

Lecture Notes in Artificial Intelligence 6541
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Marina De Vos Nicoletta Fornara
Jeremy V. Pitt George Vouros (Eds.)

Coordination, Organizations,
Institutions, and Norms
in Agent Systems VI

COIN 2010 International Workshops
COIN@AAMAS 2010, Toronto, Canada, May 2010
COIN@MALLOW 2010, Lyon, France, August 2010
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Marina De Vos
University of Bath, Department of Computer Science,
Bath BA2 7AY, UK, E-mail: mdv@cs.bath.ac.uk

Nicoletta Fornara
Università della Svizzera Italiana
Via G. Buffi 13, 6900 Lugano, Switzerland, E-mail: nicoletta.fornara@usi.ch

Jeremy V. Pitt
Imperial College London, Department of Electrical & Electronic Engineering
London SW7 2BT, UK, E-mail: j.pitt@imperial.ac.uk

George Vouros
University of the Aegean
Department of Information and Communication Systems Engineering
Karlovassi, 83200 Samos, Greece, E-mail: georgev@aegean.gr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21267-3 e-ISBN 978-3-642-21268-0
DOI 10.1007/978-3-642-21268-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.2, D.2, C.2, H.4, H.5, H.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume is the sixth in a series that started in 2005, and it collects papers
from the Coordination, Organizations, Institutions and Norms (COIN) work-
shops http://www.pcs.usp.br/˜coin/. The papers in this volume are drawn from
the two workshops that took place in 2010.

The development of complex distributed systems consisting of autonomous
and heterogeneous agents with diverse knowledge is a challenge: System com-
ponents must interact, coordinate and collaborate to solve problems that are
intrinsically distributed, manage the complexity of task environments, target-
ing their well-being and persistence via adapted organization and regulation of
behaviors. All this must happen in scalable ways. Autonomous and autonomic
management of the scale and complexity of contemporary distributed systems
requires intelligence; in particular an intelligence that is manifested by individual
strategies and/or collective behavior. In such circumstances, system architects
have to consider: the inter-operation of heterogeneously designed, developed or
discovered components; inter-connection which cross-legal, temporal, or organi-
zational boundaries; the absence of global objects or centralized controllers; the
possibility that components will not comply with the given specifications; and
embedding in an environment which is likely to change, with a possible impact
on individual and collective objectives.

The convergence of the requirement for intelligence with these operational
constraints demands: coordination—the collective ability of heterogeneous and
autonomous components to arrange or synchronize the performance of speci-
fied actions in sequential or temporal order; organization—a formal structure
supporting or producing intentional forms of coordination; institution—an orga-
nization where inter alia the performance of designated actions by empowered
agents produces conventional outcomes; and norms—patterns of behavior in an
institution established by decree, agreement, emergence, and so on.

The automation and distribution of intelligence is a crucial subject of study
in autonomous agents and multi-agent systems; the automation and distribution
of intelligence for coordination, organization, institutions and norms is the focus
of the 2010 workshops.

The goal of these workshops is to bring together researchers in autonomous
agents and multi-agent systems working on the scientific and technological as-
pects of organizational theory, electronic institutions and computational
economies from an organizational or institutional perspective. Authors of the
workshop papers were invited to extend their submitted work on the basis of
reviewers’ comments and the discussions during the meeting. These papers were
reviewed again. The successful papers appear in this volume.

VI Preface

COIN@AAMAS 2010

COIN@AAMAS 2010 took place on May 11, 2010, as a satellite event of the
9th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2010), in Toronto, Canada. With about 30 participants in each session
35 registered participants, the workshop was an exciting and fruitful gathering
where discussions followed the papers presented by an international group of
speakers. We had participants from Australia, Italy, The Netherlands, Brazil,
New Zealand, Portugal, Spain, UK and USA, to name a few. Of the 21 sub-
missions, 14 were selected for presentation and, subsequently, included in the
proceedings. Each paper was assigned three to five reviewers to provide con-
structive comments and to stimulate discussion.

COIN@MALLOW 2010

COIN@MALLOW 2010 took place on August 30, 2010, as one of the federated
Multi-Agent Logics, Languages, and Organisations Workshops (MALLOW), in
Lyon, France. This edition of COIN received 14 high-quality submissions, de-
scribing work by researchers coming from nine different countries; eight of the
submissions were selected by the Program Committee as regular papers and two
were selected by the Program Committee as position papers. Each paper received
at least three reviews in order to supply the authors with helpful feedback that
could stimulate the research as well as foster discussion. Seven of these papers
appear in this volume.

The Papers

The papers in this volume are extended, revised versions of the best papers pre-
sented at the two workshops. The result is a balanced collection of high-quality
papers that really can be called representative of the field at this moment. For
this volume, the papers have been re-grouped around three themes: Normative
System Design and Modelling, Social Aspects and Norms at Run-time: Learn-
ing and Enforcing. Here we summarize each of these themes and present a brief
summary of the papers.

Normative System Design and Modelling

All the papers in this section model particular aspects of organizations, norma-
tive frameworks, or institutions at design time. The papers range from mecha-
nisms for norm compliance and reputations, specification languages to mecha-
nisms to assist the designer in the realization of prototypical implementation for
offline verification of systems.

1. Criado et al., in “Rational Strategies for Norm Compliance in the n-BDI
Proposal,” present a BDI architecture in which agents can adopt norms au-
tonomously allowing them to reason about the influence of norm compliance
and violation with respect to their goals.

Preface VII

2. Köhler-Bußmeier et al., in “GeneratingExecutableMulti-AgentSystemProto-
types from SONAR Specifications,” provide a middleware, MULAN4SONAR,
and itsprototypical implementation for supportingorganizational teamwork in
all its various stages. The organizations are modelled using SONAR, a rich and
elaborate formalism to provide all the necessary configuration information.

3. da Silva Figueiredo et al., in “Modelling Norms in Multi-agent Systems with
NormML,” propose a new normative modelling language to specify the main
properties and characteristics of norms. Furthermore, they introduce a mech-
anism to validate the norm specification at design time with respect to pos-
sible conflicts.

4. Centeno et al., in “Building Reputation-Based Agreements: Collective Opin-
ions as Information Sources,” introduce a reputation mechanism that can be
used by organizational models allowing agents to collaborate with better
partners. The proposed mechanism collects opinions about agents and pro-
vides this information using different informative mechanisms.

5. Corapi et al., in “Norm Refinement and Design Through Inductive Learn-
ing,” present an inductive logic programming approach for learning norma-
tive specifications on the basis of use cases. These use cases present the
intended behavior of the system. If a specification does not satisfy the pro-
vided use cases, the system will provide the necessary rules or rule updates
to satisfy these use cases.

6. Balke et al., in “Using a Normative Framework to Explore the Prototyping of
Wireless Grids,” present a case study of a normative framework to verify the
usefulness of a technique proposed in the wireless grids community. Instead
of having mobile phones obtain information only from a given base station,
phones are encouraged (via norms) to share data with other handsets on a
power-efficient channel.

Social Aspects

The papers in this section focus on the inter-relational aspects between agents
and/or agents and humans. They study models of interaction, commitment and
coherence within the context of MAS, or use mental models or human search
behavior to derive decision strategies for agents in a variety of contexts.

1. Martinez et al., in “Towards a Model of Social Coherence in Multi-Agent
Organizations,” study the dynamics of multi-agent organizations using a
model based on social coherence and a simulation framework. The basic
component of the model is the notion of social commitment, which is being
used to describe all agents’ interdependencies. A local coherence mechanism
together with a sanctioning policy is then used to ensure social control and
emergence of social coherence.

2. Jonker et al., in “Shared Mental Models: A Conceptual Analysis,” investigate
which concepts are relevant for shared mental models and model how they are
related using UML. They develop a mental model ontology that formalizes a
shared understanding of tasks between teams of agents and teams of human-
agent teams.

VIII Preface

3. Boella et al., in “Group Intention Is Social Choice with Commitment,” pro-
pose a formalization of non-summative group intentions, using social choice
theory to derive group goals. The framework combines judgement aggre-
gation as a decision-mechanism with a multi-modal multi-agent logic de-
rived from LTL to represent collective attitudes and all the aspects of group
intentions.

4. Johnson et al., in “Coactive Design: Why Interdependence Must Shape Au-
tonomy,” introduce the fundamental principles of coactive design. This ap-
proach has been developed to highlight the interdependence between the
various (groups of) actors, agents and humans, in a given system. The au-
thors conjecture that the increased effectiveness of a human-agent system
not only relies on the autonomy of agents but also on their capability of
sophisticated interdependent joint activity with humans.

5. Traskas et al., in “A Probabilistic Mechanism for Agent Discovery and Pair-
ing Using Domain-Specific Data,” propose a mechanism for agent discovery
and pairing using a probabilistic approach with domain-specific data. Agents
employ a Bayesian inference model to control the search in a way akin to
human disposition to give up after trying a certain number of alternatives
and taking the best offer seen. The effectiveness of the proposed approach is
demonstrated in identifing good enough solutions to satisfy holistic organi-
zational service level objectives.

6. Wickramasinghe et al., in “An Adherence Support Framework for Service
Delivery in Customer Life Cycle Management,” propose a conceptual frame-
work to model how deficits in mental attitudes can affect service delivery
and propose an adherence support architecture to reduce failures due to
such deficits. The effectiveness of this proposal is demonstrated in an MAS
for chronic disease management.

Norms at Run-Time: Learning and Enforcing

The last group of papers looks at how norms emerge, are updated, discovered,
reasoned about or monitored in a running system.

1. Griffiths and Luck, in “Norm Diversity and Emergence in Tag-Based Coop-
eration,” investigate the problem of norm-emergence and group recognition
using a tag-based cooperation for interaction. The paper explores the features
that affect the longevity and adoption of norms in this type of system and
empirically evaluates existing techniques for supporting cooperation when
agents violate the norms.

2. Criado et al., in “Norm Enforceability in Electronic Institutions?”, inves-
tigate the current shortcomings of the Electronic Institution approach for
MAS. The proposed method supports enforcement mechanisms for norm ex-
ecution and observance. The paper looks into complex situations where the
system is unable to deal with norm observance in an appropriate manner.

3. Urovi et al., in “Initial Steps Towards Run-Time Support for Norm-Governed
Systems,” present an initial knowledge representation framework for run-
time support of norm-governed systems. The system uses an Event Calculus

Preface IX

dialect for efficient temporal reasoning. The paper provides an experimental
evaluation to demonstrate the scalability of the approach through distribu-
tion of the infrastructure.

4. Savarimuthu et al., in “Identifying Conditional Norms in Multi-Agent Soci-
eties,” present a mechanism that allows agents to discover conditional norms
in their society at run-time. The paper takes the reader through the algo-
rithms and processes, and demonstrates how an agent could go about adding,
modifying or deleting these conditional norms.

5. Campos et al., in “Using a Two-Level Multi-Agent System Architecture to
Perform Norm Adaptation in a Peer-to-Peer Sharing Network,” present an
architecture that endows an organization with self-adaptation capabilities
to adapt to the changing context in which it operates. Self-adaptation is
proposed as an extra assistance layer on top of the (existing) organization
layer.

6. Alvarez-Napagao et al., in “Normative Monitoring: Semantics and Imple-
mentation,” present a formalism for monitoring both regulative (deontic) and
substantive (constitutive) norms based on structural operational semantics.
This formalism is reduced to production systems semantics and the authors
demonstrate that their implementation is compliant with both semantics.

7. Koeppen et al., in “Generating New Regulations by Learning from Experi-
ence,” propose an approach, based on utilitarianism, to enhance multi-agent
systems with a regulatory authority that generates new norms based on the
outcome of previous experiences. For the learning part of their system, the
authors employ machine-learning techniques.

8. Boissier et al., in “Controlling Multi-Party Interaction Within Normative
Multi-Agent Organizations,” present an extension of the normative organi-
zation model MOISE to allow for the specification of different interaction
modes: direct communication between roles and/or restricted to a group of
agents. This allows organizations to monitor interactions between agents,
and agents to reason on these modes as they do about norms. The paper
focuses on the first point and demonstrates the capabilities provided with a
crisis management application.

We would like to thank all authors for their contributions, the members of the
Steering Committee for the valuable suggestions and support, and the members
of the Program Committees for their excellent work during the reviewing phases.
We would also like to thank the team behind EasyChair for providing us with
an excellent system to run workshops/conference and produce proceedings in a
more straightforward manner.

March 2011 Marina De Vos
Nicoletta Fornara

Jeremy Pitt
George Vouros

Organization

Workshop Organizers

COIN@AAMAS Marina De Vos Department of Computer Science
University of Bath, UK
mdv@cs.bath.ac.uk

Jeremy Pitt Intelligent Systems and Networks
Group, Department of Electrical
and Electronic Engineering,
Imperial College London, UK
j.pitt@imperial.ac.uk

COIN@MALLOW Nicoletta Fornara Faculty of Communication
Sciences Universit della Svizzera
Italiana USI, Switserland
nicoletta.fornara@usi.ch

George Vouros Department of Information and
Communication Systems
Engineering, School of Sciences,
University of the Aegean, Samos
axel.polleres@deri.org

Program Committee

COIN@AAMAS

Alexander Artikis National Centre for Scientific Research
Demokritos, Greece

Guido Boella University of Turin, Italy
Olivier Boissier ENS Mines Saint-Etienne, France
Dan Corkill University of Massachusetts Amherst,

USA
Antonio Carlos da Rocha Costa UCPEL, Brazil
Stephen Cranefield University of Otago, New Zealand
Virginia Dignum Delft University of Technology,

The Netherlands
Nicoletta Fornara University of Lugano, Switzerland
Olivier Gutknecht LPDL, France
Jomi Fred Hubner Federal University of Santa Catarina,

Brazil
Fuyuki Ishikawa National Institute of Informatics, Japan

XII Organization

Catholijn Jonker Delft University of Technology,
The Netherlands

Christian Lemaitre Universidad Autonoma Metropolitana,
Mexico

Maite Lopez-Sanchez University of Barcelona, Spain
Eric Matson Purdue, USA
John-Jules Meyer Utrecht University, The Netherlands
Daniel Moldt University of Hamburg, Germany
Pablo Noriega IIIA-CSI, Spain
Eugenio Oliveira Universidade do Porto, Portugal
Sascha Ossowski URJC, Spain
Julian Padget University of Bath, UK
Eric Platon National Institute of Informatics, Japan
Juan Antonio Rodriguez Aguilar IIIA-CSIC, Spain
Christophe Sibertin-Blanc IRIT, France
Jaime Sichman University of Sao Paulo, Brazil
Catherine Tessier ONERA, France
Luca Tummolini ISTC/CNR, Italy
Leon van der Torre University of Luxembourg, Luxembourg
Wamberto Vasconcelos University of Aberdeen, UK
Javier Vazquez-Salceda Universitat Politecnica de Catalunya,

Spain
Harko Verhagen Stockholm University, Sweden
George Vouros University of the Aegean, Greece

COIN@MALLOW

Juan Antonio Rodriguez Aguilar IIIA-CSIC, Spain
Alexander Artikis National Centre for Scientific Research

Demokritos, Greece
Guido Boella University of Turin, Italy
Olivier Boissier ENS Mines Saint-Etienne, France
Rafael Bordini Federal University of Rio Grande do Sul,

Brazil
Amit Chopra University of Trento, Italy
Antonio Carlos da Rocha Costa Universidade Federal do Rio Grande

FURG, Brazil
Marina De Vos University of Bath, UK
Virginia Dignum Delft University of Technology,

The Netherlands
Jomi Fred Hubner Federal University of Santa Catarina,

Brazil
Christian Lemaitre Universidad Autonoma Metropolitana,

Mexico
Henrique Lopes Cardoso Universidade do Porto, Portugal

Organization XIII

Eric Matson Purdue, USA
John-Jules Meyer Utrecht University, The Netherlands
Pablo Noriega IIIA-CSI, Spain
Eugenio Oliveira Universidade do Porto, Portugal
Andrea Omicini University of Bologna, Italy
Sascha Ossowski URJC, Spain
Julian Padget University of Bath, UK
Jeremy Pitt Imperial College, London, UK
Juan Antonio Rodriguez Aguilar IIIA-CSIC, Spain
Jaime Sichman University of Sao Paulo, Brazil
Munindar P. Singh North Carolina State University, USA
Viviane Torres da Silva Universidade Federal Fluminente, Brazil
Kostas Stathis Royal Holloway, University of London,

UK
Paolo Torroni University of Bologna, Italy
Leon van der Torre University of Luxembourg, Luxembourg
Birna van Riemsdijk Delf University of Technology,

The Netherlands
Wamberto Vasconcelos University of Aberdeen, UK
Javier Vazquez-Salceda Universitat Politecnica de Catalunya,

Spain
Mario Verdicchio University of Bergamo, Italy
Danny Weyns Katholieke Universiteit Leuven, Belgium
Pinar Yolum Bogazici University, Turkey

Additional Reviewers

Dmytro Tykhonov
Henrique Lopes Cardoso
Luciano Coutinho
Inacio Guerberoff
Valerio Genovese
Akin Gunay
Ozgur Kafali

Fernando J. M. Marcellino
Luis Gustavo Nardin
Moser Silva Fagundes
Juan Antonio Rodriguez Aguilar
Matteo Vasirani
Serena Villata
Matthias Wester-Ebbinghaus

COIN Steering Committee

Juan Antonio Rodriguez Aguilar IIIA-CSIC, Spain
Guido Boella University of Turin, Italy
Olivier Boissier ENS Mines Saint-Etienne, France
Nicoletta Fornara University of Lugano, Switzerland
Christian Lemaitre Universidad Autonoma Metropolitana,

Mexico
Eric Matson Purdue University, USA
Pablo Noriega Artficial Intelligence Research Institute,

Spain

XIV Organization

Sascha Ossowski Universidad Rey Juan Carlos, Spain
Julian Padget University of Bath, UK
Jeremy Pitt Imperial College London, UK
Jaime Sichman University of Sao Paulo, Brazil
Wamberto Vasconcelos University of Aberdeen, UK
Javier Vzquez Salceda Universitat Politecnica de Catalunya,

Spain
George Vouros University of the Aegean, Greece

Table of Contents

Topic 1

Normative System Design and Modelling

Rational Strategies for Norm Compliance in the n-BDI Proposal 1
Natalia Criado, Estefania Argente, and Vicent Botti

Generating Executable Multi-agent System Prototypes from SONAR
Specifications . 21

Michael Köhler-Bußmeier, Matthias Wester-Ebbinghaus, and
Daniel Moldt

Modeling Norms in Multi-agent Systems with NormML 39
Karen da Silva Figueiredo, Viviane Torres da Silva, and
Christiano de Oliveira Braga

Building Reputation-Based Agreements: Collective Opinions as
Information Sources . 58

Roberto Centeno, Ramón Hermoso, and Viviane Torres da Silva

Norm Refinement and Design through Inductive Learning 77
Domenico Corapi, Marina De Vos, Julian Padget,
Alessandra Russo, and Ken Satoh

Using a Normative Framework to Explore the Prototyping of Wireless
Grids . 95

Tina Balke, Marina De Vos, Julian Padget, and Frank Fitzek

Topic 2

Social Aspects

Towards a Model of Social Coherence in Multi-agent Organizations 114
Erick Mart́ınez, Ivan Kwiatkowski, and Philippe Pasquier

Shared Mental Models . 132
Catholijn M. Jonker, M. Birna van Riemsdijk, and Bas Vermeulen

Group Intention Is Social Choice with Commitment 152
Guido Boella, Gabriella Pigozzi, Marija Slavkovik, and
Leendert van der Torre

XVI Table of Contents

The Fundamental Principle of Coactive Design: Interdependence Must
Shape Autonomy . 172

Matthew Johnson, Jeffrey M. Bradshaw, Paul J. Feltovich,
Catholijn M. Jonker, Birna van Riemsdijk, and Maarten Sierhuis

A Probabilistic Mechanism for Agent Discovery and Pairing Using
Domain-Specific Data . 192

Dimitris Traskas, Julian Padget, and John Tansley

An Adherence Support Framework for Service Delivery in Customer
Life Cycle Management . 210

Leelani Kumari Wickramasinghe, Christian Guttmann,
Michael Georgeff, Ian Thomas, and Heinz Schmidt

Topic 3

Norms at Run-Time: Learning and Enforcing

Norm Diversity and Emergence in Tag-Based Cooperation 230
Nathan Griffiths and Michael Luck

Norm Enforceability in Electronic Institutions? . 250
Natalia Criado, Estefania Argente, Antonio Garrido,
Juan A. Gimeno, Francesc Igual, Vicente Botti,
Pablo Noriega, and Adriana Giret

Initial Steps Towards Run-Time Support for Norm-Governed
Systems . 268

Visara Urovi, Stefano Bromuri, Kostas Stathis, and
Alexander Artikis

Identifying Conditional Norms in Multi-agent Societies 285
Bastin Tony Roy Savarimuthu, Stephen Cranefield,
Maryam A. Purvis, and Martin K. Purvis

Using a Two-Level Multi-Agent System Architecture 303
Jordi Campos, Maite Lopez-Sanchez, and Marc Esteva

Normative Monitoring: Semantics and Implementation 321
Sergio Alvarez-Napagao, Huib Aldewereld,
Javier Vázquez-Salceda, and Frank Dignum

Learning from Experience to Generate New Regulations 337
Jan Koeppen, Maite Lopez-Sanchez, Javier Morales, and Marc Esteva

Controlling Multi-party Interaction within Normative Multi-agent
Organizations . 357

Olivier Boissier, Flavien Balbo, and Fabien Badeig

Author Index . 377

Rational Strategies for Norm Compliance in the

n-BDI Proposal

Natalia Criado, Estefania Argente, and Vicent Botti

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n. 46022 Valencia (Spain)
{ncriado,eargente,vbotti}dsic.upv.es

Abstract. Norms represent an effective tool for achieving coordination
and cooperation among members of open systems. However, agents must
be able to adopt norms autonomously. In this sense, the n-BDI proposal
is a BDI agent architecture which has been extended in order to allow
agents to comply with norms autonomously. Compliance with norms can
be explained by both rational and non-rational motivations. Rational
motivations consider the influence of norm compliance and violation on
agent’s goals. In this work the implementation of rational strategies for
making a decision about norm compliance in the n-BDI architecture is
described.

1 Introduction

Maybe the most promising application of MAS technology is its usage for sup-
porting Open Distributed Systems [21]. They are characterized by the hetero-
geneity of their participants, their limited trust, possible individual goals in
conflict and a high uncertainty [2]. Norms represent an effective tool for achiev-
ing coordination and cooperation among members of open systems. However,
norms, to become effective, must be dynamically adapted to the environmen-
tal changes and autonomously adopted by agents [10]. Therefore, autonomous
agents need strategies for determining when and how complying with norms.

The question of norm compliance has been traditionally discussed by the
sociology field. Taking as a basis the work on social norms presented in [16],
the norm compliance process can be justified by: i) Rational motivations, i.e.
a norm can be fulfilled by self-interest motivations (e.g. undesirability of the
sanctions, interest in the rewards) or it can be considered as suitable for common
interests; and (ii) Non-Rational reasons, which are related to emotions such
as anxiety and shame which maintain social norms, honour and envy among
others. Existing proposals of intelligent norm aware agents, like [6,1,19,27], tend
to be concerned about the decision-making processes that are supported by a
set of norms which are blindly followed by agents. In this paper, we discuss
how agents are able to deliberate about whether to comply or violate a given
norm according to their interests. Thus, several strategies for norm compliance
based on rational motivations are described in this paper. More specifically, this

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 1–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 N. Criado, E. Argente, and V. Botti

work takes a normative BDI agent architecture, known as n-BDI [11,12], as
basis. The n-BDI is a multi-context BDI agent architecture [7] which has been
extended with recognition and normative reasoning capabilities in order to allow
agents to consider norms in their decision making process. Thus, in this paper
different rational strategies for norm compliance have been defined considering
the facilities provided by the n-BDI architecture.

This paper is structured as follows: the first section describes the original
multi-context BDI proposal. Next, the n-BDI proposal, that extends the multi-
context BDI agent architecture with normative decision-making capabilities, is
described. Rational strategies for norm compliance have been proposed in Section
4. In Section 5 this work has been applied into the m-Water case study, in which
an irrigator agent must choose between respecting and not respecting norms
employing these different norm compliance strategies. Discussion of related works
is included in Section 6. Finally, conclusions and future works are detailed.

2 Preliminaries

A multi-context system [17] is formed by theoretical interrelationed components,
named units or contexts. According to the multi-context proposal, a BDI agent
architecture is defined as a set of interconnected contexts 〈{ci}i∈I , Δ〉 which
represent the mental modalities [23,26]. Each unit ci ∈ {Ci}i∈I is a tuple
〈Li, Ai, Δi〉, where Li, Ai and Δi are the language, axioms and inference rules
defining the logic of each context, respectively. Δ is the set of bridge rules be-
tween the contexts; i.e. inference rules whose premises and conclusions belong
to different contexts.

A general BDI agent is defined as a multi-context agent architecture in [24].
In [7] a general model of multi-context graded BDI is presented. The main idea
beyond this work is to employ a weigh to represent the certainty or desirability
degree of a mental proposition. According to these proposals, a multi-context
graded BDI agent is mainly formed by (Figure 1 grey contexts): mental contexts
that characterize beliefs (BC), intentions (IC) and desires (DC); and functional
contexts for planning (PC) and communication (CC). Following, these contexts
are explained:

– Belief Context (BC). It is formed by propositions belonging to the BC-Logic
[7]; i.e. logic propositions such as (B γ, βγ) where B γ represents a belief of an
agent, γ ∈ LDL is a dynamic logic [22] proposition and βγ ∈ [0, 1] represents
the certainty degree of this belief.

– Intention Context (IC). It is formed by propositions belonging to the IC-
Logic [7]; i.e. logic propositions such as (I γ, ιγ) where I γ represents an
intention of an agent, γ ∈ LDL and ιγ ∈ [0, 1] represents the intention de-
gree ascribed to this intention. The usage of degrees for representing inten-
tions may be arguable, since it may seem confused that an agent intends to
do an action at different degrees. However, as argued in [7] the truth degree

Rational Strategies for Norm Compliance in the n-BDI Proposal 3

Fig. 1. n-BDI Architecture. Grey contexts and lines (bridge rules) correspond to the
basic definition of a BDI agent. The normative contexts and normative bridge rules
are the white circles (NCC, NAC) and bold lines, respectively.

(ιγ) of the expression ”γ is intended” is determined by the existence of a
feasible plan that permits to achieve a state of the world where γ holds with
a probability ιγ .

– Desire Context (DC). It is formed by propositions belonging to the DC-Logic
[7]; i.e. logic propositions such as (D∗γ, δ∗γ) where D∗γ represents a desire
of an agent; γ ∈ LDL; δ∗γ ∈ [0, 1] represents the desirability degree; ∗ ∈
{+,−} represents positive desires and negative desires, respectively. Degrees
of positive or negative desires allow setting different levels of preference or
rejection. Thus, the expression (D+γ, δ+

γ) is read as ”proposition γ is desired
with a degree δ+

γ ”, whereas (D−γ, δ−γ) is read as ”proposition γ is undesired
with a degree δ−γ ”.

– Planner Context (PC). It allows agents to determine sequence of actions
that will be intended according to their desires [7]. The PC is formed by
formulas such as plan(Σ), where Σ is a set of actions that compose the
plan. The process by which agents generate new plans for achieving their
goals is beyond the scope of this paper and has not been described here.

– Communication Context (CC). It communicates agents with their environ-
ment [7]. The CC is formed by expressions such as (C γ), where C ∈ {P ,O}.
O γ represents that proposition γ has been perceived (Observed) whereas
P γ means that γ has been Performed by the agent. Thus, propositions
such as (O γ) are the inputs provided by the environment to the agent. The
interaction with the environment is expressed using formulas as (P γ).

According to this notation, given a proposition γ: βγ represents the belief degree
assigned to B γ; ιγ is the intentionality degree of I γ; δ+

γ is the desirability degree
of D+γ; and δ−γ is the undesirability degree of D−γ.

4 N. Criado, E. Argente, and V. Botti

2.1 Bridge Rules

Several bridge rules, which connect both the mental and functional contexts,
have been defined in the existing literature in order to determine different types
of BDI agents (e.g. strong realism, realism and weak realism agents [25]). Next,
only those bridge rules which have an impact on the normative reasoning process
are described:

– The Deriving Concrete Desires bridge rule (Figure 1 Rule 1) allows abstract
desires to be concreted into more realistic ones according to the agent beliefs:

DC : (D∗ϕ, δ∗ϕ), BC : (B([α]ϕ), β[α]ϕ)
DC : (D∗[α]ϕ, fD(δ∗ϕ, β[α]ϕ))

(1)

Generic agent desires (D∗ϕ, δ∗ϕ) derive more realistic desires (D∗[α]ϕ, fD(δ∗ϕ,
β[α]ϕ)); taking into account the existence of actions that allow them to be
reached (B([α]ϕ), β[α]ϕ). Thus, the preference degree of the concrete desire
relies on the original desirability (δ∗ϕ) and the possibility of achieving it by
means of action α (β[α]ϕ). This is calculated by fD function; its concrete
definition is problem dependent. However, in our proposal it is defined as
the product of these two values for obtaining the expected satisfaction or
disgust value.

– The Deriving Agent Intentions From Positive Desires bridge rule (Figure 1
Rule 2) derives the intended formulas of the agent from the set of preferred
formulas which are reachable by some existing plan:

DC : (D+[α]ϕ, δ+
[α]ϕ), DC : (D+α, δ+

α), PC : plan(Σ)
DC : (D−[α]ψ1, δ

−
[α]ψ1

), ..., DC : (D−[α]ψnδ−[α]ψn
),

α ∈ Σ, (δ+
[α]ϕ + δ+

α) ≥
∑n
k=1 δ−[α]ψk

IC : (I[α]ϕ, fI(δ+
[α]ϕ + δ+

α ,
∑n
k=1 δ−[α]ψk

))
(2)

More specifically, those positive desires (D+[α]ϕ, δ+
[α]ϕ) which can be achieved

by an action (α) belonging to a plan (Plan(Σ)) will generate a new inten-
tion (I[α]ϕ, fI(δ+

[α]ϕ + δ+
α ,

∑n
k=1 δ−[α]ψk

)) if the desirability degree of both the
proposition (δ+

[α]ϕ) and the action (δ+
α) is greater than the sum of the nega-

tive effects of the action (
∑n

k=1 δ−[α]ψk
). Finally, fI is a function that combines

both positive and negative effects of an action; in this case it has been defined
as: fI(a, b) = min(a− b, 1)

– The Deriving Actions From Intentions bridge rule (Figure 1 Rule 3) defines
the next action to be performed by the agent (P α) as the intention which
has the maximum degree (I[α]ϕ, ιmax):

IC : (I[α]ϕ, ιmax)
CC : (P α)

(3)

Rational Strategies for Norm Compliance in the n-BDI Proposal 5

3 Normative BDI Architecture (n-BDI)

Taking as a reference the multi-context graded BDI agent architecture [7], in
[11,12] the n-BDI agent architecture has been proposed. Specifically, the n-BDI
extends the multi-context graded BDI proposal by adding new contexts and
bridge rules in order to allow agents to make decisions according to norms.
These norms are classified into two groups [3]: regulative or deontic norms, which
define the ideal behaviour of agents making use of deontic modalities; and con-
stitutive norms, which are used for establishing social institutions which give
rise to new types of facts that only make sense within the institution. This pa-
per focus on compliance of deontic norms so constitutive norms have not been
considered here.

In the n-BDI proposal two new functional contexts are defined (Figure 1, white
contexts): the Norm Acquisition Context (NAC), which is responsible for the
norm identification process; and the Norm Compliance Context (NCC), which
allows agents to consider norms in their decision making processes.

Basically, the norm decision process starts when the NAC derives a new norm
through analysing the environment (through the CC context). More specifically,
the NAC allows agents to identify norms. These norms are translated into a set
of inference rules which are included into the NCC. Then, the NCC derives new
desires according to the current agent mental state and the inference rules which
have been obtained from norms. These new desires may cause intentions to be
updated and, as a consequence, normative actions might be carried out.

3.1 Norm Acquisition Context (NAC)

Norms can be explicitly created by the system designer or a representative agent
which has been empowered to define the normative context. In addition, other
types of norms such as commitments are created as a result of an interaction
among agents. Finally, there are norms, such as social norms, which emerge
in a society without being explicitly created by any agent. Whatever process
norm creation is, any new norm must be spread in the society in order to be
internalized and respected by agents. In this sense, agents are able to recognise
norms which control their environment by two different manners [1]: they may be
informed about the existing norms or, on the contrary, they are cognitive agents
are capable of inferring norms from observation. Therefore, the NAC context
receives the observed environmental facts, which include also those facts that
have been communicated to the agent, by the CC context and identifies the
set of norms which control the agent environment. In this proposal, recognised
norms are defined as follows:

Definition 1 (Norm). A norm n is defined as n = 〈D, C, A, E, S, R〉 where:

– D ∈ {O, F}, is the deontic operator. In this work only obligations (O) and
prohibitions (F) which impose constraints on agent behaviours have been con-
sidered; whereas permissions have not been considered since they are defined
as operators that invalidate the activation of obligations or prohibitions;

6 N. Criado, E. Argente, and V. Botti

– C is a first order formula that represents the normative condition that must
be carried out in case of obligations, or that must be avoided in case of
prohibition norms;

– A, E are first order formulae that determine the norm activation and expi-
ration conditions, respectively;

– S, R are expressions which describe the actions (sanctions and rewards) that
will be carried out in case of norm violation or fulfilment, respectively.

Thus, the NAC is formed by expressions defined as (NAC n, ρn, ρS , ρR); where
n is a first order formula which represents a norm. ρn ∈ [0, 1] is the probability of
norm application; i.e. the trust degree of the communicated norm or the observed
probability of norm compliance in case of an inferred norm. In this work we
assume that agents are informed about norms which control their behaviours
by a representative of the normative system. Thus, there is a total reliability
on the recognised norm (ρn = 1). Finally, ρS , ρR ∈ [0, 1] are the probability
values ascribed to the application of sanctions and rewards, respectively; i.e. the
probability of being sanctioned or rewarded by the norm issuer. The estimation
of these two probabilities is over the scope of this paper. However, they can be
inferred by considering the number of times that the agent observes that norm
violations and fulfilment have been sanctioned or rewarded, respectively.

This paper does not focus on the norm acquisition problem. In the following,
the NAC will be considered as a black box that receives cues for detecting norms
as input and generates norms as output.

3.2 Norm Compliance Context (NCC)

In our approach norms are not static constraints implemented on agents. On
the contrary, agents are able to acquire and accept norms dynamically in an
autonomous way. Performance of the NCC is: i) mental contexts inject formulas
inside the NCC; ii) the NCC carries out an inference process in order to reason
about norms considering the current mental state; and iii) BDI contexts are
modified according to the new mental propositions which have been derived
from norms.

In this paper a simplistic approximation to the norm internalization process
[9] has been considered. However, it will be object of future work extensions.
In particular, we have only considered the internalization of norms as goals. In
this sense, the process of norm internalization has been described by the self-
determination theory [15] as a dynamic relation between norms and desires. This
shift would represent the assumption that internalized norms become part of the
agent’s sense of identity. Thus, the NCC updates the DC with the new normative
desires.

The NCC is formed by expressions like NCC(�γ�); where γ is a first-order
logic expression which is defined as an inference rule which corresponds to a
translated norm from the NAC. In particular, these inference rules relate belief
propositions with desires. The expression �γ� means that γ is embedded in the
normative context as a term; i.e. modal logic expressions modelled as first order
theories.

Rational Strategies for Norm Compliance in the n-BDI Proposal 7

The normative context logic consists of the axiom schema K, closure un-
der implication, together with the consistency axiom. Therefore, contradictory
norms are allowed; i.e. it is possible to define NCC(�γ�) ∧ NCC(�¬γ�). This
fact is interesting for our work since agents are usually controlled by conflicting
norms addressed at the different roles played by the agent or there may be a
conflict among agent goals and norms. However, contradictory predicates such
as NCC(�γ�) ∧ ¬NCC(�γ�) are not allowed, i.e. expressions that claim that a
certain norm exists and not exits simultaneously.

3.3 Bridge Rules

Normative BDI Agents require the definition of additional bridge rules for al-
lowing norms to be recognised and normative decisions to be taken.

Updating the NAC. Agent observations and communications which it per-
ceives from its environment (O β) are included into the norm acquisition context
as a new term or theory (�β�) (see Figure 1 Rule 4):

CC : (O β)
NAC : (�β�) (4)

Norm Transformation Rules. Inside the norm acquisition context new norms
are acquired. Those recognised norms (NAC n, ρn, ρS , ρR) are transformed into
terms inside the normative context (NCC(�γ�)) (see Figure 1 Rule 5):

NAC : (NAC n, ρn, ρS, ρR)
NCC : (NCC(�γ�)) (5)

As previously argued, each norm is translated into an inference rule (γ =
ϕ→ ψ) belonging to the normative context. The definition of this inference rule
depends on the concrete deontic type of the norm which is being translated.

– Obligation Norm.

NAC : (NAC 〈O, C, A, E, S, R〉, ρn, ρS , ρR)
NCC : NCC(�γ�)

where:

γ = ϕ→ ψ

ϕ = (B A, βA) ∧ (B¬E, β¬E)

ψ = (D+C, f(θactivation, θcompliance))

If an agent considers that the obligation is currently active ((B A, βA) ∧
(B¬E, β¬E)) then a new positive desire corresponding to the norm condition
is inferred:

(D+C, f(θactivation, θcompliance))

8 N. Criado, E. Argente, and V. Botti

– Prohibition Norm.

NAC : (NAC 〈F, C, A, E, S, R〉, ρn, ρS , ρR)
NCC : NCC(�γ�)

where:

γ = ϕ→ ψ

ϕ = (B A, βA) ∧ (B¬E, β¬E)

ψ = (D−C, f(θactivation, θcompliance))

Similarly to obligation norms, a prohibition related to a condition C is trans-
formed into an inference rule which asserts a negative desire if the norm is active.

The certainty degree related to the norm activation (θactivation), together
with the certainty or desirability of norm compliance (θcompliance) are employed
by the function f in order to assign a degree to the normative desire. The
concrete definition of f is problem dependent. However, in this work it has
been implemented as:

f(θactivation, θcompliance) = θactivation × θcompliance

The norm activation (θactivation) is defined as a factivation function that com-
bines the belief degrees related to the norm activation and expiration conditions
(βA and β¬E) and the certainty degree of the norm (ρn):

θactivation = factivation(βA, β¬E , ρn) = βA × β¬E × ρn

If the agent has not any belief related to occurrence of any of these conditions,
then the belief degree is defined as zero.

The norm compliance (θcompliance) is defined as a fcompliance function that
takes as input the positive/negative degrees of the norm condition (δ∗C), sanction
(δ∗S) and reward (δ∗R); and the possibilities of being sanctioned and rewarded (ρS
and ρR). With this information, the compliance function will determine if the
agent fulfils the norm.

θcompliance = fcompliance(δ∗C , δ∗S , δ∗R, ρS , ρR)

were δ∗C = (δ+
C , δ−C); δ∗S = (δ+

S , δ−S); δ∗R = (δ+
R , δ−R)

Updating the NCC. Besides the definition of bridge rules for connecting
the NAC with the NCC; additional bridge rules are needed in order to allow
normative BDI agents to consider norms in their decision making process. More
specifically, both agent desires and beliefs (γ) are included into the normative
context as first order formulas (�γ�) in order to determine when a norm is active
(Figure 1 Rules 6 and 7):

BC : γ

NCC : NCC(�γ�) (6)

DC : γ

NCC : NCC(�γ�) (7)

Rational Strategies for Norm Compliance in the n-BDI Proposal 9

Updating the DC: Coherence Maintenance. In addition, after performing
the inference process for creating new desires (�(D∗ γ, δ)�) derived from norm
application; the normative context must update the DC (Figure 1 Rules 8 and
9). The addition of these propositions into this mental context may cause an
inconsistency with the current mental state. Next, the problem of coherence
maintenance among desires is faced.

In this proposal of BDI architecture, the maintenance of coherency among
desires has been achieved by means of two different schemas (i.e. DC1 and DC2)
which have been previously defined in [7]. These schemas impose some con-
straints between the positive and negative desires of a formula and its negation.
Next, each schema is explained.

On the one hand, the DC1 schema avoids having contradictory desires; i.e. to
desire (D+γ, δ+

γ) and (D+¬γ, δ+
¬γ) simultaneously. Thus, this constraint and the

corresponding for negative desires impose the next constraint over propositions
belonging to the DC:

min(δ∗γ , δ
∗
¬γ) = 0

where δ∗γ and δ∗¬γ are the desirability or undesirability degrees assigned to propo-
sition γ and its negation, respectively.

On the other hand, schema DC2 imposes a restriction over positive and nega-
tive desires for a same goal. In particular, it claims that an agent cannot desire to
be in world more than it is tolerated (i.e. not rejected). Therefore, it determines
that:

δ+
γ + δ−γ ≤ 1

According to DC1 and DC2 schemas, bridge rule for updating the DC with
the positive desires derived from norms is defined as follows (Figure 1 Rule 8):

NCC : NCC(�(D+ γ, δ)�), δ > δthres, DC : (D− γ, δ−), DC : (D+ γ, δ+)
DC : (D+ γ, max(δ, δ+)), DC : (D+¬γ, 0),

DC : (D− γ, min(δ−, 1−max(δ, δ+)))

(8)

Thus, the desire degree assigned to the new proposition γ is defined as the
maximum between the new desirability and the previous value (max(δ, δ+)). In
order to follow DC1 schema, desirability of ¬γ is updated to 0. According to DC2

schema, the undesirability assigned to γ is updated as the minimum between the
previous value of undesirability assigned to γ (δ−) and its maximum coherent
undesirability, which is defined as 1−max(δ, δ+). Moreover, in order to avoid the
propagation of insignificant terms, only these new terms whose degree exceeds
δthres will be transformed into mental objects. The definition of this threshold
is also problem dependent.

Similarly, bridge rule for updating the DC with negative desires is defined as
follows (Figure 1 Rule 9):

NCC : NCC(�(D− γ, δ)�), δ > δthres, DC : (D− γ, δ−), DC : (D+ γ, δ+)
DC : (D− γ, max(δ, δ−)), DC : (D−¬γ, 0),

DC : (D+ γ, min(δ+, 1−max(δ, δ−)))

(9)

10 N. Criado, E. Argente, and V. Botti

Along this section, our proposal of Normative Graded BDI architecture has
been explained. Through the norm compliance function different strategies for
norm compliance can be implemented. Strategies for norm compliance have
been classified into rational and non-rational motivations. The next section illus-
trates how the former type of norm compliance strategies is implemented in our
architecture.

4 Rational Strategies for Norm Compliance

Several proposals [8,10,20] have been made with the aim of defining rational
strategies for norm compliance. One of the first works on analysing motivations
for norm compliance from an agent perspective was presented in [8]. Here it is
claimed that norms not only require a behaviour but also a mental attitude.
According to this work, strategies for norm compliance are classified into: i)
unconditional compliance, which implies that agents do not have capabilities
for considering norms and they always fulfil norms; ii) instrumental compliance,
which implies a greater level of autonomy since agents adopt norms if they
consider them as beneficial to their goals; iii) cooperative agents adopt norms
whenever they consider them being beneficial for the whole society; and iv)
benevolent agents fulfil those norms which benefit other agents which they want
to favour. In [20] these strategies were revised and extended.

This section illustrates how different norm compliance strategies can be easily
implemented by our proposal of multi-context BDI agent. Mainly, the norm com-
pliance strategy determines the certainty degree assigned to the new mental at-
tributes created by the inference rules inside the normative context. Specifically,
the fcompliance function implements the different norm compliance strategies.

4.1 Traditional Strategies for Norm Compliance

Taking as a reference the classification of strategies for norm compliance de-
scribed in [20], we propose to implement each strategy as follows:

– Simple Strategies, these ones do not consider the effects that compliance with
a norm might have on agent’s goals. They are classified into:
• Agents which follow the Automatic strategy will accept all norms:

fcompliance(δ∗C , δ∗S , δ∗R, ρS , ρR) = 1

• Agents which follow the Rebellious strategy will reject all norms system-
atically:

fcompliance(δ∗C , δ∗S , δ∗R, ρS , ρR) = 0

• Agents which follow a Fearful strategy will accept those norms which
have a sanction. Thus, these agents do not consider whether the sanction

Rational Strategies for Norm Compliance in the n-BDI Proposal 11

is beneficial or detrimental to their goals, but they only consider if the
norm has a sanction:

fcompliance(δ∗C , δ∗S , δ∗R, ρS , ρR) =
{

1 if δ+
S + δ−S > 0

0 otherwise

• Finally, Greedy agents adopt all norms whose compliance is rewarded,
without considering the utility of the reward:

fcompliance(δ∗C , δ∗S , δ∗R, ρS , ρR) =
{

1 if δ+
R + δ−R > 0

0 otherwise

– Motivated Strategies are more complex strategies which consider the possible
effects on goals of both the norm condition and the rewards in the case a
norm is fulfilled, and the effects of punishments if it is not. These strategies
are based on the utilitarian view which defines the utility as the good to be
maximized. Thus, the desirability of both norm fulfilment and violation is
considered as criteria for norm compliance.
• An Egoist agent will accept only those norms which benefit its goals:

fcompliance(δ∗C , δ∗S , δ∗R, ρS, ρR) =
{

1 if δ+
C > 0

0 otherwise

• Pressure can be a motivation for norm compliance. More concretely, an
agent which follows the Pressure strategy will respect all norms whose
sanction is more undesired than the norm condition:

fcompliance(δ∗C , δ∗S , δ∗R, ρS , ρR) =
{

1 if δ−S > δ−C
0 otherwise

• An Opportunist agent will accept all norms whose reward is more pre-
ferred to the negative effects of the norm:

fcompliance(δ∗C , δ∗S , δ∗R, ρS, ρR) =
{

1 if δ+
R > δ−C

0 otherwise

– Social Strategies. In the existing literature different social strategies for norm
compliance have been defined:
• Cooperative agents accept norms which are considered as beneficial for

the whole society. This strategy can be implemented by defining social
goals as agent desires.
• A benevolent agent adopts those norms which are desirable for another

agent which it wants to favour.
In order to implement this strategy, it is necessary to determine if a target
agent j would be favoured from norm application; i.e. if target agent j has
a positive desire of C. Therefore, any agent should be able to represent
other’s mental attitudes as beliefs (i.e. nested mental propositions such
as (B (D+

j C), β) ∈ BC). This represents a problem since desire formulas
as (D+

j C) are many-valued formulae (they have a truth value belonging

12 N. Criado, E. Argente, and V. Botti

to [0,1]). Taking as a reference the solution proposed in [7], this problem
can be solved by means of the definition of a projection operator (∇)
defined as true if the mental proposition has a positive degree. In this
sense, ∇(D+

j C) would be true when target agent j had a positive desire
related to proposition C whose degree was greater than 0. Thus, norms
will be adopted if the agent has the belief (B∇(D+

j C), β), which means
that an agent beliefs that another agent j desires occurrence of C with
an intensity higher than 0.

4.2 Complex Strategies for Norm Compliance

Besides these well known strategies for norm compliance, more complex ones can
be defined taking advance of the possibilities which the proposed Normative BDI
architecture provides. The main idea beyond complex strategies is to consider
both positive and negative effects derived from norm fulfilment and violation.

– Mixed Strategy. It accepts a norm if the effect of norm compliance is higher
than the effect of norm violation. On the one hand, consequences of norm
fulfilment are the desirability of both the norm condition (δ+

C) and the reward
(δ+
R) and the undesirability of the norm sanction (δ−S), which will be avoided

if the norm is respected. On the other hand, the effects of norm violation
are the desirability of the sanction (δ+

S) and the undesirability of both the
norm condition (δ−C) and reward (δ−R), that will be avoided if the norm is
not respected.

fcompliance(δ∗C , δ∗S, δ∗R, ρS , ρR) =

⎧⎨⎩
1 if δ+

R + δ+
C + δ−S >

δ−R + δ−C + δ+
S

0 otherwise

– Mixed Pondered Strategy. This strategy is very similar to the previous one,
since it accepts a norm if the effect of norm compliance is higher than the
effect of norm violation. However, both desirability and undesirability of
sanctions and rewards are pondered with their observed probabilities (ρS
and ρR) when calculating the effects of the norm.

fcompliance(δ∗C , δ∗S , δ∗R, ρS , ρR) =

⎧⎪⎪⎨⎪⎪⎩
1 if (ρR ∗ δ+

R) + δ+
C+

(ρS ∗ δ−S) > (ρR ∗ δ−R)
+δ−C + (ρS ∗ δ+

S)
0 otherwise

These are discrete strategies in the sense they determine if the norm will be
adopted or not. However, continuous functions can be easily defined by employ-
ing the difference between norm compliance and violation effects.

As being illustrated, the proposed Normative BDI agent architecture is general
enough for implementing well known strategies for norm compliance as well
as more complex strategies or a combination of different strategies. Next, our
proposal of normative agent architecture is applied into a case study which
illustrates the differences among the norm compliance strategies.

Rational Strategies for Norm Compliance in the n-BDI Proposal 13

5 The m-Water Problem

The m-Water [4] is a water right market which is implemented as a regulated
open multi-agent system. It is a challenging problem, specially in countries like
Spain, since scarcity of water is a matter of public interest. The m-Water frame-
work is a somewhat idealized version of current water-use regulations that artic-
ulate the interactions of those individual and collective entities that are involved
in the use of water in a closed basin. This is a regulated environment which
includes the expression and use of regulations of different sorts: from actual laws
and regulations issued by governments, to policies and local regulations issued
by basin managers, and to social norms that prevail in a given community of
users [13]. For these reasons, we consider the m-Water problem as a suitable case
study for evaluating performance of the n-BDI agent architecture, since agents’
behaviour is affected by different sorts of norms which are controlled by different
mechanisms such as regimentation, enforcement and grievance and arbitration
processes.

As argued in [5], the use of water in a basin can be seen as a MAS controlled
by norms. In this section an example scenario of the m-Water problem is il-
lustrated. According to the Spanish Water Law, the irrigators which belong to
the same area of a basin can be organized forming irrigator communities. These
communities act on behalf of their members by defending their rights and inter-
ests. However, each community can impose some norms or restrictions to their
members.

5.1 Basic Scenario

The irrigator agent represents a farmer who wants to obtain high quality veg-
etables from its plantation. Since this is its main goal, this desire has the highest
degree of desirability:

(D+highQuality, 1)

In order to achieve its goal of picking high quality vegetables it has two dif-
ferent irrigation possibilities: to irrigate daily or every two days. Logically, it is
more possible to obtain a good crop if the land is frequently irrigated:

(B [dailyIrrigation]highQuality, 0.75)
(B [alternateDaysIrrigation]highQuality, 0.5)

Thus, there are, at least, two different cultivation plans: one which contains
the daily irrigation action and another which performs the action corresponding
to the irrigation in alternative days:

PC : (plan(dailyIrrigation))
PC : (plan(alternateDaysIrrigation))

Finally, he avoids being fined: (D−payF ine, 0.8). The undesirability degree has
been defined by means of an utility function whose definition is over the scope
of this paper.

14 N. Criado, E. Argente, and V. Botti

Bridge Rule Application Realistic Desires. The first step performed by the
BDI architecture consists in applying Bridge Rule 1 in order to refine abstract
desires into more realistic ones:

(D+ highQuality, 1), (B [dailyIrrigation]highQuality, 0.75)
DC : (D+ [dailyIrrigation]highQuality, fD(1, 0.75))

(D+ highQuality, 1), (B [alternateDaysIrrigation]highQuality, 0.5)
DC : (D+ [alternateDaysIrrigation]highQuality, fD(1, 0.5))

Function fD is implemented as the product of both degrees.

Deriving Intentions. These more specific desires allow the agent to determine
which actions will be intended according to the existing plans (Bridge Rule 2):

DC : (D+ [dailyIrrigation]highQuality, 0.75),
PC : plan(dailyIrrigation), 0.75 > 0

IC : (I[dailyIrrigation]highQuality, 0.75)

DC : (D+ [alternateDaysIrrigation]highQuality, 0.5),
PC : plan(alternateDaysIrrigation), 0.5 > 0

IC : (I[alternateDaysIrrigation]highQuality, 0.5)

Action Selection. Finally, the action which is more intended will be performed
by the agent (Bridge Rule 3):

IC : (I[dailyIrrigation]highQuality, 0.75),
IC : (I[alternateDaysIrrigation]highQuality, 0.5), 0.75 > 0.5

CC : (P dailyIrrigation)

5.2 Normative Decision Making

Before making a decision about joining an irrigator community, the irrigator
agent is advertised by a representative about the main norms imposed by the
community. In this example the community forbids agents to irrigate daily if a
drought state has been declared in this area. Once the agent decides to become a
member of the community it includes this norm advertised by the representative
since it affect it. Thus, the agent assigns the maximum certainty degree to the
recognised norm:

(NAC 〈F, drought,−, dailyIrrigation, payF ine, candidateGov〉, ρn, ρS , ρR)
ρn = 1, ρS = 0.25, ρR = 1

If the irrigator respects the norm then it would become a candidate to the
governor board of the community. However, being a governor implies a lot of
responsibilities. Because of this the irrigator is not interested on becoming a
candidate to the governors board ((D−candidateGov, 0.5)).

In this example, the irrigator agent is not sure if a drought state has been
declared. However, according to the meteorological conditions it thinks it is
possible that there is a drought situation. Hence it has a belief (B drought, 0.6)
in order to represent this drought possibility.

Rational Strategies for Norm Compliance in the n-BDI Proposal 15

Norm Transformation. Once the norm is been recognised by the NAC it is
transformed into an inference rule inside the NCC (Bridge Rule 5):

NAC : (NAC 〈F, drought,−, dailyIrrigation, payF ine, candidateGov〉, 1, 0.25, 1)
NCC : NCC(�ϕ → ψ�)

where:

ϕ = (B drought, 0.6)
ψ = (D−dailyIrrigation, f(factivation(0.6,−, 1)),

fcompliance(δ∗dailyIrrigation, δ∗payFine, δ
∗
candidateGov, 0.25, 1))

On the one hand, the norm activation function takes as input the certainty
value assigned to the occurrence of the norm activation condition (0.6) and the
confidence value assigned to the norm acquisition (1). In particular, this agent
has implemented the factivation as the product of its not empty parameters:

factivation(δA, δ¬E, δnr) = δA × δ¬E × δnr = 0.6

Norm Compliance. Regarding the norm acceptance, different results can be
obtained depending on the compliance strategy that has been employed.

fcompliance(δ∗C , δ∗S , δ∗R, ρS , ρR)

where:

δ+
C = δ+

dailyIrrigation = 0; δ−C = δ−dailyIrrigation = 0 since there is no (positive
or negative) desire on the norm condition (i.e. dailyIrrigation);
δ+
S = δ+

payFine = 0; δ−S = δ−payFine = 0.8, since the irrigator agent avoids
being fined ((D−payF ine, 0.8));
δ+
R = δ+

candidateGov = 0; δ−R = δ−candidateGov = 0.5, as he is not interested on
becoming a candidate to governor ((D−candidateGov, 0.5);
ρS = 0.25, which implies that there is a low probability of being sanctioned
when not following this norm;
ρR = 1, which implies that the reward action will be always applied when
following this norm;

Next, results obtained with each strategy are shown:

– Automatic Strategy. In this case the irrigator agent always accepts the norm,
thus fcompliance = 1. Then the f function multiplies the values obtained by
the factivation and fcompliance functions. Therefore, a new normative de-
sire (D−dailyIrrigation, 0.6) is inserted into the DC (Bridge Rule 8), being
δthreshold = 0.25:

NCC : NCC(�(D−dailyIrrigation, 0.6)�), 0.6 > 0.25
DC : (D−dailyIrrigation, 0.6))

16 N. Criado, E. Argente, and V. Botti

Then the IC is updated through Bridge Rule 2:

DC : (D+[dailyIrrigation]highQuality, 0.9),
DC : (D−dailyIrrigation, 0.6), PC : plan(dailyIrrigation), 0.9 > 0.6

IC : (I[dailyIrrigation]highQuality, fI(0.9, 0.6))

Thus, a new intention related to the dailyIrrigation action (I[dailyIrriga-
tion]highQuality, 0.3) is created. Its intentionality has been reduced since
the action has a negative desire. Finally, the intention update implies the
modification of the agent behaviour. The intention related to the alternate-
DaysIrrigation, whose degree is 0.5, is the most intended. Thus, the action
performed is alternateDaysIrrigation, since the irrigator has adopted the
norms of its irrigation community.

– Rebellious Strategy. This strategy implies that the irrigator rebuts respecting
norms systematically, so then fcompliance = 0 for any norm. In this case a
new intention will be created in the NCC (D+alternateDaysIrrigation, 0).
However, this normative desire is not inserted into the DC since its degree
does not exceed δthres. Consequently, the norm is not followed and the agent
maintains the daily irrigation.

– Fearful Strategy. Since the norm has a sanction which punishes agents that
do not respect the prohibition, the irrigator would follow the social norm
(fcompliance = 1). Consequently, it will adopt an alternateDaysIrrigation
action, similarly as in the case of an automatic strategy.

– Greedy Strategy. This strategy implies following the norm whenever there is
a reward. In this case, since δ+

R + δ−R = 1 > 0 the irrigator agent will adopt
the norm and, thus, it will perform the alternateDaysIrrigation action.

– Egoist Strategy. With this strategy, the irrigator will respect the norm only
if it benefits its goals (δ+

C > 0). In this case δ+
dailyIrrigation = 0 and then

fcompliance = 0.
– Pressure Strategy. This strategy defines that the agent adopts the norm only

if its sanction is more undesired than the norm condition (δ−S > δ−C). Since
δ−payFine = 0.8 and δ−dailyIrrigation = 0, then fcompliance = 1.

– Opportunistic Strategy. This strategy defines that the agent will adopt the
norm only if its reward is more desired than the undesirability of the norm
condition (δ+

R > δ−C). δ+
R = 0, since the irrigator agent does not desire the

reward at all, so then fcompliance = 0.
– Mixed Strategy. With this strategy the agent would consider both positive

and negative effects derived from norm respect or norm violation. The norm
is adopted if:

δ+
R + δ+

C + δ−S > δ−R + δ−C + δ+
S

According to the current mental state its value is:

0 + 0 + 0.8 > 0.5 + 0 + 0

which is true. Then fcompliance = 1.

Rational Strategies for Norm Compliance in the n-BDI Proposal 17

– Mixed Pondered Strategy. This strategy is defined as the previous one but
the reward and sanction desirability and undesirability are pondered with
their possibilities; i.e. the norm is respected if:

(ρR ∗ δ+
R) + δ+

C + (ρS ∗ δ−S) > (ρR ∗ δ−R) + δ−C + (ρS ∗ δ+
S)

In this example this formula is:

(1× 0) + 0 + (0.25× 0.8) > (1× 0.5) + 0 + (0.25× 0)

Then, the comparison is not true and fcompliance = 0.

Along this section, a case study of an autonomous normative agent has been
illustrated. More specifically, it consists of an irrigator agent which must choose
whether respecting and not respecting norms. In its decision making process it
employs different norm compliance strategies which have been defined for the
proposed Normative BDI architecture.

6 Discussion

Autonomous normative agents are defined as agents which have explicit knowl-
edge about norms and are able to decide about norm compliance convenience;
i.e. they have capabilities for recognizing, representing and accepting norms, and
for solving possible conflicts among them [8]. Several proposals have been made
in order to define agents provided with some of these capabilities. However, the
definition of an agent architecture and the reasoning processes over this archi-
tecture which overcome all of the challenges raised by autonomous normative
agents stays an open issue.

Regarding recent works on normative reasoning, the BOID architecture [6]
represents obligations as mental attributes and analyses the relationship and in-
fluence of such obligations on agent beliefs, desires and intentions. This approach
is very similar to the work proposed here. However, our approach overlaps the
main drawbacks of the BOID proposal in different ways: i) our normative model
does not only consider obligation norms but it gives support to constitutive and
regulative norms [11]; ii) it employs graded BDI logics for representing men-
tal attitudes, which allows agents to face with uncertain and conflicting mental
sates; and iii) it consider norms as dynamic entities that agents should acquire
from their environment. In relation with this last feature, the EMIL proposal
[1], which has developed a framework for autonomous norm acquisition, might
be employed for complementing the NAC component of our normative BDI ar-
chitecture. Thus, agents would be able to acquire new norms by observing the
behaviour of other agents which are situated in their environments. The main
disadvantage of EMIL with respect to the n-BDI is that the EMIL agents obey
all recognised norms blindly by deriving new normative goals. Thus, they do
not consider their own motivations and interests. This drawback is also present
in the NoA [19] architecture. Mainly, this architecture allows agents to make

18 N. Criado, E. Argente, and V. Botti

decisions about what action to execute according to a set of contracts imposed
on them. Another interesting issue not considered by none of these works is how
the behaviour can be modified for respecting unforeseen norms. Regarding this
matter, in [27] the KGP (Knowledge-Goal-Plan) model of agency is augmented
with normative notions such as obligations, prohibitions and roles.

Finally, the normative reasoning problem requires sophisticated techniques in
order to allow agents to consider convenience of norm compliance according to
their current mental state. In this sense, norms may be inconsistent with the
mental state of agents. The cognitive coherence theory evaluates the truth of
cognitions in relation with a set of cognitions [28]. Its main purpose is the study
of associations; i.e. how pieces of information influence each other by imposing
a positive or negative constraint over the rest of information. The problem of
coherence among agent cognitions has been superficially addressed in this paper
and will be object of future work. Regarding more elaborated solutions to the
coherence problem, in [18] a formalization of deductive coherence theory has
been used as a criterion for rejecting or accepting norms. This work is based on
a very simple notion of norm as an unconditional obligation. In addition, the
problem of norm conflict has not been faced. Finally the process by which agents’
desires are updated according to norms have also been defined in a simple way.
In particular, this proposal only considers coherence as the one rational criterion
for norm acceptance. Thus, the effect of these normative desires on the previous
existing desires is not considered.

In this paper we have focused on the definition of rational criteria for de-
termining norm compliance. The usage of coherence theory as a criterion for
determining which and how to comply with norms is over the scope of this pa-
per. However, it is explained in [14]. In this paper, it is proposed to calculate
the coherence maximization process in order to determine which norm instances
are consistent and must be taken into account when updating the desire theory.

7 Conclusions

The n-BDI architecture allows agents to acquire new norms from their environ-
ment and consider them in their decision making process. The fact that mental
attitudes of agents are quantified allows them to reason in open environments
which are controlled by norms. In this sense, graded modalities allow agents
to represent uncertain knowledge about the current state of the world. More-
over, graded intentions and desires enable agents to make decisions according
to their satisfaction criterion. This is specially interesting when designing nor-
mative agents whose behaviour can be affected by conflicting norms. Thus, the
desirability degrees of desires and intentions allow agents to decide between norm
violation or fulfilment according to their priorities.

As been illustrated, the n-BDI architecture: i) allows the definition of those
strategies which had been defined in previous works; ii) the fact that mental
attitudes are represented as graded propositions allows agents to consider not
only whether norms are beneficial to their goals and motivations but also the

Rational Strategies for Norm Compliance in the n-BDI Proposal 19

intensity in which they will be affected; and iii) it overlaps previous works since
it allows the definition of complex strategies which consider both positive and
negative effects of norm fulfilment and violation.

In this paper, no evaluation has been included. However, works describing the
previous versions of the n-BDI agent architecture provide an evaluation of the
proposal. Thus, in [12] results of a set of simulations belonging to the m-Water
case study can be found. However, we are working on the implementation of a
fully functional prototype of the n-BDI architecture. Our aim is to evaluate em-
pirically our proposal through the design and implementation of more complex
and elaborated scenarios. As future work, we plan to continue by working on
the analysis of non-rational motivations for norm compliance. In this sense, we
are working on extending the n-BDI agent architecture with an emotion model
which will allow agents to take into consideration phenomena such as shame,
honour, gratitude, etc. when adopting norms.

Acknowledgements

This work was partially supported by the Spanish government under grants
CONSOLIDER-INGENIO 2010 CSD2007-00022, TIN2009-13839-C03-01 and
TIN2008-04446 and by the FPU grant AP-2007-01256 awarded to N. Criado.

References

1. Andrighetto, G., Campenńı, M., Cecconi, F., Conte, R.: How agents find out norms:
A simulation based model of norm innovation. In: Proc. of NORMAS, pp. 16–30
(2008)

2. Artikis, A., Pitt, J.: A formal model of open agent societies. In: Proc. of AGENTS,
pp. 192–193. ACM, New York (2001)

3. Boella, G., Van Der Torre, L.: Regulative and constitutive norms in normative
multiagent systems. In: Procs. of KR 2004, pp. 255–265 (2004)

4. Botti, V., Garrido, A., Giret, A., Igual, F., Noriega, P.: On the design of mWater:
a case study for Agreement Technologies. In: Proc. of EUMAS, pp. 1–15 (2009)

5. Botti, V., Garrido, A., Giret, A., Noriega, P.: Managing water demand as a regu-
lated open mas. In: MALLOW Workshop on COIN, pp. 1–10 (2009)

6. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The boid
architecture – conflicts between beliefs, obligations, intentions and desires. In: Proc.
of AAMAS, pp. 9–16. ACM Press, New York (2001)

7. Casali, A.: On Intentional and Social Agents with Graded Attitudes. PhD thesis,
Universitat de Girona (2008)

8. Castelfranchi, C.: Prescribed mental attitudes in goal-adoption and norm-adoption.
Artif. Intell. Law 7(1), 37–50 (1999)

9. Conte, R., Andrighetto, G., Campenni, M.: On norm internalization. a position
paper. In: Proc. of EUMAS (2009)

10. Conte, R., Castelfranchi, C., Dignum, F.: Autonomous norm acceptance. In: Pa-
padimitriou, C., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI),
vol. 1555, pp. 99–112. Springer, Heidelberg (1999)

20 N. Criado, E. Argente, and V. Botti

11. Criado, N., Argente, E., Botti, V.: A BDI Architecture for Normative Decision
Making (Extended Abstract). In: Proc. of AAMAS, pp. 1383–1384 (2010)

12. Criado, N., Argente, E., Botti, V.: Normative Deliberation in Graded BDI Agents.
In: Dix, J., Witteveen, C. (eds.) MATES 2010. LNCS, vol. 6251, pp. 52–63.
Springer, Heidelberg (2010)

13. Criado, N., Argente, E., Garrido, A., Igual, F., Botti, V., Noriega, P., Giret, A.:
Norm enforceability in Electronic Institutions? In: De Vos, M., et al. (eds.) COIN
2010. LNCS (LNAI), vol. 6541, pp. 250–267. Springer, Heidelberg (2011)

14. Criado, N., Argente, E., Noriega, P., Botti, V.: Towards a Normative BDI Architec-
ture for Norm Compliance. In: De Vos, M., et al. (eds.) COIN 2010. LNCS (LNAI),
vol. 6541, pp. 1–20. Springer, Heidelberg (2011)

15. Deci, E., Ryan, R.: The” what” and” why” of goal pursuits: Human needs and the
self-determination of behavior. Psychological Inquiry 11(4), 227–268 (2000)

16. Elster, J.: Social norms and economic theory. Journal of Economic Perspec-
tives 3(4), 99–117 (1989)

17. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do
without modal logics. Artificial Intelligence 65(1), 29–70 (1994)

18. Joseph, S., Sierra, C., Schorlemmer, M., Dellunde, P.: Deductive coherence and
norm adoption. Logic Journal of the IGPL 18, 118–156 (2010)

19. Kollingbaum, M., Norman, T.: Noa-a normative agent architecture. In: Proc. of
IJCAI, vol. 18, pp. 1465–1466. Citeseer (2003)

20. López y López, F.: Social Power and Norms: Impact on agent behaviour. Citeseer
(2003)

21. Luck, M., McBurney, P.: Computing as interaction: Agent and agreement tech-
nologies. In: Proc. of EUMAS, pp. 1–15 (2008)

22. Meyer, J.: Dynamic logic for reasoning about actions and agents. In: Minker, J.
(ed.) Logic-Based Artificial Intelligence, pp. 281–311. Kluwer Academic Publishers,
Dordrecht (2000)

23. Noriega, P., Sierra, C.: Towards layered dialogical agents. In: Jennings, N.R.,
Wooldridge, M.J., Müller, J.P. (eds.) ECAI-WS 1996 and ATAL 1996. LNCS,
vol. 1193, pp. 173–188. Springer, Heidelberg (1997)

24. Parsons, S., Jennings, N.R., Sabater, J., Sierra, C.: Agent specification using multi-
context systems. In: d’Inverno, M., Luck, M., Fisher, M., Preist, C. (eds.) UKMAS
Workshops 1996-2000. LNCS (LNAI), vol. 2403, pp. 205–226. Springer, Heidelberg
(2002)

25. Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by argu-
ing. JLC: Journal of Logic and Computation 8(3), 261–292 (1998)

26. Perrussel, L.: Contextual reasoning. In: ECAI, pp. 366–367 (1998)
27. Sadri, F., Stathis, K., Toni, F.: Normative KGP agents. Computational & Mathe-

matical Organization Theory 12(2), 101–126 (2006)
28. Thagard, P.: Coherence in Thought and Action. The MIT Press, Cambridge (2000)

Generating Executable Multi-agent System
Prototypes from SONAR Specifications

Michael Köhler-Bußmeier, Matthias Wester-Ebbinghaus, and Daniel Moldt

University of Hamburg, Department for Informatics
Vogt-Kölln-Str. 30, D-22527 Hamburg

{koehler,wester,moldt}@informatik.uni-hamburg.de

Abstract. This contribution presents the Mulan4Sonar middleware
and its prototypical implementation for a comprehensive support of or-
ganisational teamwork, including aspects like team formation, negotia-
tion, team planning, coordination, and transformation. Organisations are
modelled in Sonar, a Petri net–based specification formalism for multi-
agent organisations. Sonar models are rich and elaborated enough to
automatically generate all necessary configuration information for the
Mulan4Sonar middleware.

Keywords: middleware, Mulan4Sonar, multi-agent systems, organi-
sations, Petri nets, Renew, Sonar.

1 Introduction

Organisation-oriented software engineering is a discipline which incorporates re-
search trends from distributed artificial intelligence, agent-oriented software en-
gineering, and business information systems (cf. [1,2] for an overview). The basic
metaphors are built around the interplay of the macro level (i.e. the organisa-
tion or institution) and the micro level (i.e. the agent). Organisation-oriented
software models are particularly interesting for self- and re-organising systems
since the system’s organising principles (structural as well as behavioural) are
taken into account explicitly by representing (in terms of reifying) them at run-
time.

The following work is based on the platform independent organisation model
Sonar (Self-Organising Net Architecture) which we have presented in [3,4]. In
this paper we turn to a middleware concept and its prototypical implementation
for the complete organisational teamwork that is induced by Sonar.

First of all we aim at a rapid development of our middleware prototype.
Therefore we need a specification language that inherently supports powerful
high-level features like pattern matching and synchronisation patterns. The sec-
ond requirement is a narrow gap between the specification and implementation
of the middleware prototype. Ideally, middleware specifications are directly ex-
ecutable. As a third requirement, we are interested in well established analysis
techniques to study the prototype’s behaviour. As a fourth requirement we want

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 21–38, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

22 M. Köhler-Bußmeier, M. Wester-Ebbinghaus, and D. Moldt

the middleware specifications to be as close as possible to the supported Sonar-
model of an organisation. Related to this, the fifth requirement results as the
possibility to be able to directly generate the middleware specifications from
the Sonar-model automatically. The sixth requirement is that we want an easy
translation of the prototype into an agent programming language.

Since Sonar-models are based on Petri nets we have chosen high-level Petri
nets [5] as the specification language for our middleware prototype. This choice
meets the requirements stated above: We can reuse Sonar-models by enrich-
ing them with high-level features, like data types, arc inscription functions etc.
Petri nets are well known for their precise and intuitive semantics and their
well established analysis techniques, including model checking or linear algebraic
techniques. We particularly choose the formalism of reference nets, a dialect of
high-level nets which supports the nets-in-nets concept [6] and thus allows to im-
mediately incorporate (“program”) micro-macro dynamics into our middleware.
Reference nets receive tool support with respect to editing and simulation by the
Renew tool [7]. Additionally, Renew has been extended by the agent-oriented
development framework Mulan [8,9], which allows to program multi-agent sys-
tems in a language that is a hybridisation of reference nets and Java. We make
use of Mulan and provide a middleware for Sonar-models. Consequently, our
middleware is called Mulan4Sonar and we present a fully-functional prototype
in this paper.

The paper is structured as follows: Section 2 briefly sketches our formal spec-
ification language for organisational models, called Sonar. Section 3 addresses
our Mulan4Sonar middleware approach on a rather abstract and concep-
tual level. It illustrates the structure of our target system: Sonar-models are
compiled into a multi-agent system consisting of so called position agents, i.e.
agents that are responsible for the organisational constraints. Section 4 describes
our implemented middleware prototype in detail and how it is generated from
Sonar-models. The middleware serves integration and control of all organisa-
tional activities, like team formation, negotiation, team planning, coordination,
and transformation. In Section 5 we evaluate the strength of our approach and
discuss ongoing and future work. We consider related work in Section 6 before
we close the paper with a conclusion in Section 7.

2 The Underlying Theoretical Model: SONAR

In this section we give a short introduction into our modelling formalism, called
Sonar. A Sonar-model encompasses (i) a data ontology, (ii) a set of interaction
models (called distributed workflow nets, DWFs), (iii) a model, that describes
the team-based delegation of tasks (called role/delegation nets), (iv) a network
of organisational positions, and (v) a set of transformation rules. A detailed
discussion of the formalism can be found in [3], its theoretical properties are
studied in [4].

Generating Executable Multi-agent System Prototypes 23

Fig. 1. A simplified Sonar-Model

In Sonar a formal organisation is characterised as a delegation network of
sub-systems, called positions . Each position is responsible for the execution or
delegation of several tasks. Figure 1 illustrates the relationship between the
Sonar interaction model, the delegation model and the position network – i.e.
the aspects (ii) to (iv)1. The left side of the figure describes the relationship be-
tween the positions (here: broker, virtual firm, requester, etc.) in terms of their
respective roles (here: Producer, Consumer, Producer1 and Producer2 – Prod,
Cons, Prod1 and Prod2 for short) and their associated delegation links. In this
scenario, we have a requester and two suppliers of some product. Coupling be-
tween them is provided by a broker. From a more fine-grained perspective, some
positions form a delegation network themselves. For example, in the case of the
supplier, we can identify a management level: the virtual firm, and two subcon-
tractors: firm 1 and firm 2. The two subcontractors may be legally independent
firms that integrate their core competencies in order to form a virtual enterprise
(e.g. separating fabrication of product parts from their assembly). The coupling
between the firms constituting the virtual enterprise is apt to be tighter and
more persistent than between requester and supplier at the next higher system
level, which provides more of a market-based and on-the-spot connection.

Sonar relies on the formalism of Petri nets. Each task is modelled by a
place p and each task implementation (delegation/execution) is modelled by a
transition t. Each task place is inscribed by the set of roles which are needed to
implement it, e.g. the set {Prod ,Cons} for the place in the position requester.
Each transition t is inscribed by the DWF net D(t) that specifies the interaction
between the roles. In the example we have two inscriptions: PC and PC3 where
the former is show on the right of Figure 1. The latter is a refinement which
replaces the behaviour of Prod by the interaction of Prod1 and Prod2. Positions

1 To keep the model small we we have omitted all data-related aspects and transfor-
mation rules – i.e. the aspects (i) and (v) – in this figure.

24 M. Köhler-Bußmeier, M. Wester-Ebbinghaus, and D. Moldt

are the entities which are responsible for the implementation of tasks2. Therefore,
each node in (P ∪ T) is assigned to one position O3.

So far we have used only the static aspects of Petri nets, i.e. the graph struc-
ture. But Sonar also benefits from the dynamic aspects of Petri nets: Team
formation can be expressed in a very elegant way. If one marks one initial place
of an organisation net Org with a token, each firing process of the Petri net
models a possible delegation process. More precisely, the token game is identical
to the team formation process (cf. Theorem 4.2 in [4]). It generates a team net
(the team’s structure) and a team DWF, i.e. the team’s behaviour specification.

Fig. 2. The formation of a team generated by the Petri net token game

An example is given in Figure 2 where the requester starts the team formation
(step #1). The team formation process is generated from the net where the ini-
tial place inside the requester is marked with a token. According to the Petri net
firing rule control is given over to the broker (step #2) which becomes an inner
agent of the team. Concurrently, the broker delegates the role Prod to the virtual
firm (step #3) and the role Cons to the requester (step #4) where the former
becomes an inner team agent while the latter becomes an executing agent (i.e. a
final agent). The virtual firm further delegates to firm 1 (step #5) and to firm 2
(step #6) which are executing agents, too. So, the team has three executing
agents which implement one role in the team DWF, each. While the delegation

2 The main distinction between roles and position is that positions – unlike roles – are
situated in the organisational network. Positions implement roles and are equipped
with resources.

3 Organisation nets can be considered as enriched organisation charts. Organisation
nets encode the information about delegation structures – similar to charts – and
also about the delegation/execution choices of tasks, which is not present in charts.
If one fuses all nodes of each position into one single node, one obtains a graph
which represents the organisation’s chart. Obviously, this construction removes all
information about the organisational processes.

Generating Executable Multi-agent System Prototypes 25

process from broker back to the requester does not change the role interaction
description (it stil is the role Cons) the delegation from the virtual firm to firm 1
and firm 2 refines the role Prod into the interplay of the roles Prod1 and Prod2.
The refinement is specified by the DWF PC3 .

The resulting team net is shown in Figure 3 together with its team DWF
net. The team DFW net is a composition of the Prod1 and Prod2 related part
of PC3 and the Cons part of PC . (Since the concrete behaviour refinement of
the role Prod into the interplay of the roles Prod1 and Prod2 is irrelevant for
the purpose of this paper, it is hidden inside the “black box” area of the team
DWF in Figure 3.) Each team net induces a clear assignment of the roles in
the team DWF to executing agents: Here, position firm 1 implements the role
Prod1, firm 2 implements Prod2, and requester implements Cons.

As another aspect, Sonar-models are equipped with transformation rules.
Transformation rules describe which modifications of the given model are al-
lowed. They are specified as graph rewrite rules [10]. As a minimal requirement
the rules must preserve the correctness of the given organisational model. In
Sonar transformations are not performed by the modeller – they are part of

Fig. 3. Team Net and Team DWF generated from the formation process in Fig. 2

26 M. Köhler-Bußmeier, M. Wester-Ebbinghaus, and D. Moldt

the model itself. Therefore a Sonar model is stratified by models of different
levels. The main idea is that the activities of DWF nets that belong to the level
n are allowed to modify those parts that belong to levels k < n but not to higher
ones.

3 Organisational Position Network Activities

We now elaborate on the activities of a multi-agent system behaving according
to a Sonar-model.

3.1 Conceptual Overview

The basic idea is quite simple: With each position of a Sonar-model we asso-
ciate one dedicated agent, called an organisational position agent (OPA). This is
illustrated in Figure 4 where the OPAs associated with a Sonar-model together
embody a middleware layer.

Fig. 4. An Organisation as an OPA/OMA Network

An OPA network embodies a formal organisation. An OPA represents an or-
ganisational artifact and not a member/employee of the organisation. However,
each OPA represents a conceptual connection point for an organisational mem-
ber agent (OMA). An organisation is not complete without its OMAs. Each
OMA actually interacts with its OPA to carry out organisational tasks, to make
decisions where required. OMAs thus implement/occupy the formal positions4.
Note that an OMA can be an artificial as well as a human agent. An OPA both
enables and constrains organisational behaviour of its associated OMA. Only
via an OPA an OMA can effect the organisation and only in a way that is in
conformance with the OPA’s specification. In addition, the OPA network as a
whole relieves its associated OMAs of a considerable amount of organisational
4 Note that from a technical point of view, the OPA network is already a complete

MAS. This MAS is highly non-deterministic since a Sonar-model specifies what is
allowed and what is obligatory, so many choices are left open. Conceptually, the OPA
network represents the formal organisation while the OMAs represent its informal
part which in combination describe the whole organisation.

Generating Executable Multi-agent System Prototypes 27

overhead by automating coordination and administration. To put it differently,
an OPA offers its OMA a “behaviour corridor” for organisational membership.
OMAs might of course only be partially involved in an organisation and have
relationships to multiple other agents than their OPA (like Alice and Bob in
Figure 4) or even to agents completely external to the organisation (like Alice
and Dorothy). From the perspective of the organisation, all other ties than the
OPA-OMA link are considered as informal connections.

To conclude, an OPA embodies two conceptual interfaces, the first one be-
tween micro and macro level (one OPA versus the complete network of OPAs)
and the second one between formal and informal aspects of an organisation (OPA
versus OMA). We can make additional use of this twofold interface. Whenever
we have a system of systems setting with multiple scopes or domains of authority
(e.g. virtual organisations, strategic alliances, organisational fields), we can let
an OPA of a given (sub-)organisation act as a member towards another OPA of
another organisation. This basically combines the middleware perspective with
a holonic perspective (cf. [11]). We have developed this approach for Sonar
in [12].

3.2 Organisational Teamwork

Sonar-models of organisations induce teamwork activities. We distinguish be-
tween organisational teamwork activities of first- and of second-order. First-order
activities target at carrying out “ordinary” business processes to accomplish busi-
ness tasks:

– Team Formation: Teams are formed in the course of an iterated delegation
procedure in a top-down manner. Starting with an initial organisational task
to be carried out, successive task decompositions are carried out and subtasks
are delegated further. A team net according to Section 2 consists of the
positions that were involved in the delegation procedure.

– Team Plan Formation/Negotiation: After a team has been formed, a com-
promise has to be found concerning how the corresponding team DWF net
(cf. Section 2) is to be executed as it typically leaves various alternatives of
going one way or the other. A compromise is found in a bottom-up manner
with respect to the team structure. The “leaf” positions of the team net tell
their preferences and the intermediary, inner team positions iteratively seek
compromises between the preferences/compromise results of subordinates.
The final compromise is a particular process of the team DWF net and is
called the team plan.

– Team Plan Execution: As the team plan is a DWF net process that de-
scribes an interaction between team positions, team plan execution follows
straightforward5.

5 For the time being, we do not address the topic that team plan execution might fail
and what rescue efforts this might entail.

28 M. Köhler-Bußmeier, M. Wester-Ebbinghaus, and D. Moldt

– Hierarchic propagation: If a holonic approach as illustrated in Figure 4 is
chosen, team activities that span multiple organisations are propagated ac-
cordingly.

Second-order activities describe reorganisation efforts:

– Evaluation: Organisational performance is monitored and evaluated in or-
der to estimate prospects of transformations. To estimate whether an or-
ganisational transformation would improve organisational performance, we
introduce metrics that assign a multi-dimensional assessment to a formal
organisation. In addition to the Petri net-based specifications of the previ-
ous section, there may exist additional teamwork constraints and parameters
that may be referred to. How to measure the quality of an organisational
structure is generally a very difficult topic and highly contingent. We will
not pursue it further in this paper.

– Organisational Transformations: As described in Section 2, transformations
can either be applied to a formal organisation externally or be carried out
by the positions themselves as transformation teams (cf. exogenous versus
endogenous reorganisation [13]). In the latter case, transformations are typi-
cally triggered by the above mentioned evaluations. But it might also be the
case that a new constraint or directive has been imposed and the organisation
has to comply.

3.3 Organisation Agents

As shown in Figure 4 all the OPAs of an organisation are within the context of
an organisation agent which represents the OPA network as a whole. The or-
ganisation agent is responsible for the management of the organisational domain
data (e.g. customer databases etc.) but also for the management of the organ-
isational meta data which includes the data ontology, the interaction protocols
(i.e. the process ontology), and also a representation of the Sonar-model itself.
This is illustrated in the top half of Figure 5.

Additionally, the organisation agent is responsible for the network wide fram-
ing of the organisational teamwork efforts, i.e. team formation, negotiation, and
team plan execution (as illustrated in the bottom half of Figure 5). The organi-
sation agent is responsible for monitoring the abstract aspects on the teamwork
(i.e. the OPA network perspective), while the OPAs are responsible for the con-
crete decisions (i.e. the OPA perspective)6. For example, the organisation agent
abstractly specifies that during the team formation the OPA O may delegate
6 Note that the existence of a single agent representing the organisation has not to

be confused with a monolithic architecture. The main benefit of the existence of an
organisation agent is that it allows to provide a network-wide view on the team ac-
tivities. The abstract aspects could as well be implemented by the OPAs themselves
and thus be totally distributed. In fact the concurrency semantics of Petri nets per-
fectly reflects this aspect: In the mathematical sense the processes of an organisation
agent are in fact distributed, even if generated from one single net.

Generating Executable Multi-agent System Prototypes 29

Fig. 5. The Organisation Agent

some task to another agent which must belong to a certain set of OPAs7, but
the concrete choice for a partner is left to the OPA O which in turn coordinates
its decision with its associated OMA.

In our architecture the concrete choices of the OPAs are framed by the so
called team cube (cf. Figure 5). The notation cube is due to the fact that we
have three dimensions of teamwork: team formation, negotiation, and team plan
execution. For each dimension we can choose between several mechanisms. For
example in the team formation phase the delegation of tasks to subcontractors
can either be implemented by a market mechanism (i.e. choosing the cheapest
contractor), by a round-robin scheduling (i.e. choosing contractors in cyclic or-
der), or even by some kind of “affection” between OPAs/OMAs. Given a concrete
situation that initiates a teamwork activitiy, the organisation chooses an appro-
priate mechanism for each of the three dimensions. During the execution phase
of the team plans the team cube evaluates the process to improve the assignment
of mechanisms.

4 The Mulan4Sonar Middleware

Each position of a Sonar-organisation consists of a formal part (the OPA as an
organisational artifact) and an informal part (the OMA as a domain member).
An organisation together with the OPA network relieves its associated OMAs of
a great part of the organisational overhead by automation of administrative and
coordination activities. It is exactly the generic part of the teamwork activities
from Section 3.2 that is automated by the organisation/OPA network: Team
7 This set of possible delegation partners is calculated from the Sonar-model.

30 M. Köhler-Bußmeier, M. Wester-Ebbinghaus, and D. Moldt

formation, team plan formation, team plan execution always follow the same
mechanics and OMAs only have to enter the equation where domain actions
have to be carried out or domain-dependent decisions have to be made.

4.1 Compilation of Sonar Specifications into Mulan4Sonar

In the following we demonstrate the compilation of an organisational Sonar-
model into the Mulan4Sonar middleware layer for automated teamwork
support. A Sonar-model is semantically rich enough to provide all necessary
information to allow an automated generation/compilation. The aspects of this
compilation and the resulting prototypical middleware are discussed using the
organisation example introduced above in Figure 1. The prototypical middle-
ware layer generated from this Sonar-model is specified by a high-level Petri
net, namely a reference net. This is beneficial for two reasons: (1) the transla-
tion result is very close to the original specification, since the prototype directly
incorporates the main Petri net structure of the Sonar-model; (2) the proto-
type is immediately functional as reference nets are directly executable using
the open-source Petri net simulator Renew [7] and we can easily integrate the
prototype into Mulan [8,9], our development and simulation system for MAS
based on Java and reference nets. Therefore we have chosen to implement the
compiler as a Renew-plugin.

In the context of OMG’s model driven architecture (MDA) the Sonar-organi-
sation is the platform independent model (PIM), while the Mulan4Sonar mid-
dleware adds those aspects that are part of the platform specific model (PSM).
The simulation engine Renew is the code target:

PIM
Sonar

→ PSM
Mulan4Sonar

→ code
Renew

The plugin implements a compiler that is based on graph rewriting. The
compiler searches for a net fragment in the Sonar-model that matches the
pattern on the left hand side of a rewrite rule and translates it into a reference
net fragment which is obtained as the instantiation of the rule’s right hand side.
An example rule with the parameter n is given in Figure 6: The rule attaches a
place for the OPA a to the transition.

Fig. 6. A transformation rule for Phase 1

Generating Executable Multi-agent System Prototypes 31

In the final model this place contains the OPA that represents the position
“position name” . The rule also adds inscriptions that describe that OPA a is
willing to implement the task t (denoted by the inscription a:askImpl("t")) and a
list of inscriptions a:askPartner("pi", Oi) (one for each pi, 1 ≤ i ≤ n) describing
that a delegates the subtask pi to the OPA Oi. The variable x denotes the
identifier of the teamwork process.

We consider teamwork in six phases. For each phase, the original Sonar-
model (in our case the one from Figure 1) is taken and transformation rules
generate an executable reference net fragment. For example, the transformation
rule from Figure 6 is used for the first phase, selection of team members (see
below). Finally, the fragments for the phases 1 to 6 are linked sequentially and
the resulting overall net represents the main (organisation-specific) middleware
component that is used in the (generic) Mulan4Sonar middleware layer to
coordinate the organisational teamwork. The six teamwork phases are the fol-
lowing:

1. Selection of team members: By agents receiving tasks, refining them and
delegating sub-tasks, the organisation is explored to select the team agents.
This way, a team tree is iteratively constructed but the overall tree is not
globally known at the end of this phase.

2. Team assembly: The overall team tree is assembled by iteratively putting
sub-teams together. At the end of this phase, only the root agent of the
team tree knows the overall team.

3. Team announcement: The overall team is announced among all team member
agents.

4. Team plan formation: The executing team agents (i.e. the leaves of the team
tree) construct partial local plans related to the team DWF net. These partial
plans are iteratively processed by the ancestors in the team tree. They seek
compromises concerning the (possibly conflicting) partial plans until the root
of the team tree has build a global plan with a global compromise.

5. Team plan announcement and plan localisation: The global team plan is
announced among all team member agents. The executing team agents have
to localise the global plan according to their respective share of the plan.

6. Team plan execution: The team generates an instance of the team DWF net,
assigns all the local plans to it, and starts the execution.

Here, we will only discuss first-order organisational teamwork. However, our
Mulan4Sonar middleware approach features a recursive system architecture in
order to support reorganisation, including second-order activities (a presentation
of the whole model can be found in [14]).

Before the six phases are discussed in more detail, we illustrate how a Mulan
multi-agent system that incorporates our Mulan4Sonar middleware layer looks
like.

4.2 Multi-agent System with Mulan4Sonar Middleware Layer

In Section 3, we have described our general vision of a multi-agent system that
incorporates Sonar organisations: The formal part of each Sonar organisation

32 M. Köhler-Bußmeier, M. Wester-Ebbinghaus, and D. Moldt

is explicitly represented by a distributed middleware layer consisting of OPAs
for each position and one organisation agent as an additional meta-level entity.
In our current prototypical implementation of the Mulan4Sonar middleware
layer, the organisation agent is actually not yet fully included, at least not as
an agent. Instead, the organisation agent of a Sonar organisation manifests
itself in terms of the generated six-phase reference net explained in the previous
subsection (together with possible DWF nets). This concept is illustrated in
Figure 7.

Fig. 7. Mulan4Sonar middleware layer in the current prototype

It is shown that the formal part of a Sonar organisation is embodied by the
generated middleware net and the position agents that are hosted on the agent
places of the net. Here we do not elaborate on the internal structure of the agents
as we would have to go into the details of multi-agent system programming with
Mulan which is out of the scope of the paper. All OPAs share the same generic
OPA architecture (GOPA) that we have presented in [15]. Note that in the
current prototype, the OPAs are directly embedded on the agent places of the
middleware net. This is justified as they are actually reified parts of the formal
organisation and we assume that the whole middleware (and thus the formal
organisation) is executed on the same Mulan platform. The OMAs however
are external agents that have chosen to act as members of the organisation.
Consequently, they can be hosted on remote platforms and communicate with
their respective OPAs via message passing.

For future developments of our Mulan4Sonar middleware we plan to have
the organisation agent to be actually realized as a Mulan agent (see Section 5).

4.3 Explanation of the Six Teamwork Phases

As explained in Subsection 4.1, a Sonar-model of an organisation is compiled
into executable reference nets for each of the six teamwork phases. Afterwards,the

Generating Executable Multi-agent System Prototypes 33

reference nets for the phases 1 to 6 are combined in one reference net and linked
sequentially. This linkage is achieved via synchronisation inscriptions. Thus, the
end of a phase is synchronised with the start of the succeeding phase.

The reference nets for the six phases share the same net structure but have
different inscriptions. This reflects the fact that all teamwork is generated from
the same organisational Sonar-specification, but in different phases different
information is needed. Figure 8 shows the generated reference net for the first
phase, selection of team members8.

Before any teamwork can occur, the system setup has to be carried out. Six
position agents (OPAs) – one for each position – are initialized and registered.
The position agents are hosted on the agent places of the generated middleware
net. After this step the initialisation is finished and teamwork may ensue.

For our given Sonar-model we have only one position that is able to start a
team, namely O4 since it is the only position having a place with an empty preset
(i.e. the place p0). Whenever the position agent O4 decides to begin teamwork,
it starts the first phase, team member selection. The only possibility for task p0

is to delegate it to O1. Here, O1 has only one implementation possibility for this
task, namely t1. This entails to generate the two subtasks p1 and p2. O1 selects
the agents these subtasks are delegated to. For p2 there is the only possibility O4

but for p1 there is the choice between O2 and O3. Partner choices occur via the
synchronisation a:askPartner(p, O) between the middleware net and the position
agents: Agent a provides a binding for the partner O when the task p has to be
delegated. Assume that the agent O1 decides in favour of O3, then the control is
handed over to O3 which has a choice how to implement the task: either by t2 or
by t5. This decision is made by the position agent a of O3 which is synchronised
with the middleware net via the channel a:askImpl(t) which is activated by the
agent a only if t has to be used for delegation/implementation.

After this iterated delegation has come to an end – which is guaranteed for
well-formed Sonar-models – all subtasks have been assigned to team agents and
the first phase ends. At this point the agents know that they are team members,
but they do not know each other yet. To establish such mutual knowledge the
second phase starts.

We cannot cover every phase in detail. The general principle has been shown
for phase one, namely enriching the original Sonar model of an organisation
with (1) connections to position agents and (2) execution inscriptions along the
purpose of the respective teamwork phase.

The purpose of the remaining five phases has been covered in Subsection 4.1.
Here, we want to cover one technical aspect specifically. The description of the
first phase has made clear that it is a top-down phase. Following the delegation
relationships of the original Sonar-model, a team tree is built from the root
down to the leaves. It is also clear that the second phase has to be a bottom-up
phase. The overall team is not yet known to any position agent. Thus, beginning
with the leaves of the team tree and the corresponding "one-man sub-teams",

8 Note that the rule from Figure 6 has been applied several times.

34 M. Köhler-Bußmeier, M. Wester-Ebbinghaus, and D. Moldt

F
ig

.8
.
Zo

om
:
F
ir
st

P
ha

se
of

th
e

M
u
la

n
4S

o
n
a
r
-m

id
dl

ew
ar

e

Generating Executable Multi-agent System Prototypes 35

sub-teams are iteratively assembled until the complete team is finally known at
the root node. Consequently, for the second phase, the direction of the arrows has
to be reversed compared to the original Sonar model. Analogous observations
hold for the remaining four phases. Phases 3 and 5 are top-down phases while
phases 4 and 6 are bottom-up phases.

5 Strengths, Weaknesses and Future Work

In this section, we give a brief qualitative evaluation of the approach taken in this
paper. Sonar is a formal model of organisations based on Petri nets. It is often
difficult to initially come up with an approach to deploy formal specifications in
a software environment. In the case of the Petri net specifications, one can take
advantage of the inherent operational semantics. In this sense, Petri nets often
allow for a rapid prototyping approach to go from abstract models (requiring only
simple Petri net formalisms) to fully functional, executable models (requiring
high-level Petri net formalism, in our case reference nets). Consequently, our
first approach was to take a Sonar-specification of an organisation and derive an
executable prototype by manually attaching inscriptions and add some auxiliary
net elements.

While manually crafting an executable reference net for each specific Sonar-
model is of course not worthwhile in the long run, it provided us with very early
lessons learned and running systems from the beginning on. The work presented
in this paper was the next step. Based on our experiences from the handcrafted
prototypes we were able to clearly denominate and devise the transformation
rules that were needed for automated generation of executable reference net
fragments from Sonar-models.

Consequently, we see the conceptual as well as operational closeness between
an underlying Sonar-model and its generated middleware net as a crucial advan-
tage for our fast progress in deploying Sonar-organisations. In addition, formal
properties like well-formedness (cf. [3,4]) of a Sonar-model directly carry over
to the implementation level.

Because of the mentioned problems, we are working on further improving the
Mulan4Sonar middleware. Current efforts target at keeping the organisational
specification as a more accessible and mutable data structure at the level of the
middleware layer. Although it is no longer necessarily represented as a reference
net itself, the organisational activities and dynamics allowed by the middleware
layer are still directly derived from the underlying Petri net semantics of Sonar.

6 Related Work

Our work is closely related to other approaches that propagate middleware
layers for organisation support in multi-agent systems like S-MOISE+ [16],
AMELI [17] or TEAMCORE/KARMA [18]. The specifics of each middleware
layer depends on the specifics of the organisational model that is supported.

36 M. Köhler-Bußmeier, M. Wester-Ebbinghaus, and D. Moldt

What all approaches have in common is that domain agents are granted access
to the middleware layer via proxies that constrain, guide and support an agent
in its function as a member of the organisation, cf. OrgBox in S-MOISE+, Gov-
ernor in AMELI, Team Wrapper in TEAMCORE/KARMA. Our organisational
position agents, the OPAs, serve a similar purpose. They are coupled with or-
ganisational member agents, the OMAs, which are responsible for domain-level
actions and decisions.

However, in the case of S-MOISE+ and AMELI, management of organisa-
tional dynamics is mainly taken care of by middleware manager agents (the
OrgManager for S-MOISE+ and the institution, scene and transition managers
for AMELI). The proxies mainly route communication between the domain level
agents and the middleware managers. Consequently, middleware management is
to some degree centralised9. In our case, the OPAs are both proxies and mid-
dleware managers. They manage all six phases of organisational teamwork in a
completely distributed way. This is quite similar to the function of the Team
Wrappers in TEAMCORE/KARMA. The KARMA middleware component can
be compared to the organisational agent in our approach. It is a meta-level
entity that is responsible for setting up the whole system and for monitoring
performance. In [20], we additionally study the conceptual fit between different
middleware approaches (in combination with the supported organisational mod-
els) and their application on different levels of a large-scale system of systems.

7 Conclusion

In this paper, we have built upon our previous work Sonar on formalising organ-
isational models for MAS by means of Petri nets [4,3]. In particular, the paper
is dedicated to a prototypical Mulan4Sonar middleware layer that supports
the deployment of Sonar-models. As Sonar-specifications are formalised with
Petri nets, they inherently have an operational semantics and thus already lend
themselves towards immediate implementation. We have taken advantage of this
possibility and have chosen the reference net formalism as an implementation
means. Reference nets implement the nets-in-nets concept [6] and thus allow us
to deploy Sonar-organisations as nested Petri net systems. The reference net
tool Renew [7] offers comprehensive support, allowing us to refine/extend the
Sonar specifications into fully executable prototypes.

This leaves us with a close link between a Sonar specification of an organisa-
tion and its accompanying Mulan4Sonar middleware support. The structure
and behaviour of the resulting software system is directly derived and compiled
from the underlying formal model. For example, we have explicitly shown how
the organisation net of a formal Sonar-specification can be utilised for the mid-
dleware support of six different phases of teamwork. In each phase, the original

9 However, in the case of S-MOISE+, the new middleware approach ORA4MAS [19]
(organizational artifacts for MAS) has been devised, resulting in a more decen-
tralised approach.

Generating Executable Multi-agent System Prototypes 37

net is used differently (with different inscriptions and arrow directions). This ap-
proach of deploying Sonar-models does not only relieve the developer of much
otherwise tedious programming. It also allows to preserve desirable properties
that can be proven for the formal model and that now carry over to the software
technical implementation.

Finally, although we have introduced the idea of Sonar-organisations acting
in the context of other Sonar-organisations, we have not addressed the topic
in detail here. We study this subject in [12,21], but on a more abstract/generic
level than Sonar offers. Nevertheless, we have already begun to transfer the
results to Sonar.

References

1. Carley, K.M., Gasser, L.: Computational organisation theory. In: Weiß, G. (ed.)
Multiagent Systems, pp. 229–330. MIT Press, Cambridge (1999)

2. Dignum, V. (ed.): Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. IGI Global, Information Science Reference
(2009)

3. Köhler-Bußmeier, M., Wester-Ebbinghaus, M., Moldt, D.: A formal model for or-
ganisational structures behind process-aware information systems. In: Jensen, K.,
van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of
Concurrency II. LNCS, vol. 5460, pp. 98–114. Springer, Heidelberg (2009)

4. Köhler, M.: A formal model of multi-agent organisations. Fundamenta Informati-
cae 79, 415–430 (2007)

5. Girault, C., Valk, R. (eds.): Petri Nets for System Engineering – A Guide to Mod-
eling, Verification, and Applications. Springer, Heidelberg (2003)

6. Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) Advanced Course on Petri Nets. LNCS, vol. 3098,
pp. 819–848. Springer, Heidelberg (2004)

7. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An extensible editor and simulation engine for Petri nets:
Renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp.
484–493. Springer, Heidelberg (2004)

8. Köhler, M., Moldt, D., Rölke, H.: Modeling the behaviour of Petri net agents. In:
Colom, J.M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 224–241.
Springer, Heidelberg (2001)

9. Cabac, L., Dörges, T., Duvigneau, M., Moldt, D., Reese, C., Wester-Ebbinghaus,
M.: Agent models for concurrent software systems. In: Bergmann, R., Lindemann,
G. (eds.) MATES 2008. LNCS (LNAI), vol. 5244, pp. 37–48. Springer, Heidelberg
(2008)

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer, Heidelberg (2006)

11. Fischer, K., Schillo, M., Siekmann, J.: Holonic multiagent systems: A foundation
for the organisation of multiagent systems. In: Mařík, V., McFarlane, D.C., Val-
ckenaers, P. (eds.) HoloMAS 2003. LNCS (LNAI), vol. 2744, pp. 71–80. Springer,
Heidelberg (2003)

38 M. Köhler-Bußmeier, M. Wester-Ebbinghaus, and D. Moldt

12. Wester-Ebbinghaus, M., Moldt, D., Köhler-Bußmeier, M.: Modelling an open and
controlled system unit as a modular component of systems of systems. In: Jensen,
K., Donatelli, S., Koutny, M. (eds.) Transactions on Petri Nets and Other Models
of Concurrency IV. LNCS, vol. 6550, pp. 174–198. Springer, Heidelberg (2010)

13. Boissier, O., Hübner, J.F., Sichman, J.S.: Organization oriented programming:
From closed to open organizations. In: O’Hare, G., Ricci, A., O’Grady, M.,
Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 86–105. Springer,
Heidelberg (2007)

14. Köhler-Bußmeier, M., Wester-Ebbinghaus, M.: A Petri net based prototype for
MAS organisation middleware. In: Moldt, D. (ed.) Workshop on Modelling, object,
components, and agents (MOCA 2009), University of Hamburg, Department for
Computer Science, pp. 29–44 (2009)

15. Köhler-Bußmeier, M., Wester-Ebbinghaus, M.: Sonar: A multi-agent infrastructure
for active application architectures and inter-organisational information systems.
In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009.
LNCS, vol. 5774, pp. 248–257. Springer, Heidelberg (2009)

16. Hübner, J.F., Sichman, J.S., Boissier, O.: S-MOISE: A middleware for developing
organised multi-agent systems. In: Boissier, O., Padget, J., Dignum, V., Linde-
mann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.)
ANIREM 2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 64–78. Springer,
Heidelberg (2006)

17. Esteva, M., Rodriguez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: An agent-based mid-
dleware for electronic institutions. In: Sierra, C., Sonenberg, L., Tambe, M. (eds.)
Proceedings of the 3rd International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2004), pp. 236–243 (2004)

18. Pynadath, D., Tambe, M.: An automated teamwork infrastructure for heteroge-
neous software agents and humans. Autonomous Agents and Multi-Agent Sys-
tems 7, 71–100 (2003)

19. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents. Autonomous Agents and Multi-
Agent Systems 20, 369–400 (2010)

20. Wester-Ebbinghaus, M., Köhler-Bußmeier, M., Moldt, D.: From multi-agent to
multi-organization systems: Utilizing middleware approaches. In: Artikis, A., Pi-
card, G., Vercouter, L. (eds.) ESAW 2008. LNCS, vol. 5485, pp. 46–65. Springer,
Heidelberg (2009)

21. Wester-Ebbinghaus, M., Moldt, D.: Structure in threes: Modelling organization-
oriented software architectures built upon multi-agent systems. In: Proceedings of
the 7th International Conference an Autonomous Agents and Multi-Agent Systems
(AAMAS 2008), pp. 1307–1311 (2008)

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 39–57, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Modeling Norms in Multi-agent Systems with
NormML*

Karen da Silva Figueiredo, Viviane Torres da Silva,
and Christiano de Oliveira Braga

Computer Science Department, Universidade Federal Fluminense (UFF),
Rua Passos da Pátria 156, Bloco E, 24210-240, Niterói, Brazil

{kfigueiredo,viviane.silva,cbraga}@ic.uff.br

Abstract. Norms in multi-agent systems are a mechanism used to restrict the
behavior of agents by defining what agents are obligated, permitted or prohib-
ited to do and by stating stimulus to their fulfillment by defining rewards and
discouraging their violation by pointing out punishments. In this paper we pro-
pose a normative modeling language called NormML that makes possible the
modeling of the main properties and characteristics of the norms. In addition,
we also propose a mechanism to validate the norms at design time, i.e., to check
if the norms respect the constraints defined by the language and also their pos-
sible conflicts.

Keywords: Norm, Modeling, Validation, Conflict, Metamodel.

1 Introduction

Norms in multi-agent systems are mechanism used to restrict the behavior of agents
by describing the actions that must be performed or states that must be achieved (ob-
ligations), actions that can be performed or states that can be achieved (permissions)
and actions that cannot be performed or states that cannot be achieved (prohibitions).
They represent a way for agents to understand their responsibilities and the responsi-
bilities of the others. Norms are used to cope with the autonomy, different interests
and desires of the agents that cohabit the system.

Norms can be defined at design time together with the modeling of the system, or cre-
ated at runtime by agents that have the power to do so [1]. In this paper we focus on the
description of norms at design time. The modeling of norms is an important part of the
specification of a system and should be treated as an important task of Multiagent System
(MAS) design. The alignment of the norms with the elements that represent the system,
such as its entities and the actions that they execute, is a fundamental activity because the

* The present work has been partially funded by the Spanish project “Agreement Technologies"

(CONSOLIDER CSD2007-0022, INGENIO 2010), by the Spanish Ministry of Education and
Science under project TIN2009-13839-C03-02 and by the Brazilian research councils CNPq
under grant 135891/2009-4 and 303531/2009-6 and FAPERJ under grant E-26/110.959/2009.

40 K. da Silva Figueiredo, V. T. da Silva, and C. de Oliveira Braga

norms specification relates such entities, their actions and the period during while the ac-
tions are being regulated. Thus, the redesign of the system may affect the specification of
the norms and the redesign of the norms may influence the set of elements that represent the
system.

Another important issue that must be considered while specifying the norms is the
conflicts that may arise between them. A clear example of such conflicts occurs when
there is a norm that prohibits an agent to perform a particular action and another that
requires the same agent to perform the same action at the same period of time. When
norms are defined at design time some of those conflicts can be detected and solved
by, for instance, amending the conflicting norms, which might cause the system’s
redesign (by the inclusion of new actions, actors and roles, for example). By solving
at least part of the conflicts at design time, it is possible to reduce the time the agents
will spend executing this task at runtime.

Due to the interdependency between the modeling of norms and the modeling of
the elements of the system and the importance of finding out conflicts and solving
them at design time, it is important that the modeling languages and the notations
used by methodologies and organizational models to model MAS make possible the
modeling of the norms together with the modeling of the whole system and also pro-
vide mechanism for solving the conflicts at design time.

Taking this into account, the goals of this paper are: (i) to investigate if the ele-
ments that compose norms can be modeled by using the MAS modeling languages
and notations provided by methodologies and organizational models; and (ii) to ex-
plore the languages, methodologies and organizational models in order to find out if
they give support to the checking of conflicts at design time. The paper also aims to
present a normative modeling language called NormML, which is an extension of its
preliminary version presented in [2] and that is able to model the main elements that
compose the norms and to check the conflicts between them.

The paper is organized as follows. In Section 2 we identify the main elements that
compose the norms. In Section 3 we discuss the support given by the modeling lan-
guages and the notations provided by the methodologies and organizational models
analyzed to model such elements and to check norm conflicts. Section 4 describes the
case study used in this paper. Section 5 provides some background material and Sec-
tion 6 presents the normative modeling language NormML and details the mechanism
used to check for conflicts between the modeled norms. Section 7 concludes the paper
with final remarks and discusses future work.

2 Main Elements of a Norm

In this section we stress the key static aspects of a norm, i.e., the main elements that
compose a norm: deontic concept, involved entities, actions, activation constraints,
sanctions and context. Such elements were found out after investigating ten specifica-
tion and implementation languages used to describe and implement norms [1, 3-11].
The elements that compose a norm are based on the premise that norms restrict the
behavior of system entities during a period of time and define the sanctions applied
when they are violated or fulfilled.

 Modeling Norms in Multi-agent Systems with NormML 41

Deontic Concept. Deontic logic refers to the logic of requests, commands, rules,
laws, moral principles and judgments [13]. In multi-agent systems, such concepts
have been used to describe behavior restrictions for the agents in the form of obliga-
tions (what the agent must execute), permissions (what the agent can execute) and
prohibitions (what the agent cannot execute). Thus, one of the main elements of a
norm is the identification of the type of restriction being defined, i.e., the identifica-
tion of the deontic concept associated with the norm.

Involved Entities. Since norms are always defined to restrict the behavior of entities,
the identification of such entities whose behavior is being restricted is fundamental. A
norm may regulate the behavior of individuals (e.g., a given agent, or an agent while
playing a given role) or the behavior of a group of individuals (e.g., all agents playing
a given role, groups of agents, groups of agents playing roles or all agents in the sys-
tem).

Actions. Since a norm defines restriction over the execution of entities, it is important
to clearly represent the action being regulated. Such actions can be communicative
ones, typically represented by the sending and receiving of a message, or non-
communicative actions (such as to access and modify a resource, to enter in an or-
ganization, to move to another environment, etc.). In this paper we have not taken into
account norms applied to states yet.

Activation Constraints. Norms have a period during which they are active, i.e., dur-
ing while their restrictions must be fulfilled. Norms can be activated by one constraint
or a set of constraints that can be: the execution of actions, the specification of time
intervals (before, after, between), the achievement of systems states or temporal as-
pects (such as dates), and also the activation / deactivation of another norm and the
fulfillment / violation of a norm.

Sanctions. When a norm is violated the entity that has violated this norm may suffer a
punishment and when a norm is fulfilled the entity who has followed the norm may
receive a reward. Such rewards and punishments are called sanctions and should be
described together with the norm specification.

Context. Norms are usually defined in a given context that determines the area of
their application. A norm can, for instance, be described in the context of a given
environment and should be fulfilled only by the agents executing in the environment
or can be defined in the context of an organization and fulfilled only by the agents
playing roles in the organization.

3 Related Work

Although there are some works, such as the modeling languages AUML [13] and
ANote [14] and the methodology MESSAGE [15] that do not support the modeling of
norms, there are already many others that make possible the modeling of several ele-
ments of a norm. From the set of two modeling languages [16, 17], seven methodolo-
gies [6, 18-23] and three organization models [24-26] analyzed, no one is able to

42 K. da Silva Figueiredo, V. T. da Silva, and C. de Oliveira Braga

model all the properties of the elements described in the previous section. In this sec-
tion we discuss those modeling languages, methodologies and organization models
showing how they represent the concepts related to the norms and employ these ele-
ments when they are modeling norms (we summarize it in Table 1). We compare such
works with NormML, the modeling language being proposed in this paper.

Deontic Concept. Most modeling languages and methodologies make available the
deontic concept of obligation in order to describe the actions that agents must execute.
Methodologies such as Secure Tropos (ST) [22], SODA [23], Prometheus [20] and
the organization model proposed in MOISE+ [25] only offer the concepts of obliga-
tion and permission since they consider that everything that is not permitted is auto-
matically prohibited. In the ST methodology the concept of obligation can be repre-
sented by the delegation relationship and the concept of permission by the ownership
and trust relationships. NormML, different from the majority, includes all the three
deontic concepts (obligation, permission and prohibition) in the modeling of norms.

Involved Entities. All works analyzed propose a way to describe the entities to which
the norm applies (elements checked in Table 1). The majority provides support to
describe a norm for a particular role. Some works [18, 19, 21, 25] do not allow the
description of norms that apply to a group of individuals. This fact does not imply that
the work analyzed do not support the modeling of such entities, however the work
cannot provide ways to the description of norms related to them. The ST methodology
also allows the designer to describe the system itself as an entity and to define norms
that can be applied to the system as a whole. By using NormML it is possible to de-
scribe norms to individuals, groups of individuals or all the entities of the system (see
the “Context” item).

