents an amino acid specific side chain (there are 20 different amino acids).
Amino acids are joined together by semi-rigid peptide bonds (C-N) causing the four
surrounding atoms (CαC-N-Cα) to lie in the same plane (shaded regions). The two
main variables in protein conformation are therefore the two back bone torsion angles
φ (rotation around the N-Cα bond) and ψ (rotation around the Cα-C bond). Right:
sterically allowed regions of φ/ψ space [10] are shaded in grey on a schematic of a typical
Ramachandran plot. These correspond to the most common extended conformations
in native structures - the α-helix and β-sheet.

We use stochastic L-systems in our knowledge-based model to rewrite the
secondary structure states of each amino acid residue with probabilities derived
from data on known structures of protein fragments. We use an open L-system
environment to store these context-sensitive probabilities.

3 Previous Results

In our physics-based model [7] we define the conformation of a protein using the
two backbone torsion angles, φ and ψ, for each amino acid residue in the chain
(see Fig. 1). Productions alter the φ and ψ values of each residue depending
on local interatomic forces calculated in an environmental program. This alters
the local conformation of each residue in parallel, resulting in a global change in
conformation at each step (see [7] for more detail). The physics-based approach
led to the emergence of protein-like compact global conformations.

In our knowledge-based model we use data on known protein structures in
stochastic rewriting rules. We calculated the frequency of each amino acid type
occurring in each of seven secondary structure states used by the DSSP program
[11], given the amino acid type and secondary structure state of one amino
acid residue either side. We use these frequencies as probabilities, in stochastic
productions, of each residue changing its secondary structure state depending
on the states and types of its immediate neighbours (see [8] for more detail).

The knowledge-based approach led to the emergence of bands of secondary
structure indicating preferred local conformations for certain residues. The pro-
portion of α-helices and β-sheets emerging in the model for different protein
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sequences also corresponded well with the structural class of each protein. How-
ever, the structures emerging were not necessarily compact, in contrast to the
physics-based model, and there was no convergence to a preferred global confor-
mation. This is inevitable when using static probabilities - there is no criterion
for choosing one likely state over another.

4 Combined Model Using Adaptive Stochastic L-systems

We have developed a model that combines physics-based and knowledge-based
information in order to overcome the problems caused by using static probabili-
ties described above. The local physics that informs changes in backbone torsion
angles in the physics-based model is used instead to dynamically alter the proba-
bilities of changing to another secondary structure state in the knowledge-based
model (see Fig. 2 for an outline of the combined L-systems model).

Interatomic forces (from an empirical potential) are calculated between each
atom attached to the backbone and any other nearby atoms. Changes in both
φ and ψ are calculated for each residue according to these local forces. The
environment also calculates, using typical torsion angle values for each residue
in each secondary structure state, the change in φ and change in ψ that would
be required for each residue to move from its current secondary structure state

R(a,s)  R(a,E): pE
R(a,s)  R(a,H): pH
……

R(a,s)  R(a,S): pS

Axiom contains amino acid 

sequence 

Initial step rewrites amino acid sequence 

to all R symbols, with ?E(…) for each 

residue, with parameters representing 

initial state and amino acid type  

Environmental step:  retrieves frequencies 

of 7 states for each residue given its amino 

acid type and the amino acid types and 

states of residues either side,  frequencies 

updated according to local physics 

Derivation step: each state updated to 

one of seven possible states with 

probabilities calculated from 

frequencies returned from environment 

Amino acid type 

and state 

Frequencies of 

states 

R(A,E)?E(…)R(Q,E)?E(…)R(V,E)?E(…)……

Homomorphism rules: graphical 

interpretation of each R symbol – creates 

3D conformation of each amino acid type in 

its current state assigns ?E(…) to each 

atom 

Fig. 2. An outline of the stages in the combined L-systems model. Information at both
residue-level (specified in the string) and atomic-level (via homomorphism rules) is sent
to the environment via communication modules. The environment retrieves the fre-
quencies for the probabilistic rewriting rules using the information in the residue-level
communication modules. The frequencies are altered using physics-based information
calculated using the information in the atomic-level communication modules.
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to each of the other possible states. These are compared to the changes in φ and
ψ that were calculated from the local forces. The frequencies are then updated
in proportion to these differences. This is repeated at each derivation step -
frequency values are updated by scaling values from the previous step according
to the forces that result from the new conformation at the current step. This
allows the gradual accumulation of a physics-bias into the frequencies, some of
which may decrease to zero.

This model leads to a better protein-like convergence to a preferred global
conformation than the knowledge-based model, while retaining bands of local
secondary structure preferences with proportions of α-helix and β-sheet that
fit well with the structural class of each protein sequence. Convergence to a
preferred global conformation is better in the all-α and all-β structural classes.
However, these preferred conformations are not necessarily compact. The final
conformation is sensitive to the choice of initial states (particularly in α/β or
α+β structural classes). An all-extended initial conformation leads to a greater
number of residues adopting extended states. Similarly an all-α initial confor-
mation leads to a greater number of residues adopting α-helix states. This may
be important in the context of cotranslational folding.

5 Modelling Cotranslational Protein Folding with
L-systems

The specific amino acid sequence of a protein molecule is formed during its
biosynthesis. Protein-coding genes are transcribed into messenger RNA (mRNA)
molecules that are translated by ribosomes, the macromolecular protein facto-
ries of the cell. During translation a ribosome concatenates amino acid building
blocks in the order specified by the mRNA being read. Amino acids are concate-
nated one at a time, by peptide bonds, to form a growing polypeptide which is
gradually extruded through a tunnel in the ribosome [12]. Upon exiting the ribo-
some the polypeptide is free to begin the folding process. Since formation of sec-
ondary structure and compact states is faster than protein synthesis [13,14], this
simultaneous growth and folding may be important in finding the native state.
Furthermore the ribosome itself imposes physical constraints to the initial con-
formation [12]. L-systems were originally developed to model plant growth and
development [4,5,6]. We have extended our L-systems models described above
to model the growth of a polypeptide chain and its simultaneous folding, i.e.
cotranslational protein folding.

Three main features of cotranslational folding have been simplified and in-
corporated into our L-systems model: protein synthesis; passage through the
ribosome; and extrusion from the ribosome.

Modelling protein synthesis. The full protein sequence is contained in the
axiom. A parameter is added to each amino acid module in the axiom to rep-
resent its position in the sequence (in the N-terminal to C-terminal direction).
A condition is added to the rewriting rules that generate the structural rep-
resentation of each amino acid. This condition allows one amino acid module
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Fig. 3. Images showing protein folding in the cotranslational physics-based model, at
derivation step numbers as shown, using the protein sequence barnase (PDB ID: 1bnr).
Step 1 shows the initial r residues (here 30) in an initial conformation (here a β-strand)
modelling the partially formed polypeptide that is unable to fold inside the ribosome.
One residue is added to the C-terminal end every e steps (here 34), while one residue
at a time is allowed to start folding at the N-terminal end.

to be rewritten at the C-terminal end of a partially formed chain of length, r
(representing the number of residues that are in the polypeptide exit tunnel but
are unable to fold), every e derivation steps (representing the rate of protein
synthesis): N > ((n∗ e)− r), where N is the current derivation step number and
n is the amino acid number in the sequence.

Modelling restrictions of the ribosome. The polypeptide exit tunnel is ap-
proximately 80Å in length [15] and experimental evidence shows that it contains
30-40 amino acid residues [16,17]. We took the lower of these estimates for the
number of residues held in the ribosome, r, in our model.

Modelling folding on extrusion from the ribosome. A condition is in-
corporated into the rewriting rules that alter the secondary structure states of
residues (or the backbone torsion angles in the physics-based model) so that only
residues at the N-terminal end that are outside of the polypeptide exit tunnel
can start folding: N > (n ∗ e). This allows one residue at the N-terminal end to
start folding every e derivation steps, as one amino acid structure is added to
the C-terminal end. Once the protein is fully formed and all residues are out of
the ribosome, all residues can fold in parallel until a specified derivation length.

Results. Protein folding in the cell may be cotranslational if the partially formed
polypeptide can adopt a stable conformation. In our physics-based cotransla-
tional model the partially formed polypeptide may rapidly adopt a compact
conformation once outside the ribosome (Fig. 3).
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(a) (b)

(c) (d)

Fig. 4. Changing the rate of growth, e, of the polypeptide chain, using the protein
sequence ‘1exg’ in an all-π-helix initial state, in the cotranslational combined model.
Plots show the secondary structure states of each residue (y-axis) at each derivation
step (x-axis). Yellow = extended, blue = α-helix, red = 3/10 helix, green = π-helix,
purple = isolated beta bridge, grey = turn and black = bend. (a) e = 2 steps per
residue (b) e = 5, (c) e = 10 and (d) e = 20.

The emergence of the final fold through global conformational changes may
be dependent on the history of local conformational changes. The rate of protein
synthesis may affect this history. In the cell, pauses in translation and the use
of rare mRNA codons cause the rate of protein synthesis to vary. Using the
combined model (the integrated physics-based and knowledge-based model) we
find that cotranslational folding alters the local secondary structure preferences
in certain residues and that this is dependent on the growth rate, e, of the
polypeptide chain (Fig. 4).

Our cotranslational L-systems models put protein folding into a more biologi-
cal context. Folding on the ribosome during protein synthesis may be important
to finding the native state [14,9]. We have shown that L-systems provide a nat-
ural modelling framework for investigating cotranslational protein folding. The
L-systems framework facilitates the integration of the growth process of pro-
tein synthesis and the developmental process of protein folding, through local
conformational changes, into a single model.

6 Summary

Our previous work describes the development of L-systems models of protein
folding using two complementary approaches: a knowledge-based approach and
a physics-based approach. Here we describe how these models were integrated
to produce a combined adaptive stochastic open L-systems model, which gives
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a greater degree of protein-like convergence to a preferred global conformation.
We also present a framework for investigating cotranslational protein folding
using L-systems. This puts protein folding into a more biological context. We
demonstrate that L-systems provide a natural framework for modelling the si-
multaneous growth and folding of a polypeptide chain. Initial results show that
the rate of protein synthesis influences the preferred secondary structure pref-
erence of some residues in our combined model. Further work will include a
more explicit model of the ribosome and will investigate the effects of the rate
of protein synthesis across a wide range of protein sequences.

Acknowledgments. This work was funded by the BBSRC.

References

1. Anfinsen, C.B.: Principles that govern the folding of protein chains. Sci-
ence 181(96), 223–230 (1973)

2. Dill, K.A., Ozkan, S.B., Shell, M.S., Weikl, T.R.: The protein folding problem.
Annu. Rev. Biophys. 37, 289–316 (2008)

3. Daggett, V.: Protein folding-simulation. Chem. Rev. 106(5), 1898–1916 (2006)
4. Lindenmayer, A.: Mathematical models for cellular interactions in development. I.

Filaments with one-sided inputs. J. Theor. Biol. 18(3), 280–299 (1968)
5. Lindenmayer, A.: Mathematical models for cellular interactions in development.

II. Simple and branching filaments with two-sided inputs. J. Theor. Biol. 18(3),
300–315 (1968)

6. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer,
Heidelberg (1990)

7. Danks, G.B., Stepney, S., Caves, L.S.D.: Folding protein-like structures with open
L-systems. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho,
A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1100–1109. Springer, Heidel-
berg (2007)

8. Danks, G.B., Stepney, S., Caves, L.S.D.: Protein folding with stochastic L-systems.
In: Artificial Life XI, pp. 150–157. MIT Press, Cambridge (2008)

9. Kolb, V.A.: Cotranslational protein folding. Mol. Biol. 35(4), 584–590 (2001)
10. Ramachandran, G.N., Sasisekharan, V.: Conformation of polypeptides and pro-

teins. Adv. Protein Chem. 23, 283–438 (1968)
11. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: Pattern recogni-

tion of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–2637
(1983)

12. Nissen, P., Hansen, J., Ban, N., Moore, P.B., Steitz, T.A.: The structural basis of
ribosome activity in peptide bond synthesis. Science 289(5481), 920–930 (2000)

13. Kubelka, J., Hofrichter, J., Eaton, W.A.: The protein folding ‘speed limit’. Curr.
Opin. Struc. Biol. 14(1), 76–88 (2004)

14. Basharov, M.A.: Protein folding. J. Cell. Mol. Med. 7(3), 223–237 (2003)
15. Voss, N.R., Gerstein, M., Steitz, T.A., Moore, P.B.: The geometry of the ribosomal

polypeptide exit tunnel. J. Mol. Biol. 360(4), 893–906 (2006)
16. Malkin, L.I., Rich, A.: Partial resistance of nascent polypeptide chains to prote-

olytic digestion due to ribosomal shielding. J. Mol. Biol. 26(2), 329–346 (1967)
17. Blobel, G., Sabatini, D.D.: Controlled proteolysis of nascent polypeptides in rat

liver cell fractions. I. Locations of polypeptides within ribosomes. J. Cell Biol. 45(1),
130–145 (1970)



Molecular Microprograms

Simon Hickinbotham1, Edward Clark1, Susan Stepney1, Tim Clarke2,
Adam Nellis1, Mungo Pay2, and Peter Young3

1 Departments of Computer Science, 2 Electronics, 3 Biology,
University of York, UK

Abstract. Bacteria offer an evolutionary model in which rich interactions be-
tween phenotype and genotype lead to compact genomes with efficient metabolic
pathways. We seek an analogous computational process that supports a rich artifi-
cial heredity. These systems can be simulated by stochastic chemistry models, but
there is currently no scope for open-ended evolution of the molecular species that
make up the models. Instruction-set based Artifical Life has appropriate evolu-
tionary properties, but the individual is represented as a single executing sequence
with little additional physiology. We describe a novel combination of stochastic
chemistries and evolvable molecule microprograms that gives a rich evolutionary
framework. A single organism is represented by a set of exectuing sequences. Key
to this approach is the use of inexact sequence matching for binding between in-
dividual molecules and for branching of molecular microprograms. We illustrate
the approach by implementation of two steady-state replicase RNA analogues
that demonstrate “invasion when rare”.

1 Introduction

One sees elegant, evolved design solutions in all levels of life on earth, yet our artificial
models of evolution seem limited by comparison. When engaging with the artificial life
(ALife) community, it is easy to get the impression that we haven’t got the model of
genetic algorithms (GAs) quite right yet, and that this is why they are typically only
used as optimisers. There is a need for debate about whether the way we think about
good engineering is compatible with evolutionary processes [1]. Our project1 looks at
rich ways of building genotype-phenotype (geno-pheno) interactions, as this is how
bacteria are known to rapidly adapt to new environments. We are in the early stages
of building a bacterial GA. The emulation of biological geno-pheno coupling requires
similar coupling between GA and ALife. Other ALife works use GAs [2], but the ALife
side tends to spring complete from the GA template, which is never referred to again.
We are developing a leakier approach, where the genetic template is an interactive part
of the phenotype, with the goal of developing richer ALife behaviours.

We have previously designed a computational metabolome [3], implemented as a
network of reactions between a maximum of two molecular agents; it demonstrates that
even when expressed with simple computational restrictions, it is straightforward to
design a gene regulatory network. To make these networks evolvable, we need to be
able to subtly change the nodes (substrates), edges (reactions), and rates in the network,

1 This work is part of the Plazzmid project, funded by EPSRC grant EP/F031033/1.

G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part I, LNCS 5777, pp. 297–304, 2011.
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via changes in the binding, reaction and decay of the molecular structures. We need
to match the granularity of change in the expressed proteins with the characteristics of
mutation that the system possesses. Thus we find that our ALife-GA coupling demands
an artificial chemistry (AC) as the basis for the geno-pheno interaction. There are three
broad classes of AC: abstract (molecular properties specified directly) [4]; shape-based
[1]; program-based [5,6,7]. Here we explore the program-based approach, with refer-
ence to a set of biological principles that we believe characterise biological systems.

There is a rich history of individual-as-program ALife. Key ones are Avida [5], Tierra
[6] and “BF” [7]. All these place heavy emphasis on the genotype: each “organism” has
a template code, plus some registers and some energy, which together confer fitness on
the individual. The phenotype is essentially a sequence of instructions, plus a miniature
processing “factory”. In these systems the factory of each organism is not subject to her-
itable change. We argue that the ALife organism needs to be richer, and use executing
sequences as the basis for the chemistry of the organism. By stating that an organism
is composed of a set of simple executing sub-programs, we can make simpler compu-
tational sub-units, draw a closer analogy with functioning proteins, and make more of
the processing machinery available to evolve.

The term microprogram describes assemblies of the lowest-level instructions (mi-
crocode) that describes a program at the lowest possible level. By analogy, reactions at
the molecule-molecule level form the microcode of the organism [8]. In our represen-
tation, molecular microprograms are implemented as sequences of instructions, loosely
analogous with the way amino acids fold to form proteins. The “program” emerges via
the mixing and reacting of these molecular microprograms. In addition, by basing bind-
ing and execution pathways on inexact subsequence alignment [9], we get the benefit of
fine-grained switching between execution pathways of the network that forms the high-
level program. The novelty here lies in a stochastic chemistry whose molecular species
are executing microprograms, and whose binding rates and reactions are emulated via
inexact subsequence alignment.

As a demonstration, we have hand-written a molecular microprogram that is capa-
ble of copying other molecules that bind to it, including a copy of itself. We call this
molecule a replicase. We show that it is feasible for mutations to change the efficacy of
the microprogram via an “invasion from rare” experimental evaluation.

2 Domain Model of Bacterial Evolution

We describe an abstract model of bacterial evolution in [10], with concepts of the acces-
sory genome and the arrangement of plasmids and chromosomes. The emphasis there
is on abstracting genome organisation, but the mechanisms for achieving and maintain-
ing an organised genome are not detailed. Here we define a domain model ([11], as
referenced in [12]) of the bacterial system we wish to emulate, and briefly discuss a
microprogram-based instantiation of the resulting model.

A naive view of the genome is that it acts as an “workshop manual” for the bio-
logical entity. In bacterial systems, the genomic manual is being continually rewritten,
from minor typos to new chapters to rearrangement of volumes. What is missing from
most evolutionary models is the rich machinery for this continual re-editing process.
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Fig. 1. Domain models of sequence-based executing machines. (a) left: a bacterial metabolism;
(b) right: a computer-based simulation.

The copying machinery is specified on the genome that it maintains, and is built the
same way as other non-genomic entities in the cell.

Biological genome maintenance is carried out by proteins (folded sequences of
amino acids), which are built following a specification on the genome. The functional
characteristics of the protein arise from its folded shape, which depends on the chemical
properties of the amino acids. As shown in figure 1a, the functionality of the protein is
a product of the DNA-based specification of the amino-acid sequence, the physical and
chemical properties of the amino acids, and the physical and chemical properties of the
protein structure itself. There is a high degree of interdependency between these factors.
Proteins’ folded shapes are highly structured and often flexible. Reactions occurring be-
tween proteins and other molecular entities cause changes in shape and intermolecular
forces, which in turn change their reactivity. Over evolutionary timescales, the genetic
code develops a deep interaction with these properties. If we wish to emulate these
properties, it is imperative to get a granularity of structure that is most appropriate to
the goal of open-ended heredity. Figure 1b indicates the components of a computational
emulation of the biological system just described. Here a combination of the properties
of low-level instructions and the sequnce they are assembled into forms the basis of a
microprogram that emulates protein function. The mixing of these proteins in a stochas-
tic chemistry allows the overall program of the system to emerge.

3 Detailed Model

Direct imitation of biology is not currently feasible for all but the simplest systems,
since computational overheads are high and biological systems are rarely understood
completely. The immediate challenge is to have a specification of a phenotype that al-
lows a rich set of properties to arise such that some template pattern can be used to build
a machine. We put rich functionality into the microcodes, and use genetics to exploit
their properties. Each microcode is represented by a symbol, and sequences of symbols
form the microprogram of a molecule. Each molecule has a set of four pointers, which
are manipulated by the microcode to carry out the function of the molecule. Micropro-
gram execution is initiated when one molecule binds to another. When a bind occurs,
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Table 1. Properties of an evolving artificial chemistry. General principles (left column). Properties
in the molecular microprogram instantiation (right column).

General Properties Molecular Microprogram Instantiation
single, consistent, molecular representation: for
any reaction A+B→C, it must be possible to de-
scribe C in the same terms as A and B

molecular microprogram: sequence of mi-
crocodes, plus single instance of four pointers

no global controller contains information only about itself; bioentity
little more than a propensity equation

structure of entity forms binding template and
function

sequence of microcodes specifies template and
execution

binding success proportional to some match
function

Smith-Waterman alignment score as basis of
bind strength

has a lifetime, eg. defined by a decay rate decay rate is a function of sequence length
constructed as part of a sequence-reading pro-
cess

undefined here; straightforward to implement

actions always local to the bound objects molecular microprograms refer only to them-
selves and/or their bound partners

actions have cost, and may yield a dividend execution of each instruction and each at-
tempted bind costs one energy unit; dividend
unimplemented: organism requires steady en-
ergy influx

actions are not absolute, but relative to the qual-
ities of the objects they refer to

the = instruction inserts symbols only at the
write pointer W: it does not overwrite anything

the two molecules negotiate which one should act as executing program, and which
should act as data. The executing molecule’s pointers can point to the data molecule.

Our design is motivated by properties of biological systems that we believe to be
important. Table 1 lists these general properties, and gives corresponding features of
our system. For our initial investigations, we have made assumptions about what the
most efficient implementation of a molecular microprogram might be. In this section,
we outline the approach we are using to explore the proposals described above.

Our molecular microprograms are analogous to proteins, where sequences of amino
acids fold to form molecular machines. We replace the concept of folding with program
control flow for a sequence of program symbols. Our molecules have no shape or ex-
plicit dimension. The uniqueness of a molecule is encoded in its sequence of symbols.
We place heavier emphasis on the concept of binding than do Avida and variants. In
functioning microprograms, parts of the sequence describes one or more binding region
and when bound, a microprogram is executed from the sequence of instructions begin-
ning at the start of the bind. Thus a binding event triggers a reaction sequence, which is
encoded on the molecule and run as a program.

A molecule consists of a sequence of symbols, and four pointers to positions on the
sequence: the instruction pointer I; the read pointer R; the write pointer W; and the
flow pointer F, which is commonly used to reset the position of I during iterative ex-
ecution. Apart from the four pointers, a molecule has no stacks or registers, or access
to any global controllers. The symbols in the molecular sequence are instructions that
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Fig. 2. Composition of a replicase enzyme microprogram. The substrate sequence m(top) binds
to the executing sequence r (bottom). There are eight distinct active regions of the molecule, plus
one region of “junk” symbols. The sequence specifies: the initial molecular binding (regions 1 and
2); initialisation of the Read (R), Write (W) and Flow (F) pointers (regions 3,4 and 8); iterative
copying of the substrate molecule (region 5); Repositioning the flow pointer to the end of the
excecuting molecule (regions 6 and 8); cleaving off the newly created molecule and termination
of the microprogram (region 7). Pointers, indicated as letters in circles, show the state of the
microprogram as the first symbol of the template molecule is about to be copied to the end of
the executing molecule. The two strings differ by a single mutation (indicated by thin arrows),
allowing m to bind as a substrate to r more strongly than r binds to a copy of itself.

manipulate the pointers, thereby implementing the molecule’s function. We illustrate
a replicase molecule in figure 2, which shows eight distinct regions of the micropro-
gram. Execution of the microprogram commences at the start of the bind and proceeds
stepwise through each symbol to the right. The diagram shows the positions of the exe-
cuting molecule’s pointers as the first symbol is about to be copied: I indicates that the
next instruction is = (copy). F is set to the beginning of region 5, which executes the
iterative copy process. R is positioned at the start of the template molecule’s sequence.
W is positioned at the end of the executing molecule’s sequence. This is where the new
molecule is built.

A detailed description of our microcode implementation can be found in [13]. Ta-
ble 2 provides a summary of these codes, which manipulate the pointers and control the
execution pathways of the molecular microprograms.

We use a simple, abstract model cytoplasm [13]. Once created, each molecule floats
unbound in the cytoplasm of the organism, and may enconter any other molecule in the
system by a process of stochastic mixing. A molecule may bind with another molecule,
in which case its microprogram may be executed. The raw materials for the reaction are
microcodes, which are assumed to be present at saturation levels. A limiting amount
of energy is available at each time increment. Binding and the execution of a single
microcode instruction require a single unit of energy to be available. Bound pairs dis-
sociate on termination of the microprogram. Whilst bound, the molecule pair is said to
be undergoing a reaction. This process of binding and dissociation continues until the
molecule is either destroyed whilst in a bind, or decays whilst unbound.

Binding is a complementary sequence alignment process. The idea is to obtain a
probability of binding based on the alignment. The Smith-Waterman (SW) algorithm
[9] is ideal for this, since it was designed to give positive scores for similarities that are
unlikely to have arisen by chance alone. The algorithm calculates a matrix of aligment
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Table 2. Symbols and actions used in the current implementation of molecular microprograms.
For a detailed description see [13].

Code(s) Name Description
A to Z n-op inactive template code and instruction modifier
$ search shift *F to a matching template
> move shift pointers to the flow pointer
ˆ toggle switch pointer to molecular bind partner
? if conditional single or double increment of instruction pointer
= copy insert at *W a copy of the symbol at *R
% cleave split a sequence and generate a new molecule
} end terminate execution and break the bond between the molecules

scores, based on a matrix of code substitution costs and a gap-scoring function. When
two sequences are compared, the SW algorithm finds the strongest local sequence al-
ginment (LSA) between them. SW calculates the tradeoff between the length and the
mismatches in the LSA. A perfect alignment of length 5 will score 5. Each mismatch
in a subsequence pairing reduces this score by some amount, and the penalty increases
for mismatches that are increasingly unlikely, so an alginment of length 10 but with sig-
nificant mismatches might score 4. Scores of zero or less indicate that the subsequence
pairing is likely to have arisen by chance.

For any two molecules i and j, we use SW to detect the LSA for a sequence pair φi,j ,
and use the score and the length to define the binding site and derive a probability of
binding, p(φi,j) = (s/l)l, where s is the SW score and l is the LSA length. For details
of how the mismatch penalties are calculated, see [13].

We also use p(φ) to control program flow: $ and ? use a template alignment, and
have different operation if an alignment is not found. This “soft” execution pathway is
ideal for evolutionary algorithms, since it allows incremental change in microprogram
execution that mimics some of the attractive biological properties listed in table 1.

For computational simplicity, on decay a molecule is instantaneously deleted. The
chance of decay is a function of the length of the sequence. This is a crude way of ensur-
ing that things that are expensive to build tend to persist in the metabolome, without hav-
ing molecule fragments floating around and reacting with other, complete molecules in
the system. We use a decay probability of 1/L2, where L is the length of the sequence.
Note that this is “passive” decay. There is scope to build a “destructase” molecule,
whose microprogram would chop up anything that bound to it into smaller molecules.
The resulting fragments would then be more likely to decay, since they are shorter.

4 Experiments

Inspired by the RNA world model [14], we have conducted studies of metabolic sys-
tems composed of molecular microprograms without reference to a genome. In this
framework, our molecular species act as their own templates. A replicating molecule is
a good candidate for early trials, since only a single species needs to be defined. Our
hand-crafted replicase r is shown in figure 2. Note that there are very many species
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Fig. 3. Invasion when rare. Ten typical runs of a metabolism of weakly binding replicase species r
(thick grey lines) which is invaded (indicated by the arrow) by a single molecule of mutant species
m (thin black lines), which has a stronger binding affinity. Eight of these trial runs demonstrate
“invasion when rare” by m. In two cases, m went extinct, and r remained at equilibrium.

with replicase functionality in our molecular space. Regions 1 and 2 of the micropro-
gram for r are complementary sequence alignements of length l = 7, score s = 5.875
and p(φr,r) = 0.293. We have also hand-crafted a variant of r that could arise by a sin-
gle mutation. This variant, m, has perfectly matching complementary sites, so l = 7,
s = 7, p(φm,m) = 1, and importantly p(φr,m) = 1 also: r binds to m more readily
than r binds to r.

For experimental trials, we allowed a population of molecule r to reach equilibrium,
then introduced a single molecule of m at time step 150 000. We ran a metabolism
using this specification 100 times. A typical subset of 10 runs is shown in figure 3. The
phenomenon of “invasion when rare” is occurring: the competitive advantage of species
m allowed it to replace r entirely in 88 out of the 100 trials.

5 Conclusion

We have demonstrated that an ALife environment that uses a sequence of instructions
as the basis for interaction and program execution can show important biological prop-
erties. We intend to use this platform to explore these ideas further, in particular to
develop a fully functioning bacterial emulator.

The experiment presented here used a “hand selected” mutation that was designed to
give beneficial effects. The experiment demonstrated that a single instance of a benefi-
cial mutation can easily become the dominant species in our system. The idea now is to
see how different mutation rates affect a functioning molecular species. Mutation can be
implemented straightforwardly by allowing the copy operator to introduce changes to
the copy. It may be possible to determine the “error catastrophe” levels for this system,
and use this limit to derive appropriate mutation rates.
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Our end goal is to subject this system to evolutionary change. The system is cur-
rently an RNA-world model, and could be used to simulate Speigelman’s famous Qβ

experiments [15]. This would demonstrate that the system is capable of the sort of open-
ended heredity that is required for the automated evolution of complex computational
machines.
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Abstract. Studying semantics is strongly connected to studying codes
that link signs to meanings. Here we suggest a formal method to identify
organic codes at a molecular level. We define a molecular organic code
with respect to a given reaction network as a mapping between two sets
of molecular species called signs and meanings, respectively, such that
(a) this mapping can be realized by a third set of molecular species, the
codemaker and (b) there exists alternative sets of molecular species, i.e.,
alternative codemakers, implying different mappings between the same
two sets of signals and meanings. We discuss theoretical implications of
our definition, demonstrate its application on two abstract examples, and
show that it is compatible to Barbieri’s definition of organic codes. Our
approach can be applied to differentiate the semantic capacity of molecu-
lar sub-systems found in the living world. We hypothesize that we find an
increasing capacity when going from metabolism to protein networks to
gene regulatory networks. Finally we hypothesize that during the chem-
ical and Darwinian evolution of life the capacity for molecular organic
codes increased by the discovery and incorporation of those reaction sys-
tems that contain many molecular organic codes.

1 Introduction

Without doubt information plays a central role in all living systems [1]. The
most common approaches that formalize the transmission of information are
based on Shannon’s information theory [2]. The theory and its derivates have
not only been very successfully applied in engineering [3], but also in the life
sciences [4,5]. Shannon has explicitly and consciously neglected semantic and
pragmatic aspects of information, because they were not required to reach his
engineering objectives (cf. Ref. [2], second paragraph). However as pointed out
by a growing body of literature [6,7,8] for understanding biological information
semantic and pragmatic aspects have to be also considered. Actually there is no
formal or computational framework yet that makes semantic aspects as precise
as Shannon’s theory is.

Our work aims to contribute to this open problem. One approach to analyze
semantics in biological systems is to cope with the codes that link signs and
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meanings. To understand what such a biological code is and how it is implemented
we base our work on the definition of organic codes given by Barbieri [9]. He
defines an organic code by identifying the key elements involved in coding. These
are signs, meanings, and adaptors. According to Barbieri [10] we can identify
following entities to characterize an organic code:

1. a correspondence between two worlds (signs and meanings)
2. a system of molecular adaptors
3. a set of rules that guarantees biological specificity

Adaptors are molecules or molecular complexes realizing an arbitrary mapping
between two worlds (signs and meanings) by recognizing elements from both
worlds in two independent recognition processes. The mapping has been fixed
during evolution, but is arbitrary, i.e. another mapping between the same sets
could have occurred in evolution.

Examples of organic codes are the genetic code, signal transduction codes [11],
sugar codes [12], histone codes (epigenetic codes)[13,14], or the cytoskeleton code
[9]. For example, the genetic code is a mapping from the set of codons (signs) to
the set of amino acids (meanings). The adaptors are tRNA molecules.

In the remainder of the paper we introduce a method that allows to identify
organic codes in reaction networks, demonstrate its properties theoretically and
along two abstract example networks, and discuss the potential evolution of
molecular organic codes.

2 Identifying Molecular Organic Codes in Reaction
Networks

Reaction networks and reaction systems are a general way to represent almost all
biological processes and are therefore well suited to be the basis of our definition
of organic codes guaranteeing that the definition can be applied to a wide range
of systems.

Definition 1 (Reaction Network). A reaction network 〈M,R〉 is defined by
a set of molecular species M and a set of reaction rules R. A reaction rule
ρ ∈ R is defined by its stoichiometric coefficients li,ρ ≥ 0 and ri,ρ ≥ 0, i ∈ M,
specifying the left hand side and right hand side of a reaction rule, respectively.

Let LHS(ρ) = {i ∈ M|li,ρ > 0} denote the set of molecules that appear on the
left-hand side of reaction ρ ∈ R and RHS(ρ) = {i ∈ M|ri,ρ > 0} the molecules
on the right-hand side.

We define the algebraic closure of a set of molecular species (cf. [15]):

Definition 2 (Closure). Given a reaction network 〈M,R〉, a set of molecular
species B ⊆M is closed, if all reactions among species in B produce only species
from B (i.e., for all ρ ∈ R with LHS(ρ) ⊆ B holds RHS(ρ) ⊆ B). The closure
B = GCL(A) of an arbitrary set of species A ⊆ M is defined as the smallest
closed set containing A.
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Note that this smallest set always exists and is unique [16]. It can be generated
by successively adding to the set A those molecules that can be generated by
applying the reaction rules of R to A until no species can be added anymore
(which might take an infinite amount of steps).

2.1 Definition: Organic Code with Respect to a Reaction Network

In general, we define a molecular organic code with respect to a given reaction
network as a mapping between two subsets of molecular species (called signs
and meanings), where (1) the mapping can be realized by a subset of molecular
species C of the reaction network and (2) there exists at least a second, different
mapping between the same subsets of molecular species that can be realized by
a (necessarily different) subset of molecular species C′. Following [10], we call C
the codemaker and C′ alternative codemaker.

Without loss of generality, we will restrict our following discussion to the most
simple but non-trivial codes, which map two signs to two meanings. Additionally
we require that this mapping can be inverted. We call such codes injective binary
organic codes (IBOC):

Definition 3 (Injective Binary Organic Codes, IBOC). Given a reaction
network 〈M,R〉 an injective binary organic code (IBOC) is a function f : S →
M mapping a two-elementary set S = {s1, s2}, s1, s2 ∈ M to a two-elementary
set M = {m1, m2}, m1, m2 ∈M, such that the following conditions hold: There
exist two sets of molecular species C ⊆M and C′ ⊆M with

1. s1 ∪C can generate species m1 but not m2,
2. s2 ∪C can generate species m2 but not m1,
3. s1 ∪C′ can generate species m2 but not m1, and
4. s2 ∪C′ can generate species m1 but not m2.

by application of the reaction rules R. We say that C ⊆M can generate species
a ⊆M, if a is contained in the closure of C (i.e., a ⊆ GCL(C)). We call S the
set of signs, M the set of meanings, C codemaker and C′ alternative codemaker.

Note that the alternative codemaker C′ implies another code, different from
C, on the same sets of signs and meanings. The codes are binary, because we
consider S and M as two-elementary sets. Applying the definition of IBOCs
always leads to an injective code, because conditions 1 to 4 guarantee that the
condition for an injective function f , x �= y ⇒ f(x) �= f(y), is always fulfilled.

To show that IBOCs formalize the idea of organic codes we go through the
properties of an organic code described by Barbieri [10]:

Property 1 (Correspondence between two worlds). As we define two sets, denoted
with signs and meanings, an IBOC realizes a correspondence between these sets.
Every set represents a world, respectively.

Property 2 (A system of adaptors). The codemaker C corresponds to a system of
adaptors, because the molecules of C realize the code by connecting the worlds.
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Closure(C v M1)

Closure(M1) Closure(M2)Closure(C’)Closure(C)

Closure(C’ v M1) Closure(C v M2) Closure(C’ v M2) Closure(S1 v M1) Closure(S2 v M1) Closure(S2 v M2) Closure(S1 v M2)

Closure(S1) Closure(S2)

Closure(S1 v C v M1) Closure(S2 v C v M2) Closure(S1 v C’ v M2)Closure(S2 v C’ v M1)

Fig. 1. Closed sets defining an IBOC: The closed sets displayed with bold boxed
are necessary for the existence of the IBOC (Lemma 1). The closed sets in the middle
row can be present, but need not to be present (e.g., it is possible that GCL({m1}∪C)
is equal to GCL({m1} ∪ C ∪ {s1}), example not shown). Note that the smallest closed
set and the set containing all elements, both present in any lattice of closed sets, have
been omitted.

A single adaptor is a subset of C that is required to map a sign to a meaning.
In a given reaction network several codemakers may exist for the same organic
code.

Property 3 (A set of rules guaranteeing specificity). Specificity of the rules is
guaranteed by the determinism when generating the closed set of a set of molecules
and the injectivity of the codes, because they realize a one-to-one mapping.

Lemma 1 (Ten Unique Closed Sets). Given an IBOC according to Def. 3,
the ten closures GCL(s1), GCL(s2), GCL(m1), GCL(m2), GCL(C), GCL(C′),
GCL(s1 ∪C) = GCL(s1 ∪C ∪m1), GCL(s2 ∪C) = GCL(s2 ∪C ∪m2), GCL(s1 ∪
C′) = GCL(s1 ∪ C′ ∪ m2), and GCL(s2 ∪ C′) = GCL(s2 ∪ C′ ∪ m1) must be
different.

Proof: follows directly from the definition and from the fact that GCL(GCL(A)∪
GCL(B)) = GCL(A ∪B). ��
Note that Lemma 1 implies that S, M, C, C′ must be different sets and that,
according to Lemma 1, a reaction network must contain at least ten closed sets
for an IBOC1 (cf. Fig. 1).

Given a reaction network we can calculate all IBOCs which are contained in
this network by checking all possible combinations of six closures (represent-
ing s1, s2, m1, m2, C, C′) against the IBOC-condition (cf. Def. 3 and Fig. 1).
This naive but easy implementable approach has a computational complexity of
O(n6), with n the number of closures of the network.

1 To be more precise, we would need at least 12 closed sets, because closed sets form
a lattice, thus there must be at least two additional closed sets above and below the
ten closed sets of the IBOC (Fig. 1).
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3 Examples

Figure 2 illustrates the IBOCs contained in two reaction networks. The depicted
scenarios define two similar reaction networks. In Scenario A the network con-
sists of eight speciesM = {A1, A2, B1, B2, E1, E2, E3, E4} and four reaction rules
R = {A1 +E1 → E1 +B1, A2 +E2 → E2 +B2, A1 +E3 → E3 +B2, A2 +E4 →
E4 + B1}. There are two injective binary organic codes:

(S = {{A1}, {A2}}, M = {{B1}, {B2}}, C = {E1, E2}) and
(S = {{A1}, {A2}}, M = {{B1}, {B2}}, C′ = {E3, E4}).

In Scenario B the network consists of six species M = {A1, A2, B1, B2, E1, E2}
and four reaction rulesR = {A1+E1 → E1+B1, A2+E1 → E1+B2, A1+E2 →

C = {E1,E2} C’ = {E3,E4} 

{A1} {B1}

{A2} {B2}

{A1} {B1}

{A2} {B2}

C = {E1} C’ = {E2} 

C = {A1} C’ = {A2} 

A1 B1

A2 B2

E1 E2

A1 B1

A2 B2

E1

E3 E4

E2

Scenario A - Reaction Network Scenario B - Reaction Network

Scenario A - Code View Scenario B - Code View

{A1} {B1}

{A2} {B2}

{A1} {B1}

{A2} {B2}

{E1} {B1}

{E2} {B2}

{E1} {B1}

{E2} {B2}

Fig. 2. Illustration of all injective binary organic codes that can be realized
by a reaction network: Two scenarios (A, B) are depicted. Scenario A has eight
species where four are metabolites and four function as enzymes. Scenario B contains
also four metabolites, but only two enzymes. In the top picture the reaction network
is depicted. Arrows in the network correspond to the reactions R that can occur in
the network. In the code view the open arrows denote the mapping f between sets of
species. This connection may be established by more than one reaction (example not
shown).
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E2 +B2, A2 +E2 → E2 +B1}. Here we have four injective binary organic codes:
(S = {{A1}, {A2}}, M = {{B1}, {B2}}, C = {E1}),
(S = {{A1}, {A2}}, M = {{B1}, {B2}}, C′ = {E2}),
(S = {{E1}, {E2}}, M = {{B1}, {B2}}, C = {A1}), and
(S = {{E1}, {E2}}, M = {{B1}, {B2}}, C′ = {A2}).

Note that in Scenario A there are only two IBOCs, while in Scenario B four of
these exist. In Scenario A it is not possible to take a single enzyme Ei as a sign.
For example, (S = {{E1}, {E2}}, M = {{B1}, {B2}}, C = {A1, A2}) is not an
organic code, because there does not exists a second codemaker C′ ⊂ M that
assigns E1 and E2 to B1 and B2 in a different way than C does. Thus we can
say that the appearance of B1 is a natural sign for E1, because the production
of B1 implies E1 as a necessary species.

4 Discussion

Evolution of Molecular Codes. Many hypothesis have been made how the genetic
code has evolved [17,18,19]. Recently Koonin [19] stated that to understand the
evolution of the genetic code we have to understand the evolution of codes in
general. The codes defined in this paper may be suitable to understand how
codes in general evolve. We hypothesize:

Hypothesis 1: During the origin of life (chemical evolution) and the evolution
of life the number of molecular codes (IBOCs) contained in the reaction systems
discovered and incorporated by living systems increased.

Molecular Codes in Living Systems. If we compare different sub systems of living
systems, e.g. metabolism, protein interactions or gene regulation, we suggest that
these systems have different capacities for realizing molecular codes. In metabolic
networks the mapping between molecules, i.e. reactions, occur only if the linked
metabolites are quite common in their biochemical structure. Because of this
strong relation less arbitrariness can occur and less codes may evolve. Protein
interaction networks might have more molecular codes, as the interactions are
not directly connected to the internal structure, but to surface interactions, that
may be more fuzzy. In gene regulatory networks the number of codes might be
quite high, because the genes might be coupled almost arbitrarily, since there is
no structural linkage between them. In summary we hypothesize:

Hypothesis 2: The molecular systems of cells have different semiotic capacities,
i.e. have different number of IBOCs. We propose that metabolic networks, pro-
tein interaction networks and gene regulatory networks contains an increasing
number of IBOCs, respectively.

Note that both hypotheses can be tested by applying an IBOC-identifying algo-
rithm on the respective reaction networks.

Relation to Information Theory. Our definition of an IBOC should capture some
semantical aspect of biological information. But how is it related to statistical
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or information theoretic concepts? A common approach is to equate informa-
tion with correlation or mutual information between two random sources, e.g.
the message and its environment [20]. High mutual information would also be
necessary for our IBOCs, but not sufficient. In other words, measuring a cor-
relation or mutual information between two worlds does not necessarily imply
that there is a code or a semiotic structure. In addition we need “arbitrariness”,
represented formally by the alternative codemaker C′. Otherwise we have direct
physical causal relationship or a natural sign (cf.[10]).

Generalization of IBOCs. Here, we have restricted our study to a most simple,
non-trivial class of molecular organic codes, the IBOCs. This approach gener-
alizes relatively obviously in various directions: (1) We can allow an arbitrary
number of signs and meanings. (2) The mapping f needs not to be injective, like
as in the genetic code. (3) A sign or meaning could be defined by quantitative
properties like concentration ranges or oscillatory frequency ranges. (4) We can
consider dynamics by requiring that the mapping between signs and meanings
must be realizable by a feasible and specific trajectory. (5) We might consider
further algebraic constraints like catalytic closure or self-maintenance [21]. Note
that some dynamical properties can already be considered implicitly when deal-
ing with algebraic criteria as we did here (cf. Theorem 1, [21]). E.g. we could
require that the union of sign and codemaker generates a chemical organization
containing the meaning; otherwise the meaning would appear only as a transient
phenomenon. (6) We can measure the arbitrariness of a code by the number of
alternative codemakers and how difficult (or likely) it is to make them. (7) With
fuzzy-set theory or information theory we can obtain a more contineous organic
code concept.

Pragmatics. Here, we have completely neglected the pragmatic aspect of bio-
logical information. We have only dealt with a semantic issue: the code, which
relates signs to meanings. In the future we have to include pragmatics, by an-
swering questions like: How is the code used? Or, in particular in the light of
evolution, how is the code used for self-maintenance and reproduction. Having
made the notion of a molecular code precise should ease this work significantly.

5 Conclusion

The definition of a molecular organic code and its specific formal instance the
IBOC (Def. 3) allows us to study organic codes and thus semantic structures
in reaction systems. It provides a precise instrument to characterize a reaction
system to what degree it can realize organic codes and how it may operate as
a semiotic system. The molecular sub-systems of life have quite likely differ-
ent capacities for realizing molecular organic codes (e.g. metabolism < protein
network < gene regulatory network). And we hypothesize that the discovery of
those reaction systems that provide easily many organic codes were important
steps during the origin and evolution of life. Our approach should allow to make
this hypothesis more precise and testable in the near future.
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Abstract. In human genetics a primary goal is the discovery of genetic
factors that predict individual susceptibility to common human diseases,
but this has proven difficult to achieve because these diseases are likely to
result from the joint failure of two or more interacting components. Cur-
rently geneticists measure genetic variations from across the genomes
of individuals with and without the disease. The association of single
variants with disease is then assessed. Our goal is to develop methods
capable of identifying combinations of genetic variations predictive of
discrete measures of health in human population data. “Artificial evo-
lution” approaches loosely based on real biological processes have been
developed and applied, but it has recently been suggested that “compu-
tational evolution” approaches will be more likely to solve problems of
interest to biomedical researchers. Here we introduce a method to evolve
parsimonious solutions in an open-ended computational evolution frame-
work that more closely mimics the complexity of biological systems. In
ecological systems a highly specialized organism can fail to thrive as
the environment changes. By introducing numerous small changes into
training data, i.e. the environment, during evolution we drive evolution
towards general solutions. We show that this method leads to smaller
solutions and does not reduce the power of an open-ended computa-
tional evolution system. This method of environmental perturbation fits
within the computational evolution framework and is an effective method
of evolving parsimonious solutions.

1 Introduction

Computational evolution (CE) is a promising open-ended evolution approach
inspired by the intersection of artificial life approaches which mimic biology and
artificial evolution approaches which draw inspiration from darwinian processes
[1]. The goal of CE, as opposed to artificial evolution, is to provide an open-ended
evolutionary framework which draws heavily from true biology. A primary ben-
efit of this approach is that researchers may simultaneously discover good solu-
tions to real problems and the evolutionary processes that led to those solutions
[2]. The flexible CE approach has previously been applied to both artificial life
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problems with Avida-like organisms [3] and human genetics where the organ-
isms are models predictive of disease risk [2,4]. Here we introduce a biologically
inspired method capable of driving the system towards parsimonious solutions.
Specifically we explore the impact of environmental noise on evolved solutions
in a computational evolution system (CES) capable of building complexity.

