

Lecture Notes in Bioinformatics 6674
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand

T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff

R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Jianer Chen Jianxin Wang
Alexander Zelikovsky (Eds.)

Bioinformatics
Research
and Applications

7th International Symposium, ISBRA 2011
Changsha, China, May 27-29, 2011
Proceedings

13

Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Jianer Chen
Texas A&M University, Department of Computer Science
College Station, TX 77843-3112, USA
E-mail: chen@cs.tamu.edu

Jianxin Wang
Central South University, School of Information Science and Engineering
Changsha, 410083, China
E-mail: jxwang@mail.csu.edu.cn

Alexander Zelikovsky
Georgia State University, Department of Computer Science
Atlanta, GA 30303, USA
E-mail: alexz@cs.gsu.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21259-8 e-ISBN 978-3-642-21260-4
DOI 10.1007/978-3-642-21260-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): J.3, H.2.8, H.3-4, F.1, I.5

LNCS Sublibrary: SL 8 – Bioinformatics

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The seventh edition of the International Symposium on Bioinformatics Research
and Applications (ISBRA 2011) was held during May 27-29, 2011 at Central
South University in Changsha, China. The symposium provides a forum for the
exchange of ideas and results among researchers, developers, and practitioners
working on all aspects of bioinformatics and computational biology and their
applications.

The technical program of the symposium included 36 contributed papers, se-
lected by the Program Committee from 92 full submissions received in response
to the call for papers. Additionally, the symposium included poster sessions and
featured invited keynote talks by four distinguished speakers: Bernard Moret
from the Swiss Federal Institute of Technology in Lausanne, Switzerland, spoke
on phylogenetic analysis of whole genomes, David Sankoff from the University
of Ottawa spoke on competing formulations of orthologs for multiple genomes,
Russell Schwartz from Carnegie Mellon University spoke on phylogenetics of
heterogeneous samples, Liping Wei from Peking University spoke on the critical
role of bioinformatics in genetic and pharmacogenetic studies of neuropsychi-
atric disorders, and Eric Xing from Carnegie Mellon University spoke on the a
structured sparse regression approach to diseases.

We would like to thank the Program Committee members and external re-
viewers for volunteering their time to review and discuss symposium papers. We
would like to extend special thanks to the Steering and General Chairs of the
symposium for their leadership, and to the Finance, Publication, Publicity, and
Local Organization Chairs for their hard work in making ISBRA 2011 a success-
ful event. Last but not least we would like to thank all authors for presenting
their work at the symposium.

May 2011 Jianer Chen
Jianxin Wang

Alex Zelikovsky

Symposium Organization

Steering Chairs

Dan Gusfield University of California, Davis, USA
Yi Pan Georgia State University, USA
Marie-France Sagot INRIA, France

General Chairs

Mona Singh Princeton University, USA
Lijian Tao Central South University, China
Albert Y. Zomaya The University of Sydney, Australia

Program Chairs

Jianer Chen Texas A&M University, USA and Central
South University, China

Jianxin Wang Central South University, China
Alex Zelikovsky Georgia State University, USA

Publicity Chairs

Ion Mandoiu University of Connecticut, USA
Yanqing Zhang Georgia State University, USA

Publication Chair

Raj Sunderraman Georgia State University, USA

Finance Chair

Yu Sheng Central South University, China

Local Organization Chairs

Min Wu Central South University, China
Zhiming Yu Central South University, China

VIII Symposium Organization

Local Organizing Committee

Jianxin Wang Central South University, China
Guojun Wang Central South University, China
Dongjun Huang Central South University, China
Fei Li Central South University, China
Min Li Central South University, China
Gang Chen Central South University, China

Program Committee

Srinivas Aluru Iowa State University, USA
Danny Barash Ben-Gurion University, Israel
Robert Beiko Dalhousie University, Canada
Anne Bergeron Université du Québec à Montréal, Canada
Daniel Berrar University of Ulster, UK
Paola Bonizzoni Universitá de Studi di Milano-Bicocca, Italy
Daniel Brown University of Waterloo, Canada
Tien-Hao Chang National Cheng Kung University, Taiwan
Chien-Yu Chen National Taiwan University, Taiwan
Jianer Chen Texas A&M University, USA
Bhaskar Dasgupta University of Illinois at Chicago, USA
Amitava Datta University of Western Australia, Australia
Guillaume Fertin Université de Nantes, France
Vladimir Filkov University of California Davis, USA
Jean Gao University of Texas at Arlington, USA
Katia Guimarães Universidade Federal de Pernambuco, Brazil
Jieyue He Southeast University, China
Jinling Huang East Carolina University, USA
Lars Kaderali University of Heidelberg, Germany
Iyad Kanj DePaul University, USA
Ming-Yang Kao Northwestern University, USA
Yury Khudyakov Centers for Disease Control and Prevention,

USA
Danny Krizanc Wesleyan University, USA
Jing Li Case Western Reserve University, USA
Zhiyong Liu Chinese Academy of Science, China
Ion Mandoiu University of Connecticut, USA
Fenglou Mao University of Georgia, USA
Osamu Maruyama Kyushu University, Japan
Ion Moraru University of Connecticut Health Center, USA
Craig Nelson University of Connecticut, USA
Andrei Paun Louisiana Tech University, USA
Maria Poptsova University of Connecticut, USA
Sven Rahmann Technical University of Dortmund, Germany

Symposium Organization IX

Shoba Ranganathan Macquarie University, Australia
Isidore Rigoutsos IBM Research, USA
Cenk Sahinalp Simon Fraser, Canada
Russell Schwartz Carnegie Mellon University, USA
João Carlos Setubal Virginia Polytechnic Institute and State

University, USA
Jens Stoye Universität Bielefeld, Germany
Raj Sunderraman Georgia State University, USA
Wing-Kin Sung National University of Singapore, Singapore
Sing-Hoi Sze Texas A&M University, USA
Haixu Tang Indiana University, USA
Gabriel Valiente Technical University of Catalonia, Spain
Stéphane Vialette Université Paris-Est Marne-la-Vallée, France
Jianxin Wang Central South University, China
Li-San Wang University of Pennsylvania, USA
Lusheng Wang City University of Hong Kong, China
Carsten Wiuf University of Aarhus, Denmark
Richard Wong Kanazawa University, Japan
Yufeng Wu University of Connecticut, USA
Alex Zelikovsky Georgia State University, USA
Fa Zhang Chinese Academy of Science, China
Yanqing Zhang Georgia State University, USA
Leming Zhou University of Pittsburgh, USA

External Reviewers

Aggarwala, Varun
Al Seesi, Sahar
Amberkar, Sandeep
Andres, Stephan Dominique
Astrovskaya, Irina
Berman, Piotr
Bernauer, Julie
Blin, Guillaume
Cao, Kajia
Cliquet, Freddy
Cohen-Boulakia, Sarah
Della Vedova, Gianluca
Dondi, Riccardo
Dörr, Daniel
Evans, Patricia
Fang, Ming
Gherman, Marius
Grudinin, Sergei
Hwang, Yih-Chii

Jahn, Katharina
Jiang, Minghui
Jiao, Dazhi
Kang, Min Gon
Kiani, Narsis Aftab
Kim, Dong-Chul
Kim, Wooyoung
Kopczynski, Dominik
Köster, Johannes
Lara, James
Lee, Byoungkoo
Leung, Fanny
Li, Fan
Li, Shuo
Li, Weiling
Lin, Chiao-Feng
Macdonald, Norman
Malhotra, Samta
Mao, Xizeng

X Symposium Organization

Marschall, Tobias
Martin, Marcel
Mayampurath, Anoop
Mi, Qi
Missirian, Victor
Nakhleh, Luay
Nguyen, Minh Q.
Olman, Victor
Rizzi, Raffaella
Rizzi, Romeo
Skums, Pavel
Srichandan, Bismita
Tan, Cheemeng

Tang, Xiaojia
Tannier, Eric
Wang, Wenhui
Willing, Eyla
Wittler, Roland
Wu, Yin
Yang, Xiao
Yu, Chuan-Yih
Zhang, Chi
Zhang, Xinjun
Zhang, Yanqing
Zhou, Fengfeng
Zola, Jaroslaw

Table of Contents

Phylogenetics of Heterogeneous Samples . 1
Russell Schwartz

OMG! Orthologs for Multiple Genomes - Competing Formulations 2
David Sankoff

Phylogenetic Analysis of Whole Genomes . 4
Bernard M.E. Moret

Genetic and Pharmacogenetic Studies of Neuropsychiatric Disorders:
Increasingly Critical Roles of Bioinformatics Research and
Applications . 8

Liping Wei

Genome-Phenome Association Analysis of Complex Diseases a
Structured Sparse Regression Approach . 11

Eric Xing

Prediction of Essential Proteins by Integration of PPI Network
Topology and Protein Complexes Information . 12

Jun Ren, Jianxin Wang, Min Li, Huan Wang, and Binbin Liu

Computing the Protein Binding Sites . 25
Fei Guo and Lusheng Wang

SETTER - RNA SEcondary sTructure-based TERtiary Structure
Similarity Algorithm . 37

David Hoksza and Daniel Svozil

Prediction of Essential Genes by Mining Gene Ontology Semantics 49
Yu-Cheng Liu, Po-I Chiu, Hsuan-Cheng Huang, and
Vincent S. Tseng

High-Performance Blob-Based Iterative Reconstruction of Electron
Tomography on Multi-GPUs . 61

Xiaohua Wan, Fa Zhang, Qi Chu, and Zhiyong Liu

Component-Based Matching for Multiple Interacting RNA Sequences . . . 73
Ghada Badr and Marcel Turcotte

A New Method for Identifying Essential Proteins Based on Edge
Clustering Coefficient . 87

Huan Wang, Min Li, Jianxin Wang, and Yi Pan

XII Table of Contents

Gene Order in Rosid Phylogeny, Inferred from Pairwise Syntenies
among Extant Genomes . 99

Chunfang Zheng and David Sankoff

Algorithms to Detect Multiprotein Modularity Conserved during
Evolution . 111

Luqman Hodgkinson and Richard M. Karp

The Kernel of Maximum Agreement Subtrees . 123
Krister M. Swenson, Eric Chen, Nicholas D. Pattengale, and
David Sankoff

A Consensus Approach to Predicting Protein Contact Map via Logistic
Regression . 136

Jian-Yi Yang and Xin Chen

A Linear Time Algorithm for Error-Corrected Reconciliation of
Unrooted Gene Trees . 148

Pawe�l Górecki and Oliver Eulenstein

Comprehensive Pharmacogenomic Pathway Screening by Data
Assimilation . 160

Takanori Hasegawa, Rui Yamaguchi, Masao Nagasaki,
Seiya Imoto, and Satoru Miyano

The Deep Coalescence Consensus Tree Problem is Pareto on Clusters . . . 172
Harris T. Lin, J. Gordon Burleigh, and Oliver Eulenstein

Fast Local Search for Unrooted Robinson-Foulds Supertrees 184
Ruchi Chaudhary, J. Gordon Burleigh, and David Fernández-Baca

A Metric for Phylogenetic Trees Based on Matching 197
Yu Lin, Vaibhav Rajan, and Bernard M.E. Moret

Describing the Orthology Signal in a PPI Network at a Functional,
Complex Level . 209

Pavol Jancura, Eleftheria Mavridou, Beatriz Pontes, and
Elena Marchiori

Algorithms for Rapid Error Correction for the Gene Duplication
Problem . 227

Ruchi Chaudhary, J. Gordon Burleigh, and Oliver Eulenstein

TransDomain: A Transitive Domain-Based Method in Protein–Protein
Interaction Prediction . 240

Yi-Tsung Tang and Hung-Yu Kao

Table of Contents XIII

Rapid and Accurate Generation of Peptide Sequence Tags with a
Graph Search Approach . 253

Hui Li, Lauren Scott, Chunmei Liu, Mugizi Rwebangira,
Legand Burge, and William Southerland

In Silico Evolution of Multi-scale Microbial Systems in the Presence of
Mobile Genetic Elements and Horizontal Gene Transfer 262

Vadim Mozhayskiy and Ilias Tagkopoulos

Comparative Evaluation of Set-Level Techniques in Microarray
Classification . 274

Jiri Klema, Matej Holec, Filip Zelezny, and Jakub Tolar

Gene Network Modules-Based Liner Discriminant Analysis of
Microarray Gene Expression Data . 286

Pingzhao Hu, Shelley Bull, and Hui Jiang

A Polynomial Algebra Method for Computing Exemplar Breakpoint
Distance . 297

Bin Fu and Louxin Zhang

The Maximum Clique Enumeration Problem: Algorithms, Applications
and Implementations . 306

John D. Eblen, Charles A. Phillips, Gary L. Rogers, and
Michael A. Langston

Query-Adaptive Ranking with Support Vector Machines for Protein
Homology Prediction . 320

Yan Fu, Rong Pan, Qiang Yang, and Wen Gao

A Novel Core-Attachment Based Greedy Search Method for Mining
Functional Modules in Protein Interaction Networks 332

Chaojun Li, Jieyue He, Baoliu Ye, and Wei Zhong

ProPhyC: A Probabilistic Phylogenetic Model for Refining Regulatory
Networks . 344

Xiuwei Zhang and Bernard M.E. Moret

Prediction of DNA-Binding Propensity of Proteins by the
Ball-Histogram Method . 358

Andrea Szabóová, Ondřej Kuželka, Sergio Morales E.,
Filip Železný, and Jakub Tolar

Multi-label Correlated Semi-supervised Learning for Protein Function
Prediction . 368

Jonathan Q. Jiang

XIV Table of Contents

Regene: Automatic Construction of a Multiple Component Dirichlet
Mixture Priors Covariance Model to Identify Non-coding RNA 380

Felipe Lessa, Daniele Martins Neto, Kátia Guimarães,
Marcelo Brigido, and Maria Emilia Walter

Accurate Estimation of Gene Expression Levels from DGE Sequencing
Data . 392

Marius Nicolae and Ion Măndoiu

An Integrative Approach for Genomic Island Prediction in Prokaryotic
Genomes . 404

Han Wang, John Fazekas, Matthew Booth, Qi Liu, and
Dongsheng Che

A Systematic Comparison of Genome Scale Clustering Algorithms 416
Jeremy J. Jay, John D. Eblen, Yun Zhang, Mikael Benson,
Andy D. Perkins, Arnold M. Saxton, Brynn H. Voy,
Elissa J. Chesler, and Michael A. Langston

Mining Biological Interaction Networks Using Weighted
Quasi-Bicliques . 428

Wen-Chieh Chang, Sudheer Vakati, Roland Krause, and
Oliver Eulenstein

Towards a Characterisation of the Generalised Cladistic Character
Compatibility Problem for Non-branching Character Trees 440

Ján Maňuch, Murray Patterson, and Arvind Gupta

Author Index . 453

Phylogenetics of Heterogeneous Samples

(Keynote Talk)

Russell Schwartz

Carnegie Mellon University
Pittsburgh, PA 15213 USA

Phylogenetics, or the inference of evolutionary trees, is one of the oldest and
most intensively studied topics in computational biology. Yet it remains a vi-
brant area of research, in part because advances in our ability to gather data
for phylogenetic inference continue to create novel and more challenging vari-
ants of the phylogeny problem. In this talk, I will discuss a particular challenge
underlying some important phylogenetic problems in the genomic era: recon-
structing evolutionary histories from samples of heterogeneous populations, each
of which may contain contributions from multiple evolutionary stages or path-
ways. This problem combines the challenges of identifying common population
subgroups from large variation data sets and reconstructing a history of those
subgroups. Methods for solving the problem thus end up drawing from a variety
of computational techniques, including classic discrete algorithmic approaches to
phylogenetics, and machine learning and statistical inference methods for find-
ing robust structure within large, noisy data sets. In this talk, I will present
two examples of the problem on very different scales. I will describe the use of
phylogenetic methods for inferring evolutionary histories of cell lineages within
tumors from genome-wide assays, where cell-to-cell heterogeneity within individ-
ual tumors complicates analysis. I will further describe the application of similar
concepts for inferring histories of human population groups from genetic vari-
ation data, where variability within populations and admixture between them
present similar difficulties. Collectively, these problems illustrate some of the
special challenges of phylogenetic inference on heterogeneous samples and some
of the breadth of techniques needed to address these challenges.

References

[1] Schwartz, R., Schackney, S.: Applying unmixing to gene expression data for tumor
phylogeny inference. BMC Bioinf. 11, 42 (2010)

[2] Tsai, M.-C., Blelloch, G., Ravi, R., Schwartz, R.: A consensus tree approach for
reconstructing human evolutionary history and detecting population substruc-
ture. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds.)
ISBRA 2010. LNCS (LNBI), vol. 6053, pp. 167–178. Springer, Heidelberg (2010)

[3] Tolliver, D., Tsourakakis, C., Subramanian, A., Shackney, S., Schwartz, R.: Ro-
bust unmixing of tumor states in array comparative genomic hybridization data.
Bioinformatics Proc. 26(12), i106–i114 (2010)

[4] Tsai, M.-C., Blelloch, G., Ravi, R., Schwartz, R.: A consensus-tree approach for
reconstructing human evolutionary history and identifying population substruc-
ture. IEEE/ACM Trans. Comp. Biol. Bioinf. (2011) (in press)

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

OMG! Orthologs for Multiple Genomes -

Competing Formulations

(Keynote Talk)

David Sankoff

Department of Mathematics and Statistics, University of Ottawa

Multiple alignment of the gene orders in sequenced genomes is an important
problem in comparative genomics [1]. A key aspect is the construction of dis-
joint orthology sets of genes, in which each element is orthologous to all other
genes (on different genomes) in the same set. Approaches differ as to the na-
ture and timing and relative importance of sequence alignment, synteny block
construction, and paralogy resolution in constructing these sets. We argue that
these considerations are best integrated in the construction of pairwise synteny
blocks as a first step, followed by the conflation of the pairwise orthologies into
larger sets. The two advantages of this are: first, the availability of finely tuned
pairwise synteny block software (e.g., SynMap in the CoGe platform [2,3]) and
second, the opportunity to dispense with parameters, thresholds or other ar-
bitrary settings during the construction of the orthology sets themselves. The
orthology sets problem becomes a pure graph algorithm problem.

The pairwise homologies SynMap provides for all pairs of genomes constitute
the set of edges E of the homology graph H = (V, E), where V is the set of
genes in any of the genomes participating in at least one homology relation.
Ideally all the genes in a connected component of H should be orthologous. We
should allow at most one gene from each genome in such an orthology set, or
at most two duplicate genes for genomes that descend from a WGD event. In
practice, however, there will be many conflicts in H leading to many apparent
paralogies that we must consider as erroneous. The problem we are addressing,
in collaboration with Chunfang Zheng and Krister Swenson, is how to convert H
into a new graph, respecting the data as far as possible, but with the property
desired of all connected components, namely containing no paralogs other than
relics of WGD.

Our first approach is simply to delete a minimum number of edges, such that
each component in the resulting graph contains at most one gene from each
genome (at most two in WGD descendants). This is a NP-hard graph problem,
namely minimum orthogonal partition, for which there are good approximation
algorithms [4]. The idea is to conserve as many of the homologies in the data as
possible.

We define an empty pair (g, G) to consist of a gene g and a genome G not
containing g and containing no homolog to G. Our second approach is to delete
edges such that each component in the resulting graph contains at most one gene
from each genome (at most two in WGD descendants), but which minimizes the

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 2–3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

OMG! Orthologs for Multiple Genomes - Competing Formulations 3

number of empty gene-genome pairs. This focus on conserving genes (vertices)
rather than homologies (edges) in the graph.

The difference between these two objectives, though subtle, may have impor-
tant consequences in practice. To investigate these differences, we implemented
the algorithm in [4] for the minimum orthogonal partition problem and designed
a greedy algorithm [5] for the gene-conserving approach.

We obtained genomic data on 10 annotated dicots in CoGe and and used
SynMap to produce sets of synteny blocks for all 45 pairs of genomes. We ex-
tracted all the homology relations from all the synteny blocks in each pair, and
put them all together to form the graph H . We then tested the two approaches.

We show how the gene-conserving solution requires deleting far more edges
than the minimum orthogonal partitioning, and how the latter discards far more
genes than the gene-conserving approach. This has important consequences for
gene-order phylogeny based on the orthology sets. This is illustrated in terms of
the branch lengths of the phylogenetic tree constructed on the basis of the gene
orders.

References

1. Fostier, J., et al.: A greedy, graph-based algorithm for the alignment of multiple
homologous gene lists. Bioinformatics 27, 749–756 (2011)

2. Lyons, E., Freeling, M.: How to usefully compare homologous plant genes and chro-
mosomes as DNA sequences. Plant J. 53, 661–673 (2008)

3. Lyons, E., et al.: Finding and comparing syntenic regions among Arabidopsis and the
outgroups papaya, poplar and grape: CoGe with rosids. Plant Phys. 148, 1772–1781
(2008)

4. He, G., Liu, J., Zhao, C.: Approximation algorithms for some graph partitioning
problems. Journal of Graph Algorithms and Applications 4, 1–11 (2000)

5. Zheng, C., Sankoff, D.: Gene order in Rosid phylogeny, inferred from pairwise syn-
tenies among extant genomes. In: Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA
2011. LNCS (LNBI), vol. 6674, pp. 99–110. Springer, Heidelberg (2011)

Phylogenetic Analysis of Whole Genomes
(Keynote Talk)

Bernard M.E. Moret

Laboratory for Computational Biology and Bioinformatics,
Swiss Federal Institute of Technology (EPFL),

EPFL-IC-LCBB, INJ 230, Station 14, CH-1015 Lausanne, Switzerland
bernard.moret@epfl.ch

1 Introduction

The rapidly increasing number of sequenced genomes offers the chance to resolve long-
standing questions about the evolutionary history of certain groups of organisms, to
develop a better understanding of evolution, to make substantial advances in func-
tional genomics, and to start bridging genomics and genetics. Comparative genomics
is the term used today for much of the work carried out in whole-genome analysis,
correctly emphasizing that the “guilt-by-association” approach used in the analysis of
gene and regulatory sequences remains the fundamental tool in the analysis of whole
genomes. However, the limitations of pairwise comparisons are even more severe in
whole-genome analysis than in sequence analysis and, of course, pairwise comparisons
have little to tell us about evolution. Thus we are witnessing a significant increase in
phylogenetic research based, not on sequence data, but on larger-scale features of the
genome, such as genomic rearrangements, duplications and losses of genomic regions,
regulatory modules and networks, chromatin structure, etc.

However, phylogenetic analysis for whole genomes remains very primitive when
compared to the analysis of, e.g., coding sequences. In part, this is due to immaturity:
while such an analysis was in fact conducted as far back as the 1930s (by Sturtevant
and Dobzhansky, using chromosomal banding data and hand computations), the first
serious computational attempts are less than 20 years old. The major reason, however,
is simply the very complex nature of the data, which makes it very difficult to design
good simple models and which causes most questions framed in even the simplest of
models to be computationally intractable. A few examples will suffice to illustrate this
point. Sequence analysis typically uses character positions as its basic units and assumes
some form of independence among the positions, but we lack even a good definition
of the basic unit (the syntenic block) most commonly used in comparative genomics.
While the phylogenetic community frequently deplores the lack of good tools for the
multiple alignment of sequence data, we simply have no tool capable of aligning mul-
tiple whole genomes unless they are all very closely related. Whereas computing a
parsimony score on any given phylogenetic tree is solvable in linear time, comput-
ing a parsimony score on a tree of three leaves under most extant models of genomic
rearrangements or duplications and losses is intractable (NP-hard). And while no sys-
tematics journal would publish an inferred phylogeny without some form of statistical

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 4–7, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Phylogenetic Analysis of Whole Genomes 5

support (bootstrapping values or log-likelihood scores), we have as yet no way of boot-
strapping phylogenies built from whole-genome data nor sufficiently good stochastic
models to derive likelihood scores.

Fortunately, more and more research groups are working on phylogenetic analysis of
whole genomes, so that rapid progress is being made. In this presentation, I will briefly
survey the main computational problems, summarize the state of the art for each, and
present some recent results from my group that take us closer to a solution to some of
these problems.

2 Some Extant Problems

A comparative analysis of complete genomes starts by the identification of syntenic
blocks, that is, contiguous regions that are shared, to within some tolerance factor,
across the genomes. Ideally, syntenic blocks should be defined in an evolutionary set-
ting, but, as in the case of gene orthology, practical implementations so far have used
a variety of heuristics—based on the identification of shared anchors such as genes or
other markers and on guidelines about the desired size of such blocks and the amount
of dissimilarity tolerable within the blocks. The most recent and ambitious package for
the identification of synteny blocks is DRIMM-Synteny which takes into account both
duplications and rearrangements. Still missing from the literature is a formal evolution-
ary definition of synteny, in the spirit of definitions of homology and orthology, and
accompanying criteria for selection of appropriate amounts of internal dissimilarity.

Genomic alignment needs much more work. Miller et al. developped a pipeline for
the alignment of vertebrate genomes in the UCSC Genome Browser. The approach
used (an initial star alignment against the human genome, followed by a progressive
alignment to place all genomes on the same reference indexing) precludes its extension
to more distantly related organisms. The package progressiveMauve is, like DRIMM-
Synteny, an improved version of an earlier package, designed to take into account
duplications in addition to rearrangements; it computes a multiple alignment, at the
sequence level, of several genomes, not relying on any particular reference genome.
Its target is clearly the smaller genomes of, e.g., bacteria. Aligning multiple genomes
that are only distantly related may require a tree alignment rather than the conventional
common indexing of character positions. Events such as chromosomal fusion, fission,
or linearization remain to be taken into account.

Constructing a phylogenetic tree based on whole-genome data has seen significant
progress. The first published packages, BPAnalysis and GRAPPA, worked only with
unichromosomal genomes and were limited in the number of taxa as well as the size
of the genomes (the number of syntenic blocks); MGR, which could handle multichro-
mosomal data, scaled poorly, as did the Bayesian package Badger. With the DCJ model
of rearrangements, new work was started on pairwise distance estimation and phyloge-
netic reconstruction, the latter using both parsimony-based methods and distance-based
methods. In addition, the use of distance methods led to the first reliable method for
confidence assessment. Still missing are robust and scalable methods for phylogenetic
reconstruction in the presence of duplicate syntenic blocks, maximum-likelihood meth-
ods, and better bootstrapping. All of these methods rely on the prior identification of
syntenic blocks; yet, in the case of distantly related taxa, these blocks may have to be

6 B.M.E. Moret

defined in a phylogenetic setting. Simultaneous tree inference and sequence alignment
is still in its infancy, so it is no surprise that there has been very little work so far on
simultaneous tree inference and syntenic block identification.

Extending the analysis of whole genomes from genomic structure to function starts
with regulatory networks and chromatin structure. The former have mostly been studied
in single species, but recent work at the Broad (Arboretum) and in my group (ProphyC)
have shown that an evolutionary approach can significantly improve the quality of in-
ference, both for entire networks and for modules. Projects for phylogenetic analyses of
epigenomic data (such as histone modifications) are starting up everywhere. But mod-
els for connecting chromatin structure and regulation remain to be devised and current
models for the evolution of regulatory networks leave much to be desired.

3 Some Encouraging Results from My Group

The DCJ (double-cut-and-join) model has considerably simplified the handling of re-
arrangements and been used in attempts to reconstruct parts of ancestral genomes for
yeasts, among other organisms. My group developed a very accurate statistical esti-
mator that takes as input the edit (shortest) distance between two arrangements and
returns a maximum-likelihood estimate of the true distance. Later, we gave an ML es-
timator based on a slight variant of the DCJ model that takes into account duplication
of blocks; on simulated data under deliberately mismatched models, the estimator stays
within 10% of the true distance in almost all cases and under 5% in most cases. Us-
ing this estimator with the FastME program for distance-based reconstruction produces
very accurate reconstructions on instances with up to 500 taxa and genomes of up to
20’000 syntenic blocks.

We have also used the DCJ model and work on so-called adequate subgraphs (sub-
structures of the graph representation of rearrangements) to improve the computation
of rearrangement medians, the basic step in computing parsimony scores for phyloge-
netic trees based on rearrangement data. Here the assumption of unique syntenic blocks
remains necessary, but with this assumption we demonstrated fast and accurate compu-
tations on high-resolution genomic data (10’000 to 20’000 syntenic blocks) as well as
very accurate scoring under simulations.

Our incursion into distance methods for rearrangement data suggested introducing
perturbations into the distance matrices themselves, yielding the first usable method
for evaluating the robustness of a phylogenetic reconstruction. In recent work, we have
resampled the adjacencies and obtain discrimination comparable to that demonstrated
by conventional phylogenetic bootstrapping for sequence data. While we designed this
bootstrapping approach for distance-based methods, extending them to parsimony-
based methods is straightforward, although computationally intensive. Thus a serious
and longstanding impediment to the use of rearrangement data in phylogenetic infer-
ence is nearly overcome.

Functional inferences from large-scale genomic data often involves the inference
of regulatory networks for various genes. The difficulty in obtaining comparable data
across various species has long restricted such studies to single species, although
comparisons were made across various tissues from the same host. Whole-genome
RNA-Seq inventories are now providing a richer and more easily comparable source of

Phylogenetic Analysis of Whole Genomes 7

expression data across many organisms, thus motivating the development of inference
methods based on phylogenetic approaches. My group developed the ProPhyC soft-
ware to refine inferred networks through the use of phylogenetic relationships and of a
simple evolutionary model for regulatory networks. Using this software on inferred net-
works for closely related species (or tissues) produces significantly improved networks
in terms of topological accuracy and thus demonstrates the power of a phylogenetic
approach to the analysis of these systems.

4 Conclusions

Phylogenetic inference and, more generally, phylogenetic methods are assuming a
greater role in the analysis of whole-genome data. A logical extension of the pairwise
comparative approach, phylogenetic methods, while often complex, provide important
advantages:

Genetic and Pharmacogenetic Studies of
Neuropsychiatric Disorders: Increasingly Critical

Roles of Bioinformatics Research and
Applications
(Keynote Talk)

Liping Wei1,2,3

1 Center for Bioinformatics,
State Key Laboratory of Protein and Plant Gene Research

College of Life Sciences, Peking University, Beijing, 100871, China
2 Laboratory of Personalized Medicine,

School of Chemical Biology and Biotechnology
Shenzhen Graduate School of Peking University, Shenzhen, 518055, China

3 National Institute of Biological Sciences, Zhongguancun Life Science Park,
Beijing 102206, China

weilp@mail.cbi.pku.edu.cn

For most neuropsychiatric disorders there is a lack of good cellular model and
animal model. Thus genetic and pharmacogenetic studies of these complex dis-
orders are powerful approaches to identify the underlying genes and pathways.
Recent advances in high-throughput sequencing technologies enable such studies
at genome scale. Due to the huge amount of data involved, bioinformatic research
and applications play increasingly critical roles. For instance, one may uncover
novel functional candidates by screening the genomic and genetic data using
bioinformatic criteria; one may discover novel global patterns through genome-
wide integration of multiple sources of data and across multiple species; and last
but not least, one needs to develop new bioinformatic software and databases in
order to handle the data effectively.

To illustrate bioinformatic research and applications in the genetic and phar-
macogenetic studies of neuropsychiatric disorders I will review several examples
from our own lab. First, we have studied the genetic susceptibility factors under-
lying addiction using data from Genome-Wide Association Studies in collabora-
tion with NIH/DIDA. We identified a surprising case of human-specific de novo
protein-coding gene involved in nicotine addiction, FLJ33706 (alternative gene
symbol C20orf203) [1]. Cross-species analysis revealed interesting evolutionary
paths of how this gene had originated from noncoding DNA sequences: inser-
tion of repeat elements especially Alu contributed to the formation of the first
coding exon and six standard splice junctions on the branch leading to humans
and chimpanzees, and two subsequent changes in the human lineage escaped
two stop codons and created an open reading frame of 194 amino acids. We
experimentally verified FLJ33706s mRNA and protein expression in the brain.
Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abun-
dantly expressed in brain. Human polymorphism data suggested that FLJ33706

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 8–10, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Genetic and Pharmacogenetic Studies of Neuropsychiatric Disorders 9

encodes a protein under purifying selection. A specifically designed antibody
detected its protein expression across human cortex, cerebellum and midbrain.
Immunohistochemistry study in normal human brain cortex revealed the local-
ization of FLJ33706 protein in neurons. FLJ33706 is one of the first discovered
cases of motherless or de novo protein-coding genes that originated from non-
coding DNA sequences. We have since identified 31 other such genes in the
human genome. Our results suggest that de novo protein-coding genes may be
an under-investigated source of species-specific new phenotypes.

When we compared genes associated with addiction by genetic technologies
with those by other molecular biology technologies, we found that different tech-
nologies tend to discover different types of genes. Towards a complete picture of
the molecular network underlying addiction, we re-analyzed and integrated data
that linked genes to addiction by multiple experimental technologies platforms
published in the past 30 years. We compiled a list of 396 genes that were sup-
ported by at least two independent pieces of evidence [2]. Next, we developed a
bioinformatic software, named KOBAS, that mapped the genes to pathways and
calculated the statistically significantly enriched pathways [3]. We found that five
pathways were common to addiction to four different substances, cocaine, opi-
oids, alcohol, and nicotine. Two of the common pathways, GnRH signaling path-
way and Gap Junction pathway, had been linked to addiction for the first time.
Finally, using the pathways as scaffold, we constructed a molecular network under-
lying addiction. These common pathways and network may be potential attrac-
tive drug targets to treat addiction. Our results demonstrate that an integrative
bioinformatic analysis can discover novel patterns that elude single experimental
technologies.

One of the unprecedented opportunities brought by the next-generation se-
quencing technologies is to study how individuals genetic variations affect their
dosage, response, and adverse effect of drugs, and to use this knowledge towards
personalized medicine. In our own lab, we had investigated the mysterious neu-
ropsychiatric and skin adverse effect reported in Japan after administration of
Tamiflu (oseltamivir phosphate). We identified a nonsynonymous SNP (Single
Nucleotide Polymorphism) in dbSNP database, R41Q, near the enzymatic ac-
tive site of human cytosolic sialidase, a homologue of virus neuraminidase that
is the target of oseltamivir [4]. This SNP occurred in 9.29% of Asian popula-
tion and none of European and African American population. Our structural
analyses and Ki measurements using in vitro sialidase assays indicated that
this SNP could increase the unintended binding affinity of human sialidase to
oseltamivir carboxylate, the active form of oseltamivir, thus reducing sialidase
activity. In addition, this SNP itself resulted in an enzyme with an intrinsically
lower sialidase activity, as shown by its increased Km and decreased Vmax val-
ues. Theoretically administration of oseltamivir to people with this SNP might
further reduced their sialidase activity. We noted the similarity between the
reported neuropsychiatric side effects of oseltamivir and the known symptoms
of human sialidase-related disorders. We proposed that this Asian-enriched sial-
idase variation caused by the SNP, likely in homozygous form, may be associated

10 L. Wei

with certain severe adverse reactions to oseltamivir. Preliminary results from
initial samples collected in a case-control study appear to support the hypothesis,
although continued sample collection is required and ongoing.

References

1. Li, C.Y., Zhang, Y., Wang, Z., Zhang, Y., Cao, C., Zhang, P.W., Lu, S.J., Li, X.M.,
Yu, Q., Zheng, X., Du, Q., Uhl, G.R., Liu, Q.R., Wei, L.: A human-specific de novo
protein-coding gene associated with human brain functions. PLoS Computational
Biology 6(3), e1000734 (2010)

2. Li, C.Y., Mao, X., Wei, L.: Genes and (Common) Pathways Underlying Drug Ad-
diction. PLoS Computational Biology 4(1), e2 (2008)

3. Mao, X., Cai, T., Olyarchuk, J.G., Wei, L.: Automated Genome Annotation and
Pathway Identification Using the KEGG Orthology (KO) As a Controlled Vocabu-
lary. Bioinformatics 21(19), 378793 (2005)

4. Li, C.Y., Yu, Q., Ye, Z.Q., Sun, Y., He, Q., Li, X.M., Zhang, W., Luo, J., Gu,
X., Zheng, X., Wei, L.: A nonsynonymous SNP in human cytosolic sialidase in a
small Asian population results in reduced enzyme activity: potential link with severe
adverse reactions to oseltamivir. Cell Research 17(4), 357–362 (2007)

Genome-Phenome Association Analysis of
Complex Diseases a Structured Sparse

Regression Approach

(Keynote Talk)

Eric Xing

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

epxing@cs.cmu.edu

Genome-wide association (GWA) studies have recently become popular as a tool
for identifying genetic variables that are responsible for increased disease sus-
ceptibility. A modern statistical method for approaching this problem is through
model selection (or structure estimation) of Structured Input-Output Regression
Models (SIORM) fitted on genetic and phenotypic variation data across a large
number of individuals.

The inputs of such models bear rich structure, because the cause of many
complex disease syndromes involves the complex interplay of a large number of
genomic variations that perturb disease-related genes in the context of a reg-
ulatory network. Likewise, the outputs of such model are also structured, as
patient cohorts are routinely surveyed for a large number of traits such as hun-
dreds of clinical phenotypes and genome-wide profiling for thousands of gene
expressions that are interrelated. A Structured Input-Output Regression Model
nicely captures all these properties, but raises severe computational and theo-
retical challenge on consistent model identification.

In this talk, I will present models, algorithms, and theories that learn Sparse
SIORMs of various kinds in very high dimensional input/output space, with fast
and highly scalable optimization procedures, and strong statistical guarantees.
I will demonstrate application of our approaches to a number of complex GWA
scenarios, including associations to trait networks, to trait clusters, to dynamic
traits, under admixed populations, and with epistatic effects.

This is joint work with Seyoung Kim, Mladen Kolar, Seunghak Lee, Xi Chen,
and Kriti Puniyani and Judie Howrylak.

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, p. 11, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 12–24, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Prediction of Essential Proteins by Integration of PPI
Network Topology and Protein Complexes Information

Jun Ren1,2, Jianxin Wang1,*, Min Li1, Huan Wang1, and Binbin Liu1

1 School of Information Science and Engineering, Central South University,
Changsha, 410083, China

2 College of Information Science and Technology, Hunan Agricultural University,
 Changsha, 410128, China

jxwang@mail.csu.edu.cn, renjun19@163.com, mli@cs.gsu.edu

Abstract. Identifying essential proteins is important for understanding the
minimal requirements for cellular survival and development. Numerous computa-
tional methods have been proposed to identify essential proteins from pro-
tein-protein interaction (PPI) network. However most of methods only use the PPI
network topology information. HartGT indicated that essentiality is a product of
the protein complex rather than the individual protein. Based on these, we propose
a new method ECC to identify essential proteins by integration of subgraph cen-
trality (SC) of PPI network and protein complexes information. We apply ECC
method and six centrality methods on the yeast PPI network. The experimental
results show that the performance of ECC is much better than that of six centrality
methods, which means that the prediction of essential proteins based on both
network topology and protein complexes set is much better than that only based on
network topology. Moreover, ECC has a significant improvement in prediction of
low-connectivity essential proteins.

Keywords: essential proteins, protein complexes, subgraph centrality.

1 Introduction

A protein is said to be essential for an organism if the organism cannot survive without
it [1]. Identifying essential proteins is important for understanding the minimal re-
quirements for cellular survival and development. Research experiments [2-3] detected
that essential proteins evolve much slower than other proteins, which suggested they
play key roles in the basic functioning of living organisms. Based on it, some biologists
suggested that essential proteins of lower organisms are associated with human disease
genes. Kondrashov FA et al. detected that the essential proteins of Drosophila mela-
nogaster are fairly similar to human morbid genes.[4] Furney SJ et al. detected that
essential proteins tend to have higher correlation with dominant and recessive mutants
of disease genes [5]. So people can identify human disease genes based on identifying
essential proteins of lower organisms.

* Corresponding author.

 Prediction of Essential Proteins by Integration of PPI Network Topology 13

However, experimental methods for identifying putative essential proteins, such as
creating conditional knockouts, cannot find many essential proteins in one experiment.
And it costs a lot to do an experiment. As a result, many essential proteins are still un-
known, especially in human. Meanwhile, other biological data, such as protein-protein
interactions (PPIs), are increasing fast and available conveniently with high-throughput
identification. In 2001, Jeong H et al. had already shown that proteins with high degree in
a PPI network have more possibility to be essential than those selected by chance and
provided the centrality-lethality rule [6]. The centrality-lethality rule demonstrates a high
correlation between a node’s topological centrality in a PPI network and its essentiality.
Since then, much attention has been given to the study of proteins with high centrality,
such as high-degree nodes and hubs in PPI networks [7-9]. Ernesto E. summarized six
centralities, degree centrality (DC), betweenness centrality (BC), closeness centrality
(CC), subgraph centrality(SC), eigenvector centrality(EC) and information centrality(IC),
and used them in identification of essential proteins in yeast PPI networks [10]. Ernesto E
pointed out that compared to the other centrality measures, SC has superior performance
in the selection of essential proteins and explained why.

The use of centrality measures based on network topology has become an important
method in identification of essential proteins. However recent research works pointed
out that many essential proteins have low connectivity and are difficult to be identified
by centrality measures [7-9,11]. Many research works focus on identification essential
proteins by integration PPI networks and other biological information, such as cellular
localization, gene annotation, genome sequence, and so on [7,11,12]. Acencio ML et al.
demonstrated that network topological features, cellular localization and biological
process information are all reliable predictors of essential genes [12]. Hart GT et al.
pointed out that essentiality is a product of the protein complex rather than the indi-
vidual protein [13].

Our research on yeast also shows that protein complexes have high correlation with
essential proteins. Based on it, we propose a new method, ECC, to identify essential
proteins by integration of PPI network topology and protein complexes information.
ECC proposes two kinds of centralities, subgraph centrality and complex centrality.
Subgraph centrality of a protein is used to characterize its importance in the total
network and complex centrality is used to characterize its importance in the protein
complex set. ECC defines a harmonic centrality to integrate the two centralities and
identifies essential proteins by ranking proteins according to it.

We apply our method ECC and six centrality methods on the yeast PPI network and
evaluate their performance by comparing their identified proteins with the gold stan-
dard essential proteins. As protein complexes of most species are not all identified by
experimental methods, here ECC uses two kinds of protein complex sets. One is iden-
tified by experimental methods. Another is identified by CMC algorithm in the PPI
network [14]. No matter which protein complex set ECC uses, experimental results
show that comparison the results of ECC method with the optimum result of six cen-
trality methods, 3.6% to 17.3% improvements are obtained. Experimental results also
show that ECC method can identify much more low-connectivity essential proteins
than six centrality methods. The percentage of low-connectivity essential proteins
identified by SC method is highest in six centrality methods and that identified by ECC
method is as 1.9 to 7.6 times as it.

14 J. Ren et al.

2 Method

2.1 Six Centrality Measures

A PPI network is represented as an undirected graph G(V, E) with proteins as nodes and
interactions as edges. The protein centrality in a PPI network is used to characterize the
importance or contribution of an individual protein to the global structure or configu-
ration of the PPI network. Many research works indicated that PPI networks have
characters of “small-world behavior” and “centrality-lethality” [6,15]. So the removal
of nodes with high centrality makes the PPI network collapse into isolated clusters,
which possibly means the biological system collapse. This may be why a protein’s
essentiality has high correlation with its centrality.

Six centralities are commonly used for predicting a protein’s essentiality[7, 10, 16,
17], degree centrality (DC), betweenness centrality (BC), closeness centrality (CC),
eigenvector centrality(EC), subgraph centrality(SC), and information centrality(IC).
They are defined as follows.

Definition 1. The degree centrality of a protein i in a PPI network G, DC(i), is the
number of proteins interacting with i.

 (1)

where N(i) is the set of neighbors of protein i.

Definition 2. The betweenness centrality of a protein k in a PPI network G, BC(k), is
equal to the fraction of shortest paths going through the protein k.

(2)

where ρ(i, j) is the number of shortest paths from protein i to protein j, and ρ(i, k, j) is the
number of these shortest paths that pass through protein k.

Definition 3. The closeness centrality of a protein i in a PPI network G, CC(i), is the
sum of graph-theoretic distances from all other proteins in the G.

(3)

where the distance d(i, j) from a protein i to another j is defined as the number of in-
teractions in the shortest path from i to j, N is the number of proteins in G.

Definition 4. The eigenvector centrality of a protein i in a PPI network G, EC(i), is
defined as the ith component of the principal eigenvector of A, where A is the adjacency
matrix of G. The defining equation of an eigenvector is λe=Ae, where λ is an eigen
value and e is the eigenvector of A. EC(i)= e1(i), where e1 corresponds to the largest
eigen value of A.

|)(|)(iNiDC =

kjijijkikBC
i j

≠≠=∑∑),(),,()(ρρ

∑−=
j

jidNiCC),()1()(

 Prediction of Essential Proteins by Integration of PPI Network Topology 15

Definition 5. The subgraph centrality of a protein i in a PPI network G, SC(i) counts the
total number of closed walks in which i takes part and gives more weight to closed
walks of short lengths.

 (4)

where μl(i) is the number of closed walks of length l starting and ending at protein i,
(v1, v2,..., vN) is an orthonormal basis of RN composed by eigenvectors of A associated to
the eigenvalues (λ1, λ2,..., λN), and vj(i) is the ith component of vj.

Definition 6. The information centrality IC is based on the information transmitted
between any two points in a connected network. The matrix B is defined as B = D − A +
J, where A is the adjacency matrix of a PPI network G, D is a diagonal matrix of the
degree of each protein in G, and J is a matrix with all its elements equal to one. The
element of information matrix I of G is defined as Iij= (cii + cjj - cij)

 -1, where cij is the
element of matrix C and C=B-1. The information centrality of a protein i in G, IC(i), is
then defined as follows:

 (5)

Ernesto E compared the correlation of the six centralities and the proteins’ essen-
tiality in yeast PPI network. All centralities have positive correlation with essentiality
and SC has the highest correlation than other centralities [10]. As closed walks are
related to the network subgraph, SC accounts for the number of subgraphs in which a
protein participates and gives more weights to smaller subgraphs [18]. These sub-
graphs, particularly triangles, have been previously identified as important structural
motifs in biological networks [19]. So the knock-out of a protein with high SC value,
makes more structural motifs collapse, which possibly result in the collapse of the
biological system. This is why the SC has highest correlation.

2.2 The Correlation of Protein Complexes and Essential Proteins

The protein complex is a muti-protein organism that appears in same time and same
location with certain structure and certain function. Hart GT pointed out that protein
complexes have high correlation with essential proteins [13]. We also verify it in the
yeast. We download yeast PPI network from DIP database [20], its essential proteins
and standard protein complexes from MIPS database [21]. In 4746 proteins of yeast PPI
network, 1130 proteins of them are inessential protein set, 1042 proteins of them are in
standard protein complex set, and 487 of them are in both two sets. The probability of a
protein to be an essential protein is only 23.8% when it is selected randomly and is
46.7% when it is selected from protein complex set. The probability of a protein in a
protein complex is only 22.0% when it is selected randomly and is 43.1% when it is an
essential protein. Both these indicates that protein complexes have high correlation
with essential proteins.

As we know, protein complex is a muti-protein organism with certain structure and
function. A knock-out of a protein in a protein complex may result in the destruct of the

∑∑
=

∞

=

==
N

j
j

l
l

jeivliiSC
1

2

0

)]([!)()(λμ

1]
11

[)(−∑=
j ijIN

iIC

16 J. Ren et al.

protein complex and the loss of its function. Obviously, a protein complex has more
possibility to be destroyed if the ill protein connects more other proteins in it. So we use
in-degree proposed by Radicchi to characterize the importance of a protein to the protein
complex which include it [22]. In-degree (kin(i, C)) of a protein i in a protein complex C is
defined as the number of interactions which connect i to other proteins in C.

 (6)

where e(i, j) is the interaction which connect i to j, and V(C) is the vertex set of C. We
also know that a protein can be included in several protein complexes. So a knock-out
of this kind of protein would result in the loss of several functions. So if a protein is
included in more protein complexes and has higher in-degree value in these protein
complexes, the knock-out of it would make more protein complexes destroyed, which
makes more functions loss and results in lethality or infertility of the whole organism.
Based on these, we define the complex centrality of a protein i, Complex_C(i), as the
sum of in-degree value of i in all protein complexes which include it.

(7)

where CS is the protein complexes set, Ci is a protein complex which include i. If a
protein has a higher Complex_C value, it either has a high in-degree value in a protein
complex or is included in several protein complexes or both. So a knock-out of it would
make more functions loss. Thus it has more possibility to be an essential protein.

2.3 Algorithm ECC

Though the complex set has high correlation with essential proteins, it cannot include
all essential proteins. For example, in all 1130 essential proteins, the gold standard
yeast complex set includes487 essential proteins and there are 643 essential proteins are
not included in it. The reason is that protein’s essentiality also has high correlation with
the global structure of the PPI network, for example “centrality- lethality” rule [6].
However protein complexes only reveal the local character. Moreover, there also have
some protein complexes not been discovered now. So we use both the complex cen-
trality and the global centrality to discovery essential proteins. The global centrality
adopts subgraph centrality (SC) as it has the best performance in identifying essential
proteins in all six centrality methods [10]. To integrate SC(i) and Complex_C(i), we
define a harmonic centrality (HC) of protein i as follows:

 (8)

where a is a proportionality coefficient and takes value in range of 0 to 1, SCmax is the
maximum SC value, Complex_Cmax is the maximum Complex_C value. Based on
ranking proteins by their HC values and outputting a certain top number of proteins, a
new method ECC (find Essential proteins based on protein Complexes and Centrality)
is proposed as follows. Here a PPI network is described as an undirected graph G and a
protein complex set is described as a subgraph set of graph G.

|)}(,|),({|),(CVjijieCik in ∈=

∑
∈∈

=
ii CiCSC

i
in CikiCComplex

&&

),()(_

maxmax _)(_*)1()(*)(CComplexiCComplexaSCiSCaiHC −+=

 Prediction of Essential Proteins by Integration of PPI Network Topology 17

Fig. 1. The description of algorithm ECC

3 Results

To evaluate the performance of our method in identifying essential proteins, we im-
plement it in yeast for its well characterized by knockout experiments and widely used
in previous works. The PPI network of yeast is downloaded from DIP database and
named as YDIP in the paper [20]. YDIP includes 4746 proteins and 15166 interactions
in total without self-interactions and repeated interactions. As protein complexes
identified by experimental methods are only parts of all protein complexes, here we use
two kinds of protein complex sets. One is identified by experimental methods and
downloaded from MIPS database [21]. Its map in YDIP is named as YGS_PC (Yeast
Gold Standard Protein Complex set). YGS_PC includes 209 protein complexes and
1042 proteins. Another is identified by CMC algorithm in YDIP and named as
YCMC_PC. YCMC_PC includes 623 protein complexes and 1538 proteins. Here we
choose CMC algorithm to identify protein complexes for its good performance and
short running time[14]. The gold standard essential protein set of yeast is also down-
loaded from MIPS database [21]. Its map in YDIP is named as YGS_EP in the
paper. YGS_EP includes 1130 essential proteins.

In this section, we first discuss the performance of our method ECC and the effect of
parameter a on the result. Then, we compare ECC method with six centrality methods
to verify that the accuracy in identifying essential proteins can be improved by adding
protein complexes information. At last, we compare ECC method with six centrality
methods in identifying low-connectivity essential proteins.

3.1 Identification of Essential Proteins by Integration of PPI Network Topology
and Protein Complexes Information

We apply ECC method to identify essential proteins by using the yeast PPI network and
yeast protein complex set. Tab.1 and Tab.2 show the effect of the variation of
parameter a and k on ECC when the protein complex set is YGS_PC and YCMC_PC

Algorithm ECC:
 Input: Undirected graph G=(V(G), E(G)),

Subgraph set Cset={Ci=(V(Ci), E(Ci))|Ci⊂G}, parameter a and k;
Output: Identified proteins
1, For each vertex vi∈V(G) do Complex_C(vi) = 0

// initialize all Complex_C(vi) as zero
2, For each subgraph Ci∈Csetdo
For vertex vi∈V(Ci) do Complex_C (vi)= Complex_C (vi)+ kin(vi, Ci)
 // calculate complex centrality of each vertex in Cset
3, Complex_Cmax=the maximum value in all Complex_C(vi)
4, For each vertex vi∈V(G) do calculate its SC value: SC(vi)
5, SCmax=the maximum value in all SC(vi)
6, For each vertex vi∈V(G) do

HC(vi) = a*SC(vi)/SCmax+ (1-a)*Complex_C (vi)/Complex_Cmax
7, Sort HC in decreasing order and output the first k proteins with highest HC value

18 J. Ren et al.

respectively. Parameter k is the number of identified proteins. In most paper of iden-
tifying essential proteins, the number of identified proteins is usually no more than 25%
number of total proteins [7,10]. We choose k value of 200, 400, 600, 800, 1000, 1200
according to it. Parameter a is the proportionality coefficient to harmonize SC value
and Complex_C value. ECC identifies essential proteins only by the SC value when
a=0, and only by the Complex_C value when a=1. Accuracy of the result is defined as
the ratio of the number of essential proteins in identified proteins to the number of
identified proteins.

Both Tab.1 and Tab.2 show, no matter which value parameter a takes, the number of
essential proteins is increasing with k value increase. Meanwhile the accuracy is
decreasing, which means that a protein with high centrality has more probability to be
an essential protein.

Both Tab.1 and Tab.2 show, no matter which value parameter k takes, the accuracy
is lowest when a=0. It means that no matter which protein complex set is used, the
accuracy is improved by adding the protein complex set information. Tab.1 and Tab.2
show that when a in the range of 0.2 to 0.8, the improvement is from 6.2% to 9.8% by
using YGS_PC and from 3.5% to 9.5% by using YCMC_PC. The improvement when
using YGS_PC is a little more than that when using YCMC_PC because YGS_PC has
higher confidence.

Table 1. The effect of the variation of parameter a and k on ECC by using YGS_PC

Number of essential proteins

 a
k 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

200 125 135 138 139 140 139 139 138 138 140 140

400 219 254 255 256 254 253 249 248 247 246 242

600 294 348 353 342 343 345 340 341 338 333 327

800 372 423 438 443 441 439 431 422 422 415 415

1000 436 502 518 519 519 519 519 519 519 519 444

1200 475 578 584 584 584 584 584 584 584 584 478

Accuracy(%)
 a
k

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

200 62.5 67.5 69.0 69.5 70.0 69.5 69.5 69.0 69.0 70.0 70.0

400 54.8 63.5 63.8 64.0 63.5 63.3 62.3 62.0 61.8 61.5 60.5

600 49.0 58.0 58.8 57.0 57.2 57.5 56.7 56.8 56.3 55.5 54.5

800 46.5 52.9 54.8 55.4 55.1 54.9 53.9 52.8 52.8 51.9 51.9

1000 43.6 50.2 51.8 51.9 51.9 51.9 51.9 51.9 51.9 51.9 44.4

1200 39.6 48.2 48.7 48.7 48.7 48.7 48.7 48.7 48.7 48.7 39.8

 Prediction of Essential Proteins by Integration of PPI Network Topology 19

Table 2. The effect of the variation of parameter a and k on ECC by using YCMC_PC

Number of essential proteins

a

k
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

200 125 126 132 136 140 141 142 143 142 142 142

400 219 244 253 256 256 257 256 256 256 256 258

600 294 344 343 343 344 343 343 343 343 343 340

800 372 418 412 413 411 411 411 412 412 412 413

1000 436 474 486 490 488 490 488 488 489 489 485

1200 475 550 550 553 552 552 552 552 552 552 541

Accuracy(%)

a

k
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

200 62.5 63.0 66.0 68.0 70.0 70.5 71.0 71.5 71.0 71.0 71.0

400 54.8 61.0 63.3 64.0 64.0 64.3 64.0 64.0 64.0 64.0 64.5

600 49.0 57.3 57.2 57.2 57.3 57.2 57.2 57.2 57.2 57.2 56.7

800 46.5 52.3 51.5 51.6 51.4 51.4 51.4 51.5 51.5 51.5 51.6

1000 43.6 47.4 48.6 49.0 48.8 49.0 48.8 48.8 48.9 48.9 48.5

1200 39.6 45.8 45.8 46.1 46.0 46.0 46.0 46.0 46.0 46.0 45.1

Tab.1 shows, no matter which value parameter k takes, the difference of accuracy is
less than 2% when a in the range of 0.2 to 0.8 and the optimum a value is also in the
range. Tab.2 shows, when k≥400, the difference of accuracy is less than 0.3% when a in
the range of 0.3 to 0.9. The optimum a value is also in the range when k=600 and
k≥1000. The optimum accuracy is 64.5% with a=1 when k=400 and 52.3% with a=0.1
when k=800. Comparison the optimum accuracy with the accuracy when a in the range
of 0.3 to 0.9, the difference is no more than 0.5% when k=400 and no more than 0.9%
when k=800. When k=200, the difference of accuracy is less than 1% when a in the
range of 0.5 to 1 and the optimum a value is also in the range. Conclusion above, we
can see that, no matter which protein complex set is used, the result of ECC method is
not much difference with the variation of a in the range of 0.3 to 0.8. So parameter a has
a good robustness in the range of 0.3 to 0.8. The possible reason is that many proteins
with high Complex_C value also have high SC value. As accuracy values in this range
are closed to the optimum accuracy value, the optimum a value is usually selected as its
medium value of 0.5.

3.2 Comparison with Six Centrality Methods in Identifying Essential Proteins

We apply our method ECC and six centrality methods on the yeast PPI network YDIP
and compare their performance in Tab.3 and Tab.4. Here, two results of ECC are
showed for two protein complex sets respectively. One is named as ECC1 with using
YGS_PC. Another is named as ECC2 with using YCMC_PC. The optimum result of six

20 J. Ren et al.

centrality methods is named as OC. As discussed in the section 3.1, parameter a in both
ECC1 and ECC2 are set as 0.5. Tab.3 shows the number of essential proteins selected
by ECC and six centrality methods. Tab.4 compares the accuracy of ECC method with
that of six centrality methods.

Tab.3 shows that, no matter which value k takes, the number of essential proteins of
ECC1 and ECC2 are both more than that of all six centrality methods. It means that, no
matter which protein complex set is used, the performance of ECC method is better
than that of six centrality methods. This is because ECC integrate both PPI network
topology information and protein complexes information but six centrality methods
only consider the topology of PPI network.

Tab.4 shows that, no matter which value k takes, accuracy of ECC1 and ECC2 are
both higher than that of six centrality methods. The improvement of ECC1 to OC is
from 9.7% to 15.5%. The improvement of ECC2 to OC is from 3.6% to 17.3%. The
accuracy of both ECC1 and ECC2 are improved most when k in the range of 400 to
600, which means ECC method has best performance when k takes medium value.
Tab.4 shows that when k<800, the improvement of ECC1 and ECC2 are not much
difference. The possible reason is that proteins with high Complex_C value of YGS_PC
overlap a lot with those of YCMC_PC. Tab.4 also shows that when k>=800, the im-
provement of ECC1 is much higher than that of ECC2. The possible reason is that the
confidence of protein complexes of YGS_PC is higher than that of YCMC_PC as
YGS_PC is obtained from experimental method and YCMC_PC is obtained from
computational method.