Actions. All the modeling languages, methodologies and models analyzed provide a
way to restrict non-communicative actions. In ROADMAP [21], that is one of the
proposed extensions for Gaia, the user can only restrict the access to objects, roles and
protocols of the system. NormML supports the modeling of both kinds of actions,
communicative and non-communicative.

Activation Constraints. The works analyzed present several ways to describe the
period during while a norm is active, i.e., to describe the restrictions for their activa-
tion and deactivation (see more details in Table 1). According to [27], the SODA
formalism is still being developed so we cannot affirm the types of restrictions that
such methodology will support. By using NormML all these activation constraints can
be modeled.

Sanctions. A small number of languages and methodologies consider that norms can
be violated, and only a few of them provide a way for describing sanctions. The
AORML [17] language assumes that commitments (or obligations) between entities
of the system can be violated, and, as consequence, a sanction should be applied. But
the language does not offer a way to describe this sanction. The organizational models
OperA [26], MASQ [24] and MOISE+ consider that norms can be violated, and, ex-
cluding MOISE+, they have mechanisms to describe sanctions. The O-MaSE [6]
methodology groups norms into two kinds of policies: law policies and guidance

 Modeling Norms in Multi-agent Systems with NormML 43

Table 1. Main elements of a norm

 A
M

L
 [

16
]

A
O

R
M

L
 [

17
]

G
ai

a
[1

8]

O
-M

aS
E

 [
6]

P
A

SS
I

[1
9]

P
ro

m
et

he
us

 [
20

]

R
O

A
D

M
A

P
 [

21
]

ST
 [

22
]

SO
D

A
 [

23
]

M
A

SQ
 [

24
]

M
O

IS
E

+
[2

5]

O
pe

rA
 [

26
]

N
or

m
M

L

Permission • • • • • • • • • • •

Prohibition • • • • • • •

D
eo

nt
ic

 C
on

ce
pt

Obligation • • • • • • • • • • • •

Agent • • • • • • •
Role • • • • • • • • • • •

Agent playing role • • • •
Groups of individu-

als
• • • • • • • • •

In
vo

lv
ed

 E
nt

it
ie

s

All in the system • • • • • •

Communicative
Actions

• • • • • • • • •

A
ct

io
ns

Non-communicative
Actions

• • • • • • • • • • • • •

Execution of actions • • • • • • • •
Time intervals • • • • • • • • •

Achievement of
states

• • • • • • • •

Temporal aspects • • • • • • • • • •

A
ct

iv
at

io
n

C
on

st
ra

in
ts

Activation, deacti-
vation, fulfillment
and violation of a

norm

 • • •

Punishment • • •

Sa
nc

ti
on

s

Reward •

Environment •
Organization • • • • • • • • • • • • •
Interaction • • • • •

C
on

te
xt

Transition of scene • •

policies. Only the guidance policies can be violated but there is not a way to define
sanctions for such violations. The Gaia [18] and PASSI [19] methodologies express
norms as organization rules that cannot be violated, and so there is no need to define a
sanction mechanism. None of the analyzed languages or methodologies allows the

44 K. da Silva Figueiredo, V. T. da Silva, and C. de Oliveira Braga

description of rewards in case of the fulfillment of a norm. However, NormML sup-
ports the definition of both punishments and rewards.

Context. All languages, methodologies and organizational models define the norms
in an organizational context. The AORML language offers support to express obliga-
tions between two agents (as commitments) in the context of an interaction. Besides
AORML, methodologies such as PASSI, Prometheus, Gaia and the organizational
model OperA also allow the description of norms in such a context. Moreover, in
OperA and Gaia it is possible to describe a norm in a context that represents the tran-
sition of scenes. Besides describing norms in an organizational context, NormML also
provides the environmental context.

In addition to the elements presented, another interesting characteristic to be con-
sidered when analyzing the modeling languages, methodologies and organizational
models is the ability to detect conflicts between the norms of the system at design
phase.

Check Conflict. The AORML language assumes that there is a normative inconsis-
tency when there is at the same time a permission and a prohibition, or a prohibition
and an obligation to the same action. It considers that obligations already have a per-
mission embedded, so there is no conflict in this sense. Although the language con-
siders that conflicts can occur, it does not have an automatic mechanism to detect
these conflicts.

The ST methodology defines eight properties to be used in an automatic verifica-
tion of conflicts, including the validation of conflicts between the system’s obliga-
tions and permissions. Although norms can be defined in different contexts, they do
not check conflicts between norms in different contexts. Moreover, since all the
norms are applied to roles and norms have no activation constraints, they do not take
these characteristics into account when checking for conflicts.

The OperA organizational model allows the automatic verification of conflicts be-
tween the norms that apply to a given entity. However, such mechanism does not give
support to the checking of conflicts between norms applied to different entity types,
i.e., between the norms applied to a group and the norms applied to roles or agents
themselves. In addition, it also does not give support for checking conflicts among
norms defined in different contexts and considering different activation conditions.

Besides the support provided by the modeling languages, methodologies, and or-
ganizational models to model norms, we have also investigated the support to the
checking of conflicts between norms in the literature. In [28] the authors point out that
there are conflicts between obligations and prohibitions, and permissions and prohibi-
tions to the same agent or role to execute actions over the same states. They also con-
sider that there are conflicts between obligations related to states that are mutually
exclusive. The norms analyzed in this work do not have any kind of activation con-
straint.

In [11, 29, 30] they consider that there is a normative conflict when one norm
states an obligation or a permission and the other norm states a prohibition on the
same agent to execute the same action at time intervals that intersect. In [29] only
communicative actions are mentioned. None of the works reviewed considers the
special case of conflicts between obligations and permissions that may occur when an
agent is obliged to execute an action when it has not a permission to do so.

 Modeling Norms in Multi-agent Systems with NormML 45

4 Case Study

In order to exemplify our approach, we define a set of ten norms that govern a simpli-
fied version of a web store. The web store is being modeled as an organization that
inhabits the market place environment and defines two roles to be played by the
agents: seller or buyer. The sellers of the web store can advertise goods while the
buyers can buy the goods that are announced on the store by the sellers. For some of
the norms we have specified the sanctions (punishments or rewards) the agent should
receive if it violates or fulfills the norm. Note that those sanctions are also norms that
are activated when the related norm is violated or fulfilled.

N1. All agents executing in the context of the environment MarketPlace are prohib-
ited to read and update the price of the goods.

N2. Sellers are permitted, in the context of the organization WebStore that inhabits
the environment MarketPlace, to update the price of the goods before it opens for
sale.

N3. Sellers are obliged, in the context of the organization WebStore that inhabits the
environment MarketPlace, to delete the good’s advertisement if the stock of the good
is empty.

N4. Buyers are obliged, in the context of the organization WebStore that inhabits the
environment MarketPlace, to pay for the good that they have bought.

Punishment: N5. Buyers are prohibited, in the context of the organization Web-
Store that inhabits the environment MarketPlace, to buy goods.

N6. Buyers are obliged, in the context of the organization WebStore that inhabits the
environment MarketPlace, to pay off their debts.

Reward: N7. Buyers are permitted, in the context of the organization WebStore
that inhabits the environment MarketPlace, to buy goods.

N8. Buyers are prohibited, in the context of the organization WebStore that inhabits
the environment MarketPlace, to return a good that they have bought.

N9. Sellers are obliged, in the context of the organization WebStore that inhabits the
environment MarketPlace, to give the good to the buyer after the given buyer pays for it.

Punishment: N10. Sellers are prohibited, in the context of the organization Web-
Store that inhabits the environment MarketPlace, to advertise goods.

In Section 6 the set of norms above are used to illustrate the use of the NormML
modeling language.

5 Background

In this section we briefly provide background material for the rest of this paper.
NormML is a UML-based modeling language for the specification of norms. The

46 K. da Silva Figueiredo, V. T. da Silva, and C. de Oliveira Braga

choice for UML as metalanguage allows for an easy integration of NormML with
UML-based MAS modeling languages such as AUML, AML and MAS-ML [31].
Moreover, metamodel-based validation techniques may be applied to norms specified
in NormML. Therefore, Section 5.1 introduces basic notions of models and metamod-
els, necessary to understand the design of NormML.

Our modeling language was designed with the perception that norm specification
in MAS design and security policy specification in RBAC (role based access control)
[32] design are closely coupled issues. RBAC security policies specify the permis-
sions that a user has under a given role, while trying to access system resources. In
MAS we specify the norms that regulate the behavior (or actions) of a role, an agent
or an agent playing a given role, for instance. Although we consider security policies
and norms coupled issues, norms can be violated since they only define how agents
should behave.

In Section 5.2 we introduce SecureUML [33], a Domain-specific Language (DSL)
for modeling RBAC policies. It has been applied successfully both in academic pro-
jects [33] and industrial ones [34]. The reasons why SecureUML was chosen are: it
has a well-defined syntax, given by its metamodel; it has a formal semantics [35]; and
it is designed specifically for RBAC modeling. In this paper we want to explore the
modeling of norms using RBAC concepts.

5.1 Models and Metamodels

A modeling language provides a vocabulary (concepts and relations) for creating
models. Such vocabulary is described by the metamodel of the modeling language
which elements formalize the language concepts and their relationships. A metamodel
may include invariants that specify additional properties that the models must fulfill
as instances of the metamodel. Such invariants specify the well-formedness conditions
(or well-formed rules) of a model with respect to its metamodel and the consistency
conditions between metamodel concepts.

When UML is chosen as metalanguage, a metamodel is represented by a class dia-
gram and its invariants are written in OCL (Object Constraint Language) [36]. This is
the choice followed in this paper.

5.2 SecureUML

SecureUML provides a language for modeling Roles, Permissions, Actions, Re-
sources, and Authorization Constraints, along with the relationships between permis-
sions and roles, actions and permissions, resources and actions, and constraints and
permissions. The actions described in the language can be either Atomic or Compos-
ite. The atomic actions are intended to map directly onto actual operations of the
modeled system (delete, update, read, create and execute). The composite actions are
used to hierarchically group atomic ones.

SecureUML leaves open what the protected resources are and which actions they
offer to clients. ComponentUML [32] is a simple language for modeling component-
based systems that provides provides a subset of UML class models: entities can be
related by associations and may have attributes and methods. Therefore, Entity, At-
tribute, Method, Association and AssociationEnd are the possible protected resources.

 Modeling Norms in Multi-agent Systems with NormML 47

By using SecureUML+ComponentUML1 it is possible, for instance, to specify the
permissions a user playing a given role must have to execute a method (or to update
an attribute) of a resource. In order to do so, it is necessary to instantiate the meta-
classes User, Role, Permission, ActionExecute (or ActionUpdate), and Method (or
Attribute).

6 NormML: A Normative Modeling Language

As stated before, norms are viewed as security policies. While in SecureUML it is
possible to define the permissions a user has, i.e., the constraints that a user, in a
given role, must fulfill to perform actions over the system resources, in NormML it is
possible to define the norms an entity must obey, i.e., it is possible to describe the set
of actions that the agents, roles, agents playing roles or a group of agents in an par-
ticular context (organization or environment) are obliged, permitted or prohibited to
execute conditioned by the execution of other actions and the achievement of dates
and states. The language also permits the definition of sanctions, i.e., rewards and
punishments, to be applied in case of fulfillment or violation of the norms.

The preliminary version of the NormML metamodel [2] extends the SecureUML
metamodel with the following basic elements: Norm, NormConstraint, Agent and
AgentAction to model norms, activation constraints, agents whose behavior is being
restricted by the norm and the actions representing such behavior. The metamodel of
the current version of the language extends the preliminary version by including the
following new elements: (i) Organization (to model contexts and groups of agents);
(ii) Environment (to model contexts); (iii) Protocol, AtomicSend, AtomicReceive and
Message (to model norms that restrict the sending and receiving of messages); and
(iv) If and Date (to model activation constraints using deadlines and states); and (v)
Sanction, Punishment and Reward (to model rewards and punishments) (see Section
6.1 for details). The NormML metamodel also includes a set of invariants that guaran-
tees the well-formedness of a norm and several operations that are used to identify
conflicts between two given norms (Section 6.3).

6.1 The NormML Metamodel

A norm corresponds to an instance of the NormML metamodel, i.e., it is defined by
instantiating several metaclasses and their relationships. In this section, we present the
NormML metamodel2 focusing on the definition of the main elements of a norm.

Deontic Concept. A norm is either an obligation (represented by the metaclass Nor-
mObligation), a permission (represented by the metaclass NormPermission) or a pro-
hibition (represented by the metaclass NormProhibition), as illustrated in Fig. 1.

1 The metamodel of SecureUML+ComponentUML (from now referred as SecureUML meta-

model) is available at http://www.ic.uff.br/~viviane.silva/normML/secureUML.pdf
2 The whole picture of the NormML metamodel is available in

http://www.ic.uff.br/~kfigueiredo/normML/metamodel.pdf

48 K. da Silva Figueiredo, V. T. da Silva, and C. de Oliveira Braga

Fig. 1. Deontic concept and involved entities related metaclasses at the NormML Metamodel

Involved Entities. In the preliminary version of the language, a norm could only be
described to regulate the behavior of Agents, the behavior of all agents that play a
given Role, or the behavior of a specific agent when it is playing a given role. Nowa-
days, it is also possible to define a norm for a group of agents by using the metaclass
Organization (as shown in Fig. 1). In this paper, we do not make any distinction
among the definition of group, team and organization.

A norm can also be defined for all agents executing in a given context. In such
case, it is only necessary to relate the norm to a context without specifying the entities
whose behavior is being regulated (see norm N1 in Fig. 6 for an example).

Actions. NormML inherits four resource kinds from SecureUML: Attribute, Method,
Entity and AssociationEnd. It extends the set of resources with agent and roles’ ac-
tions represented by the metaclass AgentAction and with roles’ messages represented
by the metaclass Message that is part of a communication protocol of a role (Protocol
metaclass). Thus, it is possible to describe norms to control the access to attributes,
methods, objects and association ends, to control the execution of the actions of
agents and roles, and also to control the sending and the receiving of messages by
roles (Fig. 2).

Each resource kind has a set of actions that can be used to control the access to the
resource. For instance, the actions read, update and full access (read+update) can be
used to regulate the access to attributes. In the case of restrictions applied to actions of
agents and roles (AgentAction metaclass), the behavior that must be used is the execu-
tion of the action (AtomicExecute). Note that AgentAction is the resource and Atomi-
cExecute is the action being used to control or restrict the access to the resource. In
the case of restrictions applied to messages (Message metaclass), the behavior that
must be used is the sending of the message (AtomicSend), the receiving of the mes-
sage (AtomicReceive) or the full access (send+receive) of the message (MessageFul-
lAccess). Fig. 2 illustrates all metaclasses that define the resources and the actions.

 Modeling Norms in Multi-agent Systems with NormML 49

Fig. 3. Activation constraints related meta-
classes at the NormML Metamodel

Fig. 4. Sanction related metaclasses at the
NormML Metamodel

Fig. 2. Actions related metaclasses at the
NormML Metamodel

50 K. da Silva Figueiredo, V. T. da Silva, and C. de Oliveira Braga

Activation Constraints. The preliminary version of NormML allows for the specifi-
cation of the time period that a norm is active based on the execution of actions. The
language was extended to define activation constraints also based on the definition of
dates and predicates (i.e., values associated with attributes), as shown in Fig. 3.

The activation constraints are represented by the metaclass NormConstraint. If a
norm is conditioned by a Before clause, it means that the norm is active before the
execution of the action(s) and/or the achievement of the date(s) described in the Before
clause. If a norm is conditioned by an After clause, it means that the norm is active
only after the execution of the action(s) and/or the achievement of the date(s) described
in the After clause. In the case of a Between clause, the norm is only active during the
period delimited by two groups of actions and dates. In the case of a norm conditioned
by an If clause, the norm is only active when the value(s) of the attribute(s) described
in the If clause is (are) achieved (see norm N3 in Fig. 8 for an example).

Sanctions. The current version of NormML supports the description of sanctions (Sanc-
tion metaclass) for the norms, as shown in Fig. 4. A sanction may be a reward applied
when the norm is fulfilled (by instantiating the metaclass Reward) or a punishment
applied when the norm is violated (by instantiating the metaclass Punishment). A sanc-
tion can state an action or a set of actions to be executed after the fulfillment/violation of
the norm (represented by the SanctionAppliesAction relationship) or can activate other
norms to restrict the behavior of some particular entities (represented by the Sanction-
AppliesNorm relationship). For instance, in case an agent violates a norm, another norm
is activated to prohibit the agent from executing a particular action (see norms N9 and
N10 in Fig. 9 for an example).

Context. The recent version of NormML makes possible the definition of norms in two
different contexts, as illustrated in Fig. 5: Organization and Environment. Organizations
define roles played by agents and both organizations and agents inhabit environments.

Fig. 5. Context related metaclasses at the
NormML Metamodel

Fig. 6. Norm N1

 Modeling Norms in Multi-agent Systems with NormML 51

6.2 Modeling Norms with NormML

In order to exemplify the use of NormML to model the norms of a MAS, consider the
set of norms presented in Section 3. Norm N1 states a prohibition (the deontic con-
cept) on all agents executing (the involved entities) in the environment MarketPlace
(the context) to read and update (non-communicative action attributeFullAccess) the
price of goods (the resource of the action). Fig. 6 shows the model of the norm N1 by
instantiating the classes of the NormML metamodel.

N2 (Fig. 7) states a permission (deontic concept) to the sellers (involved entities) of
the organization WebStore (context) to update (non-communicative action atomicUp-
date) the price of the goods (resource of the action) before it opens for sale (activa-
tion constraint).

Fig. 7. Norm N2

Fig. 8. Norm N3

Norm N3 (Fig. 8) applies an obligation (deontic concept) to the sellers of the or-
ganization WebStore (as norm N2) to delete the good’s advertisement (non-
communicative action atomicExecute) if the stock of the good is empty (activation
constraint).

N9 also states an obligation to the sellers of the organization WebStore to give the
good to the buyer (an atomicExecute of an AgenAction) after the given buyer pays for
it (activation constraint). Norm N9 applies a punishment as a sanction that is a norm
too (norm N10). If a seller violates N9, N10 states to the given seller (related entity) a

52 K. da Silva Figueiredo, V. T. da Silva, and C. de Oliveira Braga

prohibition (deontic concept) to advertise goods (an atomicExecute of an AgenAc-
tion). Fig. 9 shows the model of norm N9 and N10.

Similar to norms N9 and N10, norms N4 and N5, and N6 and N7 can be modeled.
The same occurs to the norm N8 that can be modeled following the approach used to
model N2.

Fig. 9. Norm N9 and N10

6.3 Validating the Norms

The process of validating a norm encompasses two steps. First, the norm, as an in-
stance of the NormML metamodel, is checked according to the invariants of the
metamodel. The invariants check if the norm is well-formed according to the meta-
model specification. The second step checks if any given two norms are in conflict.
The current version of NormML has a set of operations described in OCL to check the
invariants and conflicts of the norms3.

6.3.1 Well-Formed Rules
Not all the norms that can be instantiated from the metamodel are well-formed. Below
we describe two examples of well-formed rules of the NormML metamodel. Those
were chosen since they represent rules that are related to the specification of the
norms themselves and discuss some of the new elements included in the actual ver-
sion of the language.

3 The OCL operations are available at http://www.ic.uff.br/~kfigueiredo/normML/OCL.zip

 Modeling Norms in Multi-agent Systems with NormML 53

WFR1. The action to be executed by an entity that is defined in the before clause of a
Between cannot also be defined in the after clause of such Between to be executed by
the same entity in the same context. If the actions in the before of a Between and in
the after of a Between are the same, are related to the same entity (an agent, a role or
an agent playing a role) and executed in the same context, this situation does not con-
stitute a time period, but a moment in the time.

WFR2. If the norm applied to an entity is constrained by an If whose condition is the
value of an attribute, the entity of the norm must have permission to read this attrib-
ute. The entity related to a norm that states an If constraint must be able to read the
attribute associated with the constraint (by a permission of read or full access to the
Attribute or to the Entity which the attribute belongs), otherwise the entity will not be
capable of knowing when the norm is active.

6.3.2 Checking for Conflicts
After verifying the well-formedness of the norms, it is important to check if there are
conflicts between the norms. As stated in Sections 2 and 6, a norm in NormML is
composed of the following elements: context, entities involved, deontic concept, ac-
tions, activation constraints and sanction. Therefore, the checking for conflicts be-
tween two norms should consider the following situations related to these elements. In
order to exemplify the checking for conflicts, let’s consider norms N1 and N2 pre-
sented in Section. 4.

Context. (i) It is important to check for conflicts if the norms are defined in the same
context; (ii) whenever a norm is defined in the context of an environment, it is neces-
sary to check if the norms defined in the context of organizations that inhabit such an
environment are in conflicts with the norms of the environment; and (iii) it is also
important to check for conflicts between norms defined in the same hierarchy of or-
ganizations. E.g. of case (i): N1 is defined in the context of an environment and N2 is
defined in the context of an organization that inhabits such an environment. There-
fore, it is important to check if these norms are in conflicts. The operation below is
able to check if an organization inhabits an environment.

context Organization::isInEnvironment(env:Environment):Boolean
body: self.environment=env

Entities Involved. It is necessary to check for conflicts: (i) between norms applied to
the same entity; (ii) between a norm defined to a role and a norm defined to an agent
that can play a role; (iii) between norms applied to different roles played by the same
agent; (iv) between the norms applied to roles in a hierarchy of roles; and (v) between
the norms of an organization and norms of the roles, agents and sub-organizations of
this organization.

E.g. of case (ii): N1 is applied to all agents and N2 is applied to a given role that
can be played by one of the agents. Since both norms are in related contexts and ap-
plied to related subjects, these two norms can be in conflict. The operation below can
be used to check if there is an agent playing a role. If there is not any agent linked to
the seller role, these norms are not in conflict.

54 K. da Silva Figueiredo, V. T. da Silva, and C. de Oliveira Braga

context Role::isAgentPlayingRole():Boolean
body: self.agentPlayingRole->size()>0

Deontic Concept. Two norms may be in conflict if: (i) one norm states a permission
and another states a prohibition; (ii) one norm states an obligation and another states a
prohibition; and (iii) one norm states a permission and another one states an obliga-
tion in the period the permission is not activated. E.g. of case (iii): N1 states a prohi-
bition and N2 states a permission applied to related subjects executing in related
contexts. The operation below checks if two norms define deontic concepts that may
characterize a conflict.

Context Set{Norm}::checkDeonticConcept
 (n1:Norm,n2:Norm):Boolean
body: if((n1.oclIsTypeOf(NormProhibition))
 and (n2.oclIsTypeOf(NormObligation)))
then(true)
else(if((n1.oclIsTypeOf(NormProhibition))
 and (n2.oclIsTypeOf(NormPermission)))
 then(true)
 else(if((n1.oclIsTypeOf(NormObligation))
 and (n2.oclIsTypeOf(NormPermission)))
 then (true)
 else (false)endif)endif)endif

Actions. In case the deontic concepts of the norms are in one of the above situations,
it is important to check for conflicts if: (i) the actions being regulated by the norms
are of the same type on the same resource; (ii) one norm states an EntityRead, an
EntityUpdate or an EntityFullAccess to one Entity and another one states an At-
omicRead or an AtomicUpdate to the attributes or association ends of the same En-
tity; (iii) one norm states an EntityUpdate or an EntityFullAccess to one Entity and
another one states an AtomicExecute to the methods of the same Entity; (iv) between
an AttributeFullAccess and an AtomicRead or an AtomicUpdate to the same attribute
of the same Entity; (v) between an AssociationEndFullAccess and an AtomicRead or
an AtomicUpdate to the same association end of the same Association; (vi) between
an AtomicRead and an AtomicUpdate to the same attribute of an Entity or the same
association end of an Association, (vii) between an EntityRead and an EntityUpdate
to the same Entity, and (viii) between a MessageFullAccess and a MessageSend or a
MessageReceive to the same message.

Moreover, a special case needs to be considered: an AtomicCreate and an At-
omicDelete to the same Entity may be in conflict if the deontic concepts associated
with the norms are the same (contrasting to the cases mentioned in the previous item),
i.e., if one norm states an obligation to create a particular Entity and another one
states an obligation to delete the same Entity, these norms may be in conflict. The
same is valid to prohibitions.

E.g. of case (iv): N1 regulates the reading and updating of an attribute and N2
regulates the reading of the same attribute of the same entity. Both norms can be in
conflict since they are applied to related subjects, executing in related contexts and
regulating related actions. The operation below checks if a norm is restricting the
reading and updating (i.e., fullAccess) of an attribute and if the other is restricting the
reading of an attribute.

 Modeling Norms in Multi-agent Systems with NormML 55

context Set{Norm}::checkAttributeFullAccessAndRead
 (n1:Norm,n2:Norm):Boolean
body: if((n1.access.oclIsTypeOf(AttributeFullAccess))
 and(n2.access.oclIsTypeOf(AttributeRead))))
then (true) else (false)endif

Activation Constraints. Finally, two norms may be in conflict if: (i) the periods
established by the invariants Before, After, Between (considering the actions and
dates associated) and If (considering the dates associated) intersect, or (ii) in case of
two If conditions, the values related to the same attribute intersects (e.g.: x>10 and
x=15). E.g. of case (v): N1 and N2 are defined in time periods that intersects because
N1 is always activated, i.e., it is not restricted to any condition. The operation below
checks if one of the norms is not constrained to any period of time.
context Norm::isConstrained():Boolean
body: self.constraint->size()>0

N1 and N2 are in conflict because both norms are applied to related subjects, exe-
cuting in related context, regulating related actions and defined in time periods that
intersects. Similarly, norms N5 and N7 presented in Section 4 are also in conflict if
the buyer violates N4 and after it fulfills N6. The current version of NormML is able
to check the conflicts between the norms by using a set of operations described in
OCL that verifies each case described in this section.

7 Conclusion and Future Work

We have presented the main elements that compose a norm and discussed how several
MAS modeling languages and the notations provide by methodologies and organiza-
tional models give support to the modeling of these elements and to the checking of
conflicts between norms. And we also have emphasized the contributions of the nor-
mative modeling language NormML when compared with other modeling languages
and notations used by methodologies and organization models.

With the preliminary version of NormML [2] it was possible (i) to model permis-
sions, prohibitions and obligations; (ii) to regulate the behavior of agents and roles;
(iii) to define norms that restrict the execution of non-dialogical actions; (iv) to define
activation constraints based on the execution of actions. By using the current version
of NormML it is also possible (i) to model norms associated with different contexts;
(ii) to regulate the behavior of groups of individuals (or organizations); (iii) to define
norms that restrict the execution of dialogical actions; (iv) to define activation con-
straints based on the definition of deadlines and predicates (values associated with
attributes); and (v) to define sanctions associated with the norms. We are in the proc-
ess of extending the language to define norms that restrict the achievement of states.

The language also gives support to the checking of conflicts among norms. In order
to do so, we have used EOS, a Java component which implements OCL2.0 evaluation
on model scenarios [37]. The NormML metamodel was described as a UML class
diagram together with its operations that implement the conflict rules. Norms are
modeled as instances in object diagrams that are validated by executing the operations
over such diagrams.

In this paper we focus on the modeling of the static aspects of the norms. However,
it is our intension to define a sequence diagram for NormML to describe the sequence

56 K. da Silva Figueiredo, V. T. da Silva, and C. de Oliveira Braga

of the executed actions. By using such diagram it will be possible to: (i) represent
dynamic aspects as the creation, cancellation and delegation of a norm; (ii) define
norms in an interaction context; (iii) check conflicts that depend on the sequence of
the executed actions; and (iv) identify the norms that are active and the ones that were
violated. It is also our aim to develop a graphical tool for modeling and validating
norms using NormML.

References

1. López y López, F.: Social power and norms: impact on agent behavior. PhD thesis, Univ.
of Southampton, Department of Electronics and Computer Science (2003)

2. Silva, V., Braga, C., Figueiredo, K.: A Modeling Language to Model Norms. In: De Vos, M.,
et al. (eds.) COIN 2010. LNCS (LNAI), vol. 6541, pp. 39–57. Springer, Heidelberg (2011)

3. Aldewereld, H., Dignum, F., Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J., Si-
erra, C.: Operationalisation of norms for usage in electronic institutions. In: Proc. 5th
AAMAS, pp. 223–225 (2006)

4. Cranefield, S.: Modelling and monitoring social expectations in multi-agent systems. In:
Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson,
E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 308–321. Springer, Heidelberg (2007)

5. García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.: Implementing norms in electronic
institutions. In: Proc. 4th AAMAS, pp. 667–673. ACM Press, New York (2005)

6. Garcia-Ojeda, J., DeLoach, S., Robby, O., Valenzuela, J.: O-maSE: A customizable ap-
proach to developing multiagent development processes. In: Luck, M., Padgham, L. (eds.)
AOSE VIII. LNCS, vol. 4951, pp. 1–15. Springer, Heidelberg (2008)

7. Governatori, G., Rotolo, A.: Defeasible logic: Agency, intention and obligation. In:
Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 114–128.
Springer, Heidelberg (2004)

8. Lomuscio, A., Sergot, M.: A formalization of violation, error recovery, and enforcement in
the bit transmission problem. Journal of Applied Logic 2(1), 93–116 (2004)

9. López y López, F., Luck, M., d’Inverno, M.: Constraining autonomy through norms. In:
Proceedings of the 1st AAMAS, pp. 674–681. ACM Press, New York (2002)

10. Silva, V.: From the specification to the implementation of norms: an automatic approach to
generate rules from norms to govern the behaviour of agents. In: IJAAMAS, Special Issue
on Norms in Multi-Agent Systems, pp. 113–155 (2008)

11. Vasconcelos, W., Kollingbaum, M. and Norman, T.: Resolving conflict and inconsistency
in norm-regulated virtual organizations. In Proc. AAMAS 2007 (2007)

12. Meyer, J.J., Wieringa, R.J.: Deontic logic in computer science: normative system specifi-
cation. John Wiley and Sons, Chichester (1991)

13. Odell, J., Parunak, H., Bauer, B.: Extending UML for agents. In: Proc. Agent-Oriented In-
formation Systems Workshop at National Conf. of AI, pp. 3–17 (2000)

14. Choren, R., Lucena, C.: The ANote Modeling Language for Agent-Oriented Specification.
In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.) SELMAS 2004. LNCS,
vol. 3390, pp. 198–212. Springer, Heidelberg (2005)

15. Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P.,
Stark, J., Evans, R., Massonet, P.: Agent Oriented Analysis Using Message/UML. In:
Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 119–135.
Springer, Heidelberg (2002)

16. Danc, J.: Formal specification of AML. Department of Computer Science, Comenius Uni-
versity, Master’s Thesis (2008)

 Modeling Norms in Multi-agent Systems with NormML 57

17. Wagner, G.: The Agent-Object-Relationship meta-model: towards a unified view of state
and behavior. Information Systems, 475–504 (2003)

18. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Developing multiagent systems: the
Gaia methodology. ACM TSEM, 417–470 (2003)

19. Cossentino, M.: From requirements to code with the PASSI methodology. In: Agent-
oriented Methods, pp. 79–106. Idea group, USA (2005)

20. Padgham, L., Winikoff, M.: Developing intelligent agent systems: a practical guide, 225
pages. John Wiley and Sons, Chichester (2004)

21. Juan, T., Pierce, A., Sterling, L.: ROADMAP: extending the Gaia methodology for com-
plex open systems. In: Proc. 1st AAMAS, pp. 3–10 (2002)

22. Giorgini, P., Mouratidis, H., Zannone, N.: Modelling security and trust with Secure Tro-
pos. In: Integrating Security Soft. Eng.: Advances and Future Vision (2006)

23. Zhang, S.-W.: SODA: Societies and infrastructures in the analysis and design of agent-
based systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957,
pp. 185–193. Springer, Heidelberg (2001)

24. Ferber, J., Stratulat, T., Tranier, J.: Towards an integral approach of organizations: the
MASQ approach in multi-agent systems. In: Multi-agent Systems: Semantics and Dynam-
ics of Organizational Models. IGI (2009)

25. Hübner, J.F., Sichman, J.S., Olivier, B.: A model for the structural, functional, and deontic
specification of organizations in multiagent systems. In: Bittencourt, G., Ramalho, G.L.
(eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer, Heidelberg (2002)

26. Dignum, V.: A model for organizational interaction: based on agents, founded in logic.
PhD dissertation, Universiteit Utrecht, SIKS dissertation series 2004-1 (2004)

27. Molesini, A., Denti, E., Omicini, A.: RBAC-MAS & SODA: experimenting RBAC in
AOSE engineering societies in the agents world. In: Artikis, A., Picard, G., Vercouter, L.
(eds.) ESAW 2008. LNCS, vol. 5485, pp. 69–84. Springer, Heidelberg (2009)

28. Oren, N., Luck, M., Miles, S., Norman, T.J.: An argumentation inspired heuristic for re-
solving normative conflict. In: Proc. of Workshop COIN at AAMAS, pp. 41–56 (2008)

29. Kagal, L., Finin, T.: Modeling Conversation Policies using Permissions and Obligations.
In: van Eijk, R., Huget, M., Dignum, F. (eds.) AC 2004. LNCS (LNAI), vol. 3396,
pp. 120–133. Springer, Heidelberg (2005)

30. García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.A.: An Algorithm for Confict Reso-
lution in Regulated Compound Activities. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J.,
Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 193–208. Springer, Hei-
delberg (2007)

31. Silva, V., Choren, R., Lucena, C.: MAS-ML: a multi-agent system modelling language. In:
IJAOSE, Modeling Lang. for Agent Systems, pp. 382–421 (2008)

32. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-based access control, 2nd edn. Artech
House Publishers, Boston (2007)

33. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: from UML models to access
control infrastructures. ACM TSEM, 39–91 (2006)

34. Clavel, M., Silva, V., Braga, C., Egea, M.: Model-driven security in practice: An industrial
experience. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095,
pp. 326–337. Springer, Heidelberg (2008)

35. Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design models.
Inf. Software Technology, 815–831 (2009)

36. Object Management Group: OCL Specification, OMG,
http://www.omg.org/docs/ptc/03-10-14.pdf (accessed: May 1, 2010)

37. EOS, http://maude.sip.ucm.es/eos/ (accessed: May 1, 2010)

Building Reputation-Based Agreements:

Collective Opinions as Information Sources�

Roberto Centeno1, Ramón Hermoso1, and Viviane Torres da Silva2

1 Centre for Intelligent Information Technology (CETINIA),
University Rey Juan Carlos, Madrid, Spain

2 Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
{roberto.centeno,ramon.hermoso}@urjc.es,

viviane.silva@ic.uff.br

Abstract. Reputation mechanisms, which can be used in organisational
environments, have been developed during last few years as valid meth-
ods to allow agents to better select their partners. In most of works
presented in the literature, reputation is summarised as a value, typi-
cally a number, that represents an opinion sent by an agent to another
about a certain third party. In this work, we put forward a novel concept
of reputation-based agreement in order to support the reputation defini-
tion, as well as, some desirable properties about it. We define a reputation
service that collects opinions from agents, so creating agreements over
situations. This service will also be in charge of presenting the infor-
mation by using different informative mechanisms. On the other hand,
we analyse how to enforce agents to send their opinions to the reputa-
tion service by adding incentive mechanisms. Finally, two different case
studies are presented to exemplify our work.

Keywords: Agreement, Reputation, Organisation, Trust.

1 Introduction

Reputation mechanisms have been proved to be successful methods to build
multi-agent systems where agents’ decision-making processes to select partners
are crucial for the system functioning [5][6][12]. In models such as in [6][12] the
authors focus on letting the agent the duty of requesting opinions, aggregating
replies and inferring conclusions from the gathered information. Although rep-
utation gathering process from the agent’s point of view is an important issue,
in this work we propose a complementary approach that endows organisations
with a reputation service that may help agents to make decisions when their
own information is scarce.

� The present work has been partially funded by the Spanish Ministry of Edu-
cation and Science under project TIN2006-14630-C03-02 (FPI grants program)
and TIN2009-13839-C03-02 and by the Spanish project “Agreement Technologies”
(CONSOLIDER CSD2007-0022, INGENIO 2010).

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 58–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Building Reputation-Based Agreements 59

In this paper we introduce the concept of reputation-based agreement as the
cornerstone of the reputation service in an organisational multi-agent system. An
agreement is usually defined as a meeting of minds between two or more parties,
about their relative duties and rights regarding current or future performance.
Around this concept new paradigms have emerged [1][2] aimed at increasing the
reliability and performance of agents in organisations by introducing in such
communities these well-known human social mechanisms. With this in mind, we
propose a novel approach for the meaning of reputation. From a global point
of view, a reputation-based agreement is a meeting point on the behaviour of
an agent, participating within an organisation, with regard to its reputation.
Agreements are evaluated by aggregating opinions sent by participants about
the behaviour of agents. Notice that this notion of agreement bases on a passive
process instead of on an active one, since agreement is reached without any
dialogue among agents, but with the opinions gathered from them. We also define
some properties that describe different types of agreements. Besides, information
about reached agreements will be provided to agents by using the concept of
informative mechanism [3].

The second part of the paper tackles the problem of how to make agents to col-
laborate sending their opinions to the reputation service in a pro-active manner.
We will examine the concept of incentive mechanism [3] as a way of manipulat-
ing participants, in order to get more collaboration sending their opinions about
different situations they have been involved in.

The paper is organised as follows: Section 2 formalises the reputation service,
supported by the idea of reputation-based agreements. In Section 3 we illustrate
all concepts introduced by means of a case study. Section 4 puts forward an
incentive mechanism that enforces agents to collaborate with the reputation
service. Section 5 elaborates a second case study using an incentive mechanism
to enforce agents to collaborate sending their opinions to the reputation service.
Section 6 discusses some related work and, finally, Section 7 summarises the
paper and presents the future work.

2 A Service Based on Reputation-Based Agreements

As we have previously pointed out, the current work faces with the task of for-
malising a reputation service working on organisational multi-agent systems. It
is motivated because the reputation of an agent participating within an organ-
isation varies as consequence of its behaviour with regard to the norms of such
a system. That is, the violation of norms within an organisation affects the rep-
utation of an agent. We adhere the definition of organisation given in [4]. Sum-
marising, an organisation is defined as a tuple 〈Ag,A,X , φ, x0, ϕ, {ON om,Rom}〉
where Ag represents the set of agents participating within the organisation; A
is the set of actions agents can perform; X stands for the environmental states
space; φ is a function describing how the system evolves as a result of agents
actions; x0 represents the initial state of the system; ϕ is the agents’ capabil-
ity function describing the actions agents are able to perform in a given state of

60 R. Centeno, R. Hermoso, and V. T. da Silva

ag1
ag2

ag3

Reputation Service

R
in
f
o

a
g 1

=
〈S

it
i
, O

pR
i
〉

Ri
n
f
o

a
g
2

=
〈S

it
j
,O

p
R
j
〉 R

in
f
o

a
g
3

=
〈S

it
j , O

pR
k 〉

(a) sending opinions

Reputation Service
Rinfo

ag1

Rinfo
ag2

Rinfo
ag3

fπ
π = 〈Sit,Ag, OpR, t〉

Π

(b) creating agreements

ag5

ΓΠ

Reputation Service

...ΓΠ ΓΠ

ation S

Π

Sit IΠ

(c) giving informa-
tion

Fig. 1. Dynamics of the Reputation Service

the environment; ON om is an organisational mechanism based on organisational
norms; and Rom is an organisational mechanism based on roles that defines the
positions agents may enact in the organisation (see [4] for more details).

By introducing a reputation mechanism in an organization regulated by norms
that may have its own sanctioning mechanism, we are proposing a complemen-
tary decentralized sanctioning mechanism implemented by each agent in the or-
ganization. The agent is able to evaluate the behavior of its partners according to
the norms they violate and to its own opinion about the importance of complying
with such norms. The reputations are the results of such evaluation and are used
by each agent to sanction their partners according to their own will.

2.1 How Agents Send Their Opinions

During an agent lifetime within an organisation, it is involved in several different
situations. A situation is defined as a tuple 〈Ag,R,A, T 〉, that represents an
agent Ag, playing the role R, while performing the action A, through a time
period T . As detailed in [4], different types of situations can be defined following
this definition. For instance, situations in which an agent performs an action,
regardless of the role it is playing – 〈Ag, ,A, T 〉 –, or situations in which an
agent is playing a role during a time period, regardless the action it performs
– 〈Ag,R, , T 〉. Agents usually evaluate those situations in order to compile
reliable information that allows them to predict the result of future situations.
The rationale of the current work is that if agents share their knowledge about
the situations they are involved in, this information might be useful when other
agents have not enough information to select partners to interact with. This
problem becomes hard when new participants join an organisation and they do
not have not strong opinions yet.

Situations are evaluated from an agent’s individual point of view. Thus, an
evaluation may reflect the experience of the agent performing the evaluation
– direct way – or the opinions provided by third parties about the evaluated
situation – indirect way.

At any time, an agent can send its opinion about a particular situation to the
reputation service. We call this information reputation information message:

Building Reputation-Based Agreements 61

Definition 1. A reputation information message Rinfoagi∈Ag is a tuple, represent-
ing an opinion sent by the agent agi to the reputation service containing an
evaluation about a particular situation:

Rinfoagi
= 〈Sitagi , Nagi , OpRagi〉,

where agi stands for the agent which sends the opinion; Sitagi is the situation
being evaluated by agi; Nagi states the set of norms violated by the partner
and reported by agi, and OpRagi represents agi’s opinion about the behaviour
of its partner in the situation (typically a number). The set of norms violated
are used to justify the evaluation of the agent behaviour, i.e., it represents the
reasons for such evaluation. Therefore, an agent, by using this kind of messages,
is somehow making public its opinions – evaluations – about different situations:
agents, roles, etc.

2.2 Creating Reputation-Based Agreements

In this section we intend to face the task of giving a novel approach for the mean-
ing of reputation tackling this concept as a partial agreement about a certain
situation. When the reputation service receives reputation information messages
from agents, it aggregates them creating what we have called reputation-based
agreements. That is, the aggregation of all the opinions regarding a particular
situation is ’per se’ what a set of agents – as a whole – actually think about
the aforesaid situation. Thus, a reputation-based agreement represents the con-
sensus reached in the reputation opinions space sent by a set of agents about a
particular situation.

Definition 2. A reputation-based agreement π for a particular situation, is a
tuple:

π = 〈Sit,Ag, N, OpR, t〉
where:

– Sit is the situation about the agreement is reached;
– Ag is the set of agents that contributed to the agreement;
– N is the set of all norms reported by the agents that contributed to the

agreement: N = {Nag1 , ..., Nagn} where agi ∈ Ag;
– OpR represents the opinion rating – whatever its representation is (qualita-

tive, quantitative, etc.) – reached as a consequence of all opinions sent about
Sit;

– t stands for the time when the agreement was reached.

Therefore, an agreement means a global opinion that a set of agents have on
a certain situation. This agreement, as we put forward in the next section, can
be used as a generalist expectation for a situation in which agents have no (or
little) previous information about.

As we have claimed, a reputation-based agreement is reached as consequence
of the aggregation of all opinions sent about a particular situation. Thus, the

62 R. Centeno, R. Hermoso, and V. T. da Silva

reputation service requires a function that is able to aggregate information repu-
tation messages sent by agents. The aim of such a function is to create agreements
from reputation opinions that agents send to the service by means of reputation
information messages. We formally define the function as follows:

Definition 3. Let fπ be a function that given all the reputation information
messages sent by agents and a particular situation creates a reputation-based
agreement for that situation:

fπ : |Rinfoagi∈Ag| × Sit→ Π

where:

– |Rinfoagi∈Ag| stands for the set of reputation information messages received by
the reputation service;

– Sit is the set of situations;
– Π represents the set of reputation-based agreements.

Some desirable characteristics should be taken into account when a function
is designed. Therefore, we propose the following guidelines:

– an agreement about a situation should be updated when new reputation
information messages are sent to the reputation service about the same sit-
uation;

– the function should take into account the temporality of the messages re-
ceived, that is, two opinions should not have the same importance if they
were sent in different moments;

– when an agreement about a specific situation is being created, the func-
tion should also consider opinions about a more general situation. Let us
illustrate it by an example. If a reputation-based agreement is being cre-
ated about the situation 〈Harry, seller, sellingShoes, t〉, the function should
take into account opinions about situations such as: 〈Harry, seller, , t〉 or
〈Harry, , , t〉.

Following these guidelines the reputation service might use any function that
is able to aggregate values. It could use a simple function to calculate the average
of all opinions, or a more elaborated one that aggregates the opinions by means
of complex calculation, i.e., weighting the assessment by taking into account who
is giving the information.

2.3 Reputation-Based Agreements: Properties

From previous definitions (2 and 3) it is possible to define some desirable prop-
erties about reputation-based agreements. These properties should be taken into
account when agreements are created and may also provide useful extra infor-
mation when informing about different issues.

Property 1. A reputation-based agreement π is complete iff all agents partic-
ipating in an organisation, at time t, contribute to reach that agreement:

Building Reputation-Based Agreements 63

π∗ ⇔

⎧⎨⎩
O = 〈Ag,A,X , φ, x0, ϕ, {ON om,Rom}〉 ∧
π = 〈Sit,Ag′, N, OpR, t〉 ∧
(Ag = Ag′)

That is, given a time t every participant ag ∈ Ag in the organisation O has
necessarily sent a reputation information message indicating its opinion about
the situation concerning the agreement (Ag = Ag′). More complete agreements
mean more reliable the information in the system.

Property 2. A reputation-based agreement π is α-consistent iff. the reputa-
tion value of π differs, at most, 1 − α from the reputation value sent by every
agent that contributed to reach that agreement:

πα ⇔

⎧⎨⎩
π = 〈Sit,Ag, N, OpR, t〉 ∧
∀agi ∈ Ag [∀r ∈ Repinfoagi

[(r = 〈Sitagi , Nagi , OpRagi〉) ∧
(Sitagi = Sit) ∧ (|OpRagi −OpR| ≤ 1− α)]]

This property represents how agents sending their opinions about a situation
agree in a certain extent. Therefore, the higher α is, the more similar the opinions
are.

Property 3. A reputation-based agreement π is β-norm consistent iff. the
difference between size of union set of those norms reported by agents involved
in π and the intersection set of sets of norms reported by each agent over the
union of all norms in π is 1-β.

πβ ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π = 〈Sit,Ag, N, OpR, t〉 ∧

agi ∈ Ag ∧ Nagi ∈ N ∧

| ⋃
agi

Nagi
|−| ⋂

agi

Nagi
|

| ⋃
agi

Nagi
| = (1− β)

It means that if β is 1 then the agent whose behaviour is being evaluated has
exactly violated the same set of norms when participating in the very same
situation with different partners. This property is rather than important when
an agent wants to know if the behaviour of its future partner in a given situ-
ation is usually the same or if it is unpredictable. The latter would be totally
unpredictable in the case in which β is 0.

Property 4. A reputation-based agreement π is partially-full iff it is complete
and 1-consistent:

πφ ⇔ (π∗ ∧ πα ∧ α = 1)

In the case α is 1 every agent has the very same opinion about a given situation.

Property 5. A reputation-based agreement π is full iff. it is complete, 1-
consistent and 1-normConsistent:

64 R. Centeno, R. Hermoso, and V. T. da Silva

πφ ⇔ (π∗ ∧ πα ∧ α = 1 ∧ πβ ∧ β = 1)

In the case α is 1 and β is 1 all agents have the same opinion about a given
situation and the agent whose behaviour is being evaluated has violated exactly
the same norms. Note that, β = 1 does not implies α = 1 since different agents
can evaluate exactly the same behaviour (i.e., the same set of norms have been
violated in the same situation) in different ways.

This property is very desirable when seeking reputation-based agreements,
because (i) the more agents contribute to the agreement, the stronger validity
the latter gets, and (ii) the more similar is the behaviour of the agent when
interacting with different partner, the more predictable it is. Thus, the likelihood
of capturing what is actually happening in the organisation tends to be higher.

Property 6. A reputation-based agreement π is R-consistent iff all the agents
participating in the agreement play the same role in the system:

πR = 〈Sit,Ag, N, OpR, t〉 ⇔ ∀agi ∈ Ag play(agi,R)

where R stands for the role the consistency is based on, Ag is the set of agents
that contribute to reach the agreement, and play : Ag ×R → [true, false] is a
function that returns true if the agent Ag plays the role R.

This property is useful in cases in which a new agent, joining an organisation,
wants to know what other agents – that are executing in the organisation and
playing the same role – think about a given situation. For instance, someone
who is thinking of buying something would like to know which are the opinions
of those who have previously played the role buyer.

Property 7. A reputation-based agreement π is R-complete iff it is R-
consistent and is complete for all the agents that play the role R at time t:

π∗
R = 〈Sit,Ag′, N, OpR, t〉 ⇔

{
πR ∧ O = 〈Ag,A,X , φ, x0, ϕ, {ON om,Rom}〉∧
∀ag ∈ Ag (play(ag,R)→ ag ∈ Ag′)

Property 8. A reputation-based agreement π is R-full iff it is R-complete and
is 1-consistent:

πφR ⇔ (π∗
R ∧ πα ∧ α = 1)

Although properties 1 and 5 are desirable, they are not achievable in systems
that have a significant number of agents, for instance, in electronic marketplaces.
However, many systems have those properties, such as closed organisational sys-
tems where the number of participants is not huge.

2.4 Providing Information About Reputation-Based Agreements

Once we have defined an agreement as a distributed consensus-based expectation
for a set of agents on a certain situation, we now describe how the reputation
service can present the relevant information about the reached agreements to the

Building Reputation-Based Agreements 65

agents participating in the organisation. Reputation-based agreements somehow
capture the general thinking about a particular situation – the more α-consistent
the agreement is the more reliable it is. Thus, information about the agreements
reached until that moment may be very useful for agents. In particular, when
agents have recently joined the organisation, they do not have any hint about
situations in which they might be involved in, so if the reputation service provides
information about agreements, agents may improve their utility from the very
beginning.

With this in mind, we deal with the problem of how the reputation service may
provide such information. To that end, we part from the notion of informative
mechanism [3]. Those types of mechanisms are in charge of providing some kind
of information to agents in order to regulate a multi-agent system. Thus, an
informative mechanism Γ : S′ × X ′ → I is a function that given a partial
description of an internal state of an agent (S′) and, taking into account the
partial view that the service has of the current environmental state (X ′), provides
certain information (I). We formally define them as follows:

Definition 4. An informative mechanism providing information about
reputation-based agreements is:

ΓΠ : Sit×X ′ → IΠ

where Sit and X ′ are already defined and IΠ stands for the information provided
by the mechanism by using the set of agreements Π reached over the situation
Sit.

We have chosen a very general definition of information in order to cover all
possible types of information the reputation service could offer taking into ac-
count the reputation-based agreements reached. The information provided may
consist of (i) a ranking sorting the best agents for a particular situation, such as
〈 ,R,A, 〉, created from the agreements reached for that situation, (ii) a value
representing the reputation value for a situation plus the reasons (i.e., the set
of norms violated), reached as a consequence of the agreement for that situa-
tion, (iii) an information about the properties of the agreement reached for a
particular situation, if it is full, complete, etc.

Notice that we consider agents as rational entities capable of choosing which
informative mechanisms to ask for information depending of, e.g. its own pref-
erences or basing on past requests.

3 Case Study: Pubs Area

In this section, we illustrate the proposed model by means of a simple case study.
The scenario we use involves five different agents: Anna, John, Jessica, Albert
and Harry participating within an organisation. In this organisation agents can
order and delivery drinks, so the action space of agents is composed of actions
such as, order-1000-drink-a, delivery-2000-drink-b, where a and b represent the
type of the drink agents order/deliver. That organisation is created with the aim

66 R. Centeno, R. Hermoso, and V. T. da Silva

of getting in touch pubs’ owners and providers of drinks. Thus, agents join the
organisation playing the roles of pub and provider, representing a pub’s owner
and a company provider of drinks, respectively. In our particular example, agents
are playing the following roles: Anna - pub, John - pub, Jessica - pub, Albert -
provider and Harry - provider.

In this scenario, agents representing pubs’ owners are interested in collaborat-
ing by sharing information about providers. The pubs are situated in the same
area and they collaborate with each other so as to foster the attraction cus-
tomers to that area. That is, although they try to maximise their own benefits,
one of their goals is to foster the pubs area where they are, even if that entails
to exchange information about drink providers.

Therefore, after several interactions among them – performing actions of or-
dering and delivering different types of drinks – Anna decides to make public
her opinion about Albert and Harry as providers. Thus, she uses the reputation
information messages to send to the reputation service her opinions, as follows:

RinfoAnna = 〈〈Albert, provider, , 〉, {Na, Nb}, 0.2〉
RinfoAnna = 〈〈Harry, provider, , 〉, {Nc}, 0.9〉

This information shows that Anna has had bad experiences while she was order-
ing drinks from Albert (0.2)1 because Albert always delivers all drinks later than
the agreed date (violating norm Na) and frequently forget to delivery part of the
drinks ordered (violating norm Nb). Otherwise, the second message shows that
she has had good experiences with Harry (0.9) because Harry, for instance, never
violates contracts and offers low prices. Similarly, John and Jessica send their
opinions about Albert and Harry as providers, by using the following messages:

RinfoJohn = 〈〈Albert, provider, , 〉, {Na, Nb}, 0.2〉
RinfoJohn = 〈〈Harry, provider, , 〉, {Nc}, 0.8〉

RinfoJessica = 〈〈Albert, provider, , 〉, {Na, Nd}, 0.2〉

On the one hand, it seems that both John and Jessica agree that Albert is not a
reliable provider. However, they partially disagree about the reasons represented
by the different sets of norms reported. On the other hand, Harry is quite reliable
delivering drinks, from John’s point of view.

When the reputation service receives this information, it is able to create
reputation-based agreements by using a function that aggregates the reputation
information messages. Let us suppose that it aggregates the messages by cal-
culating the average of reputation values sent by agents over exactly the same
situation and by putting together all the reported violated norms2:

fπ(Sit) =
∑n
i=1Rinfoagi

= 〈Sit, Nagi , OpRagi〉
n

1 We suppose that reputation values – denoted by OpR – are in the range [0..1].
2 It could be used whatever other function that is able to aggregate the information

received from agents.

Building Reputation-Based Agreements 67

Therefore, from the set of messages sent by the agents, so far, the reputa-
tion service can create two reputation-based agreements regarding two different
situations:

π1 =

〈〈Albert, provider, , 〉, {Anna, John, Jessica}, 0.2, {{Na, Nb}, {Na, Nb}, {Na, Nc}}, t〉
π2 = 〈〈Harry, provider, , 〉, {Anna, John}, {{Nc}, {Nc}}, 0.85, t〉

π1 represents that there exists an agreement within the organisation regarding
to Albert as provider – regardless the action he performs – is evaluated as 0.2, and
such an agreement is reached by the collaboration of Anna, John and Jessica,
at time t. Besides, π2 shows that there exists an agreement in which Harry is
evaluated 0.85 – it is calculated as the mean of all opinions sent – as provider
and that the agreement is reached by Anna and John, at time t.

In order to provide information about agreements the reputation service offers
following different informative mechanisms:

– Γ 1
Π(〈Ag,R, , 〉) given a situation where an agent and a role are specified, it

returns the meta-information about the consistency of the agreement reached
regarding that situation;

– Γ 2
Π(〈Ag,R, , 〉) given a situation where an agent and a role are specified,

it returns the reputation-based agreement reached. In particular, it returns
the reputation value in the agreement of that situation;

– Γ 3
Π(〈 ,R, , 〉) given a situation where a role is specified, it returns a ranking

of agents playing that role, sorted by the reputation value they have as
consequence of the reputation-based agreements reached until the current
time t.

– Γ 4
Π(〈Ag,R, , 〉) given a situation where an agent and a role are specified, it

returns the meta-information about the norm consistency of the agreement
reached regarding that situation;

Let us suppose that a new pub is opened in the same area by Alice, so she joins
the organisation playing the role pub. Since the pub is recently open, she needs to
order drinks. Thus, she should select a provider of drinks but she does not know
any provider yet. One solution could be asking to another agent about a partic-
ular provider – distributed reputation mechanism. However, this process could
be very costly because she would require many queries sent to different agents
to ask about different providers. Another solution is to use informative mecha-
nisms to get information about other participants, in this case about providers.
Thus, Alice searches for an informative mechanism that provides a ranking of
”best” providers3. She finds Γ 3

Π that returns a ranking of agreements when it is
queried based on a situation and a role. So, Alice performs the following query
to Γ 3

Π : Γ 3
Π(〈 , provider, , 〉) ⇒ {Harry, Albert} and the informative mecha-

nism returns a ranking of agents, sorted by the reputation values according to

3 We suppose that informative mechanisms are publicly available to all participants
within the organisation.

68 R. Centeno, R. Hermoso, and V. T. da Silva

all reputation-based agreements reached at that moment, by matching the sit-
uation specified in the query with the situation of agreements. By using this
information Alice knows that there exists an agreement within the organisation
showing that Harry is a better provider than Albert. But, how good are they?
To answer this question Alice queries the informative mechanism Γ 2

Π as follows:

Γ 2
Π(〈Harry, provider, , 〉)⇒ 0.85

Γ 2
Π(〈Albert, provider, , 〉)⇒ 0.2

In that moment, Alice is quite sure that Harry is much better provider than
Albert and there exists an agreement, within the organisation, that Harry’s rep-
utation delivering drinks is 0.85 and another one that Albert as provider is 0.2.
However, Alice is still doubting about which provider could be the best, because
she is wondering how consistent those agreements are. Thus, she queries the
informative mechanism that provides the α-meta-information about the agree-
ment reached regarding a given situation. Therefore, she performs the following
queries:

Γ 1
Π(〈Harry, provider, , 〉)⇒ π0.95

Γ 1
Π(〈Albert, provider, , 〉)⇒ π1

With this information Alice knows that all opinions sent about Albert are co-
incident because the reputation-based agreement reached is 1-consistent (π1).
Besides, she knows that the opinions sent by the agents that have interacted
with Harry are almost the same since their variability is low (0.95-consistent).
With this in mind, the last information that Alice wants to know is about the pre-
dictability of Harry’s behaviour. Therefore, Alice queries the informative mech-
anism Γ 4

Π as follows:

Γ 4
Π(〈Harry, provider, , 〉)⇒ π0.33

Although Alice decides to selects Harry as her provider since he has the best
reputation-based agreement, she knows that his behaviour is not very predictable
since he has a 0.33-norm consistency value for the referred situation.

In this domain, the reputation service has been an useful mechanism allowing
Alice to select the provider, when she did not have any previous information
about providers. The mechanism worked perfectly due to agents participating in
the organisation collaborated by sending their opinions to the reputation service.
They were motivated to send opinions because of the own nature of the domain
– pub’s owners wants to create a pubs area to attract customers. Thus, pubs
get benefits individually from making public their opinions about providers. But
what happens when agents are not motivated by the domain to send opinions
to the reputation service? Next section deals with that problem.

4 How to Motivate Agents to Send Their Opinions

As we have mentioned before, this section deals with the problem of motivating
agents to send their reputation information messages to the system. Thus, we

Building Reputation-Based Agreements 69

propose to endow the reputation system with an incentive mechanism [3] so as
to face this task. The model presented in [3] assumes that the system evolves at
discrete time steps. In each step, all agents in the system perform one action, that
is, the new state of the environment is produced through the joint actions of all
agents. Besides, it is assumed that agents can take a ”skip” action, which allows
for modelling asynchronous behaviours. From the point of view of an individual
agents, the consequences of doing an action depends not only on the action,
but also on the actions of other agents, the characteristics of the resources em-
bedded in the system, and possibly on other external influences. In this regard,
the evolution of the system is formalised as a transition probability distribution
Φ : X ×A|Ag| ×X → [0. . 1] so as to allow for existing additional external influ-
ences on the environment. As consequence, an incentive mechanism is formalised
as a function that, given a possibly partial description of an environmental state
of a multiagent system, produces changes in the transition probability distribu-
tion of the system: Υinc : X ′ → [X ×A|Ag|×X → [0. . 1]], where X ′ stands for the
partial description of an environmental state; and X ×A|Ag|×X → [0. . 1] is the
transition probability distribution of the system, that describes how the environ-
ment (X) evolves as a result of agents’ actions (A|Ag|) with certain probability
in [0. . 1]. Hence, an incentive mechanism, producing changes in the transition
probability distribution of the system, is equivalent to introduce rewards and/or
penalties. That is, when a mechanism is able to modify the consequences of an
action, such a modification might become in a reward or a penalty for the agent,
hence, rational agents would change their decisions accordingly (if they know of
such incentives). For instance, a mechanism that installs radars over a road, is
an incentive mechanism, since the probability of a car – an agent – to get fined
(and, thus, the probability to change to a state with less money) is higher if the
car passes at prohibited velocity than without the radar. Thus, the mechanism
changes the consequences of the action passing a road at high velocity.

Any incentive mechanism must tackle the following requirements: i) to choose
the agents that will be affected by the mechanism; ii) to select the actions in
which the incentive will be applied; iii) to find out, at least one attribute and a
possible modification of this, that affects the preferences of each selected agent4;
and finally, iv) to apply the modification of the parameters selected in the step
iii) as a consequence of the selected actions in the step ii), giving in such a
way a reward or a penalty to these agents. Formally, an incentive mechanism is
composed of Υinc = 〈Aginc,�, ωinc〉, where Aginc is the set of agents that will
be applied for the incentive mechanism, � stands for the set of actions in which
the incentive will be applied and ωinc represents the set of attributes and their
selected modification to tune up the preferences of agents Aginc. Each attribute
is formalised as a tuple 〈attribute, value〉.

In our particular case, we are interested in motivating all agents participating
in the organisation, because the more information the system has, the more com-
plete the reputation-based agreements will be, and consequently, the more useful

4 It means that this attribute affects to the utility function of the agent. Because we
assume that such preferences are expressed by means of an utility function.

70 R. Centeno, R. Hermoso, and V. T. da Silva

the information provided will be as well. Thus, all agents within the organisation
will be affected by the incentive mechanism: Aginc = Ag (requirement i)). As
we have pointed out, all agents should be motivated to send their opinions to
the system. Thus, the action of sending reputation information messages to the
system has to be affected by the incentive mechanism (requirement ii)). There-
fore, � = {send(Rinfoagi

)}. In order to find out the attributes that affect agents’
preferences – requirement iii) – there exist two different alternatives: a) dis-
cover the attributes by observing the performance of agents, by modifying – the
mechanism – attributes randomly, what could be very costly; and b) introduce
a new attribute in the system, becoming an attribute that influences the agents’
preferences. We tend to favour the second option, introducing a new attribute
to the organisation: points. That is, each agent is assigned with an amount of
points when it joins the organisation and the incentive mechanism will modify
their amont. Formally: ωinc = 〈pointsagi , value〉

Furthermore, agents within an organisation must select partners to interact
with, so whatever the domain of the organisation is, such agentes are interested
in selecting the best partners. Thus, their utility is influenced by the selection
of such partners. So, since the reputation system might provide them useful
information to that end, if we associate the new attribute with the action of
querying that information, the new attribute somehow becomes in an attribute
that influences the agents’ preferences. Therefore, the action of querying an
informative mechanism has to be affected by the incentive mechanism as well.
Formally: � = {send(Rinfoagi

), query(ΓΠ)}.
In order to complete requirement iv) the mechanism must decide how to

modify the attribute introduced – the points each agent has – as a consequence
of the actions selected to receive an incentive – to send opinions and to query
information. If the incentive mechanism does not exist, agents will be interested
in performing the action of querying an informative mechanism – because they
might get useful information –, but they will not be interested in performing the
action of sending their opinions – because they might lose utility if they make
public such opinions. Hence, the mechanism has to get the opposite effect, that
is, it should make more attractive the sending of opinions and less attractive the
querying for information. In this way, the new attribute becomes an attribute
whose modification affects the agents’ preferences.

In the case of the action send(Rinfoagi
), the mechanism should make more

attractive the state in which an agent will be, when it performs that action,
since they are not interested in performing it. Thus, when an agent agi ∈ Aginc
performs the action send(Rinfoagi

) the consequence of such an action will be a
modification of the value of the attribute ωinc = 〈pointsagi , value〉, such that:

value = value + (α1x + α2)

where x is the number of new reputation-based agreements that will be created
with the new opinion sent and α1, α2 are parameters to weight the incentive
(α1 > 0, α2 > 0).

Building Reputation-Based Agreements 71

We are inspired by the market and the law of demand and offer, that is,
the price of a service/product is fixed based on the demand and offer this ser-
vice/product has. Thus, the points an agent gets when it sends an opinion de-
pends on how further the new opinion is. This is measured by calculating the
number of reputation-based agreements it creates – parameter x in the equation.
It fluctuates between 0 and 1, when an agent sends an opinion about a situa-
tion that an agreement was not reached so far, it creates as maximum one new
agreement. In such a way, when more new opinions are sent, more points agents
get, so consequently, agents will be motivated to send new opinions.

On the other hand, when an agent agi ∈ Aginc performs the action query(ΓΠ),
the attribute ωinc = 〈pointsagi , value〉 is modified as a consequence in the fol-
lowing way:

value = value− (α3y + α4)

where y stands for the demand the informative mechanism being queried by the
agent has. It is calculated by the number of times such a mechanism is queried;
and α3, α4 are parameters to weight the incentive, such that α3 > 0 and α4 > 0.

Following the simile of the law of offer and demand, the more an informative
mechanism is queried, the more points agents lose querying it. Therefore, it
supposes that the more an informative mechanism is queried, the more useful
is the information it provides. Thus, its price will be risen and consequently,
agents will need more points to query. Since the only way to get points is sending
opinions, agents are definitely motivated to send information. Hence, a market
of points is created giving incentives to agents to share their opinions. It is
important to notice that the attribute pointsagi cannot be negative. That is, if
the consequence of performing the action query(ΓΠ) was a negative value the
information will not be provided.

In order to solve a deadlock produced when agents join the organisation
without any points, the incentive mechanism assigns to agents an amount of
”trial” points. It should assign, at least, a minimum quantity of points to make
them able to query the informative mechanism, since the available information
might be useful for them. Therefore, the attributes will be initialised as follows:
ωinc = 〈pointsagi , value〉 where value = α3n + α4 such that, α3 and α4 are
the same as the modification of the attribute when agents query an informa-
tive mechanism; and n is the number of ”free” queries the incentive mechanism
assigns when agents join the organisation.

Finally, it is important to remark that those incentives should be published so
as to be effective. We suppose that the organisation also publishes them together
with the informative mechanisms. In Section 5 we illustrate how the reputation
service, coupled with this incentive mechanism, works in domains in which agents
are not motivated to share their opinions.

5 Case Study: Tasks Servers

In this section we put all together by illustrating the dynamics of the reputation
service working with the incentive mechanism introduced in the same system.

72 R. Centeno, R. Hermoso, and V. T. da Silva

This scenario involves the same five agents: Anna, John, Jessica, Albert and
Harry participating within another organisation. In this organisation, agents
can execute different tasks when another agent requests it. Thus, agents can
join the organisation playing two different roles: servers and customers. The
formers are able to execute the tasks that customers request them. This domain
is characterised by the following aspects: i) when a tasks server is overload it is
not able to execute more tasks; ii) each server has different capabilities to execute
a task, i.e., the quality of the executed task may be different; and iii) when a
task is assigned to a server and the quality of the executed task is not good
enough, the task could be required to be executed again by another server. With
this characteristics agents are not motivated to send their opinions, because if all
agents discover the best server, the latter will unrelentingly be overload. On the
other hand, if agents do not have any hint about the best servers for each task,
they will select the partners – the servers – randomly, and it could imply a loss
of utility, because they could need to repeat the request to a different server.
Obviously, the reputation service, without the incentive mechanism, will not
work in this domain, because agents will not send their opinions and, as a result,
reputation-based agreements will not be created. Therefore, the organisation will
be endowed with an incentive mechanism set up as follows:

Υinc : 〈Aginc = {Anna, John, Jessica, Albert, Harry},
� = {sendagi(Rinfoagi

), queryagi(ΓΠ)},
ωinc = {〈pointsagi , 130〉}〉

where agi stands for an agent in the set Aginc; and the number 130 represents
the initial points, calculated by the equation value = α3n + α4 with n = 2 and
α3, α4 as we will detail next. In order to modify the value of the attributes, as
consequence of the execution of actions in �, the mechanism is configured with
the following parameters: α1 = 200 α2 = 100 α3 = 10 α4 = 50.

In addition, agents join the organisation playing the following roles: Anna -
customer ; John - customer ; Jessica - customer ; Albert - server and Harry -
server. Within the organisation there are many agents playing the server role as
well, but for the sake of simplicity we do not detail them.

After this point, agents start to interact by selecting their partners randomly,
because although they have enough points to query informative mechanisms,
there are not agreements available yet, since agents have not send their opinions.
Since bootstrapping of the incentive mechanism is out of the scope of the paper
we decided to assign no points to agents forming the initial state of the scenario.
Thus, initial agents will have a value of 0 in the corresponding attribute of points.
Otherwise, newcomers will have a value of 130, calculated as we have explained
before.

When several interactions have been carried out, customer agents are aware of
some useful information about servers. Once agents run out of points they need
to send their opinions, so as to get some points in order to keep on querying.
Thus, the following reputation information messages are sent to the service:

Building Reputation-Based Agreements 73

RinfoAnna = 〈〈Albert, server, , 〉, {Na}, 0.9〉
RinfoJohn = 〈〈Albert, server, , 〉, {Na}, 0.9〉
RinfoJessica = 〈〈Albert, server, , 〉, {Na}, 0.9〉
RinfoJohn = 〈〈Harry, server, , 〉, {Nb}, 0.9〉
RinfoAnna = 〈〈Harry, server, , 〉, {Nb}, 0.2〉

As a consequence of executing those actions, the incentive mechanism modifies
the values of the attribute pointsagi by using the equation explained in Section
4, as follows: 〈pointsAnna, 400〉, 〈pointsJohn, 400〉 and 〈pointsJessica, 100〉, since
Anna and John contributed to create a new agreement when they sent their
opinions. However, Jessica did not contribute to any new agreement.

When the reputation service receives those messages, the following reputation-
based agreements are created, by using the same function – the average function
– that in the case study explained in Section 3:

π1 = 〈〈Albert, server, , 〉, {Anna, John, Jessica}, {{Na}, {Na}, {Na}}, 0.9, t1〉
π2 = 〈〈Harry, server, , 〉, {Anna, John}, {{Nb}, {Nb}}, 0.55, t1〉

These agreements show that all agents playing the role customer think the
same about Albert as server and that Harry is evaluated with 0.55 as server,
from the point of view of Anna and John. We suppose that the reputation
service has the same informative mechanisms as in the example of Section 3:
Γ 1
Π(〈Ag,R, , 〉), Γ 2

Π(〈Ag,R, , 〉), Γ 3
Π(〈 ,R, , 〉) and Γ 4

Π(〈Ag,R, , 〉).
At this point, our agents could query any informative mechanism because

they have enough points to do it. However, we will focus on a new agent – Alice
– that joins the organisation at this moment. Since she is a newcomer, she will
be assigned 130 points – two ”free” queries to an informative mechanism. Then,
she performs the following queries:

Γ 3
Π(〈 , server, , 〉)⇒ {Albert, Harry}

Γ 2
Π(〈Albert, server, , 〉)⇒ 0.9

After these queries Alice knows that the best server, according to the reputation-
based agreements reached, so far, is Albert, with 0.9 evaluation. Then, the value of
the attribute pointsAlice will be modified to 10, following the equation explained
in Section 3. Since she cannot query again due to the lack of points, she will select
Albert as server even though she does not know if his behaviour can be predicted
or not. When she performs the interaction with Albert, she wants to get more
information about how the agreement about Albert is, because she is wondering
if such an agreement is not consistent enough, she could have problems if she
assigns a different task to Albert. Thus, she needs to send her opinion in order to
get more points. After that, she gets 310 points (10 that she already had plus 300
that she gets sending an opinion about a situation that does not form part of an
agreement yet). Now, she can perform a new query: Γ 1

Π(〈Albert, server, , 〉)⇒
π∗
customer. With this new information, she knows that Albert is the best server

74 R. Centeno, R. Hermoso, and V. T. da Silva

and all customers evaluate him exactly with the same reputation (π∗
customer is

customer-complete). This information is worthy for Alice because she will not
need to change of server.

6 Related Work

In this paper we do not propose another reputation mechanism but a reputation
service that generates agreements based on collected opinions about the reputa-
tions of agents in a given situation. Such service can be used by the centralised
part of an hybrid reputation model [15] or by an agent participating in a dis-
tributed mechanism that is interested in aggregate the opinions it has received
about its behaviour or in aggregate the opinions it has about the behaviour of
another agent, for instance.

One of the main advantages of having a centralised reputation service is the
feasibility for an individual to know a more consistent reputation about another
agent based on numeral experiences. In the case of distributed mechanisms (such
as [13][6][12]), the agent itself would need to participate in several interactions
with the given agent and also to ask other agents for their experiences with
others. In the case of a centralised mechanism, the agent can easily get infor-
mation about the reputation showing the behaviour of other agents within the
system. In [14], Sabater et al. present a technological framework that allows
virtual cognitive agents and humans to participate in the same Electronic Insti-
tution (EI). The authors claim that a centralised reputation mechanism has to
be implemented as a service in an EI. The conceptual idea is similar to ours, but
they do not study in depth neither how to collect opinions from the participants
nor present a formal approach to incorporate such reputation service. They only
present a very vague notion of how to incorporate a centralised reputation mech-
anism into EIs, while we present a formal approach that fits not only in EIs but
in any organisational environment.

Another known example of centralised reputation mechanism is the Beta Rep-
utation System, presented by Josang and Ismail in [8]. This system is based on
using beta probability density functions to combine feedback and derive repu-
tation ratings from the participants. The main differences with our approach is
that the former does not have an organisational flavour, so important properties
from aggregation process cannot be derived. Furthermore, Josang and Ismail
does not take into account important concepts as, for instance, norms or roles,
what makes our system more flexible, above all, when presenting different type
of information from the same original data regarding different participants’ re-
quests.

Although there exist many distributed reputation mechanisms that try to
ensure more reliable interactions among agents, such as [13][6][11], we cannot
compare our work with them, since we claim that distributed approaches are
fully complementary to our conception of reputation based-agreements. In fact,
since it is out of the scope of this paper, we do not get into details of how agents
calculate and maintain their reputation assessments for other agents.

Building Reputation-Based Agreements 75

Regarding the incentive mechanisms existing in literature to drive agents to
collaborate by sending their truthfully opinions a well known work is the one by
Jurca and Faltings [9]. They use a mechanism of buy/sell information using cred-
its. The main difference is that they use it in a distributed environment, where
agents send opinions among them, but not to a central repository as in our case.
In [7] the authors present an approach to create rankings able not only to provide
the most trustful agents but also a probabilistic evidence of such reputation val-
ues. Those rankings are also computed by a centralised system by aggregating the
reputations reported by the agents. This approach and the one presented in our
paper could be complementary, since that paper focuses on defining the ranking
algorithms and ours focuses on describing the mechanism that allows to receive
the reputation information and to provide the already evaluated agreements (for
instance by using rankings). Another work that could be also complementary to
the approach presented here, is the one presented in [10]. They describe the al-
gorithm NodeRanking that creates rankings of reputation ratings. Therefore, our
reputation service could use this algorithm so as to provide information about the
reputation-based agreements reached within the organisation.

7 Conclusions and Future Work

Summarising, this work puts forward a novel approach of reputation-based agree-
ment concept by supporting on a reputation service that creates reputation-
based agreements as aggregations of opinions sent by participants within an
organisation. The organizational mechanism defines the norms that the agents
must fulfil by pointing out the situations being regulated and the reputation
mechanisms aggregate reputations provided by agents based on the evaluations
of the behaviour of their partners according to the violation of the norms that
regulate a given situation. Thus, we have added to the reputation mechanism the
notion of reputations based on norms and situations and the ability of receiving
reputations, aggregating then and providing information about such aggregation.

Besides, we also define some desirable properties that can be derived and
should be taken into account when providing the information they contain. Fur-
thermore, we also propose to use the agreements by utilising the concept of
informative mechanisms [3], so providing agents with useful information. On the
other hand, we propose an incentive mechanism [3] to deal with the problem of
lack of collaboration from agents to send their opinions to the service. Finally,
different examples have been analysed so that they illustrate how the reputation
service works in two different domains: the former represents a collaborative do-
main where agents are interested in sharing their opinions, and the later shows
a competitive domain in which the reputation service must be coupled with an
incentive mechanism to motivate agents to send their opinions.

In future work we plan to experimentally test our approach by implementing
a case study presented here, as well as, running several experiments comparing
our approach with similar ones. We also intend to investigate new properties
about reputation-based agreements to provide agents participating in an organ-
isation with more useful information. Finally, we plan to extend the concept of

76 R. Centeno, R. Hermoso, and V. T. da Silva

reputation-based agreement by creating agreements aggregating ”similar” situa-
tions, so we must go into the concept of similar situations in depth. Moreover, it
is our intention to provide agreements based on more abstract (or general) situ-
ations. The agreements of a generic situation can be created based on the agree-
ments of its specific situations. In order to do so, an ontology of action/situation
could be used to represent the generic situations and the more specific ones.

References

1. Billhardt, H., Centeno, R., Fernández, A., Hermoso, R., Ortiz, R., Ossowski, S.,
Pérez, J., Vasirani, M.: Organisational structures in next-generation distributed
systems: Towards a technology of agreement. Multiagent and Grid Systems: An
International Journal (2009)

2. Carrascosa, C., Rebollo, M.: Modelling agreement spaces. In: Proc. of
WAT@IBERAMIA 2008, pp. 79–88 (2008)

3. Centeno, R., Billhardt, H., Hermoso, R., Ossowski, S.: Organising mas: A formal
model based on organisational mechanisms. In: Proc. of SAC 2009, pp. 740–746
(2009)

4. Centeno, R., da Silva, V.T., Hermoso, R.: A reputation model for organisational
supply chain formation. In: Proc. of the COIN@AAMAS 2009, pp. 33–48 (2009)

5. Dellarocas, C.: Reputation Mechanisms. In: Handbook on Economics and Infor-
mation Systems. Elsevier, Amsterdam (2005)

6. Huynh, T., Jennings, N., Shadbolt, N.: Fire: An integrated trust and reputation
model for open multi-agent systems. In: Proc. of the ECAI 2004, pp. 18–22 (2004)

7. Ignjatovic, A., Foo, N., Lee, C.: An analytic approach to reputation ranking of
participants in online transactions. In: Proc. of the WI-IAT 2008, pp. 587–590
(2008)

8. Josang, A., Ismail, R.: The beta reputation system. In: 15th Bled Electronic Com-
merce Conference (2002)

9. Jurca, R., Faltings, B.: An incentive compatible reputation mechanism. In: Pro-
ceedings of the AAMAS 2003, pp. 1026–1027. ACM, New York (2003)

10. Pujol, J., Sangüesa, R., Delgado, J.: Extracting reputation in multi agent systems
by means of social network topology. In: Proc. of the AAMAS 2002, pp. 467–474.
ACM, New York (2002)

11. Ramchurn, S., Sierra, C., God, L., Jennings, N.: A computational trust model
for multi-agent interactions based on confidence and reputation. In: Proceedings
of 6th International Workshop of Deception, Fraud and Trust in Agent Societies,
pp. 69–75 (2003)

12. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent sys-
tems. In: Proc. of the AAMAS 2002, pp. 475–482. ACM Press, New York (2002)

13. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artificial Intelligence Review 24(1), 33–60 (2005)

14. Sabater-Mir, J., Pinyol, I., Villatoro, D., Cuńı, G.: Towards hybrid experiments on
reputation mechanisms: Bdi agents and humans in electronic institutions. In: XII
Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2007),
vol. 2, pp. 299–308 (2007)

15. Silva, V., Hermoso, R., Centeno, R.: A hybrid reputation model based on the use
of organizations. In: Hübner, J.F., Matson, E., Boissier, O., Dignum, V. (eds.)
COIN@AAMAS 2008. LNCS, vol. 5428, pp. 111–125. Springer, Heidelberg (2009)

Norm Refinement and Design through Inductive
Learning�

Domenico Corapi1, Marina De Vos2, Julian Padget2,
Alessandra Russo1, and Ken Satoh3

1 Department of Computing, Imperial College London
{d.corapi,a.russo}@imperial.ac.uk

2 Department of Computer Science, University of Bath
{mdv,jap}@cs.bath.ac.uk
3 National Institute of Informatics

ksatoh@nii.ac.jp

Abstract. In the physical world, the rules governing behaviour are debugged by
observing an outcome that was not intended and the addition of new constraints to
prevent the attainment of that outcome. We propose a similar approach to support
the incremental development of normative frameworks (also called institutions)
and demonstrate how this works through the validation and synthesis of norma-
tive rules using model generation and inductive learning. This is achieved by the
designer providing a set of use cases, comprising collections of event traces that
describe how the system is used along with the desired outcome with respect
to the normative framework. The model generator encodes the description of the
current behaviour of the system. The current specification and the traces for which
current behaviour and expected behaviour do not match are given to the learning
framework to propose new rules that revise the existing norm set in order to in-
hibit the unwanted behaviour. The elaboration of a normative system can then be
viewed as a semi-automatic, iterative process for the detection of incompleteness
or incorrectness of the existing normative rules, with respect to desired properties,
and the construction of potential additional rules for the normative system.

1 Introduction

Norms and regulations play an important role in the governance of human society. So-
cial rules such as laws, conventions and contracts prescribe and regulate our behaviour.
However it is possible for us to break these rules at our discretion and face the conse-
quences. By providing the means to describe and reason about norms in a computational
context, normative frameworks (also called institutions or virtual organisations) may be
applied to software systems allowing for automated reasoning about the consequences
of socially acceptable and unacceptable behaviour. This can be achieved by monitor-
ing the permissions, empowerment and obligations of the participants and generating
violations when norms are not followed.

� This work is partially supported through the EU Framework 7 project ALIVE (FP7-IST-
215890), and the EPSRC PRiMMA project (EP/F023294/1).

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 77–94, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

78 D. Corapi et al.

The formal model put forward in [11] and its corresponding operationalisation
through Answer Set Programming (ASP) [3, 26] aims to support the top-down design
of normative frameworks. AnsProlog is a knowledge representation language that al-
lows the programmer to describe a problem and required properties on the solutions in
an intuitive way. Programs consist of rules interpreted under the answer set semantics.
Answer set solvers, like CLASP [25] or SMODELS [35], can be used to reason about
the given AnsProlog specification, by returning acceptable solutions in the form of
traces, as answer sets. In a similar way, the correctness of the specification with respect
to given properties can be verified.

Currently, the elaboration of behavioural rules and norms is an error-prone process
that relies on the manual efforts of the designer and would, therefore, benefit from au-
tomated support. In this paper, we present an inductive logic programming (ILP) [33]
approach for the extraction of norms and behaviourial rules from a set of use cases.
The approach is intended as a design support tool for normative frameworks. Complex
systems are hard to model and even if testing of properties is possible, sometimes it is
hard to identify missing or incorrect rules. In some cases, e.g. legal reasoning, the ab-
stract specification of the system can be in part given in terms of specific instances and
use cases that ultimately drive the design process and are used to assess it. We propose
a design support tool that employs use-cases, i.e. traces together with their expected
normative behaviour, to assist in the revision of a normative framework. The system is
correct when none of the traces are considered dysfunctional, i.e. they match the ex-
pected normative behaviour. When a dysfunctional trace is encountered the normative
specification needs to be adjusted: the task is to refine the given description by learning
missing norms and/or behavioural rules that, added to the description, entail the ex-
pected behaviour over the traces. We show how this task can be naturally represented
as a non-monotonic ILP problem in which the partial description of the normative sys-
tem provides the background knowledge and the expected behaviour comprises the ex-
amples. In particular, we show how a given AnsProlog program and traces can be
reformulated into an ILP representation that makes essential use of negation in induc-
ing missing parts of the specification. As the resulting learning problem is inherently
non-monotonic, we use a non-monotonic ILP system, called TAL [14], to compute the
missing specification from the traces and the initial description.

Given the declarative nature of ASP, the computational paradigm used for our norma-
tive frameworks, we needed to adopt a declarative learning approach as we aim to learn
declarative specifications. This differs from other approaches, such as reinforcement
learning whereby norms or policies are learned as outcomes of estimation and optimi-
sation processes. Such types of policies are not directly representable in a declarative
format and are quite different in nature from the work reported here.

The paper is organised as follows. Section 2 presents some background material on
the normative framework, while Section 3 introduces the non-monotonic ILP system
used in our proposed approach. Section 4 describes the AnsProlog modelling of nor-
mative frameworks. Section 5 illustrates how the revision task can be formulated into
an ILP problem, and how the generated ILP hypothesis can be reformulated as norms
and behaviour rules within the AnsProlog representation. In Section 6 we illustrate

Norm Refinement and Design through Inductive Learning 79

the flexibility and expressiveness of our approach through a number of different par-
tial specifications of a reciprocal file sharing normative framework. Section 7 relates
our approach to existing work on learning norms with respects to changing/improved
requirements. We conclude with a summary and remarks about future work.

2 Normative Frameworks

The concept of normative frameworks has become firmly embedded in the agent com-
munity as a necessary foil to the essential autonomy of agents, in just the same way as
societal conventions and legal frameworks have grown up to constrain people. In both
the physical and the virtual world, and the emerging combination of the two, the argu-
ments in favour centre on the minimisation of disruptive behaviour and supporting the
achievement of the goals for which the normative framework has been conceived and
thus also the motivation for submission to its governance by the participants. While the
concept remains attractive, its realisation in a computational setting remains a subject
for research, with a wide range of existing logics [40, 2, 7, 11, 43] and tools [37, 18, 27].

2.1 Formal Model

To provide context for this paper, we give an outline of a formal event-based model
for the specification of normative frameworks that captures all the essential properties,
namely empowerment, permission, obligation and violation. Extended presentations ap-
pear in [11] and [12].

The essential elements of our normative framework are: (i) events (E), that bring
about changes in state, and (ii) fluents (F), that characterise the state at a given instant.
The function of the framework is to define the interplay between these concepts over
time, in order to capture the evolution of a particular institution through the interaction
of its participants. We distinguish two kinds of events: normative events (Enorm), that
are the events defined by the framework and exogenous (Eex), that are outside its scope,
but whose occurrence triggers normative events in a direct reflection of the “counts-as”
principle [30]. We further partition normative events into normative actions (Eact) that
denote changes in normative state and violation events (Eviol), that signal the occurrence
of violations. Violations may arise either from explicit generation, from the occurrence
of a non-permitted event, or from the failure to fulfil an obligation. We also distinguish
two kinds of fluents: normative fluents that denote normative properties of the state such
as permissions P , powersW and obligationsO, and domain fluents D that correspond
to properties specific to the normative framework itself. The set of all fluents is denoted
as F . A normative state is represented by the fluents that hold true in this state. Fluents
that are not presented are considered to be false. Conditions on a state are therefore
expressed by a set of fluents that should be true or false. The set of possible conditions
is referred to as X = 2F∪¬F .

Changes in state are achieved through the definition of two relations: (i) the gener-
ation relation, which implements counts-as by specifying how the occurrence of one
(exogenous or normative) event generates another (normative) event, subject to the em-
powerment of the actor and the conditions on the state, and (ii) the consequence relation.
This latter specifies the initiation and termination of fluents subject to the performance

80 D. Corapi et al.

of some action in a state matching some expression. The generation relation is formally
defined as G : X ×E → 2Enorm , and the consequence relation as C : X ×E → 2F×2F .
The fluents to be initiated as a result of an event E are often denoted by C↑(φ, e) while
the ones to be terminated are denoted by C↓(φ, e).

The semantics of our normative framework is defined over a sequence, called a trace,
of exogenous events. Starting from the initial state, each exogenous event is responsible
for a state change, through initiation and termination of fluents. This is achieved by
a three-step process: (i) the transitive closure of G with respect to a given exogenous
event determines all the generated (normative) events, (ii) to this all violations of events
not permitted and obligations not fulfilled are added, giving the set of all events whose
consequences determine the new state, (iii) the application of C to this set of events
identifies all fluents that are initiated and terminated with respect to the current state so
giving the next state. For each trace, we can therefore compute a sequence of states that
constitutes the model of the normative framework for that trace. This process is realised
as a computational model through Answer Set Programming (see Section 4) and it is
this representation that is the subject of the learning process described in Section 5.

3 Learning

Inductive Logic Programming (ILP) [33] is a machine learning technique concerned
with the induction of logic theories from (positive and negative) examples and has been
successfully applied to a wide range of problems [19]. Automatic induction of hypothe-
ses represented as logic programs is one of the distinctive features of ILP. Moreover,
the use of logic programming as representation language allows a principled represen-
tation of background information relevant to the learning. To refine normative theories
we employ an ILP learning system, called TAL [14], that is able to learn non-monotonic
theories, and can be employed to perform learning of new rules and the revision of ex-
isting rules. The TAL approach is based on mapping a given inductive problem into an
abductive reasoning process. The current implementation of TAL relies on an extension
of the abductive procedure SLDNFA [17] and preserves its semantics.

Definition 1. A non-monotonic ILP task is defined as 〈E, B, S〉 where E is a set of
ground positive or negative literals, called examples, B is a background normal theory
and S is a set of clauses called language bias. The normal theory H ∈ ILP 〈E, B, S〉,
called hypothesis, is an inductive solution for the task 〈E, B, S〉, if H ⊆ S, H is
consistent with B and B ∪H |= E.

B and H are normal theories and thus support negation as failure. The choice of an
appropriate language bias is critical. In TAL the language bias S is specified by means
of mode declarations [34].

Definition 2. A mode declaration is either a head or body declaration, respectively
modeh(s) and modeb(s) where s is called a scheme. A scheme s is a ground literal
containing place-markers. A place-marker is a ground function whose functor is one of
the three symbols ’+’ (input), ’-’ (output), ’#’ (constant) and the argument is a constant
called type.

Norm Refinement and Design through Inductive Learning 81

Given a schema s, s∗ is the literal obtained from s by replacing all place-markers with
different variables X1, ..., Xn. A rule r is compatible with a set M of mode declara-
tions iff (a) there is a mapping from each head/body literal l in r to a head/body decla-
ration m ∈ M with schema s such that each literal is subsumed by its corresponding
s∗; (b) each output place-marker is bound to an output variable; (c) each input place-
marker is bound to an output variable appearing in the body or to a variable in the head;
(d) every constant place-marker is bound to a constant; (e) all variables and constants
are of the corresponding type. From a user perspective, mode declarations establish how
rules in the final hypotheses are structured, defining literals that can be used in the head
and in the body of a well-formed hypothesis. Although we show M in the running ex-
ample of this paper for reference, the mode declarations can be concealed from the user
and derived automatically. They can be optionally refined to constrain the search when-
ever the designer wants to employ useful information on the outcome of the learning to
reduce the number of alternative hypotheses or improve performance.

4 Modelling Normative Frameworks

While the formal model of a normative framework allows for clear specification of a
normative system, it is of little support to designers or users of these systems. In order
to be able to do so, computational tools are needed. The first step is a computational
model equivalent to the formal model. We have opted for a form of logic programming,
called Answer Set Programming (ASP) [26]. Here we only present a short flavour of the
language AnsProlog, and the interested reader is referred to [3] for in-depth coverage.

AnsProlog is a knowledge representation language that allows the programmer to
describe a problem and the requirements on the solutions in an intuitive way, rather than
the algorithm to find the solutions to the problem. The basic components of the language
are atoms, elements that can be assigned a truth value. An atom can be negated using
negation as failure so creating the literal not a. We say that not a is true if we cannot
find evidence supporting the truth of a. If a is true then not a is false and vice versa.
Atoms and literals are used to create rules of the general form: a← B, not C, where a
is an atom and B and C are set of atoms. Intuitively, this means if all elements of B are
known/true and no element of C is known/true, then a must be known/true. We refer to
a as the head and B ∪ not C as the body of the rule. Rules with empty body are called
facts; A program in AnsProlog is a finite set of rules.

The semantics of AnsProlog are defined in terms of answer sets, i.e. assignments
of true and false to all atoms in the program that satisfy the rules in a minimal and
consistent fashion. A program has zero or more answer sets, each corresponding to a
solution.

4.1 Mapping the Formal Model into AnsProlog

In this section we only provide a summary description of how the formal institutional
model is translated in to AnsProlog . A full description of the model can be found
in [11] together with completeness and correctness of model with respect to traces.
Each program models the semantics of the normative framework over a sequence of
n time instants such that ti : 0 ≤ i ≤ n. Events are considered to occur between

82 D. Corapi et al.

these snapshots, where for simplicity we do not define the intervals at which events
occur explicitly, and instead refer to the time instant at the start of the interval at which
an event is considered to occur. Fluents may be true or false at any given instant of
time, so we use atoms of the form holdsat(f, ti) to indicate that fluent f holds at
time instant ti. In order to represent changes in the state of fluents over time, we use
atoms of the form initiated(f, ti) and terminated(f, ti) to denote the fact that
fluent f was initiated or terminated, respectively, between time instants i and i + 1. We
use atoms of the form occurred(e, ti) to indicate that event e ∈ E is considered to
have occurred between instant ti and ti+1. These atoms denote events that occur in an
external context or are generated by the normative framework. For exogenous events
we additionally use atoms of the form observed(e, ti) to denote the fact that e has
been observed.

The mapping of a normative framework consists of three parts: a base component
which is independent of the framework being modelled, the time model and the frame-
work specific component. The independent component deals with inertia of the fluents,
the generation of violation events of un-permitted actions and unsatisfied obligations.
The time model defines the predicates for time and is responsible for generating a sin-
gle observed event at every time instance. In this paper we will focus solely on the
representation of the specific features of the normative framework.

In order to translate rules the relations G and C, we must first define a translation
for expressions which may appear in these rules. The valuation of a given expression
taken from the set X depends on which fluents may be held to be true or false in the
current state (at a give time instant). We translate expressions into ASP rule bodies as
conjunctions of extended literals using negation as failure for negated expressions.

With all these atoms defined, mapping the generation function and the conse-
quence relation of a specific normative framework becomes rather straightforward.
The generation function specifies that an normative event e occurs at a certain in-
stance (occurred(e, t)) when an another event e′ occurs (occurred(e′, t)), the event
e is empowered (holdsat(pow(e), t) and a set of conditions on the state are satisfied
(holdsat(f, t) or not holdsat(f, t)). The rules for initiation (initiated(f, t)) and
termination (terminated(f, t) of a fluent f are triggered when a certain event e occurs
(occurred(e, t)) and a set of conditions on the state are fulfilled. The initial state of
our normative framework is encoded as simple facts (holdsat(f, i00)).

Fig. 1 gives a summary of all AnsProlog rules that are generated for a specific
normative framework, including the definition of all the fluents and events as facts. For
a given expression φ ∈ X , we use the term EX(φ, T) to denote the translation of φ
into a set of ASP literals of the form holdsat(f, T) or not holdsat(f, T).

In situations where the normative system consists of a number of agents whose
actions can be treated in the same way (e.g. the rules for borrowing a book are the
same for every member of a library) or where the state consists of fluents that can
be treated in a similar way (e.g. the status of book), we can parametrise the events
and fluents. This is represented in the AnsProlog program by function symbols (e.g
borrowed(Agent, Book)) rather than terms. To allow for grounding, extra atoms to
ground these variables need to be added. Grounded versions of the atoms also need to
be added to the program. An example of this can be found in Section 6.

Norm Refinement and Design through Inductive Learning 83

p ∈ F ⇔ ifluent(p).
e ∈ E ⇔ event(e).

e ∈ Eex ⇔ evtype(e, obs).
e ∈ Eact ⇔ evtype(e, act).
e ∈ Eviol ⇔ evtype(e, viol).

C↑(φ, e) = P ⇔ ∀p ∈ P · initiated(p, T)← occurred(e, T),EX(φ, T).

C↓(φ, e) = P ⇔ ∀p ∈ P · terminated(p, T)← occurred(e, T),EX(φ, T).
G(φ, e) = E ⇔ g ∈ E,occurred(g, T)←occurred(e, T),

holdsat(pow(e), T),EX(φ, T).
p ∈ S0 ⇔ holdsat(p, i00).

Fig. 1. The translation of normative framework specific rules into AnsProlog

5 Learning Normative Rules

5.1 Methodology

The development process is supported by a set of use cases U . Use cases represent
instances of executions that are known to the designer and that drive the elaboration
of the normative system. If the current formalisation of the system does not match
the intended behaviour in the use case then the formalisation is still not complete or
incorrect. Each use case u ∈ U is a tuple 〈T, C, O〉 where T is a trace that specifies
all the exogenous events occurring at all the time points considered (observed(e, T));
C are ground holdsat or occurred facts that the designer believes to be important
and represents the conditional expected output; O are ground holdsat and occurred
literals that represent the expected output of the use case.

The design process is iterative. A current formalisation of the model in AnsProlog
is tested against a set of use cases. Together with the AnsProlog specification of the
normative framework we add the observed events and a constraint that no answer set
that does not satisfy O is acceptable. The latter is done by adding a constraint containing
the negation of all the elements in O. If for some use cases the solver is not able to find
an answer set (returns unsatisfiable), then a revision step is performed. All the use cases
and the current formalisation are given as input to TAL. Possible revisions are provided
to the designer who ultimately chooses which is the most appropriate. The success of
the revision step depends on the state of the formalisation of the model. The set of
supporting use cases can be extended as the design progresses to more accurate models.

In this paper we focus on the learning step and we show how a non-monotonic ILP
system can be used to derive new rules. Refining existing rules (i.e. deleting rules or
adding and deleting conditions in rules) is a straightforward extension of the current
framework. Though we do not discuss it in this paper, revision can be performed by
extending the original rules with additional predicates that extend the search to deletion
of conditions in rules and to exceptions as shown in [13].

5.2 Mapping ASP to ILP

The differences between the AnsProlog program and the translation into a suitable
representation for TAL is procedural and only involves syntactic transformations. Thus

84 D. Corapi et al.

Designer

Normative
framework
AnsProlog

formalisation

Use Cases

Learning

Suggested revisions

Fig. 2. Iterative design driven by use cases

the difference in the two representations only consists in how the inference is performed.
The two semantics coincide since the same logic program is encoded and, as shown
in [10], the mapping of a normative framework has exactly one answer set when given
a trace. If conditions are added this can be reduced to zero.

A normative model F corresponds to a AnsProlog program PF as described in
Section 4. All the normal clauses contained in PF are part of B; the only differences
involve time points, that are handled in B by means of a finite domain constraint solver.
B also contains all the facts in C and T (negated facts are encoded by adding exceptions
to the definitions of holdsat and occurred). The set of examples E contains the
literals in O. Each H ∈ ILP 〈E, B, S〉 represents a possible revision forP and thus for
the original normative model.

6 Example

To illustrate the capabilities of the norm learning mechanism, we have developed a
relatively simple scenario that, at the same time, is complicated enough to demonstrate
the key properties with little extraneous detail.

The active parties—agents—of the scenario each find themselves initially in the sit-
uation of having ownership of several (digital) objects—the blocks—that form part of
some larger composite (digital) entity—a file. An agent may give a copy of one its
blocks in exchange for a copy of another block with the aim of acquiring a complete
set of all the blocks. For simplicity, in the situation we analyse here, we assume that
initially each agent holds the only copy of a given block, and that is there is only one
copy of each block in the agent population. Furthermore, we do not take into account
the possibility of exchanging a block for one that the agent already has. We believe that
neither of these issues does more than complicate the situation by adding more states
that would obscure the essential properties that we seek to demonstrate. Thus, we arrive
at a statement of the example: two agents, Alice and Bob, each holding two blocks from
a set of four and each having the goal of owning all four by downloading the blocks they
lack from the other while sharing, with another agent, the ones it does.

We model this as a simple normative framework, where the brute event [29] of down-
loading a block initiates several normative events, but the act of downloading revokes

Norm Refinement and Design through Inductive Learning 85

% Normative and Domain Rules
initiated(hasBlock(Agent,Block), I)←

occurred(myDownload(Agent,Block), I), holdsat(live(filesharing), I).
initiated(perm(myDownload(Agent,Block)), I)←

occurred(myShare(Agent), I), holdsat(live(filesharing), I).
terminated(pow(filesharing,myDownload(Agent,Block)), I)←

occurred(myDownload(Agent,Block), I), holdsat(live(filesharing), I).
terminated(needsBlock(Agent,Block), I)←

occurred(myDownload(Agent,Block), I), holdsat(live(filesharing), I).
terminated(pow(filesharing,myDownload(Agent,Block)), I)←

occurred(misuse(Agent), I), holdsat(live(filesharing), I).
terminated(perm(myDownload(Agent,Block)), I)←

occurred(myDownload(Agent,Block), I), holdsat(live(filesharing), I).
occurred(myDownload(AgentA,Block), I)←

occurred(download(AgentA,AgentB,Block), I),
holdsat(hasBlock(AgentB,Block), I),
holdsat(pow(filesharing,myDownload(AgentA,Block)), I),
AgentA! = AgentB.

occurred(myShare(AgentB), I)←
occurred(download(AgentA,AgentB,Block), I),
holdsat(hasBlock(AgentB,Block), I),
holdsat(pow(filesharing,myDownload(AgentA,Block)), I),
AgentA! = AgentB.

occurred(misuse(Agent), I)← occurred(viol(myDownload(Agent,Block)), I), i).
% Initial state
holdsat(pow(filesharing,myDownload(Agent,Block)), i0).
holdsat(pow(filesharing,myShare(Agent)), i0).
holdsat(perm(download(AgentA,AgentB,Block)), i0)).
holdsat(perm(myDownload(Agent,Block)), i0).
holdsat(perm(myShare(Agent)), i0).
holdsat(hasBlock(alice, x1), i0). holdsat(hasBlock(alice, x2), i0).
holdsat(hasBlock(bob, x3), i0). holdsat(hasBlock(bob, x4), i0).
holdsat(needsBlock(alice, x3), i0). holdsat(needsBlock(alice, x4), i0).
holdsat(needsBlock(bob, x1), i0). holdsat(needsBlock(bob, x2), i0).
holdsat(live(filesharing), i0).
% fluent rules
holdsat(P, J)← holdsat(P, I), not terminated(P, I), next(I, J).
holdsat(P, J)← initiated(P, I), next(I, J).
occurred(E, I)← evtype(E, ex), observed(E, I).
occurred(viol(E), I)←

occurred(E, I), not holdsat(perm(E), I), holdsat(live(X), I), evinst(E,X).
occurred(viol(E), I)←

occurred(E, I), evtype(E, inst), not holdsat(perm(E), I), event(viol(E)).

Fig. 3. Translation of the “sharing” normative framework into AnsProlog (types omitted)

86 D. Corapi et al.

the permission of that agent to download another block until it has shared (this the
complementary action to download) a block with another agent. Violation of this norm
results in the download power being revoked permanently. In this way reciprocity is
assured by the normative framework. Initially, each agent is empowered and permitted
to share and to download, so that either agent may initiate a download operation.

Fig. 3 shows the AnsProlog representation of the complete normative framework
representing this scenario. In the following examples a variety of normative rules will
be deliberately removed and re-learned.

6.1 Learning Setting

To show how different parts of the formal model can be learned we start from a cor-
rect specification and, after deleting some of the rules, we use TAL to reconstruct the
missing parts based on a single use case. In our example TAL is set to learn hypotheses
of at most three rules with at most three conditions. The choice of an upper bound on
the complexity (number of literals) of the rule ultimately rests on the final user. Alter-
natively, TAL can iterate on the complexity or perform a best first search that returns
increasingly more complex solutions. We use the following mode declarations, M :

m1 : modeh(terminated(perm(myDownload(+agent,+block)),+instant)).
m2 : modeh(initiated(perm(myDownload(+agent,+block)),+instant)).
m3 : modeb(occurred(myDownload(+agent,+block),+instant)).
m4 : modeb(occurred(myDownload(+agent,−block),+instant)).
m5 : modeb(occurred(myShare(+agent),+instant)).
m6 : modeb((+agent!= +agent)).
m7 : modeb(holdsat(hasblock(+agent,+block),+instant)).
m8 : modeb(holdsat(powfilesharing(myDownload(+agent,+block)),+instant)).

The first two mode declarations state that terminate and initiate permission rules for
the normative fluent myDownload can be learned. The other declarations constrain the
structure of the body. The difference between m3 and m4 is that the former must refer
to the same block as the one in the head of the rule while the latter introduces a possibly
different block. m8 is an inequality constraint between agents. In general more mode
declarations should be considered (e.g. initiation and termination of all types of fluents
should be included) but the revision can be guided by the designer. For example new
changes to a stable theory are more likely to contain errors and thus can be isolated in
the revision process. The time to compute all the reported hypotheses ranges from 30
to 500 milliseconds on a 2.8 GHz Intel Core 2 Duo iMac with 2 GB of RAM.

The background knowledge B contains the rules in Fig. 3 together with the traces T
given in the use cases. C in this example is empty to allow for the demonstration of the
most general types of learning.

Learning a single terminate/initiate rule. We suppose one of the initiate rules is
missing from the current specification:

initiated(perm(myDownload(Agent,Block)), I) ←
occurred(myShare(Agent), I).

Norm Refinement and Design through Inductive Learning 87

The designer inputs the following observed events that show how in a two agent sce-
nario, one of the agents loses permission to download after downloading a block and
reacquires it after providing a block for another agent. The trace T looks like:

observed(download(alice, bob, x3), 0).
observed(download(bob, alice, x1), 1).

The expected output O is:

not holdsat(perm(myDownload(alice, x4)), 1).
holdsat(perm(myDownload(alice, x4)), 2).

The trace is dysfunctional if the expected output is not true in the answer set of T ∪B.
The ILP task is thus to find a set of rules H within the language bias specified by
mode declarations in M such that given the background knowledge B in Fig. 3 and the
given expected output O as conjunction of literals, O is true in the only answer set of
B ∪ T ∪H (if one exists). TAL produces the following hypotheses:

initiated(perm(myDownload(A,)), C) ← (H1)
occurred(myShare(A),C).

and
terminated(perm(myDownload(,)),). (H2)
initiated(perm(myDownload(A,)), C) ←

occurred(myShare(A),C).

The second solution is not the one intended but it still supports the use case. Note
that according to current implementation, whenever a fluent f is both initiated and
terminated at the same time point, f still holds at the subsequent time point.

Learning multiple rules. In this scenario two rules are missing from the specification:

initiated(perm(myDownload(Agent,Block)), I) ←
occurred(myShare(Agent), I).

terminated(perm(myDownload(Agent,Block2)), I) ←
occurred(myDownload(Agent,Block1), I).

We use the same T and O as previously. TAL produces the following hypotheses:

terminated(perm(myDownload(A,)), C) ← (H1)
occurred(myDownload(A,), C).

initiated(perm(myDownload(A,)), C) ←
occurred(myShare(A),C).

terminated(perm(myDownload(,)),). (H2)
initiated(perm(myDownload(A,)), C) ←

occurred(myShare(A),C).

The second solution is consistent with the use case, but the designer can easily discard
it, since the rule is not syntactically valid with respect to the normative framework: a
fluent can only be terminated as a consequence of the occurrence of an event. Using
more advanced techniques for the language bias specification it would be possible to
rule out such a hypothesis.

88 D. Corapi et al.

Learning of undesired violation. We assume the following rule is missing:

initiated(perm(myDownload(Agent,Block)), I) ←
occurred(myShare(Agent), I).

This time we provide a different trace T :

observed(download(alice, bob, x3), 0).
observed(download(bob, alice, x1), 1).
observed(download(alice, bob, x4), 2).

As a result of the trace, a violation at time point 2 is implied that the designer knows to
be undesired. The expected output is:

not occurred(viol(myDownload(alice, x4)), 2).

The outcome of the learning consists of the following two possible solutions:

initiated(perm(myDownload(A,)), C) ← (H1)
occurred(myShare(A),C).

initiated(perm(myDownload(,)),). (H2)

that show how the missing rule is derived from the undesired violation. As in the previ-
ous scenario the designer can easily dismiss the second candidate.

Learning a generate rule. To account for the different type of rules that need to be
learned, the language bias is extended to consider learning of generate rules. The new

occurred(myShare(A),B) ← (H1)
occurred(download(C,A,E), B), A! = C,
holdsat(pow(filesharing,myDownload(A,E)), B).

occurred(myShare(A),B) ← (H2)
occurred(download(C,A,E), B), A! = C,
holdsat(pow(filesharing,myDownload(A,E)), B),
holdsat(hasblock(A,E), B).

occurred(myShare(A),B) ← (H3)
occurred(download(C,A,E), B), A! = C,
holdsat(pow(filesharing,myDownload(C,E)),B).

occurred(myShare(A),B) ← (H4)
occurred(download(C,A,E), B), A! = C,
holdsat(pow(filesharing,myDownload(C,E)),B),
holdsat(hasblock(A,E), B).

occurred(myShare(A),B) ← (H5)
occurred(download(C,A,E), B), A! = C,
holdsat(hasblock(A,E), B).

occurred(myShare(A),B) ← (H6)
occurred(download(C,A,E), B),
holdsat(pow(filesharing,myDownload(C,E)),B).

Fig. 4. Proposals to revise the generate rule

Norm Refinement and Design through Inductive Learning 89

mode declarations are:

modeh(occurred(myShare(+agent),+instant)).
modeb(occurred(download(−agent,+agent,−block),+instant)).

We use the same trace and expected output as in the previous scenario (three observed
events). The following rule is eliminated from the specification:

occurred(myShare(AgentB), I) ←
AgentA! = AgentB,
occurred(download(AgentA,AgentB,Block), I),
holdsat(hasblock(AgentB,Block), I),
holdsat(pow(filesharing,myDownload(AgentA,Block)), I).

This is the most complicated case for the designer as a set of six different hypothe-
ses are returned by TAL (see Fig. 4). Knowing the semantics of the function symbol
download(AgentA, AgentB, Block) as AgentA downloads from AgentB the designer
should be able to select the most appropriate rule.

7 Related Work

The motivation behind this paper is the problem of how to converge upon a complete
and correct normative framework with respect to the intended range of application,
where in practice these properties may be manifested by incorrect or unexpected be-
haviour in use. Additionally, we would observe, from practical experience with our
particular framework, that it is often desirable, as with much software development, to
be able to develop and test incrementally—and regressively—rather than attempt veri-
fication once the system is (notionally) complete.

The literature seems to fall broadly into three categories:

1. Concrete language frameworks (OMASE [23], Operetta [36], InstSuite [27],
MOISE [28], Islander [20], OCeAN [21] and the constraint approach of Garcia-
Camino [22]) for the specification of normative systems, that are typically sup-
ported by some form of model-checking, and in some cases allow for change in the
normative structure;

2. Logical formalisms, such as [24], that capture consistency and completeness via
modalities and other formalisms like [6], that capture the concept of norm change,
or [44] and [8];

3. Mechanisms that look out for (new) conventions and handle their assimilation into
the normative framework over time and subject to the current normative state and
the position of other agents [1, 9].

Essentially, the objective of each of the above is to realize a transformation of the nor-
mative framework to accommodate some form of shortcoming. These shortcomings can
be identified in several ways:

1. By observing that a particular state is rarely achieved, which can indicate there is
insufficient normative guidance for participants, or

90 D. Corapi et al.

2. A norm conflict occurs, such that an agent is unable to act consistently under the
governing norms [32], or

3. A particular violation occurs frequently, which may indicate that the violation
conflicts with an effective course of action that agents prefer to take, the penalty
notwithstanding.

All of these can be viewed as characterising emergent [39] approaches to the evolu-
tion of normative frameworks, where some mechanism, either in the framework, or in
the environment, is used to revise the norms. In the approach taken here, the designer
presents use cases that effectively capture their behavioural requirements for the system,
in order to ‘fix’ bad states. This has an interesting parallel with the scheme put forward
by Serrano and Saugar [41], where they propose the specification of incomplete theories
and their management through incomplete normative states identified as “pending”. The
framework lets designated agents resolve this category through the speech acts allow
and forbid and scheme is formalised using an action language.

A useful categorisation of normative frameworks appears in [4]. Whether the norms
here are ‘strong’ or ‘weak’ —the first guideline— depends on whether the purpose of
the normative model is to develop the system specification or additionally to provide
an explicit representation for run-time reference. Likewise, in respect of the remaining
guidelines, it all depends on how the framework we have developed is actually used:
we have chosen, for the purpose of this presentation, to stage norm refinement so that
it is an off-line (in the sense of prior to deployment) process, while much of the dis-
cussion in [4] addresses run-time issues. Whether the process we have outlined here
could effectively be a means for on-line mechanism design, is something we have yet
to explore.