We evaluated the effect of environmental noise using the CES developed by
Moore et al. [4]. This CES, shown in figure 1, is capable of both evolution of
Avida-like organisms and open-ended evolution for bioinformatics problem solv-
ing in the domain of human genetics. This framework is hierarchically organized
and the version used here is described in detail in Moore et al. [2]. For this work

Fig. 1. An overview of the computational evolution system (CES) for discovering sym-
bolic discriminant functions that differentiate disease subjects from healthy subjects
using measurements of single nucleotide polymorphisms (SNPs). The hierarchical struc-
ture is shown on the left while specific examples are shown in the middle. At the lowest
level (D) is a grid of solutions. Each solution consists of a list of functions and their
arguments (e.g. X1 is an attribute) that are evaluated using a stack (denoted by ST
in the solution). These solutions are applied to the dataset (E) at each generation and
environmental noise (H) is added in various amounts. Here we examine the impact
of environmental noise on solutions generated by the system. The next level (C) is a
grid of solution operators that consist of some combination of the ADD, DELETE and
COPY functions. These are capable of using ReliefF scores (F) or an attribute archive
(G). ReliefF scores are derived by pre-processing the data (E). The attribute archive
(G) is derived from the frequency with which each attribute occurs among solutions
in the population. The top two levels of the hierarchy (A and B) exist to generate
variability in the operators that modify the solutions. This system allows operators
of arbitrary complexity to modify solutions. Note that we used 36x36 grids of 1296
solutions in the present study. A 12x12 grid is shown here as an example.
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we modify the system by altering the data with environmental noise, shown as
H. At each generation we begin with the initial dataset. Next we alter a speci-
fied portion of the SNPs for each individual. Because each SNP can have three
potential genotypes, alteration consists of setting the current genotype for that
SNP for that individual to a genotype value chosen randomly.

1.1 Robustness and Noise

Biological organisms evolve to be robust in response to a changing environment
[5]. A species can be extremely successful in a narrow environmental range, but
to survive environmental changes the species must continue to succeed under
a variety of conditions. By analogy, a CES should evolve solutions that work
well over a range of datasets, not just a single training set. This is particularly
important for the genetic analysis of common human diseases where many be-
lieve genetic, environmental and stochastic factors play key roles in determining
disease susceptibility [6]. The complex relationships between these factors lead
to noisy datasets in which it is critical that over-fitting be prevented. Indeed,
replication in an independent dataset has become a recognized criterion for val-
idation of results in this field [7]. In biology, a species may become over-adapted
if it is isolated for generations in an unchanging environment. Similarly, a CES
may over-fit when trained on an unchanging dataset.

Here we propose a method to evolve robust solutions: environmental noise.
Selection for robustness is difficult to accomplish directly in a constant environ-
ment, but the presence of environmental noise can drive the evolution of robust
solutions [5,8]. Frequent environmental changes require solutions to be robust
if they are to exhibit consistently high fitness. Here we expect this robustness
to be exhibited through a decrease in solution size. Larger solutions often use
more environmental information (SNPs and functions) to better classify indi-
viduals, but when environmental noise changes from generation to generation
these larger solutions also have greater exposure to noise and can be subject
to greater fluctuations in fitness. For this reason we hypothesize that there is
some level of environmental noise that will allow solutions to evolve which are
more compact (i.e. have fewer functions) and use fewer attributes (SNPs) than
solutions evolved on a static dataset, while having similar or better predictive
power on an independent dataset.

1.2 The Problem Domain

The practice of human genetics is rapidly changing due to the availability of new
technologies that facilitate the measurement of more than 106 DNA sequence
variations from across the genome. The field is no longer limited by ability to
measure the genome but instead by a lack of tools to effectively analyze it.
Current tools have had only limited success identifying genetic variations that
play a role in the initiation, progression and severity of common human diseases
such as breast cancer and schizophrenia [9,10].

Here we focus exclusively on one type of variation, the single nucleotide poly-
morphism (SNP). A SNP is a single point in the genome that differs between
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people. The charge is to develop algorithms which can detect and character-
ize SNPs predictive of human health. Success is difficult due to non-linearity
in the SNPs to disease mapping. This non-linearity is due, in part, to epista-
sis which is a term for non-additive gene-gene interactions. Epistasis is believed
to be a ubiquitous component of the genetic architecture of common human
diseases [11]. Therefore, the identification of genes with genotypes that confer
an increased susceptibility to a common disease will require a research strategy
that embraces this complexity [12]. The implication of epistasis for data min-
ing strategies is that SNPs need to be considered jointly in learning algorithms
and, because the mapping between the attributes and class is nonlinear, the
concept difficulty is high [13]. Previously Moore et al. [2,4] have developed a
computational evolution system (CES) capable of detecting and characterizing
gene-gene interactions in human genetics. The goal here is to explore the role of
environmental noise during fitness evaluation. Specifically we examine whether
this noise allows this CES to effectively develop parsimonious models capable of
explaining a complex non-linear relationship between genotype and disease.

2 Experimental Design and Data Analysis

Our goal was to evaluate this CES with and without environmental noise. This
noise (Figure 1H) was added during solution evaluation. During each genera-
tion noise, H, was applied to the original data (E). For each SNP and individual
combination there was a probability (h) that the observed genotype at that SNP
would be changed to a different genotype. This dataset, now altered by environ-
mental noise, was used to evaluate the fitness of the solutions. The solution best
able to classify these altered data was compared to the best solution discovered
previously on the original data (E). In this way we avoided choosing a best-of-run
simply because it best classified the last generation of noise. It was this best-of-
run which was returned as the solution. For the CES we used parameters from
Moore et al. [2] (a solution grid size of 36x36, 500 generations, and a mutation
frequency of 0.5). We examined the effect of various levels of environmental noise
(h = {0.05, 0.1, 0.15, 0.2}) and compared results to those without noise (h = 0).
A total of 100 runs with different random seeds were performed for each level
of noise. By comparing solutions generated in many different runs which used
varied levels of noise we could examine role of noise in evolution.

The central question addressed in this study is whether the presence of this
noise causes evolved solutions to be more parsimonious. Here we evaluated par-
simony through both the number of relevant functions and the number of unique
attributes. The relevant functions in a solution were those that contributed to
classification. Every function leaves its value on the stack and can take values
from the stack; values that remained on the stack at the end of classification
were not relevant. The attributes considered unique were those occuring at least
once in a relevant portion of the solution. To determine whether different lev-
els of noise led to statistically significant differences in solution parsimony we
performed a Kruskal-Wallis (KW) analysis. KW is a non-parametric version of
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the analysis of variance (ANOVA) which is appropriate when the assumptions
of an ANOVA are not met [14]. This test allowed us to determine whether dif-
ferences in the results obtained using various noise levels were likely to be due
to chance. A significant KW p-value (p ≤ 0.05) meant that one would only ob-
serve differences in the distributions of this magnitude one time out of twenty
if there were no real effect. When the KW test was significant we performed a
non-parametric post-hoc test. This post-hoc test allowed us to evaluate whether
results for individual levels of noise (h = {0.05, 0.1, 0.15, 0.2}) were significantly
different than results with no noise (h = 0).

We were also interested in whether noise significantly altered the power of the
CES strategy. We therefore needed disease models, so we generated five models
exhibiting complete epistasis consisting of two relevant SNPs with heritabilities
of 0.4. This means that in these datasets approximately 40% of the phenotypic
variability is explained by genotype. We used each of these models to simulate a
training dataset and a validation dataset. To generate each dataset we simulated
1600 individuals (800 cases and 800 controls) using one of these models for the
relevant SNPs. To force the CES to perform attribute selection we combined
these relevant SNPs with 998 irrelevant SNPs for total dataset sizes of 1000
SNPs and 1600 individuals.

We examined how many times the CES discovered the correct SNPs and
approximated a correct model. We evaluated the evolved solutions on the inde-
pendent validation datasets. Across all models, solutions having the two relevant
SNPs and an acceptable model using these SNPs could attain validation accu-
racies greater than 0.75 while those lacking either the SNPs or the model could
not. We therefore considered any solution that attained an accuracy greater than
0.75 on these validation datasets correct. We counted the number of solutions
that attained this or greater accuracy. This count, expressed as a percentage, was
an estimate of the power of the method. We were also interested in the number
of models that were unable to separate individuals in the validation datasets.
These models had accuracies less than 45%, likely because they used rare cases
to classify a small number of individuals in the training data and these situ-
ations did not occur in the validation data. We termed these invalid solutions
and treated them similarly to power. To assess the reliability and robustness of
these results quantitatively we use Fisher’s exact test. Fisher’s exact test is a
significance test appropriate for categorical count data [14]. The p-value for this
test could be interpreted as the likelihood of observing these differences in power
without an association between amount of environmental noise and power. We
considered results significant when p ≤ 0.05. With this significance threshold we
would only declare levels significant one time out of twenty when there was no
real effect.

3 Results

Detailed results are shown in table 1. In order to address whether these solu-
tions were more parsimonious we used two measures of solution complexity: the
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Table 1. The results for all five models are summarized. Power, invalid solutions,
the number of relevant functions, and the number of unique attributes are described
in section 2. The numbers of relevant functions and unique attributes are summarized
with means. Significance of differences from no noise (h = 0) are indicated by asterisks:
* indicates 0.01 < p ≤ 0.05, ** indicates 0.001 < p ≤ 0.01 and *** indicates p ≤ 0.001.

Model Noise (h) Power Invalid Solutions Relevant Functions Unique Attributes

1

0.00 100 0 9.39 3.59
0.05 100 0 7.79 2.61 (*)
0.10 100 0 5.75 (***) 2.15 (***)
0.15 98 0 6.28 (***) 2.26 (***)
0.20 99 0 5.39 (***) 2.09 (***)

2

0.00 97 3 11.13 5.10
0.05 100 0 5.74 (***) 2.56 (***)
0.10 100 0 5.39 (***) 2.28 (***)
0.15 100 0 4.81 (***) 2.18 (***)
0.20 100 0 5.12 (***) 2.18 (***)

3

0.00 98 2 9.60 3.58
0.05 100 0 7.12 (***) 2.46 (***)
0.10 99 0 7.15 (**) 2.25 (***)
0.15 100 0 5.93 (***) 2.16 (***)
0.20 100 0 5.74 (***) 2.12 (***)

4

0.00 98 1 10.99 4.39
0.05 100 0 8.12 (***) 2.77 (***)
0.10 100 0 7.21 (***) 2.5 (***)
0.15 100 0 5.7 (***) 2.15 (***)
0.20 99 0 6.42 (***) 2.25 (***)

5

0.00 99 0 8.25 3.84
0.05 100 0 5.58 (***) 2.49 (***)
0.10 100 0 4.09 (***) 2.17 (***)
0.15 99 0 4.42 (***) 2.11 (***)
0.20 98 0 4.2 (***) 2.06 (***)

number of relevant functions and the number of unique attributes as described
in section 2. Solutions evolved with greater amounts of environmental noise con-
tained fewer relevant functions. The differences in the distributions observed
were significant (KW p ≤ 0.05). Additionally the post-hoc test showed that the
number of relevant functions for each level of noise (h = {0.05, 0.1, 0.15, 0.2})
was significantly (post-hoc p-values≤ 0.05) different from the control number of
relevant functions, i.e. h = 0 for all but model 1 with the lowest level of noise.
Solutions with equivalent accuracy but fewer functions are often preferable be-
cause they are often easier to interpret and they take less computational time
to evaluate.

We also observed that environmental noise reduced the number of unique at-
tributes per solution. These differences were significant (KW p-value < 0.05) and
the post-hoc test confirmed that the number of unique attributes for each level
of noise (h = {0.05, 0.1, 0.15, 0.2}) was significantly different from the control
(h = 0) number (p-values ≤ 0.05) across all models and levels of noise.
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Solutions with successful functions that contained both relevant attributes
achieved validation accuracies greater than 0.75 and were considered successful
during the power analysis (see Section 2). The level of noise did not have a
significant effect on the power of the CES approach for any of the individual
models, which indicates that the increased parsimony did not appear to result
in reduced power. Indeed across all models the power without noise (98.4%)
significantly differed from the powers obtained with noise levels of 0.05 (100%,
p ≤ 0.01) and 0.10 (99.8%, p ≤ 0.05) but did not significantly differ from the
powers obtained with noise levels of 0.15 (99.4%, p > 0.05) and 0.20 (99.2%,
p > 0.05). These results indicated that, at the tested levels of noise, power was
not reduced and was actually significantly increased for some levels of noise.

Also of note was that, in rare cases, the solution evolved on training data
was unable to classify individuals in validation data. This could occur when a
genotype value used for classification in the training dataset did not occur in the
validation data. When noise was used these rare situations could arise by chance
which could allow for selection against non-robust solutions. Here we observed
that invalid solutions (those unable to obtain an accuracy greater than 45% on
the testing data) only occured when noise was absent. For each individual model
differences were not significant but across all models the difference between the
number of invalid solutions evolved in the absence of noise (6) was significantly
different (p ≤ 0.05) than the number of invalid solutions evolved in the presence
of noise (0).

4 Discussion and Conclusions

We have shown that environmental noise is an effective biologically inspired
method of evolving parsimonious solutions in an open-ended computational
evolution system. Solutions involved in the presence of noise were consistently
smaller and this decrease in solution size did not come at a cost of power. In fact
for modest levels of noise the power was statistically significantly higher. Envi-
ronmental noise is particularly attractive for CES approaches because of clear
parallels to biology [5]. Our goal when using evolutionary computing in genetics
is not to explain all of the training data but to discover underlying models that
contribute to disease risk. By evolving solutions robust to environmental noise
we avoid over-fitting the training data without reducing our ability to explain
the underlying disease model. If these methods can reliably generate compact
genetic models able to capture the complex interactions which predict individual
susceptibility to common human disease, computational evolution and other ar-
tificial life inspired approaches will have a positive impact on our understanding
of human health.

Acknowledgements

This work is funded by NIH grants LM009012, AI59694, HD047447, and
ES007373.



320 C.S. Greene, D.P. Hill, and J.H. Moore

References

1. Banzhaf, W., Beslon, G., Christensen, S., Foster, J.A., Kepes, F., Lefort, V., Miller,
J., Radman, M., Ramsden, J.J.: From artificial evolution to computational evolu-
tion: a research agenda. Nature Reviews Genetics 7, 729–735 (2006)

2. Moore, J.H., Greene, C.S., Andrews, P.C., White, B.C.: Does complexity matter?
artificial evolution, computational evolution and the genetic analysis of epistasis
in common human diseases. In: Genetic Programming Theory and Practice VI,
pp. 125–143. Springer, Heidelberg (2009)

3. Tyler, A.L., White, B.C., Greene, C.S., Cowper-Sal.Lari, R., Moore, J.H.: Devel-
opment and evaluation of an open-ended computational evolution system for the
creation of organisms with complex genetic architecture. In: Proceedings of the
2009 IEEE Congress on Evolutionary Computation, pp. 2907–2912 (2009)

4. Moore, J., Andrews, P., Barney, N., White, B.: Development and evaluation of an
open-ended computational evolution system for the genetic analysis of susceptibil-
ity to common human diseases. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008.
LNCS, vol. 4973, pp. 129–140. Springer, Heidelberg (2008)

5. Wagner, A.: Robustness and Evolvability in Living Systems. Princeton University
Press, Princeton (2005)

6. Aranda-Anzaldo, A., Dent, M.A.R.: Developmental noise, ageing and cancer. Mech-
anisms of Ageing and Development 124(6), 711–720 (2003)

7. Chanock, S.J., Manolio, T., Boehnke, M., Boerwinkle, E., Hunter, D.J., Thomas,
G., Hirschhorn, J.N., Abecasis, G., Altshuler, D., Bailey-Wilson, J.E., Brooks,
L.D., Cardon, L.R., Daly, M., Donnelly, P., Fraumeni, J.F., Freimer, N.B., Ger-
hard, D.S., Gunter, C., Guttmacher, A.E., Guyer, M.S., Harris, E.L., Hoh, J.,
Hoover, R., Kong, C.A., Merikangas, K.R., Morton, C.C., Palmer, L.J., Phimister,
E.G., Rice, J.P., Roberts, J., Rotimi, C., Tucker, M.A., Vogan, K.J., Wacholder,
S., Wijsman, E.M., Winn, D.M., Collins, F.S.: Replicating genotype-phenotype
associations. Nature 447(7145), 655–660 (2007)

8. Felix, M.A., Wagner, A.: Robustness and evolution: concepts, insights and chal-
lenges from a developmental model system. Heredity 100(2), 132–140 (2008)

9. Shriner, D., Vaughan, L.K., Padilla, M.A., Tiwari, H.K.: Problems with Genome-
Wide association studies. Science 316(5833), 1840–1841 (2007)

10. Williams, S.M., Canter, J.A., Crawford, D.C., Moore, J.H., Ritchie, M.D., Haines,
J.L.: Problems with Genome-Wide association studies. Science 316(5833), 1841–
1842 (2007)

11. Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to
common human diseases. Human Heredity 56, 73–82 (2003)

12. Tyler, A.L., Asselbergs, F.W., Williams, S.M., Moore, J.H.: Shadows of complexity:
What biological networks reveal about epistasis and pleiotropy. BioEssays, 220–227
(2009)

13. Freitas, A.: Understanding the crucial role of attribute interactions. Artificial In-
telligence Review 16, 177–199 (2001)

14. Sokal, R.R., Rohlf, F.J.: Biometry: the principles and practice of statistics in bio-
logical research, 3rd edn. W. H. Freeman and Co., New York (1995)



Gene Regulatory Network Properties Linked to

Gene Expression Dynamics in Spatially
Extended Systems

Costas Bouyioukos and Jan T. Kim

University of East Anglia, NR4 7TJ, Norwich, UK
k.bouyioukos@uea.ac.uk

Abstract. Gene expression levels within a cell are determined by the
network of regulatory interactions among genes. In spatially extended
systems of multiple cells, gene expression levels are also affected by ac-
tivity in neighbouring cells. This interplay of a genetic regulatory net-
work and interactions among neighbouring cells may qualitatively alter
the dynamics of gene expression and is at the core of biological pattern
formation.

In this study, we investigate the effects of the topology of a regulatory
network on its pattern formation potential. We score networks by com-
paring the heterogeneity of gene expression levels generated on a lattice
to that of the levels generated in a well stirred reactor as a null model,
and assess the correlation of this score to characteristics of topology, such
as density or centrality measures.

Density is strongly correlated to the potential to generate gene expres-
sion heterogeneity. For some networks that produce high heterogeneity
on lattices, centrality and membership in cycles are indicative of the
impact which deleting a gene has on the level of heterogeneity produced.

1 Introduction

Gene Regulatory Networks (GRNs) consist of genes and gene products. Each
gene encodes a product, and a gene’s expression level is the concentration of the
product that the gene encodes. Gene expression rates, i.e. the speed at which a
gene’s product is synthesised, are controlled by regulatory interactions of gene
products with the promoter of the gene [1, Ch.7]. Gene expression rates are sub-
ject to variation, activation of a gene increases its expression rate, and repression
decreases its expression rate. The set of gene product concentrations within a
cell at a given time constitutes the state of the cell. Following Kauffman’s clas-
sical NK network approach [2], different cell types can be formalised as different
stable states. The genes and the regulatory interactions of a GRN constitute its
topology. The topology of a GRN plays a substantial role in controlling gene
expression [3], and it also enables classification of GRNs, e.g. as a random graph
or a scale free graph [4]. Cycles are prominent features of networks, and their
role in determining dynamic properties of GRNs has been studied analytically by
Thomas [5] and Soulé [6]. Quantitative models of GRNs need to include various
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dynamic parameters which describe properties of gene products such as decay
and diffusion, as well as strength and other properties of regulatory interactions.

Many biological systems are spatially extended, e.g. tissues are spatially ex-
tended structures of cells. Gene expression levels are subject to variation within
tissues, and neighbouring cells in a tissue exchange gene products through diffu-
sion (and other processes). In such systems, the GRN (comprised of the topology
and the dynamical parameters) is not sufficient to determine the dynamics of
gene expression levels. Some processes, such as pattern formation, can occur
only in spatially extended systems, and many aspects of dynamical systems may
be impacted by spatial structure. The effect of spatial structure on hypercy-
cle dynamics, studied by Boerlijst and Hogeweg [7], is a classical example of a
qualitative effect of spatial structure on the dynamics of a chemical system.

Here, we explore correlations between the pattern formation potential of a
GRN and its topological features (e.g. density, diameter, average clustering co-
efficient). Furthermore, we also investigate correlations between pattern forma-
tion capacity and individual gene characteristics (e.g. degree, centralities). As
an indicator of pattern formation we consider heterogeneity of gene expression
levels. We use a lattice as a spatially extended system. Lattices have been used
in numerous studies to model multicellular systems, see e.g. [8,9]. We introduce
an information based score, inspired by Maynard Smith [10], to quantify het-
erogeneity of gene expression levels, and employ an optimisation approach to
find network topologies that have an elevated potential to generate heterogene-
ity in spatially extended systems. We determine the topological features of these
GRNs and study their correlation to the information based score. To charac-
terise individual gene effects, we simulate single gene knock-outs (i.e. loss of
function mutations) by deleting each gene individually from the GRN. We then
investigate correlations between the effects of these knock-outs on the score and
individual gene measures such as centrality measures [11] and the number of
cycles that a gene is a member of.

2 Methods and Analytical Framework

2.1 GRN Modelling

We use transsys [12], a computational framework to model GRNs. Transsys
consists of a formal language to describe GRNs, a facility to simulate gene ex-
pression dynamics, and various other tools. A transsys program P represents
a GRN and contains the declarations of factors and genes. A gene declaration
consists of a promoter block and the product block. The product block contains
the specification of the factor which the gene encodes. The promoter block con-
sists of promoter elements, each of which specifies either constitutive expression
or describes a regulatory effect of a factor on the expression rate of the gene.
The parameters of such a regulatory element are aspec, describing the binding
specificity of the regulating factor to the element, and amax, the maximum ex-
pression rate that the element can cause. The declaration of a factor f specifies



Gene Regulatory Network Properties Linked to Gene Expression Dynamics 323

the decay rate rf and the diffusibility df , a real valued parameter that rep-
resents the general ability of a factor to diffuse. The set of factors is denoted
by F . Gene knock-outs are straightforwardly simulated by deleting the gene in
question from a transsys program. A transsys instance p of a transsys program
P has a state which consists of the factor concentrations C(f, p) for all factors
f ∈ F . Transsys operates in discrete time steps. Transsys instances provide an
update method which uses the transsys program to compute the state at time
step t + 1 based on the state of an instance at time t. Further information and
a copy of transsys can be obtained from [13].

2.2 Spatial Organisation

Spatial structure is modelled by a 2D orthogonal lattice with periodic bound-
aries. Each lattice site is occupied by a transsys instance of the lattice’s transsys
program. A set of transsys instances P on a lattice is denoted by Plattice. In
each time step, the amount of factor f that diffuses from an instance p to its
4 neighbours is given by Df = C(f, p) · df/(4df + 1). The update of a lattice
consists of the synchronous application of diffusion, followed by the invocation
of the update method on each transsys instance on the lattice.

A well stirred reactor is implemented by simulating gene expression as in the
lattice, but in addition after every update the positions of the transsys instances
are randomised. This reactor has no spatial organisation and serves as the null
model for our experiments. A set of transsys instances on a well stirred reactor
is denoted by PwellStirred.

2.3 Quantifying Heterogeneity in Gene Expression

To quantify heterogeneity in factor concentration in a set of transsys instances
a Shannon information based measure has been devised. A factor with homoge-
neous distribution of gene expression levels throughout a set of transsys instances
is in maximum entropy state and contains no information, whereas factor dis-
tributions that exhibit heterogeneity have a positive information content. In a
transsys instance p from a set of transsys instances P , a factor f has relative
concentration R(f, p) = C(f, p)/Ctotal(f, p), where Ctotal(f, p) is the sum of con-
centrations of factor f in P . The Shannon entropy of this factor f on P is then
given by:

H(f,P) = −
∑
p∈P

R(f, p) log2 R(f, p) (1)

A set of transsys instances where a factor’s concentration is homogeneous has
maximum Shannon entropy Hmax(f,P) = log2 |P|. The information content
I(f,P) of a factor f in the set P is I(f,P) = Hmax(f,P)−H(f,P) For a set of
transsys instances P of a transsys program with factor set F , the information
based measure for the whole set I(P) is:

I(P) =
∑
f∈F

I(f,P) (2)
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2.4 Optimisation

An objective function was devised such that it returns negative values for net-
works that generate a higher level of heterogeneity on a lattice than in a well
stirred reactor. For a lattice and a well stirred reactor populated with instances
of a transsys program P , the same initial conditions (drawn randomly from the
range of potential factor concentrations of the GRN) and both updated t times,
the objective function is:

O(P, t) = I(PwellStirred,t)− I(Plattice,t) (3)

We optimise the dynamic parameters of a transsys program by randomly per-
turbing them and accepting the perturbed parameters if the objective score is
improved. The search process starts with randomly generated dynamic parame-
ters. After a fixed number of rounds the optimised transsys program is returned.

2.5 Network Analysis

Network Properties. The following network based measures have been used
to characterise GRNs:

– Clustering coefficient: a measure of the density of triangles in a network [14].
– Diameter: the length of the longest of all shortest paths in the graph [15,

Ch.22].
– Number of cycles: the number of directed cycles in the graph.
– Average cycle length: the average length of the directed cycles of the graph.
– Density: the number of edges of the network over the maximum possible

number of edges.

Each network measure was correlated with the objective score of each GRN after
optimisation. Spearman’s ρ index and the corresponding p-value was computed
to quantitatively assess the correlations.

Individual Gene Properties. Node centrality measures have been employed
to characterise individual genes based on the topology of a GRN. The degree,
betweenness, closeness and eigenvector centrality as described in [11] were used.
Moreover, to investigate the role of cycles, the number of cycles that each gene
is member of has been computed. For each gene, the objective score of the
single gene knock-out has been calculated and the loss in the objective score was
correlated with each individual gene property. The igraph library [16] was used
to compute most of the properties described in the network analysis section.

3 Results and Discussion

We use lattices of 5 cells height and 60 width. Both the lattice and the well
stirred reactor were run for 400 time-steps to allow the systems to go through
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Fig. 1. Grey-scale image of factor concentrations of one factor on a lattice after opti-
misation. Concentration values range from ≈ 0 (black) to 0.27 (white).

initial transients and move towards attractors. Figure 1 shows a grey-scale im-
age of the concentrations of a factor after optimisation on a lattice. This is a
typical example of gene that shows a heterogeneous, striped pattern of expres-
sion levels on the lattice, whereas in the well stirred reactor expression levels
are homogeneous. The information content of this factor f on the lattice is
I(f,Plattice,400) ≈ 1.3 bits and the well stirred reactor I(f,PwellStirred,400) ≈ 0,
the maximum information content for a factor on the lattices of our experiments
is Hmax = log2 300 ≈ 8.2.

3.1 Network Properties Results

We randomly generated networks of 15 nodes and 45 edges, using either the
Erdös-Rényi (ER) method [17] or a process generating power-law (PL) degree
distributions. We generated 15 networks of each type, thus obtaining 30 net-
works. Each network was optimised three times, starting from different dynamic
parameter settings, thus producing 90 GRNs in total. Figure 2 shows correlation
plots of network properties and the objective scores obtained after optimisation
for the 90 GRNs. There is no detectable correlation of the average clustering
coefficient and the number of cycles to the objective score (p > 0.05). A smaller
diameter is weakly (p = 0.017) correlated to smaller objective scores and thus
more heterogeneity on the lattice. Similarly, a smaller average cycle length is
correlated to more heterogeneity on the lattice (p = 0.028).

3.2 Effects of Density

Random networks consisting of 15 nodes and with a number of edges ranging
from 16 to 60 were used to investigate density effects. For each number of edges,
4 ER and 4 PL networks were randomly generated. Each network was optimised
starting from 3 initial dynamic parameter settings, resulting in 552 GRNs. Fig-
ure 3 shows the results. There is a very strong correlation of density to the
objective score (p  0.0001). Higher density is related to lower objective scores,
and at low density values, minimal scores are much closer to 0 than they are at
higher densities.

3.3 Gene Characteristics Results

For each of the 90 GRNs used in Sec. 3.1 a full set of single gene knock-out
experiments has been conducted. Results from a representative GRN which pro-
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Fig. 2. Correlation plots of network topology properties against the objective scores of
90 GRNs
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Fig. 3. Correlation plot of network density against objective scores of 552 GRNs
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Fig. 4. Correlation plots from a GRN with low objective score. Four correlation plots
depict centralities of individual genes against the loss in the objective score due to the
gene knock-out (KO). The last is the number of cycles that a gene is member of against
the same objective score loss.

duces a stripe pattern on the lattice are shown in Fig. 4. All centrality measures
(degree, closeness, betweenness and eigenvector centrality) correlate strongly
(p < 0.0001) with the objective score loss due to the knock-out. Loss in objec-
tive score is also correlated (p ≈ 0.0004) to the number of cycles the knocked-out
gene is member of. The more cycles a gene is member of the greater is the im-
pact of the deletion of this gene in the objective score. This finding might be
related to the roles that cycles play in controlling the factor concentration pat-
terns in spatial systems and motivates further studies on the effect of cycles in
the behaviour of GRNs.

3.4 Summary and Outlook

We have explored relationships between topological features of a GRN to its
potential to take advantage of spatial structures to generate heterogeneity and
patterns. With constant density, we have not found any global features of topol-
ogy (diameter, number of cycles, average clustering coefficient, average cycle
length) that are strongly correlated to the potential to generate heterogeneity of
gene expression levels in a spatially extended system. Density itself is strongly
correlated to such heterogeneous gene expression levels. For GRNs that pro-
duce spatial heterogeneity of gene expression, this property is highly related to
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topological features of individual genes (i.e. centralities and the number of cycles
that a gene is member of). As cycles play an important role in gene expression
dynamics, we plan to focus our immediate future research on further character-
ising cycles and studying their impact on pattern formation.
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Abstract. Phylogenetic trees are the most commonly used method for
representing the relationships among living organisms. Additive trees are
often used to show evolutionary features, based on models of molecular
evolution. In this case, information in the tree is contained only in the
root-to-node direction or, in other words, in its topology. Indeed, in a
typical left-to-right phylogram, the vertical order of taxa is meaningless,
and the degree of similarity between taxa is reflected by the branch path
between them. In an effort to make unresolved trees more informative,
we applied a (1+1) Evolutionary Algorithm to find the best graphical
tree representation that includes vertical information. The order of taxa
linked to polytomic nodes is defined using data from distance matrices
created from different features of taxa, such as genetic, temporal or geo-
graphical data. In this way, the vertical ordering of taxa on a phylogenetic
tree can be used to represent non-genetic features of interest.

1 Introduction

A central goal of evolutionary biology is to describe the ‘Tree of Life’, or to infer
relationships among all living organisms. Phylogenetic trees are the most com-
monly used representations of these relationships, consisting of a combination
of nodes connected by branches. Extant individuals are represented by terminal
nodes (branch tips), linked together through a common internal node, which
represents a common ancestor.

Additive trees, whose branches contain information about the degree of dif-
ference between nodes, are often used to show evolutionary features. Such trees
are commonly based on genetic information and models of molecular evolution.
In this case, information in the tree is contained only in the root-node direction,
by the pattern of linkages between branches and nodes; or, in other words, in
its topology. Indeed in a typical ‘left-to-right’ phylogram, like the one shown in
Fig. 1, the vertical order of taxa is meaningless, and the degree of similarity
between taxa is only reflected by the branch path between them [1].
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Fig. 1. West Nile virus phylogenetic topology obtained by the Bayesian approach
MrBayes software and proposed in [2]

A second important feature of phylogenetic trees is the node’s degree: in a
fully resolved tree, all internal nodes have a degree equal to three, but, because
of simultaneous divergences of sequences or, more likely, because of insufficient
data, nodes can be a polytomies, joining more than three branches. In this last
case, trees are hard to interpret. Often in such cases, trees are misinterpreted,
with meaning mistakenly ascribed to the vertical proximity of taxa or clades.
In cases where the vertical ordering of taxa on phylogenetic trees is flexible, the
opportunity exists to ascribe biological meaning to this ordering [3].

In an effort to make unresolved trees more informative, we applied a heuristic
search method to find the best graphical tree representation that would give
biological meaning to the vertical ordering of taxa in a phylogenetic tree. Since,
in a typical dendrogram or cladogram, each node can be freely rotated without
changing tree’s topology [1], it would be possible to group samples with similar
features in the vertical direction, using any kind of relevant information. Taxa
order in polytomic nodes could, for instance, be represented using data from
distance matrices created from different samples features, as genetic, temporal or
geographical data. Such an approach would allow one to draw more informative
phylogenetic trees, especially when such trees contain unresolved nodes.

In the next section, we introduce and discuss the proposed heuristic search
approach. Then, the method is experimentally validated using a West Nile virus
phylogenetic tree in section 3. Finally, in section 4 we present our conclusions
and discuss possible future work.



Adding Vertical Meaning to Phylogenetic Trees by Artificial Evolution 331

2 Searching for More Informative Trees

Finding the tree topology that better describe the phylogentic relations between
a given set of taxa is a difficult problem, and the end result is often a ‘best’ tree
that is only partially resolved.

For trees containing polytomies, taxa ‘closeness’ can be easily misinterpreted,
leading to erroneous attribution of meaning to the vertical order of taxa. Given
that each internal node can be freely rotated without changing tree’s topology,
it should be possible to find the best graphical tree representation that includes
vertical information. This can be seen as an optimization problem. Its search
space contains all the trees that can be obtained by node rotations from a topol-
ogy previously obtained using other heuristic methods based on prior or posterior
probability estimations. In this framework, the search problem would be to find
the graphical representation that minimizes the distance between adjacent taxa,
such distances being defined in matrices created from different sample features
than were used to construct the tree, such as genetic, temporal or geographical
data.

For phylogenetic trees containing large numbers of taxa, this optimization
problem can not be solved by exhaustive searching, mainly because of the size
of the search space. In fact, given a topology with N nodes, each with degree
{d1, d2, . . . , dN} (the root having one branch), the space S of all possible trees
would have the size:

|S| =
N∏

i=1

(di − 1)!

In the case of a phylogenetic tree with 64 taxa, this dimension would range from
|S| = 263 in the case of a completely resolved tree (thus containing 63 internal
nodes all with degree 2), to |S| = 64! for a completely unresolved tree.

Heuristic search method is therefore needed to solve this problem. The sim-
plest approach would be to use a hill-climbing algorithm starting from the topol-
ogy obtained by the tree-building method. Most such methods output a tree in
which taxon order in polytomic nodes is often alphabetical or is taken from the
order of input of sequences. A simple hill-climber would, however, be computa-
tionally unfeasible in most cases, since for each tentative solution s the number
of neighbors |neighs| to be generated and evaluated would be

|neighs| =
N∑

i=1

(
di − 1

2

)
=

N∑
i=1

(di − 1)(di − 2)
2

,

where {d1, d2, . . . , dN} are the degrees of the N internal nodes of the tree topol-
ogy. Considering the same case as above of a tree with 64 clades, this value would
range from |neighs| = 64 to |neighs| = (64× 63)/2 = 2, 016.

As a first approach, we have decided to use a (1+1) Evolutionary Algorithm
(EA). Starting from the original tree, in each generation a new tree is generated
by applying a random swap between two taxa connected to the same node in
the tree. The fitness of the new tree is evaluated as the sum of all the distances
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between each node and the closest r tips according to the genetic distances
matrix (r being the radius in the fitness evaluation, explained below). If the
fitness of the new tree is better than that of the one in the previous generation,
the new tree replaces the old one, and the search procedure continues. If not, the
old tree is retained. This process is iterated for 200,000 generations, resulting in
the creation and evaluation of 200,000 new tentative solutions.

When evaluating the fitness of a tentative solution, the most straightforward
method would be to sum up, for all taxa in the tree, the distance between the
taxon under consideration and the two taxa next to it, i.e. taxa at radius r = 1.
However, it is not obvious that such a choice would be optimal since, when
vertically reading a tree in the vertical dimension, one would also be inclined to
consider as ‘close’ also taxa at distances greater than 1. To evaluate the influence
of this parameter on the search dynamics, we have therefore included different
radii in the fitness calculation.

3 Experimental Validation

West Nile virus (WNV; Flaviviridae; Flavivirus) is a single stranded, positive-
sense RNA virus member of the Japanese encephalitis serocomplex that is trans-
mitted primarily through the bite of infected mosquitoes. Because of the recency
of its introduction into North America, it has been possible to study the phylo-
genesis and the evolution of the virus. Such studies of the virus in North America
have tended to report highly unresolved trees [4,2,5]. In these cases, information
on genetic, spatial or temporal clustering was not apparent, such that population
substructure was investigated using different approaches.

In this preliminary study we used the tree presented by Bertolotti and col-
leagues in 2007, in its original form depicted in Fig. 1 as starting point for the
(1+1)-EA.

The original tree has a total of 132 taxa and 28 internal nodes. The root node
has 76 branches, among which 62 were directly connected to terminal taxa (as
magnified in Fig. 1), pointing out that this part of tree is highly unresolved.
Relating to the previous formulas, the resulting search space is |S| = 1.749 ×
10137, an area too large to be explored with a exhaustive search. Furthermore,
every tree has 2, 975 neighbors. Thus, a simple hill-climber approach would be
too computationally intensive compared with a (1+1)-EA.

To calculate the fitness of each tentative solution, we used the matrix of ge-
netic distances among samples, corrected with the best fit molecular substitution
model (GTR+Γ+I) [6,1].

The trees were evaluated using different fitness radii: in particular, we used
r = 1, 4, 8, 32. For each r, 50 independent runs of the (1+1)-EA have been
performed, thus generating 50 trees with new tips vertical positions. As an initial
comparison among trees generated with different r, we calculated the fitness
of each tree as its relative fitness improvement (obtained as the ratio between
the fitnesses of the considered tree and of the original starting tree). We then
classified each run as Gold, Silver and Bronze, corresponding to 0.8, 0.85 and
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Table 1. Relative fitness improvement: for each fitness radius the number of runs
(hits) over the 50 executed is shown, as well as the mean generation together with its
standard error at which the target was found

r = 1 r = 4 r = 8 r = 32
hits generation hits generation hits generation hits generation

Gold 0 N/A 38 89, 349±7,906.3 50 39, 092±4,770.1 0 N/A
Silver 26 93, 243±7,178.2 38 67, 230±9,409.3 50 2, 035±160.0 0 N/A
Bronze 27 61, 810±9,053.5 39 41, 309±6,638.4 50 714±83.4 50 3, 239±195.7

0.9 relative fitness improvement, respectively (the lower fitness is the better
one). Statistics on this classifications can be found in Table 1: for each fitness
radius the number of runs is shown over the 50 executed together with the mean
generation ± standard error at which the target was found.

With r = 1, no tree was found that reached the Gold position, but more than
half reached both the Silver and the Bronze classes. For r = 4 more than half
of the runs reached the Gold position (thus also the Bronze and Silver ones).
Apparently, better results were obtained with r = 8, since all the 50 runs reached
the Gold class. When the radius r = 32 was used in the fitness evaluation, all
the runs improved only until 0.8 relative fitness (i.e. Bronze position). Trees at
r = 8 reached the Bronze class always in less than 1, 000 generations, while the
other radii obtained this improvement only after 40, 000 generations in average.

In order to compare the trees obtained using different fitness radii, all evolved
trees were evaluated with all the possible radii, from 1 up to 132 (the total num-
ber of the taxa). Fig. 2 depicts the median fitness improvements evaluated at all
possible radii for the runs evolved using the 4 different fitness radii (with a focus
on the range [1, 20]). It can be observed that the radii 8, 9, and 10 correspond to
the region where all trees showed the largest relative fitness improvement. This,
together with the observation in the above paragraph, suggests these radii as
those exhibiting the best evolvability.

Fig. 2. Median fitness improvements evaluated at all possible radii for the runs evolved
using the 4 different fitness radii (solid line: r = 1; dashed line: r = 1; dotted line: r = 8;
dash-dotted line: r = 32). Box area highlights the radius range [1, 20].
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Fig. 3. A West Nile virus phylogenetic tree obtained using the proposed (1+1)-EA
with fitness evaluation radius r = 8

In Fig. 2, it can be also observed that the evaluations of all trees converge
to the same value as radius increases to approximately 120. In fact, when the
radius is equal to the number of taxa in the tree, all trees in the search space
show the same fitness. Thus, an intermediate value between those used to evolve
them and the maximum (where all trees have the same fitness) should be chosen
to compare the trees. We decided to use r = 75, a value that is well above that
used in the search algorithm and that still allows discrimination between the
different curves.

Statistical analysis of relative fitness improvements of the 4 different groups
(r = 1, 4, 8, 32) evaluated at radius r = 75 shows a significant difference among
the 4 groups (Kruskal-Wallis rank sum test p < 0.001). Moreover, these data
highlight a significant ordering among the groups, having r = 1 worst than
r = 4, r = 4 worst than r = 8, and r = 8 worst than r = 32 (all pairwise
Wilcoxon rank sum test p < 0.001).

To justify the use of our fairly complex heuristic search method, we performed
for comparison a random search algorithm with the same number of evaluations
(n = 200, 000). Briefly, our (1+1)-EA found trees with relative fitness improve-
ment of 0.8344 (for r = 1), 0.7943 (for r = 4), 0.7478 (for r = 8), and 0.8511
(for r = 32), whereas the random search method found tree evaluated at 0.9065
(for r = 1), 0.8206 (for r = 4), 0.7699 (for r = 8), and 0.8878 (for r = 32). These
results show that, for all radii, the evolutionary search method consistently out-
performs random search.

The best final tree, shown in Fig. 3, has a completely different vertical taxon
order than the original tree shown in Figure 2, reflecting genetic distances among
the taxa. This presentation is able to highlight interesting features of the sam-
ples: for example, viruses that are from the same geographical origin tend to be
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vertically close together (b), as are some viruses from different States, or collected
in different period (a). Finally, the most genetically divergent group of viruses
is moved to the bottom of the tree (c), highlighting this clade’s uniqueness.

4 Conclusions and Future work

To make unresolved trees more informative, we applied a (1+1)-EA to find the
best graphical tree representation that includes vertical information. Taxon or-
der in polytomic clades was defined using data from distance matrices created
from different samples features, as genetic, temporal or geographical data, in
order to minimize the sum of the distances between adjacent taxa. To validate
the proposed approach we applied it to the West Nile virus phylogenetic tree
presented by Bertolotti and colleagues in 2007. This tree is highly unresolved,
with a large number of samples belonged to highly polytomic internal nodes.
To calculate the fitness value of each tentative solution we have employed the
matrix of genetic distances among samples, corrected with the best fit molecular
substitution model.

First, the influence of the radius for the fitness evaluation on the search dy-
namics was investigated. The trees under consideration were evaluated using
different fitness radii (r = 1, 4, 8, 32). A random search with the same number of
evaluations of the heuristic search was performed. Results show that our search
method consistently outperforms the random one. The most informative results
were obtained with r = 8, since all the runs reached top class in relative fit-
ness improvement. This radius belonged to the region where all trees shown the
largest relative fitness improvement.

In order to compare the trees obtained using different fitness radii, all evolved
trees were evaluated at r = 75, a value that is well above that used in the
search algorithm but that still allows one to discriminate between the different
curves. Although, as expected, trees evolved using r = 32 showed improved
fitness with respect to the other groups, the computational time needed to evolve
these trees is long. Statistical analysis of the experimental data, together with
the observations described above, suggest that a value for the radius in the
fitness evaluation r = 8 might generally strike an acceptable balance between
computational intensity and accuracy.

More generally, our results demonstrate that a heuristic search approach ap-
plied to tree graphical representation can improve the readableness of phyloge-
netic trees, helping in their interpretation. This being a preliminary study to
validate a novel approach to add vertical meaning to phylogenetic trees, several
issues need to be further investigated. Since the search dynamics of the proposed
(1+1)-EA are influenced by the starting tree, future work should focus on differ-
ent random initial tentative solutions. This study may also lead to future work
incorporating real populational EAs, in particular (1+μ)-EAs and (λ+μ)-EAs.
Finally, our approach will need to be validated and applied to other case studies,
and using other types of data from which distance matrices can be constructed.
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Abstract. Taking into account the topology of genetic regulatory net-
works and abstracting recent findings about them, we investigate the
behavior of a new, more biologically plausible, variation of the orig-
inal Random Boolean Network paradigm. We study the dynamics of
Boolean networks with scale-free structures, that evolve in time using a
semi-synchronous topology-driven update scheme. Simulating statistical
ensembles of networks, we discuss the attractors of the dynamics, and
analyze in depth the fault-tolerance of the proposed model. Results are
encouraging, as our model shows comparable and usually better perfor-
mance and resilience to perturbations than the original one and is closer
in spirit to real-life networks.

1 Introduction

Gene regulatory networks (GRNs) are extremely complex systems and we are
just beginning to understand them in detail. However, it is possible, and useful,
to abstract many biological details and focus on the system-level properties of
the whole network dynamics. This Complex Systems Biology approach, although
not strictly applicable to any given particular case, provides interesting general
insight. Random Boolean Networks (RBNs) have been introduced by Kauffman
more than thirty years ago [1] as a highly simplified model of GRNs. They have
been studied in detail by analysis and by computer simulations of statistical
ensembles of networks, and have been shown capable of surprising dynamical
behaviors.

Today, we believe that Kauffman’s original views are still valid, provided
that the model is updated to take into account present knowledge about the
topology of real GRNs without loosing its attractive simplicity. In a previous
work [2] we have analyzed the dynamics of variations of the original RBN model
that included some recent findings in the field of biological regulatory networks
concerning the topological structure and the timing of events. In this work, we
focus our efforts strictly on analysing the fault-tolerance of the model proposed
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above. Failures in systems can occur in various ways, and the probability of some
kind of error increases dramatically with the complexity of the systems. Living
organisms are robust to a great variety of genetic changes, and since RBNs
are simple models of the dynamics of biological interactions, it is interesting
and legitimate to ask questions about their fault-tolerance aspects. Kauffman
[3] defines one type of perturbation to RBNs as “gene damage”, that is the
transient reversal of a single gene in the network. These temporary changes in
the expression of a gene are extremely common in the normal development of
an organism. The effect of a single hormone can transiently modify the activity
of a gene, resulting in a growing cascade of alternations in the expression of
genes influencing each other. This is believed to be at the origin of the cell
differentiation process and possibly guides the development. Thus we analyze the
behavior of the proposed variations of the original RBN model when subject to
gene damage, a typical example of transient perturbation in networks dynamics.

In the next section we briefly review the main assumption of Kauffman’s
RBNs and their possible limitations. Changes to both the topology and the syn-
chrony will be proposed in section 2. We introduce the concept of perturbation
in section 3 and we investigate numerically the stability of the model. Finally,
section 4 presents our conclusions and discuss possible future work.

2 Generalized Boolean Networks

Generalized Boolean Networks (GBNs) we have proposed in [2], are an exten-
sion of Kauffman’s original RBNs model that aims at closing some known gaps
between the original model and recent findings in biology. In RBNs and GBNs,
the N vertices represent the Boolean on/off state of N genes’ expression. But
instead of each gene receiving K randomly chosen inputs from other genes, as
it is the case in RBNs, GRNs adopts a scale-free topology [4,5] where the de-
gree distribution follows a power-law p(k) ∼ k−γ as proposed by Aldana [6],
these specific GBNs are scale-free Boolean networks (SFBNs). Each gene’s next
state is decided by a randomly generated Boolean function of its inputs. The
network dynamics is discrete and instantaneous in both RBNs and GBNs, with
the difference that in GBNs the update sequence is neither fully synchronous
(SU), nor asynchronous [7,8,9]. Instead, it is decided by the activation sequence
of the genes. This update scheme is called Activated Cascade Update (ACU)
and contrasts with classical RBNs fully synchronous update. In both cases, we
start from an initial configuration where a random value is assigned to each
gene. Simultaneously all the nodes in the case of SU and and a subset of nodes
pointed by active genes for GBNs simultaneously examine their inputs, updating
genes evaluate their Boolean functions, and find themselves in their new states
at the next time step. As the systems are fully deterministic, they will travel
through configurations, eventually looping back and cycling through a subset
of the 2N configurations called an attractor. It has been found that, as some
parameters are varied such as the RBN’s connectivity K, GBN’s γ exponent, or
the probability p of expressing a gene in the Boolean function, the systems can
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go through a phase transition. Indeed, for every value of p, there is a critical
value of connectivity K (for RBNs) or γ (for SFBNs) such that for values of K
below this critical value the system is in the ordered regime, while for values
above this limit the system is said to be in the chaotic regime. In the ordered
regime, the distribution of perturbations sizes in the networks is a power-law
with finite cutoff that scales as

√
N . Thus perturbations remain localized and

do not percolate through the system. This tendency in inverted in the chaotic
regime. Kauffman’s hypothesis that living organism cells operate in a region bor-
dering order and chaos, a “critical” regime where the dynamic conditions of the
systems offers a tradeoff between stability and evolvability. In a previous work
[2], we have studied in great detail the state space, attractor lengths, numbers,
and distributions, comparing and contrasting results in all three regimes for both
SU and ACU in both RBNs and SFBNs.