Table 3. Number of essential proteins selected by ECC(a=0.5) and six centrality methods

k DC IC EC SC BC CC OC ECC1 ECC2

200 103 109 123 125 83 90 125 (OC =SC) 139 141

400 203 208 216 219 164 178 219 (OC =SC) 253 257

600 298 302 293 294 247 263 302 (OC =IC) 345 343

800 381 390 369 372 323 334 390 (OC =IC) 439 411

1000 458 453 441 436 394 392 458 (OC =DC) 519 490

1200 533 528 490 475 460 453 533 (OC =DC) 584 552

Table 4. Accuracy of ECC(a=0.5) and six centrality methods

k 200 400 600 800 1000 1200

Accuracy (OC) 62.5% 54.8% 50.3% 48.8% 45.8% 44.4%

Accuracy (ECC1) 69.5% 63.3% 57.5% 54.9% 51.9% 48.7%

Accuracy (ECC2) 70.5% 64.3% 57.2% 51.4% 49.0% 46.0%

Accuracy (ECC1)- Accuracy (OC) 11.2% 15.5% 14.3% 12.5% 13.3% 9.7%

Accuracy (ECC2)- Accuracy (OC) 12.8% 17.3% 13.7% 5.3% 7.0% 3.6%
Note: Accuracy(ECC1) is the accuracy of ECC1.

 Prediction of Essential Proteins by Integration of PPI Network Topology 21

3.3 Comparison with Six Centrality Methods in Identifying Low-Connectivity
Essential Proteins

Many essential proteins are low-connectivity proteins. For example, in all 1130
essential proteins of YDIP, 577 of them (51%) are low-connectivity proteins. Here a
protein whose degree is less than the average degree of YDIP is considered as a
low-connectivity protein. However six centrality methods are connectivity-based de-
tection methods, which results low-connectivity essential proteins are neglected by
them.

Tab.5 shows the number and the percentage of low-connectivity essential proteins
that are selected by our method ECC and six centrality methods. Tab.5 shows that in six
centrality methods, SC has the best performance in selection low-connectivity essential
proteins. The number of low-connectivity essential proteins identified by SC is from 0
to 65 and that of ECC1 is from 3 to 149. It is as 2.3 to 9 times as that identify by SC
methods. The percentage of low-connectivity essential proteins identified by SC is
from 0% to 13.7% and that of ECC1 is from 2.2% to 26.0%. It is as 1.9 to 7.6 times as
that identify by SC method. All these show that the number and percentage of
low-connectivity essential proteins of ECC1 are both much more than those of six
centrality methods. However Tab.5 also shows that both them of ECC2 have not much
difference to those identified by SC method. Moreover, both them of ECC2 are less
than those identified by SC method when k≤800.

Table 5. Number and percentage of low-connectivity essential proteins selected by ECC and six
centrality methods

 k DC IC EC SC BC CC ECC1 ECC2

Number
of low-
connectivity
essential
protein

200 0 0 0 0 0 0 3 0

400 0 0 3 3 0 4 27 0

600 0 0 14 13 4 8 76 4

800 0 0 27 30 15 19 112 14

1000 0 0 49 48 27 35 135 53

1200 0 4 65 65 47 51 149 68

Percentage
of low-
connectivity
essential
protein

200 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.2% 0.0%

400 0.0% 0.0% 1.4% 1.4% 0.0% 2.2% 10.7% 0.0%

600 0.0% 0.0% 4.8% 4.4% 1.6% 3.0% 22.0% 1.2%

800 0.0% 0.0% 7.3% 8.1% 4.6% 5.7% 25.5% 3.4%

1000 0.0% 0.0% 11.1% 11.0% 6.9% 8.9% 26.0% 10.8%

1200 0.0% 0.8% 13.3% 13.7% 10.2% 11.3% 25.5% 12.3%

As we know, Complex_C is a local centrality calculated only by protein complex set.
A protein with a high Complex_C value probably has a low degree. These proteins may
be low-connectivity essential proteins and can be identified by ECC method as they
have high Complex_C value. As many proteins in YGS_PC have low degree, ECC can
identify many proteins with high Complex_C value and low degree by using YGS_PC.

22 J. Ren et al.

CMC algorithm identifies protein complexes as dense subgraphs, which results pro-
teins with high Complex_C values most have high degree when the complex set of ECC
is YCMC_PC. This is why ECC1 can identify more low-connectivity essential proteins
than six centrality methods but ECC2 cannot.

Tab.6 analyses low-connectivity essential proteins identified by ECC1 and SC.
Here, we name the set of essential proteins in ECC1 but not in SC as ECC-SC. As
shown in Tab.6, most low-connectivity essential proteins in ECC1 are in ECC1-SC. For
example, when k<=600, all low-connectivity essential proteins in ECC1 are in
ECC1-SC. It means most low-connectivity essential proteins of ECC1 are not identified
by centrality methods. Tab.6 also shows that the percentage of low-connectivity es-
sential proteins in ECC1-SC is increasing with k value increase and when k≥800 more
than half of proteins in ECC1-SC are low-connectivity essential proteins.

ECC identify essential proteins by ranking proteins according to their HC value and
outputting the top k proteins. HC is a harmonic centrality of SC and Complex_C. So
proteins with high Complex_C value and low SC value have medium HC value and are
in the middle queue. These proteins may be low-connectivity essential proteins and can
be identified by ECC method but not by SC method. This is why the percentage and
number of low-connectivity essential proteins in ECC1-SC are increasing with k value
increase.

Table 6. Analysis low-connectivity essential proteins identified by ECC1 and SC

k 200 400 600 800 1000 1200

Number of low-connectivity
essential proteins in ECC1 3 27 76 112 135 149

Number of low-connectivity
essential proteins in ECC1-SC 3 27 76 109 130 127

Number of essential proteins
in ECC1-SC 91 151 194 227 227 208

Percentage of low-connectivity
essential proteins in ECC1-SC 3.3% 17.9% 39.2% 48.0% 57.3% 61.1%

4 Conclusions and Future Work

By research the correlation of protein complexes and essential proteins, we find that the
proteins in complexes have more possibility to be essential proteins than proteins
selected by random. Thus, we define a local centrality, Complex_C, to evaluate the
importance of a protein in a complexes set. As protein’s essentiality also has high
correlation with the global structure of the PPI network, we integrate Complex_C value
and SC value into HC value to consider both protein complex information and PPI
network topology. Based on these, we propose a new method, ECC, to identify essen-
tial protein by ranking proteins according to HC value. We apply ECC method and six
centrality methods on YDIP and compare their performance. The experimental results
show that:

 Prediction of Essential Proteins by Integration of PPI Network Topology 23

1. Proportionality coefficient a of ECC has a good robustness. The performance of
ECC is not much difference when a in the range of 0.3 to 0.8 and the typical value
of a is selected as 0.5.

2. The prediction of essential proteins based on both network topology and protein
complex set is significantly better than that only based on network topology.
Comparison the result of ECC method with the optimum result of the six centrality
methods, 3.6% to 17.3% improvements are obtained.

3. Our method ECC has a significant improvement in the prediction of
low-connectivity essential proteins when using YGS_PC. The percentage of
low-connectivity essential proteins identified by SC method is highest in six cen-
trality methods and that identified by ECC method is as 1.9 to 7.6 times as it.
Moreover, most low-connectivity essential proteins identified by ECC method can
not be identified by SC method.

Acknowledgments. The authors would like to thank Liu GM and his colleagues for
sharing the tool of CMC. This work is supported in part by the National Natural Science
Foundation of China under Grant No.61003124 and No.61073036, the Ph.D. Programs
Foundation of Ministry of Education of China No.20090162120073, the Freedom
Explore Program of Central South University No.201012200124, the U.S. National
Science Foundation under Grants CCF-0514750, CCF-0646102, and CNS-0831634.

References

1. Kamath, R.S., Fraser, A.G., et al.: Systematic functional analysis of the Caenorhabditis
elegans genome using RNAi. Nature 421, 231–237 (2003)

2. Pal, C., Papp, B., Hurst, L.: Genomic function:Rate of evolution and gene dispensability.
Nature 411(6841), 1046–1049 (2003)

3. Zhang, J.Z., He, X.L.: Significant impact of protein dispens ability on the instantaneous rate
of protein evolution. Mol. Biol. Evol. 22(4), 1147–1155 (2005)

4. Kondrashov, F.A., Ogurtsov, A.Y., Kondrashov, A.S.: Bioinformatical assay of human gene
morbidity. Nucl. Acids Res. 32(5), 1731–1737 (2004)

5. Furney, S.J., Alba, M.M., Lopez-Bigas, N.: Differences in the evolutionary history of dis-
ease genes affected by dominantor recessive mutations. BMC Genomics 7, 165 (2006)

6. Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein-
networks. Nature 411, 41–42 (2001)

7. Li, M., Wang, J.X., Wang, H., Pan, Y.: Essential Proteins Discovery from Weighted
Protein Interaction Networks. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Raja-
sekaran, S. (eds.) ISBRA 2010. LNCS, vol. 6053, pp. 89–100. Springer, Heidelberg (2010)

8. He, X.L., Zhang, J.Z.: Why Do Hubs Tend to Be Essential in Protein Networks? PloS
Genetics 2(6), 826–834 (2006)

9. Zotenko, E., Mestre, J., O’Leary, D.P., Przytycka, T.M.: Why Do Hubs in the Yeast Protein
Interaction Network Tend To Be Essential: Reexamining the Connection between the
Network Topology and Essentiality. PLoS Comput. Biol. 4(8), 1–16 (2008)

10. Ernesto, E.: Virtual identification of essential proteins within the protein interaction network
of yeast. Proteomics 6(1), 35–40 (2006)

11. Chua, H.N., Tew, K.L., Li, X.L., Ng, S.-K.: A Unified Scoring Scheme for Detecting
Essential Proteins in Protein Interaction Networks. In: 20th ICTAI, vol. 2, pp. 66–73 (2008)

24 J. Ren et al.

12. Acencio, M.L., Lemke, N.: Towards the prediction of essential genes by integration of
nework topology, cellular localization and biological process information. BMC Bioin-
formatics 10, 290 (2009)

13. Hart, G.T., Lee, I., Marcotte, E.: A high-accuracy consensus map of yeast protein complexes
reveals modular nature of gene essentiality. BMC Bioinformatics 8, 236 (2007)

14. Liu, G.M., Wong, L., Chua, N.: Complex Discovery from Weighted PPI Networks. Bioin-
formatics 25(15), 1891–1897 (2009)

15. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks.
Science 296(5569), 910–913 (2002)

16. Jacob, R., Koschtzki, D., Lehmann, K.A., et al.: Algorithms for Centrality Indices. In:
Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 62–82. Springer,
Heidelberg (2005)

17. Mason, O., Verwoerd, M.: Graph theory and networks in biology. IET Systems Biolo-
gy 1(2), 89–119 (2006)

18. Estrada, E., Rodríguez-Velázquez, J.: Subgraph centrality in complex networks. Phys. Rev.
E. 71(5), 056103 (2005)

19. Milo, R., Itzkovitz, S., Kashtan, N., et al.: Super families of designed and evolved networks.
Science 303(5663), 1538–1542 (2004)

20. Xenarios, I., Salwínski, L., Duan, X.J., et al.: DIP, the Database of Interacting Proteins: a
research toolfor studying cellular networks of protein interactions. Nucleic Acids Res. 30,
303–305 (2002)

21. Mewes, H.W., Frishman, D., Gruber, C., et al.: MIPS: a database for genomes and protein
sequences. Nucleic Acids Res. 28, 37–40 (2000)

22. Radicchi, F., Castellano, C., Cecconi, F., et al.: Defining and identifying communities in
networks. Proc. Natl. Acad. Sci. USA 101(9), 2658–2663 (2004)

Computing the Protein Binding Sites

Fei Guo1 and Lusheng Wang2,�

1 School of Computer Science and Technology, Shandong University,
Jinan 250101, Shandong, China

2 Department of Computer Science, City University of Hong Kong,
83 Tat Chee Avenue, Kowloon, Hong Kong

cswangl@cityu.edu.hk

Abstract. Identifying the location of binding sites on proteins is of
fundamental importance for a wide range of applications including molec-
ular docking, de novo drug design, structure identification and compar-
ison of functional sites. Structural genomic projects are beginning to
produce protein structures with unknown functions. Therefore, efficient
methods are required if all these structures are to be properly annotated.
When comparing a complete protein with all complete protein structures
in the PDB database, experiments show that all the existing approaches
have recall values less than 50%. This implies that more than 50% of
real binding sites cannot be reported by those existing approaches. We
develop an efficient approach for finding binding sites between two pro-
teins. Our approach consists of three steps, local sequence alignment,
protein surface detection, and 3D structures comparison. Experiments
show that the average recall value of our approach is 82% and the pre-
cision of our approach is also significantly better than the existing ap-
proaches. The software package is available at http://sites.google.

com/site/guofeics/bsfinder.

Keywords: 3D protein structure, binding site prediction, surface detec-
tion, rigid transformation.

1 Introduction

Many methods have been proposed for identifying the location of binding sites
on proteins. Laurie[1] gave an energy-based method for the prediction of protein-
ligand binding sites. Bradford[2] have combined a support vector machine (SVM)
approach with surface patch analysis to predict protein-protein binding sites.
Chen[3] developed a tool 3D-partner for inferring interacting partners and bind-
ing models. 3D-partner first utilizes IMPALA to identify homologous structures
(templates) of a query protein sequence from heterodimer profile library. The se-
quence profiles of those templates are then used to search interacting candidates
of the query from protein sequence databases by PSI-BLAST. Lo[4] developed
a method for predicting helix-helix interaction from residue contacts in mem-
brane proteins. They first predict contact residues from sequences. Their paring
� Corresponding author.

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 25–36, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://sites.google.com/site/guofeics/bsfinder
http://sites.google.com/site/guofeics/bsfinder

26 F. Guo and L. Wang

relationships are further predicted in the second step via statistical analysis on
contact propensities and sequence and structural information. Li[8] proposed an
approach for finding binding sites for groups of proteins. It contains the following
steps: finding protein groups as bicliques of protein-protein interaction networks
(PPI), identifying conserved motifs, and searching domain-domain interaction
databases. Liu[13] extended the method of Li[8] and considered comparing 3D
local structures.

SuMo is a system for finding similarities in arbitrary 3D structures or sub-
structures of proteins. It is based on a unique representation of macromolecules
using selected triples of chemical groups [16]. The web server pdbFun analyzes
the structure and the function of proteins at the residue level. It has very flex-
ible and strong query functions that a query can involve all solvent-exposed,
hydrophilic residues that are not in alpha-helices and are involved in nucleotide
binding [18]. SiteEngine is a method that recognize the regions on the surface
of one protein that are similar to the binding sites of another. SiteEngine uses
geometric hashing triangles for transferring the input sites into the recognized
region [19]. When comparing a complete protein with all complete protein struc-
tures in the PDB database, experiments show that all the existing approaches
[16,18,19] have recall values less than 50% implying that more than 50% of real
binding sites cannot be reported by those existing approaches.

In this paper, we develop an efficient approach for finding binding sites be-
tween two proteins. Our approach consists of three steps, local sequence align-
ment, protein surface detection, and 3D structures comparison. Experiments
show that the average recall value of our approach is 82% and the precision of
our approach is also significantly better than the existing approaches.

2 Methods

Given two complete protein structures, our task is to find the binding sites be-
tween the two proteins. Our method contains three steps. Firstly, we do local se-
quence alignment at the atom level to get the alignments of conserved regions.
Those alignments of conserved regions may contain some gaps. Secondly, among
the conserved regions obtained in Step 1, we use the 3D structure information to
identify the surface segments. Finally, for any pair of the surface segments identi-
fied in Step 2, we compute a rigid transformation to compare the similarity of the
two substructures in 3D space and output the qualified pairs as binding sites.

When computing the rigid transformations, we treat each protein as a molecule
with some volume and introduce a method to ensure that the two whole protein
3D structures have no overlap under such a rigid transformation in 3D space.

2.1 Step 1: Local Sequence Alignment

In PDB format files, each residue (amino acids) is represented in the traditional
order of atom records N, CA, C, O, followed by the side chain atoms (CB, CG1,
CG2 . . .) in order first of increasing remoteness, and then branch. The whole
protein sequence of residues can be translated into a sequence of atoms based

Computing the Protein Binding Sites 27

Fig. 1. The pairs of binding sites between 1tu4D and 5p21A

on this representation. The sequences of binding sites between two proteins are
usually conserved at the atom level. When looking at the SitesBase, we know
that the pair of binding sites forms a conserved region that are well aligned at the
atom level, where atoms of the same types are matched and all the unmatched
atoms correspond to gaps. Fig. 1 is the result of SitesBase for proteins 1tu4D and
5p21A, where the sequences of atoms of the pairs of binding sites are aligned.

Based on this observation, we use the standard Smith-Waterman’s local align-
ment algorithm [21] to find the conserved regions, where a matched pair of atoms
with the same type has a score 1, a mismatched two atoms with different types
has a score −∞, a mismatch between an atom and a space has a score −2.
The local alignment algorithm will return a set of conserved segments in the
alignment of the two protein sequences of atoms.

We have done many experiments and find that the set of conserved segments
output by the local sequence alignment algorithm always contains all the pairs
of binding sites in the SitesBase. The only problem is that the local sequence
alignment algorithm outputs too many matched pairs of atoms. For example,
for the two proteins 1tu4D and 5p21A, the local sequence alignment algorithm
outputs four segments with 279 atoms. The first segment consists of residues
20-37 from 1tu4D and residues 3-20 from 5p21A, where 116 pairs of atoms are
matched. The second segment consists of residues 75-81 from 1tu4D and residues
57-63 form 5p21A, where 49 pairs of atoms are matched. The third segment
consists of residues 130-139 from 1tu4D and 113-122 from 5p21A, where 66
pairs of atoms of them are matched. The fourth segment consists of residues
161-167 from 1tu4D and residues 143-149 from 5p21A, where 48 pairs of atoms
are matched. The first pair of confirmed binding site in SitesBase, residues 28-
35 from 1tu4D and residues 11-18 from 5p21A is included in the first segment
output by the local sequence alignment algorithm, the second pair of binding site
in SitesBase, residues 133-137 from 1tu4D and residues 116-120 from 5p21A, is
included in the third segment output by the local sequence alignment algorithm,

28 F. Guo and L. Wang

and the third pair of confirmed binding site in SitesBase, residues 162-165 from
1tu4D and residues 144-147 from 5p21A, is included in the fourth segment.

After obtained the set of conserved segments from the local sequence align-
ment, we will focus on the columns with identical pairs of atoms and ignore the
rest of columns in the remaining steps. Next we will further reduce the matched
pairs of atoms by using the following steps.

2.2 Step 2: Identifying Surface Segments

Firstly, we discretize the 3D Euclidean space by setting a grid of size 1Å. A
grid point is protein point if the point is within 2Å distance of an atom in the
protein. A grid point is an empty point if it is not protein point. A grid point is
an interior point if all its six neighbor grid points are the protein points. A grid
point is a surface point if at least one of the six neighbor grid points is not the
protein point. An atom in the protein is a surface atom if it is within distance
1.5Å of a surface point. Fig. 2 gives an example, where the dark grid points are
surface points.

For a conserved segment output by the local sequence alignment, we consider
all its subsegments containing at least 15 matched pairs of atoms. For such a
subsegment, if both sequences on this subsegments have at least 2/3 atoms as
the surface atoms, we then treat such a subsegment as a candidate binding site
for further process in the next step.

Fig. 2. The surface grid points are indicated by the dark points

2.3 Step 3: Computing Rigid Transformations to Match Candidate
Binding Sites

For any candidate binding sites obtained after Step 1 and Step 2, we will further
test if the pair of 3D substructures can match well on such a site. Precisely, we

Computing the Protein Binding Sites 29

will find the set of subsegments of a given segment of alignment A that there
exists a rigid transformation such that the distance between the two atoms in
the same column of the subsegment is at most d, where d is a parameter given by
the user. This requires us to solve the following 3D protein structure matching
problem:

Input: A segment of sequence alignment A of two proteins, where each position
in the alignment has two identical atoms, the 3D coordinate of each atom in the
alignment, and a threshold d,

Goal: find the set of subsegment of A such that for each output subsegment the
Euclidean distance between the two atoms in the same column of the alignment
is at most d.

The 3D protein structure matching problem can be solved in several ways.
Here we use the method in [22] which is a faster version of the method in [9] to
solve the problem. The method in [22] can compute a rigid transformation such
that the distance between each matched pair of atoms is at most (1 + ε)d, where
ε = 0.1 is a parameter to control the precision of the transformation. This is just
an approximate rigid transformation, and it is good enough in practice.

Testing the overlap of the two proteins in 3D space. When computing
the rigid transformation, we also require that the two proteins do not overlap
under the rigid transformation. For each rigid transformation that can match
the two substructures of the candidate subsegment, we test if the two proteins
have overlap in 3D space under such a transformation as follows:

1. construct the grid in 3D space and name each grid point as interior point,
surface point and empty point as in Step 2 with respect to each of the two given
proteins.

2. Let X be the number of grid points that are interior points for both proteins
and X1 and X2 be the number of interior point of the first protein and the
second protein, respectively. If X ≤ 0.05×min{X1, X2}, then we say that there
is no overlap between the two proteins under the current rigid transformation
and we output the matched pair of substructures as the predicted binding sites.
Otherwise, we have to give up the rigid transformation.

3 Implementation

We have implemented the algorithms in Java. The software package can run on
both Windows and Linux. Bsfinder can complete four different operations: (1)
find the binding sites between two different proteins; (2) find the binding sites
between a given protein and all the proteins in a database; (3) search the sites
in a complete protein structure; and (4) find the binding sites between different
chains of the same protein. Our program outputs the matched 3D structures in
the PDB format, and users can view them by Jmol.

30 F. Guo and L. Wang

4 Results

4.1 Comparison with Existing Methods

In this section, we compare our program BsFinder with three existing programs
SiteEngine, SuMo, and pdbFun. They used different methods to predict the
binding sites of given proteins. SiteEngine (http://bioinfo3d.cs.tau.ac.il/
SiteEngine/) is a method that recognize the regions on the surface of one
protein that are similar to the binding sites of another, and geometric hashing
triangles are used for transferring the input sites into the recognized region. [19].
SuMo (http://sumo-pbil.ibcp.fr/cgi-bin/sumo-welcome) is a system for
finding binding sites onto query structures, by comparing the structure of triplets
of chemical groups against the binding sites found in PDB database [16]. The web
server pdbFun (http://pdbfun.uniroma2.it) locates binding sites in proteins
at the residue level, and it analyzes structural similarity between any pair of
residue selections [18].

To compare our program BsFinder with the three existing systems, we use
all the proteins in PDB database and select 55 proteins to search the whole
database. Note that the Structural Classification of Proteins (SCOP) database
(http://scop.mrc-lmb.cam.ac.uk/scop/index.html) in [15] aims to provide
a detailed and comprehensive description of the structural and evolutionary rela-
tionships between all proteins whose structures are known. It provides 11 classes
to separate all known protein folds. Each class contains several different fami-
lies. We choose 5 proteins (containing binding sites) from each class in different
families such that there is only one entry from each family, and the 55 proteins
are shown in Table. 1. We use these 55 proteins to search the whole database.
Since BsFinder allows user to give the value of d, we set the threshold d = 1.5Å
and output the matched sites with at least 15 atoms.

Table 1. 55 proteins from PDB database

1c52 8gss 256b 8ick 4vhb 2bpv 2rto 2trm 2xat 1jju

4fx2 5p21 2dub 3man 6dfr 1j6w 3pyp 1e1v 1oiy 3bu4

1t9g 7cat 1jx4 1cy6 1sk6 1h2s 1ddt 1u19 1ppj 1ntm

7ins 1ki0 1ptr 1gmn 1f4l 1g9b 1jsh 1mg1 1s1c 1kwx

1izl 1dwl 1ffx 3ldh 2yhx 1go9 1hth 1lxf 2prg 1h2k

1g8x 1jy4 1k09 1abz 1l6x

4.2 Evaluation of Prediction

To calculate the precision and recall for each approach, we need to know which
pair of binding sites output by the programs is real. Here we look at SitesBase
(http://www.modelling.leeds.ac.uk/sb/) in [17], which holds the set of the
known binding sites found in PDB. The precision is defined as the number of
sites output by the program that are confirmed in SitesBase divided by the total

(http://bioinfo3d.cs.tau.ac.il/SiteEngine/)
(http://bioinfo3d.cs.tau.ac.il/SiteEngine/)
(http://sumo-pbil.ibcp.fr/cgi-bin/sumo-welcome)
(http://pdbfun.uniroma2.it)
(http://scop.mrc-lmb.cam.ac.uk/scop/index.html)
(http://www.modelling.leeds.ac.uk/sb/)

Computing the Protein Binding Sites 31

number of sites output by the program, where a output pair of sites is confirmed
in SitesBase if at least two complete residues of the output pair of sites are the
same as the pair of binding sites in SitesBase. As the pairs of sites output by
SuMo are very short, a pair of sites output by SuMo is confirmed if it has at least
one residue which is identical to that in SitesBase. Ideally, all the pairs of sites
output by the program are confirmed in SitesBase, in the case, the precision is
100%. Apparently, the bigger the precision is, the better the program is. The
recall is defined as the number of sites output by the program that are confirmed
in SitesBase divided by the total number of binding sites for the input proteins
in SitesBase. If all the binding sites for the pair of input proteins in the SitesBase
can be output by the program, then the recall is 100%. Again, the bigger the
recall is, the better the program is.

We use the 55 selected proteins described in Section 4.1 to search the whole
PDB database. The average numbers of the sites output by BsFinder, SiteEngine,
SuMo, and pdbFun are 6425, 6003, 6329, and 1936, respectively. On average,
pdbFun outputs the smallest number of sites and the other three systems output
approximately the same number of sites. The average numbers of the confirmed
sites output by BsFinder, SiteEngine, SuMo, and pdbFun are 2218, 1265, 674,
and 281, respectively. See Fig. 3(a).

We calculate the precision and recall for 55 proteins output by four programs.
Apparently, BsFinder has the biggest precision and recall for most of the cases.
On average, the precision of BsFinder is 34% while the precision for SiteEngine,
SuMo, and pdbFun are 21%, 11%, and 15%, respectively. The average recall
of BsFinder is 82% while the average recall for SiteEngine, SuMo, and pdbFun
are 47%, 25%, and 11%, respectively. See Fig. 3(b). The value of recall is very
important in practice. The value 11% of recall means that 89% of real binding
sites in SitesBase are not output by the program. From the experiments results,
we know that for the existing programs, the biggest problem is their lower val-
ues of recall. Though BsFinder has a recall value 82%, still there are 18% of
real binding sites in SitesBase are missing. Most of the 18% missing binding
sites of BsFinder are ”blur” sites, e.g., most of the missing matched pairs con-
tain lots (more than 5 atoms) of gaps. It is challenging to increase the value
of recall.

4.3 Comparison of Running Time

To compare the running times of different programs, we use a Pentium(R) 4
(CPU of 2.40GHz) to run all the four programs. Based on the 55 selected pro-
teins, the average running times of BsFinder, SiteEngine, SuMo, and pdbFun
for searching the whole PDB database are roughly 50 minutes, 70 minutes, 30
minutes, and 5 minutes, respectively. See Table. 2. Thus, BsFinder is the second
slowest program. However, it is still faster than SiteEngine which has the highest
average precision and recall among the three existing programs.

32 F. Guo and L. Wang

Fig. 3. (a)The average numbers of the output sites (black bar) and the confirmed sites
(gray bar) for BsFinder, SiteEngine, SuMo, and pdbFun; (b)The average precision
(black bar) and recall (gray bar) for BsFinder, SiteEngine, SuMo, and pdbFun

Table 2. Comparison of four programs

RunningT ime Precision Recall

BsFinder 50 minutes 34% 82%
SiteEngine 70 minutes 21% 47%
SuMo 30 minutes 11% 25%
pdbFun 5 minutes 15% 11%

4.4 Performance of Programs for Different Families

To see the performance of programs for different protein families, we select five
proteins from three different families (G proteins family in P-loop folds, PYP-like
family in Profilin-like folds, and FAD-linked reductases family in FAD/NAD(P)-
binding folds). The average numbers of pairs of matched sites output by BsFinder
for three families are 7680, 5289, and 7892, respectively. The average confirmed
output pairs of sites in SitesBase for three families are 3487, 1132, and 4138,
respectively. The average values of the precision for the three families are 45%,
21% and 53%, respectively. The average values of the recall for the three families
are 94%, 60% and 96%, respectively. The results are shown in Fig. 4.

G proteins family in P-loop folds
We select 5 proteins (1a2b, 1cxz, 1dpf, 1ftn, 1s1c) from G proteins family in P-
loop folds. The precision values of BsFinder (48%, 46%, 43%, 42% and 47%) are
bigger than that of other three programs. The recall values of BsFinder (95%,
93%, 92%, 91% and 99%) are more than 90%, while the recall values of the other
three programs are almost less than 40%.

PYP-like family in Profilin-like folds
We select 5 proteins (1d7e, 1f9i, 1kou, 1nwz, 2phy) from PYP-like family in
Profilin-like folds. The precision values of BsFinder (17%, 18%, 24%, 25% and
21%) are similar to that of the other three programs. The recall values of Bs-
Finder (58%, 64%, 59%, 63% and 57%) are bigger than that of other three
programs.

Computing the Protein Binding Sites 33

Fig. 4. (a)The average numbers of the sites output by BsFinder (black bar) and the
confirmed sites (gray bar) for three different families; (b)The average precision (black
bar) and recall (gray bar) for three different families

Fig. 5. (a)The average numbers of the output sites (black bar) and the confirmed sites
(gray bar) for BsFinder, SiteEngine, SuMo, and PAST; (b)The average precision (black
bar) and recall (gray bar) for BsFinder, SiteEngine, SuMo, and PAST

FAD-linked reductases family in FAD/NAD(P)-binding folds
We select 5 proteins (1b4v, 1b8s, 1coy, 1ijh, 3cox) from FAD-linked reductases
family in FAD/NAD(P)-binding folds. The precision values of BsFinder (54%,
52%, 53%, 53% and 54%) are all more than 50%. The recall values of BsFinder
(97%, 96%, 96%, 96% and 98%) are very close to 100%.

4.5 Search a Binding Site in PDB

The four programs, BsFinder, SiteEngine, SuMo, and PAST [20] can search a
binding site on a set of complete proteins. PAST (http://past.in.tum.de/)
is a program for finding the binding sites from the protein structures similar to
the given binding site. It is based on an adaptation of the generalized suffix tree
and relies on a linear representation of the protein backbone [20].

We randomly select the 100 binding sites from the SitesBase and search the
whole PDB database. The average numbers of the sites output by BsFinder,
SiteEngine, SuMo, and PAST are 274, 266, 399, and 281, respectively. The av-
erage numbers of the confirmed sites output by BsFinder, SiteEngine, SuMo,
and PAST are 106, 73, 72, and 58, respectively. BsFinder finds a relatively small
number of output sites, and the number of confirmed sites output by BsFinder

(http://past.in.tum.de/)

34 F. Guo and L. Wang

is the biggest. The average number of output sites and confirmed sites are shown
in Fig. 5(a).

The average precision of BsFinder is 39% while the average precision for
SiteEngine, SuMo, and PAST are 27%, 22%, and 24%, respectively. The av-
erage recall of BsFinder is 86% while the average recall for SiteEngine, SuMo,
and PAST are 58%, 51%, and 45%, respectively. The average precision and recall
of the 100 binding sites are shown in Fig. 5(b).

5 Discussion

In the first step of our algorithm, we do sequence alignment where each letter
is an atom. This allows the matched pairs of sites to have some missed atoms.
The following statistic data show that Step 1 is important.

The gaps in binding sites
The gap distribution of the matched pairs of sites reported by BsFinder is shown
in Fig. 6. Among the output matched pairs of sites, 67127 of them do not contain
any gap, 63593 of them contain one gap, 77725 contain two gaps, 81259 contain
three gaps, 38863 contain four gaps, 21198 contain five gaps and 3533 contain
more than five gaps. The gap distribution of the confirmed sites are 18285 (no
gap), 19504 (one gap), 26809 (two gaps), 26809 (three gaps), 15847 (four gaps),
12197 (five gaps) and 2452 (more than five gaps).

Fig. 6. The gap distributions of the output sites (black bar) and the confirmed sites
(gray bar)

The power of surface detection
In Step 2 of our algorithm, we identify the surface atoms in the input proteins and
rule out the substructures in which less than 2/3 of atoms are the surface atoms
for further calculation of the rigid transformation. To demonstrate the effect of
Step 2, we compare the final version of BsFinder with the version without Step
2. By adjusting the parameters, the final version of BsFinder has improved pre-
cision while the recall value remains essentially unchanged. The precision values
for BsFinder without Step 2 and the final version of BsFinder are 29% and 34%,
respectively. The recall values for BsFinder without Step 2 and the final version of
BsFinder are 83% and 82%, respectively. See Fig. 7. Therefore, by doing Step 2 the
precision value can be improved by about 5%. This is a significant improvement.

Computing the Protein Binding Sites 35

Fig. 7. The average precision (black bar) and recall (gray bar) for BsFinder without
Step 2 and the final version of BsFinder

6 Conclusion

We have developed a program for finding pairs of binding sites for input proteins.
Our method uses the 3D structure information to detect the similar regions.
Experiments show that our program outperforms all existing programs.

Acknowledgement

FG and LW are fully supported by a grant from the Research Grants Council
of the Hong Kong Special Administrative Region, China [Project No. CityU
121608].

References

1. Laurie, A.T., Jackson, R.M.: Q-SiteFinder: an energy-based method for the pre-
diction of protein-ligand binding sites. Bioinformatics 21, 1908–1916 (2005)

2. Bradford, J.R., Westhead, D.R.: Improved prediction of protein-protein binding
sites using a support vector machines approach. Bioinformatics 21, 1487–1494
(2004)

3. Chen, Y.-C., Lo, Y.-S., Hsu, W.-C., Yang, J.-M.: 3D-partner: a web server to infer
interacting partners and binding models. Nucleic Acids Research 35, W561–W567
(2007)

4. Lo, A., Chiu, Y.-Y., Rodland, E.A., Lyu, P.-C., Sung, T.-Y., Hsu, W.-L.: Predicting
helix-helix interactions from residue contacts in membrane proteins. Bioinformat-
ics 25, 996–1003 (2008)

5. Siew, N., Elofsson, A., Rychlewski, L., Fischer, D.: Maxsub: an automated measure
for the assessment of protein structure prediction quality. Bioinformatics 16(9),
776–785 (2000)

6. Zemla, A.: LGA: a method for fnding 3D similarities in protein structures. Nucl.
Acids Res. 31(13), 3370–3374 (2003)

7. Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein struc-
ture template quality. Proteins: Structure, Function, and Bioinformatics 57(4),
702–710 (2004)

36 F. Guo and L. Wang

8. Li, H., Li, J., Wong, L.: Discovering motif pairs at interaction sites from protein
sequences on a proteome-wide scale. Bioinformatics 22(8), 989–996 (2006)

9. Li, S.C., Bu, D., Xu, J., Li, M.: Finding largest well-predicted subset of pro-
tein structure models. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS,
vol. 5029, pp. 44–55. Springer, Heidelberg (2008)

10. Pennec, X., Ayache, N.: A geometric algorithm to find small but highly similar 3D
substructures in proteins. Bioinformatics 14, 516–522 (1998)

11. Fischer, D., Bachar, O., Nussinov, R., Wolfson, H.: An efficient automated com-
puter vision based technique for detection of three dimensional structural motifs
in proteins. J. Biomol. Struct. Dynam. 9, 769–789 (1992)

12. Bachar, O., Fischer, D., Nussinov, R., Wolfson, H.: A computer vision based tech-
nique for sequence independent structural comparison of proteins. Protein Eng. 6,
279–288 (1993)

13. Liu, X., Li, J., Wang, L.: Modeling protein interacting groups by quasi-bicliques:
complexity, algorithm and application. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 7(2), 354–364 (2010)

14. Jambon, M., Imberty, A., Deleage, G., Geourion, C.: A new bioinformatic approach
to detect common 3D sites in protein structures. Proteins 52, 137–145 (2003)

15. Murzin, G., Brenner, E., Hubbard, T., Chothia, C.: SCOP: a structural classifica-
tion of proteins database for the investigation of sequences and structures. J. Mol.
Biol. 247, 536–540 (1995)

16. Jambon, M.: The SuMo server: 3D search for protein functional sites. Bioinformat-
ics 21, 3929–3930 (2005)

17. Gold, N.D., Jackson, R.M.: SitesBase: a database for structure-based protein-ligand
binding site comparisons. Nucleic Acids Res. 34(suppl. 1), D231–D234 (2006)

18. Ausiello, G.: pdbFun: mass selection and fast comparison of annotated PDB
residues. Nucleic Acids Res. 137, W133–W137 (2005)

19. Shulman-Peleg, A.: Recognition of functional sites in protein structures. J. Mol.
Biol. 339, 607–633 (2004)

20. Täubig, H., Buchner, A., Griebsch, J.: PAST: fast structure-based searching in the
PDB. Nucleic Acids Res. 34, W20–W23 (2006)

21. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences.
Journal of Molecular Biology 147, 195–197 (1981)

22. Guo, F., Wang, L., Yang, Y., Lin, G.: Efficient Algorithms for 3D Protein Sub-
structure Identification. In: The International Conference on Bioinformatics and
Biomedical Engineering (2010)

23. Huang, B., Schröder, M.: LIGSITEcsc: predicting ligand binding sites using the
Connolly surface and degree of conservation. BMC Struct. Biol. 6, 19–29 (2006)

24. Henrich, S.: Computational approaches to identifying and characterizing protein
binding sites for ligand design. Journal of Molecular Recognition 23(2), 209–219
(2010)

SETTER - RNA SEcondary sTructure-based

TERtiary Structure Similarity Algorithm

David Hoksza1 and Daniel Svozil2

1 Charles University in Prague, FMP, Department of Software Engineering,
Malostranské nám. 25, 118 00, Prague, Czech Republic

hoksza@ksi.mff.cuni.cz

http://siret.ms.mff.cuni.cz/hoksza
2 Institute of Chemical Technology Prague, Laboratory of Informatics and

Chemistry, Technická 5, 166 28 Prague, Czech Republic
daniel.svozil@vscht.cz

http://ich.vscht.cz/~svozil

Abstract. The recent interest in function of various RNA structures, re-
flected in the growth of solved RNA structures in PDB, calls for methods
for effective and efficient similarity search in RNA structural databases.
Here, we propose a method called SETTER (RNA SEcondary
sTructure-based TERtiary structure similarity) based on partitioning
of RNA structures into so-called generalized secondary structure units
(GSSU). We introduce a fast similarity method exploiting RMSD-based
algorithm allowing to assess distance to a pair of GSSU, and a method
for aggregating these partial distances into a final distance corresponding
to structural similarity of the examined RNA structures. Our algorithm
yields not only the distance but also a superposition allowing to visu-
alize the structural similarity. Comparative experiments show that our
proposed method is competitive with the best existing solutions, both in
terms of effectiveness and efficiency.

Keywords: RNA, RNA secondary structure, RNA tertiary structure,
RNA structural similarity.

1 Introduction

The primary components of living organisms - nucleic acids and proteins -
are biopolymers, long linear molecules composed from the sequence of build-
ing blocks called monomers. While proteins are the active elements of cells, the
instruction for their synthesis is stored in deoxyribonucleic acid (DNA). DNA is
a biopolymer consisting of four types of units called nucleotides. Each nucleotide
is composed from three parts: one of four possible bases (adenine (A), guanine
(G), cytosine (C), thymine (T)), a sugar deoxyribose, and a phosphate group.
Gene - the DNA sequence serving as a prescription for protein synthesis (ex-
pression) - determines which protein will be expressed in the organism in the
given time at the given place. The bases within base-pairs are stabilized at their
positions by the chemical interaction called hydrogen bond. In DNA the bases

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 37–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://siret.ms.mff.cuni.cz/hoksza

38 D. Hoksza and D. Svozil

are complementary meaning that A pairs always with T, and C with G forming
the so-called canonical (or Watson-Crick) base-pairs.

DNA is too valuable material to be used directly in the protein expression.
Instead, the genetic information is first transcribed into another type of nucleic
acid - ribonucleic acid RNA. The basic building blocks of RNA are similar to
that of DNA with two important exceptions: thymine is substituted by uracil
(U), and deoxyribose by ribose. Unlike DNA, most RNA molecules are single-
stranded. However, the RNA chain is not stretched in biological conditions,
instead it maintains a distinct 3D arrangement called conformation (or fold).
The biological function of RNA is directly related to its conformation, and the
study of 3D structure of biopolymers generally is very important for better
understanding of the inner workings of living organisms. Resolved structures
(i.e. xyz coordinates of all atoms in the molecule) are deposited into the PDB
database [4] that is available free of charge to broad scientific community.

Single-stranded RNA molecules adopt very complex 3D structures, as the
presence of ribose introduces additional hydrogen bonding site allowing for for-
mation of various non-canonical base pairs [22]. RNA structure is hierarchical [5],
and can be divided into primary (RNA sequence), secondary, tertiary and quater-
nary levels. RNA secondary structure motifs [17], that are stable independently
of their 3D folds, can be defined as double helices combined with various types
of loop structures, and they can be categorized based on the mutual positions
of these simple elements. A single loop connecting the end of helix is a hairpin
loop, two single strands linking a pair of double-helical segments comprise an
internal loop (if one of these links is of zero length a bulge loop is formed),
and three or more double-helical segments linked by a single-strand sequences
form a junction loop. RNA motifs have been classified according to function,
3D structure or tertiary interaction in the SCOR (Structural classification of
RNA) database [20,27]. The SCOR classification system is based on the Di-
rected Acyclic Graph (DAG) to reflect the fact, that RNA structural elements
can have several distinct features and may belong to multiple classes. Charac-
terization of secondary RNA motifs is important and it finds application in such
areas as RNA design [18,9], RNA structure prediction [25], RNA modeling [10] or
RNA gene finding [7]. RNA plays a variety of essential roles in many cellular pro-
cesses, including enzymatic activity [26], protein synthesis regulation [12], gene
transcriptional regulation [2,11] and chromosome replication [12,16]. The knowl-
edge of RNA 3D structure is indispensable for characterizing of such functions,
and thus the ultimate goal remains the prediction of the tertiary structure.

Currently (January 2011), the PDB database stores 1980 RNA structures.
Such a wealth of data allows the analysis and characterization of the RNA struc-
tural space, which may help to characterize RNA function. Since 3D structure is
typically more evolutionary conserved than sequence, detecting structural simi-
larities between RNA molecules can bring insights into their function that would
not be detected by sequence information alone. The development of automatic
tools capable of efficient and accurate RNA structural alignment and comparison
has become an important part of structural bioinformatics of RNA. Detecting

SETTER 39

structural similarities between two RNA (or protein) molecules at the tertiary
level is a difficult task that has been shown to be NP-hard [21]. Therefore cur-
rently available software tools for comparing two RNA 3D structures, such as
ARTS [13,14], DIAL [15], iPARTS [28], SARA [6] , SARSA [8] or LaJolla [3],
are all based on some heuristic approaches.

The best existing approaches SARA and iPARTS to which SETTER is com-
pared will now be briefly described. The SARA program represents distances
among selected atoms as unit vectors existing in the unit spheres. All-to-all
unit-vector RMS distances of consecutive unit spheres are computed and used
as scoring matrix for subsequent dynamic programming based global alignment.
Dynamic programming is also employed in iPARTS algorithm in which 3D RNA
structures are represented as 1D sequences of 23 possible symbols, each of which
corresponds to the distinct backbone conformational family.

In this paper, we propose a new pairwise RNA comparison method based
on 3D similarity of the so-called general secondary structure units (GSSU) re-
sembling secondary structure motifs. Each of the compared RNA structures
is divided into non-intersecting set of GSSUs. For a pair of GSSUs, similarity
measure is introduced based on executing multiple RMSD transformations on
particular subsets from the GSSUs. The measure is then normalized to obtain
the resulting distance/similarity (we will use the terms distance and similarity
interchangeably throughout the text) of a pair of GSSUs. If the compared RNA
structures contain more GSSUs, all-to-all distances are computed and aggrega-
tion takes place resulting in the pairwise RNA structure comparison. We show in
the experimental section that our method outperforms SARA and iPARTS both
in accuracy and runtime. Moreover, in SETTER there is essentially no limit on
the size of aligned structures. This is in contrast with SARA and iPARTS which
are (due to the use of dynamic programming) limited to structures having at
most 1,000 and 1,900 nucleotides, respectively.

2 Method Principles

For the purpose of our method, each nucleotide in an RNA structure is repre-
sented by its C4′ atom although any other backbone atom could be utilized.
RNA structure is represented as a set of GSSUs that can be regarded as fun-
damental units of RNA structure. In contrast to the basic secondary structure
motifs, GSSUs contain more information by comprising larger subsets of RNA.
These subsets represent meaningful RNA partitioning being easy to work with.

Definition 1. Let R be an RNA structure with nucleotide sequence {ni}n
i=1

and let WC ⊂ R denote set of ni participating in a Watson-Crick base pair. By
generalized secondary structure unit (GSSU) G, we understand a pair of
substrings of R, {ni}i2

i=i1
and {ni}j2

i=j1
(i1 ≤ i2 < j1 ≤ j2) of maximum lengths

such that each nucleotide nx:

– i1 ≤ x ≤ i2 : nx /∈ WC or nx is paired with ny where j1 ≤ y ≤ j2
– j1 ≤ x ≤ j2 : nx /∈ WC or nx is paired with ny where i1 ≤ y ≤ i2

40 D. Hoksza and D. Svozil

Fig. 1. 4 extracted GSSUs for RNA structure with PDB code 1EXD. The sequence
starts at the 5’ end and the colored numbers denote order of GSSU generation (number
color corresponds with the respective GSSU’s color). Note that, as GSSU 4 indicates,
GSSU does not have to be comprised of a continuous chain of nucleotides but it has to
correspond to the conditions of the Def. 1.

Let imax and jmin be highest indices of the Watson-Crick paired bases. We define
loop as L = {ni}jmin−1

i=imax+1 ⊂ R and stem as R \ L and neck as the pair
{nimax , njmin}.

Note that even a structure without a single Watson-Crick pair has a GSSU which
is identical with the structure itself. Usually, a GSSU looks like a hairpin motif
but compared to hairpin, GSSU can contain bulges and internal loops within its
stem part (see e.g. Fig. 1).

Due to the limited space, we will only briefly describe the GSSU extraction al-
gorithm instead of showing its exact version. In general, extraction processes an
RNA structure in the order of its sequence generating GSSUs based on the pres-
ence/absence of Watson-Crick hydrogen bonding pattern of each nucleotide1.
We differentiate two states — GSSU generation is proceeding and GSSU gener-
ation does not take place. If GSSU is not being generated, the nucleotides are
pushed on the stack to be processed later. If a nucleotide hydrogen-bonded to
the nucleotide in the stack is identified during the process of GSSU generation,
all non hydrogen-bonded nucleotides lying between them and the boundary nu-
cleotides are added to the GSSU. The process of GSSU G is finished when a pair
{nt1, nt2} is found where nt2 /∈ G. An example of GSSUs found in the structure
of glutamine tRNA (PDB code 1EXD) is shown in Fig. 1.

2.1 Single GSSU Pairwise Comparison

When SETTER compares structures consisting of multiple GSSUs, pairwise
GSSU comparison is employed. Therefore, single GSSU comparison can be viewed
as the principle component of SETTER.

Each GSSU is represented by the ordered set of 3D coordinates enhanced with
bonding and nucleotide/atom type information. The common way how to assess
1 To obtain hydrogen bonding information from PDB files, we used the 3DNA util-

ity [24,23].

SETTER 41

similarity of two sets X and Y of points is to define pairing between them. The
sets are then superposed by finding such translation and rotation that the mu-
tual distances of individual paired points are minimized. Usually, the root mean
square deviation (RMSD) is chosen as the distance measure, because there exists
a polynomial time algorithm able to optimally superpose two structures given a
pairing/alignment [19]. However, finding the optimal alignment is a hard prob-
lem. To evaluate the quality of alignments that can potentially be a part of global
alignment SETTER uses Kabsch [19] RMSD algorithm. The search for the opti-
mal superposition (including search for the optimal alignment) is NP-hard [21].
Because trying each possible alignment is not computationally feasible, suitable
alignments with potential to participate in optimal alignment should be identified.
That is the principle idea behind SETTER’s structure comparison process.

The nucleotides participating in necks of two GSSUs should not be missed
in the optimal alignment. Otherwise stated, to superpose two GSSUs means to
match their loops which implies also matching their necks. By matching necks,
one can unambiguously superpose the structures in two dimensions but since in
reality GSSUs exist in three dimensional space, at least three points are needed to
define the superposition. We call these points triplet, and an alignment is formed
by matching these points between two processed structures. Two matched points
are further referred to as a ”pair”. Therefore, SETTER aligns necks and then
tries to align each pair of loops’ nucleotides one by one. The loop pair defines
final pair in the triplet necessary to superpose the GSSUs. For example, if two
GSSUs having loops consisting of n and m nucleotides to be aligned, n × m
alignments are generated (see Figure 2)

For each of the proposed alignments, a rotation matrix and a translation vec-
tor defining optimal superposition of the triplets is generated and subsequently
used to superpose the whole GSSU. After that, nearest neighbor from the second
GSSU in 3D space is identified for each nucleotide, and their distance is added
to the overall distance of the two GSSUs. Finally the distance is normalized. The
whole process can be formalized by equation 1.

Fig. 2. Alignment of GSSU from tRNA domain of transfer-messenger RNA (PDB
code 1P6V) with GSSU from glutamine tRNA (PDB code 1EXD). The final structural
alignment is defined by three nucleotide pairs forming a triplet (the red lines 1, 2,
and 3). To find an optimal superposition for the given neck pairs (lines 1 and 3), the
position of the middle pair is varied (line 2).

42 D. Hoksza and D. Svozil

NNζ(x,G) =
{

min1≤i≤|G|{dnt(x,Gi)} × ζ if x = y
min1≤i≤|G|{dnt(x,Gi)} otherwise

γ(GA,GB) =
|GA|∑
i=1

{
1 if NN1(GA

i,GB) ≤ ε
0 otherwise

δ(GA,GB) = min
t∈T

{ |GA|∑
i=1

NNα(GA
i, τ(GB, t))}

}

Δ(RA,RB) = Δ(GA,GB) =
δ(GA,GB)

min {|GA|,|GB|} × (1 + ||GA|−|GA||
min {|GA|,|GB|})

γ(GA, τ(GB, topt))

(1)

In the formula, GA (identified with an RNA structure RA) and GB (identified
with an RNA structure RB) represent the GSSUs to be compared, Gi stands for
i-th nucleotide in the nucleotide sequence of G and |G| for its length. NN(x,G)
is the Euclidean distance from a nucleotide x to its nearest neighbor in G. If x
and its nearest neighbor have identical type, the distance is modified by factor
ζ. δ computes the raw distance - T is a set of transpositions resulting from the
candidate alignments and τ(G, t) transposes GSSU G using the transposition t.
The normalized distance Δ then employs function γ counting number of nearest
neighbors within the distance ε of the optimal transposition topt.

The whole process can be summarized in the following four steps:

1. Identify candidate set of alignments of triplet pairs (two nucleotides from
neck, one from loop).

2. Compute superpositions (i.e. set of rotation matrices and translations vec-
tors) for each of the alignments.

3. For each rotation matrix and translation vector superpose the structures.
4. For each superposition identify nearest neighbors, sum the distances to get

δ and normalize it to obtain the final distance Δ.

Sometimes identification of hydrogen bonds may not be correct and the real neck
position within the GSSU is shifted. Therefore, SETTER also tries to simulate
the neck shift by aligning the residues next to (under) the necks. Finally, when
aligning the neck {nA

1 , nA
2 } of a GSSU A with then neck {nB

1 , nB
2 } of a GSSU B it

is not clear in which direction the loops are oriented in 3D space (whether the cor-
rect alignment is {{nA

1 , nB
1 }, {nA

2 , nB
2 }} or {{nA

1 , nB
2 }, {nA

2 , nB
1 }}) and therefore

both possibilities are investigated. These tweakings are necessary for accurate
GSSU comparison, however they slightly increase the running time of SETTER.

Though in most cases the GSSU comprises of a stem and a loop, it is not a
strict rule, as demonstrated in Fig. 1, GSSU number 4. Two particular situations
can occur — GSSU has a zero-sized loop or the RNA does not have a single
hydrogen bond (i.e., it does not have a secondary structure at all). In case
of GSSU without the loop we select the third nucleotide for triplet alignment

SETTER 43

from the stem and we vary its position within the stem. When dealing with a
GSSU having no secondary structure, several triplets covering whole structure
are formed and used for the alignment.

2.2 Multiple GSSU Structure Comparison

For the comparison of RNA structures containing multiple GSSUs we utilized a
straightforward solution. Consider the comparison of RNA structures RA and
RB consisting of nA and nB GSSUs. We modify the Δ definition in the following
way:

Δ(RA,RB) = min
1≤i≤nA
1≤j≤nB

{
GA

i ,GB
j

}
× (1 + |nA − nB|) × β (2)

We compute all-to-all distances between the GSSUs and we choose the pair
with minimal distance. Moreover, we multiply the distance by the difference in
GSSUs count to favor structures with similar number of GSSU. The parameter
β allows more distinct separation. Increasing value of β more noticeably favors
similar-sized structures (in our experiment, we use β = 2).

SETTER uses only pairwise GSSU comparisons for matching RNA structures
of any size including the largest ones such as ribosomal subunits. Since the
mutual GSSU positions are rigid, the optimal superposition for a pair of GSSUs
defines superposition for the whole structures which can be easily visualized
(Fig. 3).

Fig. 3. The superposition of structures from 23S ribosomal RNA having PDB codes
1NWY:0 (2880 nucleotides, 84 GSSUs, blue) with 1SM1:0 (2880 nucleotides, 83 GSSUs,
red) - RMSD = 2.43.

44 D. Hoksza and D. Svozil

Though our solution follows the KISS principle (Keep It Simple and Stupid),
it has several advantages over more elaborate approaches based for example
on finding maximal common subgraphs in the network of interactions between
individual GSSUs. Not only it is much faster, but it also allows to use effective
early termination mechanism leading to additional speed improvements. This
mechanism is introduced in the following section.

3 Speed Up

The nearest neighbor search process needed for Δ computation is highly ex-
pensive since it has O(n2) time complexity with respect to the GSSU’s length.
Moreover, the process has to be done for each of the candidate alignment, notice-
ably decreasing efficiency of SETTER. Therefore we implemented simple early
termination condition into the SETTER’s GSSU comparison process. We iden-
tify alignments that are not likely part of the optimal superposition and for these
alignments the nearest neighbor search is skipped. Because the superposition was
optimized for the aligned triplets, their distance will be low compared to other
nucleotides in the structure and they will very likely stay nearest neighbors also
after the superposition of the whole GSSUs. Thus, Δ of the triplet-based GSSUs
will be probably lower then Δ of the GSSU from which they come. If we align
a triplet T A ⊂ GA with a triplet T B ⊂ GB with Δ(GA,GB) = χ being the best
result so far, the comparison computation can be terminated (i.e., we do not
identify all the nearest neighbors) if Δ(T A, T B) × λ > χ. Since the early termi-
nation is a heuristic (Δ(T A, T B) < Δ(GA,GB) does not have to be valid), we
strengthen the early termination condition by introducing the parameter λ ≥ 1.
By varying the λ parameter, the trade-off between accuracy and speed can be
set. In case of multiple GSSU comparison, the speed-up can be even more no-
ticeable. The scope of χ variable can span multiple GSSU pairwise comparisons
since we are searching for the minimum distance among all pairs of GSSUs. Such
an approach can further emphasize the effect of the early termination condition.

4 Experimental Results

In order to evaluate SETTER and to compare it with other solutions we run
test on datasets introduced in [6]. It contains three datasets — FSCOR, T-
FSCOR, R-FSCOR based on functional classification obtained from the SCOR
database [20], version 2.0.3. The FSCOR contains all RNA chains with more
than three nucleotides with unique functional classification. The R-FSCOR is a
structurally dissimilar subset of the FSCOR. The T-FSCOR set contains struc-
tures from the FSCOR set not present in the R-FSCOR set. Using these datasets
we can evaluate quality of RNA similarity method in terms of functional assign-
ment/classification ability. The task is to assign the functional (i.e. SCOR) clas-
sification to the query RNA structure by comparison with a database of classified
RNA structure. Specifically, we performed two experiments — a leave-one-out
test on the FSCOR dataset and a test assigning functions to structures from the
T-FSCOR with the R-FSCOR serving as the database set.

SETTER 45

When comparing functions of two RNA structures, we differentiate between
possessing identical and possessing similar function. Two structures have identi-
cal function if they share the deepest SCOR classification. If they do not agree
at the deepest level but share classification at the parent level, they are said to
have similar function.

In our experiments, we compute ROC curves and their AUC (area under the
ROC curve) that is considered to be a robust indicator of quality of a classifier [1].
ROC is computed such that for each query we identify the most similar database
structure (nearest neighbor) and the distance to it. The nearest neighbors for
all queries are sorted according to their distances, and a distance threshold is
varied from the most similar to the most dissimilar pair to generate points of the
ROC curve. For a given threshold we identify number of structure pairs above
the threshold with identical/similar function and denote them as true positives
(TP). Rest of the above-threshold structures are denoted as false positives (FP).
If P (positives) is the number of pairs with identical/similar function in the whole
result set and N (negatives) the number of pairs with different functions, then
FP
N is called false positive ratio and TP

P true positive ratio. The ROC curve
consists of false positive ratio (x-axis) vs true positive ratio (y-axis) points.

Throughout the experimental section SETTER is used with following settings
— α = 0.2, β = 2, ε = 4 Å and λ = 1 (see sections 2.1, 2.2 and 3 for details).