From an ILP perspective, we employ an ILP system that can learn logic programs
with negation (stratified or otherwise). Though recently introduced and in its early
stages of development TAL is the most appropriate choice to support this work for
two main reasons: it is supported by completeness results, unlike other existing non-
monotonic ILP systems ([38], [31]), and it can be tailored to particular requirements
(e.g. different search strategies can address performance requirements). The approach
presented in this paper is related to other recently proposed frameworks for the elab-
oration of formal specifications via inductive learning. Within the context of software
engineering, [16] has shown how examples of desirable and undesirable behaviour of
a software system can be used by an ILP system, together with an incomplete back-
ground knowledge of the envisioned system and its environment, to compute missing
requirements specifications. A more general framework has been proposed [15] where
desirable and undesirable behaviours are generated from counterexamples produced by
model checking a given (incomplete) requirements specification with respect to given
system properties. The learning of missing requirements has in this case the effect of
eliminating the counterexamples by elaborating further the specification.

8 Conclusions and Future Work

We have presented an approach for learning norms and behavioural rules, via inductive
logic programming, from example traces in order to guide and support the synthesis

Norm Refinement and Design through Inductive Learning 91

of a normative framework. This addresses a crucial problem in normative systems as
the development of such specifications is in general a manual and error-prone task. The
approach deploys an established inductive logic programming system [14] that takes in
input an initial (partial) description of a normative system and use cases of expected
behaviours provided by the designer and generates hypothesis in the form of missing
norms and behavioural rules that together with the given description explain the use
cases. Although the approach presented in this paper has been tailored for learning
missing information, it can also be applied to computing revisions over the existing de-
scription. In principle this can be achieved by transforming the existing normative rules
into defeasible rules with exceptions and using the same ILP system to compute excep-
tion rules. These exceptions would in essence be prescriptions for changes (i.e. addition
and/or deletion of literals in the body of existing rules) in the current specification.
An appropriate refactoring of the defeasible rules based on the learned exception rules
would give a revised (non-defeasible) specification. In this case, the revision would be
in terms of changes over the rules of a normative framework instead of changes over its
belief state, as would be the case if a TMS approach were adopted.

There are several criticisms that can be levelled at the approach as it stands. Firstly,
the design language is somewhat unfriendly: a proper tool would have a problem-
oriented language, like InstAL/QL [12,27]. A system designer would then start from an
initial description of their normative framework with some use cases and receive auto-
mated suggestions of additional norms to include in the framework written in the same
high-level language. The machinery described here, based on AnsProlog syntax and
ILP formulation, would then be used as a sound “back- end” computation to a formalism
familiar to the system designer. Secondly, better control is needed over the rules that are
learned and over the filtering of incorrect rules; at present this depends on specialised
knowledge of the learning process. This can to some extent be controlled through care-
ful choice of and limits on the size of use cases—probably involving heuristics—to
improve the effectiveness of the learning process in the search for relevant hypotheses
and pruning of those potential solutions that cannot be translated back into the canonical
form of the normative framework. Despite these issues, we believe we have identified
an interesting path for automation, development and debugging of practical normative
specifications and perhaps, in the long term, a mechanism for on-line norm evolution.

In this paper, we assume that a use case contains a complete trace. With the under-
lying system, TAL, being capable of non-monotonic reasoning, there is no reason why
the designer should not be able to give a partial trace or even specify conditions on the
states that should be considered during the learning. This would make specifying use
cases easier for the designer. Of course, having to specify the conditions in AnsProlog
could be a hurdle, bringing us back to the case for a more domain-specific language to
express institutional information and queries.

The examples examined in this paper always suggest learning one rule for a given
use case. This does not have to be so in general. TAL is capable learning any number
of rules in one go. Unfortunately, with large number of rules to be added or revised, it
becomes difficult for the designer to find the desired (sub)set of rules. In the future, we
aim to look at methodologies to support the designer in this process. The most obvious
solution is to opt for an incremental approach, but this would require re-computation,

92 D. Corapi et al.

which in large examples could be expensive unless we can exploit the structure of the
learning algorithm to learn incrementally.

At the moment, our system is set up for the designer of a normative framework to
support the debugging and verification. However, the same approach could also be used
for a running normative system where the rules need to be updated. The challenge in
such a system is how to provide the learning system with appropriate automatically
generated use case. Without human intervention, the system will need to provide rules
that the system can use immediately.

References

1. Artikis, A.: Dynamic protocols for open agent systems. In: Sierra, C., et al. (eds.) [42],
pp. 97–104

2. Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the Causal Calculator.
In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 1–15.
Springer, Heidelberg (2003)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, Cambridge (2003)

4. Boella, G., Pigozzi, G., van der Torre, L.: Normative Systems in Computer Science – Ten
Guidelines for Normative Multiagent Systems. In: Normative Mult-Agent Systems (2009)

5. Boella, G., Noriega, P., Pigozzi, G., Verhagen, H. (eds.): Normative Mult-Agent Systems.
Dagstuhl Seminar Proceedings, vol. 09121. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany (2009)

6. Boella, G., Pigozzi, G., van der Torre, L.: Normative framework for normative system
change. In: Sierra, C., et al. (eds.) [42], pp. 169–176

7. Boella, G., van der Torre, L.: Constitutive Norms in the Design of Normative Multiagent Sys-
tems. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 303–319.
Springer, Heidelberg (2006)

8. Cardoso, H.L., Oliveira, E.C.: Norm defeasibility in an institutional normative framework.
In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) ECAI. Frontiers
in Artificial Intelligence and Applications, vol. 178, pp. 468–472. IOS Press, Amsterdam
(2008)

9. Christelis, G., Rovatsos, M.: Automated norm synthesis in an agent-based planning environ-
ment. In: Sierra, C., et al. (eds.) [42], pp. 161–168

10. Cliffe, O.: Specifying and Analysing Institutions in Multi-Agent Systems using Answer Set
Programming. PhD thesis, University of Bath (2007)

11. Cliffe, O., De Vos, M., Padget, J.: Answer set programming for representing and reason-
ing about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS
(LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)

12. Cliffe, O., De Vos, M., Padget, J.A.: Embedding landmarks and scenes in a computational
model of institutions. In: Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.) COIN
2007. LNCS (LNAI), vol. 4870, pp. 41–57. Springer, Heidelberg (2008)

13. Corapi, D., Ray, O., Russo, A., Bandara, A.K., Lupu, E.C.: Learning rules from user be-
haviour. In: 5th Aritificial Intelligence Applications and Innovations (AIAI 2009) (April
2009)

14. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search. In: 26th
International Conference on Logic Programming, Leibniz International Proceedings in In-
formatics. Schloss Dagstuhl Research Online Publication Server (2010)

Norm Refinement and Design through Inductive Learning 93

15. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning operational requirements from
goal models. In: Proceedings of the 31st International Conference on Software Engineering
(ICSE 2009), pp. 265–275. IEEE Computer Society, Los Alamitos (2009)

16. Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Extracting requirements from Scenarios using
ILP. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI),
vol. 4455, pp. 64–78. Springer, Heidelberg (2007)

17. Denecker, M., De Schreye, D.: SLDNFA: An Abductive Procedure for Abductive Logic Pro-
grams. J. Log. Program. 34(2), 111–167 (1998)

18. Dignum, V.: A model for organizational interaction: based on agents, founded in logic. PhD
thesis, University of Utrecht (2004)

19. Džroski, S., Lavrač, N. (eds.): Relational Data Mining. Relational data mining applications:
an overview, vol. ch. 14, pp. 339–360. Springer Verlag, New York, Inc., New York (2000)

20. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor. In: AAMAS,
pp. 1045–1052. ACM, New York (2002)

21. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a model of
institutional reality for open multiagent systems. Artif. Intell. Law 16(1), 89–105 (2008)

22. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Sierra, C., Vasconcelos, W.W.: Constraint rule-
based programming of norms for electronic institutions. Autonomous Agents and Multi-
Agent Systems 18(1), 186–217 (2009)

23. Garcia-Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, W.H., Valenzuela, J.L.: O-maSE: A
customizable approach to developing multiagent development processes. In: Luck, M.,
Padgham, L. (eds.) Agent-Oriented Software Engineering VIII. LNCS, vol. 4951, pp. 1–15.
Springer, Heidelberg (2008)

24. Garion, C., Roussel, S., Cholvy, L.: A modal logic for reasoning on consistency and com-
pleteness of regulations. In: Boella, G., et al. (eds.) [5]

25. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving.
In: Proceeding of IJCAI 2007, pp. 386–392 (2007)

26. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4), 365–386 (1991)

27. Hopton, L., Cliffe, O., De Vos, M., Padget, J.: Instql: A query language for virtual institutions
using answer set programming. In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA X. LNCS,
vol. 6214, pp. 102–121. Springer, Heidelberg (2010)

28. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems using the
moise. IJAOSE 1(3/4), 370–395 (2007)

29. Searle, J.R.: The Construction of Social Reality. Allen Lane, The Penguin Press (1995)
30. Jones, A.J.I., Sergot, M.: A Formal Characterisation of Institutionalised Power. ACM Com-

puting Surveys 28(4es), 121 (1996) (read 28/11/2004)
31. Kimber, T., Broda, K., Russo, A.: Induction on failure: Learning connected horn theories. In:

Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 169–181. Springer,
Heidelberg (2009)

32. Kollingbaum, M., Norman, T., Preece, A., Sleeman, D.: Norm conflicts and inconsisten-
cies in virtual organisations. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier,
O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386,
pp. 245–258. Springer, Heidelberg (2007)

33. Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis
Horwood (1994)

34. Muggleton, S.: Inverse entailment and progol. New Gen. Comp. 13(3&4), 245–286 (1995)
35. Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and well-founded

semantics for normal LP. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 420–429. Springer, Heidelberg (1997)

94 D. Corapi et al.

36. Okouya, D., Dignum, V.: Operetta: a prototype tool for the design, analysis and development
of multi-agent organizations. In: AAMAS (Demos), pp. 1677–1678. IFAAMAS (2008)

37. Rodriguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Institutions.
PhD thesis, Universitat Autonomá de Barcelona (2001)

38. Sakama, C.: Nonmonotonic inductive logic programming. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, p. 62. Springer, Heidel-
berg (2001)

39. Savarimuthu, B.T.R., Cranefield, S.: A categorization of simulation works on norms. In:
Boella, G., et al. (eds.) [5]

40. Sergot, M.: (C+)++: An Action Language For Representing Norms and Institutions. Techni-
cal report, Imperial College, London (August 2004)

41. Serrano, J.M., Saugar, S.: Dealing with incomplete normative states. In: Padget, J., Ar-
tikis, A., Vasconcelos, W., Stathis, K., da Silva, V.T., Matson, E., Polleres, A. (eds.)
COIN@AAMAS 2009. LNCS, vol. 6069, pp. 304–319. Springer, Heidelberg (2010)

42. Sierra, C., Castelfranchi, C., Decker, K.S., Sichman, J.S. (eds.): AAMAS. IFAAMAS (2009)
43. Singh, M.P.: A social semantics for agent communication languages. In: Dignum, F.P.M.,

Greaves, M. (eds.) Issues in Agent Communication. LNCS, vol. 1916, pp. 31–45. Springer,
Heidelberg (2000)

44. Vasconcelos, W., Kollingbaum, M., Norman, T.: Resolving conflict and inconsistency in
norm-regulated virtual organizations. In: Durfee, E.H., Yokoo, M., Huhns, M.N., Shehory,
O. (eds.) AAMAS, p. 91. IFAAMAS (2007)

Using a Normative Framework to Explore the
Prototyping of Wireless Grids

Tina Balke1, Marina De Vos2 Julian Padget2, and Frank Fitzek3

1 University of Bayreuth, Chair of Information Systems Management
tina.balke@uni-bayreuth.de

2 University of Bath, Dept. of Computer Science
{mdv,jap}@cs.bath.ac.uk

3 University of Aalborg, Multimedia Information and Signal Processing
ff@es.aau.dk

Abstract. The capacity for normative frameworks to capture the essential fea-
tures of interactions between components in open architectures suggests they
might also be of assistance in an early, rapid prototyping phase of system devel-
opment, helping to refine concepts, identify actors, explore policies and evaluate
feasibility. As an exercise to examine this thesis, we investigate the concept of
the wireless grid. Wireless grids have been proposed to address the energy is-
sues arising from a new generation of mobile phones, the idea being that local
communication with other mobile phones, being cheaper, can be used in combi-
nation with network communication to achieve common goals while at the same
time extending the battery duty cycle. This results in a social dilemma, as it is
advantageous for rational users to benefit from the energy savings without any
contribution to the cooperation, as every commitment has its price. We present
a necessarily simplified model, whose purpose is to provide us with the founda-
tion to explore issues in the management of such a framework, policies to en-
courage collaborative behaviour, and the means to evaluate the effects on energy
consumption.

1 Introduction

This article reports on a feasibility study into how and whether institutional models can
help in evaluating the concept of wireless grids. While that is the specific topic of the
article, the broader contribution is that of asking the question of how such normative
model building can be of use in an early design phase, long before hardware or software
is available, in order to evaluate both principles and alternative policies — that might
have significant consequences subsequently.

In technology neutral terms, the problem we consider is of some digital content to
be distributed to a collection of nodes that support an expensive (in terms of power and
money) connection via a structured network and a cheaper connection via an ad-hoc
network. The task is to minimise the cost of the distribution of this digital content by
using a combination of the structured and ad-hoc networks. The model can essentially
be parameterised by the cost functions for the (un)structured network technology. The
particular case that interests us is the forthcoming 4G mobile phone network where the

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 95–113, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

96 T. Balke et al.

structured network uses a traditional cellular link and the ad-hoc network uses IEEE
802.11 (wireless LAN) with the ethernet transport protocol. The motivation for the
idea of such a “wireless grid” is that local communication over (wireless) ethernet uses
significantly less power per unit of data than communicating with the network base-
station and that duration of the battery duty cycle is a major usability factor for users.

The deployment of third generation (3G) of mobile network systems is in progress,
but a quite different next generation network (called Fourth Generation or 4G) is under
development that is intended to cause a paradigm shift in the cooperation architecture
of wireless communication [14]. While for 3G the industry focused on technology for
enabling voice and basic data communications (technology-centric-view), the emphasis
in 4G is more user-centric [24]. Consequently, studies to find possible drivers for con-
sumer demand for mobile devices, such as the one by TNS [21] across 15 countries in
mid-2004, have been conducted. This study revealed that it was not high performance
that was attractive to consumers, but rather useful, convenient and enjoyable services
coupled with ubiquitous infrastructures for constant connection. In addition, “two days
of battery life during active use” topped the wish list of key features in 14 of the 15
countries surveyed.

Batteries have fixed capacity that puts limits on the operational time for a device in
one charge cycle. The increasing sophistication of mobile phones and their evolution
into smart phones offering Internet access, imaging (still and video), audio and access
to new services, has had a significant impact on power consumption, leading to shorter
stand-by times, as well as the problem of rising battery temperature unless there is active
cooling [19].

Fitzek and Katz [9] have proposed a way around some of these issues with the con-
cept of a wireless grid, in which users share resources in a peer-to-peer fashion that
uses less power but this requires a difficult to obtain collaboration between the users.
The contribution of this article is to build an institutional model of the interactions
between handsets and base-station and between handsets in order to provide a founda-
tional model from which to be able to explore policies, identify suitable sanctions and
evaluate potential gains from reduced power consumption.

The remainder of the article is structured as follows: in the next section (2) we cover
three aspects of the background, namely (i) normative frameworks, (ii) a detailed dis-
cussion of the wireless grid scenario, and (iii) the energy model: what different agent
actions cost in terms of power consumption. Then, in section 3 we describe the action
model—what the agents may do—before presenting some results from its analysis. We
conclude in section 4 with a discussion of the related work, results and future directions.

2 Technical Context

The first section here serves to provide a brief description of the event-based normative
framework that is used later for the model. The second provides a detailed description
of some technical issues surrounding the wireless grid idea, highlighting in particular,
actual energy costs and the risk of free-loading, which has some elements that echo
issues with public pool resource problems.

Using a Normative Framework to Explore the Prototyping of Wireless Grids 97

2.1 Normative Frameworks

The concept of the normative framework—sometimes also called an institution, some-
times a virtual organisation—has become firmly embedded in the agent community as
a necessary foil to the essential autonomy of agents, in just the same way as societal
conventions and legal frameworks have been developed to constrain people. In both the
physical and the virtual worlds—and the emerging combination of the two—the argu-
ments in favour centre on the minimization of disruptive behaviour and supporting the
achievement of the goals for which the normative framework has been conceived and
thus also the motivation for submission to its governance by the participants.

While the concept remains attractive, its realization in a computational setting re-
mains a subject for research, with a wide range of logics [1,4,6] and tools [20,22,12],
to cite but a few. We do not include an extensive and detailed case for the purpose and
value of normative frameworks here—this can be found in [23,5], for example.

Formal Model. To provide context for this article, we give an outline of a formal
event-based model for the specification of normative frameworks that captures all the
essential properties, namely empowerment, permission, obligation and violation. Ex-
tended presentations can be found in the citations above.

The essential elements of our normative framework are:

1. Events (E), that bring about changes in state, and
2. Fluents (F), that characterise the state at a given instant.

The function of the framework is to define the interplay between these concepts over
time, in order to capture the evolution of a particular framework through the interaction
of its participants. We distinguish two kinds of event: normative events (Einst), that are
the events defined by the framework and exogenous (Eex), that are outside its scope,
but whose occurrence triggers normative events in a direct reflection of the “counts-as”
principle [13]. We further partition normative events into normative actions (Eact) that
denote changes in the normative state and violation events (Eviol) that signal the oc-
currence of violations. Violations may arise either from explicit generation, from the
occurrence of a non-permitted event, or from the failure to fulfil an obligation. We also
distinguish two kinds of fluents: normative fluents that denote normative properties of
the state such as permissions, powers and obligations, and domain fluents that corre-
spond to properties specific to the normative framework itself.

The evolution of the state of the framework is achieved through the definition of two
relations:

1. The generation relation: this implements counts-as, in that it specifies how the
occurrence of one (exogenous or normative) event generates another (normative)
event, subject to the empowerment of the actor. Formally, this can be expressed as
G : X × E → 2Einst , where X denotes a formula over the (normative) state and E
an event, whose confluence results in an institutional event, and

2. The consequence relation, that specifies the initiation and termination of fluents
subject to the performance of some action in a state matching some expression, or
formally C : X × E → 2F × 2F .

98 T. Balke et al.

Again, for the sake of context, we summarize the semantics of our framework and
cite [7] for an in-depth discussion. The semantics are defined over a sequence, called
a trace, of exogenous events. Starting from the initial state, each exogenous event is
responsible for a state change, through initiation and termination of fluents, that is
achieved by a three-step process:

1. The transitive closure of G with respect to a given exogenous event determines all
the (normative) events that result,

2. To this we add all violations of events not permitted and all obligations not fulfilled,
giving the set of all events whose consequences determine the new state, so that

3. The application of C to this set of events, identifies all fluents to initiate and termi-
nate with respect to the current state in order to obtain the next state.

So for each trace, we can obtain a sequence of states that constitutes the model of
the normative framework. As with human regulatory settings, normative frameworks
become useful when it is possible to verify that particular properties are satisfied for all
possible scenarios. In order to do so, we need to incorporate a computational model in
our formal representation.

Implementation. This formalisation is realized as a computational model through An-
swer Set Programming [3,11] and it is this representation that is the subject of the eval-
uation process described in Section 3.2. In [7] it was shown that the formal model of an
normative framework could be translated to an AnsProlog program—a logic program
under answer set semantics—such that the answer sets of the program correspond to
the traces of the framework. A detailed description of the mapping can be found there.

AnsProlog is a declarative knowledge representation language that allows the pro-
grammer to describe a problem and the requirements on the solutions. Answer set
solvers like CLASP [10] or SMODELS [16] process the AnsProlog specification and
return the solutions, in this case the traces, as answer sets. Answer set programming, a
logic programming paradigm, permits, in contrast to related techniques like the event
calculus [15] and C+ [8], the specification of both problem and query as an executable
program, thus eliminating the gap between specification and verification language. But
perhaps more importantly, both languages are identical, allowing for more straightfor-
ward verification and validation.

A level of abstraction can be added using a domain-specific action language, like
InstAL [7], and query language, InstQL [12] for example, which can be both trans-
lated into AnsProlog in order to specify not only the valid traces, but those that ex-
hibit features of interest. We use InstAL to describe our scenario in Section 3. The
action language uses semi-natural language to describe the various components of
the normative framework and allows type definitions to avoid grounding problems
when translating to AnsProlog. For example, events are defined by typeOfEvent

event namOfEvent; with type being one of exogenous, create, inst or
violation, while fluents are defined by fluent nameofFluent(ParameterType,

...);. Generation of normative events from exogenous events is specified using the
generates statement, while initiates and terminates define the two parts of the
consequence relation. Conditions on the state are expressed using if. The initially
statement serves to specify the set of fluents that characterise the initial state after the

Using a Normative Framework to Explore the Prototyping of Wireless Grids 99

Fig. 1. Wireless Grid Communication Architecture

normative framework is created. For our model we are interested in all traces that lead
to success, so we do not require the additional facilities of the query language InstQL.
Instead we specify the fluents or events we want to show or hide directly in AnsProlog
using the directives #show and #hide.

2.2 The Wireless Grid Scenario

The Wireless Grid Architecture. As described in the introduction, to overcome the
energy problems of 4th generation mobile phones, Fitzek and Katz [9] proposed the
establishment of wireless grids as shown in Figure 1 [9].

In these wireless grids, ubiquitous mobile devices with potentially different capabil-
ities are expected to create ad-hoc connections and to cooperate and share their lim-
ited resources for the benefit of the community. Cooperation between mobile devices
is achieved by short range communication link technologies, such as WLAN or Blue-
tooth. Compared to the traditional cellular 3G communication with the base-station,
the advantage of the short-range communication is much higher bandwidth while using
much less power, which we quantify latet in this section. Thus, the battery and CPU
power needed on the short link is significantly lower than it would be needed on the
cellular one [19]. In this article we will focus on the IEEE802.11 WLAN specification,
that allows mobile devices to communicate directly with each other and according to
Perrucci et al. [19] has the highest energy saving potential.

For a better understanding of the wireless grid idea we briefly present a scenario that
we can refer back to later. This scenario is set in a football stadium: while watching one
game, the fans are very likely to be interested in games that take place at the same time
at another place. As they cannot watch two games live at the same time, they might use
mobile phones in order to get information about other games. A likely problem for the
infrastructure provider is that once a goal has been scored in another game, fans want
to watch the other goal on their mobile phones and all try to stream the video file from
the base station at the same time, thus overloading it. The bandwidth of the base station
connection is divided into several channels that are sent out sequentially within one time
frame. Thereby—up to a certain technical maximum—each mobile phone is allocated
one slot. As the total bandwidth of a base station is fixed, the more mobile phone users

100 T. Balke et al.

are given a slot, the smaller the bandwidth that can be assigned to each channel gets.
As a result the download times increase, leading both to more battery consumption and
lower quality in the streaming service.

In contrast to the normal “non-cooperative” scenario in which a single mobile phone
user would need to receive all sub-streams over the cellular link resulting in the above
mentioned problems, using the cooperation envisioned in the wireless grid scenario,
users could share the task by receiving a subset of the multicast channels over the cel-
lular link from the base station and exchanging the missing pieces over the short range
link.

The Energy Advantage in IEEE802.11. To understand the IEEE802.11 WLAN wire-
less grid scenario and its energy implications better, this section examines the technical
aspects of WLAN transmission in more detail. We use A to denote the set of agents in
the scenario. In considering the energy implications of the wireless grid scenario, we
observe the following basic definition of energy [E], that states that energy consump-
tion in terms of battery depends on two factors: the power [P] consumed per connection
type and the time [t] needed for the actual transmission:

Energy = Power ∗ T ime [Joules] (1)

So what is the energy consumption in this scenario? The total energy consumption is
the energy consumed over the tradition cellular 3G connection (E3G) plus that over the
short link (i.e. WLAN) connection (EWLAN) plus the idle time for both links (Eidle).
In case of no cooperation the shortlink costs are 0, i.e. it is assumed that the WLAN
connection is turned off and the football fan has to stream the complete video using the
3G connection. In case of wireless grid cooperation it is assumed that both connections
(WLAN and 3G) are turned on and the devices help one another in a peer-to-peer-like
fashion. Assuming |ACoop| cooperating agents in the scenario for example, each agent
only needs to stream only a part of the total video from the base station (i.e. 1

|ACoop| in
an ideal scenario) and obtain the missing chunks from the other cooperation partners
using the short link connection. Therefore the energy consumption in the cooperation
case (ECoop) comprises the amounts for:

1. Streaming part of the video from the base station using the 3G link (E3G,rx) (plus
the energy consumed while the 3G connection is idle (E3G,i)),

2. Receiving the remaining chunks of the video on the WLAN connection
(EWLAN,rx),

3. Sending own chunks to the other participants via the WLAN connection
(EWLAN,tx), and

4. Idling (i.e. when not transmitting or receiving anything but waiting for the next
interaction) (EWLAN,i).

With reference to equation 1, by replacing the E with the respective P ∗t-values, one
can analyse the power consumption as well as the transmission times for the scenario
in the cooperative and non-cooperative case in detail. Representative power and time
values for the transmission in the different states using 3G and WLAN connection can
be found in [19, p.D10] for example, which are based on measurements from a Nokia

Using a Normative Framework to Explore the Prototyping of Wireless Grids 101

Fig. 2. The Reciprocity Problem in Wireless Grids

N95. These numbers indicate that although the power needed for the WLAN and the
3G state are about the same, for a point-to-point communication, the data rate for the
3G link (0.193 Mbit/s for the receiving state) is significantly lower than that of WLAN
(5.115 Mbit/s, receiving state, 30m distance) leading to significantly worse transmission
times and consequently a much worse energy per bit ratio for the 3G link. The energy
consumed in the idle states is of secondary importance and therefore neglected here.

This suggests that the cooperation scenario has a significant potential advantage in
energy consumption, compared to the conventional cellular communication architec-
ture, especially if the number of cooperating mobile phones is high and a large propor-
tion of the data transmission can be done via the short-link connection.

The Reciprocity Problem in Wireless Grids. Although the wireless grid may have a
huge advantage with regard to the battery consumption, it also has the intrinsic weak-
ness of distributed cooperative architectures: it relies on cooperation to succeed. The
cooperation idea in the wireless grid, as shown in Figure 2(a), is as follows:

1. The participants volunteer their resources, forming a common pool which can be
used by all of them in order to achieve a common goal, such as file streaming.
The utility which users can obtain from the pooled resources is much higher than
they can obtain on their own. For example, in the football stadium scenario, both
download time and battery consumption are reduced. However, the problem is that
commitment comes at a cost, in the form of battery consumption for sending file
chunks, i.e. EWLAN,tx. As a consequence, (bounded) rational users would prefer
to access the resources without any commitment of their own, as shown in figure 2.

2. Thus, as shown in (b), the grey agent in the top left corner (with blindfold) can
enjoy the full benefits from the common pool without committing anything itself,
hence cheating on the three other agents.

102 T. Balke et al.

However, if a substantial number of users follows this selfish strategy, the network
itself would be at stake, depriving all users of the benefits [17]. The reason for this is
straightforward: network users can have strategic behaviour and are not necessarily obe-
diently cooperating by making their resources available without the prospect of rewards
for their good behaviour. Unreciprocated, there is no inherent value to cooperation for
a user. A lone cooperating user draws no benefit from its cooperation, even if the rest of
the network does. Guaranteed cost paired with uncertainty or even lack of any resulting
benefit does not induce cooperation in a (bounded) rational, utility-maximising user.
Without any further incentives, rational users therefore would not cooperate in such an
environment and all be worse off than if they cooperated [2].

The Energy Model. Utility quantification is being used by the (bounded rational)
agents (i.e. agents that only have partial information about their environment, including
other agents) to determine the utility of the different possible actions and choose their
actions in such as way that maximises their utility. Concerning the knowledge that they
can rely on when calculating utilities, we assume the agents do not have knowledge of
the whole system, but only the small part of it in their vicinity.

We now explain how the agents determine the utility of an action, using the football
stadium scenario described earlier. However, to keep the example simple, for the utility
considerations we consider the interaction of two agents only and formulate the costs
in such a way that they can easily be expanded to any number of agents.

The two agents both want to stream the same file G in the stadium. In order to get
the complete file, they can cooperate and thereby reduce their energy consumption or
stream the file themselves using a cellular link connection. The exchange is done in
chunks (g ∈ G).

As described above, the issue in the particular wireless grid scenario that we consider
here is that the different agents have different subsets of G (i.e. parts of the file) already
and each is trying to obtain the full set by exchanging parts of their subsets of G with
one another. Thus, looking at a potential exchange, from the perspective of an agent ai,
for each chunk only two mutually exclusive situations can occur: either the agent does,
or does not, have a given chunk. This can be expressed in terms of the set Hai (the set
of chunks agent ai has; Hai ⊆ G) and the corresponding complement set (with respect
to G) H ′

ai
that represents the set of chunks agent ai has not.

In an exchange, an agent a1 will try to obtain the set of the missing chunks H ′
1 and

in turn can potentially provide the set H1. Let H2 being the chunks agent a2 possesses
and let agent a1 and a2 enter an exchange process (H1 ∪H2 ⊆ G). In order to reflect
the local connectivity properties, we write Aa1 (⊆ A) to denote those aj ∈ A, j �= i
that are within communication range of ai. The local radius of each agent is determined
by the transaction protocol dependent signal radius of its mobile phone.

What is important to the agent now are the utilities of the different action alternatives.
Thus, an agent needs to consider the utility of using the short-link cooperation (includ-
ing the costs for searching short-link cooperation partners in the first place) compared
to the cellular link as well as the utility of reciprocating in contrast to cheating on other
agents.

The search costs are those that accumulate as a result of the agents searching for
the missing chunks. We assume that the costs of sending out a request message for

Using a Normative Framework to Explore the Prototyping of Wireless Grids 103

cooperation using WLAN transmission are fixed and independent of the number of
chunks requested. However, the number of messages an agent has to send before it finds
an agent that is willing to cooperate and one that can supply at least one missing chunks
depends on the success probability p = f(

∣∣A∣∣ , H ′); p ∈ [0, 1] for a single message.
We define “success” to mean finding a cooperation partner with at least one missing
chunk. As stated above, the probability p is a result of the function of the number of
agents in the neighbourhood

∣∣A∣∣ and of the number of chunks missing H ′. As yet, we
have no measure of how these two quantities are related, but we can make some general
observations about their correlation. Thus, for the missing chunks, we contend, without
evidence at this point, that p has a proportional relation with the missing chunks of the
form H ′

ai
∝ p. Our rationale starts from the assumption that the chunks are distributed

uniformly over all agents. Thus, if missing many chunks an agent is more likely to find
another agent that can offer any of the missing chunks, whereas the probability is lower
if it is only missing a small number of specific chunks. Besides the number of missing
chunks, p is furthermore dependent on the number of agents in the neighbourhood, i.e.
the number of other agents

∣∣Aai

∣∣ an agent ai can see locally1. The probability p is
proportional to

∣∣A∣∣ as well. The intuition is that the higher the agent population density,
the higher the probability of finding an agents that responds positively to the request
when searching for the chunks.

To give an example for p, in a football-stadium where many people are in one place
and want to download the same file (e.g. a replay of a goal), it will approach 1 as there
are many people searching for and offering the same chunks, while it tends to approach
0 when there are fewer people searching for and offering the same chunks. Once an
agent has found a transaction partner, they can exchange chunks. Thus the maximum
number of chunks available for exchange is the intersection of the set an agent can
offer to the transaction partner (i.e. all the chunks it has) and that the transaction partner
needs; and vice versa, i.e. H1 ∩H ′

2 & H2 ∩H ′
1.

Returning to the example, in the course of the exchange both agents have the option
to cooperate (i.e. deliver what they promised) or defect and not send their chunks. As a
consequence of this, two different utility situations can occur. Thus, in the cooperation
case, based on opportunity cost considerations, the utility is calculated by taking into
account what it would have cost for an agent to download the chunks from the base
station using the 3G connection (E3G,rx) reduced by the costs of receiving the chunks
on a short range WLAN link from another agent (EWLAN,rx) minus the costs for send-
ing its own chunks (EWLAN,tx). The latter cost can be saved by the agent if it defects.
However, assuming that the transaction partner stops the transaction if being cheated
and no further chunks are be exchanged (tit-for-tat), in this case the agent will have
search for a new transaction partner for the remaining missing chunks. This results in
search costs that could otherwise have been saved. The specific energy cost Ea,b where
a ∈ WLAN, 3G; b ∈ tx, rx, idle have already been determined by Perrucci et al. [18]
for single bits. As a first approximation, using a constant bpc (i.e. bits per chunk) these
could be mapped to the chunks in the model.

1 For reasons of simplicity it is assumed that the number of agents in the neighbourhood has no
volatility, but remains the same throughout the process.

104 T. Balke et al.

Using the bpc mapping and the figures by Perrucci et al. and substituting them with
the variables of our utility considerations an agent is able to compute a utility for all the
actions available and decide on the action to take as a consequence.

3 Formalizing the Wireless Grid Scenario

Now that we have explained the wireless grid scenario in some detail from the techno-
logical perspective, we now shift focus to the normative framework.

We observe three perspectives to the wireless grid scenario:

1. The actions that agents may take, as prescribed by the normative framework,
2. The utility functions that quantify battery costs for a given action, and
3. The agents that populate the normative frameworks and choose which action to

take, informed by the utility functions.

In this article, our focus is on the (normative) actions and the utility functions (see
Section 2.2): we will address their integration through the agents that participate in the
normative framework in future work.

3.1 The Normative Framework

The model is preliminary in that it focusses on the essential interactions and the com-
munication costs that arise from those interactions. Although a more elaborate model is
desirable from a realistic point of view, more details would also distract and complicate
while not adding to the presentation.

The features of the the prototypical scenario are:

– 1 × base-station: B
– m × agents: A = {a1, . . . , am}
– 1 × digital good: G divided into
– n × chunks: {g1, . . . , gn}

We further assume that n|m, which is to say the number of chunks is a multiple of the
number of agents.

Negotiation, obtaining and sharing. We identify three phases to the interactions for
handset to base-station and handset to handset:

– Negotiation: assign gi to aj s.t. f : G→ A and

f−1 : A→ Gn|m s.t. f−1(ai) = {gj, f(gj) = ai}

– Obtaining: agent ai receives chunks f−1(ai) from B
– Sharing: agent ai sends chunks f−1(ai) to and receives chunks G \ f−1(ai) from

other agents.

These three phases are distinct, but although negotiation must come first, obtaining
and sharing can be interleaved as soon as downloading has commenced. In the following
paragraphs we discuss each phase in more detail and how each is encoded in InstAL.

Using a Normative Framework to Explore the Prototyping of Wireless Grids 105

Each InstAL specification starts with the identification of the normative framework,
the different types of variables it will use (their values can be specified in a domain file)
and the fluents and events it will recognise. The full definition can be seen in Figure 3.
The meaning of the various elements is explained as we progress through the different
phases.

Negotiation Phase: We are not particularly concerned with the technicalities of the
negotiation phase—any off-the-shelf protocol could be employed—as long as the post-
condition is satisfied: that each chunk is assigned to exactly one agent and that each
agent is assigned the same number of chunks—although these conditions can readily
be relaxed at the cost of a lengthier specification. An allocation satisfying these con-
ditions is given in the initial state of the model (see Figure 6, lines 104–105) via the
obtainChunk fluents indicating which agents are tasked with obtaining which blocks
from the base-station. Together with their chunk assignment the agents receive the nec-
essary permission to do so (lines 102–103).

Obtaining Phase: This is where each agent downloads its assigned chunks from the
base-station. This process should result in each agent holding n|m distinct chunks.
Because the base-station uses several different frequencies (frequency division mul-
tiplexing), many agents may download chunks simultaneously. We refer to a frequency
division in the model as a channel. Of course, there is a physical limit to the number
of frequency divisions and hence the number of simultaneous agent connections. The
full specification of this phase can be seen in Figure 4. Each agent can only physically
obtain one chunk at a time from the base station, while each channel can only be used to
obtain one chunk. This is modelled by the fluent cbusy. The first InstAL rule (lines 34–
36) indicates that a request to obtain a chunk is granted (intObtain) whenever there is
an available channel and the agent is not busy obtaining another chunk. When a block
is obtained the agent and the channel will become busy for a fixed amount of time — 2
time steps in this case (lines 42–43). From the first instant of the agent interacting with
the base station, it is deemed to have obtained the block, so parts can be shared (line
41). As soon as a channel and an agent become engaged, the framework takes away the
power from the agent and from the channel to engage in any other interactions (lines
53–54), stops the agent from needing the chunk and cancels the permission to obtain
the chunk again later on (lines 55 and 56, respectively).

Each exogenous event generates a transition to mark the passing of time (lines 38–
39). The clock event indicates that no agent was interacting with the normative frame-
work. The transition event reduces the duration of the interaction between the chan-
nel and agent (line 46). When the interaction comes to an end, transition restores
the power for agents to obtain chunks via the channel and for the agent to obtain more
chunks (lines 48–51). The event also terminates any busy fluents that are no longer
needed (line 58).

Sharing Phase: In this phase each agent shares its chunks with another agent, with the
goal that at the end of the process, each agent has a complete set of the chunks. The full
specification can be found in Figure 5. The principle here is more or less the same as
with obtaining blocks, only that we build in a mechanism to encourage agents to share
their chunks with others rather than just downloading them. To be able to monitor the

106 T. Balke et al.

1 institution grid;
2
3 type Agent;
4 type Chunk;
5 type Time;
6 type Channel;
7 type ConnectionPoint;
8
9 exogenous event clock;

10 exogenous event obtain(Agent,Chunk,Channel);
11 exogenous event download(Agent,Agent,Chunk);
12
13 create event creategrid;
14
15 inst event intObtain(Agent,Chunk,Channel);
16 inst event intShare(Agent);
17 inst event intDownload(Agent,Chunk);
18 inst event transition;
19
20 violation event misuse(Agent);
21
22 fluent obtainChunk(Agent,Chunk);
23 fluent hasChunk(Agent,Chunk);
24 fluent abusy(Agent,Time);
25 fluent cbusy(ConnectionPoint,Time);
26
27 fluent previous(Time,Time);
28 fluent matchA(Agent,ConnectionPoint);
29 fluent matchC(Channel,ConnectionPoint);

Fig. 3. Declaration of types and events in the model

34 obtain(A,X,C) generates intObtain(A,X,C)
35 if not cbusy(C1,T1), not cbusy(A1,T2),
36 matchA(A,A1), matchC(C,C1);
37
38 obtain(A,X,C) generates transition;
39 clock generates transition;
40
41 intObtain(A,X,C) initiates hasChunk(A,X);
42 intObtain(A,X,C) initiates
43 cbusy(A1,2), cbusy(C1,2)
44 if matchA(A,A1), matchC(C,C1);
45
46 transition initiates cbusy(A,T2)
47 if cbusy(A,T1), previous(T1,T2);
48 transition initiates pow(intObtain(A,X,C))
49 if cbusy(A1,1), matchA(A,A1);
50 transition initiates pow(intObtain(A,X,C))
51 if cbusy(C1,1), matchC(C,C1);
52
53 intObtain(A,X,C) terminates pow(intObtain(A,X1,C1));
54 intObtain(A,X,C) terminates pow(intObtain(B,X1,C));
55 intObtain(A,X,C) terminates obtainChunk(A,X);
56 intObtain(A,X,C) terminates perm(obtain(A,X,C1));
57
58 transition terminates cbusy(A,Time);

Fig. 4. Generation and consequence relations for obtaining

different costs of obtaining a chunk from the base-station or from a peer, we introduced
the fluent abusy. When a chunk is downloaded from a peer, the agent loses permission
to download another chunk until it has shared a chunk with another agent (lines 85 and
73 respectively). Continuous downloading without sharing (no permission is granted to
download) results in a violation event named misuse (line 70). The penalty we chose
to implement in our model is that the violation agent loses the power to intDownload

(Line 91), which means that for all intents and purposes it has been expelled from the
peer group. Initially, agents are given the permission and power to download one chunk
(Figure 6 lines 112-114).

Using a Normative Framework to Explore the Prototyping of Wireless Grids 107

63 download(A,B,X) generates
64 intDownload(A,X), intShare(B)
65 if hasChunk(B,X), not abusy(A,T1), not abusy(B,T2);
66
67 download(A,B,X) generates transition;
68 clock generates transition;
69
70 viol(intDownload(A,X)) generates misuse(A);
71
72 intDownload(A,X) initiates hasChunk(A,X);
73 intShare(B) initiates perm(intDownload(B,X));
74 intDownload(A,X) initiates abusy(A,3);
75 intShare(B) initiates abusy(B,3);
76
77
78 transition initiates abusy(A,T2)
79 if abusy(A,T1), previous(T1,T2);
80 transition initiates pow(intDownload(A,X))
81 if abusy(A,1);
82 transition initiates pow(intShare(B))
83 if abusy(B,1);
84
85 intDownload(A,X) terminates perm(intDownload(A,X));
86 intDownload(A,X) terminates pow(intDownload(A,X));
87 intDownload(A,X) terminates pow(intShare(A));
88 intShare(B) terminates pow(intDownload(B,X));
89 intShare(B) terminates pow(intShare(B));
90
91 misuse(A) terminates pow(intDownload(A,X)),abusy(A,T);
92 intDownload(A,X) terminates perm(intDownload(A,Y));
93
94 transition terminates abusy(A,Time);

Fig. 5. Generation and consequence relations for sharing

98 initially
99 pow(transition), perm(transition),

100 perm(clock),
101 pow(intObtain(A,B,C)),perm(intObtain(A,B,C)),
102 perm(obtain(alice,x1,C)), perm(obtain(alice,x3,C)),
103 perm(obtain(bob,x2,C)), perm(obtain(bob,x4,C)),
104 obtainChunk(alice,x1), obtainChunk(alice,x3),
105 obtainChunk(bob,x2), obtainChunk(bob,x4);

109 initially
110 pow(transition), perm(transition),
111 perm(clock),
112 pow(intDownload(Agent,Chunk)), pow(intShare(Agent)),
113 perm(download(Agent,Agent1,Chunk)),
114 perm(intDownload(Agent,Chunk)), perm(intShare(Agent));

Fig. 6. Initial state of the model, post negotiation

Figures 3 to 6 give the complete characterisation of our wireless grid scenario. When
translated to AnsProlog and combined with the non-framework-dependent program
components, we obtain all the possible traces over a specified number of time instances.
A successful trace makes sure that at the end all agents have all chunks and are no longer
engaged. Figure 7 shows a graphical representation of a successful trace for a scenario
with two agents (bob and alice), four chunks (x1, x2, x3 and x4) and a base-station
with two channels (c1 and c2). The circles indicate the time steps. Light grey fill means
the device is cbusy while dark grey indicates abusy. The arrows indicate which block
goes to which agent. The labels on the left-hand side indicate the exogenous event and
the current distribution of chunks. The observed event clock is not shown to avoid
cluttering the diagram.

108 T. Balke et al.

C1 C2 Alice Bob

x1observed(obtain(alice,x1,c1),i01)
alice={},bob={}

x2observed(obtain(bob,x2,c2),i02)
alice={x1},bob={}

x1observed(download(bob,alice,x1),i03)
alice={x1},bob={x2}

x3observed(obtain(alice,x3,c1),i04)
alice={x1},bob={x2,x1}

alice={x1,x3},bob={x2}

x4observed(obtain(bob,x4,c2),i06)
alice={x1,x3},bob={x2,x1}

x2observed(download(alice,bob,x2),i07)
alice={x1,x3},bob={x2,x1,x4}

alice={x1,x3,x2},bob={x1,x2,x4}

alice={x1,x3,x2},bob={x1,x2,x4}

alice={x1,x3,x2},bob={x1,x2,x4}

x3observed(download(bob,alice,x3),i11)
alice={x1,x3},bob={x2,x1,x4}

alice={x1,x3,x2},bob={x2,x1,x4,x3}

alice={x1,x3,x2},bob={x2,x1,x4,x3}

alice={x1,x3,x2},bob={x2,x1,x4,x3}

x4observed(download(alice,bob,x4),i15)
alice={x1},bob={x2}

alice={x1,x3,x2,x4},bob={x2,x1,x4,x3}

alice={x1,x3,x2},bob={x2,x1,x4,x3}

alice={x1,x3,x2,x4},bob={x2,x1,x4,x3}

alice={x1,x3,x2,x4},bob={x2,x1,x4,x3}

Fig. 7. One trace of the interaction between alice, bob and the channels of base-station

Using a Normative Framework to Explore the Prototyping of Wireless Grids 109

Sanctioning. The model as presented in Figure 5 takes a rather harsh position on sanc-
tioning, in that the violating agent is expelled—the power to get chunks from other
agents is rescinded. In fact, this is both harsh and counter-productive, because given the
initial state shown in Figure 6, the chunk assignment is not 1-resilient—meaning the
distribution cannot be achieved following the expulsion of one agent, unless in the very
special case where the expulsion occurs after the other agent no longer requires any
chunks from this agent. Full 1-resilient assignment can be achieved with two chunks
for each of three agents, in which each chunk is assigned to two agents and of course,
n-resilience can be achieved by each agent downloading all the chunks from the base-
station. In terms of the effect on the group goal, the ejection scenario is equivalent to one
of the agents leaving the ad-hoc network. In either case, for an a-priori solution there
is a trade-off to be explored in delivering i-resilience, based on the estimated number
agent failures and on the additional cost of replicated base-station downloads. Alterna-
tively, some agents may engage autonomously in additional base-station downloads for
the sake of the group goal.

A more practical sanction may be to lock the offending agent out of the sharing
process for a number of time steps, but as with the above scenario, this is only effective
if it does not impact the group goal.

3.2 Evaluation

Now that we have set out the normative framework and how to quantify communication
costs for the particular situation of a 3G structured network and an ethernet ad-hoc
network (see Section 2.2), we can use the model to examine the traces for expected, but
also unexpected behaviour and, simply by counting the number of cbusy and abusy

states, get an estimate for battery consumption under different initial conditions.
Each of the models of our framework contains information about the energy con-

sumption of each of agents in the form of the messages they have been passing signalled
by the exogenous events obtain and download and the amount of time they have been
spending communicating with the base-station, by the number of occurrences of cbusy,
and communicating with the other agents by the number of times abusy occurs.

The model is presently being used as an off-line tool and generates all possible traces.
The likelihood of a high proportion of these trace occurring in practice, depends on the
relative intelligence and (bounded) rationality of the agents participating in the norma-
tive framework, e.g. continuously trying the download a chunk when you are busy. Our
model purposely avoids modelling handset behaviour—we believe that is the respon-
sibility of the handset designer—because our objective is the exploration of the design
of the space in which the handsets interact. However, these unsuccessful or unnatural
traces can easily be filtered out by adding the filters displayed in Figures 8 and 9 to the
AnsProlog specification. The first filter only admits those traces that lead to success:
all agents have all the chunks and are no longer busy. When adding the filter, we obtain
the first traces after nine time steps. To be more precise we obtain 142368 different
traces satisfying the criteria. CLINGO returns these in 22.96 second, excluding print-
ing, on a standard laptop. When the second filter is added to the first, we only obtain
successful traces that contain no violations and where each exogenous event leads to
its corresponding normative event (e.g. download leads intdownload). This reduces

110 T. Balke et al.

1 % success criteria
2 success :- holdsat(hasChunk(alice,x1),T),holdsat(hasChunk(alice,x2),T),
3 holdsat(hasChunk(alice,x3),T),holdsat(hasChunk(alice,x4),T),
4 holdsat(hasChunk(bob,x1),T),holdsat(hasChunk(bob,x2),T),
5 holdsat(hasChunk(bob,x3),T),holdsat(hasChunk(bob,x4),T),
6 not holdsat(cbusy(dbob,T),F),not holdsat(cbusy(dalice,T),F),
7 not holdsat(cbusy(dc1,T),F), not holdsat(cbusy(dc2,T),F),
8 not holdsat(abusy(alice,T),F),not holdsat(abusy(bob,T),F),final(F).

Fig. 8. A filter to remove unsuccessful traces

10 % only interested in successful traces
11 :- not success.
12
13 % indication that a violation has occurred
14 viol :- occured(viol(X),I).
15
16 :- viol.
17
18 % exogenous event should be follow by corresponding normative event
19 :- occured(download(H1,H2,Chunk),T), not occured(intDownload(H1,Chunk),T).
20 :- occured(obtain(Handset,Chunk,Channel),T),
21 not occured(intObtain(Handset,Chunk,Channel),T).

Fig. 9. A filter to remove unsuccessful violation traces with unintuitive events

the number of traces significantly. Traces are only returned after fifteen time steps, after
which 5280 of them are returned in 3.58 seconds. If we do not constrain each download
and obtain to be followed by its normative equivalent, we get over three million traces.

By changing the durations for obtaining and sharing chunks and altering the penal-
ties imposed on agents not conforming to the norms, we are able to study a variety of
situations and finding the most appropriate enforcement mechanisms.

Furthermore some model assumption need to be reconsidered. The model at the mo-
ment demands that sending and receiving alternate. In reality this is might not always
be the case. Handsets should be allowed to take advantages of chunks being sent even
when the same number of chunks have not yet been shared. Thus, it would be more
realistic to evaluate a handset’s willingness to collaborate over a larger time period.

4 Discussion

We have presented a normative framework as a mechanism to help understand and to
model the economic challenges that might arise in the context of a wireless grid. We
have developed a model for the actions of the agents that participate in such a grid and
hence provide us with a basic energy model, that may be used by the agents as part of a
utility maximization decision-making process.

This was the first time we had modelled a complete, but simplified, realistic scenario
of a normative framework. While InstAL is very intuitive and makes the task signifi-
cantly more approachable it still lacks certain features that would make the modelling
process easier. To model that channels and handsets were busy during a given period
we had to resort to introducing the fluent previous, as InstAL does not allow arith-
metic in its rules (which the underlying AnsProlog does allow). The current version
of InstAL also does not allow hierarchies in its type structure or polymorphic propo-
sitions. Ideally we would have liked Device to be a superset of both Channel and

Using a Normative Framework to Explore the Prototyping of Wireless Grids 111

Agent, such that we would not have had to resort to the matchC and matchA fluents,
which are a technical artifice to overcome a linguistic weakness. The answer sets rep-
resenting the traces contain significant numbers of atoms, making debugging difficult.
Neither InstAL nor InstQL have built-in mechanisms to filter the output. So for debug-
ging purposes we often referred to the underlying AnsProlog program and its #show
and #hide functionalities, although those are not very flexible. Thus, the exercise has
identified a number of practical issues that need to be addressed to make InstAL more
usable.

The modelling of the wireless grid scenario also gave us a good insight into our for-
mal model. The model does not allow us to expel an agent completely from a normative
framework, as all the observed events are automatically empowered. While this can be
partially remedied by removing the empowerment of consequent normative events, as
we have done in the sharing phase, it raises interesting issues on how membership of a
normative framework should be handled.

The traces of the normative framework give an indication of how much energy each
of the handsets will be using if the trace would be executed. It also allows us to test
different sanctioning techniques and compare their efficacy. However, a number of the
traces that are produced by our simple model, while valid, stand very little chance of
being executed by rational agents. Agents are not going to download the same block
repeatedly, or try to download/obtain a block when they are busy. While this can be
easily added to the model, we believe it is more properly viewed as an aspect of agent
behaviour and should therefore be encoded in the agent rather than the normative frame-
work. From a normative perspective we are only interested in correct, valid traces.

A particularly intriguing line of research, arising from the capacity to compute such
traces, is to explore those (economic) mechanisms that might alleviate the effects of
free-loading, in a more subtle, and less draconian way, than the simple sanction of
expelling, that has been applied here.

Both the wireless grid scenario and the energy model are necessarily simplified and
demand expansion. As stated earlier in the article some functions such as the one defin-
ing p, i.e. the probability of finding a cooperation partner that has the right chunks, have
to be specified. Further aspects of interest to be included in the model are error rates on
the different communication links as well as the aspect that agents are moving within
the environment and as a consequence the neighbourhood of an agent is constantly
changing.

Furthermore, our current model has very simple penalty mechanisms for violating
agents. It does not allow for more elaborate forms of sanctions as was demonstrated in
Section 3.1, when we blocked agents that obtained unallocated chunks from the base-
station. However, with regard to future work we plan to develop several enforcement
mechanisms in order to address the reciprocity problem in more detail. Thus, our inten-
tion is to take the existing model as a reference point and analyse the additional benefits
and costs resulting from different normative mechanisms.

Acknowledgements. Tina Balke is partially supported by a grant from the German
Academic Exchange Service (DAAD).

112 T. Balke et al.

References

1. Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the causal calculator. In:
Giunchiglia, F., Odell, J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 1–15. Springer,
Heidelberg (2003)

2. Axelrod, R.: The emergence of cooperation among egoists. The American Political Science
Review 75(2), 306–318 (1981)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, Cambridge (2003)

4. Boella, G., van der Torre, L.: Constitutive Norms in the Design of Normative Multiagent Sys-
tems. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 303–319.
Springer, Heidelberg (2006)

5. Cliffe, O.: Specifying and Analysing Institutions in Multi-Agent Systems using Answer Set
Programming. PhD thesis, University of Bath (2007)

6. Cliffe, O., De Vos, M., Padget, J.: Answer set programming for representing and reason-
ing about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS
(LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)

7. Cliffe, O., De Vos, M., Padget, J.: Specifying and reasoning about multiple institutions. In:
Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson,
E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 67–85. Springer, Heidelberg (2007)

8. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence 153, 49–104 (2004)

9. Fitzek, F.H.P., Katz, M.D.: Cellular controlled peer to peer communications: Overview and
potentials. In: Fitzek, F.H.P., Katz, M.D. (eds.) Cognitive Wireless Networks, pp. 31–59.
Springer, Heidelberg (2007)

10. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving.
In: Proceeding of IJCAI 2007, pp. 386–392 (2007)

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4), 365–386 (1991)

12. Hopton, L., Cliffe, O., De Vos, M., Padget, J.: InstQL: A query language for virtual insti-
tutions using answer set programming. In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA X.
LNCS, vol. 6214, pp. 102–121. Springer, Heidelberg (2010)

13. Jones, A.J., Sergot, M.: A Formal Characterisation of Institutionalised Power. ACM Com-
puting Surveys 28(4es), 121 (1996)

14. Katz, M.D., Fitzek, F.H.P.: Cooperation in 4g networks - cooperation in a heterogenous wire-
less world. In: Fitzek, F.H.P., Katz, M.D. (eds.) Cooperation in Wireless Networks: Principles
and Applications, pp. 463–496. Springer, Heidelberg (2006)

15. Kowalski, R.A., Sadri, F.: Reconciling the event calculus with the situation calculus. Journal
of Logic Programming 31(1-3), 39–58 (1997)

16. Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and well-founded
semantics for normal LP. In: Dix, J., Furbach, U., Nerode, A. (eds.) LPNMR 1997. LNCS
(LNAI), vol. 1265, pp. 420–429. Springer, Heidelberg (1997)

17. Ostrom, E.: Coping with tragedies of the commons. Annual Review of Political Science 2,
493–535 (1999); Workshop in Political Theory and Policy Analysis; Center for the Study of
Institutions, Population, and Environmental Change

18. Perrucci, G.P., Fitzek, F.: Measurements campaign for energy consumption on mobile
phones. Technical report, Aalborg University (2009)

19. Perrucci, G.P., Fitzek, F.H., Petersen, M.V.: Energy saving aspects for mobile device ex-
ploiting heterogeneous wireless networks. In: Heterogeneous Wireless Access Networks.
Springer, US (2009)

Using a Normative Framework to Explore the Prototyping of Wireless Grids 113

20. Sergot, M.: (C+)++: An Action Language for Representing Norms and Institutions. Technical
report, Imperial College, London (2004)

21. TNS. Two-day battery life tops wish list for future all-in-one phone device. Technical report,
Taylor Nelson Sofres, 004

22. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. AAMAS 11(3),
307–360 (2005)

23. Dignum, V.: A Model for Organizational Interaction Based on Agents, Founded in Logic.
PhD thesis, Utrecht University (2004)

24. Wrona, K., Mähönen, P.: Analytical model of cooperation in ad hoc networks. Telecommu-
nication Systems 27(2-4), 347–369 (2004)

Towards a Model of Social Coherence in

Multi-agent Organizations

Erick Mart́ınez1, Ivan Kwiatkowski2, and Philippe Pasquier1

1 School of Interactive Arts and Technology
Simon Fraser University, Vancouver, Canada

{emartinez,pasquier}@sfu.ca
http://www.metacreation.net/

2 Institut Supérieur d’Informatique, de Modélisation et de leurs Applications
Clermont-Ferrand, France

Abstract. We propose a social coherence-based model and simulation
framework to study thedynamics of multi-agent organizations. This model
rests on the notion of social commitment to represent all the agents’ ex-
plicit inter-dependencies including roles and organizational structures. A
local coherence-based approach is used that, along with a sanction policy,
ensures social control in the system and the emergence of social coherence.
We illustrate the model and the simulator with a simple experiment com-
paring two sanction policies.

Keywords: Social and organizational structure, social commitments,
agent reasoning, social control

1 Introduction and Motivations

Research in the area of Computational Organization Theory [4,3] and multi-
agent systems (MAS) has resulted in a large number of models capturing differ-
ent aspects of organizational behaviour [21,22,1,7]. This paper presents a model
and simulation framework to study the social dynamics of multi-agent organiza-
tions. The model uses the notion of social commitment (defined in Section 2) as
the main building block to represent all the inter-dependencies between social
entities. Sanction policies provide social control mechanisms (defined in Section
3) to regulate the enforcement of social commitments. Our model extends previ-
ous work on cognitive coherence [17,19] by showing how the coherence principle
can drive the emergence of social behaviour. In particular, by organizing agent
behaviour in a way that makes global social coherence (formalized in Section 4)
emerge from the local cognitive coherence of interacting agents.

We strive to build a simple minimalist model, where social behaviour emerges
from local coherence-driven behaviour, enabling us to study some of the social
dynamics of multi-agent organizations. This paper advances the state of the art
by proposing a unified yet computational and operational view of some of the
social aspects of multi-agent systems. More specifically, we propose a knowledge
transfer from results in cognitive science and social psychology into the area

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 114–131, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.metacreation.net/

Towards a Model of Social Coherence in Multi-agent Organizations 115

of multi-agent organizations. At the core of our proposal is a model of agent
rationality based on the unification of the cognitive coherence [24] and cogni-
tive dissonance [9] theories. We also present a sample pizza delivery domain
(Section 5), and illustrate the use of the model and simulator with a simple
experiment (Section 6) to investigate social control mechanisms while compar-
ing two sanction policies. Then, we discuss our work while relating it to other
research (Section 7). Finally, we conclude and discusses future work (Section 8).

2 Social Modelling

2.1 Handling Actions

We represent atomic actions as (possibly) parametrized predicate formulas with
unique names. We use a discreet instant-based sequential model of time where
actions are assumed to be instantaneous. However, each action requires a prepa-
ration time expressed in time steps.

Definition 1. (Primitive or Atomic Action) Given the non-empty set X
of all atomic actions in the system, a primitive action α ∈ X is represented
as a tuple α = 〈α(x), Δα〉, where:

– α(x) is a predicate formula s.t. α(x) �= β(x), and α(x) = α(y) ⇒ x = y;
and

– Δα > 0 specifies the preparation time of action α(x) measured in time steps.

In our model, exogenous events are treated as actions not necessarily performed
by agents in the system. Therefore, in the rest of the paper events and actions
are used interchangeably. We model an exogenous event as an action recurring
within certain period of time.

Definition 2. (Exogenous Action) Given the set X̂ of all exogenous actions
in the system, an exogenous action α̂ ∈ X̂ is represented as a tuple α̂ =
〈αexog(x), ε〉, where:

– αexog(x) is a predicate formula s.t. αexog(x) �= βexog(x), and αexog(x) =
αexog(y)⇒ x = y; and

– ε ≥ 0 specifies the maximum period within which the event αexog(x) will
occur once.

2.2 Social Commitment

This section briefly presents a formal model of social commitment (henceforth ab-
breviated s-commitment). Concretely, commitments have proven useful to repre-
sent all the agent inter-dependencies: social norms, roles, authority relations and
the semantics of agent communication [5,23]. Conceptually, commitments are ori-
ented responsibilities contracted by a debtor towards a creditor1. One can dis-
tinguish action commitments from propositional commitments [29]. Propositional
1 Social commitments share a great deal with the notion of directed obligation as de-

fined in deontic logic and as also used by some researchers in the context of agent
communication.

116 E. Mart́ınez, I. Kwiatkowski, and P. Pasquier

commitments entail complications and for that reason, following a number of other
researchers [5,11,10], we will only consider action commitments in the rest of this
paper. That is, commitments where a debtor is committed towards a creditor to
bring about the effects of some atomic action. We adopt the model of Pasquier et
al. [19] in which the dynamics of social commitments is formalized as a finite state
machine (FSM). Figure 1 illustrates the different ways s-commitments can be ma-
nipulated. Note that update and delegation will not be considered in the rest of
this paper.

Active
(CoS can be met)

Inactive

Fulfilled
(CoS have been met)

Violated
(CoS cannot be met)

Accepted Rejected

4

3
6

2

1

1

2

3

4

6

Activates another
commitment

Creation

Cancelation

Violation

Fulfillment

Update / delegation

C(X,Y, t, p, Sx, Sy)

Cancelled7

5

5 Discharge of a violated commitment

7 Discharge of a fulfilled commitment

Fig. 1. Social commitment finite state transition machine

Definition 3. (Social Commitment Schema) A social commitment
schema is represented as a unique rule of the form:

¯scs = φ⇒ C(rx, ry, α, td,Srx ,Sry) (1)

where:

– The antecedent φ is a formula representing any general trigger condition, i.e.
a primitive action, an exogenous action, or any other complex condition2;

– The consequent C(rx, ry, α, td, Srx , Sry) is a predicate formula; representing
the fact that debtor rx is committed towards creditor ry to achieve the effects
of action α within td > 0 time steps of the creation time (td ≥ Δα) –under
the sanctions sets Srx and Sry , which specify the different sanctions that will
be applied to rx and ry according to the states and transitions applicable to
this commitment; and

– α = 〈α(x), Δα〉.

2 For now we restrict the antecedent formula φ to be either a primitive or exogenous
event.

Towards a Model of Social Coherence in Multi-agent Organizations 117

Note that, action commitment schema (1) can only be valid, if its total duration
time td is at least as long as the preparation time (i.e. Δα) of the atomic action
α. In this paper, we only consider action commitments involving atomic actions.
We can look at action commitment schemes as abstract place holders describing
generic oriented responsibilities contracted by a debtor towards a creditor. Social
commitment schemes are ultimately instantiated by agents.

Definition 4. (Instantiated Social Commitment)
Given a social commitment schema ¯scs as defined in Formula (1) where the
trigger condition φ is satisfied, an instantiation of ¯scs is represented as a
unique grounded predicate formula of the form:

isc = C(agi : rx, agj : ry, α, [ts, tf],Sagi
,Sagj

) (2)

where debtor agent agi (resp. creditor agent agj) enacts role rx (resp. role ry).
Formula (2) results from:

– Removing the (satisfied) antecedent φ from Formula (1); and
– Replacing parameter td from Formula (1) with interval [ts, tf], where: ts

represents the creation time when φ occurs and schema ¯scs gets instantiated;
and tf represents the instantiated commitment’s deadline (tf = ts + td).

Note that both schemes and instantiated action commitments must be dis-
tinctly identified in the system. Accepted action commitments take the form
of a grounded predicate formula: C(agi : rx, agj : ry , α, [ts, tf],Sagi

,Sagj
). Re-

jected commitments, meaning that debtor agi is not committed towards cred-
itor agj to achieve the effects of action α, take the form ¬C(agi : rx, agj :
ry, α, [ts, tf],Sagi

,Sagj
). Our model also accounts for time interval overlap be-

tween instantiated social commitments.

Definition 5. (Disjoint & Overlapping Commitments) Given two dis-
tinct instances of social commitments

isc1 = C(agi : rx, agj : ry, α, [ts1 , tf1],Sagi
,Sagj

)

isc2 = C(agi : rp, agk : rq, β, [ts2 , tf2],Sagi
,Sagk

)
(3)

where: tf1 < ts2 (resp. tf2 < ts1); we use the notation isc1 ≺ isc2 (resp. isc2 ≺
isc1) to represent disjoint time intervals between isc1 and isc2, where isc1 (resp.
isc2) temporally precedes isc2 (resp. isc1). Otherwise, we use the notation isc1 �
isc2 (resp. isc2 � isc1) to represent a time interval overlap between isc1 and
isc2.

Active social commitments raise action expectations, and the enforcement
of social commitments can take place through various social control mecha-
nisms instead of through assumptions of sincerity and cooperativeness [19]. Social
commitments, when modelled with their enforcement mechanism [19], are not
necessarily sincere and do not require the agents to be cooperative. From this
perspective, social commitments serve to coordinate the agents whether or not
they are cooperative and whether or not they are sincere.

118 E. Mart́ınez, I. Kwiatkowski, and P. Pasquier

2.3 Social Entities

In this paper, we only consider three types of social entities: agents, social roles,
and social organizations. While numerous refinements are possible, we take a
minimalist approach to define these entities. Formally:

Definition 6. (Social Entity) Given the non-empty set SE = Ag∪Role∪Org,
a social entity e is represented as e ∈ SE where:

– Ag, Role, Org are sets that stand for all the agents, social roles, and orga-
nizations respectively; and

– Ag ∩Role = ∅, Ag ∩Org = ∅, Role ∩Org = ∅.

Definition 7. (Organization) An organization is represented as a tuple o =
〈Ago, Roleo, ρo〉 where:

– Ago is the non-empty set of agents that belongs to organization o;
– Roleo is the non-empty set of social roles relevant to the organization; and
– ρo is a binary relation (or enactment function) that assigns to each agent

that belongs to organization o, one or several roles from Roleo, noted ρo :
Ago −→ Roleo

n (1 ≤ n ≤ |Roleo|), s.t. ∀ag ∈ Ago ρo(ag) �= ∅.

Definition 8. (Social Role) A social role is represented as a tuple r =
〈Xr,SCommr〉 where:

– Xr is the non-empty set of primitive actions that define the functions of role
r ; and

– SCommr is the non-empty set of s-commitment schemes specifying the inter-
dependencies between role r and every other debtor or creditor.

Definition 9. (Agent) An agent is represented as a tuple ag = 〈Roleag, κag〉
where:

– Roleag is the non-empty set of social roles agent ag is assigned to; and
– κag is a binary relation that assigns a probabilistic reliability value to each

primitive action αi ∈ Xag within the capabilities of agent ag, capturing the
probability of agent ag succeeding at performing primitive action αi, noted
κag : Xag −→ [0, 1], with Xag =

⋃
{Xrj | 〈Xrj ,SCommrj 〉 ∈ Roleag}.

Organizations and roles are abstract constructs enacted by actual agents. The
capabilities of an agent are determined by all the primitive actions which define
the functions of each role the agent is assigned to. For example, besides being a
cook within organization Ω, an agent ag could also play the role of a volunteer
firefighter within a different organization. In such a case, the individual capabil-
ities of the agent ag will clearly span beyond the functions determined by the
scope of his/her role within organization Ω.

There might be instances where the same agent plays several roles within
an organization. There might be other instances where several agents play the

Towards a Model of Social Coherence in Multi-agent Organizations 119

same role within an organization. In the latter case, we follow a fair allocation
principle so that (on average) all agents have a similar chance to enact the same
role they were assigned to. In our implementation of the model, the Agent Al-
location Manager (AAM) module handles the system-wide allocation of agents.
It is actually implemented as a wrapper to the Mersenne Twister (MT19937
implementation) pseudo-random number generator, which provides fast gener-
ation of high-quality pseudo-random numbers. For each role r the AAM keeps
track of which agents are available (resp. unavailable). When instantiating a s-
commitment, the AAM will randomly pick an agent from the pool of available
agents enacting role r until all agents have been allocated a s-commitment and
the pool is empty. Then, the AAM ’replenishes’ the pool by flagging all agents
enacting role r as available and repeats the same process again.

3 Social Control Mechanisms

Theories of social control [15,12] focus on the strategies and techniques that
help to regulate agent behaviour, and lead to conformity and compliance with
the rules of society (at both the macro and the micro level). In the remainder
of this section, we detail the main elements used in the enforcement of social
commitments: sanctions, which are considered in their general sense of positive
or negative incentives.

Most s-commitment-based approaches assume that the agents will respect
their social commitments (thus applying regimentation). This assumption is un-
realistic since unintended commitment violation is likely to occur and unilat-
eral commitment cancellation as well as commitment modification are desirable.
Intuitively, sanctions should meet the following base criteria. Violation and can-
cellation are either associated with (possibly) negative sanctions, fulfilment is as-
sociated with a (possibly) positive sanction and violation carries either a harsher
or similar sanction than cancellation.

In previous work [19], we have proposed an ontology of sanction types and
punishment policies. Here we will only present the basic mechanism by which
the enforcement of s-commitment is ensured in our model of social coherence.
A sanction policy determines the type of sanctions (and their magnitude) that
are assigned to social commitments at creation time. For simplicity, we assume
that sanctions are not delayed through time and are applied at the time of oc-
currence as specified in the sanction policy. That is, we rely on a strict liability
principle where all violations in the system are assumed to be detected and dealt
with.

Definition 10. (Organizational Sanction Policy) Given the non-empty set
SCommo of all social commitment schemes relevant to organization o; and the
set T of all the transitions applicable to s-commitments. For every schema ¯scs ∈
SCommo of the form ¯scs = φ⇒ C(rx, ry, α, td,Srx ,Sry), we specify the sanction
sets Srx = {sfrx , scrx

, svrx
}, and Sry = {scry

} using the following function:

120 E. Mart́ınez, I. Kwiatkowski, and P. Pasquier

σo(¯scs, z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sfrx

if z = ⑦, // discharge of fulfilment
svrx

if z = ⑤, // discharge of violation,
scrx

if z = ②, // cancellation by debtor,
scry

if z = ②, // cancellation by creditor
nil if z /∈ {②, ⑤, ⑦}

(4)

where:
– z ∈ T is the transition consumed in the FSM from Figure (1), with σsc :

T −→ [−1, 1];
– sfrx ∈ [0, 1] represents the sanction value applied to debtor rx when fulfilling

commitment ¯scs;
– svrx

∈ [−1, 0] represents the sanction value applied to debtor rx when violat-
ing commitment ¯scs;

– scrx
∈ [−1, 0] represents the sanction value applied to debtor rx when can-

celling commitment ¯scs; and
– scry

∈ [−1, 0] represents the sanction value applied to creditor ry when can-
celling commitment ¯scs.

4 Social Coherence

In cognitive sciences and social psychology most cognitive theories appeal to a
homeostatic principle which puts coherence as the main organizing mechanism:
the individual is more satisfied with coherence than with incoherence. Our main con-
tribution is applying a model of agent rationality, based on the unification of the
cognitive dissonance [9] and cognitive coherence [24] theories, to multi-agent orga-
nizations. In this section, we extend previous work on cognitive coherence [17,19]
by showing how to use the coherence principle as the driving force that makes so-
cial behaviour emerge from the local cognitive coherence of interacting agents. For
simplicity, s-commitments are the only type of cognition considered by agents.

4.1 Formal Characterization of Social Coherence

We present a constraint satisfaction based model of social coherence resulting in
a symbolic-connexionist hybrid formalism. In our approach, the cognitions of a
social entity are represented through the notion of elements (i.e. instantiated s-
commitments). We denote E the set of all elements. Elements are divided in two
sets: the setA of accepted elements and the setR of rejected elements. We adopt a
closed-world assumption which states that every non-explicitly accepted element
is rejected. Since not all s-commitments are equally modifiable, a resistance to
change is associated to each element. Formally:

Definition 11. (Resistance to Change) We specify the resistance to
change of cancelling an accepted element (i.e. instantiated s-commitment)
through the function:

Resc : A −→ R ≡ σ(x, z = ②) (x ∈ A) (5)
where: A is the set of all accepted instantiated s-commitments, and σ is the
sanction policy.

Towards a Model of Social Coherence in Multi-agent Organizations 121

Note that, we equate the resistance to change with the penalty corresponding
to the cancellation of an instantiated s-commitment as specified in the sanction
policy (Formula (4)). The higher the punishment for cancelling a s-commitment,
the higher the resistance to change will be.

S-commitments can be related or unrelated. When they are related, positive
compatibility relations like facilitation and entailment are represented as positive
constraints. Negative incompatibility relations like mutual exclusion (e.g. critical
time overlap), hindering, and disabling are represented as negative constraints.
We use C+ (resp. C−) to denote the set of positive (resp. negative) constraints and
C = C+∪C− to refer to the set of all constraints. For each of these constraints, a
weight reflecting the importance degree for the underlying relation is attributed
(our constraint generation mechanism is described in Section 4.2). Those weights
can be accessed through the function Weight : C −→ R. Constraints can be
satisfied or not.

Definition 12. (Constraint Satisfaction) A positive constraint is satisfied
if and only if the two elements that it binds are both accepted or both rejected,
noted Sat+(x, y) ≡ (x, y) ∈ C+ ∧ [(x ∈ A ∧ y ∈ A) ∨ (x ∈ R ∧ y ∈ R)]. On the
contrary, a negative constraint is satisfied if and only if one of the two elements
that it binds is accepted and the other one rejected, noted Sat−(x, y) ≡ (x, y) ∈
C− ∧ [(x ∈ A ∧ y ∈ R) ∨ (x ∈ R ∧ y ∈ A)]. Satisfied constraints within a set of
elements E are accessed through the function:

Sat : E ⊆ E −→
{

(x, y) | x, y ∈ E ∧
(Sat+(x, y) ∨ Sat−(x, y))

}
(6)

In that context, two elements are said to be coherent (resp. incoherent) if and
only if they are connected by a relation to which a satisfied (resp. non-satisfied)
constraint corresponds. The main interest of this type of modelling is to al-
low defining a metric of cognitive coherence that permits the reification of the
coherence principle in a computational calculus.

Given a partition of elements among A and R, one can measure the coherence
degree of a non-empty set of elements E . We use Con() to denote the function
that gives the constraints associated with a set of elements E . Con : E ⊆ E −→
{(x, y) | x, y ∈ E , (x, y) ∈ C}.

Definition 13. (Coherence Degree) The coherence degree C(E), of a non-
empty set of elements, E is obtained by adding the weights of constraints linking
elements of E which are satisfied divided by the total weight of concerned con-
straints. Formally:

C(E) =

∑
(x,y)∈Sat(E) Weight(x, y)∑
(x,y)∈Con(E) Weight(x, y)

(7)

Note that C(E) ∈ [0, 1] since Sat(E) ⊆ Con(E). The general social coherence
problem is then:

122 E. Mart́ınez, I. Kwiatkowski, and P. Pasquier

Definition 14. (Coherence Problem) The general coherence problem is to
find a partition of the set of elements E ⊆ E (i.e. instantiated s-commitments)
into the set of accepted elements A and the set of rejected elements R, such that,
it maximizes the coherence degree C(E) of the set of elements E.
The coherence problem is a constraint optimization problem shown to be NP-
complete [25]. The state of an agent can be defined as follows:

Definition 15. (Agent’s State) An agent’s state is characterized by a tuple
W = 〈Agenda, C+, C−, A, R〉, where:

– Agenda is a set of elements that stand for the agent’s social agenda, that
stores all the instantiated social commitments from which the agent is either
the debtor or the creditor;

– C+ (resp. C−) is a set of non-ordered positive (resp. negative) binary con-
straints over Agenda such that ∀(x, y) ∈ C+ ∪ C−, x �= y;

– A is the set of accepted elements and R the set of rejected elements and
A ∩R = ∅ and A ∪R = Agenda.

For now, s-commitments are the only type of cognition considered by agents.
More specifically, active s-commitments are treated as public cognitions because
they raise shared action expectations between debtors and creditors. However,
the state of an agent can be extended to accommodate other types of (private)
cognitions e.g. perceptions, believes, intentions –as shown in previous work [18].
Finally, the overall degree of social coherence of an organization can be formally
defined as follows:

Definition 16. (Organization’s Social Coherence)
The degree of social coherence of an organization o is calculated over the set
of elements Eint ∪ Eext ⊆ E, where:

– Eint is the set of instantiated s-commitments where both the debtor and the
creditor are members of organization o; and

– Eext is the set of instantiated s-commitments where either the debtor or the
creditor (XOR) is member of organization o.

4.2 Constraints Generation

Our social coherence model does provide a systematic mechanism for generating
the constraints between social commitments. Our approach draws from TÆMS
[8], a domain-independent framework for environment centred analysis and de-
sign of coordination mechanisms. This well studied framework [27,28,30], pro-
vides a comprehensive taxonomy of elements (i.e. tasks, methods, resources) and
their interrelationships for modelling open MAS. We adapted their taxonomy of
constraints between tasks and constraint precedence to generate constraints be-
tween action commitments, as follows:

1. Disabling. Given two disjoint instantiated social commitments isci ≺ iscj
involving distinct primitive actions αi, αj respectively, such that the ex-
ecution of αi disables αj , we say there is a negative disabling constraint
c−ij(isci, iscj, wD) ∈ C− between isci and iscj , with weight wD.

Towards a Model of Social Coherence in Multi-agent Organizations 123

Table 1. Weights and precedence order between hard and soft constraints

Hard Constraints Soft Constraints

Disabling wD = 3 Hindering wH = 1

Overlapping wO = 2.5 Facilitating wF = 1

Enabling wE = 2

2. Overlapping (duration). Given two overlapped instantiated social commit-
ments isci � iscj involving the same debtor, we say there is a negative
overlapping constraint c−ij(isci, iscj, wO) ∈ C− between isci and iscj , with
weight wO.

3. Enabling. Given two disjoint instantiated social commitments isci ≺ iscj
involving distinct primitive actions αi, αj respectively, such that the ex-
ecution of αi enables αj , we say there is a positive enabling constraint
c+
ij(isci, iscj, wE) ∈ C+ between isci and iscj , with weight wE .

4. Hindering. Given two disjoint instantiated social commitments isci ≺ iscj in-
volving distinct primitive actions αi, αj respectively, such that the execution
of αi somewhat diminishes the way (e.g. cost, duration) αj can get executed;
we say there is a negative hindering constraint c−ij(isci, iscj, wH) ∈ C− be-
tween isci and iscj , with weight wH .

5. Facilitating. Given two disjoint instantiated social commitments isci ≺ iscj
involving distinct primitive actions αi, αj respectively, such that the execu-
tion of αi somewhat improves the way (e.g. cost, duration) αj can get exe-
cuted; we say there is a positive facilitating constraint c+

ij(isci, iscj, wF) ∈
C+ between isci and iscj , with weight wF .

We assign weights to hard (i.e. disabling, overlapping, enabling) and soft (i.e.
hindering, facilitating) constraints to capture the precedence ordering between
constraints. (Table 1). The constraints are generated automatically at instanti-
ation time based on the relationships between actions (See Example 1, Formula
11). As in TÆMS hard constraints have a higher precedence than soft ones. Note
that, hard constraints have a strict ordering (i.e. wD > wO > wE) while soft
constraints have the same precedence (i.e. wH = wF).

4.3 Local Search Algorithm

Decision theories as well as micro-economical theories define utility as a property
of some valuation functions over some states of interest (e.g. consumption bun-
dles, outcome of actions, state of the world). A function is a utility function if
and only if it reflects the agent’s preferences over these states. In our model, ac-
cording to the afore-mentioned coherence principle, social coherence is preferred
to incoherence which allows us to define the following expected utility function:

Definition 17. (Expected Utility Function) The expected utility for an
agent to attempt to reach the state W ′ from the state W 3 (which only differs
by the change of state of one instantiated s-commitment x from accepted to
cancelled) is expressed as the difference between the incoherence before and after
3 See Definition 15.

124 E. Mart́ınez, I. Kwiatkowski, and P. Pasquier

this change plus the cost of the change (expressed in term of the resistance to
change of the modified s-commitment , that is in term of sanctions). Formally:

G(W ′) = (C(W ′)− C(W)) + Resc(x) (8)

Note that, our expected utility function does not include any probabilities. This
reflects the case of equi-probability in which the agent has no information about
the probabilities that an actual change of the social commitment will occur. For
now, agents do not take into account any uncertainty measures into their coher-
ence calculus. For example, they do not have knowledge of their own reliability,
nor about others’. Since sanction policies provide the social control mechanisms
to regulate the enforcement of social commitments; Formula (8) explicitly inte-
grates social control into the coherence calculus.

At each step of his reasoning, an agent will search for a cognition acceptance
state change which maximizes this expected utility. That is, the agent will at-
tempt to change an instantiated social commitment that maximizes the utility
value through dialogue. A recursive version of the local search algorithm the agents
use to maximize their social coherence is presented in Algorithm 1. While this is an
approximation algorithm for solving the coherence problem (Def. 14), it behaved
optimally on tested examples. Since it does not make any backtracking, the worst-
case complexity of this algorithm is polynomial: O(mn2), where n is the number
of elements considered and m the number of constraints that bind them4.

Algorithm 1. Recursive Local Search Algorithm
Function LocalSearch(W)

Require: W = 〈Agenda, C+, C−,A,R〉; // current agent state
Ensure: List: Change; // ordered list of elements to change

Local:
Float: G,Gval, C, Cval; // expected utility value of best move
Set: A′,R′;
Element: y, x;
State: J; // agent state buffer

1: for all x ∈ Agenda do
2: if x ∈ A then
3: A′ ← A − {x}; R′ ← R ∪ {x};
4: end if
5: W ′ ← 〈Agenda, C+, C−,A′,R′〉;

// expected utility of cancelling x
6: G ← C(W ′) − C(W) − Resc(x);
7: C ← C(W ′) − C(W); // pure coherence gain
8: if G > Gval then
9: J ← W ′; y ← x; Gval ← G; Cval ← C;

10: end if
11: end for
12: if (Cval < 0 and Gval < 0) then
13: return Change; // stop when coherence is not raising anymore and the expected utility is

not positive
14: else
15: Dialogue(y);
16: Update (Res(y)); Add (J, Change);
17: LocalSearch(J); // recursive call
18: end if

4 n coherence calculus (sum over m constraints) for each level and a maximum of n
levels to be searched.

Towards a Model of Social Coherence in Multi-agent Organizations 125

Note that, we have no need to encode agents’ behaviour as it automatically
emerges from the coherence calculus. Although the model provides a computa-
tional metric for measuring organizational coherence (Def. 16), the overall be-
haviour of the system is solely driven by the local (coherence-driven) behaviour
of agents. That is, macro-level social order is a coherence-driven emergent phe-
nomena resulting from the local cognitive coherence of interacting agents.

5 Example: Pizza Delivery Domain

Example 1. Lets consider a domain involving a pizza delivery organization Ω;
social roles {rk = cook}, {rdp = delivery-person}, {rmt = maintenance- techni-
cian}, and {rc = customer}; and agents {ag1, ag2, ag3, ag4, ag5} as follows:

– Primitive actions (Def. 1):

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = 〈order-pizza(agi : rc, pid), 1〉,
α2 = 〈cook-pizza(agi : rk, pid), 7〉,
α3 = 〈clean-oven(agi : rk, oid), 5〉,
α4 = 〈pack-pizza(agi : rdp, pid), 2〉,
α5 = 〈deliver-pizza(agi : rdp, c, pid), 20〉,
α6 = 〈pay-order(agi : rc, agj : rdp, price, pid), 1〉,
α7 = 〈repair-oven(agi : rmt, oid), 30〉,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(9)

– Exogenous events (Def. 2):

X̂ =

⎧⎨⎩
α̂8 = 〈break-ovenexog(oid), 200〉,
α̂9 = 〈make-oven-dirtyexog(oid), 100〉,
α̂10 = 〈become-hungryexog, 20〉

⎫⎬⎭ (10)

– Constraints between actions (Section 4.2):

Xcons =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

order-pizza enables cook-pizza,
break-ovenexog disables cook-pizza,
make-oven-dirtyexog hinders cook-pizza,
clean-oven disables cook-pizza,
repair-oven disables cook-pizza,
cook-pizza enables delivery-pizza,
delivery-pizza enables pay-order,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11)

– Organization (Def. 7):

Ω =

〈 {ag1, ag2, ag3, ag4},
{rk, rdp, rmt},
{(ag1, rk), (ag2, rdp),
(ag3, rdp), (ag4, rmt)}

〉
(12)

– Social roles (Def. 8):5

Roles =

⎧⎪⎪⎨⎪⎪⎩
rk = 〈{α2, α3}, {c̄1, c̄2, c̄5, c̄6}〉,
rdp = 〈{α4, α5}, {c̄1, c̄2, c̄3, c̄4, c̄6}〉,
rmt = 〈{α7}, {c̄4}〉,
rc = 〈{α1, α6}, {c̄3, c̄4}〉

⎫⎪⎪⎬⎪⎪⎭ (13)

5 Roles {rk = cook}, {rdp = delivery-person}, and {rmt = maintenance-technician}
are part of Ω, but role {rc = customer} is external to the organization.

126 E. Mart́ınez, I. Kwiatkowski, and P. Pasquier

– Agents (Def. 9):

Ag =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ag1 = 〈{rk}, {(α2, 1), (α3, 1)}〉,
ag2 = 〈{rdp}, {(α4, 1), (α5, 1)}〉,
ag3 = 〈{rdp}, {(α4, 1), (α5, 1)}〉,
ag4 = 〈{rmt}, {(α7, 1)}〉,
ag5 = 〈{rc}, {(α1, 1), (α6, 1)}〉

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (14)

– Social commitment schemes (Def. 3):

SComm =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c̄1 = α1 ⇒ C(rk, rdp, α2, 8, [0, 0, 0], [0])
c̄2 = α2 ⇒ C(rdp, rk, α4, 3, [0, 0, 0], [0])
c̄3 = α4 ⇒ C(rdp, rc, α5, 21, [0, 0, 0], [0])
c̄4 = α5 ⇒ C(rc, rdp, α6, 2, [0, 0, 0], [0])
c̄5 = α̂8 ⇒ C(rmt, rk, α7, 31, [0, 0, 0], [0])
c̄6 = α̂9 ⇒ C(rk, rmt, α3, 6, [0, 0, 0], [0])

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(15)

This example comprises 1 cook agent (ag1), 2 delivery-person agents (ag2, ag3), 1
maintenance-technician agent (ag4), and 1 customer agent (ag5). Note that, the
social commitment schemes in Formula (15) implicitely define the following pizza
delivery workflow: order-pizza→ cook-pizza→ pack-pizza→ deliver-pizza
→ pay-order; which is initiated when exogenous event become-hungryexog

occurs, making the customer agent perform the action order-pizza.

6 Initial Validation

A SC-sim simulator has been implemented as a Java applet, which provides
some flexibility in terms of deployment and facilitates sharing results with the
research community. To illustrate the use of the model and the simulator, we
introduce a simple experiment involving two sanctions policies :

– SPol ∅. Sd = {0, 0, 0}, and Sc = {0}. Debtors receive no rewards. Both
debtors and creditors have no penalties. This policy entails no social control;
and

– SPol 1 . Sd = {0,−1,−1}, and Sc = {−1}. Debtors receive no rewards and
high violation penalties. Both debtors and creditors have high cancellation
penalties.

Experiment. We ran the experiment on the pizza delivery domain presented in
Example 1. We varied the periodicity (Def. 2) of the exogenous event become-
hungryexog (starting from 80 time steps, down to 40, 20, 10, 5, 2, and 1 time
steps). As a result, the customer agent starts placing orders more frequently.
Note that we assume neither agents, nor actions can fail. We measured the
overall efficiency (i.e. percentage of s-commitments fulfilled) of the system. For
each parametrization, we ran 15 simulations of 750 time steps each and computed
the standard sample mean. Figure 2 presents the results.

Observation 1. As expected, the efficiency of the organization degraded from
nearly optimal as the frequency of orders and the corresponding level of activity

Towards a Model of Social Coherence in Multi-agent Organizations 127

(i.e. number of s-commitments per agent per time step, not shown here) was
increased.

Observation 2. We can observe drastic differences between the evaluated poli-
cies. These two sanction policies had a distinct effect on the performance of the
system. Under policy SPol 1 the organization was more efficient than without
having any social control (i.e., SPol ∅).
Observation 3. Desirable (sometimes nearly optimal) agent behaviour re-
sults from local coherence maximization, without explicitly encoding agents be-
haviour. More importantly, macro-level social coherence does emerge from local
coherence maximization.

Although this paper focuses on presenting the model, we think these experi-
mental results are encouraging as they provide some preliminary validation. Of
course, there is still much work to be done in terms of running more experi-
ments, analyzing results and evaluating the scalability of the model. Our work
takes on the problem of modelling desirable and (relatively) predictable emer-
gent social behaviour from the local (coherence-driven) actions of the agents [6].
Observation 3 provides some preliminary evidence to support the suitability of
our model for running social simulations, where complex emergent social pat-
terns can be obtained and reproduced from the dynamics of local interactions
among agents. There is complexity happening that cannot be fully explained
analytically, thus justifying an empirical simulation-based approach. Similarly,
Observation 2 provides some evidence to support the effectiveness of integrat-
ing social control mechanisms (for the enforcement of s-commitments), into the
coherence calculus. Note that, when agents have neither positive, nor negative
incentives their local coherence-driven deliberation might eventually lead them
to unilaterally cancelling, or even violating social commitments as there are no
consequences. Some authors have suggested [6] that social cooperation does not
necessarily require an agent’s understanding, agreement, nor even awareness.
Our proposal aligns with this view, and Observation 2 shows that we are able
to re-produce desirable cooperation-like behaviour, through the implementation
of an appropriate sanction policy (e.g., SPol 1).

7 Discussion and Related Work

There have been several approaches [5,23,19,2] to formalizing social commit-
ments. The proposal of Carabelea and Boissier [2] relies on social commitments
for coordinating agents within the context of organizational interactions. Like
us, they do define social entities and organizational structures entirely based on
social commitments. However, in our proposal all the dynamics of social com-
mitments are captured by a generic state-transition model which is associated
with social control mechanisms for the enforcement of social commitments. In
addition, we choose not to explicitly specify authority relations between roles. In-
stead, we capture them as implicitly resulting from social commitments schema
associated with roles. Thus, we can get a more compact representation without
compromising expressiveness.

128 E. Mart́ınez, I. Kwiatkowski, and P. Pasquier

Fig. 2. Experimental Results (Efficiency %)

One other coherence-based framework inspired by early work on cognitive
coherence in MAS [17] has been proposed by Joseph et al. [21,22]. Their frame-
work builds on the BDI model of agency and the coherence theory [24]. Their
approach, is also based on a coherence maximization model of agent rationality
implemented as a constraint satisfaction problem. However, their proposal sub-
stantially differs from ours as (i) their main motivation seems to be the study of
the interactions between the agent’s internal cognitions (BDI) and some social
aspects of MAS such as: norm evaluation [22], and the behaviour of institu-
tional agents [21]; and (ii) their approach uses coherence graphs to represent
each BDI modality resulting in a more complex model that has not been val-
idated nor implemented and thus does not allow to derive new knowledge. In
contrast, we are interested in modelling and evaluating the general dynamics of
social systems. We claim that our model not only is more compact and decreases
the computational overhead incurred when calculating coherence, but also is ex-
pressive enough to represent complex social systems. Although, in this paper,
we do not consider social norms, we can certainly model them by representing
s-commitments from a role towards an organization6.

Other organizational approaches to social modelling have been reported in
the literature [20,26]. The former, is a knowledge-based approach to automated
organizational design, which enables efficient role selection to match organiza-
tional goals, as well as agent-to-role allocation. Like us, they define organizational
structures in terms of agents enacting roles in organizations. However, their fo-
cus is on designing effective organizations which can change forms depending of
varying performance requirements. Instead, our simulation framework focuses on
evaluating the emergent social dynamics and performance of multi-agent orga-
nizations from the local coherence-driven interactions among agents. The latter
proposal [26], presents an agent-oriented language (endowed with an operational
semantics) for developing multi-agent organizations. Organizations are defined
in terms of roles, norms, and sanctions. Although structurally close from an ab-
stract organizational standpoint; our models also differ as theirs specify roles in
terms of the same mental attitudes attributed to BDI agents. Instead, we define
roles in terms of capabilities which can be enacted by agents. Moreover, the state
of a role makes no reference to mental attitudes.

6 An institution can be seen as a particular type of organization.

Towards a Model of Social Coherence in Multi-agent Organizations 129

8 Conclusions and Future Work

In this paper, we presented a simple operational model capturing some of the
dynamics of social systems. Our work advances the state of the art by proposing
a unified yet computational view of some of the social aspects of multi-agent
organizations. More specifically, our proposal relies on applying a local coher-
ence maximization model of agent rationality to multi-agent organizations. In
previous work [17], we proposed a constraint satisfaction-based model of cogni-
tive coherence within the context of agent communication pragmatics. Here, we
built on this work and extended it to consider social coherence. We introduced
the notion of local cognitive coherence as the main social organizing principle in
MAS. Moreover, our model relies on the notion of social commitment to repre-
sent all the inter-dependencies between social entities. Together with the notion
of sanction policy, social coherence reify the notion of social control. In our
model, social control is actually integrated into the coherence calculus (Def. 17).
In addition, sanctions are embedded into the life-cycle of s-commitments. Lo-
cal coherence maximization is the driving force that organizes agents’ behaviour
and from which social coherence emerges. For now, agents only do constraint
optimization over the network of instantiated s-commitment stored in their in-
dividual agendas. However, our model could also accommodate other type of
cognitions (and constraints between them) beside s-commitments e.g. percep-
tions, believes, and intentions. Finally, we illustrated our model and simulator
by running a simple experiment to investigate the effects sanction-based social
control mechanisms (reified in the form of two different sanction policies) on a
sample domain.

As future work, we will refine our model using an action language such as
event calculus [14]. We want to evaluate the benefits of introducing a more com-
prehensive treatment of time, as well as reasoning about actions. We also plan to
address the issue of handling complex actions. Another immediate extension to
our model will be the introduction of uncertainty reasoning into the coherence
calculus. For now, agents do not take into account any uncertainty measures.
Since both actions and agents can fail (as reflected by the reliability probability
value in Def. 9), agents should be able to incorporate these information into their
expected utility calculus. Agents with different levels of knowledge should also
be modelled, such as: agents with no knowledge, with partial knowledge, or with
complete/shared knowledge. Furthermore, various machine learning mechanisms
would allow agents to progressively learn these probabilities. In addition, uncer-
tainty measures such as an agent’s reliability could be used to compute dynamic
weights of constraints between s-commitments. This would allow different agents
to generate similar types of constraints with different weights.

Finally, we want to run more experiments and evaluate the scalability of our
model. For instance, we should model social domains with multiple organiza-
tions and greater number of agents, where agents can play several roles possibly
in different organizations. We also want to investigate how our coherence-based
approach might be used to evaluate the functionality and behaviour of typical
organizational structures reported in the literature (e.g., hierarchies, holarchies,

130 E. Mart́ınez, I. Kwiatkowski, and P. Pasquier

societies, federations [13]). Furthermore, since no single organizational design is
suitable for all domain applications we want to cross-validate our model by run-
ning simulations involving different organizational structures. Last but not least,
we want to continue studying the effects of other sanction-based social control
mechanisms. For instance, by introducing (i) dynamic sanctions which increase
over time, or increase as the number of violations increases; and (ii) decommit-
ment sanctions specifying the penalty that either a debtor or creditor (or both)
have to the other party in case of unilateral decommitment. Furthermore, we
want to investigate how to design sanctions policies that bring desirable global
properties into the system. In particular, determining which sanction policy is
the optimal one for a particular system.

Acknowledgments

The authors would like to thank Marek Hatala and the anonymous reviewers for
their useful comments.

References

1. Bandini, S., Manzoni, S., Vizzari, G.: Agent based modeling and simulation. In:
Meyers, R.A. (eds.) [16], pp. 184–197

2. Carabelea, C., Boissier, O.: Coordinanting Agents in Organizations Using Social
Commitments. In: Proceedings of the 1st International Workshop on Coordination
and Organisation, Namur (April 2005)

3. Carley, K.M., Gasser, L.: Computational Organization Theory. In: Multiagent Sys-
tems: A Modern Approach to Distributed Artificial Intelligence, pp. 299–330. MIT
Press, Cambridge (2001)

4. Carley, K.M., Prietula, M.J. (eds.): Computational Organization Theory. L. Erl-
baum Associates Inc., Hillsdale (1994)

5. Castelfranchi, C.: Commitments: from Individual Intentions to Groups and Orga-
nizations. In: Proceedings of ICMAS 1995, pp. 41–48 (June 1995)

6. Castelfranchi, C.: Engineering Social Order. In: Zhang, S.-W., Tolksdorf, R., Zam-
bonelli, F. (eds.) ESAW 2000. LNCS (LNAI), vol. 1972, pp. 1–18. Springer, Hei-
delberg (2000)

7. Davidsson, P., Verhagen, H.: Social phenomena simulation. In: Meyers, R.A. (eds.)
[16], pp. 8375–8379

8. Decker, K., Lesser, V.: Quantitative Modeling of Complex Environments. Inter-
national Journal of Intelligent Systems in Accounting, Finance and Management.
Special Issue on Mathematical and Computational Models and Characteristics of
Agent Behaviour 2, 215–234 (1993)

9. Festinger, L.: A Theory of Cognitive Dissonance. Stanford University Press, Stan-
ford (1957)

10. Flores, R.A., Kremer, R.C.: To Commit or Not to Commit: Modeling Agent Con-
versations for Action. Computational Intelligence 18(2), 120–173 (2002)

11. Fornara, N., Colombetti, C.: Operational Specification of a Commitment-Based
Agent Communication Language. In: Castelfranchi, C., Johnson, W.L. (eds.) Pro-
ceeding of the First Autonomous Agents and Multi-Agents Systems Joint Confer-
ence (AAMAS 2002), vol. 2, pp. 535–543. ACM Press, New York (2002)

Towards a Model of Social Coherence in Multi-agent Organizations 131

12. Hechter, M., Opp, K.D.: Introduction. Social Norms, pp. xi–xx (2001)
13. Horling, B., Lesser, V.: A Survey of Multi-Agent Organizational Paradigms. The

Knowledge Engineering Review 19(4), 281–316 (2005)
14. Kowalski, R.A., Sergot, M.: A Logic-Based Calculus of Events. New Generation

Computing 4, 67–95 (1986)
15. Martindale, D.: The Theory of Social Control. In: Social Control for the 1980s: A

Handbook for Order in a Democratic Society, pp. 46–58. Greenwood Press, New
York (1978)

16. Meyers, R.A. (ed.): Encyclopedia of Complexity and Systems Science. Springer,
Heidelberg (2009)

17. Pasquier, P., Chaib-draa, B.: The Cognitive Coherence Approach for Agent Com-
munication Pragmatics. In: Proceedings of The Second International Joint Confer-
ence on Autonomous Agent and Multi-Agents Sytems (AAMAS 2003), Melbourne,
pp. 544–552 (2003)

18. Pasquier, P., Dignum, F., Rahwan, I., Sonenberg, L.: Argumentation and Persua-
sion in the Cognitive Coherence Theory. In: Proceedings of the First International
Conference on Computational Model of Argumentation (COMMA 2006), Liver-
pool. Frontier in Artificial Intelligence. IOS Press, Amsterdam (2006)

19. Pasquier, P., Flores, R.A., Chaib-draa, B.: Modelling Flexible Social Commitments
and their Enforcement. In: Gleizes, M.-P., Zhang, S.-W., Zambonelli, F. (eds.)
ESAW 2004. LNCS (LNAI), vol. 3451, pp. 139–151. Springer, Heidelberg (2005)

20. Sims, M., Corkill, D., Lesser, V.: Automated Organization Design for Multi-agent
Systems. Autonomous Agents and Multi-Agent Systems 16(2), 151–185 (2008)

21. Sindhu, J., Sierra, C., Schorlemmer, M.: A Coherence Based Framework for Insti-
tutional Agents. In: Proceedings of the Fifth European Workshop on Multi-Agent
Systems (EUMAS 2007) (December 2007)

22. Sindhu, J., Sierra, C., Schorlemmer, M., Delunde, P.: Formalizing Deductive Co-
herence: An Application to Norm Evaluation. Logic Journal of the Interest Group
in Pure and Applied Logic (IGPL) (2008)

23. Singh, M.P.: An Ontology for Commitments in Multiagent Systems: Toward a
Unification of Normative Concepts. Artificial Intelligence and Law 7, 97–113 (1999)

24. Thagard, P.: Coherence in Thought and Action. MIT Press, Cambridge (2000)
25. Thagard, P., Verbeurgt, K.: Coherence as Constraint Satisfaction. Cognitive Sci-

ence 22, 1–24 (1998)
26. Tinnemeier, N., Dastani, M., Meyer, J.-J.: Roles and Norms for Programming

Agent Organizations. In: Proceedings of the 8th International Conference on Au-
tonomous Agents and Multiagent Systems, Richland, SC, pp. 121–128 (2009)

27. Vincent, R., Horling, B., Lesser, V.: Experiences in Simulating Multi-Agent Sys-
tems Using TÆMS. International Conference on Multi-Agent Systems, vol. 0,
pp. 04–55 (2000)

28. Wagner, T., Raja, A., Lesser, V.: Modeling Uncertainty and its Implications to
Sophisticated Control TÆMS Agents. Autonomous Agents and Multi-Agent Sys-
tems 13, 463 (2006)

29. Walton, D.N., Krabbe, E.: Commitment in Dialogue: Basic Concepts of Interper-
sonal Reasoning. Suny Press (1995)

30. Wu, J., Durfee, E.H.: Solving Large TÆMS Problems Efficiently by Selective
Exploration and Decomposition. In: Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2007,
pp. 56:1–56:8. ACM, New York (2007)

Shared Mental Models
A Conceptual Analysis

Catholijn M. Jonker1, M. Birna van Riemsdijk1, and Bas Vermeulen2

1 EEMCS, Delft University of Technology, Delft, The Netherlands
{m.b.vanriemsdijk,c.m.jonker}@tudelft.nl

2 ForceVision, Den Helder, The Netherlands
bas.vermeulen@forcevision.nl

Abstract. The notion of a shared mental model is well known in the literature
regarding team work among humans. It has been used to explain team function-
ing. The idea is that team performance improves if team members have a shared
understanding of the task that is to be performed and of the involved team work.
We maintain that the notion of shared mental model is not only highly relevant
in the context of human teams, but also for teams of agents and for human-agent
teams. However, before we can start investigating how to engineer agents on the
basis of the notion of shared mental model, we first have to get a better under-
standing of the notion, which is the aim of this paper. We do this by investigating
which concepts are relevant for shared mental models, and modeling how they
are related by means of UML. Through this, we obtain a mental model ontology.
Then, we formally define the notion of shared mental model and related notions.
We illustrate our definitions by means of an example.

1 Introduction

The notion of a shared mental model is well known in the literature regarding team work
among humans [6,3,22,21]. It has been used to explain team functioning. The idea is
that team performance improves if team members have a shared understanding of the
task that is to be performed and of the involved team work.

We maintain that shared mental model theory as developed in social psychology, can
be used as an inspiration for the development of techniques for improving team work in
(human-)agent teams. In recent years, several authors have made similar observations.
In particular, in [27] agents are implemented that use a shared mental model of the task
to be performed and the current role assignment to proactively communicate the infor-
mation other agents need. Also, [25] identify “creating shared understanding between
human and agent teammates” as the biggest challenge facing developers of human-
agent teams. Moreover, [20,19] identify common ground and mutual predictability as
important for effective coordination in human-agent teamwork.

In this paper, we aim to lay the foundations for research on using shared mental
model theory as inspiration for the engineering of agents capable of effective team-
work. We believe that when embarking on such an undertaking, it is important to get
a better understanding of the notion of shared mental model. In this paper, we do this
by investigating which concepts are relevant for shared mental models (Section 2), and

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 132–151, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Shared Mental Models 133

modeling how they are related by means of UML (Section 3). Through this, we obtain
a mental model ontology. Then, we formally define the notion of shared mental model
using several related notions (Section 4). We illustrate our definitions by means of an
example in Section 5 and discuss related work in Section 7.

2 Exploration of Concepts

This section discusses important concepts related to the notion of shared mental models.

2.1 Working in a Team

An abundance of literature has appeared on working in teams, both in social psychology
as well as in the area of multi-agent systems. It is beyond the scope of this paper to
provide an overview. Rather, we discuss briefly how work on shared mental models
distinguishes aspects of teamwork. Since we are interested in shared mental models,
we take their perspective on teamwork for the analyses in this paper. We do not suggest
that it is the only (right) way to view teamwork, but it suffices for the purpose of this
paper.

An important distinction that has been made in the literature on shared mental mod-
els, is the distinction between task work and team work (see, e.g., [6,22]). Task work
concerns the task or job that the team is to perform, while team work concerns what has
to be done only because the task is performed by a team instead of an individual agent.
In particular, task work mental models concern the equipment (equipment functioning
and likely failures) and the task (task procedures and likely contingencies). Team work
mental models concern team interaction (roles and responsibilities of team members,
interaction patterns, and information flow), and team members (knowledge, skills, and
preferences of teammates).

2.2 Mental Models

In order to be able to interact with the world, humans must have some internal repre-
sentation of the world. The notion of mental model has been introduced to refer to these
representations. A mental model can consist of knowledge about a physical system that
should be understood or controlled, such as a heat exchanger or an interactive device
[11]. The knowledge can concern, e.g., the structure and overall behavior of the sys-
tem, and the disturbances that act on the system and how these affect the system. Such
mental models allow humans to interact successfully with the system.

Different definitions of mental models have been proposed in the literature (see,
e.g., [9] for a discussion in the context of system dynamics). In this paper, we use the
following often cited, functional definition as proposed in [24]:

Mental models are the mechanisms whereby humans are able to generate de-
scriptions of system purpose and form, explanations of system functioning and
observed system states, and predictions of future system states.

134 C.M. Jonker, M.B. van Riemsdijk, and B. Vermeulen

Central to this definition is that mental models concern a system and that they serve
the purpose of describing, explaining, and predicting the behavior of the system.

Another important view of mental models was proposed in [17]. The idea proposed
there focuses on the way people reason. It is argued that when people reason, they do
not use formal rules of inference but rather think about the possibilities compatible with
the premises and with their general knowledge. In this paper, we use the definition of
[24] because as we will show, it is closely related to the definition of shared mental
model that we discuss in the next section.

2.3 Shared Mental Models

Mental models have not only been used to explain how humans interact with physical
systems that they have to understand and control, but they have also been used in the
context of team work [6,22]. There the system that mental models concern is the team.
The idea is that mental models help team members predict what their teammates are go-
ing to do and are going to need, and hence they facilitate coordinating actions between
teammates. In this way, mental models help explain team functioning.

Mental models have received a lot of attention in literature regarding team perfor-
mance. Several studies have shown a positive relation between team performance and
similarity between mental models of team members (see, e.g., [3,22,21]). That is, it is
important for team performance that team members have a shared understanding of the
team and the task that is to be performed, i.e., that team members have a shared mental
model. The concept of shared mental model is defined in [6] as:

knowledge structures held by members of a team that enable them to form
accurate explanations and expectations for the task, and, in turn, coordinate
their actions and adapt their behavior to demands of the task and other team
members.

Shared mental models thus help describe, explain and predict the behavior of the team,
which allows team members to coordinate and adapt to changes. In [6], it is argued that
shared mental model theory does not imply identical mental models, but “rather, the
crucial implication of shared mental model theory is that team members hold compati-
ble mental models that lead to common expectations for the task and team.”

In correspondence with the various aspects of teamwork as discussed above, it has
been argued that multiple different types of shared mental models are relevant for team
performance: shared mental models for task work (equipment model and task model)
and for team work (team interaction model and team member model) [6,22].

In this paper, we are interested in the notion of shared mental model both in humans
and in software agents, but at this general level of analysis we do not distinguish be-
tween the two. Therefore, from now on we use the term “agent” to refer to either a
human or a software agent.

3 Mental Model Ontology

We start our analysis of the notion of shared mental model by analyzing the notion
of mental model. We do this by investigating the relations between notions that are

Shared Mental Models 135

essential for defining this concept, and provide UML1 models describing these relations.
The UML models thus form a mental model ontology. This means that the models are
not meant as a design for an implementation. As such, attributes of and navigability
between concepts is not specified. For example, we model that a model concerns a
system by placing a relation between the concepts. But that does not mean that if one
would build an agent with a mental model of another agent, that the first would be able
to navigate to the contents of the mind of the other agent. We have devided the ontology
in three figures for reasons of space and clarity of presentation. We have not duplicated
all relations in all diagrams to reduce the complexity of the diagrams.

We use UML rather than (formal) ontology languages such as frames [23] or de-
scription logics [2], since it suffices for our purpose. We develop the ontology not for
doing sophisticated reasoning or as a design for a multi-agent system, but rather to get a
better understanding of the essential concepts that are involved and their relations. Also,
the developed ontologies are relatively manageable and do not rely on involved concept
definitions. We can work out more formal representions in the future when developing
techniques that allow agents to reason with mental models.

We present the UML models in three steps. First, since the concept of a mental model
refers to systems, we discuss the notion of system. Then, since shared mental models
are important in the context of teams, we show how a team can be defined as a system.
Following that, we introduce the notion of agent into the picture and show how the
notions of agent, system, and mental model are related.

In UML, classes (concepts) are denoted as rectangles. A number of relations can be
defined between concepts. The generalization relation is a relation between two con-
cepts that is denoted like an arrow. This relation represents a relationship between a
general class and a more specific class. Every instance of the specific class is also an
instance of the general class and inherits all features of the general class. A relation-
ship from a class A to class B with an open diamond at side one of the ends is called
a shared aggregate, defined here as a part-whole relation. The end of the association
with the diamond is the whole, the other side is the part. Because of the nature of this
relationship it cannot be used to form a cycle. A composite aggregation is drawn as an
association with a black diamond. The difference with a shared aggregation is that in a
composite aggregation, the whole is also responsible for the existence, persistence and
destruction of the parts. This means that a part in a composite aggregation can be related
to only one whole. Finally, a relationship between two concepts that is represented with
a normal line, an association, can be defined. The nature of this relationship is written
along the relationship. This can either be done by placing the name of the association in
the middle of the line or by placing a role name of a related concept near the concept.
The role name specifies the kind of role that the concept plays in the relation. Further,
numbers can be placed at the ends of the shared aggregation, composite aggregation
and associations. They indicate how many instances of the related concepts can be re-
lated in one instance of the relationship. Note that we have not duplicated all relations
and concepts in all figures. This is done to keep the figures of the separate parts of our
conceptualization clean.

1 http://www.omg.org/spec/UML/2.2/

http://www.omg.org/spec/UML/2.2/

136 C.M. Jonker, M.B. van Riemsdijk, and B. Vermeulen

3.1 System

The previous section shows that the concept of a mental model refers to systems. In
this section, we further analyze the notion of system in order to use it to define a team
as a system. For this purpose, the basic definition provided by Wikipedia2 suffices as
a point of departure: A system is a set of interacting or independent entities, real or
abstract, forming an integrated whole. This definition captures the basic ingredients of
the notion of system found in the literature (see, e.g., [10]), namely static structures
within the system as well as the dynamic interrelations between parts of the system.

Our conceptualization of systems is supported by the UML diagram in Figure 1.

Fig. 1. System

The upper-right corner of the diagram depicts that a system may be a composite, i.e.,
it may be composed of other systems. This modeling choice makes it easier to define in
the following section the notion of team as a system. In particular, the compositionality
of the concept system in terms of other systems makes the compositionality of mental

2 http://en.wikipedia.org/wiki/System

http://en.wikipedia.org/wiki/System

Shared Mental Models 137

models straightforward in the next sections. Regarding the definition, this part addresses
the sub-phrase that a system is a set of entities.

The system forms an integrated whole, according to the definition. Therefore, the
whole shows behavior. As we do not distinguish between natural or designed systems,
living or otherwise, we chose behavior to represent the dynamics of the system as a
whole. Note that we further distinguish between reasoning behavior and acting behav-
ior. Not all systems will show both forms of behavior. Acting behavior refers to either
actions or interactions. An action is a process that affects the environment of the sys-
tem and/or the composition of the system itself. Interaction is a process with which a
sub-system of the system (or the system as a whole) affects another sub-system of the
system. Communication is a special form of interaction, in which the effect of the inter-
action concerns the information state of the other element. Communication is a term we
restricted for the information-based interaction between two agents. The term reasoning
behavior is also reserved for agents. The concept “context” refers to both the environ-
ment of the system as well as the dynamics of the situation the system is in. The system
executes its actions in its context. Thus one context is related to multiple actions.

3.2 Team as a System

The notion of system is central to the definition of mental model. In the context of
shared mental models we are especially interested in a certain kind of system, namely
a team. According to the definition of system, a team can be viewed as a system: it
consists of a set of interacting team members, forming an integrated whole.

As noted above, several aspects are relevant for working in a team. We take as a basis
for our model the distinction made in [6,22]. As noted in Section 2.1, we by no means
claim that this is the only suitable definition of a team or that it captures all aspects. We
start from this research since it discusses teams in the context of shared mental models.
The most important realization for the sequel is that we define a team as a system and
that it has as a set of team members that are agents. Other aspects of the team definition
can be varied if nessecary.