3 Transient Perturbations on Boolean Networks

In order to study damage spreading in dynamical Boolean networks, we have
allowed samples of RBNs and GBNs under both SU and ACU to reach an at-
tractor. In each case, the samples are made of 50 different topologies, each with
20 sets of distinct update functions and presented with 500 different initial con-
figuration of the genes at time t = 0. Then we have submitted all systems that
have reached biologically plausible attractors (up to 100 states) to “gene dam-
age”. The effect of gene damage can be measured by the size of the “avalanche”
resulting from that single gene changing its behavior from active to inactive or
vice-versa. The size of an avalanche is defined as the number of genes that have
changed their own behavior at least once after the perturbation happened. The
perturbed system is then compared to an unperturbed version that is running
in parallel. That is, when the system is cycling through the configurations of
the attractor, the whole system is duplicated. On the one hand, the original will
continue unperturbed. On the other hand, a node of the copy is chosen at ran-
dom and will give the opposite output value for a single time-step. This could
potentially knock the system out of the course of its attractor. Then, we let both
systems evolve over time and record at each time step how many more nodes
have a different value in the copy compared to the original. This sum usually
reaches a maximum that represents the number of nodes that have ever had a
different behavior different with respect to that of its counterpart in the original
system. This number is the size of the avalanche. There are only three possible
scenarios for the copy: it will return to the same attractor as the original, reach
a different attractor, or diverge and reach no attractor within the maximum
number of configurations allowed (1000). Each system in an attractor is copied
10 times, and each copy will have a different avalanche starting point. We record
separately these informations in order to compare the re-convergence capabilities
of the systems in each regime, with different topologies and update schemes.

Fig. 1 shows the frequency at which systems that have already converged to an
attractor do re-converge to one. We show separately wether systems re-converge
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Fig. 1. Frequency at which systems re-converge to either the same attractor (light
grey) or another one (dark grey). Left-hand side figure shows results for SFBNs and
right-hand side figure shows results for RBNs. All systems have N = 200 nodes. We
purposefully omit point attractors.

to the same one as before the perturbation or to a different one. In particular,
Fig. 1 depicts results for attractors before perturbation (original attractors) of
sizes between 2 and 100. We show networks of size N = 200 as results for smaller
systems are comparable and are therefore not shown here.

Re-convergence mostly depends on the regime the system evolves in, rather
than its degree distribution, update scheme, or size. In Fig. 1 we note that only
networks in the chaotic regime do not re-converge to an attractor in every case.
ACU performs a little better at helping systems to find a stable state. However,
this tendency is inverted when taking into account only cases where the same
attractors are found. In this case, under ACU, the same attractor as the original
one is found about half of the time. Under SU, the same one is found about 75%
of the time. This can be explained by the fact that the number of attractors
lying in the states space of systems under ACU is much larger.

The size of the avalanche is directly related to the regime in which the RBN
evolves; in the ordered regime, the cascades tend to be significantly smaller than
in the chaotic regime. In biological cells, where the regime is believed to lie on the
edge of chaos, the cascades tend to be small too. Moreover, the distribution of the
avalanche sizes in the ordered regime follows a power-law curve [3] (see Fig. 3),
with many small avalanches and few large ones. In the chaotic regime, in addi-
tion to the power law distribution, 30-50 precent of the avalanches are huge. The
distribution of avalanches size of RBNs in the ordered regime roughly fits the ex-
pectations of biologists, where most of the genes, if perturbed, are only capable of
initiating a very small avalanche, if any. Fewer genes could cause bigger cascades,
and only a handful can unleash massive ones. Perturbing an arbitrary gene is rea-
sonable in RBNs where all genes have the same average number of interactions.
In scale-free nets however, this is no longer true due to the presence of a high
degree-inhomogeneity. Even for values of γ around 2.5 there will be nodes that
have many more output connections than the average value. A transient pertur-
bation of a gene that has few interactions will have moderate or no effect, while
perturbing a highly connected node will have larger consequences.



Transient Perturbations on SFBNs with Topology Driven Dynamics 341

As expected when dealing with random failure, the information traveling
through a structure with regular output distribution is more vulnerable to faults
compared to structure with hubs and leaves. This fact is well known in various
examples such as computer networks which are very resistant to failure as long
as they are random and not targeted attacks on highly interconnected nodes. Es-
pecially under SU, SFBNs tend to re-converge to the same attractor more than
RBNs, although overall, both topologies perform well. The chaotic case will be
explained below in details. Under ACU, critical and ordered SFBNs systems are
again performing as well as or better than their counter parts in RBNs, recover-
ing as often to another attractor but more often to the same as the original one.
The counter-performance of chaotic systems, especially SFBNs, can be explained
by the “spike of huge avalanches” described by Kauffman [3] and visible in Fig.
3. Indeed, SFBN systems and, in a lesser manner, RBN under SU have a surge
of very long avalanches when in the chaotic regime. This characteristic explains
why these systems are not as performant at re-converging to an attractor, let
alone the same one.

Fig. 2 shows the distribution of the avalanche sizes. Again, we distinguish
networks that have re-converged at all in Fig. 2-left column and those that
have re-converged to the original attractor Fig. 2-right column. As mentioned
above, the size of the avalanche varies mainly due to the regime. Smaller systems
with N = 100 react as expected, with the size of their avalanches increasing as
the systems grows chaotic. However, this does not seem to always be the case,
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and this relationship between avalanche size and regime is changed in bigger
networks. Under ACU networks with N = 200, it is the systems that evolve in
the critical regime that clearly show the longest avalanches. This is true for ACU
only, SU systems still corroborate Kauffman’s conjecture. Although in the case
where systems return to the original attractor, avalanche sizes are much smaller,
the tendencies observed in the more general case stand. This is the first time we
observe an obvious impact of the networks size on the systems dynamics. Further
investigations are necessary to define why larger systems in critical regime under
ACU are more impacted by perturbations.

In Fig. 3, we show the distribution of the avalanches’ sizes for different systems.
Although values are discrete, we used continuous lines as a guide for the eye.
We see that the tendencies are the same and are as anticipated from Kauffman’s
work [3]. SFBNs under both SU and ACU exhibit a steady long tailed decrease
in the number of avalanches as their length grows for ordered and critical regime,
and there is a surge of long avalanches in the case of chaotic systems. This is
respected for synchronous RBNs in under SU. Interestingly, this does not to
apply to RBNs under ACU, where no increment is to be noted.

Lastly, Fig. 4 illustrates the average output degree of the node representing
the damaged gene. For clarity reasons, we show results only for bigger systems
as they are similar when networks are scaled down.

Although predictable, we clearly see the effect of the hubs in SFBNs, where
failing nodes in systems that do not re-converge have a much higher output
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Fig. 4. Average degree of the nodes that have failed for both re-converged and not
re-converged avalanches. On the right hand side RBNs are shown and SFBNs are on
the left. Size N = 200.

degree in average than those of systems that did recover. Another interesting
observation, is that there seems to be a direct relationship between the degree
of the wrongful node and the regime, the more ordered the system, the higher
the degree to allow the system to recover. This difference is toned down in ACU
systems. Naturally this does not hold for classical RBNs, where all nodes have
the same output degrees.

As a general conclusion on failures of Boolean Networks, we can highlight the
prominent effect of the topology on distribution of the lengths of the avalanches
and its ability to re-converge to an attractor over the networks update and regime.

4 Conclusions and Future Work

We are a long way from being able to build a model of GRNs that could help us
understand the detail of the complex interactions that are taking place between
the different components and with the external environment. Nevertheless, we
are in the process of discovering what structural and dynamical properties make
abstract models of GRNs highly stable and resistant to perturbation, and yet
adaptable to mutation. This work, together with the previous one [2], identi-
fies one structural property, namely the scale-free output distribution, and a
dynamical one, the semi-synchronous updating, that try to account for recent
findings in life sciences and use computer simulations to reflect the impact of
these changes on RBN models. Results are encouraging, as our model shows
comparable and usually better performances than the original one with more
attractors and smaller avalanches. This leads us to believe that we are pointing
in the right direction, trying to improve known models with present day knowl-
edge. In the future, we intend to expand the range of analysis conducted on
perturbed systems by introducing other common types of failures, in the hope
of shedding some light on GRNs. Also, we would like to explore different de-
gree distribution types and combination found in partially known real-life GRN.
Today, this is possible thanks to high-throughput molecular genetics methods,
which are making real-life data available like never before.
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Abstract. This paper presents an agent based model of the Aedes ae-
gypti mosquito showing not only population dynamics but also the
Dengue disease propagation in both the vector and host populations
(mosquitoes and humans, respectively); this study will focus on the lat-
ter aspect. The agents model the main aspects of the mosquito’s ecology
and behavior, while the environmental components are implemented as
a layer of dynamic elements obeying to physical laws. Model verifica-
tion was performed through examination of simulation parameters vari-
ation and qualitative assessment with existing models and simulations.
The agent based modeling and simulation platform used was the LAIS
simulator.

Keywords: Artificial Life, Agent Based Modelling, Aedes aegypti,
Dengue, RIDL, SIT.

1 Introduction

The dengue is a dangerous disease which still lacks a cure, and it is spread
through a specific type of vector, the Aedes aegypti mosquito. Currently, the
most affected areas are the ones with tropical climates since factors like high
temperature and frequent precipitation are favorable to Aedes aegypti growth.
However, if current predictions about climate change happen, many new areas
might start facing the dengue threat [1].

Since an effective treatment is yet to be found, it is particularly important
to focus on prevention, keeping the mosquito population under transmission
threshold, or better still, eradicate the disease. Various strategies have been
developed and used for this purpose, ranging from releasing large amounts of
sterile mosquitoes into the environment to clearing areas with still water that
might be used as mosquito breeding sites.

This paper is a continuation of [2], which studied the mosquito population
dynamics and the effects of a particular population control strategy, RIDL. The
study presented here will focus on the disease itself, more specifically on the
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propagation of the disease in both the mosquito (vector) and human (host) pop-
ulations. These studies were performed using an agent based model, developed
for the LAIS simulator.

ABM is well suited for describing complex systems in general and disease
transmission in particular, providing a way to represent the true diversity of in-
tervening components, such as environmental factors, disease vectors and disease
hosts. Other advantages include the possibility to determine spatial behavior dis-
tribution, rapid insertion of new components and natural consideration of non-
linear interactions between agents. This approach is not without problems of its
own: it requires considerable computational power to simulate individual agents;
parameter tuning is not trivial; and it lacks the formalism provided by differen-
tial equations (although ABM formalism is already a reality [3]). Nonetheless,
for explicitly spatial models, such as the one presented here, the advantages of
ABM clearly outweigh its limitations.

The state of the art in the modeling and simulation of the Aedes aegypti
mosquito, dengue transmission and other relevant related subjects is presented
in section 2; a brief description of the LAIS simulator is given in section 3, while
the model itself is described in section 4. Sections 5 and 6 present the performed
simulations, and the associated discussion, respectively.

2 State of the Art

There have been numerous models of mosquitoes and mosquito-borne disease,
beginning with the classic Ross-Macdonald malaria models [4,5,6] and extending
to present day models of vectors populations or aspects of vector biology, not
directly considering disease [7,8,9,10].

One example of modeling the dengue vector mosquito population dynamics
is by Focks and colleagues [11,12], examining the biology of Aedes aegypti. This
is an exceptionally detailed model, with numerous types of containers for lar-
val development. Hydrology (water levels and drying), temperature-dependent
larval development, food availability and survival are explicitly tracked in each
container type. Detailed weather data are used to drive the hydrological and
biological functions. This level of detail has both costs and benefits; it enables
consideration of detailed aspects of the mosquito biology, but also makes true
sensitivity analysis of the model difficult or impossible. Thus, to develop a model
with this level of detail, it is necessary to have extensive data available for pa-
rameter estimates and validation.

The use of ABM methodologies to model Aedes aegypti populations has
been scarse at best. Some interesting ideas are presented in a work by Deng
et. al [13], namely the use of an utility function to determine mosquito move-
ment, taking into account factors such as population, wind direction, land use
type and landscape roughness. However the practical implementation of the
model is very limited, with coarse spatial discretization (30x30) and not singular
agent-based.
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Models can be useful to evaluate different strategy of mosquito control. Re-
cently, techniques like releasing genetic modified mosquitoes have been consid-
ered as an enhanced SIT to control the mosquito population, as the genetic
manipulation in insects result in sterility or lethal genes[14,15]. Although there
wasn’t any genetic modified mosquito open field release conducted yet, a couple
of mathematical modeling works have been done to assess the control efficacy
[16,17,18]. But none of those could provide a tool to simulate the interaction
between mosquito individuals such as mating behavior, spatial distribution, and
immigration etc. All these are important for the evaluation and guidance of
genetic control approach.

3 The LAIS Simulator

The LAIS simulator is a multithreaded agent-based simulation platform, offering
a modeling paradigm and a set of tools for the simulation of complex systems
[19]. The platform is implemented in Java and makes use of several open source
libraries which provide tools for spatial organization and visualization, event
scheduling, simulation output (e.g., charts, CSV files, movies) an d simple class
development and instantiation using XML. Simulations are performed in discrete
time and two-dimensional discrete space. As such, space is divided into blocks,
which are independently processed by different threads, making LAIS scalable
on modern multiprocessor systems.

There are two main actors in the LAIS framework: agents and elements.
Agents are typical ABM discret e and independent decision-making entities.
When prompted to act, each agent analyzes its current situation (e.g. what re-
sources are available, what other agents are in the vicinity), and acts accordingly,
based on a set of rules. These rules incorporate knowledge or theories about the
respective low-level components. On the other hand, elements are real-valued
objects which obey predetermined rul es, such as physical laws (e.g., diffusion).

4 Model Description

The Aedes aegypti LAIS model implements a square topology where each spatial
block has 8 neighbors (N,NE,E,SE,S,SW,W,NW). Five different agents are con-
sidered: Wild Male Mosquitoes (WM), Female Mosquitoes (WF), Sterile Male
Mosquitoes (SM), Humans (H) and Oviposition spots (OS). Various different
elements are also used, with the most important falling into one of the following
categories: mosquito attractors and mosquito density measure.

The interactions between the various agents are represented in a simplistic
way in fig. 1; a brief explanation follows:

WM-WF. WM are attracted to the pheromone released by WF. If a WM and
a WF are on the same cell, there is a chance for the WF to become fertilized.
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Fig. 1. Model overview

SM-WF. SM are also attracted to the pheromone released by WF. If a SM
and a WF are on the same cell, there is a chance for the WF to register having
mated, although it has not been fertilized (the implications will be given on the
WF-OS interaction).

WF-Hu. WF follow the Humans body heat, and if they are in the same cell
as a human they have a chance to either die or successfully acquire human
blood.

WF-OS. After having mated and having acquired human blood, a WF will
move towards an OS by following the humidity released by them. After reaching
an OS, the WF will lay a certain number of eggs if it mated with a WM, or lay
none if its mate was a SM. Afterwards it will again start looking for mates and
humans.

Mosquitoes only interact with other agents after they mature into adults. After
hatching from their eggs, they go through a number of development stages before
becoming adults.

It is important to note that the elements used as mosquito attractors, are
intended to model mosquito behavior and might not correspond to the exact
process the mosquitoes use to follow their targets.

While not present in figure 1 and on the explanations given above, the spread
of the Dengue disease can happen during the WF-Hu or the WF-OS interac-
tions. In the first case (WF-Hu) an infected WF stinging a healthy human has a
certain chance to infect the human. A non-infected WF that stings a contagious
human will become infected. An infected human will stay contagious for a certain
number of days, after which they stop infecting WF that sting them, and can’t
become contagious again for the duration of the simulation. For the second case
(WF-OS), Eggs layed by infected WF have a small chance to be born infected
as well. Table 1 shows the parameters relating to the dengue disease.
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A more detailed description of each agent and element can be found in [2].

Table 1. More parameters related to the dengue disease

Parameter Value

Chance to be infected when stinging an infected human 1
Chance to infect a human 0.9
Chance to be born infected if mother was infected 0.003

5 Tests and Results

To study the propagation of the dengue disease, a number of simulations were
performed. The simulations are done in two steps: a) they begin with the ini-
tial numbers WM,WF and humans; b) after the system reaches a steady state, a
number of infected WF are simultaneously released. The fixed simulation param-
eters are given in table 2, and the contagious period in humans varies between 8
and 19. For each specific value of the contagious period a total of 40 simulations
were run.

Table 2. Model default parameters

Parameter Value

Model width (blocks) 100
Model height (blocks) 100
Initial number of Male Mosquitoes 1250
Initial number of Female Mosquitoes 750
Initial Number of Humans 700

The results associated with these tests are presented in figures 2 and 3. Fig-
ure 2 shows the relation between average infection period in the human popu-
lation (the amount of the time before no more humans are contagious) and the
contagious period. Figure 3 shows the relation between the average number of
infected humans and the contagious period.

6 Discussion

Both graphics seem to show an increasing trend in the average infection period
and the total number of humans infected with the increase of the contagious
period. The correlation of the contagious period with infection period and disease
duration follows almost a linear relationship. The fluctuations observed in both
figures 2 and 3 are due to the limited number of runs (40); a much higher number
would be necessary to reduce the natural variation of the curves due the presence
of an accentuated limit cycle.
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7 Conclusions and Future Work

The model presented in this paper can be improved by taking into account other
important factors which impact mosquito population dynamics, most noticeably
environmental factors like temperature, precipitation and wind. The various pa-
rameters also need to be fine-tuned to get a model as close to the real popu-
lation as possible (in particular, some parameters might not be entirely correct
in relation to the amount of time associated with each iteration). The various
parameters can also be further fine-tuned; in particular, some parameters are
not entirely correct in relation to the amount of time associated with each itera-
tion. As such, current results can only be used for a qualitative validation of the
model. A more realistic representation of the disease will also be implemented,
taking into account the different strains of the dengue virus and immune status
of the human population. Simulations studying the impact of population control
strategies on the propagation of the dengue disease will also be investigated.

Nevertheless, the current agent based model shows potential as a test bench
to help study the propagation of the disease and predict the efficiency of possible
treatments before deploying them on the field.

Acknowledgements

This work was partially supported by Fundação para a Ciência e a Tecnologia
(ISR/IST plurianual funding) through the POS_Conhecimento Program that
includes FEDER funds. The authors C. Isidoro and F. Barata acknowledge their
grant BII-2009 to Fundação para a Ciência e Tecnologia (FCT). The author N.
Fachada acknowledges its grant SFRH/BD / 48310/2008 to Fundação para a
Ciência e Tecnologia (FCT).

References

1. Senior, K.: Climate change and infectious disease: a dangerous liaison. The Lancet
Infectious Diseases 8(2), 92–93 (2008)

2. Isidoro, C., Fachada, N., Barata, F., Rosa, A.: Agent-based model of aedes aegypti
population dynamics. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.)
EPIA 2009. LNCS (LNAI), vol. 5816, pp. 53–64. Springer, Heidelberg (2009)

3. Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling dynamic
environments in multi-agent simulation. Autonomous Agents and Multi-Agent Sys-
tems 14(1), 87–116 (2007)

4. Ross, R.: The Prevention of Malaria (1911)
5. Macdonald, G.: The analysis of equilibrium in malaria. Trop. Dis. Bull. 49(9),

813–829 (1952)
6. Macdonald, G.: The epidemiology and control of malaria (1957)
7. Eisenberg, J., Reisen, W., Spear, R.: Dynamic model comparing the bionomics of

two isolated Culex tarsalis (Diptera: Culicidae) populations: model development.
Journal of Medical Entomology 32(2), 83–97 (1995)



352 C. Isidoro et al.

8. Eisenberg, J., Reisen, W., Spear, R.: Dynamic model comparing the bionomics of
two isolated Culex tarsalis (Diptera: Culicidae) populations: sensitivity analysis.
Journal of Medical Entomology 32(2), 98–106 (1995)

9. Alto, B., Juliano, S.: Precipitation and temperature effects on populations of
Aedes albopictus (Diptera: Culicidae): implications for range expansion. Journal of
Medical Entomology 38(5), 646–656 (2001)

10. Ahumada, J., Lapointe, D., Samuel, M.: Modeling the population dynamics of
Culex quinquefasciatus (Diptera: Culicidae), along an elevational gradient in
Hawaii. Journal of Medical Entomology 41(6), 1157–1170 (2004)

11. Focks, D., Haile, D., Daniels, E., Mount, G.: Dynamic life table model of a
container-inhabiting mosquito, Aedes aegypti (L.)(Diptera: Culicidae). Part 1.
Analysis of the literature and model development. Journal of Medical Entomol-
ogy 30, 1003–1017 (1993)

12. Focks, D., Haile, D., Daniels, E., Mount, G.: Dynamic life table model of a
container-inhabiting mosquito, Aedes aegypti (L.)(Diptera: Culicidae). Part 2.
Simulation results and validation. Journal of Medical Entomology 30, 1018–1028
(1993)

13. Deng, C., Tao, H., Ye, Z.: Agent-based modeling to simulate the dengue spread
7143, 714310 (2008)

14. Thomas, D., Donnelly, C., Wood, R., Alphey, L.: Insect population control using
a dominant, repressible, lethal genetic system. Science 287 (5462), 2474–2476

15. Atkinson, M., Su, Z., Alphey, N., Alphey, L., Coleman, P., Wein, L.: Analyzing the
control of mosquito-borne diseases by a dominant lethal genetic system. Proceed-
ings of the National Academy of Sciences 104(22), 9540–9546 (2007)

16. Esteva, L., Mo Yang, H.: Mathematical model to assess the control of Aedes aegypti
mosquitoes by the sterile insect technique. Mathematical Biosciences 198(2), 132–
147 (2005)

17. Li, J.: Simple mathematical models for interacting wild and transgenic mosquito
populations. Mathematical Biosciences 189(1), 39–59 (2004)

18. Maiti, A., Patra, B., Samanta, G.: Sterile insect release method as a control
measure of insect pests: A mathematical model. Journal of Applied Mathemat-
ics and Computing 22(3), 71–86 (2006)

19. Fachada, N.: Agent-based Simulation of the Immune System. Master’s thesis,
Instituto Superior Técnico, Lisboa (July 2008)



All in the Same Boat: A “Situated” Model of

Emergent Immune Response

Tom Hebbron, Jason Noble, and Seth Bullock

University of Southampton, SO17 1BJ, UK

Abstract. Immune systems provide a unique window on the evolution
of individuality. Existing models of immune systems fail to consider them
as situated within a biochemical context. We present a model that uses
an NK landscape as an underlying metabolic substrate, represents organ-
isms as having both internal and external structure, and provides a basis
for studying the coevolution of pathogens and host immune responses.
Early results from the model are discussed; we show that interaction be-
tween organisms drives a population to optima distinct from those found
when adapting against an abiotic background.

1 Immune Systems

From our viewpoint as highly adapted biological agents ourselves, it may seem
obvious that there is a boundary between any one individual, its environment,
and other individuals in the population. However, if we look at the earliest forms
of life, and at the major transitions in evolution, we find that the boundaries
of what we would call an individual are not given a priori, but are themselves
subject to evolutionary change. Furthermore, any form of life, from the simplest
autocatalytic set through to a complex multi-cellular animal, represents a lo-
cal concentration of resources in the environment that could be used by other
neighbouring organisms. As the interests of the selfish genes in any opportunistic
neighbour are rarely compatible with one’s own, a wide variety of mechanisms
have arisen to counter such exploitation [1]. The most elaborate of these mech-
anisms, and a characteristic marker of individuality, is the sophisticated defence
of the self/non-self divide that we see in the adaptive immune systems of jawed
vertebrates. In everyday life, the adaptive immune system is what makes vacci-
nation possible, and explains why there are many diseases like chickenpox that
you are unlikely to catch twice. Preceding adaptive immunity, innate immune
mechanisms are a universal feature of even unicellular life [1]. The genome re-
flects the evolutionary history of pathogenic exposure and successful responses.
The continuing selective advantage of these germline-encoded responses depends
on the conservation of molecular features of pathogens; features crucial to their
metabolism or membrane and difficult to mutate to non-recognised alternatives.

We believe that the study of the immune system is important because it pro-
vides a unique window on (and is perhaps even synonymous with) the evolution
of individuality itself. Research in immunology is revealing more of the specific
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mechanisms by which modern immune systems operate, but there is a gap in
our understanding of the evolutionary history and adaptive landscape of immune
responses. Artificial life provides the modelling tools to fill that gap.

Clearly, exploitation by pathogens creates selection pressure for a defensive
response. But some organisms get by with much simpler immune responses than
others. By simulating very simple ecologies we hope to discover the necessary
and sufficient conditions for the emergence of an immune response, and in fur-
ther work, more sophisticated adaptive immune systems. Evolutionary simula-
tion also allows us to probe the consequences an immune system has on the
subsequent adaptive landscape for hosts and pathogens.

Artificial immune systems (AIS) research is a growing field. In the same vein
as earlier work on genetic algorithms and neural networks, researchers have noted
that immune systems, and in particular the adaptive immune system, appear to
have computationally useful properties (see [2] for a critical review). Computer
security is the most popular application area: detecting computer viruses or
spam emails for example.

Taking evolved solutions from nature and applying them to human problems
is increasingly prevalent in many branches of engineering. However, when bor-
rowing ideas from biology in this way, there can be pitfalls in both under- and
over-reaching. For example, an AIS performing binary classification (e.g., “safe”
/ “dangerous”) is not doing what a real immune system does. The algorithm may
do well at the practical task we set for it, but it is not embedded in biochemistry
in the way a real immune system is. There is a superficial similarity but we
would be wrong to draw conclusions about immunobiology from the AIS. Con-
versely, building a high-definition model of immune system components might be
a valuable scientific goal, but as engineering it would be a misplaced effort if the
complex contextual constraints of the real immune system were not present in
the target problem. It is important to look closely at the differences between the
practical problems tackled by AIS researchers and the biological problem faced
by real immune systems, as a false assumption of congruence will lead to either
models that are too simple to be good science, or tools that are too byzantine
to be good engineering.

Immunology to date has been primarily a medical science, concerned with
questions of mechanism and ontogeny [3]. In other words, how does the immune
system work, how might we fix it when it’s broken, and what is its normal
course of development? AIS research draws heavily from this work on proximate
mechanism. The question of function however, is often left implicit — immune
systems are for protecting against pathogens. This question warrants further
exploration: for there to be pressure for an immune system in the first place
requires certain ecological dynamics to hold: pathogenic behaviour must exist,
and defences against it must be evolutionarily accessible. Once an immune sys-
tem emerges it makes fundamental changes to the future evolutionary pathways
available to a lineage; some adjacent possible phenotypes will be incompatible
with the defenses now encoded in the genome. Simulation modelling is the log-
ical tool for this approach: “For the past century immunology has, with great
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success, been occupied with analyzing the immune system into its molecular
building-blocks. The field is now ripe for synthesis.” [4, p. 30].

Why should we be interested in modelling the function or adaptive value of
immune responses? High-resolution, predictive models of biological mechanisms
are certainly useful, for instance in developing therapeutics; but such models are
opaque. We can see how they work, but not why they work. Such models are
also open to misinterpretation: for instance, low iron levels or a fever may not
be a symptom of infection but an immune response, creating an unfavourable
environment for a pathogen. Without knowing the function of this mechanism,
there is the danger that therapeutics are employed to lower the temperature
or restore iron levels, working against the biological mechanisms [5]. This need
for functional explanations to understand a mechanism in context is also an
example of the “no free lunch” theorem [6]: in short, you cannot evaluate an
algorithm for solving a problem without some knowledge of the problem and
how it arose, and there are no universal solutions — the success of an algorithm
on one problem does not necessarily translate to another. (Compare the notion
in [7] that evolution produces nichiversal and not universal solutions.) This is
significant for AIS practitioners, who are trying to isolate the design principles
of a system particularly tightly embedded in its biological context.

Parasitic and subsequent coevolutionary behaviour has been observed in arti-
ficial life systems before, notably in Tierra [8], which was not explicitly designed
to exhibit the phenomenon. Parasitism in Tierra is an interesting example for
us because it shows that a fixed and quite brittle substrate defined by Tierra’s
virtual machine instruction set gave rise to parasitism and the beginnings of an
immune response, suggesting that a more general model should find regions of
biological interest without much difficulty.

To investigate functional questions about the evolution of the immune system,
we must consider the major transitions in its history. We see these as, first, the
isolation of metabolism from random perturbations through some form of mem-
brane. Second, once proto-cellular individuals are present, predation will natu-
rally follow as a strategy; i.e., exploiting other organisms as local concentrations
of resources and the corresponding coevolution of defensive counter strategies.
Third, the accumulation in the genome of these defences constitutes the emer-
gence of innate immunity. (A fourth stage, not represented in the current model,
is the emergence of somatic mutations, i.e., adaptive immunity).

2 Constructing a Model of Immune Function

A protective membrane will be assumed in our model. Other ALife researchers
have modelled the low-level physicochemical interactions required for the emer-
gence of membranes and proto-cells [9], but in our case starting from an artificial
chemistry would make the observation of higher-level strategic events difficult.
We abstract the underlying physicochemistry to a set of “metabolic compo-
nents” and their interactions. An organism is a genetically specified phenotype
built from these components, which interact to provide energy payoffs.
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Fig. 1. An example interaction matrix (left) and the calculation of an organism’s net
energy gain (right). For details see text.

The degree of complexity of the interactions between components is a key pa-
rameter of the model; to tune this complexity we borrowed from Kauffman’s NK
model of tunably rugged fitness landscapes [10]. An N by N interaction matrix
defines the energy gain or loss [−1.0, 1.0] of all possible interactions between N
metabolic components. Concentration is not modelled, so a metabolic ‘state’ in
the model is represented simply by a bitstring of length N , i.e., a list specifying
which components are present. The values in the interaction matrix specify the
energy payoff for the column component against the background of the row com-
ponent (see Figure 1). For example, the upper-right corner of the example matrix
indicates that component 4 against a background of component 1 would result
in an energy payoff of 0.6. Note that the matrix is not symmetrical, however. A
function payoff(a,b) gives the energy payoff for state a against a background of
state b. This is the sum of all the relevant component-by-component payoffs.

The values in the interaction matrix determine the ruggedness of the fitness
landscape that a population of organisms has to search. For example, a simple
“Mt Fuji” single-optima landscape can be defined by having only a single row j
populated with non-zero energy payoff values. We expect that interesting regions
of parameter space will be those with a slightly rugged landscape, not too simple,
but not random. Interaction matrices for this type of landscape are generated
using an NK-esque algorithm: each row of the matrix is filled with K values
drawn from a normal distribution with mean 0.

The evolution of organisms in our model does not take place in a vacuum: a
constant abiotic background solution is universally available. Made of the same
components as organisms, it is represented by a state bitstring randomly chosen
at initialisation, normally with K components present. Organisms themselves are
represented by two state bitstrings (each of length N): the first encodes compo-
nents present in the organism’s internal structure, and the second encodes those
present on the organism’s external surface. This compartmentalisation protects
the internal metabolism from outside perturbation and allows organisms to make
use of highly reactive components in a controlled environment, whilst exposing
selected components well adapted to the rewards and threats of the external
environment. Complete decoupling is prevented by requiring that the two sets
of components complement one another in order to transfer energy across the
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membrane, into the organism for use towards reproduction. The energy chain is
represented in the model by three values:

e1: energy gained or lost in relation to the current external environment: a
combination of the abiotic nutrient background bitstring and the surface
bitstring of any currently interacting organisms. e1 = payoff(surface,
context).

e2: a measure of transmission efficiency across the membrane. Calculated as
payoff(surface, internal) + payoff(internal, surface), normalised using the
interval of all matrix values to [0.0, 1.0].

e3: a measure of the efficiency of the organism’s internal metabolism, calculated
as payoff(internal, internal) + payoff(internal, internal). This evaluates the
internal components in the context of themselves.

These three factors are combined to give a total change in energy per timestep
of e1 × e2 × e3, except that if e1 is negative, the change in energy is equal to
e1 alone, i.e., the organism suffers a loss in energy that is not modulated by its
internal metabolism. If an organism’s energy level falls below zero, it dies.

Organisms are asexual and reproduce when their stored energy reaches a
threshold, which is dependent on the number of components present in their
phenotype. In other words, it costs more for larger organisms to reproduce. If we
define onecount(string) as the number of ones in a bitstring, then the value of the
reproduction threshold is N + (10× (onecount(internal)+ onecount(surface)).
At reproduction, the current energy level is split equally between mother and
daughter. Mutation of the daughter organism occurs through random flipping of
bits in the surface and internal structure strings. A population is initialised by
generating a random genotype and initial energy value [0, N ] for each organism.
During simulation, at each time step the population is shuffled into a random
order, this ordering is treated as a ring, and each organism interacts with its
left and right neighbours. Energy gains and losses are updated, any offspring are
added to the population, dead individuals are removed, and, if necessary, the
population is pruned to a predefined carrying capacity by random reaping.

Given a rich interaction matrix and organisms that can interact with each
other, the fitness implications of different phenotypes will be complex. In the
runs described below, we wanted to limit this complexity by constraining or-
ganisms to interact initially only with the nutrient background. This reflects an
early ecological stage in which a low-density population experiences no intra-
specific competition for resources. In the experiments we will describe here, only
a single population is used. However, the model is designed for extension to
multiple populations to implement, for example, explicit coevolution between a
population of hosts and a population of pathogens.

We anticipate that the primary problem for the evolving organisms in this
model will be adaptation to the interaction matrix. This will involve finding a
surface structure that works well with the nutrient background, and an inter-
nal structure that performs two roles: complementing the surface to pass energy
across the membrane, and providing a good internal metabolism by functioning



358 T. Hebbron, J. Noble, and S. Bullock

efficiently in the context of itself. Adapting to the interaction matrix is com-
plicated by the fact that the organisms can interact with each other. A surface
structure that works well with the nutrient background may be vulnerable to
exploitation by other organisms. Therefore we also expect to see the beginnings
of a coevolutionary arms race; exploiting other organisms may give higher pay-
offs than interacting with the background alone, but when this starts to happen
it also provides selection pressure for defensive surface structures, i.e., the be-
ginnings of an immune response.

3 Initial Results and Discussion

We used a population size of 1000, a mutation rate of 0.02 per locus, and
a substrate with N = 10 components. The simulation was run for 100,000
timesteps allowing only interaction with the nutrient background, then for a fur-
ther 100,000 timesteps with inter-organism interactions enabled. Multiple runs
were performed, but only a single representative run is described as our aim here
is to convey the qualitative dynamics of the model.

We collected data every 200 timesteps on the currently modal genotype, the
genetic diversity of the population (measured as the mean disagreement with the
modal genotype), the distance between the population centroid and the optimum
reached at the end of the initial 100,000 timesteps, and the mean energy gain
per timestep across the population.

To confirm that the model was functioning as intended, we devised a “Mt.
Fuji” interaction matrix whereby only a single row j had non-zero values, with a
minimum of 2 positive values. We paired this with a nutrient background where
only component j was present. This meant that there was a global optimum
genotype with component j present either on the surface or internally (to enable
e2 to be non-zero and energy to be transferred across the membrane) and any
components with a positive interaction with j present both internally and on
the surface. Figure 2 (top row a-c) shows the results for this condition.

Evolution given the Mt. Fuji interaction matrix confirmed our expectations.
Many organisms in the initial population died off immediately as they had nega-
tive net energy gain. The few viable individuals rapidly converged on the antici-
pated global optimum. Enabling inter-organism interactions at t = 100, 000 had
no effect, but this was also expected as the nature of the payoff matrix meant
that there were no benefits available from interaction that were not already
available against the background.

Having established that the simulation was producing intelligible results, we
constructed a richer interaction matrix to serve as an initial exploration of
the space of possible substrates. As described in section 2, an NK-like inter-
action matrix was constructed with K = 2 and payoffs drawn from a normal
distribution with a mean of zero and a standard deviation of 0.5. The corre-
sponding nutrient background had two randomly selected components present.
In this case, the landscape was more rugged so we expected greater difficulty
for the population in finding an initial optimum. We also expected that once
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Fig. 2. Population genetic diversity, mean per-timestep energy gain, and distance of
population centroid from a target optimum over time. Graphs a-c show the Mt. Fuji
case; graphs d-f show the rich matrix case. Vertical line at time 100,000 indicates the
switching on of interaction.

inter-organism interactions were enabled, there would be a significant change in
mean energy gain as many more interaction possibilities became available.

Results for this “rich matrix” condition are shown in Figure 2 (bottom row
d-f). Compared to the “Mt. Fuji” condition, genetic diversity remains higher for
longer, as the initial no-interaction population searches the rugged landscape and
discovers multiple local optima. As the individuals on the fittest of these optima
begin to dominate the population, diversity falls: Figure 2f confirms that there
is significant movement in the population centroid over this period. Figure 2e
shows that mean energy gain, on the other hand, increases only gradually. Once
interaction is enabled at t = 100, 000, new opportunities to exploit the surfaces
of other organisms for energy gain become available. These translate as new
and higher optima. Genetic diversity is not appreciably affected, but mean en-
ergy gain sees a large increase, and Figure 2f shows that the population rapidly
converge on the new optima.

At t = 100, 000 the modal genotype was 0011101100-0011111100 (internal-
surface). At the end of the run (t = 200, 000), and after the effects of interac-
tion, the modal genotype was 0011101100-0011101000. Note that the internal
structure of the modal organism has not changed, but two surface components
have been lost. If we examine the e1× e2× e3 energy process for this final modal
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organism, we find that although it is well adapted to the interactive context, it
in fact represents a phenotype that would not have been viable in the earlier
part of the run, i.e., its energy input in the context of the nutrient background,
e1, would have been zero. Note also that the surface and internal components
are almost identical, differing only in one position. This makes sense: a state
that works well with itself, as an internal structure, gives you a high e3 value.
If this structure is also your surface, then similarly e2 will be high. Finally, by
the same logic, if this string is also the modal surface structure, high values of
e1 will be gained on all sides when organisms interact with each other.

Thus it seems we have discovered a commensal evolutionarily stable state for
a single population, rather than having demonstrated the kind of coevolution-
ary arms race we ultimately would like to see in the model. However, this is not
entirely surprising, as coevolution is extremely difficult to engineer in a single
population context. In the short term, the obvious next step for the model will
be to achieve this by using multiple weakly interacting populations to avoid pre-
mature convergence. It may be necessary to explicitly define hosts and pathogens
rather than wait for them to evolve; e.g., a host population with a low muta-
tion rate and a minimum number of components per organism (hosts must be
large) and a pathogen population with the opposite properties (fast-evolving and
small). Beyond that, further development of the model framework will allow us
to consider multi-cellular organisms, danger signals [11], and ultimately adaptive
immune systems.
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Abstract. From the beginning of biological modeling, simulations were
an efficient way to understand local mechanisms linked to whole system
behaviors. Cellular automata and more recently Multi-Agent Systems
(MAS) are currently used to model ecological systems. Virus dissemina-
tion through population or insect collaborations are well known examples
of how simple interactions between entities (agents) are able to build a
complex situation at the level of the whole population. But use of MAS to
design biological system at the cellular or subcellular level, mainly for en-
zymatic reactions, is a relatively new application of the agent paradigm.
In fact, agents used for ecology simulations are ’non-physical’ agents,
i.e. in general they do not have any explicit representation of their ge-
ometry, their space bulk or the articulated movements of their body
parts. These characteristics are essential in enzymatic behaviors. The
three dimension structure and movements of this structure condition
the realisation of the reaction that can be stopped or conversely favored
by specific conformations. In order to simulate subcellular biological pro-
cesses, we defined agents capable of simulating molecular conformational
changes. These agents integrate molecular modeling data, for conforma-
tional change methods, and biological ontology data, for conformational
change conditions. As some biological entities are motor of the enzy-
matic reactions while others are simple partners, we defined two agent
subtypes, active and passive agents. As a proof of concept, we applied
our model to the simulation of enzymatic oxydo-reduction reactions.

Introduction

Metabolic processes are mainly biochemical processes. They work at the subcel-
lular level. In general, for one species they implicate a few hundreds of molecule
types. The complexity of such processes is not due to the complexity of each
mechanism of metabolic reactions but more to the multiplicity of used molecules
and competitiveness between reactions to capture and to transform molecules.
The whole set of reactions implicated in a specific metabolism is a network which
can be described as an interaction graph where the nodes are metabolites and the
edges are enzymes which catalyze reactions. Understanding how the modification
of one reaction process influences other ones through the network is a key point
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in system biology research. The chains of metabolic reactions have been cur-
rently modelled by reaction-diffusion equations [1] and simulated by differential
equations in general [2]. But these models ignore a part of metabolic processes
characteristics like those linked to the spatial molecule structures. They do not
also take into account information about the molecule location. These informa-
tion can be very important if there is a kind of competition between processes
to use some molecules.

Multi-agent systems are well known to simulate simple local behavior of en-
tities which generate complex behavior at the system scale[3]. Many examples
exist where agent modelling has been able to provide realistic explanations of
what happens in “real life”. Most famous ones are the way to find the shortest
path to food by ants or the capability for some birds to keep a specific organi-
sation during their flight[4]. In these models the agents are described as reactive
agents. Complex agent models have been made to mimic the behavior of hu-
man societies or to test hypotheses in economy or in artificial intelligence. These
models most often use cognitive agents, i.e. agents able to plan their action, to
build strategy and to take decisions. At the cellular or subcellular level it is not
appropriated to talk of molecule intentions, so if molecules are agents it is a kind
of evidence that they are reactive agents. One can note that most often all these
models do not ever propose to represent explicitly the geometry or the physical
structures of agents. In our project BASiL to model metabolism of species with
a multi-agent system, we have defined an extended reactive agent model able
to take into account physical properties of implicated molecules, their internal
movements and their interaction at different levels. After a presentation of the
type of processes we need to model, we will explain the BASiL agent model and
we will finish with a concrete example of the modelling of the electron transfer
chain into the mitochondrial respiratory chain.

1 Biological Processes at the Subcellular Level

Metabolic processes imply proteins or enzymatic complexes, and metabolites
which interact at the intra or inter molecular levels. Most often, metabolites
are small molecules and enzymes macromolecules. Enzymes exhibit capabilities
to capture molecules through binding sites and each reaction they catalyse is
characterized by a reaction velocity. Enzymatic reactions can be influenced by
several elements: presence or absence of inhibitors/activators, environment pa-
rameters like temperature and so on. All these elements affect both external
and internal macromolecular motion. For example temperature augmentation
increase the velocity of the enzyme in a medium (for example, a cytoplasm). We
should also note that enzymes are composed of a huge number of atoms and
that temperature can also affect the relative spatial arrangement of their atoms
(as studied in stereochemistry). This means that a macromolecule can assume
different shapes. It is well known in biology that the probability of an enzy-
matic reaction to occur is controlled by the macromolecule current shape [5][6].
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Hence, in order to study the enzymatic reactions of a system it is necessary to as-
sess the molecules internal movement and their interactions with other molecules.
This fact gave rise to the field of Molecular Dynamics (MD)[7] which study the
dynamical nature of molecular motions. Most MD algorithms have a high com-
putational cost and they can simulate, at most, nanoseconds of conformational
changes. Unfortunately, enzymatic reactions can occur between microseconds
and milliseconds. Hence, we have apparently incompatible time scales.

As it is not possible to simulate movements at the atom level in the same
time scale than the biochemical reactions, we have used algorithms able to com-
pute movements at the molecular level. We use geometrically based algorithm
[8] to transform a macromolecule into a set of Constrained Rigid Bodies (CRB).
With such an algorithm, we can resume a molecule as a set of small parts linked
by hinges and able to move around axes. This enable us to accurately describe
internal movements of a macromolecule. Interactions at the molecular level can
be resumed as interactions between parts of each molecule. Models coming from
molecular dynamics provide tools like “Coarse graining approach”[9] to com-
pute attraction/repulsion between parts, grains, of macromolecules. By using
the previously predicted internal parts of a macromolecule, we can convert set
of physical laws at the atomic level to forces fields resumed on grains.

2 Multi-Agent Model for Macromolecules

Traditionally, multi-agent model defined two types of agents: cognitive agents
and reactive agents. The main differences between them is that cognitive agents
are able to apply strategy to take decisions about their behavior. They can
choose by their own what they “want” to do. Reactive agents only communicate
through their environment and just react from a kind of stimulus. It is difficult to
claim that molecules take decisions about “what they do”, so it is a natural way
to choose reactive agents to design MAS for molecular processes. Our model is
based on such agent but we have completed the model by adding a Generic-body
attribute to represent all the useful characteristics.

We have developed BASiL, a framework dedicated to simulations at the cel-
lular and subcellular level. Its architecture contains a generic class Agent which
is the main container to design a reactive agent. Its attributes are: Description
and Generic-body. A Description is a class where we store the information
relevant to the application domain but not directly useful for the simulations. At
present, we store biological data like the biological name of the molecules, the ref-
erences to bibliography and details given by biological databases in subclasses of
Description. The organisation of these subclasses comes from BioPAX. BioPAX
[10] is a formalism dedicated to the description of biological objects and specif-
ically to molecules at the subcellular level. These subclasses are stored into the
biological-modelpackage. Of course, the Description class can be sub-classed
by any another class able to give the agent domain description.
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The Generic-body class is the place to design the physical properties of the
agents. The three classes: Agent,Description and Generic-body are the core
of the generic agent-model package.

2.1 Modelling Molecule Body

One of the possible implementations of the molecule physical properties is to
use information given by molecular dynamics. We have defined a set of classes
to describe a multiple-grain model for the agent body. The class Grain-body
instantiates the agent body as a generic grain which can be a set of grains
(following the composite design patterns [11]). The grain implements a set of
forces defining what happens at this level when a grain interacts another one.

2.2 Modelling the Environment

Agents are situated in an environment. The way to implement this environment
conditions strongly the algorithm complexity when we implement the life cycle
of each agent. Indeed, one of the main actions of agents at each time step is to
observe their neighborhood and to fire several interactions with agents belong to
it. The space is divided into small parts organized as grid or any structured set.
Grid is efficient if the population of agents is big enough. Tree structures can be
used if some places are empty and if it is not adequate to visit the whole space
to find agents.

We have chosen to implement firstly the environment as a grid. To keep the
capability to change that and to switch easily to a tree structure or any another
one, we have designed the Spatial-Env as a generic class with concrete sub-
classes like Grid. Each box in the grid contains a list of agents situated into this
box. So agents only know their relative position into the box and access to their
neighborhood through the neighboring boxes.

2.3 Modelling Enzymatic Processes

As it is mentioned previously, metabolism reactions are mainly biochemical
reactions. Biochemical reactions imply enzymes as catalyst and metabolites
as substrates or products. For example, we can describe enzymatic reactions
as follow:

Ma + Mb = Mc if they meet E1

Mc + Ma = Md if they meet E2

Meet means that the substrates Ma and Mb are able to be captured by E1

(through E1 binding sites) and that they are chemically transformed into Mc.
Agents hold a set of actions to perform at each simulation time step. As

metabolites are not able to capture other agents, they have only the capability
to diffuse through the environment. At the opposite, enzymes hold the scheme
of the biochemical reactions they catalyze. Therefore, we have designed two
subclasses of agents:
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ProteinSmall−molecule

LipidMetabolite

Physical−entity

biological−model

Spatial−envGrid

Box

Grain−body

3−grain−body

coarse−grain−model

Grain−h Grain−i Grain−t

Active−agent Passive−agent

Agent
<< abstract >>

<< abstract >>
Generic−body

Passive−agent−body Active−agent−body

Description
<< abstract >>

agent−model

Basil

env−model

Fig. 1. BASiL architecture

– one to represent agents having initiative for starting interactions. This is the
Active agent class.