In Fig. 4, ROC curves of SETTER and iPARTS on FSCOR (Fig. 4a) and T-
FSCOR (Fig. 4a) datasets are compared. We can see that on the FSCOR dataset,
SETTER outperforms iPARTS with AUC equal to 0.74 (identical function) and
0.93 (similar function) in case of SETTER. iPARTS achieves AUC of 0.72 for
identical function and of 0.92 for similar function. For SARA, only AUC values
were presented in [6] being 0.61 and 0.83, respectively. When testing the T-
FSCOR set against the R-FSOR set, SETTER is outperformed by iPARTS as
is demonstrated by ROC curves in Fig. 4a. Specifically, AUC values are equal
to 0.70 and 0.88 in case of SETTER, and to 0.77 and 0.90 in case of iPARTS.
The results of SARA on the T-FSCOR set were again worse then the results of
both SETTER and iPARTS — 0.58 for identical function and 0.85 for similar
function.

We also carried out experiments measuring running time of SARA, SETTER
and iPARTS. The runtime of SETTER was measured on Linux machine with 4
Intel(R) Xeon(R) CPUs E7540, 2GHz (the algorithm is not parallelized) and 132
GB of RAM (although the average memory size needed for an RNA structure
from the FSCOR set is less then 3.3 MB) running Red Hat Linux. Runtime of
SARA and iPARTS were taken from the output of their web interfaces. Thus,
the comparison is only approximate. However, the variations between SETTER
and SARA/iPARTS are substantial (Tab. 1) and can not be attributed to the
hardware differences only.

Table 1 shows times of all-to-all comparisons on four data sets. Note the
difference between SETTER and iPARTS for growing structure size. It can be
seen that SETTER’s runtime grows more or less linearly with the size of the
structure, in contrast to iPARTS where the growth is quadratical. That stems

46 D. Hoksza and D. Svozil

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SETTER (identical)
SETTER (similar)
iPARTS (idnetical)
iPARTS (similar)

(a) FSCOR

False positive rate
Tr

ue
 p

os
iti

ve
 r

at
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SETTER (identical)
SETTER (similar)
iPARTS (idnetical)
iPARTS (similar)

(b) T-FSCOR vs R-FSCOR

Fig. 4. ROC curves of SETTER and iPARTS

Table 1. Runtime comparison of iPARTS, SARA and SETTER. The tRNA set con-
tains structures 1EHZ:A, 1H3E:B, 1I9V:A, 2TRA:A and 1YFG:A structures (average
length 76 nucleotides), Ribozyme P4-P6 domain contains 1GID:A, 1HR2:A and 1L8V:A
(average length 157 nucleotides), Domain V of 23S rRNA contains 1FFZ:A and 1FG0:A
(average length 496 nucleotides) and 16S rRNA contains 1J5E:A and 2AVY:A (average
length 1522 nucleotides).

data set iPARTS SARA SETTER

tRNA 1.1 s 1.7 s 0.1 s
Ribozyme P4-P6 domain 2.6 s 9.2 s 1.8 s
Domain V of 23S rRNA 17.0 s ? 2.1 s
16S rRNA 2.8 min ? 8.1 s

In time of writing this paper, the SARA program was not able to handle

sets Domain V of 23S rRNA and 16S rRNA.

from iPARTS use of dynamic programming when searching for the alignment of
1D representations of the compared structures. In its original version, SETTER
also uses O(n2) nearest neighbor identification procedure, but since it employs
the speed optimization (λ = 1), the runtime of the algorithm, especially for large
structures, is noticeably downsized.

5 Conclusion

In this paper, we have proposed a fast method for effective comparison of two
RNA structures. The comparison is based on reasonably selected subsets of the
nucleotide sequence resembling common secondary structure motifs. These sub-
sets are then compared in three-dimensional space. Our method outperforms
best existing solutions while maintaining high search speed.

SETTER 47

In future, we would like to improve efficiency of our method by designing more
sophisticated pruning method. We would also like to improve the effectivity by
implementing multiple GSSU alignment and by introducing statistical methods,
such as expectancy, into the classification process.

Acknowledgments. This work was supported by Czech Science Foundation
project Nr. 201/09/0683 and by the Ministry of Education of the Czech Republic
MSM6046137302.

References

1. Baldi, P., Brunak, S.A., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing
the accuracy of prediction algorithms for classification: an overview. Bioinformat-
ics 16(5), 412–424 (2000)

2. Bartel, D.: MicroRNAs: Genomics, Biogenesis, Mechanism, and Function.
Cell 116(2), 281–297 (2004)

3. Bauer, R.A., Rother, K., Moor, P., Reinert, K., Steinke, T., Bujnicki, J.M., Preiss-
ner, R.: Fast structural alignment of biomolecules using a hash table, n-grams and
string descriptors. Algorithms 2(2), 692–709 (2009)

4. Berman, H.M., Westbrook, J.D., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1),
235–242 (2000)

5. Brion, P., Westhof, E.: Hierarchy and dynamics of rna folding. Annual Review of
Biophysics and Biomolecular Structure 26(1), 113–137 (1997)

6. Capriotti, E., Marti-Renom, M.A.: Rna structure alignment by a unit-vector ap-
proach. Bioinformatics 118, i112–i118 (2008)

7. Carter, R.J., Dubchak, I., Holbrook, S.R.: A computational approach to identify
genes for functional RNAs in genomic sequences. Nucl. Acids Res. 29(19), 3928–
3938 (2001)

8. Chang, Y.-F., Huang, Y.-L., Lu, C.L.: Sarsa: a web tool for structural alignment
of rna using a structural alphabet. Nucleic Acids Res. 36(Web-Server-Issue), 19–24
(2008)

9. Chworos, A., Severcan, I., Koyfman, A.Y., Weinkam, P., Oroudjev, E., Hansma,
H.G., Jaeger, L.: Building programmable jigsaw puzzles with RNA. Sci-
ence 306(5704), 2068–2072 (2004)

10. Ditzler, M.A., Otyepka, M., Šponer, J., Walter, N.G.: Molecular Dynamics and
Quantum Mechanics of RNA: Conformational and Chemical Change We Can Be-
lieve In. Accounts of Chemical Research 43(1), 40–47 (2010)

11. Dorsett, Y., Tuschl, T.: siRNAs: applications in functional genomics and potential
as therapeutics. Nature Rev. Drug Discovery 3, 318–329 (2004)

12. Doudna, J.A.: Structural genomics of RNA. Nat. Struct. Biol. 7 suppl., 954–956
(2000)

13. Dror, O., Nussinov, R., Wolfson, H.: ARTS: alignment of RNA tertiary structures.
Bioinformatics 21(suppl. 2) (September 2005)

14. Dror, O., Nussinov, R., Wolfson, H.J.: The ARTS web server for aligning RNA
tertiary structures. Nucleic Acids Res. 34(Web Server issue) (July 2006)

15. Ferrè, F., Ponty, Y., Lorenz, W.A., Clote, P.: Dial: a web server for the pairwise
alignment of two rna three-dimensional structures using nucleotide, dihedral angle
and base-pairing similarities. Nucleic Acids Res. 35(Web-Server-Issue), 659–668
(2007)

48 D. Hoksza and D. Svozil

16. Hannon, G.J., Rivas, F.V., Murchison, E.P., Steitz, J.A.: The expanding universe
of noncoding RNAs. Cold Spring Harb. Symp. Quant Biol. 71, 551–564 (2006)

17. Hendrix, D.K., Brenner, S.E., Holbrook, S.R.: RNA structural motifs: building
blocks of a modular biomolecule. Q. Rev. Biophys. 38(3), 221–243 (2005)

18. Jaeger, L., Westhof, E., Leontis, N.B.: TectoRNA: modular assembly units for the
construction of RNA nano-objects. Nucleic Acids Res. 29(2), 455–463 (2001)

19. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta
Crystallographica Section A 32(5), 922–923 (1976)

20. Klosterman, P.S., Tamura, M., Holbrook, S.R., Brenner, S.E.: SCOR: a Structural
Classification of RNA database. Nucleic Acids Res. 30(1), 392–394 (2002)

21. Kolodny, R., Linial, N.: Approximate protein structural alignment in polynomial
time. Proc. Natl. Acad. Sci. USA 101(33), 12201–12206 (2004)

22. Leontis, N.B., Westhof, E.: Geometric nomenclature and classification of RNA base
pairs. RNA 7(4), 499–512 (2001)

23. Lu, X.-J., Olson, W.K.: 3DNA: a versatile, integrated software system for the
analysis, rebuilding and visualization of three-dimensional nucleic-acid structures.
Nature Protocols 3(7), 1213–1227 (2008)

24. Lu, X.-J.J., Olson, W.K.: 3DNA: a software package for the analysis, rebuild-
ing and visualization of three-dimensional nucleic acid structures. Nucleic Acids
Res. 31(17), 5108–5121 (2003)

25. Shapiro, B., Yingling, Y., Kasprzak, W., Bindewald, E.: Bridging the gap in RNA
structure prediction. Current Opinion in Structural Biology 17(2), 157–165 (2007)

26. Staple, D.W., Butcher, S.E.: Pseudoknots: RNA structures with diverse functions.
PLoS Biology 3(6) (June 2005)

27. Tamura, M., Hendrix, D.K., Klosterman, P.S., Schimmelman, N.R., Brenner, S.E.,
Holbrook, S.R.: SCOR: Structural Classification of RNA, version 2.0. Nucleic Acids
Res. 32(Database issue) (January 2004)

28. Wang, C.-W., Chen, K.-T., Lu, C.L.: iPARTS: an improved tool of pairwise align-
ment of rna tertiary structures. Nucleic Acids Res. 38(suppl.), W340–W347 (2010)

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 49–60, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Prediction of Essential Genes by Mining Gene Ontology
Semantics

Yu-Cheng Liu1, Po-I Chiu1, Hsuan-Cheng Huang2, and Vincent S. Tseng1,3

1 Department of Computer Science and Information Engineering, National Cheng Kung
University, No.1, University Road, Tainan City 701, Taiwan, R.O.C.

2 Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National
Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112 Taiwan, R.O.C.

3 Institute of Medical Informatics, National Cheng Kung University, No.1, University Road,
Tainan City 701, Taiwan, R.O.C.

uchenliu@gmail.com, rtgo@idb.csie.ncku.edu.tw,
hsuancheng@ym.edu.tw, tsengsm@mail.ncku.edu.tw

Abstract. Essential genes are indispensable for an organism’s living. These
genes are widely discussed, and many researchers proposed prediction methods
that not only find essential genes but also assist pathogens discovery and drug
development. However, few studies utilized the relationship between gene func-
tions and essential genes for essential gene prediction. In this paper, we explore
the topic of essential gene prediction by adopting the association rule mining
technique with Gene Ontology semantic analysis. First, we proposed two fea-
tures named GOARC (Gene Ontology Association Rule Confidence) and GOC-
BA (Gene Ontology Classification Based on Association), which are used to
enhance the classifier constructed with the features commonly used in previous
studies. Secondly, we use an association-based classification algorithm without
rule pruning for predicting essential genes. Through experimental evaluations
and semantic analysis, our methods can not only enhance the accuracy of essen-
tial gene prediction but also facilitate the understanding of the essential genes’
semantics in gene functions.

Keywords: Data Mining, Gene Ontology, Essential Gene, Association Rule
Mining.

1 Introduction

Essential genes are required for sustaining cellular life. A cell will decease if we de-
lete any one of these genes. Owing to this significant reason, they will be the key to
understanding the levels of organization of living systems. Furthermore, it will help
direct drug development if we can discriminate these genes in pathogens.

Most of previous studies for essential gene prediction were focused on sequence
features (such as phyletic retention, gene size, and others) and topological characteris-
tics (of various biological networks including protein-protein interaction network,
gene regulatory network, and metabolic network). However, few studies utilized the
relationship between gene functions and essentiality for essential gene prediction. As

50 Y.-C. Liu et al.

we know, it could be difficult since the description of gene functions is complicated
and their relationship to gene essentiality is still unclear.

In this paper, we explore the topic of essential gene prediction by adopting associa-
tion rule mining techniques with Gene Ontology [9] semantic analysis. We proposed
two novel features named GOARC (Gene Ontology Association Rule Confidence) and
GOCBA (Gene Ontology Classification Based on Association) and used them to en-
hance the classifier that utilizes the features reported previously. Besides, we applied
the CBA (Classification Based on Associations) [13] algorithm without rule pruning
to increase the capability of essential gene prediction. Through experimental evalua-
tions and semantic analysis, it is shown that our methods can not only increase the
accuracy of essential gene prediction but also facilitate the understanding of the es-
sential genes’ semantics in gene functions. Furthermore, our results could help biolo-
gists elucidate the gene functions closely related to gene essentiality.

The remainder of this paper is organized as follows. In Section 2, we give a brief
review of the related work. We demonstrate our proposed method for essential gene
prediction in Section 3. Section 4 shows the results of performance evaluation and
discussion of the discovered association rules. Concluding remarks are made in
Section 5.

2 Related Work

In this section we will introduce four studies on essential gene prediction for Saccha-
romyces cerevisiae and some researches related to our work.

2.1 Essential Gene Prediction

Gustafson et al. (2006) [7] used feature selection with conditional mutual information
[5] to integrate comparative genomics, sequence information, protein-protein interac-
tion network and so on. Afterwards, they used Naïve Bayes classifier based on the
Orange machine learning package [4] to predict the essential genes after the feature
selection process. Phyletic retention is the most discriminative feature that they uti-
lized in this study. In the analysis result of a later study [12], the gene duplicability
which describes the likelihood of a gene having more paralogs has obviously relation-
ship on essential gene.

Seringhaus et al. (2006) [15] used the Saccharomyces cerevisiae protein sequence
information to build an essential gene prediction model named Caveats. This model
includes 7 classifier based on WEKA software package [8]. Afterwards, they applied
it to the closely related yeast Saccharomyces mikatae which is relatively unstudied on
gene essentiality. In this study, they proposed CLOSE_STOP_RATIO and
RARE_AA_RATIO. Unfortunately, these did not have an obvious effect on the
prediction.

Acencio et al. (2009) [1] proposed an integrated network of gene interactions that
combined the protein-protein interaction network, gene regulation network and meta-
bolism network. Afterwards, they use the high level GO term from GO-Slim and the
topological feature on the integrated network of gene interactions to build the classifi-
er. They used a meta-classifier "Vote", a WEKA’s implementation of the
voting algorithm that combines the output of 8 decision tree classifiers. Base on the

 Prediction of Essential Genes by Mining Gene Ontology Semantics 51

experimental result, they found that the number of protein physical interactions, the
nuclear localization of proteins and the number of regulating transcription factors are
the most critical factors for the essential gene determination. But, this study has some
disadvantages. First, not all of biologic network are complete. Besides, the metabolic
network did not have an especially good ability for prediction. Secondly, these bi-
ologic networks have much regulation information can be discuses on it more than
topology. Thirdly, only using some GO terms of GO-Slim is insufficient. Taking in to
consider the relation between GO terms and other features may have a strong proba-
bility to improve the prediction ability.

Hwang et al. (2009) [10] used a lot of topological features based on protein-protein
interaction network. Afterwards, they used SVM (support vector machine) to predict the
essential gene base on these features. The proposed clique level, essentiality index,
neighbors’ intra degree and GO common function degree have good prediction ability.
Besides, clique level has a similar concept with protein complex. Therefore, there is a
strong probability to have a relationship between essential genes and gene functions.

2.2 Association Rule Mining

Association rule mining was first proposed by Agrawal et al. [2] [3]. It was used to
analyze large databases to discover meaningful hidden patterns and relationships. An
association rule is an explication in the form X => Y, where X and Y are different sets
of items. X is the LHS (left hand side) and Y is the RHS (right hand side) of the rule.
This means that Y can possibly occur where X occurs. There are two crucial thre-
sholds to examine the importance of a rule, minimum support and minimum confi-
dence. The support of a rule is the frequency that X and Y occur together in a transac-
tion. If the frequency is larger than the minimum support, it is a frequent itemset. The
confidence of a rule is the frequency that Y occurs when X occurs. If the frequency is
larger than the minimum confidence, it becomes an association rule.

2.3 Frequent Closed Itemset Mining

Too many redundant rules are the main disadvantage of association rule mining.
Therefore, frequent closed itemset mining is a usual way to solve this problem. An
itemset Z is a frequent closed itemset if it is frequent and there exists no proper item-
set containing Z with the same support. Therefore, closed itemset mining can obtain
simple rules with the same information meaning. Besides, CLOSET [14] and CLO-
SET+ [16] are popular and efficient algorithms for this purpose.

2.4 Classification Based on Associations

Utilizing association rules to solve the prediction problem was first proposed by Liu
et al. [13] with CBA (Classification Based on Associations) algorithm. It has two
stages: the CAR (classification association rule) discovering and classification model
building of CBA algorithm.

In the first stage, CBA utilizes the Apriori-based strategy to discover the frequent
itemset from frequent 1 to frequent k which fit with the minimum support threshold.
Afterwards CBA utilize the frequent pattern to discover the CARs. Besides, it utilizes
the rule pruning strategy of C4.5 to delete the unsuitable rules for the prediction.

52 Y.-C. Liu et al.

In the second stage, we utilize the CBAM1 strategy of CBA to given precedence
for each CAR from last stage. The precedence is the kernel in this stage. The first
precedence of GOCBA is the rule with higher confidence is more significant. If the
rule have the same confidence value, then the rule with higher support is more signifi-
cant. If the rules still have the same order, then the rule with fewer items in the LHS is
more significant. Owing to the rule has less items in the LHS is more easily to be
matched. Afterwards, when process the prediction of each unknown gene. It will try
to match the rule in the order of precedence.

3 Materials and Methods

In this study, we utilized association rule mining to discover the gene functions that
are required for sustaining cellular life. We can understand the essential genes’ se-
mantics in gene functions. Furthermore, base on these rules to extract two features
named GOARC and GOCBA and appling CBA algorithm for the essential gene pre-
diction. Detailed illustrations of the method are given below.

3.1 GO Association Rule Classifier

We use Gene Ontology for the essential gene prediction, which can be divided in to
two stages as follow: “transaction transformation” and “association rule mining”.

Transaction transformation: In this stage, we transform the annotated GO term
of each gene in to association rule transaction data format. The annotated GO term of
each gene is assigned as a transaction. Each annotated GO term in the transaction is
assigned as a transaction item. Besides, essentiality for each gene is also assigned as a
transaction item in its transaction. For example, suppose we have an annotated infor-
mation table for each gene as the Table 1 indicates. Besides, we encode annotated GO
terms and essential or non-essential as a unique id as the Table 2 indicates. Therefore,
we can transform the annotate information table as transaction data format as the
Table 3 indicates. For example, YIL100W is an essential gene and annotated in GO
term GO:0000910 and GO:0005515 in Table 1. Suppose, Essential, GO:0000910 and
GO:0005515 had been encoded as 1, 3 and 7 reference from the encoded table in
Table 2. Therefore, YIL100W will be a transaction which has encoded items 1, 3 and
7 as shown in Table 3. And so on, we can transform all the genes in Table 1 into
Table 3 as transaction data for the association rule mining process in the next stages.

Table 1. An example of annotate information table

Gene Annotated GO terms Class
YIL100W GO:0000910,GO:0005515 Essential

YNR067C
GO:0005576,GO:0007109,GO:0009277,GO:0030428,

GO:0042973
Non-Essential

YBL083C GO:0003674,GO:0005575,GO:0008150 Non-Essential
YJL152W GO:0003674,GO:0005575,GO:0008150 Non-Essential
YNR044W GO:0000752,GO:0009277,GO:0050839 Essential

 Prediction o

T

Tabl

Y
Y

Y

Fig. 1

Association rule minin
such as CLOSET+ to disco
main purpose of this stage
Therefore, we extract the ru
As the Figure 1 indicates, it
represent the essential. In
whether the unknown gen
{2,4,5}→{156,233} witho
{339,340}→{0,253} contai
tion rule mining stage, we c

3.2 Features GOARC an

In this paragraph we introd
from the GO association ru
like SVM. The procedure o
“sort rule set” and “rule ma

Rule filtering. Owing to
tion is utilizing association
stage, we only extract the p
association rule mining (GO

Sort rule set. Because of
rules in the rule matching st

of Essential Genes by Mining Gene Ontology Semantics

Table 2. An example of encode table

Item Item Code
Non- Essential 0

Essential 1
GO:0000910 2

… …
GO:0050839 n

le 3. Example of transaction data format

Gene Transaction Data
YIL100W 1,3,7
YNR067C 0,2,156,333,468,2991

… …
YNR044W 1,8,156

1. GO association rule extraction example

ng. In this stage, we utilize the association rule algorit
over the close itemsets and association rules. Owing to
is utilizing association rules for essential gene predicti

ules whose RHS are only contain essential or non-essent
tem code “0” represent the non-essential and item code
the prediction stage, we can use these rules to estim

ne is essential or non-essential. For example, the r
out contain item code “0” or “1”. Besides, the r
ins item code “253” beyond “0” and “1”. After the assoc
can prediction the unknown gene based on these rules.

nd GOCBA

duce two features named GOARC and GOCBA extrac
les. These can be utilized for many classifiers, for exam

of GOARC and GOCBA can be divided as “rule filterin
atching” three stages as fallow.
o the main purpose of GOARC and GOCBA feature extr
n rue for essential gene prediction. Therefore, for the n
positive rules (RHS is essential) from the rules set after
O Association Rule Classifier) process.
f each gene could possibly be matched with several posi
age. Therefore, we must sort all the positive rules depend

53

thm
the

ion.
tial.
“1”

mate
rule
rule
cia-

cted
mple
ng”,

rac-
next
GO

itive
ding

54 Y.-C. Liu et al.

on the precedence of each rule. In the rule matching stage, we can extract the GOARC
or GOCBA feature value from the matched rule which has most precedence. The prece-
dence of sorting is the main difference between GOARC and GOCBA. The first prece-
dence of GOCBA is the rule has higher confidence is more significant. If the rule has
the same confidence value, then the rule has higher support is more significant. If the
rules still have the same order, then the rule has less items in the LHS is more signifi-
cant. Owing to the rule has less items in the LHS is more easily to be matched. Besides,
the first precedence of GOARC is the rule has more items in the LHS is more signifi-
cant. If the rule have the same quantity in the LHS, then the rule with higher confidence
is more significant. GOARC is preferred to find the specific rules.

Rule matching. In this stage, the predicted gene will compare its encoded anno-
tated GO term with the LHS of each positive rule in order until matched. Further-
more, the GOCBA feature value is obtain from the confidence of first matched rule,
as the example in the Figure 2 indicates. Besides, the GOARC feature value is obtain
from the matched rule which has the maximum value of formula 1. The matched
percentage increase, the predict gene is more fit with the matched rule, as the example
in the Figure 3 indicates.

 (1)

Fig. 2. The example of GOCBA extraction

Fig. 3. The example of GOARC extraction

3.3 Data for Evaluation

The information of Saccharomyces cerevisiae like sequence information, GO, GO-
Slim and so on are downloaded from Saccharomyces Genome Database [2]. The
essential gene information of Saccharomyces cerevisiae is referenced in previous
study [6] [17]. The dataset has 3606 genes, composed of 957 essential and 3606 non-
essential ones. On average, each gene was annotated in 4.9 GO terms.

}
)(

)(
{max)(j

iGO

jGO

j
RuleofConfidence

Genen

Rulen
iGOARC ×=

 Prediction of Essential Genes by Mining Gene Ontology Semantics 55

Table 4. Encode table of previous studies

Symbol Previous works
S Seringhaus et al.’06
G Gustafson et al.’06
H Hwang et al.’09
A Acencio et al.’09

We adopt the LibSVM [6] with RBF kernel as the SVM algorithm. Furthermore,

utilize CLOSET+ algorithm that from Illinois Data Mining System [1] as association
rule mining method. The support count threshold is defined as 3 (approximate to
0.1%). Besides, minimum confidence is defined as 70%.

We divided 70% of the original data of both target class to train the prediction me-
thod, the remainder data is used as testing data to measure the prediction ability. Ow-
ing to the number of essential genes is obviously less than non-essential genes in the
data. We adopt the down sampling method for the training data in the sampling condi-
tion. The process is repeated (sampling, training and testing) 100 times to get the
average evaluation result for each prediction method.

Besides, to have a clear evaluation result in the table, we encode each previous
study as shown in Table 4. In the evaluation result table, SVM(X) represents the eval-
uation result of SVM classifier that used the features in that column.

3.4 Evaluation Method

Precision and F-measure (F1-measure) are the evaluation methods of this research.
That is base on confusion matrix as Table 5 shows. The precision value is obtained as
the formula 2 indicate. Furthermore, the F-measure is obtained from precision and
recall as the formula 4 display. Besides, the recall value is as the formula 3
demonstrate.

 (2)

 (3)

 (4)

Table 5. Confusion matrix

Condition

Positive Negative

Prediction
Positive True Positive False Positive
Negative False Negative True Negative

PostiveFalsePostiveTrue

PostiveTrue
Precision

+
=

agtiveNFalsePostiveTrue

PostiveTrue
ecallR

+
=

F1 =

2 × Precision × Recall

Precision + Recall

56 Y.-C. Liu et al.

Precision is the usual evaluation method on prediction problems to determine the
hit ratio of the prediction results. However, as quantity of prediction classes is less
than the other class like essential gene data, the precision value is easy to raise. More-
over, recall is the hit ratio of the target. However, as quantity of prediction classes is
more than the other class, the precision value is easy to rise. Therefore, only measur-
ing the prediction ability with only one of these has a strong probability to have a
biased result. For that reason, F-measure is the method that famous on evaluation
precision and recall in the same time. It is a well know evaluation method on predic-
tion problem. Therefore, F-measure will be the main evaluation method to discover
large and accurate essential gene in this study. The precision that previous studies
used will be another evaluation method.

4 Results and Discussion

4.1 Evaluation of Individual Features

Phyletic retention (PR) is the most discriminative feature in the past research on es-
sential gene prediction [7] [10]. In this paragraph, we will compare the prediction
ability of GOCBA, GOARC with PR. As the evaluation results in Table 6 indicate,
GOCBA and GOARC both had better prediction power than PR, no matter what kind
of estimate method and data sampling condition were used. Besides, GOCBA per-
formed better than GOARC in most cases.

Table 6. Prediction capability of individual features

F-measure (%) Precision (%)

Original Down Sampling Original Down Sampling
SVM(PR) 37.46 51.33 58.00 38.86

SVM(GOARC) 60.63 57.01 70.41 45.52
SVM(GOCBA) 59.28 61.14 72.99 54.45

4.2 Performance Enhancement by GOARC and GPCBA

In this paragraph, we will demonstrate the result of the SVM classifier that is based
on the features that previous study proposed and our added features respectively.
F-measure evaluation results are as Table 7 indicates, GOARC enhances the classifier
based on any previous features obviously has the best result in both data conditions.
Besides, GOCBA has the better result in most situations. The precision evaluation
has the similar result. GOARC enhances the classifier has the best precision in
any situation as the Table 8 indicates. GOARC is out standing on classifier
enhancement.

 Prediction of Essential Genes by Mining Gene Ontology Semantics 57

Table 7. Enhancement of GOCBA and GOARC features as evaluated by F-measure

F-measure (%)
Original Down Sampling

S G H A S G H A
SVM(X) 6.63 42.19 50.93 20.18 43.71 56.77 58.25 47.02

SVM(X+GOARC) 56.45 57.43 57.73 56.41 57.98 63.94 62.63 58.70
SVM(X+GOCBA) 62.79 62.23 63.07 62.37 56.30 56.18 60.53 56.27

Table 8. Enhancement of GOCBA and GOARC features as evaluated by precision

Precision (%)
Original Down Sampling

S G H A S G H A
SVM(X) 57.26 66.28 71.25 58.67 35.53 45.27 46.75 36.10

SVM(X+GOARC) 75.78 76.30 75.90 76.18 51.16 55.86 54.88 50.89
SVM(X+GOCBA) 67.45 66.21 68.68 66.17 42.83 42.63 48.72 42.72

4.3 Classifier Evaluation

In this study, we applied CBA algorithm without rule pruning for predicting essential
genes. In this paragraph, we will compare prediction ability with SVM base on pre-
vious features. As shown in Table 9 and Table 10, our CBA classifier obviously has
better ability in any situation.

Table 9. Performance of CBA classifier as evaluated by F-measure

F-measure (%)
Original Down Sampling

S G H A S G H A
SVM(X) 6.63 42.19 50.93 20.18 43.71 56.77 58.25 47.02

CBA 56.70 56.70 56.70 56.70 62.31 62.31 62.31 62.31

Table 10. Performance of CBA classifier as evaluated by precision

Precision (%)
Original Down Sampling

S G H A S G H A
SVM(X) 57.26 66.28 71.25 58.67 35.53 45.27 46.75 36.10

CBA 81.85 81.85 81.85 81.85 54.71 54.71 54.71 54.71

4.4 Discussion of GO Association Rules

In this paragraph, we will focus on the rules discovered by CBA and discuss the GO
terms associated with essential genes as revealed by these rules. We list part of the
positive rules in Table 11. Each row is a GO association rule. The first column is the
annotated GO term for essential genes. Support count represents the number of essen-
tial genes that match a rule. Confidence represents the percentage of essential genes
within all the genes that match the LHS of a rule.

58 Y.-C. Liu et al.

Table 11. Positive GO association rules discovered by CBA

Annotated GO Terms Support
Count Conf. (%)

GO:0000472, GO:0032040, GO:0005730, GO:0000480, GO:0000447 19 100
GO:0000472, GO:0005730, GO:0000480, GO:0000447, GO:0030686 18 100

GO:0006364, GO:0005730, GO:0030686 17 100
GO:0032040, GO:0005730 34 97.14

GO:0000472, GO:0005730, GO:0000480, GO:0000447 24 92.31
GO:0005730, GO:0030686 41 91.11

The location of gene or the location of process had been used for essential gene

prediction in previous studies [1] [7] [15]. Acencio et al. [1] had suggested that a gene
annotated with the “nucleus” GO term tend to be essential. Since “nucleolus” (GO:
000573) is a part of “nucleus” (GO: 0005634) in the ontology, we listed all the posi-
tive rules with high confidence that contain “nucleolus” (GO: 000573) in Table 11.
Following these rules, we listed all the associated GO terms with “nucleolus” (GO:
000573) in Table 12. We found that genes annotated to “endonucleolytic cleavage” or
“preribosome” on the “nucleolus” are very likely to be essential. Most of the discov-
ered GO association rules by CBA are either consistent with previous studies or make
biological sense. Thus, the proposed method could not only predict essential genes,
but also reveal the GO semantics closely related to essential genes.

Table 12. Associated GO terms with “nucleolus” (GO: 000573) following the rules listed in
Table 11

GO Term Description Domain

GO:0000447

endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S

rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA,

5.8S rRNA, LSU-rRNA)

BP

GO:0000462
maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-

rRNA, 5.8S rRNA, LSU-rRNA)
BP

GO:0000472
endonucleolytic cleavage to generate mature 5’-end of SSU-rRNA

from (SSU-rRNA, 5.8S rRNA, LSU-rRNA)
BP

GO:0000480
endonucleolytic cleavage in 5’-ETS of tricistronic rRNA transcript

(SSU-rRNA, 5.8S rRNA, LSU-rRNA)
BP

GO:0006364 rRNA processing BP

GO:0030686 90S preribosome CC

GO:0030687 preribosome, large subunit precursor CC

GO:0032040 small-subunit processome CC

GO:0042273 ribosomal large subunit biogenesis BP

 Prediction of Essential Genes by Mining Gene Ontology Semantics 59

5 Conclusions and Future Work

We have proposed a novel method for connecting gene functions (GO terms) to es-
sential gene prediction by utilizing association rules. The proposed new features,
GOARC and GOCBA, could enhance the prediction performance significantly. Using
GO association rules, CBA classifier showed great performance. Besides, the discov-
ered GO association rules not only are consistent with known biological knowledge,
but also could reveal the GO semantics related to essential genes. Our results may
provide deeper insights for biologists on the essential gene researches. In the future,
we will utilize the hierarchical structure between GO terms to improve the prediction
accuracy and integrate the rules with similar functions in GO.

References

1. Acencio, M.L., Lemke, N.: Towards the prediction of essential genes by integration of
network topology, cellular localization and biological process information. BMC Bioin-
formatics 10, 290 (2009)

2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in
large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, D.C., United States, pp. 207–216 (1993)

3. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databas-
es. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp.
487–499 (1994)

4. Demšar, J., Zupan, B., Leban, G., et al.: Orange: From experimental machine learning to
interactive data mining. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
PKDD 2004. LNCS (LNAI), vol. 3202, pp. 537–539. Springer, Heidelberg (2004)

5. Fleuret, F.: Fast Binary Feature Selection with Conditional Mutual Information. J. Mach.
Learn. Res. 5, 1531–1555 (2004)

6. Giaever, G., Chu, A.M., Ni, L., et al.: Functional profiling of the Saccharomyces cerevi-
siae genome. Nature 418, 387–391 (2002)

7. Gustafson, A.M., Snitkin, E.S., Parker, S.C., et al.: Towards the identification of essential
genes using targeted genome sequencing and comparative analysis. BMC Genomics 7, 265
(2006)

8. Hall, M., Frank, E., Holmes, G., et al.: The WEKA data mining software: an update.
SIGKDD Explor. Newsl. 11, 10–18 (2009)

9. Harris, M.A., Clark, J., Ireland, A., et al.: The Gene Ontology (GO) database and informat-
ics resource. Nucleic Acids Res. 32, D258-D261 (2004)

10. Hwang, Y.C., Lin, C.C., Chang, J.Y., et al.: Predicting essential genes based on network
and sequence analysis. Mol. Biosyst. 5, 1672–1678 (2009)

11. Kittler, J., Hatef, M., Duin, R.P.W., et al.: On combining classifiers. IEEE Transactions on
Pattern Analysis and Machine Intelligence 20, 226–239 (1998)

12. Liang, H., Li, W.H.: Gene essentiality, gene duplicability and protein connectivity in hu-
man and mouse. Trends Genet. 23, 375–378 (2007)

13. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: Pro-
ceedings of the Fourth International Conference on Knowledge Discovery and Data Min-
ing, New York City, New York, USA, pp. 80–86 (1998)

60 Y.-C. Liu et al.

14. Pei, J., Han, J., Mao, R.: CLOSET: An Efficient Algorithm for Mining Frequent Closed
Itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining and Know-
ledge Discovery, pp. 21–30 (2000)

15. Seringhaus, M., Paccanaro, A., Borneman, A., et al.: Predicting essential genes in fungal
genomes. Genome Res. 16, 1126–1135 (2006)

16. Wang, J., Han, J., Pei, J.: CLOSET+: searching for the best strategies for mining frequent
closed itemsets. In: Proceedings of the ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Washington, D.C., pp. 236–245 (2003)

17. Winzeler, E.A., Shoemaker, D.D., Astromoff, A., et al.: Functional characterization of the
S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999)

18. The IlliMine Project, http://illimine.cs.uiuc.edu
19. Saccharomyces Genome Database, http://downloads.yeastgenome.org/
20. LIBSVM: a library for support vector machines,

http://www.csie.ntu.edu.tw/~cjlin/libsvm

High-Performance Blob-Based Iterative

Reconstruction of Electron Tomography on
Multi-GPUs

Xiaohua Wan1,2, Fa Zhang1, Qi Chu1,2, and Zhiyong Liu1

1 Institute of Computing Technology
2 Graduate University, Chinese Academy of Sciences

Beijing, China
{wanxiaohua,chuqi,zyliu}@ict.ac.cn, zf@ncic.ac.cn

Abstract. Three-dimensional (3D) reconstruction of electron tomogra-
phy (ET) has emerged as a leading technique to elucidate the molecular
structures of complex biological specimens. Blob-based iterative methods
are advantageous reconstruction methods for 3D reconstruction of ET,
but demand huge computational costs. Multiple Graphic processing units
(multi-GPUs) offer an affordable platform to meet these demands, nev-
ertheless, are not efficiently used owing to a synchronous communication
scheme and the limited available memory of GPUs. We propose a mul-
tilevel parallel scheme combined with an asynchronous communication
scheme and a blob-ELLR data structure. The asynchronous communica-
tion scheme is used to minimize the idle GPU time. The blob-ELLR data
structure only needs nearly 1/16 of the storage space in comparison with
ELLPACK-R (ELLR) data structure and yields significant acceleration.
Experimental results indicate that the multilevel parallel scheme allows
efficient implementations of 3D reconstruction of ET on multi-GPUs,
without loss any resolution.

Keywords: electron tomography (ET), three-dimensional (3D)
reconstruction, iterative methods, blob, multi-GPUs.

1 Introduction

In biosciences, electron tomography (ET) uniquely enables the study of
complex cellular structures, such as cytoskeletons, organelles, viruses and chro-
mosomes [1]. From a set of projection images taken from a single individual
specimen, 3D structure can be obtained by means of tomographic reconstruction
algorithms [2]. Blob-based iterative methods (e.g., Simultaneous Algebraic Re-
construction Technique (SART) [3] and Simultaneous Iterative Reconstruction
Technique (SIRT) [4]) are attractive reconstruction methods for ET in terms of
robustness against noise [5], but have not been extensively used due to their high
computational cost [6]. The need for high resolution makes ET of complex biolog-
ical specimens use large projection images, which also yields large reconstructed

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 61–72, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

62 X. Wan et al.

volumes after an extensive use of computational resources and considerable pro-
cessing time [7]. Graphics processing units (GPUs) offer an attractive alternative
platform to address such computational requirements in terms of the high peak
performance, cost effectiveness, and the availability of user-friendly program-
ming environments, e.g. NVIDIA CUDA [8]. Recently, several advanced GPU
acceleration frameworks have been proposed to allow 3D ET reconstruction to be
performed on the order of minutes [9]. These parallel reconstructions on GPUs
only adopt traditional voxel basis functions which are less robust than blob basis
functions under noisy situations. Our previous work focuses on the blob-based
iterative reconstruction on single GPU. However, the blob-based iterative recon-
struction on single GPU is still time-consuming. Single GPU cannot meet the
requirements of the computational resources and the memory storage of 3D-ET
reconstruction since the size of the projection images increases constantly. The
architectural notion of a CPU serviced by multi-GPUs is an attractive way of
increasing the power of computations and the storage of memory.

Achieving the blob-based iterative reconstruction on multi-GPUs can be chal-
lenging: first, because of the overlapping nature of blobs, the use of blobs as basis
functions needs the communication between multi-GPUs during the process of
iterative reconstructions. CUDA provides a synchronous communication scheme
to handle the communication between GPUs efficiently [8]. But the downside of
the synchronous communication is that each GPU must stop and sit idle while
data is exchanged. The GPU sits idle is a waste of resources which has a nega-
tive impact on performance. Besides, as data collection strategies and electron
detectors improve, the memory demand of a sparse weighted matrix involved
with blob-based iterative methods in ET reconstruction rapidly increases. Due
to the limited available memory of GPUs, storing such a large sparse matrix is
extremely difficult for most GPUs. Thus, computing the weighted matrix on the
fly is an efficient alternative to storing the matrix in the previous GPU-based
ET implementations [10]. But it could bring the redundant computations since
the weighted matrix has to be computed for two times in each iteration.

To address the problems of blob-based iterative ET reconstruction on multi-
GPUs, in this paper, we make the following contributions: first, we present a
multilevel parallel strategy for blob-based iterative reconstructions of ET on
multi-GPUs, which can achieve higher speedups than the parallel reconstruction
on single GPU. Second, we develop an asynchronous communication scheme on
multi-GPUs to minimize idle GPU time by asynchronously overlapping com-
munications with computations. Finally, a data structure named blob-ELLR
using several symmetry optimization techniques is developed to significantly re-
duce the storage space of the weighted matrix. It only needs nearly 1/16 of the
storage space in comparison with ELLPACK-R (ELLR). Also, the blob-ELLR
format can achieve optimal coalesced global memory access, and is suitable for
3D-ET reconstruction algorithms on multi-GPUs. Furthermore, we implement
all the above techniques on a NVIDIA GeForce GTX 295, and experimental re-
sults show that the parallel strategy greatly reduces memory requirements and
exhibits a significant acceleration, without loss any resolution.

High-Performance Blob-Based Iterative Reconstruction 63

The rest of the paper is organized as follows: Section 2 reviews relevant back-
grounds both on reconstruction algorithms and on GPU hardware. Section 3
presents the multilevel parallel strategy of 3D-ET reconstruction on multi-GPUs.
Section 4 introduces the asynchronous communication scheme between multi-
GPUs. Section 5 describes the blob-ELLR data structure. Section 6 shows and
analyzes the experimental results in detail. Then we summarize the paper and
present our future work in Section 7.

2 Related Work

In ET, the projection images are acquired from a specimen through the so-called
single-axis tilt geometry. The specimen is tilted over a range, typically from −60◦

(or −70◦) to +60◦ (or +70◦) due to physical limitations of microscopes, at small
tilt increments (1◦ or 2◦). An image of the same object area is recorded at each
tilt angle and then the 3D reconstruction of the specimen is obtained from a set
of projection images with blob-based iterative methods. In this section, we give a
brief overview of blob-based iterative reconstruction algorithms, describe a kind
of iterative method called SIRT, and present a GPU computational model.

2.1 Blob-Based Iterative Reconstruction Methods

Iterative methods represent 3D volume f as a linear combination of a limited
set of known and fixed basis functions bj, with appropriate coefficients xj , i.e.

f (r, φ) ≈
N∑

j=1

xjbj (r, φ) . (1)

The use of blob basis functions provides iterative methods with better perfor-
mance than traditional voxel basis functions due to their overlapping nature
[11]. The basis functions that developed in [11] are used for the choice of the
parameters of the blob in our algorithm (e.g., the radius of the blob is 2). In
3D-ET, the model of the image formation process is expressed by the following
linear system:

pi ≈
N∑

j=1

wijxj , (2)

where pi denotes the ith measured image of f and wij the value of the ith
projection of the jth basis function. Under such a model, the element wij can
be calculated according to the projected procedure as follows:

wij = 1 − (rfij − int (rfij)) , rfij = projected (xj , θ) . (3)

where rfij is the projected value of the pixel xj with an angle θi. Here, W is
defined as a sparse matrix with M rows and N columns and wij is the element of
W . In general, the storage demand of the weighted matrix W rapidly increases
as the size and the number of projection images increase. It is hard to store such
a large matrix in GPUs due to the limited memory of GPUs.

64 X. Wan et al.

Simultaneous iterative reconstruction technique (SIRT) begins with an initial
X(0) obtained by the back projection technique (BPT) and repeats the iterative
processes [4]. In iterations, the residuals, i.e. the differences between the actual
projections P and the computed projections P ′ of the current approximation
X(k) (k is the iterative number), are computed and then X(k) is updated by the
backprojection of these discrepancies. The SIRT algorithm is typically written
by the following expression:

x
(k+1)
j = x

(k)
j +

1∑
M
i=1wij

∑
M
i=1

wij(pi −
∑

N
h=1wihx

(k)
h)∑

N
h=1wih

. (4)

2.2 GPU Computation Model

Our algorithm is based on NIVIDIA GPU architecture and compute unified
device architecture (CUDA) programming model. GPU is a massively multi-
threaded data-parallel architecture, which contains hundreds of scalar processors
(SPs). Eight SPs are grouped into a Streaming Multiprocessor (SM), and SPs
in the same SM execute instructions in a Single Instruction Multiple Thread
(SIMT) fashion [8]. During execution, 32 threads from a continuous section are
grouped into a warp, which is the scheduling unit on each SM. NVIDIA pro-
vides the programming model and software environment of CUDA. CUDA is
an extension to the C programming language. A CUDA program consists of a
host program that runs on CPU and a kernel program that executes on GPU
itself. The host program typically sets up data and transfers it to and from the
GPU, while the kernel program processes that data. Kernel, as a program on
GPUs, consists of thousands of threads. Threads have a three-level hierarchy:
grid, block, thread. A grid is a set of blocks that execute a kernel, and each
block consists of hundreds of threads. Each block can only be assigned to and
executed on one SM. CUDA provides a synchronous communication scheme (i.e.
cudaThreadSynchronize()) to handle the communication between GPUs. With
the synchronous scheme, all of threads on GPUs must be blocked until the data
communication has been completed. CUDA devices use several memory spaces
including global, local, shared, texture, and registers. Of these different memory
spaces, global and texture memory are the most plentiful. Global memory loads
and stores by a half warp (16 threads) are coalesced in as few as one transac-
tion (or two transactions in the case of 128-bit words) when certain access re-
quirements are met. Coalesced memory accesses deliver a much higher efficient
bandwidth than non-coalesced accesses, thus greatly affecting the performance
of bandwidth-bound programs.

3 Multilevel Parallel Strategy for Blob-Based Iterative
Reconstruction

The processing time of 3D reconstruction with blob-based iterative methods
remains a major challenge due to large reconstructed data volume in ET. So

High-Performance Blob-Based Iterative Reconstruction 65

parallel computing on multi-GPUs is becoming paramount to cope with the com-
putational requirement. We present a multilevel parallel strategy for blob-based
iterative reconstruction and implement it on the OpenMP-CUDA architecture.

3.1 Coarse-Grained Parallel Scheme Using OpenMP

In the first level of the multilevel parallel scheme, a coarse-grained paralleliza-
tion is straightforward in line with the properties of ET reconstruction. The
single-tilt axis geometry allows data decomposition into slabs of slices orthog-
onal to the tilt axis. For this decomposition, the number of slabs equals the
number of GPUs, and each GPU reconstructs its own slab. Consequently, the
3D reconstruction problem can be decomposed into a set of 3D slabs reconstruc-
tion sub-problems. However, the slabs are interdependent due to the overlapping
nature of blobs. Therefore, each GPU has to receive a slab composed of its cor-
responding unique slices together with additional redundant slices reconstructed
in neighbor slabs. The number of redundant slices depends on the blob exten-
sion. In a slab, the unique slices are reconstructed by the corresponding GPU
and require information provided by the redundant slices. During the process of
3D-ET reconstruction, each GPU has to communicate with other GPUs for the
additional redundant slices.

We have implemented the 3D-ET reconstruction based on a GeForce GTX 295
which consists of two GeForce GTX 200 GPUs. Thus the first level parallel strategy
makes use of two GPUs to perform the coarse-grained parallelization of the recon-
struction. As shown in Fig. 1, the 3D volume data is halved into two slabs, and
each slab contains its unique slices and a redundant slice. According to the shape
of the blob adopted (the blob radius is 2), only one redundant slice is included in
each slab. Each slab is assigned to and reconstructed on each individual GTX 200
on GTX 295 in parallel. Certainly, the parallel strategy can be applied on GPU
clusters (e.g. Tesla-based cluster). In a GPU cluster, the number of slabs equals
the number of GPUs for the decomposition described above. A shared-memory
parallel programming scheme (OpenMP) is employed to fork two threads to con-
trol the separated GPU. Each slab is reconstructed by each parallel thread on each
individual GPU. Consequently, the partial results attained by GPUs are combined
to complete the final result of the 3D reconstruction.

3.2 Fine-Grained Parallel Scheme Using CUDA

In the second level of the multilevel parallel scheme, 3D reconstruction of one slab,
as a fine-grained parallelization, is implemented with CUDA on each GPU. In the
3D reconstruction of a slab, the generic iterative process is described as follows:

– Initialization: compute the matrix W and make a initial value for X(0) by
BPT;

– Reprojection: estimate the computed projection data P ′ based on the current
approximation X ;

– Backprojection: backproject the discrepancy ΔP between the experimen-
tal and calculated projections, and refine the current approximation X by
incorporating the weighted backprojection ΔX .

66 X. Wan et al.

Fig. 1. Coarse-grained parallel scheme using blob. 3D volume is decomposed into slabs
of slices. The number of slabs equals the number of GPUs. Each GPU receives a slab.
Each slab includes a set of unique slices (in white) and an additional redundant slice
(in gray) according to the shape of the blob.

4 Asynchronous Communication Scheme

As described above in the multilevel parallel scheme, there must be two com-
munications between neighbor GPUs during one iterative reconstruction. One
is to exchange computed projections of redundant slices after reprojection. The
other is to exchange reconstructed pixels of redundant slices after backprojection.
CUDA provides a synchronous communication scheme (i.e. cudaThreadSynchro-
nize()) to handle the communication between GPUs. With the synchronous com-
munication scheme, GPUs must sit idle while data is exchange. The GPU sits
idle is a waste of resources which has a negative impact on performance.

To minimize the idle-time, we develop an asynchronous communication scheme
in which different streams are used to perform asynchronous GPU execution and
CPU-GPU memory access. The communication scheme splits GPU execution
and memory copies into separate streams. Execution in one stream can be per-
formed at the same time as a memory copy from another. As shown in Fig. 2,
in one slab reconstruction, Reprojection of the redundant slices, memory copies
and Backprojection of the redundant slices are performed in one stream. The
executions (i.e. Reprojection and Backprojection) of the unique slices are per-
formed in the other stream. This can be extremely useful for reducing GPU idle
time. In section 6, we will give experiments to analyze in detail.

Fig. 2. Pseduo code for a slab reconstruction with the asynchronous communication
scheme

High-Performance Blob-Based Iterative Reconstruction 67

5 Blob-ELLR Format with Symmetric Optimization
Techniques

In the parallel blob-based iterative reconstruction, another problem is the lack of
memory on GPUs for the sparse weighted matrix. Recently, several data struc-
tures have been developed to store sparse matrices. Compressed row storage
(CRS) is the most extended format to store the sparse matrix on CPUs [12].
ELLPACK can be considered as an approach to outperform CRS [13]. Vazquez
et al. has proved that a variant of the ELLPACK format called ELLPACK-R
(ELLR) is more suited for the sparse matrix data structure on GPUs [14]. ELLR
consists of two arrays, A [] and I [] of dimension N × MaxEntriesbyRows, and
an additional N-dimensional integer array called rl [] is included in order to store
the actual number of nonzeroes in each row [14][15]. With the size and number of
projection images increasing, the memory demand of the sparse weighted matrix
rapidly increases. The weighted matrix involved is too large to load into most of
GPUs due to the limited available memory, even with the ELLR data structure.

In our work, we present a data structure named blob-ELLR with several geo-
metric related symmetry relationships. The blob-ELLR data structure decreases
the memory requirement and then accelerates the speed of ET reconstruction
on GPUs. As shown in Fig. 3, the maximum number of the rays related to each
pixel is four on account of the radius of the blob (i.e., a = 2). To store the
weighted matrix W , the blob-ELLR includes two 2D arrays: one float A [] to
save the entries, and the other integer I [] to save the columns of every entry
(see Fig. 3 middle). Both arrays are of dimension (4B) × N , where N is the
number of columns of W and 4B is the maximum number of nonzeroes in the
columns (B is the number of the projection angles). Because the percentage of
zeros is low in the blob-ELLR, it is not necessary to store the actual number of
nonzeroes in each column. Thus the additional integer array rl [] is not included
in the blob-ELLR. Although the blob-ELLR without symmetric techniques can
reduce the storage of the sparse matrix W, the number of (4B) × N is rather
large especially when the number of N increases rapidly. The optimization takes
advantage of the symmetry relationships as follows:

– Symmetry 1: Assume that the jth column elements of the matrix W in each
view are w0j , w1j , w2j and w3j . The relationship among the adjacent column
elements is:

w0j = 1 + w1j ; w2j = 1 − w1j ; w3j = 2 − w1j . (5)

So, only w1j is stored in the blob-ELLR, whereas the other elements are
easily computed based on w1j . This scheme can reduce the storage spaces
of A and I to 25%.

– Symmetry 2: Assume that a point (x, y) of a slice is projected to a point r
(r = project(x, y, θ)) in the projection image corresponding to the tilt angle
θ and project (x, y, θ) is shown as follows:

projection(x, y, θ) = x cos θ + y sin θ (6)

68 X. Wan et al.

Fig. 3. Blob-ELLR format. In the blob (the radius a = 2), a projected pixel xj con-
tributes to four neighbor projection rays (L1, L2, L3 and L4) using only one view (left).
The nonzeroes of W are stored in a 2D array A of dimension (4B) × N in blob-ELLR
without symmetric techniques (middle). The symmetric optimization techniques are
exploited to reduce the storage space of A to almost 1/16 of original size (right).

It is easy to see that the point (−x,−y) of a slice is then projected to a
point r1 (r1 = −r) in the same tilt angle θ. The weighted value of the point
(−x,−y) can be computed according to that of the point (x, y). Therefore,
it is not necessary to store the weighted value of almost a half of the points
in the matrix W so that the space requirements for A and I are further
reduced by nearly 50%.

– Symmetry 3: In general, the tilt angles used in ET are halved by 0◦. Under
the condition, a point (−x, y) with a tilt angle −θ is projected to a point
r2 (r2 = −r). Therefore, the projection coefficients are shared with the
projection of the point (x, y) with the tilt angle θ. This further reduces the
storage spaces of A and I by nearly 50% again.

With the three symmetric optimizations mentioned above, the size of the
storage for two arrays in the blob-ELLR is almost (B/2) × (N/2) reducing
to nearly 1/16 of original size.

6 Result

In order to evaluate the performance of the multilevel parallel strategy, the blob-
based iterative reconstructions of the caveolae from the porcine aorta endothelial
(PAE) cell have been performed. Three different experimental datasets are used
(denoted by small-sized, medium-sized, large-sized) with 56 images of 512× 512
pixels, 112 images of 1024 × 1024 pixels, and 119 images of 2048 × 2048 pixels,
to reconstruct tomograms of 512 × 512 × 190, 1024 × 1024 × 310 and 2048 ×
2048 × 430 respectively. All the experiments are carried out a machine running
Ubuntu 9.10 32-bit with a CPU based on Intel Core 2 Q8200 at 2.33GHz, 4GB
RAM and 4MB L2 cache, and a NVIDIA GeForce GTX 295 card including
two GPUs, each GPU with 30 SMs of 8 SPs (i.e. 240 SPs) at 1.2GHz, 896MB
of memory and compute capability 1.3, respectively. To clearly evaluate the
performance of the asynchronous communication scheme and the blob-ELLR
data structure respectively, we have performed two sets of experiments. The
details of the experiments are introduced below.

High-Performance Blob-Based Iterative Reconstruction 69

0

5

10

15

20

25

30

35
blob-ELLR(CPU) vs blob-ELLR(GPU)

S
pe

ed
up

GTX295+syn
GTX295+asyn

512*512 1024*1024 2048*2048

Datasets

Fig. 4. Speedup factors showed by both implementations on GTX295 (with syn-
chronous and asynchronous communication scheme respectively) over the reconstruc-
tions on the CPU

In the first set of experiments, we have implemented and compared the blob-
based iterative reconstruction of the three experimental datasets using two meth-
ods: multi-GPUs with the synchronous communication scheme (named
GTX295+syn), and multi-GPUs with the asynchronous communication scheme
respectively (named GTX295 + asyn). In the experiments, the blob-ELLR de-
veloped in our work is adopted to storage the weighted matrix in the reconstruc-
tion. Fig. 4 shows the speedups using the two methods for all the three datasets.
As shown in Fig. 4, the speedups of GTX295 + asyn are larger than those of
GTX295+syn for the three experimental datasets. The asynchronous communi-
cation scheme provides the better performance than the synchronous scheme for
the reason of asynchronous overlapping of communications and computations.

In the second set of experiments, to compare the blob-ELLR data structure
with other methods used for the weighted matrix, we have implemented the blob-
based iterative reconstructions where the weighted matrices are computed on
the fly (named standard matrix), pre-computed and stored with ELLR (named
ELLR matrix), pre-computed and stored with blob-ELLR (named blob-ELLR
matrix) respectively. Fig. 5 shows the memory demanded by the sparse data
structure (i.e. ELLR and blob-ELLR on the GPU respectively). In general, the
requirements rapidly increase with the dataset size, approaching 3.5 G in the
large dataset. This amount turns out to be a problem owing to the limited
memory of GPUs. The upper boundary imposed by the memory available in
GTX295 precludes addressing problem sizes requiring more than 896 MB of
memory. However, in the blob-ELLR matrix structure, three symmetry rela-
tionships can greatly decrease the memory demands and make them affordable
on GPUs.

In order to estimate the performance of the matrix methods (i.e. ELLR ma-
trix and blob-ELLR matrix), the speedup factors against the standard method
are showed in Fig. 6. From Fig. 6(a), we can see that the ELLR matrix method

70 X. Wan et al.

0

500

1000

1500

2000

2500

3000

3500
memory requirments

M
B

ELLR(GPU)
blob-ELLR(GPU)

512*512 1024*1024 2048*2048

Datasets

896

Fig. 5. Memory requirements of the different implementations for the datasets. The
limit of 896 MB is imposed by the memory available in the GPU used in the work.
The use of the blob-ELLR data structure reduces the memory demands, making most
of the problems affordable.

0

1

2

3

4

5

6

7
(a) Standard(CPU) vs Matrix(CPU)

S
pe

ed
up

ELLR(CPU)
blob-ELLR(CPU)

512*512 1024*1024 2048*2048

Datasets

0

0.5

1

1.5

2

2.5
(b) Standard(GPU) vs Matrix(GPU)

S
pe

ed
up

ELLR(GPU)
blob-ELLR(GPU)

512*512 1024*1024 2048*2048

Datasets

Fig. 6. Speedup factors showed by the different matrix methods (ELLR and blob-
ELLR) over the standard method on the CPU (a) and the GPU (b)

exhibits acceleration factors approaching to 6×, and the blob-ELLR matrix
method obtains higher speedup factors almost 7× on the CPU. In order to
compare the blob-ELLR matrix method with the ELLR matrix and standard
methods on the GPU, the acceleration factors of the matrix methods over the
standard method on the GPU are presented in Fig. 6(b). It is clearly seen that
the blob-ELLR matrix method yields better speedups than the ELLR matrix
method on the GPU. Fig. 7 compares the speedup factors of different meth-
ods on the GPU vs the standard method on the CPU. The blob-ELLR matrix
method exhibits excellent acceleration factors compared with the other methods.
In the standard method, the speedup is almost 100× for three datasets. In the
ELLR matrix method, the speedup is almost 160× for the first dataset. And in
the case of the blob-ELLR matrix method, the acceleration factors increase and
reach up to 200× for three datasets.

High-Performance Blob-Based Iterative Reconstruction 71

0

50

100

150

200

250
Standard(CPU) vs GPU

S
pe

ed
up

standard(GPU)
ELLR(GPU)
blob-ELLR(GPU)

512*512 1024*1024 2048*2048

Datasets

Fig. 7. Speedup factors derived from the different methods (the standard, the ELLR
matrix and the blob-ELLR matrix methods) on the GPU compared to the standard
method on the CPU

7 Conclusion

ET allows elucidation of the molecular architecture of complex biological speci-
mens. Blob-based iterative methods yield better results than other methods, but
are not used extensively in ET because of their huge computational demands.
Multi-GPUs have emerged as powerful platforms to cope with the computa-
tional requirements, but have the difficulties due to the synchronous commu-
nication and limited memory of GPUs. In this work, we present a multilevel
parallel scheme combined with an asynchronous communication scheme and a
blob-ELLR data structure to perform high-performance blob-based iterative re-
construction of ET on multi-GPUs. The asynchronous communication scheme is
used to minimize the idle GPU time, and the blob-ELLR structure only needs
nearly 1/16 of the storage space in comparison with the ELLR storage structure
and yields significant acceleration compared to the standard and ELLR matrix
methods. Also, the multilevel parallel strategy can produce results of 3D-ET
reconstruction without loss any resolution. In the future work, we will further
investigate and implement the multilevel parallel scheme on a many-GPU cluster.
The asynchronous communication scheme described in this work performs com-
munication between GPUs using CPU memory, thus the communication latency
is relatively low. In a many-GPU cluster, the proper use of the asynchronous
communication scheme is vital to fully utilize computing resources.