The following aspects are distinguished: equipment and task (related to task work),
and team interaction and team members (related to team work). In our model, we in-
clude these four aspects of working in a team. However, we divide them not into team
work and task work, but rather into physical components and team activity, where team
members and equipment are physical components and task and team interaction are
team activities The reason for making this distinction is that we argue that physical
components can in turn be viewed as systems themselves, while team activities can-
not, as reflected by the link from physical components to system in Figure 2 below.
Moreover, we make another refinement and make a distinction between a task and task
execution. We argue that task execution is a team activity, even though a task might be
performed by only one team member. The task itself describes what should be executed.
The concept task is also linked to equipment, to express the equipment that should be
used for executing the task, and to team member, to describe which team members are
responsible for a certain task.

We link this conceptualization of the notion of team to the general notion of system
of Figure 1 by defining a team activity as a kind of acting behavior, and more specifi-

138 C.M. Jonker, M.B. van Riemsdijk, and B. Vermeulen

cally team interaction as a kind of interaction3. We see team interaction as interaction
induced by executing the team activity. Moreover, by defining that physical compo-
nents are systems, we can deduce from Figure 1 that they can have interactions with
each other. Moreover, by defining a team member as an agent, we can deduce from Fig-
ure 1 that team members can have reasoning behavior and that they can communicate.
The reasoning of a team is built up from the interaction between team members and the
individual reasoning of these team members during the interaction. A fully specified ex-
ample of two agents Arnie and Bernie that have to cooperate to solve an identification
task is provided in [18]. It contains examples of team reasoning.

These considerations are reflected in the UML model of Figure 2.

Fig. 2. Team

3 We could have distinguished “interaction” as a description of an activity from the “perfor-
mance of the interaction”, similarly to the distinction between task and task execution. This is
done in the case of task (execution) to be able to express that a team member is responsible for
a task, which when executed becomes a team activity. We omit this distinction for interaction
for reasons of simplicity.

Shared Mental Models 139

3.3 Mental Model

Now that we have conceptualized in some detail the notion of system and of a team as
a system, we are ready to zoom in on the notion of mental model.

As noted above, mental models are used by humans, i.e., humans have mental mod-
els. However, since in this paper we use the notion of agent as a generalization of human
and software agent, here we consider that agents have mental models. Moreover, a men-
tal model concerns a system. The basic structure of how mental models are related to
systems and agents is thus that an agent has mental models and a mental model concerns
a system.

However, we make several refinements to this basic view. First, we would like to
express where a mental model resides, namely in the mind of an agent. As such, men-
tal models can be contrasted with physical models. In order to do this, we introduce
the notion of a model, and define that physical models and mental model are kinds of
models. Both kinds of models can concern any type of system. A nice feature of this
distinction is that it allows us to easily express how the notion of extended mind [7] is
related. The notion of extended mind is being developed in research on philosophy of
mind, and the idea is that some objects in the external environment of an agent, such as
a diary to record a schedule of meetings or a shared display, are utilized by the mind
in such a way that the objects can be seen as extensions of the mind itself. The notion
is relevant to research on shared mental models because agents in a team may share an
extended mind, and through this obtain a shared mental model [3].

Another aspect that we add to the conceptualization, is the notion of goal to express
that a mental model is used by an agent for a certain purpose, expressed by the goal of
the model.

This is captured in the UML model of Figure 3.

Fig. 3. Mental Model

140 C.M. Jonker, M.B. van Riemsdijk, and B. Vermeulen

Given this conceptualization, we can express that an agent can have a mental model
of a team. An agent can have a mental model, since it has a mind and a mind can have
mental models. A mental model can concern a team, since a mental model is a model
and a model concerns a system, and a team is a kind of system. However, since team
interaction is not by itself a system (see previous subsection), our model does not allow
to express, for example, that the agent has a team interaction mental model. What our
conceptualization does allow to express, is that the team mental model has a part that
describes team interaction, since the team mental model concerns a team, and a team has
team interaction. According to our model, we thus cannot call this part a mental model.
However, we will for the sake of convenience refer to that part as a team interaction
model (and similarly for the other parts of a team mental model). This is in line with
[6,22], where the parts of a team mental model are called mental models themselves.
We have modelled the relation between team and team member as a normal association
instead of by an aggregation because modelling this relation as an aggregation would
mean that an agent’s mind is part of a team, which does not conform to intuition.

3.4 Accuracy of Models

In research on shared mental models, the relation of both accuracy4 and similarity of
mental models to team performance has been investigated [21]. As noted in [22], “sim-
ilarity does not equal quality - and teammates may share a common vision of their
situation yet be wrong about the circumstances that they are confronting”.

We suggest that the notions of accuracy and similarity not only have different mean-
ings, but play a different role in the conceptualization of shared mental models. That is,
the notion of accuracy of a mental model can be defined by comparing the mental model
against some standard or “correct” mental model, i.e., it does not (necessarily) involve
comparing mental models of team members. Depending on what one views as a correct
model one gets a different notion of accuracy. We have defined two such notions below.
The notion of similarity, on the other hand, does involve comparing mental models of
team members. Although both accuracy and similarity affect team performance [21],
we maintain that conceptually, only similarity is to be used for defining the notion of
shared mental model. We therefore discuss accuracy informally, and omit the formal-
izations. We discuss accuracy and similarity with respect to models in general, rather
than to only mental models.

We identify two kinds of accuracy, depending on what one takes to compare the
model with. The first is what we call system accuracy, which assumes that one has a
“bird’s eye view” of the system and can see all relevant aspects, including the mental
models of agents in the system. In general, this is only of theoretical relevance, since
one typically has limited access to the various parts of a system5. Another notion of ac-
curacy that is easier to operationalize, is expert accuracy. In expert accuracy, the idea is
to compare a model to an expert model (see e.g. [21] for an example of how to obtain an
expert model). Expert accuracy may be defined as the extent to which the model agrees

4 Here, accuracy is meant in the sense of “freedom from errors”, not in the sense of exactness.
5 In a multi-agent system where one has access to the environment and internal mental states of

all agents, one would be able to obtain all necessary information.

Shared Mental Models 141

(see Section 4.2) with the expert model. This then assumes that the expert has a correct
model. In research on shared mental models, this is the approach taken to determine
accuracy of mental models of team members [21]. That work also describes how this
can be operationalized. If the questions we pose to the model should result in a set of
answers, then the measures of precision, defined as the number of relevant documents
retrieved by a search divided by the total number of existing relevant documents, defined
as the number of relevant documents retrieved by a search divided by the total number
of existing relevant documents and recall from the field of information retrieval are
good ways to measure the accuracy of the answers [5]. However, in this paper we have
only considered questions with single answers.

4 Similarity of Models

As we suggested in the previous section, the essence of the concept of shared mental
model is the extent to which agents have similar mental models. The word “shared”
suggests full similarity, but this is typically not the case. Rather, we propose that mea-
sures of similarity should be used, which allow the investigation of when models are
similar enough for a good team performance, or, in general, good enough for achieving
certain goals. We introduce a formal framework in order to be able to express several
definitions of notions of similarity. We define sharedness in terms of those notions.

4.1 Formal Framework

The definitions of similarity are based on the concepts and their relations as discussed
above. The basic concept that we use in all definitions is model (Figure 3). We denote a
model typically as M . In this paper, we abstract from the knowledge representation lan-
guage used for representing the model. Depending on the context, different languages
may be chosen. For example, when investigating shared mental models in the context
of cognitive agent programming languages (see, e.g., [14]), the knowledge representa-
tion language of the respective language can be used. In that context, following Figure
3, the agent is programmed in an agent programming language, it has a mind which is
represented by the agent program, this mind can contain mental models which would
typically be represented in the so-called mental state of the agent, these mental models
concern systems, which can in particular be the team of which the agent is a part.

In order to define to what extent a model is similar to another model, we need to
express the content of the model. Depending on which system the model concerns,
the content may differ. In particular, in case of mental models concerning a team, the
content would represent information about the physical components and activity of the
team, which in turn consist of information about equipment and team members, and
about task execution and team interaction (Figure 2).

In order to compare models, one could (in principle) inspect the content of these
models and compare this content directly. However, this is not always practicable, in
particular when considering people: one cannot open up the mind of people to inspect
the content of their mental models. Moreover, not all content of a model is always
relevant. Depending on what one wants to use the model for, i.e., depending on the

142 C.M. Jonker, M.B. van Riemsdijk, and B. Vermeulen

goal for which the model is to be used (Figure 3), different parts of the model may
be relevant, or different levels of detail may be needed. For these reasons we propose
to use a set of questions Q that can be posed to the model in order to determine its
contents, thereby treating the model as a black box. For example, a mental model that is
to be used for weather predictions should be able to answer a question such as what the
weather will be tomorrow in a certain city. A physical model of our solar system should
be able to answer a question such as whether the Earth or Mars is closer to the sun.

Choosing an appropriate set of questions is critical for obtaining useful measures of
similarity. For example, posing questions about the solar system to a model for weather
predictions will not be useful for measuring the similarity of the weather prediction
model to another such model. Moreover, posing only questions about whether it will
rain to a weather prediction model, will not provide a useful measure of the weather
model’s similarity to another model in predicting the weather in general. If the model
concerns a team, the questions will have to concern the team’s physical components and
the team activity (Figure 2). With some mental flexibility one can use questions both
for mental as well as for physical models, as illustrated by the examples provided above
(cf. Figure 3).

Designing a set of questions is also done in research on shared mental models in
social psychology. In that work, researchers commonly assess mental models by pre-
senting respondents with a list of concepts and asking them to describe the strength of
relationships among the concepts [21,22]. These concepts are carefully chosen based
on, for example, interviews with domain experts. The operationalization of our defini-
tions thus requires methods and techniques to determine the appropriate sets of ques-
tions Q for the team tasks, respecting the characteristics of the domain/environment in
which the team has to function. The methods and techniques we consider important
are those for knowledge engineering and elicitation and should take into account social
theories about team building and team performance (as partly conceptualized in Figure
2). In the definitions that follow, we abstract from the content of models and assume a
set of relevant questions is given. A more thorough investigation of how to define the
set of questions is left for future work.

We write M � answer(a, q) to express that M answers a to question q. As usual, we
use |s | to denote the number of elements of a set s. If the model is represented using a
logical knowledge representation language, � can be taken to be the entailment relation
of the logic. If this is not the case, � should be interpreted more loosely.

4.2 Definitions

In the following, let M1 and M2 be models concerning the same system, and let Q
be the set of questions identified as relevant for the goal for which M1 and M2 are
to be used. Let T be a background theory used for interpreting answers. In particular,
equivalence is defined with respect to T . For example, the answers “1,00 meter” and
“100 centimeter” are equivalent with respect to the usual definitions of units of length.

The first definition of similarity that we provide, is what we call subject overlap.
Subject overlap provides a measure for the extent to which models provide answers to
the set of relevant questions Q. These answers may be different, but at least an answer
should be given. We assume that if the answer is not known, no answer is provided.

Shared Mental Models 143

For example, posing a question about the weather in a certain city to a model of the
solar system would typically not yield an answer. Also, we assume that answers are
individually consistent.

Definition 1 (subject overlap). Let the set of questions for which the models pro-
vide answers (not necessarily similar answers) be OverAns(M1, M2, Q) = {q ∈ Q |
∃a1, a2 : M1 � answer(a1, q) and M2 � answer(a2, q)}. Then, we define the level of
subject overlap between the model M1 and M2 with respect to set of questions Q as
SO(M1, M2, Q) =|OverAns(M1, M2, Q) | / |Q |.

Since the literature (see Section 2.3) says that shared mental model theory implies that
team members hold compatible mental models, we define a notion of compatibility
of models. It is defined as the extent to which models do not provide contradictory
answers.

Definition 2 (compatibility). Let the set of questions for which the models provide
incompatible answers be IncompAns(M1, M2, Q) = {q ∈ Q | ∃a1, a2 : M1 �
answer(a1, q) and M2 � answer(a2, q) and T, a1, a2 � ⊥}. Then, we define the level
of compatibility between the model M1 and M2 with respect to set of questions Q as:
C(M1, M2, Q) = 1− (|IncompAns(M1, M2, Q) | / |Q |).
Note that our definition of compatibility does not investigate more complex ways
in which the set so determined might lead to inconsistencies. Also note that non-
overlapping models are maximally compatible. This is due to the fact that we define
incompatibility based on inconsistent answers. If the models do not provide answers to
the same questions, they cannot contradict, and therefore they are compatible.

Next, we define agreement between models, which defines the extent to which mod-
els provide equivalent answers to questions.

Definition 3 (agreement). Let the set of questions for which the models agree
be AgrAns(M1, M2, Q) = {q ∈ Q | ∃a1, a2 : M1 �
answer(a1, q) and M2 � answer(a2, q) and a1 ≡T a2}. Then, we define the level of
agreement between the model M1 and M2 with respect to set of questions Q as:
A(M1, M2, Q) =|AgrAns(M1, M2, Q) | / |Q |.
These measures of similarity are related in the following way.

Proposition 1 (relations between measures). We always have that A(M1, M2, Q) ≤
SO(M1, M2, Q). Moreover, if SO(M1, M2, Q) = 1, we have A(M1, M2, Q) ≤
C(M1, M2, Q).

Proof. The first part follows from the fact that AgrAns(M1, M2, Q) ⊆
OverAns(M1, M2, Q). The second part follows from the fact that if SO(M1, M2, Q) =
1, all questions are answered by both models. Then we have AgrAns(M1, M2, Q) ⊆
(Q \ IncompAns(M1, M2, Q)), using the assumption that answers are consistent.

Next we define what a shared mental model is in terms of the most important character-
istics. The model is a mental model, thus it must be in the mind of an agent. Sharedness
is defined with respect to a relevant set of questions Q. Furthermore, we have to indicate
by which agents the model is shared. The measure of sharedness is defined in terms of
the aspects of similarity as specified above.

144 C.M. Jonker, M.B. van Riemsdijk, and B. Vermeulen

Definition 4 (shared mental model). A model M is a mental model that is shared to
the extent θ by agents A1 and A2 with respect to a set of questions Q iff there is a mental
model M1 of A1 and M2 of A2, both with respect to Q, such that

1. SO(M, M1, Q) = 1, and SO(M, M2, Q) = 1
2. A(M, M1, Q) ≥ θ, and A(M, M2, Q) ≥ θ

The definition is easily extendable for handling an arbitrary number n of agents. The
definition allows for two important ways to tune it to various situations: varying θ gives
a measure of sharedness, varying Q allows to adapt to a specific usage of the model. For
example, for some teamwork it is not necessary for every team member to know exactly
who does what, as long as each team member knows his own task. This is possible if the
amount of interdependencies between sub-tasks is relatively low. For other teamwork
in which the tasks are highly interdependent and the dynamics is high, e.g., soccer, it
might be fundamental to understand exactly what the others are doing and what you
can expect of them. This can also be expressed more precisely by defining expectations
and defining sharedness as full agreement of expectations. Making this precise is left
for future research.

5 Example: BW4T

In this section, we illustrate the concepts defined in the previous sections using an ex-
ample from the Blocks World for Teams (BW4T) domain [16]. BW4T is an extension
of the classic blocks world that is used to research joint activity of heterogeneous teams
in a controlled manner. A team of agents have to deliver colored blocks from a number
of rooms to the so-called drop zone in a certain color sequence. The agents are allowed
to communicate with each other but their visual range is limited to the room they are in.

We distinguish questions on three levels: object level, which concerns the environ-
ment (e.g., which blocks are in which rooms, which other agents are there, etc.), in-
formational and motivational level, which concerns, e.g., beliefs of agents about the
environment, and task allocation and intentions, and strategic level, which concerns the
reasoning that agents are using to solve problems. These levels correspond to physical
components and team activity in Figure 2, and reasoning behavior of agents in Figure 1,
respectively.

For the object level, we constructed a set Q of questions regarding, e.g., the num-
ber of blocks per color per room, the required color per position in the required color
sequence. For example, one can formulate questions such as “How many red blocks
are there in room 1?”. The answer to such a question is a number that can easily be
compared to the answer given by another model. Assuming that there are 12 rooms and
3 colors (white, blue, and red), one can formulate 36 questions of the atomic kind for
rooms and the number of blocks per color. Similarly, assuming that the required color
sequence (the team task) has 9 positions, one can formulate questions such as “What is
the required color at position 1?”, leading to 9 questions of this kind (in BW4T the team
task is displayed in the environment). In this way, we constructed 36 + 9 questions that
refer to the current state of the environment. Note that over time, the situation changes,
because the agents move the blocks around.

Shared Mental Models 145

Suppose room 1 contains 2 red blocks, 2 white blocks and no blue blocks. Further-
more assume, that agent A, having just arrived in room 1 has been able to observe
the blocks in this room, whereas agent B is still en route to room 2 and has no idea
about the colors of the blocks in the various rooms as yet. Assume that both agents
have an accurate picture of the team task (which color has to go to which position).
Taking this set of 45 question Q, then we have that the mental model of agent A, MA,
answers 12 questions out of a total of 45, while MB, the model of agent B only an-
swers 9 questions. The subject overlap is then SO(MA, MB, Q) = 9/45, and the com-
patibility is C(MA, MB, Q) = 1. Also the level of agreement between the models is
A(MA, MB, Q) = 9/45, which in this case equals the subject overlap since the answers
do not differ. In order to identify a shared mental model between these agents, we have
to restrict the questions to only the part concerning the team task. This model is shared
to extent 1. Now, if agent A communicates his findings to agent B, then somewhat
later in time the overlap and agreement could grow to 12/45, and the shared mental
model would grow when modifying the set of questions accordingly. As the agents
walk through the environment, they could achieve the maximum number on measures
for these models, as long as they keep informing each other. If this is not done effec-
tively, it may be the case that an agent believes a block to be in a room, while another
agent believes it is not there anymore. This would lead to a decreased agreement.

For the informational and motivational level, one may, e.g., formulate the following
questions: “Under which conditions should agents inform other agents?” which regards
what each agent thinks is the common strategy for the team, and For the task level, one
may formulate for each agent A the questions like “What is the preferred task order of
agent A?”, “Which task does agent A have?”, “What is the intention of agent A?”, and
“What information was communicated by agent A at time X?”. Note that the intention
of agents changes over time during the task execution, and also X varies over time, thus
leading to an incremental number of questions as the team is at work.

For the strategic level, one may consider questions like “Under which conditions
should agents inform other agents?”. Agent A might answer “An agent communicates
when it knows something it knows other agents need to know and everything it intends
itself”, while B’s response may be “An agent communicates when it knows something
it knows other agents need to know”. The formalizations of these statements could be:

belief(hasTask(Agent,Task)) ∧ belief(requires(Task,Info)) ∧
hasInfo(self,Info) ∧ Agent �= self ∧ belief(¬ hasInfo(Agent,Info))
→ toBeCommunicatedTo(Info,Agent))

intends(self, X) ∧ belief(¬ hasInfo(Agent,hasTask(self,X)))
→ toBeCommunicatedTo(hasTask(self,X),Agent)

This implies higher order aspects of the mental models that these agents need to have,
i.e., a good image of what other agents know about the current situation, knowledge
about the tasks and their dependence on information, and information about who has
what task. For this example domain, this means that the questions need to be extended
to include, e.g., “What information is relevant for task T?”, and either informational and
motivational level questions of the form “How many red blocks does agent A believe to
be in room 1?” or strategic questions of the form “When can you be sure that an agent

146 C.M. Jonker, M.B. van Riemsdijk, and B. Vermeulen

knows something?”, to which an answer could be observed(Info, self) ∨ communicat-
edBy(Info, Agent). Note that the complexity of computing the measures of similarity
depends heavily on the complexity of the logic underlying the questions and thus the
answers to the questions. The operationalization of testing these measures might require
advanced logical theorem proving tools or model checkers.

6 Agent Reasoning with Shared Mental Models

The concepts introduced in Section 4 which were illustrated in Section 5, consider simi-
larity between mental models from a bird’s eye perspective. One could say that questions
are posed to the mental models by an outside observer. However, this does not demon-
strate how the notion of shared mental model can be operationalized and used in agents’
reasoning. In this section we sketch the latter, using the Two Generals’ Problem [1] (see
also http://en.wikipedia.org/wiki/Two_Generals%27_Problem).
The operationalization is done on the strategic level, with shared mental models in the
lower two levels as a result. The aim is not to argue that the way this problem is solved
using shared mental models is better than other solutions. The example is used only for
illustration purposes.

Two armies, each led by a general, are preparing to attack a fortified city. The armies
are encamped near the city, each on its own hill. A valley separates the two hills, and
the only way for the two generals to communicate is by sending messengers through
the valley. Unfortunately, the valley is occupied by the city’s defenders and there’s a
chance that any given messenger sent through the valley will be captured. Note that
while the two generals have agreed that they will attack, they haven’t agreed upon a
time for attack before taking up their positions on their respective hills.
The two generals must have their armies attack the city at the same time in order to
succeed. They must thus communicate with each other to decide on a time to attack and
to agree to attack at that time, and each general must know that the other general knows
that they have agreed to the attack plan. Because acknowledgement of message receipt
can be lost as easily as the original message, a potentially infinite series of messages is
required to come to consensus.

The problem the generals face is that they are aware that they do not have a mental
model of the attack time that is shared between them. Thus, the communication stream
that they initiate is an attempt to come to a shared mental model and to know that they
have a shared mental model.

By introducing the concept of a shared mental model, the problem can be formulated
internally within the code of the agents (gen_a and gen_b) as follows. The notation
we use resembles that of the agent programming language GOAL [14], giving an in-
dication of how the reasoning can be programmed in an agent. GOAL uses Prolog for
expressing the agent’s knowledge, which represents general (static) knowledge of the
domain and environment. Goals represent what agents want to achieve. The program
section has rules of the form if <condition> then <action>, where the condi-
tion refers to the beliefs and/or goals of the agent. Percept rules are used to process
percepts and/or execute multiple send actions. In each cycle of the agent’s reasoning,

http://en.wikipedia.org/wiki/Two_Generals%27_Problem

Shared Mental Models 147

all instantations of percept rules are applied (meaning that the actions in the consequent
are executed if the conditions in the antecedent hold), after which one action rule of
which the condition holds is applied.

knowledge{
conquer(city) :-

simultaneous_attack.
simultaneous_attack :-

attacks_at(gen_a, T), attacks_at(gen_b, T).
requires(shared_mental_model(attack_planned_at),

hasInfo(A, attack_planned_at(B, T))).

}

goals{ conquer(city). }

program{
if a-goal(conquer(city)) then

adopt(simultaneous_attack) +
adopt(shared_mental_model(attack_planned_at)).

if a_goal(G) then insert(hasGoal(self,G)).

<code to determine attack time T>

if bel(hasInfo(gen_a, attack_planned_at(gen_a, T))),
bel(hasInfo(gen_a, attack_planned_at(gen_b, T))),
bel(hasInfo(gen_b, attack_planned_at(gen_a, T))),
bel(hasInfo(gen_b, attack_planned_at(gen_b, T)))

then do(attack_at(T)).
}

perceptrules{
% the agents perceive the predicate "attacks_at(A,T)"
% for any agent at the T the attack is performed.

% Generic reflection rule for informing teammates
if bel(hasGoal(Agent,Goal)),

bel(requires(Goal,Info)),
bel(Info),
not(Agent = self),
not(bel(hasInfo(Agent,Info)))

then sendonce(Agent, Info) + insert(hasInfo(Agent,Info)).

}

The knowledge line about conquer city expresses that the city will be successfully
conquered if the generals simultaneously attack at some time T and share a mental
model with respect to the predicate attacks_at. The knowledge line about the re-
quirement of a shared mental model about attacks_at explains that all agents A
(thus both gen_a and gen_b) should have information about when all agents B (thus
both gen_a and gen_b) will attack.

The initial goal of conquer city will lead to subsequent goals for the agents to attack
simultaneously and to have a shared mental model with respect to the attack time, by
applying the first rule in the program section.

The generic reflection rule in the perceptrules section cannot be executed by GOAL

directly, but has to be interpreted as a scheme of rules that should be instantiated with
concrete predicates for the kind of information to be sent in a specific domain. Us-
ing (instantiations of) this rule, the generals will start to inform each other of choices
they made regarding the time to attack. This is done based on the goal of having a

148 C.M. Jonker, M.B. van Riemsdijk, and B. Vermeulen

shared mental model concerning the attack plan (adopted through applying the first ac-
tion rule), and the fact that for this certain information is required (as specified in the
knowledge base).

The rest of the code of the agents, which is omitted here for brevity, should consist
of code to get to the same time T at which they will attack. A simple solution is that
e.g., gen_a is the boss, and gen_b will accept his proposal for the attack time. Once a
common time has been established, the generals attack as specified in the last action rule.

Note that the formulation chosen does not require the infinite epistemic chain of
hasInfo that is part of the thought experiment that the Two Generals’ Problem is.
Simply put, each of the agents will attack if it believes that it has the same idea about
the attack time as the other agent. The agents as formulated above do not reflect again,
that both should also share a mental model with respect to the predicate hasInfo.
This would of course be interesting to model, but will lead to the long, infinitely long,
process of informing each other of their plans as is explained in the literature on the
Two Generals’ Problem. We choose to stop here to explain a possible explicit use of the
concept of a shared mental model.

7 Related Work

In this section, we discuss how our work is related to existing approaches to
(human-)agent teamwork. An important difference between our work and other ap-
proaches is that to the best of our knowledge, few other approaches are based directly
on shared mental model theory (see below for an exception). Moreover, our focus is
on a conceptualization of the involved notions rather than on reasoning techniques that
can be applied directly when developing agent teams, since this is one of the first pa-
pers that aims at bringing shared mental model theory to agent research. We believe it
is important to get a better understanding of the concepts, thereby developing a solid
foundation upon which reasoning techniques inspired by shared mental model theory
can be built.

Although most existing approaches to (human-)agent teamwork are not based di-
rectly on shared-mental model theory, similar ideas have been used for developing these
approaches. Many of these approaches advocate an explicit representation of teamwork
knowledge (see, e.g., [15,12,26,4]). Such teamwork knowledge may concern, e.g., rules
for communication to team members, for example if the execution of a task is not going
according to plan, and for establishing a joint plan or recipe on how to achieve the team
goal. By making the teamwork representations explicit and implementing agents that
behave according to them, agents inherently have a shared understanding of teamwork.
Moreover, these representations often incorporate strategies for obtaining a shared view
on the concrete team activity that the agents engage in. Jennings [15] and Tambe [26]
propose work that is based on joint intentions theory [8]. A joint intention is defined
as “a joint commitment to perform a collective action while in a certain shared mental
state”. The latter refers to an important aspect of a joint intention, which is that team
members mutually believe they are committed to a joint activity.

These approaches thus already provide concrete techniques for establishing shared
mental models to some extent. However, the notion of shared mental model is implicit

Shared Mental Models 149

in these approaches. We believe that considering (human-)agent teamwork from the per-
spective of shared mental models could on the one hand yield a unifying perspective on
various forms of shared understanding that are part of existing teamwork frameworks,
and on the other hand could inspire new research by identifying aspects related to shared
mental models that are not addressed by existing frameworks. An example of the latter
is the development of techniques for dealing with an observed lack of sharedness. Exist-
ing approaches provide ways of trying to prevent this from occurring, but in real-word
settings this may not always be possible. Therefore, one needs techniques for detecting
and dealing with mental models that are not shared to the needed extent. This is impor-
tant, for example in human-agent teamwork where humans cannot be programmed to
always provide the right information at the right time.

An approach for agent teamwork that incorporates an explicit notion of shared men-
tal model is [27]. The paper presents an agent architecture that focuses on proactive
information sharing, based on shared mental models. An agent in this architecture is
composed of several models, including an individual mental model and a shared men-
tal model. The individual mental model stores beliefs (possibly including beliefs about
others) and general world knowledge. The shared mental model stores information and
knowledge shared by all team members. This concerns information about the team struc-
ture and process, and dynamic information needs such as the progress of teammates.

This notion of shared mental model differs from ours. In particular, while we do
consider mental models to be part of agents’ minds (Figure 3), we do not consider
a shared mental model to be a component of an agent. Rather, we suggest that the
essence of the notion of shared mental model is the extent to which agents have similar
mental models, i.e., a shared mental model is a mental model that is shared to some
extent between agents. We thus consider shared mental model a derived concept which
expresses a property of the relation between mental models, rather than an explicit
component inside an agent. This makes our notion fundamentally different from the
one proposed by [27].

An approach for representing mental models of other agents in agent programming is
proposed in [13]. In that work, mental states of agent are represented by means of beliefs
and goals, as is common in cognitive agent programming languages. Besides the agent’s
own mental state, an agent has mental models for the other agents in the system, which
consist of the beliefs and goals the agent thinks other agents have. These are updated
through communication. For example, if an agent A informs another agent B of some
fact p, agent B will update its model of A to include that agent A believes p (assuming
agents do not send this information if they do not believe it). A similar mechanism
applies to goals. This approach can be extended by applying similarity measures on the
mental state of the agent and of the mental models it has of other agents, to determine
what should be communicated.

8 Conclusion

In this paper, we have studied the notion of shared mental model, motivated by the
idea of taking shared mental model theory as inspiration for the engineering of agents
capable of effective teamwork. We have analyzed the notion starting from an analysis

150 C.M. Jonker, M.B. van Riemsdijk, and B. Vermeulen

of the notion of mental model, and continuing with definitions of similarity of models,
leading to a definition of shared mental model. We have illustrated how these definitions
can be operationalized using an example in the BW4T domain.

As for future work, there are conceptual as well as engineering challenges. We aim
to investigate how theory of mind (agents that have mental models about other agents)
fits into this framework. We will study in more detail models of agent teamwork in
which a notion of sharedness plays a role (e.g., [15,12,26,4]), and analyze how these
approaches compare to our notion of shared mental model. As in joint intentions theory,
awareness of sharedness may be relevant for effective teamwork and worth investigating
from the perspective of shared mental models. From an engineering perspective, a main
challenge for future research is the investigation of mechanisms that lead to a shared
mental model that is shared to the extent needed for effective teamwork, which may
also depend on the kind of task and environment. A thorough comparison of existing
approaches for agent teamwork with our notion of shared mental model will form the
basis for this.

References

1. Akkoyunlu, E., Ekanadham, K., Huber, R.: Some constraints and tradeoffs in the design
of network communications. In: Proceedings of the Fifth ACM Symposium on Operating
Systems Principles (SOSP 1975), pp. 67–74. ACM, New York (1975)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The descrip-
tion logic handbook: Theory, implementation, and applications. Cambridge University Press,
Cambridge (2003)

3. Bolstad, C., Endsley, M.: Shared mental models and shared displays: An empirical evalu-
ation of team performance. Human Factors and Ergonomics Society Annual Meeting Pro-
ceedings 43(3), 213–217 (1999)

4. Bradshaw, J., Feltovich, P., Jung, H., Kulkami, S., Allen, J., Bunch, L., Chambers, N.,
Galescu, L., Jeffers, R., Johnson, M., Sierhuis, M., Taysom, W., Uszok, A., Hoof, R.V.:
Policy-based coordination in joint human-agent activity. In: Proceedings of the IEEE In-
ternational Conference on Systems, Man, and Cybernetics, pp. 2029–2036 (2004)

5. Buckland, M., Gey, F.: The relationship between recall and precision. Journal of the Ameri-
can Society for Information Science 45(1), 12–19 (1994)

6. Cannon-Bowers, J.A., Salas, E., Converse, S.: Shared mental models in expert team deci-
sion making. In: Castellan, N.J. (ed.) Individual and Group Decision Making, pp. 221–245.
Lawrence Erlbaum Associates, Mahwah (1993)

7. Clark, A., Chalmers, D.J.: The extended mind. Analysis 58, 10–23 (1998)
8. Cohen, P., Levesque, H.: Teamwork. Nous, 487–512 (1991)
9. Doyle, J., Ford, D.: Mental models concepts for system dynamics research. System Dynamics

Review 14(1), 3–29 (1998)
10. Francois, C.: Systemics and cybernetics in a historical perspective. Systems Research and

Behavioral Science 16, 203–219 (1999)
11. Gentner, D., Stevens, A.: Mental Models. Lawrence Erlbaum Associates, New Jersey (1983)
12. Grosz, B., Kraus, S.: Collaborative plans for complex group action. Journal of Artifical In-

telligence 86(2), 269–357 (1996)
13. Hindriks, K., van Riemsdijk, M.B.: A computational semantics for communicating rational

agents based on mental models. In: Braubach, L., Briot, J.-P., Thangarajah, J. (eds.) ProMAS
2009. LNCS (LNAI), vol. 5919, pp. 31–48. Springer, Heidelberg (2010)

Shared Mental Models 151

14. Hindriks, K.V.: Programming rational agents in GOAL. In: Bordini, R.H., Dastani, M., Dix,
J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Tools and Ap-
plications. Springer, Berlin (2009)

15. Jennings, N.: Controlling cooperative problem solving in industrial multi-agent systems us-
ing joint intentions. Artificial Intelligence Journal 74(2) (1995)

16. Johnson, M., Jonker, C., van Riemsdijk, M.B., Feltovich, P.J., Bradshaw, J.M.: Joint activity
testbed: Blocks world for teams (BW4T). In: Aldewereld, H., Dignum, V., Picard, G. (eds.)
ESAW 2009. LNCS, vol. 5881, pp. 254–256. Springer, Heidelberg (2009)

17. Johnson-Laird, P.N.: Mental Models: Towards a Cognitive Science of Language, Inference,
and Consciousness. Cambridge University Press, Cambridge (1983)

18. Jonker, C., Treur, J.: Compositional verification of multi-agent systems: a formal analysis
of pro-activeness and reactiveness. International Journal of Cooperative Information Sys-
tems 11, 51–92 (2002)

19. Klein, G., Feltovich, P., Bradshaw, J., Woods, D.: Common ground and coordination in joint
activity. In: Organizational Simulation, pp. 139–184 (2004)

20. Klein, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten challenges
for making automation a “team player” in joint human-agent activity. IEEE Intelligent Sys-
tems 19(6), 91–95 (2004)

21. Lim, B., Klein, K.: Team mental models and team performance: A field study of the effects
of team mental model similarity and accuracy. Journal of Organizational Behavior 27(4), 403
(2006)

22. Mathieu, E., Heffner, T.S., Goodwin, G., Salas, E., Cannon-Bowers, J.: The influence of
shared mental models on team process and performance. The Journal of Applied Psychol-
ogy 85(2), 273–283 (2000)

23. Minsky, M.: A framework for representing knowledge. The Psychology of Computer Vision
(1975)

24. Rouse, W., Morris, N.: On looking into the black box: Prospects and limits in the search for
mental models. Psychological Bulletin 100(3), 349–363 (1986)

25. Sycara, K., Sukthankar, G.: Literature review of teamwork models. Technical Report
CMU-RI-TR-06-50, Carnegie Mellon University (2006)

26. Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research 7, 83–124
(1997)

27. Yen, J., Fan, X., Sun, S., Hanratty, T., Dumer, J.: Agents with shared mental models for
enhancing team decision makings. Decision Support Systems 41(3), 634–653 (2006)

Group Intention Is Social Choice with Commitment

Guido Boella1, Gabriella Pigozzi2, Marija Slavkovik2, and Leendert van der Torre2

1 guido@di.unito.it
2 {gabriella.pigozzi,marija.slavkovik,leon.vandertorre}@uni.lu

Abstract. An agent intends g if it has chosen to pursue goal g an is committed
to pursuing g . How do groups decide on a common goal? Social epistemology
offers two views on collective attitudes: according to the summative approach,
a group has attitude p if all or most of the group members have the attitude p;
according to the non-summative approach, for a group to have attitude p it is
required that the members together agree that they have attitude p. The summa-
tive approach is used extensively in multi-agent systems. We propose a formal-
ization of non-summative group intentions, using social choice to determine the
group goals. We use judgment aggregation as a decision-making mechanism and
a multi-modal multi-agent logic to represent the collective attitudes, as well as
the commitment and revision strategies for the groups intentions.

1 Introduction

Within the context of multi-agent systems, the concept of collective intentions is studied
and formalized in (Chapter 3, [12]) and also in [17,21,36,41]. All of these theories
and formalizations use the summative approach to define group beliefs and goals: a
group has attitude p if all or most of the group members have the attitude p [13,18,30].
Alternatively, collective attitudes can be specified using the non-summative approach:
a group has an attitude p if the members together agree that they have that attitude p.
To the best of our knowledge, there is no formalization of non-summative collective
attitudes within multi-agent systems. We consider the following research question:

How can a group agree on what to believe, pursue and what to intend?

This paper summarizes our initial efforts towards formalizing non-summative group
intentions using the conceptualizations proposed by Gilbert [13,14,15,16].

How can a group decide which goals to pursue? A rational agent makes decisions
based on what he believes, what he knows and what he desires. Each group member can
express whether he is for or against a candidate group goal. An agent can rationalize
his goal decision by expressing opinions on relevant reasons for adopting (or rejecting)
that candidate group goal. To reach non-summative group attitudes, a group can use a
decision making mechanism that aggregates the members’ opinions to produce the group
agreement of what to believe and, based on those beliefs, which goals to pursue. A group
that jointly decided on a course of action is jointly committed to uphold that decision [15].

In practical reasoning, the roles of intentions can be summarized as: intentions drive
means-end-reasoning, intentions constrain future deliberation, intentions persist long
enough, according to a reconsideration strategy, and intentions influence beliefs upon

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 152–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Group Intention Is Social Choice with Commitment 153

which future practical reasoning is based [12]. A formalization of group intentions
should be completed with a formalization of group intention persistence and recon-
sideration strategies.

Our research question thus breaks down to the following sub-questions:

1. How to aggregate the individual opinions into group beliefs and goals?
2. How to represent individual opinions and non-summative group attitudes?
3. How can groups persist in their intentions?
4. How can groups reconsider their attitudes?

We need a mechanism for generating group beliefs and goals that aggregates indi-
vidual opinions into collective attitudes, as studied in voting, merging and judgment
aggregation [5,19,22,24].

The relation between individual goals and beliefs can be specified and analyzed in
modal agent logics like BDILTL [35]. The challenge is to find an adequate representa-
tion for the individual opinions and the non-summative beliefs, goals and intentions into
multi-agent logic. We give an extension logic AGELTL that fuses existing modal logics
to provide the adequate modalities. We use this logic to represent the group intention
and reconsideration strategies.

We require that the group has a set of candidate group goals, a relevance order over
this set, as well as a set of decision rules, one for each candidate goal, in the form
of logic formulas, that express what is the relation between a goal and a given set of
reasons. The members are required to have the ability to form and communicate “yes”
or “no” judgments regarding a candidate goal and associated reasons. There are two
modes of communicating the individual judgments: a centralized and a decentralized
mode. In the decentralized mode, every individual judgment is communicated to all
the agents in the group. Each agent then aggregates the individual judgments using
the known mechanism and generates the group beliefs, goals and thus intentions. In
the centralized mode, one of the members acts as an administrator for the group. All
individual judgments are sent to the administrator who aggregates them and notifies the
rest of the members what the group beliefs and goals are.

We assume that all members are aware of the judgment aggregation mechanism (and
possibly tie breaking rule), the commitment and the revision strategy that are in use.
We also assume that group membership does not change; neither does the aggregation
mechanism, the commitment and revision strategy for each goal. The group members
can communicate with each other. We further assume that all members accept the deci-
sion rules and give opinions that are logically consistent with them. Lastly, we assume
that each agent is able to revise his individual judgments, on a given goal and reasons,
with given information.

The generation and revision of decision rules is outside the scope of this paper.
Agents of the group may have individual goals in addition to the group ones. It is not a
requirement that the group attitudes are individual attitudes of the members.

Cohen and Levesque, in their seminal paper [7], proclaimed that intentions are choice
(of a goal) with commitment. Judgment aggregation is a social choice mechanism. Fol-
lowing the intuition of Cohen and Levesque, (a non-summative) group intention is (a
group goal determined by) social choice with commitment.

154 G. Boella et al.

The layout of the paper is as follows. In Section 2 we discuss how to choose group
goals. We first summarize the non-summative view on collective attitudes. We then ex-
tend BDILTL with the necessary modalities for representing these group attitudes and
the concepts from judgment aggregation. We introduce a judgment aggregation frame-
work using this logic extension and, in Section 3, show how it can be used. Sections 4
and 5 respectively study the commitment and reconsideration strategies. Related work,
conclusions and outlines for future work are in Section 6.

2 Non-summative Group Attitudes Obtained by Judgment
Aggregation

First we discuss how non-summative goals and beliefs are determined and then intro-
duce the logic AGELTL which is used for representing these attitudes. The formal
model of judgment aggregation, using this logic, is given in Section 2.3.

2.1 From Individual Opinions to Group Attitudes

According to existing theories [12,21,23], the intention of the group is formalized using
the summative approach, following Bratman [3] and Rao et al. [32]: g is the intention
of the group is equivalent to g being the individual intention of all the group members.
Unlike the joint intention of, for example, Dunin-Keplicz and Verbrugge [12], our group
intention is not necessarily decomposable into individual intentions: “an adequate ac-
count of shared intention is such that it is not necessarily the case that for every shared
intention, on that account, there be correlative personal intentions of the individual par-
ties” (pg.172, [16]).

Example 1. Let C = {w1, w2, w3} be a crew of cleaning robots. We denote the group
goal to clean the meeting room with g1, and the reasons to adopt this goal with: there
are no people in the room (p1), the room is dirty (p2), the garbage bin in it is full (p3).
The individual beliefs of the robots on whether g1 should be the group goal are justified
by individual beliefs on p1, p2, p3 using the decision rule (p1 ∧ (p2 ∨ p3)) ↔ g1.

The group goal g1 is not necessarily decomposable to individual goals g1. Assume that
robot w1 in Example 1 is a mopper, the robot w2 is a garbage collector and the robot w3

sprays adequate cleaning chemicals. It can be that the individual goals of w1 and w2 are
to clean the room. The goal of w3 may be others, but the group agreed to pursue g1 and
he, being committed to g1 as part of the group, will spray the cleaner as an act towards
accomplishing g1.

We formalize only goals that can be achieved by the group as a whole. Whether these
goals can be achieved by joint actions or by a combination of individual actions is out
of the scope. We define group intention to be the goal, which the members agreed on,
and by that, are committed to pursuing.

The robots in Example 1 can disagree on various issues when reaching a decision for
a group goal. Assume that one robot believes the room is occupied and thus, according
to it, the group should not pursue g1. According to the other two robots, the group
should pursue g1. The second robot is of the opinion that the garbage bin is full and

Group Intention Is Social Choice with Commitment 155

the floor is clean, while the third believes that the floor is dirty. According to the non-
summative view of collective beliefs, a group believes p if the group members together
agree that as a group they believe p. The question is how should the beliefs of the robots
be aggregated to reach an agreement.

Voting and preference aggregation theories [1] study the problem of aggregating in-
dividual preferences over a set of independent issues, candidates or alternatives. The
robots need to aggregate their individual opinions on the set of issues {p1, p2, p3, g1}.
However the issues in this set are logically related. The problem of aggregating indi-
vidual “yes” or “no” opinions, a.k.a. judgments, over a set of logically related issues
is studied by judgment aggregation [24]. Judgment aggregation is modeled in general
logic and it is an abstract framework that allows for various desirable social properties
to be specified.

To use judgment aggregation for aggregating the opinions of the robots, one needs to
represent the individual and collective judgments. A logic of belief-desire-intention is
insufficient to model these doxastic attitudes. According to Gilbert, “it is not logically
sufficient for a group belief that p either that most group members believe that p, or
that there be common knowledge within the group that most members believe that p”
(pg.189 [13]). Furthermore, “it is not necessary that any members of the group person-
ally believe p” (pg.191 [13]). A w1 robots judgment “yes” on ¬p1 is not implied by nor
it implies that robot’s belief Bw1¬p1.

Hakli [18] summarizes the difference between beliefs and acceptances as: (1) beliefs
are involuntary and acceptances are voluntary; (2) beliefs aim at truth and acceptances
depend on goals; (3) beliefs are shaped by evidence and acceptances need not be; (4) be-
liefs are independent of context and acceptances are context-dependant; and (5) beliefs
come in degrees and acceptances are categorical. We find that an individual judgment
is closer to an acceptance than to a belief and therefore represent it with an accep-
tance. There is a debate among social epistemologists on whether collective believes
are proper believes or they are in essence acceptances [14,27,18]. Since we use accep-
tances for individual judgments, we deem most adequate to use acceptances to represent
the collective judgments as well.

The set of collective acceptances is the agreed upon group goal and group beliefs.
Having group beliefs in support of group goals is in line with Castelfrachi and Paglieri
who argue [4] that the goals should be considered together with their supporting “belief
structure”. In Example 1, the decision rule (p1 ∧ (p2 ∨ p3)) ↔ g1 is nothing else but
the “belief structure” for g1. We use the group beliefs to define commitment strategies
in Section 4.

2.2 The Logic AGELT L

The logic we introduce to represent non-summative group attitudes is a fusion of two
K-modal logics [6], the logic of acceptance [26] and the linear temporal logic [29].
As such, it inherits the decidability properties of the [40]. The syntax of AGELTL is
presented in Definition 1. The semantics is as that given by Schield [35] for BDICTL.

To model the considered group goals we use a single K modal operator G. Thus Gg,
where g is a propositional formula, is to be interpreted as “g is a group goal”. Since
we are interested in modeling the change upon new information, we also need to model

156 G. Boella et al.

these observations of new information. To this end we add the K modal operator E,
reading Eφ as “it is observed that φ”.

To model the individual and collective judgments we use the modal operator of ac-
ceptance AS , where S is a subset of some set of agents N . ASφ allows us to represent
both individual judgments, S = {i}, for i ∈ N and collective judgments with S = N .

Definition 1 (Syntax). Let Agt be a non-empty set of agents, with S ⊆ Agt, and LP be
a set of atomic propositions. The admissible formulae of AGELTLare formulae ψ0, ψ1

and ψ2 of languages Lprop, LG and LAELTL correspondingly:
ψ0 ::= p | (ψ0 ∧ ψ0) | ¬ψ0

ψ1 ::= ψ0 | Gψ0

ψ2 ::= ψ0 | ASψ1 | Eψ2 | Xψ2 | (ψ2Uψ2)
where p ranges over LP and S over 2Agt. Moreover, ♦φ ≡ �Uφ, �φ ≡ ¬♦¬φ, and
φRφ′ ≡ ¬(¬φU¬φ′). X, U and R are standard operators of LTL.

Example 2. Consider Example 1. “Cleaning the room is a group goal” is represented by
Gg1. “The group C has the group goal to clean the room is represented with ACGg1.
“Agent w3 does is of the opinion that the group does not need to achieve g1” is rep-
resented by A{w3}g1 .“It is observed the there are no people in the meeting room” is
represented by Ep1. “It is observed to be impossible to clean the meeting room” is
represented with E�¬p1.

We use the linear temporal logic to model the change of group attitudes. By using LTL
we do not need to distinguish between path formulas and state formulas. BDILTL uses,
for example B�a to quantify over traces. We can use E for that purpose.

We define the intention of the group of agents S to be their acceptance of a goal,
where S ranges over 2Agt as

ISψ ≡def ASGψ.

Semantics of AGELT L. As mentioned, the semantics of AGELTL follows the se-
mantics of BDILTL presented in Schild [35]. A Kripke structure is defined as a tuple
M = 〈W, R , G, E, A, L〉. The set W is a set of possible situations. The set R is a set
of pairs identifying the temporal relation over situations R ⊆ W ×W . The set G is a
set of pairs identifying the goal relation over situations G ⊆ W ×W . Lastly, the set E
is a set of pairs identifying the observation relation over situations E ⊆ W ×W . The
element A is a map A : 2N �→ W ×W . The mapping A assigns to every set of agents
S ∈ 2N a relation AS between possible situations. L is a truth assignment to the primi-
tive propositions of LP for each situation w ∈W , i.e., L(w) : Prop �→ {true, false}.

Given a structureM = 〈W, R , G, E, A, L〉 and s ∈ W , the truth conditions for the
formulas of AGELTL(in a situation s) are:

– M, s �� ⊥;
– M, s |= p if and only if p ∈ L(p);
– M, s |= ¬φ if and only ifM, s �� ¬φ;
– M, s |= φ ∧ ψ if and only ifM, s |= φ andM, s |= ψ;
– M, s |= ASφ if and only ifM, s′ |= φ for all (s, s′) ∈ A(S);
– M, s |= Gφ if and only ifM, s′ |= φ for all (s, s′) ∈ G;

Group Intention Is Social Choice with Commitment 157

– M, s |= Eφ if and only ifM, s′ |= φ for all (s, s′) ∈ E;
– M, s |= Xφ if and only ifM, s′ |= φ for the s′, (s, s′) ∈ R
– M, s |= φUψ if and only ifM, s |= φ ;M, si |= φ for all si, i ∈ {1, 2, . . . , k}

such that {(s, s1), (s1, s2), . . . (sk−1, sk)} ∈ R and for sk+1 such that (sk, sk+1) ∈
R it holdsM, sk+1 �� φ andM, sk+1 |= ψ.

A formula φ is true in a AGELTLmodel M if and only if M, s |= φ for every
situation s ∈W . The formula φ is valid (noted |=AGELTL) if and only if φ is true in all
AGELTLmodels. The formula φ is AGELTL-satisfiable if and only if the formula ¬ϕ
is not AGELTLvalid.

For the purposes of constructing the formal judgment aggregation model, we em-
phasize that a set of sentences M ⊆ AGELTL is called consistent if M �� ⊥ and
inconsistent otherwise. The logic AGELTL satisfies the following properties: for each
pair {φ,¬φ} ∈ AGELTL, {φ,¬φ} |= ⊥ and, ∅ �� ⊥.

(C1) For each set {a,¬a} ∈ AGELTL it holds {a,¬a} |= ⊥.
(C2) Given a set M ⊆ AGELTL such that AGELTL �� ⊥, it holds that M ′ �� ⊥ for

every M ′ ⊂M .
(C3) For the empty set ∅ it holds that ∅ �� ⊥.
(C4) For each set M such that M ⊆ AGELTL, there exists a superset T ∈ AGELTL

such that T �� ⊥ and either a ∈ T or ¬a ∈ T for every pair {a,¬a} ∈ AGELTL.

Axiomatization of AGELT L. In our logic we model only individual acceptances
which are “declared” to all the agents in the group and we do not model the private
mental states, since this is done by the BDILTL logic which we extend. We include
the axioms and the semantics for LTL, since we use LTL to define the commitment
strategies of the agents in Section 4.

The modal operator ASφ we use is equivalent to the modal operator AS:xφ of the
acceptance logic of [26] with one syntactic and one semantic exception. These excep-
tions do not infringe on the decidability properties of the logic, as it can be observed by
the decidability proof for acceptance logic provided in [26].

The operator AS:xφ uses x ranging over a set of labels to describe the context under
which the acceptance is made. In our case the context is that of the group and since we
deal with only one group, we have no use of these labels. The context labels play no
role in the semantics of the acceptance logic formulas.

On the semantic level, the axioms for ASφ are all the axioms of AS:xφ except two:
the axiom inclusion (Inc.) and the axiom unanimity (Un.). Dropping (Un.) and (Inc.)
does not affect the decidability of the logic of acceptance. (Un.)1 states that if AN :xφ,
then ∀i ∈ N , A{i}:xφ. In our case, it is the aggregation of individual acceptances that
determines the collective acceptance and we do not require that the group accepting p
entails that all the members accept p, a property of non-summative collective belief in-
dicated by Gilbert in [13]. The opposite property, i.e., all the agents accepting p implies
that the group accepts p, is ensured via the judgment aggregation mechanism. (Inc.)
states that if a group C accepts ϕ, so will any subgroup B ⊂ C. In our case, the judg-
ment aggregation over the input from group B can produce different group attitudes
than the judgment aggregation over the input from a larger group C.

1 Not to be confused with unanimity introduced in judgment aggregation in Section 3.

158 G. Boella et al.

The axiomatization of the AGELTLlogic is thus:

(ProTau) All principles of propositional calculus
(LTLTau) All axioms and derivation rules of LTL
(K-G) G(φ→ ψ)→ (Gφ→ Gψ)
(K-E) E(φ→ ψ)→ (Eφ→ Eψ)
(K-A) AS(φ→ ψ)→ (ASφ→ ASψ)
(PAccess) ASφ→ AMASφ if M ⊆ S
(NAccess) ¬ASφ→ AM¬ASφ if M ⊆ S
(Mon) ¬AS⊥ → ¬AM⊥ if M ⊆ S
(MP) From � φ and � (φ→ ψ) infer � ψ
(Nec-A) From � φ infer � ASφ
(Nec-G) From � φ infer � Gφ
(Nec-E) From � φ infer � Eφ

2.3 The Judgment Aggregation Framework

Our judgment aggregation model in AGELTL follows the judgment aggregation (JA)
model in general logics of Dietrich [11]. For a general overview of JA see [24].

We presume that all the goals which the group considers to adopt are given in a set
of candidate group goals G = {Gg | g ∈ Lprop}. The decision problem in judgment
aggregation, in our case choosing or not a given group goal, is specified by an agenda.
An agenda is a pre-defined consistent set of formulas, each representing an issue on
which an agent casts his judgments. An agenda is truth-functional if it can be partitioned
into premises and conclusions. In our case, the agendas consist of one conclusion, which
is the group goal g ∈ G being considered. The relevant reasons for this group goal are
premises.

Definition 2 (Agenda). An agenda A ⊆ LG is a consistent set of formulas, such
that A = Ap ∪ Ac. The sets Ap and Ac are such that Ap ⊆ Lprop, Ac ⊆ LG and
Ap ∩ Ac = ∅.

We remark that in judgment aggregation models, as the one of Dietrich [11], the dis-
tinction between conclusions and premises is only indicated by the partition but not
formalized in the language of the agenda. In our AGELTL model, we explicitly for-
malize this distinction trough the modal operator G.

For a given agendaA, each agent in the group N expresses his judgments by accept-
ing (or not) the agenda issues. We define judgments formally in Definition 3.

Definition 3 (Judgment). Given a set of agents N and an agendaA, for each issue a ∈
A the individual judgment of agent i ∈ N is one element of the set {A{i}a, A{i}¬a}.
The collective judgment of N is one element of the set {ANa, AN¬a}.

The formula A{i}a is interpreted as agent i judges a to be true, while the formula
A{i}¬a is interpreted as agent i judges a to be false. In theory, an agent, or a group can
also express the judgment of “do not know how to judge a” via the formula ¬A{i}a ∧
¬A{i}¬a, or respectively ¬AN a ∧ ¬AN¬a. In the scenarios we consider, for sim-
plicity, we do not allow the agents to be unopinionated, thus a judgment ¬A{i}a is

Group Intention Is Social Choice with Commitment 159

taken to be the same as judgment A{i}¬a, and the judgments ¬AN a the same as judg-
ments AN¬a .

The goal and the reasons are logically related. These relations are represented by
the decisions rules. In our model, we assume that the decision rules are a set of for-
mulas R ⊆ LG. For each goal Gg ∈ G there is, provided together with the agenda,
a set of decision rules Rg ⊆ R. The decision rules contain all the constraints that the
agent should observe when casting judgments. These constraints contain three types of
information: rules describing how the goal depends on the reasons (justification rules
Rjustg), rules describing the constraints of the world inhabited by the agents (domain
knowledgeRDKg) and rules that describe how g interacts with other candidate goals of
the group (coordination rulesRcoordg). Hence, the decision rules for a group goal g are
Rg = Rjustg ∪RDKg ∪Rcoordg .

We want the reasons for a goal to rationalize, not only the choice of a goal, but also
its rejection. Having collective justifications for rejecting a goal enables the agents to
re-consider adopting a previously rejected group goal. To this end, we require that the
justification rules have the schema Gg ↔ Γ , where {Gg} = Acg and Γ ∈ LProp is a
formula such that all the non-logical symbols of Γ occur in Apg as well.

The agents express their judgments on the agenda issues, but they accept the decision
rules in toto.

Example 3 (Example 1 revisited). Consider the cleaning crew from Example 1. Rjustg1
is (p1 ∧ (p2 ∨ p3)) ↔ Gg1 and Ag1 = {p1, p2, p3, Gg1}. Suppose that the crew has
the following candidate group goals as well: place the furniture in its designated lo-
cation (g2) and collect recyclables from garbage bin (g3). The agendas are Ag2 =
{p4, p5, p6, p7, Gg2}, Ag3 = {p3, p8, p9, Gg3}. The justification rules are Rjustg2 ≡
(p4∧p5∧(p6∨p7))↔ Gg2 andRjustg3 ≡ (p8∧p9∧p3)↔ Gg3. The formulas p4−p9

are: the furniture is out of place (p4), the designated location for the furniture is empty
(p5), the furniture has wheels (p6) , the furniture has handles (p7), the agents can get
revenue for recyclables (p8), there is a container for the recyclables (p9).
An example of a domain knowledge could be RDKg2 ≡ ¬p4 → ¬p5, since it cannot
happen that the designated location for the furniture is empty while the furniture is not
out of place. Group goal Gg3 can be pursued at the same time as Gg1, however, Gg2

can only be pursued alone. Thus the coordination rule for all three goals is
Rcoordg1 = Rcoordg2 = Rcoordg3 ≡ ((Gg2 ∧ ¬(Gg1 ∨Gg3)) ∨ ¬Gg2).

To ensure that the judgments provided by the agents are usable for generating group
goals, we impose certain conditions on the set of individual judgments.

Definition 4 (Admissible judgment set). Let ϕ = {AMa | a = a or a = ¬ a, a ∈ A}
be the set of all judgments from agents M ⊆ N for agenda A. We define the set of
accepted decision rules RM = {AMr | r ∈ R}. The set of judgments ϕ is admissible
if it satisfies the following conditions:

– for each a ∈ A, either AMa ∈ ϕ or AM¬a ∈ ϕ (completeness), and
– ϕ ∪RM �� ⊥ (consistency).

A profile is a set of every judgment rendered for an agendaA by an agent in N .

160 G. Boella et al.

Definition 5 (Profile). A profile π is a set π = {A{i}a | i ∈ N, a = a or a = ¬ a, a ∈
A}. We define two operators over profiles:
The judgment set for agent i is π�i = {a | A{i}a ∈ π}.
The set of all the agents who accepted a is π�a = {i | A{i}a ∈ π}.
A profile is admissible if the judgment set π�i is admissible for every i ∈ N .

We introduce the operators � and � to facilitate the explanation of the aggregation
properties we present in Section 3. To get a better intuitive grasp on these operators, the
reader should envision the profile as a two-dimensional object with the agenda items
identifying the columns and the agents identifying the rows:

π =
w1

w2

w3

p1p2 p3 Gg1⎧⎨⎩
1 1 0 1
0 1 1 1
1 0 0 0

⎫⎬⎭
π = {A{w1}p1, A{w1}p2, A{w1}¬p3, A{w1}Gg1, A{w2}¬p1, A{w2}p2, A{w2}p3,
A{w2}Gg1, A{w3}p1, A{w3}¬p2, A{w3}¬p3, A{w3}¬Gg1} is a possible profile for Ex-
ample 1. We identify π�w2 as the row labeled w2 and π�p2 as the 1 entries in the
column labeled p2, which identify the agents who casted judgment “yes” on p2.

In the model of Dietrich [11], the profile is defined as a set of judgment sets. Using
the acceptance operator to model judgments, we can make a distinction between the
individual judgments directly thus simplifying the profile structure.

In judgment aggregation, the collective judgment set of a group of agents is obtained
by applying a judgment aggregation function to the profile. Judgment aggregation func-
tions are defined in Definition 6.

Definition 6 (Judgment aggregation function). Let Π be the set of all profiles π that
can be defined for A and N and let A = A ∪ {¬a | a ∈ A}. A judgment aggregation

function f is a mapping f : Π �→ 2A.

The definition of aggregation function we propose here is identical to that commonly
given in the literature [11,24]. In [11,24], a judgment aggregation function is defined as
F (J1, J2, . . . Jn) = J , where Ji, i ∈ N are the judgment sets of the agents in N and

J ∈ 2A. For Ji = π�i it holds F (J1, J2, . . . Jn) = f(π).
Let Ag be the agenda corresponding to a goal g considered by a group of agents N

and let πg be the profile of the members judgment regarding Ag . We define the group
attitudes regarding a goal g, i.e., the decision, to be the collective judgment set of the
group.

Definition 7 (Decision). Given a profile πg for a considered goal g and a judgment ag-
gregation function f , the group N ′s decision regarding g isDg = {ANa | a ∈ f(π)}.
Proposition 1. Every group member accepts the group decision.

Proof. As a direct consequence of axiom (PAccess), when the group has intention INg,
every agent in N accepts that this is the group’s intention, regardless of what their
individually accepted regarding Gg. Also, as a consequence of axiom (NAccess), when
the group rejects a goal, AN¬Gg, every agent i accepts this group decision. The same
holds for the group beliefs.

Group Intention Is Social Choice with Commitment 161

3 Generating Group Goals with Judgment Aggregation

We introduced the language in which we model group goals, intentions and the infor-
mation the group accepts as valid, as well as the judgment aggregation framework. We
defined a family of functions that can be used for aggregation of judgments. Which spe-
cific judgment aggregation function is used to reach a group decision depends on the
properties of the decision it is applied to. In the next section we discuss the desirable
properties for judgment aggregation used for group goal generation. Our framework al-
lows the agents to decide on one goal at a time. Since groups can have more than one
goal, in Section 3.2 we propose a procedure for handling multiple goals.

3.1 Desirable Properties of Judgment Aggregation

The properties of judgment aggregation (JA) are defined in terms of properties of the
judgment aggregation function. The typical focus of the judgment aggregation theory
is to study which properties can be accepted together (avoiding impossibility results).
Given a JA function f , we describe the most common properties found in the literature.

Universal domain. A JA function f satisfies universal domain if and only if all the
admissible profiles for a given A, R and N are in the domain of f . The judgment ag-
gregation function as defined in Definition 6 satisfies universal domain by construction.

Anonymity. Given a profile π ∈ Π , let π̂ = {π�1, . . . , π�n}, be the multiset of all
the individual judgment sets in π. Two profiles π, π′ ∈ Π are permutations of each
other if and only if π̂ = π̂′. f satisfies anonymity if and only if f(π) = f(π′) for all
permutation π and π′.

Unanimity on a ∈ A. Let a = a or a = ¬a, where a ∈ A. The JA function f satisfies
unanimity on a ∈ A if and only if for every profile π ∈ Π it holds: if for all i ∈ N ,
Aia ∈ π, then a ∈ f(π).

Collective rationality. f satisfies collective rationality if and only if for all π ∈ Π , and
a givenR, f(π) ∪R �� ⊥.

Constant. f is constant when there exists ϕ ∈ 2A such that for every π ∈ Π , f(π) = ϕ.

Independence. Given A = {a1, . . . , am} and π ∈ Π , let f1, . . . , fm be functions de-
fined as fj(π�aj) ∈ {aj ,¬aj}. The JA function f satisfies independence if and only if
there exists a set of functions{f1, . . . , fm} such that f(π)={f1(π�a1), . . . fm(π�am)}
for each π ∈ Π .

The best known example of a judgment aggregation function that satisfies indepen-
dence is the issue-wise majority function fmaj , defined as

fmaj(π) = {fj(π�aj) | aj ∈ A, fj(π�aj) = aj if |π�aj| ≥ �
n

2
�,

otherwise fj(π�aj) = ¬aj}.

The function fmaj satisfies universal domain, anonymity, unanimity (on each a ∈ A),
completeness, and independence but it does not satisfy collective rationality, as it can
be seen on Figure 1.

162 G. Boella et al.

All judgment aggregation functions that satisfy universal domain, anonymity, inde-
pendence and collective rationality are constant [24]. Independence is the most debated
property [5,24]. The reason why it is convenient to have independence is because it is
a necessary condition to guarantee the non-manipulability of f [10]. An aggregation
function is non-manipulable if no agent can obtain his sincere judgment set ϕ selected
as the collective judgment set by submitting another judgment set ϕ′.

We define two more properties of JA function, the premise- and conclusion-based
aggregation function. In the literature [24], premise- and conclusion-based are proce-
dures are specified in terms of issue-wise majority. These aggregation functions violate
independence, but can be designed to guarantee collective rationality.

Premise- and conclusion-based aggregation
Let πp = {A{i}a | A{i}a ∈ π, a = a or a = ¬a, a ∈ Ap} and πc = {A{i}a | A{i}a ∈
π, a = a or a = ¬a, a ∈ Ac}. We define Πp and Πc to be the sets of all πp, πc, defined
for a given N and given Ap,Ac correspondingly. Let Ap = Ap ∪ {¬a | a ∈ Ap} and

Ac = Ac ∪ {¬a | a ∈ Ac} and fp : Πp �→ 2A
p

/∅ and f c : Πc �→ 2A
c

/∅. The JA
function f is premise-based if and only if there exists a fp such that fp(πp) ⊆ f(π) for
every π ∈ Π . The function f is conclusion-based if and only if there is a f c such that
f c(πc) ⊆ f(π) for every π ∈ Π .

The completeness of the collective judgment set is obtained by extending the out-
come of fp (or that of f c correspondingly) to a consistent collective judgment set.
The example in Figure 1 illustrates the premise-based and conclusion-baded procedure
when issue-wise majority is used. As the example there shows, the conclusion-based
procedure can produce multiple collective judgment sets. Multiple sets can be obtained
via the premise-based procedure as well.

The JA function we can use for obtaining group goals should produce decisions that
are complete and it should satisfy collective rationality. If f(π) is not complete we
cannot revise the group intentions. For example, if the decision contains only a group
goal acceptance, then we do not know why the goal was (not) adopted and consequently
when to revise it. For example, the cleaning crew decides for the goal g3 (to collect
recyclables), without having the reasons like p9 (a container where to put them). If
the world changes and ¬p9 holds, the robots will continue to collect recyclables. If
the aggregation of an admissible profile is not consistent with the decision rules, we

Fig. 1. A profile, issue-wise majority aggregation, premise-based and conclusion-based majority

Group Intention Is Social Choice with Commitment 163

would not be generating reasons for the group goal. The JA function we can use for
obtaining group goals should produce decisions that are complete and it should satisfy
collective rationality. If the decision contains only a group goal acceptance, the group
does not know why the goal was (not) adopted and consequently when to revise it. If the
aggregation of an admissible profile were not consistent with the decision rules, reasons
for the group goal would not be generated.

We have to choose between a conclusion-based and a premise-based procedure. In
the profile in Figure 1, a premise-based procedure leads the group to adopting a con-
clusion that the majority of the group does not endorse. There are cases in which the
premise-based procedure leads the group to adopting a goal that neither of the agents
endorses individually. The conclusion is the goal and a premise-based aggregation may
establish a group goal which none of the agents is interested in pursuing. To avoid this,
we need to aggregate using a conclusion-based procedure that satisfies unanimity on
Gg. Since we have only one goal per agenda, we use issue-based majority to aggregate
the group goal judgments.

Our decision rules are of the form g ↔ Γ . Hence, there exist profiles for which a
conclusion-based procedure will not produce complete collective set of judgments. The
conclusion-based aggregation can be supplemented with an additional procedure that
completes the produced set of judgments when necessary. Such aggregation procedure
is the complete conclusion-based procedure (CCBP) developed in [28]. This CCBP is
collectively rational.

CCBP produces a unique collective judgment for the goal, but it can generate more
than one set of justifications for it. This is an undesirable, especially if the agents are in
a decentralized communication mode. To deal with ties, as it is the practice with voting
procedures, the group determines a default set of justifications for adopting/rejecting
each candidate goal. A lexicographic order on the judgment sets can be used to this
end. In the centralized communication mode, the administrator can also break the ties.

The CCBP from [28] also satisfies anonimity. Whether this is a desirable property
for a group of artificial agents depends entirely on whether the group is democratic or
the opinions of some agents are more important. CCBP can be adjusted to take into
consideration different weights on different agents’ judgment sets.

3.2 The Generation of Multiple Group Goals

The mental state of the group is determined by the mental states of the members and the
choice of judgment aggregation function. We represent the mental state of the group by
a set χ of AGELTL formulas. The set χ contains the set of all candidate goals for the
group G ⊆ LG/Lprop and, for each Gg ∈ G, the corresponding decision rules Rg , as
well as the individual and collective acceptances made in the group regarding agenda
Ag . The set χ is common knowledge for the group members. An agent uses χ when it
acts as a group member and its own beliefs and goals when it acts as an individual.

To deal with multiple, possibly mutually inconsistent goals, the group has a priority
order �x over the group goals G ⊂ χ. To avoid overburdening the language with a �x

operator, we incorporate the priority order within the decision rulesRjustgi
≡ Γi ↔ Ggi.

We want the decision rules to capture that if Ggi is not consistent (according to the
coordination rules) with some higher priority goals Gg1, . . . , Ggm, then the group can

164 G. Boella et al.

accept Ggi if and only if none of Gg1, . . . , Ggm is accepted. Hence, we replace the
justification rule Rjustgi

∈ χ with Rpjustgi
≡ (Γi ∧

∧m
j (AN¬Ggj)) ↔ Ggi, where

Ggj ∈ G, Ggj �x Ggi and Ggi ∧Ggj ∧Rcoordgi
|= ⊥.

Example 4. Consider the goals and rules of the robot crew C from Example 3. As-
sume the crew has been given the priority order Gg1 >χ Gg2 >χ Gg3. χ contains:
G = {Gg1, Gg2, Gg3}, one background knowledge rule, one coordination rule, three
justification rules, out of which two are new priority modified rules:

{G,¬p4 → ¬p5, (Gg2 ∧ ¬(Gg1 ∨Gg3)) ∨ ¬Gg2, Gg1 ↔ (p1 ∧ (p2 ∨ p3)),
Gg2 ↔ (p4 ∧ p5 ∧ (p6 ∨ p7) ∧AC¬Gg1), Gg3 ↔ (p8 ∧ p9 ∧ p3 ∧ (AC¬Gg2)}.

The agents give their judgments on one agenda after another starting with the agenda
for the highest priority candidate goal. Once the profile π and the decision Dg for a
goal g are obtained, they are added to χ. To avoid the situation in which the group casts
judgments on an issue that has already been decided, we need to remove decided issues
fromAg before eliciting the profile for this agenda.

The group goals are generated by executing GenerateGoals(χ, N).

function GenerateGoals(χ, S):
for each Ggi ∈ G s.t. [∀Ggj ∈ G: (Ggj � Ggi)⇒ (ANGgj ∈ χ or AN¬Ggj ∈ χ)]

{ B := ({a | ANa ∈ χ} ∪ {¬a | AN¬a ∈ χ}) ∩ Agi ;
A∗
gi

:= Agi/B;
πgi := elicit(S,A∗

gi
, χ);

χ := χ ∪ πgi ∪ fa(πgi); }
return χ.

GenerateGoals does not violate the candidate goal preference order and it terminates
if elicit terminates. elicit requests the agents to submit complete judgment sets for
πgi ⊂ χ. We require that elicit is such that for all returned π it holds: χ ∪ f(π)) �� ⊥
and χ ∪ π�i �� ⊥ for every i ∈ N . When a higher priority goal Ggi is accepted by
the group, a lower priority incompatible goal Ggj cannot be adopted regardless of the
judgments on the issues in Agj . Nevertheless, elicit will provide individual judgments
for the agenda Agj . If the acceptance of Ggi is reconsidered, we can obtain a new
decision on Ggj because the profile for Ggj is available.

Example 5. Consider the χ for robots given in Example 4. The following calls
to elicit are made in the given order. First, πg1 = elicit(N,A∗

g1 , χ) with the
GenerateGoals(χ) = χ′ = χ∪πg1∪fa(πg1). Second, πg2 = elicit(N,A∗

g2 , χ
′), with

GenerateGoals(χ′) = χ′′ = χ′ ∪ πg2 ∪ fa(π(g2)). Last, πg3 = elicit(N,A∗
g3 , χ

′′),
with GenerateGoals(χ′′) = χ′′′ = χ′′ ∪ πg3 ∪ fa(πg3). Since there is no overlap-
ping between agendas Ag2 and Ag1 , A∗

g1 ≡ Ag1 and A∗
g2 ≡ Ag2 . However, since

Ag2 ∩Ag3 = p3, then A∗
g3 = {p8, p9, Gg3}.

4 Commitment Strategies

The group can choose to reconsider the group goal in presence of new information –
“a joint commitment must be terminated jointly” (pg. 143, [15]). Whether the group

Group Intention Is Social Choice with Commitment 165

chooses to reconsider depends on how committed it is to the group intention corre-
sponding to that goal. We defined the group intention to be INg ≡ ANGg, i.e. the
decision to accept g as the group goal. The level of persistence of a group in their col-
lective decision depends on the choice of commitment strategy.

These are the three main commitment strategies (introduced by Rao and
Georgeff [31]):

Blind commitment: Iig → (IigUBig)
Single-minded commitment: Iig → (IigU(Big ∨Bi�¬g))
Open-minded commitment: Iig → (IigU(Big ∨ ¬Gig))

These commitment strategies only consider the relation between the intention and
the beliefs regarding g and Gg. In our model of group intentions, a commitment is to a
goal acceptance. This enables intention reconsideration upon new information on either
one of the agenda issues in Ag , as well as on a higher priority goal.

The strength of our framework is exhibited in its ability to describe the groups’ com-
mitment not only to its decision to adopt a goal, but also to its decision to reject a goal.
Namely, if the agents decided INgi and AN¬Ggj , they are committed to both IN gi
and AN¬Ggj . Commitment to reject g allows for g to be reconsidered and eventually
adopted if the state of the world changes.

Let N be a set of agents with a set of candidate goals G. Let Ggi, Ggj ∈ G have
agendasAgi , Agj . We use p ∈ Apgi

and qi ∈ A
c

gi
, qj ∈ A

c

gj
. The profiles and decisions

are πgi and f(πgi); Ggj > Ggi, and Ggj cannot be pursued at the same time as Ggi.
We use the formulas (α1)−(α5) to refine the blind, single-minded and open-minded

commitment. Instead of the until, we use the temporal operator release: ψ R φ ≡
¬(¬ψ U ¬φ), meaning that φ has to be true until and including the point where ψ
first becomes true; if ψ never becomes true, φ must remain true forever. Unlike the until
operator, the release operator does not guarantee that the right hand-side formula will
ever become true, which in our case translates to the fact that an agent could be forever
committed to a goal.

(α1) Egi R INgi
(α2) ⊥ R AN¬Ggi
(α3) (E�¬gi ∨ Egi) R ANqi
(α4) AN¬qj R ANqi
(α5) ANp→ (E¬p R ANqi)

Blind commitment: α1 ∧ α2.
Only the observation that the goal is achieved (Egi) can release the intention to achieve
the goal IN gi. If the goal is never achieved, the group is always committed to it. If a
goal is not accepted, then the agents do not reconsider accepting it.

Single-minded commitment: α3.
Only new information on the goal (either that the goal is achieved or had become im-
possible) can release the decision of the group to adopt /reject the goal. Hence, new
information is only regarded if it concerns the conclusion, while information on the
remaining agenda items is ignored.

166 G. Boella et al.

Extended single-minded commitment: α3 ∧ α4.
Not only new information on Ggi, but also the collective acceptance to adopt a more
important incompatible goal Ggj can release the intention of the group to achieve Ggi.
Similarly, if Ggi is not accepted, the non-acceptance can be revised, not only if Ggj is
observed to be impossible or achieved, but also when the commitment to pursue Ggj is
dropped (for whatever reason).

Open-minded commitment: α3 ∧ α5.
A group maintains its collective acceptances to adopt or reject a goal as long as the new
information regarding all collectively accepted agenda items is consistent with f(πgi).

Extended open-minded commitment: α3 ∧ α4 ∧ α5.
Extending on the single-minded commitment, a change in intention to pursue a higher
priority goal Ggj can also release the acceptance of the group on Ggi.

Once an intention is dropped, a group may need to reconsider its collective accep-
tances. This may cause for the dropped goal to be re-affirmed, but a reconsideration
process will be invoked nevertheless.

5 Reconsideration of Group Attitudes

In Section 3.2 we defined the mental state of the group χ. We can now define what it
means for a group to be coherent.

Definition 8 (Group coherence). Given a Kripke structureM and situations s ∈ W ,
a group of N agents is coherent if the following conditions are met:
(ρ1):M |= ¬(ASa ∧AS¬a) for any S ⊆ N and any a ∈ Ag.
(ρ2): IfM, s |= χ then χ � ⊥.
(ρ3):M, s |=

∧
G → ¬�¬g for all Gg ∈ G.

(ρ4): Let Gg ∈ G and G′ = G/{Gg}, thenM |= (
∧
G ∧ E�¬g)→ X(¬Gg).

(ρ5): Let p ∈ Apg and q ∈ {Gg,¬Gg}. Ep ∧ (Ep R ANq)→ XANp

The first condition ensures that no contradictory judgments are given. The second con-
dition ensures that the mental state of the group is logically consistent in all situations.
The third and fourth conditions ensure that impossible goals cannot be part of the set of
candidate goals and if g is observed to be impossible in situation s, then it will be re-
moved from G in the next situation. ρ5 enforces the acceptance of the new information
on the group level, when the commitment strategy so allows – after a is observed and
that led the group to de-commit from g, the group necessarily accepts a.

A coherent group accepts the observed new information on a premise. This may
cause the collective acceptances to be inconsistent with the justification rules. Conse-
quently, the decisions and/or the profiles in χ need to be changed in order to ensure that
ρ1 and ρ2 are satisfied. If, however �¬g or g is observed, the group reconsiders χ by
removing Gg from G. In this case, the decisions and profiles are not changed.

For simplicity, at present we work with a world in which the agents’ knowledge can
only increase, namely the observed information is not a fluent. A few more conditions
need to be added to the definition of group coherence for our model to be able to be
applicable to fluents. For example, we need to define which observation is accepted
when two subsequent contradictory observations happen.

Group Intention Is Social Choice with Commitment 167

5.1 Reconsideration Strategies

For the group to be coherent at all situations, the acceptances regarding the group goals
need to be reconsidered after de-commitment. Let Dg ⊂ χ contain the group accep-
tances for a goal g, while πg ⊂ χ contain the profile for g. There are two basic ways
in which a collective judgment set can be reconsidered. The first way is to elicit a new
profile for g and apply judgment aggregation to it to obtain the reconsidered D∗

g . The
second is to reconsider only Dg without re-eliciting individual judgments. The first
approach requires communication among agents. The second approach can be done
by each agent reconsidering χ by herself. We identify three reconsideration strategies
available to the agents. The strategies are ordered from the least to the most demanding
in terms of agent communication.

Decision reconsideration (D-r). Assume that Ea, a ∈ Apg, q ∈ {Gg,¬Gg} and
the group de-committed from ANq. The reconsidered decision D∗

g is such that a is
accepted, i.e., ANa ∈ D∗

g , and the entire decision is consistent with the justification
rules, namely Rpjustg ∪ D∗

g �� ⊥. If the D-r specifies a unique D∗
g , for any observed

information and anyDg, then χ can be reconsidered without any communication among
the agents. Given the form ofRpjustg (see Section 3.2), this will always be the case.

However D-r is not always an option when the de-commitment occurred due to a
change in collective acceptance of a higher priority goal g′. Let q′ ∈ {Gg′,¬Gg′}.
Let the new acceptance be AN¬q′. D-r is possible if and only if D∗

g = Dg and
Rpjustg ∪ Dg ∪ {AN¬q′} �� ⊥. Recall that AN q′ was not in Ag and as such the
acceptance of q′ or ¬q′ is never in the decision for πg .

Partial reconsideration of the profile (Partial π-r). Assume that Ea, a ∈ Ag, Gg ∈
G. Not only the group, but also the individual agents need to accept a. The Partial π-
r asks for new individual judgments to be elicited. This is done to ensure the logical
consistency of the individual judgment sets with the observations. New judgments are
only elicited from the agents i which A{i}¬a.

Let W ⊆ N be the subset of agents i s.t. A{i}¬a ∈ χ. Agents i are s.t. A{i}a ∈ χ
when the observation is E¬a. Let πWg ⊆ πg be the set of all acceptances made by the
agents in W . We construct χ′ = χ/πWg . The new profile and decision are obtained by
executing GenerateGoals (χ′, W).

Example 6. Consider Example 3. Assume thatDg1 ={ACp1, AC¬p2, ACp3, ACGg1},
Dg2 = {ACp4, ACp5, ACp6, ACp7, AC¬Gg2} and Dg3 = {ACp8, ACp9, ACGg3}
are the group’s decisions. Assume the group de-commits on Gg1because of E¬p2. If
the group is committed to Gg3, the commitment on Gg3 will not allow for ANp3 to be
modified when reconsidering Gg1. Since ANp3 exists in χ′, p3 will be excluded from
the (new) agenda for g1, although it was originally in it. elicit calls only on the agents
in W to complete πg1 ∈ χ′ with their judgment sets.

Full profile reconsideration (Full π-r). The full profile reconsideration is the same
as the partial reconsiderations except now W = N . Namely, within the full profile
revision strategy, each agent is asked to revise his judgment set by accepting the new
information, regardless of whether he had already accepted it.

168 G. Boella et al.

5.2 Combining Revision and Commitment Strategies

Unlike the Rao and Georgeff commitment strategies [31], in our framework the com-
mitment strategies are not axioms of the logic. We require that the commitment strategy
is valid in all the models of the group and not in all the models of AGELTL. This allows
the group to define different commitment strategies and different revision strategies for
different goals. It might even choose to revise differently depending on which informa-
tion triggered the revision. Choosing different revision strategies for each goal, or each
type of new information, should not undermine the coherence of the group record χ.
The conditions of group coherence of the group ensures that, after every reconsidera-
tion, χ must remain consistent. However, some combinations of commitment strategies
can lead to incoherence of χ.

Example 7. Consider the decisions in Example 6 . Assume that initially the group chose
open-minded commitment for ICg1 and blind commitment for ICg3, with goal open-
minded commitment for AC¬Gg2. If Eg1 and thus ICg1 is dropped, then the extended
open-minded commitment would allow AC¬Gg2 to be reconsidered and eventually
ICg2 established. However, since the group is blindly committed to ICg3, this change
will not cause reconsideration and as a result both ICg2 and ICg3 will be in χ, thus
making χ incoherent.

Problems arise when sub(Rpjustgi
) ∩ sub(Rpjustgj

) �= ∅, where sub(Rpjustg) denotes the
set of atomic sub-formulas of some goal g and Ggi, Ggj ∈ G. Proposition 2 summarizes
under which conditions these problems are avoided.

Proposition 2. Let α′ and α′′ be the commitment strategies selected for gi and gj cor-
respondingly. χ ∪ α′ ∪ α′′ �� ⊥ (in all situations):
a) if φ ∈ sub(Rpjustgi

) ∩ sub(Rpjustgj
) and p ∈ Agi ∩ Agj , then α5 is either in both α′

and α′′ or in none;
b) if Ggi is more important than Ggj while Ggj and Ggi cannot be accepted at the
same time, then α4 ∈ α′′.

Proof. The proof is straightforward. If the change in the group (non)acceptance of Ggi
causes the ANGgj to induce group incoherence, then we are able to de-commit from
ANGgj . If we would not able to de-comit from ANGgj then group coherence would
be blocked. If the change in the group (non)acceptance of Ggi is caused by an obser-
vation on a premise p ∈ Agi ∩ Agj then condition a) ensures that the commitment
to ANGgj does not block group coherence. If the change on ANGgj is caused by a
change in commitment to a higher priority goal, the condition b) ensures that a commit-
ment regarding Ggj does not block group coherence. Condition b) allows only “goal
sensitive” commitments to be selected for lower level goals.

6 Conclusions

We presented a formalization of non-summative beliefs, goals and intentions in
AGELTL and showed how they can be generated using judgment aggregation. Our
multi-agent AGELTL logic extends BDILTL. In accordance with the non-summative
view, having a group intention INg in our framework does not imply I{i}g for each the

Group Intention Is Social Choice with Commitment 169

Table 1. Ggj > Gg and can not be pursued at the same time with Gg. 	Dg denotes: collective
attitudes for g are reconsidered. 	 πg denotes: the profile (all or some parts of it) is re-elicited.

Commitment to Release on Change How
AN (¬)Gg �¬g g Ggj Ap

g χ 	Dg 	πg JA
Blind

Single-minded

 D-r

Extended

 Partial π-r

Open-minded

 Full π-r

Extended

member i. We extended the commitment strategies of Rao and Georgeff [31] to increase
the reactivity of the group to new information. Now the commitment strategies are not
axioms of the representation logic; instead they are a property of a group. Groups can
have different levels of commitment to different goals. We showed how the group can
combine different commitments to different goals.

Our framework is intended for groups that engage in joint activity and it is applicable
when it cannot be assumed that the agents persuade each other on a single position and
goal, and yet it is necessary that the group presents itself as a single whole from the
point of view of beliefs and goals. The requirement that the group presents itself as a
rational entity that has goals justified by the beliefs it holds, and is able to revise these
goals under the light of new information, was held by Tuomela [37] and adopted in
agent theory by Boella and van der Torre [2] and Lorini [25]. The proposal of the paper
can be applied, for example, in an opensource project, where several people have to
discuss online to agree on which is their position on issues and which is their goal.

An advantage of our framework is its ability to allow groups to commit to a decision
to reject a goal, thus having the option to reconsider rejected goals. Furthermore, we do
not only show when to reconsider, but also how, by defining reconsideration strategies.
Table 1 summarizes our commitment and reconsideration strategies.

We assume that the group has an order of importance for its candidate goals. Alter-
natively, the group can also agree on this order by expressing individual preferences.
Uckelman and Endriss [38] show how individual (cardinal) preferences over goals can
be aggregated. In [39] the reconsideration of individual intentions and associated plans
is considered. Intentions and their role in deliberation for individual agents have been
studied in a game theoretic framework by Roy [33,34]. Icard et al. [20] consider the
joint revision of individual attitudes, with the revision of beliefs triggering intention
revision. We allow for both the change in epistemic and in motivational attitudes to be
the cause for reconsideration.

In our framework, the entire group observes the new information. In the future we
intend to explore the case when only some members of the group observe the new
information. The only assumptions we make regarding the connectivity of the members
is that they are able to communicate their acceptances and receive the aggregation result.
The problem of elicitation and communication complexity in voting is a nontrivial one
[8,9] and in the future we intend to study these properties of our framework.

170 G. Boella et al.

In the work we presented, we do not consider how an individual constructs his judg-
ments. We can take that Biφ → A{i}φ, but this is not a requirement for all agents.
We would expect “honest” agents to follow this rule, but we can also define dishonest
agents for which Biφ → A{i}φ does not hold. In the latter case, the agent might de-
clare A{i}φ while it does not believe φ. Given that the group attitudes are established
by an aggregation procedure that is, as almost all but the most trivial procedures, ma-
nipulable, the question is whether there are scenarios in which an agent can have the
incentive to behave strategically in rendering judgments. Furthermore, given that some
of the reconsideration strategies call for re-elicitation of judgments, can an agent have
the incentive to behave strategically in rendering judgments that would lead to sooner
re-elicitation? We intend to devote more attention to answering these questions as well
as studying the manipulability properties of our framework.

References

1. Arrow, K., Sen, A.K., Suzumura, K.: Handbook of Social Choice and Welfare, vol. 1. Else-
vier, Amsterdam (2002)

2. Boella, G., van der Torre, L.: The ontological properties of social roles in multi-agent sys-
tems: Definitional dependence, powers and roles playing roles. Artificial Intelligence and
Law Journal (AILaw) 15(3), 201–221 (2007)

3. Bratman, M.E.: Shared intention. Ethics 104(1), 97–113 (1993)
4. Castelfranchi, C., Paglieri, F.: The role of beliefs in goal dynamics: Prolegomena to a con-

structive theory of intentions. Synthese 155, 237–263 (2007)
5. Chapman, B.: Rational aggregation. Politics, Philosophy and Economics 1(3), 337–354

(2002)
6. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)
7. Cohen, P.R., Levesque, H.: Intention is choice with commitment. Artificial Intelligence

42(2-3), 213–261 (1990)
8. Conitzer, V., Sandholm, T.: Vote elicitation: Complexity and strategy-proofness. In:

AAAI/IAAI, pp. 392–397 (2002)
9. Conitzer, V., Sandholm, T.: Communication complexity of common voting rules. In: ACM

Conference on Electronic Commerce, pp. 78–87 (2005)
10. Dietrich, F., List, C.: Strategy-proof judgment aggregation. STICERD - Political Economy

and Public Policy Paper Series, (09). Suntory and Toyota International Centres for Eco-
nomics and Related Disciplines, LSE (August 2005)

11. Dietrich, F., List, C.: Arrow’s theorem in judgment aggregation. Social Choice and Wel-
fare 29(1), 19–33 (2007)

12. Dunin-Keplicz, B., Verbrugge, R.: Teamwork in Multi-Agent Systems: A Formal Approach.
Wiley and Sons, Chichester (July 2010)

13. Gilbert, M.P.: Modeling Collective Belief. Synthese 73, 185–204 (1987)
14. Gilbert, M.P.: Belief and acceptance as features of groups. Protosociology: An International

Journal of Interdisciplinary Research 16, 35–69 (2002)
15. Gilbert, M.P.: Acting together, joint commitment, and obligation. Philosophische Anal-

yse/Philosophical Analysis (2007)
16. Gilbert, M.P.: Shared Intention and Personal Intentions. Philosophical Studies (2009)
17. Grosz, B., Hunsberger, L.: The dynamics of intention in collaborative activity. Cognitive

Systems Research 7(2-3), 259–272 (2007)
18. Hakli, R.: Group beliefs and the distinction between belief and acceptance. Cognitive Sys-

tems Research 7(2-3), 286–297 (2006); Cognition, Joint Action and Collective Intentionality

Group Intention Is Social Choice with Commitment 171

19. Hartmann, S., Pigozzi, G., Sprenger, J.: Reliable methods of judgment aggregation. Journal
of Logic and Computation (forthcoming)

20. Icard, T., Pacuit, E., Shoham, Y.: Joint revision of belief and intention. In: Proc.of the
12th International Conference on Principles of Knowledge Representation and Reasoning
(KR 2010) (2010)

21. Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Artif. Intell. 75(2), 195–240 (1995)

22. Konieczny, S., Pino-Pérez, R.: Merging with integrity constraints. In: Hunter, A., Parsons, S.
(eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 233–244. Springer, Heidelberg (1999)

23. Levesque, H.J., Cohen, P.R., Nunes, J.H.T.: On acting together. In: AAAI, pp. 94–99 (1990)
24. List, C., Puppe, C.: Judgment aggregation: A survey. In: Anand, P., Puppe, C., Pattanaik, P.

(eds.) Oxford Handbook of Rational and Social Choice, Oxford (2009)
25. Lorini, E., Longin, D.: A logical account of institutions: From acceptances to norms via

legislators. In: KR, pp. 38–48 (2008)
26. Lorini, E., Longin, D., Gaudou, B., Herzig, A.: The logic of acceptance. Journal of Logic

and Computation 19(6), 901–940 (2009)
27. Meijers, A.: Collective agents and cognitive agents. Protosociology. Special Issue Under-

standing the Social: New Perspectives from Epistemology 16, 70–86 (2002)
28. Pigozzi, G., Slavkovik, M., van der Torre, L.: A complete conclusion-based procedure for

judgment aggregation. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS, vol. 5783,
pp. 1–13. Springer, Heidelberg (2009)

29. Pnueli, A.: The temporal logic of programs. In: SFCS 1977: Proceedings of the 18th An-
nual Symposium on Foundations of Computer Science, pp. 46–57. IEEE Computer Society,
Washington, DC, USA (1977)

30. Quinton, A.: The presidential address: Social objects. Proceedings of the Aristotelian Soci-
ety 76, 1–27+viii (1975)

31. Rao, A.S., Georgeff, M.P.: Intentions and rational commitment. In: Proceedings of the First
Pacific Rim Conference on Artificial Intelligence (PRICAI 1990), pp. 94–99 (1993)

32. Rao, A.S., Georgeff, M.P., Sonenberg, E.A.: Social plans: a preliminary report (abstract).
SIGOIS Bull. 13, 10 (1992)

33. Roy, O.: A dynamic-epistemic hybrid logic for intentions and information changes in strate-
gic games. Synthese 171, 291–320 (2009)

34. Roy, O.: Intentions and interactive transformations of decision problems. Synthese 169,
335–349 (2009)

35. Schild, K.: On the relationship between bdi logics and standard logics of concurrency. Au-
tonomous Agents and Multi-Agent Systems 3(3), 259–283 (2000)

36. Singh, M.P.: Group intentions. In: Proceedings of the Tenth International Workshop on Dis-
tributed Artificial Intelligence (IWDAI 1990) (1990)

37. Tuomela, R., Miller, K.: Groups beliefs. Synthese 91, 285–318 (1992)
38. Uckelman, J., Endriss, U.: Compactly representing utility functions using weighted goals and

the max aggregator. Artif. Intell. 174, 1222–1246 (2010)
39. van der Hoek, W., Jamroga, W., Wooldridge, M.: Towards a theory of intention revision.

Synthese 155(2), 265–290 (2007)
40. Wolter, F.: Fusions of modal logics revisited. In: Kracht, M., de Rijke, M., Zakharyaschev,

M. (eds.) Advances in Modal Logic 96, pp. 361–379. CSLI Lecture Notes (1998)
41. Wooldridge, M., Jennings, N.: The cooperative problem-solving process. Journal of Logic

and Computation 9(4) (1999)

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 172–191, 2011.

The Fundamental Principle of Coactive Design:
Interdependence Must Shape Autonomy

Matthew Johnson1,2, Jeffrey M. Bradshaw1, Paul J. Feltovich1, Catholijn M. Jonker2,
Birna van Riemsdijk2, and Maarten Sierhuis2,3

1 Florida Institute for Human and Machine Cognition (IHMC), Pensacola, Florida, USA
2 EEMCS, Delft University of Technology, Delft, The Netherlands

3 PARC, Palo Alto, California, USA
{mjohnson,jbradshaw,pfeltovich}@ihmc.us,
{c.m.jonker,m.b.vanriemsdijk}@tudelft.nl,

maarten.sierhuis@parc.com

Abstract. This article presents the fundamental principle of Coactive Design, a
new approach being developed to address the increasingly sophisticated roles
for both people and agents in mixed human-agent systems. The fundamental
principle of Coactive Design is that the underlying interdependence of
participants in joint activity is a critical factor in the design of human-agent
systems. In order to enable appropriate interaction, an understanding of the
potential interdependencies among groups of humans and agents working
together in a given situation should be used to shape the way agent architectures
and individual agent capabilities for autonomy are designed. Increased
effectiveness in human-agent teamwork hinges not merely on trying to make
agents more independent through their autonomy, but also in striving to make
them more capable of sophisticated interdependent joint activity with people.

Keywords: Coactive, autonomy, interdependence, joint activity.

1 Introduction

Researchers and developers continue to pursue increasingly sophisticated roles for
agents.1 Envisioned roles include caretakers for the homebound, physician assistants,
coworkers and aides in factories and offices, and servants in our homes. Not only are
the agents themselves increasing in their capabilities, but also the composition of
human-robot systems is growing in scale and heterogeneity. All these requirements
showcase the importance of robots transitioning from today’s common modes of
reliance, where they are frequently operated as mere teleoperated tools, to more
sophisticated partners or teammates [1, 2].

Direct teleoperation and complete autonomy are often thought of as two extremes
on a spectrum. Researchers in human-agent interaction have typically seen themselves
as investigating the middle ground between these extremes. Such research has gone

1 Throughout the article we will use the terms “agent” and “robot” interchangeably to mean any

artificial actor.

 The Fundamental Principle of Coactive Design 173

under various names, including mixed-initiative interaction [3], adjustable autonomy
[4], collaborative control [5], and sliding autonomy [6]. Each of these approaches
attempts to keep the human-agent system operating at a “sweet spot” between the two
extremes. As the names of these approaches suggest, researchers understand that the
ideal is not a fixed location along this spectrum but may need to vary dynamically
along the spectrum as context and resources change. Of importance to our discussion
is the fact that these approaches, along with traditional planning technologies at the
foundation of intelligent systems, typically take an autonomy-centered perspective,
focusing mainly on the problems of control and task allocation when agents and
humans attempt to work together.

In contrast to these autonomy-centered approaches, Coactive Design is a
teamwork-centered approach. The concept of teamwork-centered autonomy was
addressed by Bradshaw et al. [7]. It takes as a beginning premise that joint activity of
a consequential nature often requires people to work in close and continuous
interaction with autonomous systems, and hence adopts the stance that the processes
of understanding, problem solving and task execution are necessarily incremental,
subject to negotiation, and forever tentative.

The overall objective of our work in Coactive Design is to describe and, insofar as
possible, empirically validate design principles and guidelines to support joint activity
in human-agent systems. Though these principles and guidelines are still under
development, our research has progressed to the point where we are ready to present
the fundamental principle that serves as the foundation for our approach. The
fundamental principle of Coactive Design recognizes that the underlying
interdependence of participants in joint activity is a critical factor in the design of
human-agent systems. In order to enable appropriate interaction, an understanding of
the potential interdependencies among groups of humans and agents working together
in a given situation should be used to shape the way agent architectures and individual
agent capabilities for autonomy are designed. We no longer look at the primary
problem of the research community as simply trying to make agents more
independent through their autonomy. Rather, in addition, we strive to make them
more capable of sophisticated interdependent joint activity with people.

This article will begin by an overview of different usages of the term autonomy in
the agent and robot literature. We provide a rationale for our belief that a new
approach to human-agent system design is needed in the context of prior research and
its associated challenges. Next we introduce some of the concepts important to the
Coactive Design approach and present different aspects of its fundamental principle.
We discuss relevant experimental work to date that has begun to demonstrate our
claims. Finally, we close with a summary of the work.

2 Defining Autonomy

Autonomy has two basic senses in everyday usage. The first sense, self-sufficiency, is
about the degree to which an entity is able to take care of itself. Bradshaw [8] refers to
this as the descriptive dimension of autonomy. Similarly, Castelfranchi [9] referred to
this as one of the two aspects of social autonomy that he called independence. People
usually consider robot autonomy in this sense in relation to a particular task. For

174 M. Johnson et al.

example, a robot may be able to navigate autonomously, but only in an office
environment. The second sense refers to the quality of self-directedness, or the degree
of freedom from outside constraints (whether social or environmental), which
Bradshaw calls the prescriptive dimension of autonomy. Castelfranchi referred to this
as autonomy of delegation and considered it another form of social autonomy. For
robots, this usually means freedom from human input or intervention during a
particular task.

In the following section, we will describe some of the more prominent approaches
to improve human-robot system effectiveness.2 To avoid the ambiguity often found in
the agent literature, we will use the terms self-sufficiency and self-directedness in our
discussion.

3 Prior Work

3.1 Function Allocation and Supervisory Control

The concept of automation—which began with the straightforward objective of
replacing whenever feasible any task currently performed by a human with a machine
that could do the same task better, faster, or cheaper—became one of the first issues
to attract the notice of early human factors researchers. These researchers attempted to
systematically characterize the general strengths and weaknesses of humans and
machines [10]. The resulting discipline of Function Allocation aimed to provide a
rational means of determining which system-level functions should be carried out by
humans and which by machines. Sheridan proposed the concept of Supervisory
Control [11], in which a human oversees one or more autonomous systems, statically
allocating tasks to them. Once control is given to the system, it is ideally expected to
complete the tasks without human intervention. The designer’s job is to determine
what needs to be done and then provide the agent the capability (i.e., self-sufficiency)
to do it. Therefore, this approach to achieving autonomy is shaped by a system’s self-
sufficiency.

3.2 Adaptive, Sliding, or Adjustable Autonomy

Over time it became plain to researchers that things were not as simple as they first
appeared. For example, the suitability of a particular human or machine to take on a
particular task may vary by time and over different situations; hence the need for
methods of function allocation that are dynamic and adaptive. Dorais [12] defines
“adjustable autonomy” as “the ability of autonomous systems to operate with
dynamically varying levels of independence, intelligence and control.” Dias [13] uses
a similar definition for the term “sliding autonomy.” Sheridan discusses “adaptive
automation,” in which the system must decide at runtime which functions to automate
and to what extent. We will use the term adjustable autonomy as a catch-all to refer to
this concept, namely, a change in agent autonomy—in this case the self-directedness
aspect—to some appropriate level, based on the situation. The action of adjustment
may be initiated by the human, by the agent framework, or by the agent itself.

2 Parts of our discussion of this topic are adapted from [8].

 The Fundamental Principle of Coactive Design 175

It is evident that such approaches are autonomy-centered, with the focus being on
task assignment, control, and level of independence. Autonomy, in this case, is shaped
exclusively by varying levels of self-directedness. One very important concept
emphasized by these approaches is adaptivity, a quality that will be important in the
operation of increasingly-sophisticated intelligent systems.

3.3 Mixed-Initiative Interaction

Mixed-initiative approaches evolved from a different research community, but share
some similar ideas and assumptions. Allen defines mixed-initiative as “a flexible
interaction strategy, where each agent can contribute to the task what it does best” [3].
In Allen’s work, the system is able to reason about which party should initiate action
with respect to a given task or communicative exchange. In a similar vein, Myers and
Morley describe a framework called “Taskable Reactive Agent Communities (TRAC)
[14] that supports the directability of a team of agents by a human supervisor by
modifying task guidance.” Directability or task allocation is once again the central
feature of the approach. Murphy [15] also uses the term “mixed-initiative” to describe
their attention-directing system, the goal of which is to get the human to assume
responsibility for a task when a robot fails.

Mixed-initiative interaction is also essentially autonomy-centered. Its usual focus is
on task assignment or the authority to act and, as such, varying self-directedness is
used to shape the operation of the autonomous system. Mixed-initiative interaction
contributes the valuable insight that joint activity is about interaction and negotiation,
and that dynamic shifts in control may be useful.

3.4 Collaborative Control

Collaborative Control is an approach proposed by Fong [5] that uses human-robot
dialogue (i.e., queries from the robot and the subsequent presence or absence of a
responses from the human), as the mechanism for adaptation. As Fong states,
“Collaborative control... allows robots to benefit from human assistance during
perception and cognition, and not just planning and command generation” [5].
Collaborative Control is a first step toward Coactive Design, introducing the idea that
both parties may participate simultaneously in the same action. Here the ongoing
interdependence of the human and the robot in carrying out a navigation task is used
to shape the design of autonomous capabilities. The robot was designed to enable the
human to provide assistance in the perceptual and cognitive parts of the task. The
robotic assistance is not strictly required, so we are not merely talking about self-
sufficiency. The key point is that the robotic assistance in this case is an integral part
of the robot design and operation. We have adopted and extended some of the ideas
from Collaborative Control as we have developed the Coactive Design approach.

3.5 How Autonomy Has Been Characterized in Former Research

One way to gain insight into the predominant perspectives in a research community is
to review how it categorizes and describes its own work. This provides a test of our
claim that prior work in agents and robots has been largely autonomy-centered.

176 M. Johnson et al.

The general drift is perhaps most clearly seen in the work of researchers who have
tried to describe different “levels” of autonomy. For example, Yanco [16] characterized
autonomy in terms of the amount of intervention required. For example, full
teleoperation is 100% intervention and 0% automation. On the other hand, tour guide
robots are labelled 100% autonomous and 0% intervention. The assumption in this
model is that intervention only occurs when the robot lacks self-sufficiency. However,
identifying the “percentage” of intervention is a very subjective matter except when one
is at the extreme ends of the spectrum. Similarly Parasuraman and Sheridan [17]
provide a list of levels of autonomy shown in figure 1.

HIGH 10. The computer decides everything, acts autonomously, ignoring the human.

 9. informs the human only if it, the computer, decides to
 8. informs the human only if asked, or
 7. executes automatically, then necessarily informs the human, and
 6. allows the human a restricted time to veto before automatic execution, or
 5. executes that suggestion if the human approves, or
 4. suggests on alternative
 3. narrows the selection down to a few, or
 2. The computer offers a complete set of decision/action alternatives, or

LOW 1. The computer offers no assistance: human must take all decisions and actions

Fig. 1. Levels of Automation [17]

Sheridan’s scale is clearly autonomy-centered, as noted by Goodrich and Schultz
[18]. Specifically it focused on the self-directedness aspect of autonomy. In response
to the limitations of Sheridan’s scale, Goodrich and Schultz [18] developed a scale
that attempts to focus on levels of interaction rather than of automation (figure 2).

Fig. 2. Levels of autonomy with an emphasis on human interaction [18]

Though Goodrich and Schultz rightfully recognized that something more than the
previous autonomy-centered characterizations of the field needed to be captured, in
reality the left-to-right progress of the scale provides little more than a historical
summary of robot research, with peer-to-peer collaboration as the next step. The label
of the right end of the spectrum, “dynamic autonomy,” reveals that this scale is, like
the others discussed previously, autonomy-centered.

Bradshaw has characterized autonomy in terms of multiple dimensions rather than
a single one-dimensional scale of levels [8]. The descriptive and prescriptive aspects
of autonomy discussed above capture two of these primary dimensions. He also
argues that the measurement of these dimensions should be specific to task and

 The Fundamental Principle of Coactive Design 177

situation, since an agent may be self-directed or self-sufficient in one particular task
or situation, but not in another.

Castelfranchi suggested dependence as the complement of autonomy [9] and attempts
to capture several dimensions of autonomy in terms of the autonomy vs. dependence of
various capabilities in a standard Procedural Reasoning System (PRS) architecture. These
include information, interpretation, know-how, planning, plan discretion, goal dynamics,
goal discretion, motivation, reasoning, monitoring, and skill autonomy. Like Bradshaw,
Castelfranchi recognizes that autonomy is not a monolithic property, but should be
measured with respect to different aspects of the agent. Castelfranchi put it this way: “any
needed resource or power within the action-perception loop of an agent defines a possible
dimension of dependence or autonomy” [9].

3.6 Challenges of Autonomy-Centered Approaches

We now describe the most common challenges faced by autonomy-centered
approaches in the context of both senses of autonomy. Since the capability to perform
a task and the authority to perform a task are orthogonal concepts, we separate these
two dimensions onto separate axes, as in figure 3. Together these two axes represent
an autonomy-centered plane of robotic capabilities. The self-sufficiency axis
represents the degree to which a robot can perform a task by itself. “Low” indicates
that the robot is not capable of performing the task without significant help. “High”
indicates that the robot can perform the task reliably without assistance. The self-
directedness axis is about freedom from outside control. Though a robot may be
sufficiently competent to perform a range of actions, it may be constrained from
doing so by a variety of social and environmental factors. “Low” indicates that,
although possibly capable of performing the task, the robot is not permitted to do so.
“High” indicates the robot has the authority over its own actions, though it does not
necessarily imply sufficient competence.

Fig. 3. Common system issues mapped against an autonomy-centered plane

Direct teleoperation, in which both self-sufficiency and self-directedness are
absent, corresponds to the region labeled Burden. Increasing the self-directedness
without a corresponding level of self-sufficiency will result in a system that is

178 M. Johnson et al.

over-trusted, as shown in the upper left of the figure. Many systems fall in this
category, including, for example, every entry in the DARPA robotic vehicle Grand
Challenge that failed to complete the task. When autonomous capabilities are seen as
insufficient, particularly in situations where the consequences of robot error may be
disastrous, it is common for self-directedness to be limited. When the system self-
directedness is reduced significantly below the potential of its capabilities the result is
an underutilized system, as shown in the lower right corner of the figure. An example
of this would be the first generations of Mars rovers which, due to the high cost of
failure, were not trusted with autonomous action, but rather were subject to the
decisions of a sizable team of NASA engineers. Here is the key point, however:

Even when self-directedness and self-sufficiency are reliable, matched
appropriately to each other, and sufficient for the performance of the robot’s
individual tasks, human-robot teams engaged in consequential joint activity
frequently encounter the potentially debilitating problem of opacity, meaning the
inability for team members to maintain sufficient awareness of the state and
actions of others to maintain effective team performance.

The problem of opacity in robotics was highlighted recently by Stubbs [19] but had
been previously identified as a general challenge more than two decades ago by
Norman [20]. Norman cites numerous examples of opacity, most of which come from
aviation where silent (opaque) automation has led to major accidents. This opacity
often leads to what Woods calls “automation surprises” [21] that may result in
catastrophe. An example is an autopilot that silently compensates for ice build-up on
the airplane wings, while pilots remain unaware. Then, when the limits of control
authority are reached and it can no longer compensate for extreme conditions, the
automation simply turns off, forcing the pilots to try to recover from a very dangerous
situation.

In the next section, we discuss the importance of interdependence in joint activity,
and highlight opportunities for addressing it.

4 Interdependence

Coactive Design takes interdependence as the central organizing principle among
people and agents working together in joint activity. Our sense of joint activity
parallels that of Clark [22], who has described what happens in situations when one
party does depends on what another party does (and vice-versa) over a sustained
sequence of actions [23]. In such joint activity, we say that team members are
“interdependent.”

In his seminal 1967 book, James D. Thompson [24] recognized the importance of
interdependence in organizational design. He also noted that there was a lack of
understanding about interdependence. Similarly, we feel that understanding interdepend-
ence is critical to the design of human-agent systems. Understanding the nature of the
interdependencies involved provides insight into the kinds of coordination that will be
required among groups of humans and agents. Indeed, we assert that coordination
mechanisms in skilled teams arise largely because of such interdependencies [25]. For
this reason, understanding interdependence is an important requirement in designing

 The Fundamental Principle of Coactive Design 179

agents that will be required to work as part of human-agent systems engaged in joint
activity. Below, we introduce three new concepts that are important extensions to
previous work on interdependence, particularly in the context of Coactive Design of
human-agent systems.

4.1 Hard vs. Soft Interdependence

In their interdisciplinary study of coordination, Malone and Crowston [26] summarized
prior work on coordination from many fields. Like us, they view coordination as
required for managing dependencies (though we would say interdependencies—more
on that below). They also characterize some of the most common types of
dependencies, e.g., use of shared resources, producer/consumer relationships,
simultaneity of processes, and task/subtask roles. These types of dependencies have
received considerable attention in the literature. Unfortunately, they are insufficient to
capture the necessary types of interdependence in human-agent systems.

In his research, Malone specifically was concerned with dependency as a matter of
understanding how the results of one task enable the performance of another.
However, in joint activity, we are not exclusively interested in the hard constraints
that enable or prevent the possibility of an activity, but also in the idea of “soft
interdependence,” which includes a wide range of “helpful” things that a participant
may do to facilitate team performance. The difference between strict dependence and
soft interdependence is illustrated in the contrast between the two situations shown in
figure 4—one in which a train car is completely dependent on the engine to pull it,
and the other in which two friends provide mutual support of a helpful nature that is
optional and opportunistic rather than strictly required. Indeed, our observations to
date suggest that good teams can often be distinguished from great ones by how well
they support requirements arising from soft interdependencies.

Fig. 4. Dependence vs. Interdependence

Examples of such forms of interdependence often seen among effective human
teams include progress appraisals [27] (“I’m running late”), warnings (“Watch your
step”), helpful adjuncts (“Do you want me to pick up your prescription when I go by

180 M. Johnson et al.

the drug store?”), and observations about relevant unexpected events (“It has started
to rain”). They can also be physical actions, such as opening a door for someone who
has their hands full. Though social science research on teamwork clearly
demonstrates their importance, soft interdependencies have been relatively neglected
by agent researchers.

Although some previous human-agent systems have succeeded in supporting
various aspects of teamwork that relate to soft interdependence, they have often
lacked convincing general principles relating to their success. We are hopeful that the
concept of interdependence can eventually provide such principles. In the meantime,
we have at least become convinced that human-agent systems defined solely in terms
of traditional notions of hard dependence and autonomy limit the potential for
effective teamwork, as the preliminary experimental results discussed in a later
section seem to indicate.

4.2 Inter-activity Dependence vs. Intra-activity Interdependence

Thompson [24] suggested three types of interdependence: pooled, sequential and
reciprocal. Pooled interdependence describes a situation in which each entity
contributing (independently) a discrete part to the whole, with each in turn being
supported by the whole. Sequential interdependence occurs when one entity directly
depends on the output of another—to us this would be better described as simple
dependence. Reciprocal interdependence is a bidirectional sequential interdependence
or what we would call mutual dependence.

Thompson’s three types of interdependence are described in terms of how the
output or product of an entity affects other entities engaged in independent activities.
They do not, however, adequately model the full range of interdependencies involved
in joint activity. Thompson’s types can be viewed as inter-activity dependence. For
human-agent systems engaged in joint activity there remain other types that can be
considered intra-activity interdependence. For example, progress appraisal
(determining and sharing with others how one’s task “is going”) and notifying others
of unexpected events [27] are usually performed within an ongoing activity. We will
call this supportive interdependence. In future research, this type of interdependence
will be further elaborated, and additional types of interdependence in joint activity
will be identified.