– another one to represent agents undergoing Brownian motions without any
more action. This is the Passive agent class.

Coding metabolites as passive agents allows us to save a lot of computational
time because the quantity of metabolites is more than hundred times higher
than the quantity of enzymes and passive agents do not need to observe their
neighborhood. Figure 1 shows the main components of the BASiL architecture.

3 Simulation of Enzymatic Reactions

BASiL framework have been used to simulate electron transfer through Respi-
ratory Chain (RC) complexes [12]. We will now describe the work that we have
done about the Complex III of the RC. From the PDB files [13] we have run
the algorithm to find the Complex III rigid parts. Figure 2 shows the results of
this computing procedures and where are the binding sites involved in the elec-
tron transfer function. Each three parts can be considered as grain. Each grain
stores a set of force fields based on Lennard-Jones potential [9]. That enables to
simulate the conformational changes the molecule can exhibit.

The electron transfer rate between two redox elements clustered in a macro-
molecule has been described by Dutton and Moser [14]. They defined a set of



366 M. Beurton-Aimar, N. Parisey, and F. Vallée

phenomenological equations that links the transfer rate to the distance
(in Angstrom) between redox elements. The following two equations apply
in case of endergonic (keend) and exergonic (keex) reactions:

log10(keend) = 15− 0.6 ∗R− 3.1 ∗ (ΔG0+λ)2

λ (1)

log10(keex) = 15− 0.6 ∗R− 3.1 ∗ (−ΔG0+λ)2

λ − ΔG0

0.06 (2)

where:

– ke is the transfer rate in electron(s) per second,
– R is the Euclidean distance between two redox elements,
– ΔG0 is the free energy of the redox system,
– and λ is the reorganization energy of the system.

As R changes more frequently than ΔG0. Therefore, in our method, we consider
ΔG0 constant over a time step in order to examine the influence of R changes.
At each time step of our simulations, we used equations 1 and 2 to compute
probabilities of electron transfer between two redox elements.

Qo

bH

ISP

CytC

bL

Qi

Fig. 2. Complex III partitioning with its 6 binding sites per monomer

3.1 Simulation Results

At first, by simply tracking sites occupation over time, we were able to dif-
ferentiate between situations leading to similar kinetics but being produced by
different electron paths. These early results lead us to define metrics for Complex
III “efficiency”. Complex III efficiency is usually defined as its ability to gen-
erate bifurcated electron transfer from quinone clustered in the Qo site to
cytochrome c1 and quinone clustered in the Qi site (cf fig. 2). Hence, we decided
over a few parameters to assess efficiency in our simulations:
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– time latency for a redox reaction to occur after Passive Agent binding,
– electron transfer background noise, i.e. percentage of electron exchange where

an electron goes back to where it started,
– percentage of Qi reaction over global redox reactions.

Using those metrics, we looked more closely into our simulation trace logs and
found that a first Qi reaction peak is linked with a majority of canonical Q
cycle while the second peak is due to what was earlier [15] described as a short-
circuits, i.e. an electron exchange detrimental to the proton gradient. Taking
into account internal dynamics, these two solutions are acceptable as far as the
internal macromolecule functions are concerned. Redox potential control short-
circuits [2] but, in any case, internal dynamics can affect electron transfer so
that this control is broken. Whether, internal dynamics or redox potential is
preponderant in vivo is a pending question waiting for more data.

4 Conclusion and Future Works

Modelling metabolic processes is a difficult task due to the diversity of molecules
implied in biochemical reactions. Using multi-agent system allows us to tackle
complexity of such simulations by describing a reactive agent for each molecule.
Each agent hold its physical properties into a set of grains which interact to-
gether. We have used our model to describe electron transfer in the respiratory
chain and we are able to test the influence of the movements of macromolecule
on their efficiency. We now plan to add another types of molecules like phospho-
lipids around the macromolecules and to simulate a piece of membrane with its
membrane enzymes.
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Abstract. We have proposed a simple approach to visualising the time
behaviour of Random Boolean Networks (RBNs). Here we demonstrate
the approach in a variety of cases: examining the effect of state and
structure mutations, and examining the effect of canalising functions for
K > 2 networks.

1 Introduction

Random Boolean networks (RBNs) are a well-studied form of complex discrete
dynamical systems [1,2,3,4,5]. Visualisation of the dynamics can aid understand-
ing, but (unlike for 1D Cellular Automata, for example), there has been no
satisfactory visualisation of RBN time behaviour. In [6] we proposed a simple
approach to visualising the time behaviour of RBNs; here we demonstrate the
approach in a variety of cases: examining the effect of state and structure mu-
tations, and examining the effect of canalising functions for K > 2 networks.

2 RBNs

A Random Boolean Network (RBN) comprises N nodes. Each node i at time t
has a binary valued state, ci,t ∈ B. Each node has K inputs assigned randomly
from K of the N nodes (an input may be from the node itself); the wiring pattern
is fixed throughout the lifetime of the network. This wiring defines the node’s
neighbourhood, νi ∈ NK .

The state of node i’s neighbourhood at time t is χi,t ∈ BK , a K-tuple of node
states that is the projection of the full state onto the neighbourhood νi.

Each node has its own randomly chosen local state transition rule, or
update rule, φi : BK → B. These nodes form a network of state transition
machines. At each timestep, the state of each node is updated in parallel,
ci,t+1 = φi(χi,t).

The global dynamics f is determined by the local rules φi and the connectivity
pattern of the nodes νi.

G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part I, LNCS 5777, pp. 369–376, 2011.
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Kauffman [3,4] investigates the properties of RBNs1 as a function of connec-
tivity K. Despite all their randomness, “such networks can exhibit powerfully
ordered dynamics” [3], particularly when K = 2. Kauffman investigates RBNs as
simplified models of gene regulatory networks (GRNs). He notes that “cell types
are constrained and apparently stable recurrent patterns of gene expression”,
and interprets his RBN results as demonstrating that a “cell type corresponds
to a state cycle attractor” [4, p.467] (in a K = 2 network).

Drossel [1] notes that subsequent computer simulation of much larger networks
shows that “for larger N the apparent square-root law [of attractor numbers and
lengths] does not hold any more, but that the increase with system size is faster”.

3 Visualising the Dynamics

Good visualisations can aid the understanding of complex systems, and can help
generate new questions and hypotheses about their behaviours.

Kauffman [4, p.203] observes that K = 2 RBNs “develop a connected mesh,
or frozen core, of elements, each frozen in either the 1 or 0 state.” We can use
this result to provide an order for placing the nodes in the visualisation. Nodes
frozen in the 1 or 0 state are placed towards the edges of the figure; nodes that
are changing state are placed towards the centre: see figure 1. The different
transient behaviours and attractors are clearly visible; for example, it is clear
that these show three different attractors, with three different periods.

Fig. 1. Visualisation of the time evolution of a K = 2 RBN from different initial
conditions (half on, half off; all off; all on) with the nodes sorted to expose the frozen
core (as described in [6])

A simple algorithm to achieve this node sorting is described in [6]. It results
in the frozen core nodes moving to the edges of the figure, whilst the nodes with
cycling states are in the centre. Additionally, the frozen core nodes with shorter
transient behaviour are closer to the edges than those with longer transient be-
haviours. Similarly, nodes with cycling states are sorted according to the amount
1 The wiring conditions given here are not stated explicitly in those references. How-

ever, in the K = N case, Kauffman [4, p.192] states that “Since each element receives
an input from all other elements, there is only one possible wiring diagram”. This
implies that multiple connections from a single node are not allowed in a true RBN
(otherwise more wiring diagrams would be possible) whereas self connections are al-
lowed (otherwise K would be restricted to a maximum value of N − 1). Subsequent
definitions (for example [1]) explicitly use the same conditions as given here.
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of time they spend in one state or the other, with those half the time in each
state towards the centre. This tends to highlight the attractor structure.

Note, however, that the precise order of the nodes depends on the various
initial states chosen. In all the examples given here, for simplicity, the network
was run only from the all zeroes and from the all ones state to determine the
sort order. In figure 1, it can be seen that in the all ones initial state (middle
column) the central node is always on, whilst in the all zeroes initial state (right
column) it is always off. (This implies it is a node with a self-connection.) Hence,
when these two cases are combined, it is on for an average of half the time, and
so ends in the centre.

4 Examples

In this section, we explore some different aspects of RBNs, using this visualisation
approach to expose the relevant features.

We use Tufte’s “small multiples” [7] technique, which “allows the viewer to
focus on changes in the data”, by displaying an array of RBNs that can be
readily compared.

The aim is to use the visualisation to prime intuition and aid understanding of
RBNs’ rich dynamics, and to provoke hypotheses about the detailed behaviour.
Any such hypotheses would need to be investigated in a rigorous manner.

4.1 Perturbing RBN State

Here we visualise the stability of K = 2 networks to perturbations of their state.
Kauffman [3] defines a minimal perturbation to the state of an RBN as flipping

the state of a single node at one timestep. Flipping the state of node i at time t is
equivalent to changing its update rule at time t−1 to be ci,t = ¬φi(χi,t−1). Such
a perturbation leaves the underlying dynamics, and hence the attractor basin
structure, the same, it merely moves the current state to a different position in
the state space, from where it continues to evolve under the original dynamics:
it is a transient perturbation to the state.

Kauffman [3] describes the stability of RBN attractors to minimal perturba-
tions: if the system is on an attractor and suffers a minimal perturbation, does
it return to the same attractor, or move to a different one? Is the system homeo-
static? (Homeostasis is the tendency to maintain a constant state, and to restore
its state if perturbed.)

Kauffman [4] describes the reachability of other attractors after a minimal
perturbation: if the system moves to a different attractor, is it likely to move
to any other attractor, or just a subset of them? If the current attractor is
considered the analogue of “cell type”, how many other types can it differentiate
into under minimal perturbation?

Kauffman’s results pick out the K = 2 networks as having interesting be-
haviour under minimal perturbation (high stability so a perturbation usually
has no effect; low reachability so when a perturbation moves the system to an-
other attractor, it moves it to one of only a small subset of possible attractors).



372 S. Stepney

Fig. 2. Visualisation of the time evolution of three typical K = 2 RBNs (two runs of
each), with N = 200, 800 timesteps, and initial condition all nodes “off”. After 100
timesteps, a node is flipped once every 50 timesteps. For the left run of each pair, a
node is flipped near the centre; for the right run, a node flipped in the frozen core.

Visualisations of the effect of minimal perturbations are shown in figure 2, for
perturbations of cycling nodes, and of frozen core nodes.

These visualisations demonstrate that K = 2 RBNs are remarkably stable
to minimal perturbations. They also suggest further possible properties: (a) a
perturbation to a frozen core node is more likely to preserve the attractor than
a perturbation to a cycling node; (b) a perturbation to a frozen core node tends
to have longer transient behaviour than a perturbation to a cycling node.

4.2 Perturbing RBN Structure

Here we visualise the stability of K = 2 networks to perturbations of their
structure.

Kauffman [3] defines a structural perturbation to an RBN as being a perma-
nent mutation in the connectivity or in the boolean function. So a structural
perturbation at time t0 could change the update rule of node i at all time t > t0
to be φ′

i or change the neighbourhood of node i at all time t > t0 to be ν′
i. Since

the dynamics is defined by all the φi and νi, such a perturbation changes the
underlying dynamics, and hence the attractor basin structure: it is a permanent
perturbation to the dynamics, yielding a new RBN.

Such a perturbation could have several consequences: a state previously on
an attractor cycle might become a transient state; a state previously on a cycle
might move to a cycle of different length, comprising different states; a state
might move from an attractor with a small basin of attraction to one with a
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Fig. 3. Visualisation of the time evolution of three typical K = 2 RBNs (two runs
of each), with N = 200, 800 timesteps, and initial condition all nodes “off”. After
100 timesteps, the structure of one randomly chosen node is mutated once every 50
timesteps. For the left run of each pair, one of the node’s inputs is randomly reassigned;
for the right run, the node’s boolean function is randomly changed.

large basin; a state might move from a stable (homeostatic) attractor to an
unstable attractor; and so on.

Kauffman [4] relates structural perturbation to the mutation of a cell; if there
is only a small change to the dynamics, this represents mutation to a “similar”
kind of cell.

Visualisations of the effect of structural perturbations are shown in figure 3,
for perturbations of input connections, and of boolean functions.

These visualisations appear to show that the effect of an input change is less
dramatic than that of a boolean function change. Here no distinction is drawn
between changing a cycling node or a frozen node: visualisation of further exper-
iments along these lines could yield interesting conjectures about the stability of
these RBNs.

4.3 Canalisation

Here we visualise the effect of canalising functions on the time behaviour of
K > 2 networks.

Kauffman [4, p.203] defines a canalising function as “any Boolean function
having the property that it has at least one input having at least one value (1
or 0) which suffices to guarantee that the regulated element assumes a specific
value (1 or 0)”. ([1] categorises canalising functions further, into weak, strong,
and constant). Kauffman argues that the canalising functions are important for
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4. Visualisation of the time evolution of 24 typical K = 3 RBNs, with N = 200,
and initial condition all nodes “off”; for 150 timesteps; rows have the following number
of canalised nodes: (a) 94 = 47.0% (b) 128 = 64.0% (c) 181 = 90.5% (d) 184 = 92.0%
(e) 190 = 95.0% (f) 198 = 99.0%
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Fig. 5. Visualisation of the time evolution of 16 typical K = 4 RBNs, with N = 200,
and initial condition all nodes “off”; for 200 timesteps; all functions canalising

establishing the frozen core and ordered dynamics of K = 2 networks. The
proportion of canalising functions decreases rapidly with increasing K . Kauff-
man [4, p.206] states that “networks with K > 2 restricted to canalyzing func-
tions . . . [have] orderly dynamics in the entire network”.

Visualisations of the effect of canalising functions on the time behaviour are
shown in figures 4 and 5. Clearly for K = 3 (figure 4), increasing the proportion
of canalising functions does make transients and attractors shorter, and establish
an “orderly dynamics”. However, for K = 4, even with all functions canalising,
change in the chaotic behaviour is evident in only a minority of cases. The effect
does not appear to be as strong as Kauffman suggests.

5 Discussion and Conclusions

A very simple algorithm allows the time behaviour of RBNs to be visualised in
a manner that exposes the transient behaviour, and the structure of the frozen
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core and cycling nodes. We have used this algorithm to explore various examples
of the behaviour of RBNs as certain parameters are varied.

Visualisation of the dynamics helps to prime intuition, and to suggest hy-
potheses to explore. Some conjectures have been posed; more such conjectures
could be generated from larger numbers of examples; some of these may be
worthy of further investigation.
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Abstract. We describe a composable dynamical system that uses the
emergent properties of coupled random Boolean networks (RBNs) as a
basis for a sub-symbolic artificial chemistry. The approach shows poten-
tial for open-ended emergent properties and may lead to a foundation
for artificial life.

1 Introduction

Artificial chemistries [1] (AChem, AC) have been used for investigations into
the emergence and/or early development of biological phenomena in an abiotic
environment with arguable success at generating systems with multiple levels of
emergence. We believe this is because previous artificial chemistries have used
symbolic approaches. We propose a sub-symbolic [2] approach based on com-
posable random Boolean networks (RBNs) to produce a system within which
self-organizing multi-level structures could emerge.

In symbolic representations each “atom” has no internal structure. In a sub-
symbolic representation, the “atoms of meaning” are emergent properties of
complex dynamics. An example useage of sub-symbolism is neural networks in
the field AI; the learned information emerges from the network structure and the
weights of the links, rather than being explicitly encoded in a fixed set of sym-
bols. Sub-symbolic representations allow new, unforeseen, “atoms of meaning”
to emerge from the developing system.

2 Sub-symbolic Artificial Chemistry

Artificial chemistries are analogous to real-world chemistry in that indivisible
building blocks (atoms) bond together to produce larger structures (molecules).
However, real-world atoms have internal structure (e.g. electron shells) that is
not incorporated in an artificial chemistry based on symbols. We propose using
a sub-symbolic representation to account for this feature.

A sub-symbolic representation suitable for an artificial chemistry should ex-
hibit the following features:

G. Kampis, I. Karsai, and E. Szathmáry (Eds.): ECAL 2009, Part I, LNCS 5777, pp. 377–384, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



378 A. Faulconbridge et al.

– Deterministic and computationally tractable
– Emergent characteristics
– Composability to enable sub-symbolic representations of molecular struc-

tures can be constructed
– Upward and downward causation so that low-level changes have the potential

to disrupt higher-level structures and vice versa

Composability of a rich sub-symbolic representation allows molecular structures,
such as functional groups or polymers, to potentially be more than the sum of
their parts. In this fashion we hope that analogies to biological structures may
emerge: a protein is one entity but it is composite of amino acids, each of which
is composite of several functional groups, which are themselves composite of
multiple atoms.

Sub-symbolic composability allows reactions between novel structures to oc-
cur without the need to specify additional reaction rules. This is important
for evolution within an artificial chemistry as it potentially enables open-ended
development.

Decomposability is also a desirable feature of a sub-symbolic representation.
By allowing interactions at multiple levels of structure, lower-level changes have
the potential to alter higher-level structures (e.g. the breakage of bonds where
catalysts separate from their products).

There are many possible sub-symbolic representations, and many possible
artificial chemistries using them. We have made some arbitrary choices for the
representation and reaction rule in order demonstrate proof-of-concept. The sys-
tem described below is only one example of many possible artificial chemistries
using this sub-symbolic framework. In addition, the example reactions represent
only a tiny sample of possible reactions within this chemistry.

3 RBN-World: Chemistry

RBNs
Random Boolean networks [3,4,5] (RBNs) are our system of choice for a sub-
symbolic artificial chemistry due to their rich dynamical structure1. In this work,
we use a reaction rule based upon matching cyclelengths and composition of RBNs.

An RBN consists of n nodes synchronously updated in discrete timesteps.
Each node in the RBN has: a Boolean state, inputs from k nodes, and a Boolean
function that maps the state of its input nodes to its state at the next timestep.
We use k = 2 for all RBNs described here. Function and initial state of each
node are chosen at random.

All nodes in the network simultaneously update their state at time t based on
the states of their inputs at time t− 1. The state of an RBN is the collection of
1 RBNs were originally devised as simple models of the genetic regulatory network

within a cell. Subsequent work using RBNs has continued this theme and focused on
reflecting biological networks. However, here we use RBNs as composable dynamical
systems with emergent properties.
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states of the nodes. All RBNs have cyclic behaviour, returning to a previous state
after sufficient timesteps. The number of timesteps on a cycle is the cyclelength.
The distribution of cyclelengths is highly skewed with median

√
n, with a long

tail to a theoretical (but rarely seen) maximum value of 2n. This means that
discovering a RBNs cyclelength is computationally tractable.

RBNs exhibit sensitivity to noise perturbations [3], i.e. a change in one node
may change the behaviour of the entire network, or may do nothing. This gives a
structured richness to the system that is rarely found in combination with such
simplicity. RBNs have a vast number of possibilities, yet they have a number of
emergent properties (e.g. cyclelength) with complex many-to-one mappings.

For use in a chemistry, RBNs need to be be combined and fragmented. There-
fore some modifications have to be made to traditional RBNs which are described
below.

Some further definitions are needed for an artificial chemistry; atoms, bonds,
reactions and molecules. Due to space limitations, we can not cover all of the
system in depth and therefore only outline the important features.

Atoms
We define an additional feature of RBNs; bonding sites to make bRBNs (bonding
random Boolean networks). Bonding sites (b) are one or more additional nodes
that are each taken as an input by one ordinary node chosen at random (a
single ordinary node has at most one input from bonding sites). Bonding sites
do not have any inputs; their state is determined by whether they are “filled”
or “empty”. See figure 1 for two example bRBNs. For the preliminary work
described here, b = 2 for all bRBNs.

The coupling of bRBNs through bonding sites mean that a reaction can change
one input to a single node. Due to the sensitivity of the dynamics of RBNs, the
change of state of bonding site on formation of a bond can have a wide range of
effects (or none).

Bonds
A bond links two bRBNs. There can be multiple bonds between the same pair
of bRBNs. Each bond requires one bonding site within the pair of bRBNs to
become “filled”, and each “filled” bonding site is associated with only one bond.
In the chemistry described here, we require that the two bRBNs linked by a
bond must have equal cyclelengths both before and after bonding.

Reactions
To form a bond, we require that the two bRBNs have equal cyclelengths both
when the bonding sites are “empty” and when the bonding sites are “filled”. We
do not require the cyclelength when the bonding site is “empty” to be equal to
the cyclelength when the bonding site is “filled”. Example structures before and
after a reaction are shown in figures 1 and 2 respectively (summarized in figure 3).

If a bond is not formed, it is attempted again with any higher-level structures
the pair of bRBNs are part of. This iteration of attempting bonding and retrying
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Fig. 1. Two example bRBNs (n = 10, k = 2, b = 2). Numbers are Boolean functions,
colour indicates state at this timestep. Edges indicate where outputs are connected to;
dashed lines indicate inputs that are always ignored. White circles represent “empty”
bonding sites with their bonding order pre-specified.

Fig. 2. Example RBN-molecule constructed from RBN-atoms in figure 1. Above is the
composite bRBN, and below the component bRBNs. Black circles represent “filled”
bonding sites.

for higher-level structures continues until either a bond is formed or there are
no more higher structures. See figure 4.

Molecules
bRBNs that are linked by one or more bonds can be expressed as a composite
bRBN. The composite bRBN structure is the same as the structure of the com-
ponent bRBNs, except that inputs from “filled” bonding sites are replaced with
direct reciprocated inputs (e.g. figure 2). Non-composite bRBNs are RBN-atoms,
and a composite bRBN (at any level) is a RBN-molecule. RBN-molecules may
form bonds in the same manner as RBN-atoms to make higher-level composite
structures. In this representation we track multiple levels of structure in order
to allow decomposition events. Note that a node can be in different states at
different levels of the structural hierarchy.
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I

II

Fig. 3. Abstract representation of figures 1 and 2; RBN-atoms (I) and the RBN-
molecule (II). Squares represent the RBN abstracted to a letter and the number shows
the current cyclelength. Square brackets denote “is built of” to show that in [αβ]4 the
subscript refers to the combined bRBN rather than just β. The internal structure of
a composite bRBN can be similarly expressed, e.g. [α2β2]4. Note that all RBN-atoms
should have square brackets, e.g. [α]2, but for brevity they are omitted for single atoms.
The ‘lollipops’ represent bonding sites; white when “empty” and black when “filled”.
This reaction can be expressed in symbolic form as α2 + β2 → [α2β2]4.

III

IV

V

Fig. 4. Example formation of a multi-level structure. The RBN-molecule [αβ]4 from
figure 3 reacts with RBN-atom γ4. Step III shows the initial condition, and step IV
shows the attempted bonding between γ4 and α2. The cyclelengths do not match,
so they do not bond. The bonding attempt is repeated between γ4 and [αβ]4. The
cyclelengths do match and step IV shows the forming bond (indicated by the grey
‘lollipops’). The final structure is shown in step V. The nested boxes show that γ4 is
bonded to [αβ]4 rather than α2. The reaction can be expressed in symbolic form as
[α2β2]4 + γ4 → [γ4[α2β2]4]4.

Effects of Bonding
There are two direct consequences to the formation of a bond:

1. The process of bonding changes a bonding site in each linked bRBN from
“empty” to “filled”. This changes one input to one node, which can poten-
tially lead to a change in cyclelength.

2. The bRBNs linked by the bond form a new higher-level composite bRBN.
If one of the participants of the bond was already a component in another
bRBN, then the composite structures are combined into a single bRBN.

Additional bonds can be formed as long as the requirements for bonding can
be satisfied. Preliminary investigations suggest that complicated structures with
multiple levels do form: this requires further investigation to characterise fully.

Bonds can be destroyed as well as created. A bond is broken whenever its
two linked bRBNs no longer have equal cyclelengths. The circumstances for this
depends on the details of the bRBNs participating in the bond.
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VI

VII

VIII

IX

X

XI

XII

Fig. 5. Continuing from figure 4, δ2 reacts with β2. The first stage is to fill in a bonding
site on δ2 and β2 (shown in dark grey in steps VII – XI above). This changes the
cyclelength of β2 to 1 (see step VII). As β1 cyclelength is now different to α2, the
bond between them is removed (shown in grey in step VIII). This empties a bonding
site in β1 and α2. The breakdown of the α2 — β2 bond also means [αβ]4 no longer
exists (shown in light grey in step IX) and therefore the γ4 — [αβ]4 bond and [γ[αβ]]4
molecule no longer exist (shown in light grey in step X and step XI respectively). The
final state at the end of the reaction is shown in step XII above. This reaction can be
expressed in symbolic form as [γ[αβ]]4 + δ2 → γ4 + α2 + [β1δ1]3.

An example of a reaction that leads to breaking bonds and the decomposition
of RBN-molecules can be seen in figure 5. The molecule that has been built up
by previous reactions in figures 3 and 4 goes on to react with another RBN-atom.
This causes a change in cyclelength which triggers a cascade of bond breakage
and structure fragmentation. Processes like these contribute to the rich complex
dynamics of this artificial chemistry.

4 Discussion

Composite bRBNs are not identical to conventional RBNs: in addition to the pres-
ence of bonding sites, composite bRBNs have a distinctive topology due to the re-
stricted connectivity between the component bRBNs. Here we demonstrate that
this does not adversely impact the complex dynamics that we are interested in.

First, we show that the addition of bonding sites to RBNs (and thus the
fixing of an input to a node) does not drastically change the distribution of
cyclelengths (

√
n median and long-tail). The results of examining 1,000 RBNs

and RBN-atoms over 5 < n < 5000 are shown in figure 6.
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Fig. 6. Distribution of cyclelength in RBNs and RBN-atoms with n nodes. Solid lines
are medians, dashed lines the 90th percentiles; cyclelength was capped at 10,000.

Fig. 7. Distribution of cyclelength for RBN-molecules composite of two RBN-atoms
for n nodes. Solid lines are medians, dashed lines the 90th percentiles; cyclelength
was capped at 10,000. “Bonded” refers to atoms that are joined based on matching
cyclelengths, “forced” are atoms joined regardless of cyclelength, and “doubled” refers
to a single RBN-atom with 2n nodes.

Second, we show that RBN-molecules have a similarly shaped distribution of
cyclelengths to RBN-atoms. The precise distribution is influenced by the details
of the bonding scheme: the requirement for equal cyclelengths, and the topology
of composite bRBNs. Therefore, we compare higher-level bRBNs formed in three
different ways: bonding between two bRBNs with matching cyclelengths, forced
bonding between two bRBNs without any requirements, and a single bRBN with
twice the number of nodes, 2n.

The results of examining 1,000 bRBNs at 30 different values where 5 < n <
5000 are shown in figure 7. All three bonding schemes result in a broadening
distribution with increasing n, though the rate of increase varies. Forced bonding
has the steepest increase; this is most likely due to a ”lowest common multiple”
effect rather than the bond itself. If bond itself has no effect on cyclelength, then
the composite structure must have a cyclelength equal to the lowest common
multiple of its component bRBNs cyclelengths. If the two bRBNs have the same
cyclelength, then the composite structure must also have that cyclelength.
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These bonding schemes produce composite structures with long-tailed dis-
tributions of cyclelengths. This shows that bRBN-molecules maintain the in-
teresting dynamical properties of RBNs, and thus provide a basis for future
higher-order emergence.

5 Future Work

The artificial chemistry described here is a first step in exploring the emergent
properties of composable discrete dynamical systems. We note that this frame-
work allows for the specification of whole classes of new artificial chemistries.
Some ideas for future work include:

– Varying n, b, and k.
– Limiting Boolean function sets, e.g. no fixed functions
– Characteristics other than cyclelength for bonding
– Requirements other than matching for bonding
– Locating bonding sites by emergent dynamical features (such as node activ-

ity) rather than pre-specifying them

– Using other dynamical systems, eg cellular automata (CAs), as atoms
– Identifying a small subset of networks as ’elements’; selected by, for example,

a genetic algorithm

– Adding a measure of bond strength, allowing stronger bonds to replace
weaker ones

– Introducing spatial aspects
– Introducing thermodynamics and / or entropy as implicit or explicit measures

We have introduced an artificial chemistry based on composable dynamical sys-
tems which offers the prospect of rich emergent properties with the potential
for open-ended behaviour. A key aspect of our approach is the composition of
sub-symbolic components into hierarchical structures, eschewing the need for
additional externally imposed rules and / or symbols at each level of organ-
isation. Here an illustrative RBN-based artificial chemistry has been used for
proof-of-concept, but other dynamical systems and interaction schemes are pos-
sible. We propose that sub-symbolic composable systems provide a framework
for the open-ended evolution of artificial life with emergent features.
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Abstract. Using Chemical Organisation Theory [1] we present here an
analysis of two classical models of artificial chemistries: a system equiv-
alent to AlChemy [2], and the Automata Chemistry [3]. We show that
Chemical Organisation Theory is able to explain why AlChemy was un-
able to evolve, while the Automata Chemistry would produce a stream
of novelty that would on the one side explore the space of the possible
molecules (and organisations) and on the other build upon the previous
findings of the system. We relate to Suzuki’s et al. [4] ten necessary con-
ditions for the evolutions of complex forms of life, by adding an 11th one.

1 Introduction

One of the key models that was presented at the beginning of Artificial Life field
was AlChemy [2]. AlChemy, which stands for Artificial Chemistry, was used both
to suggest a chemical beginning of life [5] (different from the RNA beginning of
life, and different from the fat beginning of life), and to explain how our tools to
study complex systems were in fact really blunt. It was explained how we were
able through an Ordinary Differential Equation (ODE) to study a system which
had already all the elements present, but we were not really able to handle a
system where new components were being produced [6]. A kind of system were
novelty was being generated, in the form of new components, was then called a
Constructive Dynamical System.

Twenty years later both threads of research are still alive. Constructive
Dynamical System theory gave rise to Chemical Organisation Theory, which
expands it, using Algebra, to deal with more general systems. It still studies
artificial chemistries, but more generally deals with Reaction Networks, and had
been used successfully in bioinformatics, and systems biology to predict and de-
scribe the algebraic structure of various chemical systems, from the atmosphere
in Mars and Io [7], to the internal metabolism of a unicellular being [8].

Artificial Chemistry, as a research tool, has been used in the study of proto-
life. The AlChemy system was observed not to spontaneously evolve, and thus
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researchers turned their attention to other artificial chemistries. But no one ever
answered, or even tried to answer, why was AlChemy unable to evolve, and what
additional lessons can we gain from this.

We shall use in this regard Chemical Organisation Theory, so the same the-
ory that was presented using AlChemy, will now, in its more mature form, be
applied back to study a system equivalent to AlChemy, finally explaining why
was AlChemy unable to produce an evolving system. We will compare this with
the study of another Artificial Chemistry, the Automata Chemistry model, and
showing how there, instead, we do observe a genuine evolution. So the system
keep on being constructive, keeps on producing novelty, and exploring the space
of possible organisations. In 2003 a paper was written that listed ten on the
necessary conditions for the Evolution of Complex Forms of Life in an Articial
Environment. Those conditions were [4]:

1. the symbols or symbol ingredients be conserved (or quasiconserved) in each
elementary reaction, or at least, conserved with the aid of a higher-level
manager.

2. an unlimited amount of information be coded in a symbol or a sequence of
symbols.

3. particular symbols that specify and activate reactions be present.
4. the translation relation from genotypes to phenotypes be specied as a phe-

notypic function.
5. the information space be able to be partitioned by semipermeable mem-

branes, creating cellular compartments in the space.
6. the number of symbols in a cell can be freely changed by symbol transporta-

tion, or at least can be changed by a modication in the breeding operation.
7. cellular compartments mingle with each other by some randomization

process.
8. in-cell or between-cell signals be transmitted in some way like symbol trans-

portation.
9. there be a possibility of symbols being changed or rearranged by some ran-

domization process.
10. symbols be selectively transferred to specic target positions by particular

activator symbols (strongly selective), or at least selectively transferred by
symbol interaction rules (weakly selective).

To those ten conditions we will add an eleventh:
11. The system should not have access to a basis that permits the construction

of every possible molecule.
We will then discuss the consequences of this new condition, and it’s rela-

tions with the previous ten. To do all this we shall first briefly present Chemi-
cal Organisation Theory, the Combinator’s Alchemy version, and the Automata
Chemistry. We will then show the result that we obtained by applying the Chem-
ical Organisation Theory to the Combinators Chemistry, and to the Automata
Chemistry. We will then discuss those results, and reach some conclusions.
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2 Description of Chemical Organisation Theory

Chemical Organisation Theory has been presented in multiple papers, especially
in previous versions of this conference. Although the results that we are present-
ing here are new, the actual theory has not changed. The theory in its complete
format can be found from [1]. We shall now only repeat a brief description. Please
note that the Artificial Chemistries we will study here are not the most general
artificial chemistries possible, but part of a very specific type of systems called
Catalytic Flow Systems. Those systems are often studied in Artificial Life, where
as more general system are usually present in biology. We consider an artificial
chemistry as a set of molecules M and a function R called reaction. R will be a
function of arity 2 from M ×M to M (i.e. ∀ x, y ∈ M , R(x, y) ∈ M). We define
an organisation as a set of molecules which is both closed and self maintaining.
That is, let O be such a set, for all a, b ∈ O, R(a, b) ∈ O (closure). And for all
c ∈ O, such that c can be destroyed, there exist a, b ∈ O such that R(a, b) = c
(self maintenance).

Note that this description is similar to the one given by Fontana in 1992 [2].
The only difference, at this stage, is that Fontana’s self maintenance was required
for every molecule, and not just for each molecule that can be destroyed (either
through an out-flux or through a non catalytic reaction). This seemingly small
difference is necessary to permit to the theory to study systems where some
molecules interact in a catalytic way with every other molecule, and are not
subject to an outflux (or destruction process). This is necessary, for example,
to model DNA molecules in a biological system. In our simplified systems this
difference makes sure that if the system reaches a configuration where no reaction
is possible, then the configuration is also (trivially) an organisation.

The organisations generated by an artificial chemistry, form a partially ordered
set (ordered by the inclusion), and more precisely form a lattice LO. Also it is
possible to define a function GO(S) that given a set returns the organisation
generated by that set. So organisations partition the space of all possible sets,
and as the system travel in the space of possible molecules, we can follow it on
LO. All this becomes important as the system evolves; in fact the evolution of
the system will be, mathematically, represented as a movements on the lattice
of organisations. All those results were previously presented in [1][9][10]. Briefly
we could say that in this paper we are studying and comparing the movement
in the lattice of organisations of two different systems.

If a system is left to react to itself, if any change is present, this will always
be toward simpler organisations, that is toward organisations laying lower in the
lattice of organisations (downward movement). But when the system is seeded
with random molecules, those molecule can push the system toward a more
complex organisations (upward movement). And if this is unstable fall back in
the same organisation, or on a neighbouring organisation (sideward movement).
We can now see evolution as an interaction between the random variation which
leads the system toward a state of greater complexity, and its simplification by
reaching a stable subsystem.
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3 Systems: The Combinators AlChemy Version

The first system that we have applied the Chemical Organisation Theory to is the
Artificial Chemistry generated by combinators. For a complete description please
refer to [11,12]. For those experiments we will use a simplified version of the
system which has no R molecule, only catalytic reactions, and no fixed amount
of basic atoms. So a system which is, in all regards, equivalent to Fontana’s
AlChemy except that it used Combinators, instead of Lambda terms. For a
study on how combinators are equivalent to Lambda terms please refer to [13].
Please note, for example, that we could observe the same organisations that
Fontana observed. And analyse them from a Chemical Organisation point of
view ([10], chapter 6).

We will briefly describe the system. The system is an Artificial Chemistry,
whose molecules are combinators in their normal form. Briefly we can say that
Combinators are a string with balanced parenthesis over an alphabet of basic
operators. Strict rules define how the basic operators in the string are applied,
thus a combinator end up being the operator that is produced by the joined
reaction of all the operators that compose it. The result is thus an operator,
which can be applied to a string with balanced parenthesis, and would then
produce a new string (again with balanced parenthesis). So a combinator is an
operator which applied to a combinator generates another combinator.

Some combinators are in an unstable configuration, and by applying the op-
erators that compose them, can change their configuration. If this can happen
we say that a combinator is not in its normal form. The process that transform
a combinator into another is called reduction. A fundamental theorem, in com-
binator theory, is that if a combinator can be reduced in a normal form, this is
unique. In our experiment we shall use only combinators in their normal form,
and when the result of a reaction is a new combinator, we shall just permit
consider the reaction to be valid if the result can be reduced (i.e. if we could find
in t steps a reduction) to a combinator in its normal form.

A family of combinators (called Soup) are present in the experiment, and at
each time-step two combinators are randomly chosen, interacted, and if the result
is a combinator that can be reduced to a normal form, the result is added to the
soup. A random combinator is then eliminated. The basic alphabet that were
used were (B, C, K, I, S, W) which include two basis of the space of combinators
(B, C, W, K) and (K, S, I). Their behaviour as operators can be found both in
[12] and in [13].

4 Systems: The Automata Chemistry

The second artificial chemistry used was an automata chemistry [3]. In this
chemistry molecular species are binary strings ( s ∈ {0, 1}32 ) with a constant
length of 32 bits. As in the other chemistry, two strings will catalyze the pro-
duction of a third string (s1 + s2 → s3 ). One of the strings s1 is mapped to
an automaton As1 according to a well dened instruction table (we used code
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table II in [3] allowing self- well defined instruction table (we used code table II
from [3] allowing self- replication). The other, s2, serves as input to As1 , and the
result of the reaction is the output of the automaton s3 = As1(s2). In each time
step, two string are randomly chosen to catalitycaly react. After the reaction the
reactants are inserted back into the reactor while one randomly chosen molecule
in the reactor is replaced by the product in order to keep the total number of
the objects in the reactor constant at value N .

5 Results

We applied the Chemical Organisation Theory analysis to both the Combinator’s
AlChemy system, and to the Automata Chemistry. The results that we reached
were vastly different.

We could not map the whole lattice of organisations in either systems. In
the one case (the combinators) this was infinite. In the other case (the matrix
chemistry) while not infinite, it was too vast to be calculated. What instead
we did was to stop the system in various points, and study the organisation
that was being generated by the molecules present in the Soup. Note that we
made multiple runs, and each run of the system was unique. Studying such
systems presented a challenge, since the differences from one run to the other
were mostly qualitative, before being quantitative. This was true both in terms
of the differences between run on the same system (example, two runs of the
matrix chemistry), and even more between a run on one system and a run
on the other. The organisations, that were generated, the historical trajectory
through those organisations were often very different one from the other. In
both case it would not make sense to make a statistical analysis of a system. Yet
there were some general pattern that could be recognised. Some common ways in
which the Automata Chemistry system would run, versus how the Combinators’
AlChemy System would run. As such, after having observed a number of runs,
we are presenting here data from two exemplary runs. They are in all regards
typical run, one of the Combinators’ AlChemy System, and one of the Automata
Chemistry. We then discuss the differences between the two type of systems.

In the Combinators’ AlChemy System, not only we could not draw the lattice
of all the possible organisations, but we could often also not map the organi-
sations that were being generated. We note that since the system possessed a
simple basis (two in fact: S, K; B, C, W, K ), it was possible to have a configura-
tion of molecules in the Soup that could potentially generate the whole system.
Every possible molecule could be generated (given enough time, and a Soup big
enough) by the system in such configuration. As such the organisation generated
by the system, in those configuration, was potentially the whole system. And ev-
ery possible other organisation that existed was a subset of this. We shall call this
the organisation Infinity. As the system would keep on reacting, eventually the
molecules of the basis would be destroyed, and the system would move downward
to a smaller lattice, until eventually it would produce a finite lattice. When the
system, was finally simple enough, we could study it with Chemical organisation
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Fig. 1. This is a figure showing the evolution of the molecules in time, above. And
the various organisations that suceeded below.

Theory, and we could map its lattice. Although we would limit ourselves to the
point in time where the system was simpler, often the system would still be too
complex to be nailed down through Chemical Organisation Theory. Usually to
study the lattice of the organisations we start by calculating the largest possible
organisations. This is done by starting with a set of molecules M, then produc-
ing every molecule that can be generated by reacting every pair of molecules
together, thus generating M1. Then repeating the same process taking pairs in
M1 we generate M2, and so on. Until Mn = Mn−1. And then the system is
contracted to the biggest self maintaining set. (For a complete description of the
process please refer to [10], Chapter 2. In all but the most simple cases there
was no n such that Mn = Mn−1. As the limn−>∞|Mn| = ∞. And we often had
to limit ourselves to n such that |Mn| < t (with the threashold often = 600).

We know we were very abruptly simplifying the lattice of organisations gen-
erated,losing potentially significant data. Still the data that we could collect
were interesting, and pointed to some fundamental differences between the two
systems.

As the system would keep on reacting, eventually the molecules of the basis
would be destroyed, and the system would start to generate a smaller lattice,
until eventually it would produce a finite lattice. When the system, was finally
simpler enough, we could study it with Chemical organisation Theory, and we
could map its lattice. What we would observe is that the system would jump from
one organisation to the other. With no sense of historical continuity. Although
we recognise that the historical continuity might be present in the data that we
could not analyse, much of those data contained the full lattice. And as such
the system was essentially going from organisation A to Organisation Infinity,
to organisation B, to Organisation Infinity, to organisation C, to organisation
Infinity, etc...
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Fig. 2. This is a figure showing the evolution of the molecules in time, above. And
the various organisations that suceeded below. (adopted from [9]).

When we applied Chemical Organisation Theory to the Automata Chemistry
the results were totally different. In this case it was possible to calculate the
lattice of all the possible molecules that could be generated by the system.

In this case, not only we could observe the system’s organisation in every
instant, but we could observe how the random molecule would push the system
into a more general organisation, and from there how the system would reach a
simpler, but more stable organisation. The net result was a system that would
reach an organisation, expand into a more complex, but unstable one. From
there either collapse back toward the same organisation, or reach a different
organisation. Thus producing a novel behaviour which was generally either an
expansion of the previous one, or a partial modification of it.

6 Discussion

What is really striking between those two systems is how different is their evolv-
ing process. In a sense both systems are very similar. They both are produced
by many molecules (232 in one case, infinite, but actually limited by the mem-
ory of the computer in the other), the reaction is equivalent, they both use
catalytic reactions, with an out-flux of a molecule every time a new molecule
is produced. The size of the experiments were similar (both used Soups of a
thousand molecules). Both systems had random molecules being inserted, and
in both cases the speed of the insertion was chosen so the system had the time
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to settle in an organisation before new random molecules were inserted. And yet
the evolutive behaviour was totally different.

In the first case the system would reach a finite organisation, then would
wait until a random molecule would push it away. Then it would move into a
organisation which was too vast to be studied. Often the soup would contain a
basis of the set of all molecules, and thus the generated organisation would be
the organisation Infinity. From there the system would move in an unpredictable
way, eventually losing the key molecules that could potentially generate the wider
organisations. And from there it would move down, to a new organisation. The
new organisation would most often have no relation to the previous one. As such
the system was similar to a system that was randomly picking organisations from
the lattice of all possible organisations. With little or no relation to the previous
organisation present in the system. Although this system is effectively moving
from one organisation to the other, it was unable to hold build upon previous
subsystems discovered.

The second case was very different. First of all we were always able to calculate
the organisation generated by the molecules in the soup. Then the set would grow
slowly. Often even under the influence of random noise the system would remain
unchanged. Then when it would change it would move toward a more complex
system (after having incorporated the new molecules), and then drop from there
to a simpler system, which sometimes was the original one, and sometimes it
was not. There was a very definite continuity from one state of the system to
the other. And we could see the system exploring the lattice of organisations,
moving through neighbouring organisations.

7 Conclusions

Often in Artificial Life there is a constant search for the most powerful system.
The system that can potentially produce a bigger, higher complexity. It is inside
this line of thought that AlChemy was developed. AlChemy having universal
computation capabilities (U.C.C.) was able to produce every possible lambda
term. Thus every possible subsystem would fall in its domain. Yet in this case it
is this very power that gets in the way toward a genuine evolutive search of the
space of possibilities. For each combinator that is present a counter combinator
is possible that can destroy it. And the result is that no organisation is able to
be stable enough. The problem is not just with the potential capabilities of the
system (the fact that it has U.C.C.), but that a basis was also present. By taking
lambda terms Fontana (and then combinators, one of us) was using a system that
has been explored by mathematicians for close to a century. In mathematics there
is a constant search for the most elegant (i.e. shortest) basis of a system. Thus
the basis B, C, W and S, K were developed. By inserting in the system random
molecules, composed of those basic atomic structures, the system produced was
effectively able to reach too easily the infinite organisation. Per contro, we do
not know what is the basis of the Automata Chemistry. Although we know that
it exists, we also know that the random molecules that we were inserting in that
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system were not often containing elements of the basis (or we would be seeing
a much wider organisation appearing). So the system had to explore the space,
with no shortcut that could let it easily get rid of molecules that were present.
We recall in this regard another historical model, Tierra. Tierra had universal
computations capabilities, but the basis was not so elegantly expressed. And
Tierra evolutive behaviour was more similar to the Automata Chemistry, with
its slow progress, than to AlChemy. We thus conclude that an important element
in the construction of a system able to evolve is the absence of a basis of the
whole system among the basic building blocks with which the system is fed when
random molecules are inserted. Although the basis must necessarily be present,
it should not appear too easily.
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Abstract. Living systems are composed of biochemical reactions and
many of them involves a small number of molecules. We investigate the
behaviors of chemical reactions of the Lotka-Volterra model with small
number of molecules by using Abstract Rewriting System on Multisets,
ARMS; ARMS is a stochastic method of simulating chemical reactions
and it is based on the reaction rate equation. We confirmed that the
magnitude of fluctuations on periodicity of oscillations becomes large, as
the number of involved molecules is getting smaller and the dynamical
characteristics is changed. We investigate the coarse grained state space
of ARMS and show that the mechanism of fluctuations occur in the
chemical reactions involved a small number of molecules.

Keywords: Artificial Chemistries, Lotka-Volterra Model, Small Num-
ber Effects, Chemical reactions with a small number of molecules.

Introduction

In biochemical reactions in living systems involve a small number of molecules;
for example Transcription from DNA to RNA in the cell involves a small number
of messenger RNA (mRNA) molecules and two copies of each gene. For such
chemical reactions with a small number of molecules, stochastic effects must be
considered.

Gillespie[2] proposed a stochastic method of simulating chemical kinetics,
which has firmer physical basis than the deterministic formulation such as the
differential equations. Such stochastic chemical kinetics as the chemical master
equation, is often mathematically intractable. So the Monte Carlo procedure is
often used to simulate; since it requires a great amount of computer time, several
approximate procedures have been proposed [3], [13].

Abstract Rewriting system on MultiSets, ARMS was proposed[7] as an Arti-
ficial Chemistry[1], [4]. ARMS have been used in the Artificial Life, for example,
for considering the mechanism of edge of chaos[9], modeling chemical evolution in
the origin of life[9] and an evolutional reaction network [10]. Beyond the Artificial
Life, ARMS have been used in various subjects: the Systems biology (modeling
the P53 signaling network [11], inflammatory response [12]), the Physical chem-
istry (modeling the Belouzov-Zhabotinskii reaction [9], [13]), Chemical Ecology
[9] and so on.
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Abstract Rewriting System on Multisets, ARMS

ARMS is a construct Γ = (A, w, R), where A is an alphabet, w is the initial
state and R is the set of reaction rules.