Acknowledgments. We would like to thank Prof. Fei Sun and Dr. Ka Zhang
in Institute of biophysics for providing the experimental datasets. Work sup-
ported by grants National Natural Science Foundation for China (60736012
and 61070129); Chinese Academy of Sciences knowledge innovation key project
(KGCX1-YW-13).

72 X. Wan et al.

References

1. Frank, J.: Electron Tomography: Methods for Three-dimensional Visualization of
Structures in the Cell, 2nd edn. Springer, New York (2006)

2. Herman, G.T.: Image Reconstruction from Projections: the Fundamentals of Com-
puterized Tomography, 2nd edn. Springer, London (2009)

3. Andersen, A.H., Kak, A.C.: Simultaneous Algebraic Reconstruction Technique
(SART): a Superior Implementation of the ART Algorithm. Ultrasonics Imaging 6,
81–94 (1984)

4. Gilbert, P.: Iterative Methods for the 3D Reconstruction of an Object from Pro-
jections. Journal of Theoretical Biology 76, 105–117 (1972)

5. Lewitt, R.M.: Alternatives to Voxels for Image Representation in Iterative Recon-
struction Algorhms. Physics in Medicine and Biology 37, 705–716 (1992)

6. Andreyev, A., Sitek, A., Celler, A.: Acceleration of Blob-based Iterative Recon-
struction Algorithm using Tesla GPU. IEEE NSS/MIC (2009)

7. Fernandez, J.J., Garcia, I., Garazo, J.M.: Three-dimensional Reconstruction of
Cellular Structures by Electron Microscope Tomography and Parallel Computing.
Journal of Parallel and Distributed Computing 64, 285–300 (2004)

8. NVIDIA, CUDA Programming Guide (2008), http://www.nvidia.com/cuda
9. Castano-Diez, D., Mueller, H., Frangakis, A.S.: Implementation and Performance

Evaluation of Reconstruction Algorithms on Graphics Processors. Journal of Struc-
tural Biology 157, 288–295 (2007)

10. Bilbao-Castro, J.R., Carazo, J.M., Garcia, I., Fernandze, J.J.: Parallelization of Re-
construction Algorithms in Three-dimensional Electron Microscopy. Applied Math-
matical Modelling 30, 688–701 (2006)

11. Matej, S., Lewitt, R.M.: Efficient 3D Grids for Image-reconstruction using
Spherically-symmetrical Volume Elements. IEEE Trans. Nucl. Sci. 42, 1361–1370
(1995)

12. Bisseling, R.H.: Parallel Scientific Computation. Oxford University Press, Oxford
(2004)

13. John, R.R., Ronald, F.B.: Solving Elliptic Problems using ELLPACK. Springer,
New York (1985)

14. Vazquez, F., Garzon, E.M., Fernandez, J.J.: Accelerating Sparse Matrix-vector
Product with GPUs. In: Proceedings of CMMSE 2009, pp. 1081–1092 (2009)

15. Vazquez, F., Garzon, E.M., Fernandez, J.J.: A Matrix Approach to Tomographic
Reconstruction and its Implementation on GPUs. Journal of Structural Biol-
ogy 170, 146–151 (2010)

http://www.nvidia.com/cuda

Component-Based Matching for Multiple

Interacting RNA Sequences

Ghada Badr1,2 and Marcel Turcotte1

1 School of Information Technology and Engineering,
University of Ottawa,

Ontario, K1N 6N5, Canada
2 IRI - Mubarak city for Science and Technology,

University and Research District,
P.O. 21934 New Borg Alarab, Alex, Egypt

Abstract. RNA interactions are fundamental to a multitude of cellular
processes including post-transcriptional gene regulation. Although much
progress has been made recently at developing fast algorithms for pre-
dicting RNA interactions, much less attention has been devoted to the
development of efficient algorithms and data structures for locating RNA
interaction patterns.

We present two algorithms for locating all the occurrences of a given
interaction pattern in a set of RNA sequences. The baseline algorithm
implements an exhaustive backtracking search. The second algorithm
also finds all the matches, but uses additional data structures in order
to considerably decrease the execution time, sometimes by one order of
magnitude. The worst case memory requirement for the later algorithm
increases exponentially with the input pattern length and does not de-
pend on the database size, making it practical for large databases. The
performance of the algorithms is illustrated with an application for lo-
cating RNA elements in a Diplonemid genome.

1 Introduction

RNA interactions are one of the fundamental mechanisms of the genome’s reg-
ulatory code. Interacting RNA molecules are important players in translation,
editing, gene silencing, but also to synthetic RNA molecules designed to self-
assemble. Progress has been made recently at predicting the base pair patterns
formed by interacting RNA molecules [1,9,10,16]. These approaches predict the
intra- and inter- molecular base pairs with high accuracy. However, less atten-
tion has been paid to the development of matching algorithms. Once an RNA
interaction pattern has been characterized, one would like to find occurrences
within the same genome, or related ones. However, efficient methods for localiz-
ing known RNA interaction patterns on a genomic scale are lacking.

The work described here is part of an ongoing collaborative research project
to discover the mechanism by which gene fragments in Diplonema are joined to-
gether to form an mRNA. In Diplonema papillatum, the mitochondrial genome

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 73–86, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

74 G. Badr and M. Turcotte

P= (p1,p2,p3)

p1="[[[", p2 = "]]].(((..))).[[", p3 = "]]"

S = (s1, s2, s3)

s1 = ’’CTATATATATG’’, s2 = ’’TTTATAAGAGATCTCTCGC’’, s3 = ’’TCGCGCGGAAC’’

Fig. 1. Illustration of the pattern and sequences

consists of approximately one hundred circular chromosomes [11], each encoding
a single gene fragment. For instance, the cox1 gene consists of nine fragments en-
coded on nine different chromosomes. One of the research questions investigated
is: do conserved match-maker RNA elements exist, encoded in either the mito-
chondrial or nuclear genome of Diplonema, that guide the assembly of the gene
fragments?”. Such expressed RNA elements should consists of two segments that
are the reverse complement of two neighboring fragments. In order for biologists
to investigate such a research question, efficient matching algorithms are needed.

Problem definition: We define the RNA interaction pattern localization prob-
lem and propose two algorithms for finding all the occurrences of a pattern in
a set of RNA sequences. The pattern P and the sequences S from Figure 1
will be used throughout the text as a running example. An RNA interaction
pattern for m sequences consists of m sub-patterns, each one comprising intra-
and inter-molecular base pairs. In Figure 1, m = 3, matching square brackets
represent inter-molecular base pairs, while matching round brackets represent
intra-molecular base pairs. Crossings between intra- and inter-molecular base
pairs are allowed, but not the crossings within intra- or inter-molecular base
pairs. The dots represent unpaired nucleotides.

Background: This paper presents a new algorithm for the localization of RNA
interaction motifs in multiple sequences. The algorithm uses a Trie-based struc-
ture called linked list of prefixes (LLP) [3]. Tries, or the related suffix trees and
suffix arrays, have found many applications in bioinformatics. Suffix trees, with
help of additional data structures, have been used for extracting conserved struc-
tured motifs from a set of DNA sequences [6,12,15]. Suffix arrays have been used
to localize RNA secondary structure motifs consisting of intra-molecular base
pairs [2]. Strothmann proposed an efficient implementation of a data structure,
affix arrays, that stores the suffixes of both the text and its reverse [17]. The affix
arrays were used to search RNA structure motifs consisting of intra-molecular
base pairs. Finally, suffix arrays were used to identify inter-molecular base pairs
in the software program GUUGle [8].

Contributions: We present the first application of linked list of prefixes (LLP)
to the problem of locating interaction patterns in RNA sequences. As far as we
know, there are no tools available to locate interaction patterns. We compare
the performance of the proposed algorithm to that of an exhaustive backtracking
search algorithm. The proposed algorithm decreases considerably the execution
time whilst being practical regarding to memory usage.

Component-Based Matching for Multiple Interacting RNA Sequences 75

(a) Simple structure:

I5(3) BR I3(3) SS(1) H5(3) SS(2) H3 SS(1) I5(2) BR I3

(b) Component-based structure:

P= (p1,p2,p3)

p1 = (3, {INTERM1}, {}), INTERM1 = (1,1,2,3),

P2 = (15, {INTERM2}, {INTRAM2}), INTERM2 = (14,1,3,2), INTRAM2 = (5,10,3)

P3 = (2, {}, {})

Fig. 2. (a) The simple structure used in the backtracking approach and (b) the
component-based structure used in the proposed LLP approach for the pattern shown
in Figure 1.

2 Backtracking Approach

This section outlines the baseline algorithm that we used for comparison.

2.1 Simple Structure for Patterns

Here, a pattern is an expression consisting of 6 types of terms. I5 and I3 terms
represent the left and the right hand side of a stem formed by inter-molecular
base pairs. H5 and H3 terms represent the left and the right hand side of a
stem formed by intra-molecular base pairs. SS represents an unpaired region
(single-stranded). Finally, BR delimits the boundary between two sub-patterns.
Figure 2 (a) shows the simple structure representation of the pattern introduced
in Figure 1.

2.2 Backtracking Algorithm

The algorithm uses two stacks, iStack and hStack, in order to store the location
of matched left hand side of stems, for inter-molecular and intra-molecular base
pairs respectively. An expression is a list of terms. The top level of this algorithm
will attempt matching the first term of the expression list at every location of the
first input sequence. If the term can be successfully matched at that location, the
algorithm proceeds matching the next term. Otherwise, this is a failure and the
algorithm will proceed with the next starting position. When matching the left
hand side of stem, the starting position of the match and its length are pushed
onto the appropriate stack depending on the type of the term, I5 or H5. SS
matches a fixed length segment. Upon encountering a BR term, the algorithm
will attempt matching the next term of the expression list at every location
of the next input string. Finally, matching I3 and H3 terms require removing
from the appropriate stack, iStack or hStack, the starting location and length
of the corresponding match. I3 and H3 succeed only if the segment starting at
the current location is the reversed complement of the corresponding match. GU
base pairs are allowed. This simple algorithm exhaustively enumerates all the
locations of the pattern P in the input set of sequences S.

76 G. Badr and M. Turcotte

3 Component-Based Structure for Patterns

In this section we will update the pattern structure so we can handle the search
more efficiently. The components structure is very simple that it allows to define
any pattern. A pattern P = {p1, p2, . . . , pm}, can be uniquely defined by its
sub-patterns pj, 0 < i ≤ m. Each pj consists of inter-molecular (INTERM) and
intra-molecular (INTRAM) components as described in the previous section.

Each sub-pattern, pj , can be uniquely defined by its length and by its two
sets of INTERM and INTRAM components. Each component is defined by its
Opening Brackets (OB) and Closing Brackets (CB) lengths and relative locations
within the sub-patterns. Components can be defined as follows:

– INTERM component: In this components OB and CB resides in differ-
ent sub-patterns. OB resides in pj and CB resides in another pattern pk,
where k > j and 1 ≤ k ≤ m. This implies that we should have at least
two sub-patterns in P to be able to have at least one INTERM compo-
nent. Both OB and CB are described by their relative position to the begin-
ning of pj , OBoffset, and pk, CBoffset, respectively, and by their length,
len. So, an INTERM component in pj can be defined as: INTERMj =
(OBoffset, CBoffset, k, len).

– INTRAM component: In this components OB and CB resides in the same
sub-pattern, pj where 1 < j ≤ m. Both OB and CB are described by their
relative position to the beginning of pj, OBoffset and CBoffset respec-
tively, and by their length, len. So, an INTRAM component can be defined
as: INTRAMi = (OBoffset, CBoffset, len).

Hence, for a given pattern P = {p1, p2, . . . , pm}, each pj = (lenj, {INTERM1,
INTERM2, . . . , INTERMr}, {ITRAM1, INTRAM2, . . . , INTRAMq}),
where any pj, 1 ≤ j ≤ m, should participle in at least one component. For exam-
ple, for a pattern P , with three sub-patterns p1 = ”[[[”, p2 = ”]]].(((..))).[[”, and
p3 = ”]]”, as shown in Figure 1, the corresponding component based structure
for P = (p1, p2, p3) is shown in Figure 2 (b).

4 Trie-Based LLP Structure for Sequences

Tries have been used extensively in literatures for string searching (matching)
algorithms [3,4,5,14]. Storing the sequence in the Trie structure allows to simul-
taneously search all possible starting points in the sequence for any occurrence of
the given pattern. In [3], many exact and approximate matching algorithms were
proposed in which the Tries were used to store the databases for strings. Tries
are based on a simple splitting scheme, which is based on letters encountered in
the strings. This rule can be described as follows:

If S is a set of strings, and A = {aj}r
j=1 is the alphabet, then the Trie

associated with S is defined recursively by the rule [7]:

Trie(S) = (Trie(S\a1), ..., T rie(S\ar)).

Component-Based Matching for Multiple Interacting RNA Sequences 77

Fig. 3. An example for three LLP structures for the example provided in Figure 1,
where S = (s1, s2, s3) and built for pattern P = (p1, p2, p3) with lengths (3,15,2)
respectively. The zero values corresponds to the initial values of the reference counter.
Red links are last child links. For simplicity, parent links are not shown.

where S\ai means the subset of S consisting of strings that start with ai, stripped
of their initial letter ai. The above recursion is halted as soon as S contains less
than two elements. The advantage of the Trie is that it only maintains the
minimal prefix set of characters that is necessary to distinguish all the elements
of S.

In Section 2, we saw that in order to localize a structured pattern p in a
given sequence s, we need to check p against all possible starting points of s for
a maximum length equals the pattern length. Hence, to build a Trie structure
for s, we need to extract all possible subsequences where a match can be found
and store them in a Trie structure. Using the Trie structure allows matches to
be done simultaneously. These subsequences can be obtained for all possible
starting points in s and with length equals the pattern length. In this case, the
maximum number of subsequences that can be obtained from s equals |s| − |p|.
The resulting Trie is built in time proportional to the sum of all the subsequence
lengths, |p||s|.

78 G. Badr and M. Turcotte

In order to search for the components of the given pattern, we need to apply a
Breadth-First-Search (BFS) on the corresponding Trie. An updated Trie Struc-
ture was used in [3,14], namely the Linked Lists of Prefixes (LLP), to enhance
searching, when the nodes in the Trie need to be traversed in level-by-level. The
LLP can be built by implementing the Trie as linked lists and connecting all
lists in the same level together with the LLP structure.

The LLP consists of a double-linked lists of levels, where each level is a level in
the corresponding Trie. Each level, in turn, consists of a double-linked list of all
nodes that correspond to prefixes with the same length. The levels are ordered
in an increasing order of the length of the prefixes, exactly as in the case of the
Trie levels.

The LLP structure is used during our search algorithm where it dramatically
prunes the search space in sequences, when compared to the backtracking algo-
rithm. Hence, the LLP structure will change during the search process. In order
to facilitate accessing parents and children and to make pruning more efficient,
we store additional information at each node. Each node in LLP will be used to
store the following information, some of them were in the original structure as
in [3]:

– Char: Represents the corresponding letter represented by this node.
– Next node and previous node links: Maintain the double linked list at each

level.
– Last child link (LastChild) and the number of children (NumChild): Maintain

the list of children for each node. Last node links will help in pruning out the
sub-Trie rooted at any given node quickly.

– Reference counter: It is used during the search algorithm to prune the search
space when processing INTERM components. The value of zero at some point
of the search process indicates that this node is not matched (referenced) even
at least once during a previous match process.

– Parent links: Maintain an array of skip pointers to all parents in previous
levels, starting from the direct parent to this node. This will be created once
during the building process and will not change during the search process. It
will help in efficiently match brackets for a given INTRAM component.

Figure 3 shows the corresponding LLP structures for the example provided in
Figure 1. The zero values represent the initial values of the reference counter.
For simplicity, the parent links are not shown in the figures. For complete details
on how to build the LLP structure from a given sequence (or dictionary of
words), please refer to [3]. The space required for the Trie is proportional to
|A|m, where |A| is the cardinality of the symbol alphabet and m is the length of
pattern (subsequence), regardless of the sequence database size. In this paper,
A = {A, C, G, T } and so |A| = 4. Thus the worst case memory requirement of the
algorithm will only depend on the pattern length, m, making it very practical for
large databases. The execution time depends on the pattern size and structure.

Component-Based Matching for Multiple Interacting RNA Sequences 79

5 The LLP Approach

In this approach, the search process will pass through two phases: preprocessing
phase and matching phase. In the preprocessing phase, pattern components will
be extracted, and the corresponding sequences will be processed to construct the
corresponding LLPs according to the corresponding pattern sizes, as described
in the previous section. In the matching phase, different pattern components will
be matched against the corresponding LLPs. Pruning the search space will be
done progressively through manipulating both INTRAM and INTERM compo-
nents, where INTRAM components will be processed first as they reside in one
sub-pattern and can be quickly processed. Processing INTERM components are
more complex as they involves the processing of two LLPs at the same time.
Processing the INTRAM components first will have a high impact on reducing
the search space when manipulating the INTERM components. The matching
process continue as long as there are more unprocessed component and as long
as all LLPs are non-empty. As soon as any of LLPs is empty, this implies that a
match for this pattern cannot be found for these sequences.

In the next two subsections, we will describe how to update and use the
LLP structures to efficiently localize structured patterns in given sequences. The
update will be shown, using an example, for the case of processing the INTERM
components and then for the case of processing the INTRAM components. The
matching process ends up with LLPs that have only subsequences with possible
matches to the given pattern.

5.1 Updating the LLP Structure for INTRAM Components

INTRAM components can only resides in one sub-pattern, and that is why
processing will be fast and easy. Processing them first will have a high impact on
pruning the search space that is required to match other INTERM components.
The algorithm can be explained in the following steps, for a given component
INTRAMi = (OBoffset, CBoffset, len):

1. Start by processing internal opening and closing brackets: OBlevel =
OBffset + len − 1 and CBlevel = CBoffset, where OBlevel and CBlevel
are the corresponding levels in the corresponding LLPi for INTRAMi.

2. Match each node, nodeOB, at level OBlevel with all its successor nodes,
nodeCB, at level CBlevel. A successor node can be easily recognized by
having a link to nodeOB in its parent links.

3. If no match is found, prune the sub-Trie rooted at nodeCB. Notice that the
sub-Trie rooted at nodeOB will be automatically pruned if all its successors
are not matched. The pruning goes up to the highest parent that has only
one child.

4. Repeat steps 2 and 3 until all nodes at both levels are processed, or LLP is
empty, where a no match flag is returned.

5. Decrement OBlevel and increment CBlevel.
6. Repeat from step 2 until all brackets are processed, where OBlevel

< OBoffset.

80 G. Badr and M. Turcotte

Fig. 4. Updating the LLP structure in Figure 3 for (left) the component INTRAM =
(5, 10, 3) in p2 and (right) the component INTERM = (1, 1, 2, 3) in p1, for the pattern
component-based structure that is shown in Figure 1 (b). Red nodes are nodes that are
pruned from the search space and will not be considered any more in future processing.

5.2 Updating the LLP Structure for INTERM Components

Matching in an INTERM component, involves processing two LLPs structures.
On one hand, matching INTERM components is more complex. The process
involves matching each subsequence that corresponds to the OB in the first LLP,
against all corresponding subsequences for the CB in the second LLP. On the
other hand, processing INTERM components will result in progressively pruning
the search space that is required for matching the next INTERM components.
The algorithm can be explained in the following steps, for a given component
INTERMj = (OBoffset, CBoffset, k, len) in pj :

1. Start by processing internal opening and closing brackets: OBlevel =
OBffset + len− 1 and CBlevel = CBoffset, where OBlevel and CBlevel
are the corresponding levels in the corresponding LLPpj and LLPpk

respec-
tively for INTERMj.

2. Start from the first node, nodeOB , at level OBlevel in LLPpj . nodeOB, up
to the parent, represents one possible subsequence in LLPpj for the OB.

Component-Based Matching for Multiple Interacting RNA Sequences 81

3. Match nodeOB with each node, nodeCB, at level CBlevel in LLPpk
. All

nodeCB, down to children, represent all possible subsequences in LLPpk
for

the CB. We have two cases:
– If no match is found, prune nodeOB and Go to step 2.
– If a match is found, increment the reference counters in nodeCB.

4. increment CBlevel.
5. Change node nodeOB and make it point to its direct parent in LLPpj .
6. Match nodeOB with each node, nodeCB at level CBlevel in LLPpk

with a
non-zero reference counter for its direct parent, reinitiating this counter to
zero as soon as all its children are processed to be ready for next match
process. We again have two match cases as in step 3.

7. Repeat from step 4 until all brackets are processed where CBlevel >
CBoffset + len− 1.

8. Process next subsequence in LLPpj by making nodeOB point to the next
node at level OBlevel in LLPpj and repeat from step 2 until all nodes
(subsequences) at level OBlevel in LLPpj are processed.

9. Move through all nodes at level CBoffset+ len−1 in LLPpk
and prune any

node with a reference counter of a zero value. A node with a zero reference
counter implies no possible match is found for a subsequence represented by
that node n LLPpj .

Figure 4 (left) shows the resultant LLPs2 structure for s2 in Figure 3, after
processing INTERM = (5, 10, 3) in p2 shown in Figure 1 (b). This results
in pruning some search space in string s2 when manipulating other compo-
nents. Figure 4 (right) shows updating the resultant structure after processing
INTERM1 = (1, 1, 2, 3) in p1. This results in extensively pruning the search
space in the LLP, leaving only a small portion of sequences for matching the last
component INTERM2 = (14, 1, 3, 2) in p2, where a match is found. Snapshot
for reference counter values is shown at the end of the matching process.

5.3 Pruning Search Space in LLP

Deleting a node in LLP, means deleting that node and all its descendants, which
implies deleting all the subsequences represented by this node. Pruning the sub-
Trie at a give node can be easily done in the corresponding LLP structure as
follows, for a given node, nodei:

– Propagate up to the furtherest parent for nodei with only one child, and
update nodei link to this parent.

– Let nextNode and prevNode point to the next node and previous nodes of
nodei respectively.

– Detach the sublist between prevNode and nextNode and update links in-
formation stored inside each of the two nodes accordingly.

– update nextNode link to its last child node and prevNode link to its last
child node.

– Repeat from step 3 till the last level of the LLP structure.

82 G. Badr and M. Turcotte

There are also cases where nextNode link or prevNode link is null, when nodei

is at the beginning or the end of its linked list respectively. These cases can be
easily manipulated by the pruning algorithm and are not shown to maintain the
clarity of the algorithm. The time of the pruning operation is proportional to
the corresponding pattern length.

6 Experimental Setup

We compared the performance of the backtracking (BT) and LLP algorithm
using real-world data (Set 1) and synthetic data (Set 2). The patterns are defined
by their components as described in Section 3 and sequences are indexed using
the LLP data structures as described in Section 4.

Four patterns were used to compare the two approaches as follows:

– P1 = (p11, p12, p13) where p11 = [[[[[[, p12 =]]]]]]..............[[[[[[, and p13 =]]]]]].
The sub-patterns contain only inter-molecular base pairs.

– P2 = (p21, p22, p23) where p21 = [[[[[[, p22 =]]]]]].((((....)))).[[[[[[, and p23 =]]]]]].
The sub-patterns contain both inter-molecular base pairs and intra-molecular base
pairs.

– P3 = (p31, p32, p33) where p31 = [[[[[[, p32 =]]]]]].((((.(((...))).(((...))).(((...))).)))).[[[[[[,
and p33 =]]]]]].
The sub-patterns contain both inter-molecular base pairs and intra-molecular base
pairs.

– P4 = (p41, p42, p43) where p41 = [[[[[[, p42 =]]]]]].((((....)))).[[[[[[, and p43 = ((((....)))).
]]]]]].
The sub-patterns contain both inter-molecular base-pairs and intra-molecular base
pairs.

Two sets of sequences were used to represent databases as follows:

– Set 1: This benchmark is lifted from our ongoing collaborative research
project to identify guide-like RNA elements in a recently sequenced diplone-
mid. In Diplonema papillatum, the mitochondrial genome consists of approx-
imately one hundred circular chromosomes [11]. Each chromosome encodes
a single gene fragment. The mechanism by which these fragments are joined
together remains unknown. It has been hypothesized that RNA elements
could guide the assembly process. For a gene consisting of n fragments, n−1
guide-like RNA elements are sought, such that each one consists of two seg-
ments that are the reverse complement of two consecutive gene fragments.
The benchmark consists of finding guide-like RNA elements for the eight
consecutive pairs of gene fragments that form the cox1 gene. Each call to
the pattern matcher comprises three sequences: fragment i, fragment i + 1,
as well as a candidate sequence. The candidate sequence is selected from one
of three pools: nuclear and mitochondrial EST sequences (TBest [13]), mito-
chondrial EST sequences (EST), or the mitochondrial genome (GENOME).

– Set 2: We generated synthetic data of sizes: 600, 1200, 2400, 4800, 9600,
19200, 38400. by carefully selecting one of the entries from the TBest
database, where at least one match can be found for pi2 and two entries

Component-Based Matching for Multiple Interacting RNA Sequences 83

from fragments i and i + 1, where a lot of matches can be found for pi1 and
pi3. We repeated the data to achieve the required sizes and also to show the
speed up with respect to the data size, where approximately the same LLP
structure will be generated for each data set when using the same pattern.

All the runs reported here were done on a Sun Fire E2900 server (24 × 1.8
GHz UltraSPARC-IV+ processors, 192 GB RAM) running Sun OS 5.10. The
programs were developed using the Java programming language.

7 Results and Discussion

This section compares the execution time and memory usage of the backtracking
and LLP algorithms on real-word and synthetic data with progressively more
complex RNA interaction patterns.

Figure 5 shows histograms of the execution time for three data sets. The per-
formance of the backtracking algorithm is worse when the input pattern consists
exclusively of inter-molecular base pairs (P1). The algorithm is then forced to
consider all possible starting locations for the 5’-end and 3’-end of the stems.
The addition of intra-molecular base pairs (P2–P4) cuts the execution time in
half because of the early failures. This effect is less pronounced for the third data
set (TBest) because the sequences are on average shorter. The backtracking al-
gorithm uses two stacks to keep track of the starting location of the matched
5’ ends of inter- and intra-molecular stems. Since the number of stems is much
smaller than the size of the input sequences, the memory usage for the stacks is
negligible. Similarly, backtracking is implemented through recursion, but since
the number of components of a pattern is always small compared to the length
of the input sequences, the size of the system stack is negligible.

The LLP algorithm decreases considerably the execution time for Set 1. The
biggest improvement is seen for the pattern P2 on the TBest data set. The
observed speedup (tBT/tLLP) is 23. Particularly for patterns P2–P4, the larger
part of the execution time is spent building the Trie and LLP data structures.
Figure 7 shows the maximum memory requirement for all the patterns when
matched against Set 1. The data set TBest comprises sequences that are on
average shorter. Consequently, this data set has the lowest memory requirement,
7 to 8 megabyte. The largest memory requirement is for the GENOME data set.
The maximum memory requirement varies between 41 and 72 megabyte. The
memory requirement for the LLP approach depends on the pattern length (which
implies the subsequence length) and repetitions in subsequences with that length
in the given database. Sequence database sizes will have an impact on increasing
the memory requirements of the LLP structure untill no more new subsequences
can be obtained for a given pattern length. In this case, no new nodes will be
created for the repeated subsequences.

Figure 6 shows the logarithm of the execution time for both algorithms for Set
2, where input sizes ranging from 600 to 38, 400 nucleotides. The execution time
of the backtracking algorithm increases exponentially. For the LLP approach, the
total execution time is only marginally larger than the build time. The execution

84 G. Badr and M. Turcotte

time of the LLP approach increases much more slowly. Increasing the size of the
input by a factor 64 translates into an increase of the execution time by 5,177
for the backtracking approach, but only a factor 68 for the LLP approach. The
increase in the execution time of the LLP approach, for the same pattern, is
only due to the increase in the time required for building the LLP structure for
a bigger database. The maximum memory requirement for the synthetic data was
7.1 megabyte. Lower memory requirements here is because of high repetition in
subsequences of Set 2, regardless of the variation in the sequence sizes. This also
shows the advantage of the Trie structure in simultaneously matching similar
subsequences whatever their start location are in the original database.

Fig. 5. Time in ms for databases in Set 1, when measured for localizing fours patterns
P1, P2, P3, and P4, where: (left) the results for the EST database, (middle) the re-
sults for the GENOME database, and (right) the results for the TBest database. Both
constructing time (LLP-Build) and total search time (LLP-Total), including the build
time, are shown for the LLP approach. The build time is included in the total search
time.

Fig. 6. Time in ms for the synthetic data set (Set 2) when measured for localizing: (top
left) pattern P1, (top right) pattern P2, (bottom left) pattern P3, and (bottom right)
pattern P4. Both constructing time (LLP-Build) and total search time (LLP-Total) are
shown for the LLP approach. The build time is included in the total search time.

Component-Based Matching for Multiple Interacting RNA Sequences 85

Fig. 7. Memory requirement in megabyte for the LLP approach for Set 1

8 Conclusion

We presented new algorithms and data structures for the localization of interac-
tion patterns in multiple RNA sequences. An empirical study, using real-world
and synthetic data, demonstrated that the proposed algorithm considerably im-
proves the execution time while being practical in terms of memory usage.

Figures 5 and 6 show that the larger part of the execution time is spent on
building the Trie structure. Therefore, further gain will be made whenever the
Trie structure can be re-used or copied from one execution to the next. This
would be the case if the matcher were used to implement a pattern discovery
tool, where a fixed set of sequences is repeatedly searched.

Several extensions of this work are in progress. These include extensions to
allow for small (bounded) variations of the length of the components. The devel-
opment of this algorithm was prompted by a real-world application to identify
RNA elements involved in splicing of mRNAs in a Diplonemid. We are also plan-
ning to use these data structures and algorithms to build a tool for the discovery
of interaction patterns in Diplonemids. Free energy and p-values will be used for
ranking the results.

Acknowledgement

The authors would like to thank Gertraud Burger for stimulating discussions
related to RNA splicing and for sharing her data with us. The work is partially
funded by the Natural Sciences and Engineering Research Council of Canada.
The experiments were conducted at the High Performance Computing Virtual
Laboratory.

References

1. Andronescu, M., Zhang, Z.C., Condon, A.: Secondary structure prediction of in-
teracting RNA molecules. J. Mol. Biol. 345(5), 987–1001 (2005)

2. Anwar, M., Nguyen, T., Turcotte, M.: Identification of consensus RNA secondary
structures using suffix arrays. BMC Bioinformatics 7, 244 (2006)

86 G. Badr and M. Turcotte

3. Badr, G.: Tries in information retrieval and syntactic pattern recognition. Ph.D.
Thesis, School of Computer Science, Carleton University (June 2006)

4. Badr, G.: Optimized similarity measure over trie. In: MLDM Posters, pp. 236–150
(2007)

5. Bentley, J., Sedgewick, R.: Ternary search trees. Dr. Dobb’s Journal (1998)
6. Carvalho, A.M., Freitas, A.T., Oliveira, A.L., Sagot, M.-F.: An efficient algorithm

for the identification of structured motifs in DNA promoter sequences. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB) 3(2), 126–140
(2006)

7. Clement, J., Flajolet, P., Vallee, B.: The analysis of hybrid trie structures. In: Proc.
Annual ACM-SIAM Symp. on Discrete Algorithms, San Francisco, California, pp.
531–539 (1998)

8. Gerlach, W., Giegerich, R.: GUUGle: a utility for fast exact matching under RNA
complementary rules including G-U base pairing. Bioinformatics 22(6), 762–764
(2006)

9. Kato, Y., Akutsu, T., Seki, H.: A grammatical approach to RNA-RNA interaction
prediction. Pattern Recognition 42(4), 531–538 (2009)

10. Kato, Y., Sato, K., Hamada, M., Watanabe, Y., Asai, K., Akutsu, T.: RactIP:
fast and accurate prediction of RNA-RNA interaction using integer programming.
Bioinformatics 26(18), i460–i466 (2010)

11. Marande, W., Burger, G.: Mitochondrial DNA as a genomic jigsaw puzzle. Sci-
ence 318(5849), 415 (2007)

12. Marsan, L., Sagot, M.F.: Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification.
J. Comput. Biol. 7(3-4), 345–362 (2000)

13. O’Brien, E.A., Koski, L.B., Zhang, Y., Yang, L.S., Wang, E., Gray, M.W., Burger,
G., Lang, B.F.: TBestDB: a taxonomically broad database of expressed sequence
tags (ESTs). Nucleic Acids Res. 35(Database issue), i445–i451 (2007)

14. Oommen, B.J., Badr, G.: Breadth-first search strategies for trie-based syntactic
pattern recognition. Pattern Analysis and Applications 10(1), 1–13 (2007)

15. Pisanti, N., Carvalho, A.M., Marsan, L., Sagot, M.-F.: RISOTTO: Fast extraction
of motifs with mismatches. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006.
LNCS, vol. 3887, pp. 757–768. Springer, Heidelberg (2006)

16. Salari, R., Backofen, R., Sahinalp, S.C.: Fast prediction of RNA-RNA interaction.
Algorithms for Molecular Biology: AMB 5, 5 (2010)

17. Strothmann, D.: The affix array data structure and its applications to RNA sec-
ondary structure analysis. Theoretical Computer Science 389(1-2), 278–294 (2007)

A New Method for Identifying Essential

Proteins Based on Edge Clustering Coefficient�

Huan Wang1, Min Li1,2, Jianxin Wang1, and Yi Pan1,2

1 School of Information Science and Engineering,
Central South University, Changsha 410083, P.R. China

2 Department of Computer Science,
Georgia State University, Atlanta, GA 30302-4110, USA

Abstract. Identification of essential proteins is key to understanding
the minimal requirements for cellular life and important for drug design.
Rapid increasing of available protein-protein interaction data has made
it possible to detect protein essentiality on network level. A series of cen-
trality measures have been proposed to discover essential proteins based
on network topology. However, most of them tended to focus only on
topologies of single proteins, but ignored the relevance between interac-
tions and protein essentiality. In this paper, a new method for identifying
essential proteins based on edge clustering coefficient, named as SoECC,
is proposed. This method binds characteristics of edges and nodes ef-
fectively. The experimental results on yeast protein interaction network
show that the number of essential proteins discovered by SoECC univer-
sally exceeds that discovered by other six centrality measures. Especially,
compared to BC and CC, SoECC is 20% higher in prediction accuracy.
Moreover, the essential proteins discovered by SoECC show significant
cluster effect.

Keywords: essential proteins, protein interaction network, centrality
measures, edge clustering coefficient.

1 Introduction

Essential proteins are those proteins which are indispensable to the viability of
an organism. The deletion of only one of these proteins is sufficient to cause
lethality or infertility [1]. Thus, essential proteins (or genes) can be considered
as potential drug targets for human pathogens. For example, the identification
of conserved essential genes required for the growth of fungal pathogens offers
an ideal strategy for elucidating novel antifungal drug targets [2]. Therefore, the
identification of essential proteins is important not only for the understanding of
� This work is supported in part by the National Natural Science Foundation of China

under Grant No.61003124 and No.61073036, the Ph.D. Programs Foundation of Min-
istry of Education of China No.20090162120073, the Freedom Explore Program of
Central South University No.201012200124, the U.S. National Science Foundation
under Grants CCF-0514750, CCF-0646102, and CNS-0831634.

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 87–98, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

88 H. Wang et al.

the minimal requirements for cellular life, but also for practical purposes, such
as drug design.

A variety of experimental procedures, such as single gene knockouts, RNA
interference and conditional knockouts, have been applied to the prediction and
discovery of essential proteins. However, these experimental techniques are gener-
ally laborious and time-consuming. Considering these experimental constraints,
a highly accurate computational approach for identifying essential proteins would
be of great value. With the development of high-throughput technology, such as
yeast two-hybrid, tandem affinity purification and mass spectrometry, a wealth
of protein-protein interaction (PPI) data have been produced, which open the
door for us to lucubrate genomics and proteomics in network level [3].

Studies have shown that the topological properties of proteins in interaction
networks could be strongly related to gene essentiality and cell robustness against
mutations. In particular, a growing body of research focused on the centrality
of a protein in an interaction network and suggested that a close relationship
exists between gene essentiality and network centrality in protein interaction
networks [4,5]. Consequently, A series of centrality measures have been used for
discovering essential proteins based on network topological features.

The simplest of all centrality measures is the degree centrality which de-
notes the number of ties incident upon a node. It has been observed in sev-
eral species, such as E.coli, S.cerevisiae, C.elegans, D.melanogaster, M.musculus
and H.sapiens [4], that proteins with high degree (hubs) in the network are
more likely to be essential. This phenomenon is identical with the centrality-
lethality rule proposed by Jeong et al. [5]. Furthermore, many researchers have
confirmed the correlation between degree centrality and protein essentiality.
Besides the degree centrality, several other popular centrality measures, such
as betweenness centrality [6], closeness centrality [7], subgraph centrality [8],
eigenvector centrality [9], and information centrality [10], have also been pro-
posed for discovering essential proteins. It has been proved that these centrality
measures are significantly better than random selection in identifying essen-
tial proteins in recent reviews [11]. Furthermore, these centrality measures have
also been used in weighted protein interaction networks and achieved a better
result [12].

The current centrality measures only indicate the importance of nodes in
the network but can not characterize the features of edges. In view of this, we
propose a new essential proteins discovery method based on edge clustering coef-
ficient, named as SoECC. we apply it in yeast protein interaction network (PIN).
The experimental results show that the number of essential proteins predicted
by SoECC is much more than that explored by degree centrality. For instance,
among the top 100 proteins ranked by SoECC 78% are essential proteins. How-
ever, this percentage is only 57% for proteins ranked according to their number
of interactions. Moreover, SoECC also outweigh another five measures of protein
centrality in identifying essential proteins.

A New Method for Identifying Essential Proteins 89

2 Materials and Methods

2.1 Experimental Data

Our analysis focuses on the yeast Saccharomyces cerevisiae because both the PPI
and gene essentiality data of it are most complete and reliable among various
species. The protein-protein interactions data of S.cerevisiae are downloaded
from DIP database [13]. There are 4746 proteins and 15166 interactions in total
after removing self-interactions and duplicate interactions.

A list of essential proteins of S.cerevisiae are integrated from the following
databases: MIPS [14], SGD [15], DEG [16], and SGDP [17], which contains 1285
essential proteins altogether. In terms of the information about viability of gene
disruptions cataloged by MIPS database, the 4746 proteins are grouped into
three sets: essential protein set, non-essential protein set, and unknown set. By
data matching, we find that out of all the 4746 proteins, 1130 proteins are
essential which are derived from different types of experiment, such as systematic
mutation set, classical genetics or large-scale survey, and 3328 proteins are non-
essential. There are other 97 proteins whose essentiality are still unknown. The
remaining 191 proteins in the yeast PIN neither covered by the essential protein
set nor by the non-essential protein set. We incorporate this part of proteins into
the unknown set.

2.2 Centrality Measures

Recently, many researchers found it is meaningful to predict essentiality by
means of centrality measures. The notion of centrality comes from its use in
social networks. Intuitively, it is related to the ability of a node to communi-
cate directly with other nodes, or to its closeness to many other nodes, or to the
quantity of pairs of nodes that need a specific node as intermediary in their com-
munications. Here we will describe six classical centrality measures mentioned
in the previous chapter, and all of which have been used for studies in biological
networks.

A protein interaction network is conventionally regarded as an undirected
graph G = (V, E) which consists of a set of nodes V and a set of edges E. Each
node u ∈ V represents a unique protein, while each edge (u, v) ∈ E represents
an interaction between two proteins u and v. In order to facilitate description,
we assign N as the total number of nodes in the network and A as the adjacency
matrix of the network. The adjacency matrix A = au,v, which is a N × N
symmetric matrix, whose element au,v is 1 if there is a connecting edge between
node u and node v, and 0 otherwise.

Degree Centrality (DC). The degree centrality DC(u) of a node u is the
number of its incident edges.

DC(u) =
∑

v

au,v (1)

90 H. Wang et al.

Betweenness Centrality (BC). The betweenness centrality BC(u) of a node
u is defined as average fraction of shortest paths that pass through the node u.

BC(u) =
∑

s

∑
t

ρ(s, u, t)
ρ(s, t)

, s 	= t 	= u (2)

Here ρ(s, t) denotes the total number of shortest paths between s and t and
ρ(s, u, t) denotes the number of shortest paths between s and t that use u as an
interior node. BC(u) characterizes the degree of influence that the node u has
in “communicating” between node pairs.

Closeness Centrality (CC). The closeness centrality CC(u) of a node u is
the reciprocal of the sum of graph-theoretic distances from the node u to all
other nodes in the network.

CC(u) =
N − 1∑
v d(u, v)

(3)

Here d(u, v) denotes the distance from node u to node v, i.e., the number of links
in the shortest path between this pair of nodes. CC(u) reflects the independency
of the node u compared to all other nodes.

Subgraph Centrality (SC). The subgraph centrality SC(u) of a node u mea-
sures the number of subgraphs of the overall network in which the node u par-
ticipates, with more weight being given to small subgraphs. It is defined as:

SC(u) =
∞∑

l=0

μl(u)
l!

=
N∑

v=1

[αv(u)]2eλv (4)

where μl(u) denotes the number of closed loops of length l which starts and ends
at node u. (α1,α2,...,αN) is an orthonormal basis of RN composed by eigenvectors
of A associated to the eigenvalues λ1,λ2,...,λN , where αv(u) is the uth component
of αv.

Eigenvector Centrality (EC). The eigenvector centrality EC(u) of a node u
is defined as the uth component of the principal eigenvector of A.

EC(u) = αmax(u) (5)

Here αmax denotes the eigenvector corresponding to the largest eigenvalue of A.
αmax(u) is the uth component of αmax. The core idea of EC is that an important
node is usually connected to important neighbors.

Information Centrality (IC). The information centrality IC(u) of a node u
measures the harmonic mean lengths of paths ending at the node u. It is given
by the following expression:

IC(u) = [
1
N

∑
v

1
Iuv

]−1 (6)

A New Method for Identifying Essential Proteins 91

where Iuv = (cuu +cvv−cuv)−1. Let D be a diagonal matrix of the degree of each
node and J be a matrix with all its elements equal to one. Then we obtain the
matrix C = (cuv) = [D − A + J]−1. For computational purposes, Iuu is defined
as infinite. Thus, 1

Iuu
= 0.

2.3 Edge Clustering Coefficient

The current centrality measures only indicate the importance of nodes in the net-
work but can not characterize how important the edges are. More recently, some
researchers challenged the traditional explanation of the centrality-lethality rule
and different points of view have been proposed [18,19]. He et al. [18] restudied
the reason why hubs tend to be essential and advanced the idea of essential
protein-protein interactions. They argued that the majority of proteins are es-
sential due to their involvement in one or more essential protein-protein inter-
actions that are distributed uniformly at random along the network edges. In
another words, they concluded that the essentiality of proteins depend on essen-
tial protein-protein interactions. Inspired by this idea, we introduce the concept
of edge clustering coefficient to measure the importance of edges in protein in-
teraction network and apply it to discovery of essential proteins.

For an edge Eu,v connecting node u and node v, we pay attention to how
many other nodes that adjoin both u and v. The edge clustering coefficient of
Eu,v can be defined by the following expression:

ECC(u, v) =
zu,v

min(du − 1, dv − 1)
(7)

where zu,v denotes the number of triangles that include the edge actually in the
network, du and dv are degrees of node u and node v, respectively. Then the
meaning of min(du −1, dv −1) is the number of triangles in which the edge Eu,v

may possibly participate at most. For instance, in Fig. 1, the degrees of two end
nodes n1 and n4 of edge E1,4 are both 4. Therefore, this edge could constitute
min(4 − 1, 4 − 1) = 3 triangles at most in theory. But in fact, there are only 2
triangles
145,
146, so ECC(1, 4) = 2/3 = 0.67.

Edge clustering coefficient characterizes the closeness between an edge’s two
connecting nodes and other nodes around them. The edges with higher clustering
coefficient tend to involve in the community structure in network. It has been

Fig. 1. Example of solving the edge clustering coefficient

92 H. Wang et al.

proved that there is significant cluster effect in many large-scale complex net-
works including biological networks. Specifically, in protein interaction networks
there exist many protein complexes which are considered to play a key role in
carrying out biological functionality [3]. Furthermore, Hart et al. [20] examined
the relationship between protein modularity and essentiality and indicated that
essentiality is a product of the protein complex rather than the individual pro-
tein. On the basis of the existing studies, we believe it is significative to introduce
edge clustering coefficient into identification of essential proteins.

Considering the factor of node’s degree, we further define the sum of edge
clustering coefficients of node u as:

SoECC(u) =
∑

v∈Nu

ECC(u, v) (8)

where Nu denotes the set of all neighbor nodes of node u. Obviously, SoECC(u)
will be larger if node u that with higher degree. In this sense, SoECC has a
integrated characteristic of edges and nodes. We take SoECC as a new measure
for identifying essential proteins.

2.4 Evaluation Methods

For purpose of evaluating performance of SoECC, we compare SoECC and other
six centrality measures in prediction accuracy by applying these methods to pre-
dict essential proteins in yeast PIN. A certain quantity of proteins with higher
values computed by each measure are selected as candidates for essential pro-
teins. Then we examine what proportion of them are essential. Moreover, several
statistical measures, such as sensitivity (SN), specificity (SP), positive predic-
tive value (PPV), negative predictive value (NPV), F-measure (F), and accuracy
(ACC) are used to evaluate how effective the essential proteins identified by dif-
ferent methods. In advance, for notional convenience, we explain four frequently-
used terms in statistics and their meanings in our work as follows:

• TP(true positives): essential proteins correctly predicted as essential.
• FP(false positives): non-essential proteins incorrectly predicted as essential.
• TN(true negatives):non-essential proteins correctly predicted as non-essential.
• FN(false negatives): essential proteins incorrectly predicted as non-essential.

Below are definitions of the six statistical measures mentioned above.

Sensitivity (SN). Sensitivity refers to the proportion of essential proteins
which are correctly predicted as essential and the total essential proteins.

SN =
TP

TP + FN
(9)

Specificity (SP). Specificity refers to the proportion of non-essential proteins
which are correctly eliminated and the total non-essential proteins.

SP =
TN

TN + FP
(10)

A New Method for Identifying Essential Proteins 93

Positive Predictive Value (PPV). Positive predictive value is the proportion
of essential proteins in the prediction which are correctly predicted as essential.

PPV =
TP

TP + FP
(11)

Negative Predictive Value (NPV). Negative predictive value is the propor-
tion of non-essential proteins in the prediction which are correctly eliminated.

NPV =
TN

TN + FN
(12)

F-measure (F). F-measure is the harmonic mean of sensitivity and positive
predictive value, which is given by:

F =
2 ∗ SN ∗ PPV

SN + PPV
(13)

Accuracy (ACC). Accuracy is the proportion of correct prediction results of
all the results, which is expressed as:

ACC =
TP + TN

P + N
(14)

where P and N are the total number of essential proteins and non-essential
proteins, respectively.

3 Results and Discussion

In order to measure the performance of SoECC, we carry out a comparison
between SoECC and other six centrality measures. Similar to most experimental
procedures [11], we firstly rank proteins in descending order according to their
values of SoECC and centralities, then select the top 1%, top 5%, top 10%,
top 15%, top 20%, top 25% proteins as essential candidates and determine how
many of these are essential in the yeast PIN. We illustrate the number of essential
proteins detected by SoECC and other six centrality measures in Fig. 2.

As can be seen in Fig. 2, SoECC performs significantly better than all cen-
trality measures in identifying essential proteins in the yeast PIN. Especially,
the improvement of SoECC compared to BC and CC are both more than 20%
in any top percentage. Even comparing with the centrality measures with the
best performance (SC, SC, EC, IC, IC, and DC) in each top percentage (top
1%, top 5%, top 10%, top 15%, top 20%, and top 25%), the number of essential
proteins identified by SoECC are improved by 5.9%, 15.2%, 12.4%, 10.3%, 7.3%,
and 3.0%, respectively.

For further assessing the performance of SoECC, we compare the several sta-
tistical indicators including sensitivity (SN), specificity (SP), positive predictive

94 H. Wang et al.

Fig. 2. Number of essential proteins detected by different methods

value (PPV), negative predictive value (NPV), F-measure (F), and accuracy
(ACC) of SoECC and other six centrality measures. During the course of exper-
imental data collection and processing previously, proteins were classified into
three sets according to their essentiality. We have already known there are 1130
essential proteins, 3328 non-essential proteins and other 288 proteins whose es-
sentiality are unknown contained in the yeast PIN. So we select the top 1130 pro-
teins ranked by each method as essential proteins. The remaining 3616 proteins
are considered as non-essential proteins. The values of six statistical indicators
of each method is tabulated in Table 1.

From Table 1, we can see that the six statistical indicators (SN, SP, PPV,
NPV, F, and ACC) of SoECC are consistently higher than that of any other
centrality measure, which show that SoECC can identify essential proteins more
accurately.

In addition, we make a comparison between the proteins predicted by SoEEC
and that predicted by other six centrality measures. The number of overlaps in
the top 100 proteins identified by any two different methods is shown in Table 2.

From Table 2, we can see that the common proteins identified by SoECC and
each centrality measure are less than that identified by any pair of centrality
measures. The overlapping rates between SoECC and each centrality measure
are universally less than 50%. Especially, for BC and CC, the overlaps are both
less than 30%. This indicates that there exist some difference in methodology

A New Method for Identifying Essential Proteins 95

Table 1. Comparsion the values of sensitivity (SN), specificity (SP), positive predictive
value (PPV), negative predictive value (NPV), F-measure (F), and accuracy (ACC) of
SoECC and other six centrality measures

SN SP PPV NPV F ACC

DC 0.441 0.813 0.445 0.811 0.443 0.719

BC 0.388 0.798 0.395 0.793 0.392 0.694

CC 0.386 0.801 0.397 0.793 0.391 0.696

SC 0.414 0.811 0.427 0.803 0.420 0.710

EC 0.418 0.811 0.429 0.804 0.423 0.711

IC 0.443 0.814 0.447 0.812 0.445 0.720

SoECC 0.468 0.824 0.475 0.820 0.471 0.734

Table 2. Number of common proteins in the top 100 proteins identified by any two
different methods

DC BC CC SC EC IC

DC 100 78 65 58 57 93

BC 78 100 72 48 47 73

CC 65 72 100 58 60 65

SC 58 48 58 100 97 62

EC 57 47 60 97 100 61

IC 93 73 65 62 61 100

SoECC 44 27 27 46 44 44

Table 3. Number of essential proteins in the different part of top 100 proteins identified
by SoECC and other six centrality measures

DC(56) BC(73) CC(73) SC(54) EC(56) IC(56)

CMs − SoECC 24 27 28 32 31 22

SoECC − CMs 45 57 57 40 41 43

between SoECC and centrality measures. Actually, even comparing the top 100
proteins identified by SoECC with the union set of that identified by six cen-
trality measures, there is only 57 common proteins.

To further demonstrate the efficiency of SoECC, we analyze the different
proteins that identified by SoECC and other six centrality measures.

In Table 3, the first row CMs − SoECC means essential proteins identified
by centrality measures but ignored by SoECC. The second row SoECC −CMs
means essential proteins identified by SoECC but ignored by centrality measures.
Obviously, SoECC−CMs is generally more than CMs−SoECC, which means
that SOECC is more effective and accurate in discovering essential proteins.

96 H. Wang et al.

Table 4. Number and proportion of three types of interactions in the two networks
composed by the top 100 proteins ranked by DC and SoECC respectively

number proportion

Eee(u, v) 107 0.405

DC Enn(u, v) 39 0.148

Een(u, v) 118 0.447

Eee(u, v) 243 0.666

SoECC Enn(u, v) 12 0.033

Een(u, v) 110 0.301

(a) DC (b) SoECC

Fig. 3. The top 100 proteins in the yeast PIN identified by DC and SoECC respectively.
The yellow nodes and red nodes represent essential proteins and non-essential proteins
respectively.

It should be emphasized that, SoECC proposed in this paper has the dual
characteristics of nodes and edges of the network. Some researchers suggested
that the essentiality of proteins has correlation with essential interactions in PIN
[18]. In order to validate that SoECC is involved in this viewpoint, we classify
all interactions in the yeast PIN into three types according to the essentiality of
each interacting protein pair as follows:

• Eee(u, v): u and v are both essential, i.e., essential interaction.
• Enn(u, v): u and v are both non-essential, i.e., non-essential interaction.
• Een(u, v): u and v are essential and non-essential respectively.

Then we examine the number and proportion of each type of interactions in
the two networks composed by the top 100 proteins ranked by DC and SoECC
respectively. As shown in Table 4, in terms of both quantity and proportion,
the essential interactions generated by SoECC are obviously more than that
generated by DC.

Moreover, we generate the two networks mentioned above using Cytoscape as
Fig. 3.

A New Method for Identifying Essential Proteins 97

As illustrated in Fig. 3, out of the top 100 proteins ranked by SoECC, there
are 78 essential proteins, whereas this number is only 57 for DC. It also can be
seen in Fig. 3 that, comparing with DC, there are more essential interactions in
the subgraph induced by top 100 proteins ranked by SoECC. Furthermore, it
is noteworthy that the essential proteins identified by SoECC (yellow nodes in
Fig. 3(b)) show significant modularity. This cluster effect which is determined by
the meaning of edge clustering coefficient is consistent with previous researches
[19,20]. In this sense, our proposed method SoECC is meaningful in identifying
essential proteins.

4 Conclusions

In the study of identification of essential proteins based on network topology,
commonly used centrality measures are only reflect the importance of single pro-
teins but can not characterize the essentiality of the interactions. However, recent
studies have shown that there exist a relationship between protein-protein inter-
actions and protein essentiality. In consideration of this idea, we propose a novel
method for identifying essential proteins based on edge clustering coefficient,
named as SoECC, which binds characteristics of edges and nodes effectively.
The experimental results show that, the essential proteins detected by SoECC
are universally more than that detected by other six centrality measures. Espe-
cially, compared to BC and CC, SoECC is 20% higher in prediction accuracy.
Besides, by comparing the two networks composed by the top 100 proteins se-
lected by DC and SoECC respectively, we found that there are more essential
interactions in the latter. Significantly, essential proteins identified by SoECC
show obvious modularity, which agreed with previous researches.

References

1. Winzeler, E.A., et al.: Functional characterization of the S. cerevisiae genome by
gene deletion and parallel analysis. Science 285(5429), 901–906 (1999)

2. Hu, W., Sillaots, S., Lemieux, S., et al.: Essential Gene Identification and Drug
Target Prioritization in Aspergillus fumigatus. PLoS Pathog. 3(3), e24 (2007)

3. Ho, Y., et al.: Systematic identification of protein complexes in Saccharomyces
cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)

4. Hahn, M.W., Kern, A.D.: Comparative Genomics of Centrality and Essentiality
in Three Eukaryotic Protein-Interaction Networks. Mol. Biol. Evol. 22(4), 803–806
(2005)

5. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in
protein networks. Nature 411(6833), 41–42 (2001)

6. Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the
yeast protein interaction network. J. Biomed. Biotechnol. (2), 96–103 (2005)

7. Wuchty, S., Stadler, P.F.: Centers of complex networks. J. Theor. Biol. 223(1),
45–53 (2003)

8. Estrada, E., Rodŕıguez-Velázquez, J.A.: Subgraph centrality in complex networks.
Phys. Rev. E. 71(5), 56103 (2005)

98 H. Wang et al.

9. Bonacich, P.: Power and centrality: A family of measures. American Journal of
Sociology 92(5), 1170–1182 (1987)

10. Stevenson, K., Zelen, M.: Rethinking centrality: Methods and examples. Social
Networks 11(1), 1–37 (1989)

11. Estrada, E.: Virtual identification of essential proteins within the protein interac-
tion network of yeast. Proteomics 6(1), 35–40 (2006)

12. Li, M., Wang, J., Wang, H., Pan, Y.: Essential Proteins Discovery from Weighted
Protein Interaction Networks. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M.,
Rajasekaran, S. (eds.) ISBRA 2010. LNCS, vol. 6053, pp. 89–100. Springer, Hei-
delberg (2010)

13. Xenarios, I., Rice, D.W., Salwinski, L., et al.: DIP: the database of interacting
proteins. Nucleic Acids Res. 28(1), 289–291 (2000)

14. Mewes, H.W., et al.: MIPS: analysis and annotation of proteins from whole genomes
in 2005. Nucleic Acids Res. 34(Database issue), D169–D172 (2006)

15. Cherry, J.M., et al.: SGD: Saccharomyces Genome Database. Nucleic Acids
Res. 26(1), 73–79 (1998)

16. Zhang, R., Lin, Y.: DEG 5.0, a database of essential genes in both prokaryotes and
eukaryotes. Nucleic Acids Res. 37(Database issue), D455–D458 (2009)

17. Saccharomyces Genome Deletion Project, http://www-sequence.stanford.edu/

group/yeast_deletion_project

18. He, X., Zhang, J.: Why do hubs tend to be essential in protein networks? PLoS
Genet. 2(6), e88 (2006)

19. Zotenko, E., Mestre, J., O’Leary, D.P., et al.: Why do hubs in the yeast protein
interaction network tend to be essential: reexamining the connection between the
network topology and essentiality. PLoS Comput. Biol. 4(8), e1000140 (2008)

20. Hart, G.T., Lee, I., Marcotte, E.R.: A high-accuracy consensus map of yeast protein
complexes reveals modular nature of gene essentiality. BMC Bioinformatics 8(1),
236 (2007)

http://www-sequence.stanford.edu/group/yeast_deletion_project
http://www-sequence.stanford.edu/group/yeast_deletion_project

Gene Order in Rosid Phylogeny, Inferred from

Pairwise Syntenies among Extant Genomes

Chunfang Zheng1 and David Sankoff2

1 Département d’informatique et de recherche opérationnelle, Université de Montréal
2 Department of Mathematics and Statistics, University of Ottawa

Abstract. Based on the gene order of four core eudicot genomes (cacao,
castor bean, papaya and grapevine) that have escaped any recent whole
genome duplication (WGD) events, and two others (poplar and cucum-
ber) that descend from independent WGDs, we infer the ancestral gene
order of the rosid clade and those of its main subgroups, the fabids and
malvids. We use the gene order evidence to evaluate the hypothesis that
the order Malpighiales belongs to the malvids rather than as tradition-
ally assigned to the fabids. Our input data are pairwise synteny blocks
derived from all 15 pairs of genomes. Our method involves the heuris-
tic solutions of two hard combinatorial optimization problems, neither
of which invokes any arbitrary thresholds, weights or other parameters.
The first problem, based on the conflation of the pairwise syntenies, is
the inference of disjoint sets of orthologous genes, at most one copy for
each genome, and the second problem is the inference of the gene order
at all ancestors simultaneously, minimizing the total number of genomic
rearrangements over a given phylogeny.