4.3 Monitoring As a Requirement for Handling Supportive Interdependence

The problem of monitoring for conditions that relate directly to an assigned agent
task, apart from the vagaries of sensing itself, presents a few challenges for agent
developers. If, for example, an agent needs an elevator (resource dependence), the
agent can monitor the elevator doors to see when they open. Alternatively, the agent
could be notified of availability (sequential interdependence) through signaling (e.g.
up arrow light turns on, audible bell, or an elevator operator telling you “going up”).

However, handling supportive interdependence often requires groups of agents and
people to monitor the ongoing situation, to “look out for each other,” even when the
aspects of the situation being monitored do not relate directly to a given individual’s

 The Fundamental Principle of Coactive Design 181

assigned tasks. For example, in order to provide back-up behavior to compensate for a
teammate’s frail self-sufficiency, other team members might decide to monitor the
teammate to know when it is appropriate to provide assistance. Monitoring
interdependence also highlights the reciprocal nature of the activity. Not only does the
monitoring entity need to monitor, but the monitored entity may need to make certain
aspects of its state and behavior observable.

5 Coactive Design

The fundamental principle of Coactive Design is that interdependence must shape
autonomy. Certainly joint activity of any consequence requires a measure of
autonomy (both self-sufficiency and self-directedness) of its participants. Without a
minimum level of autonomy, an agent will simply be a burden on a team, as noted by
Stubbs [19]. However, it can be shown that in some situations simply adding more
autonomy can hinder rather than help team performance. The means by which that
agent realizes the necessary capabilities of self-sufficiency and self-directedness must
be guided by an understanding of the interdependence between team members in the
types of joint activity in which it will be involved. This understanding of
interdependence can be used to shape the design and implementation of the agent’s
autonomous capabilities, thus enabling appropriate interaction with people and other
agents.

In contrast to autonomous systems designed to take humans out of the loop, we are
specifically designing systems to address requirements that allow close and
continuous interaction with people. As we try to design more sophisticated systems,
we move along a maturity continuum [28] from dependence to independence to
interdependence. The process is a continuum because at least some level of
independence of agents through autonomous capabilities is a prerequisite for
interdependence. However, independence is not the supreme achievement in human-
human interaction [28], nor should it be in human-agent systems. Imagine a
completely capable autonomous human possessing no skills for coactivity—how well
would such a person fit in most everyday situations?

The dictionary gives three meanings [29] to the word “coactive”: 1) Joint action, 2)
An impelling or restraining force; a compulsion, 3) Ecology; any of the reciprocal
actions or effects, such as symbiosis, that can occur in a community. These three
meanings capture the essence of our approach and we translate these below to identify
the three minimum requirements of a coactive system. Our contention is that for an
agent to effectively engage in joint activity, it must at a minimum have:

1) Awareness of interdependence in joint activity
2) Consideration for interdependence in joint activity
3) Capability to support interdependence in joint activity

We are not suggesting that all team members must be fully aware of the entire scope
of the activity, but they must be aware of the interdependence in the activity.
Similarly, all team members do not need to be equally capable, but they do need to be
capable of supporting their particular points of interdependence. We now address
each requirement in more detail.

182 M. Johnson et al.

5.1 Awareness of Interdependence in Joint Activity

In human-machine systems like today’s flight automation systems, there is a shared
responsibility between the humans and machines, yet the automation is completely
unaware of the human participants in the activity. Joint activity implies mutual
engagement in a process extended in space and time [22, 30]. Previous work in
human-agent interaction has focused largely on assigning or allocating tasks to agents
that may know little about the overall goal of the activity or about other tasks on
which its tasks may be interdependent. However, the increasing sophistication of
human-machine systems depends on a mature understanding of the requirements of
interdependence between team members in joint activity.

Consider the history of research and development in unmanned aerial vehicles
(UAVs). The first goal in its development was a standard engineering challenge to
make the UAV self-sufficient for some tasks (e.g., stable flight, waypoint following).
As the capabilities and robustness increased, the focus shifted to the problem of self-
directedness (e.g., what am I willing to let the UAV do autonomously). The future
directions of UAVs indicate a another shift, as discussed in the Unmanned Systems
Roadmap [31] which states that unmanned systems “will quickly evolve to the point
where various classes of unmanned systems operate together in a cooperative and
collaborative manner…” This suggests a need to focus on interdependence (e.g., how
can I get multiple UAVs to work effectively as a team with their operators?). This
pattern of development is a natural maturation process that applies to any form of
sophisticated automation. While awareness of interdependence was not critical to the
initial stages of UAV development, it becomes an essential factor in the realization of
a system’s full potential. We are no longer dealing with individual autonomous
actions but with group participatory actions [22]. This is a departure from the
previous approaches discussed in section 3, with the exception of Collaborative
Control [5], which aimed to incorporate all parties into the activity through shared
human-agent participation in perceptual and cognitive actions.

5.2 Consideration for Interdependence in Joint Activity

Awareness of interdependence is only helpful if requirements for interdependence are
taken into account in the design of an agent’s autonomous capabilities. As Clark
states, “a person’s processes may be very different in individual and joint actions even
when they appear identical” [22]. One of Clark’s favorite examples is playing the
same piece of music as a musical solo versus a duet. Although the music is the same,
the processes involved are very different. This is a drastic shift for many autonomous
robots, most of which were designed to do things as independently as possible.

In addition to the processes involved being different, joint activity is inherently
more constraining than independent activity. Joint activity may require participating
parties to assume collective obligations [32] that come into play even when they are
not currently “assigned” to an ongoing task. These obligations may require the
performance of certain duties that facilitate good teamwork or they may limit our
individual actions for the good of the whole. For example, we may be compelled to
provide help in certain situations, while at the same time being prevented from
hogging more than our share of limited resources. In joint activity, individual

 The Fundamental Principle of Coactive Design 183

participants share an obligation to coordinate; sacrificing to a degree their individual
autonomy in the service of progress toward group goals. These obligations should not
be viewed as only a burden. While it is true they usually have a cost, they also provide
an opportunity.

5.3 Capability to Support Interdependence in Joint Activity

While consideration is about the deliberative or cognitive processes, there is also an
essential functional requirement. We have described self-sufficiency as the capability
to take care of one’s self. Here we are talking about the capability to support
interdependence. This means the capability to assist another or be assisted by another.
The coactive nature of joint activity means that there is a reciprocal requirement in
order for interdependence to be supported, or to put it another way, there is the need
for complementary capabilities of those engaged in a participatory action. For
example, if I need to know your status, you must be able to provide status updates. If
you can help me make navigation decisions, my navigation algorithm must allow for
outside guidance. Simply stated, one can only give if the others can take and vice
versa. The abilities required for good teamwork require reciprocal abilities from the
participating team members.

6 Visualizing the New Perspective

So how does the coactive design perspective change the way we see the agent design
problem? In section 3.6, we depicted the two senses of autonomy on two orthogonal
axes representing an autonomy-centered plane of agent capabilities. Coactive Design
adds a third orthogonal dimension of agent capability: support for interdependence
(figure 5).

The support for interdependence axis characterizes an agent in terms of its
capability to depend on others or be depended on by others in any of the dimensions
of autonomy. This axis is specifically about the capability to be interdependent, not
the need or requirement to be dependent which are captured by the other axes.
Although we are showing a single set of axes for simplicity, The Coactive Design
perspective considers all dimensions [8] as discussed in section 3.5. The take away
message is not the support of any particular cognitive model, but instead the concept
that there are many aspects to an agent as it performs in a joint activity. Just as
Castelfranchi argued that autonomy can occur at any of these “levels” or dimensions,
Coactive Design argues that the ability to be interdependent exists at each “level” or
dimension as well.

As we look at the challenges faced by current autonomous systems from a Coactive
Design perspective, we see not only the constraints imposed by interdependence in the
system, but also as a tremendous opportunity. Instead of considering the activity an
independent one we can think about it as a participatory [22] one. Both the human and
the machine are typically engaged in the same activity. There may be domains where
we would like a robot to go on its mission and simply return with a result, but most
domains are not like this. We need the agent to have some self-sufficiency and self-
directedness, but we remain interdependent as the participatory task unfolds.

184 M. Johnson et al.

Supporting this need provides an opportunity to address some of the current
challenges. Figure 5 lists just a few such opportunities. For example, over-trusted
robots can be supplemented with human assistance and opaque systems can provide
feedback and transparency. In fact, many of the ten challenges [2] of automation, such
as predictability and directability apply to this new dimension.

Fig. 5. Support for interdependence as an orthogonal dimension to autonomy and some
opportunities this dimension offers

We can now map examples of prior work in autonomy onto this space (table 1).
Section 3 describes how previous work was focused on self-sufficiency and self-
directedness. Coactive Design presents the unique perspective of the support for
interdependence dimension which is captured in the two rightmost columns of Table 1:
the ability to depend on others and the ability to be depended on by others. The most

Table 1. Scope of concerns addressed by different approaches

Autonomy-Centered
Teamwork-Centered

(Support for Interdependence)
Approach

Self-
sufficiency

Self-
directedness

Ability to
depend on others

Ability to be
depended on

Functional Allocation
Supervisory Control

Adjustable Autonomy
Sliding Autonomy

Adaptive Autonomy
Flexible Autonomy

Mixed Initiative
Interaction

Collaborative Control
Coactive Design

 The Fundamental Principle of Coactive Design 185

important innovation of the Collaborative Control [5] approach was in accommodating
a role for the human in providing assistance to the robot at the perceptual and cognitive
levels. In other words, the robot had the ability to depend on the human for assistance in
perception. The key insight of Collaborative Control was that tasks may sometimes be
done more effectively if performed jointly. Coactive Design extends this perspective by
providing a complement of this type of interdependence, accommodating the possibility
of machines assisting people.

7 Initial Experiments

We have begun a series of experiments that relate to the fundamental principle of
Coactive Design. Our first domain, Blocks World for Teams (BW4T) [33] was
designed to be as simple as possible.

Fig. 6. BW4T game interface

Similar in spirit to the classic AI planning problem of Blocks World, the goal of
BW4T is to “stack” colored blocks in a particular order. To keep things simple, the
blocks are unstacked to begin with, so unstacking is not necessary. The most
important variation on the problem we have made is to allow multiple players to work
jointly on the same task. We control the observability between players and the
environment. The degree of interdependence that is embedded in the task is
represented by the complexity of color orderings within the goal stack. The task
environment (figure 6) is composed of nine rooms containing a random assortment of
blocks and a drop off area for the goal. The environment is hidden from each of the

186 M. Johnson et al.

players, except for the contents of the current room. Teams may be composed of two
or more players, each working toward the shared team goal. Players cannot see each
other, so coordination must be explicit through the chat window. The task can be done
without any coordination, but it is clear that coordination (i.e., the players managing
their interdependence) can be beneficial.

7.1 Adding Autonomy without Addressing Interdependence

A common suggestion for how to improve human-agent systems is to increase the
level of agent autonomy [34, 35]. This solution is also commonly proposed for future
systems [31]. It is true that additional increments of agent autonomy might, in a given
circumstance, reap benefits to team performance through reduction of human burden.
However, there is a point in problem complexity at which the benefits of autonomy
may be outweighed by the increase in system opacity when interdependence issues
are not adequately addressed. The fundamental principle of Coactive Design is that,
in sophisticated human-agent systems, the underlying interdependence of participants
in joint activity is a critical factor in human-agent system design. Another way to state
this is that in human-agent systems engaged in joint activity, the benefits of higher
levels of autonomy cannot be realized without addressing interdependence through
coordination. Initial experiments using our BW4T domain seem to provide evidence
for this claim.

For this experiment, we had a single human participate in a joint activity
(collecting colored blocks in a specified sequence) with a single agent player. Both
the human and the agent controlled a robot avatar. The agent teammate was directed
by the human (i.e. participant or user) at levels of autonomy that varied in each
experimental condition. The agent was designed to perform reliably and with
reasonably intelligent behavior. This means that the self-directedness is always
sufficient for the self-sufficiency and thus the system cannot be over-trusted. This
experiment also limited the command interface for each level to the highest possible
command set, thus preventing under-utilization. As such, we were looking only at the
burdensomeness and opacity of the system.

In our lowest level of autonomy, Level 1, the human made all decisions and
initiated all actions for the agent player. In essence, the human was manually
controlling two robot avatars. This corresponds to Sheridan’s [17] lowest level of
autonomy. For Level 2 we automated most actions of the agent. All decisions
remained with the human. We expected this automation would be preferred because it
was reducing burden without adding opacity. Level 3 had all of the autonomous
actions from Level 2 and also added an autonomous decision (i.e., which room to
search). This increased opacity in two ways. First, the human is no longer aware of all
of the decisions because one of them has been automated. Second, the robot has to
make the decision without the same information the human had available when
making the decision for the agent. Level 4 added automation of the remaining
decision, making the task “fully autonomous.” This corresponds to Sheridan’s [17]
highest level of autonomy.

We expected the burden to reduce from Level 1 to Level 4 and this was confirmed
by an exit survey of the participants. However, we expected that as more activity and
decision-making were delegated to the agent there would be an increased opacity in
the system, reflected in more difficulties in the participants’ understanding of what

 The Fundamental Principle of Coactive Design 187

was happening at a given moment. This was also confirmed by an exit survey of the
participants. Finally, we expected this increase in opacity would result in reduced user
acceptance and poorer team performance. The curves in figure 7a illustrate the
general shape of results we expected, with the benefits of reduced human burden
being eventually outweighed by the cost of opacity as autonomy increased beyond the
inflection point.

Fig. 7. a) Hypothetical graph suggesting that the benefits of reduced human burden would
eventually by outweighed by the cost of opacity as autonomy increases; b) Experimental results
of 24 participants displayed as Average user preference ranking vs. Autonomy level

We ran an initial set of 24 subjects through all four levels (repeated measures)
using a Latin Square design. While space prohibits a complete description of these
first results here, our results were consistent with our prediction. Figure 7b shows the
average rank of all participants for each level of autonomy (rank of 1=best and
4=worst). The predicted inflection point is apparent. Performance, specifically time to
complete task had a similar shape, but the variance prohibited achieving significance.
While this is a single example in a single task domain, the results are consistent with
the hypothesis that the benefits of higher levels of autonomy cannot be realized
without addressing interdependence. If the general result holds as we continue our
series of experiments, it will be a compelling demonstration of issues that cannot be
addressed by autonomy-centered approaches, but can benefit from using the Coactive
Design perspective.

7.2 Soft Interdependence Is a Key Factor in Performance

We have also run a pilot study of human-only teams to evaluate interdependence in
the Block World for Teams domain. Although a simple domain, it demonstrates the
complexity of coordination and interdependence even in the simplest domain. We ran
twelve subjects in various team sizes (2, 3, 4, 5, 6, and 8). The subjects were allowed
to talk openly to one another. As the activity became more interdependent (more
complex ordering of the goal stack), we noted an increase in the number of
coordination attempts, as would be expected. We also noted some interesting aspects
of the communication. Although only two basic tasks are involved, we observed a

188 M. Johnson et al.

wide variety of communications. Of particular interest were the large number of
communications that were about soft interdependencies and monitoring issues that
were related to them. An example of a soft interdependency is the exchange of world
state information. Since players could only see the status of their current room, they
would exchange information about the location of specific colors. Although the task
could clearly be completed without this communication, the importance of this soft
interdependence is demonstrated by the frequency of its use. An example of
monitoring in support of interdependence issues was when players provided or
requested an update as a colored block was picked up. The frequency of both progress
updates and world state updates are examples of the importance of addressing
supportive interdependence in human-agent systems for joint activity. These types of
exchanges typically accounted for approximately 60% of the overall communication
and increased with the degree of interdependence required for a given problem. A
final observation was that not only the amount of communication changed with the
degree of interdependence in the task, but the pattern of communication varied as
well. For example, during tasks with low interdependence, world state and task
assignment were the dominant communications. As interdependence in the task
(complexity in the ordering of the goal stack) increased, they both diminished in
importance and progress updates became dominant.

8 Discussion

The target for research in Coactive Design is not to support the development of
current teleoperated systems or systems struggling with basic self-sufficiency. We are
specifically addressing what a human-agent system would look like if it were to fill
the more challenging roles of the future. The envisioned roles, if properly performed,
have a greater level of interdependence that cannot be addressed solely by adjusting
who is in control or who is assigned what task—and necessitate a focus on the
coactivity. In contrast to autonomous systems designed to take humans out of the
loop, we are specifically addressing the requirements for close and continuous
interaction with people. The fundamental principle of Coactive Design provides a
new perspective for designers of human-agent systems and gives some initial high-
level guidance about what considerations are important. We plan to extend and
expand this initial fundamental principle in future work.

In our first experiment, we have tried to demonstrate the issues with taking an
autonomy-centered approach. By identifying the interdependence in the system, we
can understand that there is a potential inflection point for team effectiveness as
autonomy increases. Awareness of this effect and its cause can help designers address
the interdependence and improve acceptance and performance, thereby yielding the
full potential from autonomous capabilities. We plan to demonstrate this in the future.

We deliberately used a single human and single agent in our first experiment to
show that even in the simplest case, our claim is still valid. We expect the effects to
be more dramatic in larger teams and teams with higher levels of interdependence.
Our demonstration used simple task interdependence, but there are other sources of
interdependence including the environment, the team structure, and the team member
capabilities. Future work will include developing a better understanding of the
different types of interdependence.

 The Fundamental Principle of Coactive Design 189

We also used perfect autonomy for our experiment to show that even under ideal
conditions, our claim is still valid. In real world systems, perfect autonomy will
continue to be an elusive goal. This underlying truth necessitates human involvement
at some level and accentuates the importance of teamwork. Agent frailties means one
will have unexpected events (failures). One cannot overcome failed autonomy with
autonomy, but one can possibly do so with teamwork (e.g., Fong’s collaborative
control [5]). Additionally, Christofferson and Woods [36] describe the “substitution
myth”: the erroneous notion that automation activities simply can be substituted for
human activities without otherwise affecting the operation of the system. Even if
frailty were not an issue, the “substitution myth” reminds us that autonomy is not
removing something, but merely changing the nature of it. Humans cannot simply
offload tasks to the robots without incurring some coordination penalty. This is not a
problem as long as we keep in mind that autonomy is not an end in itself, but rather a
means to supporting productive interaction [18]. Coactive Design reminds us that
interdependence can provide opportunities to counteract these costs.

As agents move toward greater and greater autonomy, several researchers have
expressed concerns. Norman states that “the danger [of intelligent agents] comes
when agents start wresting away control, doing things behind your back, making
decisions on your behalf, taking actions and, in general, taking over [37].” Simply
deciding who is doing what is insufficient, because the human will always need to
understand a certain amount of the activity. Additionally, humans are typically the
desired beneficiaries of the fruits of the robot labor. We are the reason for the system
and will always want access to the system. Not only do we want access to understand
the system, but we also want to have input to affect it. To paraphrase Kidd [38], it is
not merely that human skill is required, but also that human involvement is desired.
That involvement means the human-agent system is interdependent.

9 Summary

We have introduced Coactive Design as a new approach to address the increasingly
sophisticated roles for people and agents in mixed human-agent systems. The
fundamental principle of Coactive Design recognizes that the underlying
interdependence of participants in joint activity is a critical factor in the design of
human-agent systems. In order to enable appropriate interaction, an understanding of
the potential interdependencies among groups of humans and agents working together
in a given situation should be used to shape the way agent architectures and individual
agent capabilities for autonomy are designed. We no longer look at the primary
problem of the research community as simply trying to make agents more
independent through their autonomy. Rather, in addition, we strive to make them
more capable of sophisticated interdependent joint activity with people.

References

1. Bradshaw, J.M., Feltovich, P., Johnson, M.: Human-Agent Interaction. In: Boy, G. (ed.)
Handbook of Human-Machine Interaction. Ashgate (2011) (in press)

2. Klein, G., Woods, D.D., Bradshaw, J.M., Hoffman, R., Feltovich, P.: Ten challenges for
making automation a “team player” in joint human-agent activity. IEEE Intelligent
Systems 19(6), 91–95 (2004)

190 M. Johnson et al.

3. Allen, J.E., Guinn, C.I., Horvtz, E.: Mixed-Initiative Interaction. IEEE Intelligent
Systems 14(5), 14–23 (1999)

4. Kortenkamp, D.: Designing an Architecture for Adjustably Autonomous Robot Teams.
Revised Papers from the PRICAI, Workshop Reader, Four Workshops held at PRICAI
2000, on Advances in Artificial Intelligence. Springer, Heidelberg (2000)

5. Fong, T.W.: Collaborative Control: A Robot-Centric Model for Vehicle Teleoperation.
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2001)

6. Brookshire, J., Singh, S., Simmons, R.: Preliminary Results in Sliding Autonomy for
Coordinated Teams. In: Proceedings of The 2004 Spring Symposium Series (2004)

7. Bradshaw, J.M., Acquisti, A., Allen, J., Breedy, M.R., Bunch, L., Chambers, N., Feltovich,
P., Galescu, L., Goodrich, M.A., Jeffers, R., Johnson, M., Jung, H., Lott, J., Olsen Jr.,
D.R., Sierhuis, M., Suri, N., Taysom, W., Tonti, G., Uszok, A.: Teamwork-centered
autonomy for extended human-agent interaction in space applications. Presented at the
AAAI 2004 Spring Symposium, March 22-24. Stanford University, CA (2004)

8. Bradshaw, J.M., Feltovich, P., Jung, H., Kulkarni, S., Taysom, W., Uszok, A.: Dimensions
of adjustable autonomy and mixed-initiative interaction. In: Nickles, M., Rovatsos, M.,
Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969, pp. 17–39. Springer,
Heidelberg (2004)

9. Castelfranchi, C.: Founding Agents “Autonomy” on Dependence Theory. In: ECAI 2000,
pp. 353–357 (2000)

10. Fitts, P.M.: Human engineering for an effective air-navigation and traffic-control system,
p. 84, xii. National Research Council, Division of Anthropology and Psychology,
Committee on Aviation Psychology, Washington (1951)

11. Sheridan, T.B.: Telerobotics, automation, and human supervisory control, p. 393, xx. MIT
Press, Cambridge (1992)

12. Dorais, G., Kortenkamp, D.: Designing Human-Centered Autonomous Agents. Revised
Papers from the PRICAI 2000, Workshop Reader, Four Workshops held at PRICAI 2000,
on Advances in Artificial Intelligence. Springer, Heidelberg (2000)

13. Dias, M.B., Kannan, B., Browning, B., Jones, E., Argall, B., Dias, M.F., Zinck, M.B.,
Veloso, M.M., Stentz, A.T.: Sliding Autonomy for Peer-To-Peer Human-Robot Teams.
Robotics Institute, Pittsburgh (2008); Myers, K.L., Morley, D.N.: Directing Agent
Communities: An Initial Framework. In: Proceedings of the IJCAI Workshop on
Autonomy, Delegation, and Control: Interacting with Autonomous Agents, Seattle, WA
(2001)

14. Myers, K.L., Morley, D.N.: Human directability of agents. In: Proceedings of the 1st
International Conference on Knowledge Capture. ACM, Victoria (2001)

15. Murphy, R., Casper, J., Micire, M., Hyams, J.: Mixed-initiative Control of Multiple
Heterogeneous Robots for USAR (2000)

16. Yanco, H.A., Drury, J.L.: A Taxonomy for Human-Robot Interaction. In: AAAI Fall
Symposium on Human-Robot Interaction (2002)

17. Parasuraman, R., Sheridan, T., Wickens, C.: A model for types and levels of human
interaction with automation. IEEE Transactions on Systems, Man and Cybernetics, Part
A 30(3), 286–297 (2000)

18. Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Found. Trends
Hum.-Comput. Interact. 1(3), 203–275 (2007)

19. Stubbs, K., Hinds, P., Wettergreen, D.: Autonomy and common ground in human-robot
interaction: A field study. IEEE Intelligent Systems (Special Issue on Interacting with
Autonomy), 42–50 (2007)

 The Fundamental Principle of Coactive Design 191

20. Norman, D.A.: The “problem” of automation: Inappropriate feedback and interaction, not
“over-automation”. In: Broadbent, D.E., Baddeley, A., Reason, J.T. (eds.) Human Factors
in Hazardous Situations, pp. 585–593. Oxford University Press, Oxford (1990)

21. Woods, D.D., Sarter, N.B.: Automation Surprises. In: Salvendy, G. (ed.) Handbook of
Human Factors & Ergonomics. Wiley, Chichester (1997)

22. Clark, H.H.: Using language, p. 432, xi. Cambridge University Press, Cambridge (1996)
23. Klein, G., Feltovich, P.J., Bradshaw, J.M., Woods, D.D.: Common Ground and

Coordination in Joint Activity. In: William, K.R.B., Rouse, B. (eds.) Organizational
Simulation, pp. 139–184 (2005)

24. Thompson, J.D.: Organizations in action; social science bases of administrative theory,
p. 192, xi. McGraw-Hill, New York (1967)

25. Feltovich, P.J., Bradshaw, J.M., Clancey, W.J., Johnson, M.: Toward an Ontology of
Regulation: Socially-Based Support for Coordination in Human and Machine Joint
Activity. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006.
LNCS (LNAI), vol. 4457, pp. 175–192. Springer, Heidelberg (2007)

26. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM Comput.
Surv. 26(1), 87–119 (1994)

27. Feltovich, P.J., Bradshaw, J.M., Clancey, W.J., Johnson, M., Bunch, L.: Progress
Appraisal as a Challenging Element of Coordination in Human and Machine Joint
Activity. In: Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros, G.A. (eds.) ESAW 2007.
LNCS (LNAI), vol. 4995, pp. 124–141. Springer, Heidelberg (2008)

28. Covey, S.R.: The 7 Habits of Highly Effective People. Free Press, New York (1989)
29. coaction, http://dictionary.reference.com/browse/coactive
30. Sierhuis, M.: “It’s not just goals all the way down” – “It’s activities all the way down”. In:

O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS
(LNAI), vol. 4457, pp. 1–24. Springer, Heidelberg (2007)

31. Office of the Secretary of Defense, Unmanned Systems Roadmap (2007-2032)
32. van Diggelen, J., Bradshaw, J.M., Johnson, M., Uszok, A., Feltovich, P.: Implementing

collective oblications in human-agent teams using KAoS policies. In: Proceedings of
Workshop on Coordination, Organization, Institutions and Norms (COIN), IEEE/ACM
Conference on Autonomous Agents and Multi-Agent Systems, Budapest, Hungary,
May 12 (2009)

33. Johnson, M., Jonker, C., van Riemsdijk, B., Feltovich, P.J., Bradshaw, J.M.: Joint Activity
Testbed: Blocks World for Teams (BW4T). In: Aldewereld, H., Dignum, V., Picard, G.
(eds.) ESAW 2009. LNCS, vol. 5881, pp. 254–256. Springer, Heidelberg (2009)

34. Bleicher, A.: The Gulf Spill’s Lessons for Robotics. In: IEEE spectrum special report
(2010)

35. Jean, G.V.: Duty Aboard the Littoral Combat Ship: Grueling but Manageable in National
Defense (2010)

36. Christoffersen, K., Woods, D.D.: How to Make Automated Systems Team Players (2002)
37. Norman, D.A.: The invisible computer: why good products can fail, the personal computer

is so complex, and information appliances are the solution, p. 302, xii. MIT Press,
Cambridge (1998)

38. Kidd, P.T.: Design of human-centered robotic systems. In: Rahimi, M., Karwowski, W.
(eds.) Human-Robot Interaction, pp. 225–241. Taylor & Francis, Abington (1992)

A Probabilistic Mechanism for Agent Discovery and
Pairing Using Domain-Specific Data

Dimitris Traskas1, Julian Padget2, and John Tansley1

1 CACI Ltd, Andover, UK
{dtraskas,jtansley}@caci.co.uk

2 Department of Computer Science,
University of Bath, Claverton Down, Bath, UK

jap@cs.bath.ac.uk

Abstract. Agent discovery and pairing is a core process for many multi-agent
applications and enables the coordination of agents in order to contribute to the
achievement of organisational-level objectives. Previous studies in peer-to-peer
and sensor networks have shown the efficiency of probabilistic algorithms in ob-
ject or resource discovery. In this paper we maintain confidence in such mecha-
nisms and extend the work for the purpose of agent discovery for useful pairs that
eventually coordinate to enhance their collective performance. The key difference
in our mechanism is the use of domain-specific data that allows the discovery of
relevant, useful agents while maintaining reduced communication costs. Agents
employ a Bayesian inference model to control an otherwise random search, such
that at each step a decision procedure determines whether it is worth searching
further. In this way it attempts to capture something akin to the human dispo-
sition to give up after trying a certain number of alternatives and take the best
offer seen. We benchmark the approach against exhaustive search (to establish
an upper bound on costs), random and tabu—all of which it outperforms—and
against an independent industrial standard simulator—which it also outperforms.
We demonstrate using synthetic data—for the purpose of exploring the resilience
of the approaches to extreme workloads—and empirical data, the effectiveness of
a system that can identify “good enough” solutions to satisfy holistic organisa-
tional service level objectives.

1 Introduction

Agent discovery and pairing in a decentralised multi-agent environment that consists of
thousands of agents with different roles and skills and interconnected in various topolo-
gies needs to be scalable, efficient, robust and flexible enough to adapt both to changes
in requirements and changes in the environment. A number of techniques have been
proposed to tackle these challenges; our aim is to demonstrate a simple, effective mech-
anism that does not require centralised control and maintains reduced communication
overheads.

Decentralised multi-agent architectures typically consist of self-organising and co-
ordinating agents that do not have any dependencies on a global control system. Infor-
mation becomes available to agents locally through some form of sensing or messaging
and is used to meet the objectives and to satisfy the constraints of the organisation in

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 192–209, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Probabilistic Mechanism for Agent Discovery and Pairing 193

which the agents participate. Such environments are often highly dynamic and agents
can join or leave it rapidly for a variety of reasons such as host failure or migration
to a different node in the network. They also need to discover and communicate with
other agents in order to exploit services that are being made available. The domain of
peer to peer networking has inspired us with useful ideas that have been applied to
the development of service discovery algorithms [1] [14]. In general service discovery
is achieved using pull or push protocols or a combination of the two over structured
or unstructured networks. Push-based protocols require the advertisement of available
services thus creating unnecessary overhead when demand is low. On the other hand
a pull-based approach has the disadvantage of a search over the network but benefits
from the elimination of advertisement messages.

In this study we focus on unstructured networks with a pull-based approach that
fully utilises information gathered during the search. Observations made by the agent
while hopping can be used to update or to infer the probability that a subsquent hop
will result in reaching a better-suited agent with which to interact. An essential element
of this mechanism is an organisational model that exploits available domain-specific
data. We use this data to tag agents in the network during an initial bootstrapping and
introduction process and create clusters of agents with similar profiles. The result is a
form of overlay network that provides useful information to any agent starting a search
operation.

A case study from the business domain, specifically the call centre sector, is used
to evaluate the technique and generate quantifiable outcomes. The subject of our case-
study is the call allocation process—that is how to select the appropriate handler for a
call, being essentially a kind of resource discovery problem. Synthetic and empirical
data-sets allow us to make useful comparisons with a commercial simulator and with
the metrics generated by a real world call centre, while at the same time providing
supporting evidence for general results for low-cost resource discovery.

The remainder of this paper is laid out as follows: Section 2 discusses other work
related with agent discovery and pairing and Section 3 provides the motivation for our
work. In Section 4, we describe the proposed system architecture in detail and in Sec-
tion 5, we present the case study that we used to validate our theory. In Section 6, we
discuss our findings and finally end this paper with our conclusions and future vision in
Section 7.

2 Related Work

Service discovery mechanisms are necessarily closely related to the type of networks
used. For example unstructured systems characterised by a loose architecture where
agent-peers can join, leave or fail at any point are much more resilient, flexible and
scalable but have high communication costs during a random search. Our work focuses
on such networks and attempts to improve the random search process by employing
a probabilistic model. In contrast structured systems hold information about services
fixed on certain nodes and use techniques such as distributed hash tables (DHT) [2] for
service discovery but suffer from scalability issues.

194 D. Traskas, J. Padget, and J. Tansley

Common mechanisms encountered in the service discovery literature are agent match-
making, gossip-based protocols and probabilistic search. Agent matchmaking [22] can
be classified into:

– centralised using market bidding mechanisms [21] [20] [18].
– centralised but using a middle agent or broker [12] [6].
– and fully decentralised where agents use local information to form clusters and

randomly find useful pairs [15].

The main disadvantages of centralised mechanisms when applied to large scale systems
are scalability, robustness and flexible dynamic behaviour. A decentralised matchmaker
design is typically preferable and can potentially benefit from a probabilistic approach,
as we will shortly demonstrate.

Gossip-based mechanisms are based on probabilistic flooding where an agent sends
messages to a certain percentage of its neighbours that it believes they are available [16]
[5]. Part of the gossiping approach is the random search of agents which we believe can
be improved in a specific problem domain by employing a probabilistic model that
utilises any data available.

Probabilistic techniques that have been previously investigated within the context of
resource discovery in sensor networks [17] [3] or object searching in peer-to-peer net-
works [19] [8] seem to offer some of the characteristics we seek. The models employed
often use network level information and observations from previous searches to inform
the discovery process. The key difference with our work is the use of domain-specific
data that allows the discovery of relevant, useful agents while maintaining reduced com-
munication costs. Our objective is to allow agents to discover the best pair possible in
order to coordinate towards optimal collective performance. Agent discovery in an ap-
plication context requires specific problem knowledge which is why we have to ground
our experiments in a particular domain in order to demonstrate its effect.

3 Background and Motivation

The past few decades have seen rising consumer demands for more competitive prod-
ucts and services and have increased the need for a more flexible and adaptive busi-
ness operating model. For many businesses, existing software systems fail to adapt and
evolve rapidly while the complexity of their management is becoming a limiting factor
in further growth. In an effort to solve these problems business managers choose the
reductionist approach; essentially reducing the number of products and services offered
or even the size of their customer base under the mantra of focusing on “core busi-
ness”. The desired outcome of this approach is to simplify the processes and systems in
place—however reduced performance and profits can also result.

One of the aims of this work is to use the multi-agent paradigm to tackle these chal-
lenges and develop software solutions that can operate in highly dynamic environments.
Our long term goal is the development of business agent societies which can be charac-
terised by the following:

– closed, scalable and heterogeneous.
– fully decentralised and autonomous.

A Probabilistic Mechanism for Agent Discovery and Pairing 195

– distributed across different geographical locations and areas of the business.
– constrained by business rules and policies.

A typical model consists of service providers and service consumers in a closed sys-
tem where agents are controlled and monitored by the business and where information
exchanged can only be true or correct. Within this system the consumer will attempt
to locate the provider without having any prior knowledge of location or global sys-
tem state. Consumers are self-interested and need to discover and pair with a suitable
provider so that they can get optimum returns from their specific utility function. The
society can be seen as a large search space that contains a great number of provider-
consumer pair combinations but with only a few satisfying business constraints and
delivering optimum performance. From this perspective the problem is that of opti-
misation: essentially, how to find the best pair possible with the minimum number of
messages. We believe that “best” is not always necessary and for many application do-
mains a “good enough” solution can be adequate as long as the response is timely and
overheads are low.

4 System Architecture

This section describes the system architecture for the model used in this study. In the
absence of a central control regime we have an heterogeneous society of agents that are
fully connected with each other. Agents can join and leave the society over time with-
out significantly affecting processes in place or other interactions. In general the model
consists of service consumers and service providers however this does not necessarily
imply that a single agent cannot be both or either at different times. Depending on the
problem domain agents could potentially change role in response to a changing environ-
ment. This dual nature of agents is not part of our investigation but it is something we
intend to explore in future work. In a provider-consumer society, we are always going
to have consumers searching the network for providers which will result in a success-
ful pairing that enables the completion of an agent’s individual goals. Nevertheless this
one-sided view might limit the effectiveness of the discovery algorithm and there is no
reason that a provider to consumer search would not also work.

One of the fundamental elements of our design is the use of agent-local memory to
store useful information such as member addresses, cluster formations, skill distribution
or agent availability. Each agent has two types of memory, long term and short term that
are used for different purposes. Long term memory is simply a kind of cache with all
the unique identifiers of agents keyed by type or skill and used for searching relevant
areas of the network. New or withdrawn members are respectively added or removed
from this list over time. Short term memory is used during the discovery process to
store the recently visited members and cleared when the search terminates. Elements in
the short-term memory are ranked by fitness where fitness can be defined as the result
of a utility function that relates a given pair of agents. An internal mechanism ensures
that the two types of memory are synchronised and updated at the same time when a
message arrives with agent membership information.

The model uses a form of a semantic overlay network of skill-based clusters that are
updated every time a new agent joins. We use a tagging mechanism like that proposed

196 D. Traskas, J. Padget, and J. Tansley

by Holland [11] where agents are tagged based on their type and grouped in clusters.
The clusters allow agents to limit their search and target specific areas of the network
without wasting time or messages. There is no limitation to the number of clusters an
agent can belong to, since cluster membership depends solely on the number of services
that an agent can provide.

There are certain key processes that do not change from one problem domain to
another and which we explain in detail below. The messages used in the model can
be seen next to each process. Messages have four fields: the sender, the recipient, the
subject, and any useful data.

A. Introduction Process [PING]
A new provider or consumer joining the society follows an introduction procedure.
On initialisation it will receive a list of all members of the society and start send-
ing Ping messages in random order to all other agents in an exhaustive manner;
in essence announcing its existence. A list of all members can be retrieved using
an address table distributed across a number of host machines. The messages sent
contain information that describe the sender and is used by the recipients to classify
the new agent. Existing members will examine the information received – specific
to a problem domain – and decide if the new agent would be useful to store in local
memory or not. Information such as the type of an agent or availability are some ex-
amples. If the type of a new member indicates a useful future pairing – relevance of
service offered and required – then its unique identifier and all related information
get stored in local memory, otherwise it is discarded. For example a service provider
who does not have the required skills to provide a service at this current time to a
customer agent would not be added in local memory. This process is similar to an
agent naming service however we wish to maintain the lack of any dependencies on
centralised control systems and structures. It is required to work in a very dynamic
environment where agents join and leave all the time. Incorrect information about
the clusters does not stop the system operating however it does have an impact on
performance because of the limited visibility of the agents.

B. Withdrawal Process [WITHDRAWAL]
A consumer agent withdraws from the network when it has accomplished its tasks
and a provider when it is time for a break or the end of the working shift. In the case
of host migration the agent will have to inform the other agents with an alternative
message and thus separate the two distinct events. The withdrawal process is simple
and requires a minimal message that is sent to cluster members only. This message
does not obstruct or halt any current activity but only updates local memories so
that the cluster information within each agent is updated. If a host fails then it is
obvious that one or more agents will suddenly disconnect and, as a result, the nec-
essary updates will not be performed. This will only result in temporary delays in
the discovery process but under any circumstances stop currently active processes.
Communication delays due to host failure or agent failure/migration can also be
captured through exception handling mechanisms.

C. Discovery Process [QUERY / QUERYHIT / QUERYREJECT]
The specific requirements of a particular problem domain will ultimately dictate
how agents behave. When an agent – either consumer or provider – decides to

A Probabilistic Mechanism for Agent Discovery and Pairing 197

search the skill clusters for candidate pairs it first checks long term memory. As
previously mentioned, skill clusters are stored in long term memory and provide
the addresses of any connected agent. Specific tasks require specific skills and thus
a search on a single cluster. From a list of potential addresses in the cluster one
is picked randomly and a Query message sent to it. The message might contain
data and that again depends on the specific problem. For every Query message a
hop counter is incremented to track the number of messages sent. The hop counter
is compared to the number of agents that are of interest for a future pairing and
the process ultimately stops once that number is reached. There can only be two
outcomes from this message:

– QueryHit: The Query has been successful and the recipient replies to the sender
with (domain-specific) information such as waiting time or level of importance.
At that point any information sent along with the agent address are stored in
short term memory and supplied to the probabilistic decision engine. The result
of the decision engine is the probability that a subsequent Query will return a
better result. If that probability is very low then the agent will stop the search
and select the highest ranking agent from short term memory for an Offer. If
the probability is high then the search will continue.

– QueryReject: If the recipient has already formed a pair with someone else or
is ready to withdraw from the network then it will send a QueryReject reply.
On receipt of the reply the originator of this sequence of events will remove the
address from short term memory and check if there is anyone else in the list in
order to continue the search.

D. Pairing Process [OFFER / ACCEPT / REJECT]
When the decision engine returns with a small probability that the next hop will
produce a better pair the search process is stopped and an Offer message is sent to
the highest ranking agent. The recipient will either Accept that offer or Reject it.

4.1 Probabilistic Discovery and Pairing

In the decision engine described previously, each agent continuously updates its belief
about the state of the world around it, using the messages it receives from other agents.
This set of beliefs is then used by each agent when searching for a good pair, in order
to estimate whether it is worth continuing the search, or whether further searching is
unlikely to produce a better match. This model enables the agent to make an informed
choice, by estimating whether the next hop is likely to provide a more suitable pair than
the best one it has found so far. The updating of local beliefs is based on a Bayesian
framework [4]. Each agent starts off with a prior belief about the state of the system
around it which is currently the same for all agents of a given type but as all calculations
are purely local, these could easily be made to change from agent to agent. This prior
belief is then updated by the agent based on the messages it receives, to give a posterior
distribution on the state of the relevant part of the system. As the agent receives more
and more information, its probabilistic model reflects the world around it more and
more accurately. This updating of prior (before the data) to posterior (after the data)
beliefs occurs in a very specific way, according to Bayes’ rule:

198 D. Traskas, J. Padget, and J. Tansley

P (H | D) =
P (D | H)P (H)

P (D)

where D is the observed data and H is the particular hypothesis being tested by the
agent. The prior probability P(H) represents the agent’s prior belief in the hypothe-
sis before seeing any data. The model evidence P(D H) reflects how well a particular
hypothesis predicts the data, and the evidence P(D) provides normalisation over all hy-
potheses. We can see that if we have two hypotheses with equal priors, the hypothesis
that predicts the data more accurately will end up with the highest posterior probability,
as we would expect.

Suppose that an agent society has one provider and a number of consumers. We
also assume that the provider is ready to serve a consumer, and wants to serve the
most suitable of the available consumers. Rather than perform an exhaustive search by
sending and receiving messages to all consumers, this provider can use its model of
the distribution of consumer types to poll a subset of consumers. This provider’s initial
estimate of the distribution of consumer types is necessarily imprecise, but as more
consumers are polled, the accuracy of this estimate improves. This estimate combined
with the knowledge of the best consumer seen so far, enables the provider to stop any
further hops once it believes, that the probability of the next hop returning a better match
than the best one seen so far is sufficiently low. Two main assumptions are required in
order to specify this probabilistic inference process fully. The first is the agent’s prior
belief in the state of the system. This should be as broad a prior as possible if the state
of the system can be variable, but may be as informative as desired if the system is
more static, and a reasonable guess can be made as to its state without polling many
consumers. In this implementation each agent resets its belief each time it goes through
a new process of pair discovery. However in a more static environment agents could
quite easily retain some information from any previous search and incorporate this into
the prior for the next search. The second parameter required is the probability threshold
at which each agent stops performing any further hops, and stays with the best pairing
found up to that point. This threshold is defined initially at a low level and adjusted
accordingly after experimentation with the specific problem. After each hop the agent
evaluates the probability that the next hop will return a better solution than the best it has
encountered so far. If this probability falls below the threshold searching is terminated
and the best solution encountered is selected.

In order to use the probabilistic engine across different domains it is necessary to
mine useful information from available data during an initial modelling exercise. Do-
main knowledge, not necessarily expert, can be exploited in order to make useful ob-
servations from the data, which in turn can be used to calculate the probability that a
hypothesis may be true. For example across many domains one could use the type of
service required and estimate a distribution of consumers waiting in a queue. The ques-
tion that arises is if this modelling process could become part of the intelligence of an
agent however for this study we rely on the modeller.

4.2 Random and Tabu Mechanisms

Given the probabilistic orientation of our research, we have also investigated two other
approaches that have produced interesting outcomes. We have experimented with a

A Probabilistic Mechanism for Agent Discovery and Pairing 199

completely random discovery process where the agent randomly hops from one node
to another and decides to stop at random also. Every agent has a given probability of
stopping the search after each hop—this is a hypergeometric distribution of the number
of hops. When the search is complete short term memory is used to rank the visited
agents and make an offer in exactly the same way as with the probabilistic approach.
Although there is complete lack of control in the system, experiments conducted with
our case study demonstrate interesting results that we briefly discuss in a later section.
The other obvious technique is tabu pairing where the agent decides to pair with the
first potential candidate. A single Offer message is sent and the candidate added in
short term memory. If a rejection is received the next candidate will be contacted until
the list is exhausted. Our aim with these mechanisms is to explore fully the potential
of our design and produce comparisons with the Bayesian model that demonstrate its
effectiveness.

5 Call Centre Case Study

Call centres are fundamental to the operation of numerous large organisations, emer-
gency and government agencies and all types of customer service providers [9]. Call
centre management and critical aspects of it such as the call routing process which we
focus on in this paper, are becoming increasingly complicated for the same reasons
mentioned in our motivation section. The term ‘call-routing’ is probably most com-
monly associated with telecommunications networks, where the task is to avoid hot-
spot creation, maximise throughput and minimise latency. However call-routing in call
centres is a somewhat different problem that is closer to distributed resource discovery
and allocation. Conventional implementations of call-routing in call centres are tightly
controlled, centralised systems of asynchronous components, where all the decision-
making is embedded in a single element—the call router—that communicates with the
call-handlers (typically known as agents in the call-centre literature: here we use the
term “handler” to alleviate confusion with the term (software) agent).

It is important to note that our aim with this first study is not necessarily to im-
prove the performance of any of the current call routing algorithms but to demonstrate
that a multi-agent system can be adopted effectively in this sector. One of the potential
benefits of a decentralised architecture based on agents which can deliver similar per-
formance with current solutions is reduced telephony and maintenance costs. Instead of
using a central server that operates in a similar manner with a centralised matchmaker,
agents spawned by the customers on mobile or fixed lines would locate the call handlers
directly by employing a probabilistic discovery protocol over a peer to peer network.
The same base technology could offer improved simulation capabilities and the evalu-
ation of alternative operation models or allow the interconnection of other areas of the
business with the call centre.

5.1 A Multi-Agent Approach to Call Routing

During the call routing process a call arrives from the telecommunications network and
is ready for allocation by the ‘Automatic Call Distributor’ (ACD). The ACD processes
a set of business rules which determine which call has the highest priority such as the

200 D. Traskas, J. Padget, and J. Tansley

call type or skill, as it is usually referred to in this sector. Another parameter used is
handler availability, the resources waiting the longest without work will be at the top of
the allocation list excluding those on breaks. A new call is inserted into a queue of calls
that are ordered by waiting time and skill priority and when a new resource becomes
available the ACD gets notified and begins the allocation process. Customers who wait
too long terminate their link with the ACD and their call gets registered as abandoned
and removed from the queue. We address the call routing process from a MAS per-
spective and adopt agents in representing the key elements of it. We have developed a
conceptual model of the call centre for our simulations which consists of: (i) the Call
Centre, (ii) the Handlers, (iii) the Calls which contain customer information, skill re-
quired and time of arrival, (iv) the Skills which are the different types of call a handler
can process, (v) and finally the Skill Groups which are groups of skills call handlers can
have; an insurance skill group may consist of motor, home and pet insurance.

For the call allocation process we further developed a multi-agent model based on
the concepts described above and where agent Handlers use a probabilistic mechanism
to discover Call agents that have been waiting the longest and have the highest skill pri-
ority. A significant difference between our model and the standard industry algorithm,
is the allocation of calls to any handler irrespective of whether they are the longest
waiting. For each customer to be serviced, we spawn a Call agent. Any useful informa-
tion such as time of arrival in the system, type of service required or customer details
are contained within the Call—this is (some of) the domain-specific data. For simula-
tion purposes we model the abandonment behaviour of customers using a patience-time
model. We have implemented this model based on the exponential distribution [13], that
is recognised as appropriate for this kind of simulation delay. For each call that joins
the network we generate randomised abandonment times using the formula:

Time in seconds = (log(1− r) − σ)

where r is a random number between 0 and 1 and σ is the average patience time. The
same model is considered suitable to generate the handling times of agent handlers.
With Calls being defined as agents in the system, queueing is resolved and managed by
the Call itself. The core processes of the Handler and Call are explained below.

5.2 Handler Agent

– Initialise: The agent is initialised with shift information and a list of all members
of the network.

– Ping: The agent sends Ping messages to everyone as part of the introduction pro-
cess. As service providers and consumers can be effectively both we allow all
agents to follow this procedure although the information is not used at this stage.

– Hop: The agent checks current availability using local time and shift information.
If there is no break, then it checks the list of available Calls in skill clusters that can
be serviced. From the list of Calls and skill clusters one is randomly selected and a
Query message sent and the short term memory is initialised.

– Query Hit/Query Reject: If the recipient Call is available and has not abandoned
or received an offer already it replies with either a QueryHit message that contains

A Probabilistic Mechanism for Agent Discovery and Pairing 201

the waiting time, or a QueryReject. On a QueryHit reply the Handler adds the Call
in short term memory and uses the Bayesian inference engine to decide if a further
hop is required. If the probability is low then the discovery process ends and an
Offer message sent to the Call that has been waiting the longest and has the highest
skill priority. Otherwise the search continues until the list of Calls is depleted or
the probability of a better pair gets lower than the system defined threshold.

– On Accept: If the recipient Call is still active and ready for handling it replies
with an Accept message. The reply triggers the handling process which requires
the Handler to make a direct connection with the customer and start providing a
service.

– Call Disconnect: If a Call disconnects a CallDisconnect message is received and
the agents unique address removed from long term memory.

5.3 Call Agent

– Initialise: The agent is initialised with customer details, skill priority and time of
call arrival.

– Ping: Once again Ping messages are sent to every member of the society containing
skill(s) (required) and time of arrival.

– Query: When a Query is received the local time and offers from other agents are
tested and on success a reply with a QueryHit posted, otherwise a QueryReject.

– Offer: If an Offer is made and the agent is still active an OfferAccept is sent as a
reply otherwise an OfferReject.

– Abandon: When customer patience has reached the limit the Call abandons and the
disconnection process begins by sending CallDisconnect messages to the society.

– Call Disconnect: Same process as with the Handler above.

We have implemented an agent-based discrete event simulator to create the agent
network required for our call centre simulations. The simulator mimics the characteris-
tics of the Cougaar [10] agent platform in the use of plug-in components—rather than
behaviours—to program agent actions and the use of a blackboard-like publish and
subscribe mechanism—rather than messaging. The blackboard encourages the use of
events for agent interaction and is the primary mechanism for state management and
message exchange. In a similar manner our simulator uses events such as the arrival of
a new call, or a QueryHit to activate agents and a blackboard mechanism to send mes-
sages1. For simulation purposes, the model required a Time update message to wake up
every agent and trigger new activity.

The simulation begins by loading a call centre model following that defined earlier
and initialising the Handlers with shift data. Calls are randomly generated using a pre-
defined call density per interval in a day and a Poisson distribution commonly found

1 This apparently curious approach demands a brief explanation: we developed our own simu-
lator primarily for speed of prototyping. Earlier simulations had been constructed directly in
Cougaar, but turn-around time and some concerns about the long-term viability of Cougaar
led us to the temporary pragmatic solution described, where the style of agent programming
and communication follows the event-driven model that characterises Cougaar, with the aim
of returning to the Cougaar framework in due course.

202 D. Traskas, J. Padget, and J. Tansley

in this domain and added in a list ordered by time of arrival. On every tick a call is
removed from the list and a new agent injected into the system with the relevant call
information. Time updates are subsequently sent with the time of arrival of the new call
and the simulation runs.

5.4 Bayesian Model for Call Discovery

In this implementation all Handler agents actively maintain a simple Bayesian model
of their immediate environment and use it for optimising the call discovery process.
A Handler agent needs to track both the distribution of skills and the distribution of
waiting times for each skill to get a reasonable picture of the world around it. More
specifically, the search is halted when the estimated probability that the next hop would
return a better call than the best one seen so far falls below a threshold of 30%, a
percentage that we consistently used throughout our experiments after initial testing.
During this testing process we experimented with a number of thresholds with the aim
to increase the performance of the probabilistic engine during the search and also the
performance of the business metrics collected. In the end we found that the threshold
of 30% works very well for our probabilistic engine and across a number of call centre
models.

Estimate of Call Distribution By Skill. For NS skills, the distribution of waiting calls
by skill can be described by a categorical distribution, so that for skills S1 to SNS the

probability of a call in the queue being of a particular call type is Pi, where
NS∑
i=1

Pi = 1.

An agent needs to estimate this distribution using the observed number of calls ni for
all skills. Assuming a conjugate Dirichlet distribution [7] on the agent’s prior belief and
using a non-informative Jeffrey’s prior [4], we can write the mean prior estimate P(Si)
for Pi as:

P (Si) =
1

NS

And the mean posterior estimate where N is the total number of calls observed as:

P (Si) =
ni + 1

2

N + NS
2

This flat prior across the categories could be potentially tailored more accurately if the
distribution of skills was known up-front to be non-uniformly distributed.

Estimate of Call Distribution By Waiting Time. An estimate for the mean call wait-
ing time is calculated by each Handler agent, for each skill of interest. We follow the
common assumption that call waiting times are modelled by an exponential distribu-
tion which holds for certain theoretical call centre models. To get an estimate of the
mean call time we use a quick short-cut rather than the more rigorous full conjugate
distribution formulation (usually using an Inverse Gamma conjugate prior).

A Probabilistic Mechanism for Agent Discovery and Pairing 203

Our estimate for the mean posterior waiting time is:

tEST =

t0 +
ND∑
j=1

ti

ND + 1

Where ND is the total number of observed data points. This formulation implies a prior
waiting time estimate t0. As we are assuming an exponential distribution of waiting
times, the probability that the waiting time t of the next Call agent has been waiting
longer than the waiting time tB of the longest Call visited so far is given by:

P (t > tB) =
∫ ∞

tB

P (t|tEST) dt =
∫ ∞

tB

1
tEST

e
− t

tEST dt

= e
− tB

tEST

Estimating The Probability of a Better Call. We can now calculate the probability
Pnext that the next Call queried will be better than the best Call seen so far, by com-
bining the probabilities of both the different skills and waiting times:

Pnext = P (SPnext > SPB)
+P (SPnext = SPB)
∗P (tnext = tSPB

B)

This is the probability that either the skill priority SPnext of the next call is of a higher
priority than the highest seen so far SPB or that the skill priority will be equal to the
best seen so far SPB and the call waiting time tnext will be higher than the best seen so
far for that skill type. This estimate can then be directly compared to a threshold value
to make a decision about the next action.

5.5 Experiments

For validation purposes we conducted a number of simulation experiments with dif-
ferent scales and using synthetic, and empirical data provided by our sponsor2. We
compared the performance of the two solutions with that of an industry-standard call
centre simulator from our sponsor called Call Centre Workshop (CCW) and actual data
provided by one of our clients. CCW is a commercial product used by a significant num-
ber of clients from the software, retail, banking, insurance and mobile phone sectors.
It is a discrete event simulator which allows users to easily set-up call centre models
and alternative routing algorithms. For our experiments we used a set of performance
metrics to validate and compare the results that are common in this industry. For space
economy reasons we are only presenting Service Level (SL%) which is the percent-
age of calls answered within a business-specific time frame. This time frame is called

2 CACI Ltd. http://www.caci.co.uk

http://www.caci.co.uk

204 D. Traskas, J. Padget, and J. Tansley

Telephone Service Factor (TSF) and is usually in the range of 20-30 seconds. SL% can
be used to measure intra-day, daily and weekly performance and is normally defined as:

SL% =
Calls Answered before TSF

Calls Answered + Calls Abandoned
× 100

We also track the total number of messages required for agent discovery—that is, a
handler discovering a call. The comparison plots presented in a later section use SL%
and message count per interval to measure efficiency in terms of business performance
and communication costs. We compare the Bayesian inference model against the stan-
dard approach with results from CCW and other techniques such as random, tabu and
exhaustive. Our aim is to find the upper and lower limits of the call allocation space
and understand where the probabilistic mechanism stands. The exhaustive search goes
through every Call agent available and as expected this requires the most messages. The
tabu search should be at the lower limits of the search using only one message per call
and our expectation with the random and probabilistic techniques is to be somewhere
in the middle.

For the first experiment we created a synthetic dataset with the aim of testing the
agent prototype and allowing all different scenarios to be handled by the agents. The
attributes of the model used are summarised in table 1 where (AHT) is Average Handle
Time and (APT) Average Patience Time. We run that model for all the different discov-
ery mechanisms and for 10 iterations. During the second phase of the experimentation
process we used real customer data. The call centre selected for our experiments is part
of one of the UK’s leading mobile phone retailers. The client provided us with actual
data from one of their main call centres which we use to simulate one day with 560
Handlers, 43,365 incoming calls and 13 different skills. Calls received are considered
to be within SL% if they have been answered within 20 seconds from the time of ar-
rival. Skill handling times – time it takes to handle a call – were varied through the day,
while customer patience time is drawn from an exponential distribution with a mean
value of 180 seconds. For the purpose of this work we set-up a very simple call routing
model with no skill priorities and a direct mapping of skills to skill groups. We then
loaded the data mentioned above into the agent model and executed the simulation only
for 5 runs due to the time it takes to execute the simulation for each of the discovery
mechanisms. We compared our results with the actual SL% values which the client’s
resource planning team calculated after collecting all the raw data stored for that day in
the ACD database.

Table 1. Synthetic Model (5 skills, 50 handlers, 7720 calls)

Skills TSF
(secs)

Priority AHT
(secs)

APT
(secs)

LOANS 20 1 240 180
MORTGAGES 20 2 240 180
PET INSURANCE 20 2 180 180
MOTOR INSURANCE 20 3 240 180
CREDIT CARD 20 1 240 180

A Probabilistic Mechanism for Agent Discovery and Pairing 205

6 Results and Discussion

Below we present comparisons with the metrics produced from our experiments. The
graphs in figure 1 show changes in SL% throughout the day as well as query counts for
every Call agent discovered, for the synthetic model.

As anticipated the synthetic model is over-stretched and agents can hardly cope with
the workload. The overall variance in SL% between CCW and the different discovery
mechanisms is between 1%-4%. More specifically the probabilistic approach has an
average of 46% throughout the day when CCW has 49.5%, random has 45% and finally
tabu and exhaustive searches are almost identical at 49%. The significant difference
however is in the number of messages. The probabilistic approach requires an average
of 300 queries through the day to deliver 46% when exhaustive is at the upper end with
1800 queries on average, random 640 and tabu 310. We believe these results demon-
strate that the probabilistic search is efficient while allowing agents to find suitable pairs
and contribute towards good global performance.

The real call centre experiments with an actual average SL% through the day of 64%
are of greater scale and complexity and show a lot more promise for the probabilistic

Fig. 1. Service Level and Query Count comparisons for synthetic data experiments

206 D. Traskas, J. Padget, and J. Tansley

mechanism as shown in figure 2. In figure 3 we demonstrate the variation between
the number of calls offered marked as Actuals and the number of calls handled by the
different techniques.

In this instance the agent prototype that uses the probabilistic search performs at
77% compared to 73% tabu, 76% random and 72% exhaustive. For this study these
results are far more important because we are using actual figures from a real world call
centre rather than artificially devising the skill sets, the handling times or the number
of incoming calls as we did in the earlier synthetic test. There is an important variation
of 8%-13% here in performance between actuals and the agent models which can be
explained by the different algorithm used for the call allocation process however the
two systems follow the same trend. In one case the actual system is assigning calls
to the longest available handler using a Router and in the other agent Handlers make
an informed decision as to which Call to handle. The total number of query messages
required on average per run are: 40,000 for probabilistic, 41,500 for tabu, 54,000 for
random and 102,000 for exhaustive.

We notice that the difference in the number of query messages between the bayesian
approach and tabu is greater when using the actual data model rather than the earlier

Fig. 2. Service Level and Query Count comparisons for empirical data experiments

A Probabilistic Mechanism for Agent Discovery and Pairing 207

Fig. 3. Handled vs. Offered comparison for empirical data experiments

synthetic test. Tabu although effective does not scale as well as the probabilistic mech-
anism because of discovery conflicts. During tabu all Handlers attempt to handle the
same call by choosing an identical candidate from their list and ignore other poten-
tially good pairs. When one of them succeeds the rest start again but once more target
the same Call agent. This process repeats until all Calls are handled but is wasteful
in terms of queries required. The random discovery is not as effective as the Bayesian
model either; this result was as we anticipated. The Handlers do not use any infor-
mation gathered while hopping from one Call to another and just randomly stop at a
specific point in time. Nevertheless the technique performs much better than we thought
it would and proves that random policies can be equally effective as a much more con-
trolled design.

The results presented in this section confirm that the multi-agent prototypes devel-
oped are effective and inspire us to further experimentation. Below we provide a sum-
mary of our findings:

– We have shown that a decentralised multi-agent system that uses a probabilistic
discovery and pairing mechanism can be applied effectively and shows comparable
performance with standard centralised designs. Sometimes it is possible to outper-
form exhaustive search by employing a Bayesian inference model that can inform
decisions. When compared to other techniques such as an exhaustive search, ran-
dom walk or tabu allocation it shows similar or better performance but with signif-
icantly less communication overheads.

– Our solution is simple in principle and efficiently handles task prioritisation and
queueing without the use of an agent-mediator or super nodes. Instead it relies
on active Consumer / Work / Task agents that can self-manage. The system can
host as many types of Consumers as desired without affecting the basic model and
discovery process.

– We have demonstrated that it is not necessary to have an architecture with any
centralised control structures in place that will dictate how the system operates.
Our model has a degree of randomness which allows it to search more efficiently
for good pairs of agents that will deliver reasonable performance and follows much
more relaxed design principles.

208 D. Traskas, J. Padget, and J. Tansley

– Finally we have shown that a multi-agent architecture can be used effectively to
manage a business process with a real world example from the call centre industry.
Agent Handlers are capable of discovering customer Calls that join the network
while trying to adhere to business rules governing skill priority and customer wait-
ing time.

7 Conclusions

We have described a probabilistic discovery and pairing mechanism in which service
providers or consumers use available domain-specific data to calculate the probability
that the next agent in the search will result in a better match. With lack of global control
and by using local information we have shown how agents can inform their decision
making by updating a Bayesian inference model. In order to demonstrate the efficiency
of the probabilistic mechanism we have applied our ideas to the business domain in
the context of call centres. We have developed a decentralised multi-agent prototype to
address the call allocation problem and run simulation experiments with synthetic and
empirical data. Results show that our approach is at least as effective, when measured
by QoS, as current centralised approaches. When compared to multicasting or random
walk techniques it demonstrates reduced communication overheads. Agents learn from
their observations while hopping and with relatively little messaging manage to dis-
cover suitable pairs. Potentially, gossip-based or distributed matchmaking mechanisms
that require an initial random search could also benefit from the technique we have
outlined.

Future work involves further exploration of the model and its usage in other appli-
cation domains. We wish to experiment with problems where there is a high number of
disconnected and failed agents and measure their impact on the discovery mechanism.
Another aspect of this research that interests us is geographical location of agents and
how a probabilistic search can use such information to improve pairing. We also plan to
improve the Bayesian model using more rigorous conjugate distributions to represent
the agent beliefs which would provide a better starting point for the discovery process.
Finally we would like to investigate alternative topologies such as scale-free or small-
worlds networks and experimentally evaluate designs where Providers and Consumers
both search for each other simultaneously.

Acknowledgements

We wish to thank CACI Ltd for their support and we would like to note that our findings
and conclusions do not necessarily reflect those of the sponsor.

References

1. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution tech-
nologies. In: ACM Computing Surveys (CSUR), vol. 36, pp. 335–371. ACM Press, New
York (2004) ISSN:0360-0300

2. Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Looking up data in p2p
systems. Commun. ACM 46(2), 43–48 (2003)

A Probabilistic Mechanism for Agent Discovery and Pairing 209

3. Biswas, R., Thrun, S., Guibas, L.J.: A probabilistic approach to inference with limited infor-
mation in sensor networks. In: IPSN 2004: Proceedings of the 3rd International Symposium
on Information Processing in Sensor Networks, pp. 269–276. ACM, NY (2004)

4. Bolstad, W.M.: Introduction to Bayesian Statistics. Wiley, Chichester (2007) ISBN-978-0-
470-14115-1

5. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans-
actions on Information Theory 52(6), 2508–2530 (2006)

6. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W., Tuecke, S.: A
resource management architecture for metacomputing systems. In: Feitelson, D.G., Rudolph,
L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 62–82.
Springer, Heidelberg (1998)

7. Devroye, L.: Non-uniform random variate generation (1986)
8. Ferreira, R.A., Ramanathan, M.K., Awan, A., Grama, A., Jagannathan, S.: Search with prob-

abilistic guarantees in unstructured peer-to-peer networks. In: P2P 2005: Proceedings of the
Fifth IEEE International Conference on Peer-to-Peer Computing, pp. 165–172. IEEE Com-
puter Society, Washington, DC, USA (2005)

9. Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: a tutorial and literature review.
In: Manufacturing And Service Operations Management, pp. 79–141. MSOM (2003)

10. Helsinger, A., Thome, M., Wright, T.: Cougaar: a scalable, distributed multi-agent architecture.
In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1910–1917.
IEEE, Los Alamitos (2004), ISSN: 1062-922X. ISBN: 0-7803-8566-7. INSPEC Accession
Number: 8393468. Digital Object Identifier: 10.1109/ICSMC.2004.1399959.

11. Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. The Perseus Books
Group, Cambridge (1995) ISBN-13: 9780201407938

12. Kuokka, D., Harada, L.: Matchmaking for information agents. In: IJCAI 1995: Proceedings
of the 14th International Joint conference on Artificial Intelligence, pp. 672–678. Morgan
Kaufmann Publishers Inc., San Francisco (1995)

13. Lilja, D.J.: Measuring computer performance: a practitioner’s guide. Cambridge University
Press, New York (2000)

14. Meshkova, E., Riihijärvi, J., Petrova, M., Mähönen, P.: A survey on resource discovery
mechanisms, peer-to-peer and service discovery frameworks. Computer Networks 52(11),
2097–2128 (2008)

15. Ogston, E., Vassiliadis, S.: Local distributed agent matchmaking. In: Batini, C., Giunchiglia,
F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 67–79. Springer,
Heidelberg (2001)

16. Simonton, E., Choi, B.K., Seidel, S.: Using gossip for dynamic resource discovery. In: ICPP
2006: Proceedings of the 2006 International Conference on Parallel Processing, pp. 319–328.
IEEE Computer Society, Washington, DC, USA (2006)

17. Stann, F., Heidemann, J.: Bard: Bayesian-assisted resource discovery in sensor networks.
Technical report, USC/Information Sciences Institute (July 2004)

18. Sycara, K., Lu, J., Klusch, M., Widoff, S.: Matchmaking among heterogeneous agents on the
internet. In: AAAI Spring Symposium on Intelligent Agents in Cyberspace (1999)

19. Tsoumakos, D., Roussopoulos, N.: Adaptive probabilistic search for peer-to-peer networks.
In: Proceedings of Third International Conference on Peer-to-Peer Computing (P2P 2003),
pp. 102–109 (2003)

20. Veit, D., Weinhardt, C., Müller, J.P.: Multi-dimensional matchmaking for electronic markets.
Applied Artificial Intelligence 16(9-10), 853–869 (2002)

21. Vulkan, N., Jennings, N.R.: Efficient mechanisms for the supply of services in multi-agent
environments. Decis. Support Syst. 28(1-2), 5–19 (2000)

22. Weiss, G.: Multiagent Systems. The MIT Press, Cambridge (1999)

An Adherence Support Framework for Service Delivery
in Customer Life Cycle Management

Leelani Kumari Wickramasinghe1, Christian Guttmann1, Michael Georgeff1,
Ian Thomas2, and Heinz Schmidt2

1 Department of General Practice
Faculty of Medicine, Nursing and Health Sciences

Monash University, Melbourne, Australia
{leelani.wickramasinghe,christian.guttmann,

michael.georgeff}@med.monash.edu.au
2 School of Computer Science and Information Technology

RMIT University, Melbourne, Australia
{ian.thomas,heinz.schmidt}@rmit.edu.au

Abstract. In customer life cycle management, service providers are expected
to deliver services to meet customer objectives in a manner governed by some
contract or agreement. When human agents are involved as contract parties (ei-
ther as customers or service providers), service delivery failures may occur as a
result of changes, inconsistencies, or “deficits” in the mental attitudes of these
agents (in addition to other possible changes in the service delivery environ-
ment). It may be possible to avoid such failures by monitoring the behavior of
the contract parties and intervening to ensure adherence to the contractual obli-
gations. The aim of this paper is twofold: (1) to develop a conceptual framework
to model how deficits in mental attitudes can affect service delivery; and (2) to
propose an adherence support architecture to reduce service delivery failures aris-
ing from such deficits. The conceptual framework is based on Bratman’s notion
of “future-directed intentions” and Castelfranchi’s belief-based goal dynamics.
The adherence support architecture introduces the notions of precursor events,
mental-state recognition processes, and intervention processes and utilizes the
Belief-Desire-Intention (BDI) architecture. A multi-agent implementation is car-
ried out for chronic disease management in health care as a proof-of-concept for
a complex customer care management system.

1 Introduction

The aim of Customer Life Ccle Management (CLCM) is to maintain and advance con-
tractual relationships between a customer and service providers, potentially through the
entire lifetime of that customer. CLCM has four stages:

1. Providing a customer with a set of services to meet his/her goals, personalised to
the circumstances of the customer;

2. Assignment of service providers to provide the services identified in Item 1 above;
3. Maintenance of contractual relationships between the customer and service

providers, and among service providers; and

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 210–229, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An Adherence Support Framework for Service Delivery in CLCM 211

4. Delivery of services by the service providers in the manner agreed, over time and
potentially the entire lifetime of the customer.

The Intelligent Collaborative Care Management (ICCM) Project [1,2] offers a com-
prehensive architecture for CLCM, in particular, for contracts of which human agents
function as contract parties (customers and service providers). In this project, we con-
sider that a customer is provided a number of possibly interrelated services by various
service providers in a manner governed by some agreement or contract. The customer
has certain goals or objectives that these services are intended to fulfil and the service
providers themselves may have certain objectives in delivering the services to the cus-
tomer. These services are to be delivered over time and potentially the entire lifetime of
the customer.

When human agents function as customers and service providers, their unreliable
and non-conformance behaviour, may jeopardise CLCM. Humans are goal directed and
reason before performing an action or selecting goals to achieve. Human reasoning is
a bounded rational process subject to the properties of mental attitudes: beliefs, de-
sires, intentions, plans, emotions etc. In CLCM, changes, inconsistencies, or “deficits”
in these mental attitudes may prevent contract parties from performing the required
activities, which may then affect:

1. The formation of the contractual arrangements (e.g., service providers forget to
respond to agreement formation related requests);

2. The management of these contractual arrangements (e.g., service providers do not
know when to communicate contract related data to other parties of the contract);
and

3. The delivery of the services according to the contractual arrangements (e.g., a pa-
tient forgets to set an appointment with a service provider for the next due visit).

Adherence support mechanisms may assist human agents to maintain and execute
contracts as committed. Continuous monitoring and intervention may either reverse the
deficits or identify reasons to vary the contract. The ICCM architecture with human
contract parties and adherence support requirements is shown in Figure 1. The human
parties are modelled as Belief-Desire-Intention (BDI) agents [3,4] because this archi-
tecture provides formalisms and representation mechanisms of agents’ mental attitudes.
(Refer [2] for a detailed description of the ICCM architecture). This paper investigates:

– A conceptual framework to model contract violations arising from deficits in mental
attitudes; and

– An architecture for adherence support to reduce contract violations in delivering
services.

The conceptual framework is based on Bratman’s notion of “future-directed inten-
tions” [5] and Castelfranchi’s belief-based goal dynamics [6]. The adherence support
architecture with the ongoing monitoring and management processes is based on the
following elements:

– precursors: a priori actions, steps or states that may indicate whether the actions of
the contract parties are on-track with respect to the contract (e.g., the patient setting
an appointment on time to visit a care provider) or likely to go off-track (e.g., very
low or very high blood pressure).

212 L.K. Wickramasinghe et al.

Fig. 1. ICCM architecture: with human contract parties and adherence support requirements

– detection strategies for precursors: mechanisms to detect the occurrence or missing
occurrence of such precursors at run-time;

– mental-state recognition processes: processes to identify possible deficit(s) in men-
tal attitudes which may have led to the (non-)occurrences of precursors; and

– intervention processes: strategies to intervene with one or more of the contract par-
ties to reduce the likelihood of the parties violating their obligations.

As seen in Figure 1, the conceptual framework and the adherence support architec-
ture is common to both the contractual commitment stage1 and the service delivery
stage. In this paper, we consider examples and implementation results from the service
delivery stage, in which service providers are expected to deliver services as committed
and the customer is expected to perform certain required activities to be engaged in the
contract. We focus on contracts made in the health care domain, specifically, chronic
disease management [7], as an example of a complex, dynamic domain with human
contract parties in which precursor recognition, service delivery failure, and adherence
support are important elements.

The increasing number of patients with chronic diseases and the associated medical
care costs motivated us in focusing on this application area: 7 million Australians [8]
and 133 million Americans [9] have a chronic medical condition and 60% of all deaths
worldwide are due to chronic diseases. It is estimated that improved adherence to “care
plans” (contracts among the care team and the patient) could dramatically reduce health
care costs and improve patient outcomes. However, these care plans are usually not
followed in practice, and few mechanisms are in place for assisting patients or the care
team adhere to the care plan and avoid plan “failures” [10]. We expect our research
to provide a framework for better understanding these issues and ultimately lead to
mechanisms for assisting patients and their care providers better develop and adhere to
care plans.

The paper is organized as follows. A framework to model contract violations due to
deficits in mental attitudes is described in Section 2. Section 3 presents an adherence
support architecture to reduce contract violations due to such deficits. A multi-agent
implementation in chronic disease management as a proof-of-concept is discussed in
Section 4. Section 5 relates our work to existing research. Concluding remarks and
future work are discussed in Section 6.

1 The contractual commitment stage is additionally based on partially regulated market and
negotiation theories and is described elsewhere [2].

An Adherence Support Framework for Service Delivery in CLCM 213

2 Framework to Model Contract Violations Due to Deficits in
Mental Attitudes

This section investigates a conceptual framework to demonstrate how explicit models
of the mental attitudes of the human agents affect service delivery. Humans can be
considered as three types of agents: (1) goal-directed agents; (2) rational agents; and
(3) planning agents [5]. Out of possibly many desires, that is, objectives or situations
that the agent would like to accomplish, humans select one or more than one desire
and actively pursuit to achieve it(or them). Such selected desires are termed goals, thus
humans exhibit goal-directed behaviour to achieve the selected goal(s). (However, more
than one desire is selected only if each of the desire is consistent with all the other
desires.) Humans are rational, that is, they deliberate on desires before selecting goals
based on the properties of mental attitudes. The selected goals are also termed intentions
as the agent is intended to achieve such goals now or in the future. The sequence of
actions use to achieve the intentions is termed a plan, thus humans are planning agents.

With respect to CLCM, by forming a contract, the contract parties intend to achieve
the obligations specified in the contract within the lifetime of the contract. Each obliga-
tion agreed by a contract party is an intention made by the corresponding party at the
contract commitment-time prior to the execution-time. There is a time gap between the
contract commitment-time and the execution-time. Beliefs are at the core of selecting
goals and executing intentions: humans commit to intentions based on beliefs at the
commitment time and execute them based on the beliefs at the execution-time. There-
fore, the investigation on the conceptual framework is two-facet: (1)selecting goals as
future intentions ; and (2) beliefs as the basis for goal selection and execution.

From literature, Bratman’s notion of “future-directed intentions” [5] states that hu-
mans frequently decide in advance a plan for the future and then use such a plan as a
basis for future actions. This concept describes what is possible in between goal selec-
tion and intention execution, and why intentions are not always get executed as com-
mitted. Future-directed intentions is the basis for goal-directed and deliberative agent
architectures such as BDI agent architecture [3,4]. With constructs such as beliefs, de-
sires, intentions and plans, BDI agents aim to depict the reasoning process of humans.
We consider future-directed intentions as described in Section 2.1 as a possible concept
to address the first phenomenon of the conceptual framework.

The model of belief-based goal dynamics [6] proposes beliefs as the deciding factor
for selecting and executing goals. It states that humans commit to obligations based on
beliefs that exist at the commitment-time and subsequent execution of the obligations
depends on the execution-time beliefs of the agent. Contract parties commit to contrac-
tual obligations based on the beliefs that exist at the contract formation time and these
beliefs may or may not remain the same until the execution-time. The execution of the
obligations depend on the beliefs that exist at the contract execution time. We consider
belief-based goal dynamics as described in Section 2.2 as a possible concept to address
the last phenomenon of the conceptual framework.

Consolidating future-directed intentions and belief-based goal dynamics, in Section
2.3, we propose three types of deficits in an agent’s mental attitudes. This section also
discusses the effect of these deficits in realising contractual obligations. The contract
shown in Table 1 will be used as the working example throughout the paper.

214 L.K. Wickramasinghe et al.

Table 1. A sample contract

Party’s name Party’s type Obligation Execution due

Harry Brown Podiatrist Examine feet July, Oct, Jan
Mary John Optometrist Check eyes December

Bob Smith Patient
Walk 1 km daily
Take Diamicron April, July, Oct

2.1 Future-Directed Intentions

According to Bratman [5], future-directed intentions, which guide the future actions of
humans, are two dimensional: (1) volitional, and (2) reasoning centered. The volitional
dimension states that if an agent’s future-directed intention manages to survive until
the time of action, and if the agent senses that the time to perform the action has
arrived, and if nothing else interferes with the action, then the agent will execute the
action. The reasoning centered dimension considers the roles played by future-directed
intentions during the period between the initial formation of intentions and the eventual
execution. It involves two reasoning components:

(1) given new information or changes in the agent’s expectation, the agent may
reconsider future intentions, even though it is expected that the agent settles on
future-directed intentions and does not deliberate on them; and
(2) further reasoning from intended ends to the intended means as the agent moves to
act on future intentions.

For example, a patient’s future-directed intentions (in the form of a “care plan”)
could include: visit podiatrist in July, visit podiatrist in Oct, · · ·, visit optometrist in
Dec, walk 1km daily, take 1st repeats of the medication (Diamicron) in April, · · · (see
Table 1). Subsequent to these commitments, the patient may:

(1) be unaware that the podiatrist appointment is at 10.00am on 1st July 2009 (forgotten
or believes to be on another date).
(2) assume his current risk of heart attack is less than that at the time of commitment;
(3) get to know a football match is to be held on an appointment date;
(4) realise he cannot walk more than 0.5 km a day;
(5) discover that the medication (Diamicron) causes severe side effects;
(6) decide not to take medications that have side effects; or
(7) not know how to set an appointment with the podiatrist or optometrist.

The above examples may result in the patient not complying with his care plan,
thereby resulting in a service delivery failure (in this case, of the patient). These exam-
ples map to the dimensions of future-directed intentions as presented in Table 2.

2.2 Belief-Based Goal Dynamics

In this section, we describe the notion of a contract in terms of belief-based goal dy-
namics [6] and goal-directed behaviour. In this model, beliefs are proposed as the basis
for reasoning about future directed intentions and selecting and executing goals. This

An Adherence Support Framework for Service Delivery in CLCM 215

Table 2. Future-directed intentions and examples

Dimension Sub dimension Important concept Applicable Examples

Volitional
dimension

Time has arrived to
execute the action

Example 1

Nothing interferes
with the intention

Examples 2, 3, 4
and 5

Reasoning
centered
dimension

Settling on a certain
course of actions

New information Examples 2, 3, 4
and 5

Change in what the
agent wants

Example 6

Further reasoning be-
tween now and time to
execute intention

Reason from in-
tended end to in-
tended means

Example 7

model categorizes beliefs into seven categories: motivating, assessment, cost, incom-
patibility, preference, precondition and means-end and categorises goal processing into
four stages: active, pursuable, chosen and executive. These beliefs affect the goal pro-
cessing in two ways:

1. Belief types intervene on goal processing at different stages, and
2. Each belief type has a unique effect on the goal.

Prior to execution, a goal gets filtered via four processing stages, depending on
beliefs:

Activation stage: motivating beliefs⇒ active goals
Evaluation stage: assessment beliefs⇒ pursuable goals
Deliberation stage: cost + incompatibility + preference beliefs⇒ chosen goals
Checking stage: precondition + means-end beliefs⇒ executive goals

The obligations shown in Table 1 map to these belief types and goals. In the running
example, the obligations: visit podiatrist in July, visit podiatrist in Oct, visit podiatrist in
Jan, and so on, are chosen goals (committed goals) for the patient. They are transferred
to executive goals based on precondition beliefs and means-end beliefs. For a chosen
goal to be part of the checking process, the beliefs on which the goal was deliberated
(commitment-time beliefs) have to remain unchanged until the checking stage. Any
changes to such beliefs may result in a contract failure. This can be illustrated using
the examples mentioned in Section 2.1:

Example (1) corresponds to a missing conditional belief about the appointment time;
Example (2) corresponds to a change in the motivating belief that indicates the risk of
heart attack;
Example (3) corresponds to a value belief to be healthy that has changed from a high
priority to a lower priority;
Example (4) corresponds to an incompetence belief found at the checking stage;
Example (5) corresponds to an incompatibility belief found at the checking stage;

216 L.K. Wickramasinghe et al.

Example (6) corresponds to a value belief to be healthy changing from a high to
a lower priority; and
Example (7) corresponds to a missing means-end belief.

2.3 Deficit Categories

Both the future-directed intentions and the belief-based goal dynamics concepts dif-
ferentiate between committing to a contract and contract delivery. In this section we
identify the deficit types that cause such failures.

Consolidating future-directed intentions and belief-based goal dynamics, the main
causes for a breach of contract are:

1. changes to the beliefs on which commitments were made; and
2. changes in agent’s expectation/priority from commitment time to execution time.
We summarize such changes into three deficit categories: belief, intention and plan

deficits.

Belief Deficit: A belief deficit is said to occur if an agent forgets or does not know
when to execute an action, to whom to communicate with to execute an action, or when
to execute an action that is necessary for meeting a contractual obligation.

The manner in which belief deficits affects agent behaviour and contractual obli-
gations can be described within the frameworks of Bratman and Castelfranchi. The
volitional dimension of practical reasoning requires that, if the agent’s future-directed
intention manages to survive until the time of action and if the agent senses that the time
to perform an action has arrived, the agent will execute the intentions as committed. The
belief deficit that occurs when the agent forgets or does not know when to execute an
action results in the agent not sensing that the time to perform the action has arrived. A
different kind of belief deficit can arise when motivating beliefs change. Belief-based
goal dynamics views motivating beliefs as essential for the maintenance of intentions,
so that any change to such beliefs could, at a point of re-deliberation, result in the drop-
ping of intentions that were otherwise contractually committed. We class such changes
as belief deficits when the motivating belief is no longer true of the real world (or the
possible world when the contractual commitment was made); otherwise, we consider
the change to be an intention deficit.

Example: The patient intends to visit the podiatrist in July. He is unaware that the
appointment is at 10.00am on 1st July (he either has forgotten the date or believes it to
be on another day). This example can be formulated as follows.

Let I denote an intention and B a belief.
The patient commits to the plan at time t0. The patient’s intention at time t0 is denoted
by Ito:

Ito (if time = timeOfAppointment(podiatrist)) then
visit(podiatrist)

Status of the real world at time t1 where t1 > t0 is
time = 10.00am 01/07/2009
Mental status of the patient at time t1 is
It1 (if time = timeOfAppointment(podiatrist)) then

visit(podiatrist)

An Adherence Support Framework for Service Delivery in CLCM 217

If the patient has forgotten the appointment:
¬Bt1(timeOfAppointment(podiatrist) = 10.00am 01/07/2009)
or, if the patient believes the appointment to be on another day:
Bt1(timeOfAppointment(podiatrist) = 10.00am 05/07/2009)

The patient still intends to visit the podiatrist on 1st July 2009 at 10.00am as commit-
ted. That is, the patient has not changed his intention. The fact that he does not know
that the visit is on 1st July (or his belief that it is scheduled on another day such as
5th July), however, means that this intention will not trigger the required action. There-
fore, while the patient believes he is still consistent with his contractual obligations, the
“belief deficit” may result in the patient not realising his obligations in the real world.

We note that there is a difference between forgetting about the appointment and
believing it to be on another day. In the former case, the absence of a belief that is a
precondition for an existing intention may trigger an action to determine the time of
appointment, whereas this would not be so in the latter case. However, at our level of
analysis, we class both as belief deficits.

Intention Deficit: An intention deficit arises when an agent drops a committed in-
tention or changes the priority of goals, resulting in a modification or a reordering of
intentions so that the agent’s behaviour no longer conforms with the contractual obliga-
tions.

The volitional dimension of practical reasoning requires that, for a committed in-
tention to get executed, nothing should interfere with the intention. In addition, the
reasoning centered dimension allows that, given new information or changes in the
agent’s expectations, the agent may reconsider future-directed intentions. These events
can result in the agent dropping a committed intention or changing the priority of a
committed intention.

Similarly, the incompatibility and preference beliefs that were active at the delibera-
tion process should remain the same at the checking stage for the deliberated (commit-
ted) intentions to get executed. However, changes in these beliefs after the contractual
commitment is made can result in the agent performing another reasoning process (de-
liberation) before acting on the intention. This subsequent deliberation process can re-
order the agent’s intentions such that it executes another higher priority intention while
dropping the originally committed intention. In addition, belief-based goal dynamics
provides that the chosen goals are transferred to executive goals based on precondi-
tions. Therefore, if the preconditions are not satisfied, the agent will drop the chosen
goal (committed intention).

Example: The patient chooses to “go to football” rather than “visit a provider” on the
day he has the appointment with the provider. At commitment time, the patient may not
have a belief about a football match being played on the same date as the appointment
date. He acquires this new information after the commitment is made but before the
appointment is due. Hence, the patient may reconsider his intention and decides to go
to football. From belief-based goal dynamics, this example can be viewed as a change of
preference belief after the deliberation is made at the commitment time. The preference
belief type that is activated in this case can be an urgency belief that provides an expiry
context to the goal of going to football; for example, that it is the last day of football

218 L.K. Wickramasinghe et al.

season. As a result, the patient may be persuaded to go to football rather than visit the
podiatrist.

Plan Deficit: A plan deficit arises when the agent does not know the means for carry-
ing out an intention or achieving a goal that is necessary for fulfilling the contractual
obligations.

Once the commitment or the future-directed intention is made, the party fails to
reason from intended end to intended means. According to belief-based goal dynamics,
the chosen goal (commitment) fails at the checking stage due to a lack of means-end
beliefs. Hence, the chosen goal will not get selected as an executive goal, resulting in a
breach of the contract.

Example: The patient intends to set an appointment with the podiatrist. But he does
not know how to proceed with setting an appointment. That is, the patient does not have
a plan for setting an appointment (e.g., by calling the podiatrist office in a timely way)
and thereby cannot determine a means to achieve the desired end.

The mapping between future-directed intentions, belief-based goal dynamics and
deficit categories is shown in Table 3.

Table 3. Mapping among future-directed intentions, belief-based goal dynamics and deficit cate-
gories

Dimension Sub dimension Concept Mapping belief type Deficit

Volitional
dimension

Time has arrived
to execute the ac-
tion

Motivating
beliefs

Belief
deficits

Nothing inter-
feres with the
intention

Incompatibility +
Preference + Pre-
condition

Intention
deficit

Reasoning
centered
dimension

Settled on a
course of action

New information Incompatibility +
Preference + Pre-
condition

Intention
deficit

Change in what I
want

Incompatibility +
Preference + Pre-
condition

Intention
deficit

Further reason-
ing between
now and time to
execute intention

Reason from in-
tended end to in-
tended means

Means-end
beliefs

Plan
deficit

3 Framework for Adherence Support

In this section, we propose an adherence support architecture to reduce contract viola-
tions resulting from the three types of failures described in Section 2.3. Our proactive
failure prevention strategy consists of three parts:

An Adherence Support Framework for Service Delivery in CLCM 219

– the detection of possible deficits;
– the recognition of the possible deficit type; and
– intervention to eliminate or ameliorate the deficits.

3.1 Detection of Possible Deficits

The detection of possible deficits is carried out with the notions of:

– The execution of an obligation as outlined in the contract usually depends on the
successful execution of a priori event(s) or achievement of certain intermediate
contract state(s). The occurrence or non-occurrence of these (depending on the way
they are defined), a priori events and states can be taken as an indicator of the
likelihood of the agent meeting the contractual obligations.

– In this context, a priori events or contract states are called precursors. That is, a
precursor is an event, a pattern of events, a state, a pattern of states, or a combination
of state and event patterns that has a positive or negative influence over achieving
contract obligations as planned.

Each obligation is associated with one or many domain specific precursors. Depend-
ing on the way precursors are defined, the occurrence of a favourable precursor indicates
that the contract is currently being executed as planned. An unfavourable precursor indi-
cates a possible impending contract violation which may be associated with any deficits
in contract parties’ mental states.

Precursors are either time dependent (e.g., setting an appointment prior to a provider
visit) or time independent (the patient’s Systolic blood pressure > 180 or diastolic
blood pressure > 110) [11].

Precursor Related Definitions

– Let O denote the set of obligations and P the set of precursors.
– The mapping between an obligation o ∈ O and a precursor p ∈ P is usually context

dependent and can be represented by a branching tree structure where the context
determines the selection of a branch. The context defines the current state of the
contract (or the system or the environment).

– We represent obligation to precursor mapping using the notion:
obligation-precursor-operator: OPO ⊆ O × BoolExp→ P , which associates
an obligation o ∈ O with one or more boolean expressions C ∈ BoolExp
and for each of these maps uniquely to a precursor p = OPO(o, C) with p ∈ P .

– An instance of obligation-precursor-operator is a triple < o, C, p >.

Once OPO is defined, the (non-)occurrences of precursors are detected at execution-
time by applying a context sensitive goal-directed algorithm:

repeat
environmentContext := getEnvironmentContext
precursorsToDetect := selectMatchingPrecursors(environmentContext)

end repeat

220 L.K. Wickramasinghe et al.

The function selectMatchingPrecursors is of the form:

selectMatchingPrecursors(environmentContext)
let A = {}
for each a, a ∈ OPO

if (C = environmentContext)
let p ∈ A

return A

Once the precursors are detected, the next step in failure prevention is to identify the
reason for such (non-)occurrences of these precursors.

3.2 Mental-State Recognition to Identify Possible Deficits

If a favourable precursor Pf , Pf ∈ P occurs, further investigations are not necessary as
the Pf indicates that the contract is currently being executed as planned. We define the
set of unfavourable precursors as Puf where Puf ∈ P . In the absence of malicious and
self-interested contract parties, elements in Puf occur as a result of “deficits” (as defined
in this project) in the contract party’s mental attitude(s). The corresponding deficits
prevent the party from carrying out an action required for the successful completion of
the contract.

In general, it is important to be able to recognise the type of deficit (that is, a belief,
an intention or a plan deficit) to be able to intervene effectively. This requires techniques
to recognise or otherwise characterise the mental state of the non-compliant agent.

Use of observer agents to recognise mental states of the agents under consideration
is an existing method for mental-state recognition [12]. Some approaches to observer
agent based recognition process are based on the assumptions [12,13,14]:

– observer agent has a correct and complete knowledge of the plans of the agent that
it is trying to recognize.

– at any given situation, the observer agent has a small set of plans that it is trying to
recognize.

In addition, behaviour monitoring techniques provide strategies to depict mental-
states of other agents in the system [15,16]. Intrusive and overhearing are two agent
behaviour monitoring approaches adopted in multi-agent systems [17]. The intrusive
approach requests the agents to communicate required information and the observer
interprets the behaviours using the communicated information [18,15,16,19]. The over-
hearing approach observes the messages exchanged among agents and infers the be-
haviour using the messages [20].

In our proposed framework, we assign an adherence agent (AA) to each contract
party. The role of the AA is, in part, to recognise the mental states of the contract
parties. AA’s knowledge base includes:

– Obligations of the corresponding contract party;
– Obligation to precursor mappings; and
– Plans to achieve obligations.

An Adherence Support Framework for Service Delivery in CLCM 221

AA is designed as an observer agent mentioned above to recognise the mental states
of the contract party. As our concern is not with malicious or self-interested contract
parties, the AA adopts an intrusive approach to interpret the mental state of the contract
party. The algorithm uses by the AA to determine the type of deficit of the contract
party is as follows:

deficitType = null
contractPartyGoal := getGoal(environmentContext)
if (contractPartyGoal is not obligation)

contractPartyBeliefs := getBeliefs(environmentContext, obligation)
for each b, b ∈ contractPartyBeliefs

if (b is not bc), where bc is the commitment-time belief
deficitType = BeliefDeficit

if (deficitType is null)
planExist := checkExistenceOfPlan(obligation)
if (planExist)

deficitType = IntentionDeficit
else

deficitType = PlanDeficit
return deficitType

At the end of the mental-state recognition process, each AA associates a missing
precursor, p to a deficit, d, where d is either a belief, an intention or a plan deficit. Once
the deficit is identified, a tailored intervention strategy is applied with the aim to reverse
the deficit.

3.3 Intervention to Reduce Deficits

The aim of an intervention is to compensate for any missing favourable precursors, Pf
(the missing event(s), state(s) or the pattern of events and states) or to reverse the effect
of unfavourable precursors that have occurred, Puf .

Intervention Related Definitions

– Let I denote the set of interventions.
– The mapping between a precursor p ∈ P and an intervention i ∈ I is context

dependent (similar to the mapping between an obligation to a precursor (Section
3.1)). This mapping is represented by a branching tree structure where the context
determines the selection of a branch.

– We present a precursor to an intervention mapping using the notion:
precursor-intervention-operator: PIO ⊆ P ×BoolExp→ I , which associates
a precursor p ∈ P with one or more conditions C, C ∈ BoolExp
and for each of these with a unique intervention i = PIO(p, C) where i ∈ I .

– An instance of precursor-intervention-operator is a triple < p, C, i >.

Once the PIO is defined, the applicable intervention strategy for a detected precur-
sor is obtained by applying the following context sensitive goal-directed algorithm:

222 L.K. Wickramasinghe et al.

applicableIntervention := selectIntervention(precursorDetected, environmentCon-
text, deficitType)

The function selectIntervention is of the form:

selectIntervention(precursorDetected, environmentContext, deficitType)
let A = {}
for each a, a ∈ PIO

if (p = precursorDetected)
if (C = environmentContext and deficitType)

let i ∈ A
return A

If multiple interventions correspond to a given situation (that is, for given precursor-
Detected, environmentContext and deficitType), the selectIntervention function returns
a set with multiple items. In such situations, a single intervention is identified based on
the effectiveness and the cost associated with the intervention.

The process of detecting a possible deficit, recognizing the mental state that caused
the deficit, and intervening to change the mental state with an aim to prevent the deficit
is summarized in the following algorithm.

repeat
environmentContext := getEnvironmentContext
precursorsToDetect := selectMatchingPrecursors(environmentContext)
if (((not(occurred(precursorsToDetect))) and

(isFavourable(precursorsToDetect))) or
((occurred(precursorsToDetect)) and
(not(isFavourable(precursorsToDetect)))))

deficitType := mental-state recognition strategies
applicableIntervention := selectIntervention(precursorsToDetect,

environmentContext, deficitType)
intervene using applicableIntervention

end repeat

As depicted in the algorithm, recognition of mental states and intervention are applied
only in two situations: (1) non-occurrence of a favourable precursor; or (2) occurrence
of an unfavourable precursor.

4 Implementation

A multi-agent implementation was carried out for chronic disease management in health
care as a proof-of-concept for a complex customer care management system. The sys-
tem consists of two types of agents:

– Contract party agent (CPA): Each contract party is assigned a CPA that acts as a
personal assistant to the party. Contract parties communicate with the system via
the corresponding CPA. Any deficit that occurs in service delivery stage is captured
through CPAs; and

An Adherence Support Framework for Service Delivery in CLCM 223

– Adherence agent for each contract party (AA): Each CPA has a corresponding AA
for adherence support. AAs are implemented according to the theory in Section 3.

In chronic disease management, the customers (patients) and the health care
providers (service providers) commit to maintain and deliver services. An example care
plan is shown in Table 1. As an example scenario, we discuss in detail the patient’s
commitment to visit the care providers within the due time frame in this section.

4.1 Service Delivery Specification: Domain-Based Agent Specification

Considering the distinct functionalities associated with the patient and the care
providers, we consider two specific CPAs, the CPApatient and CPAcareprovider . Each
CPA is assigned a corresponding Adherence Agent (AA). The service delivery sup-
port specification defines the data and processes of CPApatient, CPAcareprovider,
AApatient and AAcareprovider. The AA specification defines the obligations in the care
plan, the current state of the obligations and the failure prevention definitions. The spec-
ification of the CPAs contains contract obligations as data and processes to perform such
obligations and to receive intervening messages and reply to them. In the current im-
plementation, the service delivery support specification is specified as part of the agent
code. The agents are implemented using Jason [21], an interpreter for AgentSpeak(L),
based on the BDI architecture [4].

To uniquely identify patients and care providers, patients are assigned an Electronic
Health Record (EHR) identifier prefix with “c”(for customer) and the health providers
are assigned with a unique provider identification number (PIN) prefix with “p” (for
provider). Bob (patient) as CPAc1, Harry (podiatrist) as CPAp1, Mary (optometrist)
as CPAp2, and the corresponding adherence agents AAc1, AAp1 and AAp2.

The care plan obligations of the patient are represented as beliefs of the CPApatient:

1. visit(?PIN, ?Month, ?Year)
2. exercise(?Exercise, ?Frequency)
3. renewPrescription(?Medication, ?Month, ?Year)

Examples: visit(p1,07,2009), visit(p1,10,2009), visit(p1,01,2009), visit(p2,12,2009),
exercise(walk1km, daily), renewPrescription(Diamicron, 04, 2009), renewPrescrip-
tion(Diamicron, 07, 2009), renewPrescription(Diamicron, 10, 2009)

Specifications of Care Plan Obligations of AApatient: These specifications include

1. All the belief structures of CPApatient;
2. The additional beliefs required for the successful execution of the contractual
obligations. For example, to visit a provider, the patient has to set an appointment a
certain number of days prior to the planned visit. The number of days may vary with
the provider. The belief waitingTime(?PIN, ?Days) defines the number of days in
advance an appointment has to be set with the provider, ?PIN, e.g., waitingTime(p1,
28); and
3. The current state of the obligations. For example, appointment(?PIN,?Month, ?Year)
states that an appointment has been set with the provider, ?PIN for the month, ?Month
and the year, ?Year.

224 L.K. Wickramasinghe et al.

Specifications for Failure Prevention: These specifications include obligations to
precursor operators (OPO) (Section 3.1), precursor detection strategies, mental-state
recognition processes (Section 3.2), and precursors to intervention operators (PIO)
(Section 3.3).

Example: Failure Prevention Specification for the Patient’s Commitment to
Planned Visits
An OPO defines that the patient has to set an appointment with the provider within a
specified waiting time:

obligation: visit(?PIN, ?Month, ?Year)
context: waitingTime(?PIN, ?NumberofDays) and

(= DifferenceinDays(?Month ?Year) ?NumberofDays)
precursor: appointment(?PIN, ?Month, ?Year)

Note: The DifferenceinDays is a function definition which returns the number of days
between the current date and the first day of ?Month and ?Year.

Specification for Detecting the above Precursor

goal: CheckForAppointment(?PIN, ?Month, ?Year)
context: waitingTime(?PIN, ?NumberofDays) and

(= DifferenceinDays(?Month ?Year) ?NumberofDays)
body: if (¬ (appointment(?PIN, ?Month, ?Year) then

DetectDeficitOfSetAppointment(?PIN, ?Month, ?Year)

The body contains one or many goals required to be executed to achieve the main
goal. The main goal CheckForAppointment will be a goal for AApatient to execute each
day, but the successful execution depends on the context.

Figure 2 is a screen from the implemented framework that corresponds to the
beliefs of AAc1. As seen, AAc1 has detected the non-occurrence of the precursor,
appointment. In the belief base it is shown as a “booking that does not exist”.

Specification of Mental-State Recognition Processes (MSRP)
Example MSRPs that define the process to recognise the deficit associated with the
patient with regard to the obligation visit(?PIN, ?Month, ?Year) is given below as
MSRP1 and MSRP2.

MSRP1
goal: DetectDeficitOfSetAppointment(?PIN, ?Month, ?Year)
context: true
body: RequestWaitingTime(?PIN)

MSRP1 requests the waitingTime for the provider ?PIN from the patient. The patient’s
response get stored as a belief waitingTimeFromPatient(?PIN, ?Days).

An Adherence Support Framework for Service Delivery in CLCM 225

CPAC1
AAC1

CPAP1

CPAP9

Fig. 2.AAc1 has detected the non-occurrence of a precursor that is an appointment. This detection
is added to the belief base as a booking that does not exist.

MSRP2
goal: DetectDeficitOfSetAppointment(?PIN, ?Month, ?Year)
context: ?waitingTime(?PIN, ?NumberofDays) and

waitingTimeFromPatient(?PIN, ?Days) and
(= ?NumberofDays ?Days)

body: GetRiskLevelFromPatient(heartattack)

MSRP2 requests the heart attack risk level from the patient. The patient’s response gets
stored as a belief riskLevelFromPatient(heartattack, ?PatientLevel).

The execution outcome of MSRP1 can be that the patient’s belief about the waiting
time is incorrect:
waitingTimeFromPatient(?PIN, ?Days) and waitingTime(?PIN, ?NumberofDays) and
(�= ?Days ?NumberofDays)→ belief deficit.

The execution outcome of MSRP2 can be that the patient’s belief on his risk of a
heart attack is less than the actual value. This reduced risk may have caused an intention
deficit by associating a lower priority to the obligation ’visit provider’. That is,
riskLevelFromPatient(heartattack, ?PatientLevel) and
riskLevel(heartattack, ?ActualLevel) and
(�= ?PatientLevel ?ActualLevel)→ change priority→ intention deficit

226 L.K. Wickramasinghe et al.

Specifications of precursor-intervention-operators (PIO)
An appointment set within the waiting time is a precursor for the obligation visit(?PIN,
?Month, ?Year). Following PIOs define intervention strategies for such non-occurred
precursors:

PIO1
precursor: appointment(PIN, ?Month, ?Year)
context: waitingTimeFromPatient(?PIN, ?Days) and

waitingTime(?PIN, ?NumberofDays) and
(�= ?Days ?NumberofDays)

intervention: remindToSetAppointment(?PIN, ?Month, ?Year)

PIO2
precursor: appointment(PIN, ?Month, ?Year)
context: riskLevelFromPatient(heartattack, ?PatientLevel)

and riskLevel(heartattack, ?ActualLevel)
and (�= ?PatientLevel ?ActualLevel)

intervention: remindToSetAppointment(?PIN, ?Month, ?Year)
informCurrentRisk(heartattack, ?ActualLevel)

The selection of a specific PIO for intervention depends on the outcome of the
mental-state recognition process. For example, PIO1 is selected for intervention if the

CPAC1
AAC1

CPAP1

CPAP9

Fig. 3. AAc1 informs the CPAc1 about the due visit and requests to set an appointment

An Adherence Support Framework for Service Delivery in CLCM 227

patient’s belief about waiting time is incorrect (refer to the outcome of MSRP1). PIO1
is expected to reverse the belief deficit of the patient. Similarly, PIO2 can be used to re-
verse an intention deficit associated with the obligation visit(?PIN, ?Month, ?Year). A
screen from the implementation which illustrates AAc1 intervening CPAc1 requesting
to set an appointment is shown in Figure 3.

Similar domain-specific failure prevention strategies can be specified for other obli-
gations in chronic disease management such as managing repeat medications and main-
taining patient measurements (e.g., blood glucose, blood pressure) within predefined
acceptable limits.

5 Related Research

Our aim in this research is to study means for reducing service delivery failures re-
sulting from “deficits” in the mental attitudes of human contract parties. As such, our
interest is in predictive monitoring approaches rather than reseach in replanning, plan
repair and plan failure recovery, in which remedial actions are considered after a plan
failure occurs. Current predictive monitoring frameworks [20] use detection followed
by an intervention strategy to avoid contract violations. We argue that when contract
parties are autonomous human agents, an intervention does not succeed unless the rea-
son for the possible violation is determined. The reason for the possible violation is
encapsulated within the mental attitudes of the agent; that is, the mental state of the
contract parties plays a major role here. If the detection and intervention mechanisms
ignore the agent’s mental state, the intervention may be ineffective. Therefore, for an
intervention to be effective, the monitoring framework should capture and interpret the
mental attitudes of contract parties. The proposed deficit recognition strategy aims to
capture this intermediate layer between detection and recognition.

In addition, the importance of mental-state recognition is already realised in health
care. For example, the diabetes management program offered by American Health-
ways [22] uses the trans-theoretical model of behaviour change [23] to identify patients’
readiness for health care interventions. This approach determines how amendable a pa-
tient is to making a lifestyle change at a particular point in time, which in turn helps to
tailor the selected intervention.

From the perspective of electronic contract formation and management, the CON-
TRACT project [24] is the most recent and relevant. In this framework, each contract is
associated with two types of states: Critical States (CS) and Danger of Violation (DOV)
states. CS define the states which are compulsory for the successful execution of con-
tract. That is, at the service delivery stage, if a CS state does not occur, it is identified as
a violation of the contract. The DOV states indicate a possible violation of the contract.
The DOV states are not explicitly states in the contract. Our definition of precursors
(Section 3.1) is similar to the DOV states. The extension in our work is that once a DOV
(or absence of a precursor) is identified, we carry out a mental-state recognition process
to identify the deficit which prevented the occurrence of the precursor. The mental-state
recognition process help to select a tailored and more effective intervention.

228 L.K. Wickramasinghe et al.

6 Conclusions and Future Work

This paper presents the complexities introduced by human contract parties in meeting
service delivery objectives in customer life cycle management. It describes the effect of
deficits in mental attitudes on the successful delivery of services involving goal-directed
agents. It also proposes an adherence support architecture either to reverse such deficits
or to identify reasons for revising contractual obligations.

The current implementation uses intrusive behaviour monitoring techniques for
mental-state recognition. Due to the fact that intrusive mechanisms heavily depend on
agents to communicate all required data, as future work, we aim to use a mix of intrusive
and overhearing techniques.

In addition, we are in the process of establishing an understanding of the adherence
support architecture through theory and simulations. In doing so, we associate costs and
benefits with contract failures and successes, as well as costs associated with precursor
recognition, deficit recognition and intervention. We aim to use the theoretical findings
to establish general principles of intervention and the simulation to investigate more
complex scenarios and other problem domains.

Acknowledgments

The work reported here was supported in part by British Telecom (CT1080050530), the
Australian Research Council (LP0774944), the Australian Governments Clever Net-
works program and the Victorian Department of Innovation, Industry and Regional
Development, Department of Health, and Multi Media Victoria. We also gratefully
acknowledge the contributions and advice from Dr Simon Thompson and Dr Hamid
Gharib of British Telecom and Professor Leon Piterman, Dr Kay Jones, Associate
Professor Peter Schattner, and Dr Akuh Adaji of the Department of General Practice,
Monash University.

References

1. Wickramasinghe, K., Guttmann, C., Georgeff, M., Gharib, H., Thomas, I., Thompson, S.,
Schmidt, H.: Agent-based intelligent collaborative care management. In: Proceedings of
AAMAS, vol. 2, pp. 1387–1388. IFAAMS (2009)

2. Guttmann, C., Thomas, I., Georgeff, M., Wickramasinghe, K., Gharib, H., Thompson, S.,
Schmidt, H.: Towards an intelligent agent framework to manage and coordinate collabora-
tive care. In: Proceedings of the First Workshop on Collaborative Agents – REsearch and
Development (CARE 2009). LNCS. Springer, Heidelberg (2009) (to appear in 2010)

3. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Allen, J.,
Fikes, R., Sandewall, E. (eds.) Principles of Knowledge Representation and Reasoning (KR),
pp. 473–484. Morgan Kaufmann publishers Inc., San Mateo (1991)

4. Rao, A.: Agentspeak(L): BDI agents speak out in a logical computable language. In: Perram,
J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS (LNAI), vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

5. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press, Cam-
bridge (1987)

An Adherence Support Framework for Service Delivery in CLCM 229

6. Castelfranchi, C., Paglieri, F.: The role of beliefs in goal dynamics: Prolegomena to a con-
structive theory of intentions. Synthese 155(2), 237–263 (2007)

7. Bu, D., Pan, E., Johnston, D., Walkler, J., Adler-Milstein, J., Kendrick, D., Hook, J.A.M.,
Cusack, C.M., Bates, D.W., Middleton, B.: The value of information technology-enabled di-
abetes management. In: Healthcare Information and Management System Society (HIMSS)
(2007)

8. Chronic disease management (2007) (accessed: November 12, 2007)
9. Anderson, G.F., Wilson, K.B.: Chronic disease in california: Facts and figures (2006)

10. Georgeff, M.: E-health and the Transformation of Healthcare (2007)
11. Diabetes management in general practice. guidelines for type 2 diabetes (2009)
12. Rao, A.: Means-end plan recognition-towards a theory of reactive recognition. In: Proceed-

ings of the Fourth International Conference on Principles of Knowledge Representation and
Reasoning, pp. 497–508 (1994)

13. Rao, A.S.: Integrated agent architecture: Execution and recognition of mental-states. In:
Zhang, C., Lukose, D. (eds.) DAI 1995. LNCS, vol. 1087, pp. 159–173. Springer, Heidel-
berg (1996)

14. Rao, A.S., Murray, G.: Multi-agent mental-state recognition and its application to aircombat
modelling. In: Proc. Work. Distributed AI (1994)

15. Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Artificial Intelligence 75(2), 195–240 (1995)

16. Tambe, M.: Towards flexible teamwork. Arxiv preprint cs/9709101 (1997)
17. Faci, N., Modgil, S., Oren, N., Meneguzzi, F., Miles, S., Luck, M.: Towards a monitoring

framework for agent-based contract systems. In: Klusch, M., Pěchouček, M., Polleres, A.
(eds.) CIA 2008. LNCS (LNAI), vol. 5180, pp. 292–305. Springer, Heidelberg (2008)

18. Horling, B., Benyo, B., Lesser, V.: Using self-diagnosis to adapt organizational structures.
In: Proceedings of the Fifth International Conference on Autonomous Agents, p. 536. ACM,
New York (2001)

19. Mazouzi, H., Seghrouchni, A.E.F., Haddad, S.: Open protocol design for complex interac-
tions in multi-agent systems. In: Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems: Part 2, pp. 517–526. ACM, New York (2002)

20. Kaminka, G.A., Pynadath, D.V., Tambe, M.: Monitoring teams by overhearing: A multiagent
plan-recognition approach. Journal of Artificial Intelligence Research 17(1), 83–135 (2002)

21. Bordini, R., Huebner, J., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak
using Jason. Wiley, New York (2006)

22. Pope, J.E., Hudson, L.R., Orr, P.M.: Case study of American Healthways’ diabetes disease
management program. Health Care Financing Review 27(1), 47 (2005)

23. Prochaska, J.O., DiClemente, C.C.: Toward a comprehensive model of change. In: Treating
Addictive Behaviors: Processes of Change, pp. 3–27 (1986)

24. Oren, N., Miles, S., Luck, M., Modgil, S., Faci, N., Alvarez, S., Vazquez, J., Kollingbaum,
M.: Contract based electronic business systems theoretical framework. Technical Report
D2.2, King’s College London (2008)

Norm Diversity and Emergence in Tag-Based

Cooperation

Nathan Griffiths1 and Michael Luck2

1 Department of Computer Science, University of Warwick,
Coventry, CV4 7AL, UK

nathan@dcs.warwick.ac.uk
2 Department of Informatics, King’s College London,

London, WC2R 2LS, UK
michael.luck@kcl.ac.uk

Abstract. In multi-agent systems norms are an important influence
that can engender cooperation by constraining actions and binding
groups together. A key question is how to establish suitable norms in
a decentralised population of self-interested agents, especially where in-
dividual agents might not adhere to the rules of the system. It is desir-
able, in certain situations, to establish multiple co-existing norms within
a population to ensure a diversity of norms, for example to give agents
alternatives should one norm collapse. In this paper we investigate the
problem of norm emergence, and the related issue of group recognition,
using tag-based cooperation as the interaction model. We explore char-
acteristics that affect the longevity and adoption of norms in tag-based
cooperation, and provide an empirical evaluation of existing techniques
for supporting cooperation in the presence of cheaters.

1 Introduction

Multi-agent systems often comprise multiple self-interested agents seeking to
achieve tasks that they cannot, or not as easily, achieve alone. In a sense, how-
ever, this self-interest suggests that without some other constraining influence,
cooperation is unlikely to emerge. Norms provide a source of such influence on
agent behaviour, by constraining actions and binding a group together so that
cooperation naturally arises. In this view, one key question is how to establish a
suitable set of norms. While formally established institutional rules offer a means
of doing this in a centralised fashion, such centralised control is often not possible
in large dynamic environments. Indeed, as has been recognised elsewhere [5,32],
social norms are not formal, prescriptive, centrally imposed rules, but often
emerge informally through decentralised agent interactions. In this paper, we
explore the nature of such social norms and their impact on group formation
through empirical analysis, and examine the impact of cheating agents: those
that fail to comply with norms but seek to enjoy the benefits of the group.