Let A be an alphabet (a finite set of abstract symbols). A multiset over A is
a mapping M : A �→ N, where N is the set of natural numbers; 0, 1, 2,. . . . For
each ai ∈ A, M(ai) is the multiplicity of ai in M , we also denote M(ai) as [ai].
We denote by A# the set of all multisets over A, with the empty multiset, ∅,
defined by ∅(a) = 0 for all a ∈ A. A multiset M : A �→ N, for A = {a1, . . . , an} is
represented by the state vector w = (M(a1), M(a2), . . . , M(an)), w. The union
of two multisets M1, M2 : A �→ N is the addition of vectors w1 and w2 that
represent the multisets M1, M2, respectively. If M1(a) ≤ M2(a) for all a ∈ A,
then we say that multiset M1 is included in multiset M2 and we write M1 ⊆ M2.

A reaction rule r over A is defined as a couple of multisets, (s, u), with s, u ∈
A#. A set of reaction rules is expressed as R. A rule r = (s, u) is also represented
as r = s → u. Given a multiset w ⊆ s, the application of a rule r = s → u to the
multiset w produces a multiset w′ such that w′ = w − s + u. Note that s and u
can also be zero vector (empty).

The reaction vector, νj denotes the change of the number of molecules pro-
duced by the rule rj . For example ν for the reaction a, b → b, c is (−1, 0, 1) ≡
(a, b, c). We employ multisets; such a multiset X : A �→ R for A = {a1, . . . , an}
is represented by the state vector x = (X(a1), X(a2), . . . , X(an)). X(ai) denotes
the number of specie ai. Let us assume that there are N ≥ 1 molecular species
{a1, ..., an}, ai ∈ A that interact through reaction rules R = {r1, ..., rm}. As the
time evolution of x unfolds from a certain initial state, let us suppose the state
transition of the system to be recorded by marking on a time axis the successive
instants t1, t2, ... as X(tj) (j = 1, 2, ...), where j = 0 denotes the initial state. We
specify the dynamical state of x(t) ≡ (X(a1(t), X(a2(t)), ..., X(aN (t))), where
X(ai(t)) is the number of ai specie at time t. The time evolution of ARMS is
given as x(t) = x(t − 1) + νj , when there are several rules can be applied for
x(t), only one rule is selected for applying. We can define various ways of apply-
ing rules and in this study rules are applied sequentially according to the mass
action law of chemical reactions. We will define it in the next section.

ARMS with Chemical Kinetics

We modify the ARMS for modeling chemical kinetics and assume that all chem-
ical reactions take place in a well-stirred reactor; this assumption is required
due to the strong dependence of the reaction rate on the concentration of the
reagent species. For the dynamical state x(t), we define the probability of se-
lecting νj ≡ Pνj (x(t)) as

Pνj (x(t)) =
cj(x(t)) × kj∑m

j=1 cj(x(t))
, (1)

where cj(x(t)) denotes the number of possible combination collisions of rj reac-
tant molecules on x(t), kj is the reaction constant of rj . The time evolution of
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x(t) is a jump Markov process on the N -dimensional non-negative lattice. We
define the function f(x(t)), called the propensity function for rj ∈ R on x(t) by
f(x(t)) = (Pν1(x(t)), Pν2 (x(t)), ..., Pνm (x(t))).

Lotka-Volterra model. The Lotka-Volterra model, LV describes interactions
between two species in an ecosystem, a predator and a prey. Reaction rules of
the LV are given as;

X
a→ X, X : (r1),

X, Y
b→ Y, Y : (r2),

Y
c→ ⊥ : (r3),

where a b and c are reaction constants and ⊥ denotes an empty symbol, which
represents decay of Y .

The reaction rate equation, RRE of the LV is

Ẋ = aX − bXY = X(a− bY ) (2)
Ẏ = bXY − cY = Y (bX − c). (3)

Since population equilibrium occurs in the model when neither of the population
levels is changing, from X(a − bY ) = 0 and Y (bX − c) = 0, equilibria of the
LV are X = Y = 0 and Y = a/b, X = c/b. The first solution represents the
extinction of both species and the second solution represents a equilibrium point
at which both populations sustain their current, non-zero numbers. The LV
shows oscillations around this equilibrium point.

We analyze the behavior of the LV around the equilibrium point. The RRE
of the LV can be rewritten into( c

x
− d

)
ẋ +

(
a

y
− b

)
ẏ = 0,

and we obtain
d

dx
[c log x− dx + a log y − by] = 0.

We define
H(x) = x̄− x, G(y) = ȳ log y − y,

where x̄ = c/d and ȳ = a/b. Then we obtain the Lyapnov function,

V (x, y) = dH(x) + bG(y).

Since
d

dt
V (x(t), y(t)) = 0, V (x(t), y(t)) = constant,

the time evolution of LV is periodic. Hence if fluctuations displace the time
evolutions from the equilibrium point, the system should show periodic time
evolutions and these fluctuations never lead the time evolutions to the equilib-
rium point [6]. Hence, we will observe a variety of periodic oscillations, when the
magnitude of fluctuations are large.
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Fig. 1. The time evolution and its phase space and the distribution of existence prob-
ability are arranged one above the other; from left to right, the equilibrium points and
initial states are (5000, 5000) and (6000,6000), (500,500) and (600, 600) and (50,50)
and (60, 60); the Z-axis denotes the value of the existence probability respectively

Comparison of Schematic Views

We compared the periodic oscillations by changing equilibria; we examined the
case when equilibria (X, Y ) = (5000, 5000), (500, 500) and (50, 50), for each
equilibrium point we set the initial state as (X, Y ) = (6000, 6000), (600, 600)
and (60, 60), respectively (top row in the fig.1).

We confirmed that the magnitude of fluctuations on periodicity of oscillations
became large, as the equilibrium point was getting smaller. When the equi-
librium point (X, Y ) = (5000, 5000), the magnitude of fluctuations was small
and when (X, Y ) = (500, 500), fluctuations became large, while keeping periodic
oscillations. When (X, Y ) = (50, 50), fluctuations became more larger and a va-
riety of oscillations were observed; especially small period oscillations near the
equilibrium point was observed.

Phase Space

We compared phase spaces near to the each of equilibrium point (bottom raw
in the fig.1) and existence probability; the existence probability of xi ∈ x(t), t =
1, 2, ... was obtained by dividing the number of times of visiting xi by the to-
tal number of visiting states in the time evolution. When the equilibrium point
(X, Y ) = (5000, 5000), cyclic phase structure was clearly observed and the dis-
tribution of existence probability was mostly homogenous around the cyclic
phase structure. When (X, Y ) = (500, 500), a variety of cyclic phase structures
were observed; the distribution of existence probability was mostly homoge-
neous and these structures generate a variety of periodic oscillations. When
(X, Y ) = (50, 50), the phase structure was skewed; the distribution of existence
probability was inhomogeneous and most of them were attracted near to the
equilibrium point.
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Coarse Graining of Probabilistic Field

From comparison of schematic views, it was shown that the number of molecules
in reactions effect behaviors of the time evolutions. Next, we will focus on effect of
the number of molecules in reactions to the probability of selecting reaction rules.
Since the probability of selecting a reaction rule was given by the propensity
function on x, we examine the probabilistic field of the propensity function.
The propensity function of the LV was f(x) = (aX

M , bXY
M , cY

M ), where M =
aX + bXY + cY .

Fig. 2. The coarse grained probabilistic field of the LV; the equilibrium point was
(X, Y ) = (10, 10) and from (1, 1)to(200, 200) were observed, where the same color
illustrates the same closure

Closure: A closure is defined as a sub space in a state space, where every value
of a propensity function is approximately the same. The closure of xi is defined
as the set of vectors xj , (j = 1, 2, 3, ...), where the maximal absolute values in
the differences of vector xi and xj are less than ε, ε is a very small number and
given in advance; { xj | MAX | f(xj)−f(xi) |< ε}, where the function MAX(x)
returns the maximal value in x. We investigated the coarse grained phase space
of equilibrium point (X, Y ) = (10, 10), while (X, Y ) = (1, 1) to (200, 200). When
the value of X and Y were small, the size of closures was 1 and the size of a
closure was proportion to the value of X and Y . The shape of closures were
different according to the value of X and Y ; when X and Y were large, the
shape of closures were hyperbolic; when X was considerably larger than Y , the
shape of closures were horizontally, on the other hand, when Y was considerably
larger than X , the shape of closures were vertically (fig 2). Because, when X
or/and Y is/are so large that bXY

M is considerably larger than aX
M and cY

M , we
can ignore aX

M and cY
M in a propensity function, so the propensity function can

be regarded as f(x) � (0, bXY
M , 0), approximately. Hence, if X and Y are large
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then the elements in the closure would fulfill XY � XY ± δ, where δ is εM
b , so

the shape of closure becomes hyperbolic. In case X is large and Y is considerably
smaller than X , even if X is changed largely, XY would not change so much.
So the shape of closures would along the X-axis and horizontally long. On the
other hand, in case Y is large and X is considerably smaller than Y , even if Y is
changed largely, XY would not change so much. So the shape of closures would
along the Y -axis and vertically long.

Size of closure and time evolutions: If the probability of selecting a rule is
homogeneous, the directions of time evolutions from the closure are also same.
So when the size of closures are large, even if a time evolution fluctuates and
bifurcates into several states, those of bifurcated states are likely to be covered by
a closure and the directions of time evolutions from these bifurcated states would
be kept the same. On the other hand, when the size of closure are small, if a time
evolution fluctuates and bifurcates into several states, those of bifurcated states
are likely not to be covered by a closure and the directions of time evolutions
from the states would be different. Therefore, the time evolution of the reactions
with small molecules should be suffered large fluctuations. In this study, because
of a reaction rule is applied sequentially, a bifurcation may occur, after the time
evolution returns to the visited state.
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Fig. 3. Small Number Effects: the time evolution was trapped near to the equilibrium
point, (50, 50), where the initial state was (60, 60) (during t = 1 − 77 and 324 − 437)

Small Numbers Effects, SNE. We showed that in the LV, fluctuations never
leads the time evolution to the equilibrium point; however in reactions with
small numbers, we observed the fluctuations lead the system to the equilibrium
point (fig. 3). When equilibrium point was (50, 50) and initial state, (60, 60), its
time evolution was trapped near to the equilibrium point and oscillated in small
periods (in the right of the fig.3). The coarse grained phase space shows that
the reactions with X, Y � 50, closures are small. So its time evolution would
be suffered large fluctuations and trapped. We call the characteristic changes
in reactions caused by the small number molecules, the Small Number Effects
(SNE). We also observed the SNE in the Brusselator model[5]. The Brusselator
is a model of the Belousov Zhabotinskii (BZ) reaction;
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A k1→ X : r1,

B + X k2→ Y + D : r2,

2X + Y k3→ 3X : r3,

X k4→ E : r4.

The Brusselator shows a limit-cycle oscillation; when a time evolution in the
limit-cycle oscillation, even if a time evolution fluctuates, it returns to the limit-
cycle oscillation and does not show a variety of periodic oscillations, which as
we have seen in the LV.

, ,

Fig. 4. Disappearance of periodic behavior of ARMS for the Brusselator system. In
every simulation, parameters are k1 = 100, k2 = 3, k3 = 10−3, k4 = 1 and the initial
state is (X, Y ) = (100, 100). From left to right, the size of system is 1000, 530 and 200,
respectively.

We investigated the behaviors of limit-cycle oscillations in the Brusselator
with changing the number of molecules [13]. We defined the size of system s
by [x] + [y] ≤ s, where [x] and [y] denote the total number of each molecular.
When the size reaches s, r1 cannot be applied because the other rules do not
change the total number of molecules. This s was only one parameter and all
other parameters were fixed; k1 = 100, k2 = 3, k3 = 10−3, k4 = 1 and the initial
state was (X, Y ) = (100, 100). We changed s = 1000, 530 and 200.

When s was 1000, the time evolution showed the limit-cycle (left in the fig.4),
which is in good agreement with the kinetics of the differential equation model
despite appreciable fluctuations [13]. As the number of involved molecules de-
creased to 530, the fluctuations in the amplitude of oscillation increase and the
kinetics began to differ from those of the differential equation; however the peri-
odicity was maintained and the time evolution remains quasi-periodic (Fig.4 in
the middle).

When s = 250, the magnitude of fluctuations grew large and the system
was trapped in an unreactive state where X = 0 (Fig.4 in the right); however
the time evolution remains quasi-periodic oscillation and a variety of periods in
oscillations could not be observed. These results illustrates that there would be
various types of the SNE existing and their behaviors would be related to its dy-
namical characteristics. The coarse grained phase spaces would show underlying
mechanisms among them and it is our future work.
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Abstract. At its most fundamental, cognition as displayed by biological agents 
(such as humans) may be described as being the manipulation and utilisation of 
memory. A low-level approach to the associative sensory-motor development 
of cognition is then appropriate, rather than the more common higher-level 
functional approach. A novel theoretical framework – the memory-based cogni-
tive framework (MBCF) – is proposed based upon these considerations.  
A computational architecture based on the MBCF is implemented on a mobile 
robot platform, and experimental results are presented to demonstrate the func-
tionality of the architecture. It is shown that this low-level, bottom-up, approach 
can produce adaptive behaviours, which may ultimately form the foundation of 
cognitively flexible agents. 

Keywords: memory-based cognition, cognitive robotics, autonomous mental 
development. 

1   Introduction 

The development of artificial agents with autonomous and adaptive behaviour is an 
ongoing goal for cognitive robotics research. Biological agents (most notably mam-
mals) provide arguably the best examples of these properties, and so are the source of 
design concepts and principles [1]. One such fundamental principle obtained from 
biological theory is that cognition is fundamentally concerned with the manipulation 
and utilisation of memory [2]. 

Three further such principles are used as basic assumptions in the present work. 
Firstly, memory is essentially an associative process. Secondly, memory is representa-
tive of an agents history of interaction with its environment. Finally, there must be 
some form of innate mechanism that enables a means of functionally applying this 
memory to goal directed behaviour. 

On this basis the novel Memory-Based Cognitive Framework (MBCF) for a  
mobile robot is proposed. This paper details the theory and an implementation of the 
MBCF [3]. It is proposed that the MBCF will result in an agent capable of autono-
mous and adaptive behaviour. There is a particular emphasis on allowing the specific 
functionality of the architecture to develop through interaction with the world, and not 
through an a priori or otherwise human-centred approach [4, 5]. 
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In the context of this paper, the term ‘framework’ (and hence the MBCF) refers to 
a descriptive theory, and ‘architecture’ is used to denote one computational imple-
mentation of this theory. 

The remainder of this paper is organised into four main sections. In the first, the 
necessity for the proposed theoretical framework is examined, the fundamental con-
siderations are outlined, and the framework itself presented. In the second part,  
the fundamental features of a computational implementation of this framework are 
presented. In the third part an experimental setup is described which will elucidate its 
functionality. Finally, the results are discussed in the context of applicability to  
the development of cognitive robotics, and further extensions to the architecture  
presented. 

2   The Memory-Based Cognitive Framework 

2.1   The Motivation for a New Framework 

When applying biologically-based functional principles to robotics work, two broad 
approaches have been used: neural modelling, and behavioural modelling.  

In the first, a model of neural connectivity serving the function of interest is  
implemented as an artificial neural network. This approach is essentially one of learn-
by-building, where further understanding of the biological system of interest may be 
gained through the implementation of biologically-plausible neural mechanisms for a 
behavioural task (e.g. [6]). In the second approach, computational architectures are 
implemented based on higher level cognitive psychological theories and emphasises 
the behavioural functionality over the specific neural implementation (e.g. [7]). 

Both of these approaches collectively stress the need for embodiment in the real 
world as a prerequisite for the emergence of intelligent behaviour through learning. 
However, this form of embodiment does not necessarily place the constraints on the 
computational architecture that the 'body' of a biological agent would place on its 
nervous system as it does not provide mutual constraints. Furthermore, in terms of 
autonomy of learning and behaviour, the high-level nature of information in the be-
havioural modelling approach proves problematic if the task environment changes 
significantly because of a lack of flexibility. Finally, it may be argued that the trans-
parency (in terms of ability to explain the causes of produced behaviour) of neural 
system-based modelling approaches, such as that presented in the neural modelling 
approach, is reduced as the fidelity (and hence complexity) of the model increases. As 
a general observation, these approaches tend to focus on what may be described as 
higher-level cognitive functions. 

The novel MBCF addresses these issues by incorporating two considerations. 
Firstly, the utility of neural systems-based architectures for the potential elucidation 
of biological mechanisms (at least in terms of function). Secondly, the theoretical and 
philosophical considerations of autonomy [8] and embodiment [9] that describes the 
conditions under which the biological agents have developed – an aspect frequently 
overlooked in current robotics work (with one other exception being the concept of 
homeokinesis [10]). By combining these two elements, the architecture may be used 
to explore issues which arise at the intersection of the two approaches discussed, and 
more theoretical considerations. 
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2.2   Neuroscientific Inspiration for the MBC Framework 

Based on neurophysiological evidence, there are a number of models of the human 
cognitive architecture which attempt to provide an account of a wide range of cogni-
tive functions. Indeed, models of working memory for example have generally en-
deavoured to do so. Of particular interest for the present work are the increasingly 
prevalent theories which emphasise the distributed nature of cognitive functionality 
(especially memory) over the competing modular view (e.g. [11, 12]). One such 
model is the “Network Memory” theory [2], which is a theory of human cortical and 
sub-cortical organisation and functioning. It is of particular applicability to the present 
work as it provides a wide ranging theory of human cognition. The MBCF takes in-
spiration from this theory in order to create a biologically non-implausible structure 
within which it can take shape. 

There are three central ideas which underlie the Network Memory theory, which 
are of particular relevance to the present work:  

• That memory is at its most basic an associative process.  
• That memory is distributed across the brain: units of memory (called ‘cognits’ 

[13]) are distributed, overlapping networks of neurons which encode specific 
pieces of information (or indeed other cognits). 

• That these distributed memories are informally arranged both heterarchically and 
hierarchically; with one of a dual hierarchy based in the motor regions, and the 
other in the perceptual regions. 

2.3   The MBC Framework 

The considerations discussed are brought together in the Memory Based Cognitive 
framework: figure 1 gives a functional overview. The sensory and motor spaces are 
defined by the particular embodiment of the agent. It is not just the number of sensors 
and their respective resolutions which are defined, but also the sensory and motor 
morphology of the agent implicitly provides constraints, resulting in the tight cou-
pling of computational architecture and embodiment. 

During the embodied agents’ interaction with its environment, base elements in the 
sensory and motor spaces acquire activation. Equation (1) details the spread of activa-
tion: At is the activation of a cognit, i, at time t, α is a scaling factor for its previous 
time-step activation, and the second term is the summation of activation of all lower 
level cognits j which link to cognit i (with scaling factor β). Whilst α and β are neces-
sary for the functioning of the computational architecture, they are not of theoretical 
importance to the MBCF, and hence are empirically tuned. 

 

. (1) 
 

Upon this basis, associative links (which are named 'cognits' as inspired by the 
Network Memory theory) are formed reactively. These cognits may encode (or indeed 
may be said to represent) both spatial associations (i.e. co-occurrence on the same 
time-step), or temporal associations (occurrence on subsequent time-steps), and may 
in turn linked to one another. This process allows the development of an informal  
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Fig. 1. Functional system overview of the MBCF. The sensory and motor spaces tightly inte-
grate the system with its physical instantiation. The “value” system plays a central role in the 
development of the system and its resultant behaviour. 

hierarchy structure of cognits. As this structure gains in complexity over time (i.e. as 
the agent interacts with its environment), the activation flow in the 'higher level' cog-
nits will have the potential to have greater effect in biasing 'lower level' cognits, 
thereby allowing what may be described as top-down control to emerge. 

3   Computational Implementation 

A computational architecture has been derived from the framework proposed in the 
previous section: the cognit hierarchies, the value system, and the embodiment. This 
has resulted in Embodied MBCF Agents (EMA's), where each EMA is a system de-
fined by the inextricable links between the specific hardware embodiment (i.e. mobile 
robot), and the computational architecture. 

For the elucidation of basic operation, the computational architecture of the EMA 
implemented for the present study uses the functional structure shown in figure 2a, 
and divides the hierarchy into explicit levels. This type of discretisation of what is 
theoretically a continuous and informal hierarchy has been used in a computational 
model of the Network Memory theory, which explored high level behaviours [14]. 
The sensor and motor space sizes are defined by the mobile robot platform used; for 
example each possible sensor reading becomes a base element in the sensor space  
(see figures 2(b) and 2(c)), and is created upon first encounter. Sensory cognits in the 
sensory association layer are formed based on these base elements. This mechanism 
also applies to the other association layers.  

The value system is necessary in this architecture and in the generation of behav-
iour as it biases the flow of activation in the cognit hierarchy, by means of a mecha-
nism which may be seen as analogous to an emotion or homeostatic systems.  
The activation of sensory-motor cognits is scaled according to the value tag, which is 
derived from the parameters of the value system. Since it is the totality of activation 
in the motor cognits and motor space which determines the motor action executed, 
this process in effect provides the evaluation mechanism required for even this low-
level goal-directed behaviour.  

The concept of cognits are central to the computational architecture, although it 
should be noted that it is the functional role of cognits which are of interest (i.e. that 
they encode some associative relationship) rather than their proposed neural basis. 
Consequently, cognits are here represented by explicit encodings of an associative 
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relationship, as described in figure 2(b). As discussed previously, cognits are created 
retrospectively in response to the activation levels in other layers: whilst the creation 
of cognits on the sensory side is driven by incident sensory readings, motor cognits 
are initially formed by a random selection method (essentially a primitive form of 
motor babbling). 

The EMA action selection scheme is not a centralised mechanism, which is con-
trary to many current computational cognitive architectures. As seen in figure 2(a), 
the biased flow of activation ends in the motor space at the end of each time-step, 
where the motor base element with the highest activation value gets executed (for 
each motor). Thus it is the totality of the activation flow throughout the hierarchy sys-
tem which determines the next action of the EMA. This is an important point, as it 
means that with the continual changes in the numbers of cognits in each layer, the 
EMA does not simply build up a static state-action mapping (which, particularly in 
the case of sensory aliasing, may result in inappropriate actions [15]), but maintains 
behavioural flexibility. 

 
Sensory

Associations
Motor

Associations
Sensory-Motor
Associations

SENSOR
SPACE

MOTOR
SPACE“Value”

System

Sensory
Input

Motor
Output

(a) (b)

Element 1 Element 2

- Type

- Activation

- value tag

Tag

Base space

(c)  

Fig. 2. (a) The layers of the EMA computational architecture implemented for this work. The 
link between the Sensory and Motor sides of the architecture is made through the Sensory-
Motor association layer. The “Value” system modulates the activity of the Sensory-Motor 
layer. The arrows indicate the flow of activation over the course of one time-step. (b) A cognit: 
the tag is used for linking to other cognits, the tags of two lower level elements to be associated 
(and the type of association), and activation value. (c) The construction of cognits from either 
base elements or lower level cognits – these are spatial associations. 

4   Experimental Setup and Results 

4.1   EMA and Experimental Setup 

The computational architecture described in the previous section was implemented in 
the object oriented programming language C#. The small mobile robot platform 
Miabot (Merlin Robotics) provides the embodiment: three ultrasonic sensors are used 
for the sensory input, and two wheel motors as effectors (figure 3).  

Given the very simple sensory and motor capabilities of the resultant EMA, the 
target task for this study is for the agent to maximise both the distances detected  
by the sensors and the forward movement of the motors (i.e. an explore/object-avoid 
task). Of interest here is not just that the EMA achieves the task, but how this behav-
iour develops over time. 
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The parameters of the computational architecture and value system (found through 

empirical tuning) are set so that all cognit activation levels are reset at the end of each 
time-step (α = 0). Additional cognits are created, where there is no duplication of ex-
isting cognits, on each time-step. This results in a system which may on any given 
single time-step be considered reactive, but which over time (as new cognits are  
created) can be described as being adaptive.  

4.2   Results 

In an open but bounded environment (figure 4a), runs of the EMA were compared with 
runs of a random walker controller (i.e. random motor action, with the same possible 
motor values as those in the EMA). With the number of runs n =10, the distance  
covered by the EMA was greater than that covered by the random walker, but not sig-
nificantly (one-sided t-test: p = 0.085). This result may be explained by the fact that the 
motor space sizes are small, so the difference in total distance travelled would not be 
great. More interestingly, the area covered by the EMA in this environment was sig-
nificantly greater than that covered by the random walker (one-sided t-test: p = 0.001) 
indicating that, as shown in figure 4 for example, the objective of the task is met.  

Figure 4a shows a typical free-movement path taken by the EMA during a trial 500 
time-steps long in a simulated environment. During the initial stages of the run, it can 
be seen (figure 4b) that the behaviour of the EMA approximates that of a random 
walker. However, by the last 100 time-steps of the simulation, when the agent is  

 
Fig. 3. Representation of the physical agent. This initial embodiment is very simplistic with 
three ultrasonic sensors, and two motorised wheels. 
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Fig. 4. (a) Sample path produced by the EMA in a square enclosed environment (boundary 
walls marked in black) over 500 time-steps – the starting position is (-0.3m, -0.3m). Two sub-
sections of this path are shown: (b) the first 100 time-steps, and (c) the final 100 time-steps. 
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moving in open space, the EMA only moves forward, turning away from obstacles 
(figure 4c). This sample run shows how the EMA starts with effectively random 
movements whilst the number of cognits increases (figure 4b), before developing be-
haviours which enable it to move forwards, but away from the walls which surround 
the otherwise open environment (figure 4c). 

5   Discussion 

Implementing the architecture in a mobile robot provides its embodiment, which  
provides a means of constraining the system by defining the sensory and motor 
spaces, and tying any subsequent development to the particular embodiment. This is 
important, as it results in all acquired 'information' by the agent being inherently 
based in, and with respect to, the agents’ sensors and effectors, and not in some mo-
dality-free representation scheme. Another consequence of this is that the developed 
'knowledge' is not in a form immediately amenable to human inspection: the aim of 
this system is not to provide a human readable map (or equivalent), but to allow the 
agent itself to interact with the architecture in a 'meaningful' way (where meaningful 
in this context implies some a priori human designer specifications - an issue which is 
to be addressed in future work). Enabling this explicit grounding of knowl-
edge/information in the agents’ sensory-motor morphology would also address any 
objections relating to the Symbol Grounding problem [16]. 

One of the novel aspects of the implemented computational architecture is that it 
represents associative links (i.e. cognits) as explicit constructs. This enables a level of 
interrogation into the development of the control system which would not be possible 
with an artificial neural network (ANN) approach. Additionally, this setup enables a 
higher level of computational flexibility since the number of connections between the 
cognit constructs are not static (as synapses are in most ANN’s), and may change on 
the time-scale of single time-steps. One drawback to this approach however is that 
with increased sensory and motor space sizes, the combinatorial explosion in potential 
numbers of cognits may pose a problem from a computational load point of view. 
However, given the stated emphasis on using this framework and architecture as a 
research tool (and not as a directly applicable control system for industrial processes 
for example), it is held that this position in the trade-off is justified.  

The version of the computational architecture presented in this paper only imple-
ments the basic aspects of the developed MBCF. Further work is ongoing to more 
completely represent the theoretical framework in the computational architecture. 
Three aspects are being focused on in particular: (1) a second level of the hierarchy 
(as described in figure 2(a)); (2) allowing cognits to maintain activation over subse-
quent time-steps, thus adding an additional temporal dimension to the generation of 
behaviour; and (3) exploring alternative implementations for the value system, with 
emphasis on adaptive biologically non-implausible structures. 

6   Conclusion 

This paper has shown that the low-level, associative-based computational architecture 
EMA can produce adaptive behaviours in a physically embodied agent. Even though 
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the behaviours developed are simplistic, it validates the proposed MBCF as a bottom-
up approach to cognitive architectures. 

However, a number of outstanding issues remain related to bringing the computa-
tional architecture closer to the MBCF theory. It remains an open question as to  
how far a fundamentally associative approach such as this can go towards high-level  
cognitive functionality – the present work has only started on this path. 
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Abstract. This paper presents a biologically constrained reward predic-
tion model capable of learning cue-outcome associations involving
temporally distant stimuli without using the commonly used temporal
difference model. The model incorporates a novel use of an adapted echo
state network to substitute the biologically implausible delay chains usu-
ally used, in relation to dopamine phenomena, for tackling temporally
structured stimuli. Moreover, the model is based on a novel algorithm
which successfully coordinates two sub systems: one providing Pavlovian
conditioning, one providing timely inhibition of dopamine responses to
salient anticipated stimuli. The model is validated against the typical pro-
file of phasic dopamine in first and second order Pavlovian conditioning.
The model is relevant not only to explaining the mechanisms underlying
the biological regulation of dopamine signals, but also for applications in
autonomous robotics involving reinforcement-based learning.

Keywords: reward prediction, reservoir dynamics, dopamine, Pavlo-
vian conditioning, reinforcement learning.

1 Introduction

The learning processes underlying Pavlovian conditioning have been related to
the phasic dynamics of dopamine (DA), a neuromodulator produced within brain
areas such as the ventral tegmental area (VTA) and shown to play a fundamen-
tal role as a signal in trial-and-error learning processes based on reinforcement
[1]. DA dynamics have been mathematically captured by the seminal Rescorla-
Wagner model [2] which proposed that learning is driven by discrepancies (errors)
between actual and anticipated rewards. This model has since been generalized
to conditioned stimuli (CS) and unconditioned stimuli (US) which are experi-
enced at different times and can involve multiple rewards through the proposal
of algorithms based on the temporal-difference reward-prediction error rule [3]
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(‘TD rule’). This model is based on the formation of a prediction, at each time
step, of the expected sum of the future discounted rewards. Notwithstanding its
theoretical importance, the TD rule suffers from limitations [4,5, cf.]. One is that
it produces a progressive retro-propagation in time of the DA signal, from the
US to the CS, which has not been observed in animals.

Models have recently been proposed to overcome such limits. Alexander and
Sporns [6] have proposed an embodied model focused on both classical and
instrumental learning and based on two sub-systems, one for producing DA
phasic responses (at US and CS onset), and one for the timely learned inhibition
of them (e.g. at US onset after learning). The model is capable of reproducing
important empirical data, e.g. acquisition (transfer of the DA signal from US to
CS onset), US omission (dopamine dip when an expected US is omitted), and
extinction (dopamine returns to baseline when the CS ceases to be followed by
the US). The model, however, is rather abstract, mapped onto real brain anatomy
only at a shallow level. Some of its internal connections are also rather ad hoc, in
particular within the sophisticated VTA micro-anatomy. Furthermore, it relies
on a ‘non-biological’ mechanism to implement the timely inhibition of the DA
burst at US onset, i.e. the ‘delay chain’, often exploited within the DA modeling
literature. Solutions based on delay chains have a strong limit of scalability.
In fact, if they are used to process multiple temporally overlapping stimuli they
have difficulties in tackling concomitant non-linearly separable problems thereby
requiring an increasing number of hand-crafted delay chains to solve them.

A second important model [7], mainly focused on Pavlovian learning, is again
based on two sub-systems, one for production of phasic responses and one for their
timely inhibition. The model can reproduce the outcomes of various classical con-
ditioning experiments and is closely mapped onto brain anatomy. However, it is
also limited in that it relies upon some mechanisms which are implemented in
abstract/non-neural terms, again it relies upon a delay chain mechanism, and fi-
nally it does not propose a detailed account of how the learning processes taking
place in the two sub-systems can be coordinated in time. The latter point is par-
ticularly important because if the two learning processes are not coordinated, the
faster convergence of one of the two might prevent the convergence of the other,
for example if the learning of the timely inhibition of DA at the US onset is too
fast, it might prevent learning of the anticipatory DA burst at CS onset.

The model that we propose here is a first step towards the solution of such
limits. First, it is implemented in fully neural network terms. Second, it imple-
ments the Pavlovian sub-system causing the CS anticipatory DA burst based
on a biologically plausible model of the amygdala drawn from [5]. Third, it sub-
stitutes the rather artificial delay chain mechanism with a biologically plausible
neural version of a reservoir system [8,9]. Finally, it proposes detailed mech-
anisms to implement the coordination between the learning process producing
the CS-based anticipatory DA response and the learning process causing the DA
timely inhibition at US onset.

The rest of the paper is organized as follows. Section 2 presents the architec-
ture and functioning of the model. Section 3 reports the functioning of the model
in first and second order conditioning tests. Finally, section 4 draws conclusions.
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2 Methods

A potential solution to the delay chain problem mentioned in Section 1 can be
found using a more biologically constrained approach. Taking inspiration from
stimulus-induced activity in sensory cortex, reservoir systems [8,9] are a class of
neural networks that have been demonstrated to be particularly adept at process-
ing temporal stimuli e.g., see [10]. Two types of such networks – ‘Liquid State
Machines’ (LSM) [8], and ‘Echo State Networks’ (ESN) [9,11] – have demon-
strated how spatial-temporal input signals to the network (reservoir) can be
accurately replicated, through the use of linear units that read out the reservoir
node activity, even after significant delays between stimulus input and reservoir
output providing a short term memory mechanism [9]. This mechanism has bio-
logical plausibility: “[I]t is plausible that a biological read-out neuron can learn
to decode the active states of a recurrent network through trial and error in a
reward-based setting” [10, p.117]. The model presented here deploys an ESN
for processing stimulus inputs in discrete time in a manner that departs from
the classical temporal difference model. Figure 1 schematizes the architecture of
the model. In the model (Figure 1), prefrontal cortex (PFC ), amygdala (AMG),
and ventral tegmental area (VTA) capture the basic functionality of their real
biological counterparts with respect to reward prediction learning. The PFC,
represented by an ESN, consists of N (= 40) synchronously updated sigmoid
neurons. We follow the methodological approach of Jaeger [11] for imbuing the
network with the echo state property: (a) use of sparse reservoir connectivity:
75% of reservoir weight matrix (W ) set to zero, 25% set randomly in [-1,1]; (b)
use of spectral radius and alpha scaling (in our experiments α = 0.95). Fur-
thermore, the vectors WCS1 and WCS2 - conditioned stimuli (CS) input weights
to PFC - also have 75% of values set to zero with the remainder randomly set
to values in [0,1] (mimicking positive glutamate inputs in pyramidal cells). Two
novel features are introduced with respect to standard ESN to improve biological
plausibility: (a) the use of only non-negative activation values in the reservoir:

Fig. 1. Architecture of the model, mainly based on an ESN (PFC), a Hebbian associa-
tive network (AMG), and a simple network to produce phasic DA (VTA)
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this was also done as negative activation interfered with the system’s ability
to perform extinction of PFC-VTA weights (interestingly, this change did not
prevent pattern discrimination and learning); (b) the use of a DA-based online
learning algorithm: online algorithms have been applied to ESN in cognitive
science and robotics with promising results [12].

Inputs from AMG and PFC allow VTA to output negative or positive pha-
sic DA signals (negative DA is meant to represent DA below baseline levels).
AMGUS unit projection to VTA causes DA bursts which promote strengthen-
ing of PFC-VTA and intra-AMG connections. PFC input to VTA via weights
Wpfc causes either a timely inhibition of DA burst, at US onset, caused by the
CS (so the DA signal is near zero), or, when the US is omitted, a negative DA
signal which leads to a weakening of PFC-VTA and intra-AMG connections.
Note that in all equations presented below these notations are used:

f [x]=0 if x<0, f [x]=x if 0≤x<1, f [x]=1 if 1≤x (1)

g[x]=−1 if x<−1, g[x]=x if −1≤x<1, g[x]=1 if 1≤x (2)

AMG consists of three units which represent populations of neurons sensitive to
two different CS and a US. As with VTA and PFC, AMG is activated in discrete
time and provides a simplified version of the model of [5] that uses leaky neurons
and a differential Hebbian learning rule. AMG, PFC and VTA units are updated
as follows:

At onset: CS2=1, CS1=1, US=1 else: CS2=0, CS1=0, US=0 (3)

AMGCS2(t)=f [CS2(t)] AMGCS1(t)=f [CS1(t)+WA2(t)·AMGCS2(t))] (4)

AMGUS(t)=f [(US(t)+WA1·AMGCS1(t))] (5)

PFCi(t)=max[0, tanh[
∑

j∈N
[Wij ·PFCj(t−1)]+WCS1i·CS1(t)+WCS2i·CS2(t)]] (6)

V TApfc(t)=f [
∑

i∈N
[Wpfc i(t−1)·PFCi(t)]] V TAphas(t)=g[AMGUS(t)−V TApfc(t)] (7)

AMG connection weights are updated using eligibility traces (ECS1 and ECS2)
that abstract a continuous-time differential Hebbian learning rule [5, cf.] for
which learning happens only if pre and post activation time difference (e.g.,
between CS1 and US, or CS2 and CS1) is within a certain time window:

ECS1(t)=max[CS1(t), Ω·ECS1(t−1)] ECS2(t)=max[CS2(t), Ω·ECS2(t−1)] (8)

WA1(t)=

⎧⎪⎨
⎪⎩

f [WA1(t−1)+η·V TAphas(t)·AMGUS(t)·ECS1(t)], if V TAphas(t)>0

f [WA1(t−1)+η·V TAphas(t)·(US(t)==0)·ECS1(t)], if V TAphas(t)<0
(9)
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WA2(t)=

⎧⎪⎨
⎪⎩

f [WA2(t−1)+η·V TAphas(t)·AMGCS1(t)·ECS2(t)], if V TAphas(t)>0

f [WA2(t−1)+η·V TAphas(t)·(CS1(t)==0)·ECS2(t)], if V TAphas(t)<0
(10)

where Ω (= 0.9) is a decay constant, η (= 0.075) is a learning rate, and (US(t) ==
0) and (CS1(t) == 0) are Boolean variables equal to 1 when US or CS1 are
respectively equal to 0, and to 1 otherwise. Note that these Boolean variables
are equal to 1 when the expected stimulus, either US or CS1, is missing: a
more detailed model should involve a separate system for actively suppress-
ing AMG stimuli representations. These learning rules imply that positive DA
(V TAphas > 0) augments intra-AMG weight values, whereas a negative DA
(V TAphas < 0) decrements such weight values (extinction; negative DA is in-
duced by PFC in the absence of the post-synaptic stimulus, either US or CS1,
at the step at which PFC-VTA weights have previously been strengthened).

The weights of PFC-VTA connections are updated using a different DA-based
Hebbian learning rule and an eligibility trace (Epfc) of the previous DA burst:

Epfc(t)=max[V TAphas(t), Ω·Epfc(t−1)] (11)

Wpfci(t)=

⎧⎪⎨
⎪⎩

f [Wpfci(t−1)+κ·V TAphas(t)·Epfc(t−1)·PFCi(t)], if V TAphas>0

f [Wpfci(t−1)+κ·V TAphas(t)·PFCi(t)], if V TAphas<0
(12)

where Ω (= 0.9) is a decay constant, and κ (= 0.1) a learning rate.
Importantly, the effect of this rule is that learning takes place in PFC only if

the current DA burst (V TAphas), caused by AMG, has been preceded by another
dopaminergic burst (Epfc), caused by a previous activation of AMG. This is
the core mechanism which allows the coordination between learning of AMG
and PFC. In fact: (a) the formation of PFC-VTA weights can take place (and
produce a timely inhibition of DA at US onset, or, in second order conditioning,
at CS1 onset) only after the weights of AMG have started to form (to produce a
DA burst at CS1 onset, or, in second order conditioning, at CS2 onset); (b) PFC
connection weights cannot form in correspondence with a CS which is the first
predictor of a subsequent CS-based or US-based DA burst: earlier formation of
these weights would inhibit the DA induced by AMG in correspondence with
the first ‘unpredicted predictor’ (either CS1 or, in second order conditioning,
CS2); (c) in the case of extinction, PFC-VTA connection weights can decrease
only when the omission of US, together with the PFC timely inhibition, induces
a negative DA value (or, in the case of second order conditioning, only when the
CS1-US AMG weight has decreased and the related DA signal at CS1 onset has
become lower than the PFC inhibitory signal at CS1 onset): this implements a
second form of coordination of the two learning processes where PFC follows
AMG extinction step by step and cannot precede and prevent it.

3 Results

The model functioning was evaluated with a first order and a second order
conditioning test. First order conditioning lasted 300 trials, each trial lasting 8
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Fig. 2. Left: First order conditioning. At trial 300 AMG has learned to transfer the
DA burst from US to CS1 onset and PFC to inhibit the DA burst at US onset. Middle:
Second order conditioning. The four trials (301, 321, 341, 599, respectively) illustrate
the gradual transfer of DA burst from CS1 to CS2 onset. Right top: Development of
AMG weights over trials. Right bottom: Development of PFC-VTA weights.

Fig. 3. Left: Reservoir activity in trial 300 having only the CS1 onset. Right: Reservoir
activity in trial 301 having both the CS1 and CS2 onset.

steps with CS1 and US presented respectively at steps 4 and 6. Second order
conditioning lasted a further 300 trials, composed of alternated first order trials
(the ‘reminder’, run as in the previous phase) and second order trials (the actual
second order conditioning: each of these trials lasted 8 steps, was run without
US, and entailed the presentation of CS2 and CS1 at steps 2 and 4, respectively).

Figure 2 provides data from the two tests. The V TAphas unit learns to produce
an activation pattern characteristic of phasic dopamine [13]. Initially V TAphas

produces a phasic burst only at US onset (acquisition phase). With learning,
V TAphas progressively attenuates firing at US onset and ‘transfers it’ to CS1
onset (‘conditioning’: see left graphic). Presentations of ‘CS2’ followed by ‘CS1’
from trial 301 onwards leads to a progressive transfer of DA phasic response to
‘CS2’ (second order conditioning). This effect can be seen in the middle graph
depicting trial number 301, 321, 341 and 599, respectively. The left-most mid-
dle graphic illustrates the first trial of second order conditioning. Note, in the
absence of the now anticipated US a negative reward prediction error occurs
subsequently weakening AMG (WA1) and PFC-VTA weights (for this reason
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CS2-CS1, CS1-US pairings are alternated to prevent extinction1). After the ini-
tial burst of V TApfc activity from ‘CS2’ to ‘CS1’ onset this DA error leads
to gradual weakening of PFC weighted output to V TApfc (second left-most).
In succeeding trials the DA error attenuates and V TApfc activity increases at
‘CS1’ onset (providing the 2nd DA burst following ‘CS2’) in accordance with
the two-process coordinated learning algorithm described in section 2. A subset
of PFC-VTA weights effectively replaces the weakened PFC-VTA weights over
subsequent trials (see lower right graphic). This occurs as PFC-VTA weights
at ‘CS1’ onset increase after, step by step, WA2, connecting ‘CS2’ and ‘CS1’ in
AMG, has started to form (upper right graphic).

Figure 3 shows an example of reservoir activity with only CS1 (left graph)
and with both CS1 and CS2 (right graph). Note how, after CS2 onset, the tem-
porally overlapping effects of CS1 and CS2 lead to produce similar, but distinct,
patterns of activation at CS1 onset with respect to those produced by CS1 alone.
This provides a means by which PFC can discriminate between different con-
texts and to associate to them the desired timely inhibition of DA. This simple
demonstration, in line with [10], shows that reservoir systems have the power of
distinguishing temporal input patterns through distributed activations.

4 Conclusions

This paper describes a model of Pavlovian conditioning exhibiting the ability
to generate the typical profile of phasic dopaminergic activity observed in ani-
mal experiments on first and second order Pavlovian conditioning. The model
is based on two complementary learning systems: (a) a first system, based on a
discrete-time differential Hebb associative network putatively corresponding to
the amygdala, which implements the core stimuli associations underlying Pavlo-
vian conditioning; (b) a second system, based on a dynamical reservoir network
and putatively representing some of the dynamical processes of prefrontal cortex,
which implements timely inhibition of dopaminergic phasic responses caused by
biologically salient anticipated stimuli.

From a neuroscientific perspective, the novelty of the model resides not only
in its systemic and biologically plausible account of dopamine-related Pavlovian
phenomena, which go beyond the temporal difference model, but also (a) in
its use of a biologically plausible reservoir network to substitute the delay chain
mechanism, commonly used to implement the timely inhibition of dopamine, and
(b) in the proposal of specific learning mechanisms which allow the coordination
of the learning processes related to the two systems composing the model.

The model can also be used as a template for designing autonomous robot
neurocontrollers, in particular involving motivation-based behaviours and
dynamic environments [14]. The integration of sensorimotor activity with
non-neural bodily activity over time is of relevance to the understanding of mo-
tivational processes that achieve high level goals with flexible utilization of low
1 Repeated omissions of the US per trial weakens PFC-VTA and AMG weights induc-

ing gradual extinction of US and CS onset phasic responses (data not reported).
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level behavioural and bioregulatory primitives [14]. A number of disembodied
neural computational models of reward-based learning exist, e.g. [15], but only
a small number of biologically relevant models of reward learning have been ap-
plied to autonomous robotics e.g. [6,16]. In this respect, distributed activation
patterns of reservoir systems could support spatially and temporally flexible and
robust learning in robotic systems interacting with noisy environments.

Acknowledgements. This work has been supported by a European Commis-
sion grant to the FP6 project “Integrating Cognition, Emotion and Autonomy”
(ICEA, IST-027819, www.iceaproject.eu).
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Abstract. Central pattern generator (CPG) is a kind of neural circuit
which can be observed in many animals showing rhythmic patterns of
actions. The CPG neural circuit can produce complex rhythmic patterns
by receiving only simple signals from the brain. Generally, the CPG neu-
ral models can be applied to solve robotic problems, or to understand
the underlying neural mechanism for rhythmic animal behaviours. In this
paper, we focus on how a small number of neurons generate the variable
frequencies and phase of motor actions, and inspect what is the capac-
ity of a varying number of neurons as a CPG model. The performance
measure consists of frequency variability, input/output response rate,
and phase shift. We have used evolutionary computation to measure the
best performance for each number of CPG neurons ranging from two to
eight neurons, and the result shows that four neurons or more can easily
generate variable frequencies and anti-phase difference for left and right
motor actions.

Keywords: central pattern generator, locomotion, frequency and phase.

1 Introduction

Neural networks in the spinal cord have been shown to produce rhythmic pat-
terns. These neural circuits are called central pattern generator (CPG) [1]. The
CPG is able to generate complex rhythmic patterns with simple signal inputs
from the brain. It is possible to simulate the rhythmic movement of the animals,
when the rhythmic patterns are applied to their motor neurons. Locomotion
problem in robotics is often handled with the CPG neurons. For example, biped
working robot [2,3], quadruped robot [4], hexapod robot [5], and lamprey [6,7]
have been developed with the neuron model. Recently Ijspeert et al. [7] have
developed the salamander robot that has a similar behavior pattern found in
the real salamander animal [8]. The neuron model follows the CPG structure in
the real salamander.

Lewis et al. [2] have applied evolutionary computation to build a CPG neu-
ron model for a hexapod robot, where each leg has two neurons to generate
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oscillations and the CPG neurons have a phase difference of 90 degrees. After
evolving the oscillation of each leg, six CPG neurons have been developed for
effective walking behaviors. Billard and Ijspeert [4] used leaky-integrators with
six neurons with symmetric structure, and applied it to the walking behavior of
a AIBO robot. Ekeberg [6] showed a biologically plausible model of CPG neuron
network. This CPG includes eight neurons with symmetric structure. The neu-
rons have a specific role such as excitatory interneurons, contralateral inhibitory
interneurons, lateral inhibitory interneurons, and motoneurons. The CPG model
can change the frequency and magnitude depending on the input signal as well
as maintain anti-phase for left and right motor signals.