1 Introduction

Despite a tradition of inferring common genomic structure among plants and
despite plant biologists’ interest in detecting synteny, e.g., [1,2], the automated
ancestral genome reconstruction methods developed for animals [3,4,5,6] and
yeasts [7,8,9,10,11] at the syntenic block or gene order levels, have yet to be
applied to the recently sequenced plant genomes. Reasons for this include:

1. The relative recency of these data. Although almost twenty dicotyledon
angiosperms have been sequenced and released, most of this has taken place
in the last two years (at the time of writing) and the comparative genomics
analysis has been reserved by the various sequencing consortia for their own
first publication, often delayed for years following the initial data release.

2. Algorithms maximizing a well-defined objective function for reconstructing
ancestors through the median constructions and other methods are computa-
tionally costly, increasing both with n, the number of genes orthologous across
the genomes, and especially with d

n , where d is the number of rearrangements
occurring along a branch of the tree.

3. Whole genome duplication (WGD), which is rife in the plant world, partic-
ularly among the angiosperms [12,13], sets up a comparability barrier between

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 99–110, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

100 C. Zheng and D. Sankoff

those species descending from a WGD event and species in all other lineages
originating before the event [2]. This is largely due to the process of duplicate
gene reduction, eventually affecting most pairs of duplicate genes created by the
WGD, which distributes the surviving members of duplicate pairs between two
homeologous chromosomal segments in an unpredictable way [14,15,16], thus
scrambling gene order and disrupting the phylogenetic signal. This difficulty is
compounded by the residual duplicate gene pairs created by the WGD, com-
plicating orthology identification essential for gene order comparison between
species descended from the doubling event and those outside it.

4. Global reconstruction methods are initially designed to work under the
assumption of identical gene complement across the genomes, but if we look
at dicotyledons, for example, each time we increase the set of genomes being
studied by one, the number of genes common to the whole set is reduced by
approximately 1

3 . Even comparing six genomes, retaining only the genes common
to all six, removes 85 % of the genes from each genome, almost completely
spoiling the study as far as local syntenies are concerned.

Motivated in part by these issues, we have been developing an ancestral gene
order reconstruction algorithm Pathgroups, capable of handling large plant
genomes, including descendants of WGD events, as soon as they are released,
using global optimization criteria, approached heuristically, but with well-
understood performance properties [9,10]. The approach responds to the dif-
ficulties enumerated above as follows:

1. The software has been developed and tested with all the released and anno-
tated dicotyledon genome sequences, even though “ethical” claims by sequenc-
ing consortia leaders discourage the publication of the results on the majority
of them at this time. In this enterprise, we benefit from the up-to-date and
well organized CoGe platform [1,17], with its database of thousands of genome
sequences and its sophisticated, user-friendly SynMap facility for extraction of
synteny blocks.

2. Pathgroups aims to rapidly reconstruct ancestral genomes according to a
minimum total rearrangement count (using the DCJ metric [18]) along all the
branches of a phylogenetic tree. Its speed is due to its heuristic approach (greedy
search with look-ahead), which allows it to return a solution for values of d

n where
exact methods are no longer feasible. The implementation first produces a rapid
initial solution of the “small phylogeny” problem (i.e., where the tree topology is
given and the ancestral genomes are to be constructed), followed by an iterative
improvement treating each ancestral node as a median problem (one unknown
genome to be constructed on the basis of the three given adjacent genomes).

3. The comparability barrier erected by a WGD event is not completely impen-
etrable, even though gene order fractionation is further confounded by genome
rearrangement events. The WGD-origin duplicate pairs remaining in the modern
genome will contain much information about gene order in the ancestral diploid,
immediately before WGD. The gene order information is retrievable through
the method of genome halving [19], which is incorporated in a natural way into
Pathgroups.

Gene Order in Rosid Phylogeny, Inferred from Pairwise Syntenies 101

| Vitales
 grapevine

 papaya
 malvids

 cacao

 Malpighiales castor bean

rosids
 poplar
 fabids

 + + cucumber

Fig. 1. Phylogenetic relationships among sequenced and non-embargoed eudicotyledon
genomes (without regard for time scale). Poplar and cucumber each underwent WGD

in their recent lineages. Shaded dots represent gene orders reconstructed here, including
the rosid, fabid, malvid and Malpighiales ancestors.

4. One of the main technical contributions of this paper is the feature of Path-

groups that allows the genome complement of the input genomes to vary. Where
the restriction to equal gene complement would lead to reconstructions involving
only about 15 % of the genes, the new feature allows close to 100% of the genes
with orthologs in at least two genomes to appear in the reconstructions. The
other key innovation we introduce here is our ”orthologs for multiple genomes”
(OMG) method for combining the genes in the synteny block sets output by
SynMap for pairs of genomes, into orthology sets containing at most one gene
from every genome in the phylogeny.

Both the Pathgroups and the OMG procedures are parameter-free. There
are no thresholds or other arbitrary settings. We argue that the the appropriate
moment to tinker with such parameters is during the synteny block construction
and not during the orthology set construction nor the ancestral genome recon-
struction. A well-tuned synteny block method goes a long way to attenuate
genome alignment problems due to paralogy. It is also the appropriate point to
incorporate thresholds for declaring homology, since these depend on evolution-
ary divergence time, which is specific to pairs of genomes. Finally, the natural
criteria for constructing pairwise syntenies do not extend in obvious ways to
three or more genomes.

2 Six Eudicotyledon Sequences

There are presently almost twenty eudicotyledon genome sequences released.
Removing all those that are embargoed by the sequencing consortia, all those
who have undergone more than one WGD since the divergence of the eudicots
from the other angiosperms, such as Arabidopsis, and some for which the gene
annotations are not easily accessible leaves us the six depicted in Fig. 1, namely
cacao [20], castor bean [21], cucumber [22], grapevine [23,24], papaya [25] and
poplar [26]. Of the two main eudicot clades, asterids and rosids, only the latter
is represented, as well as the order Vitales, considered the closest relative of the

102 C. Zheng and D. Sankoff

rosids [12,27]. Poplar and cucumber are the only two to have undergone ancestral
WGD since the divergence of the grapevine.

3 Formal Background

A genome is a set of chromosomes, each chromosome consisting of a number of
genes linearly ordered. The genes are all distinct and each has positive or negative
polarity, indicating on which of the two DNA strands the gene is located.

Genomes can be rearranged through the accumulated operation of number of
processes: inversion, reciprocal translocation, transposition, chromosome fusion
and fission. These can all be subsumed under a single operation called double-
cut-and-join which we do not describe here. For our purposes all we need is a
formula due to Yancopoulos et al. [18], stated in Section 3.1 below, that gives
the genomic distance, or length of a branch in a phylogeny, in terms of the
minimum number of rearrangement operations needed to transform one genome
into another.

3.1 Rearrangement Distance

The genomic distance d(G1, G2) is a metric counting the number of rearrange-
ment operations necessary to transform one multichromosomal gene order G1

into another G2, where both contain the same n genes. To calculate D effi-
ciently, we use the breakpoint graph of G1 and G2, constructed as follows: For
each genome, each gene g with a positive polarity is replaced by two vertices
representing its two ends, i.e., by a “tail” vertex and a “head” vertex in the
order gt, gh; for −g we would put gh, gt. Each pair of successive genes in the
gene order defines an adjacency, namely the pair of vertices that are adjacent in
the vertex order thus induced.

If there are m genes on a chromosome, there are 2m vertices at this stage.
The first and the last of these vertices are called telomeres. We convert all the
telomeres in genome G1 and G2 into adjacencies with additional vertices all
labelled T1 or T2, respectively. The breakpoint graph has a blue edge connecting
the vertices in each adjacency in G1 and a red edge for each adjacency in G2.
We make a cycle of any path ending in two T1 or two T2 vertices, connecting
them by a red or blue edge, respectively, while for a path ending in a T1 and a
T2, we collapse them to a single vertex denoted “T ”.

Each vertex is now incident to exactly one blue and one red edge. This bi-
coloured graph decomposes uniquely into κ alternating cycles. If n′ is the number
of blue edges, then [18]:

d(G1, G2) = n′ − κ. (1)

3.2 The Median Problem and Small Phylogeny Problem

Let G1, G2 and G3 be three genomes on the same set of n genes. The rearrange-
ment median problem is to find a genome M such that d(G1, M) + d(G2, M) +
d(G3, M) is minimal.

Gene Order in Rosid Phylogeny, Inferred from Pairwise Syntenies 103

For a given unrooted binary tree T on N given genomes G1, G2, · · · , GN (and
thus with N − 2 unknown ancestral genomes M1, M2, · · · , MN−2 and 2N − 3
branches), the small phylogeny problem is to infer the ancestral genomes so that
the total edge length of T , namely

∑
XY ∈E(T) d(X, Y), is minimal.

The computational complexity of the median problem, which is just the small
phylogeny problem with N = 3, is known to be NP-hard and hence so is that of
the general small phylogeny problem.

4 The OMG Problem

4.1 Pairwise Orthologies

As justified in the Introduction, we construct sets of orthologous genes across
the set of genomes by first identifying pairwise synteny blocks of genes. In our
study, genomic data were obtained and homologies identified within synteny
blocks, using the SynMap tool in CoGe [17,1]. This was applied to the six dicot
genomes in CoGe shown in Fig. 1, i.e., to 15 pairs of genomes. We repeated all
the analyses to be described here using the default parameters of SynMap, with
minimum block size 1, 2, 3 and 5 genes.

4.2 Multi-genome Orthology Sets

The pairwise homologies SynMap provides for all 15 pairs of genomes constitute
the set of edges E of the homology graph H = (V, E), where V is the set of genes
in any of the genomes participating in at least one homology relation.

The understanding of orthologous genes in two genomes as originating in a
single gene in the most recent common ancestor of the two species, leads logically
to transitivity as a necessary consequence. If gene x in genome X is orthologous
both to gene y in genome Y and gene z in genome Z, then y and z must also be
orthologous, even if SynMap does not detect any homology between y and z.

Ideally, then, all the genes in a connected component of H should be orthol-
ogous. Insofar as SynMap resolves all relations of paralogy, we should expect at
most one gene from each genome in such an orthology set, or two for genomes
that descend from a WGD event. We refer to such a set as clean.

In practice, gene x in genome X may be identified as homologous to both
y1and y2 in genome Y . Or x in X is homologous both to gene y1 in genome Y
and gene z in genome Z, while z is also homologous to y2. By transitivity, we
again obtain that x is homologous to both y1and y2 in the same genome. While
one gene being homologous to several paralogs in another genome is common-
place and meaningful, this should be relatively rare in the output from SynMap,
where syntenic correspondence is a criterion for resolving paralogy. Aside from
tandem duplicates, which do not interfere with gene order calculations, and du-
plicates stemming from WGD events, we consider duplicate homologs in the
same genome, inferred directly by SynMap or indirectly by being members of
the same connected component, as evidence of error or noise.

104 C. Zheng and D. Sankoff

To “clean” a connected component with duplicate homologs in the same
genome (or more than two in the case of a WGD descendant), we delete a num-
ber of edges, so that it decomposes into smaller connected components, each
one of which is clean. To decide which edges to change, we define an objective
function

F (X) =
∑

i

∑
G,i/∈G

CX(i, G), (2)

where i ranges over all genes and G ranges over all genomes, and CX(i, G) = 1
if there is exactly one one edge connecting i to any of the genes j in G (possibly
two such edges if G descends from a WGD event), otherwise CX(i, G) = 0.

A global optimum, maximizing F , the exact solution of the “orthology for mul-
tiple genomes” (OMG) problem, would be hard to compute; instead we chose edges
in H one at a time, to delete, so that the increase in F is maximized. We continue in
this greedy way until we obtain a graph H∗ with all clean connected components .
Note that F is designed to penalize the decrease of CX(i, G) = 1 to CX(i, G) = 0
by the removal of the only homology relation between gene i and some gene in
genome G, thus avoiding the trivial solution where H∗ contains no edges.

Note that it is neither practical nor necessary to deal with H in its entirety,
with its hundred thousand or so edges. It suffices to do the cleaning on each con-
nected component independently. Typically, this will contain only a few genes
and very rarely more than 100. The output of the cleaning is generally a de-
composition of the homology set into two or more smaller, clean, sets. These we
consider our orthology sets to input into the gene order reconstruction step.

5 PATHGROUPS

Once we have our solution to the OMG problem on the set of pairwise syntenies,
we can proceed to reconstruct the ancestral genomes. First, we briefly review the
Pathgroups approach (previously detailed in [9,10]) as it applies to the median
problem with three given genomes and one ancestor to be reconstructed, all
having the same gene complement. The same principles apply to the simultaneous
reconstruction of all the ancestors in the small phylogeny problem, and to the
incorporation of genomes having previously undergone WGD.

We redefine a path to be any connected subgraph of a breakpoint graph,
namely any connected part of a cycle. Initially, each blue edge in the given
genomes is a path. A fragment is any set of genes connected by red edges in a
linear order. The set of fragments represents the current state of the reconstruc-
tion procedure. Initially the set of fragments contains all the genes, but no red
edges, so each gene is a fragment by itself.

The objective function for the small phylogeny problem consists of the sum of
a number of genomic distances, one distance for every branch in the phylogeny.
Each of these distances corresponds to a breakpoint graph. A given genome
determines blue edges in one breakpoint graph, while the red edges correspond to
the ancestral genome being constructed. For each such ancestor, the red edges are
identical in all the breakpoint graphs corresponding to distances to that ancestor.

Gene Order in Rosid Phylogeny, Inferred from Pairwise Syntenies 105

A pathgroup is a set of three paths, all beginning with the same vertex, one
path from each partial breakpoint graph currently being constructed. Initially,
there is one pathgroup for each vertex.

Our main algorithm aims to construct three breakpoint graphs with a maxi-
mum aggregate number of cycles. At each step it adds an identical red edge to
each path in the pathgroup, altering all three breakpoint graphs. It is always
possible to create one cycle, at least, by adding a red edge between the two ends
of any one of the paths. The strategy is to create as many cycles as possible. If
alternate choices of steps create the same number of cycles, we choose one that
sets up the best configuration for the next step. In the simplest formulation, the
pathgroups are prioritized, 1. by the maximum number of cycles that can be
created within the group, without giving rise to circular chromosomes, and
2. for those pathgroups allowing equal numbers of cycles, by considering the
maximum number of cycles that could be created in the next iteration of step
1, in any one pathgroup affected by the current choice.

By maintaining a list of pathgroups for each priority level, and a list of frag-
ment endpoint pairs (initial and final), together with appropriate pointers, the
algorithm requires O(n) running time.

In the current implementation of Pathgroups, much greater accuracy, with
little additional computational cost, is achieved by designing a refined set of 163
priorities, based on a two-step look-ahead greedy algorithm.

5.1 Inferring the Gene Content of Ancestral Genomes

The assumption of equal gene content simplifies the mathematics of Pathgroups

and allows for rapid computation. Unfortunately it also drastically reduces the
number of genes available for ancestral reconstruction, so that the method loses
its utility when more than a few genomes are involved.

Allowing unequal gene complements in the data genomes, we have to decide
how to construct the gene complement of the ancestors.

Using dynamic programming on unrooted trees, our assignment of genes to
ancestors simply assures that if a gene is in at least two of the three adjacent
nodes of an ancestral genome, it will be in that ancestor. If it is in less than two
of the adjacent nodes, it will be absent from the ancestor.

5.2 Median and Small Phylogeny Problems with Unequal Genomes

To generalize our construction of the three breakpoint graphs for the median
problem to the case of three unequal genomes, we set up the pathgroups much
as before, and we use the same priority structure. Each pathgroup, however,
may have three paths, as before, or only two paths, if the initial vertex comes
from a gene absent from one of the leaves. Moreover, when one or two cycles
are completed by drawing a red edge, this edge must be left out of the third
breakpoint graph if the corresponding gene is missing from the third genome.

The consequence of this strategy is that some of the paths in the breakpoint
graph will never be completed into cycles, impeding the search for optimality.

106 C. Zheng and D. Sankoff

We could continue to search for cycles, but this would be computationally costly,
spoiling the linear run time property of the algorithm.

The small phylogeny problem can be formulated and solved using the same
principles as the median problem, as with the case of equal genomes. The so-
lution, however, only serves as an initialization. As in [10], the solution can be
improved by applying the median algorithm to each ancestral node in turn, based
on the three neighbour nodes, and iterating until convergence. The new median
is accepted if the sum of the three branch lengths is no greater than the existing
one. This strategy is effective in avoiding local minima.

6 Results on Rosid Evolution

In the process of reconstructing the ancestors, we can also graphically demon-
strate the great spread in genome rearrangement rates among the species studied,
in particular the well-known conservatism of the grapevine genome, as illustrated
by the branch lengths in Fig. 2.

It has been suggested recently that the order Malpighiales should be assigned
to the malvids rather than the fabids [28]. In our results, the tree supporting this
suggestion is indeed more parsimonious than the more traditional one. However,
based on the limited number of genomes at our disposal, this is not conclusive.

| Vitales
 grapevine

 papaya
 malvids

 cacao

 Malpighiales castor
 bean
rosids
 poplar
 fabids

 + + cucumber

| Vitales
 grapevine

 papaya

 malvids cacao

 Malpighiales castor bean

rosids
 poplar

 fabids
 + + cucumber

Fig. 2. Competing hypotheses for the phylogenetic assignment of the Malpighiales,
with branch lengths proportional to genomic distances, following the reconstruction of
the ancestral genomes with Pathgroups

Gene Order in Rosid Phylogeny, Inferred from Pairwise Syntenies 107

16000

17000

18000

19000

20000

21000

22000

23000

24000

25000

0 1 2 3 4 5 6
minimum block size

total tree length

total genes

16000

17000

18000

19000

20000

21000

22000

23000

24000

25000

0 50 100

to
ta

l
tr

e
e
 l
e
n
g
th

iteration

minimum block size=1

minimum block size=5

minimum block size=3

minimum block size=2

Fig. 3. Left: Effect of minimum block size on number of orthology sets and total tree
length. Right: Convergence behaviour as a function of minimum block size.

6.1 Properties of the Solution as a Function of Synteny Block Size

To construct the trees in Fig. 2, from the 15 pairwise comparisons of the gene
orders of the six dicot genomes, we identified some 18,000 sets of orthologs using
SynMap and the OMG procedure. This varied surprisingly little as the minimum
size for a synteny block was set to 1, 2, 3 or 5, as in Fig. 3. On the other hand,
the total tree length was quite sensitive to minimum synteny block size. This can
be interpreted in terms of risky orthology identifications for small block sizes.

Of the 18,000 orthology sets, the number of genes considered on each branch
ranged from 12,000 to 15,000. When the minimum block size is 5, the typical
branch length over the 11 branches of the tree (including one branch from each
WGD descendant to its perfectly doubled ancestor plus one from that ancestor
to a speciation node) is about 1600, so that d

n is around 0.12, a low value for
which simulations have shown Pathgroups to be rather accurate [10].

Fig. 3 shows the convergence behaviour as the set of medians algorithms is
repeated at each ancestral node. Each iteration required about 8 minutes on a
MacBook.

6.2 Block Validation

To what extent do the synteny blocks output by SynMap for a pair of genomes
appear in the reconstructed ancestors on the path between these two genomes in
the phylogeny? Answering this could validate the notion of syntenic conservation
implicit in the block construction. Since our reconstructed ancestral genomes are
not in the curated CoGe database (and are lacking the DNA sequence version
required of items in the database), we cannot use SynMap to construct synteny
blocks between modern and ancestor genomes. We can only see if the genes in
the original pairwise syntenies tend to be colinear as well in the ancestor.

On the path connecting grapevine to cacao in the phylogeny in Fig. 1, there
are two ancestors, the malvid ancestor and the rosid ancestor. There are 308
syntenic blocks containing at least 5 genes in the output of SynMap. A total of
11,229 genes are involved, of which 10,872 and 10,848 (97 %) are inferred to be
in the malvid and rosid ancestor respectively.

108 C. Zheng and D. Sankoff

Table 1. Integrity of cacao-grapevine syntenic blocks

malvid ancestor rosid ancestor

intra-block intra-block
synteny movement movement
breaks number ≤ 1.0) number ≤ 1.0

0 140 (45%) 126 (90%) 153 (50%) 146 (95%)
1 66 (21%) 62 (94%) 64(21%) 58 (91%)
2 42 (14%) 39 (93%) 47(15%) 37 (79%)

> 2 60 (19%) 58 (97%) 44(14%) 38 (86%)

Table 1 shows that in each ancestor, roughly half of the blocks appear intact.
This is indicated by the fact there are zero syntenic breaks in these blocks (no
rearrangement breakpoints) and the average amount of relative movement of
adjacent genes within these blocks is less than one gene to the left or right of its
original position almost all of the time. Most of the other blocks are affected by
one or two breaks, largely because the ancestors can be reconstructed with con-
fidence by Pathgroups only in terms of a few hundred chromosomal fragments
rather than intact chromosomes, for reasons given in Section 6.1. And it can be
seen that the average shuffling of genes within these split blocks is little different
from in the intact blocks.

7 Discussion and Future Work

We have developed a methodology for reconstructing ancestral gene orders in a
phylogenetic tree, minimizing the number of genome rearrangements they imply
over the entire tree. The input is the set of synteny blocks produced by SynMap

for all pairs of genomes. The two steps in this method, OMG and Pathgroups,
are parameter-free. Our method rapidly and accurately handles large data sets
(tens of thousands of genes per genome, and potentially dozens of genomes).
There is no requirement of equal gene complement.

For larger numbers of genomes, a problem would become the quadratic in-
crease in the number of pairs of genomes, but this can be handled by SynMap

only to pairs that are relatively close phylogenetically.
Future work will concentrate first on ways to complete cycles in the breakpoint

graph which are currently left as paths, without substantially increasing compu-
tational complexity. This will increase the accuracy (optimality) of the results.
Second, to increase the biological utility of the results, a post-processing com-
ponent will be added to differentiate regions of confidence in the reconstructed
genomes from regions of ambiguity.

Acknowledgments

Thanks to Victor A. Albert for advice, Eric Lyons for much help and Nadia El-
Mabrouk for encouragement in this work. Research supported by a postdoctoral

Gene Order in Rosid Phylogeny, Inferred from Pairwise Syntenies 109

fellowship to CZ from the NSERC, and a Discovery grant to DS from the same
agency. DS holds the Canada Research Chair in Mathematical Genomics.

References

1. Lyons, E., et al.: Finding and comparing syntenic regions among Arabidopsis and
the outgroups papaya, poplar and grape: CoGe with rosids. Plant Phys. 148, 1772–
1781 (2008)

2. Tang, H., et al.: Unraveling ancient hexaploidy through multiply-aligned an-
giosperm gene maps. Genome Res. 18, 1944–1954 (2008)

3. Murphy, W.J., et al.: Dynamics of mammalian chromosome evolution inferred from
multispecies comparative maps. Science 309, 613–617 (2005)

4. Ma, J., et al.: Reconstructing contiguous regions of an ancestral genome. Genome
Res. 16, 1557–1565 (2006)

5. Adam, Z., Sankoff, D.: The ABCs of MGR with DCJ. Evol. Bioinform. 4, 69–74
(2008)

6. Ouangraoua, A., Boyer, F., McPherson, A., Tannier, É., Chauve, C.: Prediction of
Contiguous Regions in the Amniote Ancestral Genome. In: Salzberg, S.L., Warnow,
T. (eds.) ISBRA 2009. LNCS, vol. 5542, pp. 173–185. Springer, Heidelberg (2009)

7. Gordon, J.L., Byrne, K.P., Wolfe, K.H.: Additions, losses, and rearrangements on
the evolutionary route from a reconstructed ancestor to the modern Saccharomyces
cerevisiae genome. PLoS Genet. 5, 1000485 (2009)

8. Tannier, E.: Yeast ancestral genome reconstructions: The possibilities of computa-
tional methods. In: Ciccarelli, F.D., Miklós, I. (eds.) RECOMB-CG 2009. LNCS,
vol. 5817, pp. 1–12. Springer, Heidelberg (2009)

9. Zheng, C.: Pathgroups, a dynamic data structure for genome reconstruction prob-
lems. Bioinformatics 26, 1587–1594 (2010)

10. Zheng, C., Sankoff, D.: On the Pathgroups approach to rapid small phylogeny.
BMC Bioinformatics 12(Suppl 1), S4 (2011)

11. Bertrand, D., et al.: Reconstruction of ancestral genome subject to whole genome
duplication, speciation, rearrangement and loss. In: Moulton, V., Singh, M. (eds.)
WABI 2010. LNCS, vol. 6293, pp. 78–89. Springer, Heidelberg (2010)

12. Soltis, D.E., et al.: Polyploidy and angiosperm diversification. Am. J. Bot. 96,
336–348 (2009)

13. Burleigh, J.G., et al.: Locating large-scale gene duplication events through rec-
onciled trees: implications for identifying ancient polyploidy events in plants. J.
Comp. Biol. 16, 1071–1083 (2009)

14. Langham, R.A., et al.: Genomic duplication, fractionation and the origin of regu-
latory novelty. Genetics 166, 935–945 (2004)

15. Thomas, B.C., Pedersen, B., Freeling, M.: Following tetraploidy in an Arabidopsis
ancestor, genes were removed preferentially from one homeolog leaving clusters
enriched in dose-sensitive genes. Genome Res. 16, 934–946 (2006)

16. Sankoff, D., Zheng, C., Zhu, Q.: The collapse of gene complement following whole
genome duplication. BMC Genomics 11, 313 (2010)

17. Lyons, E., Freeling, M.: How to usefully compare homologous plant genes and
chromosomes as DNA sequences. Plant J. 53, 661–673 (2008)

18. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion, and block interchange. Bioinformatics 21, 3340–3346
(2005)

110 C. Zheng and D. Sankoff

19. El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J.
Comput. 32, 754–792 (2003)

20. Argout, X., et al.: The genome of Theobroma cacao. Nat. Genet. 43, 101–108 (2011)
21. Chan, A.P., et al.: Draft genome sequence of the oilseed species Ricinus communis.

Nat. Biotechnol. 28, 951–956 (2010)
22. Haung, S., et al.: The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41,

1275–1281 (2010)
23. Jaillon, O., et al.: The grapevine genome sequence suggests ancestral hexaploidiza-

tion in major angiosperm phyla. Nature 449, 463–467 (2007)
24. Velasco, R., et al.: A high quality draft consensus sequence of the genome of a

heterozygous grapevine variety. PLoS ONE 2, e1326 (2007)
25. Ming, R., et al.: The draft genome of the transgenic tropical fruit tree papaya

(Carica papaya Linnaeus). Nature 452, 991–996 (2008)
26. Tuskan, G.A., et al.: The genome of black cottonwood, Populus trichocarpa (Torr.

& Gray). Science 313, 1596–1604 (2006)
27. Forest, F., Chase, M.W.: Eudicots. In: Hedges, S.B., Kumar, S. (eds.) The Timetree

of Life, pp. 169–176. Oxford University Press, Oxford (2009)
28. Shulaev, V., et al.: The genome of woodland strawberry (Fragaria vesca). Nat.

Genet. 43, 109–116 (2011)

Algorithms to Detect Multiprotein Modularity

Conserved during Evolution

Luqman Hodgkinson and Richard M. Karp

Computer Science Division, University of California, Berkeley,
Center for Computational Biology, University of California, Berkeley,

and the International Computer Science Institute
luqman@berkeley.edu, karp@icsi.berkeley.edu

Abstract. Detecting essential multiprotein modules that change infre-
quently during evolution is a challenging algorithmic task that is im-
portant for understanding the structure, function, and evolution of the
biological cell. In this paper, we present a linear-time algorithm, Produles,
that improves on the running time of previous algorithms. We present a
biologically motivated graph theoretic set of algorithm goals complemen-
tary to previous evaluation measures, demonstrate that Produles attains
these goals more comprehensively than previous algorithms, and exhibit
certain recurrent anomalies in the performance of previous algorithms
that are not detected by previous measures.

Keywords: modularity, interactomes, evolution, algorithms.

1 Introduction

Interactions between proteins in many organisms have been mapped, yielding
large protein interaction networks, or interactomes [1]. The present paper contin-
ues a stream of scientific investigation focusing on conservation of modular struc-
ture of the cell, such as protein signaling pathways and multiprotein complexes,
across organisms during evolution, with the premise that such structure can be
described in terms of graph theoretic properties in the interactomes [2,3,4,5,6].
This stream of investigation has led to many successes, discovering conserved
modularity across a wide range of evolutionary distances. However, there re-
main many challenges, such as running time, false positive predictions, coherence
of predicted modules, and absence of a comprehensive collection of evaluation
measures.

Evidence of conservation in the interaction data across organisms is essential
for modules claimed by an algorithm to be conserved over a given evolutionary
distance [7]. Due to the additivity of the scoring function for some previous
algorithms in the interaction densities across organisms, a very dense network
in one organism can be aligned with homologous proteins in another organism
that have zero or few interactions among them. In this case, the interaction data
does not support the claim of conservation across the given organisms.

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 111–122, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

112 L. Hodgkinson and R.M. Karp

Fig. 1. Cartoons describing difficulties with additivity across data types and organ-
isms. Organisms are represented by ovals. Proteins are represented by circles. Protein
interactions are represented by thick lines. Proteins with high sequence similarity are
connected with thin lines. Algorithms that are additive across the interaction and se-
quence data may predict the module on the left to be conserved due to high sequence
similarity. In this case, the module boundaries are not well-defined, most likely contain-
ing portions of multiple modules that may have no relation with each other. Algorithms
that are additive in the interactions across organisms may predict the module on the
right to be conserved though there is no evidence for module conservation across the
organisms in the protein interaction data.

Good boundaries are important for the modules that are returned by an algo-
rithm. Some previous algorithms, such as NetworkBlast [3] and Graemlin [5], use
a scoring function that is a sum of multiple scores: one score based on protein
sequence similarity, and one score from each organism based on the density of
interactions among the module proteins in the interactome for that organism.
These algorithms then use a greedy search on this scoring function to find con-
served modules. Due to the additivity, module pairs similar to the cartoons in
Fig. 1 may receive high scores and be reported as conserved.

Produles is an important step to address these issues. It runs in linear time,
scaling better than Match-and-Split [6] and MaWISh [4], and does not exhibit
the recurrent anomalies that result from the additivity of the scoring function
across organisms and data sources that forms the basis for NetworkBlast and
Graemlin. Our objective is to initiate discussion of evaluation measures that
are sensitive to these and similar issues by introducing the important algorithm
goals described in Section 3.

2 Algorithms

Input Data

An interactome is an undirected graph G = (V, E), where V is a set of proteins
and (v1, v2) ∈ E iff protein v1 interacts with protein v2. In this study the input
is restricted to a pair of interactomes, Gi = (Vi, Ei), for i ∈ {1, 2}, and protein
sequence similarity values, h : V1×V2 → R

+, defined only for the most sequence
similar pairs of proteins appearing in the interactomes. In this study, h is derived
from BLAST [8] E-values. As BLAST E-values change when the order of the
interactomes is reversed, h is defined with the rule

Algorithms to Detect Multiprotein Modularity Conserved during Evolution 113

h(v1, v2) = h(v2, v1) =
E(v1, v2) + E(v2, v1)

2
where E(v1, v2) is the minimum BLAST E-value for v1 ∈ V1, v2 ∈ V2 when
v1 is tested for homology against the database formed by V2. Any algorithm
using only this data is a general tool as it can be easily applied to any pair of
interactomes, including those for newly studied organisms.

Modularity, Conductance, and Degree Bounds

A modular system consists of parts organized in such a way that strong in-
teractions occur within each group or module, but parts belonging to different
modules interact only weakly [9]. Following this, a natural definition of multipro-
tein modularity is that proteins within a module are more likely to interact with
each other than to interact with proteins outside of the module. Let G = (V, E)
be an interactome. A multiprotein module is a set of proteins M ⊂ V such that
|M | |V | and M has a large value of

μ(M) =
|E(M)|

|cut(M, V \M)| + |E(M)|

where E(M) is the set of interactions with both interactants in M , and
cut(M, V \M) is the set of interactions spanning M and V \M . Of the inter-
actions involving proteins in M , the fraction contained entirely within M is
given by μ(M). This is similar to the earlier definition of λ-module [10].

The conductance of a set of vertices in a graph is defined as

Φ(M) =
|cut(M, V \M)|

|cut(M, V \M)| + 2 min(|E(M)|, |E(V \M)|) .

When |E(M)| ≤ |E(V \M)|, as for all applications in this study,

Φ(M) =
|cut(M, V \M)|

|cut(M, V \M)| + 2|E(M)| =
1 − μ(M)
1 + μ(M)

.

Thus, when searching for relatively small modules in a large interactome, min-
imizing conductance is equivalent to maximizing modularity. This relationship
allows us to modify powerful algorithms from theoretical computer science de-
signed for minimizing conductance [11]. It has been shown that conductance
in protein interaction networks is negatively correlated with functional coher-
ence, validating both this definition of modularity and the notion that biological
systems consist of functional modules [12].

Assuming we are searching for modules of size at most b with modularity at
least d, the vertices in any such module have bounded degree. Let δ(u) be the
degree of u in G.

114 L. Hodgkinson and R.M. Karp

Theorem 1. If d > 0, the objective function in the optimization problem

max
G,M,u

δ(u)

s.t. u ∈ M

|M | = b

μ(M) ≥ d

μ(M) > μ(M\{u})

satisfies the bound δ(u) < (b − 1)(1 + d)/d.

Proof. Let M ′ � M\{u}. Let y � |E(M ′)|. Let x � |cut(M ′, {u})|.

μ(M ′) =
y

|cut(M ′, V \M ′)| + y
< μ(M)

so
|cut(M ′, V \M ′)| >

y(1 − μ(M))
μ(M)

Thus,

μ(M) =
x + y

[δ(u) − x] + [|cut(M ′, V \M ′)| − x] + [x + y]
<

x + y

δ(u) − x + y + y(1−μ(M))
μ(M)

which implies
μ(M) <

x

δ(u) − x

As μ(M) ≥ d,

δ(u) <
x(1 + d)

d
≤ (b − 1)(1 + d)

d
��

The motivation for the restriction μ(M) > μ(M\{u}) is that when searching
for modules with high modularity, there may be proteins with such high degrees
that it always improves the modularity to remove them from the module. It can
be shown that this bound is tight and that neither requiring connectivity of M
in the underlying graph nor requiring connectivity of M\{u} in the underlying
graph can allow the bound to be further tightened.

Modularity Maximization Algorithm

PageRank-Nibble [11] is an algorithm for finding a module with low conductance
in a graph G = (V, E). Let A be the adjacency matrix for G. Let D be a diagonal
matrix with diagonal entries Dii = δ(i) where δ(i) is the degree of vertex i in G.
Let W = (AD−1 + I)/2 where I is the identity matrix. W is a lazy random walk
transition matrix that with probability 1/2 remains at the current vertex and
with probability 1/2 randomly walks to an adjacent vertex. A PageRank vector
is a row vector solution pr(α, s) to the equation

pr(α, s) = αs + (1 − α)pr(α, s)WT

Algorithms to Detect Multiprotein Modularity Conserved during Evolution 115

where α ∈ (0, 1] is a teleportation constant and s is a row vector distribution
on the vertices of the graph called the preference vector. Define the distribution
that places all mass at vertex v

χv(u) =
{

1 if u = v
0 otherwise

Intuitively, when s = χv, a PageRank vector can be viewed as a weighted sum
of the probability distributions obtained by taking a sequence of lazy random
walk steps starting from v, where the weight placed on the distribution obtained
after t walk steps decreases exponentially in t [11].

Let p be a distribution on the vertices of G. Let the vertices be sorted in
descending order by p(·)/δ(·) where ties are broken arbitrarily. Let Sj(p) be the
set of the first j vertices in this sorted list. For j ∈ {1, ..., |V |}, the set Sj(p) is
called a sweep set [11].

The PageRank-Nibble algorithm consists of computing an approximate Page-
Rank vector with s = χv, defined as apr(α, s, r) = pr(α, s) − pr(α, r), where r is
called a residual vector, and then returning the sweep set Sj(apr(α, χv, r)) with
minimum conductance [11].

From the definition, if p is a vector that satisfies p+pr(α, r) = pr(α, χv), then
p = apr(α, χv, r). Thus, 0 = apr(α, χv, χv). After initializing p1 = 0, r1 = χv, the
solution is improved iteratively. Each iteration, called a push operation, chooses
an arbitrary vertex u such that ri(u)/δ(u) ≥ ε. Then pi+1 = pi and ri+1 = ri

except for the following changes:

1. pi+1(u) = pi(u) + αri(u)
2. ri+1(u) = (1 − α)ri(u)/2
3. For each v such that (u, v) ∈ E, ri+1(v) = ri(v) + (1 − α)ri(u)/(2δ(u))

Intuitively, αri(u) probability is sent to pi+1(u), and the remaining (1−α)ri(u)
probability is redistributed in ri+1 using a single lazy random walk step [11].

Each push operation maintains the invariant [11]

pi + pr(α, ri) = pr(α, χv)

When no additional pushes can be performed, the final residual vector r satisfies

max
u∈V

r(u)
δ(u)

< ε

The running time for computing apr(α, χv, r) is O(1/(εα)) [11]. If we set ε
and α to constants, which is reasonable given their meanings, and if we consider
only the first b sweep sets, the algorithm runs in constant time. As we desire the
degrees of the vertices in the final set to be bounded, we do not consider any
sweep sets that contain vertices with degree (b − 1)(1 + d)/d or greater, and we
also require connectivity in the underlying graph.

116 L. Hodgkinson and R.M. Karp

Algorithm to Detect Conservation

The algorithm begins by finding a multiprotein module,

M ⊂ V1

with high modularity in G1 using the algorithm described previously. Let

HT (M) = {v | ∃ u ∈ M such that h(u, v) ≤ T }

Modules corresponding to the connected components of the subgraph of G2

induced by HT (M) are candidates for conservation with M . Let these modules
be N1, N2, ..., Nk. For i = 1, ..., k, let

RT (M, Ni) = {u ∈ M | ∃ v ∈ Ni such that h(u, v) ≤ T }

If the following are true:

a ≤ |RT (M, Ni)| ≤ b

a ≤ |Ni| ≤ b

1
c
|Ni| ≤ |RT (M, Ni)| ≤ c|Ni|

μ(RT (M, Ni)) ≥ d

μ(Ni) ≥ d

where a is a lower bound on size, b is an upper bound on size, c is a size balance
parameter, and d is a lower bound on desired modularity, and if RT (M, Ni) yields
a connected induced subgraph of G1, then we report the pair (RT (M, Ni), Ni)
as a conserved multiprotein module.

Each protein is used exactly once as a starting vertex for the modularity
maximization algorithm. A counter is maintained for each protein in G1. When
a protein is placed in a module by the modularity maximization algorithm, the
counter for the protein is incremented. Each counter has maximum value e for
some constant e. If the modularity maximization algorithm returns a module
containing any protein with counter value e, the entire module is ignored. If a
protein in G1 is reported to be in a conserved module, the counter for the protein
is set to e in order to reduce module overlap. When all proteins in G1 have been
used as starting vertices, the roles of G1 and G2 are reversed, and the entire
process is repeated.

Proof of Linear Running Time

Each value of h(v, ·) for v ∈ V is considered only when constructing HT (M)
for {M : v ∈ M}, so each value of h(v, ·) is considered at most e times. If v is
stored at each vertex in HT (M) when constructing HT (M), then constructing
RT (M, Ni) is a union of vertex lists and does not require additional considera-
tions of h(v, ·) values. As for all v ∈ V1,

|{M : v ∈ M}| ≤ e

the number of consideration of h values is

Algorithms to Detect Multiprotein Modularity Conserved during Evolution 117

∑
M

∑
v∈M

|h(v, ·)| =
∑

v

∑
M :v∈M

|h(v, ·)|

≤ e
∑

v

|h(v, ·)|

= e|h(·, ·)|

After finding HT (M), it is necessary to compute N1, N2, ..., Nk. This can be
problematic if any of the vertices in HT (M) have large degree, which could con-
ceivably be as large as |V2|−1. However, as we desire Ni such that μ(Ni) ≥ d and
|Ni| ≤ b, which ideally do not contain any vertex u such that μ(Ni\{u}) > μ(Ni),
we can discard, by Theorem 1, any vertex v ∈ HT (M) with degree in G2 of
(b − 1)(1 + d)/d or greater. A modified depth-first search that transitions only
among vertices in HT (M) is then used to compute N1, N2, ..., Nk. This requires
time

O((
(b − 1)(1 + d)

d
)|HT (M)|) = O(|HT (M)|)

As
|HT (M)| ≤

∑
v∈M

|h(v, ·)|

all of these depth-first searches over the full run of the algorithm require time

O(
∑
M

|HT (M)|) = O(
∑
M

∑
v∈M

|h(v, ·)|) = O(|h(·, ·)|)

For a given M , constructing all RT (M, Ni) by a union of lists stored at
the vertices in the Ni requires time O(

∑
i |Ni|b log b) = O(|HT (M)|). Test-

ing for connectivity of a single RT (M, Ni) with a modified depth-first search
that transitions only among vertices in RT (M, Ni) requires constant time as
|RT (M, Ni)| ≤ b and as each vertex in M has degree bounded by (b−1)(1+d)/d.
All of these constructions and depth-first searches over the full run of the algo-
rithm can be completed in time O(

∑
M |HT (M)|) = O(|h(·, ·)|).

Computing the modularity of module U ∈ {Ni,RT (M, Ni)} requires comput-
ing the sum of degrees of the vertices in U and the number of edges with both
endpoints in U . These can be computed in constant time when |U | ≤ b as each
vertex in U has degree bounded by (b − 1)(1 + d)/d.

3 Biologically Motivated Algorithm Goals

These goals address the challenges described in the introduction. Goal 1 is a
measure of how many sequence dissimilar proteins participate in the module.
Goal 2 is a measure of quality of module boundaries. Goal 3 is a measure of
evidence for the claim of conservation in the interaction data. Goal 4 measures
fit to an evolutionary model that includes interaction formation and divergence,
protein duplication and divergence, and protein loss. Goal 5 measures proteome
coverage and module overlap. We now quantify these goals mathematically.

118 L. Hodgkinson and R.M. Karp

Definition 1. (Algorithm output) Let k pairs of conserved modules returned
by an algorithm be M = {(M i

1, M
i
2) | i ∈ {1, ..., k}}. Let (M1, M2) ∈ M. Let

M ∈ {M1, M2}.

Definition 2. (Filled module) Let Gint(M) = (M, E(M)).

Definition 3. (Module homology graph) Let Ghom(M1, M2) = (M1∪M2, H(M)),
where, for p1 ∈ M1, p2 ∈ M2, (p1, p2) ∈ H(M) iff h(p1, p2) is defined.

Definition 4. (Module size) Let S(M) = |M |.

Definition 5. (Module density) Let Δ(M) = |E(M)|/
(|M|

2

)
.

Definition 6. (Interaction components) Let C(M) be the number of connected
components in Gint(M).

Definition 7. (Module average) Let fa(M1, M2) = (f(M1) + f(M2))/2, where
f ∈ {μ, S, Δ, C}.

Definition 8. (Module difference) Let fd(M1, M2) = |f(M1) − f(M2)|, where
f ∈ {μ, S, Δ, C}.

Definition 9. (Module overlap) LetOi(M i
1, M

i
2) = maxj 	=i min{|M j

1∩M i
1|/|M i

1|,
|M j

2 ∩M i
2|/|M i

2|}. A value of Oi = x implies that no module pair j 	= i exists that
covers more than fraction x of each module in module pair i.

Definition 10. (Ancestral protein) Let p = (P1, P2), where P1 ⊆ M1, P2 ⊆ M2,
and Ghom(P1, P2) consists of a single connected component.

Definition 11. (Ancestral protein projection) For ancestral protein p = (P1, P2),
Pi is the projection of p on Mi for i ∈ {1, 2}.

Definition 12. (Ancestral module) Let Ma(M1, M2) be the set of ancestral pro-
teins for (M1, M2). The arguments, M1, M2, may be omitted for brevity when
the context is clear.

Definition 13. (Relationship disagreement) Let p, q ∈ Ma, where p = (P1, P2),
q = (Q1, Q2). For i, j ∈ {1, 2}, relationship disagreement means there is an
interaction in Gi between some p′ ∈ Pi and some q′ ∈ Qi, but no interaction in
Gj between any p′′ ∈ Pj with any q′′ ∈ Qj . Let R(M1, M2) be the number of
relationship disagreements.

Definition 14. (Relationship evolution) Let Er(M1, M2) = R(M1, M2)/
(|Ma|

2

)
,

the fraction of possible relationship disagreements.

Definition 15. (Ancestral module projection) For i ∈ {1, 2}, let πi(Ma) =
{Pi | (P1, P2) ∈ Ma ∧ Pi 	= ∅}.

Definition 16. (Number of protein duplications) Let D(M1, M2) = |M1| −
|π1(Ma)| + |M2| − |π2(Ma)|.

Algorithms to Detect Multiprotein Modularity Conserved during Evolution 119

Definition 17. (Protein duplication evolution) Let Ed(M1, M2) = D(M1, M2)/
(|M1| + |M2| − 2), the fraction of possible protein duplications.

Definition 18. (Number of protein losses) Let L(M1, M2) = 2|Ma|−|π1(Ma)|−
|π2(Ma)|.

Definition 19. (Protein loss evolution) Let E�(M1, M2) = L(M1, M2)/(|M2|+
|M1|), the fraction of possible protein losses.

Definition 20. (Ancestral components) Let C(Ma) be the number of connected
components in a graph with vertex set Ma, where an edge is defined between two
ancestral proteins p, q ∈ Ma if any protein in the projection of p on Mi interacts
with any protein in the projection of q on Mi, for some i ∈ {1, 2}.

Definition 21. (Proteome coverage) Let Ci = |Ui|/|Vi|, where Ui is the set of
proteins from Vi that are part of conserved modules. Let C = (C1 + C2)/2.

Goal 1. |Ma| is the number of ancestral proteins and should be reasonably large
for significant multiprotein modules.

Goal 2. Any value of C(Ma) > 1 implies that the module pair is not well-
defined as there is no evidence that the various connected components belong in
the same module.

Goal 3. Δd, Ca, and Cd should be reasonably low to provide evidence for the
claim of conservation across organisms. This may be problematic for models that
are additive in the interaction densities across organisms.

Goal 4. Er, Ed, and E� should be reasonably low for a good fit with evolution.

Goal 5. C and k should be in reasonable ranges with a low average value of Oi.

4 Experiments and Results

Produles, NetworkBlast-M [13], Match-and-Split [6], and MaWISh [4] were ap-
plied to iRefIndex [14] binary interactions, Release 6.0, for Homo sapiens and
Drosophila melanogaster, consisting of 74,554 interactions on 13,065 proteins for
H. sapiens and 40,004 interactions on 10,050 proteins for D. melanogaster. The
evaluation was performed on the module pairs returned that had 5-20 proteins
per organism. This removes a large number of module pairs from Match-and-Split
and MaWISh that consist of modules on two or three proteins, single edges or tri-
angles, and the few huge modules from MaWISh with nearly a thousand proteins
each and C(Ma) > 1, that likely have little information content. This has little ef-
fect on NetworkBlast-M for which nearly all of its modules have 13-15 proteins per
organism [15]. All programs were run with varying h threshold, corresponding to
varying numbers of homologous protein pairs: h = 10−100: 5,675 pairs, h = 10−40:
25,346 pairs, h = 10−25: 50,831 pairs, and h = 10−9: 138,824 pairs. Consider-
ing only the module pairs from NetworkBlast-M with highest NetworkBlast-M

120 L. Hodgkinson and R.M. Karp

0
10
20
30
40
50
60
70
80
90

100
110
120

Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Ru
nn

in
g

Ti
m

e
in

 M
in

ut
es

0
1
2
3
4
5
6
7
8
9

10
11

Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

|M
a|

0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10

Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

C(
M

a)

Fig. 2. Comparison of running time and performance on Goal 1 and Goal 2. The x-axis
is the number of homologous protein pairs. The y-axis, from left to right, is the running
time in minutes, the average |Ma|, and the average C(Ma).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e
Δd

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Match-and-Split
MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

Ca

-1

0

1

2

3

4

5
Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

Cd

Fig. 3. Comparison of performance on Goal 3. The x-axis is as in Fig. 2. The y-axis,
from left to right, is the average Δd, the average Ca, and the average Cd.

score does not significantly change the distributions [15]. Graemlin has nineteen
network-specific parameters over a wide range of values. Together with the au-
thors of Graemlin, we were unable to find settings that would yield results for
the networks in this study.

As expected, Produles returns multiprotein modules with much higher values
of μ than other approaches [15]. What is remarkable is that by focusing only
on this measure, other desirable properties are attained. In Fig. 2, the linear
running time of Produles is seen to be very desirable. Neither Match-and-Split
nor MaWISh could complete on the data set with 50,831 homologous protein
pairs. NetworkBlast-M has high average value of |Ma| due mainly to its focus
on modules with 13-15 proteins per organism. Both Match-and-Split and Pro-
dules guarantee that C(Ma) = 1. NetworkBlast-M has a high average value of
C(Ma) due to additivity across data types. MaWISh has a few module pairs
with C(Ma) > 1 in a larger size range. Fig. 3 shows that NetworkBlast-M has
difficulty with Goal 3 due to additivity of its scoring model in the interaction
densities across organisms. NetworkBlast-M frequently aligns a dense module
in one organism with a module that has zero or few interactions in the other
organism. For all algorithms, average Δa is approximately 0.3 [15]. Fig. 4 shows
that Produles performs comparably on the evolutionary model with algorithms
that attempt to match topologies. By searching only for modularity, Produles
detects conserved multiprotein module pairs in this data set that are consistent
with evolution. Fig. 5 shows that NetworkBlast-M produces many overlapping
module pairs. As indicated by Figs. 3-4, for many of these, the interaction data
does not support the claim of conservation.

Algorithms to Detect Multiprotein Modularity Conserved during Evolution 121

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

Er

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

Ed

-0.01

0.00

0.01

Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

E

Fig. 4. Comparison of performance on Goal 4. The x-axis is as in Fig. 2. The y-axis,
from left to right, is the average Er, the average Ed, and the average E�.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

0

100

200

300

400

500

600

700

800

900

1000
Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

av
er

ag
e

i

Fig. 5. Comparison of performance on Goal 5. The x-axis is as in Fig. 2. The y-axis,
from left to right, is C, k, and the average Oi.

As a final test, we computed GO biological process enrichment [16] with
Bonferroni correction at 0.05 significance level. All the algorithms in this study
performed comparably for modules in each size range. More than 95% of Network-
Blast-M modules were in the size range 13-15 proteins for which the percentage
of modules enriched were: 100% for Produles, 98% for NetworkBlast-M, 100% for
MaWISh, and 100% for Match-and-Split. All remaining NetworkBlast-M mod-
ules were in the size range 10-12 proteins for which the percentage of modules
enriched were: 79% for Produles, 66% for NetworkBlast-M, 89% for MaWISh,
with no modules in this size range for Match-and-Split.

5 Conclusion

We present a linear-time algorithm to detect conserved multiprotein modularity,
and a new set of evaluation measures, comparing with leading algorithms and
describing reasons for lower performance of earlier approaches. The measures
introduced are sensitive to important issues not addressed by previous measures.

Acknowledgments. The authors would like to thank those who helped with
the study: Maxim Kalaev with NetworkBlast-M, Jason Flannick and Antal Novak
with Graemlin, Mehmet Koyutürk with MaWISh, Manikandan Narayanan with
Match-and-Split, and Sabry Razick and Ian M. Donaldson with iRefIndex. This
work is supported in part by NSF grant IIS-0803937. Bonnie Kirkpatrick
graciously provided a critical reading of the manuscript for which the authors
extend their warmest thanks.

122 L. Hodgkinson and R.M. Karp

References

1. Vidal, M.: Interactome modeling. FEBS Letters 579, 1834–1838 (2005)
2. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R.,

Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. Proc. Natl. Acad. Sci. 100(20), 11394–11399 (2003)

3. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler,
T., Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple
species. Proc. Natl. Acad. Sci. 102(6), 1947–1979 (2005)

4. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama,
A.: Pairwise alignment of protein interaction networks. Journal of Computational
Biology 13(2), 182–199 (2006)

5. Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graem-
lin: general and robust alignment of multiple large interaction networks. Genome
Research 16, 1169–1181 (2006)

6. Narayanan, M., Karp, R.M.: Comparing protein interaction networks via a graph
match-and-split algorithm. Journal of Computational Biology 14(7), 892–907
(2007)

7. Beltrao, P., Serrano, L.: Specificity and evolvability in eukaryotic protein interac-
tion networks. PLoS Computational Biology 3(2), e25 (2007)

8. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

9. Simon, H.A.: The structure of complexity in an evolving world: the role of near
decomposability. In: Callebaut, W., Rasskin-Gutman, D. (eds.) Modularity: Un-
derstanding the Development and Evolution of Natural Complex Systems. Vienna
Series in Theoretical Biology. MIT Press, Cambridge (2005)

10. Li, M., Wang, J., Chen, J., Pan, Y.: Hierarchical organization of functional modules
in weighted protein interaction networks using clustering coefficient. In: Măndoiu,
I., Narasimhan, G., Zhang, Y. (eds.) ISBRA 2009. LNCS (LNBI), vol. 5542, pp.
75–86. Springer, Heidelberg (2009)

11. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using PageRank
vectors. In: 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), pp. 475–486. IEEE Press, New York (2006)

12. Voevodski, K., Teng, S., Xia, Y.: Finding local communities in protein networks.
BMC Bioinformatics 10, 297 (2009)

13. Kalaev, M., Bafna, V., Sharan, R.: Fast and accurate alignment of multiple pro-
tein networks. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI),
vol. 4955, pp. 246–256. Springer, Heidelberg (2008)

14. Razick, S., Magklaras, G., Donaldson, I.M.: iRefIndex: a consolidated protein in-
teraction database with provenance. BMC Bioinformatics 9, 405 (2008)

15. Hodgkinson, L., Karp, R.M.: Algorithms to detect multi-protein modularity con-
served during evolution. EECS Department, University of California, Berkeley,
Technical Report UCB/EECS-2011-7 (2011)

16. Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock, G.:
Go:termfinder—open source software for accessing gene ontology information and
finding significantly enriched gene ontology terms associated with a list of genes.
Bioinformatics 20(18), 3710–3715 (2004)

The Kernel of Maximum Agreement Subtrees

Krister M. Swenson1,3, Eric Chen2,
Nicholas D. Pattengale4, and David Sankoff1

1Department of Mathematics and Statistics, University of Ottawa, Ontario,
K1N 6N5, Canada

2Department of Biology, University of Ottawa, Ontario, K1N 6N5, Canada
3LaCIM, UQAM, Montréal Québec, H3C 3P8, Canada

4Sandia National Laboratories, Albuquerque, New Mexico

Abstract. A Maximum Agreement SubTree (MAST) is a largest sub-
tree common to a set of trees and serves as a summary of common sub-
structure in the trees. A single MAST can be misleading, however, since
there can be an exponential number of MASTs, and two MASTs for the
same tree set do not even necessarily share any leaves. In this paper we
introduce the notion of the Kernel Agreement SubTree (KAST), which is
the summary of the common substructure in all MASTs, and show that
it can be calculated in polynomial time (for trees with bounded degree).
Suppose the input trees represent competing hypotheses for a particular
phylogeny. We show the utility of the KAST as a method to discern the
common structure of confidence, and as a measure of how confident we
are in a given tree set.

1 Introduction

Phylogeny inference done on genetic data using maximum parsimony, maximum
likelihood, and Bayesian analyses usually yields a set of most likely trees (phylo-
genies). A typical approach used by biologists to discern the commonality of the
trees is to apply a consensus method which yields a single tree containing edges
that are well represented in the set. For example, the majority-rules consensus
tree contains only the edges (bipartitions of the leaf set) that exist in a majority
of input trees. Consensus methods are also commonly used for their original pur-
pose [1], to summarize the information provided from different data sets (there
are other uses [32] but these are the two that we consider in this paper).

If one desires a more conservative summary, they may use the strict consensus
tree, which has an edge if and only if the edge exists in all of the input trees. Yet
even for this extremely conservative consensus method, there has been debate
as to its validity and the conditions under which it should be used [3,23,4]. In
particular, Barrett et al. [3] showed an example where a parsimony analysis of
two data sets yields a consensus tree that is at odds with the tree obtained by
combining the data. Nelson [23] replied with an argument that the error was not
the act of taking the consensus, but the act of pooling the data.

The issue at the heart of this debate is, essentially, that of wandering or rogue
leaves (taxa). Indeed, one or many leaves appearing in different locations of

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 123–135, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

124 K.M. Swenson et al.

otherwise identical trees have created the problems noticed by Barrett et al.,
and can also reduce the consensus tree to very few, if any, internal edges. On the
other hand, Finden and Gordon [10] had already characterized Maximum Agree-
ment SubTrees (MASTs): maximum cardinality subsets of the leaves for which all
input trees agree. By calculating a MAST, one avoids Barrett’s issue because all
MASTs agree with the parsimonious tree they computed on the combined data.
As we will see a single MAST can be misleading, however, as there can exist two
MASTs (on a single set of trees) which share no leaves. Further, there are poten-
tially an exponential (in the number of leaves) number of MASTs for a single set
of trees [18]. For Barrett’s example we will see that our new method appropriately
excludes the contentious part of the tree, and so may be more fit than traditional
consensus methods for comparing trees obtained from different analyses.

Wilkinson was the first to directly describe the issues surrounding rogue leaves
and develop an approach to try to combat them [32]. Since then, a large body
of work by Wilkinson and others has grown on the subjects of finding a single
representative tree [32,33,34,31,11,24] or something other than a tree (forest,
network, etc.) [2,17,9,15,26]. A full review of this work is out of the scope of this
article so we refer the reader to the chapter of Bryant [8], the earlier work of
Wilkinson [32,33], and Pattengale et al. [24]. Despite the myriad of options we
notice a distinct lack of an efficiently computable base-line method for reporting
subtrees of high confidence; a method analogous to the strict consensus, but less
susceptible to rogue leaves. Thus, we introduce the Kernel Agreement SubTree
(KAST) to summarize the information shared by all (potentially exponential)
MASTs. Like the strict consensus, the KAST gives a summary of the common
structure of high confidence, except that it excludes the rogue leaves that con-
found traditional consensus methods. The KAST has the benefits of having a
simple definition, of summarizing the subtree of confidence by reporting a single
tree, and unlike the other known subtree methods can be computed in polyno-
mial time (when at least one input tree has bounded degree). Note that we do
not use the term kernel in the machine learning sense (as in [28]).