In seeking to investigate these issues, we adopt the tag-based approach taken
to the problem of group recognition, by Riolo, Cohen and Axelrod, who use
observable tags as markings, traits or social cues attached to individuals [23].

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 230–249, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Norm Diversity and Emergence in Tag-Based Cooperation 231

Using this approach, Hales and Edmonds have achieved promising results in peer-
to-peer settings [14], but these are not resilient when cheaters are introduced,
and assume that agents have full control over their links to others, and are able
to completely change these links in a single operation. In particular, we need
to support cooperation in dynamic environments that may contain cheaters, in
which individuals have limited control over their connections.

We view tags as capturing social norms: tags are recognised by agents who
form groups that share a tag (within their tolerance values). The tag can be
seen as an abstraction of a norm that is adopted by the agents who share it,
with the group itself being governed by that tag, or norm, which binds the group
together. This interpretation of norms is rather different from that considered in
previous work on norm emergence, which has focused directly on the behaviour
of individuals, such that once a behaviour is adopted by a group of agents, the
behaviour is said to correspond to a norm. By contrast, in tag-based systems
cooperative behaviour is determined by a combination of observable traits, in
the form of tags, and tolerance. In changing its tag, an individual alters the
nature of its own cooperative actions and the actions of others towards it. The
notion of a norm becomes implicit, and results from agents choosing to exhibit
similar observable traits, which in turn gives rise to particular behaviour. Indi-
viduals may alter their observable appearance in order to influence the manner
in which others interact with them, and a particular appearance may come to
be correlated with a particular behaviour. In such a setting, adopting a given
appearance becomes synonymous with adopting a norm.

Many previous investigations of norm emergence have focused on very small
sets of possible actions or states, with the view that the ideal situation is one
in which all agents in the population select a common action or state, such
as driving on the left. In scenarios such as the Coordination Game, Social
Dilemma Game and Prisoner’s Dilemma, agents are able to be in one of only
two states, and it is with respect to these states that norm emergence is consid-
ered [9,10,19,21,27]. Although other scenarios have been explored that contain
a wider range of states, such as the language/vocabulary coordination prob-
lem [30], the focus has been on obtaining a single common state in the popula-
tion [25].

In open societies there are typically many possible actions and states from
which many possible norms can emerge, and it may not be desirable, or even
possible, to converge on a single norm. Many scenarios exist in which it is de-
sirable to establish a selection of norms. For example, in resource allocation we
would like a range of resources to be used rather overusing a single resource, and
for role adoption it is desirable for agents to adopt different roles to ensure that
all the required roles are taken. Such scenarios are exemplified by the El Farol
Bar Problem [2] in which patrons must decide whether to go to the El Farol
Bar, where the utility of attending is high when the bar is not too overcrowded.
A high utility is achieved only when people adopt different norms, and attend
the bar on different occasions. Multiple norms are also important in situations
where an established norm can collapse, since it is desirable for agents to be able

232 N. Griffiths and M. Luck

to adopt an alternative established norm, rather than having to establish a new
norm from scratch. For example, in the case of a monopoly failure the impact is
lessened if alternative providers are already established. Tags allow us to inves-
tigate this multiplicity of norms, since the range of possible tag values is large
and corresponds to the range of possible norms; although we desire sufficient
commonality of tags to engender cooperation, we do not require a single tag
to be adopted by the entire population. Thus, we are able to investigate norm
emergence where many norms are present in the population.

In this paper, we examine the problem of supporting cooperation from the
perspective of norm emergence, and evaluate the effect of alternative techniques
on norm emergence. Specifically, we investigate our recently proposed techniques
for coping with cheaters in tag-based systems [12,13] in terms of the norms that
emerge over time. This is a novel interpretation of tag-based cooperation, and
allows us to investigate a scenario in which multiple norms co-exist. The key con-
tributions are an evaluation of the characteristics affecting the longevity and size
of norm-governed groups in tag-based cooperation, and an increased understand-
ing of the operation and implications of our previously proposed mechanisms for
coping with cheaters.

The paper begins with an introduction to tag-based cooperation, followed by
the specifics of using context assessment and rewiring to improve group effec-
tiveness in the presence of cheaters. Then, in Section 4, we present an analysis
of our experimental findings, and finally we conclude with a discussion of our
results and their more general significance.

2 Background

It has been widely argued that norms provide a valuable mechanism for reg-
ulating behaviour in decentralised societies [3,11,32]. Through the ongoing be-
haviour of individuals, norms can emerge that provide coherence and stability,
and support cooperation. A common view is that where a group of agents share
a particular strategy, behaviour or characteristic, a norm is established [26]. In
this paper we investigate factors influencing norm emergence in a population of
agents, each of which has a set of neighbours with which it interacts. This ab-
stract environment reflects the form of many real-world settings, such as ad-hoc
communication networks or P2P content sharing. We assume that agents know
the identity of their neighbours, rather than assuming anonymity of interactions.
Although many P2P researchers assume anonymity, this is often introduced as a
way of modelling the rarity of repeat interactions between any two individuals.
Our formulation is compatible with this view, since we assume that there are
very few repeat interactions, yet at some level the identity or location of others
must be known, otherwise it is impossible to interact with them. For example,
a network address is needed to share content and an identifier is required to
forward packets in a communication network. We also assume that agents have
limited observations of others and that there is no direct reciprocity, and so we
adopt Riolo, Cohen and Axelrod’s tag-based approach, introduced below.

Norm Diversity and Emergence in Tag-Based Cooperation 233

Tag-based cooperation has been considered for many years by biologists and
social scientists investigating how cooperative societies of selfish individuals
might evolve through the recognition of cultural artefacts or traits [1,6,8,15,16].
Simple observable traits, or tags [17], can be used as cultural artefacts to en-
gender cooperation without relying on reciprocity [4,23,31]. Existing work on
tags, however, has given little consideration to the possibility that some mem-
bers of the population may be cheaters who deviate from the rules of the system,
by not cooperating when they should. In this paper, our investigation of norm
emergence allows for the possibility of cheaters.

Riolo, Cohen and Axelrod (RCA) propose a tag-based approach to cooper-
ation in which an individual’s decision to cooperate is based on whether an
arbitrary tag (i.e. observable trait) associated with it, is sufficiently similar to
that associated with a potential recipient [23]. The approach is illustrated using
a simple donation scenario in which each agent acts as a potential donor with
a number of randomly selected neighbours. Should an agent opt to donate, it
incurs a cost c, and the recipient gains a benefit b (it is assumed that b > c), oth-
erwise both receive nothing. Each agent i is initially randomly assigned a tag τi
and a tolerance threshold Ti with a uniform distribution from [0, 1]. An agent A
will donate to a potential recipient B if B’s tag is within A’s tolerance threshold
TA, namely |τA − τB | ≤ TA. Agents are selected to act as potential donors in P
interaction pairings, after which the population is reproduced proportionally to
their relative scores, such that more successful agents produce more offspring.
Each offspring is subject to mutation, so that with a small probability a new
(random) tag is received or noise added to the tolerance. In relation to norms,
the key aspect here is that donation rate is an assessment of the effectiveness
of the society and the impact of norms: the greater the effectiveness, the higher
the donation rate.

RCA have shown that a high cooperation rate can be achieved with this simple
approach. They observe cycles in which a cooperative population is established,
which is then invaded by a mutant whose tag is similar (and so receives dona-
tions) but has a low tolerance (and so does not donate). Such mutants initially do
well, leading to them taking over the population and subsequently lowering the
overall rate of cooperation, but eventually the mutant tag and tolerance become
the most common and cooperation again becomes the norm [23]. It is important
to note that cooperation does not require a single tag to be adopted through-
out the population and is achieved where there are subgroups of agents in the
population that share different tags, corresponding to subgroups having adopted
different norms. As these subgroups evolve they mirror the typical life-cycle of
norms: initially a small number of agents adopt the norm; the group then ex-
pands as the norm is more widely adopted; over time the norm becomes outdated
and alternatives emerge conflicting with the established norm; eventually one of
these new norms may replace the previously established norm. Tag-based coop-
eration, therefore, provides us with a scenario in which to consider the emergence
and ongoing evolution of multiple norms within a population.

234 N. Griffiths and M. Luck

Hales and Edmonds (HE) apply RCA’s approach in a P2P setting, with two
main changes [14]. First, a learning interpretation of reproduction is adopted,
so that each agent compares itself to another in the population at random and
adopts the other’s tag and tolerance if the other’s score is higher (subject to po-
tential mutations) [23]. Second, HE interpret a tag as being an agent’s neighbours
in the P2P network, i.e. an agent’s links to others. In RCA’s work each agent is
connected to each other agent, with no corresponding notion of neighbourhood.
In HE’s model, the process of an agent adopting another’s tag is equivalent to
dropping all of its own connections, and copying the connections of the other
agent (and adding a connection to the other agent itself) [14]. Importantly, in
our view, this model reflects the formation of groups based on recognition of tags
in group members. Since tags, in HE’s model, are interpreted as corresponding
to an agent’s set of neighbours, mutation corresponds to reseting the neighbour
list (replacing it with a single neighbour randomly selected from the population).
In this paper we use numerical tags, meaning that tag mutation does not affect
an individual’s set of neighbours. Instead, inspired by HE, we enable agents to
rewire their neighbourhood, and so change the set from which potential donors
are selected.

Using simulations, HE have shown this approach to be promising in situations
where agents are given free reign to rewire the network and replace all of their
connections each reproduction. This rewiring is an all-or-nothing operation, in
that although an agent can adopt a completely new set of neighbours (replacing
its existing neighbourhood), it cannot modify its existing neighbourhood. Our
view is that such extreme rewiring, where the neighbourhood topology might
completely change with each new generation, is not practicable in all scenarios.
For example, in a communication network this would imply that all existing
routes become outdated and need to be re-established, while in a content sharing
system an agent would lose all information about the content available in its
neighbourhood. In this paper we consider a less extreme situation, in which
agents are able to rewire a proportion of their neighbourhood.

Both RCA and HE assume that agents do not deviate from the rules of the
system, i.e. they assume that there are no cheaters. A cheater is an agent that
accepts donations, but will not donate to others, even if the rules of the system
dictate that it should. We assume that if a cheater reproduces, then its offspring
will also cheat. In this paper we assume that the traits embodied by tags are
observable to others, meaning that cheaters cannot falsify their tags. To illus-
trate this assumption, consider a group of agents in which a tag is analogous to
wearing a coloured hat. If an agent selects a red hat, then this is visible to all
others, and it cannot falsely claim to be wearing a blue hat. In future work we
may consider alternative formulations that allow for the potential falsification
of tags, such as scenarios in which agents can present a different appearance to
different neighbours. The effect of cheaters in standard tag-based cooperation is
catastrophic, with the introduction of even a small proportion of cheaters into
the population causing cooperation to collapse [12].

Norm Diversity and Emergence in Tag-Based Cooperation 235

Norm emergence has been considered in several other settings. For example,
norms can emerge in a Social Dilemma Game when individuals are repeatedly
randomly paired [27], and in certain settings can emerge simply by individuals
learning based on their own individual histories [29]. In this paper, however, our
focus is on using the interpretation of a shared tag as representing a norm to
further our understanding of tag-based cooperation.

3 Improving Group Effectiveness

In seeking to examine the impact of cheaters on group formation and norm
emergence, we consider a population of agents, each of which has its own tag
and a set of connections to n neighbours, such that agents can only interact
with their neighbours (although for reproduction we consider the population as
a whole). A random network topology is used with degree distribution P (k),
such that each agent is initially randomly connected to k = n others. Each
agent is selected to act as a potential donor in P interaction pairings, with the
potential recipient randomly selected from its set of neighbours. As discussed in
the previous section we assume that agents know the identity of their neighbours.
We assume that a proportion of agents are cheaters and will not cooperate with
others even when their tags are within the tolerance threshold. The donation
scenario and parameter values used by RCA are adopted, such that benefit
b = 1 and cost c = 0.1 [23]. Each agent i is initially assigned an arbitrary tag
τi and tolerance Ti with uniform distribution from [0, 1]1. We investigate norm
emergence in relation to RCA’s tag-based approach and two techniques that we
have previously proposed for improving cooperation in the presence of cheaters:
context assessment [12] and rewiring [13].

3.1 Context Assessment

Our first technique, originally proposed in [12], enables agents to assess their
neighbourhood, or group, in terms of how cooperative they perceive their neigh-
bours to be. The donation decision is modified so that an agent’s assessment of
its neighbourhood context becomes a factor in the decision to donate. Agents
are given a fixed length FIFO memory to record the last l donation behaviours
observed for each neighbour. When the neighbour donates, an observation value
of +1 is recorded, and when it does not −1 is recorded. This memory is fairly
sparse, since the number of interactions is small compared to the number of
agents, and so the overhead incurred is relatively small (2 bits per observation
for n× P observations, where n is the number of neighbours and P the number
of pairings).

In order to assess its neighbourhood context, an agent considers each of its n
neighbours in turn, and determines the contribution to the context assessment ci

1 We actually use a lower bound on tolerance of −10−6 to address Roberts and Sher-
ratt’s concerns regarding agents with identical tags being forced to cooperate [24].
This also allows the population to contain non-cooperative agents of the form con-
sidered by Masuda and Ohtsuki [20].

236 N. Griffiths and M. Luck

of neighbour i, which is simply the proportion of observed interactions in which
the neighbour donated, given by:

ci =

⎧⎪⎨⎪⎩
∑li

j=1
oji , if oji > 0
0, otherwise

li
, if li > 0

0, otherwise

(1)

where oji represents the j’th observation of neighbour i, and li is the number of
observations recorded of i’s donation behaviour (li < l). By considering each of
its n neighbours, agent A’s assessment of its current neighbourhood context CA
is given by:

CA =
∑n

i=1 ci
n

(2)

This context assessment can be used to influence the donation decision. The
intuition is that agents ‘expect’ that by donating they are more likely to re-
ceive a future donation from some other (observing) agent, thus binding a group
together. However, since the number of interactions is small compared to the
number of agents, this is a weak notion of indirect reciprocity. An agent’s do-
nation to another is unlikely to be directly repaid or directly observed by a
third party, and so there is little direct or indirect reciprocity. Instead, context
assessment gives an impression of the donation behaviour in a neighbourhood,
indicating the likelihood of receiving future donations. An agent’s assessment
of its neighbourhood context is incorporated into the model by adapting the
decision to donate, such that both tolerance and neighbourhood context are
considered. Thus, an agent A will donate to B if:

|τA − τB | ≤ (1− γ).TA + γ.CA (3)

The parameter γ, called the context influence, allows us to tune the technique.
The context influence is in the range [0, 1], with γ = 0 making the technique
identical to RCA’s method, while γ = 1 causes the donation decision to be
determined solely by an agent’s assessment of its neighbourhood context.

We adopt a learning interpretation of reproduction, such that after a fixed
number of interaction pairings P an agent compares itself to another, randomly
selected from the population. If the other agent is more successful, then its tag
and tolerance are copied (subject to a small probability of mutation), otherwise
the tag and tolerance are unchanged. Note that although an agent’s interactions
are restricted to its neighbourhood we do not similarly constrain reproduction,
and we allow an agent to compare itself against another that is randomly se-
lected from the whole population. Thus, although agents can only donate to
(and receive donations from) their immediate neighbours, they can observe the
performance of the population at large. If the comparison for reproduction was
restricted to an agent’s set of neighbours, this would have the effect of structur-
ing the population into (overlapping) sub-groups. In this paper we are concerned
with investigating norm emergence within a population as a whole, and so we
do not impose such a restriction.

Norm Diversity and Emergence in Tag-Based Cooperation 237

3.2 Rewiring

Our second technique, introduced in [13], enables agents to rewire their network
neighbourhoods, such that after reproduction an agent removes a proportion λ,
called the rewire proportion, of connections, and replaces them with connections
to new neighbours. This approach is motivated by HE’s results, but unlike HE we
do not assume that agents can replace all of their connections since, as discussed
above, this is likely to be impractical in real-world settings. In our mechanism,
after reproduction the n × λ worst neighbours are removed and the best (non-
duplicate) neighbour from each of the agent’s n× λ best neighbours are added.
The neighbours are considered in descending rank order and, for each, the best
non-duplicate neighbour is added. Additional randomly selected neighbours are
added if necessary to prevent the neighbourhood shrinking due to duplication
(agents have at most one connection to another given individual, and duplicate
connections are meaningless). Other rewiring strategies are of course possible,
with alternative criteria for selecting links to remove and add. In [13] we evaluate
a small number of alternatives and show that the strategy described above gives
reasonable performance.

Connections to remove are determined by ranking each neighbour i using the
contribution to the context assessment ci (defined in Equation 1), with agents
having the lowest ci values being removed. The contribution to the context as-
sessment is also used to determine which connections to add, with an agent
asking each of its n× λ best neighbours to recommend their best non-duplicate
neighbour. If the ci values of two or more agents are equal then one is selected
arbitrarily. The rewire proportion determines the extent to which the network
is rewired in each generation. Such rewiring can be thought of as being the
result of a simplistic reputation mechanism, since agents update their connec-
tions based on the experiences and recommendations of others. However, unlike
typical reputation mechanisms, the assessment is based on relatively little infor-
mation, which is not predicated on repeated encounters or on a notion of (direct
or indirect) reciprocity [18,22]. Clearly there is a chance that an agent might
ask a cheating neighbour to recommend a new connection, and so be given false
or poor information. However, since the approach is to ask the best neighbours,
the requested agents will be those that have been observed to be cooperative,
and we assume that they are likely to give honest information. We consider this
issue further in the discussion in Section 5.

Figure 1 illustrates the alternative rewiring approaches, in which circles repre-
sent agents, thin solid lines represent existing connections, and dotted and bold
solid lines show dropped and new connections respectively. Agent A’s original
neighbourhood is shown in (a). The results of applying HE’s rewiring approach
is shown in (b) where A drops all of its connections and adopts those of B. Our
rewiring approach is illustrated in (c). If A’s neighbours in order of preference are
B, C, D, E, F , and 2 neighbours are to be replaced, then connections to E and
F will be dropped. If B’s neighbours, are D, H, I, G, A and C’s neighbours are
J, K, L, A, I in preference order, then A will add H from B’s neighbourhood (D is
already in A’s neighbourhood and so not added) and J from C’s neighbourhood.

238 N. Griffiths and M. Luck

GJ

C

I

A

H

B

DE

L

F

K GJ

C

I

A

H

B

DE

L

F

K GJ

C

I

A

H

B

DE

L

F

K

(a) (b) (c)

Fig. 1. Rewiring showing (a) the original neighbourhood rewired using (b) HE’s
method and (c) our rewiring approach

4 Experimental Analysis

Using the PeerSim P2P simulator2, we have built a simulation that allows us to
explore norm emergence using RCA’s standard approach, context assessment,
and rewiring. The quantitative results presented here are averaged over 10 runs
using a population of 100 agents, a neighbourhood size of n = 10 (meaning that
the population has a degree distribution of P (k) = 0.1), with 10 pairings per
agent per generation (P = 10), and a cheater proportion of 30%. Where context
assessment is incorporated a context influence of γ = 0.5 is used, and similarly
where rewiring is incorporated we use a rewire proportion of λ = 0.5. After
reproduction there is a 0.001 probability of mutating the tolerance of each agent
by adding Gaussian noise (with mean 0 and standard deviation 0.01), along with
a probability of mutating each agent’s tag by selecting a new random value.

We consider two configurations for mutating tags: a low mutation rate of 0.001
and a high mutation rate of 0.01. The low mutation rate represents a generally
stable population in which mutation is simply a small part of the evolutionary
process. Conversely, the high mutation rate represents a more dynamic and less
stable environment in which there is more significant fluctuation in tags present
in the population. Evolutionary approaches, such as tag-based systems, typically
use low mutation rates, but in our experiments we use a high rate to simulate
a dynamic environment. Since tag mutations are imposed at the beginning of
a new generation (with memories of previous interactions having been reset),
the mutation of an agent’s tag is equivalent to the pre-mutation agent leaving
the system and being replaced by a new agent with a new tag, such that the
new agent has the same connections and tolerance as the agent being replaced.
Thus, using a high tag mutation rate is a simple approximation of a dynamic
environment. In Section 5, we discuss the importance of considering a more
accurate representation of churn (agents leaving and joining the system), but
using a high mutation rate gives an indication of the likely performance of the
approach in such a setting.

In the remainder of this section we give an overview of the main findings
from our simulations, focusing on two main characteristics. First, we consider

2 http://peersim.sourceforge.net/

Norm Diversity and Emergence in Tag-Based Cooperation 239

the donation rate defined as the proportion of interactions resulting in a dona-
tion in the final generation of the simulation, averaged across the population
and across simulation runs. This indicates the effectiveness of the groups that
emerge in complying with the norms that establish those groups and govern their
maintenance. Second, we consider the number of unique tags present in the final
generation, again averaged across runs, which indicates the number of norm-
governed groups that have been established. Where a group of agents share a
tag, or each others’ tags are within their tolerance values, we interpret this as
recognising a norm that is then established, since those agents will cooperate
by donating to each other (provided that they are not cheaters). The number of
unique tags indicates the number of such norm-governed groups that are formed,
since each tag value corresponds to a tag group. However, it is important to note
that this is only a coarse metric since (i) some tags may be adopted only by a
single agent with no other agents having a tag and tolerance combination that
gives rise to mutual cooperation, in which case there is no norm, and (ii) in some
cases where a single agent has adopted a particular tag the tolerance values of
this and other agents with similar tags may still give rise to mutual cooperation,
and so a norm is established. The role of tolerance in the donation decision sig-
nificantly increases the complexity of identifying for certain whether a norm is
established. In our analysis we take a simple approach by focusing on the number
of unique tags, and do not attempt to precisely quantify the number of agents
that have tag and tolerance combinations that result in mutual cooperation.

Where there is a low number of unique tags, so that there are few groups, the
average number of agents adopting each tag is high, and the groups are larger
in size, with the respective norms being more widely adopted, and a reduced
likelihood of a tag belonging to a single individual. Conversely, as the number
of unique tags (and therefore groups) increases, the average number of agents
having adopted each tag (and hence in each group) reduces, so that the corre-
sponding norms are less widely adopted and there is an increased likelihood of a
tag being ascribed to a single agent only. Thus, for lower numbers of unique tags
there is more significance in them representing groups of agents having adopted

0 5 10 15 20 25 30

Cheater proportion (%)

0

0.1

0.2

0.3

0.4

D
on

at
io

n
ra

te

RCA low mutation
RCA high mutation

Fig. 2. The effect of cheaters using RCA’s standard approach with low and high mu-
tation rates

240 N. Griffiths and M. Luck

those tags as norms. Note that this is an informal notion of norm establish-
ment, in comparison to other approaches that have a group leader [7], or explicit
strategies emerging rather than simply shared tags [27].

We use a cheater proportion of 30% in our simulations since in stable pop-
ulations (with a low tag mutation), this is known to have a significant impact
on the level of cooperation [12]. Figure 2 shows how the donation rate declines
in a stable population (the solid line) as cheaters are introduced using RCA’s
standard approach (with no context assessment or rewiring). With no cheaters
we observe an average donation rate of 40.2% which reduces to 23.2% if 30%
of the population are cheating agents. In a dynamic environment (the dotted
line), represented by the high mutation rate, we can see that the donation rate
is significantly reduced (to an average of 2.4%) regardless of the proportion of
cheaters.

4.1 Context Assessment

The base case for our comparisons is RCA’s standard approach (without context
assessment or rewiring), which with a low mutation rate gives a donation rate
of 23.2%, and with a high mutation rate gives a donation rate of 1.5%. The
increased dynamism of the environment, represented by the increased mutation
rate, has a catastrophic effect on the donation rate, and in turn on group effec-
tiveness. For a donation to occur, agents must share a tag (within their tolerance
values). With a low mutation rate, RCA’s approach gives an average of 35.8 tags,
each shared by 2.8 agents on average. With a high mutation rate, there are 79.2
tags shared by 1.3 agents on average. Thus, with a high mutation rate a large
number of tags are adopted by a single agent, as confirmed by the very low
donation rate observed (3.2%). In relation to norm emergence, this means that
in the low mutation case the resulting norms are on average only adopted by 2.8
agents. In the high mutation case the tag groups do not, on average, correspond
to norm emergence since less than two agents adopt each tag. It is not our con-
cern in this paper to attempt to define the number of agents needed for norm
emergence, but clearly there must be at least two agents involved.

(a) low mutation (b) high mutation

Fig. 3. Tags with RCA’s standard approach using low and high mutation rates

Norm Diversity and Emergence in Tag-Based Cooperation 241

Figure 3 shows the evolution of tags in the population over the duration of
a sample simulation run for both low and high mutation settings. Each point
represents the presence of a tag in a particular generation, and where a tag
persists for several generations the points form a line from the generation in
which the tag group is created to the generation in which it collapses. Our
numerical results are confirmed by Figure 3 which shows that many more tags
are present in the high mutation setting than the low setting. This graphical
representation also allows us to observe the formation of norm-based groups.
In particular, in the low mutation setting norm-governed groups are established
and maintained for many generations, while in the high mutation setting many
such groups have very brief durations appearing as points or very short lines.
(Note that since the number of unique tags is large in Figure 3(b), many of the
points do not represent norm establishment, as discussed above.)

The evolution of tags in the population when using the context assessment
technique is shown in Figure 4. Comparing Figures 3 and 4 it is immediately
apparent that there are significantly fewer tags present using context assess-
ment than with the standard approach. On average, context assessment in a low
mutation setting results in only 3.7 tags (compared to 35.8 with the standard
approach) and 12.1 tags (compared to 79.2) for a high mutation rate. Donation
rates of 47.5% and 42.9% are obtained for the low and high mutation settings re-
spectively (compared to 20.4% and 3.2%). The reduction in donation rate in the
high mutation setting compared to the low mutation setting is less pronounced
(approximately 10%) than with the standard approach (where the reduction is
approximately 85%). We see this as demonstration that context assessment is
more stable in supporting cooperation in dynamic environments than RCA’s
standard approach. This tells us that norms resulting from context assessment
are more widely adopted than with RCA’s approach (by 27 and 8.3 agents on av-
erage for the low and high mutation rates respectively). Given that these norms
are more widely adopted, we would expect an increase in the group effectiveness
(as indicated by donation rate achieved), which is indeed the result we observe.

(a) low mutation (b) high mutation

Fig. 4. Tags with context assessment using low and high mutation rates

242 N. Griffiths and M. Luck

0 100 200 300 400

Generation

20

40

60

80

100

N
um

be
r

of
 u

ni
qu

e
ta

gs

without context assessment
with context assessment

0 100 200 300 400

Generation

20

40

60

80

100

N
um

be
r

of
 u

ni
qu

e
ta

gs

without context assessment
with context assessment

(a) low mutation (b) high mutation

Fig. 5. Number of unique tags with context assessment using low and high mutation
rates

The evolution of the number of unique tags during a sample simulation run for
low and high mutation rates is illustrated in Figure 5. In both settings the num-
ber of tags is initially very high and is (approximately) equal to the population
size since agents are randomly allocated tags. During the first few generations the
number of unique tags drops significantly as agents begin to copy tags from their
more successful neighbours. As the simulation progresses the number of unique
tags then stabilises. From Figure 5 we can see that in addition to context as-
sessment resulting in significantly fewer tags than RCA’s approach, the number
of tags also stabilises more quickly, meaning that the population reaches a form
of convergence. In a stable population (with a low mutation rate) we achieve a
quicker convergence using context assessment than without, and the resulting
population contains significantly fewer tags. When the mutation rate is high the
number of tags increases, as does the extent of the fluctuations over generations
(with both approaches having similar fluctuation levels). Thus, dynamism in the
population reduces convergence. It is clear that norm-governed groups emerge
more quickly using context assessment than with the standard approach, and
on average norms are adopted by many more agents. Due to space constraints
we do not discuss the effect of memory length in this paper, but in [13] we have
shown that it is not a significant factor.

4.2 Rewiring

Rewiring gives similar improvements to context assessment, with donation rates
of 57.0% and 49.8% for the low and high mutation settings respectively (both of
which are higher than with context assessment). The average number of unique
tags is higher than for context assessment, with 11.9 and 16.8 for low and high
mutation rates, but is significantly lower than with RCA’s approach. The norms
that are established are adopted by fewer agents using the rewiring technique
than with context assessment, 8.4 (rather than 27) and 6.0 (rather than 8.3)
for the low and high mutation rates, although they are still adopted by many
more agents than with the standard approach. This result is unexpected, since

Norm Diversity and Emergence in Tag-Based Cooperation 243

(a) low mutation (b) high mutation

Fig. 6. Evolution of tags in a population using rewiring with low and high mutation
rates

we intuitively expect that a higher donation rate (and therefore higher group
effectiveness) would be achieved only when norms are more widely adopted.

The discovery that a higher donation rate can be obtained with smaller groups
is potentially very powerful, since in many situations we would like to balance
the desire to have widely adopted norms (and few groups) with the desire to
ensure that there are several established groups from which agents can select.
The widest possible adoption of a norm is where a single norm is adopted by
the population in a single group. Conversely, the largest set of norms is obtained
where we have a minimum number of agents per tag for norm emergence, giving
groups of that size. As mentioned above, we are not concerned with attempting
to define a minimum membership, but clearly more than one agent is required,
and so the upper bound of the number of norm-governed groups is half the
population size. In the donation scenario the motivation behind balancing the
level of adoption and number of norms established is that mutations can cause a
norm to collapse at any point, and in such cases we would like agents to be able
to adopt an alternative norm by joining another tag group. However, this balance
is a general issue in many distributed systems, and corresponds to the general
view that fostering competition and avoiding monopolies can be beneficial. The
question of how many norms or groups is ideal in a particular setting is an open
question and requires further investigation.

The evolution of tags in the population using rewiring for sample simulation
runs is shown in Figure 6. As is the case with context assessment (Figure 4) there
are significantly fewer tags at any point in time than with RCA’s approach (Fig-
ure 3). As noted above, rewiring results in slightly more tags in any generation
than context assessment. Figure 6 also allows us to observe that the duration
of a given tag group is generally slightly reduced using rewiring in comparison
to context assessment, implying that the norms emerging are less long-lived. In
the donation scenario this is not a major concern, since there is little cost to
changing tag groups, but more generally there may be a higher cost associated
with such a change. It is desirable, in general, for norm-governed groups to be
of longer duration as we observe with context assessment, but also for there to
be a reasonable number of alternative groups as with rewiring.

244 N. Griffiths and M. Luck

4.3 Combining Context Assessment with Rewiring

We have previously shown that combining context assessment and rewiring im-
proves the donation rate [13], and here we observe donation rates of 68.6% and
63.1% for the low and high mutation settings respectively. In terms of norm emer-
gence, a key question is which, if any, of the properties of context assessment
(few norms of longer duration) and rewiring (more norms of shorter duration)
the combined approach gives. We find that the combined approach results in
4.4 and 10.4 tag groups in the low and high mutation settings, corresponding
to adoption by 22.7 and 9.6 agents on average respectively. In the low mutation
setting this is similar to context assessment, and we would prefer more norms
given our desire to have alternative groups established in case of norm collapse,
so that an agent can join an alternative group if their current group collapses.
With a high mutation rate, the number of norms is similar to that obtained with
rewiring, indicating that there are alternative groups in the event of a norm col-
lapsing. However, the duration of norms and groups is also important in ensuring
that alternatives are available.

Figure 7 shows the evolution of tags using a combination of the context assess-
ment and rewiring techniques in sample runs, and we can make two important
observations. First, the run for the low mutation rate represents a particularly
low number of tag groups, with a single dominant group spanning all generations
and a small number of short duration groups appearing. A similar situation can
occur when using context assessment alone (although the run in Figure 4 shows
an example where this does not occur). We would like to avoid this by ensuring
that there are alternative established norms (i.e. tag groups) at any point in
time, in case of norm collapse. Second, with a high mutation rate many of the
groups established persist for only very short durations. Thus, although there
are many groups, avoiding the problem from the low mutation case, we would
like them to be of longer duration. It seems, therefore, that while combining
context assessment with rewiring increases the donation rate, it does not result

(a) low mutation (b) high mutation

Fig. 7. Evolution of tags using context assessment and rewiring with low and high
mutation rates

Norm Diversity and Emergence in Tag-Based Cooperation 245

Table 1. Summary of donation rate, number of tags and size of tag group (number of
agents per tag) for the low mutation rate

Average donation Average number Average size
Approach rate of tags of tag group

RCA’s mechanism 20.4% 35.8 2.8
Context assessment 47.5% 3.7 27
Rewiring 57.0% 11.9 8.4
Context assessment and rewiring 68.6% 4.4 22.7

Table 2. Summary of donation rate, number of tags and size of tag group (number of
agents per tag) for the high mutation rate

Average donation Average number Average size
Approach rate of tags of tag group

RCA’s mechanism 3.2% 79.2 1.3
Context assessment 42.9% 12.1 8.3
Rewiring 49.8% 16.8 6.0
Context assessment and rewiring 63.1% 10.4 9.6

in groups that have the desired characteristics. We would prefer a higher num-
ber of norm-governed groups than observed in the low mutation case, to ensure
alternative groups are established in case of collapse, and we would prefer more
persistence than observed in the high mutation case, to avoid frequent collapses.
Thus, although the donation rate is high when using the combined approach, it
does not achieve the more generally desired number of norms or persistence.

Context assessment appears to have a significant reduction on the number of
norm-governed groups established, and so increases their size, especially with a
low mutation rate. Although this results in an increased donation rate (indeed,
when combined with rewiring it gives the highest donation rate) suggesting group
effectiveness, it also gives reduced diversity in the population. In many settings
this is undesirable, since if there is collapse of cooperation in those groups due to
the collapse of the respective norms, there are no alternative established groups
for agents to join.

4.4 Summary of Results

Our simulations show that both context assessment and rewiring improve group
effectiveness (through the donation rate) by the formation of groups of agents
sharing a particular tag value, which we can interpret as norm establishment.
A summary of the quantitative results is shown in Tables 1 and 2. In both
the low and high mutation settings the highest donation rate is achieved when
combining context assessment and rewiring. Rewiring gives the second highest
rate, followed by context assessment, and finally RCA’s approach. In the low
mutation setting, context assessment (with and without rewiring) results in a
low number of norm-governed groups being established. In the high mutation

246 N. Griffiths and M. Luck

setting the number of groups established is reduced when context assessment is
used in comparison to rewiring alone, but this difference is less significant. A
visual analysis of the evolution of tags reveals that norm and group duration is
potentially an issue, with each of the techniques discussed resulting in several
short duration norm-governed groups being established.

5 Discussion and Conclusions

Interpreting the formation of groups of agents sharing a tag as the emergence of
norms allows us to view RCA’s approach as facilitating norm emergence. Indeed,
it is norm emergence that leads to donations, since only when two or more agents
share a tag (within their tolerance) will a donation occur. Unlike many previous
investigations on norm emergence, in our model multiple norms can successfully
co-exist, and we are not endeavouring to establish a single norm throughout
the population. This is important for situations in which multiple established
norms are desirable, such as resource allocation and role adoption, as discussed
in Section 1. Our previously proposed techniques of context assessment and
rewiring to cope with cheaters [12,13] also facilitate norm establishment, and this
interpretation enables us to explore their operation. The norms and groups that
are formed are more widely adopted (with fewer norms being established) than
with RCA’s approach. Using context assessment increases adoption, especially
in the low mutation setting, but as a result there may be no alternative norm-
governed groups available in the event of the collapse of an established norm.

There are four key areas of future work, which aim to broaden the applicabil-
ity of viewing tags as an abstraction of norms and of the context assessment and
rewiring techniques. In particular we aim to (i) further investigate the impact of
mutation, (ii) improve our techniques with respect to the persistence and num-
ber of established norms, (iii) explore the effects of neighbourhood connection
topologies, and (iv) evaluate the approach in more realistic environments.

An increase in mutation rate leads to fewer long lived and fewer widely
adopted norms, so that there are more groups, with fewer members, persist-
ing for fewer generations. Norms also emerge with many tag groups and few
agents per tag, but only few such norms are widely adopted and long lived, as
seen in Figures 4, 6 and 7, where there are few long duration groups. This is the
first area of future investigation, to understand how the tag mutation rate, and
fluctuations in mutation rate over time, relate to the factors that influence the
number and duration of norms, and to investigate whether there is an optimal
number of groups in a given configuration.

Using tag-based cooperation to investigate norm emergence allows us to ob-
serve the effects of various approaches. In particular, it is through norm establish-
ment (i.e. reducing the number of tags) that the context assessment and rewiring
techniques improve group effectiveness, and this interpretation may inform im-
provements to tag-based approaches. We have shown that tag groups have a
similar lifecycle to that observed in more traditional notions of norms: estab-
lishment of norms, widening of adoption, and eventual collapse or replacement.

Norm Diversity and Emergence in Tag-Based Cooperation 247

The second area of future work aims to explore this lifecycle in more detail, with
a particular focus on improving our techniques to obtain an appropriate num-
ber of norms and to increase their persistence. Importantly, since mutation can
cause norm collapse it is important to ensure that there are alternative groups.
Context assessment (with or without rewiring) is found to reduce the diversity
of tags to a low level, and this suggests that further work is needed to develop
techniques for coping with cheaters.

The third area of future investigation, and the most significant, is concerned
with the network topology that defines agents’ neighbourhoods. In our inves-
tigations we used a simple random with degree distribution P (k), where k
corresponds to the number of neighbours (k = n), and observed that coop-
eration is successfully established. However, such a topology is unlikely to occur
in real-world applications, which are more likely to exhibit scale-free or small-
world topologies [10]. Further investigation is needed to evaluate our techniques
with respect to such topologies, since network topology has been found in other
settings to have a significant impact on the emergence of norms and conven-
tions [9,19,25]. Although further investigation is needed, our results show that
the tag-based approach has a potentially important difference from other tech-
niques. For example, Pujol et al. [21] investigated the impact of network topology
on convention emergence, using the example setting of the Highest Cumulative
Reward action selection strategy [28] in the Coordination Game. They found
that in low clustered environments (such as a random topology like ours) exist-
ing conventions are not replaced by newly emergent ones, which differs from our
results in the context of tag-based cooperation. We see norms being established,
and then being replaced by subsequent norms. More investigation is needed to
establish the reason for this difference, but we suspect that it may be connected
to our consideration of multiple norms, since the Coordination Game only con-
tains two possible states (or norms).

There is a complex relationship between the evolution of tag groups, the
number of tags, and the donation rate depending on the particular environment.
Our final area of future investigation is to consider more realistic environments.
In addition to the issues described above we will investigate techniques to cope
with false information provided by malicious neighbours, and will incorporate
churn into the system, such that agents may leave and join at runtime. By
exploring these areas we aim to develop techniques that ensure norm diversity
and prolong norm duration in realistic environments.

References

1. Allison, P.D.: The cultural evolution of beneficent norms. Social Forces 71(2),
279–301 (1992)

2. Arthur, W.B.: Inductive reasoning and bounded rationality. The American Eco-
nomic Review 84(2), 406–411 (1994)

3. Axelrod, R.: An evolutionary approach to norms. American Political Science Re-
view 80(4), 1095–1111 (1986)

4. Axelrod, R., Hammond, R.A., Grafen, A.: Altruism via kin-selection strategies that
rely on arbitrary tags with which they coevolve. Evolution 58(8), 1833–1838 (2004)

248 N. Griffiths and M. Luck

5. Bicchieri, C.: The Grammar of Society: The Nature and Dynamics of Social Norms.
Cambridge University Press, Cambridge (2006)

6. Boyd, R., Richerson, P.J.: The evolution of indirect reciprocity. Social Net-
works 11(3), 213–236 (1989)

7. Burguillo-Rial, J.C.: A memetic framework for describing and simulating spatial
prisoner’s dilemma with coalition formation. In: Proceedings of the Eighth Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009),
pp. 441–448 (2009)

8. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)
9. Delgado, J.: Emergence of social conventions in complex network. Artificial Intel-

ligence 141(1-2), 171–185 (2002)
10. Delgado, J., Pujol, J.M., Sangüesa, R.: Emergence of coordination in scale-free

networks. Web Intelligence and Agent Systems 1(2), 131–138 (2003)
11. Flentge, F., Polani, D., Uthmann, T.: Modelling the emergence of possession norms

using memes. Journal of Artificial Societies and Social Simulation 4(4) (2001)
12. Griffiths, N.: Tags and image scoring for robust cooperation. In: Proceedings of the

Seventh International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2008), pp. 575–582 (2008)

13. Griffiths, N., Luck, M.: Changing neighbours: Improving tag-based cooperation.
In: Proceedings of the Ninth International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2010), pp. 249–256 (2010)

14. Hales, D., Edmonds, B.: Applying a socially inspired technique (tags) to improve
cooperation in P2P networks. IEEE Transactions on Systems, Man, and Cyber-
netics, Part A 35(3), 385–395 (2005)

15. Hamilton, W.D.: The genetical evolution of social behaviour I. Journal of
Theoretical Biology 7(1), 1–16 (1964)

16. Hamilton, W.D.: The genetical evolution of social behaviour II. Journal of Theo-
retical Biology 7(1), 17–52 (1964)

17. Holland, J.H.: Hidden order: How adaptation builds complexity. Addison-Wesley,
Reading (1995)

18. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decision Support Systems 43(2), 618–644 (2007)

19. Kittock, J.E.: Emergent conventions and the structure of multi-agent systems.
In: Lectures in Complex systems: The Proceedings of the 1993 Complex Systems
Summer School. Santa Fe Institute Studies in the Sciences of Complexity Lecture,
vol. VI, pp. 507–521. Addison-Wesley, Reading (1993)

20. Masuda, N., Ohtsuki, H.: Tag-based indirect reciprocity by incomplete social in-
formation. Proceedings of the Royal Society B 274(1610), 689–695 (2007)

21. Pujol, J.M., Delgado, J., Sangüesa, R., Flache, A.: The role of clustering on the
emergence of efficient social conventions. In: Proceedings of the Nineteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 965–970
(2005)

22. Resnick, P., Zeckhauser, R., Friedman, E., Kuwabara, K.: Reputation systems.
Communications of the ACM 43(12), 45–48 (2000)

23. Riolo, R., Cohen, M., Axelrod, R.: Evolution of cooperation without reciprocity.
Nature 414, 441–443 (2001)

24. Roberts, G., Sherratt, T.N.: Does similarity breed cooperation? Nature 418,
499–500 (2002)

Norm Diversity and Emergence in Tag-Based Cooperation 249

25. Salazar, N., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: Robust convention emer-
gence through spreading mechanisms. In: Proceedings of the Ninth International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),
pp. 1431–1432 (2010)

26. Savarimuthu, B.T.R., Purvis, M., Purvis, M.: Social norm emergence in virtual
agent societies. In: Proceedings of the Seventh International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008), pp. 1521–1524 (2008)

27. Sen, S., Airiau, S.: Emergence of norms through social learning. In: Proceedings
of the 20th International Joint Conference on Artificial Intelligence, pp. 1507–1512
(2007)

28. Shoham, Y., Tennenholtz, M.: Emergent conventions in multi-agent systems. In:
Proceedings of the 3rd International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 1992), pp. 225–231 (1992)

29. Shoham, Y., Tennenholtz, M.: On the emergence of social conventions: modeling,
analysis and simulations. Artificial Intelligence 94(1-2), 139–166 (1997)

30. Steels, L.: Self-organising vocabularies. In: Artificial Life V, pp. 179–184 (1996)
31. Traulsen, A.: Mechanisms for similarity based cooperation. The European Physical

Journal B - Condensed Matter and Complex Systems 63(3), 363–371 (2008)
32. Villatoro, D., Sabater-Mir, J.: Dynamics in the normative group recognition pro-

cess. In: Proceedings of the Eleventh Conference on Congress on Evolutionary
Computation, pp. 757–764 (2009)

Norm Enforceability in Electronic Institutions?

Natalia Criado1, Estefania Argente1, Antonio Garrido1, Juan A. Gimeno1,
Francesc Igual1, Vicente Botti1, Pablo Noriega2, and Adriana Giret1

1 DSIC, Department of Information Systems and Computation,
Universitat Politècnica de Valencia

2 IIIA, Artificial Intelligence Research Institute,
CSIC, Spanish Scientific Research Council

{ncriado,eargente,agarridot,jgimeno,figual,vbotti,agiret}@dsic.upv.es,
pablo@iiia.csic.es

Abstract. Nowadays Multi-Agent Systems require more and more reg-
ulation and normative mechanisms in order to assure the correct and
secure execution of the interactions and transactions in the open
virtual organization they are implementing. The Electronic Institution
approach for developing Multi-Agent Systems implements some enforce-
ability mechanisms in order to control norms execution and observance.
In this paper we study a complex situation in a regulated environment
in which the enforceability mechanisms provided by the current Elec-
tronic Institutions implementation cannot deal appropriately with norm
observance. The analyzed situation is exemplified with a specific sce-
nario of the mWater regulated environment, an electronic market for
water-rights transfer. After this example is presented, we extrapolate it
to a more generic domain while also addressing the main issues for its
application in general scenarios.

1 Introduction

In general, norms represent an effective tool for achieving coordination and co-
operation among the members of a society. They have been employed in the field
of Multi-Agent Systems (MAS) as a formal specification of a deontic statement
that aims at regulating the actions of software agents and the interactions among
them. Thus, a Normative MAS (NMAS) has been defined in [3] as follows:

“a MAS organized by means of mechanisms to represent, communicate,
distribute, detect, create, modify, and enforce norms and mechanisms to
deliberate about norms and detect norm violation and fulfilment.”

According to this definition, the norm enforcement problem, faced by this pa-
per, is one of the key factors in NMAS. In particular, this paper faces with the
enforcement of norms inside Electronic Institutions (EIs) that simulate real sce-
narios. EIs [21,24,8] represent a way to implement interaction conventions for
agents who can establish commitments in open environments.

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 250–267, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Norms Enforceability in Electronic Institutions? 251

When real life problems are modelled by means of EI some of the norms are
obtained by giving a computational interpretation to real legislation. In this
process we have encountered two main problems:
– Norm Inconsistency. Usually the set of laws created by human societies in

order to regulate a specific situation are contradictory and/or ambiguous.
In particular, there are situations in which there is a general law (regulative
norm [4]) which is controlled by a local law (procedural norm [4]). The prob-
lem arises when this local law does not ensure compliance of the more general
law. This may be due to the existence of different levels of institutions which
are working in the same system [12]. Thus, an elaborated process is necessary
in order to determine which norms are active in a specific moment and how
they are applied. Traditional methods for implementing norms in EI, which
are based on the unambiguous interpretation of norms, are not suitable to
overcome this problem.

– Norm Controlling. Even in absence of a conflict among norms, there is still
the problem of norm controlling. Norm enforcement methods inside EI are
based on the observation of these activities controlled by norms. In particu-
lar, there are norms whose violation cannot be observed since they regulate
situations that take place out of the institution boundaries. Thus, violations
are only detectable in presence of a conflict among agents.

In this paper we focus on the enforcement of these norms, which cannot be
controlled by traditional techniques. Thus, we address the question of enforce-
ability of non-observable norms inside EIs. In order to make more clear and
understandable the problem addressed by this paper, it has been exemplified in
the mWater scenario [5]. In addition, a first solution for overcoming the mWa-
ter concrete problem is shown. In particular, we propose the definition of a
grievance scene for allowing normative conflicts to be solved within the mWater
institution. However, this solution can be also extrapolated to generic domains.

This paper is structured as follows: the next section provides background on
norm implementation, EIs and the implementation of norms inside EIs. Then a
concrete example of the problem addressed by this paper is described. Finally,
discussion and future works are described.

2 Background

This section firstly reviews the main methods for ensuring norm compliance in
MAS and the techniques that can be employed for implementing these methods.
Then, a brief description of the Electronic Institution framework is given, as well
as a discussion on how norms are implemented and enforced in this framework.

2.1 Norm Implementation in Multiagent Systems

Norms allow legal issues to be modelled in electronic institutions and electronic
commerce, MAS organizations, etc. Most of the works on norms in MAS have
been proposed from a theoretical perspective. However, several works on norms
from an operational point of view have recently arisen, which are focused on
giving a computational interpretation of norms in order to employ them in the

252 N. Criado et al.

design and execution of MAS applications. In this sense, norms must be inter-
preted or translated into mechanisms and procedures which are meaningful for
the society [16]. Methods for ensuring norm compliance are classified into two
categories: (i) regimentation mechanisms, which consist in making the violation
of norms impossible, since these mechanisms prevent agents from performing
actions that are forbidden by a norm; and (ii) enforcement mechanisms, which
are applied after the detection of the violation of some norm, reacting upon it.

In a recent work [2], a taxonomy of different techniques for implementing ef-
fectively norms is proposed. On the one hand, the regimentation of norms can
be achieved by two processes: (i) mediation, in which both the resources and
communication channels are accessed through a reliable entity which controls
agent behaviours and prevents agents from deviating from ideal behaviour; and
(ii) hard-wiring, assuming that the agents’ mental states are accessible and can
be modified in accordance with norms. On the other hand, norm enforcement
techniques are classified according to both the observer and the enforcer entity.
Norms are self-enforced when agents observe their own behaviour and sanction
themselves. Thus, norm compliance is both observed and enforced without the
need of any additional party. In situations in which those agents involved by a
transaction are responsible for detecting norm compliance (i.e. second-party ob-
servability) norms can be enforced by: (i) the second-party which applies sanc-
tions and rewards; and (ii) a third entity which is an authority and acts as
an arbiter or judge in the dispute resolution process. In the case of third-party
observability, two different mechanisms for ensuring norm compliance can be
defined according to the entity which is in charge of norm enforcing: (i) social
norms are defended by the society as a whole; (ii) in infrastructural enforcement
there are infrastructural entities which are authorities in charge of monitoring
and enforcing norms by applying sanctions and rewards.

2.2 Electronic Institutions

Electronic Institutions (EI) are computational counterparts of conventional in-
stitutions [21,24,8]. Institutions are, in an abstract way, a set of conventions
that articulate agent interactions [22]. In practice they are identified with the
group of agents, standard practices, policies and guidelines, language, docu-
ments and other resources —the organization— that make those conventions
work. Electronic Institutions are implementations of those conventions in such a
way that autonomous agents may participate, their interactions are supported
by the implementation and the conventions are enforced by the system on all
participants. Electronic institutions are engineered as regulated open MAS en-
vironments. These MAS are open in the sense that the EI does not control the
agents’ decision-making processes and agents may enter and leave the EI at their
own will. EIs are regulated in four ways. First, agents are capable of establish-
ing and fulfilling commitments inside the institution, and those correspond to
commitments in the real world. Second, only interactions that comply with the
conventions have any consequence in the environment. Third, interactions are
organized as repetitive activities regulated by the institution and, last, interac-
tions, in EIs, are always speech acts.

Norms Enforceability in Electronic Institutions? 253

An EI is specified through: (i) a dialogical framework which fixes the context
of interaction by defining roles and their relationships, a domain ontology and a
communication language; (ii) scenes that establish interaction protocols of the
agents playing a given role in that scene, which illocutions are admissible and
under what conditions; (iii) performative structures that, like the script of a
play, express how scenes are interrelated and how agents playing a given role
move from one scene to another, and (iv) rules of behaviour that regulate how
commitments are established and satisfied.

The IIIA model has a platform for implementation of EIs. It has a graphical
specification language, ISLANDER, in which the dialogical framework, perfor-
mative structures and those norms governing commitments and the pre- and
post- conditions of illocutions are specified [9]. It produces an XML file that is
interpreted by AMELI [10], a middleware that handles agent messages to and
from a communication language, like JADE, according to the ISLANDER spec-
ification [10]. In addition, EIDE [1] includes a monitoring and debugging tool,
SIMDEI that keeps track of all interactions and displays them in different modes.
There is also a tool, aBuilder, that, from the XML specification, generates, for
each role, agent shells that comply with the communication conventions (the
decision-making code is left to the agent programmer).

2.3 Norm Implementation in EI

Norm Regimentation. In AMELI, governors filter the actions of agents, let-
ting them only to perform those actions that are permitted by the rules of
society. Therefore, governors apply a regimentation mechanism, preventing the
execution of prohibited actions and, therefore, preventing agents to violate their
commitments.

This regimentation mechanism employed by governors makes use of a formal-
ism based on rules for representing constraints on agent behaviours [14]. This
formalism is conceived as a “machine language” for implementing other higher
level normative languages. More specifically, it has been employed to enforce
norms that govern EIs. The main features of the proposed “machine language”
are: (i) it allows for the explicit definition and management of agent norms (i.e.
prohibitions, obligations and permissions); (ii) it is a general purpose language
not aimed at supporting a specific normative language; (iii) it is declarative and
has an execution mechanism. For implementing this rule system, the Jess tool
has been employed as an inference engine. Jess allows the development of Java
applications with “reasoning” capabilities1.

In open systems, not only the regimentation of all actions can be difficult,
but also sometimes it is inevitable and even preferable to allow agents to vi-
olate norms [6]. Reasons behind desirability of norm violations are because it
is impossible to take a thorough control of all their actions, or agents could
obtain higher personal benefits when violating norms, or norms may be vio-
lated by functional or cooperative motivations, since agents intend to improve

1 http://herzberg.ca.sandia.gov/jess/

254 N. Criado et al.

the organization functionality through violating or ignoring norms. Therefore,
all these situations require norms to be controlled by enforcement mechanisms.
Next, works on the enforcement of norms inside EI are described.

Norm Enforcement. The enforcement of a norm by an institution requires
the institution to be capable of recognizing the occurrence of the violation of
the norm and respond to it [16]. Hence, checking activities may occur in several
ways: directly, at any time, randomly or with periodical checks, or by using
monitoring activities; or indirectly, allowing agents to denounce the occurrence
of a violation and then checking their grievances.

Regarding direct norm enforcement, the institution itself is in charge of both
observing and enforcing norms. Thus, in this approach there are infrastructural
entities which act as norm observers and apply sanctions when a violation is
detected. In [19,13], distributed mechanisms for an institutional enforcement of
norms are proposed. In particular, these works propose languages for expressing
norms and software architectures for the distributed enforcement of these norms.
More specifically, the work described in [19] presents an enforcement mechanism,
implemented by the Moses toolkit [18], which is as general (i.e. it can implement
all norms that are controllable by a centralized enforcement) and more scalable
and efficient with respect to centralized approaches. However, one of the main
drawbacks of this proposal is the fact that each agent has an interface that sends
legal messages. Since norms are controlled by these local interfaces, norms can
be only expressed in terms of messages sent or received by an agent; i.e. this
framework does not support the definition of norms that affect an agent as a
consequence of an action carried out independently by another agent. This prob-
lem is faced by Gaertner et al. in [13]. In this approach, Gaertner et al. propose
a distributed architecture for enforcing norms in EI. In particular, dialogical
actions performed by agents may cause the propagation of normative positions
(i.e. obligations, permissions and prohibitions). These normative propositions
are taken into account by the normative level; i.e. a higher level in which norm
reasoning and management processes are performed in a distributed manner. In
a more recent work, Modgil et al. [20] propose an architecture for monitoring
norm-governed systems. In particular, this architecture is formed by trusted ob-
servers that report to monitors on states of interest relevant to the activation,
fulfilment, violation and expiration of norms. This monitoring system is correc-
tive in the sense that it allows norm violations to be detected and reacting to
them.

Mixed Approaches. Finally, there are works which employ a mixed approach
for controlling norms. In this sense, they propose the usage of regimentation
mechanisms for ensuring compliance with norms that preserve the integrity of
the application. Unlike this, enforcement is proposed to control norms that can-
not be regimented due to the fact that they are not verifiable or their violation
may be desirable. In [7] an example on the mixed approach is shown. In par-
ticular, this work shows how norms that define the access to the organization

Norms Enforceability in Electronic Institutions? 255

infrastructure are controlled, whereas norms controlling other issues such as
work domain norms are ignored. In particular, those norms that define permis-
sions and prohibitions related to the access to the organization are regimented
through mediation, whereas obligation norms are enforced following the institu-
tional sanction mechanism.

The ORA4MAS [17] is another well known proposal that makes use of a mixed
approach for implementing norms. The ORA4MAS proposal defines artifacts as
first class entities to instrument the organisation for supporting agents activi-
ties within it. Artifacts are resources and tools that agents can create and use
to perform their individual and social activities [23]. Regarding the implemen-
tation of norms in the ORA4MAS framework, regimentation mechanisms are
implemented in artifacts that agents use for accessing the organization accord-
ing to the mediation mechanism. Enforcement of norms has been implemented
using third party observability, since the detection of norm violations is a func-
tionality provided by artifacts. In addition, norms are enforced by third parties,
since there are agents in charge of being informed about norm violations and
carrying out the evaluation and judgement of these situations.

However, none of the above mentioned proposals allows norms which regulate
activities taking place out of the institution scope to be controlled. In this case,
norm compliance is non-observable by the institution and can only be detected
when a conflict arises. Thus, in this paper we propose that both a second-party
and third-party can observe non-compliant behaviour and start a grievance pro-
cess which takes place inside the EI. Therefore, in this paper we face the problem
of institutional enforcement of norms based on second-party and third-party ob-
servability. Next section provides a concrete instantiation of this problem inside
a more specific case-study.

3 A Concrete Sample Scenario in the mWater Regulated
Environment

In this section we exemplify the problem of non-regimented norm enforcement
in EI with mWater, a regulated MAS application for trading water-rights within
a virtual market. In order to get a good understanding of the overall mWater
functioning, we first describe the motivation of mWater and present a brief
overview of its structure. Afterwards, the sample complex situation for norm
enforcement in the current mWater EI implementation is analyzed.

3.1 mWater Overall Description

In countries like Spain, and particularly in its Mediterranean coast, there is a high
degree of public awareness of the main consequences of the scarcity of water and
the need of fostering efficient use of water resources. Two new mechanisms for
water management already under way are: a heated debate on the need and feasi-
bility of transferring water from one basin to another, and, directly related to this

256 N. Criado et al.

proposal, the regulation of water banks2. mWater is an agent-based electronic
market of water-rights. Our focus is on demand and, in particular, on the type
of regulatory and market mechanisms that foster an efficient use of water while
preventing conflicts. The framework is a somewhat idealized version of current
water-use regulations that articulate the interactions of those individual and
collective entities that are involved in the use of water in a closed basin. The main
focus of the work presented in this paper is on the regulated environment, which
includes the expression and use of regulations of different sorts: from actual laws
and regulations issued by governments, to policies and local regulations issued
by basin managers, and to social norms that prevail in a given community of
users.

For the construction of mWater we follow the IIIA Electronic Institution (EI)
conceptual model [1]. For the actual specification and implementation of mWater
we use the EIDE platform.

Procedural conventions in the mWater institution are specified through a
nested performative structure (Fig. 1) with multiple processes. The top struc-
ture, mWaterPS, describes the overall market environment and includes other
performative structures; TradingHall provides updated information about the
market and, at the same time, users and trading staff can initiate most trading
and ancillary operations here; finally, TradingTables establishes the trading pro-
cedures. This performative structure includes a scene schema for each trading
mechanism. Once an agreement on transferring a water-right has been reached
it is “managed” according to the market conventions captured in AgreementVal-
idation and ContractEnactment scenes. When an agreement is reached, mWa-
ter staff check whether the agreement satisfies some formal conditions and if
so, a transfer contract is signed. When a contract becomes active, other right-
holders and external stakeholders may initiate a Grievance procedure that may
have an impact on the transfer agreement. This procedure is activated whenever
any market participant believes there is an incorrect execution of a given norm
and/or policy. Grievance performative structure includes different scenes to ad-
dress such grievances or for the disputes that may arise among co-signers. On
the other hand, if things proceed smoothly, the right subsists until maturity.

3.2 Complex Scenario: The Registration of Water-Right Transfer
Agreements

In mWater we have three different types of regulations: (i) government norms,
issued by the Spanish Ministry of Environment (stated in the National Hydro-
logical Plan); (ii) basin or local norms, defined and regimented by the basin

2 The 2001 Water Law of the National Hidrological Plan (NHP) —’Real Decreto
Legislativo 1/2001, BOE 176’ (see www.boe.es/boe/dias/2001/07/24/pdfs/A26791-
26817.eps, in Spanish)— and its amendment in 2005 regulates the power of right-
holders to engage in voluntary water transfers, and of basin authorities to setup
water markets, banks, and trading centers for the exchange of water-rights in cases
of drought or other severe scarcity problems.

Norms Enforceability in Electronic Institutions? 257

Initial

Notation

X

Start End Process Arc And
Transition

Xor
Transition

Or
Transition

Nested
Process

Multiple
Processes

Entitlement

Accreditation Trading
Tables

Trading
Hall Grievances

Annulment

Agreement
Validation

Contract
Enactment

Final

m

X

X

m, b, s

X

m, ba, b, s

m

m

m

m

m

m

m, ba,
b, s

mb,s
b, s

p, d, j

m,b,s

baw

w

w

w

ba, w

ba, w

ba, b, s

m, ba,
b, s

m, p, d, j m, p, d, j

m

w

m, w
m, w

m, w, ba

m, w, ba

w

w m

Fig. 1. mWater performative structure. Participating Roles: g - Guest, w - Water user,
b - Buyer, s - Seller, p - Third Party, m - Market Facilitator, ba - Basin Authority.

authorities; and (iii) social norms, stated by the members of a given user as-
sembly and/or organization. The interplay among different norms from these
three groups brings about complex situations in which there are non-regimented
norms and, moreover, the non-compliance of the norm is not observable until a
conflict appears. A very critical situation for the reliable execution of mWater
appears when the following norms apply:

Government norm - (N0): A water-user can use a given volume of water from
a given extraction point, if and only if he/she owns the specific water-right
or has a transfer agreement that endows him/her.

Government norm - (N1): Every water-right transfer agreement must be reg-
istered within the fifteen days after its signing and wait for the Basin Au-
thorities’ approval in order to be executed.

Local norm - (N2): The registration process of a water-right transfer agreement
is started voluntarily by the agreement signing parties.

Social norm - (N3): Whenever a conflict appears, a water user can start a
grievance procedure in order to solve it.

Sample situation:
Let’s suppose there is a water user A who has a water-right w1 and wants to
sell it. A starts a Trading Table inside the TradingTables process (see Fig. 1) in
order to sell w1. The water user B enters the Trading Table and, as a result,
there is an agreement Agr1 between A and B, by which B buys w1 from A for
the period [t1, t2], and pays the quantity p1 for such a transfer. A and B belong
to Basinx, in which norms N1, N2 and N3 apply. A and B do not register Agr1

258 N. Criado et al.

due to norm N2 (in other words, A and B do not go to the Agreement Validation
scene of Fig. 1). Since there is no mechanism in Basinx by which water-right w1

is blocked from A after its selling (due to Agr1 is not registered and w1 is still
owned by A in time periods not overlapped with [t1, t2]), A continues to operate
in the market. Afterwards A starts a new Trading Table to sell w1 for period
[t3, t4], with t1 < t3 < t2 and t4 > t2 (the new period [t3, t4] is overlapped with
[t1, t2]). In this second Trading Table A and C sign Agr2, by which A sells w1

to C for the period [t3, t4] and C pays p2 to A. A and C belong to Basinx. In
this case C registers Agr2 in the Agreement Validation scene, due to N1 and
N2, and obtains the basin approval for executing Agr2. At time t3 (the transfer
starting time) C attempts to execute Agr2, but there is no water in the water
transportation node, since B is also executing Agr1. At this moment C has a
conflict with B, and in order to solve it he/she has to start a grievance procedure
due to N3 (Grievances performative structure of Fig. 1).

This situation3 is an instantiated example of the one described above, in which
there are non-regimented norms whose non-compliance is not observable and
cannot be asserted until the conflict appears. The critical situation comes out
due to the compliance procedure for agreement registration and second selling
of the same water-right is not coercive.

The current development environment of EI we are using does not provide
build-in support for non-coercive processes that are defined by non-regimented
norms. Moreover, those situations in which it is not possible to observe the
non-compliance of a norm until the resulting conflict appears are not supported
either. Nevertheless, there are sample scenarios, like mWater, in which this be-
haviour is required. In the following section we analyze the EI implementation
we have devised for this complex scenario.

3.3 Implementation

In this section our approach to solve the previously described complex scenario
in mWater is described.

In order to include norm N1 in the current EI implementation of mWater we
have designed the Agreement Validation scene (see Fig. 1) as a successor scene
for any Trading Table. When any water user enters this scene, the Market Facili-
tator verifies the constraint of fifteen days from the agreement statement process
related to norm N1. If this constraint is satisfied the water-right transfer agree-
ment is forwarded to the Basin Authority who activates a Normative Reasoning
process in order to approve, or not, the agreement based on the basin normative
regulation. If the agreement gets approved it is published in the Trading Hall in
order for every water user of the basin to be informed of the transfer agreement.

3 The scenario presented in this section happens in practice in Spain, due to the
impossibility to monitor all the water transfer negotiations that may take place
among the different water users. It can be considered as a loophole in the Spanish
regulations. Nevertheless we are interested in modeling it due to its complexity and
in order to simulate the “real” behaviour of the basin users.

Norms Enforceability in Electronic Institutions? 259

Initial

Recruiting
Conflicting

Parties
X

Final

Conflict
Resolution

Negotiation Table

Arbitration

X

w

m,w,j

m

m

m,w,am,w,am,w,a w,a

j,w,a

j,w,a

X

w,aw,a

j

Fig. 2. Grievances performative structure

On the other hand, norm N2 is automatically included in the mWater institu-
tion due to the EIDE implementation feature by which no participating agent in
the electronic institution can be forced to go to a given scene. For the particular
mWater example, neither the buyer nor the seller can be forced to go through
the transition between the Trading Table scene and the Agreement Validation
scene (see Fig. 1). This way, whenever the buyer and/or the seller goes to the
Agreement Validation scene he/she starts the scene voluntarily, so norm N2 is
satisfied.

The implementation of norm N3 requires a specific performative structure,
named Grievances (Fig. 2), in order to deal with conflict resolution processes.

Finally, the observance of norm compliance is delegated to every water user.
Hence, the enforceability of norm N0 is delegated to every water user.

Fig. 2 shows the different scenes of the complex Grievances performative
structure. In this structure any conflict can be solved by means of two alterna-
tive processes (these processes are similar to those used in Alternative Dispute
Resolutions and Online Dispute Resolutions [26,27]). On the one hand, conflict
resolution can be solved by means of negotiation tables (Conflict Resolution Ne-
gotiation Table performative structure). In this mechanism a negotiation table
is created on demand whenever any water user wants to solve a conflict with
other/s water user/s, negotiating with them with or without mediator. Such a
negotiation table can use a different negotiation protocol, such as face to face,
standard double auction, etc. On the other hand, arbitration mechanisms for
conflict resolution can also be employed (Arbitration performative structure). In
this last mechanism, a jury solves the conflict sanctioning the offenses.

There are three steps in the arbitration process (see Fig. 3). In the first one,
the grievance is stated by the plaintive water user. In the second step, the dif-
ferent conflicting parties present their allegations to the jury. Finally, in the last
step, the jury, after hearing the dispute, passes a sentence on the conflict. The
difference among the two mechanisms for conflict resolution is that the arbitra-
tion process is binding, meanwhile the negotiation is not. In this way if any of
the conflicting parties is not satisfied with the negotiation results he/she can
activate an arbitration process in order to solve the conflict.

In the previously described complex scenario, when C cannot execute Agr2

(because there is no water in the water transportation node), C believes that B

260 N. Criado et al.

Initial

Grievances

X

Final

X

p

m,p

m

mm,p,am,p m
X

p,a

a

Hearing
Dispute

Sanctioning
Offenses

m,p,a

a

m,p,a

m,a

m,a

Fig. 3. Arbitration performative structure

is not complying norm N0. C believes there is a conflict because Agr2 endows
him/her to use the water, and moreover, there is no transfer agreement published
in the Trading Hall that endows B to do the same. In order to enforce norm N0
and to execute Agr2, C starts a grievance procedure. In this procedure, water
users C and B are recruited as conflicting parties and A as third party because
he/she is the seller of w1 as stated in Agr2 (Recruiting Conflicting Parties scene
of Fig. 2). Let’s assume C chooses as conflict resolution mechanism arbitration,
because he/she does not want to negotiate with B. After stating the grievance,
C and B present their allegations to the jury. In this process B presents Agr1 by
which he/she believes there is fulfillment of norm N0. Nevertheless, in the last
arbitration step, by means of a Normative Reasoning function, the jury analyzes
the presented allegations and the normative regulations of the basin and deduces
that there is an offense. Norm N1 was not complied by B and A, and moreover,
A has sold the same water-right twice for an overlapped time period. In this last
step, the jury imposes the corresponding sanctions to A and B.

Further implementation details. mWater is also devised as a simulation
tool for helping the basin policy makers to evaluate the behaviour of the market
when new or modified norms are applied. mWater is implemented by tiers.

We use the typical three-tier architecture defined in software engineering, as
depicted in Fig. 4, with the mWater electronic institution being executed in back-
ground. The persistence layer implements an information model that supports
the execution of the EI and it is developed in MySQL, including the different
conceptual data required for the market execution, such as basin structure, mar-
ket structure and all the elements necessary for the conflict resolution process.
Fig. 5 shows a fragment of this relational model in which some elements are
depicted such as: basin structure, water-right definition, agreement, and conflict
resolution table configuration, among others. The business layer includes all the
logic of the system, and it is implemented by providing different APIs (Applica-
tion Programming Interfaces) for querying the database and running the simula-
tion. Fig. 6 shows a snapshot of the mWater ’s complex scenario implementation
running on the AMELI execution environment of EIDE with 3 different agents
named as the example ’A’, ’B’ and ’C’. In each agent window we are able to
identify, on the left part, a tree which is labeled with the performative tasks,
transitions and scenes where the agent has passed or is staying. Note that the
implementation we have devised for this complex situation in mWater allows us

Norms Enforceability in Electronic Institutions? 261

Fig. 4. Architecture of our approach for mWater as a simulation tool for decision-
taking support

to solve the scenario described above. Moreover, when dealing with this scenario
it is also possible to observe the limitations of the current EIDE platform for
supporting non-observability and enforceability of non-regimented norms. The
implementation of mWater we are discussing in this paper is developed with
EIDE 2.114, and includes all the components described in previous sections. Fi-
nally, the presentation layer provides the front-end of the system while gives the
user the opportunity to tune some parameters (selection dates, regulation to be
applied and water users population) to run the market in a very intuitive way.
Additionally, it provides us with very useful (graphical) information that helps
stakeholders when taking decisions.

To this end, we are working on defining evaluation functions to measure the
performance of the market rather than on the implementation performance itself.
However, our tests do not show clear limitations in the the system performance,
and the system is fast enough to simulate the market during a whole year in just
a few minutes. On the other hand, the functions to measure the performance of
the market include now the amount of water transfer agreements signed in the
market, volume of water transferred, number of conflicts generated, etc. (see GUI
in Fig. 4), but the GUI is open to deal with other indicators. Apart from these
straightforward functions we are also working on defining “social” functions in
order to asses values such as the trust and reputation levels of the market, or
degree of water user satisfaction, among others.

4 Available at http://e-institutions.iiia.csic.es/eide/pub/

262 N. Criado et al.

Fig. 5. A fragment of the information model of mWater

4 Discussion and Closing Remarks

In real life problems, in many occasions it is difficult or even impossible to check
norm compliance, specially when the violation of the norm cannot be directly
observable. In other occasions, it is not only difficult to regiment all actions,
but it might be preferable to allow agents to violate norms, since they may
obtain a higher personal benefit or they may intend to improve the organization
functionality, despite violating or ignoring norms. It is clear that from a general

Norms Enforceability in Electronic Institutions? 263

Fig. 6. A snapshot of the mWater electronic institution running on AMELI

thought and design perspective of an Electronic Institution, it is preferable to
define a safe and trustful environment where norms cannot be violated (i.e. norms
are considered as hard constraints), thus providing a highly regimented scenario
that inspires confidence to their users. However, from a more flexible and realistic
perspective, it is appealing to have the possibility for agents to violate norms for
personal gain. Although this is a very realistic attribute that humans can have, it
eventually leads to corruption and, consequently, the designer may think to rule
it out. But again, from a norm enforceability standpoint it is always a good idea
to allow this: it does not only make the environment more open and dynamic,
but it also provides a useful tool for decision support. In such a thread, we are
able to range the set of norms, from a very relaxed scenario to a very tight one,
simulate the institution and the agents’ behaviour and, finally, analyze when
the global performance —in terms of number of conflicts that appear, degree
of global satisfaction or corruption, etc.— shows better, which makes it very
interesting as a testbed itself [5]. In all these cases, norm enforcement methods
are needed, such as second-party and third-party enforcements.

264 N. Criado et al.

This paper has highlighted the necessity for norm enforceability in Electronic
Institutions. Clearly, when the agents and their execution occur outside the
boundaries of the institution it is inviable to count on a simple and efficient way
to guarantee a norm-abiding behaviour, as the full observability of the whole
execution and environment is rarely possible. In other words, norm violations
are perfectly plausible (and unfortunately common) and are only detectable in
presence of a conflict among agents.

In our mWater scenario, we have proposed an open mechanism that comprises
two main principles: (i) the generation of a grievance when one agent detects
a conflict, i.e. when an agent denounces the occurrence of a violation; and (ii)
an authority entity with the role of arbiter/judge to mediate in the dispute
resolution process and being able to apply sanctions. The advantage of this
mechanism is twofold. First, it allows different types of grievance, either when
it corresponds to the execution of a previous signed (or unsigned) agreement or,
simply, when it happens as an occasional event during the habitual execution of
the water scenario and its infrastructure use. Second, it provides different ways
to deal with grievances, as shown in Fig. 2: (i) in a very formal and strict way by
means of an arbitration procedure that relies on a traditional jury, thus applying
a third-party enforceability mechanism (with an infrastructure enforcement); or
(ii) in a more flexible way that relies on the creation of a conflict resolution
negotiation table, which ranges from informal protocols (e.g., face to face) to
more formal ones that may need one or more mediators. In this last case, a
second-party enforceability mechanism has been adopted. We have shown that
this grievance procedure shows to be effective in the mWater scenario. But
despite its origin in the water environment, it can be easily extrapolated to any
other real problem modelled by using EIs, which represent the main contributions
of this paper.

The underlying idea to deal with norm enforcement in generic domains follows
a simple flow, but it needs some issues to be clearly defined. First of all, we
require a procedure to activate or initiate a new grievance. This can be done
from any type of performative structure similar to the TradingHall of Fig. 1.
This operation requires the identification of the agents that will be involved in
the grievance itself, so it is essential for all agents to be uniquely identified; that
is, we cannot deal with anonymous agents, which is an important issue. Once
the grievance has been initiated, we also require a mechanism for recruiting
the conflicting parties. Again, this is related to the agents’ identification and
the necessity of (perhaps formal) communication protocols to summon all the
parties. Note that this step is necessary for any type of dispute resolution, both
by negotiation tables and arbitration. And, at this point we have a high flexibility
for solving the conflicts, as they can be solved in many ways depending on
the type of problem we are addressing at each moment. Analogously to the
trading tables that we have in the mWater scenario, we can use general or
particular tables to reach an agreement and, thus, solving the conflict, no matter
the real problem we have. Finally, it is also important to note that reaching an
agreement when solving the conflict does not prevent from having new conflicts

Norms Enforceability in Electronic Institutions? 265

that appear from such an agreement, being necessary the initiation of a new
grievance procedure and repeating all the operations iteratively. Although such
new grievances are possible from both the negotiation table and arbitration
alternatives, it is common to have situations where the decisions/verdict taken
by the arbitration judges are unappealable.

Regarding the limitations of our proposal, the solution provided here is not
useful per se. In this sense, the solution to the norm enforceability problem in
EI is not complete. In particular, this paper focuses on the description of the
structure (i.e the grievance performative structure) that allows the question of
norm enforceability to be solved in case of the mWater scenario. However, this
structure must be endowed with arbitration [15], trust [25] and argumentation
mechanisms [28,11] in order to become a reliable infrastructure for detecting
and reacting to non-observable norm violations. Therefore, our current work of
research is focused on providing a specification of these mechanisms. In partic-
ular, we are working on how the conflict resolution tables can be defined and to
come up with specialized protocols for these tables. Hence, our final goal is to
be able to integrate this behaviour into a decision support system to be applied
to the mWater and other scenarios of execution. On a parallel line, we are also
working on the development of a simulation tool for the water-right market that
allows us to easily range: (i) the type of regulatory and market mechanisms; (ii)
the number, type, group of norms and how to reason on them; (iii) the agents’
population and their behaviour, in particular the way they are more or less
norm-abiding; and (iv) the performance measures to evaluate “social” issues in
the market behaviour. This will provide us with very valuable information about
the necessity of richer normative regulation and its real impact when different
types of water users interact within the market.

Acknowledgements

This paper was partially funded by the Consolider programme of the Spanish
Ministry of Science and Innovation through project AT (CSD2007-0022, INGE-
NIO 2010), MICINN projects TIN2008-06701-C03-01 and TIN2009-13839-C03-
01 and by the FPU grant AP-2007-01256 awarded to N. Criado. This research
has also been partially funded by the Generalitat de Catalunya under the grant
2009-SGR-1434 and Valencian Prometeo project 2008/051.

References

1. Arcos, J., Esteva, M., Noriega, P., Rodriguez-Aguilar, J., Sierra, C.: Engineering
open environments with electronic institutions. Engineering Applications of Arti-
ficial Intelligence (18), 191–204 (2005)

2. Balke, T.: A taxonomy for ensuring institutional compliance in utility computing.
In: Boella, G., Noriega, P., Pigozzi, G., Verhagen, H. (eds.) Normative Multi-Agent
Systems, Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 09121. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

266 N. Criado et al.

3. Boella, G., van der Torre, L., Verhagen, H.: Introduction to the special issue on nor-
mative multiagent systems. Autonomous Agents and Multi-Agent Systems 17(1),
1–10 (2008)

4. Boella, G., van der Torre, L.: Substantive and procedural norms in normative
multiagent systems. Journal of Applied Logic 6(2), 152–171 (2008)

5. Botti, V., Garrido, A., Giret, A., Igual, F., Noriega, P.: On the design of mWater:
a case study for Agreement Technologies. In: 7th European Workshop on Multi-
Agent Systems - EUMAS 2009, pp. 1–15 (2009)

6. Castelfranchi, C.: Formalising the informal? Journal of Applied Logic (1) (2004)

7. Criado, N., Julián, V., Botti, V., Argente, E.: A Norm-based Organization Man-
agement System. In: Padget, J., Artikis, A., Vasconcelos, W., Stathis, K., da Silva,
V.T., Matson, E., Polleres, A. (eds.) COIN 2009. LNCS, vol. 6069, pp. 19–35.
Springer, Heidelberg (2010)

8. Esteva, M.: Electronic Institutions: from specification to development. IIIA PhD
Monography 19 (2003)

9. Esteva, M., Rodriguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.: On the formal
specification of electronic institutions. In: Agent Mediated Electronic Commerce,
pp. 126–147 (1991)

10. Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based
middleware for electronic institutions. In: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1, p. 243.
IEEE Computer Society, Los Alamitos (2004)

11. Euzenat, J., Laera, L., Tamma, V., Viollet, A.: D2.3.7: Negotiation/argumentation
techniques among agents complying to different ontologies. Tech. Report.
KWEB/2004/D2.3.7/v1.0 (2006)

12. Fornara, N., Colombetti, M.: Specifying and enforcing norms in artificial institu-
tions (short paper). In: Proc. 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2008), pp. 1481–1484 (2008)

13. Gaertner, D., Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.A., Vasconce-
los, W.: Distributed norm management in regulated multiagent systems. In: Pro-
ceedings of the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems, p. 90. ACM, New York (2007)

14. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.W.: Norm-
oriented programming of electronic institutions. In: Proc. International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 670–672. ACM,
New York (2006)

15. Gateau, B., Khadraoui, D.: Arbitration of Autonomous Multimedia Objects with
a Multi-Agent System. Proceeding of 2nd Information and Communication Tech-
nologies, pp. 3007–3012 (2006)

16. Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex, ibi poena: Designing norm enforce-
ment in e-institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O.,
Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386,
pp. 101–114. Springer, Heidelberg (2007)

17. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents. Autonomous Agents and Multi-
Agent Systems 20(3), 369–400 (2010)

18. Minsky, N.H., Ungureanu, V.: A mechanism for establishing policies for elec-
tronic commerce. In: International Conference on Distributed Computing Systems,
vol. 18, pp. 322–331. Citeseer (1998)

Norms Enforceability in Electronic Institutions? 267

19. Minsky, N.H., Ungureanu, V.: Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 9(3), 273–305 (2000)

20. Modgil, S., Faci, N., Meneguzzi, F.R., Oren, N., Miles, S., Luck, M.: A framework
for monitoring agent-based normative systems. In: Sierra, C., Castelfranchi, C.,
Decker, K.S., Sichman, J.S. (eds.) AAMAS, pp. 153–160. IFAAMAS (2009)

21. Noriega, P.: Agent-mediated auctions: The fishmarket metaphor. IIIA Phd Monog-
raphy 8 (1997)

22. North, D.C.: Institutions, institutional change, and economic performance. Cam-
bridge Univ Pr, Cambridge (1990)

23. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

24. Rodrıguez-Aguilar, J.A.: On the design and construction of agent-mediated elec-
tronic institutions. IIIA Phd Monography 14 (2001)

25. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artif. Intell. Rev. 24(1), 33–60 (2005)

26. Schultz, T., Kaufmann-Kohler, G., Langer, D., Bonnet, V.: Online dispute resolu-
tion: The state of the art and the issues, SSRN http://ssrn.com/abstarct=899079

27. Slate, W.K.: Online dispute resolution: Click here to settle your dispute. Dispute
Resolution Journal 56(4), 8–14 (2002)

28. Toulmin, S.: The Uses of Argument. Cambridge Univ Pr, Cambridge (1969)

http://ssrn.com/abstarct=899079

Initial Steps Towards Run-Time Support
for Norm-Governed Systems

Visara Urovi1, Stefano Bromuri1, Kostas Stathis1, and Alexander Artikis2

1 Department of Computer Science,
Royal Holloway, University of London, UK

{visara,stefano,kostas}@cs.rhul.ac.uk
2 Institute of Informatics & Telecommunications,

NCSR “Demokritos”, Greece
a.artikis@iit.demokritos.gr

Abstract. We present a knowledge representation framework with an associ-
ated run-time support infrastructure that is able to compute, for the benefit of
the members of a norm-governed multi-agent system, the physically possible and
permitted actions at each time, as well as sanctions that should be applied to vio-
lations of prohibitions. To offer the envisioned run-time support we use an Event
Calculus dialect for efficient temporal reasoning. Both the knowledge representa-
tion framework and its associated infrastructure are highly configurable in the
sense that they can be appropriately distributed in order to support real-time
responses to agent requests. To exemplify the ideas, we apply the infrastructure on
a benchmark scenario for multi-agent systems. Through experimental evaluation
we also show how distributing our infrastructure can provide run-time support to
large-scale multi-agent systems regulated by norms.

Keywords: social interaction, run-time service, GOLEM, event calculus.

1 Introduction

An open multi-agent system [33], such as an electronic market, is often characterized as
a computing system where software agents developed by different parties are deployed
within an application domain to achieve specific objectives. An important characteristic
of this class of applications is that the various parties developing the agents may have
competing goals and, as a result, agent developers for a specific party will have every
interest to hide their agent’s internal state from the rest of the agents in the system.
Although openness of this kind may encourage many agents to participate in an appli-
cation, interactions in the system must be regulated so that to convince skeptical agents
that the overall specification of the application domain is respected.

Norm-governed multi-agent systems [21], [2] are open multi-agent systems that
are regulated according to the normative relations that may exist between member
agents, such as permission, obligation, and institutional power [22], including sanction-
ing mechanisms dealing with violations of prohibitions and non-compliance with obli-
gations. Although knowledge representation frameworks for specifying such relations
exist, these frameworks often focus on the expressive power of the formalism proposed
and often abstract away from the computational aspects and experimental evaluation.

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 268–284, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Initial Steps Towards Run-Time Support for Norm-Governed Systems 269

The existing works for representing executable specifications normally do not provide
experimental evaluations of multi-agent system deployment over distributed networks.
The computational behaviour of many representation frameworks for norm-governed
systems is often studied theoretically only, sometimes under simplifying, unrealistic
assumptions.

The aim of this paper is to use a specific knowledge representation framework to
develop an infrastructure for computing at run-time the physically possible actions,
permissions, and sanctions, and eventually the obligations, and institutional powers of
the members of a norm-governed system. The need for such an infrastructure is mo-
tivated by the observation that agents cannot be expected to be capable of computing
these normative relations on their own. Practical reasons for this include (a) computa-
tional constraints agents may have (e.g. due to lack of CPU cycles, memory, or battery),
and (b) incomplete knowledge agents may have about the application state (e.g. due to
a partial view of the environment).

Our run-time infrastructure integrates selected versions of the Event Calculus [25]
for describing an open multi-agent system as two concurrent and interconnected com-
posite structures that evolve over time: one representing the physical environment of the
open multi-agent system and the other representing the social environment. The focus
of our knowledge representation framework and its associated run-time infrastructure
is to provide real-time responses to agent requests. The novelty of our approach relies
on the ability of our framework to provide a distributed implementation of the Event
Calculus for norm governed systems. The advantage here is that by distributing a norm-
governed application we can efficiently compute the distributed social and the physical
states of the system.

The paper is organised as follows. In Section 2 we introduce a scenario of a norm-
governed multi-agent system. We then use this scenario to describe our run-time infras-
tructure in Section 3, the knowledge representation framework and extensions of this
framework to support a social state with norms. In Section 4 we show an experimental
evaluation of the approach, followed by a comparison with related work in Section 5.
Finally, in Section 6, we summarize our approach and outline plans for future work.

2 The Open Packet World

To exemplify the framework and experiment with the proposed infrastructure we will
use the Packet World [36]. As seen in Fig. 1(a)(i), a set of agents are situated in a rectan-
gular grid (8 x 8 here) consisting of a number of colored packets (squares) and destina-
tion points (circles). Agents (a1, a2, a3, and a4 in Fig. 1(a)(i))) move around the grid
to pick colored packets which they must deliver in destinations that match a packet’s
color. As agents can see only part of the grid at any one time (the square around agent
a2 represents the perception range of this agent), they often need to collaborate with
each other. Collaboration results in agents forming teams to deliver packets and placing
flags in locations for letting other agents know that a particular area has been explored
and has no packets left. Also, each agent is powered by a battery that discharges as the
agent moves in the grid. The battery can be recharged using a battery charger (situated

270 V. Urovi et al.

Fig. 1. Open Packet-World as a Norm-Governed System

in location (7,8) of Fig. 1(a)(i))). This charger emits a gradient whose value is larger if
the agent is far away from the charger and smaller if the agent is closer to the charger.

We are interested here in a variation of Packet World, which we will refer to as Open
Packet World (OPW). This variation differs from the original version as follows. We
make the scenario competitive by giving points to agents if they deliver packets to ap-
propriate destinations. Agents are now antagonistic and may be developed by different
parties. For instance an agent may try to deceive other agents by placing a flag in an
area that has packets. As a result of these extensions we introduce norms. Violation of
norms results in sanctions. One type of sanction, in this example, is the reduction of
points of the violating agent. In this paper we focus on permissions and sanctions.

OPW exhibits a number of features of that make it very appealing for a norm-
governed systems test-bed:

– Unlike other practical applications, e.g. electronic markets, it does not require
speech acts only but also physical actions, which in turn necessitate the represen-
tation of physical possibility in the system. Physical possibility requires the repre-
sentation of a physical environment whose state should be distinct from the state of
the social environment.

– OPW is also convenient from the point of view of experimentation in that we can
make the experimental conditions harder by increasing the size of the grid, the
number of agents and the number of packets/destinations. Moreover, it is natural
to distribute OPW and thus test reasoning frameworks that operate on distributed
knowledge bases.

– Because of the intuitive nature of actions taking place in it, OPW can be easily
visualized.

Initial Steps Towards Run-Time Support for Norm-Governed Systems 271

3 Run-Time Infrastructure

To experiment with our scenario we use the GOLEM agent platform1. GOLEM sup-
ports the deployment of agents - cognitive entities that can reason about sensory input
received from the environment and act upon it, objects - resources that lack cognitive
ability, and containers - virtual spaces containing agents and objects, capturing their
ongoing interactions in terms of an event-based approach.

A GOLEM container represents a portion of the distributed agent environment and
it works as a mediator for the interaction taking place between agents and objects. In
general, events in a container can be caused by agents, objects and processes of the
agent environment as discussed in [3], [4]. In this paper we focus on the social part of
the agent environment which involves events produced mainly by agents. Agents de-
cide what actions to perform according to their goals and to the last environmental state
observed. They can modify and observe the state of the environment by using the in-
terface provided by the container to attempt actions in the environment. The containers
mediate these actions by performing the necessary updates in the state of the environ-
ment.

In this paper we are not concerned with the implementation of agents. Instead, we
are concerned with an implementation of a software framework informing the decision-
making of agents by computing, on their behalf, the normative positions as they evolve
in time. Whether an agent complies with these positions depends entirely on the imple-
mentation of the agent. In general, there is a clear separation between the agent code
and the code of our software framework. The code presented in the paper belongs en-
tirely to the proposed software framework. A part of that code — the specification of
norms and physical possibility — are application-dependent.

3.1 The Open Packet World in GOLEM

The simplest way to model OPW in GOLEM is shown in Fig. 1(a), where we deploy one
container representing the world (see Fig. 1(a)(i)) and extend it in a way that contains a
social state representing the normative aspects of the system (see Fig. 1(a)(ii)).

Although a single container specification for the original Packet World has been
implemented in [3], this container did not have a social state. Here we extend a container
with a social state managed by an active object which we call Social Calculator. This
object computes the agents’ permissions and sanctions and publicises this information
upon request.

An alternative way to model OPW is to split the physical state of a single container
into smaller states that we distribute in different containers. A possible distribution
is shown in Fig. 1(b), where we use four 4 x 4 adjacent containers for OPW (see
Fig. 1(b)(i)) together with their corresponding Social Calculators (see Fig. 1(b)(ii)).
Issues such as distributing the perception range of an agent in different containers
(as it is the case with ag2) and moving between containers are already described
in [4]. Here we show how containers can use a social state to support a norm-governed
system.

1 http://golem.cs.rhul.ac.uk

272 V. Urovi et al.

3.2 The Physical State of Containers

To represent the state of a GOLEM container we use the object-based notation of C-
logic, a formalism that describes objects as complex terms that have a straightforward
translation to first-order logic [5]. The complex term below, for example, represents
the state of a 2 x 2 packet world with one agent, one packet, one destination and one
battery:

packet world:c1[
address⇒ “container://one@134.219.7.1:13000”,
type⇒ open,
grid⇒ {square:sq1, square:sq2, square:sq3, square:sq4}
entities⇒ {picker:ag1, packet:p1, dest:d1, battery:b1}

]

Object instances of this kind belong to classes (e.g. packet world), are characterized by
unique identifiers (e.g. c1), and have attributes (e.g. address). The representation of the
8 x 8 grid of Fig. 1 is similar but larger, i.e. there are more agents, packets, destinations,
and squares.

In GOLEM complex instances of objects evolve as a result of events happening in the
state of a container. An event happens as a result of entities, such as agents, attempting
to act in the environment. For example the assertions:

attempt(e14, 100).
do:e14 [actor⇒ ag1, act⇒ move, location⇒ sq3].

describe an attempt e14 at time 100, containing a physical action made by agent ag1
wishing to move to location sq3. In GOLEM, an attempt becomes an event that happens
if the attempt is possible:

happens(Event, T)← attempt(Event, T), possible(Event, T).

Happenings of events cause the state of a container C to evolve over time. To query the
value Val of an attribute Attr for an entity Id of container C at a specific time T, we will
use the definition:

solve at(C, Id, Class, Attr, Val, T)←
holds at(C, container, entity of, Id, T),
holds at(Id, Class, Attr, Val, T).

holds at/5 is defined by the top-level clauses of the Object Event Calculus (OEC) [24] and
specified as:

holds at(Id, Class, Attr, Val, T)←
happens(E, Ti), Ti ≤ T,
initiates(E, Id, Class, Attr, Val),
not broken(Id, Class, Attr, Val, Ti, T).

broken(Id, Class, Attr, Val, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤Tn,
terminates(E, Id, Class, Attr, Val).

Initial Steps Towards Run-Time Support for Norm-Governed Systems 273

The above definitions utilise a logic programming approach based on negation as failure
[8]. They describe how the value Val of an attribute Attr for specific Class instance
identified by Id holds at a particular time T, as in the usual Event Calculus [25]. Given
an event E, the initiates/5 predicate assigns to the attributes Attr of an object identified by
the Id and of class Class a value Val. The terminates/5 predicate has a similar meaning,
with the only difference that the event E terminates the value Val of the attribute of
an object. The remaining OEC clauses (see [24] for more details) describe how events
create instances of C-logic like objects, assign these instances to classes, represent basic
hierarchical inheritance where sub-classes inherit attributes from super-classes, destroy
complex terms, and terminate single value and multi-valued attributes.

The possible/2 are application dependent rules that specify physical possibility. Be-
low, we show an example of how we use the OEC to express a possible/2 rule in OPW:

possible(E, T)←
do:E [actor⇒ A, act⇒ move, location⇒ SqB],
solve at(this, A, picker, position, SqA, T),
adjacent(SqA, SqB),
not occupied(SqB, T).

The above rule states that it is possible for an agent to move to a location SqB if the
agent is currently in location SqA, SqA is adjacent to SqB, and SqB is not occupied.
The keyword this is used here to refer to the identifier of the current container.

3.3 Containers with Social State

We extend GOLEM containers with a social state, formalized as a C-logic structure that
has a reference to the physical state, and extends this physical state with social attributes
to hold information about (a) any current sanctions imposed on any of the agents and
(b) how many points agents have collected so far. An example snapshot of a social state
for OPW is shown below:

packet world social state: s1 [
physical state⇒ packet world:c1,
sanctions⇒ {sanction:s1 [agent⇒ a2, ticket⇒ 5]},
records⇒ {record:r1[agent⇒ a1, points⇒ 35],

record:r2[agent⇒ a2, points⇒ 25]}
]

The term above states that agent a2 has been sanctioned with 5 points. We show the
records of two agents only to save space. Agent a1 has collected 35 points, while a2
has collected 25 after the sanction is applied. Sanctions change the points of the agent,
and they are stored in the social state to keep a history of all sanctions occurred to the
agents during the execution. A social state does not contain explicitly the permitted
actions. These are defined implicitly in terms of rules. We write:

permitted(Event, T)← not forbidden(Event, T).

to state that actions specified in events are permitted only if they are not forbidden.
Forbidden actions and the evolution of the social state due to these actions are specified

274 V. Urovi et al.

in an application dependent manner. A forbidden/2 rule in OPW can be expressed as
follows:

forbidden(E, T)←
do:E[actor⇒ A, act⇒drop, object⇒flag, location⇒SqA],
solve at(this, Id, packet, position, SqB, T),
adjacent(SqA, SqB).

states that it is forbidden for an agent A to drop a flag in location SqA if there are packets
nearby.

When a forbidden act has taken place, the Social Calculator raises a violation, which
results in a sanction.

initiates(E, R, record, points, Points)←
happens(E,T),
violation:E[sanction:S [ticket⇒ SanctionPs, agent⇒ A]],
solve at(this, R, record, agent, A, T),
solve at(this, R, record, points, OldPoints, T),
Points = OldPoints - SanctionPs.

initiates/5 updates the points of agent A as a consequence of receiving a sanction S at
time T. This simple example shows how events happening in the physical environment
(e.g. dropping a flag in a location of the grid) affect the social state of the applica-
tion (e.g. through the initiation of a sanction on the agent that dropped the flag). More
complex permissions and sanctions are formalized similarly.

Similarly to prohibition and permission, we can also represent a basic form of em-
powerment. For example, we can express the fact that an agent in a leader role within a
team of collaborating agents (here identified by the class instance team) is empowered
to request a second agent to collect a packet if the second agent is also a member of the
same collaboration team. We express this rule as follows:

empowered(E,T)←
do:E[actor⇒ A, act⇒collect, agent⇒B, square⇒ Sq],
neighbouring instance of(this, [], , Max, TID, team,T),
solve at(this, TID, team, leader, A, T),
solve at(this, TID, team, member, B, T).

The above clause states that an agent A, who is a leader in the collaboration team iden-
tified as TID, is empowered at time T to request from another agent B of the same team
to collect a packet in a square Sq. For a general discussion on empowerment see [22].

Our framework also supports obligations using rules of the form:

obliged(E, T)←
neighbouring instance of(this, [], , Max, TID, team, T),
solve at(this, TID, team, leader, A, T),
do:E[actor⇒ B, act⇒pick, obj⇒ObjId, square⇒ Sq],
request:Ej [actor⇒ A, act⇒ E],
happens(Ej , Tj),

Initial Steps Towards Run-Time Support for Norm-Governed Systems 275

Tj < T,
not fulfilled(E, Tj, T),
solve at(this, ObjId, packet, position, Sq, T).

The clause above states that an agent B is obliged at time T to pick a packet in the
location Sq if the leader of the team A has requested it before and this has not been
done yet, and the packet is still in the location Sq. For our scenario, such rules provide
a very basic form of obligations that implicitly persist until they are fulfilled. More
complex application scenarios will require more sophisticated treatment of obligations.
However, this discussion is beyond the scope of this work.

3.4 Distributing a Norm-Governed Application

One important feature of our knowledge representation framework is that we can dis-
tribute the state of a norm-governed application into multiple containers in order to sup-
port the parallel evaluation of physical and social states. Distributing a system among
multiple containers is not a novel architectural idea; however, the proposed architec-
ture — distributed implementation of the Event Calculus supporting norm-governed
systems — is, to the best of our knowledge, novel.

GOLEM supports this feature with the Ambient Event Calculus (AEC) [4]. The AEC
uses the OEC, described earlier, to query C-logic like objects and their attributes that
may be situated in distributed containers. For example, in OPW, we can distribute the
grid representing the agent environment into four containers as shown in Fig. 1(b).
Every container manages a part of the grid and is defined as a neighbour to the other
containers. The neighborhood defines the relationship between the distributed portions
of the agent environment and it is used in AEC to perform distributed queries. GOLEM
supports also hierarchical representation of the agent environment (where one container
contains other sub-containers) for which the interested reader is referred to [4].

The rules bellow specify how we can query the properties of objects in the agent
environment:

neighbouring at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
Max >= 0,
locally at(C, Path, Path∗, Id, Cls, Attr, Val, T).

neighbouring at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
holds at(C, container, neighbour, N, T),
not member(N, Path),
Max∗ is Max - 1,
append(Path, [C], New),
neighbouring at(N, New, Path∗, Max∗, Id, Cls, Attr, Val, T).

Using the above specification we can query whether an object identified as Id, with
class Cls, has an attribute Attr, whose value is Val at time T. In the clause above, Max
represents the maximum number (decided at design time) of adjacent neighbors that
the distributed query has to consider, Path represents the neighbors visited so far, while
Path∗ represents the resulting path to the neighbor where the query has succeeded.

276 V. Urovi et al.

In particular, the first clause checks whether the object is in the local state of a container.
locally at/8 checks with holds at/5 to find the object in the container’s state, including
sub-containers, if any (See [4] for a full definition of locally at/8). The second clause
looks for neighbors. If a new neighbor N is found, this neighbor is asked the query but
in the context of a New path and a new Max∗.

We are now in a position to customize our representation for distributing the physi-
cal and social state by redefining the solve at/6. The definition below has the effect of
changing all the physical and social rules to work with distributed containers:

solve at(C, Id, Class, Attr, Val, T)←
neighbouring at(C, [], , 1, Id, Class, Attr, Val, T).

The [] list above states that the initial path is empty, the underscore ‘ ’, that we are not
interested in the resulting path, and the number 1 indicates that we should look at all
neighbors whose distance is one step from the current container. In this way, we can
query all the neighbors of a container in the OPW of Fig. 1(b).

3.5 Implementation Issues

The AEC is implemented on top of OEC [30] which is an object-oriented optimised
version of EC. EC has been implemented in many different ways. Mueller [29], for
example, has developed an implementation using satisfiability solvers, whereas Farrell
et al [13] have developed a Java implementation of EC. The vast majority of EC im-
plementations, however, are in the context of logic programming. We also adopted the
logic programming due to the formal and declarative semantics — see [31], for instance,
for the benefits of a logic programming EC implementation.

The top-level description of OEC is specified below:

holds at(Obj,Attr,Val,T):-
object(Obj,Attr,Val,start(E)),
time(E,T1), T1 =< T,
not (object(Obj,Attr,Val,end(Evstar)),

time(Evstar,T2), T2>T1, T2 <T).

The main difference between this OEC version and the one discussed earlier is that now
we add all new properties that are initiated/terminated as object/4 assertions whenever a
new event description is added to the container’s state. Time intervals are used to store
how the properties of objects change their value in time, which is similar to the approach
followed in METATEM [14]. Additionally, the object/4 assertions store the state of the
environment distinguishing between objects in the container by their identification Obj.
This means that we have a double indexing on the properties of the state, the first one
is time and the second one is the identification of the objects that define the state of
the container, while in METATEM [14] the indexing is done only in terms of time. We
denote the time periods by using start(e1) and end(e2) terms. For example, in OPW the
assertions below:

Initial Steps Towards Run-Time Support for Norm-Governed Systems 277

time(e1, 2).
time(e2, 7).
object(ag1, position, [3,4], start(e1)).
object(ag1, position, [3,4], end(e2)).
object(ag1, position, [4,4], start(e2)).

describe how agent a1 moved to position [3,4] at time 2 and changed it to [4,4] at time 7.
We know that the periods in the state of a container are either closed or open intervals
which persist into the future. A new event such as e2 either starts a new period of
time (i.e. start(e2)) for a conclusion or ends a period of time which was started by
another event (i.e. end(e2)). The optimization is obtained now because the new event
is either related to the attributes of objects or the class membership, so we do not need
to check all the events that have happened, as with the previous OEC version. Our
implementation also uses indexing on the arguments of object/4 assertions, so that if
the first three arguments are specified, the time to retrieve the term is O(1) (which is
typically the case with GOLEM queries).

When we distribute the system in many containers we may have a synchronisation
problem due to the different timing in different containers. This issue was already ad-
dressed in [4] by applying a precise time protocol between sub and super containers. In
this paper we assume that a network of distributed containers, however it is structured,
it has always one root container that deals with the synchronisation of the containers.

Another important component of our implementation is that queries to the social
and physical environment are executed in parallel. An example of the multi-threaded
implementation is shown below for how we implement attempts of agents:

attempt(E, T):-
par([exec(possible(E, T), true), exec(permitted(E,T), R)]),
add(E, R, T).

The above program will be called by an agent that wishes to perform an action specified
as an event E. The event provides input to two parallel threads, one executing possi-
ble(E,T) (which must succeed i.e. return true) and the other executing permitted(E,T)
(which must have result R i.e. return true or false). If the event is concluded possible by
the first thread, it will be added in the state of the container using add/3; otherwise, the
attempt will fail. If the event is concluded possible by the first thread but not permitted
(R=false) by the second thread, then the Social Calculator will be triggered by add/3 to
produce a sanction in the social state.

4 Experimental Evaluation

Using OPW, we conducted a number of experiments to evaluate the performance of
the system with different configurations. In particular, we measured the performance
with a distributed versus centralised deployment of the system to show how the num-
ber of entities, the size of the environment and the distribution affect performances.
In all experiments, we measured the time to compute whether an action is physically
possible and whether an action is permitted. More specifically, we measured the time

278 V. Urovi et al.

Fig. 2. Time to query the physical and the social state of one container

taken for possible/2 and forbidden/2 rules against an action performed by an agent in
the environment. Then we related this time with the number of events produced.

In the first series of tests, we tested OPW in a centralized GOLEM container de-
ployed in an Intel Centrino Core 2 Duo 2.66GHz with 4GB of RAM. The environment
was represented by a 40x40 grid and 100 packets were collected by the agents and re-
leased into one of the 8 destinations in the grid. We run the first test with 10 agents,
the second test with 30 agents and the third test with 50 agents. In all of the runs, the
agent “minds” (reasoning components) were deployed in a separate machine and were
remotely connected with their “bodies” (action execution components) deployed in the
GOLEM container.

Fig. 2 shows three linear curves representing the average time to compute a query in
a single GOLEM container with respectively 10, 30 and 50 agents. Since the evaluation
of the two states is done concurrently, the curves represent the worst case between the
social and the physical state.

All the three curves follow a linear behaviour suggesting that the time to query a
GOLEM container grows linearly with the number of events produced in the container.
The fluctuations in the curves are explained as follows. The high peaks show the worst
case where the attempted action was either impossible or not permitted or both. As we
check possible and permitted actions in parallel and we wait for both threads to finish
the execution, the time shown is the one that took longer between the two. Alternatively,
the lowest peaks show the best case where the attempted action was either possible or
permitted or both. As before, the one shown is the one that took longer.

We can represent the time Tc to compute the social and physical state for a central-
ized container with the following equation:

Tc = a ∗ E + t0 with a ∼ Ne/Na

where Ne is the number of entities in the system, Na is the number of active entities
performing events, E is the number of events in the system and t0 is initial time to reg-
ister the entities in the container. As the number of agents increases, then Na increases,

Initial Steps Towards Run-Time Support for Norm-Governed Systems 279

Fig. 3. The effects of distribution

which means that a decreases, which results in better performance. This is due to the
fact that OEC is optimized to deal with events indexed by the identifiers of entities in
the agent environment. For example, if we have 10 agents, 5000 events, and assuming
that all agents perform the same number of events, each time that we call a solve at/6
predicate (e.g solve at(c1, ag1, picker, position, [3,4], 100)), the search for the value of
an agent attribute will evaluate a maximum of 500 entries (5000/10), while when we
have 50 agents and the remaining conditions are the same, the search will evaluate a
maximum of 100 entries (5000/50). Of course, if we consider an increasing number of
agents, this also means that they produce more events in less time, but it also means
that given the same number of changes applied to the environment, the environment re-
sponds better with an increasing number of agents. Thus, the environment as supported
by GOLEM scales up better in situations when there are many agents rather than few.

In the second series of experiments we distributed the OPW grid (40x40) first into
two containers (20x40) and then into four (20x20) different containers. For the distri-
bution of the containers we used an Intel Centrino Core 2 Duo 2.66GHz with 4GB of
RAM and an Intel Centrino Core Duo 1.66Ghz with 1GB of RAM. The agents were de-
ployed between the distributed containers and could move from one machine to another
by means of the mobility capabilities offered by GOLEM [4].

Fig. 3 shows what happens when we distribute the environment in multiple contain-
ers and use AEC to link these containers.

As shown in Fig. 3, with a growing number of events if we increase the number
of containers, we improve considerably the performance. In Fig. 3 we show that in a
system with a small number of events (0-500), it is better to compute the physical and
social state in one container. With a bigger number of events, the experiment shows
that we can achieve a big improvement in performance if we distribute in two or four
containers instead of one container.

In the distributed version the size of the grid managed by a single container becomes
smaller and less complex terms (agents, packets and destinations) are registered in a
single container. Between 500 to 3500 events, in average, having four or two contain-
ers does not make much difference. However, after 3500 events the performance of the

280 V. Urovi et al.

application with two containers is better from the performance of the application de-
ployed in four containers. This is due to the fact that with less packets on the grid (most
of them after 3500 events have been delivered to the destinations), the agents moving
on the grid are more likely to change containers in search for packets. The smaller the
grid, the bigger the number of times agents try to move from a container to another.
This introduces a distribution cost related to the cost of interactions between contain-
ers. For this reason, in the presented experiments there is no improvement when we
change from two to four containers.

In general, the time to compute the physical and social state distributed over many
containers is defined by the equation:

Td = Tc

d + i× c

where Tc is the time to compute the same experiment with a centralised container, d is
number of containers used in the decentralized version, i is the number of interactions
between containers and c is the cost of container interaction. In other words, when we
distribute the agent environment in multiple containers, the time to compute the physical
and the social state is inversely proportional to the number of containers, thus improving
the performance. However, there is an additional delay to compute the physical and
social state which is due to the interactions between the containers.

5 Related Work

There exist several approaches in the literature for executable specifications of norm-
governed systems. Consider, for instance, the ‘Law-Governed Interaction’ (LGI) [28,
27] framework that has been used to regulate distributed systems. The Moses software
mechanism [26] is an implementation of LGI that employs regimentation devices mon-
itoring the behaviour of agents, blocking the performance of forbidden actions and en-
forcing compliance with obligations. Laws in Moses are written in pure Prolog or Java.

The Electronic Institution (EI) approach [9, 10, 11] and the AMELI framework [12],
use organisational concepts [18] to model the interaction of the agents. AMELI is an
agent-based middleware for executing a set of normative rules, expressions which im-
pose obligations or prohibitions on communicative actions such as the computation of
the permissions and obligations of the agents at the current state. AMELI deploys gov-
ernor agents for every external interacting agent and scene manager agents in charge of
maintaining the state of the interactions between agents. One of the differences between
our approach and AMELI is that we handle agent interaction via containers and we do
not use mediating agents, such as AMELI governors. An explicit feature of our ap-
proach is that the state of the interaction in the agent environment is easily inspectable,
while in EIs agents need to communicate to build a coherent state. Moreover the EI
approach allows only for permitted actions to happen. It has been argued that regi-
mentation is not always desirable or practical [22]. Therefore, in here we opted for
sanctioning mechanisms as opposed to developing regimentation devices.

In [19] Garcia-Camino et al propose AMELI+, an extended version of the AMELI
framework [12], with a mechanism to handle distribution of norms and possible con-
flicts [17] that may arise due to normative positions generated from the actions of

Initial Steps Towards Run-Time Support for Norm-Governed Systems 281

agents. The AMELI architecture is extended with additional normative manager agents
which together with governor agents and scene manager agents are in charge of the sys-
tem. AMELI+ is based on a hierarchical structure of agents that deal with the enforce-
ment of norms. These internal agents decide how to update and propagate the changes
made in the state of the system to other internal agents interested in these changes. In
contrast with our model, AMELI+ defines regimentation mechanisms, while we include
a sanction mechanism for prohibited actions. Additionally, the AMELI+ approach re-
quires many internal agents being involved into propagating messages for changes they
perform locally. Instead of using internal agents we deploy containers which update the
state locally and then use the AEC predicates to perform distributed queries to the con-
tainers of the agent environment. Thus we do not need to have additional propagation
mechanisms and the same AEC mechanism can be used by the agents to query what is
happening in the state of the environment. Moreover, AMELI+ does not support con-
straints as part of the norm language nor norms include reasoning with properties of the
state changing in time.

Several action languages and corresponding software tools have also been employed
for specifying and executing norm-governed systems. Fox et al. [16], for example,
utilised an automated reasoning tool to execute ‘organisational rules’ formalised in the
Situation Calculus [32]. Farrell et al [13] propose a formalisation of the Event Calculus
in XML and apply it to the representation of contracts to facilitate the automated track-
ing of the contract state. Commitment protocols [7,15] have been formalised in, among
others, the action language C+ [20] and various dialects of the Event Calculus. More-
over, the Causal Calculator implementation of C+, and the Discrete Event Calculus
reasoner [29] have been employed to execute commitment protocols.

Recently, norm-governed systems specifications have been formalised in semantic
web languages [34, 23]; furthermore, various automated reasoning tools have been
utilised for executing the specifications.

Our logic programming implementation of the Event Calculus has the following ben-
efits. First, it exhibits a declarative semantics whose advantages, compared to procedural
semantics, have been well-documented. Second, the Event Calculus offers a formal rep-
resentation of the agents’ actions and their effects. This is in contrast to semantic web
languages that offer limited temporal representation and reasoning. Third, the avail-
ability of the full power of logic programming, which is one of the main attractions of
employing the Event Calculus as the temporal formalism, allows for the development of
very expressive social and physical laws. Fourth, we do not have to know from the outset
the domain of each variable. Fifth, the OEC and the AEC versions used here provide an
efficient and scalable reasoning mechanism, offering the kind of run-time support that is
required for norm-governed multi-agent systems. The last point differentiates our work
from approaches offering computational support for norm-governed systems. The last
three points differentiate our work from other action language implementations.

6 Conclusions and Future Work

We presented a knowledge representation framework with an associated run-time in-
frastructure that is able to compute, for the benefit of the members of a norm-governed
multi-agent system, physically possible and permitted actions at each time, as well as

282 V. Urovi et al.

sanctions that should be applied to violations of prohibitions. The presented infrastruc-
ture is highly configurable in the sense that it can be appropriately distributed to offer
run-time support for large-scale norm-governed systems.

We evaluated the platform based on the OPW scenario and showed that the dis-
tributed infrastructure is feasible. The tests showed that distribution can considerably
improve the performances of the MAS system and that the distributed topology of the
environment depends on the representation of the environment, the number of entities
populating it and the number of events they generate.