The CPG model needs to show variable frequencies and phase shift for left
and motor signals. The input signal is given from the brain system to control the
frequencies and amplitudes of the motor action. Many researchers have shown
a possible CPG model to demonstrate rhythmic motor actions. However, there
has been no research for the capacity of CPG characteristics depending on the
number of neurons. In this paper, we focus on the questions of how we can
implement a simple structure of CPG neurons, how many neurons are needed to
build an anti-phase shift for left and right motors, or how many neurons should
be required to show variable frequencies depending on input signals. With genetic
algorithm, we evolve a set of neurons to build the rhythmic pattern of motor
actions, and we test a varying number of neurons from two neurons to eight, to
check the performance of variable frequencies, input/output response and the
phase difference between the two motors.

2 Simulation Method

2.1 Characteristics of CPG Neurons

We use genetic algorithms to evolve a group of neurons for CPG characteristics,
frequency and phase of motor signals. The evolutionary computation can find
appropriate neural parameters for desired oscillations. It is not a difficult problem
to generate simple oscillations with a group of neurons. However, for general
CPG model, the output neurons vary frequencies and amplitudes depending on
the input. Several assumptions are needed to build such an oscillatory neuron
model.

– Oscillations should have a fixed period for the same input.
– Left and right motors should have a fixed phase shift. Anti-phase are

preferred.
– The frequency of oscillations should change depending on the input signal

from the brain system. It is involved with speed of movement for locomotive
actions.

– The magnitude of the two motor actions, left and right should change de-
pending on the input. It is involved with power of motor muscles.

– The left and right motor neurons should have the same or similar output
signals for the same input. This can be a condition to represent similar
movement in the left and right of the robot.
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To obtain the same level of motor outputs at the left and right side, we apply
a symmetric structure with neural parameters including neuron weights to the
CPG model. The CPG model consists of a group of neurons ranging from two
neurons to eight. We investigate the CPG characteristics mentioned above for
each number of neurons and thus determine the capacity or limitation of the
CPG neurons depending on the number of neurons. That is, we can see how
many neurons are required to generate general CPG characteristics, variable
frequencies and phase difference between the left and right motor signals.

2.2 Evolutionary Computation Method

We use a leaky-integration neuron model with n neurons to evolve oscillators as
follows:

dyi

dt
=

1
τ

(−yi + g · u +
n∑

j=1

z(yj)wji) + η (1)

z(yi) = 1/(1 + eλ(−yi+p)) (2)

where wji is the weight from the j-th neuron to the i-th neuron, z is the sigmoidal
function, τ is the decay constant, g is the gain factor, u is the input, λ is the
scaling parameter, p is the bias term, and η is random noise.

Table 1. GA parameters for evolving oscillators

Population size 100
Generations 5000

Weight bounds [-13, 13]
Crossover probability 0.6
Mutation probability 0.4

p [-8, -4]
λ [-2, 4]
τ 3
g [-3, 10]

For genetic algorithms, the chromosome consists of n2 weight connections,
n time constants, n scaling terms, n gain factors, and n bias terms for n neu-
rons. The evolutionary computation starts with 100 random chromosomes. New
chromosomes are reproduced by recombination, and by the elitism strategy, the
best chromosome is inserted into a new population. We evolved the neural pa-
rameters for CTRNN (Continuous Time Recurrent Neural Networks) [9] with
multiple neurons ranging from two to eight, independently. For a given number
of neurons, the evolutionary experiments were repeated ten times. We measured
the performance with CPG characteristics.
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2.3 Fitness Function

The genetic algorithm evolution is progressed in the following order:

1. Check if the neural network shows regular oscillations.
2. if the oscillation fitness F1 is above a threshold of 0.7, check the phase

difference between the two motor outputs. The oscillation fitness is measured
by comparing the maximum / minimum peak amplitude with a given threshold
value for a set of inputs.

3. if the phase fitness F2 is more than 0.7, then compare the input/output
response. The phase fitness is measured by the phase difference between the left
and right motor actions.

4. if the response fitness F3 is more than 0.7, then compare the frequency
variability F4. The response performance is measured with the proportion of the
output change over the input change.

5. Finally, check the frequency fitness F4, that is, relation between the in-
put signal change and variability of oscillation frequencies. The larger range of
frequencies can be generated, the higher fitness score is given.

The fitness function is as follows.

fitness = (F1 + F2 + F3 + F4)/4 (3)

where F1 is the oscillaton fitness, F2 is the phase fitess, F3 is the response fitness,
and F4 is the frequency fitness. We assumed the desired frequencies range from
0 Hz to 15 Hz. Normally, once oscillations are generated, the corresponding
frequency can be calculated with the following equation:

yn =
1
m

m∑
k=1

x(k)e−j2πnk/m (4)

where m is the number of sample points in time, x(k) is the k-th sample data
point, n is the frequency value, and yn is the complex value with real and imag-
inary part for the n-th frequency. The absolute value |yn| determines the mag-
nitude of the n-th frequency. Also, the phase value for a given time sequence of
signals can be obtained with the equation:

φ = atan2(real(yn), imag(yn)) (5)

The frequency fitness F4 is measured by the difference between the maximum
frequency and the minimum frequency generated for given input signals. The
phase difference F2 is calculated as the difference of phases calculated for the
left and right motor signals, respectively. Each Fk for k = 1, .., 4 is normalized in
the range [0, 1]. Fk = 1 indicates the best score for each of CPG characteristics.

If more variety of frequencies can be generated with input signals, we can
obtain a larger range of movement speeds. The input/output response rate F3 can
show the efficiency to control the motor actions. The phase difference between
the two motor signals can have maximum 180 degrees. The locomotive pattern
often shows the anti-phase for left and right motor signals.
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3 Experiments

We test the CPG models for a varying number of neurons–see Fig.1. Three
neurons or less with the symmetric structure cannot generate the anti-phase
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Fig. 1. Fitness components depending on the number of neurons (A: phase fitness with
the number of neurons, B: magnitude fitness, C: mean frequency difference, D: total
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0.4 0.6 0.8 1
3

4

5

6

7

8

Input value

M
ea

n 
F

re
qu

en
cy

 

 

4  Neurons
5  Neurons
6  Neurons
8  Neurons

A

0.4 0.6 0.8 1
4

5

6

7

8

9

Input value

M
ea

n 
F

re
qu

en
cy

 

 

4  Neurons
5  Neurons
6  Neurons
8  Neurons

B

Fig. 2. Variable frequencies depending on the number of neurons (left: the same input
signals are given, right: different input signals are given)



Evolving Characteristics of CPG 423

100 150 200 250
0

0.5

1
Left input : 0.9, Right input : 0.9

100 150 200 250
0

0.5

1
Left input : 0.9, Right input : 0.7

100 150 200 250
0

0.5

1
Left input : 0.6, Right input : 0.6

100 150 200 250
0

0.5

1
Left input : 0.9, Right input : 0.9

100 150 200 250
0

0.5

1
Left input : 0.9, Right input : 0.7

100 150 200 250
0

0.5

1
Left input : 0.6, Right input : 0.6

100 150 200 250
0

0.5

1
Left input : 0.9, Right input  : 0.9

100 150 200 250
0

0.5

1
Left input : 0.9, Right input : 0.7

100 150 200 250
0

0.5

1
Left input : 0.6, Right input : 0.6

100 150 200 250
0

0.5

1
Left input : 0.9, Right input: 0.9

100 150 200 250
0

0.5

1
Left input : 0.9, Right input: 0.7

100 150 200 250
0

0.5
Left input : 0.6, Right input: 0.6

Fig. 3. Evolved neuron models with multiple neurons

for the two motor signals. The fitness level F2 for two or three neurons is not
larger than 0.5, which means its maximum phase difference is smaller than 90◦.
In contrast, four neurons or more produce the anti-phase signals. It means at
least four neurons are required for the property. The input/output response also
shows better performance with a larger number of neurons. The characteristics
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of frequency variability is significantly influenced by the number of neurons. Four
neurons or more are effective for this performance.

Fig. 2 shows frequency variability depending on the number of neurons,. Fre-
quency variability range is not significantly different among a varying number of
neurons, starting from four neurons. However, more neurons tend to generate a
larger range of frequencies with the input change from 0.5 to 1. Here, the input
value 0.5 or less does not generate the osciilations. The range of frequencies is
estimated as the difference between the maximum and minimum frequency ob-
tained when the whole range of inputs from 0 to 1 was tested. For example, four,
five, six, eight neurons have maximal range of frequencies, 3.0 Hz, 3.6 Hz, 4.2 Hz,
5.1 Hz, respectively. Thus, it is presumed that more neurons have a capability
of producing a variety of frequencies. When we give the same input signals to
the symmetric neurons, frequency variability is improved. Our experiments with
multiple neurons show similar results with Ijspeert et al.’s CPGs for lamprey
animals [7], which have symmetric structure and frequency variability.

Fig. 3 shows the CPG model with multiple neurons. They produced high
fitness values, that is, anti-phase property, large frequency variability, and good
input/output response.

We additionally tested the neuron model with asymmetric structure (not
shown here). Asymmetric structure increases the phase shift and frequency vari-
ability. The phase difference between the left and right motor actions was in-
creased up to larger than 90 degrees, but the input/output response rate did not
improve. The frequency range becomes larger for the asymmetric structure.

4 Discussion

We considered the phase difference 180 degrees between left and right motor
actions for desired CPG neuron model. The anti-phase output is not necessar-
ily required for every CPG model, but mostly controlling a multi-legged robot
requires anti-phase for the left and right motors. The anti-phase CPG model
is used in quadruped robot [4], hexapod robot [5], lamprey [6,7] and a multi-
legged robot with more than six legs [10]. Some CPG models may need more
motor outputs than two motors. Evolving the CPGs with multi-outputs is more
difficult, and we can obtain desired neuron circuits by combining several simple
CPG modules.

We used four criteria in the fitness function to derive the CPG characteristics
over multiple neurons. Our approach follows incremental evolution in the fitness
evaluation. Possibly we can add more characteristics for the CPG evolution, for
example, more variety of input/output control, more variety of phases, and more
control/input variables for phase and frequencies.

5 Conclusion

In this paper we investigate the capability of a small number of neurons for
the central pattern generator characteristics, using evolutionary computation.



Evolving Characteristics of CPG 425

Genetic algorithms evolved neural parameters for the CTRNN neural structure.
We use four criteria, oscillation characteristics, phase difference between the left
and right motor signals, the input/output response, and frequency variability.
We infer from the experiments that four neurons can develop those CPG char-
acteristics while two or three neurons have their limitation of phase difference
and frequency variability. Also more neurons have a tendency of improving the
frequency variability by input signals.
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Abstract. We report on a set of minimalist modeling experiments that extends 
previous work on the dynamics of social interaction. We used an evolutionary 
robotics approach to fine-tune the design of a recent psychological experiment, 
as well as to synthesize a solution that gives clues about how humans might 
perform under these novel conditions. In this manner we were able to generate a 
number of hypotheses that are open to verification by future experiments in  
social psychology. In particular, the results indicate some of the advantages and 
disadvantages of relying on social factors for solving behavioral tasks.  

Keywords: Evolutionary robotics, social psychology, social interaction. 

1   Introduction 

Since its beginnings in the early 1990s evolutionary robotics (ER) has established itself 
as a viable methodology for synthesizing models of ‘minimally cognitive behavior’, 
namely the simplest behavior that raises issues of genuine cognitive interest [2]. Within 
this context there has been a growing interest in using this method to investigate the 
minimal dynamics of social interaction (cf. [5] for a review). As a specialization of  
the ER methodology, we can conceptualize this kind of modeling as investigations into 
the dynamics of ‘minimally social behavior’. 

What is interesting about some of these recent advances in ER is that the synthetic 
method has been used to create models which are explicitly inspired by actual psycho-
logical experiments. Moreover, some of these models have been specifically designed 
to generate insights with the potential to generate mutually informing collaborations 
between the field of artificial life and the traditional empirical sciences, especially 
social psychology (e.g. [3, 4]). One promising target for this endeavor is Auvray, et 
al.’s [1] minimalist perceptual crossing experiment. This psychological study attempts 
to explore the most basic conditions necessary for participants to recognize each other 
through minimal technologically mediated interaction in a shared virtual space.  
Since this study will be the target of the modeling experiments presented in this paper 
we will describe the study in a bit more detail here. A schematic of the overall  
experimental setup is shown in Figure 1. 

Two adult participants, acting under the same conditions, can move a cursor left 
and right along a shared 1-D virtual tape that wraps around. They are asked to indi-
cate the presence of the other partner. The participants are blindfolded and all they 
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can sense are on/off tactile stimulations on a finger when their cursor crosses an ob-
ject on the tape. Apart from each other, participants can encounter a static object on 
the tape, or a displaced ‘shadow image’ of the partner, which is strictly identical to the 
partner as regards to size and movement characteristics. There are thus three distinct 
types of objects (each is 4 pixels wide) which can be encountered by a participant, 
one of which is placed at a fixed location and two of which are moving within the 1-D 
space. The two mobile objects exhibit exactly the same movement, but only an over-
lap of the receptor fields of both participants gives rise to mutual sensory stimulation. 
Note that the difference between these three types of objects cannot be directly pro-
vided by the sensors, which in all cases can only produce a binary response depending 
on whether something is overlapping the receptor field or not.  

 

 

Fig. 1. The experimental setup: Two participants capable of horizontal movement face each 
other in a 600 unit 1-D ‘tape’ that wraps around at the edges. Note that a participant’s receptor 
field (white bar) can encounter three different objects (gray bars): a static object (located at 148 
or 448, depending on the participant), the other participant’s avatar (coinciding with the loca-
tion of its receptor field), and the other’s ‘shadow’ (attached to the other’s avatar via a rigid 48 
unit link). Since all objects have the same width (4 units) they cannot be told apart by any 
difference between their appearances (they all give rise to an all-or-nothing tactile response). 

The results of the psychological study show that, at least under the minimalist con-
ditions of this experiment, the successful recognition of an ongoing interaction with 
another person is not only based on individual capacities. It is also based on certain 
properties that are intrinsic to the joint perceptual activity itself. The important issue 
is that the scanning of an object encountered will only stabilize in the case that both 
partners are in contact with each other —if interaction is only one-way, between a 
participant and the other’s shadow, the shadow will eventually move away, because 
the participant it is shadowing is still engaged in searching activity. Two-way mutual 
scanning is the only globally stable condition. Therefore, the solution to the task does 
not only rely on individuals performing the right kind of perceptual discrimination 
between different sensory patterns (the empirical data shows they cannot distinguish 
between the other and its shadow), but also emerges from the mutual perceptual activ-
ity of the experimental subjects that is oriented towards each other. 

2   Previous Work 

Di Paolo, et al. [3] used ER to generate a simulation model of the perceptual crossing 
experiment, and successfully replicated the results while at the same time gaining 
some additional insights into the dynamics of the interaction process. For example, 
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the problems that their agents had with avoiding interactions with their respective 
static objects led them to predict similar difficulties for human participants. It turns 
out that repeated crossing of an object produces a pattern of stimulations located on 
the same spatial position. This is the same in the case of a fixed object and the other 
agent if it moves in coordinated anti-phase. Accordingly, it is difficult for the two 
patterns to be distinguished (see Fig. 3 for an example). This prediction was supported 
by the empirical data presented by Auvray and colleagues [1], but previously went 
unnoticed. Froese and Di Paolo [5] replicated these modeling results and introduced 
some variations, which resulted in further hypotheses about the stability of the inter-
action process in organizing the behavior of the interactors.  

In both modeling studies [3, 5] it was demonstrated that the simulated agents make 
use of the duration of contact with objects in order to discriminate interactions with a 
static object (always same length of stimulation for same velocity) and the other agent 
(potentially shorter or longer stimulation, depending on whether the other passes by in 
in-phase or anti-phase movement). This is a reliable basis of distinction because the 
other agent is always moving. It is unlikely, however, that this is the main strategy 
employed by humans in the original psychological study. To be sure, during the train-
ing phase the participants were asked to interact with a four-pixel wide object in three 
conditions. The target object was either (i) static, (ii) moving at a constant speed of 15 
units/second, or (iii) moving at a constant speed of 30 units/second, and each of these 
one min. training phases was announced as such. It could thus be possible that the 
participants learned the correlation between contact duration and whether an object is 
static or moving. In practice, however, the difference in duration is small enough such 
that it is unlikely to be the main strategy of the participants, though there is some 
evidence that contact duration made a difference, leading to 31.3% of clicking re-
sponse (cf. event E6 [1, p. 40]). Still, we hypothesize that the successful behavior of 
the participants is based on different types of interactions afforded by the static object 
and the other active participant, rather than their differing durations of contact.   

The question we want to address in this paper is: can we use ER to investigate the 
kinds of strategies that are available when such a duration-based strategy is excluded 
from the experimental design? One way to approach this is to make all objects (i.e. 
agents, shadow objects, and static objects) within the virtual environment infinitely 
small. This can be done by simply checking whether the sign of the difference of the 
locations (of the agent and some target object) has changed compared to the previous 
time step. If the sign has changed, then we activate the agent’s receptor field. Since in 
this case all objects afford an equal duration of contact (i.e. 1 time step), it is no 
longer possible for the agents to trivially rely on the fact that other moving objects 
entail a shorter contact. Can we use ER to generate a strategy that enables the agents 
to successfully locate each other even under this more ambiguous situation? 

3   Further Experiments in Perceptual Crossing 

The simulation model includes two agents facing each other in a 1-D environment 
(i.e. one agent faces ‘up’ and one agent faces ‘down’), which wraps around on itself 
after 600 units of space. In the simulation all distance and time units are of an arbi-
trary scale. There is no noise. Each model agent controls the horizontal movement of 
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its ‘body’, i.e. the position of its receptor field. The position of the agents is repre-
sented by continuous variables. The velocity of each agent is determined by taking the 
difference in output of two nodes of a continuous-time recurrent neural network 
(CTRNN), as described by Beer [2]. The CTRNN is fully inter-connected with self-
connections. No symmetry is imposed on the network. The sensory input of an agent 
is activated (set to 1) when its receptor field passes another object (i.e. it crosses  
it between two time steps), otherwise the input remains off (set to 0). Each node  
receives sensory input which is multiplied by a specific input gain. 

The GA evolved 100 solutions spread throughout 10 niches for several thousand 
generations. Each solution was evaluated for 100 trials lasting for 800 units of time, 
each with a time step of 0.1; the overall score was weighted toward the worse trials. 
Each solution coded for a clonal pair of CTRNNs (range of biases and weights [-8, 8], 
time constants [1, 200]). For more details of the GA, see [5]. In contrast to the origi-
nal experimental setup, each object in the environment, no matter whether it is mov-
ing or stationary, only activates the receptor field of a passing agent for 1 time step. 
To make the solutions more evolvable it was necessary to include a large range of 
input gains (range [-1000, 1000]) so as to compensate for the minimal period of 
stimulation; including a sensory delay of 5 units of time was also helpful. As in previ-
ous modeling experiments, the solutions were evaluated in terms of how close the two 
agents were to each other on average during a trial. 

 

 

Fig. 2. A trial run showing the movement of the agents during the first 1000 time steps. The 
agents manage to avoid their respective static objects (after only 1 stimulation), eventually 
locate each other, and then continue to engage in perceptual crossing until the end of the trial. 

Experiment 1: Making objects infinitely small. 
 
We successfully evolved a 6-node CTRNNs to cope with this modified setup. To test 
the robustness of this solution we ran a comprehensive set of test trials; the average 
score is not significantly different from that of the original modeling setup. It turns 
out that the strategy of the agents is based on the close proximity of the two shadow 
objects. All the agents have to do is distinguish between one stimulation and two 
consecutive stimulations. This is a robust individual-based strategy to locate the other 
since: (i) passing the static object only causes one activation of the receptor, and (ii) 
passing the other agent with its attached shadow results in two activations. In other 
words, the evolution has found an individual-based solution that relies on an external 
factor, namely the relationship between the agents and their shadows (cf. Fig. 2). 
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Ironically, this behavioral strategy is robust because the shadow, which was meant 
to introduce an essential ambiguity into the experiment, has been appropriated to 
disambiguate the target from the static object. Is this a strategy that would be used by 
the human participants of the original study? Participants were indeed told about the 
experimental setup, including the three types of objects that they could encounter, but 
“the precise relation of the mobile lure yoked to the avatar was not explained” ([1],  
p. 38). Nevertheless, a large percentage of responses was preceded by a double stimu-
lation (event E2, 32.3%, [1], p. 40), indicating that the shadow might have played a 
role in the positive empirical results. But what kind of strategies would be available if 
participants cannot take advantage of the agent-shadow relationship? 

 
Experiment 2: Making shadows maximally distant. 
 
We do not want to completely sever the link between the movements of the agents 
and their shadow objects, since this is an essential aspect of the experiment. Instead, 
we simply make the link between them maximally distant (150 units)1. The rest of the 
setup remains the same as in the previous experiment. We evolved 6-node CTRNNs 
for several thousand generations and then chose the fittest solutions to run some test 
trials. The outcome of a typical trial is shown in Figure 3.  

 

  

 

Fig. 3. Initial movement of the agents during a trial with maximally distant shadows. Note that 
it in this case it was impossible for agent ‘up’ to distinguish between the sensory-motor pattern 
produced by interacting with the static object (between ca. 2000-3000 time steps), and by inter-
acting with the other agent (between ca. 7000-8000 time steps). Both encounters elicit the same 
three stimulations and the same motor response (bottom graph). 

                                                           
1 Strictly speaking, in a 600 unit-wide circular world, being apart 300 units would be maximally 

distant. However, in this case there is another stable perceptual crossing situation, in which 
the agents can interact at a distance by stimulating each other with their shadow objects. 
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First, the agents explore their static objects for some time, then proceed to explore 
the rest of the space, then encounter each other and engage in some initial perceptual 
crossing. This mutual interaction breaks down after a while, and they continue explor-
ing until they re-establish perceptual crossing at another location. Such break-downs 
occur more often than in the original setup, because agents are more likely to miss 
each other with infinitely small object sizes. Indeed, the possibility of coordination 
break-down could be a first indication that the agents have to be much more active 
and responsive in their interaction in order to disambiguate the situation. They cannot 
make use of persistent and reliable external factors to assess the viability of their 
behavior, and thus they are more open to commit errors and mistaken responses. The 
behavior of the agents during the trial run thus looks much more lifelike than that of 
previous solutions. This modeling experiment leads us to the prediction that the  
performance of human participants under these modified conditions would not be 
significantly different than from the original setup. 

However, there still remains a problem in terms of this model. When the agents 
meet without receiving different stimulation beforehand, they engage on the basis of 
identical controllers (same structure and same internal state) such that they will mirror 
their behavior perfectly. This produces the same sensory-motor correlation as if they 
were oscillating around their static object. And since agents are more likely to en-
counter each other, evolution produces solutions which treat the occurrence of this 
sensory-motor pattern as always being due to the other rather than to the static object 
(a good choice, given the circumstances). However, occasionally this will result in 
both agents getting stuck on their static objects for the whole of a trial, giving rise to 
what looks like truly pathological behavior. It appears that such interactions do not 
break down when agents become entrained in too close proximity, thereby always 
making another contact with the object on their return path. 

 
Experiment 3: Coordinated behavior. 

 
How can we use ER to generate solutions that are better at distinguishing the other 
agent from the static object? As a first step, we remove the possibility of functionally 
identical CTRNNs encountering each other by simply activating the receptor field of 
a randomly chosen agent at the start of the trial, thus ensuring a minimal difference in 
individual histories. Moreover, in [4] we showed that sensitivity to social contingency 
can emerge from the interaction process if agents are required to coordinate their 
behaviors in a way that forces them to break the symmetry of their interactions. We 
therefore introduce an additional requirement into the fitness function by rewarding 
solutions in which agents travel together while continuing to engage in perceptual 
crossing. Since the agents are clones, this coordinated activity will require them to 
break the symmetry of their interactions in order to succeed. Moreover, since it is 
impossible to coordinate with the static object, we have emphasized the possibility of 
distinguishing the other in terms of its responsiveness.  

We evolved agents with this modified fitness function that are able to coordinate 
their behavior so as to travel together while interacting (cf. Fig. 4). While engaging  
in perceptual crossing, the agents eventually start to drift together horizontally. In  
other words, even though the agents are structurally identical, have minimally differ-
ent histories (internal states), and are not affected by noise during the trial, they are 
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nevertheless able to regulate the interaction such that the symmetry of their individual 
behaviors is broken. In fact, when one of the agents encounters its static object during 
this coordination process, the agents are able to re-negotiate the direction of drift and 
return the other way, much like what was found in the pioneering work by Quinn, et 
al. (2003). Future work could analyze in more detail the precise manner in which this 
symmetry breaking is realized in the dynamics of the interaction process. 

Nevertheless, it is still the case that this strategy is not as robust as the solutions 
which we have excluded from the experimental design. If both agents happen to en-
counter their static objects at the start of the trial, they are likely to continue oscillat-
ing around it until the trial is terminated, even if the possibility of functional identity 
has been removed in principle. At first sight this appears to be evidence that the 
agents are not sensitive to the social contingency of their interaction; otherwise they 
would presumably notice the lack of responsiveness of the static object and eventually 
move away. But this way of looking at the problem essentially demands an individual 
response alone, i.e. detecting lack of social contingency when there is none to be 
detected. In contrast, perhaps the existence of this pathological behavior is an indica-
tion of the truly social nature of the evolved solution? Indeed, if only one agent be-
comes trapped it will eventually be freed by the other agent, which entrains it in an 
interaction process such that they move away together.  

 

 

Fig. 4. Initial movements during a trial run showing coordinated behavior. First, both agents get 
stuck: agent ‘up’ on its static object and agent ‘down’ on the other’s shadow. Then agent 
‘down’ manages to break free and continues searching until the agents meet. This interaction 
frees agent ‘up’ from its entrainment and they start moving together until the end of the trial. 

4   Discussion 

We used ER as a process of fine-tuning the simulated setup to avoid the evolution of 
trivial solutions. At the same time it enabled the formulation of novel empirical pre-
dictions, in particular that those elements of the original experimental setup which 
were used as the basis for trivial solutions are not essential to the general results of 
that original study. Thus, we can hypothesize that the overall outcome of the original 
study will not be significantly altered when making the objects infinitely small and 
displacing the shadow object by 150 units. Indeed, we can venture a further hypothe-
sis that part of the reason why the original study found less response to the static ob-
ject, when compared to the two mobile objects, was that entrainment with this object 
was often broken by the actions of the other participant. 
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Another thing that we can learn from the design process is just how difficult it is to 
evolve a behavioral strategy that is only based social interaction. One important factor 
is that basing a behavioral strategy on the responsiveness of the other introduces an 
inherent risk factor in to the situation. What happens when the presumed ‘other’ does 
not react to your behavior in a suitable manner but your individual discriminatory 
ability depends on a certain kind of interaction? This appears to be the case in the 
‘pathological’ behavior of the agents. More generally, the other’s behavior can be 
influenced by your own actions, but it evades your direct control in principle. Another 
factor is that detecting another’s responsiveness as such during an interaction is a 
much more demanding task than detecting simple environmental cues (e.g. difference 
in stimulus duration, difference in number of contacts, difference in noise, etc.).  

Finally, the modeling experiments presented here point to the possibility of future 
dialogue between ER and cognitive science. The fact that the agents in the final  
experiment are unable to distinguish between the static object and the other agent 
individually, but can do so when that other agent is present, deserves further study, 
especially in relation to empirical findings. For example, studies of rehabilitation after 
brain damage have shown that patients often (i) find it impossible to individually 
achieve sensory-motor tasks in an abstract context, (ii) have difficulty with them in a 
pragmatic context, and (iii) can function normally in socially situated circumstances 
(cf. Gallagher & Marcel 1999). A modeling hypothesis we can draw from these  
empirical findings is that discrimination of the static object will be possible for indi-
vidual agents with more complex CTRNN controllers. Indeed, some preliminary 
experiments with 10-node CTRNNs have indicated this to be the case. 
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Abstract. Whether by nature or nurture, humans often respond dif-
ferently when facing the same situation. Yet, the role of behavioral
differences between individuals when immersed in their social network
remains largely ignored in most problems of natural and social sciences.
Here, we investigate how diversity in the way individuals assess their
adverse social partners affects the evolution of cooperation. We resort
to evolutionary game theory (EGT) to describe the dynamics of pop-
ulations in which individuals interact according to an adaptive social
network and may respond differently to unwanted social interactions.
We show that increasing the number of ways of responding to adverse
ties in the population always promotes cooperation. As such, adaptive
social dynamics and behavioral differences benefit the entire community
even though myopic individuals still act in their own interest. As de-
fectors are wiped out, surviving cooperators maintain the full diversity
of behavioral types, providing the means to establish cooperation as a
robust evolutionary strategy.

Keywords: Evolutionary game theory, cooperation, collective behavior,
complex networks.

1 Introduction

Cooperative behavior constitutes the hallmark of human society [8]. We tend to
help others, even if providing such help is costly. However, often it is advanta-
geous to accept all help offered by others without ever giving anything in return,
creating the famous paradox of cooperation. The framework of EGT [7] conve-
niently formulates the problem by representing interactions between individuals
in terms of simple games, like the two-person prisoner’s dilemma [13], where
each individual has the choice to either cooperate or defect. Individuals receive
a certain payoff upon interaction, whose value depends on their own action and
on that of their partner. The payoff they accumulate after interacting with all
their contacts measures their fitness and represents their social success. Those
that do well will be imitated and their behavior spreads in the population.
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Often one considers a black and white world with only unconditional coop-
erators (C’s) and unconditional defectors (D’s). The fate of each strategy is
determined by the payoff values characterizing the game being played. Mutual
cooperation leads to a reward R for both individuals, mutual defection to a
punishment P . A C interacting with D receives a suckers payoff S, whereas the
D gets a temptation to defect T . The fingerprint of the prisoner’s dilemma is
associated with the payoff ranking T > R > P > S: joint cooperation is threat-
ened by the temptation to defect towards a cooperator and by the fear of being
betrayed by cooperating against a defector. In infinite, well-mixed populations
evolution will always drive C’s to extinction [4,2].

This scenario drastically changes when one takes the specific structure of
modern networks of interaction and cooperation into account [10,16]. It has, for
instance, been shown that heterogeneity in the role and position of individuals in
social networks promotes strong levels of cooperation [14,16,17]. This effect even
enhances when one recognizes that interaction networks are dynamic entities [6],
whose structure co-evolves with the individual behavior [15,12,18]. Up to now,
however, the C’s and D’s that continuously reshape their interaction network
exhibit no differences in the way they manage their contacts. This situation con-
trasts with our everyday experience, where we recognize a continuous behavioral
spectrum: Two C’s (D’s) may react differently when confronted with the same
unfavorable situation. Their context in the social web will usually reflect a sin-
gular melting pot of influences, from culture, environment, family, acquaintances
and friends, which together trigger a wide range of responses among individuals
in the population [1]. In this work, we study how variability in the spectrum of
possible reactions to adverse ties influences cooperation among humans along
the links of the social web.

2 The Model

Consider a population described in terms of a network with constant number
of nodes N . Every node represents an individual, every edge an interaction be-
tween the two individuals it connects. The number of edges changes in time as
individuals continuously seek new interactions while abandoning old ones. The
lifetime of each interaction depends on the behavior of both individuals involved,
coupling the network dynamics with the behavioral (strategy) dynamics. Irre-
spective of one’s game strategy (C or D), interacting with a C always leads to
a higher payoff than interacting with a D (S < R and P < T ). Individuals
will therefore be satisfied about their connections with C’s and would like to
maintain these as long as possible. Connections with D’s, on the other hand,
can be considered as adverse and will be broken at different rates, determined
by the individuals’ linking strategy. We introduce behavioral diversity by con-
sidering M (usually many) different linking strategies, and study the entangled
co-evolution of game strategy and linking strategy with the self-organization of
the population structure.

Let us denote the combined game and linking strategies as Si, with i ∈
{1, . . . , 2M}. We assume for simplicity that all individuals seek new interactions
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with same propensity α, independent of their game or linking strategy. New links
are therefore formed at rate α2. Links connecting Si individuals with Sj individ-
uals disappear at rate κij = 1

2 (γij +γji), where γ−1
ij (γ−1

ji ) is the average time Si

(Sj) individuals would attribute to links with Sj (Si) individuals. The value γij

reflects whether Si individuals are satisfied or dissatisfied with their links with
Sj individuals. When satisfied, γij is taken as the minimum value γ among all
γij . When dissatisfied, on the other hand, γij is given by the linking strategy of
Si individuals and satisfies γij ≥ γ. The corresponding linking dynamics of the
network can be described by a set of ordinary differential equations [11,12]:

L̇ij = α2(Nij − Lij)− κijLij , (1)

where Lij (respectively, Nij) is the number (respectively, maximum number) of
edges connecting Si individuals with Sj individuals. These differential equations
lead to a stationary distributions of links given by L∗

ij = Nijφij , where φij =
α2(α2+κij)−1 denotes the fraction of active links between Si and Sj individuals.

Strategies spread in the population according to a mutation-selection process
defined by the pairwise comparison rule [20,22]. At every strategy update, an in-
dividual A is drawn randomly from the population. With probability μ, he adopts
a strategy selected randomly from all 2M available strategies. With probability
1− μ, fitness determines whether he adopts the strategy of a randomly selected
individual B, i.e., A imitates B with probability pAB = (1+eβ(fA−fB))−1, where
fX denotes the payoff accumulated by player X after playing a one-shot game
round with each neighbor in his network of contacts. The value β (≥ 0) con-
trols the intensity of selection. The limit β → ∞ leads to imitation dynamics
in which the individual with the lower payoff always adopts the strategy of the
one with the higher payoff. When β  1, the process becomes equivalent to the
weak-selection limit of the frequency dependent Moran process [9].

When the time scale for network updating (τa) is much faster than that for
strategy updating (τe), the steady state of the linking dynamics determines the
configuration of an individual’s neighborhood every time he updates his strategy.
In this limit, the fitness of an Si individual is given by [12]:

fi =
∑

j

aijφij(Nj − δij), (2)

where A = [aij ]i,j=1,...,2M is the game payoff matrix and Nj the number of Sj

individuals. This is mathematically equivalent to the fitness of an Si individual
playing a game specified by the rescaled payoff matrix

B = [bij ]i,j=1,...,2M = [aijφij ]i,j=1,...,2M (3)

in a finite, well-mixed population (complete network). This allows us to com-
pute analytically the probability (fixation probability) ρij that an individual
with strategy Si takes over a population of N − 1 individuals with strategy Sj ,
assuming that meanwhile no additional strategies appear because of mutations.
Following [22],

ρij =
Erf(ξ1)− Erf(ξ0)
Erf(ξN )− Erf(ξ0)

(4)



Behavioral Diversity and Cooperation 437

with Erf (x) = 2√
π

∫ x

0 dye−y2
, ξk =

√
β
μ (ku + v), 2u = bii − bij − bji + bjj and

2v = bjj + bijN − bjjN − bii. Computer simulations show that results obtained
under the fast linking assumption (τa  τe) remain valid for a much wider range
of time scales than one would expect from theoretical considerations [12].

As we address the role of behavioral diversity in this work, we will typically
consider more than two possible strategies (M > 1), which precludes an analyt-
ical description of the stochastic evolutionary dynamics for arbitrary mutation
rates. By assuming that mutations occur only rarely, we can analytically describe
the system in a compact form [5,3]. The evolutionary dynamics does no longer
proceed in the entire 2M -dimensional strategy space, but only along its bound-
aries, where there are never more than two different strategies present simultane-
ously. Indeed, as long as no mutations occur, stochastic update dynamics always
drives the population to a homogeneous state (monomorphic population), i.e.,
a state in which only individuals of one particular strategy survive. Assuming a
monomorphic population, a specific new strategy will show up with probability

μ
2M−1 and to the extent that μ is sufficiently small, this mutant will go extinct
or will fixate before any new mutation occurs. We can approximate this system
by a Markov Chain with only 2M states, each state corresponding to a certain
homogeneous state of the population. The probability that the appearance of a
random mutant in a state with otherwise only Si individuals moves the popula-
tion to a state with only Sj individuals defines the transition probability between
the corresponding states of the Markov Chain. These probabilities define the
transition matrix Λ of the Markov Chain, which is given by Λ = [Λij ]i,j=1,...,2M ,
where Λii = 1 − 1

2M−1

∑2M
k=1,k �=i ρki and Λij = ρji

2M−1 (j �= i). The normalized
left eigenvector of the unit eigenvalue of Λ defines the stationary distribution,
i.e., the fraction of time the population spends in each of the available strategies.
The stationary distributions obtained using this small-mutation approach also
hold for larger mutation rates, as also shown in [3].

3 Results

The most simple configuration is the one in which there are only two different
linking strategies (M = 2): Individuals break up adverse connections either at
a slow rate γS , or at a fast rate γF . In combination with the game strategy
we obtain a total of four different strategies: slow C’s (SC’s) and D’s (SD’s),
whose adverse interactions last long, and fast C’s (FC’s) and D’s (FD’s), whose
adverse interactions are short lived. Following Equation (3), we obtain the payoff
matrix:

⎛
⎜⎜⎝

SC FC SD FD

SC RφS RφS SφS SφS

FC RφS RφS SφM SφM

SD TφS TφM PφS PφM

FD TφS TφM PφM PφF

⎞
⎟⎟⎠, (5)

where φx = α2(α2 + κx)−1, with κS = γS , κM = 1
2 (γS + γF ) and κF = γF .
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Fig. 1. Transition probabilities and stationary distributions for a population
with M = 2 (a) and M = 10 (b) different linking strategies. In the limit of rare
mutations, the dynamics reduces to transitions between homogeneous states of the
population [5,3]. The arrows indicate those transitions for which the fixation probability
is greater than neutral fixation, ρN = 1

N
. The explicit values were obtained analytically

with the pairwise comparison rule [22]. a) Adaptive network dynamics allows C’s, in
the form of SC or FC, to remain in the population for 7.2% of the time. D’s dominate
because of the flow from FD to SD, either directly or by using the alternative route
via SC. b) When M increases to 10, the population spends already 59.8% of the time
in a cooperative state. Numbering C’s and D’s according to their type, C0 (D0 ) being
the slowest cooperator (defector), we see that increasing M splits the “outflow” of fast
defectors among a wide range of different possibilities. As a result, cooperation emerges,
since only few types of defectors are evolutionarily stable, whereas the vast majority of
cooperative types work as “flow sinks”. (N=100, β=0.01, T=2.1, R=2, S=0.9, P=1,
α=0.4, δ=0.3)

Adopting the small-mutation approach discussed in the previous section, the
complex co-evolutionary dynamics reduces to one associated with a Markov
Chain with only 4 (2M) states. The Markov Chain’s transitions that are fa-
vored by natural selection, i.e., those that are larger than ρN = 1

N (the fixation
probability associated with neutral evolution), characterize the main driving
forces of the evolutionary dynamics. These transitions are shown in Figure 1
for a region where D’s dominate. The exact values are obtained by computing
the probability that a mutant (with strategy located at the end of each arrow)
fixates in a monomorphic population of individuals adopting the strategy lo-
cated at the start of the arrow. We see that SD’s are clearly the winners of the
evolutionary race. FD’s, on the other hand, are rendered disadvantageous with
respect to any other strategy. When a FC manages to fixate, we end up in a
rather stable scenario. In addition, SC’s acquire a transient character, providing
an alternative route from FD to SD. In this specific case, it is, however, mainly
the direct transition from FD’s into SD’s that hinders C’s survivability. As we
will show below, the viability of C’s relies on the extent to which the transition
FD → SD is inhibited compared to transitions into FC’s.
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Fig. 2. Cooperation and behavioral diversity. a) The population spends more
time in a cooperative state (of any type) when the number of possible types (M)
increases, irrespective of the temptation to defect T in the prisoner’s dilemma. (N=100,
β=0.1, α=0.4, δ=0.3, R=2, P=1, S=3−T ) b) While the majority of cooperator types is
equally represented, only the slower types of defectors manage to survive. The defector
population exhibits behavioral differences, which inhibits the dominance of slowest
defector type, providing an escape hatch for cooperation to thrive (M=50, T=2.1,
R=2, P=1, S=0.9).

We do now extend the analysis to an arbitrary number of linking strategies M ,
with rates for breaking adverse ties taken uniformly in the interval [0.5− δ, 0.5+
δ]. This leads to a trivial generalization of payoff matrix (5). Figure 2a shows
that cooperation blooms when the number of linking strategies M increases.
In the following, we investigate the mechanism responsible for this remarkable
performance of C’s?

A first hint is provided in Figure 2b, where the fraction of time spent in
each state of the population is shown for the case in which there are M =
50 possible types (linking strategies). Figure 2b shows that all types of C’s
are present in the population, whereas the D’s who survive are only of the
slowest types. Importantly, however, with increasing number of available types,
the difference between the values of the rates associated with contiguous types
is reduced, which provides a means for D’s other than the slowest to survive
in the population. These are precisely the D’s who provide an escape hatch
for C’s to survive (cf. Figure 1a), since many of them will be disadvantageous
with respect to C’s. Indeed, Figure 2b shows that increasing the number of
possible types, D’s with break-up rates higher than the minimum γ are now
able to survive. Although these individuals do not dominate, they effectively
promote the appearance of fast C’s, since the transition D→C between these
types is favored by natural selection. On the other hand, because all C-types
are neutral with respect to each other, they end up fairly equally distributed in
the population, unlike D’s for whom natural selection favors the slower types
(cf. Figure 2b). Figure 1b also shows that, with increasing number of types,
the number of C-types which are favored increases more than the corresponding
number of D-types. As a result, all but the slowest D’s are disadvantageous
with respect to (most of the) C’s. Increasing the number of types efficiently
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inhibits the transition from the fastest to the slowest D’s, paving the way for
cooperation to thrive, an effect which remains valid irrespective of the model
parameters, inasmuch as T and S are such that cooperators manage to survive.
Mathematically, a large number of different types allows individuals to engage
in a wider range of games and the complex set of different interactions allows
the appearance of D’s from which C’s can profit.

4 Discussion

In social systems, individuals often behave differently when dealing with their
social contacts. The present model shows that such diversity provides a perfect
breeding ground for cooperation. Having individuals that think and behave dif-
ferently creates a multi-dilemma environment [12,15] in which cooperation easily
prevails, without any need for reputation, punishment or any other community
enforcing mechanism.

Together with other recent results that underline the importance of different
forms behavioral diversity in the evolution of cooperation [17,19,21], this work
supports the idea that diversity deserves to be considered as a fundamental
mechanism towards the emergence of cooperative behavior. In addition, given
the strong multi-cultural nature and inherent diversity in modern societies, the
current prevailing minority-friendly policies may have resulted from the evolu-
tionary advantages shown here.

Finally, diversity in the way individuals organize their contacts may be im-
portant in other problems than the emergence of cooperative behavior. From
spreading of infections diseases, in which individuals may react differently to a
risk of infection from their neighbors, to spreading of computer viruses, where
individual diversity in the resistance to pernicious attacks is common, the new
mathematical framework presented in this article can be a valuable tool in the
study of a broad spectrum of problems.
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Abstract. We investigate an artificial self-organizing multi-particle
(also multi-agent or swarm) system consisting of many (up to 103) reac-
tive, mobile agents. The agents’ movements are governed by a few simple
rules and interact indirectly via a pheromone field. The system gener-
ates a wide variety of complex patterns. For some parameter settings
this system shows a notable property: seemingly never-ending, dynamic
formation and reconfiguration of complex patterns. For other settings,
however, the system degenerates and converges after a transient to pat-
terns of low complexity. Therefore, we consider this model as an example
of a class of self-organizing systems that show complex behavior mainly
in the transient. In a first case study, we inspect the possibility of using
a standard genetic algorithm to prolongate the transients. We present
first promising results and investigate the evolved system.

1 Introduction

Self-organizing systems such as natural or artificial organisms and swarms often
form complex patterns [1,2,3]. In nature, these systems are subject to natural
selection, which evolves complex patterns by adapting simple behavioral rules
followed by the agents. In our work, we model similar complex systems and adapt
them by applying Evolutionary Computation. These systems are interpreted as
nonlinear dynamic systems that converge to a fixed point or to periodic behav-
ior. Some systems, however, show seemingly stable (i.e., fixed point or periodic
behavior) complex patterns although relevant steady states do not exist. Such
systems rely on quasi-stationary (or quasi-periodic) states that are induced by
long transients. The state of a system is said to be transient in the time segment
between the initialization of the system and before a steady state (e.g., a fixed
point, a periodic behavior, or a chaotic attractor) is reached. Examples of such
systems showing quasi-stationary behavior are models of ecological systems [4,5]
and many phenomena surrounding us in our everyday life such as ourselves [6].
Typically, the transient shows a much more complex and interesting behavior
compared to the steady state, the system is actually slowly converging to.
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(a) t = 1× 105. (b) t = 3× 105. (c) t = 5× 105. (d) t = 6× 105.

Fig. 1. One pattern out of the variety of many of the investigated system (N = 3000,
L = 300, η = 0.04, parameters described below)

In this paper, we use a simple model of a multi-agent system. The agents move
according to a few simple rules and interact indirectly via a (virtual) pheromone
field. This model serves as an example of self-organized systems that depend
on long transients. Based on only two parameters (resolution of the pheromone
field discretization and/or the pheromone diffusion) we are able to change the
behavior between relatively short transients (i.e., relatively fast convergence to a
steady state of low complexity) and supposedly very long transients (actually so
long that we even cannot be sure whether they are transient at all). We artificially
restrict the system to rather low resolutions of the discretization leading to
mostly manageable transients that are numerically simulated within a reasonable
time. A first investigation of the transients was reported in [7]. Here, we try
to prolongate the transients and to increase the complexity of the patterns by
adjusting other parameters of the model. This is done by using a standard genetic
algorithm [8]. Thus, we evolve parameter settings that result in long transients
and high complexity which corresponds to increasing the time a self-organized
system shows complex behavior.

We propose that Evolutionary Computation is a suitable tool to shape com-
plex multi-particle systems in a desired manner. Together with the intrinsic
creative potential of such particle systems (see Fig. 1), both techniques in com-
bination serve as a powerful on-demand pattern generator. The objective of
this work is, on the one hand, to produce a multi-particle system showing dy-
namic pattern formation, that might be applied in many ways, for example, in a
novel robot controller concept or to generate pseudo-random textures for com-
puter graphics (e.g., similar to Perlin’s noise [9]). On the other hand, we want
to determine the relevance of transients in self-organized systems and how to
manipulate them.

2 Mathematical Model

In the following, we define the model of the investigated artificial multi-agent
system as reported before in [7]. This system may also be called multi-particle
system or swarm as it consists of many (up to 103) reactive agents (automata
that map receptions to actions without an internal world model). The model used
here is based on and is very similar to the model of complex transport networks
reported by Jeff Jones in [10]. The main differences between the models are a
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semi-continuous representation of agent data in Jones’ model compared to a
continuous representation in our model and a different density control (based
on occupied patches in Jones’ model, based on maximal pheromone field values
here). Time is discrete in both models. Finally, both models are reduced to fully
discrete models, because they are simulated on digital computers. However, the
different methods of discretization do matter (rough discretization in patches
and floating point arithmetic). The agents move in two-dimensional space with
periodic boundary conditions (torus). The change of an agent’s position x is
defined by

dx
dt

=
(

cosφ
sin φ

)
v, (1)

for a velocity set to a constant value v > 0, except for the case that the local
pheromone value is above a threshold Pmax (then we set v = 0). The change of
the agent’s direction φ is defined by

dφ

dt
= α(sl(t), sc(t), sr(t))γ(t), (2)

for α(sl(t), sc(t), sr(t)) ∈ {1, 0,−1} defining the direction of the turns (clockwise,
no turn, or counterclockwise), γ defining the absolute value of the turn angles,
and for sensor values sc and sl that are defined by

sc(t) = P

(
x1 + cos(φ)d
x2 + sin(φ)d

)
, (3)

sl(t) = P

(
x1 + cos(φ− ψ)d
x2 + sin(φ− ψ)d

)
, (4)

for a pheromone field P representing the environment, x =
(

x1

x2

)
, sensor angle

ψ, and sensor distance d. sr is defined analog to sl. Closely following [10], we
define

α(sl(t), sc(t), sr(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for sc(t) > sl(t)
∧sc(t) > sr(t) (no turn)

±1, for sc(t) < sl(t)
∧sc(t) < sr(t) (random turn)

+1, for sl(t) < sr(t) (right turn)
−1, for sr(t) < sl(t) (left turn)

, (5)

whereas the order (from top to bottom) of the conditions matters. The random
turn has a probability of 50% for +1 and 50% for −1. We define

γ(t) =

{
φrot, for t ∈ {0, τ, 2τ, . . .}
0, else

, (6)
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for a constant rotation angle φrot and a time interval τ at which the agents turn
and their directions are updated (in this work we set τ = 1). Thus, we obtain a
synchronized system that is discrete in time. The system could, for example, be
extended by defining γ as a stochastic process. This would transform Eq. 2 into
a stochastic differential equation.