When speaking of a reconstruction method that produces many most probable
trees, Barrett et al.[3] called for “conservatism” and suggests the use of the strict
consensus. In Section 5 we show the utility of the KAST as a means to get a
conservative summary of many most probable trees. We then show the utility
of the KAST in the original setting of consensus methods; on trees obtained
through different analyses. In each setting we use the KAST not only to find
subtrees of confidence, but as an indicator of randomness in the input trees.

The paper is organized as follows. We continue by formally defining the prob-
lem in Section 1.1 and showing properties of the MAST and KAST in Section 1.2.
We then present Bryant’s algorithm for computing the MAST in Section 2, on
which our algorithm to compute the KAST (Section 3) is based on. Section 4
reports experimental values for the expected size of the KAST on various sets of
trees generated at random while Section 5 shows how the KAST can be used to
find subtrees of confidence, and report subsets of trees for which we are confident.

The Kernel of Maximum Agreement Subtrees 125

1.1 Definitions

Consider a set of trees T = {T1, T2, . . . , Tk} and a set of labels L such that each
x ∈ L labels exactly one leaf of each Ti. We will restrict a tree to a subset L′ of
its leaf set L; Ti|L′ is the minimum homeomorphic subtree of Ti which has leaves
L′. An agreement subtree for T is a subset L′ ⊆ L such that T1|L′ = T2|L′ =
· · · = Tk|L′ . A maximum agreement subtree (MAST) is an agreement subtree of
maximum size. The set of all maximum agreement subtrees is M.

Definition 1. The Kernel Agreement SubTree (KAST) is the intersection of
all MASTs (i.e. ∩T∈MT).

See Figure 1 for an example.
As usual, node a is an ancestor of b if the path from b to the root passes

through a. b is a descendant of a. For nodes a and b, the least common ancestor
lca(a, b) is the ancestor of a and b that is a descendant of all ancestors of a
and b.

1.2 Properties of a MAST and the KAST

In Section 3 we show that the KAST can be computed in the same time as the
fastest known algorithm to compute the MAST, by a convenient use of dynamic
programming. The current fastest know algorithms for the MAST problem are
due to Farach et al. [13] and Bryant [7]. Let di be the maximum degree (number
of children) of tree Ti ∈ T . These algorithms run in O(kn3 + nd) time where
n = |L|, k is the number of trees in the input, and d is the minimum over all di,
1 ≤ i ≤ k.

We devote this section to showing desirable properties of the KAST by con-
trasting it with the MAST. First we look at the role KAST can play in Bar-
rett’s example [3]. The rooted trees obtained by his parsimony analyses are
T1 = (A, (B, (C, D))) and T2 = (A, ((B, C), D))) (written in Newick format).
The set of maximum agreement subtrees for T1 and T2 is

{(A, (B, D)), (A, (D, C)), (A, (B, C))}.

Thus, the KAST has only a single leaf A, which indicates that there is not
enough information to imply a subtree of confidence. This is the result we would
prefer to see, given the circumstances. We see more examples in Section 5 that
show a KAST which finds substantial common substructure, yet does not falter
by including subtrees that are at odds with biological observation.

Take a tree set T with a MAST of size m. Adding a tree T to T cannot result
in a MAST larger than m. This is due to the fact that an agreement subtree
of T ∪ {T } must also be an agreement subtree of T . On the other hand, the
signal for a particular kernel can become apparent when more trees that agree
are added to the set.

Property 1. The KAST on tree set T can be smaller than that of T ∪ T , for
some tree T .

126 K.M. Swenson et al.

Fig. 1. The effect of adding a tree to the input set. The MASTs for {T1, T2} are
{1,2,3,4,5}, {a, b, 1, 3, 4}, {a, b, 2, 3, 4}, and {a, b, 3, 4, 5}, yielding the KAST {3, 4}. The
MAST for {T1, T2, T3} is {1, 2, 3, 4, 5}, yielding the KAST {1, 2, 3, 4, 5}.

Figure 1 shows an example exhibiting this property. The KAST on input tree
set {T1, T2} has two leaves (is essentially empty) whereas the subtree on leaves
{1, 2, 3, 4, 5} is amplified by the addition of the tree T3 to the set. We also see in
Section 4 that the KAST size can often increase when adding somewhat similar
trees to a set.

We finish with a few negative results about the MAST. The first shows that the
MAST is not necessarily a good indicator of the common subtrees of confidence
between two trees.

Property 2. There exists a family of tree sets that yields at least two MASTs,
the intersection of which is size 2.

Take the caterpillar trees

(1, (2, (3, . . . (n−1, n) . . .))) and (n/2, (n/2+1, . . . , (n, (n/2−1, . . . , (2, 1) . . .)) . . .))

for even n. Two of the MASTs for these trees are {1, 2, . . . , n/2, n/2 + 1} and
{n/2, . . . , n − 1, n}.

The second property shows that the number of MASTs and the size of them
are not good indicators of their quality. We will see experimental evidence cor-
roborating this fact in Section 4.

Property 3. There exists a family of tree sets that yields exactly two MASTs of
size Ω(n), but the KAST is of size 4.

For this example we use trees that are nearly caterpillars. We write them as
caterpillars, except S1 denotes a subtree (1a, 1b) while Sm/2+1 denotes a subtree
((m/2 + 1)a, (m/2 + 1)b). The first tree is then

(S1, (2, (3, . . . (Sm/2+1, . . . (m − 1, m) . . .)))

and the second is

(n, (n − 1, . . . , (n/2 + 2, (S1, (2, . . . , (n/2, (Sm/2+1)) . . .))) . . .))

where m = n − 2. The only two MASTs are now

{1a, 1b, 2, . . . , m/2, (m/2 + 1)a, (m/2 + 1)b} and
{1a, 1b, (m/2 + 1)a, (m/2 + 1)b, m/2 + 2, . . . , m − 1, m}.

The Kernel of Maximum Agreement Subtrees 127

2 A Dynamic Programming Algorithm to Find the
MAST

While either of the fastest known algorithms [7,13] for finding a MAST can be
adapted to compute the KAST, we find it instructive to describe the algorithm
of Bryant. We are comprehensive in our description. However, we refer the reader
to Bryant’s dissertation [7] for a more precise description of the algorithm.

Take a, b ∈ L and call T (a, b) the set of all agreement subtrees where the
lca(a, b) is the root of the tree. Let M(a, b) ⊆ T (a, b) be the set of maximum
agreement subtrees where lca(a, b) is the root, and MAST (a, b) be the number of
leaves in any member of M(a, b). We devote the rest of this section to computing
MAST (a, b) since the size of the MAST is simply the maximum MAST (a, b)
over all possible a and b.

Take three leaves a, b, c ∈ L. ac|b denotes a rooted triple where lca(a, c) is
a descendant of lca(a, b). In this case we say that c is on a’s side of the root
with respect to b (when lca(a, b) is the root). Leaves a,b, and c form a fan triple,
written (abc), if lca(a, b) = lca(a, c) = lca(b, c). Define R to be the set of rooted
triples common to all trees in T and F to be the set of fan triples common to
all trees in T . Bryant showed that an agreement subtree in T is equivalent to a
subset of the set of rooted and fan triples.

The algorithm to compute MAST (a, b) hinges upon the fact that the triples
on a’s side of the root, and the triples on b’s side of the root can be addressed
independently. Consider the set X = {x : xa|b ∈ R} ∪ {a} such that lca(a, b)
is the root. In this case, X corresponds to the leaves in a subtree on a’s side of
the root. Define MASTa = max{MAST (a, x) : x ∈ X} to be the MAST of the
leaves in a subtree on a’s side of the root. MASTb is defined similarly, where
X = {x : a|bx ∈ R} ∪ {b}.

If F is empty (i.e. the root of every tree in T is binary), then we have simply,

MAST (a, b) = MASTa + MASTb.

Otherwise, consider the maximum size subset C ⊆ F such that (abc) ∈ F for
c ∈ C. Again, MASTc is the MAST that considers only the vertices x such
that xc|b. The triples corresponding to some MASTc are not the same as those
for MASTa and MASTb. However, MASTc and MASTc′ for c, c′ ∈ C could
correspond to the same triples. To avoid conflict we construct a graph G(C)
as follows: for each c ∈ C create a vertex with weight MASTc. Make an edge
between v and w if and only if (bvw) ∈ F (i.e. v and w have the potential to
appear in a subtree from the root that does not include a or b). A maximum
weight clique S in this graph is the MAST of all potential subtrees that do not
include a or b. So MAST (a, b) can be written

MAST (a, b) = MASTa + MASTb +
∑
s∈S

MASTs

where MASTs is defined similarly to MASTa but with X = {x : a|sx ∈ R}∪{s}.

128 K.M. Swenson et al.

3 Finding the KAST

KAST (a, b) is the intersection of all MASTs in M(a, b) (the MASTs where
lca(a, b) is the root). In this section we show how to compute KAST (a, b)
through a modification of the algorithm of section 2.

Let Ma be the set of all MASTs on the leaf set {x : xa|b ∈ R}. In other
words, Ma is the collection of sets of leaves that correspond to some MASTa.
Call L(Ma) the set of leaves in any MAST in Ma (i.e. L(Ma) = {z ∈ M : M ∈
Ma}). Symmetrically, Mb = {x : a|bx ∈ R} and L(Mb) = {z ∈ M : M ∈ Mb}.
We begin by showing how to find KAST (a, b) for binary trees.

Theorem 1. If the trees T1, T2, . . . , Tk are binary, then

KAST (a, b) = (∩T∈MaT) ∪ (∩T∈Mb
T)

Proof. If a = b then this is trivially true. Assume by induction that KAST (c, d)
can be calculated where lca(a, b) is an ancestor of lca(c, d).

Recall that MAST (a, b) = MASTa + MASTb when the trees in T are binary
and that Ma is the set of MASTs that include only the leaves a and x such
that lca(a, b) is an ancestor of lca(a, x). It follows that Ma and Mb have the
following property:

L(Ma) ∩ L(Mb) = ∅
So KAST (a, b) depends on Ma and Mb independently.

Bryant showed that any leaf included in Ma or Mb will necessarily exist in
some MAST for T (a corollary of theorem 6.8 in [7]). Since the KAST contains
only the leaves that exist in every MAST, then KAST (a, b) must be equal to
the intersection of all MASTs in Ma. ��

So the algorithm to compute KAST (a, b) takes the intersection over all sets
KAST (c, d) such that ac|b, ad|b ∈ R and MAST (c, d) is maximum. It does the
same for b’s side of the root, and then takes the union of the result.

The following theorem hints that the independence of subsolutions that gives
rise to MAST dynamic programming algorithms will similarly give rise to a
KAST algorithm.

Theorem 2. If any MAST is such that two leaves x, y are on the same side of
the root, it follows that every MAST containing both x and y will also have them
on the same side of the root.

Proof. A simple proof by contradiction suffices. Assume that the theorem does
not hold, namely that there is another MAST containing both x and y where
x occurs on the other side of the root from y. Since the second MAST has root
lca(x, y) (because x and y are on either side of the root), this implies that the
second MAST is a valid subtree in the first MAST, a contradiction. ��

The implication here is that in building KAST subsolutions for one side of the
root under consideration, we need not worry about leaves that we exclude being
candidates for inclusion on the other side of the root.

The Kernel of Maximum Agreement Subtrees 129

We now present the main result of this section. Recall from Section 2 that
MAST (a, b) = MASTa + MASTb +

∑
s∈S MASTs and the graph G(C) where

C is the set of triples satisfying (abc) ∈ F .

Theorem 3. KAST (a, b) = (∩T∈MaT)∪(∩T∈Mb
T)∪(∩S∈K(∪s∈S(∩T∈MsT)))

where K is the set of all maximum weight cliques on graph G(C).

Proof. If a = b then this is trivially true. Assume by induction that KAST (c, d)
can be calculated where lca(a, b) is an ancestor of lca(c, d).

Take any maximum weight clique S ∈ K. Bryant showed that for S =
{s1, . . . , sm}, ∪m

i=1Ti where Ti ∈ Msi , is a MAST on the set of leaves {c : (abc) ∈
C}. By the definition of G(C) we know that L(Ms1), L(Ms2),. . .,L(Msm),L(Ma),
and L(Mb) are pairwise disjoint. Further, any leaf in the sets L(Msi), L(Ma), or
L(Mb) are necessarily included in some MAST for T (a corollary of theorem 6.8
in [7]). So the leaves in a KAST (a, b) could have only the leaves that are in every
MAST in Msi (i.e. (∪s∈S(∩T∈MsT))), for all 1 ≤ i ≤ m. But each clique in K
represents a different MAST, so only the leaves that are in every clique will be in
the KAST. Finally, this set is disjoint from L(Ma) and L(Mb) for the same rea-
son that L(Ma) and L(Mb) are disjoint from each other. ��

4 Experiments

We implemented the KAST from code that computes the MAST in the phylo-
genetic package RAxML [29]. In this section we report empirical evidence about
the expected size of the KAST and MAST under two different models. The first
model builds a tree set T of random trees constructed through a birth/death
process, while the second starts with a random birth/death tree and then pro-
duces new trees by doing Nearest Neighbor Interchange (NNI) moves [27,22].
This way we see how the expected sizes react to adding drastically dissimilar,
or fairly similar trees to the set T . In Figure 2, we show that as the size of T
(the tree set) increases, the size of the KAST decreases precipitously in the case
of the birth/death model, whereas it decreases more gracefully in the case of
the NNI model. Each plot is generated from an initial birth/death tree on 50
leaves, where new trees are added to the tree set according to the prescribed
model. This process was repeated 10 times and the average is reported. Plots
with various numbers of leaves are similar except that the curve is scaled on
the “leaves” axis proportionately. In regards to the number of MASTs, the plots
show an erratic curve, confirming that the phenomenon described in Property 3
is not a rarity.

5 Applications

We now demonstrate the application of the KAST in finding subtrees of confi-
dence, as well as finding subsets of the input tree set of confidence. To do this we
gleaned phylogenies from the literature that are known to have an agreed upon

130 K.M. Swenson et al.

(a) random birth/death trees (b) random NNI moves

Fig. 2. Expected values of the MAST and KAST sizes

structure, except for a few contentious leaves. Our intention is not to provide bi-
ological insight, but to confirm the utility of the KAST by comparing our results
to familiar phylogenies. The real utility of the KAST will be on phylogenies that
are much larger, so large as to make it difficult for a humans to process.

5.1 Analyses on Flatworm Phylogenies

In a recent publication by Philippe et al.[25], the proposed phylogeny describes
the Acoel and the Nemertodermatids and Xenoturbellid as a sister-clade to
Ambulacraria, which is vastly different from the previous publications. The com-
peting hypotheses are depicted in Figure 3. In earlier publications both Nemerto-
dermatids and Acoels are the outgroups with Xenoturbellid leaf grouping either
with the Ambulacraria or with the Nemertodermatids and Acoels. Setting aside
the interpretation and biological ramifications of the new proposed tree topology,
it is a good real-world example for observing the effects of KAST on contentious
trees.

There are two main objectives that we wish to explore through the use of this
example. The first objective is to determine if the kernel of a set of phylogenetic
trees can identify a subset that we are confident in. The second objective is to
show the KAST as a measurement of how confident we are in the hypothesis of
these trees.

Confidence in the phylogenetic tree. From their publication, Philippe et
al.[25] presents three trees, two from prior publications and one from their own
experimental result. With only 10 common leaves among the three trees it is
very easy to identify the similarity between them by eye (Figure 3).

A quick observation can find that Ecdysozoans and Lophotrochozoans of Pro-
tostomia forms a clade, Vetebrates and Urochordates and Cephalochordates of
Chordata forms a clade, and Hemichordates and Echinoderms of Ambulacraia
forms a sister clade to Chordata; and that Xenoturbellid, Nemertodermatids,
and Acoels are the rogue leaves. The KAST of these three trees agrees with this

The Kernel of Maximum Agreement Subtrees 131

Fig. 3. Phylogenies from Figure 1 of Philippe et al.[25] Xenoturbellid, Nemertoder-
matids, and Acoels wander

Fig. 4. The KAST of phylogenies of Figure 3

observation (Figure 4). This suggests that the KAST is able to find a subtree
that is not only biologically obvious but also likely to have significant support.

With bigger trees it will be harder to identify the similarity. We would ar-
gue that the KAST can be an important tool in identifying or verifying these
similarities.

Phylogeny reconstruction. To find if the kernel in a set of phylogenies could
identify a subset of trees that we are confident of in the context of phylogeny
reconstruction, we tried to replicate the analysis of Philippe et al.[25] The aligned
mitochondrial gene set was taken from the supplementary material section and
used as input for the Bayesian analysis that they used: PhyloBayes 3.2[20,19],
with the CAT model[25,20] as the amino acid replacement model and default
settings for everything else. We ran 10000 cycles and discarded the 1000 burn-
ins, as they did. The consensus tree by majority rule was then obtained by
CONSENSE [14] using all remaining 9000 trees. The consensus tree (Figure 5)
we found is in agreement with the CAT + Γ model tree from their supplementary
material Figure 1.

To test the validity of the conservative tree produced by the KAST, the kernel
of the 9000 trees set is calculated. Of the 10 species in the KAST, three sponge
species and two jellyfish species group together as predicted, the two annelida
species group together as predicted, the three echinoderms also group together as
predicted, and the topology of these phyla are also organized in the biologically
obvious fashion (Figure 6). This corroborates the notion that the topology of
KAST is the base-line topology.

132 K.M. Swenson et al.

Fig. 5. The majority rule consensus tree using 9000 trees. The topology is essentially
the same as Supplementary Figure 1 from Philippe et al.[25]

Fig. 6. The KAST of the 9000 trees from the Baysian analysis program PhyloBayes

Next we test the variability of the KAST within the tree set. Philippe et
al.[25] sampled once every 10 cycles, to simulate this we sample 900 random
trees in the 9000 tree set and calculate the KAST. We replicate this 1000 times
and calculate the symmetric Robinson-Foulds distances (because the KAST is
binary, we divide it by two) between every pair of KASTs generated. The average
distance between these KASTs is 0.73 with an average KAST size of 10.73.

We also calculate the size of KAST with varying numbers of tree sets to test
how sample size effects the KAST size. Samples of 5000, 2500, 1200, and 500
trees all have KAST size of 11. Starting with the samples of 250 trees the size
of KAST start to increase, with samples of 30 trees having a KAST size of 16.
While the KAST from the whole 9000 trees set is obviously more conservative,
the KAST from the smaller samples agree with all known competing hypotheses
while including up to half the leaves.

5.2 Analyses on γ-Proteobacteria Phylogenies

Finally, we test the KAST on the phylogeny of γ-proteobacteria that has been
the subject of pains-taking study. We refer the reader to Herbeck et al. [16]

The Kernel of Maximum Agreement Subtrees 133

for a discussion of previous work. For our purposes, we concentrate on the stud-
ies related to 12 particular species used in Lerat et al. [21], who reconstructed
a phylogeny based on hundreds of genes. Since then there have been other at-
tempts to reconstruct the phylogeny based on the syntenic data of the whole
genome[12,6,5,30].

We turn our attention to two studies that produced trees in discordance with
that of Lerat. Belda et al. [5] produced two trees, one using Maximum Likelihood
on amino acid sequences and the other using reversal distance on the syntenic
information (they used the breakpoint distance as well, which produced the same
tree as the inversion distance). The likelihood analysis gave a tree that agreed
with Lerat’s. The inversion distance gave a tree that has significant differences to
that of Lerat; the KAST between the two has 9 of 12 leaves. However, we will see
that when we add certain trees from the study of Blin et al., the KAST size is 10.
Further, the leaves excluded are Wigglesworthia brevipalpis and Pseudomonas
aeruginosa; the former identified by Herbeck et al. [16] as troublesome to place,
and the latter being the outgroup that they used to root their trees.

Blin et. al [6] used model free distances (breakpoints, conserved intervals,
and common intervals) on the syntenic data to reconstruct their phylogenies.
They produced many trees with the various methods on two different data sets.
The syntenic data that yielded the interesting phylogeny for our purposes was
produced from coding genes along with ribosomal and transfer RNAs. Blin et
al. noticed that their trees computed on this data, using conserved and common
intervals, were more different from the Lerat tree than the others. The KAST
confirms this: the KAST on the set of all published trees other than these two
is 10 while the inclusion of either one (they are the same) yields a KAST of size
5. Our experimental data tells us that a sequence of six trees, each produced
by a random NNI operation from the last, will yield a KAST of size 5 while
six unrelated trees would produce a KAST of size 2. We conclude that we have
higher confidence in the set of trees that don’t include those two trees.

6 Conclusion

We claim that the utility of the KAST is two-fold. The first is that the KAST is
a safe summary of the subtree of confidence for a set of trees. The second is that
the size of the KAST is correlated with how related the set of trees is. The KAST
is not as susceptible to rogue taxa as the very conservative strict consensus, and
is not as misleading as the MAST can be. Furthermore, unlike the other methods
that attempt to characterize structure in the presence of rogue taxa, our measure
is computable in polynomial time.

Acknowledgments

The first author would like to thank Andre Aberer for use and discussions about
his code to compute the MAST, and Bernard Moret for discussions about the
kernel agreement subtree.

134 K.M. Swenson et al.

References

1. Adams, E.N.: Consensus techniques and the comparison of taxonomic trees. Syst.
Zool. 21, 390–397 (1972)

2. Bandelt, H., Dress, A.: Split decomposition: A new and useful approach to phylo-
genetic analysis of distance data. Mol. Phyl. Evol. 1(3), 242–252 (1992)

3. Barrett, M., Donoghue, M.J., Sober, E.: Against consensus. Syst. Zool. 40(4), 486–
493 (1991)

4. Barrett, M., Donoghue, M.J., Sober, E.: Crusade? a reply to Nelson. Syst.
Biol. 42(2), 216–217 (1993)

5. Belda, E., Moya, A., Silva, F.J.: Genome rearrangement distances and gene order
phylogeny in γ-proteobacteria. Mol. Biol. Evol. 22(6), 1456–1467 (2005)

6. Blin, G., Chauve, C., Fertin, G.: Genes order and phylogenetic reconstruction:
Application to γ-proteobacteria. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS
(LNBI), vol. 3388, pp. 11–20. Springer, Heidelberg (2005)

7. Bryant, D.: Building trees, hunting for trees, and comparing trees. PhD disserta-
tion, Department of Mathematics, University of Canterbury (1997)

8. Bryant, D.: A classification of consensus methods for phylogenetics. In: Bioconsen-
sus. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 61, pp. 163–184. AMS Press, New York (2002)

9. Bryant, D., Moulton, V.: Neighbor-net: an agglomerative method for the construc-
tion of phylogenetic networks. Mol. Biol. Evol. 21(2), 255–265 (2004)

10. Gordon, A.D., Finden, C.R.: Obtaining common pruned trees. J. Classifica-
tion 2(1), 255–267 (1985)

11. Cranston, K.A., Rannala, B.: Summarizing a posterior distribution of trees using
agreement subtrees. Syst. Biol. 56(4), 578–590 (2007)

12. Earnest-DeYoung, J.V., Lerat, E., Moret, B.M.E.: Reversing gene erosion – re-
constructing ancestral bacterial genomes from gene-content and order data. In:
Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 1–13.
Springer, Heidelberg (2004)

13. Farach, M., Przytycka, T., Thorup, M.: On the agreement of many trees. Informa-
tion Processing Letters, 297–301 (1995)

14. Felsenstein, J.: Phylogenetic Inference Package (PHYLIP), Version 3.5. University
of Washington, Seattle (1993)

15. Gauthier, O., Lapointe, F.-J.: Seeing the trees for the network: consensus, infor-
mation content, and superphylogenies. Syst. Biol. 56(2), 345–355 (2007)

16. Herbeck, J.T., Degnan, P.H., Wernegreen, J.J.: Nonhomogeneous model of se-
quence evolution indicates independent origins of primary endosymbionts within
the enterobacteriales (gamma-proteobacteria). Mol. Biol. Evol. 22(3), 520–532
(2005)

17. Huson, D.H.: SplitsTree: analyzing and visualizing evolutionary data. Bioinformat-
ics 14(1), 68–73 (1998)

18. Kubicka, E., Kubicki, G., McMorris, F.R.: On agreement subtrees of two binary
trees. Congressus Numeratium 88, 217–224 (1992)

19. Lartillot, N., Brinkmann, H., Philippe, H.: Suppression of long-branch attraction
artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol.
Biol. 7(Suppl. 1) (2007); 1st International Conference on Phylogenomics, St Adele,
CANADA, March 15-19 (2006)

20. Lartillot, N., Philippe, H.: A Bayesian mixture model for across-site heterogeneities
in the amino-acid replacement process. Mol. Biol. Evol. 21(6), 1095–1109 (2004)

The Kernel of Maximum Agreement Subtrees 135

21. Lerat, E., Daubin, V., Moran, N.A.: From gene trees to organismal phylogeny in
prokaryotes:the case of the γ-proteobacteria. PLoS Biol. 1(1), e19 (2003)

22. Moore, G.W., Goodman, M., Barnabas, J.: An iterative approach from the stand-
point of the additive hypothesis to the dendrogram problem posed by molecular
data sets. Journal of Theoretical Biology 38(3), 423–457 (1973)

23. Nelson, G.: Why crusade against consensus? a reply to Barret, Donoghue, and
Sober. Syst. Biol. 42(2), 215–216 (1993)

24. Pattengale, N.D., Aberer, A.J., Swenson, K.M., Stamatakis, A., Moret, B.M.E.:
Uncovering hidden phylogenetic consensus in large datasets. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics 99(PrePrints) (2011)

25. Philippe, H., Brinkmann, H., Copley, R.R., Moroz, L.L., Nakano, H., Poustka, A.J.,
Wallberg, A., Peterson, K.J., Telford, M.J.: Acoelomorph flatworms are deuteros-
tomes related to Xenoturbella. Nature 470(7333), 255–258 (2011)

26. Redelings, B.: Bayesian phylogenies unplugged: Majority consensus trees with wan-
dering taxa, http://www.duke.edu/~br51/wandering.pdf

27. Robinson, D.F.: Comparison of labeled trees with valency three. Journal of Com-
binatorial Theory, Series B 11(2), 105–119 (1971)

28. Shin, K., Kuboyama, T.: Kernels based on distributions of agreement subtrees. In:
Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 236–246.
Springer, Heidelberg (2008)

29. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analy-
ses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690
(2006)

30. Swenson, K.M., Arndt, W., Tang, J., Moret, B.M.E.: Phylogenetic reconstruction
from complete gene orders of whole genomes. In: Proc. 6rd Asia Pacific Bioinfor-
matics Conf. (APBC 2008), pp. 241–250 (2008)

31. Thorley, J.L., Wilkinson, M., Charleston, M.: The information content of consensus
trees. In: Rizzi, A., Vichi, M., Bock, H. (eds.) Studies in Classification, Data Anal-
ysis, and Knowledge Organization, Advances in Data Science and Classification,
pp. 91–98. Springer, Heidelberg (1998)

32. Wilkinson, M.: Common cladistic information and its consensus representation:
reduced adams and reduced cladistic consensus trees and profiles. Syst. Biol. 43(3),
343–368 (1994)

33. Wilkinson, M.: More on reduced consensus methods. Syst. Biol. 44, 435–439 (1995)
34. Wilkinson, M.: Majority-rule reduced consensus trees and their use in bootstrap-

ping. Mol. Biol. Evol. 13(3), 437–444 (1996)

http://www.duke.edu/~br51/wandering.pdf

A Consensus Approach to Predicting Protein

Contact Map via Logistic Regression

Jian-Yi Yang� and Xin Chen

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, 21 Nanyang Link, Singapore, 637371

{yang0241,chenxin}@ntu.edu.sg

Abstract. Prediction of protein contact map is of great importance
since it can facilitate and improve the prediction of protein 3D struc-
ture. However, the prediction accuracy is notoriously known to be rather
low. In this paper, a consensus contact map prediction method called
LRcon is developed, which combines the prediction results from several
complementary predictors by using a logistic regression model. Tests on
the targets from the recent CASP9 experiment and a large dataset D856
consisting of 856 protein chains show that LRcon not only outperforms its
component predictors but also the simple averaging and voting schemes.
For example, LRcon achieves 41.5% accuracy on the D856 dataset for
the top L/10 long-range contact predictions, which is about 5% higher
than its best-performed component predictor. The improvements made
by LRcon are mainly attributed to the application of a consensus ap-
proach to complementary predictors and the logistic regression analysis
under the machine learning framework.

Keywords: Protein contact map; CASP; Logistic regression; Machine
learning.

1 Introduction

Protein contact map is a 2D description of protein structure, which presents the
residue-residue contact information of a protein. Two residues are considered to
be in contact if their distance in 3D space is less than a predefined threshold.
Prediction of protein contact map is of great importance because it can facilitate
and improve the computational prediction of protein 3D structure [21].

Many computational methods are already proposed to predict protein contact
map. These methods can be classified into two major categories: (i) methods
based on correlated mutations [20], [13], [10], [12], [17], and (ii) methods based
on machine learning [14], [15], [22], [4], [7], [19], [2], [23]. There also exist some
other methods, e.g., based on template-threading [18], [7] and integer linear
optimization [16]. However, the accuracy of contact prediction, especially for
long-range contact prediction, is still rather low [21], [11].

� Corresponding author.

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 136–147, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Consensus Approach to Predicting Protein Contact Map 137

In this study, we intend to improve the accuracy of contact map prediction
by using a consensus approach, which means that the prediction results from
several existing predictors will be consolidated. To our best knowledge, not much
effort has been made to develop a consensus contact prediction method except
the following two approaches. Confuzz is a consensus approach based on the
weighted average of the probability estimates from individual predictors (please
refer to the website of CASP9). The other approach is based on integer linear
programming [6]. We instead choose to tackle this problem in a different way. We
consolidate the prediction results from individual predictors by using a logistic
regression analysis under the machine learning framework. Tests on the CASP9
dataset as well as on another large dataset show that the proposed method not
only outperforms its component predictors but also the simple averaging and
voting schemes.

2 Materials and Methods

2.1 Datasets

In this study, two datasets are used to test the proposed method, which are
downloadable at http://www3.ntu.edu.sg/home2008/YANG0241/LRcon/. The
first one was collected from the targets in the recent CASP9 experiment. In
CASP9, there are 28 participating groups in the contact prediction category. As
one group might have several contact prediction models for the same target, here
we selected the results only from the “model 1” of each predictor. In addition, we
removed from further consideration those groups that made predictions for just
a few targets and those targets that were predicted by just a few participating
groups. As a result, we obtained 80 targets and 23 predictors. For the sake of
convenience, we denote this dataset by D80. Finally, the true contact map for
each target was derived from its 3D structure provided on the CASP9 website.

The second dataset was harvested from Protein Data Bank (PDB) [1] using
the selected protein chains from the latest (May 2010) PDB select 25% list [8].
Originally, there are 4869 protein chains in this list. A subset was extracted as
follows. First, those chains with length less than 50 and/or coordinates informa-
tion missing for some amino acids were removed. Second, those with pair-wise
sequence identity higher than 25% and those with sequence identity to the NNcon
training set [19] higher than 25% were further removed. This filtering process
ends up with a total of 856 chains. We denote this dataset by D856.

2.2 Contact Definition

Two residues are defined to be in contact if the Euclidean distance between
the 3D coordinates of their Cα atoms is less than or equal to 8 Å [4], [7], [19].
The CASP experiments [11], however, used Cβ atoms instead of Cα atoms in
determining two residues in contact. In this study, we choose the former definition
because (i) it is a definition close to the one used in 3D structural modelling [24]
and (ii) it was already used by two methods (i.e., [7] and [19]) that will be
included in our consensus predictor.

http://www3.ntu.edu.sg/home2008/YANG0241/LRcon/

138 J.-Y. Yang and X. Chen

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Residue number

R
es

id
ue

 n
um

be
r

Fig. 1. An example of contact map at sequence separation s ≥ 6. The left panel is
a cartoon visualization of the 3D structure of the protein (PDB entry: 2NWF). The
right panel is the contact map of this protein. A blue point in the figure indicates that
the pair of residues are in contact. Note that the map is symmetrical with respect to
the black main diagonal line.

For a protein with length L, the (true) contact information for all pairs of
residues can be represented by a matrix C = (cij)L×L, where cij = 1 if the
residues i, j are in contact and cij = 0 otherwise. This matrix is often called a
contact map. It is in fact a 2D description of protein structure, and a specific
example of contact map is given in Figure 1.

Depending on the separation of two residues along the sequence, the residue-
residue contact is classified into three classes: short-range contact (separation
6 ≤ s < 12), medium-range contact (12 ≤ s < 24) and long-range contact
(s � 24). Contacts for those residues too close along the sequence (s < 6) are
omitted.

2.3 Performance Evaluation

The predicted contact map PC = (pcij)L×L is a matrix of probability estimates.
The element pcij is the estimate for the contact probability of the residues i and
j. In general, the top λL predictions (sorted by the probability estimates) are
selected, which are then compared with the true contact map for evaluation. In
the literature [11], [5], [19], [23], [15], the value of λ is usually set to be 0.1 or
0.2 and two metrics are used to evaluate the predictions: accuracy (Acc) and
coverage (Cov).

Acc =
TP

TP + FP
, Cov =

TP
TP + FN

, (1)

where TP, FP, TN and FN, are true positive, false positive, true negative and
false negative predictions, respectively. A residue pair is said to be a positive
(resp., negative) pair if the two residues are (resp., are not) in contact.

A Consensus Approach to Predicting Protein Contact Map 139

In addition, a more robust metric called F-measure (Fm) is also used, which
is basically a harmonic mean of precision and recall as defined below:

Fm = 2 · Acc × Cov
Acc + Cov

(2)

2.4 Consensus Prediction via Logistic Regression

Suppose there are p predictors, then we have p predicted contact maps for each
protein. We attempt to combine these p maps to make a consensus prediction.
The first difficulty appears that the output of some predictors (e.g., FragHMMent
[2]) is not the whole map but part of the map. To overcome it, the probability
estimates for those missing predictions are simply set to be 0 (i.e., not in contact).

A direct and simple way to combine the p predicted contact maps is to average
over the p probability estimates for each residue pair and then select the top λL
predictions. We call this method the averaging scheme. Another way is to first
select the top λL predictions from each predicted map and then use these selected
predictions to vote. The residue pairs with votes in the top λL positions are then
output to be the top λL predictions. We call this method the voting scheme.

In this study, we propose to combine the p predicted contact maps via a
logistic regression analysis. Logistic regression (LR) is a non-linear regression
model in particular for a binary response variable [3]. It estimates the posterior
probabilities by using the following formula:

P (Yi = 1|Pi) =
exp(α +

p∑
j=1

βjpij)

1 + exp(α +
p∑

j=1

βjpij)
(3)

where P (Yi = 1|Pi) is the posterior probability of the i-th residue pair being in
contact given Pi. Pi = (pi1, pi2, · · · , pip) is a probability vector for the i-th residue
pair, of which each component pij is the probability estimate of the component
predictor j on the i-th residue pair. The constants α and βj (j = 1, 2, · · · , p)
are the regression coefficients whose values can be estimated with a training set
through Quasi-Newton optimization [3]. We used the implementation of LR in
the software package Weka [9] (with default parameters) for our experiments.

2.5 Overall Architecture

Figure 2 depicts the overall architecture of our proposed method named LRcon.
It comprises two major procedures: training and testing. In the training proce-
dure, a logistic regression model (LR-Predictor) is built up with a training set
of protein chains. In the testing procedure, a query amino acid sequence is first
input into p individual predictors and, for each predictor, the top λL predictions
are selected. Then, we take the union of all the selected residue pairs for further
consideration (Please refer to Section 2.6 for more details). For each selected
pair, the probability estimates of the p predictors are used to form a feature

140 J.-Y. Yang and X. Chen

Fig. 2. The overall architecture of LRcon. In the training procedure, the consensus
predictor is built upon p individual predictors M1, M2, · · · , Mp. The set TD is used
to store the training feature vectors of the selected residue pairs. During the testing,
the prediction result is stored in rrLR

i = (rLR
i,1 , rLR

i,2 , pLR
i), where pLR

i is the probability
estimate for the residue pair i. k1, · · · , kλL are the indices of the top λL predictions.

vector, which is then fed into the LR-Predictor for consensus contact prediction.
Finally, the top λL contact predictions are selected as our consensus predictions.

For the D80 datasets, we use 23 predictors from CASP9 to build our consensus
predictor. For the D856 dataset, only three predictors (SVM-SEQ (RR204) [7],
NNcon (RR119) [19] and FragHMMent (RR158) [2]) are instead used, because
there are no software available for the other predictors except SVMcon (RR002)
[4]. SVMcon is excluded because it was developed based on the same classification
algorithm as SVM-SEQ, so their predicted results are expected to have a large
overlap.

2.6 Selection of Residue Pairs

Given a protein of length L, the total number of residue pairs is (L + 1 − s) ×
(L−s)/2 for sequence separation at least s. If all these residue pairs are used, we
would not be able to obtain a reliable LR-Predictor, due to at least two factors:
(1) A large number of training samples does not allow to estimate the regression
coefficients in a reasonable amount of computing time; (2) Most of the residue
pairs belong to the negative class, so that a small proportion of positive samples
make the predictions be severely biased against the positive class. This would
inevitably discount the performance of LRcon if we choose to work this way.

A Consensus Approach to Predicting Protein Contact Map 141

Here we propose to use the union of the residue pairs corresponding to the
top λL predictions from each of the p component predictors. For a protein of
length L, we denote the set of the top λL residue pairs returned by the k-th
predictor by Rk = {rk

1 , rk
2 , · · · , rk

λL}, where rk
i = (rk

i,1, r
k
i,2) represents a residue

pair with 1 ≤ rk
i,1, r

k
i,2 ≤ L. The residue pairs selected for this protein to train

and test our LR-Predictor are then taken from the set

RLR =
p⋃

k=1

Rk (4)

3 Results

In the following, the experimental results are evaluated on the top 0.1L and 0.2L
predictions at sequence separations 6 ≤ s < 12, 12 ≤ s < 24 and s ≥ 24.

3.1 Results on the CASP9 Dataset

In order to estimate the regression coefficients of LR and to assess the per-
formance of LRcon, we applied 10-fold cross-validation to the CASP9 dataset
D80. For the top 0.1L predictions, Figure 3 shows the average accuracy, coverage,
and F-measure of LRcon, its component predictors, and the averaging and voting
schemes (refer to Section 2.4) for a comprehensive comparison. It is evident from
the figure that the averaging and voting schemes could perform better than most
component predictors, but never all in any cases. On the contrary, the LRcon is
able to outperform all the component predictors and the averaging and voting
schemes as well. In addition, we can see from the F-measures that the prediction
of long-range contact is much more challenging than the prediction of short-rang
and medium-range contacts. For the top 0.2L predictions, LRcon also outper-
forms all the component predictors and the averaging and voting schemes. The
detailed results are presented in Figure 1 of Supplementary Material, which is
accessible at http://www3.ntu.edu.sg/home2008/YANG0241/LRcon/. A typical
predicted CASP9 contact map where LRcon outperforms all the other predictors
is depicted in Figure 2 of Supplementary Material.

We assess the statistical significance of the prediction differences between
LRcon and each other predictor as follows. First, 80% protein chains are selected
at random from the original dataset to construct a (sub)dataset. This is repeated
100 times so as to obtain 100 different datasets. Then, we collected the prediction
results of all the tested predictors from these 100 datasets. Finally, the paired t -
test is applied to assess their statistical significance on the F-measure differences.
We summarized in Table 1 the experimental results tested on the CASP9 dataset.

We can observe from the above tests that: (1) The averaging scheme appears
to perform better than the voting scheme, (2) Neither the averaging nor vot-
ing scheme achieve a better prediction than all the component predictors (in
particular, e.g., RR391 and RR490), and (3) LRcon outperforms all the other
predictors, including the averaging and voting schemes.

http://www3.ntu.edu.sg/home2008/YANG0241/LRcon/

142 J.-Y. Yang and X. Chen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

R
R

00
2

R
R

04
3

R
R

08
0

R
R

08
1

R
R

10
3

R
R

11
4

R
R

11
9

R
R

13
8

R
R

14
7

R
R

15
8

R
R

20
2

R
R

20
4

R
R

21
4

R
R

21
5

R
R

23
6

R
R

24
4

R
R

26
2

R
R

35
7

R
R

37
5

R
R

39
1

R
R

42
2

R
R

49
0

R
R

05
1

A
ve

V
ot

LR
co

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
ov

er
ag

e

R
R

00
2

R
R

04
3

R
R

08
0

R
R

08
1

R
R

10
3

R
R

11
4

R
R

11
9

R
R

13
8

R
R

14
7

R
R

15
8

R
R

20
2

R
R

20
4

R
R

21
4

R
R

21
5

R
R

23
6

R
R

24
4

R
R

26
2

R
R

35
7

R
R

37
5

R
R

39
1

R
R

42
2

R
R

49
0

R
R

05
1

A
ve

V
ot

LR
co

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
−

m
ea

su
re

R
R

00
2

R
R

04
3

R
R

08
0

R
R

08
1

R
R

10
3

R
R

11
4

R
R

11
9

R
R

13
8

R
R

14
7

R
R

15
8

R
R

20
2

R
R

20
4

R
R

21
4

R
R

21
5

R
R

23
6

R
R

24
4

R
R

26
2

R
R

35
7

R
R

37
5

R
R

39
1

R
R

42
2

R
R

49
0

R
R

05
1

A
ve

V
ot

LR
co

n

6≤s<12

12≤s<24

s≥24

6≤s<12

12≤s<24

s≥24

6≤s<12

12≤s<24

s≥24

Fig. 3. Histogram of the accuracy, coverage and F-measure for the top 0.1L predictions
of LRcon and other predictors on the CASP9 dataset D80. The predictor codes for
the component predictors are directly taken from CASP9. Ave and Vot represent the
averaging and voting schemes, respectively.

Table 1. The results of the statistical significance tests for the F-measures of LRcon
and other predictors on the D80 dataset. The ‘+’ /‘-’ indicates that the method in a
given column is significantly better/worse than the method in a given row with p-value
< 0.001, and ‘=’ means that the results are not shown statistically different.

Top 0.1L predictions Top 0.2L predictions

Predictor 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

Ave Vot LRcon Ave Vot LRcon Ave Vot LRcon Ave Vot LRcon Ave Vot LRcon Ave Vot LRcon

RR002 + + + + + + + + + + + + + + + + + +
RR043 + + + + + + + + + + + + + + + + + +
RR080 + + + + + + + + + + + + + + + + + +
RR081 + + + + + + + + + + + + + + + + + +
RR103 + + + + + + + + + + + + + + + + + +
RR114 + + + + - + + - + + + + + - + + - +
RR119 + + + + + + + + + + + + + + + + + +
RR138 + + + + + + + + + + + + + + + + + +
RR147 + + + + + + + + + + + + + + + + + +
RR158 + + + + + + + + + + + + + + + + + +
RR202 + + + + + + + + + + + + + + + + + +
RR204 + + + + + + + + + + + + + + + + + +
RR214 - - + - - + = - + - - + - - + - - +
RR215 + + + + + + + + + + + + + + + + + +
RR236 + + + + - + + - + + + + + - + + - +
RR244 + + + + + + + + + + + + + + + + + +
RR262 + + + + - + + - + + + + + - + + - +
RR357 + + + + + + + + + + + + + + + + + +
RR375 + + + + + + + + + + + + + + + + + +
RR391 - - + - - + - - + - - + - - + - - +
RR422 + + + + + + + + + + + + + + + + + +
RR490 - - + - - + - - + - - + - - + - - +
RR051 + + + + + + + + + + + + + + + + + +
Ave = - + = - + = - + = - + = - + = - +
Vot + = + + = + + = + + = + + = + + = +

A Consensus Approach to Predicting Protein Contact Map 143

Table 2. Comparison of accuracies, coverage and F-measures on the independent test
(sub)dataset of the D856 dataset. The best results are shown in bold.

Top 0.1L predictions Top 0.2L predictions

Predictor 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

Acc Cov Fm Acc Cov Fm Acc Cov Fm Acc Cov Fm Acc Cov Fm Acc Cov Fm

FragHMMent .365 .116 .176 .306 .079 .126 .275 .026 .047 .340 .219 .267 .275 .052 .088 .272 .143 .188
NNcon .591 .187 .284 .455 .118 .187 .283 .026 .048 .478 .308 .374 .235 .045 .075 .376 .198 .260
SVM-SEQ .610 .193 .293 .483 .125 .199 .366 .034 .062 .508 .327 .398 .323 .061 .103 .407 .215 .281
Ave .529 .167 .254 .415 .108 .171 .365 .034 .062 .377 .243 .295 .288 .055 .092 .316 .167 .218
Vot .563 .178 .271 .443 .115 .182 .314 .029 .053 .474 .305 .371 .289 .055 .092 .371 .195 .256
LRcon .650 .206 .313 .531 .138 .218 .415 .039 .071 .538 .346 .421 .355 .067 .113 .443 .234 .306

Table 3. The results of the statistical significance tests for the F-measures of LRcon
and other predictors on the independent test (sub)dataset of the D856 dataset

Top 0.1L predictions Top 0.2L predictions

Predictor 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

Ave Vot LRcon Ave Vot LRcon Ave Vot LRcon Ave Vot LRcon Ave Vot LRcon Ave Vot LRcon

FragHMMent + + + + + + + + + + + + + + + + + +
NNcon - - + - - + + + + - - + - - + + + +
SVM-SEQ - - + - - + - - + - - + - - + - - +
Ave = + + = + + = - + = + + = + + = + +
Vot - = + - = + + = + - = + - = + - = +

3.2 Results on the D856 Dataset

Because the size of the D856 dataset is significantly larger than that of the D80
dataset, we adopt here a different way, rather than using 10-fold cross-validation,
to evaluate the prediction results of LRcon as follows. First, the 856 protein
chains in the D856 dataset are partitioned at random into a training and a test
dataset of equal size (i.e., 428 protein chains in each). Note that the training
and test datasets are independent each other, so no sequence in the test dataset
has over 25% sequence identity with any sequences in the training dataset. Sec-
ond, three predictors, SVM-SEQ[7], NNcon[19], and FragHMMent[2], are used
to make predictions on both the training and test datasets. Third, we use the
predictions of these three predictors on the training dataset to estimate the re-
gression coefficients of LR. Finally, the performance of LRcon is assessed on the
test dataset.

The experimental results of LRcon and other predictors on the independent
test dataset are listed in Table 2. We can see from the table that LRcon outper-
forms all the other predictors in terms of accuracy, coverage and F-measure. For
example, LRcon achieves an average accuracy of 41.5% for the top L/10 long-
range contact predictions, which is about 5% higher than its best-performed
component predictor (i.e., SVM-SEQ). We also conduct a statistical significance
test in the same way as we did earlier on the CASP9 dataset, and the results are
shown in Table 3. It can be seen that the simple averaging and voting schemes
perform better than NNcon and FragHMMent, but worse than SVM-SEQ. On
the other hand, LRcon once again consistently outperforms all the other predic-
tors, including the simple averaging and voting schemes.

144 J.-Y. Yang and X. Chen

4 Discussions

In this section, we discuss how the performance of LRcon is affected by the
following three factors: the residue pair selection, the component predictors and
the classification algorithm.

4.1 The Impact of Residue Pair Selection

For each protein chain, we have used formula (4) to select the residue pairs for
training and testing LRcon. In order to demonstrate the effectiveness of this
filtering process, we tested the performance of LRcon when all the residue pairs
satisfying the sequence separation condition were used. Because it takes too
much computing time and computer memory, we just tested the results of LR-
con for the top 0.1L predictions at sequence separation s ≥ 24 using the CASP9
dataset D80. In this case, the resulting average accuracy of LRcon decreases to
0.806, which is 0.026 lower than that obtained with the filtering process em-
ployed (see Figure 3). Therefore, it is necessary to train LRcon with a properly
selected subset of residue pairs in order to achieve more accurate contact map
prediction.

4.2 The Impact of Individual Predictors

The major reason of LRcon’s superior performance is believed that its compo-
nent predictors can make complementary predictions to each other. We say two
predictors M1 and M2 are complementary if their correct predictions (denoted
respectively by TP1 and TP2) among the top λL predictions are not completely
the same. We have the following two observations. First, the sizes of TP1 and TP2

should be as large as possible (≤ λL) for LRcon to be accurate enough. Second,
in order to improve over M1 and M2 by combining them, TP1 and TP2 should
not be the same. Otherwise, we would not be able to make any improvement by
combining them; instead, the predictions might even become worse.

We conduct the experiments on the CASP9 dataset D80 to further confirm
the above observations as follows. As mentioned in Section 2.1, when we se-
lected component predictors, only “model 1” of each predictor was used in our
previous experiments. For some participating groups there are several prediction
models. For instance, the participating group RR114 in CASP9 have five predic-
tion models for each target. We looked into these five models and found that their
prediction results were in fact very similar, indicating that these models are not
complementary to each other. When all models were used for each participating
group in CASP9, we obtained 28 predictors in total. Using these predictors as
component predictors of LRcon, we found that the predictions became worse
than before. For example, the accuracy value decreased slightly from 0.832 to
0.827 for the case of the top 0.1L predictions at sequence separation s ≥ 24.
Therefore, one possible way to further improve the performance of LRcon is to
select just those accurate while complementary predictors as component predic-
tors. To this end, some metrics might be needed to quantify the complementary
property among individual predictors.

A Consensus Approach to Predicting Protein Contact Map 145

Table 4. Comparison of accuracies, coverage and F-measures of five classification al-
gorithms on the CASP9 dataset D80. The best results are shown in bold.

Top 0.1L predictions Top 0.2L predictions

Algorithm 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

Acc Cov Fm Acc Cov Fm Acc Cov Fm Acc Cov Fm Acc Cov Fm Acc Cov Fm

RF .824 .283 .422 .810 .219 .345 .816 .069 .127 .689 .479 .565 .721 .394 .510 .786 .134 .228
NB .769 .264 .393 .756 .204 .322 .780 .066 .122 .654 .454 .536 .656 .359 .464 .744 .126 .216
J48 .736 .253 .377 .724 .196 .308 .741 .061 .113 .658 .458 .540 .680 .372 .481 .741 .126 .215
KNN .797 .274 .407 .777 .210 .330 .799 .067 .124 .685 .476 .562 .707 .386 .500 .773 .131 .225
LR .839 .288 .429 .822 .222 .350 .832 .070 .129 .710 .493 .582 .727 .398 .514 .799 .136 .232

Table 5. Comparison of accuracies, coverage and F-measures of five classification al-
gorithms on the independent test (sub)dataset of the D856 dataset. The best results
are shown in bold.

Top 0.1L predictions Top 0.2L predictions

Algorithm 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

Acc Cov Fm Acc Cov Fm Acc Cov Fm Acc Cov Fm Acc Cov Fm Acc Cov Fm

RF .594 .188 .286 .464 .120 .191 .352 .033 .060 .485 .313 .380 .388 .205 .268 .312 .059 .099
NB .650 .206 .313 .531 .138 .218 .406 .038 .069 .538 .346 .421 .443 .234 .306 .349 .066 .111
J48 .621 .197 .299 .492 .127 .202 .394 .037 .067 .506 .326 .396 .414 .218 .286 .323 .061 .103
KNN .623 .197 .299 .488 .126 .201 .383 .036 .065 .508 .327 .398 .404 .213 .279 .325 .062 .104
LR .650 .206 .313 .530 .137 .218 .415 .039 .071 .540 .348 .423 .440 .232 .304 .355 .067 .113

4.3 The Impact of Classification Algorithm

Besides the logistic regression, the following four classification algorithms are
experimented to explore the impact of a classification algorithm on the per-
formance of LRcon. They are random forest (RF), k-nearest neighbor (k-NN),
Naive Bayes (NB), and J48. The details about these algorithms can be obtained
from Weka [9]. We also chose the algorithm implementations in Weka in our
subsequent experiments. Except for k-NN, where k was set to be 10 to produce
probability estimates, the parameters for RF, NB, and J48 were all set to be
their respective default values.

The experimental results of LR and the other four algorithms on the datasets
D80 and D856 are presented in Tables 4 and 5, respectively. We can see that the
accuracies, coverage and F-measures of LR are consistently higher than those of
any other algorithm on the D80 dataset. When tested on the the D856 dataset,
LR and NB achieved comparable results and better than the other three al-
gorithms. These observations lead to our selection of LR as the classification
algorithm in this study.

5 Conclusions

Prediction of protein contact map plays an important role in the prediction of
protein 3D structure. However, the accuracy of current computational methods
is rather low. In this paper, we explored the possibility of improving the accuracy
of an individual protein contact predictors by using a consensus approach.

146 J.-Y. Yang and X. Chen

Under the machine learning framework, an improved sequence-based protein
contact map prediction method, named LRcon, has been developed based on
logistic regression. LRcon is built upon the prediction results from its compo-
nent contact map predictors. For each residue pair, the probability estimates
of the component predictors are used to form a feature vector, which is then
fed into the logistic regression-based algorithm to make a consensus prediction.
Logistic regression models are trained and assessed under the machine learning
framework by using independent training and test datasets. Experimental results
on the CASP9 dataset and another large-sized dataset containing 856 protein
chains show that LRcon can make statistically significant improvements over its
component predictors and the simple averaging and voting schemes as well. We
believe that these improvements made by LRcon are mainly attributed to the
application of a consensus approach to the complementary predictors and the
logistic regression analysis under the machine learning framework.

Acknowledgments

This work was partially supported by the Singapore NRF grant NRF2007IDM-
IDM002-010 and MOE AcRF Tier 1 grant RG78/08.

References

1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research 28,
235–242 (2000)

2. Björkholm, P., Daniluk, P., Kryshtafovych, A., Fidelis, K., Andersson, R., Hvid-
sten, T.R.: Using multi-data hidden Markov models trained on local neighborhoods
of protein structure to predict residue-residue contacts. Bioinformatics 25, 1264–
1270 (2009)

3. Cessie, L.S., van Houwelingen, J.C.: Ridge estimators in logistic regression. Applied
Statistics 41, 191–201 (1992)

4. Cheng, J., Baldi, P.: Improved residue contact prediction using support vector
machines and a large feature set. BMC Bioinformatics 8, 113 (2007)

5. Ezkurdia, I., Graña, O., Izarzugaza, J.M.G., Tress, M.L.: Assessment of domain
boundary predictions and the prediction of intramolecular contacts in CASP8.
Proteins 77, 196–209 (2009)

6. Gao, X., Bu, D., Xu, J., Li, M.: Improving consensus contact prediction via server
correlation reduction. BMC Structural Biology 9, 28 (2009)

7. Wu, S., Zhang, Y.: A comprehensive assessment of sequence-based and template-
based methods for protein contact prediction. Bioinformatics 24, 924–931 (2008)

8. Griep, S., Hobohm, U.: PDBselect 1992-2009 and PDBfilter-select. Nucleic Acids
Research 38, D318–D319 (2009)

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explorations 11, 10–18 (2009)

10. Hamilton, N., Burrage, L., Ragan, M.A., Huber, T.: Protein contact prediction
using patterns of correlation. Proteins 7, 679–684 (2004)

11. Izarzugaza, J.M.G., Graña, O., Tress, M.L., Valencia, A., Clarke, N.: Assessment
of intramolecular contact predictions for CASP7. Proteins 69, 152–158 (2007)

A Consensus Approach to Predicting Protein Contact Map 147

12. Kundrotas, P.J., Alexov, E.G.: Predicting residue contacts using pragmatic corre-
lated mutations method: reducing the false positives. BMC Bioinformatics 7, 503
(2006)

13. Olmea, O., Valencia, A.: Improving contact predictions by the combination of cor-
related mutations and other sources of sequence information. Folding & Design 2,
S25–S32 (1997)

14. Pollastri, G., Baldi, P.: Prediction of contact maps by GIOHMMs and recurrent
neural networks using lateral propagation from all four cardinal corners. Bioinfor-
matics 70, S62–S70 (2002)

15. Punta, M., Rost, B.: PROFcon: novel prediction of long-range contacts. Bioinfor-
matics 21, 2960–2968 (2005)

16. Rajgaria, R., Wei, Y., Floudas, C.A.: Contact prediction for beta and alpha-beta
proteins using integer linear optimization and its impact on the first principles 3D
structure prediction method ASTRO-FOLD. Proteins 78, 1825–1846 (2010)

17. Shackelford, G., Karplus, K.: Contact prediction using mutual information and
neural nets. Proteins 69, 159–164 (2007)

18. Shao, Y., Bystroff, C.: Predicting interresidue contacts using templates and path-
ways. Proteins 53, 497–502 (2003)

19. Tegge, A.N., Wang, Z., Eickholt, J., Cheng, J.: NNcon: improved protein contact
map prediction using 2D-recursive neural networks. Nucleic Acids Research 37,
W515–W518 (2009)

20. Thomas, D.J., Casari, G., Sander, C.: The prediction of protein contacts from
multiple sequence alignments. Protein Engineering 9, 941–948 (1996)

21. Tress, M.L., Valencia, A.: Predicted residue-residue contacts can help the scoring
of 3D models. Proteins 78, 1980–1991 (2010)

22. Vullo, A., Walsh, I., Pollastri, G.: A two-stage approach for improved prediction
of residue contact maps. BMC Bioinformatics 7, 180 (2006)

23. Xue, B., Faraggi, E., Zhou, Y.: Predicting residue-residue contact maps by a two-
layer, integrated neural-network method. Proteins 76, 176–183 (2009)

24. Zhang, Y., Kolinski, A., Skolnick, J.: TOUCHSTONE II: a new approach to ab
initio protein structure prediction. Biophysical Journal 85, 1145–1164 (2003)

A Linear Time Algorithm for Error-Corrected
Reconciliation of Unrooted Gene Trees

Paweł Górecki1 and Oliver Eulenstein2

1 Institute of Informatics, Warsaw University, Poland
gorecki@mimuw.edu.pl

2 Department of Computer Science, Iowa State University, USA
oeulenst@cs.iastate.edu

Abstract. Evolutionary methods are increasingly challenged by the fast growing
resources of genomic sequence information. Fundamental evolutionary events,
like gene duplication, loss, and deep coalescence, account more then ever for
incongruence between gene trees and the actual species tree. Gene tree reconcil-
iation is addressing this fundamental problem by invoking the minimum number
of gene-duplication and losses that reconcile a gene tree with a species tree. De-
spite its promise, gene tree reconciliation assumes the gene trees to be correctly
rooted and free of error, which severely limits its application in practice. Here we
present a novel linear time algorithm for error-corrected gene tree reconciliation
of unrooted gene trees. Furthermore, in an empirical study on yeast genomes we
successfully demonstrate the ability of our algorithm to (i) reconcile (cure) error-
prone gene trees, and (ii) to improve on more advanced evolutionary applications
that are based on gene tree reconciliation.