We specify norms separately from the physical rules governing the environment, to
be able to define how agents should interact at a social level. This allows us to have
agents in the system that are implemented by different designers and with different
strategies. The different agents can query the state of the environment and decide what
actions to take exclusively based on their own internal strategy. We found out that the
run-time infrastructure simplifies the implementation of the agent reasoning because
agents do not need to manage the state of the interactions. Agents can reason about
what acts to perform and query the infrastructure if such act is conformant with the
social rules defined in the environment.

In addition, for a large norm governed application, there is a significant design de-
cision to be taken for using our approach. This has to do with how we distribute the
containers. Namely, how to organise the containers in such a way so bottle necks in
evaluating the norms are avoided. In OPW we have found useful to limit the frequency
of the distributed queries. In other applications, similar heuristics may be used, however
this discussion is out of the scope of the paper as it requires further investigations.

There are various directions of further work. One is to experiment with various tech-
niques, such as those proposed in [6], [1], in order to further improve the temporal
reasoning. Two, we aim to perform experiments with larger multi-agent systems in or-
der to determine the extent to which our infrastructure can be used for run-time support.
Finally, we aim to extend the game based approach presented in [35] to coordinate the
distributed social state of an application in terms of complex games. Different games are
governed by different normative relations and complex games use coordination mecha-
nisms to combine normative relations by activating/deactivating one or more games. In
this way we will be able to show how to define complex agent interactions and maintain
a parallel evaluation between social and physical consequences of the actions performed
by agents in the system.

References

1. Artikis, A., Sergot, M., Pitt, J.: A logic programming approach to activity recognition. In:
Proceedings of ACM Workshop on Events in Multimedia (2010)

2. Artikis, A., Sergot, M.J., Pitt, J.V.: Specifying norm-governed computational societies. ACM
Transactions in Computational Logic 10(1) (2009)

3. Bromuri, S., Stathis, K.: Situating Cognitive Agents in GOLEM. In: Weyns, D., Brueckner,
S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049, pp. 115–134. Springer,
Heidelberg (2008)

4. Bromuri, S., Stathis, K.: Distributed Agent Environments in the Ambient Event Calculus. In:
DEBS 2009: Proceedings of the Third International Conference on Distributed Event-Based
Systems. ACM, New York (2009)

Initial Steps Towards Run-Time Support for Norm-Governed Systems 283

5. Chen, W., Warren, D.S.: C-logic of complex objects. In: PODS 1989: Proceedings of the
Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pp. 369–378. ACM, New York (1989)

6. Chittaro, L., Montanari, A.: Efficient temporal reasoning in the cached event calculus. Com-
putational Intelligence 12, 359–382 (1996)

7. Chopra, A., Singh, M.: Contextualizing commitment protocols. In: Proceedings of Con-
ference on Autonous Agents and Multi-Agent Systems (AAMAS), pp. 1345–1352. ACM,
New York (2006)

8. Clark, K.L.: Negation as failure. In: Logic and Data Bases, pp. 293–322 (1977)
9. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor. In: Castel-

franchi, C., Johnson, L. (eds.) Proceedings of the First International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), pp. 1045–1052. ACM Press, New
York (2002)

10. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In:
Meyer, J.-J., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 348–366. Springer,
Heidelberg (2002)

11. Esteva, M., Rodrı́guez-Aguilar, J., Sierra, C., Vasconcelos, W.: Verifying norm consistency in
electronic institutions. In: Proceedings of the AAAI 2004 Workshop on Agent Organizations:
Theory and Practice, pp. 8–14 (2004)

12. Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Ll, J.: Ameli: An agent-based middleware
for electronic institutions. In: AAMAS 2004: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 236–243. IEEE Computer
Society, Washington, DC, USA (2004)

13. Farrell, A.D.H., Sergot, M.J., Sall, M., Bartolini, C.: Using the event calculus for tracking the
normative state of contracts. International Journal of Cooperative Information Systems 14,
99–129 (2005)

14. Fisher, M., Owens, R.: From the past to the future: Executing temporal logic programs. In:
Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 369–380. Springer, Heidelberg (1992)

15. Fornara, N., Colombetti, M.: Formal specification of artificial institutions using the event
calculus. In: Multi-Agent Systems: Semantics and Dynamics of Organizational Models. IGI
Global (2009)

16. Fox, M., Barbuceanu, M., Grüninger, M., Lin, J.: An organizational ontology for enterprise
modeling. In: Prietula, M., Carley, K., Gasser, L. (eds.) Simulating Organizations: Computa-
tional Models for Institutions and Groups, pp. 131–152. AAAI Press/The MIT Press (1998)

17. Gaertner, D., Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.A., Vasconcelos, W.: Dis-
tributed norm management in regulated multiagent systems. In: AAMAS 2007: Proceedings
of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 1–8. ACM, New York (2007)

18. Garcı́a-Camino, A., Noriega, P., Rodrı́guez-Aguilar, J.: Implementing norms in electronic in-
stitutions. In: Proceedings of the Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS), pp. 667–673. ACM Press, New York (2005)

19. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Vasconcelos, W.: A distributed architecture for
norm management in multi-agent systems. In: Sichman, J.S., Padget, J., Ossowski, S., Nor-
iega, P. (eds.) COIN 2007. LNCS (LNAI), vol. 4870, pp. 275–286. Springer, Heidelberg
(2008)

20. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence 153(1-2), 49–104 (2004)

21. Jones, A., Sergot, M.: On the characterisation of law and computer systems: the normative
systems perspective. In: Deontic Logic in Computer Science: Normative System Specifica-
tion, pp. 275–307. J. Wiley and Sons, Chichester (1993)

284 V. Urovi et al.

22. Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Journal of the
IGPL 4(3), 429–445 (1996)

23. Kagal, L., Finin, T.: Modeling communicative behavior using permissions and obligations.
Journal of Autonomous Agents and Multi-Agent Systems 14(2), 187–206 (2006)

24. Kesim, F.N., Sergot, M.: A Logic Programming Framework for Modeling Temporal Objects.
IEEE Transactions on Knowledge and Data Engineering 8(5), 724–741 (1996)

25. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95
(1986)

26. Minsky, N.: Law-Governed Interaction (LGI): A Distributed Coordination and Control
Mechanism (An Introduction and a Reference Manual) (2005),
http://www.moses.rutgers.edu/documentation/manual.pdf
(retrieved October 24, 2008)

27. Minsky, N.: Decentralised regulation of distributed systems: Beyond access control (2008)
(submitted for publication),
http://www.cs.rutgers.edu/˜minsky/papers/IC.pdf
(retrieved October 24, 2008)

28. Minsky, N., Ungureanu, V.: Law-governed interaction: a coordination and control mecha-
nism for heterogeneous distributed systems. ACM Transactions on Software Engineering
and Methodology (TOSEM) 9(3), 273–305 (2000)

29. Mueller, E.: Commonsense Reasoning. Morgan Kaufmann, San Francisco (2006)
30. Nihan, K., Marek, S.: Implementing an object-oriented deductive database using temporal

reasoning. J. Database Manage. 7(4), 21–34 (1996)
31. Paschke, A., Bichler, M.: Knowledge representation concepts for automated SLA manage-

ment. Decision Support Systems 46(1), 187–205 (2008)
32. Pinto, J., Reiter, R.: Temporal reasoning in logic programming: a case for the situation cal-

culus. In: Warren, D. (ed.) Proceedings of Conference on Logic Programming, pp. 203–221.
MIT Press, Cambridge (1993)

33. Pitt, J., Mamdani, A., Charlton, P.: The open agent society and its enemies: a position state-
ment and research programme. Telematics and Informatics 18(1), 67–87 (2001)

34. Tonti, G., Bradshaw, J., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Semantic web lan-
guages for policy representation and reasoning: A comparison of kAoS, rei, and ponder. In:
Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 419–437.
Springer, Heidelberg (2003)

35. Urovi, V., Stathis, K.: Playing with agent coordination patterns in MAGE. In: Padget, J.A.,
Artikis, A., Vasconcelos, W.W., Stathis, K., da Silva, V.T., Matson, E.T., Polleres, A. (eds.)
COIN 2009. LNCS, vol. 6069, pp. 86–101. Springer, Heidelberg (2010)

36. Weyns, D., Helleboogh, A., Holvoet, T.: The packet-world: A testbed for investigating sit-
uated multiagent systems. In: Software Agent-Based Applications, Platforms, and Develop-
ment Kits, pp. 383–408. Birkhauser, Basel (2005)

http://www.moses.rutgers.edu/documentation/manual.pdf
http://www.cs.rutgers.edu/~minsky/papers/IC.pdf

Identifying Conditional Norms in Multi-agent Societies

Bastin Tony Roy Savarimuthu, Stephen Cranefield, Maryam A. Purvis,
and Martin K. Purvis

University of Otago, Dunedin, P.O. Box 56, Dunedin, New Zealand
(tonyr,scranefield,tehrany,mpurvis)@infoscience.otago.ac.nz

Abstract. Most works on norms have investigated how norms are regulated
using institutional mechanisms which assume that agents know the norms of the
society they are situated in. Few research works have focused on how an agent
may infer the norms of a society without the norm being explicitly given to the
agent. These works do not address how an agent can identify conditional norms.
In this paper we describe a mechanism that an agent can use to identify condi-
tional norms which makes use of our previously proposed norm identification
framework. Using park littering as an example, we show how conditional norms
can be identified. In addition, we discuss the experimental results on the dynamic
addition, modification and deletion of conditional norms.

1 Introduction

Most works on norms in normative multi-agent systems have concentrated on how
norms regulate behaviour (e.g. [14, 18]). These works assume that the agent some-
how knows (a priori) what the norms of a society are. For example, an agent may have
obtained the norm from a leader [7] or through an institution that prescribes what the
norms of the society should be [1, 31].

Only a few researchers have dealt with how an agent may infer what the norms of
a newly joined society are [2, 23]. Recognizing the norms of a society is beneficial to
an agent. This process enables the agent to know what the normative expectation of
a society is. As the agent joins and leaves different agent societies, this capability is
essential for the agent to modify its expectations of behaviour, depending upon the so-
ciety of which it is a part. As the environment changes, the capability of recognizing
a new norm helps an agent to derive new ways of achieving its intended goals. Such a
norm identification mechanism can be useful for software agents that need to adapt to
a changing environment. In open agent systems, instead of possessing predetermined
notions of what the norms are, agents can infer and identify norms through observing
patterns of interactions and their consequences. For example, a new agent joining a
virtual environment such as Second Life [21] may have to infer norms when joining a
society as each society may have different norms. It has been noted that having social
norms centrally imposed by the land owners in Second Life is ineffective and there is
a need for the establishment of community driven norms [29]. When a community of
agents determines what the norm should be, the norm can evolve over time. So, a new
agent joining the society should have the ability to recognize the changes to the norms.
In our previous work we have proposed and experimented with a norm identification

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 285–302, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

286 B.T.R. Savarimuthu et al.

framework which can be used to identify norms in the society [23–25]. The norm iden-
tification framework takes into account the social learning theory [5] that suggests that
new behaviour can be learnt through the observation of punishment and rewards. This
work aims to answer the question of how agents infer conditional norms in a multi-
agent society. Conditional norms are defined as norms with conditions. We distinguish
norms that are not associated with conditions from the ones that have conditions. An
example of a norm without a condition is the norm that prohibits anyone from littering
a public park, i.e. prohibit(litter). An example of a norm with condition is a norm that
prohibits one from littering as long as there is a rubbish bin within x metres from the
agent (e.g. if (distanceFromBin < 10) then prohibit(litter)). Software agents should not
only have the ability to identify norms but also the conditions under which these norms
hold.

Identifying conditional norms is important because an agent that has inferred that
another agent gets punished when that agent littered when it was 25 metres away from
the bin may infer that the condition associated with the norm is the distance of 25
metres. But the actual norm could be that no one should litter within 50 metres from the
bin. The utility of the agent can be negatively impacted through a sanction if it litters
30 metres away from a bin. In this case, the agent does not know the correct condition
associated with the norm. Another example of a conditional norm is the tipping norm.
In one society an agent may tip 10% of the bill while in another society an agent might
be obliged to tip 20% of the bill. In this work we are interested in experimenting with
the formation, modification and the removal of conditional norms in the minds of the
agents and the impact of the normative conditions on the utility of the agents.

The paper is organized as follows. Section 2 provides a background on norms and
how the concept of norms is investigated in the field of normative multi-agent systems
(NorMAS). Section 3 provides an overview of our previous work on the norm identifi-
cation framework. Section 4 describes a mechanism for identifying conditional norms.
Section 5 describes the experiments that we have conducted and the results obtained.
Section 6 provides a discussion on the work that has been achieved and the issues that
can be addressed in the future. Concluding remarks are presented in Section 7.

2 Background

Due to multi-disciplinary interest in norms, several definitions for norms exist [2]. Elster
notes the following about social norms [11]. “For norms to be social, they must be
shared by other people and partly sustained by their approval and disapproval. They
are sustained by the feelings of embarrassment,anxiety, guilt and shame that a person
suffers at the prospect of violating them. A person obeying a norm may also be propelled
by positive emotions like anger and indignation ... social norms have a grip on the mind
that is due to the strong emotions they can trigger”.

Based on the definitions provided by various researchers, we note that the social
practices surrounding the notion of a social norm are the following:

• The normative expectation of a behavioural regularity: There is a general agree-
ment within the society that a behaviour is expected on the part of an agent (or
actor) by others in a society, in a given circumstance.

Identifying Conditional Norms in Multi-agent Societies 287

• A norm enforcement mechanism: When an agent does not follow a norm, it could
be subjected to a sanction. The sanction could include monetary or physical pun-
ishment in the real world which can trigger emotions (embarrassment, guilt, etc.)
or direct loss of utility (e.g. decrease of its reputation score).
• A norm spreading mechanism: Examples of norm spreading mechanisms include

the notion of advice from powerful leaders, imitation and learning on the part of an
agent.

2.1 Normative Multi-agent Systems

The definition of normative multi-agent systems given by the researchers involved in the
NorMAS 2007 workshop is as follows [6]. A normative multi-agent system is a multi-
agent system organized by means of mechanisms to represent, communicate, distribute,
detect, create, modify and enforce norms, and mechanisms to deliberate about norms
and detect norm violation and fulfillment.

Researchers in multi-agent systems have studied how the concept of norms can be ap-
plied to artificial agents. Norms are of interest to multi-agent system (MAS) researchers
as they help in sustaining social order and increase the predictability of behaviour in
the society. Researchers have shown that norms improve cooperation and collaboration
[28, 33]. Epstein has shown that norms reduce the amount of computation required to
make a decision [12]. However, software agents may tend to deviate from norms due to
their autonomy. So, the study of norms has become important to MAS researchers as
they can build robust multi-agent systems using the concept of norms and also experi-
ment on how norms may evolve and adapt in response to environmental changes.

Research in normative multi-agent systems can be categorized into two branches.
The first branch focuses on normative system architectures, norm representations, norm
adherence and the associated punitive or incentive measures. Several architectures have
been proposed for normative agents (refer to [19] for an overview). Researchers have
used deontic logic to define and represent norms [16, 35]. Several researchers have
worked on mechanisms for norm compliance and enforcement [1, 18].

The second branch of research is related to emergence of norms [15, 27, 28].
Researchers have worked on both prescriptive (top-down) and emergent (bottom-up)
approaches to norms. In a top-down approach an authoritative leader or a normative ad-
visor prescribes what a norm of the society should be [32]. In the bottom-up approach,
the agents come up with a norm through learning mechanisms [27, 28]. Researchers
have used sanctioning mechanisms [4] and reputation mechanisms [10] for enforcing
norms.

Many research works assume that norms exist in the society and the focus is on how
the norms can be regulated in an institutional setting such as electronic institutions[3].
Very few have investigated how an agent comes to know the norms of the society [2,
23]. We have previously proposed an architecture for norm identification [23, 25]. In
this work, we extend our earlier work by incorporating the mechanism for identifying
conditional norms. Identifying conditional norms is important because the agent can
confidently apply the norm if the conditions associated with the norm are known. This
will help the agent not to lose utility by preventing it from applying the norm under
wrong conditions.

288 B.T.R. Savarimuthu et al.

3 Overview of the Norm Identification Framework

In this section, we provide an brief overview of the norm identification framework that
we have proposed and experimented with in earlier works [23–25]. An agent employing
this architecture follows a four-step process.

• Step 1: An agent actively perceives the events in the environment in which it is
situated.
• Step 2: When an agent perceives an event, it stores the event in its belief base.
• Step 3: Based on recognizing signals (i.e. events that are either rewards or a sanc-

tions), the agent stores them in a “special events” base.
• Step 4: If the perceived event is a special event an agent checks if there exists a

norm in its personal norm (p-norm) base or the group norm (g-norm) base. An
agent may possess some p-norms. A p-norm is the personal value of an agent. For
example an agent may consider that littering is an action that should be prohibited
in a society based on its past experience or preference. This personal value may
not be shared by the agents in a society. A p-norm may vary across agents, since
a society may be made up of agents with different backgrounds and experiences.
A g-norm is a norm which an agent infers, based on its personnel interactions as
well as the interactions it observes in the society. An agent infers g-norms using
the norm inference component. The norm inference component of the framework
[25] makes use of Candidate Norm Inference (CNI) algorithm. The CNI algorithm
uses association rule mining approach to identify sequences of events as candidate
norms. The CNI algorithm has two sub-modules to identify prohibition norms [25]
and obligation norms [24] respectively.

When a special event occurs an agent may decide to invoke its norm inference compo-
nent to identify whether a previously unknown norm may have resulted in the occurrence
of the special event. In the context of the park-littering scenario, an agent observing a
sanctioning event may invoke its norm inference component to find out what events that
had happened in the past (or that had not happened in the past) may have triggered the
occurrence of the special event. Prohibition norms can be identified by inferring the
relevant events that happened in the past [25]. For example an agent may notice that a
sanctioning event is always preceded by a littering event. Hence the agent might infer
that littering is prohibited in the society. For identifying obligation norms the agent may
have to reason about what events that did not happen in the past are the likely reason
for a sanction (i.e. not fulfilling an obligation) [24]. For example, an agent may be sanc-
tioned for not tipping a customer in a restaurant. An agent observing the events may
infer that the absence of the tipping action is the reason for a sanction. In this work we
focus on identifying conditional norms associated with prohibition norms.

The invocation of the norm inference component may result in the identification of
a g-norm, in which case it is added to the g-norm base. An agent, being an autonomous
entity, can also decide not to invoke its norm inference component for every occurrence
of a special event but may decide to invoke it periodically. When it invokes the norm
inference component, it may find a new g-norm which it adds to its g-norm base. If it

Identifying Conditional Norms in Multi-agent Societies 289

does not find a g-norm, the agent may change some of its norm inference parameters
and repeat the process again in order to find a g-norm or may wait to collect more
information.

At regular intervals of time an agent re-evaluates the g-norms it currently has, to
check whether those norms hold. When it finds that a g-norm does not apply (e.g. if it
does not find any evidence of sanctions), it deletes the norm from the g-norm base. It
could be that there are no punishers in the society or all the agents have internalized the
norm and are following the norm. Hence, there might be no sanctions in the society. In
the case where all agents have internalized the norm and are following the norm, norm
deletion on the part of the observer agent may have negative consequence for that agent
(i.e. the agent can be sanctioned) in which case it can add the norm again through norm
inference.

The next section describes how conditional norms are inferred by an agent. The
mechanism for identifying conditional norms is built on top of the norm inference
framework.

4 Identifying Conditional Norms

In our framework, when a new agent enters a society it will try to identify the norms
that currently hold in that society. Once an agent has identified a norm it may want to
identify the context and the exact conditions under which the norm holds. For example,
the norm in a public park could be not to litter, i.e. prohibit (litter). It could be that
the norm prohibits people from dropping litter in the park as long as a rubbish bin is
visible to them (or the rubbish bin is 50 metres away from them). The context here is
the rubbish bin and the condition is the distance from the rubbish bin. When an agent
identifies the norm in the first instance through observation, it may not know the exact
conditions associated with the norm.

Let us assume that an agent upon identifying the norm knows the context of the
norm1. For example on identifying that littering is prohibited, the agent identifies the
presence of the bin as the context. The condition associated with the norm is the distance
between the agent and the bin2. We call this a contextual condition.

Note that the condition associated with a norm will be specific to the domain under
consideration. In the park littering example, the condition can be either one or two-
dimensional. For example, the distance between a littering agent and bin is a single
dimensional entity. The littering zone can be modelled as a two dimensional entity if it
is defined using x and y coordinates (i.e. an agent should not litter within 5 metres from
bin’s x position and 10 metres from bin’s y position). Some researchers have used a
two dimensional representation for normative conditions [17, 30]. In this work we have
used the distance metric which we call the radius of the non-littering zone.

1 We assume that an agent knows the context based on the past experience or based on the
domain knowledge. For example, an agent may know about littering from its past experience.

2 Proximity or the distance of interaction is a contextual condition in many social norms. For
example, two people talking tend to speak in a low voice when they walk past others. An-
other example is the interpersonal distance norm (i.e. how close you can get to someone while
holding a conversation without making him/her uncomfortable). Agents may be aware of the
distance based contextual condition from their previous experience.

290 B.T.R. Savarimuthu et al.

Algorithm 1. Pseudocode of an agent to identify conditional norm associated with
the prohibition of littering

Input: Contextual Condition = distance from nearest rubbish bin
maxDistanceFromBin = 0, tempDistance = 0 ; /* maxDistanceFromBin1

stores the value of the contextual condition */
conditionalNormReferralConsidered = true;2

conditionalNormRecommenders = ∅;3

foreach norm inference cycle do4

Obtain Norms Set (NS) ; /* By invoking Candidate Norm5

Identification algorithm */
if NS �= ∅ then6

foreach norm in NS do7

foreach punished agent with the visibility threshold do8

tempDistance = getDistanceFromNearestBin;9

if tempDistance > maxDistanceFromBin then10

maxDistanceFromBin = tempDistance;11

end12

end13

if conditionalNormReferralConsidered then14

conditionalNormRecommenders =15

getAgentsFromVicinity;
foreach agent ∈ conditionalNormRecommenders do16

if agent.maxDistanceFromBin > maxDistanceFromBin then17

maxDistanceFromBin = agent.maxDistanceFromBin;18

end19

end20

end21

end22

end23

end24

Algorithm 1 shows how an agent identifies the conditional norm of the park. In each
norm inference cycle an agent will first identify a set of norms using the norm identifi-
cation framework [25]. Let us assume that the agent has identified prohibit(litter) as the
norm which is stored in its Norms Set (NS). For each of the littering agents that were
observed to be punished, an agent calculates the distance from the nearest bin to the
punished agent using Chebyshev’s distance metric [36]3. The agent finds the radius of
the non-littering zone (lines 10-12) and stores it in maxDistanceFromBin. The agent can

3 Chebyshev’s distance also known as the Chessboard distance is the minimum number of steps
required for a King to move from one square of the chessboard to another. In our implemen-
tation Chebyshev distance represents the minimum distance between an agent and the nearest
bin. Chebyshev distance of length one corresponds to the Moore neighbourhood [34] of size
one where an agent in one cell can see all the 8 cells surrounding it.

Identifying Conditional Norms in Multi-agent Societies 291

choose to ask for referral from one or more agents from its vicinity threshold regarding
the zone in which littering is prohibited (i.e. maxDistanceFromBin). If the referrer’s rec-
ommended distance is greater than distance observed by the agent the agent increases
the distance (lines 14-21).

While Algorithm 1 is specific to the park littering scenario, the generic process of an
agent to identify the conditional norm is given in Algorithm 2. Once the agent infers
a norm, it will identify the contextual condition. The contextual condition can contain
multi-dimensional attributes. For each norm in the norm set (NS), it calculates the value
of the contextual condition (line 8). An agent calculates the value for contextual condi-
tion based on observing all the punished agents within its visibility threshold.

Algorithm 2. Pseudocode of an agent to identify a conditional norm
Input: Contextual Conditions
valueOfContextualCondition [] = ∅;1

conditionalNormReferralConsidered = true;2

conditionalNormRecommenders = ∅;3

foreach norm inference cycle do4

Obtain Norms Set (NS) ; /* By invoking Candidate Norm5

Identification algorithm */
if NS �= ∅ then6

foreach norm n in NS do7

valueOfContextualCondition [n] =8

calculateContextualConditionalValue ; /* This
is calculated based on the available data on
all punished agents within the visibility
threshold */
if conditionalNormReferralConsidered then9

conditionalNormRecommenders =10

getAgentsFromVicinity;
foreach agent ∈ conditionalNormRecommenders do11

if agent.valueOfContextualCondition is better than12

valueOfContextualCondition then
valueOfContextualCondition =13

agent.valueOfContextualCondition;
end14

end15

end16

end17

end18

end19

The observer agent can optionally ask recommendation from other agents (through
referral), on the contextual condition that they have observed (lines 9 and 10). Then,

292 B.T.R. Savarimuthu et al.

based on the recommendation of other agents it can choose the best value4 as its value
for the contextual condition (lines 11-15).

5 Experiments

In this section we firstly describe the experimental set-up in sub-section 5.1. In the rest
of the sub-sections we describe the experiments that were conducted and the results
obtained.

Fig. 1. Snapshot of the simulation of conditional norms

5.1 Experimental Set-Up

We model agents in our virtual society in a two-dimensional space. This virtual envi-
ronment can be considered as a communal region such as a park shown in Figure 1. The
agents explore and enjoy the park by moving around. There are three types of agents
in the simulation. They are learning litterers (LL), non-litterers (NL) and non-littering
punishers (NLP). There are four possible types of actions defined in the simulation
system: move, eat, litter and punish. The LL agents can move, eat and litter. The NL
agents can move and eat while the NLP agents can move, eat and punish. The agents’

4 The logic for choosing the best value of the condition is domain specific. In a domain the best
value may correspond to the least numeric value and in another domain it may correspond to
the highest value.

Identifying Conditional Norms in Multi-agent Societies 293

movement can be in one of the four directions: up, down, left or right. The agents that
are at the edge of the two dimensional space can again re-appear in the opposite side
(i.e. a toroidal grid is implemented). The agents are represented as circles using dif-
ferent colours. The LLs are green, the NLs are blue and the NLPs are red. The id and
action that an agent currently does appear above the circle.

Each agent has a visibility threshold. The visibility threshold of the agent is governed
by a Chebyshev distance [36] of a certain length. An agent can observe actions of agents
and the interactions that happen between two agents within its visibility threshold. The
dashed square that appears at the bottom of Figure 1 shows the visibility range of agent
13 which is at the centre of the dashed square with a Chebyshev distance of four. All the
agents make use of the norm inference component [25] to infer norms. The red squares
that appear within the circles represent the identification of a norm. Rubbish bins in the
simulation environment appear in orange. The non-littering zone with reference to the
bin at the top is given by the dashed square that appears at the top of Figure 1. The
radius of the non-littering zone in this case is four.

The simulation parameters that were kept constant for all the experiments are given
in Table 1. A sample simulation can be viewed from this link5.

Table 1. Simulation parameters for identifying conditional norms

Parameters Values

Grid size 20*20
Total number of agents 20

Number of litterers 12
Number of non-litterers 4

Number of non-littering punishers 4
Visibility threshold 5

Number of rubbish bins 2
radius of non-littering zone (maxDistanceFromBin) 10

Number of referrals (when used) 1

5.2 Experiment 1 - Conditional Norm Identification

The objective of the first experiment is to show that agents in a society infer conditional
norms using the proposed mechanism. We also compare the rate of norm establishment
in the society with the rate of conditional norm establishment in the society.

Figure 2 shows two lines that represent the proportion of agents with norms and
the proportion of agents with conditional norms in a society respectively. It can be seen
from Figure 2 that even though the norm has been established in the society6 in iteration
270, the conditional norm (i.e. the agent should not litter when it is within 10 metres
from the bin), is not inferred in the society till iteration number 410. This is because
the conditional norm identification process is invoked by an agent after it has found a

5 http://unitube.otago.ac.nz/view?m=iWs217vmy6H
6 We assume that a norm is established in a society if all the agents (100%) have inferred the

norm. Researchers have used different criteria ranging from 35% to 100%[22].

294 B.T.R. Savarimuthu et al.

Fig. 2. Conditional norm identification

norm. As the agents interact more and more in the society, they gather more evidence
regarding the condition associated with the norm. If the norm does not change, then the
correct condition associated with the norm is inferred eventually. When an agent does
not infer a norm for certain amount of time or when the norm changes it will remove
the norm and its associated conditions from its norms base.

5.3 Experiment 2 - Conditional Norm Identification with and without Referral

An agent can expedite the process of identifying a conditional norm if it asks another
agent for its evidence of the normative condition. We call this as the conditional norm
referral process. It can be observed from Figure 3 that when the referral is used, the rate
of establishment of the conditional norm increases. The agents ask for referral from one
other agent in the society. When the number of referees increases, the rate of conditional
norm establishment increases. This has also been reported many other works in multi-
agent systems[8, 37].

Figure 4 shows the progression of two agents towards the identification of the correct
conditional norm (non-littering zone of radius 10) with and without referrals. The pro-
gression rates of the two agents are different because of their different paths of travel.
If an agent observes more agents on its path, then it has a higher probability of infer-
ring both the norm and the condition associated with the norm. It should be noted that
the conditional norm establishment for these two agents improve when the referrals are
used.

The two dashed lines in Figure 4 show the radius of the non-littering zone identified
by the agents during the simulation. The agent which found the norm first (agent 1,
iteration 90) was not the one to find the correct conditional norm first7. When agent

7 The correct conditional norm is the non-littering zone of 10 metres.

Identifying Conditional Norms in Multi-agent Societies 295

Fig. 3. Rate of norm and conditional norm establishment in an agent society

Fig. 4. Rate of conditional norm establishment in two agents with and without referrals

1 found the norm in iteration 90, the non-littering zone identified by the agent was 6
metres (shown using an arrow in the Figure). It found the correct conditional norm in
iteration 380. Agent 2, albeit finding the norm second (iteration 110, non-littering zone
of radius 7 metres), found the correct conditional norm faster (iteration 190). This again
is governed by the number of agents an agent gets to observe (i.e. the path of travel).

The two solid lines show the radius of the non-littering zone identified by the agents
when referrals are used. It is interesting to note that when the referral mechanism is

296 B.T.R. Savarimuthu et al.

used, the agent which found the norm first was also the one that found the normative
condition first. This is because once the agent finds the norm it can ask the agents in
the vicinity for referral instead of waiting for a long amount of time to find out the
maximum distance from the bin from which a violation that was punished occurred.

5.4 Experiment 3 - Dynamic Conditional Norm Identification

An agent should have the ability to dynamically add newly identified norms and re-
move norms that do not hold. This experiment demonstrates that conditional norms can
be added, removed and modified by an agent dynamically depending upon the environ-
mental conditions. The ability to change norms is important for an adaptive agent so
that it can flexibly adopt norms. An agent, on identifying a norm, evaluates whether the
norm holds at regular intervals of time. If the norm does not hold, it removes the norm
from its norm base. When it removes the norm it also removes the condition associated
with the norm8.

Fig. 5. Dynamic conditional norm identification by an agent

Figure 5 demonstrates that an agent is able to add and remove norms and normative
conditions dynamically. Figure 6 demonstrates that agents in our system are able dy-
namically modify the normative condition. In these experiments, the punishers do not
punish from iterations 1000 to 1250. This is to simulate the change in the environment
which triggers a norm change. Additionally, having identified a norm, an agent checks
for the validity of the norm once again after 5 norm inference cycles (norm inference
happens once every 10 iterations). If the norm is found again, then the agent does not
delete the norm. If the norm is not found, it removes the norm and the conditions from
its norm base.

8 In our previous work [25], we have demonstrated how an agent adds and removes norms dy-
namically. In this experiment, we show how conditions associated with norms are dynamically
added and removed.

Identifying Conditional Norms in Multi-agent Societies 297

Fig. 6. Dynamic conditional norm identification by an agent

Figure 5 shows two lines that represent an agent adding and removing norms based
on changing environmental conditions. The line is red represents the agent using the
referral mechanism and the line in blue represents the agent without using the referral
mechanism. It can be observed that the agent without using referral identifies a con-
ditional norm in iteration 60, and the correct conditional norm in iteration 120 while
it infers the norm faster when it uses referral. In this experiment, when the punishers
do not punish, the norm is not inferred for 50 iterations (5 norm inference cycles from
iteration 1010 to 1050). So, the agent removes the norm and the conditions associated
with the norm (with and without referral) in iteration 1050. The agent that does not use
the referral finds a conditional norm again in iteration 1280 and the correct conditional
norm in iteration 1670. It can be observed that when the referral is used by the agent it
identifies the correct conditional norm earlier (iteration 1330).

Figure 6 shows two lines that represent the identification of different normative con-
ditions under changing environmental conditions (with and without change of non-
littering zone) for the same agent. By keeping all the other parameters the same, we
varied the radius of the non-littering zone (i.e. the punishment zone for littering). This
is to demonstrate that when the radius of the littering zone varies, the agent infers the
change. After iteration 1250 all NLP agents punished only those agents that littered
within 5 metres from the bin (as opposed to 10 metres which was used in iterations
1 to 1000). It can be observed from the green line in Figure 6 that the agent inferred
the new normative condition (radius = 5)9. Note that the agent has made use of re-
ferral in this experiment. The red line which converges to the littering zone of radius
10 that appears at the top of Figure 6 is the same as the red line shown at the top of
Figure 5 which represents the normative behaviour of an agent that uses the referral
process.

9 The simulation video can be found at http://unitube.otago.ac.nz/view?m=nQ6y17frCcJ

298 B.T.R. Savarimuthu et al.

5.5 Experiment 4 - Comparison of Utility of Agents with and without
Conditional Norm Identification

The objective of this experiment is to compare the utility benefits of an agent when it
identifies norms with and without conditions. In this experiment, an agent has a utility
value which we call the satisfaction level (S) which varies from 0 to 100.

An agent’s satisfaction level (S) decreases in the following situations:

• When a litterer is punished, its utility decreases (-1).
• For all agents, littering activity results in the decrease of the utility. This is be-

cause each littering activity ruins the “commons” area (-1/number of agents in the
society).

An agent’s satisfaction level (S) increases (i.e. it gains utility) in the following situa-
tion:

• When a litterer litters, it gains utility in a society (+1).

We have experimented with the utility of the agent with and without conditional norm
identification. An LL agent is better off by using conditional norm (CN) identification.
Once identifying a norm an LL agent may choose to abstain from the action that is
being prohibited. In the case of a conditional norm, it learns the exact condition under
which it should not violate the norm. By this process, it can improve its utility. It can be
observed from Figure 7 that an LL agent’s utility increases (greater than 50) when it has
identified the conditional norm than just identifying the norm without conditions (less
than 50). This is because when the littering agent finds the norm without the normative
condition, it abstains from the littering activity which does not lead to an increase in
its utility. But, when it identifies the normative condition, it now can litter outside the
non-littering zone which results in the increase in its utility.

For an NL agent, when it identified a norm without identifying the condition, the
utility initially decreases but then stabilizes to a constant value because when all the
agents inferred the norm, there aren’t any littering actions in the society. When the NL
agent identifies the conditional norm, its utility continues to decrease because whenever
an LL agent litters outside the not-to-litter zone, its utility decreases10. Similarly, for an
LL agent, its utility decreases because of the littering action. However, its net utility
increases as it gains from the littering action (i.e. it can litter outside the non-littering
zone).

The utilities of NLP agents are not discussed here because we assume these agents
have other utility functions for punishing (e.g. a leader who wants to promote a smoother
functioning of the society, or an altruistic agent who does not care about its diminishing
utility). We note that if non-altruistic punishers are present in the society, then the cost

10 It should be noted that when the utility of an NL agent goes below a certain threshold, it can
leave the society, or can become a litterer or become a punisher. This is explored in another
work [26]. Additionally, if the parameters of this experiment are varied (for example if the
utility gain of a litterer is changed to 0.5 and the utility loss on receiving a punishment is
changed to 0.25) the results obtained will be different. The objective here is to show that the
conditional norm identification has an impact on the utility of the agents.

Identifying Conditional Norms in Multi-agent Societies 299

Fig. 7. Utility comparison of two agents

incurred by the non-altruistic punishers will play a role in the establishment of a norm
in the society (see [26]). Several other works have investigated the role of punishment
costs on norm spreading [13, 20].

6 Discussion

The issue of conditional norm identification has not been dealt with by researchers in
the field of normative multi-agent systems. To this end, we have experimented how a
conditional norm can be identified by an agent in the context of park-littering. Identify-
ing norms with conditions can be beneficial in several settings. For example, the norm
identification architecture can be used to infer norms in Massively Multi-player Online
Games (MMOGs). Players involved in massively multi-player games perform actions
in an environment to achieve a goal. They may play as individuals or in groups. When
playing a cooperation game (e.g. players forming groups to slay a dragon), individual
players may be able to observe norms. For example, a dragon can only be slayed if
two players are within certain distance from the dragon. An agent that identifies this
condition (the distance) will be better-off than an agent that just infers the norm of co-
operation (i.e. two players are needed to slay a dragon). The mechanism proposed in
this paper can be used to identify norms with conditions. This mechanism can also be
used in virtual environments such as Second Life to infer conditional norms.

Another application of identifying conditional norms is in the area of e-commerce.
For example, in one society, the norm associated with the deadline for payment (i.e. obli-
gations with deadlines as in [9]) may be set to 120 minutes after winning the item.
Depending upon what an agent has observed, agents may have subtly different norms
(e.g. one agent may notice that pay follows win after an average of 80 minutes while
another may notice this happens after 100 minutes). Both these agents could still in-
fer the norm but the deadlines they had noticed can be different. This may result in an

300 B.T.R. Savarimuthu et al.

unstable equilibrium with reference to the norms and hence conflict resolution mecha-
nisms should be used to resolve them [17, 30].

We note that we have modelled and experimented with a simple domain. The number
and type of agents can easily be increased and the normative conditions identified can
be richer and more complex depending upon the problem domain. However, we believe
the main contribution is the mechanism for the identification of conditions associated
with norms. We have also shown how an agent can dynamically add, remove and modify
conditions associated with the norms.

7 Conclusion

This paper addresses the question of how conditional norms can be identified in an
agent society using the norm inference architecture. Identification of conditional norms
has been demonstrated in the context of a simple park-littering scenario. The ability of
an agent to add, delete and modify a conditional norm has also been demonstrated. It
has also been shown that identifying norms with conditions has an impact on the utility
of the agents in the society.

References

[1] Aldewereld, H., Dignum, F., Garcı́a-Camino, A., Noriega, P., Rodrı́guez-Aguilar, J.A.,
Sierra, C.: Operationalisation of norms for usage in electronic institutions. In: Proceed-
ings of the Fifth International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2006), pp. 223–225. ACM Press, New York (2006)

[2] Andrighetto, G., Conte, R., Turrini, P., Paolucci, M.: Emergence in the loop: Simulating the
two way dynamics of norm innovation. In: Boella, G., van der Torre, L., Verhagen, H. (eds.)
Normative Multi-agent Systems. Dagstuhl Seminar Proceedings, vol. 07122, Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany
(2007)

[3] Arcos, J.L., Esteva, M., Noriega, P., Rodrguez-aguilar, J.A., Sierra, C.: Environment engi-
neering for multiagent systems. Engineering Applications of Artificial Intelligence 18(2),
191–204 (2005)

[4] Axelrod, R.: An evolutionary approach to norms. The American Political Science Re-
view 80(4), 1095–1111 (1986)

[5] Bandura, A.: Social Learning Theory. General Learning Press (1977)
[6] Boella, G., van der Torre, L., Verhagen, H.: Introduction to the special issue on normative

multiagent systems. Autonomous Agents and Multi-Agent Systems 17(1), 1–10 (2008)
[7] Boman, M.: Norms in artificial decision making. Artificial Intelligence and Law 7(1), 17–35

(1999)
[8] Candale, T., Sen, S.: Effect of referrals on convergence to satisficing distributions. In: Pro-

ceedings of the Fourth International Joint Conference on Autonomous Agents and MultiA-
gent Systems (AAMAS 2005), pp. 347–354. ACM, New York (2005)

[9] Cardoso, H.L., Oliveira, E.C.: Directed deadline obligations in agent-based business con-
tracts. In: Padget, J.A., Artikis, A., Vasconcelos, W.W., Stathis, K., da Silva, V.T., Matson,
E.T., Polleres, A. (eds.) COIN@AAMAS 2009. LNCS, vol. 6069, pp. 225–240. Springer,
Heidelberg (2010)

[10] Castelfranchi, C., Conte, R., Paolucci, M.: Normative reputation and the costs of compli-
ance. Journal of Artificial Societies and Social Simulation 1(3) (1998)

Identifying Conditional Norms in Multi-agent Societies 301

[11] Elster, J.: Social norms and economic theory. The Journal of Economic Perspectives 3(4),
99–117 (1989)

[12] Epstein, J.M.: Learning to be thoughtless: Social norms and individual computation. Com-
putational Economics 18(1), 9–24 (2001)

[13] Fehr, E., Fischbacher, U.: Third-party punishment and social norms. Evolution and Human
Behavior 25(2), 63–87 (2004)

[14] Gaertner, D., Garcı́a-Camino, A., Noriega, P., Rodrguez-aguilar, J.A., Vasconcelos, W.W.:
Distributed norm management in regulated multi-agent systems. In: Proceedings of the
6th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2007), Honolulu, Hawaii, pp. 624–631. ACM, New York (2007)

[15] Griffiths, N., Luck, M.: Norm diversity and emergence in tag-based cooperation. In: De Vos,
M., et al. (eds.) COIN 2010. LNCS (LNAI), vol. 6541, pp. 230–249. Springer, Heidelberg
(2011)

[16] Jones, A.J.I., Sergot, M.: On the characterisation of law and computer systems: The nor-
mative systems perspective. In: Deontic Logic in Computer Science: Normative System
Specification, pp. 275–307. John Wiley and Sons, Chichester (1993)

[17] Kollingbaum, M.J., Vasconcelos, W.W., Garcı́a-Camino, A., Norman, T.J.: Managing con-
flict resolution in norm-regulated environments. In: Artikis, A., O’Hare, G.M.P., Stathis, K.,
Vouros, G.A. (eds.) ESAW 2007. LNCS (LNAI), vol. 4995, pp. 55–71. Springer, Heidelberg
(2008)

[18] López y López, F.: Social Powers and Norms: Impact on Agent Behaviour. PhD thesis, De-
partment of Electronics and Computer Science, University of Southampton, United King-
dom (2003)

[19] Neumann, M.: A classification of normative architectures. In: Proceedings of World
Congress on Social Simulation (2008)

[20] Ohtsuki, H., Iwasa, I., Nowak, M.A.: Indirect reciprocity provides only a narrow margin of
efficiency for costly punishment. Nature 457(7225), 79–82 (2009)

[21] Rymaszewski, M., Au, W.J., Wallace, M., Winters, C., Ondrejka, C., Batstone-Cunningham,
B., Rosedale, P.: Second Life: The Official Guide. SYBEX Inc., Alameda (2006)

[22] Savarimuthu, B.T.R., Cranefield, S.: A categorization of simulation works on norms. In:
Boella, G., Noriega, P., Pigozzi, G., Verhagen, H. (eds.) Normative Multi-Agent Systems,
Dagstuhl, Germany. Dagstuhl Seminar Proceedings, (09121), pp. 43–62. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany (2009)

[23] Savarimuthu, B.T.R., Cranefield, S., Purvis, M.A., Purvis, M.K.: Internal agent architecture
for norm identification. In: Padget, J., Artikis, A., Vasconcelos, W., Stathis, K., da Silva,
V.T., Matson, E., Polleres, A. (eds.) COIN@AAMAS 2009. LNCS, vol. 6069, pp. 241–256.
Springer, Heidelberg (2010)

[24] Savarimuthu, B.T.R., Cranefield, S., Purvis, M., Purvis, M.: A data mining approach to
identify obligation norms in agent societies. In: Cao, L., Bazzan, A., Gorodetsky, V., Mitkas,
P., Weiss, G., Yu, P. (eds.) ADMI 2010. LNCS, vol. 5980, pp. 43–58. Springer, Heidelberg
(2010)

[25] Savarimuthu, B.T.R., Purvis, M.A., Purvis, M.K., Cranefield, S.: Norm identification in
multi-agent societies. Discussion Paper 2010/03, Department of Information Science, Uni-
versity of Otago (2010)

[26] Savarimuthu, B.T.R., Purvis, M., Purvis, M.K., Cranefield, S.: Social norm emergence in
virtual agent societies. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.)
DALT 2008. LNCS (LNAI), vol. 5397, pp. 18–28. Springer, Heidelberg (2009)

[27] Sen, S., Airiau, S.: Emergence of norms through social learning. In: Proceedings of Twenti-
eth International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 1507–1512.
AAAI Press, Menlo Park (2007)

302 B.T.R. Savarimuthu et al.

[28] Shoham, Y., Tennenholtz, M.: Emergent conventions in multi-agent systems: Initial experi-
mental results and observations. In: Proceedings of Third International Conference on Prin-
ciples of Knowledge Representation and Reasoning, San Mateo, CA, pp. 225–231. Morgan
Kaufmann, San Francisco (1992)

[29] Stoup, P.: Athe development and failure of social norms in second life. Duke Law Jour-
nal 58(2), 311–344 (2008)

[30] Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Normative conflict resolution in
multi-agent systems. Autonomous Agents and Multi-Agent Systems 19(2), 124–152 (2009)

[31] Vázquez-Salceda, J.: Thesis: The role of norms and electronic institutions in multi-agent
systems applied to complex domains. the harmonia framework. AI Communications 16(3),
209–212 (2003)

[32] Verhagen, H.: Simulation of the Learning of Norms. Social Science Computer Re-
view 19(3), 296–306 (2001)

[33] Walker, A., Wooldridge, M.: Understanding the emergence of conventions in multi-
agent systems. In: Lesser, V. (ed.) Proceedings of the First International Conference on
Multi–Agent Systems, San Francisco, CA, pp. 384–389. MIT Press, Cambridge (1995)

[34] Weisstein, E.W.: Moore neighbourhood (2010),
http://mathworld.wolfram.com/MooreNeighborhood.html

[35] Wieringa, R.J., Meyer, J.-J.C.: Applications of deontic logic in computer science: a concise
overview. In: Deontic Logic in Computer Science: Normative System Specification, pp.
17–40. John Wiley & Sons, Inc., New York (1994)

[36] Wikipedia. Chebyshev distance,
http://en.wikipedia.org/wiki/Chebyshev_distance (last accessed on
September 15, 2010)

[37] Yolum, P., Singh, M.P.: Emergent properties of referral systems. In: Proceedings of the
Second International Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS 2003), pp. 592–599. ACM, New York (2003)

http://mathworld.wolfram.com/MooreNeighborhood.html
http://en.wikipedia.org/wiki/Chebyshev_distance

Using a Two-Level Multi-Agent System
Architecture

Jordi Campos1, Maite Lopez-Sanchez1, and Marc Esteva2

1 MAiA Deptartment, Universitat de Barcelona
{jcampos,maite}@maia.ub.es

2 Artificial Intelligence Research Institute (IIIA), CSIC
marc@iiia.csic.es

Abstract. Existing organisational centred multi-agent systems (MAS)
regulate agents’ activities. Nevertheless, population and/or environmen-
tal changes may lead to a poor fulfilment of the system’s purposes, and
therefore, adapting the whole organisation becomes key. This is even
more needed in open MAS, where participants are unknown beforehand,
they may change over time, and there are no guarantees about their
behaviours nor capabilities. Hence, in this paper we focus on endow-
ing an organisation with self-adaptation capabilities instead of expecting
agents to increase their behaviour complexity. We regard this organisa-
tional adaptation as an assisting service provided by what we call the
Assistance Layer. Our abstract Two Level Assisted MAS Architecture
(2-LAMA) incorporates such a layer. We empirically evaluate our adap-
tation mechanism in a P2P scenario by comparing it with the standard
BitTorrent protocol. Results provide a performance improvement and
show that the cost of introducing an additional layer in charge of sys-
tem’s adaptation is lower than its benefits.

1 Introduction

Developing Multi Agent Systems (MAS) entails the problems of designing a dis-
tributed concurrent system plus the difficulties of having flexible and complex
interactions among autonomous entities [1]. Organising such systems to regulate
agent interactions is a practise that helps to face their complexity [2]. Specially
in open MAS, since agents are developed by third-parties, so they may enter or
leave the system at any moment and there are no guarantees about their be-
haviour. To face the derived complexity, some approaches [3,4] use organisation
entities as regulative structures. Such an organisation helps designers to pre-
dict/regulate the system evolution within certain bounds. The fact that these
structures persist with independence of their participants reinforces their role as
first-order entities. Moreover, these approaches usually provide an infrastructure
to support the enactment of these entities —to create them, to store their specifi-
cations, to check if participants fulfil them, etc. In fact, these approaches provide
an organisational framework to agents, which minimises the number of possibil-
ities they have to face. This is because agents can construe other participant’s
behaviour under a certain context.

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 303–320, 2011.
© Springer-Verlag Berlin Heidelberg 2011

304 J. Campos, M. Lopez-Sanchez, and M. Esteva

Fig. 1. Meta-level agents (Asi) reason at a higher level of abstraction to update
Domain-Level organisation (OrgDL)

As we previously mentioned, an organisational structure helps to regulate
MAS. However, certain environmental or population changes may decrease its
performance to achieve goals. Thus, adapting such an organisation is an im-
portant topic [5,6,7,8], since it can help to obtain the expected outcomes under
changing circumstances. This is motivated by the computational organisational
theory, which claims that the best organisation designs are domain and context
dependent [9]. Adaptation can be seen as a reconfiguration aspect of autonomic
computing, where a MAS is able to reconfigure itself [10].

Concerning such an adaptation, we propose to add a meta-level in charge of
adapting system’s organisation instead of expecting agents to increase their be-
haviour complexity —see Figure 1. This is specially relevant when dealing with
open MAS, since there is no control over participant’s implementation. Hence,
we cannot expect agents to be endowed with the necessary mechanisms to adapt
the organisation when it is not achieving its goals. We regard this adaptation –
together with other possible meta-level functionalities– as an assistance to agents
that can be provided by MAS infrastructure. Thus, we call our approach Two
Level Assisted MAS Architecture (2-LAMA). In order to avoid centralisation
limitations such as fault-tolerance or global information unavailability, we pro-
pose a distributed meta-level composed of several agents. This paper is focused
on 2-LAMA’s organisational adaptation capabilities. In particular, it focuses on
norm adaptation —we assume norms are an organisational regulative structure.

Our approach requires domains with organisations that can be dynamically
changed. Besides, it is able to deal with highly dynamic environments and even
with domains where there is no direct mapping between goals and the tasks
required to achieve them —i.e. it is not possible to derive a set of tasks that
achieve a certain goal. As an illustration, we present a Peer-to-Peer sharing
network (P2P) as a representative case study. In such a network, computers
interact to share some data. Furthermore, their relationships change over time
depending on network status and participants. We use this scenario to perform
an empiric evaluation and compare our approach with standard P2P BitTorrent
protocol [11].

Using a Two-Level Multi-Agent System Architecture 305

Fig. 2. Organisation’s components

Our general model and its application are described in sections 2 and 3. Fur-
ther, the adaptation process is detailed in section 4. Next, it is compared with
BitTorrent in section 5 and with related work in section 6. Finally, section 7
presents the derived conclusions.

2 General Model

Previous section identifies organisations as useful entities to regulate agents’
behaviours and facilitate their coordination. In particular, these entities pro-
vide a framework that is useful for agent coordination. Besides, there are MAS
infrastructures that provide some organisational-related features as domain in-
dependent services. Thus, we regard them as Coordination Support services [12]
that alleviate agent development. These services also include basic coordination
elements such as elemental connectivity or agent communication languages. In
brief, all these services are devoted to enact agent coordination. In addition to
that, we propose an extra set of services that provides an added value by assisting
coordination. We propose to add an Assistance Layer on top of a regular system
in order to provide such coordination assistance services The main contribution
of this paper is the proposal of a distributed pro-active service at the Assistance
Layer that adapts organisations depending on the system’s evolution.

Before provinding an insight into this organisational adaptation service, we
detail how we model an organisational structure itself. Usually, organisation-
centred MAS provide services that range from establishing the basis for agent
communication through individual messages to providing organisational struc-
tures. As depicted in Figure 2, we denote one of those organisations as: Org =
〈SocStr, SocConv, Goals〉, its compoments are detailed next. It has a social
structure (SocStr) consisting of a set of roles (Rol) and their relationships (Rel).
In addition, it has some social conventions (SocConv) that agents should con-
form and expect others to conform. They are expressed as interaction protocols
(Prot) and/or norms (Norms). In more detail, protocols define legitimate se-
quences of actions performed by agents playing certain roles. Whereas norms
delimit agent actions by expressing related permissions, prohibitions or obli-
gations. Notice, that in our case study, the only possible actions are message
physical exchanges among agents. Finally, it has some goals (Goals) that de-
scribe the organisation design purpose —they may differ from participant’s indi-
vidual ones. These goals are expressed as a function over the system’s observable

306 J. Campos, M. Lopez-Sanchez, and M. Esteva

Fig. 3. Two Level Assisted MAS Architecture (2-LAMA)

properties —it may include the reference values they should approach. This way,
system performance can be evaluated by using these goals to determine in which
degree the system is fulfilling its design objectives.

2.1 Assistance Layer

The Assistance Layer we propose, provides an assistance that may facilitate the
enrolment of third-party agents and/or adapt their organisation. This layer pro-
vides two main types of services [12]: assisting individual agents to achieve their
goals following current social conventions (Agent Assistance); and adapting so-
cial conventions to varying circumstances (Organisational Assistance). The for-
mer includes services to inform agents about useful information to participate in
the MAS (Information Service), to provide justifications about the consequences
of their actions (Justification Service), to suggest alternative plans that conform
social conventions (Advice Service) and to estimate the possible consequences
of certain actions due to current conventions (Estimation Service). The latter,
the Organisational Assistance, consists on adapting existing organisations to
improve system’s performance under varying circumstances. To provide such an
adaptation, we propose goal fulfilment as its driving force within the context
of a rational world assumption. Hence, the Assistance Layer requires some way
(i) to observe system evolution, (ii) to compare it with the organisational goals
and (iii) to adapt the organisation trying to improve goal fulfilment. See [12] for
further details about all enumerated services.

In order to provide Assistance Layer services, we proposed a Two Level As-
sisted MAS Architecture (2-LAMA, [13]). The bottom level, we call it domain-
level (DL), is composed by agents carrying out domain activities regulated by
an organisational structure. On top of it, there is a distributed meta-level (ML)
also composed by agents and an organisational structure targeted to provide as-
sistance services to domain-level agents. In between, there is an interface (Int)
that communicates both levels as shown in Figure 3. Thus, the whole system
can be expressed as: 2LAMA = 〈ML, DL, Int〉. Each level has an organised

Using a Two-Level Multi-Agent System Architecture 307

Fig. 4. P2P scenario

set of agents so they are respectively defined as ML = 〈AgML, OrgML〉 and
DL = 〈AgDL, OrgDL〉. Using the interface, the meta-level can perceive envi-
ronment observable properties (EnvP , e.g. date or temperature) and agents ob-
servable properties (AgP , e.g. colour or position). Specifically, we assume each
meta-level agent (aML ∈ AgML) has partial information about them, so it only
perceives a subset of EnvP and AgP —in many scenarios global information
is not available. In fact, an aML has partial information about the subset of
domain-level agents it assists. We call this subset of agents a cluster, which
would be grouped according to a domain criterion —e.g. they could be grouped
because interactions among them have lower costs than with other agents. How-
ever, an assistant can share part of this information with other meta-level agents
in order to provide better assistance services.

3 2-LAMA in a P2P Scenario

Our case study is a Peer-to-Peer sharing network (P2P), where a set of com-
puters connected to the Internet (peers) share some data —see Figure 4. We
apply our model to this scenario because it is a highly dynamic environment
due to the very nature of the Internet communications. We regard the over-
lay network1 of current contacted peers as its organisational social structure,
which is dynamically updated. Finally, this scenario allows the addition of some
norms to regulate communications. Overall, it lets us apply our organisational
and adaptive autonomic approach.

The performance in this scenario is evaluated in terms of time and network
consumptions during the sharing process. Thus, we can define as global goals
the minimisation of such measures so that the faster the data is obtained and
the less network is consumed, the better for the users. Notice, though, that there
is a trade-off between time and network usage. Therefore, although a peer can
potentially contact any other peer, it usually contacts just a subset in order to
consume less network resources —i.e. overlay network.

1 An overlay network is a network build on top of another one. In the P2P scenario,
the base network that connects all peers is the Internet. Then, the network of peers
that are really interacting among them is an overlay network on top of the Internet.

308 J. Campos, M. Lopez-Sanchez, and M. Esteva

Fig. 5. 2-LAMA in the P2P scenario

Real P2P networks are highly complex, so we try to reduce complexity by as-
suming some simplifications about the protocol and the underlying network. Spe-
cially, we assume information is composed of a single piece of data —accordingly,
we say a peer is complete when it has that single piece. The rest of this section
provides the details of such scenario and our 2-LAMA approach applied to it.

3.1 Architecture in P2P

We model the P2P scenario as a MAS where computers sharing data are par-
ticipant agents within the domain-level (AgDL= P1 . . . P12). All of them play a
single role RolDL = {peer} within the domain-level organisation (OrgDL) —see
Figure 5. In addition, we define a type of relationship called contact between two
agents playing the role peer. Thus, as all agents in domain-level play the role peer,
they can establish contact relationships at run-time. These actual relationships
form the overlay network mentioned previously. In our model, the meta-level
can suggest changes in this net of relationships (rel_sugg) taking into account
the system’s status. Regarding social conventions, peers use the sharing protocol
(ProtDL) specified below and two norms NormDL={normBWDL, normFRDL}.
First norm (normBWDL) limits agents’ network usage in percentage of its nom-
inal bandwidth2. This norm can be expressed as: normBWDL =“a peer cannot
use more than maxBW bandwidth percentage to share data”. This way, it prevents
peers from massively using their bandwidth to send/receive data to/from all
other peers. Second norm (normFRDL) limits the number of peers to whom a
peer can simultaneously send the data. Analogously to previous norm, we define
normFRDL =“a peer cannot simultaneously send the data to more than maxFR
peers”. The last compoment of domain-level’s organisation is its goal (Goals).
This is that all peers –i.e. all computers sharing data– have the data as soon as
2 The bandwidth is the capacity to transfer data over user’s network connection. It is

expressed as the number of data units that can traverse a communication channel
in a time unit. The less is used by the peer, the more is left for other purposes.

Using a Two-Level Multi-Agent System Architecture 309

Table 1. Protocol messages grouped into subsequent phases and involved levels —only
domain-level (DL), only meta-level (ML) or both (Int)

Phase Level Protocol Messages
initial Int join <hasDatum>
latency Int get_lat <peers>, lat <peer> <measure>

DL lat_req, lat_rpl
soc.struct. Int contact <peers>
handshake DL bitfield <hasDatum>
share data DL rqst,data,cancel,have,choke,unchoke

Int complete, has_datum <peer>
ML all_complete, complete_peer <peer>

norms ML norm_bw <value>, norm_friends <value>
Int norm_updated <norm_id> <new_def>

possible using the minimal network resources. Thus, given some time cost (ct)
and network cost (cn) metrics, we can define a global goal function that min-
imises a weighted combination of them: Goals = min(wt · ct + wn · cn), where
(wt,wn) are the corresponding weights that represent the relative importance of
each measure.

In order to provide assistance to the domain-level, we add the meta-level on
top of it. This meta-level also has a single role RolML = {assistant}. Each agent
in AgML= A1 . . . A3 assists a disjoint subset of domain-level agents (cluster⊂
AgDL). It does it so by collecting information about them –about agents or their
environment– and adapting their local organisation. Its decisions are based on lo-
cal information about its associated cluster, aggregated information about other
clusters –provided by other assistants— and the norms at their level (NormML).
Some examples of local information are latencies (EnvP) or which agents have the
data (AgP). Information about other clusters come from other assistants —notice
that meta-level agents have their own social structure too. Regarding meta-level
norms, we consider one that limits the number of domain-level agents to inform
about another domain-level agent having the data. More precisely, when an assis-
tant receives the information that one agent in another cluster has become com-
plete, the number of domain-level agents in its cluster it can inform to is limited.
In particular, the norm is expressed as normHasML =“upon reception of a com-
plete agent (agent /∈ cluster) message, inform no more than maxHas agents ∈ clus-
ter”. Finally, we assume assistants are located at Internet Service Providers (ISP)
and thus related communications are fast.

3.2 Protocol

Our proposed protocol is a simplified version of the widely used BitTorrent [11]
protocol. Table 1 lists all its messages, which follow the sequence detailed next.
At the beginning, a domain-level agent (peer) initiates a handshake phase with
another one by sending it a bitfield <hasDatum> message. <hasDatum> = [1/0]
indicates if it has (1) or has not (0) the data —i.e. it is a complete or incomplete

310 J. Campos, M. Lopez-Sanchez, and M. Esteva

agent. Notice that in current implementation, the data has only a single piece.
In turn, the other agent finishes this handshake phase by replaying with another
bitfield <hasDatum> message to indicate its status. In case one of these agents
have the datum and the other lacks it, the later sends a rqst (request) message
to the former. Then, the former replies with a message containing the datum.
On the contrary, if none of the agents have the datum they will not exchange
further messages. However, as soon as one agent receives the datum, it will send
a have message to these other contacted agents to let them know that its status
has changed. In such cases, if they still lack of the datum, they will request
it. Additionally, an agent may reply to a request with a choke message if it
is already serving maxFR agents —it means this agent is going to ignore any
further message. Later on, when a transmission ends, it sends unchoke messages
to all choked agents, so they can request the datum again. On the other hand,
a requester agent is allowed to get data from two sources simultaneously. This
is done –for a short time– in order to compare their effective bandwidth so to
choose the fastest source (the other one is discarded with a cancel message).

Previous messages are related to communication at domain-level. However,
there are other messages related to communication at meta-level and among lev-
els. Initially, a new domain-level agent sends its join <hasDatum> message to the
closest assistant —a domain-level agent measures it latency to all assistants and
chooses the one having the smallest latency. Then, the assistant asks the agent
to measure its latencies with all other agents in its cluster by sending a get_lat
<peers> message. The agent measures latencies by exchanging lat_req/lat_rpl
messages, and informs back the assistant with a lat <measure> message. Once
an assistant has all latencies among its domain-level agents (EnvP) and knows
which ones have the datum, it estimates which would be the best social structure
—see [13]. Then it suggests the agent relationships by sending contact <peers>
messages to all the agents in its cluster.

Additionally, when a domain-level agent receives the datum, it also informs
its assistant with a complete message. Then, at meta-level this assistant informs
other assistants with a complete_peer <peer> message. For instance, in Figure 5,
when P2 receives the datum, it informs A1, which will inform A2 and A3. Next,
contacted assistants spread this information towards their domain-level agents
–limited by maxHas– with a has_datum <peer> message —e.g. A2 may inform P6
and P8 that P2 has the datum, if maxHas = 2. In that moment, informed agents
measure their latencies to the new agent and request it, if it is better than any
previous source. Finally, when an assistant detects that all domain-level agents
in its cluster are complete, it sends an all_complete message to other assistants
to avoid receiving more complete_peer notifications.

Last, the norm adaptation process requires some more messages —see §4.
When an assistant wants to update normBWDL, it sends a norm_bw <value>
message to the rest of assistants. Analogously, it would send a norm_friends
<value> in case of a normFRDL update. Then, when a new value is finally
agreed, each assistant informs its the domain-level agents in its cluster with a
norm_updated <norm_id> <new_def> message.

Using a Two-Level Multi-Agent System Architecture 311

4 Organisational Adaptation

Within our 2-LAMA architecture, the meta-level is able to adapt domain-level’s
organisation. In particular, we are working on social structure and norm adap-
tation. The former consists in the meta-level updating domain-level’s overlay
network as detailed in [13]. The latter is the focus of this paper, and it is de-
scribed in this section. In brief, norm adaptation proceeds as follows. Initially,
assistants collect status information from their cluster domain-level agents but
also from other assistants —in a summarised form. Afterwards, they aggregate
all this information. Next, they compute their desired values of norm parameters
depending on this aggregated information. Finally, they use a voting scheme as
a group decision mechanism to choose the actual norm updates before notifying
their agents.

The underlying rationale of the norm adaptation process is to align the
amount of served data with the amount of received data. Thus, the informa-
tion collected by each assistant consists of some measures about the agents serv-
ing the datum and the ones that lack it. Specifically, they collect the following
information:

– srvBW: the sum of the nominal bandwidths of the individual channels of the
agents that are serving data.

– rcvBW: the sum of the nominal bandwidth of the individual channels of the
agents that are receiving data.

– rcvEffBW: the sum of the effective receiving bandwidth of the agents that
are receiving data. It can be smaller than rcvBW when only a few data is
served or there is network saturation that delays message transport.

– rcvExpBW: the expected receiving bandwidth. It is estimated using the nomi-
nal one (rcvBW) re-scaled by current bandwidth limit (maxBW). It is computed
to be compared with rcvEffBW. If effective serving bandwidth is limited by
a maxBW < 100, the reference receiving bandwidth may be lesser than the
nominal one (rcvBW) —since less data is being injected towards receiving
agents.

– waiting: the number of agents that do not have the datum and are neither
receiving it.

Such information could be collected by each assistant from its agents or by ac-
cessing network information. In the former case, assistants would query agents
about such information. Thus, this method would require that domain-level
agents would report true values —which would be difficult to guarantee in an
open MAS. In contrast, we use the latter case, which does not require collabo-
rative agents. In this method, assistants inspect domain-level agent communica-
tions to obtain such information by themselves —this requires assistants to have
privileges to access network resources, which is acceptable if they are related
to ISPs.

Depending on the cost of collecting such information, it may be retrieved
continuously or at certain intervals. Also, depending on the cost of applying
norm changes, the norm adaptation process may be performed at given intervals.

312 J. Campos, M. Lopez-Sanchez, and M. Esteva

In the current implementation, this process is performed at a fixed time interval
(adaptinterv) with an average of these measures along it.

In order to compute the desired norms, an assistant weighs the information
it has collected from its cluster with the information provided by other assis-
tants. This way it can give more importance to local information. For instance,
srvBW =wL · srvBWL +

∑
(wRi · srvBWRi), where srvBWL stands for the local clus-

ter’s measure, srvBWRi stands for the remote ones, wL stands for the weight
of local information, and wRi stands for the weight of remote one. Moreover,
wL +

∑
wRi = 1 and �wRi , wRi > wL.

If the local weight is the maximum (wL = 1), then each assistant computes
desired norms taking into account only its cluster status. On the contrary, if
this weight is the minimum (∀iwRi = wL), then each assistant gives the same
importance to local information as to remote one —this is the case in the current
implementation. The mid-point is a local weight greater than any remote one
(∀iwRi < wL) such as an assistant takes its decisions giving more importance to
its local cluster, but taking into account the rest of the system.

With this aggregated information each assistant computes its vote for maxBW
(voteBW) and maxFR(voteFR). In the case of voteBW, the vote is the numeric
desired value for maxBW. Whereas in voteFR, the vote is an action among incre-
menting maxFR by one (incr), decrementing it by one (decr), keeping the same
value (same) or abstaining with a blank ballot-paper (blnk) to avoid influencing
in new maxFR value. They use the process schematised in Algorithm 1 to com-
pute both votes. This algorithm receives the measures we described plus current
norm parameter values. Next, in line 2, some constants are initialised to be used
as thresholds in comparisons (their values were empirically tested). Then, the
expected receiving bandwidth is computed from the nominal one re-scaled by
current bandwidth limit (line 3).

The main decision to choose a normFRDL is related to compare the avail-
able bandwidth used to serve (srvBW) to the available bandwidth used to receive
(rcvBW). If there is a lack of serving bandwidth (line 6), the suggestion is to
decrease the number of friends. This way, server agents will be simultaneously
serving data to fewer agents, and these transmissions will finish sooner. After-
wards, once these other agents get the datum, there will be more data sources
in the system and it will take less time to finish the datum distribution. On the
other hand, if there is an excess of serving bandwidth and there are still agents
waiting for data (lines 8) then, the assistant can increase the number of friends
in order to serve more agents. There is another situation in which there is also
an excess of serving bandwidth but there are no agents waiting for data (lines
10). This does not necessarily mean all agents have the datum, but at least the
ones lacking it are receiving it from some source. In this case, the assistant uses
a blank-ballot paper to let other assistants push for their own interests3.

3 Notice, though, that the weighting method applied to measures may bring an assis-
tant to this case when no agents in its cluster are waiting for data, but there are still
waiting agents in other clusters. In such a case, if there is enough serving bandwidth,
it is better to let other assistants choose by themselves the norm parameter values.

Using a Two-Level Multi-Agent System Architecture 313

Algorithm 1. Adaptation algorithm used by assistants
00 def adapt(srvBW, rcvBW, rcvEffBW, waiting, maxFR, maxBW):
01
02 τ = 0.1 ; ε = 0.2
03 rcvExpBW = rcvBW * (maxBW / 100)
04
05 // Adapt maxFR -------------
06 case (srvBW<(1-τ)*rcvBW): voteFR = decr
07
08 case (srvBW>(1+τ)*rcvBW && waiting>ε): voteFR = incr
09
10 case (srvBW>(1+τ)*rcvBW && waiting<ε): voteFR = blnk
11
12 other /*srvBW ≈ rcvBW */: voteFR = same
13
14
15 if (rcvEffBW < (1-τ)*rcvExpBW): voteFR = decr
16
17 // Adapt maxBW ------------
18 case (voteFR == decr ∧ maxFR == 1): voteBW = maxBW / 2
19
20 case (voteFR == incr ∧ maxBW < 100): voteBW = 100
21
22 other : voteBW = maxBW
23
24 return [voteFR, voteBW]

Finally, if none of the previous cases is true, it means that the serving band-
width is similar to the receiving one (line 12) then, the vote is for keeping the
same norm. This is because if there is no excess of serving bandwidth, the as-
sistant prefers to vote for the same norm instead of just leaving the decision to
the rest of assistants.

Despite previous cases, if there is network saturation in the intermediate chan-
nels, it is always better to decrease the number of friends. This will reduce the
number of data transmissions. Hence, it will cut back network traffic and hope-
fully network saturation. In order to estimate if there is network saturation, the
assistant checks if the effective receiving bandwidth (rcvEffBW) is smaller than
the expected one (rcvExpBW). This is a sign that data packets are delayed by
the intermediate network because it is saturated. Consequently, as a solution to
saturation, the assistant votes for decreasing maxFR (line 15).

Regarding the normBWDL, it is only decreased in case it is not possible to
further diminish the network usage by decreasing the number of friends —since
maxFR is already 1. In such a case, the assistant votes for dividing maxBW by 2 (line
18). This way, server agents will use less bandwidth, which can help to diminish
the network saturation. On the contrary, if the bandwidth is previously limited
but there is no network saturation –since the assistant chose to increase maxFR–,

314 J. Campos, M. Lopez-Sanchez, and M. Esteva

then the bandwidth limit can be established again back to 100% (line 20). For
the remaining cases, maxBW keeps its value (line 22).

After choosing a convenient value for each norm parameter, an assistant sends
its votes (vFR, vBW) to the rest of assistants —see norm_bw and norm_friends
messages. Then, when assistants receive all the votes, they compute the actual norm
parameters. To conclude, they send to their domain-level agents the new norms using
the norm_updated message. Notice that the average may provide the same norm pa-
rameters values as before, thus no changes would be performed —in practise, it means
no update message would be sent. This situation may occur when opposite options are
interesting for the same amount of clusters.

Regarding norm updates application, once a domain-level agent receives new
norms, it tries to fulfil them. Thus, when an agent receives a normBWDL, it
adapts its sending ratio and when it receives a normFRDL it also tries to fulfil
it. This means that if an agent is serving to less friends than the new maxFR, it
will send unchoke messages to those agents it has previously choked. This may result
in new data requests that it will be able to serve. On the contrary, if it was serving to
more friends than the new maxFR, it will cancel some of those data transmissions and
send a choke message4.

5 Empirical Evaluation

In order to test our approach, we have implemented a P2P MAS simulator.
This simulator is implemented in Repast Simphony [14] and provides different
facilities to execute tests and analyse results. As it simulates both agents and
network components, it allows to execute different sharing methods with identi-
cal populations and environmental conditions. Thus, we have performed several
tests on BitTorrent and 2-LAMA to empirically evaluate the performance of our
proposal.

5.1 Sharing Methods

In this work, we compare three different approaches. A single-piece version of the
BitTorrent protocol (BT), which is described in [15]. A 2-LAMA approach with
social structure adaptation (2L.a) in which assistants update the actual contact
relationships among domain-level agents as described in [13]. And a 2-LAMA
approach with social structure and the norm adaptation (2L.b) described in this
paper.

The BitTorrent implemented protocol (BT) among domain-level agents is very
similar to 2-LAMA’s since it inspired our approach. In order to make a fair
comparison, we adapted BitTorrent to work with a single-piece datum —see [15]
for further information. However, it does not have a distributed meta-level but
a single agent (Tracker) that informs about connected agents. Consequently,
agents do not receive any further assistance to share the datum. Instead, they use
4 In the current implementation, an agent does not need to cancel a friend if it has

already sent more than 75% of the datum to it. This behaviour avoids cancelling
data transmissions that will finish really soon.

Using a Two-Level Multi-Agent System Architecture 315

the algorithms described in [11]. In brief, the main algorithm of an agent having
the datum consists in sending choke messages to all agents that are interested
in it. Then, at certain intervals (unchoke_interval), the source agent sends
unchoke messages to four of the previously choked agents. Next, these agents can
request the datum and all of them are served. The selected agents to unchoke
are those that were choked most recently. In case two of them were choked at the
same time, the one having a larger network bandwidth (upload_bw) is selected.
In fact, if an agent’s interest is older than a defined interval (aging_period),
its age is ignored and only its agent’s upload_bw is compared. In addition,
in two out of three unchoke_interval selection processes, the fourth agent is
randomly selected.

Regarding the configuration of our experiments, BitTorrent (BT) uses an
unchoke_interval of 250 time units (ticks). It is approximately the time re-
quired to send four data messages along an average agent link in current topology.
Thus, it is the average time that a server agent can invest sending data to four
unchoked agents. This is the number of agents that BitTorrent protocol deter-
mines that an agent unchokes in an unchoke interval. Accordingly, they use an
aging_period of 130 ticks to keep the ratio defined by the official protocol. On
the other hand, the 2-LAMA experiments (2L.a, 2L.b) have been performed with
the following initial norm parameters: maxHas =∞, maxBW = 100%, maxFR = 3.
These norms lead 2-LAMA approach to a similar initial behaviour as BitTor-
rent because: maxHas =∞ does not restrict communications among clusters,
maxBW = 100% does not limit agent communication and maxFR = 3 is equivalent
to the three non-random unchoked agents. This is specially the case because in
our current implementation, domain-level agents always fulfil norms5. Addition-
ally, for those tests including norm adaptation (2L.b), it has been done at an
interval of adaptinterv = 50 time steps.

5.2 Results

In our experiments, we use a packet switching network model to simulate the
transport of messages among agents. Figure 6 shows the network topology we
use in our simulations. Notice that, as we are interested in having a different
communication capacity for each domain-level agent, we place an individual link
between each agent (p1..p12) and its corresponding Internet Service Provider
(ISP1..ISP3 represented by routers r1..r3). In 2-LAMA experiments, each ISP
has an associated assistant6 (a1..a3) in charge of its connected domain-level
agents. In addition, as we want to model simultaneous network usage by dif-
ferent agents, we place an aggregated link among each group of agents –i.e. a
5 Otherwise, we could assume there is an infrastructure mechanism at ISPs that de-

tects and filters out messages that exceed the bandwidth limit (maxBW), or the si-
multaneous data messages limit (maxFR = 3).

6 Our network model includes a quality of service (QoS) feature that gives more pri-
ority to messages among assistants or between assistants and domain-level agents.
Thus, communications at meta-level and among levels are faster than communica-
tions at domain-level.

316 J. Campos, M. Lopez-Sanchez, and M. Esteva

Fig. 6. Network topology

Table 2. Results from BitTorrent (BT), 2-LAMA without norm adaptation (2L.a) and
2-LAMA with norm adaptation (2L.b)

time cNet nHops nData cLat cML
BT 933.3 206182 3.4 11 0 0
2L.a 849.7 345060 3.2 40.1 21600 3749.9
2L.b 811.1 316190 3.0 30.7 21600 6596.0

cluster, those connected to the same ISP– and the Internet (r0). In fact, in Bit-
Torrent experiments, there are no assistants at all but a single tracker linked
to this r0. Notice that the network topology influences the time required to
transmit a message from one agent to another. In particular, this time depends
on: message’s length, the bandwidths of the traversed links, and the number of
simultaneous messages traversing the same links —a link’s bandwidth is divided
among the messages that traverse it simultaneously. Regarding the former is-
sue, we have used the following message lengths: piece messages have 5000 data
units, lat_req / lat_rpl have 150 data units and all the other control messages
have a single data unit. Regarding the bandwidths links, Figure 6 shows them as
numbers over the edges —we assume upload/download channels are symmetric.
Finally, the latter issue, related to simultaneous link usage, is highly dynamic
and depends on system’s evolution.

We have tested all approaches in the described network topology by varying
the agent that initially has the datum. Table 2 shows the results of different
evaluation metrics in both approaches: BitTorrent (BT), 2-LAMA with social
structure adaptation but no norm adaptation (2L.a) and 2-LAMA with social
structure and norm adaptation (2L.b). Figures correspond to the average results
for twelve different settings (so that they cover all possible initial datum positions
in a single agent).

The evaluation metrics in Table 2 are the following: (1) time corresponds
to the total time required to spread the datum among all agents; (2) cNet is
the network cost consumed by all messages —each message cost is computed

Using a Two-Level Multi-Agent System Architecture 317

as its length times the number of links it traverses; (3) nHops is the average
number of links traversed by each message; (4) nData is the total number of
sent data messages —they may not be totally transmitted if: a destination agent
sends a cancel message to its source or a source stops sending data to fulfil an
updated normFRDL; (5) cLat is the cost of all lat_req/lat_rpl messages; (6)
cML is the cost of all messages related with the meta-level —i.e. all messages sent to
or by assistants.

If we compare the performance of both approaches (BT and 2-LAMA), we
see that our proposal requires less time to share the datum. Notice also, that 2-
LAMA with social structure and norm adaptation (2L.b) presents shorter times
that the version without norm adaptation (2L.a). In general, having better times
in 2-LAMA means that the time invested in communicating with meta-level is
less than the benefits of having such an additional level. Even more, we expect
larger differences in performance when repeating the data sharing among the
same P2P agent community since the information collected by our meta-level
–e.g. measured latencies– will be used more than once. In fact, in our current 2-
LAMA experiments, from 33 up to 56 ticks –depending on the cluster of agents–
are invested in measuring latencies.

In contrast, the network cost (cNet) is larger in 2-LAMA, although norm
adaptation (2L.b) provides the best performance again. Our proposal requires
more communication because it initially measures latencies (cLat), it has extra
communications due to the meta-level (cML), and it sends more data messages
(nData). Specifically, latency measurements (cLat) represent up to a 20% of
the network cost increment. This measurements are an initialisation phase that
could be omitted in subsequent executions. On the other hand, 2-LAMA agents
compare data sources by retrieving some data from them. This increases the
number of data messages (nData) although most of them are cancelled. We
expect to minimise this network consumption when dealing with more than
one piece of data, since agents could compare sources depending on previous
retrieved pieces. Regarding the number of links traversed by messages (nHops),
our 2-LAMA approach has more local communications –i.e. intra-cluster– than
BT. This is convenient because local messages have lower latencies and costs,
since they are usually performed in the same cluster.

Furthermore, notice that for the sake of simplicity, we are currently working
with a single piece version of all approaches (BT and 2-LAMA). As a consequence,
in current BT implementation, the upload_bw measure –see §5.1– is taken from
the network topology information. Besides, in 2-LAMA implementation, peers
receive data simultaneously from more than one source to compare their band-
widths —see §3.2. In contrast, in a multi-piece scenario, these measures could be
estimated from previous piece exchanges. This means that BT would require no
resources to obtain upload_bw, like in current single-piece implementation. But,
2-LAMA would save some network cost —the associated to having simultaneous
sources for the same peer. Moreover, the investment of time and network resources
during the initial latency phase of 2-LAMA –which is performed only once, see
§3.2– would be exploited longer if more pieces were exchanged. In summary, a
multi-piece scenario would benefit more 2-LAMA than BT.

318 J. Campos, M. Lopez-Sanchez, and M. Esteva

Overall, norm adaptation (2L.b) provides the best results despite requiring
more assistant communication (cML). This stresses the idea that having a meta-
level and exploiting its capabilities provides more benefits than the costs it causes.

6 Related Work

Within MAS area, organisation-centred approaches regulate open systems by
means of persistent organisations —e.g. Electronic Institutions [3]. Even more,
several of these approaches offer mechanisms to update their organisational
structures at run-time —e.g. Moise+ [4]. However, most work on adaptation
maps organisational goals to tasks and look for agents with capabilities to per-
form them —e.g. OMACS [5]. Consequently, these approaches cannot deal with
scenarios that lack of this goal/task mapping, like our case study. In order to
deal with this sort of scenarios, our approach uses norms to influence agent
behaviour, instead of delegating tasks. Specifically, our approach uses a norm
adaptation mechanism based on social power —see norm taxonomy [16]. In this
sense, there are other works that also use the leadership of certain agents (like
our assistants) to create/spread norms —e.g. the role model based mechanism
[17]. Besides, the most of norm emergence works are agent-centred approaches
that depend on participants’ implementation and they rarely create/update per-
sistent organisations —e.g. infection-based model [18].

Relating norms and overall system behaviour, is a complex issue that increases
its intricacy when there is no control over participant’s implementation. In our
approach, this task is distributed among a assistant agents which finally reach
an agreement about norm updates. Currently, assistants use a voting scheme to
agree on actual norms, but they could use some of the other agreement mech-
anisms present in literature —e.g. using an argumentation protocol [19]. More-
over, currently assistants use an heuristic to take their local decisions, but we
are planning to use learning techniques in future work —like in AEI [20].

Finally, regarding our P2P case study, there are some approaches that fol-
low a MAS viewpoint and others that take a network management perspective.
For instance, from the former point of view, [21] has a meta-level that enforces
norms using a reputation service and offers information about local convention
violations. However, agents can only adapt local conventions and meta-level’s
agents are just individual supervisors. In the latter perspective, Ono [22] tries
to promote local communications –those with less latency– without involving
ISP whereas P4P [23] involves them. However, they only adapt the social struc-
ture and cannot directly update network consumption to balance net capacity
and traffic. Above all, our proposal could be empirically compared to these net-
work management approaches, by extending it to multi-piece and replacing our
simulator’s network component by their precise low-level network simulators.

7 Conclusions

This work proposes an abstract MAS architecture (2-LAMA) to provide as-
sistance to its participants. Particularly, this paper regards adapting a MAS

Using a Two-Level Multi-Agent System Architecture 319

organisation to varying circumstances as a type of assistance. It illustrates this
approach in a P2P sharing network scenario, providing in-depth details about
the adaptation process.

We endow the system with adaptation capabilities instead of expecting the
agents to increase their behaviour complexity. Consequently, we propose to add a
distributed Assistance Layer to improve system’s performance by providing new
support services to agents. In particular, in our architecture meta-level agents
perceive information about MAS participants and environment, and are able to
adapt the system’s organisation.

Our 2-LAMA approach can be applied to domains with highly dynamic en-
vironments and no mapping between tasks and goals. It only requires that an
organisation-centred MAS with an alterable organisation can be deployed. Such
an organisation may include norms in its regulative structures. Moreover, the
MAS can be open to third-party agents. As an illustration of all these issues, we
introduce a representative case study based on a Peer-to-Peer sharing network.
Additionally, to prove 2-LAMA’s feasibility empirically, we have performed some
experiments which show that the cost of adding our proposed Assistance Layer
is lower than the obtained benefit. Specifically, 2-LAMA approach required less
time than the original BitTorrent protocol. Even more, our approach results im-
proved when increasing meta-level adaptation capabilities —i.e. when updating
norms in addition to social structure adaptations.

As future work, we plan to confront further issues in open MAS such as
how the system should react to agents joining or leaving the MAS anytime, or
transgressing its organisational restrictions. In fact, we already have preliminary
results about norm violations that show how system re-adapts to counter vio-
lation side effects. Besides, we are improving meta-level agents to use learning
techniques in order to perform the adaptation process.

Acknowledgements. This work is partially funded by IEA (TIN2006-15662-
C02-01), EVE (TIN2009-14702-C02-01 / TIN2009-14702-C02-02) and AT
(CONSOLIDER CSD2007-0022) projects, EU-FEDER funds, the Catalan Gov-
erment (Grant 2005-SGR-00093) and Marc Esteva’s Ramon y Cajal contract.

References

1. Jennings, N., Sycara, K., Wooldridge, M.: A roadmap of agent research and devel-
opment. Autonomous Agents and Multi-Agent Systems 1(1), 7–38 (1998)

2. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. The
Knowledge Engineering Review 19(4), 281–316 (2004)

3. Esteva, M.: Electronic Institutions: from specification to development. IIIA PhD.
19 (2003)

4. Boissier, O., Gâteau, B.: Normative multi-agent organizations: Modeling, support
and control. In: Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative Multi-
agent Systems. Dagstuhl Seminar Proceedings, vol. 07122, pp. 1–17. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many (2007)

5. Deloach, S.A., Oyenan, W.H., Matson, E.T.: A capabilities-based model for adaptive
organizations. Autonomous Agents and Multi-Agent Systems 16(1), 13–56 (2008)

320 J. Campos, M. Lopez-Sanchez, and M. Esteva

6. Kota, R., Gibbins, N., Jennings, N.: Decentralised structural adaptation in agent
organisations. In: AAMAS Workshop on Organised Adaptation in Multi-Agent
Systems, Estoril, Portugal, pp. 54–71. Springer, Heidelberg (2009)

7. Sims, M., Corkill, D., Lesser, V.: Automated Organization Design for Multi-agent
Systems. Autonomous Agents and Multi-Agent Systems 16(2), 151–185 (2008)

8. Zhang, C., Abdallah, S., Lesser, V.: MASPA: Multi-Agent Automated Supervisory
Policy Adaptation. Technical Report 03 (2008)

9. Carley, K.: Computational and mathematical organization theory: Perspective and
directions. Computational & Mathematical Organization Theory 1(1), 39–56 (1995)

10. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

11. BitTorrentInc.: BitTorrent protocol specification (2001),
http://www.bittorrent.org/beps/bep_0003.html

12. Campos, J., López-Sánchez, M., Esteva, M.: Assistance layer, a step forward in
Multi-Agent Systems Coordination Support. In: Eighth International Conference
on Autonomous Agents and Multi-agent Systems, pp. 1301–1302 (2009)

13. Campos, J., López-Sánchez, M., Esteva, M.: Multi-Agent System adaptation in a
Peer-to-Peer scenario. In: ACM SAC 209 - Agreement Technologies, pp. 735–739
(2009)

14. North, M., Howe, T., Collier, N., Vos, J.: Repast Simphony Runtime System. In:
Agent Conference on Generative Social Processes, Models, and Mechanisms (2005)

15. Campos, J., López-Sánchez, M., Esteva, M., Novo, A., Morales, J.: 2-LAMA Archi-
tecture vs. BitTorrent Protocol in a Peer-to-Peer Scenario. In: Artificial Intelligence
Research and Development - CCIA 2009, vol. 202, pp. 197–206. IOS Press, Ams-
terdam (2009)

16. Cranefield, B.S.S.: A categorization of simulation works on norms (2009)
17. Savarimuthu, B.T.R., Cranefield, S., Purvis, M., Purvis, M.: Role model based

mechanism for norm emergence in artificial agent societies. In: Sichman, J.S., Pad-
get, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS (LNAI), vol. 4870, pp.
203–217. Springer, Heidelberg (2008)

18. Salazar-Ramirez, N., Rodríguez-Aguilar, J.A., Arcos, J.L.: An infection-based
mechanism for self-adaptation in multi-agent complex networks. In: Brueckner,
S., Robertson, P., Bellur, U. (eds.) 2nd IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, SASO 2008, pp. 161–170 (2008)

19. Artikis, A., Kaponis, D., Pitt, J.: Dynamic Specifications of Norm-Governed Sys-
tems. In: Dignum, V. (ed.) Multi-Agent Systems: Semantics and Dynamics of Or-
ganisational Models, pp. 460–479. IGI Global (2009)

20. Bou, E., López-Sánchez, M., Rodríguez-Aguilar, J.A., Sichman, J.S.: Adapting
autonomic electronic institutions to heterogeneous agent societies. In: Vouros, G.,
Artikis, A., Stathis, K., Pitt, J. (eds.) OAMAS 2008. LNCS, vol. 5368, pp. 18–35.
Springer, Heidelberg (2009)

21. Grizard, A., Vercouter, L., Stratulat, T., Muller, G.: A peer-to-peer normative
system to achieve social order. In: Noriega, P., Vázquez-Salceda, J., Boella, G.,
Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI),
vol. 4386, pp. 274–289. Springer, Heidelberg (2007)

22. Choffnes, D., Bustamante, F.: Taming the torrent: a practical approach to re-
ducing cross-ISP traffic in peer-to-peer systems. SIGCOMM Comput. Commun.
Rev. 38(4), 363–374 (2008)

23. Xie, H., Yang, Y.R., Krishnamurthy, A., Liu, Y., Silberschatz, A.: P4P: provider
portal for applications. ACM SIGCOMM Computer Communication Review 38(4),
351–362 (2008)

http://www.bittorrent.org/beps/bep_0003.html

Normative Monitoring: Semantics and Implementation

Sergio Alvarez-Napagao1, Huib Aldewereld2,
Javier Vázquez-Salceda1, and Frank Dignum2

1 Universitat Politècnica de Catalunya
{salvarez,jvazquez}@lsi.upc.edu

2 Universiteit Utrecht
{huib,dignum}@cs.uu.nl

Abstract. The concept of Normative Systems can be used in the scope of Multi-
Agent Systems to provide reliable contexts of interactions between agents where
acceptable behaviour is specified in terms of norms. Literature on the topic is
growing rapidly, and there is a considerable amount of theoretical frameworks
for normative environments, some in the form of Electronic Institutions. Most of
these approaches focus on regulative norms rather than on substantive norms, and
lack a proper implementation of the ontological connection between brute events
and institutional facts. In this paper we present a formalism for the monitoring of
both regulative (deontic) and substantive (constitutive) norms based on Structural
Operational Semantics, its reduction to Production Systems semantics and our
current implementation compliant to these semantics.

1 Introduction

In recent years, several researchers have argued that the design of multi-agent systems
(MAS) in complex, open environments can benefit from social abstractions in order
to cope with problems in coordination, cooperation and trust among agents, problems
which are also present in human societies. One of such abstractions is Normative Sys-
tems. Research in Normative Systems focuses on the concepts of norms and normative
environment (which some authors refer to as institutions) in order to provide normative
frameworks to restrict or guide the behaviour of (software) agents. The main idea is
that the interactions among a group of (software) agents are ruled by a set of explicit
norms expressed in a computational language representation that agents can interpret.
Although some authors only see norms as inflexible restrictions to agent behaviour, oth-
ers see norms not as a negative, constraining factor but as an aid that guides the agents’
choices and reduces the complexity of the environment, making the behaviour of other
agents more predictable.

Until recently, most of the work on normative environments works with norm spec-
ifications that are static and stable, and which will not change over time. Although this
may be good enough from the social (institutional) perspective, it is not appropriate
from the agent perspective. During their lifetime, agents may enter and leave several
interaction contexts, each with its own normative framework. Furthermore they may be
operating in contexts where more than one normative specification applies. So we need

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 321–336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

322 S. Alvarez-Napagao et al.

mechanisms where normative specifications can be added to the agents’ knowledge
base at run-time and be practically used in their reasoning, both to be able to interpret
institutional facts from brute ones (by using constitutive norms to, e.g. decide if killing
a person counts as murder in the current context) and to decide what ought to be done
(by using regulative norms to, e.g. prosecute the murderer). In this paper we propose to
use production systems to build a norm monitoring mechanism that can be used both
by agents to perceive the current normative state of their environment, and for these
environments to detect norm violations and enforce sanctions. Our basic idea is that an
agent can configure, at a practical level, the production system at run-time by adding
abstract organisational specifications and sets of counts-as rules.

In our approach, the detection of normative states is a passive procedure consisting
in monitoring past events and checking them against a set of active norms. This type
of reasoning is already covered by the declarative aspect of production systems, so
no additional implementation in an imperative language is needed. Using a forward-
chaining rule engine, events will automatically trigger the normative state - based on
the operational semantics - without requiring a design on how to do it.

Having 1) a direct syntactic translation from norms to rules and 2) a logic imple-
mented in an engine consistent with the process we want to accomplish, allows us to
decouple normative state monitoring from the agent reasoning. The initial set of rules
we have defined is the same for each type of agent and each type of organisation, and
the agent will be able to transparently query the current normative state at any moment
and reason upon it. Also this decoupling helps building third party/facilitator agents ca-
pable of observing, monitoring and reporting normative state change or even enforcing
behaviour in the organisation.

In this paper we present a formalism for the monitoring of both regulative (deon-
tic) and substantive (constitutive) norms based on Structural Operational Semantics
(Section 2), its reduction to Production Systems semantics (Section 3) and our cur-
rent implementation compliant to these semantics (Section 4). In Section 5 we compare
with other related work and provide some conclusions.

2 Formal Semantics

In this section we discuss the formal semantics of our framework. First, in section 2.1,
we give the semantics of institutions as the environment specifying the regulative and
constitutive norms. Then, in section 2.2, we describe the details of how this institution
evolves over time based on events, and how this impacts the monitoring process. This
formalisation will be used in section 3 as basis of our implementation.

Through this paper, we will use as an example the following simplified traffic
scenario:

1. A person driving on a street is not allowed to break a traffic convention.
2. In case (1) is violated, the driver must pay a fine.
3. In a city, to exceed 50kmh counts as breaking a traffic convention.

Normative Monitoring: Semantics and Implementation 323

2.1 Preliminary Definitions

Before giving a formal definition of institutions (see Definition 4), we first define the
semantics of the regulative and constitutive norms part of that institution (in definitions
1 and 3, respectively).

We assume the use of a predicate based propositional logic language LO with pred-
icates and constants taken from an ontology O, and the logical connectives {¬,∨,∧}.
The set of all possible well-formed formulas of LO is denoted as wff(LO) and we
assume that each formula from wff(LO) is normalised in Disjunctive Normal Form
(DNF). Formulas in wff(LO) can be partially grounded, if they use at least one free
variable, or fully grounded if they use no free variables.

In this paper we intensively use the concept of variable substitution. We define a
substitution instance Θ = {x1 ← t1, x2 ← t2, ..., xi ← ti} as the substitution of the
terms t1, t2, ..., ti for variables x1, x2, ..., xi in a formula f ∈ wff(LO).

We denote the set of roles in a normative system as the set of constants R, where
R ⊂ O, and the set of participants as P , where each participant enacts at least one role
according to the ontology O.

As our aim is to build a normative monitoring mechanism that can work at real time,
special care has been made to choose a norm language which, without loss of expre-
siveness, has operational semantics that can then be mapped into production systems.
Based in our previous work and experience, our definition of norm in an extension of
the norm language presented in [12]:

Definition 1. A norm n is a tuple n = 〈fA, fM , fδ, fD, fw, w〉, where

– fA, fM , fδ, fD, fw ∈ wff(LO), w ∈ R,
– fA, fM , fD respectively represent the activation, maintenance, and deactivation

conditions of the norm, fδ, fw are the explicit representation of the deadline and
target of the norm, and

– w is the subject of the norm.

In order to create an optimal norm monitor it is important to know which norms are
active at each point in time, as only those are the ones that have to be traced (inactive
norms can be discarded from the monitoring process until they become active again).
The activation condition fA specifies when a norm becomes active. It is also the main
element in the norm instantiation process: when the conditions in the activating con-
dition hold, the variables are instantiated, creating a new norm instance1. The target
condition fw describes the state that fulfills the norm (e.g. if one is obliged to pay,
the payment being made fulfills the obligation). The deactivating condition fD defines
when the norm becomes inactive. Typically it corresponds to the target condition (e.g.,
fulfilling the norm instance deactivates that instance of the norm), but in some cases it
also adds conditions to express other deactivating scenarios (e.g., when the norm be-
comes deprecated). The maintenance condition fM defines the conditions that, when

1 One main differentiating aspect of our formalisation is that we include variables in the norm
representation and we can handle multiple instantiations of the same norm and track them
separately.

324 S. Alvarez-Napagao et al.

no longer hold, lead to a violation of the norm. Finally the deadline condition fδ resp-
resents one or several deadlines for the norm to be fulfilled.

An example of a norm for the traffic scenario (”A person driving on a street is not
allowed to break a traffic convention”) would be formalised as follows

n1 :=〈enacts(X, Driver) ∧ is driving(X),
¬traffic violation(X),
⊥ ,
¬is driving(X),
is driving(X) ∧ ¬traffic violation(X),
Driver〉,

The activating condition states that each time an event appears where an individual
enacting the Driver role drives (‘is driving), then a new instance of the norm becomes
active; the maintenance condition states that the norm will not be violated while no
traffic convention is violated; this norm has no deadline, it is to apply at all times an
individual is driving; the norm instance deactivates when the individual stops driving2;
the target of this norm is that we want drivers not breaking traffic conventions; finally
the subject of the norm is someone enacting the Driver role.

It is important to note here that, although our norm representation does not explicitly
include deontic operators, the combination of the activation, deactivation and mainte-
nance conditions is as expressive as conditional deontic statements with deadlines as the
ones in [3]. It is also able to express unconditional norms and maintenance obligations
(i.e. the obligation to keep some conditions holding for a period of time). To show that
our representation can be mapped to conditional deontic representations, let us express
the semantics of the norm in definition 1 in terms of conditional deontic statements.
Given relations between the deadline and maintenance condition (that is, fδ → ¬fM ,
since the maintenance condition expresses more than the deadline alone) and between
the target and the deactivation condition (i.e., fw → fD, since the deactivation condi-
tion specifies that either the norm is fulfilled or something special has happened), we
can formalise the norms of Definition 1 as the equivalent deontic expression (using the
formalism of [3]): fA → [Ow(Ewfw ≤ ¬fM) U fD], where Eap means that agent a
sees to it that (stit) p becomes true and U is the CTL∗ until operator. Intuitively, the
expression states that after the norm activation, the subject is obliged to see to it that the
target becomes true before the maintenance condition is negated (either the deadline is
reached or some other condition is broken) until the norm is deactivated (which is either
when the norm is fulfilled or has otherwise expired).

Since we are not reasoning about the (effects of) combinations of norms, we will not
go into further semantical details here. The semantics presented in this deontic reduction
are enough for understanding the monitoring process that is detailed in the remainder
of the paper.

A set of norms is denoted as N . We define as violation handling norms those norms
that are activated automatically by the violation of another norm:

2 Although the norm is to apply at all times an individual is driving, it is better to deactivate the
norm each time the individual stops driving, instead to keep it active, to minimize the number
of norm instances the monitor needs to keep track at all times.

Normative Monitoring: Semantics and Implementation 325

Definition 2. A norm n′ = 〈f ′
A, f ′

M , f ′
δ, f

′
D, f ′

w, w′〉 is a violation handling norm of
n = 〈fA, fM , fδ, fD, fw, w〉, denoted as n � n′ iff fA ∧ ¬fM ∧ ¬fD ≡ f ′

A

Violation handling norms are special in the sense that they are only activated when
another norm is violated. They are used as sanctioning norms, if they are to be fulfilled
by the norm violating actor (e.g., the obligation to pay a fine if the driver broke a traffic
sign), or as reparation norms, if they are to be fulfilled by an institutional actor (e.g. the
obligation of the authorities to fix the broken traffic sign).

A norm is defined in an abstract manner, affecting all possible participants enacting
a given role. Whenever a norm is active, we will say that there is a norm instance
ni = 〈n, θ〉 for a particular norm n and a substitution instance Θ.

We define the state of the world st at a specific point of time t as the set of predicates
holding at that specific moment, where st ⊆ O, and we will denote S as the set of
all possible states of the world, where S = P(O). We will call expansion F (s) of a
state of the world s as the minimal subset of wff(LO) that uses the predicates in s in
combination of the logical connectives {¬,∨,∧}.

One common problem for the monitoring of normative states is the need for an
interpretation of brute events as institutional facts, also called constitution of social
reality[8]. The use of counts-as rules helps solving this problem. Counts-as rules are
multi-modal statements of the form [c](γ1 → γ2), read as “in context c, γ1 counts-as
γ2”. In this paper, we will consider a context as a set of predicates, that is, as a possible
subset of a state of the world:

Definition 3. A counts-as rule is a tuple c = 〈γ1, γ2, s〉, where γ1, γ2 ∈ wff(LO),
and s ⊆ O.

A set of counts-as rules is denoted as C. Although the definition of counts-as in [8]
assumes that both γ1 and γ2 can be any possible formula, in our work we limit γ2 to a
conjunction of predicates for practical purposes.

Definition 4. Following the definitions above, we define an institution as a tuple of
norms, roles, participants, counts-as rules, and an ontology:

I = 〈N, R, P, C, O〉

An example of I for the traffic scenario would be formalised as follows:
N :={〈enacts(X, Driver) ∧ is driving(X),
¬traffic violation(X),⊥,¬is driving(X),
is driving(X) ∧ ¬traffic violation(X), Driver〉,
〈enacts(X, Driver) ∧ is driving(X) ∧ traffic violation(X),
�,
paid fine(X), Driver〉}
R :={Driver},P :={Person1}
C :={〈exceeds(D, 50), traffic violation(D), is in city(D)〉}
O :={role, enacts, is driving, is in city,
exceeds, traffic violation, is driving, paid fine,
Person1, role(Driver), enacts(Person1, Driver)}

326 S. Alvarez-Napagao et al.

2.2 Normative Monitor

In this section we present a formalisation of normative monitoring based on Structural
Operational Semantics.

From the definitions introduced in section 2.1, a Normative Monitor will be com-
posed of the institutional specification, including norms, the current state of the world,
and the current normative state.

In order to track the normative state of an institution at any given point of time, we
will define three sets: an instantiation set IS, a fulfillment set FS, and a violation set
V S, each of them containing norm instances {〈ni, Θj〉, 〈ni′ , Θj′ 〉, ..., 〈ni′′ , Θj′′ 〉}. We
adapt the semantics for normative states from [11]:

Definition 5. Norm Lifecycle: Let ni = 〈n, Θ〉 be a norm instance, where
n = 〈fA, fM , fD, w〉, and a state of the world s with an expansion F (s). The
lifecycle for norm instance ni is defined by the following normative state predicates:

activated(ni)⇔ ∃f ∈ F (s), Θ(fA) ≡ f
maintained(ni)⇔ ∃Θ′, ∃f ∈ F (s), Θ′(fM) ≡ f ∧Θ′ ⊆ Θ
deactivated(ni)⇔ ∃Θ′, ∃f ∈ F (s), Θ′(fD) ≡ f ∧Θ′ ⊆ Θ
instantiated(ni)⇔ ni ∈ IS
violated(ni)⇔ ni ∈ V S
fulfilled(ni)⇔ ni ∈ FS

where IS is the instantiation set, FS is the fulfillment set, and V S is the violation set,
as defined above.

For instance, for norm n1, the lifecycle is represented in Figure 1. The maintained state
is not represented as it holds in both the activated and fulfilled states. The deactivated
state is also not depicted because it corresponds in this case to the Fulfilled state.

Fig. 1. Lifecycle for norm n1 in the traffic scenario: (I)nactive, (A)ctivated, (V)iolated, (F)ulfilled

Definition 6. A Normative Monitor MI for an institution I is a tuple MI = 〈I, S, IS,
V S, FS〉 where

– I = 〈N, R, P, C, O〉,
– S = P(O),
– IS = P(N × S ×Dom(S)),
– V S = P(N × S ×Dom(S)), and
– FS = P(N × S ×Dom(S)).

Normative Monitoring: Semantics and Implementation 327

Event processed:

ei = 〈α, p〉
〈〈〈i, s, is, vs, fs〉, ei〉, ei+1〉 � 〈〈i, s ∪ {p}, is, vs, fs〉, ei+1〉 (1)

Counts-as rule activation:

∃Θ,∃f ∈ F (s),∃〈γ1, γ2, si〉 ∈ C, si ⊆ s ∧Θ(γ1) ≡ f ∧ Θ(γ2) /∈ s

〈〈〈N,R,P, C,O〉, s, is, vs, fs〉, e〉 � 〈〈〈N,R,P,C,O〉, s ∪ {Θ(γ2)}, is, vs, fs〉, e〉 (2)

Counts-as rule deactivation:

∃Θ,∃f ∈ F (s),∃〈γ1, γ2, si〉 ∈ C, si �⊆ s ∧Θ(γ1) ≡ f ∧ Θ(γ2) ∈ s

〈〈〈N,R,P,C,O〉, s, is, vs, fs〉, e〉 � 〈〈〈N,R,P, C,O〉, s− {Θ(γ2)}, is, vs, fs〉, e〉 (3)

Norm instantiation:

∃n = 〈fA, fM , fD, w〉 ∈ N ∧ ¬∃n′ ∈ N, n′ � n ∧ 〈n, Θ〉 /∈ is ∧ ∃Θ,∃f ′ ∈ F (s), f ′ ≡ Θ(fA)

〈〈〈N, R, P, C, O〉, s, is, vs, fs〉, e〉 � 〈〈〈N, R, P, C, O〉, s, is ∪ {〈n, Θ〉}, vs, fs〉, e〉
(4)

Norm instance violation:

∃n = 〈fA, fM , fD, w〉 ∈ N ∧ 〈n,Θ′〉 ∈ is ∧ 〈n,Θ′〉 /∈ vs∧
¬(∃Θ,∃f ′ ∈ F (s), f ′ ≡ Θ(fM) ∧Θ ⊆ Θ′) ∧NR =

⋃
n�n′〈n′, Θ′〉

〈〈〈N,R,P,C,O〉, s, is, vs, fs〉, e〉 � 〈〈〈N,R,P,C,O〉, s, (is− {〈n, Theta′〉}) ∪NR,
vs ∪ {〈n,Θ′〉}, fs〉, e〉

(5)
Norm instance fulfilled:

∃n = 〈fA, fM , fD, w〉 ∈ N ∧ 〈n, Θ′〉 ∈ is ∧ ∃Θ,∃f ′ ∈ F (s), f ′ ≡ Θ(fD) ∧ Θ ⊆ Θ′

〈〈〈N, R, P, C, O〉, s, is, vs, fs〉, e〉 � 〈〈〈N, R, P, C, O〉, s, is − {〈n, Θ′〉}, vs, fs ∪ 〈n, Θ′〉〉, e〉 (6)

Norm instance violation repaired:

∃n, n′ ∈ N ∧ n � n′ ∧ 〈n,Θ〉 ∈ vs ∧ n � n′ ∧ 〈n′, Θ〉 ∈ fs

〈〈〈N,R,P,C,O〉, s, is, vs, fs〉, e〉 � 〈〈〈N,R,P,C,O〉, s, is, vs− {〈n,Θ〉}, fs〉, e〉 (7)

Fig. 2. Inference rules for the transition relation �

The set Γ of possible configurations of a Normative Monitor MI is Γ = I × S × IS ×
V S × FS.

However, the definition above does not take into account the dynamic aspects of in-
coming events affecting the state of the world through time. To extend our model we will
assume that there is a continuous, sequential stream of events received by the monitor:

Definition 7. An event e is a tuple e = 〈α, p〉, where

– α ∈ P 3, and
– p ∈ S and is fully grounded.

We define E as the set of all possible events, E = P(P × S)
3 α is considered to be the asserter of the event. Although we are not going to use this element

in this paper, its use may be of importance when extending or updating this model.

328 S. Alvarez-Napagao et al.

Definition 8. The Labelled Transition System for a Normative Monitor MI is defined
by 〈Γ, E, �〉 where

– E is the set of all possible events e = 〈α, p〉
– � is a transition relation such that � ⊆ Γ × E × Γ

The inference rules for the transition relation � are depicted in Figure 2.

3 Monitoring with Production Systems

In our approach, practical normative reasoning is based on a production system with
an initial set of rules implementing the operational semantics described in Section 2.2.
Production systems are composed of a set of rules, a working memory, and a rule in-
terpreter or engine [2]. Rules are simple conditional statements, usually of the form
IF a THEN b, where a is usually called left-hand side (LHS) and b is usually called
right-hand side (RHS).

3.1 Semantics of Production Systems

In this paper we use a simplified version of the semantics for production systems intro-
duced in [1].

Considering a set P of predicate symbols, and an infinite set of variables X , where
a fact is a ground term, f ∈ T (P), andWM is the working memory, a set of facts, a
production rule is denoted if p, c remove r add a, or

p, c ⇒ r, a,

consisting of the following components:

– A set of positive or negative patterns p = p+ ∪ p− where a pattern is a term pi ∈
T (F ,X) and a negated pattern is denoted ¬pi. p− is the set of all negated patterns
and p+ is the set of the remaining patterns

– A proposition c whose set of free variables is a subset of the pattern variables:
V ar(c) ⊆ V ar(p).

– A set r of terms whose instances could be intuitively considered as intended to be
removed from the working memory when the rule is fired, r = {ri}i∈Ir , where
V ar(r) ⊆ V ar(p+).

– A set a of terms whose instances could be intuitively considered as intended to
be added to the working memory when the rule is fired, a = {ai}i∈Ia , where
V ar(a) ⊆ V ar(p).

Definition 9. A set of positive patterns p+ matches to a set of facts S and a substitution
σ iff ∀p ∈ p+, ∃t ∈ S, σ(p) = t. Similarly, a set of negative patterns p− dismatches a
set of facts S iff ∀¬p ∈ p−, ∀t ∈ S, ∀σ, σ(p) �= t.

A production rule p⇒ r, a is (σ,WM′)-fireable on a working memoryWM when
p+ matches withWM′ and p− dismatches withWM, whereWM′ is a minimal subset
ofWM, and T |= σ(c).

Normative Monitoring: Semantics and Implementation 329

Definition 10. The application of a (σ,WM′)-fireable rule on a working memoryWM
leads to the new working memoryWM′′ = (WM− σ(r)) ∪ σ(a).

Definition 11. A general production system PS is defined as PS = 〈P ,WM0,R〉,
whereR is a set of production rules overH = 〈P ,X〉.

3.2 Reduction

In order to formalise our Normative Monitor as a production system, we will need to
define several predicates to bind norms to their conditions: activation, maintenance, de-
activation, and to represent normative state over norm instances: violated, instantiated,
and fulfilled. We will also use a predicate for the arrival of events: event, and a predicate
to represent the fact that a norm instance is a violation handling norm instance of a vi-
olated instance: repair. For the handling of the DNF clauses, we will use the predicates
holds and has clause.

Definition 12. The set of predicates for our production system, for an institution I =
〈N, R, P, C, O〉, is:

PI := O ∪ {activated, maintained, deactivated,
violated, instantiated, fulfilled, event, repair,
holds, has clause, countsas}

The initial working memoryWM0 should include the institutional specification in the
form of the formulas included in the counts-as rules and the norms in order to repre-
sent the possible instantiations of the predicate holds, through the use of the predicate
has clause.

First of all, we need to have the bindings between the norms and their formulas avail-
able in the working memory. For each norm n = 〈fA, fM , fD, w〉, these bindings will
be:

WMn := {activation(n, fA), maintenance(n, fM), deactivation(n, fD)}

As we assume the formulas from wff(LO) to be in DNF form:

Definition 13. We can interpret a formula as a set of conjunctive clauses f = {f1, f2,
..., fN}, of which only one of these clauses fi holding true is necessary for f holding
true as well:

rh := has clause(f, f ′) ∧ holds(f ′, Θ)⇒ ∅, {holds(f, Θ)}

For example, if f = (p1(x) ∧ p2(y) ∧ ... ∧ pi(z)) ∨ ... ∨ (q1(w) ∧ q2(x) ∧ ... ∧ qj(y)),
then the initial facts to be inWM0 will be:

WM0 :=
⋃
f ′∈f has clause(f, f ′) = {has clause(f, f1), ..., has clause(f, f2)}

Also, we have to include the set of repair norms by the use of the predicate repair, and
the counts-as definitions by the use of the predicate countsas.