The pheromone field P is, in principle, defined by the standard diffusion
equation

∂P (x, t)
∂t

= D∇2P (x, t)− ηP (x, t) + θ

N∑
i=1

δ(x− xi(t)), (7)

for diffusion D, evaporation rate η, addition θ (the Dirac delta indicates that
an agent only contributes to the pheromone field at its position), number of
agents N , and agent positions xi(t). However, for simplicity and to reduce the
computational complexity the diffusion and the evaporation are only executed
at t ∈ {0, 10τ, 20τ, . . .} unlike the addition process that is executed at t ∈
{0, τ, 2τ, . . .}.

As discussed above, the system is simulated on a digital computer. Thus, the
pheromone field needs to be discretized. This is done by a grid. Here, the grid
is chosen to be always quadratic and the number of grid points is given by L2.
In our implementation, the diffusion is not normalized in correspondence to the
resolution of the grid (as it would be necessary in classical numerics).

If provided with a sufficient resolution of the grid, that is discretizing the
pheromone field, the model shows a huge variety of complex patterns [7]. These
patterns form, collapse partially, form again, and seem never to recur. This
way the system shows high creativity that is very different compared to many
other self-organizing systems that converge (quickly) to a steady state. This is
related to the concept of synergetics where modes of high dynamics are governed
by modes of slow dynamics [11]. Throughout this work, the agents’ positions
are initialized by a random uniform distribution throughout the whole space.

Table 1. Standard parameters

sensor angle ψ 45o

rotation angle φrot 45o

rotation period τ 1 [time units]
surface area of the torus s2 1 × 1[length units]2

grid length L 150
grid resolution L/s = 150[1/length units]
sensor distance d 0.035 [length units]
velocity v 0.01 [length units/τ ]
diffusion D 0.1 [(1/L)/(10τ )]
evaporation η 0.04 [1/(10τ )]
addition θ 5 [1/τ ]
active cell threshold δactive 30
max. pheromone value Pmax 300
simulated steps 5 × 104 [time units]
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See Fig. 1 for some examples of patterns formed in the pheromone field and
see Table 1 for the parameters used, if not stated explicitly.

3 Complexity and Transients

In order to investigate the model concerning transients we need a method de-
termining when a steady state is reached. In a high-dimensional system this
is, generally, difficult. In addition, we want also to evolve complex and dynamic
patterns. Thus, we restrict ourselves to a simpler (also concerning computational
complexity) but effective method. As we know from experience with the simula-
tor, the steady states are all of low complexity (patterns formed out of straight
lines with two, one, or no bifurcations or only clusters). Instead of checking for
a steady state it would suffice to find a metric that measures the complexity of
the dynamics.

In this work, we use the following metric: We put a second grid (called counting
grid) of lower resolution (here: 30× 30) over the pheromone grid and count the
grid points of the pheromone grid that are above a threshold δactive (called active
cells). If there are more than 50% active cells within one cell of the counting
grid we mark it as ‘on’ (otherwise ‘off’). It is sufficient to calculate the current
state of the counting grid only every 200 time steps because the motion of the
agents and the pattern dynamics occur on different time scales. Finally, the value
of our complexity metric β is determined by counting the differences between
the current counting grid and the one obtained 200 time steps before (thus,
β ∈ {0, . . . , 302}). See Fig. 2 for examples of the evolution of the complexity
measure β for different parameter settings. Fig. 2(a) shows an example of a
pattern that degenerates quickly to a collection of stationary clusters. Fig. 2(b)
shows a pattern that degenerates to a traveling pattern (causing oscillations in β
as it moves over the counting grid) of three lines and two bifurcations after a
transient of about 66,000 time steps.
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(b) ψ = 30o, φrot = 30o.

Fig. 2. Examples of the temporal evolution of the complexity measure β (v = 0.01,
d = 0.06, η = 0.08, D = 0.05, N = 500)
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4 Evolving Complex and Long Transients

In this section, our new approach of evolving parameter sets that generate long
transients with complex patterns is reported. The used optimizer is a standard
genetic algorithm based on GALOPPS 3.2.4 by Erik Goodman [12]. Four pa-
rameters were varied within given intervals: rotation angle φrot ∈ [10o, 90o],
sensor angle ψ ∈ [10o, 90o], diffusion constant D ∈ [10−3, 10−1], and number
of agents N ∈ [20, 210]. The velocity of the particles was fixed because changes
in the velocity are balanced by the diffusion constant as only the relation be-
tween these two parameters matters. The restriction to these intervals does only
exclude parameter settings leading to irrelevant patterns (based on our experi-
ence). The values were encoded in a 10 bit Gray code. Mutations were single bit
flips. Recombinations were two-point crossovers with leaving the 10-bit-groups
intact. The selection mechanism was stochastic universal sampling. The popula-
tion size was set to 20, the probability of a recombination was set to 0.05, and
the probability of a mutation was set to 0.05. The fitness was defined as the
sum of all changes in the counting grid until less than ten changes occurred for
ten successive checks (i.e., 2,000 time steps). The simulation was stopped after
105 time steps in any case. For the used random uniform initialization of agent
positions and directions this value was stochastic. The fitness was the mean of
three simulation runs of the individual. A single run of 500 generations takes
about three days of computing time on a contemporary desktop computer (sin-
gle core). The averaged results of four runs of the genetic algorithm are shown
in Fig. 3(a).
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Fig. 3. Left: max., mean, and min. fitness of four runs over 500 generations (error-
bars indicate 95% confidence intervals). Right: Temporal evolution of the complexity
measure β of the best individual found.

Beginning with a mean fitness of 1,446, a peak mean fitness of 51,293 was
reached after 306 generations. The mean fitness of the best individual after
500 generations was 67,393. The best individuals of the four runs were very
similar; we give the averages and the standard deviations: φrot = 89.4o ± 0.39,
ψ = 10.1o ± 0.16, D = 0.00125± 5× 10−4, and N = 582.5± 38.2.



448 H. Hamann, T. Schmickl, and K. Crailsheim

(a) Chaotic phase. (b) Expanding rect. (c) Colliding rect. (d) Chaotic phase.

Fig. 4. Pheromone field of best individual

The following analysis of the best individual shows the high degree of adap-
tivity to the fitness function. The evolution of the complexity measure for an
example run is shown in Fig. 3(b). The dynamics in the counting grid were very
high (cf. Fig. 2) with few interruptions. After about 450,000 time steps the pat-
tern degenerates to a single line in this example (typically the observed transient
was even longer). Thus, the pattern survives for the whole evaluation period (105

steps). The pheromone field of characteristic phases is plotted in Fig. 4.
The system shows, for most of the time, a rather chaotic behavior, see Fig. 4(a).

However, about two times per 300,000 time steps it forms an expanding rect-
angle, see Fig. 4(b) to 4(d). The agents deform this rectangle because of the
rotation angle φrot = 89.609o �= 90o. Through a non-trivial process this leads
to an expansion which continues until the rectangle collides with itself (space is
toroidal). Then another chaotic phases begins. These rectangle-formation-phases
are clearly identified in Fig. 3(b) as the short phases of low values (10 < β < 70).
The high fitness of this individual does not depend on the toroidal form of space
as observed in runs of the genetic algorithm with strict bounds at all four sides
(non-toroidal, data not shown).

5 Conclusions and Outlook

In this paper, we applied genetic algorithms successfully to increase the creativ-
ity and complexity of self-organizing systems by prolongating the transient. We
investigated a multi-agent system with simple rules that shows a huge variety
of complex patterns. This model is interpreted as an example of self-organized
systems that rely on long transients because the investigated systems only show
complex behavior before the steady state is reached. Parameter settings were
evolved that lead to longer transients and, thus, maximize the time complex
behavior is observed. The presented model is a microscopic (bottom-up) model
inspired by slime molds [10]. The observed patterns bear similarities to macro-
scopic (top-down) differential equation models of slime molds as reported in [13].
Other relevant models showing similar patterns are the macroscopic reaction-
diffusion models of animal coats [14,15]. In our microscopic model changes in
the parameters result in a huge variety of patterns. Hence, small changes of
parameters might result in big changes in the quality of the patterns. Thus,
difficulties in evolving patterns with desired properties would be expected. In
this paper, we have shaped the emergent properties of a self-organizing system
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according to our requirements by evolution. The fitness landscape seemed to
be good-natured and rather smooth because all four runs were successful and
resulted in very similar individuals. In the future, we will further explore the
abilities of multi-particle systems in combination with Evolutionary Computa-
tion. We will investigate those parameters in detail, which produce constantly
changing, complex patterns. Our goal is to shape these patterns in a way that
we are either able to manually construct them or to evolve them in a desired
way (e.g., to connect predefined points in the modeled space or to obtain inho-
mogeneous textures). Possible applications for such dynamic pattern generators
are ranging from artificial life, swarm robotics, and collective intelligence to arts
and other forms of visual design and computer graphics.
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Abstract. The evolution of coordination is an important consideration
in living systems. Throughout the natural world examples of coordina-
tion can be found. These include fish schooling, birds flocking and an-
imals hunting in packs. This paper examines the issue of coordination
and how groups can coordinate their actions in a competitive setting. A
number of existing game theoretic representations of coordination have
been proposed. Much of the existing research has studied two player
coordination games. This paper will investigate the emergence of coordi-
nation through an n-player game. The use of signalling, communication
and norms is common when attempting to address the topic of coordi-
nation, yet in this paper we will not apply any of these approaches. This
paper investigates the effect of group structures on the evolution of co-
ordination in a population of self interested individuals. The results will
demonstrate the importance of these group structures when attempting
to evolve coordinated actions.

1 Introduction

Research involving computer science and behavioural biology have made sig-
nificant contributions relating to the area of coordination. These include new
insights into aspects of flock formation [9] and fish schooling [14]. The subject
of coordination is an important consideration for understanding many of these
behaviours as they involve highly coordinated actions by numerous individuals.
Game theoretic simulation offers us a means by which we can study the emer-
gence of coordination. This topic of coordination has been examined widely in
a number of research areas such as multi-agent systems [5], economics [10] and
the social sciences [1]. A number of game representations have been commonly
used to study the coordination problem such as the “Stag Hunt” game [16][11]
and the “Prisoners Dilemma”.

This paper examines the evolution of strategies in an n-player coordination
game. This involves studying groups of individuals coming together and interact-
ing through a specified coordination game. The rewards they receive are based
on their own choices and the choices of those in the group around them. This
research aims to examine in detail the impact of groups and group sizes on the
evolution of coordination. This will focus on how group structures effect the evo-
lution of coordination and the significance of the strategies evolved. Therefore,
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this paper will address two research questions. Firstly, how do group structures
effect the emergence of group coordination? Secondly, how do group sizes im-
pact on the levels of coordination achieved? The following sections of this paper
are structured as follows: Background Research, Simulator Design, Experimental
Results and Conclusions.

2 Background Research

2.1 Coordination Games

A number of coordination games have been widely used throughout existing
research. In this paper we use game theoretic simulation as a means of exam-
ining the evolution of coordination. The Stag Hunt game was first proposed by
Rousseau as a representation of how two individuals might coordinate their ac-
tions when trying to hunt for their survival. The game was revisited by Skyrms
et al. which has resulted in the game receiving more attention in the last num-
ber of years [12]. The game involves two players who can choose to either hunt
stag or hare. A player cannot bring down a stag by themselves. They rely on the
cooperation1 of others to successfully hunt a stag. In contrast a player may bring
down a hare by themselves. Choosing to hunt stag results in a richer meal but
depends on the cooperation of others. Alternatively, choosing to hunt hare is less
nourishing but can be hunted on one’s own. The payoff matrix is shown in Table 1
and the following constraint is typically used in this game: R > T ≥ P > S.

Table 1. The Stag Hunt

Players Choice Stag Hare

Stag (R,R) (S, T )
Hare (T, S) (P, P )

2.2 N-Player Coordination Game

This paper examines the evolution of coordination among groups of individuals
and therefore an n-player coordination game is required. This is achieved through
adapting the two player stag hunt game to an n-player game, using an order
statistic game. An order statistic game [2] is one in which players must choose
numbers in a certain range. Their individual payoff is a function of both their
own choice and an order statistic (minimum group value). In these games each
number represents a strict pareto-ranked equilibrium meaning that once a pareto
optimal scenario is reached agents will not deviate from their chosen strategies.
The difficulty in achieving coordination arises when we increase the number of
players in the game. Hume et al. proposed a scenario where two neighbours
would agree to drain a meadow, which they possess in common. He reasoned
1 Cooperation is used throughout this paper to denote the coordination of two players.
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that it was easy for each of them to know the others mind, as failure by one of
them to play his part would result in the abandonment of the whole project [6].
But this becomes very difficult as the number of participants increases.

The following n-player coordination game is based on the research of Van
Huyck et al. involving groups of undergraduate students. This experiment in-
volved forming groups of 14-16 undergraduate students to play a game. During
each round of the game players were asked to choose an integer between 1 and
7. Players received a payoff which was governed by their strategy and the lowest
strategy held by a member in their group. No pre-play negotiation was allowed
between players but after each round the minimum value strategy of the group
was announced publicly [7].

Table 2. N-Player Coordination Game

Smallest Value of X Chosen

7 6 5 4 3 2 1
1 1.30 1.10 0.90 0.70 0.50 0.30 0.10

Your 2 - 1.20 1.00 0.80 0.60 0.40 0.20
choice 3 - - 1.10 0.90 0.70 0.50 0.30
of 4 - - - 1.00 0.80 0.60 0.40
x 5 - - - - 0.90 0.70 0.50

6 - - - - - 0.80 0.60
7 - - - - - - 0.70

A payoff table (Table 2) shows the payoff each person would receive given
their choice of strategy and the lowest choice by a person in their group. This
table was shown to all participants and the following equation was used to gen-
erate the payoff matrix shown [7]. a×Xmin − b×Xi represents a players payoff
equation. a represents the benefit of hunting stag, while b represents the op-
portunity cost of hunting hare. For the experiment a was given a value of 0.2
and b a value of 0.1. Xmin represents the minimum choice of x in the group. A
constant of 0.6 was added to ensure that the payoffs remained positive. Each
student was allowed to see the payoff matrix. The aim of the experiment was
to see if the students could coordinate their behaviour without communicating
to receive the maximum payoff. As with the stag hunt the cost of defection (de-
fection would arise through the choice of a low number) by a member of your
group is large should you choose to hunt stag (select a high number). The results
of the experiment showed that after a number of rounds there was an overall
convergence to the risk adverse strategies and the results were classified as co-
ordination failure. However Van Huyck also showed that coordination among
individuals could be achieved by restricting group sizes. In his experiments he
limited the group size to two and successfully achieved coordination among the
participants.
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2.3 Coordination and Groups

The difficulty in coordinating behaviour among self interested individuals has
been highlighted numerous times. Ringelmann demonstrated this using a rope
pulling exercise. It was found that as the number of individuals pulling on the
rope was increased to total force exerted on the rope did not equal the sum of
their individual pulls. A coordination loss occurred where participants were not
pulling at the same time and the same direction [13]. Bornstein et al. showed that
coordination could be achieved playing the Van Huyck game using inter-group
competition. For these experiments he split the participants up into two groups
with each group competing against one another. The group with the highest
minimum value received the payoff in the case of a tie the payoff was divided
amongst the groups [10]. Gordin et al. investigated the evolution of groups using
a room painting scenario. Two separate agents a white washer and painter were
required to cooperate in order to paint a room. The white washer needed to wash
the wall first before it could be painted [4]. In his research involving coordination
Pestelacci et al. showed that it was possible to achieve cooperation in co-evolving
networks using the stag hunt [8].

3 Simulator Design

The simulations presented in this paper involve the evolution of agent strategies
over successive generations. This involves a population learning through a genetic
algorithm. Similar to the research outlined by Traulsen et al. the agents in the
population play within groups [15]. Our population is subdivided into groups,
where individuals interact only with those within their group. A game is played
in each group resulting in individuals receiving a certain payoff. After each round
the fittest individuals are chosen using roulette wheel selection, crossover and
mutation occur and offspring are added to the same group as their parents. In
the case of parents from different groups, the offspring are added randomly to
one of the parents groups. As a result of this process, the fittest groups should
grow at a cost to the least fit groups. Once a group reaches a critical size n it is
split into two groups with probability q. We implement this process inline with
the approach of Traulsen et al.

Each agent possesses a single strategy gene which contains that agent’s strat-
egy. This strategy is encoded into the gene as a bit string representing numbers
in the range 1 to 7 which specify the strategy of an individual for its lifetime.
Every agent belongs to a group but has no knowledge about any of the agents
in its group.

Evolutionary Algorithm: In this paper we use a Genetic Algorithm (GA).
The entire population is allowed to evolve once each group has played their spec-
ified number of games. Agents are allocated a fitness from these interactions,
which is represented as FA = PA/NA. The fitness of an agent A is based on the
total payoffs P which that agent has received in the previous generation and the
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number of games it has played N in that generation. A population of 100 indi-
viduals were used throughout these simulations. Individuals were selected using
roulette wheel selection, based on their individual fitness. Elitism was applied
to the population, moving the fittest E number of agents directly into the next
generation. E is calculated using the elitism percentage chosen prior to running
the simulation. In our simulations this elitism value was set to 5%. A cross-over
rate of 85% and a mutation rate of 3% is also used. The agent population is ini-
tially dispersed randomly over 25 groups, ensuring an even distribution of agent
strategies. Each agent plays 30 stag hunt games with their group peers in each
generation. Offspring are created using a single point cross-over of both parents’
strategy gene, with the actual cross-over point being randomly selected each
time. Mutation occurred probabilistically throughout this process. Occurrences
of mutation were biased towards an increase or decrease of only 1 of a possible
7 in real strategy terms. Pairings produce a single offspring and this new agent
is randomly added into one of the parents’ groups.

Agent Interactions: In our simulations, agents are initially assigned randomly
to 25 groups. In each group all individuals participate in the coordination game.
Since the strategies outlined here are not probabilistic only one round of games
is required. The evolutionary algorithm then determines the representation of
successive generations. An important parameter in these simulations is the size
groups are allowed to grow to. An upper bound is set throughout our simulations
and this is examined as an important experimental parameter. Once the upper
bound has been reached, the group is split in two and agents are allocated
randomly to either location.

4 Experimental Results

In this section we will present a series of experimental results examining the
emergence of coordination under a number of experimental settings. The first
experiment examines the impact of group splitting on the agent population.
The second experiment examines the impact of group splitting by varying the
upper bounds(thresholds). This splitting is similar to that which occurs in nature
among various species which divide once they reach a certain size. For example,
honey bees regularly swarm and divide their population [3].

Experiment 1: This experiment examines the effects of groups on the popula-
tion. Fig 1 (a) shows the average strategies for agents when groups are split and
not split, while Fig 1 (b) shows the average fitness.

The data shown in Fig 1 comprises a single experimental run of 1000 gen-
erations. We observe that when groups are allowed to grow without limitation
the more risk adverse strategies thrive. Individuals benefit from limiting their
risk through choosing a lower value strategy. This is the equivalent of choosing
the hare in the traditional stag hunt game. Alternatively, when groups are split
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Fig. 1. Splitting Vs. No Splitting

they evolve to the cooperative payoff dominant equilibrium. This is similar to
the conclusions of Traulsen et al. involving the Prisoner’s Dilemma [15].

The population size is constant and therefore the growth of a single group
means other group representations decrease. New offspring can only be added
to a reducing set of possible groups and therefore these small numbers of groups
increase in size each generation. As the number of groups grow, intergroup se-
lections become less likely and new offspring are simply added to their parents
group. Due to the nature of these games, a single low strategy agent will have a
distinct advantage if groups grow to large sizes. Exploitation proves more difficult
when agents are dispersed across many groups.

Experiment 2: This experiment examines the emergence of coordination when
alternative group thresholds are applied. We show the effect of the group size
threshold (the point at which once the group exceeds, it is split). This experiment
shows data which is averaged across twenty-five runs. The other experimental
parameters remained the same as in the previous experiment.

The results in Fig 2, show the effects of thresholds on the evolution of strate-
gies with alternative group sizes and the levels of coordination achieved. Lower
group thresholds allow groups to subdivide quickly and this appears to encourage
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coordination. Higher thresholds have the opposite effect. Fig 2 (a) shows con-
sistently lower levels of coordination for thresholds ranging from nine-thirteen.
The reason for this is that smaller groups find it easier to maintain coordination.
These small groups are more likely to avoid selfish individuals who prefer lower
risk strategies. Splitting the groups once they reach the group threshold has the
effect of spreading the evolved strategy throughout the entire population. Fig 2
(b) shows the levels of interactions throughout these groups. This clarifies the
impact of group size on the levels of coordination evolved. The data shows the
potential impact of a risk dominant strategy in populations which have higher
group sizes. These higher group sizes result in higher numbers of agent interac-
tions and thereby expose these individuals to potential exploitation due to risk
dominant strategies.

5 Conclusion

This paper has presented an examination of how group structures and group sizes
impact on the evolution of coordination. We adopted the game format proposed
by Van Huyck et al. [7] to evaluate the importance of group structures. The
group splitting mechanisms proposed by Traulsen et al. are used throughout
this paper as a means of examining the impact of groups on the evolution of
strategies [15].

We can conclude that coordination can be evolved through the use of group
structures. Our group structures have been shown to benefit the evolution of
coordination strategies and improving the fitness of the population. Earlier we
proposed two research questions, the first of these related to the effect of group
structures on group coordination. Our results have shown that group structures
benefit the emergence of coordination through partitioning the population and
allowing payoff dominant strategies to emerge. The size of these groups appears
to be a significant consideration. Groups alone will not promote the emergence of
coordination, but they are an important first step. Our second research question
referred to the impact of group size on the strategies that emerge. Through the
various threshold levels we have shown that group size has a beneficial effect on
the evolution of payoff dominant strategies.

This research has clarified many of the dynamics which are implicitly repre-
sented through many tag mediated models. In this case we have provided a clear
examination of the effect of group structures and their splitting throughout an
agent population. As in the natural world, this process appears to be fundamen-
tal to certain populations as coordination of smaller groups is easier than larger
groups. Groups need to split in order to maintain their ability to coordinate.
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Reduces Uncertainty When Bootstrapping a
Lexicon
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Abstract. When bootstrapping a new language, the agents in a popu-
lation need to be able to agree on the meaning of the individual words.
In order to do so, they need to overcome the problem of referential un-
certainty, which captures the idea that the meaning of words can not
realisticly be transferred directly between agents nor through the envi-
ronment. One way to reduce the amount of uncertainty, is to allow the
agents, based on their current knowledge of the language system and
the environment, to choose the interaction script they play based on a
motivational system. We show the impact of this idea through a compu-
tational model on the time needed for a population of agents to converge
on a shared language system and how the motivational system allows
the agents to self-regulate this process.

1 Introduction

In recent years, there has been an increasing amount of computational and math-
ematical models within the language game framework that investigate various
aspects of the origins and evolution of language, see [1] for an introduction. In
the research at the VUB AI-Lab and Sony CSL Paris we frame our models in a
larger language game paradigm. In short this means all experiments consist of
multiple agents that engage in pairwise interactions (language games) in a shared
environment. By playing these language games the agents gradually bootstrap
and maintain a communication system in order to solve a communicative task.
It is important to note that there is no central control and the agents can never
access the internal states of others. Different issues have already been tackled by
other researchers in this field, including a detailed study of shared lexicons [2],
spatial language [3], color [6], hierarchy and recursion [4] and case grammar [5].

In this research we investigate the impact of using different language game
scripts for solving the problem of referential uncertainty (also known as the
Gavagai problem in linguistics [14]). As an example of this problem imagine one
agent describing an object, let’s say a bowling ball, with the word “gavagai”.
Another agent, even knowing the word was used to refer to a bowling ball, still
cannot with complete certainty know what part of the object was described, it
could still mean; black, round, large, heavy, shiny, hollow, etc. This problem has
received quite some attention in the last few years, for example [7] [8]. The key in
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the research presented here, is that agents autonomously choose which language
game to play based on the environment and their estimates of their own and
their interaction partners linguistic capabilities.

2 Experimental Setup

In the experiments we used a population of ten agents from which, at the be-
ginning of a language game, two are randomly drawn. The context (or scene)
consists of ten randomly selected objects, each composed of different features,
such as shape and color. The agents perceive the scene and both build the exact
same worldmodel. This simplification allows us to study several communicative
problems separately from the problems arising from having different world views.
The communicative task the agents need to solve is to bootstrap and align a set
of form to meaning associations. These meanings however, can not only refer to
the instantiated features (for example “red”, “blue”, “round”, we shall call these
descriptive words) but also to the more general dimensions (for example, “color”
or “shape”). This second type of words the agents will use to ask questions, which
is why we call them question words.

One of the two agents starts the game (the initiator) by first deciding what
game to play. This choice is based on the scene and the agent’s own lexicon,
including the scores of his lexical constructions. How these scores are updated is
explained in more detail below but in general words that are used in successful
games will be rewarded, thus this score hints at the chance of being understood
in future interactions.

The initiator can choose from among three different types of games, each
having its own functional goal. The first is what we call a Guessing Game [9] [7]
[8], specifically with regard to the problem of referential uncertainty. The goal
of the Guessing Game is to learn the descriptive words. The interaction pattern
starts with the initiator refering to one object by uttering the highest scored
word for one of the objects features. The respondent either points to an object
if he believes it fits the word or does nothing if he doesn’t know the word or
cannot map it to any object in the context. If the right object is pointed to, the
initiator nods and otherwise shakes his head and points to the correct object.

Several previous experiments have examined what happens if this is the only
interaction pattern available to the agents. Many different methods of analysis
have been tried, both involving single word and multiple word versions [9]. We
illustrate the principle of the game with an example in which the purpose of the
game is to negotiate a word for red and the communicative goal is to get the
other agent to point to a specific red object.

1) initiator: “red”.
2) respondent: silent (does not understand the word “red”).
3) initiator: points to a small triangular red object.
4) respondent: makes three hypotheses about what the word “red” means:

small, triangular or red.
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The other two interaction patterns both allow questions to be asked. The goal
of the first Question Game (type 1) is to learn question words (i.e. words for
dimensions). In this game the initiator points to an object and utters a question
word (such as “color”). If the respondent is able to interpret this word, he will
try to describe the object using a corresponding descriptive word, otherwise
he remains silent. The initiator nods when the description is satisfactory and
otherwise he shakes his head and gives the description he was hoping for. In
the following example the initiator has a word for red with a score that is high
enough for him to assume that the respondent knows it. The purpose of the
game is to negotiate a word for the color dimension, and the communicative
goal is to get the object described by the word “red”.

1) initiator: points to a big round red object.
2) initiator: “color”? (assuming the word “red” is known by the other agent).
3) respondent: silent (does not understand the word “color”).
4) initiator: “red”.
5) respondent: learns how to describe an object when hearing “color”.

In question game type 2 the initiator uses a question word he thinks the respon-
dent knows to ask for the name of a feature. In the following game the initiator
has a word for color with a high enough score to assume that the respondent
will know it. The purpose of the game is to negotiate a word for yellow, and the
communicative goal is to get the object described by the word the respondent
has for yellow.

1) initiator: points to a big triangular yellow object.
2) initiator: “color”? (assuming the word “color” is known by the other agent).
3) respondent: “yellow”.
4) initiator: nods (does not have a word for it).
5) initiator: Learns the word “yellow” (knowing it is not referring to big or

triangular).

The question games will obviously result in incorrect learning if the assumptions
made by the agents are incorrect. If the respondent in the second example is sure
that “red” means round, he will also conclude that “color” must mean shape. The
initiator of the third example will also make incorrect inferences if his assumption
about the respondent’s knowledge of “color” is wrong. The agents will have to
hear a descriptive word being used by other agents (describing objects that fit
with what the agent thinks the word mean) before feeling confident enough to
use it in a question game. With every word there is associated a score with a
value between 0 and 1 of the same type as described in[9].

The motivation of the agents is to increase the expected communicative suc-
cess in situations where they are not allowed to choose the topic of discussion.
This can be seen as them having some reason, other than language learning, to
describe an object. The different types of games they can play receive their utility
from this goal. The communicative goals of all the games they play (for example
the communicative goal: getting an other agent to describe a red object using
color) should be seen as subgoals of this. When deciding what game to play and
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what the topic should be the agents try to find an appropriate challenge level
by simultaneously trying to avoid anxiety and boredom. This approach draws
inspiration from psychology and the concept of flow [12], a mental state where
the challenge (and therefore the experience) of some task is optimal. A typical
example is that of a mountain climber who has managed to find a mountain
that is very difficult and challenging (and thus not boring) but that does not
contain any obstacles that are so difficult that he does not know how to start
dealing with them (something that would have produced anxiety) and has been
explored before in the context of language learning, in which it was called the
autotelic principle [10].

The utility U of playing a specific game about a specific feature is assigned
by a utility function and the game with the highest utility will be played. We
will call the score of the best question construction for the type of the feature
Sc and the score of the best descriptive construction Sd.

For the guessing game the agents have no help other than pointing (and thus
have no good way of communicating what they were actually describing). They
are thus always anxious in this game and always prefer to talk about the feature
they know the best as this is their only way of reducing anxiety within the
guessing game framework. Thus the utility of playing a guessing game about a
given feature is simply the score of the highest scoring construction with the
same value as that feature. We get U = Sd.

For question game type 1 the uncertainty and thus the anxiety comes from 2
sources, the uncertainty of the question construction used and the uncertainty
about the descriptive construction used. We get:

U = ((Sc3) ∗ 32) ∗ (1/(1 − Sd)). (1)

Here the term (1/(1 − Sd)) can be seen as confidence in the descriptive con-
struction used to learn the question construction. If no question construction is
available the utility function is set to that corresponding to a score of 0.5.

For question game type 2 there are 2 competing factors, the will to learn a de-
scriptive construction that should increase with a low score for this construction
and a fear of failure as a result of the question construction. We get:

U = (2 − Sd) ∗ (1/(1 − Sc)). (2)

Here the first term is from wanting to learn descriptive words not known (avoid-
ing boredom) and the second term anxiously avoiding to use bad question con-
structions to learn them. When using color to learn green a high score of color
(to reduce risk of failing due to the other agent not understanding the question)
is preferred and a low score of green is preferred (wanting to learn what he does
not already know well). This is a good example of how the will to avoid anxiety
can conflict with the will do avoid boredom. If a game is found that manages
to avoid both of these (finding a question word that is sure to be understood
and is useful for learning the name of a feature that is completely unknown)
we can see this as the agents having achieved flow in the sense of [12]. U is set
to 0 if boredom is very high (the word that can be learnt is very well known)
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or if anxiety is to high, for example asking a question that you do not know
the answer to using a question word that other agent almost certainly will not
understand.

When an agent has completed a language game he will analyze what has
happened and can update his language in three ways; he can adopt a construction
(when a new word is heard), he can change the score of a construction (based on
how likely it is that other agents share this construction) and finally he can delete
a construction (when the score is below a threshold of 0.5) 1. When a descriptive
word is used about an object the construction with its form is increased if it’s
meaning matches the object described and decreased if it does not match. If
the score of one descriptive word is increased the score of constructions that
are it’s homonyms or synonyms are decreased. This is called lateral inhibition
and is a standard feature in language game experiments, see [11] for an early
implementation. When a new descriptive construction is heard the agent will
adopt multiple constructions if he is not sure what the word means, one for every
possible meaning. If during a question game type 2 the agent knows exactly what
feature the new word is describing he only needs to adopt one construction.

The scores of question constructions are updated in similar ways. If a question
game (type 1 or 2) is successful the score of the question construction that was
used is increased as it is almost impossible to succeed in such a game if the
meaning of the question construction is not shared amongst the agents. If a
question game type 1 fails the score of both the question construction and the
descriptive construction used is decreased. Decreasing the score of the descriptive
construction helps the agents realize that they are moving to fast from guessing
to question games. This is important as the agents are autonomously regulating
their own progress and moving to fast can seriously damage the language they
develop. Using “red” to negotiate a word for color is only useful if all agents
understand “red” the same way. If they do not understand its meaning the same
way but try to use it anyway the question games will keep failing, the score of
“red” will decrease and the agents will stop playing the question game (until
they have settled on the meaning of “red”).

3 Results

There are striking patterns in how the agents choose to play games. In the
beginning they always play guessing games as the other games require some
prerequisites to play. When they start seeing features that they have a word
for (invented or heard) they will focus on this feature. The feedback of wanting
to talk about what you know and learning the words others talk about soon
makes them talk about some features more than others. The behavior will then
be even more coordinated as they will attempt to find a name for color or shape
and now they have similar vocabularies and thus they are all more or less able
to start naming the same things (if all know red they can all learn color but if
1 I will not go through the details of every update rule for every possible situation,

only list the most important cases.
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Fig. 1. The figure shows the results of an experiment with 2 different types of features.
A pattern can be seen of first guessing games (light blue) followed by learning a question
word (yellow) followed by using the question word for further learning (red). The
pattern is then repeated when the question word can not be used for learning new
things any more (“shape” can be used for learning “round”, “square” etc but when all
shapes are named a new question word must be invented to move forward). Finally the
agents get bored (dark blue) when they are presented with a scene with only features
that hey have good names for. The average lexicon size is shown in green.

they all know round they can all learn shape). When they have a word for color
they start using it to learn the names of all other colors and now they are very
coordinated as can be seen in figure 1. As they learn all the color words they
get bored and start the whole process again with for example shape and so on
resulting in the wave pattern seen.

To measure how successful an experiment is we need to introduce a formal
measure of how good the language they have developed is. Since the agents
themselves not only chose the game to play and the topic to talk about, but many
times do this in a way that reduces risk of failure (they often choose games that
are as easy as possible), a measure of how often individual games succeed is not a
very good measure of performance. The communicative goals are only subgoals
of learning a language. An agent that makes incorrect approximations about
how useful a communicative subgoal is in learning a language can systematically
cause it to play very easy games that are very successful but that does not teach
it anything. It will have its subgoals met more often than an agent who chooses
games where learning takes place (but that fails sometimes) but the former agent
should be seen as less successful than the latter.

I introduce lexical coherence as the measure of success for the remainder of
this paper. This is defined as the probability that when 2 agents are drawn at
random and a feature of the world is picked at random they will both have at
least one construction with this feature at the meaning pole and that the highest
scoring such constructions for the two agents will have the same form. Put in
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Fig. 2. The blue columns are convergence times for agents asking questions and the
red are convergence times for agents playing only the guessing game. All experiments
involve 10 agents. Convergence times are measured in number of interactions per feature
and agent to reach 98% coherence. It is clear that the questions give the agents a
significant boost in performance.

another, and less formal way, it is the probability that two agents will prefer the
same word for a feature.

We can get a good overview of how performance improves in figure 2. The
convergence times of the agents asking questions are shown in blue and those not
asking questions are shown in red. A comparison is made in five different worlds
with 2, 4, 6, 8 and 10 types of features (2 types would correspond to a world with
shapes and colors, 4 would be a world with shapes, colors, texture and size, etc).
An average has been taken over 20 runs in the case of guessing games. For the
cases being compared (2,4,6,8 and 10 types) 50 runs have been averaged in the
question games. For the question games even more complex worlds have been
tested up to 20 different types. For these five experiments fewer runs have been
used to average the results (between 5 and 20).

4 Conclusion

The problem of referential uncertainty is an important obstacle when bootstrap-
ping a language in a population of agents from scratch and has been investigated
by several different computational approaches before. We have introduced an-
other approach on how this uncertainty can be reduced, by giving increased
autonomy to the agents to choose among different interaction scripts based on a
motivational system. We have shown that such a system allows the population to
achieve significant improvements in the time needed to converge on a language
system. It was also demonstrated that agents can self-regulate their interactions
and decide when they are ready to move from one type of interaction to another
even if they have no global coordination, no way of directly observing the abil-
ities of other agents and only partial information about the interaction history
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of the population. This suggests that when investigating a linguistic phenomena
where different learning stages are required, it might not be necessary for the
experimenter to guide the experiment using global information or information
that is private to the agents.

References

1. Steels, L.: Evolving grounded communication for robots. Trends in Cognitive
Science 7, 308–312 (2003)

2. Baronchelli, A., Loreto, V., Steels, L.: In-depth analysis of the naming game
dynamics: the homogeneous mixing case. Int. J. Mod. Phys. C 19, 785 (2008)

3. Steels, L., Loetzsch, M.: Perspective alignment in spatial language. In: Coventry,
K.R., Tenbrink, T., Bateman, J.A. (eds.) Spatial Language and Dialogue. Oxford
University Press, Oxford (2007) (to appear)

4. De Beule, J.: The emergence of compositionality, hierarchy and recursion in
peer-to-peer interactions. In: Smith, A.D.M., Smith, K., Ferrer-i-Cancho, R. (eds.)
Proceedings of the 7th International Conference on the Evolution of Language, pp.
75–82. World Scientific, Singapore (2008)

5. van Trijp, R.: The emergence of semantic roles in Fuid construction grammar. In:
Smith, A.D.M., Smith, K., Ferrer-i-Cancho, R. (eds.) Proceedings of the 7th Inter-
national Conference on the Evolution of Language, pp. 346–353. World Scientific,
Singapore (2008)

6. Steels, L., Belpaeme, T.: Coordinating perceptually grounded categories through
language: A case study for colour. Behavioral and Brain Sciences 28(4), 469–489
(2005)

7. Wellens, P., Loetzsch, M., Steels, L.: Flexible word meaning in embodied agents.
Connection Science 20, 173–191 (2008)

8. Smith, A.D.M.: The inferential transmission of language. Adaptive Behavior 13(4),
311–324 (2005)

9. De Beule, J., De Vylder, B., Belpaeme, T.: A cross-situational learning algo-
rithm for damping homonymy in the guessing game. In: Rocha, L.M., et al. (eds.)
Artificial Life X, pp. 466–472. MIT Press, Cambridge (2006)

10. Steels, L., Wellens, P.: Scaffolding language emergence using the autotelic principle.
In: IEEE Symposium on Artificial Life, pp. 325–332 (2007)

11. Steels, L., Kaplan, F.: Spontaneous lexicon change. In: COLING-ACL 1998, ACL,
Montreal, pp. 1243–1249 (1998)

12. Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper Peren-
nial (1991)

13. Steels, L.: The autotelic principle. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi,
Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 231–242.
Springer, Heidelberg (2004)

14. Quine, W.: Word and Object. MIT Press, Cambridge (1960)



A Chemical Model of the Naming Game

Joachim De Beule

Artificial Intelligence Lab, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel
joachim@arti.vub.ac.be

http://arti.vub.ac.be/~joachim

Abstract. A key feature of many biological distributed systems is that
they have the capacity to behave in highly coordinated ways. In the do-
main of language, coordination dynamics have been studied within the
framework of language games. As yet however, a fundamental under-
standing that goes beyond the simplest cases is still missing.

In this paper, a novel approach is proposed for investigating coordina-
tion problems. The approach is illustrated for a simple but well studied
case called the naming game. It is also argued that the proposed approach
provides a good starting point for tackling more complex coordination
problems as well.

Keywords: Coordination, Semiotic Dynamics, Agent Response Analy-
sis, Artificial Chemistry, The Naming Game, Idiotypic Networks.

1 Introduction

A key feature of many biological distributed systems is that they have the ca-
pacity to behave in collective and highly coordinated ways. In the domain of
language, such coordination dynamics have already extensively been studied us-
ing the concept of language games[10]. In a language game, a population of
agents (language users) needs to bootstrap a ‘language’ by engaging in pairwise
interactions. For example, in the naming game they have to agree upon a name
for an object.

In more complex games, agents would benefit from using more complex en-
codings that go beyond simple naming and involve syntax, similar to natural
languages inducing a conventional and multi-levelled mapping between hierar-
chically structured meanings and forms [6,9], or to the immune system which is
capable of responding appropriately in a virtually infinite number of different
situations [7].

Although (especially in recent years) the naming game has become very well
understood (see e.g. [2]), as yet only very few results exist that go beyond it
and a fundamental understanding of the dynamics involving the emergence and
evolution of syntax is still lacking.

In this paper, I propose to model agents as artificial cellular organisms inter-
acting with their environment through the absorption and secretion of artificial
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chemical substances (henceforth called species) and in turn modelled as contin-
uous stirred flow tank reactors with entrapped species [3]. Within a cell/reactor,
species interact themselves and new species are formed according to a reaction
network corresponding to the learning and entrenchment of linguistic construc-
tions in more traditional agents.

This approach lends itself particularly well for performing an agent response
analysis [11,4], which allows do draw conclusions about the behavior of a popu-
lation of agents on the basis of a single agent only. In the following section, this
will be illustrated for the case of the naming game. A reactor agent solving the
naming game will be defined and a response analysis will be performed on it.
This will lead to the identification of a design principle for synthesizing artificial
agents solving more complex coordination problems, as will be discussed in the
final section of the paper.

2 A Reactor Agent Solving the Naming Game

Consider the following game. Every round two (random) players enter a room.
Both players write a list of names on a paper, and papers are exchanged before
they leave the room again. The game ends if all players consistently write down
one and the same name. This game is called the naming game.

In traditional approaches, players are called agents. They typically keep a
memory of names, possibly with a preference measure (a score), and apply one
or the other lateral inhibition mechanism after each game: names in the other
player’s list are promoted at the expense of other names. It is not primarily clear
however how this approach scales to more complex languages.

Now consider the chemical reactor tank in Figure 1(b) as a model for a cellular
organism playing the naming game (Figure 1(a).) On the left side, the reactor
is fed with a continues supply of name species corresponding to the other player’s

(a) (b)

f 0
i

f 0
i

f 0
i

fi

fi

fi

fi and ci ac-

cording to (2)
fi, ci

Fig. 1. A cellular agent (a), modelled as an isothermal homogeneous continuous flow
stirred tank reactor (b). The reactor is supplied with a continues feed of form species
(names), with molar concentrations f0

i . Inside the reactor/cell new species ci are formed
according to the idiotypic reaction network shown in Figure 2. Forms are also continu-
ously extracted from the reactor/cell (with fi the molar concentrations of form species
i both in the reactor/cell and in the outflow.) The new species remain entrapped in
the cell.
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fi
k1−→ ci

ci
k2−→ fi

cj + fi
k3−→ ci + fi

Fig. 2. An artificial chemical reaction network. According to the first two reactions,
form species fi trigger the existence of an anti-idiotypic species ci and vice versa.
Setting the reaction rate k2 = 1 + fi renders species fi autocatalytic.

lists of names (f0
i ).1 More formally, f0

i denotes the molar concentration of names
of type i in the influx (where i = 1..nf and nf is the number of different names).
With

nf∑
i

f0
i ≡ 1 , (1)

which is arbitrary, f0
i corresponds to the frequency with which other players use

name i. Similarly, fi corresponds to the frequency with which the agent under
investigation uses name i in a game. Because of the stirred tank hypothesis, it
also corresponds to the molar concentration of name species i withing the agent.

Inside the agent, each form fi lives in a co-existential balance with an anti-
idiotypic species ci according to the first two reactions in Figure 2. These thereby
form a kind of memory similar to what was already proposed in [7].

In this paper, it is in addition assumed that the equilibrium balance ratio
ci/fi depends on the amount of available species (i.e. ci and/or fi). This can be
accomplished in several ways. For example, assume that k1 = k3 = 1 and that
k2 = 1 + fi. The last condition renders species fi autocatalytic. It makes the
equilibrium ratio’s ci/fi = k1/k2 induced by the first two idiotypic reactions in
Figure 2 depend on the amount of available fi. This will turn out to be crucial
when considering the interplay with the third reaction.

To see this, let us turn back to the complete reactor model. Define

σf ≡
∑

i

fi ; σc ≡
∑

i

ci , (2)

and assume a mass-action kinetics. If form species are supplied and extracted at
a volumetric flow rate ρf (with dimension volume/time) and with

c∗i ≡ fi/(1 + fi) , (3)

we arrive at the following system of differential equations describing the agent
state change over time when confronted with a particular external (population)
behavior f0

i :

1 I use f to denote names to emphasize the generality of the approach: their is no
restriction on the sort of species in the influx, and in more complex games instead of
names there will also be other ‘elementary’ as well as more complex ‘parts of form’.
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ḟi = ρf (f0
i − fi) − (1 + fi)(c∗i − ci) ,

ċi = (1 + fi)(c∗i − ci) + fiσf (
σc

σf
− ci

fi
) . (4)

Note that because of the reactor hypothesis we can be certain that fi > 0 if
ρf > 0 and f0

i > 0. The first term in ḟi represents the in and out flux of form
species. It drives the agent to adopt the population behavior (f0

i ). The second
term is opposite to the first term in ċi. These induce the abundance-dependent
equilibrium ratio’s as, by definition:

(ci = c∗i ) ⇒ (ci/fi = 1/(1 + fi)) . (5)

In words: less abundant forms will have higher equilibrium ratios. The final
term however drives all ratios to become equal to σc/σf . Furthermore, it does
so by converting species with higher ratios to species with lower ratios. In other
words: by converting already less abundant forms to already proliferating forms.
This interplay makes that this agent solves the naming game as will be shown
in the next section.

3 Agent Response Analysis

The idea to investigate coordination problems through an agent response analysis
was already introduced in [11] and [4]. In this section it will be shown how this
method also applies naturally to the reactor agent defined in the previous section.

For this, and with �+ denoting all positive real numbers, define the agent
state space Q = (�+)2∗nf as the set of all possible agent states q = 〈fi, ci〉,
and let the behavior space F = [0, 1]nf be the set of all distributions over forms
(i.e. behaviors). Then the agent’s behavior function becomes:

f : Q → F : 〈fi, ci〉 
→ fi/σf . (6)

Furthermore, the agent’s transition function becomes a function:

δ : Q × F ×�+ → Q , (7)

where q(t) = δ(q(0), f0, t) is the solution to (4) when integrated over a time t
and starting from an initial state q(0) at time 0.

Finally, an agent’s response behavior is defined as the agent’s behavior when
confronted with a constant population behavior for a very long time. If an agent
is ergodic, then this limiting behavior will be independent of the initial state q(0)
and converge to a steady state under all circumstances. In this case it makes sense
to define the agent’s response function:

φ : F → F : f0 
→ limt→∞f(δ(q(0), f0, t)) . (8)

It maps a (constant) external population behavior f0 to the agent’s unique
limiting behavior induced by it. Now define

f∗ = c∗
σf

σc
, (9)
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Fig. 3. The curved line represents the response function of the cellular agent defined
in section 2 for values σf = σf0 = 1 and f∗ = 0.5 (see text.). It determines the agent’s
outflow behavior fi = φ(f0

i ) (Y-axis) given the inflow behavior f0
i (X-axis) and relative

to the invariant frequency f∗. Input frequencies below f∗ are dampened while those
above it are amplified.

with
c∗ = f∗/(1 + f∗) . (10)

Thus, f∗ represents the form concentration in the influx that occurs with the
same concentration in the outflux and corresponds to the equilibrium form con-
centration of the system (4) under the condition that fi = f0

i .2 Solving for σc

and substituting the result into equations (4) with ḟi and ċi set to zero results
in an expression for the agent’s response function φ in terms of f0

i and con-
taining the parameters ρf , σf0 and f∗. It is shown in Figure 3 for σf0 = 1 and
ρf = f∗ = 0.5 together with the identity relation fi = f0

i .
As can be seen, inflow frequencies below the invariant frequency f∗ are damp-

ened while those above it are amplified. This suggests that if this agent were to
interact with other agents like itself, they would gradually converge to a state in
which only one form remains, thus solving the naming game. In particular this
holds if the agent were to interact with itself (i.e. when f0

i = fi or, equivalently,
ρf = 0). In [4] it is suggested how, under mean field conditions, the dynamics
induced by such a closed system indeed correspond to the average population
dynamics.