1 Introduction

The wealth of newly sequenced genomes has provided us with an unprecedented re-
source of information for phylogenetic studies that will have extensive implications for
a host of issues in biology, ecology, and medicine, and promise even more. Yet, be-
fore such phylogenies can be reliably inferred, challenging problems that came along
with the newly sequenced genomes have to be overcome. Evolutionary biologists have
long realized that gene-duplication and subsequent loss, a fundamental evolutionary
process [14], can largely obfuscate phylogenetic inference [20]. Gene-duplication can
form complex evolutionary histories of genes, called gene trees, whose topologies are
traditionally used to derive species trees. This approach relies on the assumption that
the topologies from gene trees are consistent with the topology of the species tree. How-
ever, frequently genes that evolve from different copies of ancestral gene-duplications
can become extinct and result in gene trees with correct topologies that are inconsistent
with the topology of the actual species tree (see Fig. 1). In many such cases phyloge-
netic information from the gene trees is indispensable and may still be recovered using
gene tree reconciliation.

Gene tree reconciliation is a well-studied method for resolving topological inconsis-
tencies between a gene tree and a trusted species tree [5,9,11,18,20,22]. Inconsistencies
are resolved by invoking gene-duplication and loss events that reconcile the gene tree

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 148–159, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Linear Time Algorithm for Error-Corrected Reconciliation 149

to be consistent with the actual species tree. Such events do not only reconcile gene
trees, but also lay foundation for a variety of evolutionary applications including or-
tholog/paralog annotation of genes, locating episodes of gene-duplications in species
trees [2,10,15], reconstructing domain decompositions [3], and species supertree con-
struction [1,2,17,21].

A major problem in the application of gene tree reconciliation is its high sensitivity to
error-prone gene trees. Even seemingly insignificant errors can largely mislead the rec-
onciliation process and, typically undetected, infer incorrect phylogenies (e.g., [16,22]).
Errors in gene trees are often topological errors and rooting errors. Topological error re-
sults in an incorrect topology of the gene tree that can be caused by the inference process
(e.g. noise in the underlying sequence data) or the inference method itself (e.g. heuris-
tic results). This problem has been addressed for rooted gene trees by ’correcting the
error’; that is, editing the given tree such that the number of invoked gene-duplications
and losses is minimized [6,7]. However, most inference methods used in practice return
only un-rooted gene trees (e.g. parsimony and maximum likelihood based methods) that
have to be rooted for the gene tree reconciliation process. Rooting error is a wrongly
chosen root in an un-rooted gene tree. Whereas rooting can be typically achieved in
species trees by outgroup analysis, this approach may not be possible for gene trees
if there is a history of gene duplication and loss [22]. Other rooting approaches like
midpoint rooting or molecular clock rooting assume a constant rate of evolution that
is often unrealistic. However, rooting problems can be bypassed by identifying roots
that minimize the invoked number of gene duplications and losses [6,7,12,22,24]. In
summary, standard gene tree reconciliation requires gene trees that are free of error
and correctly rooted [11]. Even small topological error or a slightly misplaced root can
incorrectly identify large numbers of gene duplications and losses, and therefore mis-
lead the reconciliation process. As previous work has incorporated topological error-
correction separately from correctly rooting gene trees into the gene tree reconciliation
process [6,12], this process can still be largely misled.

Our Contribution: We describe a novel linear time algorithm for error-corrected gene
tree reconciliation that simultaneously incorporates the adjustment of topological error
and rooting error. Given an un-rooted gene tree and a rooted species tree, the algorithm
finds an ’error-corrected version’ of the gene tree that requires the minimum number
of gene duplication and loss events when reconciled with the species tree. Similar to
the error-correcting approach from Durand et al. [7] we assume that the error-free gene
tree can be found within the local search neighborhood consisting of all gene trees that
are within at most one nearest neighbor interchange (NNI) operation (a standard tree
edit operation) of the given unrooted gene tree. Under all rooted versions of the trees in
this local neighborhood the algorithm identifies one that invokes the minimum number
of gene duplications and losses. Our experiments on yeast genomes suggest that our
algorithm can greatly improve on the accuracy of reconciling, and thus curating, error-
prone gene trees. Furthermore, we show that our error-corrected reconciliations lead to
improved predictions of invoked gene duplication and loss events that allow to infer
more accurate yeast phylogenies.

150 P. Górecki and O. Eulenstein

aa aa bb aa cc cc

G

aa bb cc

S

a b c

σD = 3

σL = 2

Fig. 1. An lca-mapping M from the gene tree G into the species tree S and the corresponding
embedding. M is shown for the internal nodes of G.

2 Duplication-Loss Model

We introduce the fundamentals of the classical duplication-loss model. Our definitions
are mostly adopted from [12]. For a more detailed introduction to the duplication-loss
model we refer the interested reader to [11,15,20,8].

Let I be the set of species consisting of N > 0 elements. The unrooted gene tree
is an undirected acyclic graph in which each node has degree 3 (internal nodes) or 1
(leaves), and the leaves are labeled by the elements from I. A species tree is a rooted
binary tree with N leaves uniquely labeled by the elements from I. In some cases, a
node of S will be referred by “cluster” of labels of its subtree leaves. For instance, a
species tree (a, (b, c)) has 5 nodes denoted by: a, b, c, bc and abc. A rooted gene tree is
a rooted binary tree with leaves labeled by the elements from I. The internal nodes of
a tree T we denote by int(T).

Let S = 〈VS , ES〉 be a species tree. S can be viewed as an upper semilattice with + a
binary least upper bound operation and � the top element, that is, the root. In particular
for a, b ∈ VS , a < b means that a and b are on the same path from the root, with b being
closer to the root than a. We define the comparability predicate D(a, b) = 1, if a ≤ b or
b ≤ a and D(a, b) = 0, when a and b are incomparable. The distance function ρ(a, b)
is used to denote the number of edges on the unique (non-directed) path connecting a
and b.

We call distinct nodes a, b ∈ VS siblings when a + b is a parent of a and b. For
a, b ∈ VS let Sb(a, b) be the set of nodes defined by the following recurrent rule: (i)
Sb(a, b) = ∅, if a = b or a and b are siblings, (ii) Sb(a, b) = {c} ∪ Sb(a + c, b),
if a < b or a + c < a + b; here c is the sibling of a, and (iii) Sb(a, b) = Sb(b, a)
otherwise.

By L(a, b) we denote the number of elements in Sb(a, b). Observe that L(a, b) =
ρ(a, b) − 2 · (1 − D(a, b)). Let MG : VG → VS be the least common ancestor (lca)
mapping, from rooted G into S that preserves the labeling of the leaves. Note, that if
a, b ∈ VG are children of v, then MG(v) = MG(a) + MG(b). An example is depicted in
Fig. 1.

In this general setting let us assume that we are given a cost function ξ : VG×VS → R
which for all nodes v ∈ VG , a ∈ VS assigns a real ξ(v, a) representing a contribution to
node a which comes from v when reconciling G with S. Having ξ we can define κ(v) =∑

a ξ(v, a) to be a total contribution from v in the reconciliation of G with S. We call
κ a contribution function. Finally, σ =

∑
v κ(v) is the total cost of reconciliation of G

with S.

A Linear Time Algorithm for Error-Corrected Reconciliation 151

Now we present examples of cost functions that are used in the duplication model.
Let w1 and w2 the children of an internal node v ∈ VG . The Duplication cost function
is defined as follows: ξD(v, a) = 1 if v ∈ int(G) and M(v) = M(wi) = a for some
i, and ξD(v, a) = 0 otherwise. Loss cost function: ξL(v, a) = 1 if v ∈ int(G) and
a ∈ Sb(M(w1), M(w2)), and ξL(v, a) = 0 otherwise. It can be proved that if v is
internal in G, then κD(v) = D(M(w1), M(w2)) and κL(v) = L(M(w1), M(w2)) (in
both cases 0 if v is a leaf).

Observe that a node v ∈ VG is called a duplication [17,9] if κD(v) = 1. Moreover,
κL(v) = l(v), where l(v) is the number of gene losses associated to v. It can be proved
that σD and σL are the minimal number of gene duplications and gene losses (respec-
tively) required to reconcile (or to embed) G with S. Here details are omitted for brevity.
The example of an embedding is depicted in Fig. 1.

2.1 Introduction to Unrooted Reconciliation

Here we highlight some results from [12] that are used for the design of our algorithm.
From now on, we assume that G = 〈VG , EG〉 is an unrooted gene tree. We define a
rooting of G by selecting an edge e ∈ EG on which the root is to be placed. Such
a rooted tree will be denoted by Ge, where v∗ is a new node defining the root. To
distinguish between rootings of G, the symbols defined in previous section for rooted
gene trees will be extended by inserting index e. Please observe, that the mapping of
the root of Ge is independent of e. Without loss of generality the following is assumed:
(A1) S and G have at least one internal node and (A2) Me(v∗) = �; that is, the root of
every rooting is mapped into the root of S (we may always consider the subtree of the
species tree rooted in Me(v∗) with no change of the cost).

First, we transform G into a directed graph Ĝ = 〈VG , ÊG〉, where ÊG = {〈v, w〉 |
{v, w} ∈ EG}. In other words each edge {v, w} in G is replaced in Ĝ by a pair of
directed edges 〈v, w〉 and 〈w, v〉.

Edges in Ĝ are labeled by nodes of S as follows. If v ∈ VG is a leaf labeled by a, then
the edge 〈v, w〉 ∈ ÊG is labeled by a. When v is an internal node in Ĝ we assume that
〈w1, v〉 and 〈w2, v〉 are labeled by b1 and b2, respectively. Then the edge 〈v, w3〉 ∈ ÊG ,
such that w3 	= w1 and w3 	= w2 is labeled by b1 + b2. Such labeling will be used to
explore mappings of rootings of G. An edge {v, w} in G is called asymmetric if exactly
one of the labels of 〈v, w〉 and 〈w, v〉 in Ĝ is equal to �, otherwise it is called symmetric.

Every internal node v and its neighbors in Ĝ define a subtree of ÊG , called a star
with a center v, as depicted in Fig. 2. The edges 〈v, wi〉 are called outgoing, while the
edges 〈wi, v〉 are called incoming. We will refer to the undirected edge {v, wi} as ei,
for i = 1, 2, 3.

The are several types of possible star topologies based on the labeling (for proofs
and details see [12]): (S1) a star has one incoming edge labeled by � and two outgoing
edges labeled � and these edges are connected to the three siblings of the center, (S2)
a star has exactly two outgoing edges labeled by �, (S3) a star has all outgoing edges
and exactly one incoming edgd labeled by �, (S4) a star has all edges labelled by top,
and (S5) a star has all outgoing edges and exactly two incoming edges labeled by �.
Figure 2 illustrates the star topologies.

152 P. Górecki and O. Eulenstein

b + c

a

b
a

+
c

ca
+

b
vw1

w2

w3

�= �
�= � symmetric

�
� symmetric

�
�= � asymmetric

S1 S2 S3 S4 S5

a) b) c)

Fig. 2. a) A star in Ĝ. b) Types of edges. c) All possible types of stars. We use simplified notation
instead of the full topology.

In summary stars are basic ’puzzle-like’ units that can be used to assemble them
into unrooted gene trees. However, not all star compositions represent a gene tree. For
instance, there is no gene tree with 3 stars of type S2. It follows from [12] (see Lemma
4) that we need the following additional condition: (C1) if a gene tree has two stars of
type S2 then they share a common edge.

Now we overview the main result of [12] (see Theorem 1 for more details). Let S
be a species tree and G be unrooted gene tree. The set of optimal edges1 is defined as
follows: MinG = {e ∈ EG | σ

Mα,β
e is minimal}, where σ

Mα,β
e is the total cost for the

weighted mutation cost defined by ξ
Mα,β
e (v, a) = α·ξD

e (v, a)+β ·ξL
e (v, a), e is an edge

in G and α, β are two positive reals. Then (M1) if |MinG | > 1, then MinG consists of
all edges present in all stars of type S4 or S5, (M2) if |MinG | = 1, then MinG contains
exactly one symmetric edge that is present in star of type S2 or S3. From the above
statements, (C1) and star topologies we can easily determine MinG . More precisely,
the star edges outside MinG are asymmetric and share the same direction. Thus, to find
an optimal edge it is sufficient to follow the direction of non � edges in Ĝ.

Now we summarize the time complexity of this procedure. It follows from [4] that a
single lca-query (that, is a+ b for nodes a and b in S) can be computed in constant time
after an initial preprocessing step requiring O(|S|) time. Other structures like Ĝ with
the labeling can be computed in O(|G|) time. The same complexity has the procedure
of finding an optimal edge in G. In summary an optimal edge/rooting and the minimal
cost can be computed in linear time. See [12] for more details and other properties.

3 Algorithm

We describe the algorithm for computing the optimal cost and the set of optimal edges
after one NNI performed on an unrooted gene tree. We show that a single NNI op-
eration can be completed in constant time if all structures required for computing the
optimal rootings are already constructed. First, let us assume that we are given: (a) two
positive reals α and β, a species tree S, (b) lca structure for S that allows to answer lca-
queries in constant time, (c) an unrooted gene tree G, (d) Ĝ with the labelling of edges,
(e) MinG - the set of optimal edges, and (f) σ - the minimal total weighted mutation
cost. As mentioned in the previous section (b),(d)-(f) can be computed in linear time
O(max(|S|, |G|)). Now we show that (c)-(f) can be computed in constant time after
single NNI.

1 Candidates for best rootings.

A Linear Time Algorithm for Error-Corrected Reconciliation 153

G

e0

e
1

e2
e
3

e4w1

w2 w3

w4

T1

T2 T3

T4

NNI

G′

e′0
e ′
3

e
′
2

e ′
1

e
′
4w3

w2 w1

w4

T3

T2 T1

T4
Ĝ

a3+a4

a1+a2

ā
1

a
1

ā 2

a 2

a 4

ā 4

a
3

ā
3

w1

w2 w3

w4

NNI

Ĝ′

a1+a4

a2+a3

ā
3

a
3

ā 2

a 2

a 4

ā 4

a
1

ā
1

w3

w2 w1

w4

Fig. 3. A single NNI on G and Ĝ. On the left ei and e′i (for i = 0, . . . , 4) denote edges in G and
its NNI-neighbor G′, respectively. On the right each node ai denote the labeling of edges in Ĝ.
Notation āi denotes the lca-mapping of complementary subtrees, for instance, ā3 = a1+a2+a4,
etc. For brevity, we omit each subtree Ti attached to wi in the left diagram.

NNI operation (c) and the update of lca-mappings (d). We start with the definition of
a single NNI operation.

Definition 1. (Single NNI operation) NNI operation transforms a gene tree G = ((T1,
T2), (T3, T4)) into G′ = ((T2, T3), (T1, T4)), where Ti-s are (rooted) subtrees of G. The
edge that connects the roots of (T1, T2) and (T3, T4) in G is denoted by e0 and called
the center edge. For each i = 1, 2, 3, 4 we assume the following: wi is the root of Ti, ei

is the edge connecting wi with e0 and ai is the lca-mapping of Ti. Similarly, we define
the center edge e′0 and e′i in G′.

The NNI operation is depicted in Fig. 3 with the transformation of Ĝ into Ĝ′. The no-
tation will be used from now on. Note that there is a second NNI operation, when G
is replaced with ((T1, T3), (T2, T4)). However, it can be easily defined and therefore it
is omitted here for brevity. Observe that the NNI operation (without updating of lca-
mappings) can be performed in constant time for both trees.

The right part of Fig. 3 depicts the transformation of Ĝ. Please observe that the labels
of the incoming and outgoing edges attached to each wi in Ĝ do not change during this
operation. Therefore, we can prove the following lemma.

Lemma 1. NNI changes only the labels of the center edge.

We conclude that updating Ĝ requires only two lca-queries and can be performed in
constant time.

Reconstruction of optimal edges (e). We analyze the changes of the optimal set of
edges MinG. To this end we consider a number of cases depending on the relation
between the optimal set of edges and the set of edges, incident to the nodes of the
center edge. Let CG = {ei}i=0,...,4.

For convenience, assume that the NNI operation replaces ei with e′i as indicated in
Fig.3. We call two disjoint edges from CG semi-alternating if they will share a common
node after the NNI operation. In Fig.3 {e1, e4} and {e2, e3} are semi-alternating. For
two edges a and b sharing a common node let �(a, b) be the set of three edges defining
the unique star that contains a and b.

Lemma 2. Under assumption that ei is replaced by e′i after the NNI operation the set
of optimal edges does not require additional changes iff one of the following conditions
is satisfied:

154 P. Górecki and O. Eulenstein

(EQ1) MinG ∩ CG = ∅,
(EQ2) MinG ⊇ CG and each pair of semi-alternating edges contains at least one
symmetric edge,

(EQ3) MinG consists of only the center edge,
(EQ4) MinG ∩ CG = {ei} for some i > 0 and the center is asymmetric after the NNI
operation.

Proof: (EQ1) All edges in CG are asymmetric (2 stars S1). Then, after the NNI operation e′0 is
asymmetric and (CG′ has 2 stars S1). (EQ2) CG consists of 2 stars of type S4/S5 and at most
two asymmetric edges. It follows from EQ2 that the asymmetric edges in CG′ cannot form a star
of type other than S5. Together with M1 it follows CG′ is optimal. (EQ3) By M1 the center is
symmetric in G. It remains symmetric after NNI. From C1 and M2, MinG′ consists of the center
edge. (EQ4) Note that the type of �(e′i, e

′
0) is S1, S2 or S3. []

Lemma 3 (NE1). If MinG ⊇ CG and there exists a pair {ei, ej} of asymmetric semi-
alternating edges, then Min′

G = MinG \ CG ∪ (CG′ \ {e′i, e′j}).

Proof: The type of �(e′i, e
′
j) is S1 or S3 and the other star has type S4 or S5. By M2 e′i and e′j are

not optimal. []

The proofs for the following lemmas are similar to the proof for Lemma 3 and are
omitted for brevity.

Lemma 4 (NE2). If MinG ∩ CG = {ei} for some i > 0 and the center is symmetric
after the NNI operation then Min′

G = MinG \ {ei} ∪ �(e′0, e
′
i).

Lemma 5. Assume that MinG ∩ CG = {e0, ei, ej}, where i 	= 0,

(NE3) If both ei and ej are symmetric then MinG′ = MinG \ CG ∪ CG′ ,
(NE4) If ej is asymmetric and e′0 is symmetric then MinG′ = MinG \ CG ∪ �(e′0, e′i).
(NE5) If both ej and e′0 are asymmetric then MinG′ = MinG \ CG ∪ {e′i}.

Note that {e0, ei, ej} must be a star in G, that is, {i, j} equals either {1, 2} or {3, 4}.
Computing the optimal cost (f). Observe that from Lemmas 2-5 at least one optimal

edge remains optimal after the NNI operation. Therefore, to compute the difference
in costs between optimal rootings of G and G′ we start with the cost analysis for the
rootings of such edge.

First, we introduce a function for computing the cost differences. Consider three
nodes x, y, z of some rooted gene tree such that x and y are siblings and the parent of
them (denoted by xy), is a sibling of z. In other words we can denote this subtree by
((x, y), z). Then, the partial contribution of ((x, y), z) to the total weighted mutation
cost can be described as follows:

∑
a∈S α∗(ξD(xy, a) +ξD(xyz, a))+β∗(ξL(xy, a)+

ξL(xyz, a)). Assume that x, y and z are mapped into a, b and c (from the species tree),
respectively. It can be proved from the definition of ξD and ξL that the above contribu-
tion equals: φ(a, b, c) = α∗ (D(a, b)+D(a+ b, c))+β ∗ (L(a, b)+L(a+ b, c)). Now,
assume that a single NNI operation changes ((x, y), z)) into (x, (y, z)). It should be
clear that the cost difference is given by: Δ3(a, b, c) = φ(c, b, a)−φ(a, b, c). Similarly,
we can define a cost difference when a single NNI operation changes ((x, y), (z, v))

A Linear Time Algorithm for Error-Corrected Reconciliation 155

into ((x, v), (y, z)). Assume, that v is mapped into d. Then, the cost contribution of
the first subtree is: φ′(a, b, c, d) = φ(a, b, c + d) + α ∗ D(c, d) + β ∗ L(c, d). The cost
difference is given by: Δ4(a, b, c, d) = φ′(a, d, b, c) − φ′(a, b, c, d).

Lemma 6. If the center edge is optimal and remains optimal after the NNI operation
then the cost difference equals Δ4(a1, a2, a3, a4), where ai (for i = 1, 2, 3, 4) is the
mapping as indicated in Fig.3.

As mentioned the above lemma can be proved by comparing the rootings placed on the
center edges in G and G′. Lemma 6 gives a solution for cases: EQ2, EQ3, NE1 and NE3.
The next lemma gives a solution for the remaining cases.

Lemma 7. If for some i > 0 there exists an optimal edge in Ti ∪ {ei} that remains
optimal after the NNI operation (under assumption that ei is replaced by e′i) then the
cost difference is Δ3(a4, a3, a2) if i = 1, Δ3(a3, a4, a1) if i = 2, Δ3(a2, a1, a4) if
i = 3 and Δ3(a1, a2, a3) if i = 4.

Similarly to Lemma 6 we can prove Lemma 7 by comparing the rootings of ei and e′i.
Error correction algorithm. Finally, we can present the algorithm for computing the

optimal weighted mutation cost for a given gene tree and its NNI neighborhood. See
Alg.1 for details. It should be clear that the complexity of this algorithm is linear in
time O(max(|G|, |S|)). We write that a gene tree has an error if the optimal cost is
computed for one of its NNI variants (line 7 of Alg.1). Otherwise, we write that a gene
tree does not require corrections. Please note that it is straightforward to extend the
algorithm to reconstruct the optimal variant of the input gene tree.

Algorithm 1. Optimal weighted cost for G and its NNI neighborhood
1. Input A species tree S , an unrooted gene tree G, α, β > 0.
2. Output Optimal weighted cost for G and its NNI neighborhood.
3. Compute: the optimal weighted mutation cost σ, MinG , lca structure for S and Ĝ by the

unrooted reconciliation algorithm [12]. Let mincost := σ.
4. for each internal edge e0 in G do
5. Transform G into G′ and Ĝ into Ĝ′ (in situ).
6. Update MinG according to cases NE1-NE5 and adjust the cost σ (Lemma 6, 7).
7. mincost := min(mincost, σ)

8. Perform the reverse transformation to reconstruct the original G, Ĝ and σ.
9. Execute all steps 5-8 for the second NNI operation on e0.

10. return mincost

3.1 General Reconstruction Problems

We present several approaches to problems of error correction and phylogeny recon-
struction. Let us assume that σα,β(S,G) is the cost computed by Alg. 1, where α, β > 0,
S is a rooted species tree and G is an unrooted gene tree.

Problem 1 (NNIC). Given a rooted species tree S and a set of unrooted gene trees, G
compute the total cost

∑
G∈G σα,β(S,G).

The NNIC problem can be solved in polynomial time by an iterative application of
Alg. 1. Additionally, we can reconstruct the optimal rootings as well as the correct
topology of each gene tree.

156 P. Górecki and O. Eulenstein

Problem 2 (NNIST). Given a set of unrooted gene trees G find the species tree S that
minimizes the total cost

∑
G∈G σα,β(S,G).

The complexity of the NNIST problem is unknown. However, similar problems for the
duplication model are NP-hard [17]. Therefore we developed heuristics for the NNIST
problem to use them in our experiments.

In applications there is typically no need to search over all NNI variants of a gene
tree. For instance, a good candidate for an NNI operation is a weak edge. A weak edge
is usually defined on the basis of its length, where short length indicates weakness.
To formalize this property, let us assume that each edge in a gene tree G has length.
We call an edge e in G weak if the length of e is smaller than ω, where ω is a non-
negative real. Now we can define variants of NNI-C and NNI-ST denoted by ω-NNIC
and ω-NNIST, respectively, where the NNI operations are performed on weak edges
only. Formal definitions are omitted for brevity.

4 Experiments

We demonstrate the performance of our algorithms on empirical data sets.
Data preparation. First, we inferred 4133 unrooted gene trees with branch lengths

from nine yeast genomes contained in the Genolevures 3 data set [23], which contains
protein sequences from the following nine yeast species: C. glabrata (4957 protein
sequences, abbreviation CAGL), S. cerevisiae (5396, SACE), Z. rouxii (4840, ZYRO),
S. kluyveri (5074, SAKL), K. thermotolerans (4933, KLTH), K. lactis (4851, KLLA),
Y. lipolytica (4781, YALI), D. hansenii (5006, DEHA) and E. gossypii (4527, ERGO).

We aligned the protein sequences of each gene family by using the program TCof-
fee [19] using the default parameter setting. Then maximum likelihood (unrooted) gene
trees were computed from the alignments by using proml from the phylip software
package. The original species tree of these yeasts [23], here denoted by G3, is shown in
Fig. 4.

Software. The unrooted reconciliation algorithm [12] and its data structures are
implemented in program URec [13]. Our algorithm partially depends on theses data
structures and therefore was implemented as a significantly extended version of URec.
Additionally, we implemented a hill climbing heuristic to solve NNIST and ω-NNIST.

Inferring optimal species trees. The optimal species tree reconstructed with error cor-
rections (NNIST optimization problem) is depicted in Fig. 4 and denoted by FULLEC.

G3
SACE
CAGL
ZYRO
SAKL
KLTH
KLLA
ERGO
DEHA
YALI

FULLEC
SACE
CAGL
ZYRO
SAKL
KLTH
ERGO
KLLA
DEHA
YALI

NOEC
SACE
CAGL
ZYRO
SAKL
KLTH
ERGO
KLLA
DEHA
YALI

NNIST NNIST No correct.
Tree cost (rank) Errors cost (rank)
G3 50653 (5) 3680 66407 (4)

FULLEC 48869 (1) 3565 64665 (2)
NOEC 48909 (2) 3684 64413 (1)

Fig. 4. Species tree topologies. G3 - original phylogeny of Genolevures 3 data set [23]. FULLEC
- optimal rooted species tree inferred from gene trees with all possible error corrections (no NNI
restrictions, cost 48869 with 3565 corrections). NOEC - optimal species tree for the yeast gene
trees with no NNI operations (cost 64413, no corrections). Rank denotes a position of a tree on
the sorted list of the best trees.

A Linear Time Algorithm for Error-Corrected Reconciliation 157

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5

μ

ω

others
FULLEC

NOEC
G3

 0 0.1 0.2 0.3 0.4 0.5

ω 2 4 6 8 10 12 14 16 18 20

μ

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

Corrected errors

 0 500 1000 1500 2000 2500 3000 3500

 0
 0.1

 0.2
 0.3

 0.4
 0.5

ω
 2 4 6 8 10 12 14 16 18 20μ

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

Rejected trees

 0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 5. ω-NNIST experiments for ω = 0, 0.05, 0.1, . . . , 0.45 and μ = 2, 3, . . . , 20. On the left
- the diagram of the optimal ω-NNIST trees for all μ. In the center - the numbers of corrected
errors. On the right - the numbers of rejected trees. Note that ω = 0 does not represents weak
edges, ω = 0.05 sets 13.3% of all gene tree edges to be weak, ω = 0.1 - approx. 28%, ω = 0.15
- 41%, ω = 0.2 - 49%, ω = 0.3 - 62%, ω = 0.45 - 77%. The longest edge has length 2.81898.

This tree differs from G3 in the rooting and in the middle clade with KLLA and ERGO.
Additionally, we inferred by our ω-NNIST heuristic an optimal species tree, denoted
here by NOEC, with no error corrections (that is, for ω = 0). All the trees from this
figure are highly scored in each of the optimization schemas.

From weak edges to species trees. In the previous experiment, the NNI operations
were performed on almost every gene tree in the optimal solution and with no restric-
tions on the edges. In order to reconstruct the trees more accurately, we performed
experiments for ω-NNIST optimization with various ω parameters and subsets of gene
trees.The filtering of gene trees was determined by an integer μ > 0 that defines the
maximum number of allowed weak edges in a single gene tree. Each gene tree that did
not satisfy such condition was rejected.

Fig. 5 depicts a summary of error correction experiments for weak edges. For each
ω and μ we performed 10 runs of the ω-NNIST heuristic for finding the optimal species
tree in the set of gene trees filtered by μ. The optimal species trees are depicted in
the left diagram. We observed that G3, FULLEC and NOEC are significantly well rep-
resented in the set of optimal species trees. Note that the original yeast phylogeny is
reconstructed for ω = 0.1-0.15 (in other words approx. 30-40% of edges are weak) and
μ ≤ 10. In particular for ω = 0.15 and μ = 10, 364 gene trees were rejected and 3164
errors were corrected.

From trusted species tree to weak edges in gene trees - automated and manual cu-
ration. Assume that the set of unrooted gene trees and the rooted (trusted) species tree
S are given. Then we can state the following problem: find ω and μ such that S is the
optimal species tree in ω-NNIST problem for the set of gene trees filtered by μ. For
instance in our dataset, if we assume that G3 is a given correct phylogeny of yeasts,
then from the left diagram in Fig. 4 one can determine appropriate values of ω and μ
that yield G3 as optimal. In other words we can automatically determine weak edges by
ω and filter gene trees by μ. This approach can be applied in tree curation procedures to
correct errors in automated way as well as to find candidates (rejected trees) for further
manual curation. For instance, in the previous case, when ω = 0.1 and μ = 10, we have

158 P. Górecki and O. Eulenstein

3164 trees that can be corrected and rooted by our algorithm, while the 364 rejected
trees could be candidates for further manual correction.

5 Discussion

We present novel theoretical and practical results on the problem of error correction and
phylogeny reconstruction. In particular, we describe a linear time and space algorithm
that simultaneously solves the problem of correction topological errors in unrooted gene
trees and the problem of rooting unrooted gene trees. The algorithm allows us to per-
form efficiently experiments on truly large-scale datasets available for yeast genomes.
Our experiments suggest that our algorithm can be used to (i) detect errors, (ii) to infer
a correct phylogeny of species under the presence of weak edges in gene trees, and (iii)
to help in tree curation procedures. Software, datasets and documentation are freely
available from http://bioputer.mimuw.edu.pl/∼gorecki/ec.

Acknowledgment

The reviewers have provided several valuable comments that have improved the pre-
sentation. This work was conducted in parts with support from the Gene Tree Reconcil-
iation Working Group at NIMBioS through NSF award #EF-0832858, with additional
support from the University of Tennessee. PG was partially supported by the grant of
MNiSW (N N301 065236) and OE was supported in part by NSF awards #0830012 and
#10117189.

References

1. Bansal, M.S., Burleigh, J.G., Eulenstein, O., Wehe, A.: Heuristics for the gene-duplication
problem: A Θ(n) speed-up for the local search. In: Speed, T., Huang, H. (eds.) RECOMB
2007. LNCS (LNBI), vol. 4453, pp. 238–252. Springer, Heidelberg (2007)

2. Bansal, M.S., Eulenstein, O.: The multiple gene duplication problem revisited. Bioinformat-
ics 24(13), i132–i138 (2008)

3. Behzadi, B., Vingron, M.: Reconstructing domain compositions of ancestral multi-domain
proteins. In: Bourque, G., El-Mabrouk, N. (eds.) RECOMB-CG 2006. LNCS (LNBI),
vol. 4205, pp. 1–10. Springer, Heidelberg (2006)

4. Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: Gonnet, G.H., Panario, D.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

5. Bonizzoni, P., Della Vedova, G., Dondi, R.: Reconciling a gene tree to a species tree under
the duplication cost model. Theoretical Computer Science 347(1-2), 36–53 (2005)

6. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene duplications
and optimizing gene family trees. J. Comput. Biol. 7(3-4), 429–447 (2000)

7. Durand, D., Halldorsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to
gene tree reconstruction. J. Comput. Biol. 13(2), 320–335 (2006)

8. Eulenstein, O., Huzurbazar, S., Liberles, D.A.: Reconciling phylogenetic trees. In: Dittmar,
Liberles (eds.) Evolution After Gene Duplication. Wiley, Chichester (2010)

9. Eulenstein, O., Mirkin, B., Vingron, M.: Duplication-based measures of difference between
gene and species trees. J. Comput. Biol. 5(1), 135–148 (1998)

A Linear Time Algorithm for Error-Corrected Reconciliation 159

10. Fellows, M.R., Hallett, M.T., Stege, U.: On the multiple gene duplication problem. In: Chwa,
K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 347–356. Springer, Heidelberg
(1998)

11. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the
gene lineage into its species lineage, a parsimony strategy illustrated by cladograms con-
structed from globin sequences. Systematic Zoology 28(2), 132–163 (1979)

12. Górecki, P., Tiuryn, J.: Inferring phylogeny from whole genomes. Bioinformatics 23(2),
e116–e122 (2007)

13. Górecki, P., Tiuryn, J.: Urec: a system for unrooted reconciliation. Bioinformatics 23(4),
511–512 (2007)

14. Graur, D., Li, W.-H.: Fundamentals of Molecular Evolution. Sinauer Associates, 2 sub edi-
tion (2000)

15. Guigó, R., Muchnik, I.B., Smith, T.F.: Reconstruction of ancient molecular phylogeny.
Molecular Phylogenetics and Evolution 6(2), 189–213 (1996)

16. Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate
genome evolution. Genome Biology 8(7), R141+ (2007)

17. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM Journal on Comput-
ing 30(3), 729–752 (2000)

18. Mirkin, B., Muchnik, I.B., Smith, T.F.: A biologically consistent model for comparing molec-
ular phylogenies. J. Comput. Biol. 2(4), 493–507 (1995)

19. Notredame, C., Higgins, D.G., Jaap, H.: T-coffee: a novel method for fast and accurate mul-
tiple sequence alignment. J. Mol. Biol. 302(1), 205–217 (2000)

20. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among
genes, organisms, and areas. Systematic Biology 43(1), 58–77 (1994)

21. Page, R.D.M.: GeneTree: comparing gene and species phylogenies using reconciled trees.
Bioinformatics 14(9), 819–820 (1998)

22. Sanderson, M.J., McMahon, M.M.: Inferring angiosperm phylogeny from EST data with
widespread gene duplication. BMC Evolutionary Biology 7(Suppl 1), S3 (2007)

23. Sherman, D.J., Martin, T., Nikolski, M., Cayla, C., Souciet, J.-L., Durrens, P.: Gènolevures:
protein families and synteny among complete hemiascomycetous yeast proteomes and
genomes. Nucleic Acids Research 37(suppl 1), D550–D554 (2009)

24. Wehe, A., Bansal, M.S., Burleigh, G.J., Eulenstein, O.: DupTree: a program for large-scale
phylogenetic analyses using gene tree parsimony. Bioinformatics 24(13), 1540–1541 (2008)

Comprehensive Pharmacogenomic

Pathway Screening
by Data Assimilation

Takanori Hasegawa, Rui Yamaguchi, Masao Nagasaki,
Seiya Imoto, and Satoru Miyano

Human Genome Center, Institute of Medical Science, University of Tokyo,
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

{t-hasegw,ruiy,masao,imoto,miyano}@ims.u-tokyo.ac.jp

Abstract. We propose a computational method to comprehensively
screen for pharmacogenomic pathway simulation models. A systematic
model generation strategy is developed; candidate pharmacogenomic
models are automatically generated from some prototype models con-
structed from existing literature. The parameters in the model are auto-
matically estimated based on time-course observed gene expression data
by data assimilation technique. The candidate simulation models are
also ranked based on their prediction power measured by Bayesian infor-
mation criterion. We generated 53 pharmacogenomic simulation models
from five prototypes and applied the proposed method to microarray gene
expression data of rat liver cells treated with corticosteroid. We found
that some extended simulation models have higher prediction power for
some genes than the original models.

1 Introduction

Construction and simulation of biological pathways are crucial steps in under-
standing complex networks of biological elements in cells [4, 7, 8, 9, 13, 15, 16].
To construct simulatable models, structures of networks and chemical reactions
are collected from existing literature and the values of parameters in the model
are set based on the results of biological experiments or estimated based on
observed data by some computational method [9]. However, it is possible that
there are some missing relationships or elements in the literature-based networks.
Therefore, we need to develop a computational strategy to improve a prototype
model and create better ones that can predict biological phenomena.

To propose novel networks of genes, statistical graphical models including
Bayesian networks [3] and vector autoregressive models [5, 11] have been applied
to gene expression data. An advantage of these methods is that we can find
networks with a large number of genes and analyze them by a viewpoint of
systems. However, due to the noise and the limited amount of the data, some
parts of the networks estimated by these methods are not biologically reasonable
and cannot be validated. In this paper, we focus on another strategy. Unlike the

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 160–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Comprehensive Pharmacogenomic Pathway Screening by Data Assimilation 161

statistical methods, our method can create a set of extended simulatable models
from prototype literature-based models.

There are two key points in our proposed strategy: One is that various struc-
tures of candidate simulation models are systematically generated from the pro-
totypes. The other is that, for each created model, the values of parameters
are automatically estimated by data assimilation technique [9, 16]; the values of
parameters will be determined by maximizing the prediction capability of the
model. For each of simulation models, by using data assimilation technique, we
can discover that which genes are appropriately predicted their temporal ex-
pression patterns by the candidate model. Since we consider pharmacogenomic
pathways, these genes are possibly placed on the mode-of-action of target chem-
ical compound. The results obtained by our proposed strategy could be essential
to create a larger and more comprehensive simulation model and systems biology
driven pharmacology.

To show the effectiveness of the proposed strategy, we analyze time-course
microarray data of rat liver cells treated with corticosteroid [2]. In the previ-
ous study, differential equation-based simulation models, named fifth generation
model [12], were used and predictable expression patterns by this model were
discussed for 197 genes selected by clustering analysis [2]. In this paper, we
systematically generated 53 simulatable models from five prototypes and deter-
mined which 58 models suitably predict expression pattern of each gene. Finally,
we show a comprehensive pharmacogenomics pathway screening that elucidates
associations between genes and simulation models.

The paper is organized as follows: In Section 2, we elucidate a systematic
method to create extended simulation models from prototype ones. The param-
eter estimation based on data assimilation technique with particle filter [9, 16]
and a model selection method [6, 10] are also presented. We apply the pro-
posed pharmacogenomic pathway screening strategy to constructed 58 models
and time-course gene expression data of rat liver cells with corticosteroid in
Section 3. Discussions are given in Section 4.

2 Method

2.1 Corticosteroid Pharmacokinetic and Pharmacogenomics Models

We first introduce a framework of pharmacokinetic and pharmacogenomic mod-
els employed in Jin et al. [2]. Under this framework, a pharmacokinetic model
that represents a plasma concentration of methylprednisolone (MPL) in
nanograms per milliliter, CMPL, is given by

CMPL = C1 · e−λ1t + C2 · e−λ2t, (1)

where C1, C2, λ1 and λ2 are coefficients for the intercepts and slopes and Jin et
al. [2] set by C1 = 39, 130 (ng/ml), C2 = 12, 670 (ng/ml), λ1 = 7.54 (h−1) and
λ2 = 1.20 (h−1). These values are obtained from other biological experiments
than gene expression profilings that we will use for parameter estimation of

162 T. Hasegawa et al.

kd_R

ks_R

mRNA DR(N)(Deg)(Syn)

mRNA_BS

BS

Model A
Model B

Model C

Model D
Model E

DR

(Syn) (Deg)

mRNA (Deg)(Syn)

BS(Syn) (Deg)

mRNA (Deg)(Syn)

DR(N)

DR(N)

k_sm k_dm

k_sBS k_dBS(=k_sBS)

k_sBSm k_dBSm

k_sm

k_sm

k_dm

k_dm

transform activate activate/repress

S /IC_50

S /IC_50

S /IC_50
S_bs /IC_50bs

S_bs /IC_50bs S_dr

S*/IC_50*

activate/repress

Fig. 1. The left figure and right figure shows core model for corticosteroid pharma-
cokinetics and prototype pharmacogenomic models with extensions respectively. In
the right figure, the dashed lines with circle are the candidate relations to be extended
and BS is the intermediate biosignal.

pharmacogenomic models described in the latter section. We thus use these four
values for the corticosteroid pharmacokinetics.

In existing literature, corticosteroid pharmacogenomic pathways were inves-
tigated [2]. We show the core part of the pathway that includes corticosteroid,
represented by D, and its receptor, R, in Figure 1 (left). Here, mRNA(R) de-
notes the mRNA of the receptor, DR is cytosolic drug-receptor complex and
DR(N) is drug-receptor complex in nucleus. The reaction parameters in Figure
1 (left) were set according to Sun et al. [12] and summarized in Table 1 (left).
The dynamics of the pathway can be represented by four differential equations
given by

dmRNA(R)
dt

= ks Rm ·
{

1 − DR(N)
IC50 Rm + DR(N)

}
−kd Rm · mRNA(R), (2)

dR
dt

= ks R · mRNA(R) + Rf · kre · {DR(N) + DR}

−kon · D · R − kd R · R, (3)
dDR
dt

= kon · D · R − (kT + kre) · DR, (4)

dDR(N)
dt

= kT · DR − kre · DR(N). (5)

Based on the fundamental model represented in Figure 1 (left), we want to
know how DR and DR(N) affect other genes in transcriptional level. As a basic
pharmacogenomic model for finding relationship between drug-receptor complex
and other genes, we consider extending five pharmacogenomic models [2] shown

Comprehensive Pharmacogenomic Pathway Screening by Data Assimilation 163

Table 1. Parameter Setting for the core model and for the constructed pharmacoge-
nomic models

Fixed Parameter Value Unit

ks Rm 2.90 fmol/g/h
kd Rm 0.1124 fmol/g/h

IC50 Rm 26.2 fmol/mg
kon 0.00329 l/nmol/h
kT 0.63 h−1

kre 0.0572 h−1

Rf 0.49
ks R 1.2 h−1

kd R 0.0572 h−1

mRNA0
R 25.8 fmol/g

R0 540.7 fmol/mg

Estimated Parameter Model Unit

k sm All l/nmol/h
k dm All l/nmol/h

l/nmol/h
S or IC 50 All or

fmol/mg
k sBSm C l/nmol/h
k dBSm C l/nmol/h
k sBS C, DE l/nmol/h
k dBS C l/nmol/h

l/nmol/h
S bs or IC 50bs C, DE or

fmol/mg
S dr C l/nmol/h

mRNA BS0 C fmol/mg
BS0 DE fmol/mg

in Figure 1 (right). The original five pharmacogenomic pathways [2] have the
same elements as the core pharmacokinetic pathway, DR and DR(N), and rep-
resent relationships between corticosteroid and its downstream genes. However,
more variations can be considered as candidates of pharmacogenomic pathway
of corticoid. Therefore, from these five models, we automatically constructed 53
models with the following three rules.

(i) If a regulator, DR(N), DR or BS, activates (represses) the synthesis (degra-
dation) of mRNA, a revised model tests to repress (activate) the degradation
(synthesis) of mRNA. However, we do not consider combination effects of
them.

(ii) If two regulators regulate the same element, we also consider either two
regulator model or one regulator model that is defined by removing one of
two edges.

(iii) If two regulators regulate the same element, we consider either independent
regulation model that employs additive form or cooperative regulation model
with the product of the regulators.

We create these rules for generating simulation models that covers all patterns
of regulations when we do not change the number of elements such that mRNAs
and proteins in each simulation model.

From Model A: One model with three parameters (“k sm”, “k dm” and “S
or IC 50”) was generated by applying the rule (i). These models include only
mRNA and can simply represent activation of mRNA expression.

From Model B: One model with three parameters (“k sm”, “k dm” and “S
or IC 50”) was generated by applying the rule (i). These models include only
mRNA and can simply represent repression of mRNA expression.

164 T. Hasegawa et al.

Fig. 2. Six representative pharmacogenomic simulation models (From top left to right,
Model A, B, C12, DE10, DE12 and DE20). These models have high predictive power
for many of 8799 rat liver genes. These models are described by Cell Illustrator 5.0.

From Model C: First, 15 models with 11 or 10 parameters (“k sm”, “k dm”,
“S or IC 50”, “k sBSm”, “k dBSm”, “k sBS”, “k dBS”, “S bs or IC 50bs”, “S dr”,
and “initial values of mRNA BS” and “BS”) were generated by applying the rule
(i) and (ii). These models include mRNA, BS, and mRNA BS. Since DR is in-
cluded only in Model C, we evaluate the necessity of the presence of DR by creat-
ing models without DR (rule (ii)). Therefore, 16 models that do not have DR were
additionally created and finally we have 31 models from Model C.

From Model DE: 20 models with 5 or 6 parameters (“k sm”, “k dm”, “S or
IC 50”, “k sBS”, “S bs” or “IC50 bs”, and “initial value of BS”) were generated
by applying the rules (i), (ii) and (iii). These models include mRNA and BS.
We unified the notation of Model D and E, because these two models are similar
and the extended models are hard to be separated. We constructed 16 models,
4 models and 2 models according to rule (i), (ii) and (iii) respectively. In these
simulation models, the parameters, “k sBSm”, “k sBS”, “k sm”, “BS0 (initial
concentration of BS)” and “mRNA0

BS (initial concentration of mRNABS)” were
fixed in the original work [2], but we estimate these five parameters together
with the other parameters.

For these 53 and original 5 pharmacogenomic models, we estimate the values
of parameters by using time-course microarray gene expression data from liver
cells of rats received glucocorticoid. We also evaluate which models can predict
the expression profiles of each gene; it enables us to find better pharmacogenomic
models for each gene. For this purpose, a mathematical technique called data
assimilation for parameter estimation and model selection is described in the
next section.

Comprehensive Pharmacogenomic Pathway Screening by Data Assimilation 165

2.2 Data Assimilation for Parameter Estimation and Model
Selection

To perform simulations by the pharmacogenomic models described in the pre-
vious section, we implemented them using Cell Illustrator [8], a software for
biological pathway simulation based on hybrid functional Petri net with exten-
sions. Six representative models in Cell Illustrator are shown in Figure 2.

Let yj [t] be the expression value of jth gene at time t and let f(x, θ) be a
simulation model, where x is a vector of variables in the simulation model and θ
is a parameter vector described in the previous section. For example, x includes
the concentration of drug-recepter complex, DR. The simulation variable x will
be updated by a system model:

xt = f(xt−1, θ) + vt , t ∈ N , (6)

where xt is the vector of values for the simulation variables at time t, vt rep-
resents innovation noise and N is the set of simulation time points and set
N = {1, ..., T}. To connect the simulation model with the observed data, we
formulate an observation model:

yj [t] = h(xt) + wt, t ∈ Nobs, (7)

where h is a function that maps simulation variables to the observation and wt is
an observation noise. Here, Nobs is the set of time points that we measured gene
expression data. We should note that Nobs is a subset of N . In our case, since xt

contains a variable representing the abundance of mRNA of the gene, i.e., the
jth gene in Eq. (7), the function h takes out the element of xt corresponding to
yj [t]. The model constructed by combining Eq.s (6) and (7) is called a nonlinear
state space model. To simplify the notation, we assume Nobs = N , however, it
is easy to generalize the theory described below to the case of Nobs ⊂ N .

The parameter vector θ is estimated by the maximum likelihood method that
chooses the values of θ that maximize the likelihood

L(θ|YjT) =
∫

p(x0)
T∏

t=1

p(yj [t]|xt)p(xt|xt−1, θ)dx1 · · ·dxT ,

where YjT = (yj [1], ..., yj [T]). For the computation of the likelihood, we use
the particle filter algorithm [9]. For details of the particle filter algorithm for
biological pathway model, we refer Nagasaki et al. [8] and Koh et al. [4]. In the
parameter estimation, we restricted the values of parameters so that they take
positive and not so large from a biological point of view.

For the comparison of multiple simulation models f1, ..., fM , we employ
Bayesian information criterion (BIC) [10]. For the mth model, fm, BIC is defined
by

BIC(fm) = −2 log L(θ̂m|YjT) + νm log T,

166 T. Hasegawa et al.

where θ̂m is the maximum likelihood estimate of the vector of parameters in
fm and νm is the dimension of θm. Therefore, for the jth gene, the optimal
simulation model, f∗, can be obtained by

f∗ = arg min
fm

BIC(fm).

The model ranking for a gene can also be determined by the values of BIC.

3 Pharmacogenomic Pathway Screening for
Corticosteroid 58 Models

3.1 Time-Course Gene Expressions

We analyze microarray time-course gene expression data of rat liver cells [2].
The microarray data were downloaded from GEO database (GSE487). The time-
course gene expressions were measured at 0, 0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 7, 8, 12,
18, 30, 48 and 72 hours (16 time-points) after receiving glucocorticoid. The data
at time 0 hour are control (non-treated). The number of replicated observations
is 2, 3 or 4 at a time point.

3.2 Results of Pathway Screening with Data Assimilation

First, we focused on 197 genes that were identified by the previous work [2] as the
drug-affected genes by the clustering analysis. For the genes in each cluster, we
explored which simulation models have better prediction power and the results
are summarized in Figure 3. According to the results obtained previously [2, 12],
the genes in the clusters 1, 2, 3, 4, 5 and 6 were reported to be well predicted
by the Models “A”, “A”, “C”, “D or E”, “cell-cell interaction model”and “B, D
or E”, respectively. This result indicated that the genes in the cluster 1, 2 have
almost same expression profiles. We should note that the cell-cell interaction
model is not included in the five prototype models.

Figure 3 shows the results for each cluster and the gene expression profiles.
We can summarize the results as follows:

Cluster 1: The previous research [2] suggested that these genes are well pre-
dicted by Model A. However, interestingly, in our results, Model A was selected
few times. On the other hand, Models D and E and their extended models were
selected many times. We presume the reason is that, particularly in the first
part, the profiles of these genes are not so simple.

Cluster 2: These genes are also suggested to be suitably predicted with Model
A. Like cluster 1, similar results, however, were obtained; for these genes, Model
A was not selected in many times.

Cluster 3: The previous research [2] suggested that these genes fitted to
Model C. However, in our results, not so many genes in cluster 3 are well pre-
dicted by Model C, but they fit to Models D and E and their extended models.
We guess the reason is that Model C has more parameters than necessary. There-
fore, in BIC, the second term, i.e., penalty for the number of parameters, takes

Comprehensive Pharmacogenomic Pathway Screening by Data Assimilation 167

large value and BIC cannot be small, so Model C and its extended versions were
not selected. The same things can be said from the other works [1, 14].

Cluster 4: These genes were suggested to be fit with Models D or E. In our
results, Model B and its extension and extension of Model A fit well, and Model
E is especially fit, but Model D is not selected much. Instead, some extended
versions of Models D and E fit well. The genes in cluster 4, we can see that some
expression profiles do not vary widely. Such genes are well fit to Models A, B
and its extensions, because of these simplicity. On the other hand, Models D and
E and their extended models can follow complex behaviors and were selected in
many times for other genes.

Cluster 5: Since these genes were judged to be fitted with the cell-cell in-
teraction model that is not included in the five prototypes, these genes are not
covered by our prepared models. However, in practice, the extended models of
Model DE showed high predictive power for these genes. The expression pro-
files of these genes show sudden increasing patterns. Actually, our models can
represent such dynamic patterns of gene expression profiles.

Cluster 6: These genes were suggested to be fit with Models B, D and E,
but most genes were selected as the extended models of Models D and E. We
presume the reason is that Models D and E are flexible and can follow various
types of complex expression patterns.

We next illustrate the results of pharmacogenomic pathway screening for
whole 8799 rat liver genes. Figure 4 shows the results with heatmap of the
selected top 5 models for each gene and time-course expression profiles of genes
that are specific for Models C6, C12, DE10 and DE12. For each gene, we test
the significance of the top ranked simulation model by using Smirnov–Grubbs
test. If the expression profile of a gene was predicted very well by several simula-
tion models, we cannot find pharmacogenomic mechanism specific for the gene.
However, if only one model could predict the behavior of a gene, the model is a
strong candidate that represents corticosteroid’s mode-of-action for the gene. In
such a case, we say the gene is specific for the above model.

Unlike the genes from the clustering analysis, two prototype models, Models
A and B, were selected as top 5 in many times. We presume the reason is that, in
the whole gene, there are some genes whose expression patterns are somewhat
flat (not show clear dynamic patterns) and Models A and B can follow them
with a small number of parameters. Although the prototype D and E models
were not selected many times, their extended models were frequently selected as
top 5. This suggests that Models D and E can work well as the seed models for
generating other simulation models with higher predictive power. The amount
of genes obtained by this test varied widely depending on the models. From
ModelA1, B1, C6, C12, C16, DE2, DE10, DE12 and DE20, we can obtained
some specific genes. Interestingly, the number of genes fitting to Model C is
relatively low, but many specific genes are obtained by Model C. It suggest that
there are some expression profiles that can be represented by only the one of
Model C. We then perform a functional analysis in order to reveal enriched gene

168 T. Hasegawa et al.

Gene Models

Fr
eq

ue
nc

y(
S

el
ec

te
d

in
 T

O
P

5)
0

5
10

15

E
DE 16

DE 7
DE 10

DE 11

DE 20
D

C 31

Gene

M
od

el

Models
Fr

eq
ue

nc
y(

S
el

ec
te

d
in

 T
O

P
5)

0
2

4
6

8 DE 20

DE 16

E

DE 17

DE 7
D DE 11

DE 18

Gene

M
od

el

Models

Fr
eq

ue
nc

y(
S

el
ec

te
d

in
 T

O
P

5)
0

2
4

6
8

10
12

14

E

DE 16

DE 10
DE 5

B

B1

A1

DE 7

Prototype
Model
A1, B1

Model C
1~31

Model DE
1~20

Gene

M
od

el

Models

Fr
eq

ue
nc

y(
S

el
ec

te
d

in
 T

O
P

5)
0

10
20

30
40

50 B1

A1
B

DE 18
DE 19

DE 10

DE 20

Gene

M
od

el

Models

Fr
eq

ue
nc

y(
S

el
ec

te
d

in
 T

O
P

5)
0

2
4

6
8 DE 15

DE 12

DE 4

DE 10
DE 18

DE 20

C

C 14 DE 8

DE 19

Gene

M
od

el

Models

Fr
eq

ue
nc

y(
S

el
ec

te
d

in
 T

O
P

5)
0

10
20

30
40

50

DE 18

DE 20
DE 12

DE 9

DE 13
DE 10

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

0 50 100 150 200 250

2
4

6
8

Time
 [0.25h]

m
R

N
A

(n
or

m
al

iz
ed

)

0 50 100 150 200 250

0.
5

1.
5

2.
5

0 50 100 150 200 250

0
10

20
30

40

0 50 100 150 200 250

0
10

30
50

0 50 100 150 200 250

0
1

2
3

4

0 50 100 150 200 250

0.
5

1.
5

E

Fig. 3. Top 5 simulation models for each gene in a cluster defined by Jin et al. [2] are
represented by a heat map. The green elements means that the model well fits to the
gene expression profiles. The histograms of the frequencies of the models selected as
top 5 are shown in the middle panels, and gene expression profiles are also shown in
the right panels.

functions for each set of Model-specific genes. For the functional analysis, we
used Ingenuity and the results can be summarized as follows:

ModelC 6: These genes have function of “Cellular Assembly and Organiza-
tion” and “RNA Post–Transcriptional Modification” and relate to “Protein Ubiq-
uitination Pathway”. ModelC 12: These genes are most interesting genes. These
have “Amino acid Metabolism”, “Nucleic Acid Metabolizm”, “Cell Death”, “Cel-
lular Grows and Proliferation”, “Drug Metabolism” and “Lipid Metabolism” and
so on. Additionally, these genes relate to “Aldosterone Signaling Epithelial Cells”
and “Glucocorticoid Recepter Signaling”. Beneficial effects of Corticosteroid is
inhibition of immune system and adverse effect is numerous metabolic side ef-
fects, including osteoporosis, muscle wasting, steroid diabetes, and others. There-
fore, these result in ModelC 12 is biologically significant because these genes may
have a function concerning metabolic side effects. ModelDE 10: These genes are

Comprehensive Pharmacogenomic Pathway Screening by Data Assimilation 169

Gene

4490
2088

9
406
1336
5663
4674

6
12
7
37
5

226
73
284
13
0
0

1370
22
49
15
96
0
0
9
3
0
12
89
0
0
0
12
5
0
8
84
58

1494
231
1341
413
59
962
914
273
2837
343
2650
394
407
583
824
1142
3552
1093
3322

Prototype
Model

Model
A1, B1

Model C
1~31

Model DE
1~20

8799 Genes Model C6 - Specific Genes

Model C12 - Specific Genes

Model DE10 - Specific Genes

Model DE12 - Specific Genes

0 50 100 150 200 250

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

m
R

N
A

(n
or

m
al

iz
ed

)

0 50 100 150 200 250

0
2

4
6

8
10

Time
[0.25h]

0 50 100 150 200 250

0
1

2
3

4
5

6
7

0 50 100 150 200 250
0.

5
1.

0
1.

5
2.

0

Fig. 4. The result of comprehensive pharmacogenomic pathway simulation model
screening. Heat map for top 5 models is shown from 58 simulation models for 8799
rat liver genes. Time-course expression profiles are shown for genes that are specific for
Models C6, C12, DE10 and DE12.

also interesting. The functions are “Neurological Disease”, “Organismal Injury
and Abnormalities” and “Immunological Disease”, and are affected by “Graft–
versus–Host Disease”, “Autoimmune Thyroid Disease, “T Helper Cell Differenti-
ation” and so on. Because of the above therapeutic and adverse effects of CS, the
function of these genes are also significant concerning immune system function.
ModelDE 12: The functions of these genes are “Cellular Development”, “Car-
diovascular Disease”, and “Hematological Disease”. These are also affected by
“EIF2 signaling”.

We consider that such genes are important among 8799 genes, because these
were estimated to have a similar pathway and it may be difficult to collect these
genes by clustering analysis simply using the gene expression profile.

4 Discussion

In this paper, we proposed a computational strategy for automatic generation
of pharmacogenomic pathway simulation models from the prototype simulation
models that are built based on literature information. The parameters in the con-
structed simulation models were estimated based on the observed time-course

170 T. Hasegawa et al.

gene expression data measured by dosing some chemical compound to the tar-
get cells. We constructed totally 58 pharmacogenomic simulation models on a
pathway simulation software, Cell Illustrator, and used data assimilation tech-
nique for parameter estimation. For pathway screening, we introduce Bayesian
information criterion for pathway model selection in the framework of data as-
similation. We performed comprehensive pathway screening for constructed 58
pharmacogenoimc simulation models with gene expression data of rat liver cells
treated with glucocorticoid.