330 S. Alvarez-Napagao et al.

Definition 14. The initial working memoryWMI for an institution I=〈N, R, P, C, O〉
is:

WMI :=
⋃n∈N
n�n′ repair(n, n′) ∪⋃

n=〈fA,fM ,fD ,w〉∈N(WMn ∪WMfA ∪WMfM ∪WMfD) ∪⋃
c=〈γ1,γ2,s〉∈C({countsas(γ1, γ2, s)} ∪WMγ1 ∪WMs)

The rule for the detection of a holding formula is defined as rhcf = �f� ⇒ ∅, {holds(f,
σ)}, where we denote as �f� the propositional content of a formula f ∈ wff(LO)
which only uses predicates from O and the logical connectives ¬ and ∧, and σ as the
substitution set of the activation of the rule. Following the previous example:

rhcf1 = p1(x) ∧ p2(y) ∧ ... ∧ pi(z)⇒ ∅, {holds(f1, {x, y, z})}
rhcf2 = q1(w) ∧ q2(x) ∧ ... ∧ qi(y)⇒ ∅, {holds(f2, {w, x, y})}

Similarly as in Definition 14:

Definition 15. The set of rules Rhc
I for detection of holding formulas for an institution

I = 〈N, R, P, C, O〉 is:

Rhc
I :=

⋃
n=〈fA,fM ,fD ,w〉∈N(

⋃
f∈{fA,fM ,fD} rhcf) ∪

⋃
c=〈γ1,γ2,s〉∈C(

⋃
f∈γ1 rhcf)

By using the predicate holds as defined above, we can translate the inference rules
from Section 2.2. Please note that the rules are of the form p, c ⇒ r, a as shown in
Section 3.1. However, as we only need the c part to create a constraint proposition in
the rules for norm instance violation and fulfillment, c is omitted except for these two
particular cases.

Definition 16. Translated rules (see Figure 2)
Rule for event processing (1):
re = event(α, p)⇒ ∅, {�p�}
Rule for counts-as rule activation (2):
rca = countsas(γ1, γ2, c) ∧ holds(γ1, Θ) ∧ holds(c, Θ′) ∧ ¬holds(γ2, Θ)
⇒ ∅, {Θ(�γ2�)}
Rule for counts-as rule deactivation (3):
rcd = countsas(γ1, γ2, c) ∧ holds(γ1, Θ) ∧ ¬holds(c, Θ′) ∧ holds(γ2, Θ)
⇒ {Θ(�γ2�)}, ∅
Rule for norm instantiation (4):
rni = activation(n, f) ∧ holds(f, Θ) ∧ ¬instantiated(n, Θ) ∧ ¬repair(n′, n)
⇒ ∅, {instantiated(n, Θ)}
Rule for norm instance violation (5):
rnv = instantiated(n, Θ)∧maintenance(n, f)∧¬holds(f, Θ′)∧repair(n, n′),
∀Θ′, Θ′ ⊆ Θ
⇒ {instantiated(n, Θ)}, {violated(n, Θ), instantiated(n′, Θ)}

Normative Monitoring: Semantics and Implementation 331

Rule for norm instance fulfillment (6):
rnf = deactivation(n, f)∧instantiated(n, Θ)∧subseteq(Θ′, Θ)∧holds(f, Θ′),
Θ′ ⊆ Θ
⇒ {instantiated(n, Θ)}, {fulfilled(n, Θ)}
Rule for norm instance violation repaired (7):
rnr = violated(n, Θ) ∧ repair(n, n′) ∧ fulfilled(n′, Θ′)
⇒ {violated(n, Θ)}, ∅

Definition 17. Following Definitions 13, 15 and 16, the set of rules for an institution
I = 〈N, R, P, C, O〉 are:

RI := Rhc
I ∪ {rh, re, rca, rcd, rni, rnv, rnf , rnr}

Definition 18. The production system PSI for an institution I will be, from Defini-
tions 12, 14 and 17:

PSI := 〈PI ,WMI ,RI〉

4 Implementation

A prototype of our normative reasoner has been implemented as a DROOLS program.
DROOLS is an open-source Object-Oriented rule engine for declarative reasoning in
Java [14]. Its rule engine is an implementation of the forward chaining inference Rete
algorithm [4]. The use of Java objects inside the rule engine allows for portability and
an easier communication of concepts with the reasoning of agents coded in Java.

In DROOLS we can represent facts by adding them to the knowledge base as ob-
jects of the class Predicate. Predicates are dynamically imported from standardised De-
scription Logic OWL-DL ontologies into Java objects using the tool OWL2Java[17], as

Fig. 3. Architecture of the DROOLS implementation

332 S. Alvarez-Napagao et al.

rule ” holds ”
when

HasClause (f : formula , f2 : c lause)
Holds (formula == f2 , the ta : s u b s t i t u t i o n)

then
insertLogical (new Holds (f , t he ta)) ;

end

rule ” event processed ”
when

Event (a : asser ter , p : content)
then

insertLogical (p) ;
end

rule ” counts−as a c t i v a t i o n ”
when

CountsAs (g1 : gamma1, g2 : gamma2, s : con tex t)
Holds (formula == g1 , the ta : s u b s t i t u t i o n)
Holds (formula == s , theta2 : s u b s t i t u t i o n)
not Holds (formula == g2 , s u b s t i t u t i o n == the ta)

then
Formula f ;

f = g2 . s u b s t i t u t e (the ta) ;
inser t (f) ;

end

rule ” counts−as d e a c t i v a t i o n ”
when

CountsAs (g1 : gamma1, g2 : gamma2, s : con tex t)
Holds (formula == g1 , the ta : s u b s t i t u t i o n)
not Holds (formula == s , theta2 : s u b s t i t u t i o n)
Holds (formula == g2 , s u b s t i t u t i o n == the ta)
f : Formula (content == g2 , grounding == the ta)

then
re t rac t (f) ;

end

rule ” norm i n s t a n t i a t i o n ”
when

A c t i v a t i o n (n : norm , f : formula)
Holds (formula == f , the ta : s u b s t i t u t i o n)
not I n s t a n t i a t e d (norm == n , s u b s t i t u t i o n == the ta)
not Repair (n2 : norm , repairNorm == n)

then
inser t (new I n s t a n t i a t e d (n , the ta)) ;

end

rule ” norm ins tance v i o l a t i o n ”
when

n i : I n s t a n t i a t e d (n : norm , the ta : s u b s t i t u t i o n)
Maintenance (norm == n , f : formula)
not (SubsetEQ (theta2 : subset , superset == the ta)
and Holds (formula == f , s u b s t i t u t i o n == theta2))
Repair (norm == n , n2 : repairNorm)

then
re t rac t (n i) ;
inser t (new V io la ted (n , the ta)) ;
inser t (new I n s t a n t i a t e d (n2 , the ta)) ;

end

rule ” norm ins tance f u l f i l l m e n t ”
when

Deac t i va t i on (n : norm , f : formula)
n i : I n s t a n t i a t e d (norm == n , the ta : s u b s t i t u t i o n)
SubsetEQ (theta2 : subset , superset == the ta)
Holds (formula == f , s u b s t i t u t i o n == theta2)

then
re t rac t (n i) ;
inser t (new F u l f i l l e d (n , the ta)) ;

end

rule ” norm ins tance v i o l a t i o n repa i red ”
when

n i : V io la ted (n : norm , the ta : s u b s t i t u t i o n)
Repair (norm == n , n2 : repairNorm)
F u l f i l l e d (norm == n2 , s u b s t i t u t i o n == the ta)

then
re t rac t (n i) ;

end

rule ” subseteq ”
when

Holds (f : formula , the ta : s u b s t i t u t i o n)
Holds (f2 : formula , the ta2 : s u b s t i t u t i o n)
eva l (the ta . c o n t a i n s A l l (the ta2))

then
insertLogical (new SubsetEQ (theta2 , the ta)) ;

end

Fig. 4. Translation of base rules to DROOLS

subclasses of a specifically designed Predicate class. The following shows an example
of the insertion of enacts role(p, Driver) into the knowledge base to express that p
(represented as object p of the domain and instantiating a participant) is in fact enacting
the role driver:

ksession.insert(new Enacts(p, Driver.class));

DROOLS programs can be initialised with a rule definition file. However, its working
memory and rule base can be modified at run-time by the Java process that is running
the rule engine. We take advantage of this by keeping a fixed base, which is a file with
fixed contents implementing the rules from Definition 13 and 16, which are indepen-
dent of the institution, and having a parser for institutional definitions that will feed the
rules from Definition 15, which are dependent on the institution (see Figure 3). The in-
stitutional definitions we currently use are based on an extension of the XML language
presented in [12].

The base rules (see Definitions 13 and 16) has been quite straightforward and the
translation is almost literal. The contents of the reusable DROOLS file is shown in
Figure 4. The last rule of the Figure is the declarative implementation of the predicate
SubsetEQ to represent the comparison of substitutions instances Θ ⊆ Θ′, needed for

Normative Monitoring: Semantics and Implementation 333

ru le ” N1 ac t i va t i on 1 ”
when

n : Norm (i d == ”N1 ”)
A c t i v a t i o n (norm == n , f : formula)
Enacts (X : p0 , p1 == ” D r i ve r ”)
I s D r i v i n g (p0 == X)

then
Set<Value> t he ta = new Set<Value> () ;
t he ta . add (new Value (” X” , X)) ;
inser t (new Holds (f . getClause (0) , t he ta)) ;

end

ru le ” C1 1 ”
when

c : CountsAs (g1 : gamma1)
Exceeds (D : p0 , 50 : p1)

then
Set<Value> t he ta = new Set<Value> () ;
t he ta . add (new Value (”D” , D)) ;
inser t (new Holds (g1 . getClause (0) , t he ta)) ;

end

Fig. 5. Rules for the traffic scenario

ksession . i n s e r t (norm1) ;
ksession . i n s e r t (norm2) ;
ksession . i n s e r t (new Repair (norm1 , norm2)) ;
ksession . i n s e r t (new A c t i v a t i o n (norm1 , fn1a)) ;
ksession . i n s e r t (new Maintenance (norm1 , fn1m)) ;
ksession . i n s e r t (new Deac t i va t i on (norm1 , fn1d)) ;
ksession . i n s e r t (new HasClause (fn1a , fn1a1)) ;
ksession . i n s e r t (new HasClause (fn1m , fn1m1)) ;
ksession . i n s e r t (new HasClause (fn1d , fn1d1)) ;
/∗ . . . same f o r norm2 . . . ∗ /
ksession . i n s e r t (new CountsAs (c1g1 , c1g2 , c1s)) ;
ksession . i n s e r t (new HasClause (c1g1 , c1g11)) ;
ksession . i n s e r t (new HasClause (c1g2 , c1g21)) ;
ksession . i n s e r t (new HasClause (c1s , c1s1)) ;

Fig. 6. Facts for the traffic scenario

the cases of norm instance violation and fulfillment. In our implementation in Drools,
substitution instances are implemented as Set<Value> objects, where Value is a tuple
〈String, Object〉.

The rest of the rules (see Definitions 15) are automatically generated from the insti-
tutional specifications and inserted into the DROOLS rule engine. An example of two
generated rules for the traffic scenario is shown in Figure 5.

The initial working memory is also automatically generated by inserting objects
(facts) into the DROOLS knowledge base following Definition 14. An example for the
traffic scenario is also shown in Figure 6. Please note that this is not an output of the
parser, but a representation of what it would execute at run-time.

5 Conclusions and Related Work

The implementation of rule-based norm operationalisation has already been explored
in previous research. Some approaches [13,15] directly define the operationalisation of

334 S. Alvarez-Napagao et al.

the norms as rules of a specific language, not allowing enough abstraction to define
norms at a high level to be operationalised in different rule engine specifications. [5]
introduces a translation scheme, but it is bound to Jess by using specific constructs of
this language and it does not support constitutive norms. Other recent approaches like
[6] define rule-based languages with expressive constructs to model norms, but they are
bound to a proper interpreter and have no grounding on a general production system,
requiring the use of an intentionally crafted or modified rule engine. For example, in
[7,9], obligations, permissions and prohibitions are asserted as facts by the execution of
the rules, but the actual monitoring is out of the base rule engine used.

[16] introduces a language for defining an organisation in terms of roles, norms, and
sanctions. This language is presented along with an operational semantics based on tran-
sition rules, thus making its adoption by a general production system straightforward.
Although a combination of counts-as rules and sanctions is used in this language, it is
not expressive enough to support regulative norms with conditional deontic statements.

We solve these issues by combining a normative language [12] with a reduction to
a representation with clear operational semantics based on the framework in [11] for
deontic norms and the use of counts-as rules for constitutive norms. The formalism pre-
sented in this paper uses logic conditions that determine the state of a norm (active,
fulfilled, violated). These conditions can be expressed in propositional logic at the mo-
ment and can be directly translated into LHS parts of rules, with no special adaptation
needed. The implementation of the operational semantics in a production system to get
a practical normative reasoner is thus straightforward. This allows agents for dynami-
cally changing its institutional context at any moment, by feeding the production system
with a new abstract institutional specification.

Our intention is not to design a general purpose reasoner for normative agents, but
a practical reasoner for detecting event-driven normative states. This practical reasoner
can then be used as a component not only by normative agents, but also by monitors
or managers. Normative agents should deal with issues such as planning and future
possibilities, but monitors are focused on past events. For such a practical reasoner,
the expressivity of actions languages like C+ is not needed, and a simple yet efficient
solution is to use production systems, as opposed to approaches more directly related
to offline verification or model checking, such as [10].

Mere syntactical translations are usually misleading in the sense that rule language
specific constructs are commonly used, constraining reusability [13,5,7]. However, as
we have presented in this paper a reduction to a general version of production system
semantics, any rule engine could fit our purposes. There are several production system
implementations available, some widely used by the industry, such as JESS, DROOLS,
SOAR or PROVA. In most of these systems rules are syntactically and semantically sim-
ilar, so switching from one to the other would be quite simple. As production systems
dynamically compile rules to efficient structures, they can be used as well to validate
and verify the consistency of the norms. As opposed to [7,9], our reduction ensures that
the whole monitoring process is carried out entirely by a general production system,
thus effectively decoupling normative state detection and agent reasoning.

DROOLS is an open-source powerful suite supported by JBoss, the community, and
the industry, and at the same time it is lightweight enough while including key features

Normative Monitoring: Semantics and Implementation 335

that we are or will be using in future work. As an advantage over other alternatives, it
includes features relevant to our topic, e.g. event processing, workflow integration. Its
OO approach makes it easy to be integrated with imperative code (Java), and OWL-DL
native support is expected in a short time.

The monitoring system is available at http://sf.net/projects/ict-
alive under a GPL license. This implementation is currently being used in use cases
with large amounts of events, and we expect to present empirical results of performance
as well as an analysis of the algorithmic complexity. A topic that we will cover in more
detail in future publications, due to the complexity of the issue on its own and lack
of space in this paper, is the addition, modification and removal of normative contexts
at run-time. Finally, due to the fact that semantics based on propositional logic can be
limiting at a practical level for norm expressivity, as future work we are extending the
semantics in order to support, at least, first-order logic norm conditions.

Acknowledgements

This work has been partially supported by the FP7-215890 ALIVE project. J. Vázquez-
Salceda’s work has been also partially funded by the Ramón y Cajal program of the
Spanish Ministry of Education and Science.

References

1. Cirstea, H., Kirchner, C., Moossen, M., Moreau, P.E.: Production Systems and Rete Algo-
rithm Formalisation. Tech. Rep. ILOG, INRIA Lorraine, INRIA Rocquencourt, Manifico
(2004)

2. Davis, R., King, J.: An overview of production systems. Tech. rep., Stanford Artificial Intel-
ligence Laboratory, Report No. STAN-CS-75-524 (1975)

3. Dignum, F., Broersen, J., Dignum, V., Meyer, J.J.: Meeting the Deadline: Why, When and
How. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004.
LNCS (LNAI), vol. 3228, pp. 30–40. Springer, Heidelberg (2004)

4. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1), 17–37 (1982)

5. Garcı́a-Camino, A., Noriega, P., Rodrı́guez-Aguilar, J.A.: Implementing norms in electronic
institutions. In: Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, Utrecht, Netherlands, pp. 667–673 (2005)

6. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Constraint
rulebased programming of norms for electronic institutions. Autonomous Agents and Multi-
Agent Systems 18(1), 186–217 (2009)

7. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems 14(2-3), 181–216 (2005)

8. Grossi, D.: Designing invisible handcuffs: Formal investigations in institutions and organi-
zations for multi-agent systems. Thesis, Universiteit Utrecht (2007)

9. Hübner, J.F., Boissier, O., Bordini, R.H.: A normative organisation programming language
for organisation management infrastructures. In: Padget, J., Artikis, A., Vasconcelos, W.,
Stathis, K., da Silva, V.T., Matson, E., Polleres, A. (eds.) COIN@AAMAS 2009. LNCS,
vol. 6069, pp. 114–129. Springer, Heidelberg (2010)

http://sf.net/projects/ict-alive
http://sf.net/projects/ict-alive

336 S. Alvarez-Napagao et al.

10. Kyas, M., Prisacariu, C., Schneider, G.: Run-time monitoring of electronic contracts. In: Cha,
S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311,
pp. 397–407. Springer, Heidelberg (2008)

11. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.: Towards a
formalisation of electronic contracting environments. In: Hübner, J.F., Matson, E., Boissier,
O., Dignum, V. (eds.) COIN@AAMAS 2008. LNCS, vol. 5428, pp. 156–171. Springer, Hei-
delberg (2009)

12. Panagiotidi, S., Vázquez-Salceda, J., Alvarez-Napagao, S., Ortega-Martorell, S., Willmott,
S., Confalonieri, R., Storms, P.: Intelligent Contracting Agents Language. In: Proceedings of
the Symposium on Behaviour Regulation in Multi-Agent Systems (BRMAS 2008) at AISB
2008, Aberdeen, Scotland, vol. 1, p. 49 (2008)

13. Paschke, A., Dietrich, J., Kuhla, K.: A Logic Based SLA Management Framework. In: Pro-
ceedings of the 4th Semantic Web Conference (ISWC 2005), Galway, Ireland, pp. 68–83
(2005)

14. Proctor, M., Neale, M., Frandsen, M., Griffith Jr., S., Tirelli, E., Meyer, F., Verlaenen, K.:
Drools documentation. JBoss (2008)

15. Strano, M., Molina-Jimenez, C., Shrivastava, S.: A rule-based notation to specify executable
electronic contracts. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008.
LNCS, vol. 5321, pp. 81–88. Springer, Heidelberg (2008)

16. Tinnemeier, N., Dastani, M., Meyer, J.J.: Roles and norms for programming agent or-
ganizations. In: Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Budapest, Hungary, vol. 1, pp. 121–128 (2009)

17. Zimmermann, M.: OWL2Java (2009),
http://www.incunabulum.de/projects/it/owl2java

http://www.incunabulum.de/projects/it/owl2java

Learning from Experience to Generate New
Regulations

Jan Koeppen1, Maite Lopez-Sanchez1, Javier Morales1, and Marc Esteva2

1 MAiA dept., Universitat de Barcelona
{maite_lopez,jmoralesmat}@ub.edu

2 Artificial Intelligence Research Institute (IIIA-CSIC)
marc@iiia.csic.es

Abstract. Both human and multi-agent societies are prone to best func-
tion with the inclusion of regulations. Human societies have developed
jurisprudence as the theory and philosophy of law. Within it, utilitari-
anism has the view that laws should be crafted so as to produce the best
consequences. Following this same objective, we propose an approach to
enhance a multi-agent system with a regulatory authority that generates
new regulations –norms– based on the outcome of previous experiences.
These regulations are learned by applying a machine learning technique
(based on Case-Based Reasoning) that uses previous experiences to solve
new problems. As a scenario to evaluate this innovative proposal, we
use a simplified version of a traffic simulation scenario, where agents
move within a road junction. Gathered experiences can then be easily
mapped into regular traffic rules that, if followed, happen to be effective
in avoiding undesired situations —and promoting desired ones. Thus, we
can conclude that our approach can be successfully used to create new
regulations for those multi-agent systems that accomplish two general
conditions: to be able to continuously gather and evaluate experiences
from its regular functioning; and to be characterized in such a way that
similar social situations require similar regulations.

1 Introduction

Regulations have been proven to be useful in both human and multi-agent so-
cieties. Human societies use regulations within their legal systems. In fact, they
have developed Jurisprudence as the theory and philosophy of law, which tries
to obtain a deeper understanding of general issues such as the nature of law, of
legal reasoning, or of legal institutions1. Within it, Normative Jurisprudence is
concerned with normative or evaluative theories of law. It tries to answer ques-
tions such as "What is the purpose of law?" or "What sorts of acts should be
subject to punishment?". Normative Jurisprudence has different schools. Among

1 Jurisprudence definition extracted from Black’s Law Dictionary:
http://www.blackslawdictionary.com

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 337–356, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

338 J. Koeppen et al.

them, Deontology [1] can be described as an ethical theory concerned with du-
ties and rights. On the other hand, Utilitarianism [2] takes the view that the
laws should be crafted so as to produce the best consequences. When translat-
ing these approaches from human societies to MAS societies, it is obvious that
a large number of simplifications have to be taken. Nevertheless, we think that
it is still possible to keep and combine their fundamental objectives: to define
specific prohibitions, permissions and obligations that promote desired overall
system’s behaviour for a given MAS society. Thus, the aim of this paper is to
define a computational mechanism able to synthesize norms that succeed in the
proper regulation of multi-agent societies2.

We approach this regulation generation problem by learning from the experi-
ence of on-going activities within the MAS society. We have chosen Case-Based
Reasoning (CBR) as the learning technique to apply. Briefly, CBR solves new
problems –i.e., cases– by adapting the solution of similar problems from the
knowledge base (which is a compound of solved problems). The selection of this
learning technique is somehow inspired in the Anglo-American common law tra-
dition, where judges use legal precedents to make decisions. Hence, using our
terminology, we can interpret that judges resolve legal cases based on the way
similar cases were previously resolved. More specifically, our approach defines a
case as a compound of a problem –i.e., a social situation or context– and its asso-
ciated solution, which in our case corresponds to the regulations that are applied
in those contexts. In this manner, the overall learning objective becomes to de-
fine cases whose application leads to desired social situations. In CBR, problem
description is key, and therefore, we have tested different problem representa-
tions that consider global and partial scopes. On the other hand, classical CBR
is a supervised learning method that requires an expert to provide the system
with correct problem solutions. Nevertheless, we want to generate best regula-
tions without external knowledge, and thus, CBR cannot be directly applied.
Instead, we propose to include an exploratory pseudo-random approach so that
CBR becomes unsupervised.

Rather than by individual agents in the society, we assume learning to be per-
formed by an independent regulatory authority within the MAS, able to observe
and establish its norms. Therefore, we are taking an organizational centered
perspective over the MAS as opposed to an agent-centered perspective. The un-
derlying rationale is to restrict the focus of our research. An organizational point
of view allows to have learning devoted to finding the best regulations for a whole
society and to do it while interactions are taking place. On the contrary, taking
an individual centered approach –where learning is performed by individual self-
ish agents– would also require considering additional aspects such as agreement,
trust, uncertainty or communication.

The paper is structured as follows: next section introduces related work. Sec-
tion 3 describes the tested scenario, section 4 details the learning process, and
subsequent section 5 presents its empirical evaluation. Finally, some conclusions
and future work are drawn in last Section 6.

2 We assume goals act as a reference that does not evolve.

Learning from Experience to Generate New Regulations 339

2 Related Work

Although Artificial Intelligence and Law have been related since a first article
from McCarty [3], related research is not usually concerned with machine learn-
ing. This is less the case within the MAS area, where some learning techniques
have been successfully applied. In fact, Multi-Agent Reinforcement Leaning [4]
is quite widely used for individual agent learning. Nevertheless its usage is much
more scarce for organizational centered approaches, where an exception is the
work by Zhang et al.[5] devoted to improve system’s organization. Our work
uses CBR as an alternative learning technique, which is also based on system
experience, but results in clearer knowledge representations —i.e., cases.

On the other hand, research on norms in multi-agent systems is quite an active
area. Just to mention a few works: Boella and van der Torre have done relevant
contributions [6] in norm characterization; Campos et al. [7] have proposed norm
adaptation methods to specific network scenarios; Artikis et al.[8] have studied
the definition of dynamic social conventions (protocols); and Savarimuthu et al.
[9], Griffiths and Luck [10], as well as Kota et al. [11] work on norm emergence.
Within this area, norm generation has been studied less frequently. Shoham
and Tennenholtz [12] focus on norm synthesis by considering a state transition
system: they explore the state-space enumeration and state it is NP-complete
through a reduction from 3-SAT. Similarly, Hoek et al. [13] synthesize social laws
as a model checking problem –again NP-Complete– that requires a complete
action-based alternative transition system representation. Following this work,
Agotnes and Wooldridge [14] extend the model by taking into account both
the implementation costs of social laws and that designer may have multiple
(possibly conflicting) objectives, with different priorities. In this setting, the
design of social laws become an optimization problem. In our case, CBR has
the advantage that, although cases represent the search space, they do not need
to be exhaustive, since they can be representatives of a set of similar problems
requiring similar solutions. Furthermore, our approach is applied at run-time,
being able to generate new norms during the execution of the system (this has the
additional advantage of adapting to new situations). An intermediate approach
is this of Christelis et al. [15,16], that synthesize generalized norms over general
state specifications in planning domains. These domains allow for a local search
around declarative specifications of states using planning AI methods. From
our point of view, CBR allows the application to a wider range of domains,
in particular to those where (i) experiences can be continuously gathered and
evaluated, and where (ii) similar social situations require similar regulations (i.e.,
the continuity solution assumption).

Regarding implementation issues, it might be worth mentioning a related
work on system monitoring by Modgil et al.[17] which is able to recognize norm
compliance; and another one on traffic domain by Dunkel et al. [18] devoted to
managing traffic systems. We have also used a simplified traffic scenario to test
our innovative approach empirically.

340 J. Koeppen et al.

3 Traffic Scenario

As an initial scenario to evaluate our learning approach, we have chosen a sim-
plification of a traffic scenario. It has been developed as a multi-agent based
simulation model in Repast [19]. This traffic scenario is an orthogonal two-road
junction, where car agents travel along roads towards different destinations. As
Figure 1 shows, the environment has been discretized by means of a square grid
whose cells have the size of a car. Gray (central) cells represent roads and green
(corner) cells correspond to their surrounding non-transitable fields. Each road
lane has a direction of traffic. Agents can join the road from four different en-
trance points –i.e., four incoming or feeder lanes (see Figure 1 a))– and choose
the exit point, so they decide the route to follow. Time, measured in ticks, is
also discrete. Moreover, cars do have constant speed, so they can only move to
adjacent cells in a single tick. Agent possible actions are stop, move forward,
turn right, or turn left. Nevertheless, cars just turn in the intersection area and
always obey the rules of right side traffic (i.e. they turn right in the first cell of
the intersection whereas left turnings require to further traverse the junction and
turn on the second cell). Furthermore, car agents also follow the social norms
described in section 4 by stopping or moving whenever required.

Fig. 1. Orthogonal road junction: a) feeder and exit lines, b)traveling cars

4 Norm Generation through Case-Based Reasoning

Multi-agent systems have been enriched with different regulations –norms, con-
straints, protocols, etc– with the aim of better organizing the society by re-
stricting both individual behaviours and the way interactions are performed.
In general, regulated societies build their norms as an implicit common agree-
ment, assuming most of their individuals will respect them. Regulations can
come from a norm emergence process or by having a regulatory authority dic-
tating them. Furthermore, they can be created based on previous experiences
or by anticipating situations that may appear. Nevertheless, since the number
of possible outcomes of complex systems is so large, most societies regulate just
those situations that have already occurred so far. This paper focuses on those
regulations that can be established based on the experience of the regular func-
tioning of MAS societies. We assume these societies have regulatory authorities

Learning from Experience to Generate New Regulations 341

that gather experiences in an on-going basis. Inspired in jurisprudence used in
the Anglo-American common law tradition, we have enriched our MAS with a
case based regulatory system. It is in charge of analyzing previous experiences
and deciding what (if any) regulations should be applied for specific situation
contexts in order to avoid undesired outcomes.

In order to do it, a regulatory authority must be able to first define the goals
whose accomplishment guarantees system’s performance or its overall desired
behaviour. In our traffic scenario, the main goal is to minimize the number of
collisions whilst keeping a fluid traffic. This is so because, obviously, if all cars
stop, then there will be no collisions at all but cars will not accomplish their
individual goals —which most probably will include reaching their destinations.
Therefore, we are making an underlying assumption that is that social regula-
tions should guarantee individuals to have enough autonomy so to accomplish
their individual goals. Otherwise, punishments should be included to promote
norm compliance. In summary, we can somehow interpret that the regulatory
authority tries to guarantee basic common agreement about the norms it estab-
lishes.

Second, the regulatory authority must have the ability to observe the society
in a way that it is able to identify undesired situations —that is, situations
where goals are not being accomplished. In our traffic case, both collisions and
blockages are main undesired situations.

Afterwards, the regulatory authority should be able to propose regulations
that try to prevent undesired situations from being repeated in the future. Pro-
hibitions should be done over those agents’ actions that lead to undesired sit-
uations. Analogously, obligations can be used to promote desired actions. For
example, if we consider our traffic junction, if there is a collision because two cars
run on each other, then it is possible to propose a new regulation that prohibits
cars to move when they happen to be in the same situation. On the other hand,
if no collisions happen when cars traverse the junction it may be useful to cre-
ate the obligation of keeping moving to prevent blockages. Obviously, deciding
which actions should be prohibited or obliged is not a straightforward decision,
and that is the reason we introduce automatic learning into the process.

Finally, whenever a new regulation is created and applied on the multi-agent
system, the learning process requires the analysis of the consequences of its
application. Thus, we need the regulatory authority to observe the society’s
evolution and to label the experience of applying this new regulation with its
subsequent outcome. In this manner, regulatory knowledge is refined in an on-
going basis.

The remaining of this section provides further details of our proposed ap-
proach. First subsection specifies the architecture of the MAS applied to the
traffic scenario, and subsequent subsections detail the learning process.

4.1 Architecture

Following an organizational centered approach, we assume that the multi-agent
system in our traffic scenario consists of a set of external agents that interact

342 J. Koeppen et al.

Fig. 2. Traffic scenario architecture

within a road environment together with a regulatory authority (see Figure 2).
External agents play a car role; they are able to observe other car agents and
to perform certain actions such as join, traverse, and leave the environment.
Regarding the regulatory authority, its aim is to promote fluid car traffic flow
with as few as possible collisions amongst traffic participants. This authority is
constituted by staff permanent agents that perform regulation tasks. From those
agents, we highlight the one in charge of defining current norms –we call it norm
agent– and the one conducting the learning process —the CBR agent. Never-
theless, there are other staff agents that provide infrastructure services, such as
the ones in the tracking system, in charge of obtaining information from the
environment; the scene manager, in charge of runtime details; or the monitoring
agents, which provide statistical analysis of the overall system operation.

The norm agent uses the regulatory knowledge from the CBR agent to specify
the traffic rules that will be applied in the road environment. As a result, it
updates a norm layer that is publicly available for the car agents so they become
aware of the norms and can thus follow them. Agents conduct this norm updating
process continuously, creating new norms when required or applying previously
existing ones. The CBR agent will be the one in charge of taking this last decision.
Next subsection details how it is performed.

4.2 Unsupervised CBR Cycle

Case-based reasoning is a technique that solves new problems based on past
experiences [20]. Experiences are stored in the form of cases, where a case is
a description of a problem and its possible solution Case = 〈probl, sol〉. Cases
are stored and maintained in a knowledge base (or case base) for further usage.
Briefly, when a new problem is encountered (and thus, it lacks a solution), the
CBR process searches for the most similar problem in the case base and adapts
its associated solution to solve the current problem. The description of the tar-
get problem, together with the provided solution and related information about
its performance, constitute a new case that can be in turn stored in the case
base. Case performance –i.e., how well the derived solution solved the problem–
depends on the continuity of the domain or, in other words, if for the domain

Learning from Experience to Generate New Regulations 343

it holds that similar problems require similar solutions. This overall process
is usually explained in terms of what it is known to be the CBR cycle. It is
characterized by four different steps: retrieve, reuse, revise and retain. Before
describing them, it is worth mentioning that a case for us is composed of a traffic
situation –car distribution–, the regulations –move /not move– that should be
applied in such traffic context, and a case performance measure (see subsection
4.3 for further details).

Retrieve: Given a traffic situation description, we first retrieve from our knowl-
edge base the case that is most relevant to solve it. Relevance here is interpreted
as similarity, and thus, we search for a case that describes the most similar traf-
fic situation. More specifically, as we will see in next subsection 4.3 a case is
considered to be similar to another if it represents the same number of cars and
if these cars are located at rotationally equivalent cells. The retrieved case will
include the regulations that were applied for its traffic situation and the score
of its subsequent applications. Since there are no guarantees that the regula-
tions applied for the case avoid the conflicting situation, the computed score
gives a measure of how good these regulations are. Hence, our regulations are
empirically evaluated in a continuous manner.

Standard CBR systems are considered as supervised learning methods be-
cause they assume there is a pre-existing knowledge base, or that at least, a
supervisor can provide solutions for new cases to be learned. Nevertheless, we
face an unsupervised learning scenario, since we lack the necessary knowledge to
determine the proper traffic rules that should be applied for specific situations.
Therefore, it can well be the case that the retrieve phase does not provide any
case. In fact, we encounter this situation right at the beginning, since we still
lack experience. Hence, if no case has been retrieved, we need to somehow gen-
erate a new solution by exploring the space of possible solutions, which in our
case means to try different combinations of traffic restrictions (norms). In our
current implementation, exploration is performed by randomly assigning stop-
ping/moving restrictions to those cells having cars (avoiding empty cells is an
heuristic that prunes the search space). Furthermore, since this pseudo-random
solution may not be optimal, we extend the cases to include several alternate
solutions (generated in the same way) with a performance measure associated
to each of them. The number of possible solutions is bounded in order to differ-
entiate a learning phase –when alternate solutions are built– from a subsequent
testing phase —when the case is considered to be learned (i.e., closed) and is
applied without adding new solutions. Obviously, this limit in the number of
explored solutions prevents us from guaranteeing optimal solutions, but they
can still be useful to accomplish the goals of our regulatory authority. Powell
et al.[21] have a similar approach to unsupervised CBR that uses reinforcement
learning.

In the reuse phase, the solution of the retrieved case is mapped to the tar-
get problem. This may involve adapting the solution as needed to fit the new
situation. In our case, since a case may have more than one associated solution,
the one having the best performance results is the one chosen. Reuse is done

344 J. Koeppen et al.

afterwards by translating the traffic rules of the chosen solution to locations in
the new solution that may be rotated if the target problem is a rotated version
of the retrieved case.

Afterwards, having mapped the previous solution to the target situation, test
the new solution and, if necessary, revise. In our traffic scenario this means
to dictate the traffic norms to car agents (see previous subsection 4.1), and to
observe the outcome of their application in the simulation. In current imple-
mentation, the regulatory authority continuously checks if goals are fulfilled by
observing each simulation step (tick). Then, it updates the performance measure
based on the number of resulting collisions and the number of applied prohibition
rules: in order to promote fluid traffic, it penalizes over-regulated solutions —i.e.,
those abusing from preventing the cars from moving. As a result, the effect of a
norm is continuously evaluated as long as the norm is active in the simulation.
Although system’s goals are two-folded –collision avoidance and fluid traffic–
they may have different relevance and, therefore, we use a weighted performance
updating formula.

Finally, the cycle ends with the retain phase, that consists on the storage the
resulting experience in the knowledge base. In our unsupervised CBR scenario
this may lead to three different possibilities: i) If a new case was generated,
then it will be stored in the case base; ii) If an existing case was retrieved
and a new solution for it was generated, then retain becomes an update of the
current case; and iii) if the retrieved case was closed –and thus, no solutions were
added– the only required update is the performance measure3. This will allow the
CBR agent to choose among different traffic rules depending on their application
outcome. It is worth noticing that for non-deterministic environments, a desirable
regulation may become undesirable further in time and become desirable again
under changing circumstances. As we can see, this last step enriches the set of
stored experiences, and thus it better prepares the system for future encountered
problems as far as they satisfy the underlying premise that similar problems have
similar solutions.

4.3 Cases and Norms

As we have already mentioned, a case in CBR is generally understood as the
description of a problem and its associated solution: Case = 〈probl, sol〉 where
prob ∈ StateSpace and sol ∈ Norms. Taking into account our traffic domain,
a problem description represents one particular traffic situation whereas the so-
lution corresponds to the traffic rules that should be applied for this particular
context. The regulatory authority describes traffic situations in terms of the in-
formation it gathers from the system (see section 3): empty and occupied cells,
and the headings of those cars located at occupied cells. Traffic situations can
be described by considering a global point of view or a local perspective. A
global scope in the representation will imply a large area of the environment
and will contain all cars in the environment, no matter their location. On the
3 Additionally, for all three possibilities we also store/update how many times the case

has been applied.

Learning from Experience to Generate New Regulations 345

other hand, a local perspective is focused in a narrower environment area and
thus, only those cars near the reference point will be considered. A global scope
has the advantage that it represents a complete knowledge but the disadvantage
of implying a large search space. Regarding the partial scope, although being
smaller in its representation size –and thus, search space–, it may fail in rep-
resenting some important pieces of knowledge. Therefore, as both approaches
present pros and cons, we have modeled them both in our particular traffic sce-
nario (see next evaluation section 5 for a comparison). The remaining of this
subsection presents them and the associated solutions (norms) they have within
our case representation. In fact, depending on the considered scope, norms will
be applied to all involved agents –if global scope– or just to the single agent that
is acting as reference in the partial representation.

Global scope. When representing a complete traffic situation, the number of
possible distributions of cars in the environment becomes high even if just con-
sidering the 7 × 7 example grid in Figure 1. Nevertheless, some simplifications
can be taken. First, by assuming that car agents do have basic driving skills it is
possible to reduce the size of the environment grid down to the intersection zone
(see Figure 3 a)). These skills correspond to basic capacities such as planning
a path towards a chosen destination, following this route without leaving the
proper road lanes or stopping if a car in front of them in the lane brakes sud-
denly4. Thus, traffic in the feeder and exit lanes (see Figure 1) can be discarded
without losing any relevant information. Figure 3 shows how, focusing further
on the intersection zone, there are still some cells that can be obviated. These
cells correspond to both the field area and the exit lanes, which do not interfere
in our simplified traffic. In this manner, the final problem representation can be
reduced to 8 cells in the junction area.

The state space (StateSpace) we are representing consists thus in 8 cells
that can be either empty or occupied by one or several cars. Having more than

Fig. 3. Global scope junction representation: a) initially discarded cells; b) orthogonal
shape representing the problem; and c) applied traffic rules

4 These basic skills may also be modeled as a set of basic norms, but from our point
of view regulations should leave some decisions to the agents, whose autonomy can
be regulated but should not be overconstrained.

346 J. Koeppen et al.

one car in a cell means a collision. Cars in our simulation are removed when
colliding, so there is no need to represent this situation (further details can be
found in [22]). Furthermore, a car in an occupied cell can have different headings,
but due to the traffic flow restrictions, it will only be one for the cells at the
junction entrance (the ones of the feeder lanes) or two for the intersection, since
two different traffic directions are allowed there. Overall, we have 4 cells with
two possible states –i.e., empty or occupied with a fixed heading– and 4 with
3 possible states –empty and occupied with two alternative headings– so that
we have 24 ∗ 34 = 1296 different possible traffic situations. Finally, we can have
situations that represent the same if we apply the appropriated rotation in their
representations. Thus, we can further reduce the state space to 1296/4 = 324
combinations.

Regarding the associated solution (sol ∈ Norms), it represents the same grid
area than the problem (see Figure 3 c)) and for each cell, it has a norm that spec-
ifies if the car in this location should stop or should keep moving. From a deontic
perspective, these traffic rules are represented, respectively, as the obligation of
stopping and the prohibition to stop. Thus, the norm agent first considers the
solution provided by the CBR agent (see section 4.1) and, afterwards, it applies
traffic signs that can be either the stop sign or a direction sign —whose specific
direction will correspond to the one of the road cell. Whenever a new conflictive
traffic situation occurs, the CBR agent retrieves a single case because cases in
the global scope are disjoint. As a consecuence, applied solutions cannot conflict.

Finally, as we have mentioned, we lack the optimal solution (sol ∈ Norms)
for each problem (prob ∈ StateSpace) and thus, the learning algorithm explores
different candidate solutions. Thus, a case in our global scope representation
corresponds in fact to Case = 〈probl, {(sol, score)}〉, where for each problem we
have a set of solution-score pairs, and where a solution is a combination of traffic
rules and it is associated to information about their application outcome.

Partial scope. As an alternative to use global information, it is also possible
to represent situations centered in the point of view of a single agent. Common
agent individual perspectives also imply having a limited observation range.
Thus, the partial scope reduces the observation area to a subgrid in front of the
reference car. Figure 4 illustrates an example that compares the conceptualiza-
tion of both scopes: for a given global situation at a certain time step we will have
as many partial descriptions as involved agents are. Thus following the example
in the figure, two different situations –i.e. prob1, prob2 ∈ PartialStateSpace–
will be derived. This, in terms of the CBR learning process, means that they
will result in two target cases to solve, and therefore, the CBR process will be
invoked twice.

As before, problems (prob ∈ PartialStateSpace) are represented by consid-
ering empty and occupied cells. The only differences are that their orientation
is relative to the reference car and its shape and dimensions, which do not in-
clude the cell containing the reference car, are smaller than the global problem
representation. Following previous example, we have a rotated 3 × 1 sub-grid.
There, cell states can be 4 (empty, car forward movement, car left turning, and

Learning from Experience to Generate New Regulations 347

Fig. 4. Case global and partial scopes

car right turning) for those two cells corresponding to the inner junction area
and 2 possible states (empty cell or occupied with a car moving forward) for
the single cell in the junction entrance. Obviously, having a sub-grid implies a
smaller state space (|PartialStateSpace| < |StateSpace|) and thus, the number
of possible cases to handle is much smaller (42 ∗ 2 = 32 in the example). Our im-
plementation allows the definition of different sight range or subgrids –they are
treated as masks over the agent’s visibility area– so that they can be empirically
studied.

Once we have defined a problem (prob ∈ PartialStateSpace), its solution
corresponds to the norms that will be applied to the reference agent. In this
manner, cases in our traffic scenario will have a predefined set of two possible
traffic rules: the obligation to stop (obl(stop)) and the obligation to keep moving
following the road traffic direction (proh(stop), so that we have a reduced set
of norms: Norms={obl(stop), proh(stop)}). Cases in this approach will have a
predefined set of two possible solutions and their associated outcome measure
Case = 〈probl, {(obl(stop), scoreStop), (proh(stop), scoreMove)}〉 and the main
learning task will be to change the score associated to the performance of the
application of both rules (scoreStop and scoreMove). Unlike the global scope,
in the partial scope several regulations can be applied given a conflictive traffic
situation. Hence, an applied norm can conflict with another applied norm in the
same simulation step.

Related metrics. Case retrieve and case update phases in our CBR cycle
require the specification of two measures: the distance between two cases and
the score of associated solutions.

Both global and local approaches compute case distance by comparing every
cell in the area (both compared grids have the same size and shape). Differences
between two cells ci, cj ∈ grid are considered to be 1 if their occupancy state is
different:

dist(ci, cj) = 1 �� state(ci) �= state(cj)� ����
state(ck) = {empty, occupied forward, occupied right turn, occupied left turn}

�	
 ci, cj , ck ∈ grid

Thus, for example, if state(ci) = occupied_forward and state(cj) = empty,
then dist(ci, cj) = 1 and the same distance results if they are occupied with
cars with different headings: state(ci) = occupied_forward and state(ck) =
occupied_right_turn (then dist(ci, ck) = 1).

348 J. Koeppen et al.

The retrieval phase looks for the most similar case in the knowledge base. In
our case, the chosen case will be the one for which, if we apply a proper rotation
to the retrieved grid, we get a zero distance result when comparing with the grid
representing the target problem. Formally:

retrieved_case = argdistance(rotation(grid, α), target_grid) = 0

where α ∈ {0, 90, 180, 279} degrees in our orthogonal environment and grid is
the representation of the problem component in the case.

Regarding the scoring computation, we have already said that given a re-
trieved case with different solutions, the norm agent in the regulatory authority
will choose the solution with best application performance. In the global scope,
this score update is computed by punishing both the number of collisions (n_col)
occurred during the next time step in the simulation as well as the number of
stop traffic rules (obl(stop)) that were applied (n_stop). Both measures are ac-
cordingly weighted so that we have:

global_score = previous_global_score + 1− (wcol · n_col + wstop · n_stop)

Weight values depend on the priority over goals that the regulatory authority
has. Our current implementation considers wcol = 5 and wstop = 1 (i.e., a 1
to 5 ratio in the importance of collisions and traffic jams). Otherwise, if both
measures (i.e., n_col and n_stop) are zero, the scoring will be increased.

As for the partial scope case, the scoring computation follows the same underly-
ing rationale of punishing norms for leading to collisions but without considering
the number of cars that stop, since these norms are related just to one agent.

partial_score = previous_partial_score + 1− wcol · n_col

The results shown in subsequent Section 5 consider the weight related to the
number of collisions to be wcol = 4. Nevertheless, it may be worth considering
that partial information may lead to different outcomes when applying the same
norms to the same partial problem description. In order to deal with this non-
deterministic phenomena, it is possible to average the sequence —or a window—
of outcomes so to smooth the updating effect.

5 Empirical Evaluation

As we have previously mentioned, we have performed an empirical evaluation of
our proposal about regulation generation by developing a multi-agent based sim-
ulation of a traffic road junction scenario. The simulator has been implemented
over Repast simphony [19] so that its runtime environment interface can be used
to enhance the user interface of our simulator. Figure 5 shows the user interface:
top toolbar includes the standard simulation buttons such as start, step or stop
buttons as well as the time (tick) count; left-side area allows the definition of the
setup parameters; middle area shows the actual car simulation; and right-side

Learning from Experience to Generate New Regulations 349

Fig. 5. Traffic simulator in Repast

area is devoted to monitor the evolution of this simulation. Thanks to the setup
parameters it is possible to customize current simulation characteristics such as
the environment grid dimensions; the maximum number of cars to be simulta-
neously interacting in the environment; or the learning modality (whose values
are 0 if no learning is applied, 1 if a global scope is used in the learning process,
and 2 if partial scope). With regards to the actual simulation, cars are repre-
sented as circles traversing the two intersecting roads. When cars collide they
change their colour to red and disappear. Additionally, a square surrounding a
car means that a stop traffic rule has been applied in this specific car position
—in the figure example, this specific rule prevents the corresponding car from
colliding with the car in front of it. Finally, simulation monitoring shows sta-
tistical data about those data that can be useful to follow the evolution of the
specified simulation mode. Thus, since the screenshot in figure 5 corresponds to
the global scope simulation mode, then the statistical data corresponds to: the
number of collisions accumulated during a specific time (tick) window (2000 in
the figure); how many stopping rules have been applied for this same period; the
total number of cases in the knowledge base; and how many solutions have been
explored for this amount of cases.

5.1 Test Design

In addition to the development of the simulator it was necessary to conduct a
series of experiments in order to evaluate the learning approach. In fact, these

350 J. Koeppen et al.

experiments were designed sequentially, guided by the results and intuitions
gained from previous tests. Our main objective was not to perform an exhaus-
tive search of all possible parameters in the setup process, but a preliminary
exploration that gave us some insights about our learning approach. The specific
process that we followed can be described in different steps (that are summarized
here and detailed in next subsection).

Obviously, we started with the basic simulation mode, in order to asses that
cars behave as expected: they drive properly but, since they lack intersection
traffic regulations, collisions in the junction area occur with a significant fre-
quency.

Afterwards, we tested the global scope simulation mode. In this case, as next
subsection details, we were not able to avoid collisions completely even after
running tests for long periods of time (ticks). This was in part due to the limited
exploration capacity but also due to the fact that, given the size of the state
space, some rare cases actually happen very scarcely, and so, the system did
not have the opportunity to explore enough different solutions. This may not
invalidate the global approach for all possible scenarios, but it will certainly
limit its performance for those domains with large search spaces.

This led us to try the partial approach with the aim of reducing the search space
despite its non-determinism problem. Results there were much more promising,
since the system was able to find traffic regulations that further reduced the num-
ber of collisions. In addition, it was able to learn them in much shorter periods of
time.

Then, by analyzing the resulting regulations, we got the intuition that they
could still be described in a shorter way, and thus, we set up a final experiment
with cases described by using the minimum amount of information possible.

5.2 Results

Due to the intrinsic randomness of the simulation, all performed tests where
repeated five different times5. Therefore, all the tables and plots represent figures
that correspond to the average over the five resulting series. This section provides
the details of these tests by specifying some information that is relevant for the
experiments, such as the number of generated cases and associated solutions and
the number of collisions. In fact, we take the number of collisions as the metric
to evaluate system’s performance, and since it requires a finer analysis, we also
provide the standard deviation of the values from the repeated experiments.

As for the tests with the global scope, they were performed along a time
interval of four thousand ticks. During this time, the system had the opportunity
to visit the whole state space —or, in other words, all possible situations were
reached. Table 1 shows an excerpt of the averaged results whereas Figure 6 plots
the complete series. As it can be observed, first line in the table shows that at

5 CBR learning depends on the order cases are learned. In our case this changes
for each new simulation, since the random component on car entrance and route
selection may generate traffic situations in different order.

Learning from Experience to Generate New Regulations 351

Table 1. Except from the results of the global scope tests

�ticks �cases �open cases �solutions Avg2000(�collisions) σcollisions

100 35 10 40.2 8 2.28
500 79.4 31.4 97.2 38 4.09
1000 104 42.2 140.4 72 5.07
5000 169.4 96.6 213.8 29 7.83
10000 198 113 256 27 8.62
20000 228.4 132.4 329.6 19 5.36
40000 254.4 170.2 345.6 11 1.67

tick number 100, an average number of 35 cases where generated. From those
cases, an average of 10 remain open —which means 25 where already closed—
and an average number of 40.2 solutions where explored so far. Additionally,
the average number of occurred collisions where 8 in this time interval and the
standard deviation of these collisions was 2.28. Collisions are accumulated as
the simulation goes on, nevertheless they tend to happen more scarcely since
the traffic authority improves the norms gradually. Therefore, we provide the
average number of collisions that occurred during a time window of last 2000
ticks. Thus, after this 40000-tick-long period, an average of eleven collisions in a
2000-tick period still occurred. As a consequence, we can state that the learning
process was not much successful in finding the proper set of traffic rules that
prevented cars from colliding.

Fig. 6. Global scope results in terms of (averaged) number of: cases, their associated
solutions, open cases, collisions, and the standard deviation of the number of collisions.
Collisions are computed as the average number for last 2000 ticks. X axis corresponds
to the number of simulation ticks.

352 J. Koeppen et al.

Table 2. Final number of stops derived from 5 different simulations of the global score.
Columns specify the number of solutions that generate zero, one, two or three stops in
their norms.

simulation � sol 0 stops � sol 1 stop � sol 2 stops � sol 3 stops
1 226 47 42 40
2 233 53 53 39
3 233 50 41 31
4 233 51 35 33
5 228 48 41 31

Avg 231 50 42 35

Table 3. Excepts from the results of the partial scope tests

� ticks � cases � solutions AvgNumCol2000 σ

100 13.6 27.2 2 2.68
500 22 44 6 4.38
1000 25.2 50.4 10 4.98
5000 28.8 57.6 4 3.35
10000 30.6 61.2 4 4,69
20000 31.4 62.8 4 4.38
40000 31.8 63.6 8 3.58

The explanation of these results for the global scope is two-fold. Firstly, be-
cause, despite having encountered possible cases, about 67% of the cases re-
mained open (cases are closed after exploring five different possible solutions).
This means that the system learns at slow pace, in part due to the fact that
specific traffic situations described as defined by the global scope approach, hap-
pen very scarcely and so, the system did not have the opportunity to explore
enough different solutions so to learn the best ones. The remaining 33% cases
did properly close, and therefore, they were finally assigned a single solution
—which corresponds to the one with higher performance score. This leads to the
second reason, which is the limited exploration capacity over the set of possible
solutions. Table 2 characterises the traffic norms that are active by the end of the
simulation period. A total average of 231 norms —which represents about 65%
of the total number of norms— corresponded to fluid traffic situations where
no stops are added. Accordingly, the remaining 35%, represent norms that cope
with problematic situations in the sense that they require the addition of some
stopping rules. The number of stops is also related to the number of involved
cars. Having more cars imply that there is an increase in the possible combina-
tions in the number and positions of stops to assign. Obviously, having a limited
number of chances (5 in our implementation) to explore all possible combinations
of traffic rules that can be assigned does not guarantee that the best solution
will be found. One may argue that this limit should thus be increased, but it
would extend the learning time, where collisions can be generated when applying
pseudo-random traffic rules.

Learning from Experience to Generate New Regulations 353

Fig. 7. Partial scope results in terms of (averaged) number of: cases, their associated
solutions, collisions —computed as the average number for last 2000 ticks— and their
standard deviation. X axis corresponds to the number of simulation ticks.

Having encountered some limitations with the global approach, a second set
of experiments with a partial scope were set-up. The main rationale behind this
decision was to reduce the size of the search space despite its intrinsic non-
determinism problem. The scope was initially defined to be a 3 × 1 grid (as in
Figure 4), so each car was able to see a range of 3 cells wide in front of him.
Similarly to previous experiments, Table 3 and Figure 7 show the results of the
conducted experiments along 40000 ticks— in this case, though, the concept of
open/closed cases is not applicable. As we can see, learning in partial scope is
much faster than global scope, since the number of cases stabilizes around 30
after 10000 ticks, much before than the global scope, which tends to more than
250 cases along the whole simulation. Having this small number of cases does
not affect the number of collisions. On the contrary, they stay under 10 along
the complete simulation period. Obviously, the whole state space was explored
and no case could be considered to be rare. In addition to avoiding collisions,
we were interested in analyzing the kind of solutions that were found. This is
so because a formal translation of an automatically learned case solution into a
standard norm specification may be of great interest for many MAS. Thus we
analyzed those traffic situations that had an stopping regulation and observed
that some grids had in common that the cell located in the front left side of
the car position was occupied by another car heading (relatively) eastwards —
that is, in the direction of the cell the reference car is steering towards. We can
interpret those rules as the authority establishing a "left handside priority" traffic
rule. Other grids shared symmetric descriptions codifying the "right handside
priority" traffic rule.

Finally, we wanted to further test if the left handside priority rule was enough
to avoid collisions in our traffic simulations. Thus, the last test we did was to

354 J. Koeppen et al.

Fig. 8. Single scope results in terms of (averaged) number of: cases, their associated
solutions, collisions —computed as the average number for last 2000 ticks— and their
standard deviation. X axis is limited to 3500 simulation ticks since values remain con-
stant.

Table 4. Excepts from the results of the single-cell scope tests

� ticks � cases � solutions AvgNumCol2000 σ

20 1.6 3.2 0 0
40 3.6 7.2 1.6 0.89
100 4 8 2.4 0.89
2000 4 8 2.8 1.79
2100 4 8 0.4 0.89
2200 4 8 0 0
3200 4 8 0 0

repeat partial scope experiments with the minimum range of sight for the refer-
ence car: a single cell, the one on its left. Obtained results were really satisfactory,
since both the convergence time and the number of collisions was further reduced
(see Table 4 and Figure 8). From these results, it is possible to argue that the
case description in this setting induces the generation of the norm in a straight-
forward manner, so defining the proper case description may be the underlying
problem. Therefore, we do not interpret the positive results obtained with this
configuration as the final take-away message. On the contrary, we want to use
them as a way that illustrates that learning methods can be used to generate
new regulations and that, going a step further, these resulting regulations can
be simple enough to be translated into standard traffic rules that can be easily
interpreted and followed by external car agents.

Learning from Experience to Generate New Regulations 355

6 Conclusions and Future Work

This paper proposes a method to generate new regulations –norms– for multi-
agent systems. Specifically, a regulatory authority learns by considering (and
exploring) the ones with best application outcome. Learning is based on pre-
vious experiences, and corresponds to an unsupervised variation of Case Based
Reasoning (CBR). Cases, as defined here, can then be translated to norms, in
terms of prohibitions and obligations. We thus claim that this innovative ap-
proach can be highly relevant for normative MASs, since, to the best of our
knowledge, no general norm generation methods have been established yet.

The paper successfully tests this approach in a simplified traffic scenario.
Nevertheless, other scenarios requiring agent coordination –e.g. P2P networks,
Robosoccer, etc.– may well benefit from our approach by avoiding (prohibiting)
undesired situations –such as network saturation or teammate blocking in pre-
vious examples– and promoting (obliging) desired ones. The only requirements6
are to have monitoring (and evaluating) capabilities as well as continuity in the
solution space —i.e., similar social situations require similar regulations. Never-
theless, some undesired situations may appear (e.g, car collisions) as a combina-
tion of allowed individual agent actions (e.g., forward driving), thus, norms are
required to be more complex than just prohibiting those actions. Context thus
becomes necessary. Context, together with its analogy in real Jurisprudence, are
the basic rationale of choosing a case representation approach. Nevertheless, we
may consider as as future work the application of other learning techniques such
as Reinforcement Learning. Additionally, we plan to work on norm violation and
norm translation issues.

Acknowledgements. This work is partially funded by EVE (TIN2009-14702-
C02-01 / TIN2009-14702-C02-02), AT (CONSOLIDER CSD2007-0022) projects,
EU-FEDER funds, and M. Esteva’s Ramon y Cajal contract.

References

1. Davis, N.A.: Contemporary deontology. In: Singer, P. (ed.) A Companion to Ethics,
pp. 205–218. Blackwell, Malden (1993)

2. Mill, J.S.: Utilitarianism. Parker, Son, and Bourn, London (1863)
3. McCarty, T.: Reflections on Taxman: An Experiment in Artificial Intelligence and

Legal Reasoning. Harvard Law Review, 837–93 (1977)
4. Busoniu, L., Babuska, R., de Schutter, B.: A comprehensive survey of multiagent

reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 38(2), 156–172 (2008)

5. Zhang, C., Abdallah, S., Lesser, V.: Integrating organizational control into multi-
agent learning. In: Aut. Agents and Multiagent Systems, pp. 757–764 (2009)

6 Obviously, the domain has to be discretisable and a learning phase –where some
undesired situations may occur– must be acceptable in that domain. Otherwise, as
for the traffic scenario, running simulations may be most adequate.

356 J. Koeppen et al.

6. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative
multiagent systems. In: Proceedings of KR 2004, pp. 255–265 (2004)

7. Campos, J., López-Sánchez, M., Esteva, M.: Multi-Agent System adaptation in a
Peer-to-Peer scenario. In: ACM Symposium on Applied Computing - Agreement
Technologies Track, pp. 735–739 (2009)

8. Artikis, A., Kaponis, D., Pitt, J.: Dynamic Specifications of Norm-Governed Sys-
tems. In: Multi-Agent Systems: Semantics and Dynamics of Organisational Models
(2009)

9. Savarimuthu, B., Cranefield, S., Purvis, M., Purvis, M.: Role model based mecha-
nism for norm emergence in artificial agent societies. In: Sichman, J.S., Padget, J.,
Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS (LNAI), vol. 4870, pp. 203–217.
Springer, Heidelberg (2008)

10. Griffiths, N., Luck, M.: Norm Emergence in Tag-Based Cooperation. In: The Ninth
International Workshop on Coordination, Organization, Institutions and Norms in
Multi-Agent Systems, pp. 79–86 (2010)

11. Kota, R., Gibbins, N., Jennings, N.: Decentralised structural adaptation in agent
organisations. In: AAMAS Workshop Organised Adaptation in MAS (2008)

12. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: off-line
design. Journal of Artificial Intelligence 73(1-2), 231–252 (1995)

13. van der Hoek, W., Roberts, M., Wooldridge, M.: Social laws in alternating time:
Effectiveness, feasibility, and synthesis. Synthese 1, 156 (2007)

14. Agotnes, T., Wooldridge, M.: Optimal Social Laws. In: Proceedings of he Ninth Inter-
national Conference on Autonomous Agents and Multiagent Systems, pp. 667–674
(2010)

15. Christelis, G., Rovatsos, M.: Automated norm synthesis in an agent-based plan-
ning enviroment. In: Autonomous Agents and Multiagent Systems (AAMAS),
pp. 161–168 (2009)

16. Christelis, G., Rovatsoshas, M., Petrick, R.: Exploiting Domain Knowledge to Im-
prove Norm Synthesis. In: Proceedings of he Ninth International Conference on
Autonomous Agents and Multiagent Systems, pp. 831–838 (2010)

17. Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S., Luck, M.: A framework
for monitoring agent-based normative systems. In: Autonomous Agents and Mul-
tiagent Systems (AAMAS), pp. 153–160 (2009)

18. Dunkel, J., Fernandez, A., Ortiz, R., Ossowski, S.: Event-driven architecture for de-
cision support in traffic management systems. In: IEEE Intelligent Transportation
Systems Conf., pp. 7–13 (2008)

19. North, M., Howe, T., Collier, N., Vos, J.: Repast Simphony Runtime System. In:
Agent Conf. Generative Social Processes, Models, and Mechanisms (2005)

20. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

21. Powell, J.H., Hauff, B.M., Hastings, J.D.: Evaluating the effectiveness of explo-
ration and accumulated experience in automatic case elicitation. In: Muñoz-Ávila,
H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 397–407. Springer,
Heidelberg (2005)

22. Koeppen, J.F.: Norm Generation in Multi-Agent Systems (master thesis). Univ. of
Barcelona (2009)

Controlling Multi-party Interaction within

Normative Multi-agent Organizations

Olivier Boissier1, Flavien Balbo2,3, and Fabien Badeig2,3

1 Ecole Nationale Supérieure des Mines,
158 Cours Fauriel, 42100 Saint-Etienne, France

Olivier.Boissier@emse.fr
2 Université Paris-Dauphine - LAMSADE,

Place du Maréchal De Lattre de Tassigny,F-75775 Paris 16 Cedex, France
balbo@lamsade.dauphine.fr

3 INRETS - GRETIA,
2, Rue de la Butte Verte, 93166 Noisy Le Grand, France

badeig@inrets.fr

Abstract. Multi-party communications taking place within organiza-
tions lead to different interaction modes such as (in)direct communica-
tion between roles, (in)direct communication restricted to a group, etc.
Fully normative organisations need to regulate and control those modes
as they do for agents’ behaviors. However, this problem is not well ad-
dressed in current organisation model proposals. This paper proposes
thus to extend the normative organization model Moise in order to
specify such interaction modes. This specification has two purposes: (i)
to make the multi-agent organization able to monitor the interaction be-
tween the agents, (ii) to make the agents able to reason on these modes
as they can do on norms. The paper is focused on the first point. We
illustrate with a crisis management application how this extension en-
larges the scope of expression of the interaction capabilities and how it
has been implemented on the Easi interaction model.

1 Introduction

In a Multi-Agent System (MAS), interaction and organization play key and es-
sential roles. A MAS is often described as composed of agents situated in a
shared environment interacting directly or indirectly with each other to execute
and cooperate in a distributed and decentralized setting. The behaviors of the
agents are often structured along one organization that helps and/or constrains
their cooperation schemes within it. Current proposals offer modeling languages
usable either by agents either by an organization management system. The latter
is dedicated to the regulation and supervision of the agents’ execution within the
defined organization. Even if some of these models propose some specification
to constrain the interactions between the agents, they are limited to the direct
communications. However, a wider set of communication between agents exists.
For instance, the Easi model1 [7] proposes an environment-based multi-party
1 Environment as Active Support for Interaction.

M. De Vos et al. (Eds.): COIN 2010 International Workshops, LNAI 6541, pp. 357–376, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

358 O. Boissier, F. Balbo, and F. Badeig

interaction model that makes possible to install direct but also indirect and
overhearing communications, preserving, if needed, the privacy of the interac-
tion (see [7] for more details). None of existing organisation modeling languages
addresses the specification of such communication modes that could be usable
within a multi-agent organisation. Having such a feature would bring improve-
ments in the regulation of the system by controlling the way the agents interact
with each other. It would also improve the flexibility of the agents within the
organisation by making them able to reason on the communication constraints
imposed by the organisation in which they evolve.

In this paper, we aim at defining such a specification, focusing on the regu-
lation aspect at the system level. For that, we consider and extend the Moise
Organisational Modeling Language [4]. This language is composed of two inde-
pendant dimensions – structural and functional - connected to each other by a
normative specification. This feature enables to easily extend the model with
a new dimension. We validate our proposal on the Easi platform that enacts
such communication modes within the MAS. The extended Moise model is
translated into the representation usable by the monitoring facilities offered by
the Easi platform. The MAS designer is thus able to use the resulting extended
organisation modeling language and to deploy this organisation on the Easi
supporting environment. We illustrate the proposal through a crisis manage-
ment application where different dedicated emergency services are coordinated
to solve a crisis situation. This application offers a wide variety of interaction
constraints between services involved in the crisis management, given that each
service has the possibility to decide on its own which interaction mode to use.
We use this application all along the paper to illustrate the components of our
proposal.

The paper is organized as follows. In section 2, we present the background of
the proposal and motivate our choices. Given that our proposal is dependant of
the Easi platform, we describe it as well as the Moise organisation modeling
language in this section. In section 3, we expose how this language has been
extended to specify the interaction modes supported by Easi. Section 4 describes
how this specification is mapped to the Easi model. In section 5, we illustrate
the expressing capabilities of the proposal with different examples issued of a
crisis management application. Before conclusion, we compare our proposal to
the current related approaches.

2 Background

In the following sections, we introduce first the existingMoise model and then
the Easi platform. Thus the reader will get a complete picture of the context in
which we place our proposal.

2.1 Moise

The Moise framework [6] is composed of an organization modeling language,
an organization management infrastructure and organization aware reasoning

Controlling Multi-party Interaction 359

mechanisms at the agent level. In this paper, we focus on the organization mod-
eling language. Our aim is to use it with the Easi platform in order to specify
and regulate the different interaction modes available on this platform (see next
section).

The organization modeling language considers the specification of an organi-
zation (OS) along three independent dimensions2: structural (SS), functional
(FS) and normative (NS).

OS = 〈SS, FS,NS〉

Whereas SS and FS are independent, NS defines a set of norms binding el-
ements of both specifications. The aim is that the agents enact the behaviors
specified in NS when participating to the organization. The organization mod-
eling language is accompanied by a graphical language (cf. Fig. 1, 2) and XML
is used to store the organizational specifications.

Structural Dimension (SS): The structural dimension specifies the roles,
groups, and links of an organization. It is defined with the following tuple:

SS = 〈R, �, rg〉

withR set of the roles, �, inheritance relation between roles, rg organization root
group specification. The definition of this group gives the compatibility relations
between roles, the maximal and minimal cardinality of agents that can endorse
roles within the group, the links connecting roles to each other (communication,
authority, acquaintance) and sub-groups. In NS, the role is used to bind a set of
constraints on behaviors that the agent commits to satisfy as soon it endorses
the role.

To illustrate this SS, let’s turn to the crisis application. We define (cf. Fig. 1)
two main groups which correspond to the tactical spheres used in a crisis
management: decision-making sphere (Decision-making) and operational sphere
(Operational). For each of them, we define the roles manager and operator inheriting
the generic role role-player. These roles are specialized respectively in coordinator,
leaderD for the group Decision-making and leaderS for the subgroups of group Op-

erational. The role coordinator (resp. leaderD) can be played by only and only one
agent - 1..1 - (resp. several agents - 1..* -). A compatibility link connects the role
leaderD to leaderS meaning that any agent playing leaderD will be able to play also
the role leaderS. Six communication links (cf. l1 to l6) have been defined between
these roles (e.g. l1 communication link between coordinator and leaderD).

Functional Dimension (FS): The functional dimension is defined by the
following tuple:

FS = 〈M,G,S〉
2 In this paper, we will provide the only necessary details in order to globally un-

derstand the model as well as the proposed extensions. For further details, readers
should refer to http://moise.sourceforge.net/.

360 O. Boissier, F. Balbo, and F. Badeig

0..g1 0..g2 0..s1 0..s3

DDE CIGT SAMU

l1
1..n1..1

l4

l5 l3

l2

l6

1..1 1..1

1..p1..p1..p1..p

1..1 1..1

0..1

role

group

composition
inheritance

communication

compatibility

intra-group inter-group

manager

coordinator

member

operator

Operational

0..1

Crisis

Decision-making

Traffic Network
Manager

Rescue
Unity

Firefighter

teamteamteamteam
DDE CIGT SAMU Firefighter

role-player

leaderS

leaderD

traffic
regulator

leader
team

Fig. 1. Partial graphical view of the structural specification for the crisis management
application

Controlling Multi-party Interaction 361

with M set of missions, consistent grouping of collective or individual goals.
A mission defines all the goals an agent commits to when participating in the
execution of a social scheme by the way of the roles that they endorse. G is the
set of the collective or individual goals to be satisfied and S is the set of social
schemes, tree-like structurations of the goals into plans.

Fig. 2 illustrates a social scheme of FS expressing the collective plan for
coordinating the decision process within the crisis management application. Ac-
cording to it, agents should aggregate the different information in relation to the
crisis situation Refining crisis perception, Safeguarding zone by executing one of the
two social schemes (scheme 1 or scheme 2 that are not detailed here) and execute
the scheme 3. The different goals are organized into missions.

Refining crisis
perception

Triggering scheme

Rescuing casualty
(scheme 3)

scheme 1 scheme 2 parrallelism choicesequence

Safeguarding area

Managing crisis
m1

m4

m4,m5

m5

m4.1 m4.2

m1,m2,m3

Fig. 2. Graphical view of the social scheme for decision within the crisis management
application. Goals are the nodes of the tree. Missions to which the goals are assigned
are in italic.

Normative Dimension (NS): The normative dimension NS defines a set of
norms. Each norm has the following expression:

norm = 〈id, c, ρ, dm, m〉

with id norm identifier, c activation condition of the norm3, ρ role concerned by
the deontic modality, dm deontic modality (obligation or permission), m mission.
A normative expression can be read as : “when c holds, any agent playing role
ρ has dm to commit on the mission m”. Within this language, norms are either
a permission, either an obligation for a role to commit to a mission. Goals are
indirectly connected to roles since a mission is a set of goals. Interdictions are
supposed to exist by default: if the normative specification doesn’t have any
permission or obligation for a couple mission, role, any agent playing the role
is forbidden to commit to mission. A norm becomes in the active state (resp.
inactive) as soon as the condition c holds (resp. doesn’t hold). When the norm
is active, the deontic expression attached to the norm can be verified. The norm
can thus become fulfilled or unfulfilled.
3 Predicates bearing on the current organization state (e.g. plays, committed, etc)

and/or bearing on particular configurations of the application.

362 O. Boissier, F. Balbo, and F. Badeig

Let’s turn again to the crisis management application to give some examples
of these norms. For instance, the norm obliging agents playing the role leaderS
in the group Traffic Network Management (TNM) to safeguard the zone where the
accident took place (mission m4) is:

〈n1, c1, leaderS, obligation,m4〉

where c1 is plays(bearer, leaderS, TNM). The term bearer refers to the agent
that will play the role “bearer” in the context of the obligation issued from the
instantiation of the norm in the organization entity (see below) and plays is
a predicate satisfied when the agent plays the leaderS in an instance of group
TNM. When the zone is secured, the agents playing the same role within the
context of the group Rescue Unity (RU) deploys the intervening scheme (mission
m5) following the norm:

〈n2, c2, leaderD, obligation,m5〉
where c2 is plays(bearer, leaderS, RU).

Organizational Entity (OE): An organizational entity (OE) is defined from
the organizational specification OS and a set of agents A by the following tuple:

OE = 〈OS,A,GI, SI,O〉
where GI is the set of concrete groups of the organization, i.e. groups dynamically
created from the group specification of the OS, SI is the set of concrete social
schemes dynamically created in the OE from the social schemes specification in
the OS and O is the set of obligations issued from the norms NS attached to
agents of A whose conditions are satisfied [5].

2.2 Easi

Traditionally, communication involves two interlocutors, the speaker that directs
the interaction and the addressee. In such dialogues, the interlocutors know
each other. Multi-party communication extends these principles in the sense
that several agents are able to hear the same message and that they may have
different roles in the communication. All the agents receiving a message are
called recipients. For example, a “warning” addressed to a group of fire fighters
can be also heard by members of the SAMU team. In this case, Fire fighters and
members of the SAMU team do not have the same role in the communication
act. This difference may affect their reactions. A receiver of a message may
be intended or not, and if it is, it may be expected to take an active part in
the conversation, or just to hear passively what is exchanged. The speaker can
be anonymous, and does not necessarily know a priori who will overhear its
message, nor their identity, e.g. a public announcement to “agents in the main
street ”. Finally, hearing a communication may be the result of an initiative of
the speaker, (e.g. a multicast decided by the speaker or by the recipient, agents
reading voluntarily a blackboard in the crisis management room). The Easi
model takes into account all these communication modes. More details can be
found in [7].

Controlling Multi-party Interaction 363

For cognitive agents, the common point between all these communication
modes consists in the routing of the messages by identifying which agent should
obtain which message and in which context. Solving this problem requires tak-
ing into account both sides of the sender and potential receivers. To this aim,
Easi manages meta-informations on the MAS (agents, messages, context) in the
communication environment and use them to help the agents to interact. The
Easi interaction model is thus defined by

〈Ω,D, P,F〉

where:

– Ω = {ω1, ..., ωm} the set of entities with A ⊂ Ω, A set of agents, and
MSG ⊂ Ω, MSG set of messages,

– D = {d1, ..., dm} set of domain descriptions of the properties,
– P = {p1, ..., pn} set of properties,
– F = {f1, ..., fk} set of filters.

Entity: The entities are the meta-information on the MAS that Easi manages.
An entity ωi ∈ Ω is defined by 〈er, ed〉 where er is a reference to an element of
the MAS and ed is the description of that element. An element of the MAS can
be agents (A), messages (MSG) and a reference is its physical address on the
platform or other objects such as URL, mailbox,

The description ed is defined by a set of couples 〈pi, vj〉 where pi ∈ P and
vj is the value of the property for this entity. Any agent of the MAS has its
own processing and knowledge settings. It is connected to the communication
environment by the way of its description that it stores and updates in this
environment. This description ed is used for the routing of the informations to
the reference er.

Property: A property gives an information on an entity. A property pi ∈ P is
a function : Ω → dj ∪ {unknown, null} whose description domain dj ∈ D can
be quantitative, qualitative or a finite set of data. The unknown value is used
when the value of the property cannot be set, and null is used to state that the
property is undefined in the given description. In order to simplify the notation,
only the value of the description domain is given to specify a property.

For instance, in the crisis management application, the properties attached to
agents and messages are id, role, position, subject, sender with:

– id : Ω → N ,
– role : Ω → {coordinator, leaderS},
– position : Ω → N x N ,
– subject : Ω → {alert, demand},
– sender : Ω → N .

An agent a can have the following description {〈role, coordinator〉} and an
agent b {〈role, leaderS 〉, 〈position, (10, 20)〉} and a message m {〈subject, alert〉,
〈position, (15, 20)〉}.

364 O. Boissier, F. Balbo, and F. Badeig

Filter: A filter identifies the entities according to their description (ed) and
realizes the interaction between the concrete objects (er). A filter fj ∈ F is a
tuple fj = 〈fa, fm, [fC], nf 〉 where nf is the filter name and:

– fa : A → {T, F} is an assertion that identifies the receiving agents (which
agent),

– fm : MSG → {T, F} is an assertion that identifies the concerned messages
(which message),

– fC : P(Ω) → {T, F} is an optional set of assertions identifying other entities
of the context (which context).

Each agent ?r (a ′?′ preceedings a letter denotes a variable) whose description
validates fa receives in its mailbox the message ?m that satisfies fm if there
exists a set of entities in the ?c such that fC is true. A filter is therefore valid
for any tuple 〈?r, ?m, [?c]〉 with ?r ∈ A, ?m ∈MSG, and ?c ⊂ Ω.

Let’s turn to the crisis management application to illustrate these filters. For
instance, the filter Fe = 〈fae, fme, fce, ne〉 installs the routing of the communi-
cation as follows (′ =′ is the comparison operator, ne is the filter name):

– Agents playing the role leaderD, situated at the place where the crisis initi-
ated:

fae : [role(?r) = leaderD] ∧ [position(?r) = (0, 0)]

– should receive messages whose subject is “alert”:

fme : [subject(?m) = alert] ∧ [sender(?m) =?ide]

– sent by agent playing the role coordinator:

fce : [id(?e) =?ide] ∧ [role(?e) = coordinator]

In this example, the description of the message sender (?e) that is identified
thanks to the property sender in the message belongs to the context.

Agents who want to send or receive a message, (i) update their description in
the communication platform and (ii) add (resp. retract) dynamically in (resp.
from) the environment filters that involve them. Thus the environment supports
simultaneously direct interaction (including dyadic, broadcast, multi-cast and
group communication) and indirect interaction (including mutual-awareness and
overhearing). If the filter is added by the future receiver of the message then the
interaction is indirect: the agent that deposits the filter defines which message it
wants to receive. If the filter is added by the message sender before it sends its
message then the interaction is direct: the agent that deposits the filter defines
which agent it wants to contact.

According to the state of the different descriptions within the environment,
the triggered filters enable the routing of the messages in the different interac-
tion modes towards the corresponding targets. Even if Easi offers an advanced
communication management by identifying precisely the interaction context, it
cannot be used by the agents to reason on the causes of the interaction. For
instance, the filter Fe, introduced above, permits the routing of messages ac-
cording to its expression but the reasons of the setting of this filter is not ex-
pressed within Easi. For Fe, the choice of the communication mode may depend

Controlling Multi-party Interaction 365

on the relations between the roles coordinator and leaderD: the coordinator sends
messages to leaders (direct mode) for dedicated messages whereas the leaders
listen to all the messages issued from the coordinator (indirect mode). Using this
knowledge, an agent could reason on the current interactions. For instance, the
coordinator may choose a direct interaction to handle certain informations and
indirect interaction for others. The leaders can deduce the importance of the
informations according to the filter used to receive informations. The explicit
specification of communications within an organizational model would help the
agents to relate communication filters to the reasons that cause the use of such
a communication channel.

3 Extending Moise with Communication Modes

In order to clearly specify the interaction modes that are used in Easi at the
organisation level, we are going to enrich and extend the organization model-
ing language of Moise with a new dimension. This new dimension is called
communication mode specification (noted CS). It is dedicated to expressing the
communication modes that will be used within the organization. As the other
Moise dimensions, we keep it independent of SS and FS. We use the same prin-
ciple to connect it to these dimensions and enrich the normative specification
accordingly. The communication modes are thus connected to the structure and
functioning of the organization by the way of norms. Those norms will be made
accessible to the agents when interacting with other agents of the organization.

The new Moise organization specification is thus defined with the following
4-uple:

OS = 〈SS, FS, CS,NS〉
with CS communication modes specification and NS the modified normative
specification. We detail these two components in what follows.

3.1 Communication Modes Specification (CS)

The specification CS is composed of the set of communication modes cm ∈ CS
considered in the organization. A communication mode cm is defined as:

cm = 〈type, direction, protocol〉

with

– type, the type of the communication mode (direct or indirect),
– direction, the message transmission direction (unidirectional or bidirec-

tional),
– protocol, the interaction protocol that is used. The values of this last vari-

able correspond to the name of the different interaction protocols that
the designer wishes to be used and deployed in the organization (e.g.
FIPAREQUEST , Publish Subscribe, ...).

366 O. Boissier, F. Balbo, and F. Badeig

As we will see below, a communication mode qualifies the communication link
defined in the structural specification between roles. The communication link is
directed from the initiator of the communication - source of the link - to the
participant - target of the link -. Therefore, a link can be considered as:

– a unidirectional channel, letting circulate messages in only one direction,
– a bidirectional channel, letting circulate messages in both directions from

the initiator to the participant and inversely.

Orthogonal to these two directions, we consider the direct and indirect interac-
tion models proposed within Easi.

In the crisis management application, we define, for instance, the two following
communication modes cmd,b and cmi,u:

cmd,b = 〈direct, bidirectional, F IPAREQUEST 〉
cmi,u = 〈indirect, unidirectional, PublishSubscribe〉

where cmd,b is used to directly ask for information whereas cmi,u is used to
provide informations to agents that will consult it when they want.

3.2 Communication Norms

In order to bind communication link and communication mode as defined in CS
by making explicit the deontic modalities attached to their use, we generalize
the writing of the norms described in the NS ofMoise initial version, with the
following expression:

norm = 〈id, c, ρ, dm, object〉
where id is norm identifier, c the activation condition, ρ the role on which the
deontic modality bears, dm the deontic modality (obligation or permission),
object the subject of the norm.

Object of a norm: The object of a norm object is defined as the two following
expressions:

object = do(m)|use(l, cm, α)

– do(m) in the case where a mission m has to be executed - initial case con-
sidered in Moise,

– use(l, cm, α) in the case where the communication mode cm should be used
for the link l in the context α.

Context: The context α defines the constraints bearing on the different entities
involved in the interaction using this communication link. When α’s status is T
(true), the link is usable in any situation.

Before defining the context expression, we have first to introduce the following
functions:

– initiator : O → A, that returns the agent involved as initiator in the com-
munication link defined in the object of the obligation issued from the norm,

– participant : O → A, that returns the agent involved as participant in the
communication link defined in the object of the obligation issued from the
norm,

Controlling Multi-party Interaction 367

– org : A→ P(OC), that returns the subset of organisational descriptions OC
coming from the participation of an agent to the organization.

The organisational description is managed by the Easi platform (see Sec. 4.1).
For instance org(initiator(nj)) enables the access to the organizational context
attached to the description of the agent initiating the communication in the
context of the instantiated norm nj in which it is involved. An organisation
description oci ∈ OC is defined by:

oci = 〈ig : g, r, m, go〉

where

– ig ∈ IG, ig is a group instance, concrete group created from the group
specification g defined in the SS of the organization.

– g ∈ {rg} ∪ rg.subgroups,
– r ∈ R,
– m ∈M,
– go ∈ G.

The parameter rg and the sets R, M, G are defined in the organization specifi-
cation (cf. Sec. 2.1).

Having introduced all the necessary components, let’s turn now to the defini-
tion of the context expression α. It is a conjunction of boolean expression where
each boolean expression tests the satisfaction of an organisational pattern (op)
on the organisational description of the participants concerned by the norms.
An organisational pattern op is an organisational description as defined above

op = 〈ig : g, r, m, go〉

where the term of such expressions can refer to entities of the organisation or
be let undefined, using the symbol ’ ’ denoting that the value is not a consraint
in the choice of the tuples. For instance, in the crisis management application,
the expression 〈 : DDE, , m2, 〉 defines an organizational pattern such that the
concrete group must be of type DDE and the mission is m2 whatever are the
values for roles and goals.

Example: In order to illustrate the different norms that can be defined to
constrain the communication modes available in the organisation, let’s turn to
our application of crisis management. Let’s consider the communication link l1
used by the agents playing the role coordinator towards agents playing the role
leaderD (cf. Fig. 1). Given the normative specification that we have defined, it is
possible to bind to it the communication mode cmi,u defined above, by writing
the following norm:

n1 = 〈n1, c1, coordinator, obligation, use(l1, cmi,u, T)〉

with c1 : committed(m1) to express that l1 ought to be used by agents playing
the role coordinator when they are committed to the mission m1. No particular
context is attached to the use of the communication mode cmi,u.

368 O. Boissier, F. Balbo, and F. Badeig

We can also attach to this link another communication mode cmd,b, by defining
a new norm n2 :

n2 = 〈n2, c2, coordinator, obligation, use(l1, cmd,b, α2)〉

with c2 : committed(m4) and a context α2 stating that the communication on the
link l1 takes place for the sending of messages to agents belonging to group CIGT

(Center of the Ingineering and Management of the Traffic):

α2 : [〈 : CIGT , , , 〉 ∈ org(participant(n2))]

The link l1 can also be bound to the same constraints but for communication
in the context α3 stating the sending of messages from the agent playing role
coordinator to agent belonging to group TNM:

n3 = 〈n3, c2, coordinator, obligation, use(l1, mcd,b, α3)〉

where c2 is defined as above and α3 is defined as:

α3 : 〈 : TNM, , , 〉 ∈ org((participant(n3))

4 Mapping Moise on the Easi Platform

In order to test and validate our proposal we use the Easi platform that sup-
ports the different communication modes that we have defined. As presented
in Sec. 2.2, the main constructs used by Easi to manage these communication
modes, are the properties of agents, messages on one hand and filters on the other
hand. In this section, we present how we generate filters for the communication
environment from the specifications expressed with the organization modeling
language as defined above. These filters are based on the basic definition they
have in Easi and are extended to handle informations on the organization de-
fined with the OML. These informations are stored in the description of the
entities that are managed by the Easi platform in order to be accessible to
the filters. In this section, we introduce the necessary properties for describing
agents, messages and organisation entity in the communication environment.
Then we describe how we generate filters from the communication norms as
defined in the Moise OML.

4.1 Properties

In order to make Easi able to manage specifications of the organisation as de-
fined with the Moise OML, it is necessary to incorporate in the description
of an agent and of a message some descriptions of the current organisation in
which agents execute and messages are exchanged. Given the definition of an
entity in section 2.2, we define the following properties that are accessible in the
environment for each type of entity.

Controlling Multi-party Interaction 369

Agent Properties: The description of an agent is at least composed of the id
and org properties, where:

– id returns the identifier of the agent (id : A → IDA with IDA set of agent
identifiers),

– org is the function defined above, returning the subset of organizational
descriptions coming from the participation of the agent to the organization
(org : A→ P(OC) with OC set of organization descriptions).

For instance, in the crisis management application, the agent a described by
org(a) = {〈g1 : Decision making, leaderD, m2, b2〉, 〈g2 : DDE, leaderS, m1, b1〉},
belongs to the group g1 of type Decision-making and to a group g2 of type DDE,
in which it plays respectively role leaderD, committed to mission m2, trying to
achieve goal b2 and the role leaderS, committed to the missionm1 trying to achieve
the goal b1.

This agent minimal description is managed in two different ways:

– a non intrusive method where the agent doesn’t master the informations
that describe it in the Easi platform. The properties being related to the
organization are handled by the organization management infrastructure
itself.

– an agent based method where the agent deposits itself the information in the
Easi platform. Those information may be specific properties related to the
internal state of the agents. For instance, a property availability returning
the availability of an agent in the platform may be managed and deposit by
the agent itself.

Message Properties: In the same way, we specialize the description of a mes-
sage given in Sec. 2.2 with the following set of minimal properties sender, receiver,
subject, reception context rc, sending context sc where:

– sender : MSG→ IDA,
– receiver : MSG→ P(IDA) ∪ {unknown},
– subject : MSG→ Dsubject ∪ {unknown}, with Dsubject = G ∪R ∪ {expression},
expression is a string,

– rc : MSG→ OC ∪ {unknown} being the reception context,
– sc : MSG→ OC ∪ {unknown} being the sending context.

Using these properties, the sender gives informations on the organizational
context in which the interaction takes place. For a message, each of these prop-
erties can receive a value or the value unknown. The more the sender specifies
values of properties, the more precise will be the filter that can be used for the
routing. We impose that the property sender doesn’t get a value unknown in
order to avoid anonymous messages. Given these different properties and playing
with them, it is possible to obtain a routing ranging from indirect interaction,
based on only the identifier of the sender, to one, focused on a subset of receivers
(receiver) in a particular organizational context (rc), with a sender being in a
given organizational context (sc) and the message with a particular content
(subject).

370 O. Boissier, F. Balbo, and F. Badeig

The sender can also decide to define patterns for conditioning the routing
along different organizational contexts. To this aim, it can use the same boolean
expressions that are used for defining the context α of a norm (see previous
section).

For instance, the message mes1 described below means that the sender whose
identifier is a1 and having the goal b2 (sending context) sends a message to the
agents a2 and a4. In this case, the processing of the message is not constrained
by the organizational states of the participating agents. They only have to be
trying to achieve the organizational goal b2.

mes1 :〈〈sender, a1〉, 〈receiver, {a2, a4}〉, 〈subject, demand〉, 〈rc, 〈 : , , , b2〉〉,
〈sc, 〈 : , , , b2〉〉〉

For the sender a1, these are only possibilities since the routing of the message
depends on the filters that are installed in the communication environment.

In fact, according to the filters that are installed in it, the routing of the
message can lead to different situations: interaction as intended by the sender,
no interaction or interaction not intended by the sender. For instance, the agent
a2 can receive the message although it doesn’t have the goal b2 in the case there
exists a filter enabling the reception of messages from the agent a1, whatever are
the values for the properties of the message.

In each message is stored the organizational context of its sending in order to
enable the agents to filter them. An agent can thus choose to receive messages or
to route them according to their organizational contexts without being imposed
their use. Moreover, this definition of messages enables to consider the evolution
of the organization state. Thus, a message kept in the environment can still be
received by an agent in case of change of the organization state. For instance,
an agent can be interested by any message whose receiving context concerns a
role that it just endorsed. It is useful to keep an history of the past interaction
to better understand the current situation. Another advantage is to avoid that
a message is missed because it has been sent before the agent has endorsed the
role. In order to avoid a risk of confusion between messages, a property related
to the time value of their emission or related to their life time can be added to
the message description. This choice belongs to the system designer and is out
of the scope of this paper.

4.2 From Communication Norms to Environment Filters

The activation of a norm for a communication link leads to the generation and
addition of a filter in the environment. This filter is called normative filter. It cor-
responds to the exact translation of the norm as it is instantiated by the organi-
zation management system. Thanks to the organization management system, the
agents are aware of the norm activation. Besides to the normative filters, the com-
munication environment contains also filters set by the agents according to their
activity in the system. In case of direct interaction, the sender knows that it can
reach the agents identified as receiver in the norm. In case of indirect interaction,
the receiver knows that it can receive messages identified in the norm.

Controlling Multi-party Interaction 371

A normative filter uses all the possible informations coming from the organi-
zational specification and routes a message according to its sc and rc properties.
The property receiver is not used in the generation process of a normative filter
since it requires that the sender knows the identifiers of the agents. This is a too
strong hypothesis. The same way, since the routing comes from the activation
of a norm, the filter cannot constrain the subject of the message (subject) ex-
cept additional conditions in the norms (context α of the object of the norm).
The filter identifies a state of the context corresponding to the interaction. It is
identical in the direct and indirect cases. We then propose a generating pattern
that will be specialized for each activated communication norm.

Access to the organizational specification: Let’s first introduce some def-
initions and notations. We define the predicate achievesα that is automatically
generated from the constraints expressed in the context α of the object of a norm.
This predicate checks that the context is satisfied given the initiator, participant,
message and entity descriptions in the environment, given α:

achievesα : A×MSG×A× P(Ω) :→ {T, F}

In order to access to the different features of a communication link from the struc-
tural specification, we use pointed notation. lj .initiator (resp. lj.participant) is
used to access to the source role (resp. target) of the link lj , and lj .group to
access to the group in which lj is defined.

Given the previous definitions, we are able now to express the generic nor-
mative filter fnk

(?p, ?m, {?i, C}) for the receiver ?p of the message ?m sent by
?i in the context C. This filter is generated from the activated norm nk as soon
as it is activated. The object of the norm bears on the communication link lj .
The filter is composed of the following assertions: fa that identifies the receiver
of the message ?p according to its organizational context, fm that identifies the
message ?m according to its organizational context and fc that identifies the
organizational context of the sender and the constraints α of the norm nk.

fa : 〈[org(?p) " 〈?x : lj.group, lj .participant, , 〉]〉
fm : 〈[sender(?m) = id(?i)]∧

[sc(?m) = 〈?y : lj .group, lj.initiator, , 〉]∧
[rc(?m) = 〈?x : lj.group, lj .participant, , 〉]〉

fC : 〈[org(?i) " 〈?y : lj.group, lj .initiator, , 〉] ∧ achievesα(?p, ?m, ?i, C)〉

Example: Let’s consider again the norm n2 of the crisis management applica-
tion:

〈n2, committed(m4), coordinator, obligation, use(l1, cmd,b, α2)〉
with α2 : [〈 : CIGT, , , 〉 ∈ org(participant(n2))].

The interaction is a direct and bidirectional one (cf. cmd,b of n2) and the
participant (the role leaderD according to the link l1) must belong to the group
CIGT . The sending agent deposits the first message. The two necessary filters

372 O. Boissier, F. Balbo, and F. Badeig

have been generated and added thanks to the activation of n2. The norma-
tive filter generated for n2 for the interaction from initiator to participant is
fn2(?p, ?m, {?i, C}) where :

fa : 〈[org(?p) " 〈 ?x : Decision making, leaderD, , 〉]
fm :〈[sender(?m) = id(?i)] ∧

[sc(?m) = 〈?y : Decision making, coordinator, , 〉] ∧
[rc(?m) = 〈?x : Decision making, leaderD, , 〉]

fC : 〈[org(?i) " 〈?y : Decision making, coordinator, , 〉] ∧
[org(?p) " 〈 : CIGT, , , 〉]〉

The normative filter from the participant to the initiator is
fn2b

(?i, ?m, {?p, C}) :4, where:

fa : 〈[org(?i) " 〈?x : Decision making, coordinator, , 〉]
fm :〈[sender(?m) = id(?p)]∧

[sc(?m) = 〈?y : Decision making, leaderD, , 〉]∧
[rc(?m) = 〈?x : Decision making, coordinator, , 〉]

fc : 〈[org(?p) " 〈?y : Decision making, leaderD, , 〉]∧
[org(?p) " 〈 : CIGT, , , 〉]〉]〉

This way, for two agents participating to the same concrete group, the message
sent by the initiator agent a1 processed by the filter fn2 will have the following
description:

〈〈sender, id(a1)〉, 〈rc, 〈g1 : Decision making, coordinator, , 〉〉,
〈sc, 〈g1 : Decision making, leaderD, , 〉〉〉

The message sent by the participant agent a2, processed by fn2b
will have the

following description:

〈〈sender, id(a2)〉, 〈rc, 〈g1 : Decision making, leaderD, , 〉〉,
〈sc, 〈g1 : Decision making, coordinator, , 〉〉, 〉

With these two filters, a communication channel has been created between
agents having the roles coordinator and responsible in the group CIGT. The
interaction model Easi has make possible to elaborate these filters. TheMoise
model has made possible its use.

5 Example

In this section, we illustrate and discuss the expressing capabilities of our pro-
posal going back to the interaction modes attached to the communication link
l1 issued of the communication norms n1, n2, n3 in the crisis management ap-
plication described in the paper.
4 We continue to use the variable ?p for the participant in the interaction and ?i for

the initiator given that the agent which is identified by the variable ?i who receives
the message sent by ?p.

Controlling Multi-party Interaction 373

– 〈n1, c1, coordinator, obligation, use(l1, cmi,u, T)〉 with c1 : committed(m1)

– 〈n2, c2, coordinator, obligation, use(l1, cmd,b, α2)〉 with c2 : committed(m4)

and α2 : 〈 : CIGT, , , 〉 ∈ org(participant(n2))

– 〈n3, c3, coordinator, obligation, use(l1, cmd,b, α3)〉 with c3 : committed(m4)

and α3 : 〈 : TNM, , , 〉 ∈ org((participant(n3))

On these three norms, the differences bear on the activation conditions of the
norm cx , the communication mode cmx,y and the communication context spec-
ified in the object.

The norm n1 whose activation condition bears on the management of the
crisis (mission m1) is activated during all the crisis management. The norms n2

and n3 are not active since the agents on which the norms bear are committed
on the mission m4.

The predicate achievesα of the normative filter fn1 generated from the norm
n1 is always true (α1 = T). According to this norm, all the agents playing the
role leaderD (target of link l1) must consult the informations set available by any
agent playing the role coordinator. The norm n2 imposes a direct interaction in
the context of mission m4 so that the coordinator is able to get informations
on the state of the transportation network. According to this norm, any agent
playing the coordinator role can reach any agent playing the role leaderD (target
of link l1) and being a member of concrete group of type CIGT. The normative
filter fn2 described in the previous section expresses these constraints. For the
same missionm4, the coordinator requires information on the available ressources
in the services TNM. The normative filter fn3 resulting from the activation of
norm n3, enables the coordinator to reach any leader of each traffic network
management service (TNM).

In our example, if the missions m1, m4 are under examination, the normative
filters corresponding to the three norms are simultaneously present in the en-
vironment. From the point of view of the agent playing the role coordinator, it
means that it can route messages directly to the agents who are leaderD in groups
of type CIGT (n2) and broaden their demand to agents playing the role leaderD
in the groupes of type TNM (n3) given its needs.

Let’s turn to the agents playing the role leaderD in the group Decision-making.
If involved in the role leaderS within the groups CIGT and TNM (let’s notice that
this situation is possible thanks to the compatibility link between both roles),
the agents will receive the requests from the agent playing the role coordinator and
will be able to know that this is a direct interaction issued from the coordinator.
The agents will be able to answer to this agent by using the normative filter
created in case of bidirectionnal interaction. Thanks to norm n1, every agent
playing the role leaderD will receive the messages sent by the agents playing
the role coordinator via the filter fn1 , building a common and shared knowledge
(indirect interaction). According to their processing activity, the agents will be
more or less aware of these messages.

Given the norms that we have defined above in the organisation specification,
we can envision easily to change the interaction channels between the agents.
Where the Moise normative dimension NS enables to specify the interaction

374 O. Boissier, F. Balbo, and F. Badeig

behavior within the organization, the Easi model using the translation method
described in the previous section enables to dynamically install the correspond-
ing interaction channels between the agents situated in the organisation. In our
example, it is possible to assess the consequences of the information sharing be-
tween the agents thanks to the use of the norm n1. According to the presence
of this norm n1 in NS or not, information will be shared or not between the
agents. In this last case, the coordinator interacts in a separate way with the
leaderS within the groups CIGT and TNM thanks to the norms n2 and n3. More-
over, if the communication context of the norm n1 is changed to α2 then it is
possible to test that the coordinator shares the information only with the leaderS
in CIGT group and leaderS in the TNM group. Let’s stress that the consequences of
these different interaction scenario within the same organization can be assessed
without changing the agent implementation.

This short example that we can’t detail more, shows the richness of expressive-
ness of the interaction modes and the modularity made possible by combining
Easi and Moise as described in this paper.

6 Related Work

To our knowledge, there doesn’t exist a similar support to interaction enabling,
for the same communication, to consider simultaneously the direct and indirect
interaction modes.

Considering related works to the indirect interaction, the general principle
consists in the use of a shared data space that is integrated or not to the en-
vironment [8]. In this approach, the tuples that are deposit by the sender in
the shared space are compared to patterns expressing the needs of the receivers.
These works are focused on the accompanying coordination language and don’t
consider, at any moment, the organization or the state of the agents.

Dealing with the direct interaction model, several works propose to use an or-
ganizational structure in order to manage the communications. In [1], the agents
are organised in a hierarchy where each level knows the skills of the agents be-
longing to the lower level in order to make possible for the sender, a routing of
the messages according to the skills. However, it is not an organizational model
that is usable by the agents. In the AGR model [3], the organization constrains
the interactions according to the groups to which the agents participate. It sup-
ports a routing of the message according to the organizational model (group,
role). However, the only interaction mode is the direct one and the agents don’t
have access to an explicit description of the different specifications.

Normative organization models have been proposed in the literature in order
to regulate and control the communication between agents. However the specifi-
cations address the interaction protocols, i.e. the coordination of the interaction
instead of interaction modes. The only considered interaction mode is the di-
rect one (e.g. ISLANDER [2]). They don’t consider the interaction at the level
addressed in this paper.

Controlling Multi-party Interaction 375

7 Conclusions

In this paper, we have proposed a specification of interaction modes between
agents within an organization. For that aim, we have extended and enriched the
organization modeling language of the Moise framework. We have also shown
how the specifications have been used to generate and to configure dynamically
the communication environment supported by the Easi platform. We have il-
lustrated the use of this proposal in a crisis management application.

In the future, we intend to extend the considered interaction modes to over-
hearing. We will also consider the communication between groups by extending
the scope of communication to groups by enriching and modifying the structural
specification ofMoise. Thanks to these new primitives in the organization spec-
ification, we can turn to the development of reasoning mechanisms at the agent
level to make agents able to reason on the interaction modes that they can use
within the organization.

Acknowledgement

We would like to thank D. Trabelsi, H. Hadioui and J.F. Hübner for the fruitful
discussions about the content of this paper.

References

1. Bensaid, N., Mathieu, P.: A hybrid architecture for hierarchical agents. In: Veram,
B., Yao, X. (eds.) Proceedings of the 1997 International Conference on Computation-
nal Intelligence and Multimedia Applications (ICCIMA 1997), pp. 91–95. Watson
Ferguson & Co (1997)

2. Esteva, M., Rodriguez-Aguiar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the formal
specification of electronic institutions. In: Dignum, F., Sierra, C. (eds.) Proceedings
of the Agent-mediated Electronic Commerce. LNCS (LNAI), vol. 1191, pp. 126–147.
Springer, Berlin (2001)

3. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations
in multi-agents systems. In: Demazeau, Y. (ed.) Proceedings of the 3rd International
Conference on Multi-Agent Systems (ICMAS 1998), pp. 128–135. IEEE Press, Los
Alamitos (1998)

4. Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional,
and deontic specification of organizations in multiagent systems. In: Bittencourt, G.,
Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer,
Heidelberg (2002)

5. Hübner, J., Boissier, O., Bordini, R.: A normative organisation programming
language for organisation management infrastructures. In: Padget, J., Artikis,
A., Vasconcelos, W., Stathis, K., da Silva, V., Matson, E., Polleres, A. (eds.)
COIN@AAMAS 2009. LNCS, vol. 6069, pp. 114–129. Springer, Heidelberg (2010)

6. Hübner, J., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisa-
tions with organisational artifacts and agents. Autonomous Agents and Multi-Agent
Systems 20, 369–400 (2010)

376 O. Boissier, F. Balbo, and F. Badeig

7. Saunier, J., Balbo, F.: Regulated multi-party communications and context awareness
through the environment. Journal on Multi-Agent and Grid Systems 5(1), 75–91
(2009)

8. Tummolini, L., Castelfranchi, C., Ricci, A., Viroli, M., Omicini, A.: “Exhibitionists”
and “Voyeurs” do it better: A shared environment for flexible coordination with tacit
messages. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004.
LNCS (LNAI), vol. 3374, pp. 215–231. Springer, Heidelberg (2005)

Author Index

Aldewereld, Huib 321
Alvarez-Napagao, Sergio 321
Argente, Estefania 1, 250
Artikis, Alexander 268

Badeig, Fabien 357
Balbo, Flavien 357
Balke, Tina 95
Boella, Guido 152
Boissier, Olivier 357
Botti, Vicente 1, 250
Bradshaw, Jeffrey M. 172
Bromuri, Stefano 268

Campos, Jordi 303
Centeno, Roberto 58
Corapi, Domenico 77
Cranefield, Stephen 285
Criado, Natalia 1, 250

da Silva Figueiredo, Karen 39
de Oliveira Braga, Christiano 39
De Vos, Marina 77, 95
Dignum, Frank 321

Esteva, Marc 303, 337

Feltovich, Paul J. 172
Fitzek, Frank 95

Garrido, Antonio 250
Georgeff, Michael 210
Gimeno, Juan A. 250
Giret, Adriana 250
Griffiths, Nathan 230
Guttmann, Christian 210

Hermoso, Ramón 58

Igual, Francesc 250

Johnson, Matthew 172
Jonker, Catholijn M. 132, 172

Koeppen, Jan 337
Köhler-Bußmeier, Michael 21
Kwiatkowski, Ivan 114

Lopez-Sanchez, Maite 303, 337
Luck, Michael 230

Mart́ınez, Erick 114
Moldt, Daniel 21
Morales, Javier 337

Noriega, Pablo 250

Padget, Julian 77, 95, 192
Pasquier, Philippe 114
Pigozzi, Gabriella 152
Purvis, Martin K. 285
Purvis, Maryam A. 285

Russo, Alessandra 77

Satoh, Ken 77
Savarimuthu, Bastin Tony Roy 285
Schmidt, Heinz 210
Sierhuis, Maarten 172
Slavkovik, Marija 152
Stathis, Kostas 268

Tansley, John 192
Thomas, Ian 210
Torres da Silva, Viviane 39, 58
Traskas, Dimitris 192

Urovi, Visara 268

van der Torre, Leendert 152
van Riemsdijk, M. Birna 132, 172
Vázquez-Salceda, Javier 321
Vermeulen, Bas 132

Wester-Ebbinghaus, Matthias 21
Wickramasinghe, Leelani Kumari 210

	6541
	Preface
	Organization
	Table of Contents
	Topic 1
	Normative System Design and Modelling
	Rational Strategies for Norm Compliance in the n-BDI Proposal
	Introduction
	Preliminaries
	Bridge Rules

	Normative BDI Architecture (n-BDI)
	Norm Acquisition Context (NAC)
	Norm Compliance Context (NCC)
	Bridge Rules

	Rational Strategies for Norm Compliance
	Traditional Strategies for Norm Compliance
	Complex Strategies for Norm Compliance

	The m-Water Problem
	Basic Scenario
	Normative Decision Making

	Discussion
	Conclusions
	References

	Generating Executable Multi-agent System Prototypes from SONAR Specifications
	Introduction
	The Underlying Theoretical Model: SONAR
	Organisational Position Network Activities
	Conceptual Overview
	Organisational Teamwork
	Organisation Agents

	TheMulan4Sonar Middleware
	Compilation of Sonar Specifications into Mulan4Sonar
	Multi-agent System with Mulan4Sonar Middleware Layer
	Explanation of the Six Teamwork Phases

	Strengths, Weaknesses and Future Work
	Related Work
	Conclusion
	References

	Modeling Norms in Multi-agent Systems with NormML
	Introduction
	Main Elements of a Norm
	Related Work
	Case Study
	Background
	Models and Metamodels
	SecureUML

	NormML: A Normative Modeling Language
	The NormML Metamodel
	Modeling Norms with NormML
	Validating the Norms

	Conclusion and Future Work
	References

	Building Reputation-Based Agreements: Collective Opinions as Information Sources
	Introduction
	A Service Based on Reputation-Based Agreements
	How Agents Send Their Opinions
	Creating Reputation-Based Agreements
	Reputation-Based Agreements: Properties
	Providing Information About Reputation-Based Agreements

	Case Study: Pubs Area
	How to Motivate Agents to Send Their Opinions
	Case Study: Tasks Servers
	Related Work
	Conclusions and Future Work
	References

	Norm Refinement and Design through Inductive Learning
	Introduction
	Normative Frameworks
	Formal Model

	Learning
	Modelling Normative Frameworks
	Mapping the Formal Model into AnsProlog

	Learning Normative Rules
	Methodology
	Mapping ASP to ILP

	Example
	Learning Setting

	Related Work
	Conclusions and Future Work
	References

	Using a Normative Framework to Explore the Prototyping of Wireless Grids
	Introduction
	Technical Context
	Normative Frameworks
	The Wireless Grid Scenario

	Formalizing the Wireless Grid Scenario
	The Normative Framework
	Evaluation

	Discussion
	References

	Topic 2
	Social Aspects
	Towards a Model of Social Coherence in Multi-agent Organizations
	Introduction and Motivations
	Social Modelling
	Handling Actions
	Social Commitment
	Social Entities

	Social Control Mechanisms
	Social Coherence
	Formal Characterization of Social Coherence
	Constraints Generation
	Local Search Algorithm

	Example: Pizza Delivery Domain
	Initial Validation
	Discussion and Related Work
	Conclusions and Future Work
	References

	Shared Mental Models
	Introduction
	Exploration of Concepts
	Working in a Team
	Mental Models
	Shared Mental Models

	Mental Model Ontology
	System
	Team as a System
	Mental Model
	Accuracy of Models

	Similarity of Models
	Formal Framework
	Definitions

	Example: BW4T
	Agent Reasoning with Shared Mental Models
	Related Work
	Conclusion
	References

	Group Intention Is Social Choice with Commitment
	Introduction
	Non-summative Group Attitudes Obtained by Judgment Aggregation
	From Individual Opinions to Group Attitudes
	The Logic AGELTL
	The Judgment Aggregation Framework

	Generating Group Goals with Judgment Aggregation
	Desirable Properties of Judgment Aggregation
	The Generation of Multiple Group Goals

	Commitment Strategies
	Reconsideration of Group Attitudes
	Reconsideration Strategies
	Combining Revision and Commitment Strategies

	Conclusions
	References

	The Fundamental Principle of Coactive Design: Interdependence Must Shape Autonomy
	Introduction
	Defining Autonomy
	Prior Work
	Function Allocation and Supervisory Control
	Adaptive, Sliding, or Adjustable Autonomy
	Mixed-Initiative Interaction
	Collaborative Control
	How Autonomy Has Been Characterized in Former Research
	Challenges of Autonomy-Centered Approaches

	Interdependence
	Hard vs. Soft Interdependence
	Inter-activity Dependence vs. Intra-activity Interdependence
	Monitoring As a Requirement for Handling Supportive Interdependence

	Coactive Design
	Awareness of Interdependence in Joint Activity
	Consideration for Interdependence in Joint Activity
	Capability to Support Interdependence in Joint Activity

	Visualizing the New Perspective
	Initial Experiments
	Adding Autonomy without Addressing Interdependence
	Soft Interdependence Is a Key Factor in Performance

	Discussion
	Summary
	References

	A Probabilistic Mechanism for Agent Discovery and Pairing Using Domain-Specific Data
	Introduction
	Related Work
	Background and Motivation
	System Architecture
	Probabilistic Discovery and Pairing
	Random and Tabu Mechanisms

	Call Centre Case Study
	A Multi-Agent Approach to Call Routing
	Handler Agent
	Call Agent
	Bayesian Model for Call Discovery
	Experiments

	Results and Discussion
	Conclusions
	References

	An Adherence Support Framework for Service Delivery in Customer Life Cycle Management
	Introduction
	Framework to Model Contract Violations Due to Deficits in Mental Attitudes
	Future-Directed Intentions
	Belief-Based Goal Dynamics
	Deficit Categories

	Framework for Adherence Support
	Detection of Possible Deficits
	Mental-State Recognition to Identify Possible Deficits
	Intervention to Reduce Deficits

	Implementation
	Service Delivery Specification: Domain-Based Agent Specification

	Related Research
	Conclusions and Future Work
	References

	Topic 3
	Norms at Run-Time: Learning and Enforcing
	Norm Diversity and Emergence in Tag-Based Cooperation
	Introduction
	Background
	Improving Group Effectiveness
	Context Assessment
	Rewiring

	Experimental Analysis
	Context Assessment
	Rewiring
	Combining Context Assessment with Rewiring
	Summary of Results

	Discussion and Conclusions
	References

	Norm Enforceability in Electronic Institutions?
	Introduction
	Background
	Norm Implementation in Multiagent Systems
	Electronic Institutions
	Norm Implementation in EI
	Norm Regimentation.
	Norm Enforcement.
	Mixed Approaches.

	A Concrete Sample Scenario in the mWater Regulated Environment
	mWater Overall Description
	Complex Scenario: The Registration of Water-Right Transfer Agreements
	Implementation
	Further implementation details.

	Discussion and Closing Remarks
	References

	Initial Steps Towards Run-Time Support for Norm-Governed Systems
	Introduction
	The Open Packet World
	Run-Time Infrastructure
	The Open Packet World in GOLEM
	The Physical State of Containers
	Containers with Social State
	Distributing a Norm-Governed Application
	Implementation Issues

	Experimental Evaluation
	Related Work
	Conclusions and Future Work
	References

	Identifying Conditional Norms in Multi-agent Societies
	Introduction
	Background
	Normative Multi-agent Systems

	Overview of the Norm Identification Framework
	Identifying Conditional Norms
	Experiments
	Experimental Set-Up
	Experiment 1 - Conditional Norm Identification
	Experiment 2 - Conditional Norm Identification with and without Referral
	Experiment 3 - Dynamic Conditional Norm Identification
	Experiment 4 - Comparison of Utility of Agents with and without Conditional Norm Identification

	Discussion
	Conclusion
	References

	Using a Two-Level Multi-Agent System Architecture
	Introduction
	General Model
	Assistance Layer

	2-LAMAinaP2PScenario
	Architecture in P2P
	Protocol

	Organisational Adaptation
	Empirical Evaluation
	Sharing Methods
	Results

	Related Work
	Conclusions
	References

	Normative Monitoring: Semantics and Implementation
	Introduction
	Formal Semantics
	Preliminary Definitions
	Normative Monitor

	Monitoring with Production Systems
	Semantics of Production Systems
	Reduction

	Implementation
	Conclusions and Related Work
	References

	Learning from Experience to Generate New Regulations
	Introduction
	Related Work
	Traffic Scenario
	Norm Generation through Case-Based Reasoning
	Architecture
	Unsupervised CBR Cycle
	Cases and Norms

	Empirical Evaluation
	Test Design
	Results

	Conclusions and Future Work
	References

	Controlling Multi-party Interaction within Normative Multi-agent Organizations
	Introduction
	Background
	Moise
	Easi

	Extending Moise with Communication Modes
	Communication Modes Specification (CS)
	Communication Norms

	Mapping Moise on the Easi Platform
	Properties
	From Communication Norms to Environment Filters

	Example
	Related Work
	Conclusions

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