This can be understood as follows. Consider an agent randomly interacting
with other agents in the population at times k = 1, 2, .... Let q(k) and f0(k)
2 Note that, because of the reactor hypothesis, in equilibrium it will hold that

σf =

nf∑
i

f0
i ≡ σf0 , (11)

and since then also σc + σf is constant, f∗ is entirely determined by the input
distribution f0.
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represent the agent’s state and the average population behavior at time k re-
spectively. Every interaction the agent is stochastically influenced by the popu-
lation behavior and vice versa. With f and δ the agent’s behavior and transition
functions, this results in the following set of stochastic difference equations:

f0(k + 1) = (1 − β)f0(k) + βf(q(k)) ; q(k + 1) = δ(q(k), f0(k)) , (12)

with β ∈ [0, 1] a constant parameterizing the degree of influence an agent has
on the population. For large populations, β will be relatively small, and f0 will
remain relatively constant over a large number of interactions, meaning that the
agent’s behavior will approach it’s response behavior φ(f0). If we now define
f0(k) = f0(kΔt) = f0(k) and let Δβ → 0 with β

Δt = α, a constant, then the
following ordinary differential equation is obtained:

d

dt
f0 = α(φ(f0) − f0) , (13)

relating the evolution of the average population behavior f0 to that of the fixed
points of the response function φ of the agents constituting the population. In
our case these correspond to the equilibrium states of the closed reactor system
(i.e. equations (4) with ρf = 0. The top of Figure 4 shows the evolution of such
a system in case of nf = 100 forms. As predicted, only one form type remains in
the end. The bottom graph shows the corresponding evolution of the coherence
and the synonymy (scaled by the number of form types). With wi = fi/σf , these
are defined respectively as:

Coh(t) =
∑
i=1

(wi(t))2 and Syn(t) = exp(
nf∑
i=1

−wi(t)log(wi(t))) (14)

and can be related to the communicative success and the number of words in
the population. As can be seen, a very sharp transition occurs around t = 850,
in accordance with previous findings resulting from multi-agent simulations (see
e.g. [1].)

4 Discussion and Conclusion

In this paper, it was shown how a simple coordination problem like the nam-
ing game can conveniently be studied by combining concepts from (artificial)
chemical reaction network theory and systems biology with earlier notable at-
tempts to systematize the investigation of coordination problems through an
agent response analysis.

I argue that this approach is also particularly well suited for investigating
more complex coordination problems. The response analysis not only suggests a
relation between the behavior of single agents and that of a population, it also
points towards an intuitive agent design principle: an agent will only be fit for
a particular coordination problem if it can solve it when interacting with itself.
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Fig. 4. Evolution of a system governed by equations (4) with ρf = 0 and nf = 100 and
starting from a random initial state. The top graph shows the relative total abundances
(fi + ci)/(σf + σc) for all form index types i = 1..100. The bottom graph shows
the corresponding evolution of the coherence and (scaled) synonymy of the system,
roughly corresponding to the communicative success and the number of words in more
traditional setups.

By modelling agents as continues flow reactor tanks this condition is easily
checked by feeding back an agent its own outflow and performing a stability
analysis on the induced set of differential equations. In other words, designing
an agent boils down to finding a reaction network inducing a dynamics with the
desired properties according to the coordination problem under investigation.

Moreover, for this we will now have at our disposal a wealth of powerful in-
sights about reaction networks coming from artificial chemistry and chemical
reaction network theory (CRNt) [5,8]. For example, the question whether a re-
action network supports multiple positive stable equilibria is particularly well
studied in CRNt. Because coordination problems typically require that agents
are able to escape from incompatible (sub-optimal) configurations, I predict that
this will be of importance for more complex coordination problems.

We will also be able to draw upon (and perhaps even help understand) an
increasing amount of available data and insights from systems biology and related
fields regarding biological reaction networks. As a first example, I have shown
how an idiotypic reaction mechanism, first identified within the context of the
immune system, induces a sharp transition from a random and incoherent state
to a highly coordinated one thus solving the naming game. I predict that other
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well studied mechanisms like covalent modification and phosphorylase will also
turn out to be useful for tackling more complex coordination problems.3
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Abstract. In this paper, we present a study in the evolution of cooperative be-
havior, specifically synchronization, through digital evolution and multilevel se-
lection. In digital evolution, a population of self-replicating computer programs
exists in a user-defined computational environment and is subject to instruction-
level mutations and natural selection. Multilevel selection links the survival of
the individual to the survival of its group, thus encouraging cooperation. Previ-
ous approaches to designing synchronization algorithms have taken inspiration
from nature: In the well-known firefly model, the only form of communication
between agents is in the form of “flash” messages among neighbors. Here we
demonstrate that populations of digital organisms, provided with a similar mech-
anism and minimal information about their environment, are capable of evolving
algorithms for synchronization, and that the evolved behaviors are robust to mes-
sage loss. Moreover, analysis of the dominant genome reveals that the evolved
solution utilizes an adaptive frequency strategy strikingly similar to that observed
in fireflies.

Keywords: evolutionary computation, digital evolution, synchronization,
self-organization, cooperative behavior, distributed algorithm.

1 Introduction

The natural world is replete with organisms that exhibit cooperative behaviors of vary-
ing complexity. Some of these cooperative behaviors exhibit synchrony. For example,
honey bees synchronize their activity cycles [1], fiddler crabs synchronously wave their
oversized claw [2], and ants synchronize their alarm drumming [3]. One of the more
striking examples of synchrony in the natural world is the coordinated flashing of male
fireflies. In some parts of Southeast Asia, these fireflies synchronize their flashes to a
common period and phase over a distance of many miles [4]. Researchers have de-
veloped several mathematical models of this behavior, among them the pulse-coupled
oscillator model of Mirollo and Strogatz [5] and the adaptive frequency model of Er-
mentrout [6]. Such models enable the design of biomimetic synchronization algorithms.
For example, Babaoglu et al. [7] leveraged the Ermentrout model to develop a heart-
beat synchronization algorithm for large overlay networks, facilitating coordination of
collective tasks among network nodes.

In the study reported here, we used AVIDA [8], a digital evolution platform closely
associated with artificial life, to explore the evolution of synchronization behavior.
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In AVIDA, a population of self-replicating computer programs (digital organisms) ex-
ists in a user-defined environment and is subject to mutation and natural selection. We
extended AVIDA with a small set of instructions that enable digital organisms to trans-
mit and receive virtual “flash” messages. We also defined multilevel selection crite-
ria that reward groups of digital organisms for exhibiting synchronization behavior. In
experiments, the AVIDA populations evolved the ability to synchronize very quickly
from arbitrary initial states. Analysis of the dominant genome revealed that the solution
utilizes an adaptive frequency strategy remarkably similar to that of the Ermentrout
model. While other studies have investigated many aspects of the evolution of cooper-
ative behavior [9, 10, 11], including synchrony [12], the main contribution of this work
is to demonstrate the de novo evolution of a cooperative behavior for synchronization.
Moreover, our experiments show that this synchronization behavior evolves even in the
presence of significant loss rates of virtual flashes, suggesting that an adaptive frequency
mechanism is an important element in resiliency to environmental interference.

2 Research Platform

Digital evolution [13] is a form of evolutionary computation originally developed to
study evolution in biology. AVIDA [8], a platform for digital evolution, is well-suited
for studies of cooperative behavior, and has previously been used in artificial life stud-
ies on the evolution of cooperative communication behaviors [14] and adaptive sleep
response [15].

Figure 1(a) depicts an AVIDA population and the structure of an individual organ-
ism. Each digital organism comprises a circular list of instructions (its genome) and a
virtual CPU, and exists in a common virtual environment. The virtual CPU contains
three general-purpose registers (AX, BX, CX), two stacks, and a number of heads
(pointers to instructions in the genome), which can be manipulated for execution-flow
control. Within their environment, organisms execute the instructions in their genomes,
and the particular instructions that are executed determine the organism’s behavior (its
phenotype). Instructions within an organism’s genome are similar in appearance and
functionality to traditional assembly language instructions. These instructions enable
an organism to perform simple mathematical operations, such as addition, multiplica-
tion, and bit-shifts; to manipulate the position of heads within their genome; to sense
and change properties of the environment; and to communicate with neighboring organ-
isms. Instructions within AVIDA can also have different costs in terms of virtual CPU
cycles. For example, a simple addition may cost only one cycle, while broadcasting
a message may cost 20 cycles. New instructions implemented for this study are sum-
marized in Table 1. Of particular relevance is the flash instruction, which broadcasts
a message to each of the calling organism’s neighbors within the virtual environment.
Organisms can retrieve information about any received flashes via the if-recvd-flash,
flash-info, and flash-info-b instructions.

Many approaches to the evolution of cooperation in non-biological systems involve
multilevel selection, where selection not only acts on individuals, but also on the groups
to which the individuals belong. AVIDA provides a framework for multilevel selec-
tion called CompeteDemes, which enables the periodic replication and competition
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Fig. 1. Elements of the AVIDA platform: (a) an AVIDA population containing multiple genomes
(bottom) and the structure of an individual organism (top); (b) depiction of an AVIDA population
divided into 16 demes. When a deme replicates, it replaces a randomly selected target deme.

among demes. In AVIDA, a deme is an isolated subpopulation of organisms. In Fig-
ure 1(b), we see a population divided into 16 demes. During the execution of an AVIDA

experiment, the CompeteDemes framework periodically calculates the fitness of each
deme via a user-defined fitness function. This fitness function takes as input a single
deme, and produces the fitness of that deme (a floating-point number) as output. Us-
ing the resulting array of fitness values, the CompeteDemes framework then per-
forms fitness-proportional selection, preferentially replicating those demes with higher
fitness. For example, one may define a fitness function based on completing a coopera-
tive task. Over time, the CompeteDemes framework will then preferentially replicate
those demes that are more successful than others.

Table 1. New AVIDA virtual CPU instructions implemented for this study. All instructions are
equally likely to be selected as targets for mutation.

Instruction Description
flash Broadcasts a “flash” message to caller’s neighbors, with a configurable loss rate.
if-recvd-flash If the caller has received a flash from any of its neighbors, execute the subsequent

instruction. Otherwise, skip the subsequent instruction.
flash-info If the caller has ever received a flash, set BX to 1 and CX to the number of

cycles since that flash was received. Otherwise, set BX and CX to 0.
flash-info-b If the caller has ever received a flash, set BX to 1; do not modify CX.
hard-reset Reset the state of the virtual CPU to the organism’s “birth” state. All registers are

zeroed out and heads are reset, including the flash timer and cycle counter.
get-cycles Set BX to the number of virtual CPU cycles since either the organism was born

or the last time hard-reset was called, whichever is most recent.

To encourage the evolution of cooperation, we also employed digital germlines [16],
a framework that provides a single common genetic ancestry for all organisms within
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a deme. In AVIDA, the germline is a genome attached to a deme, rather than to an in-
dividual. Although individuals within a deme can self-replicate, mutations occur only
along the germline, and then only during deme replication. When a deme replicates (the
arrows in Figure 1(b)), the germline for the source deme is copied (subject to mutation)
to the target deme, and an organism constructed from that germline is inserted into the
target deme. The use of a digital germline has the side-effect of homogenizing the in-
habitants of each deme, a technique that has been effective in evolutionary robotics [10].
Moreover, in an earlier study, we observed that using a digital germline was necessary
to evolve organisms that cooperated to construct communication networks [16].

3 Experiments and Results

In this study we tested several different different combinations of instruction sets and
environmental configurations for their ability to evolve synchronization behavior. Due
to space limitations, here we only describe the configuration that was most effective;
additional details can be found in an accompanying technical report [17]. We config-
ured AVIDA with 400 5 × 5 toroidal demes, the default mutation rates (approximately
1 mutation per genome replication), and we employed a CompeteDemes period of
200 updates, where an update is the unit of virtual time in AVIDA corresponding to five
virtual CPU cycles per organism. We initialized each deme to be in a state of desyn-
chronization by starting from a single organism, and inserting exactly one new organism
with a 50% probability each update. We configured the CompeteDemes framework to
compete all 400 demes with each other every 200 updates, according to the following
fitness function:

F =
{

1 + U if U < S
1 + U + (flashmax − flashmean)2 if U ≥ S

(1)

where F is the fitness of the deme, U is the number of unique organisms that issued a
flash, S is the number of organisms in the deme (always 25 in this study), flashmax is
the maximum number of flashes during any single update, and flashmean is the mean
number of flashes per update. Both flashmax, flashmean, and U were calculated from
the final 50 updates of each CompeteDemes period to allow organisms a time (the first
150 updates) during which they may issue flash instructions without adversely affecting
the deme’s fitness. This fitness function thus rewards demes whose constituent organ-
isms each execute the flash instruction, and then further rewards demes for increasing
the difference between the maximum and mean number of flashes per update. This defi-
nition of synchronization is similar to that in [7], where it is not required that all flashes
occur at exactly the same point in time, but rather within a small window.

Figure 2(a) is a detail of the behavior of a single deme containing 25 copies of the
dominant (that is, most common) evolved genome from the end of one of the best-
performing of 30 AVIDA trials. Each point in this plot represents the execution of the
flash instruction by a particular organism. Here we see runtime synchronization, where
the 25 individuals within the deme have evolved to synchronize their flashes at an iden-
tical phase and frequency within 200 updates. Of note here is that evolution has solved
two different problems: the period of successive flashes, and the behavior that brings
them into synchronization.
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Fig. 2. Experimental results showing (a) detail of evolved synchronization behavior; organisms
initially flash asynchronously, but gradually synchronize with each other, and (b) degree of syn-
chronization measured as the difference between the maximum and mean number of flashes for
three treatments.

To better understand the factors that influenced the evolution of synchronization, we
conducted two additional treatments of the synchronization experiment. The flash-info
treatment, which evolved the behavior seen in Figure 2(a), used a 20-cycle cost for ex-
ecution of the flash instruction, and was allowed to use the flash-info instruction. The
zero-cost treatment modifies the flash-info treatment by reducing the cost of executing
the flash instruction to one cycle, making the flash instruction no more expensive to exe-
cute than any other instruction in the genome. Finally, the no-timer treatment modifies the
flash-info treatment by replacing the flash-info instruction with flash-info-b, preventing
organisms from accessing timing information related to the reception of flash messages.

Figure 2(b) plots the difference between the maximum and mean number of flashes,
calculated as part of fitness, averaged over each deme in 30 AVIDA trials, for each of
these three different treatments. Here we see that after 100,000 updates, the mean differ-
ence between maximum and mean flash counts approaches 20 in all three treatments.
In other words, after 500 generations (100,000 updates / 200 updates per Compet-
eDemes period) 80% of the organisms within the average deme in each treatment syn-
chronized with each other, and we see that this behavior does not depend on instruction
cost or knowledge of the exact timing of message reception.
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Fig. 3. Evolution of synchronization for different
flash loss rates

Finally, we examined the effect of
a flash loss rate on the evolution of
synchronization. Specifically, we var-
ied loss rate from 0% to 80%, with
each treatment using a unit-cost flash
instruction. We define a flash “loss” as
a flash message that is lost in sending,
that is, it is not received by any of its
neighbors. Figure 3 plots the number of
coincident flashes versus time averaged
over each deme, in 10 trials for each of
the different flash loss rates from 0%
to 80%. Here we see that higher loss rates inhibit the evolution of synchronization
behavior, though we note that evolution was still able to discover solutions comparable
to the 0% loss rate case at loss rates up to 20%.
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4 Genome Analysis

Let is next analyze the genome responsible for the behavior shown in Figure 2(a), a
dominant drawn from a single AVIDA trial. This treatment used a 20-cycle cost for the
flash instruction, and included the flash-info instruction, which provided the organ-
ism with information about the last flash received. The AVIDA TestCPU enables the
analysis of a single organism in an isolated environment. To analyze synchronization
behavior, we extended the AVIDA TestCPU to support the artificial delivery of a flash
message to the organism under test. We then traced the organism’s execution flow that
resulted from receiving a flash at different times, and monitored its response in terms of
its own execution of the flash execution.

Figure 4(a) plots the response of the dominant to receiving a flash at various times
during its life. At each point t along the horizontal axis, we initiated a new test of
the dominant, and artificially sent a single flash message to the organism once it had
executed t virtual CPU cycles. We then monitored the response of the organism from
each test for 2000 cycles, and plotted a point for each cycle spent executing the flash
instruction. For example, in Figure 4(a) at time 100, we see a series of horizontal bands
every 110 cycles. This indicates that if the organism receives a single flash after it has
executed 100 instructions, its resulting behavior will be to flash every 110 cycles. The
gaps from time 1 to 19 and near times 50, 110, and 150 are artifacts of the organism
executing the hard-reset instruction.
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Fig. 4. Genome analysis results showing (a) synchronization response of the dominant genome
to receiving flash messages at different times, and (b) detailed synchronization response of this
genome to receiving flash messages at different times. Regions A and B are frequency-increasing
and frequency-decreasing responses, respectively, while region C is a steady-state response.

Figure 4(b) zooms in on the first 180 cycles of the organism’s response to receiv-
ing flash messages at different times. Here we see evidence of the strategy employed
for synchronization. First, the horizontal band extending from time 19 to 200 indicates
that, regardless of flash reception, organisms will issue a flash that will complete by
their 66th virtual CPU cycle. Region C in Figure 4(b), extending from time 108 to
200, shows that the organism has the same response to receiving a flash at any point in
this region, indicating that the organism is not making any phase or frequency adjust-
ments to its flash execution. Region A, on the other hand, shows an earlier execution
of flash than region C, indicating that the reception of a message in this region causes
a frequency-advance of the receiver. Finally, region B shows a slower response to flash
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messages than region C, indicating a region of frequency-delay. This combination of
steady-state and adaptive frequency operations is strikingly similar to the models of
biological synchronization from Mirollo, Strogatz, and Ermentrout [5, 6].

Figure 5 depicts the instructions present in the dominant genome, and shows the
primary instructions that are responsible for the behavior in Figure 4(b). Upon birth,
the organism executes the first 64 instructions in order, unless reception of a flash has
triggered a reset, as mentioned earlier. Otherwise, periodic execution of the flash in-
struction begins at cycle 65. When the organism receives a flash, however, its execution
flow dramatically changes. Specifically, it uses a combination of the hard-reset, get-
cycles, flash-info, and jmp-head instructions to modify the position of the virtual
CPU’s instruction pointer. Depending on where this instruction pointer is moved to,
the next execution of flash will either be earlier, later, or unchanged relative to the or-
ganism’s natural frequency (110 cycles, as shown by Figure 4(a)). The genome shown
in Figure 5 is annotated with the regions corresponding to these different behaviors.
The genome also makes extensive use of conditional logic, via the if-recvd-flash in-
struction, to retrieve the numeric position of the instruction pointer within the genome.
Finally, we note the large number of instructions (75) within this genome that have no
immediately discernible purpose (instructions not shown). These instructions are most
likely neutral mutations, or mutations that do not adversely affect fitness, though they
may have had an important role earlier in the evolutionary process.

Jump based on organism age and
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Fig. 5. Depiction of the dominant genome for synchronization. Labels (A, B, C) refer to desti-
nations of the jmp-head instruction that correspond to frequency-advance, frequency-delay, and
steady-state regions from Figure 4(b), respectively. Gaps in the genome show where instructions
have been elided for clarity.

5 Conclusion

We have shown that digital evolution can evolve cooperative synchronization behav-
iors that are similar to behaviors observed in natural systems and the corresponding
algorithms proposed recently for use in self-organizing computational systems. The
evolved solutions utilized an adaptive frequency strategy similar to the Ermentrout model
that altered their control flow based on a combination of sensed information and the or-
ganism’s age. We have also shown that the evolution of synchronization is robust to
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message loss. This result demonstrates that digital evolution shows promise as a means
to produce relatively complex cooperative behaviors from very simple fitness functions.
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Abstract. We address the problem of finding the appropriate agents
to interact with in n-player games. In our model an agent only requires
knowledge about the payoff and identification of its partners. This in-
formation is used to update a probability distribution over candidate
partners. As such, our model is applicable in any situation, be it a co-
operative dilemma or a game where a Nash Equilibrium is equal to a
Pareto Optimal profile.

1 Introduction

Reputation management [1,2], partner punishment [2], partner selection [3,4],
network structure [5,6] are models put forward to explain or analyse the preva-
lence of cooperative agents in games where a dilemma is present. However, the
extensibility of such approaches to any game is often not discussed, as the pro-
posed solution only applies to a specific game [3,7,8].

As we use Game Theory to model the interactions between agents, our model
makes direct use of the payoffs of a game in order to select the cooperative
partners. The model consists of a probability vector maintained by each agent
where each position represents the probability of selecting an agent as a partner
to play a game. With this approach we are able to apply our model to any
situation capable of being described as a game, with partner identification.

Since the agent has to find the best partner, the algorithm can be compared to
a Cournot adjustment process [9] were players iteratively adjust their strategies
to their partner responses. In this paper, an agent strategy remains constant but
it adjusts its preferences towards more profitable or cooperative partners. Similar
approaches to partner selection have been tackled in [3,4] but they focused on a
specific game such as Prisoner’s Dilemma (PD). Here we study the problem of
partner selection in n-player games. In this case, the assessment of responsibility
for the outcome is more difficult to make, due to increased uncertainty of having
n − 1 partners instead of a single one.
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2 Definitions

Game Theory is a tool to model interaction between agents. To this end, we
consider that a population P of agents interacts accordingly to the rules of some
n-player game G. The game describes the strategies available to players and
the payoffs they obtain as a function of the strategies used. The game has a n-
dimensions strategy space S = S1×S2×. . .×Sn where agents can draw a strategy
s ∈ Si to play a game. The vector s = (s1, . . . sn) represents a strategy profile
of the n players involved in the game. The game also has n payoff functions,
ui : S → R, with i ∈ {1, 2, . . . , n}. The payoff functions are bounded and belong
to R. Let u be the lowest payoff and u be the highest payoff in game G.

We aim at reaching a position where cooperative agents only interact between
themselves. As cooperative agents we define those that form a strategy profile
that maximises the average payoff of the players. We define the payoff obtained
by such Pareto Optimal profile as follows:

uP = max
s

∑
i

ui(s)
n

.

For example, in a Public Good Game a cooperative agent is one that contributes
to the common good, and in the Common Pool Resource game a cooperative
agent does not over exploit the resource (see [10] for a specification of these
games).

3 Model Description

A population P of agents is represented by a directed simple graph where a vertex
represents an agent α and wα,β is the label of an edge from α to β representing
the probability of agent α interacting with β:

wα,β ≥ 0,∑
β

wα,β = 1.

3.1 Update Policy

The edge weight update policy for agent α is a function defined as follows:

wt+1
α,β = ζ(wt

α,β , uα)

where wt
α,β is the edge weight before the game in which agent α participated,

uα is the payoff of the agent in the game. Index β varies through all neighbours
of α.

The main focus of the work presented in this paper is the analysis of an update
policy that meets the following two conditions:
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Cooperative aggregation – Cooperative agents are mostly connected to each
other. If α and the set of its cooperative neighbours B are part of a Pareto
Optimal profile, then in the limit the sum of the probability of selecting only
βC ∈ B should be 1:∑

βC∈B

lim
t→∞ wt

α,βC
= 1 B = {β : uα(. . . , sβ , . . .) = uP }. (1)

Stability – The update policy must be robust in order to resist perturbations
in the population and to be applicable to any n-player game. In the long run
and in the absence of perturbations, weights must stabilise:

lim
t→∞(wt+1

α,β − wt
α,β) = 0. (2)

The edge weight update policy function is divided in two cases depending on
whether an agent played the game with agent α or not.

Agent β Played the Game. A simple policy is to multiply the old weight by
a factor that is inversely proportional to the distance between payoff u obtained
by agent α and the Pareto Optimal payoff uP if u is lower than uP . If it is
higher or equal, the edge weight remains the same. The rationale being there
is no motive to decrease the probability of selecting the current partners. The
definition is:

wt+1
α,β =

⎧⎨
⎩wt

α,β

u − u

uP − u
u < uP

wt
α,β u ≥ uP .

(3)

This rule by itself does not guarantee the condition in (1). Only combined with
the rule for the case of agents that were not selected we achieve it. Regarding
stability, this rule will keep weights unchanged if the payoff is greater or equal
than uP . Otherwise they will tend to zero as in the first case wt

α,β is multiplied
by a factor always less than 1. Either way, (2) is met.

Agent γ Did Not Play The Game. As we have just seen, the multiplica-
tive factor used for agents that played the game implies that the weight of all
agents that played will either stay the same or decrease. If they decrease, the
difference must be distributed among the other edge weights. A simple solution
is to distribute it equally:

wt+1
α,γ = wt

α,γ +
s

x
(4)

where s is the sum of the differences of all link values, egressing node α, updated
in the previous case,

s =
∑

β

(wt+1
α,β − wt

α,β)

and variable x is the number of neighbours of agent α that did not play.
This policy explores alternative partners if u < uP , since the probability of

selecting others in the next game round is increased.
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Equation (4) combined with (3) are able to achieve the condition expressed
by (1). If a cooperative agent selects an uncooperative, the corresponding weight
will decrease towards zero. The difference is distributed among the weights of
players that were not selected. However, the weight of a second uncooperative
partner also increases, but not by much. If this second partner is selected, its
weight is reduced and distributed among all the partners. The point is that, in the
long run, weights of uncooperative agents decrease while weights of cooperative
agents will absorb the distributed differences.

3.2 Credit Assignment Problem

In 2-player games an agent only has one partner. Therefore, the payoff it obtains
in a game only depends on its strategy and the strategy of its partner (both fixed,
but not necessarily identical). In these games, any player does not have doubts
on the quality of its partner. In games with more than two players the situation
is different.

In this type of games, there may be partners that the agent should favour
instead of others. However, the payoff is not sufficient to establish a differentiated
edge update policy. Recall that we have assumed that an agent only knows the
payoff it obtains, besides the knowledge of who are its partners. We propose the
following procedure:

In the first game, the agent selects n−1 partners randomly, plays the game, but
does not apply the update policy. In the following games, the agent randomly
replaces one partner and keeps the remaining n − 2 partners. It observes the
payoff obtained in game t and compares with the payoff obtained in game t− 1.
Let βt−1 be the partner that was selected in game t− 1 and βt the partner that
replaced it. Since the agent has only changed one partner, it can compare the
payoffs and see which should be favoured. The weight of the link to the agent
which provided less payoff is updated using (3), weights of kept partners remain
unchanged, and weights of remaining neighbours are updated using (4).

The drawback of this proposal is that it can only be applied by agent α in
games where it selects its partners. The data obtained in games where it is
selected by other agents (to play the game), cannot be used by this procedure.
In order to use this data we need a more sophisticated agent, that is not analysed
in this paper. However, in the next section, we show the usefulness of the simpler
approach just described.

4 Experimental Analysis

The purpose of the experiments reported in this paper is to assess the con-
vergence profile of cooperative agents selecting only their equals. To this end,
simulations with different proportions and quantities of game strategies were
performed.
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4.1 The Game

The model presented in the previous section was tested with the Public Good
Provision game [10]. The number of players ranged from 3 to 8. For results in
2-player games please refer to [11].

The Public Good Provision game is generally used to model situations where a
group of persons has to contribute for a common good [12,13]. The more people
contribute, the greater is the average payoff. However, contribution is costly,
so shirking is the rational choice, provided there are at least some players who
contribute to the good.

In the Public Good Provision game, an agent that contributes to the good,
incurs in a cost c. The good is worth w. Let x be the proportion of agents that
provides the good. The payoff of an agent that provides the good is wx− c while
agents that defect get wx. The game has a single iteration. The strategy used by
agents is probabilistic and is defined by parameter pp which is the probability
to provide the good.

4.2 The Population

Regarding the agents, different strategies were used, which can be roughly clas-
sified in how cooperative they are:

S1 A cooperative strategy that always provides the good, (pp = 1.0).
S2, S3 Two strategies that provide with probabilities 0.7 and 0.3, respectively.
S4 One uncooperative strategy that does not provide the good, (pp = 0.0).

The number of strategies of each type varied in {8, 16, 32}. Total population
varied in {32, 40, 48, . . . , 128}. Moreover, we also performed simulations without
strategies S2 and S3 thus having only deterministic strategies. This allows us to
study convergence for different proportions and quantities of cooperative strate-
gies. Initial edge weight was set to 1/(|P|− 1) so that every player had the same
chance of being selected.

Each simulation consisted of 1,000 rounds of games, except for one case where
we ran 10,000 rounds, to test convergence. In each round all agents played at
least one game, since the following steps were performed per round for every
agent: select n − 1 partners proportionally to the edge weights, play the game,
update the edge weights of the agent that selected partners.

4.3 Results

We have plotted the average probability of agents with strategy pp = 1.0 to se-
lect agents from the four strategies. The plots also show the standard deviation.
Unless mentioned, the plots were taken at the 1,000th round. Figure 1 shows sim-
ulations with only deterministic strategies. Figure 2 shows the results organised
by number of cooperative strategies, while Fig. 3 shows the results organised by
number of players in a game. Both latter figures refer to simulations with all
four types of strategies. In all figures we plot an average taken over all possible
population sizes and compositions. In Figs. 1 and 2 we also average results over
all game configurations (3 to 8 players).
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Fig. 1. Results from simulations with only deterministic strategies. Vertical axis rep-
resents the probability of strategy S1 choosing a strategy in the horizontal axis. The
results are averages of all possible combinations of strategy S4 and number of players
in the game.
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(b) 8 agents with strategy S1. Edge
weights taken at the 10, 000th round.
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(c) 16 agents with strategy S1.
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(d) 32 agents with strategy S1.

Fig. 2. Simulation results per number of cooperative strategies. Vertical axis represents
the probability of strategy S1 choosing a strategy in the horizontal axis. Results are
averages of all combinations of parameters not fixed.
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(b) 8-player game.

Fig. 3. Simulation results per number of players in game. Vertical axis represents the
probability of strategy S1 choosing a strategy in the horizontal axis. Results are aver-
ages of all combinations of parameters not fixed.
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5 Discussion

In the absence of stochastic strategies, results show that cooperative agents
almost always select their equals as partners independently of the conditions.
From Fig. 1 we can observe that the average is high (for choosing S1 strategies)
while the standard deviation is small.

In the presence of stochastic strategies S2 and S3 results change substantially.
The number of cooperators influences convergence: the more cooperators, the
faster is convergence. We notice higher probability of cooperators selecting their
equals for larger numbers of cooperators (compare Figs. 2(a), 2(c) and 2(d)).

One would expect that stochastic strategies would induce instability in con-
vergence. Suppose we have partners (β1, β2) at round t. Both are stochastic and
have provided in this round. If β1 is replaced by a cooperative agent (always
provides) and in the next round β2 does not contribute, then this fact will be
imputed to the cooperative agent. However, if we increase the number of rounds
to 10,000, the plots obtained are nearly identical as can be seen by comparing
Figs. 2(a) and 2(b), probabilities computed at the 1, 000th and 10,000th rounds,
respectively. This means that probabilities have converged to a stable situation
by iteration 1,000.

The number of players in a game also influences convergence (see Figs. 3(a)
and 3(b) that refer to 3 and 8 players, respectively). The higher is this number,
the longer it takes for agents with S1 strategy to only select themselves as
partners of interaction. However, the time can be decreased if we increase the
number of strategies S1 in the population. Comparing Figs. 2(c) and 2(d), the
latter refers to 32 agents with strategy S1 and they select themselves as partners
of interaction almost 60% of time. This value is higher than the former, 40%.

Notice that in spite of averaging a large number of simulations with different
parameters (varying population size and composition, and also the number of
players, for cases of Figs. 2 and 3), standard deviation is always small. We can
infer that all these parameter values, except the number of cooperative agents,
do not influence significantly the results.

Regarding uncooperative agents, they select cooperative agents as the part-
ners of interaction when the number of S1 strategies is high (16 or 32). When
there are 8 agents with strategy S1 we obtain a plot similar to the plot in
Fig. 2(a).

6 Future Work

The model we have shown will be analysed in an evolutionary setting where
strategies are replaced by some selection policy. Other network structures, be-
sides the panmictic used in this paper, will also be considered.

Stochastic strategies impair convergence of deterministic cooperative strate-
gies, when their number is low. Further analysis of their impact will be carried.
The algorithm we have presented in Sect. 3.2 can be modified in order to dis-
tinguish deterministic from stochastic strategies. One avenue of researching this
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is instead of changing one partner per round, keep the same partners when the
payoff is equal or higher than uP , and only change partners when the payoff is
lower.
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Abstract. Cooperative behaviors are pervasive in the natural world. How organ-
isms evolve stable cooperative strategies, specifically how selection can favor
such costly behaviors, is a difficult problem for which several theories exist. In
this work, we use digital evolution to explore the evolution of the production of
a public resource that enables populations of organisms to survive in an adverse
environment. Kin selection and limited dispersal are shown to promote cooper-
ative acts, and evolved organisms stave off invasion by cheaters and survive in
increasingly-adverse environments. Further, we observe how populations react to
the disappearance and later re-emergence of adversity in the environment.

Keywords: digital evolution, cooperative behavior, kin selection, public resource.

1 Introduction

The evolution of stable cooperative acts, such as the sharing of food or resources [1],
collaboration [2], and self-sacrifice [3], is difficult to explain, since the costs of these
behaviors lower the fitness of the actors and make them exploitable by cheaters, who
take advantage of the cooperative act, yet do not themselves contribute. One explanation
is kin selection [4], whereby organisms maximize their inclusive fitness, which includes
not only their individual fitness, but also the fitness of kin, who share either common
ancestry or behavior. Because these recipients share genetic material, the reproductive
successes of an organism’s kin also benefit that organism. J.B.S. Haldane captured this
idea in his oft-quoted statement, “I would lay down my life for two brothers or eight
cousins.” Organisms are able to target kin as recipients either through kin discrimination
using expressed traits or implicitly if kin remain in close proximity.

Cooperative behaviors among microorganisms, in particular, have received consider-
able attention in recent years. Quorum sensing, or coordination mediated by chemicals
deposited into the environment [5], is one such behavior. Other social acts, such as the
production of iron-scavenging siderophores [6] or enzymes [7], have also been studied.
Although researchers conducting work in these areas use sophisticated techniques, time
often limits the number of generations which can be observed in wet lab experiments.

An alternate approach is to apply mathematical models. Game theory has been used
to study the spread of behaviors in a population, most frequently with Prisoner’s
Dilemma or Snowdrift [8]. These models have provided insights into the dynamics of
social behaviors, such as the effects of spatial structures [9], dynamic social ties [10],
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and nonlinear benefits and resources [11]. One study using cellular automata [12] re-
quired agents to achieve a defined level of success in order to avoid being killed [13]. In
these models, mutations altered the organism’s level of investment in the public good.
A similar approach is used by Evolution Strategies (ES) [14], which seek to optimize
some behavior tied to the mutated parameter. These approaches generally do not include
environmental conditions or features aside from the cooperative act, however.

Artificial life tools such as digital evolution [15] provide a means to address these dif-
ficulties. Given complete control over environmental conditions, researchers are able to
accurately model complex systems. These tools also offer direct access to organisms’
genomes, which greatly aids in understanding the behaviors observed and the condi-
tions under which they are performed. For example, digital evolution has been used
to examine group behaviors such as electing leaders, reaching consensus, population
control, and foraging [16, 17]. Similar to the work described here, one study investi-
gated kin discrimination in the altruistic suicide of colicinogenic bacteria [18], finding
that cooperators were most successful against cheaters when their behaviors were more
discriminatory.

In this paper, we describe a study using the Avida digital evolution platform to exam-
ine the evolution of cooperative behaviors in populations of organisms. These organisms
were able to produce a resource that helped them to survive in adverse environments.
When dispersal was limited, populations cooperated to prevent approximately 90% of
their constituents from being killed. More well-mixed populations, while also success-
ful, were not able to fare as well. Finally, we observe how populations reacted when the
degree of adversity in the environment changed or when they were exposed to threats
which they had not encountered in hundreds of generations.

2 The Avida Digital Evolution Platform
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BXAX
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Read
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Fig. 1. The structure of a digital organism (top)
in an Avida population (bottom) [19]

Avida is a software platform used to
study the evolution of populations of
self-replicating computer programs [15].
These computer programs, or “digital
organisms,” compete for space by com-
pleting tasks in a user-defined environ-
ment. As depicted in Figure 1, each
digital organism exists independently
within its own cell in the environment. An
organism’s behavior is defined by a cir-
cular list of instructions (its “genome”),
which are executed sequentially on virtual
hardware allocated to that organism. The
virtual hardware comprises a CPU, three
32-bit registers, and two stacks. The CPU
has four heads, which are used to control the execution flow of an organism’s genome
and aid in self-replication. Organisms control these components using a Turing-
complete instruction set. During every update, each organism is allotted a number of
CPU cycles for executing instructions in its genome.
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A population is seeded with an ancestral organism capable only of replication. All
other behaviors exhibited by that organism’s descendants must be evolved. As an organ-
ism replicates, it allocates additional space at the end of its genome into which it copies
the instructions from its genome line by line. After this process has been completed,
the genome is divided, and the new copy is placed into another cell in the environ-
ment, killing any organism at that location. During replication, mutations can cause the
insertion, deletion, or changing of one or more instructions in the genome.

Organisms earn merit through the successful completion of tasks, which are defined
by the user in terms of an organism’s observable behaviors (i.e., its phenotype). Re-
warded tasks may include performing a mathematical or logical operation [20], miti-
gating an attack [21], or cooperating to solve a distributed problem [17]. The number
of CPU cycles an organism receives per update is directly proportional to its merit.
This task mechanism creates competition in the population, as organisms with more
merit are able to execute more quickly, and hence are likely to replicate more often and
spread throughout the population. Tasks may involve the use of resources. By execut-
ing certain instructions, organisms are able to sense, consume, and produce resources.
Resource levels in the environment can fluctuate over time through inflow, outflow,
diffusion, decay, and consumption.

3 Experiments and Results

In this study, digital organisms evolved in environments in which a periodic event killed
a portion of the population. An organism could avoid being killed if the amount of a
resource in its cell was above a defined threshold. Although an organism could produce
enough resource on its own to avoid being killed, that organism could also benefit from
the resource production of its neighbors, due to the diffusion of the resource away from
the cell in which it was created. Since the population exhibits limited dispersal, it is
likely that neighbors are highly related, so kin selection [4] should enable this costly
behavior to be maintained as long as it continues to provide a sufficient inclusive fit-
ness benefit. However, since an organism can survive solely through the production of

Table 1. Logic tasks that could be completed by organisms. Upon completion, an organism’s
merit was multiplied by the reward listed. Organisms were rewarded once per task, but could
continue to produce resource through multiple completions of OR NOT.

Task Input Output Merit Bonus Resource Produced

NOT A ¬A 2 0
NAND A,B ¬(A ∧ B) 2 0
AND A,B A ∧ B 4 0
OR A,B A ∨ B 8 0

AND NOT A,B A ∧ ¬B,¬A ∧ B 8 0
NOR A,B ¬(A ∨ B) 16 0
XOR A,B (A ∧ ¬B) ∨ (¬A ∧ B) 16 0
EQU A,B (A ∧ B) ∨ (¬A ∧ ¬B) 32 0

OR NOT A,B A ∨ ¬B,¬A ∨ B 0 1
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resource by others, this environment also creates an opportunity for cheaters to exploit
this public good.

Avida Configuration. For each experiment, multiple independent populations were
evolved. Populations were seeded with a single ancestral organism that was placed into
a cell in a 100x100-cell bounded grid environment; each interior cell had 8 neighboring
cells. Two different replication methods were tested: limited dispersal, where offspring
were placed in a cell neighboring their parent; and well-mixed, where offspring were
placed in a random cell in the grid. During replication, an instruction mutated with prob-
ability 0.0075 during the copy phase, and an instruction was either added or removed
with probability 0.05 as the organism divided. Each population started with a differ-
ent random seed, so different evolutionary pathways were followed. These populations
evolved for 50,000 updates, or approximately 7,000-10,000 generations.

Task Environment. Organisms evolved to complete one- and two-input logic tasks,
listed in Table 1. When an organism executed an IO instruction, randomly-generated
numbers were placed into its registers. The organism then had to perform the operation,
place the result in the correct output register, and issue an additional IO instruction. If
the output value matched the result of one of these tasks, the organism was rewarded.

Unlike other tasks, the completion of OR NOT did not yield any merit reward. In-
stead, it resulted in 1 unit of an extracellular resource being deposited into the environ-
ment at the organism’s location. This resource both diffused and decayed at a rate of 1%
per update and represented a beneficial product to the organism, akin to extracellular
polymeric substance (EPS) [22], siderophores [6], or enzymes [23] in microorganisms.
The amount of this resource present in a cell was used to determine whether or not an
organism residing there was killed. Although this resource was beneficial to the organ-
isms as described, it was not required for the completion of any other tasks.

Initial Experiments. Because each task could potentially serve as either a building
block or a hindrance to completing another task, as in [20], we evolved populations
in an environment without the periodic kill event in order to determine how many OR
NOT tasks would be completed (and consequently how much resource would be pro-
duced) when this behavior was neither rewarded nor necessary for survival. These runs
produced a mean per-cell resource level of 0.37 units. By using a significantly-higher
threshold, we can infer that the success of organisms at staving off periodic killing was
not simply a by-product of completing rewarded tasks.

Random Attacks. In this experiment, 121 cells (1.21% of the population) were ran-
domly chosen at each update, and an organism living in those cells was killed if the
level of resource in its cell was below 2 units. By the end of the run, organisms had
evolved the production of the resource at a level that prevented approximately 66% of
organisms selected from being killed. From this experiment alone, however, it is unclear
whether the resource production was simply self-preserving or mutually-beneficial [24].
Since only 1.21% of organisms were subject to being killed at each update, the proba-
bility of an organism and all of its kin being killed was very small. Indeed, organisms
in several runs preferred to play these odds and stopped producing resource, focusing
entirely on completing the rewarded tasks.
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Localized Attacks. In the next experiment, the kill event was localized, increasing the
likelihood of one organism and its kin being killed by a single event. At each update,
one cell was chosen at random, and any organism within a 5-cell radius (121 cells total)
whose cell contained less than 2 units of resource was killed. The behaviors seen in
these populations are plotted in Figure 2. At the end of these runs, an average of ap-
proximately 53% of organisms were cooperators (resource producers). Cheaters, which
focused solely on the completion of one or more rewarded task but did not produce the
resource, accounted for 23% of living organisms. Approximately 24% were unable to
complete any tasks, most likely due to deleterious mutations.
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Fig. 2. Mean distribution of behaviors among
40 populations

We also tracked the level of resource in
each cell as the runs progressed. One might
predict this level to converge to the thresh-
old amount of 2 units; however, modest
stability was reached at approximately 9.5
units. This surplus can be viewed as coop-
erative: Cooperators produced enough to al-
low themselves to survive and to help their
neighbors survive as well. This asymmetry
follows the Tragedy of the Commune [25],
where levels of investment in public goods
may not be uniform. Figure 3(a) shows the
distribution of this resource at the end of a
typical run. Although only about half of the
living organisms produced resource, it was
sufficient to prevent 90% of organisms in the population from being killed as shown in
Figure 3(b).
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Fig. 3. Resource distribution and organisms killed: (a) Distribution of resource levels in a typi-
cal environment. White indicates an above-threshold level, while black indicates a level below
threshold. (b) Mean fraction of organisms killed within the target region.
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Fig. 4. Results for an increasingly-adverse environment: (a) Mean distribution of behaviors in 20
populations (b) Mean fraction of organisms within the target region killed during each kill event
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Fig. 5. Results in a well-mixed environment: (a) Mean distribution of cooperators and cheaters in
20 populations (b) Mean fraction of organisms killed within a 5-cell radius

Greater Adversity. To investigate how populations would evolve in more adverse en-
vironments, we repeated these experiments using kill radii up to 13 cells and a resource
threshold of 3 units. These environments proved to be too adverse, and populations
were not able to persist with kill radii above 5 cells. However, when the kill radius was
expanded incrementally from 5 cells to 8, more than doubling the number of organ-
isms at risk, the populations adapted and produced enough resource to survive these
events. The distribution of resource producers and cheaters is shown in Figure 4(a).
Here, organisms produced a mean resource level of 7.9 units per cell, enabling 85% of
organisms to avoid being killed, as shown in Figure 4(b).

Well-Mixed Environment. The previous experiment demonstrated the benefits of kin
selection to cooperative behaviors in populations with limited dispersal. Our next set
of experiments examined how cooperation is affected when dispersal is increased. To
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Fig. 6. Results when the kill event was suspended between updates 25,000 and 35,000: (a) Mean
distribution of behaviors (b) Mean fraction of organisms killed within the target region

achieve this, offspring were no longer placed into a neighboring cell, but instead into
a random cell in the environment, greatly reducing the possibility of remaining near
relatives. In these runs, cooperation emerged and persisted, resulting in approximately
40% of the population producing resource (Figure 5(a)). Interestingly, cheaters made
up the same portion of the population. These results match those modeled with Snow-
drift [8], where one’s best strategy is to cooperate if their opponent cheats, and vice
versa. These strategies enabled approximately 72% of organisms in kill regions to be
spared, as shown in Figure 5(b).

Dynamic Conditions. To determine how populations would react to the absence and
return of adversity, we evolved organisms in an environment where the kill event was
suspended during updates 25,000 through 35,000. In these runs, offspring were once
again placed into neighboring cells, and the kill event used a 5-cell radius with a 3-unit
threshold. Figures 6(a) and 6(b) plot the strategies used by organisms and the fraction of
organisms killed, respectively. During the respite, mean cellular resource levels fell be-
low the kill threshold, leaving organisms vulnerable. Upon the return of the kill action,
cooperative resource production re-evolved in 19 of the 20 populations.

4 Conclusions

This work has demonstrated that cooperative behaviors can evolve in populations ex-
posed to adverse environments. Specifically, organisms evolved to complete tasks that
did not provide direct bonuses as did other tasks, but instead produced a resource that
helped prevent that organism and its neighbors from being killed. Kin selection was
observed to provide incentive for developing such strategies when dispersal is limited.
The increase in resource production by such populations indicates that this behavior is
not simply selfish; rather, the behavior is mutually beneficial. We have also seen that
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populations can quickly re-gain cooperative strategies in reaction to the return of ad-
verse conditions after a calm period. Insights into cooperative behaviors offer potential
applications as treatments for infectious disease, motivating future research in this area.
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Özdemir, Burak II-191

Pacheco, Jorge M. I-434
Palmius, Niclas II-27
Paperin, Greg II-61
Parisey, N. I-361
Parisi, Domenico I-148
Pay, Mungo I-297



Author Index 501

Penn, Alexandra II-27
Pennock, Robert T. II-134
Phelps, Steve II-37
Piedrafita, Gabriel I-256
Pinciroli, Carlo I-165
Piraveenan, Mahendra I-140
Polani, Daniel II-85, II-294, II-342
Ponticorvo, Michela I-222
Powers, Simon T. II-27, II-45, II-53
Pradhana, Dany I-140
Prieto, Abraham II-200
Prokopenko, Mikhail I-140, II-85
Provero, Paolo I-281

Rabanal, Pablo II-424
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