The prototype five models fit to somewhat large number of genes well. How-
ever, there are more extended models that can predict the dynamic patterns
of gene expressions better than the prototypes. This suggests that, from the
prototype simulation models, we can automatically construct various extended
simulation models and some of them could have higher prediction ability than the
originals. Also, we performed a functional analysis to the sets of Model-specific
genes identified by the Smirnov-Grubbs test. As shown above, some meaningful
functions were found. We would like to discuss the relationship between Model-
specific genes and enriched function in future paper with biological evidences.

We consider the followings as our future research topics. We simply use the
pharmacokinetic model described in Section 2. However, we can generated many
candidates and may construct true model from observed data by data assim-
ilation technique. Also, we may combine multiple simulation models to create
bigger one. As we mentioned before, data analysis based on statistical methods
like Bayesian networks can produce network information that would be affected
by a chemical compound. It should be useful if we combine the results from
statistical data analysis with pharmacogenomic pathway simulations.

Acknowledgments. The computational resource was provided by the Super
Computer System, Human Genome Center, Institute of Medical Science, Uni-
versity of Tokyo.

References

1. Hazra, A., Dubois, C.D., Almon, R.R., Snyder, H.G., Jusko, J.W.: Pharmacody-
namic Modeling of Acute and Chronic Effects of Methylprednisolone on Hepatic
Urea Cycle Genes in Rats. Gene Regulation and System Biology 2, 1–19 (2008)

2. Jin, Y.J., Almon, R.R., Dubois, D.C., Jusko, W.J.: Modeling of corticosteroid phar-
macogenomics in rat liver using gene microarrays. The Journal of Pharmacology
and Experimental Therapeutics 307(1), 93–107 (2003)

3. Kim, S., Imoto, S., Miyano, S.: Dynamic Bayesian network and nonparametric
regression for nonlinear modeling of gene networks from time series gene expression
data. Biosystems 75(1-3), 57–65 (2004)

4. Koh, C.H., Nagasaki, M., Saito, A., Wong, L., Miyano, S.: DA1.0: Parameter es-
timation of biological pathways using data assimilation approach. Bioinformat-
ics 26(14), 1794–1796 (2010)

5. Kojima, K., Yamaguchi, R., Imoto, S., Yamauchi, M., Nagasaki, M., Yoshida, R.,
Shimamura, T., Ueno, K., Higuchi, T., Gotoh, N., Miyano, S.: A state space repre-
sentative of VAR models with sparse learning for dynamic gene networks. Genome
Informatics 22, 59–68 (2009)

Comprehensive Pharmacogenomic Pathway Screening by Data Assimilation 171

6. Konishi, S., Ando, T., Imoto, S.: Bayesian information criteria and smoothing pa-
rameter selection in radial basis function networks. Biometrika 91(1), 27–43 (2004)

7. Matsuno, H., Inoue, S., Okitsu, Y., Fujii, Y.: A new regulatory interaction sug-
gested by simulations for circadian genetic control mechanism in mammals. Journal
of Bioinformatics and Computational Biology 4(1), 139–153 (2006)

8. Nagasaki, M., Yamaguchi, R., Yoshida, R., Imoto, S., Doi, A., Tamada, Y., Mat-
suno, H., Miyano, S., Higuchi, T.: Genomic data assimilation for estimating hybrid
functional petri net from time-course gene expression data. Genome Informat-
ics 17(1), 46–61 (2006)

9. Nakamura, K., Yoshida, R., Nagasaki, M., Miyano, S., Higuchi, T.: Parameter
estimation of In Silico biological pathways with particle filtering toward a petascale
computing. In: Pacific Symposium on Biocomputing, vol. 14, pp. 227–238 (2009)

10. Schwarz, G.: Estimating the dimension of a model. Ann. Statist. 6, 461–464 (1978)
11. Shimamura, T., Imoto, S., Yamaguchi, R., Fujita, A., Nagasaki, M., Miyano, S.:

Recursive elastic net for inferring large-scale gene networks from time course mi-
croarray data. BMC Systems Biology 3, 41 (2009)

12. Sun, Y., Dubois, D.C., Almon, R.R., Jusko, W.J.: Fourth-generation model
for corticosteroid pharmacodynamics: A model for methylprednisolone effects
on receptor/gene-mediated glucocorticoid receptor down-regulation and tyrosine
aminotransferase induction in rat liver. Journal of Pharmacokinetics and Biophar-
maceutics 26(3), 289–317 (1998)

13. Tasaki, S., Nagasaki, M., Oyama, M., Hata, H., Ueno, K., Yoshida, R., Higuchi,
T., Sugano, S., Miyano, S.: Modeling and estimation of dynamic EGFR pathway
by data assimilation approach using time series protemic data. Genome Informat-
ics 17(2), 226–238 (2006)

14. Yao, Z., Hoffman, P.E., Ghimbovschi, S., Dubois, C.D., Almon, R.R., Jusko, W.J.:
Mathematical Modeling of Corticosteroid Pharmacogenomics in Rat Muscle follow-
ing Acute and Chronic Methylprednisolone Dosing. Molecular Pharmaceutics 5(2),
328–339 (2007)

15. Yamaguchi, R., Imoto, S., Yamauchi, M., Nagasaki, M., Yoshida, R., Shimamura,
T., Hatanaka, Y., Ueno, K., Higuchi, T., Gotoh, N., Miyano, S.: Predicting differ-
ence in gene regulatory systems by state space models. Genome Informatics 21,
101–113 (2008)

16. Yoshida, R., Nagasaki, M., Yamaguchi, R., Imoto, S., Miyano, S., Higuchi, T.:
Bayesian learning of biological pathways on genomic data assimilation. Bioinfor-
matics 24(22), 2592–2601 (2008)

The Deep Coalescence Consensus Tree Problem is
Pareto on Clusters

Harris T. Lin1, J. Gordon Burleigh2, and Oliver Eulenstein1

1 Department of Computer Science, Iowa State University, Ames, IA 50011, USA
{htlin,oeulenst}@iastate.edu

2 National Evolutionary Synthesis Center, Durham, NC, USA,
University of Florida, Gainesville, FL, USA

gburleigh@ufl.edu

Abstract. Phylogenetic methods must account for the biological processes that
create incongruence between gene trees and the species phylogeny. Deep coa-
lescence, or incomplete lineage sorting creates discord among gene trees at the
early stages of species divergence or in cases when the time between speciation
events was short and the ancestral population sizes were large. The deep coa-
lescence problem takes a collection of gene trees and seeks the species tree that
implies the fewest deep coalescence events, or the smallest deep coalescence rec-
onciliation cost. Although this approach can to be useful for phylogenetics, the
consensus properties of this problem are largely uncharacterized, and the accu-
racy of heuristics is untested. We prove that the deep coalescence consensus tree
problem satisfies the highly desirable Pareto property for clusters (clades). That
is, in all instances, each cluster that is present in all of the input gene trees, called
a consensus cluster, will also be found in every optimal solution. We introduce
an efficient algorithm that, given a candidate species tree that does not display
the consensus clusters, will modify the candidate tree so that it includes all of the
clusters and has a lower (more optimal) deep coalescence cost. Simulation exper-
iments demonstrate the efficacy of this algorithm, but they also indicate that even
with large trees, most solutions returned by the recent efficient heuristic display
the consensus clusters.

1 Introduction

The rapidly growing abundance of genomic sequence data has drawn attention to ex-
tensive incongruence among gene trees (e.g., [14,15]) that may be caused by processes
such as deep coalescence (incomplete lineage sorting), gene duplication and loss, or
lateral gene transfer (see [5,11]). Consequently, it is necessary to develop phylogenetic
methods that account for the patterns of variation among gene trees, rather than sim-
ply assuming the gene tree topology reflects the relationships among species. One such
phylogenetic approach is gene tree parsimony (GTP), which, given a collection of gene
trees, seeks the species tree that implies the fewest evolutionary events causing incon-
gruence among gene trees [5, 6, 11, 17]. One variation of GTP is the deep coalescence
problem, which seeks a species tree that minimizes the number of deep coalescence
events [11, 12]. Deep coalescence, or incomplete lineage sorting, may be present at the

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 172–183, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Deep Coalescence Consensus Tree Problem is Pareto on Clusters 173

early stages of speciation and whenever the time between speciation events was short
and the ancestral population sizes were large. Consequently, there is much interest in
phylogenetic approaches that account for coalescence (e.g., [4, 8]). Although the deep
coalescence problem is NP-hard [22], recent algorithmic advances enable scientists to
solve instances with a limited number of taxa [18] and efficiently compute heuristic so-
lutions for larger data sets [1]. Still, little is known about the consensus properties of the
deep coalescence problem or the accuracy of heuristics. In this study, we prove that the
deep coalescence problem satisfies the Pareto consensus property. Furthermore, we in-
troduce an efficient algorithm based on the Pareto property that can potentially improve
heuristic solutions.

Related work. GTP approaches, including the deep coalescence problem, are exam-
ples of supertree problems, in which input trees with taxonomic overlap are combined
to build a species tree that includes all of the taxa found in the input trees (see [2]).
Although numerous supertree methods have been described, GTP methods are unique
because they use a biologically based optimality criterion. One way of evaluating su-
pertree methods is by characterizing their consensus properties (e.g., [3, 20]). The con-
sensus tree problem is the special case of the supertree problem where all the input trees
have the same taxa. Since all supertree problems generally seek to retain phylogenetic
information from the input trees, one of the most desirable consensus properties is the
Pareto property. A consensus tree problem satisfies the Pareto property on clusters (or
triplets, quartets, etc.) if every cluster (or triplet, quartet, etc.) that is present in every
input tree appears in the consensus tree [3, 20, 21]. Many, if not most, supertree prob-
lems in the consensus setting satisfy the Pareto property for clusters [3, 20]. However,
this has not been shown for the deep coalescence problem.

Our contribution. We prove that the deep coalescence consensus tree problem sat-
isfies the Pareto property for clusters. That is, for every instance of the problem, the
consensus clusters appear in every resulting consensus tree. Consensus clusters are the
clusters (or clades) that are present in all of the input trees. This result allows a major
refinement of any given heuristic for the deep coalescence problem so that it will return
only trees which (i) contain the consensus clusters of the input trees, and (ii) imply equal
or fewer deep coalescence events than the tree found by the original heuristic. This fol-
lows directly from our construction, given in the proof of Theorem 1, which transforms
every consensus tree that is not Pareto for clusters into one that displays this property,
and implies fewer deep coalescence events. Furthermore, future heuristics for the deep
coalescence problem may take advantage of the reduced search space that follows from
our result.

2 Preliminaries

For brevity, proofs are omitted in the text but are available from the authors on request.

2.1 Basic Definitions

A graph G is an ordered pair (V, E) consisting of a non-empty set V of nodes and a set
E of edges. We denote the set of nodes and edges of G by V (G) and E(G), respectively.

174 H.T. Lin, J. Gordon Burleigh, and O. Eulenstein

If e = {u, v} is an edge of a graph G, then e is said to be incident with u and v. If
v is a node of a graph G, then the degree of v in G, denoted degG(v), is the number of
edges in G that are incident with v. Let n be a natural number, the degree inverse of n
in G, denoted deg−G(n), is the set of all degree-n nodes in G.

A tree T is a connected graph with no cycles. T is rooted if it has exactly one dis-
tinguished node of degree one, called the root, and we denote it by Ro(T). The unique
edge incident with Ro(T) is called the root edge.

Let T be a rooted tree. We define ≤T to be the partial order on V (T) where x ≤T y
if y is a node on the path between Ro(T) and x. If x ≤T y we call x a descendant of y,
and y an ancestor of x. We also define x <T y if x ≤T y and x 	= y, in this case we
call x a proper descendant of y, and y a proper ancestor of x. The set of minima under
≤T is denoted by Le(T) and its elements are called leaves. A node is internal if it is
not a leaf. The set of all internal nodes of T is denoted by I(T).

Let X ⊆ Le(T), we write X to denote the leaf complement of X when the tree T is
clear from the context, where X = Le(T) \ X .

If {x, y} ∈ E(T) and x <T y then we call y the parent of x denoted by PaT (x) and
we call x a child of y. The set of all children of y is denoted by ChT (y). If two nodes
in T have the same parent, they are called siblings. The least common ancestor (LCA)
of a non-empty subset X ⊆ V (T), denoted as lcaT (X), is the unique smallest upper
bound of X under ≤T .

If e ∈ E(T), we define T/e to be the tree obtained from T by identifying the ends
of e and then deleting e. T/e is said to be obtained from T by contracting e. If v is a
vertex of T with degree one or two, and e is an edge incident with v, the tree T/e is
said to be obtained from T by suppressing v.

Examples of the following definitions are shown in Fig. 1. Let X ⊆ V (T), the
subtree of T induced by X , denoted T (X), is the minimal connected subtree of T that
contains Ro(T) and X . The restricted subtree of T induced by X , denoted as T |X ,
is the tree obtained from T (X) by suppressing all nodes with degree two. The subtree
of T rooted above node v ∈ V (T), denoted as Tv, is the restricted subtree induced by
{u ∈ V (T) : u ≤T v}.

T is binary if every node has degree one or three. Throughout this paper, the term tree
refers to a rooted binary tree unless otherwise stated. Also, the subscript of a notation
may be omitted when it is clear from the context.

Fig. 1. (a) A rooted tree T with four leaves {a, b, c, d}. (b) The subtree of T induced by X where
X = {a, b}. (c) The restricted subtree of T induced by X.

The Deep Coalescence Consensus Tree Problem is Pareto on Clusters 175

2.2 Deep Coalescence

We define the deep coalescence cost function as demonstrated in Fig. 2. Note, that our
definition of the deep coalescence cost given in Def. 3, is somewhat different, but for
our purposes equivalent, to its original definition also termed extra lineage given in
Def. 6. The relation between both definitions is shown by Prop. 1.

Throughout this section we assume T and S are trees over the same leaf set.

Fig. 2. Example showing the deep coalescence cost from T to S. Each edge of T is accompanied
by its cost, and its corresponding path is shown on S.

Definition 1. [Path Length] Suppose x ≤T y, the path length from x to y, denoted
plT (x, y), is the number of edges in the path from x to y. Further, let X ⊆ Y ⊆ Le(T),
we extend the path length function by plT (X, Y) � plT (lcaT (X), lcaT (Y)).

Definition 2. [LCA Mapping] Let v ∈ V (T), the LCA mapping of v in S, denoted
MT	S(v), is defined by MT	S(v) � lcaS(Le(Tv)).

Definition 3. [Deep Coalescence] The deep coalescence cost from T to S, denoted
DC(T, S), is

DC(T, S) �
∑

{u,v}∈E(T)
u<v

plS(MT	S(u), MT	S(v))

Using the extended path lengths, the deep coalescence cost can be equivalently ex-
pressed as

DC(T, S) =
∑

{u,v}∈E(T)

u<v

plS(Le(Tu), Le(Tv))

Definition 4. The Boolean value of a statement φ, denoted as [[φ]], is 1 if φ is true, 0
otherwise.

Definition 5. [Edge Coverage] Let {u′, v′} ∈ E(S) and u′ < v′, the edge coverage of
{u′, v′} from T , denoted CT	S(u′, v′), is defined by

CT	S(u′, v′) �
∑

{u,v}∈E(T)

u<v

[[MT	S(u) ≤ u′ < v′ ≤ MT	S(v)]]

176 H.T. Lin, J. Gordon Burleigh, and O. Eulenstein

Definition 6. [Extra Lineage [11]] The extra lineage cost from T to S, denoted
EL(T, S), is

EL(T, S) �
∑

{u′,v′}∈E(S)

u′<v′<Ro(S)

(
CT	S(u′, v′) − 1

)

Proposition 1. EL(T, S) = DC(T, S) − |E(S)| + 1

2.3 Consensus Tree

Definition 7. [Consensus Tree Problem] Let f : TX × TX → � be a cost function
where X is a leaf set and TX is the set of all trees over X . A consensus tree problem
based on f is defined as follows.

Instance: A tuple of n trees (T1, . . . , Tn) over X
Find: The set of all trees that have the minimum aggregated cost with respect to f .

Formally,

argmin
S∈TX

(
n∑

i=1

f(Ti, S)

)
This set is also called the solutions for the consensus tree instance.

Definition 8. [Deep Coalescence Consensus Tree Problem] We define the deep coa-
lescence consensus tree problem to be the consensus tree problem based on the deep
coalescence cost function.

2.4 Cluster and Pareto

Definition 9. [Cluster] Let T be a tree, the clusters induced by T , denoted Cl(T), is
the set of all leaves of some subtree in T . Formally, Cl(T) � {Le(Tv) : v ∈ V (T)}.
Further, X ∈ Cl(T) is called a trivial cluster if X = Le(T) or |X | = 1, it is called
non-trivial otherwise. Let Y ⊆ Le(T), we say that T contains (cluster) Y if Y ∈ Cl(T).

Definition 10. [Pareto on Clusters] Let P be a consensus tree problem based on some
cost function. We say that P is Pareto on clusters if: for all instances I = (T1, . . . , Tn)
of P , for all solutions S of I , we have

⋂n
i=1 Cl(Ti) ⊆ Cl(S).

3 Theorem Overview

We wish to show that the deep coalescence consensus tree problem is Pareto on clusters.
We describe a high level structure of the proof in this section and provide necessary
supporting lemmata in Sec. 4.

The proof proceeds by contradiction, assuming that the deep coalescence consensus
tree problem is not Pareto on clusters. By Def. 10, the assumption implies that there
exists an instance I = (T1, . . . , Tn), a solution S for I , and a cluster X ⊆ Le(S)
where X ∈

⋂n
i=1 Cl(Ti) but X /∈ Cl(S). S being a solution for I , implies by Def. 7,

that the aggregated deep coalescence cost, i.e.
∑n

i=1 DC(Ti, S), is minimized. Then,

The Deep Coalescence Consensus Tree Problem is Pareto on Clusters 177

based on the existence of the cluster X , we edit S and form a new tree R using a tree
edit operation which will be introduced in Sec. 4. The properties of this new operation
together with the properties of X (proved in Sec. 4), provides the key ingredients to
calculate the changes in deep coalescence costs. With some further arithmetics, this
allows us to conclude that R in fact has a smaller aggregated deep coalescence cost, i.e.∑n

i=1 DC(Ti, S) >
∑n

i=1 DC(Ti, R), hence contradicting the assumption that S is a
solution for I .

4 Supporting Lemmata

4.1 Shallowest Regrouping Operation

In this section we formally define the new tree edit operation that forms the key part of
the theorem. We begin with some useful definitions related to the depth of nodes. An
example of this operation is shown in Fig. 3.

Fig. 3. Example of the shallowest regrouping operation of S by X where X = {a, c, d}. The
intermediate tree S′ = S(X) shows its two shallowest degree-two nodes v1 and v2. R1 and R2

are the resulting trees of this operation. That is, Γ̂ (S, X) = {R1, R2} where R1 = Γ (S, X, v1)
and R2 = Γ (S,X, v2).

Definition 11. [Node Depth] The depth of a node v ∈ V (T), denoted depT (v), is
pl(v, Ro(T)).

Definition 12. [Minimum Depth] Let T be a tree and X ⊆ V (T), the minimum depth
function, denoted mindepT (X), is the set of nodes in X which have the minimum depth
among all nodes in X . Formally, we define mindepT (X) � argminv∈X

(
depT (v)

)
.

Now we have the necessary mechanics to define the new tree edit operation. In what
follows, we assume S to be a tree, ∅ ⊂ X ⊂ Le(S), and S′ = S(X).

Definition 13. [Regroup] Let v ∈ I(S′). The regrouping operation of S by X on v,
denoted Γ (S, X, v), is the (possibly non-binary) tree obtained from S′ by

1. (R1) Identify Ro(S|X) and v.
2. (R2) Suppress all nodes with degree two.

Definition 14. [Shallowest Regroup] The shallowest regrouping operation of S by
X , denoted Γ̂ (S, X), defines a set of trees by Γ̂ (S, X) � {Γ (S, X, v) : v ∈
mindepS′(deg−S′(2))}.

178 H.T. Lin, J. Gordon Burleigh, and O. Eulenstein

As Fig. 3 shows, the shallowest regrouping operation pulls apart X from S and regroups
X back onto each of the shallowest nodes in S.

4.2 Properties of the Shallowest Regrouping Operation

We examine some properties of the shallowest regrouping operation in this section. In
general, these properties show that the path lengths defined by LCA’s do not increase
under several different assumptions. This preservation of path lengths would later assist
in the calculation of deep coalescence costs. Throughout this section, we assume S to
be a tree, ∅ ⊂ X ⊂ Le(S), and A ⊆ B ⊆ Le(S). Further we let S′ = S(X) and
R ∈ Γ̂ (S, X).

Lemma 1. If B ⊆ X , then plS(A, B) = plS′(A, B).

Lemma 2. If B ⊆ X , then plS(A, B) ≥ plR(A, B).

Lemma 3. If B ⊆ X , then plS(A, B) ≥ plR(A, B).

Lemma 4. If A ⊆ X and X ⊆ B, then plS(A, B) ≥ plR(A, B).

4.3 Counting the Number of Degree-Two Nodes

In this section we present some important observations on the side effects of the shal-
lowest regrouping operation. By definition the shallowest regrouping operation includes
the step of suppressing nodes with degree two. Since this step affects path lengths and
ultimately deep coalescence costs, we are required to count carefully the number of
degree-two nodes under various conditions. Here we assume that T is a tree and {X, Y }
is a bipartition of Le(T).

Lemma 5. deg−T (X)(2) 	= ∅ and deg−T (Y)(2) 	= ∅.

Lemma 6. If v ∈ deg−T (X)(2), then Le(Tv) ∩ X 	= ∅ and Le(Tv) ∩ Y 	= ∅.

Lemma 7. If Pa(lca(X)) = Ro(T) and v ∈ mindep(deg−T (Y)(2)), then dep(v) ≤
|deg−T (X)(2)|.

5 Main Theorem

Theorem 1. Deep coalescence consensus tree problem is Pareto on clusters.

6 Algorithm for Improving a Candidate Solution

Algorithm 1 takes a consensus tree problem instance and a candidate solution as inputs.
If the candidate solution does not display the consensus clusters, it is transformed into
one that includes all of the consensus clusters and has a smaller (more optimal) deep
coalescence cost.

The correctness of Algorithm 1 follows from the proof of Theorem 1. We now ana-
lyze its time complexity. Let m be the number of taxa present in the input trees. Line 3
takes O(nm) time. Line 5, 6, and 7 each takes O(m) time, and there are O(m) itera-
tions. Overall Algorithm 1 takes O(nm + m2) time.

The Deep Coalescence Consensus Tree Problem is Pareto on Clusters 179

Algorithm 1. Deep Coalescence Consensus Clusters Builder
1: procedure DCCONSENSUSCLUSTERSBUILDER(I,T)

Input: A consensus tree problem instance I = (T1, . . . , Tn), a candidate solution T for I
Output: T , or an improved solution R that contains all consensus clusters of I

2: R ← T
3: C ← Set of all consensus clusters of I
4: for all cluster X ∈ C do
5: if R does not contain X then
6: v ← A node in mindep(deg−

R(X)
(2)) (shallowest degree-two node of R(X))

7: R ← Γ (R,X, v) (regrouping operation of R by X on v)
8: end if
9: end for

10: return R
11: end procedure

7 Experiment

We used a simulation experiment to test the efficacy of the Pareto property on our abil-
ity to estimate solutions to the deep coalescence consensus tree problem. Specifically,
we test (i) if the solutions obtained from efficient heuristics presented in [1] display the
Pareto property, and (ii) if the estimates can be improved based on our algorithm. We
first generated a series of four 14-taxon trees that share a few clusters. To do this, we
first generated random 11-taxon trees. Next, we generated random 4-taxon trees con-
taining the species 11-14. We then replaced the one of the leaves in the 11-taxon tree
with the random 4-taxon tree. This procedure produces gene trees that share a single 4-
taxon cluster in common. Although this simulation does not reflect a biological process,
it represents cases in which there is a high degree of error among gene trees. To generate
more biologically plausible sets of input gene trees, we followed the general structure
the coalescence simulation protocol described by Maddison and Knowles [12]. First,
we generated 50 256-taxon species trees based on a Yule pure birth process using the
r8s software package [16]. To transform the branch lengths from the Yule simulation to
represent generations, we multiplied them all by 106. We then simulated coalescence
within each species tree (assuming no migration or hybridization) using Mesquite [13].
All simulations produced a single gene copy from each species. For each species tree,
we simulated 20 gene trees assuming a constant population size. The population size ef-
fects the number of deep coalescence events, with larger populations leading to more in-
complete lineage sorting and consequently less agreement among the gene trees. Thus,
to incorporate different levels of incomplete lineage sorting, for 25 of the species trees,
we used a constant population size of 10,000, and for 25 we used a constant population
size of 100,000. Thus, in total, we produced 50 sets of 20 gene trees, with each set
simulated from a different 256-taxon species tree.

We performed a GTP phylogenetic analysis based on the deep coalescence consensus
tree problem for each set of 20 gene trees using the fast local SPR search and software
described by Bansal et al [1]. When the search returned its locally optimal tree, we
examined the tree to see if it contained all of the consensus clusters from the input gene

180 H.T. Lin, J. Gordon Burleigh, and O. Eulenstein

trees. If it did not, we used our algorithm to find a tree with a better deep coalescence
score that includes all of the consensus clusters.

In three cases with the 14-taxon gene trees, we found that the SPR heuristic did
not return a result that contained the consensus cluster. In these cases, our algorithm
found a better solution that also contained the consensus cluster. The failure of the
SPR heuristic in these cases appears to depend on the starting tree; these data sets did
not fail with all starting trees. In contrast, the data sets produced under the 256-taxon
coalescent simulations always returned species trees with all consensus clusters, even
with relatively high levels of incongruence among gene trees. The average coalescence
cost for the trees was 279 when the population size was 10,000 and 2038 when the
population size was 100,000, and in all cases there existed simulation clusters. This
suggests that the SPR heuristic may often perform well with biologically realistic data
sets but may fail in cases of great conflict among gene trees.

8 Discussion

The Pareto property demonstrates that, in addition to offering a biologically informed
optimality criterion to resolve incongruence among gene trees, the deep coalescence
problem also is guaranteed to retain the phylogenetic clusters for which all gene trees
agree. The Pareto property also has useful implications for heuristic estimates of the
deep coalescence consensus tree problem. Since the deep coalescence problem is NP-
hard [22], most meaningful instances will require heuristics to estimate a solution.
While recently developed heuristics based on local search problems are efficient [1], it
is difficult to evaluate their performance. The Pareto property suggests a simple method
to diagnose suboptimal solutions. If the solution does not contain all the consensus
from the input trees, not only is it not optimal, but also there must exist a better solution
that contains the all the consensus clusters from the input trees. We further describe
and implement an efficient algorithm to find better solutions that contain the consensus
clusters given a proposed solution that does not contain the consensus clusters.

Our simulation experiments suggest that, in many cases, the SPR local search
heuristic described by Bansal et al. [1] may return solutions that contain the consensus
clusters. While this does not necessarily mean that the heuristic has found the optimal
solution, it does mean, at the very least, that the heuristic estimates share many clusters
with the optimal tree. We note that the size of the simulated data set, 256 taxa, exceeds
the size of the largest published analysis of the deep coalescence consensus tree prob-
lem and is far beyond the largest instances (8 taxa) from which exact solutions have
been calculated [18]. Although, the heuristics appear to perform well, it is likely that
some estimated solutions will not contain all consensus clusters. Thus, we recommend
always checking solutions for the Pareto property and, if necessary, improving the es-
timates with our algorithm. This requires very little additional computational cost, and
can only improve the species tree estimate.

Although the Pareto property for the deep coalescence consensus tree problem is
both desirable and useful, the implications for our results do have limitations. First, this
property is limited to the consensus case, or, instances in which all of the input gene
trees contain sequences from all of the species. Also, the Pareto property is only useful

The Deep Coalescence Consensus Tree Problem is Pareto on Clusters 181

when all input trees share some clusters in common. If there are no consensus clusters
among the input trees, then we cannot distinguish between any possible solutions based
on the Pareto property. While this may seem like an extreme case, it is possible if there
exists high levels of incomplete lineage sorting, or, perhaps more likely, much error in
the gene tree estimates. Also, as we add more and more gene trees, we would expect
more instances of conflict among the gene trees, potentially converging towards the
elimination of consensus clusters.

Recently Than and Rosenberg [19] proved the existence of cases in which the deep
coalescence problem is inconsistent, or converges on the wrong species tree estimate
with increasing gene tree data. Although possible inconsistency is a concern for GTP
analyses, the Pareto property provides some reassurance. Even in a worse case scenario
in which the deep coalescence problem is misled, the optimal solutions will still contain
all of the agreed upon clades from the gene trees. Still, perhaps the greatest advantage
of the deep coalescence problem, especially compared to likelihood and Bayesian ap-
proaches that infer species trees based on coalescence models (e.g., [10, 9, 7]), is its
computational speed and the feasibility of estimating a species tree from large-scale
genomic data sets representing hundreds of taxa [1]. Here, the Pareto property also may
help. Not only can our algorithm improve the performance of any existing heuristic, the
Pareto property describes a limited subset of possible species trees that must contain the
optimal solution. Future heuristics can greatly reduce the tree search by only focusing
on trees that refine the strict consensus of the gene trees.

9 Conclusion and Future Work

We prove that the deep coalescence consensus tree problem satisfies the Pareto property
for clusters and describe an efficient algorithm that, given a candidate solution that
does not display the consensus clusters, transforms the solution so that it includes all
the consensus clusters and has a lower deep coalescence cost. Simulation experiments
demonstrate the efficacy of our algorithm. The simulations also suggest that existing
heuristics developed for this problem may often perform well with biologically realistic
data sets but may fail when there is much conflict among gene trees.

Our algorithm can be used to extend any given heuristic for the deep coalescence
problem to obtain better solutions. It also suggests a new general approach to design
phylogenetic algorithms. In most cases, heuristics to estimate solutions for phyloge-
netic inference problems are based on a few generic search strategies such as the local
search heuristics based on NNI, SPR, or TBR branch swapping. Although these search
strategies often appear to perform well, they are not connected to any specific phyloge-
netic problems or optimality criteria. Ideally, however, efficient and effective heuristics
should be tailored to the properties of the phylogenetic problem. In the case of the deep
coalescence consensus tree problem, the Pareto property provides an informative guid-
ing constraint for the tree search. Specifically, when considering possible solutions, we
need only consider solutions that contain all clusters from the input gene trees, or, in
other words, that refine the strict consensus of the input gene trees. Our results show
that generic local searches can be verified and improved based on the Pareto property,
but future work will attempt to define more efficient strategies that directly search for
the best Pareto solution.

182 H.T. Lin, J. Gordon Burleigh, and O. Eulenstein

Acknowledgments

The authors would like to thank our anonymous reviewers who have provided valuable
comments. This work was conducted with support from the Gene Tree Reconciliation
Working Group at NIMBioS through NSF award #EF-0832858, with additional support
from the University of Tennessee. HL and OE were supported in parts by NSF awards
#0830012 and #10117189.

References

1. Bansal, M., Burleigh, J.G., Eulenstein, O.: Efficient genome-scale phylogenetic analysis un-
der the duplication-loss and deep coalescence cost models. BMC Bioinformatics 11(Suppl
1), S42 (2010)

2. Bininda-Emonds, O.R.P.: Phylogenetic supertrees: combining information to reveal the Tree
of Life. Springer, Heidelberg (2004)

3. Bryant, D.: A classification of consensus methods for phylogenies. In: BioConsensus, DI-
MACS, pp. 163–184. AMS, Providence (2003)

4. Edwards, S.V.: Is a new and general theory of molecular systematics emerging? Evolution;
International Journal of Organic Evolution 63(1), 1–19 (2009)

5. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the
gene lineage into its species lineage, a parsimony strategy illustrated by cladograms con-
structed from globin sequences. Systematic Zoology 28(2), 132–163 (1979)

6. Guigo, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Mol.
Phylogenet. Evol. 6(2), 189–213 (1996)

7. Heled, J., Drummond, A.J.: Bayesian inference of species trees from multilocus data. Molec-
ular Biology and Evolution 27(3), 570–580 (2010)

8. Knowles, L.L.: Estimating species trees: Methods of phylogenetic analysis when there is
incongruence across genes. Systematic Biology 58(5), 463–467 (2009)

9. Kubatko, L.S., Carstens, B.C., Knowles, L.L.: STEM: species tree estimation using maxi-
mum likelihood for gene trees under coalescence. Bioinformatics 25(7), 971–973 (2009)

10. Liu, L.: BEST: bayesian estimation of species trees under the coalescent model. Bioinfor-
matics 24(21), 2542–2543 (2008)

11. Maddison, W.P.: Gene trees in species trees. Systematic Biology 46(3), 523–536 (1997)
12. Maddison, W.P., Knowles, L.L.: Inferring phylogeny despite incomplete lineage sorting. Sys-

tematic Biology 55(1), 21–30 (2006)
13. Maddison, W.P., Maddison, D.: Mesquite: a modular system for evolutionary analysis (2001),

http://mesquiteproject.org
14. Pollard, D.A., Iyer, V.N., Moses, A.M., Eisen, M.B.: Widespread discordance of gene trees

with species tree in drosophila: Evidence for incomplete lineage sorting. PLoS Genet. 2(10),
e173 (2006)

15. Rokas, A., Williams, B.L., King, N., Carroll, S.B.: Genome-scale approaches to resolving
incongruence in molecular phylogenies. Nature 425(6960), 798–804 (2003)

16. Sanderson, M.J.: r8s: inferring absolute rates of molecular evolution and divergence times in
the absence of a molecular clock. Bioinformatics 19(2), 301–302 (2003)

17. Slowinski, J.B., Knight, A., Rooney, A.P.: Inferring species trees from gene trees: A phy-
logenetic analysis of the elapidae (Serpentes) based on the amino acid sequences of venom
proteins. Molecular Phylogenetics and Evolution 8(3), 349–362 (1997)

18. Than, C., Nakhleh, L.: Species tree inference by minimizing deep coalescences. PLoS Com-
putational Biology 5(9), e1000501 (2009)

http://mesquiteproject.org

The Deep Coalescence Consensus Tree Problem is Pareto on Clusters 183

19. Than, C.V., Rosenberg, N.A.: Consistency properties of species tree inference by minimizing
deep coalescences. Journal of Computational Biology 18(1), 1–15 (2011)

20. Wilkinson, M., Cotton, J.A., Lapointe, F., Pisani, D.: Properties of supertree methods in the
consensus setting. Systematic Biology 56(2), 330–337 (2007)

21. Wilkinson, M., Thorley, J., Pisani, D., Lapointe, F.-J., McInerney, J.: Some desiderata for
liberal supertrees. In: Phylogenetic Supertrees: Combining Information to Reveal the Tree of
Life, pp. 227–246. Springer, Dordrecht (2004)

22. Zhang, L.: From gene trees to species trees II: Species tree inference in the deep coalescence
model. IEEE/ACM Trans. Comput. Biol. Bioinformatics (forthcoming, 2011)

Fast Local Search for Unrooted Robinson-Foulds
Supertrees

Ruchi Chaudhary1, J. Gordon Burleigh2, and David Fernández-Baca1

1 Department of Computer Science, Iowa State University, Ames, IA 50011, USA
2 Department of Biology, University of Florida, Gainesville, FL 32611, USA

Abstract. A Robinson-Foulds (RF) supertree for a collection of input trees is
a comprehensive species phylogeny that is at minimum total RF distance to the
input trees. Thus, an RF supertree is consistent with the maximum number of
splits in the input trees. Constructing rooted and unrooted RF supertrees is NP-
hard. Nevertheless, effective local search heuristics have been developed for the
restricted case where the input trees and the supertree are rooted. We describe new
heuristics, based on the Edge Contract and Refine (ECR) operation, that remove
this restriction, thereby expanding the utility of RF supertrees. We demonstrate
that our local search algorithms yield supertrees with notably better scores than
those obtained from rooted heuristics.

1 Introduction

Supertree techniques are widely used to combine multiple, usually conflicting,
species trees for partially overlapping taxon sets into larger, comprehensive, phyloge-
nies [7,13,23]. Matrix representation with parsimony (MRP) [3,25] is, by far, the most
commonly used supertree method. While MRP often performs well [8,11,14], MRP
supertrees may display biases and relationships that are not supported by any of the
input trees [18,24,22]. Still, MRP remains popular because it can take advantage of
fast and effective parsimony heuristics and use a broad range of input data, including
rooted, unrooted, and non-binary trees [6]. In contrast to MRP, the Robinson-Foulds
(RF) supertree method seeks a supertree that minimizes the total RF distance to the
input phylogenies [2]. Thus, an RF supertree is consistent with the maximum number
of splits in the input trees. Although the properties of the RF supertree method make it
a desirable alternative to MRP, its use has been limited by existing heuristics. Bansal
et al. [2] recently developed fast local search algorithms for the rooted RF problem,
the special case where the input trees and the supertree are rooted. Here, we describe
new local search algorithms for the unrooted RF problem. These are not only asymp-
totically as fast as the rooted RF heuristics, but they also allow more types of input
data and improve the quality of supertree estimates, making the RF supertree method a
viable alternative to MRP for nearly any data set.

The use of local search (hill-climbing) for constructing RF supertrees is motivated
by the NP-hardness of the underlying optimization problem. Local search explores the
space of possible supertrees in search of a locally optimum supertree, a tree whose score
is minimum within its “neighborhood”, where the neighborhood is defined by a tree

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 184–196, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fast Local Search for Unrooted Robinson-Foulds Supertrees 185

edit operation. The best known tree edit operations are Nearest Neighbor Interchange
(NNI) [1], Subtree Prune and Regraft (SPR) [1,9], and Tree Bisection and Reconnection
(TBR) [1]. The sizes of the respective neighborhoods are Θ(n), Θ(n2), and Θ(n3),
where n is the number of taxa in the tree. Ganapathy et al. introduced p-Edge Contract
and Refine (ECR) [15], which is based on selecting a set of p edges to contract, after
which all possible refinements of the contracted tree are generated. The neighborhood
of the 2-ECR operation has size Θ(n2). Since the intersection of the TBR and 2-ECR
neighborhoods has size O(n) [16,15], a 2-ECR search can cover a significant part of the
tree space left unexplored by TBR search. The effectiveness of combining TBR with
ECR has been demonstrated for parsimony [17]. Further, the RF-distance between two
trees is at most 2p if and only if they are one p-ECR move apart [16]. This suggests that
ECR may be particularly well-suited for building RF supertrees.

We present fast NNI and 2-ECR local search algorithms for the unrooted RF su-
pertree problem. To our knowledge, the only previous related work is [2] and the
supertree analysis package Clann [12], which provides heuristics for maximizing the
number of splits shared between the input trees and the supertree, but lacks any running
time performance guarantees. Our NNI and 2-ECR search algorithms run in Θ(kn) and
Θ(kn2) time, where k is the number of input trees. They represent Θ(n) speed-ups over
the naı̈ve solutions for these problems. The algorithms produce binary supertrees, but
the input trees are not required to be binary. The techniques used are, on the surface,
similar to those used earlier for rooted trees [2]. In particular, we transform the unrooted
problem into a rooted one and use an LCA mapping technique related to that of [2]. On
the other hand, there are some important differences. For unrooted trees, we use LCA
mappings from the supertree to each input tree, the opposite of what is done for rooted
trees. This simplifies the algorithm considerably and allows us to compute RF distances
without restricting the supertree to the leaf set of each input tree. It also enables us to
handle multiple alternative rootings cleanly.

The results presented here are not only of algorithmic interest. It is often beneficial,
if not necessary, to allow unrooted input. Identifying the root of a species tree is among
the most difficult problems in phylogenetics (e.g., [28,29]), and conventional likelihood
and parsimony-based phylogenetic methods typically produce unrooted trees. To root
trees, most analyses include outgroup taxa that lie outside the clade of interest. How-
ever, in many cases, no useful outgroups exist, or the phylogenetic distance of available
outgroups may contribute to systematic, or long-branch attraction, errors [29]. Methods
for rooting trees in the absence of an outgroup also can be problematic. For example,
rooting the tree by assuming a molecular clock, or similarly using mid-point rooting,
may be misled by molecular rate variation throughout the tree [19,20], and the use of
non-reversible models appears to perform well only when the substitution process is
strongly asymmetric [20,30].

We examine the performance of our unrooted ECR-based RF supertree heuristic us-
ing several large data sets, and compare its performance with rooted RF supertrees
obtained by SPR-based local search [2]. We demonstrate that the ability to handle un-
rooted trees allows us to construct, in a reasonable amount of time, higher-quality trees
than those obtained by assuming fixed roots.

186 R. Chaudhary, J. Gordon Burleigh, and D. Fernández-Baca

2 Preliminaries

2.1 Basic Notations and Problem Definition

A phylogenetic tree is an unrooted leaf labeled tree in which all the internal vertices have
degree at least two [27]. We will use “phylogenetic tree” and “tree” interchangeably.
The leaf set of a tree is denoted by L(T). The set of all vertices of a tree is denoted
by V (T) and set of all edges by E(T). A tree is binary if every internal vertex has
degree three. Let U be a subset of V (T). We denote by T (U) the minimum subtree of
T that connects the elements in U . The restriction of T to U , denoted by T|U , is the
phylogenetic tree that is obtained from T (U) by suppressing all vertices of degree two.

A split A|B is a bipartition of the leaf set of a tree; A and B are the parts of split
A|B. Order doesn’t matter, so A|B is identical to B|A. A split is nontrivial if each of
A and B contains at least two elements. The set of all nontrivial splits of a tree T is
denoted by Σ(T).

Let T1 and T2 be two trees over the same leaf set. If an isomorphism exists between
T1, T2, then we write T1 � T2. The Robinson-Foulds (RF) distance [26] between T1

and T2, denoted by RF (T1, T2), is defined as

RF (T1, T2) := |(Σ(T1)\Σ(T2)) ∪ (Σ(T2)\Σ(T1))|.

We extend the notion of RF distance to the case where L(T1) ⊆ L(T2) by letting
RF (T1, T2) := RF (T1, T2|L(T1)).

A profile is a tuple of trees P := (T1, T2, ..., Tk), where each tree Ti ∈ P is called
an input tree. A supertree on P is a phylogenetic tree S such that L(S) =

⋃k
i=1 L(Ti).

We write n to denote |L(S)|; i.e., n is the total number of distinct leaves in the profile.
We extend the notion of RF distance to profile and supertree as follows. Let P be a

profile of unrooted trees and S be a supertree for P . Then, the RF distance from P to
S is RF (P , S) :=

∑
T∈P RF (T, S).

We now state our main problem. Let B(P) be the set of all binary supertrees for P .

Problem 1 (Unrooted RF Supertree).
Input: A profile P = (T1, T2, ..., Tk) of unrooted trees.
Output: A supertree S* for P such that RF (P , S*) = minS∈B(P) RF (P , S).

The Unrooted RF Supertree problem is NP-hard even when all input trees have the same
leaf set [21].

2.2 Local Search Problems

We shall consider local search based on two operations, NNI [1] and 2-ECR [15].

Definition 1 (NNI Operation). Let e be an internal edge in a binary phylogenetic tree
T1. An NNI operation on T1 consists of swapping one of the two subtrees on one side of
e with one of the two subtrees on the other side of e (see Fig. 1).

Fast Local Search for Unrooted Robinson-Foulds Supertrees 187

Fig. 1. An NNI operation. Tree T2 results from T1 after swapping subtree A with C.

Fig. 2. A 2-ECR operation. Tree T2 results from T1 after contracting edge e1 and e2; T2 is fully
refined to build T3. Observe the degree five vertex in T2.

Definition 2 (2-ECR Operation). Let T1 be an unrooted binary tree. A 2-ECR opera-
tion on T1 is the result of (i) choosing two internal edges e1, e2 of T1, (ii) contracting
e1 and e2; thereby creating one degree five vertex if edges were adjacent or two degree
four vertices, otherwise, and (iii) refining the newly created vertex or vertices in some
way; i.e., converting the non-binary tree into a binary tree (see Fig 2).

For Δ ∈ {NNI, 2-ECR}, let ΔT denote the set of trees that can be obtained from a
binary tree T by applying a single Δ operation.

Problem 2 (Δ Search).
Input: A profile P = (T1, T2, ..., Tk) of unrooted trees and a binary supertree S for P .
Output: A tree S* ∈ ΔS such that RF (P , S*) = minS′∈ΔS RF (P , S′).

We give algorithms that solve the NNI and 2-ECR search problems in time Θ(nk) and
Θ(n2k), respectively. We achieve this by first executing a O(kn)-time preprocessing
step (explained in Section 4), which is the same for both problems. After that, for each
tree in the input profile, the RF distance from any tree in NNIS or 2-ECRS can be
computed in constant time.

3 Structural Properties

In this section, we focus on the problem of obtaining the RF distance from an arbitrary
input tree T to a supertree S. We solve the problem by exploiting its connection with
its rooted version.

A rooted phylogenetic tree T has exactly one distinguished vertex rt(T), called the
root. A vertex v of T is internal if v ∈ V (T)\(L(T) ∪ rt(T)). The set of all internal

188 R. Chaudhary, J. Gordon Burleigh, and D. Fernández-Baca

Fig. 3. Unrooted tree T with leaf set {a, b, c, d, e, f}. The rooted tree T with r = b is also shown.

vertices of T is denoted by I(T). We define ≤T to be the partial order on V (T) where
x ≤T y if y is a vertex on the path from rt(T) to x. If {x, y} ∈ E(T) and x ≤T y, then
y is the parent of x and x is a child of y. Two vertices in T are siblings if they have
the same parent. The least common ancestor (LCA) of a non-empty subset L ⊆ V (T),
denoted by LCAT(L), is the unique smallest upper bound of L under ≤T.

The subtree of T rooted at vertex v ∈ V (T), denoted by Tv , is the tree induced by
{u ∈ V (T) : u ≤ v}. For each node v ∈ I(T), CT(v) is defined to be the set of all leaf
nodes in Tv. Set CT(v) is called a cluster.

Let H(T) denote the set of all clusters of T. The Robinson-Foulds distance between
rooted trees T, S over the same leaf set [26] is defined as

RF (T, S) := |(H(T)\H(S)) ∪ (H(S)\H(T))|.

Suppose S is a supertree for P and let T be a tree in P . Throughout the rest of the
paper, we assume that some arbitrary but fixed taxon r ∈ L(T)∩L(S) is chosen for T .
We refer to r as the outgroup. Different outgroups may be used for different input trees.
Let T and S be the trees that result from rooting T and S at the respective branches
incident on r (see Fig. 3).

Lemma 1. Let T and S be two unrooted phylogenetic trees with L(T) = L(S), then,

RF (T, S) = RF (T, S).

Proof. We will first show that RF (T, S) ≤ RF (T, S). Recall that, RF (T, S) :=
|(Σ(T)\Σ(S)) ∪ (Σ(S)\Σ(T))|. We will prove that for each unmatched split in the
split set of T (respectively, S), there exists a unique unmatched cluster in the corre-
sponding rooted tree T (respectively, S). Let A|B be a split such that A|B ∈ Σ(T) but
A|B /∈ Σ(S). Assume without loss of generality that r ∈ A. Then, B ∈ H(T) but
B /∈ H(S). The argument for S and S follows similarly. Thus RF (T, S) ≤ RF (T, S)
holds. The proof that RF (T, S) ≥ RF (T, S) is similar. 	

We extend RF distance to the case where L(T) ⊆ L(S) in the same way as for unrooted
trees. That is, RF (T, S) := RF (T, S|L(T)), where S|L(T) is the rooted phylogenetic
tree obtained from S(L(T)) by suppressing all non-root vertices of degree two. We now
show how to compute the RF distance in this more general setting, without explicitly
building S|L(T).

Fast Local Search for Unrooted Robinson-Foulds Supertrees 189

Definition 3 (Restricted Cluster). Let v ∈ I(S). The restriction of CS(v) to L(T) is
defined as

ĈT(v) := {w ∈ L(Sv) : w ∈ L(T)}.

ĈT(v) is called a restricted cluster.

Definition 4 (Vertex Function). The vertex function fS assigns each u ∈ I(T) the
value fS(u) = |U |, where U := {v ∈ I(S) : CT(u) = ĈT(v)}.

Observe that if L(S) = L(T), then for all u ∈ I(T), fS(u) ≤ 1.
We use fS to define the following set, which will be used to compute RF (T, S).

FS = {u ∈ I(T) : fS(u) = 0}

We will drop the subscript from fS and FS when it is clear from the context.

Lemma 2. Let S
′ := S|L(T). Then RF (T, S) = |I(S′)| − |I(T)| + 2|FS′ |.

Proof. Recall that RF (T, S) := |(H(T)\H(S′)) ∪ (H(S′)\H(T))|. Let GS′ be a set
{u ∈ I(T) : fS′(u) > 0}. Thus, RF (T, S) = |I(S′)| + |I(T)| − 2|GS′ |. Since |GS′ | +
|FS′ | = I(T) we have RF (T, S) = |I(S′)| − |I(T)| + 2|FS′ |. 	

Lemma 3. Let S
′ := S|L(T). Then |FS| = |FS′ |.

Proof. We prove the lemma by showing that for u ∈ I(T), fS(u) �= 0 iff fS′(u) �= 0.
(⇒) Since fS(u) �= 0, there exists a vertex v in S such that CT(u) = ĈT(v). There are
two cases.

Case 1: L(Sv) = ĈT(v). In this case v must exist in S
′, and so fS′(u) �= 0.

Case 2: ĈT(v) ⊂ L(Sv). Let the children of v be v1 and v2. If L(T) is not disjoint with
L(Sv1) and L(Sv2), then v exists in S

′. Otherwise, at most one of subtrees at these
vertices, e.g v1, may be absent in S

′ (if L(Sv1) and L(T) are disjoint). In that case
by applying the same argument inductively on v2, we reach a vertex that stays in
S
′. Thus we have a vertex with similar cluster present in S

′. Therefore, fS′(u) �= 0.

(⇐) Since fS′(u) �= 0, there exists a vertex v in S
′ such that CT(u) = CS′(v). Now we

must have v ∈ I(S), since restriction of S to L(T) does not introduce a new vertices in
S
′. Thus, in S, ĈT(v) = CT(u) (by the definition of S

′). Therefore, fS(u) �= 0. 	

Corollary 1. RF (T, S) = |L(T)| + |I(T)| + 2|FS| − 2.

Proof. In Lemma 2, |I(S′)| = |L(T)| − 2. Now the result is trivially true. 	

4 Preprocessing

We now describe a O(n)-time algorithm to compute the initial vertex function for a
supertree S relative to input tree T, along with the RF distance between these two trees.

190 R. Chaudhary, J. Gordon Burleigh, and D. Fernández-Baca

Fig. 4. The LCA mapping from S to T. Vertex a in S is mapped to null as a /∈ L(T). The internal
vertices of T are labeled with the values of the vertex function.

Definition 5 (LCA Mapping). For S and T, the LCA mapping MS,T : V (S) → V (T)
is defined as

MS,T(u) :=

{
LCAT(ĈT(u)), if ĈT(u) �= φ ;

null, otherwise.

Fig. 4 illustrates LCA mappings.

Lemma 4. For all u ∈ I(T), f(u) = |B|, where B := {v ∈ I(S) : MS,T(v) = u and
|CT(u)| = |ĈT(v)|}.

Proof. By the definition of f(u), it suffices to show that B = U , where U := {v ∈
I(S) : CT(u) = ĈT(v)}. If v ∈ U , then, by the definition of MS,T(v), v ∈ B. If v ∈ B,
then MS,T(v) = u and |CT(u)| = |ĈT(v)| imply that CT(u) = ĈT(v). 	

The LCA computation for T can be done in O(n) time, and the LCA mapping from S

to T can be done in O(n) time [5] in bottom-up manner. Further, from Lemmas 2–4 we
can compute the RF distance between S and T in O(n) time as well. We assume that
there is a distinct rooted copy S of S for each input tree T , and that S and T are rooted
according to the outgroup chosen for T .

5 Solving the NNI Search Problem

Let T be an arbitrary tree in P . We now show how to compute the RF distance from
T to each tree in NNIS neighborhood in linear time of the size of neighborhood. The
key idea is to simulate each NNI operation on unrooted tree S on its rooted version S,
using the LCA mapping from S to T to quickly compute the RF distance, This mapping
changes at NNI operations are performed on S, but we show that it can be updated in
constant time at each step.

Consider an NNI move across an edge e = {x, y} of S. Let A and B be the two
subtrees on x side of e, and C and D be the two subtrees on y side of e (Fig. 5).

Observation 1. The tree obtained from swapping A and C is isomorphic to the tree
obtained from swapping B and D.

Proof. Both swaps produce the same sets of splits. Thus, by the Splits Equivalence
Theorem [27], the trees are isomorphic. 	

Fast Local Search for Unrooted Robinson-Foulds Supertrees 191

Fig. 5. Unrooted tree S , the rooted version S and the result S
′ of an NNI operation swapping

subtrees B and C. The figure assumes that the outgroup lies in subtree A.

Without loss of generality, assume that the NNI move swaps B with C, resulting in tree
S′. Also, assume that the subtrees A, B, C, and D connect with edge e through vertices
a, b, c, and d, respectively. In S, either x will be the parent of y or y will be the parent
of x, depending on which side has the outgroup. In the first case, the children of y will
be c and d. Further, if the sibling of y is b then the outgroup must be in subtree A (see
Fig. 5), otherwise it is in subtree B. The other cases are analogous. Observe that the
parent-child and sibling relationships can be checked in constant time.

Let the children of y in S be c and d, and the sibling of y be b. After the NNI operation
the children of y will be b and d, and the sibling of y will be c. Let the resulting tree be
called S

′. (Note that if outgroup was in B then we would have swapped A and D, since,
from Observation 1 both operations produce the same result.)

Lemma 5. (i) For all u ∈ I(S)\{y}, MS′,T(u) = MS,T(u) and (ii) MS′,T(y) =
lca(MS,T(b),MS,T(d)).

Proof. (i) For v ∈ V (S′
b)
⋃

V (S′
c)
⋃

V (S′
d), Sv � S

′
v . Thus, MS′,T(v) = MS,T(v).

Now, L(S′
x) = L(Sx), thus MS′,T(x) = MS,T(x). Also, except for subtree Sx, the rest

of the tree remains the same in S
′
x, thus for v ∈ V (S′)\V (S′

x), MS′,T(v) = MS,T(v).
(ii) Observe that, b, d are children of y in S

′, and S
′
b � Sb, S

′
d � S

′
d. So, MS′,T (y) =

LCA (MS′,T (b), MS′,T (d)) = LCA(MS,T (b),MS,T (d)). 	

Let h := MS,T(y) and h′ := MS′,T(y). Note that h and h′ may refer to the same vertex
in T. Let G denote the set {w ∈ {h, h′} : fS(w) = 0, but fS′(w) ≥ 1}, and L the set
{w ∈ {h, h′} : fS(w) ≥ 1, but fS′(w) = 0}.

Lemma 6. RF (S′, T) = RF (S, T) − 2|G| + 2|L|.

Proof. RF (S′, T) = 2|FS′ | = {u ∈ I(T) : fS′(u) = 0} = 2|FS| − 2|{u ∈ {h, h′} :
fS(u) = 0}| + 2|{u ∈ {h, h′} : fS′(u) = 0}| = RF (S, T) − 2|G| + 2|L|. 	

Lemma 7. The RF distance from T to any S′ ∈ NNIS can be computed in O(1) time.

Proof. From Lemma 5, the LCA mapping of only one vertex y changes in S
′ and can

be computed in constant time using the LCA pre-computation of T. Also, the values of
fS′(h) and fS′(h′) can be updated in constant time. Finally, RF (S′, T) is computed in
constant time as shown in Lemma 6. Further, RF (S′, T) = RF (S′, T). 	

Theorem 1. The NNI Search problem can be solved in Θ(nk) time.

192 R. Chaudhary, J. Gordon Burleigh, and D. Fernández-Baca

Proof. There are Θ(n) edges in S. From Lemma 7, updating the RF distance after an
NNI move takes constant time per input tree. Thus for k input trees it takes Θ(nk) time.
Further, the pre-processing of Section 4 takes Θ(nk) time. 	

6 Solving the 2-ECR Search Problem

As seen in Section 2, a 2-ECR operation on a binary tree consists of contracting two
edges e1 and e2, and then refining the contracted tree into a binary tree. These two edges
may or may not be adjacent edges in the tree. Our algorithm for 2-ECR Search handles
each case separately.

Case 1: The edges are not adjacent. We use the next result.

Lemma 8. ([15]) Let T be an unrooted leaf-labeled tree and let T ′ be a 2-ECR neigh-
bor of T such that the 2-ECR move involves the contraction and refinement of two
non-adjacent edges in T . Then T ′ can be reached from T through two NNI moves.

Thus, when e1, e2 are not adjacent, the optimal 2-ECR neighbor can be obtained by
computing an optimal NNI neighbor of an NNI neighbor of S. There are Θ(n) NNI
neighbors of S and an optimal NNI neighbor of tree in it can be obtained in Θ(nk) time
by Theorem 2. Therefore the optimal NNI neighbor of an NNI neighbor of S (i.e., the
optimal 2-ECR neighbor of S) can be computed in Θ(n2k) time.

Case 2: The edges are adjacent. Note that there are O(n) possible pairs of adjacent
edges for a tree with n leaves. For a given pair (e1, e2) of edges, the 2-ECR operation
contracts e1 and e2 and creates a degree-5 vertex. It then refines this vertex in one of
the 15 possible ways to obtain a new binary tree. We will show that for each possible
refinement the RF distance from an input tree can be computed in constant time.

Let e1 = {x, y} and e2 = {y, z} be the two edges in S chosen for the 2-ECR move.
Let S′ be the tree that results from the move. Let A and B be the subtree on x side of
e1, C be the subtree connected to y, and D and E be the subtree on z side of S. As in
tree T1 of Fig. 2. Also, assume that the subtrees A, B, C, D, and E connect with e1

and e2 through vertices a, b, c, d, and e, respectively.
Note that in tree S, any of the five subtrees A, B, C, D, E can contain the outgroup.

We can easily check in constant time which case holds.
Now we divide the 15 possible S′s into two categories for computing the RF distance

from all possible S′.

Category 1: Subtree C doesn’t change position. If C is fixed at the same place as S in
S′ then the remaining four subtrees can be arranged in three ways. Observe that one of
them will be identical to S so we will not consider it. In the other two cases, we will be
swapping a subtree on x side (A or B) with a subtree on z side (D or E). Notice that
this move is similar to one NNI where the edge spans two edges e1 and e2. We show
how to compute the RF distance of T from tree S′, obtained by swapping A with D in
S. The other case can be analyzed similarly.

First, we check which subtree among A, B, C, D, E contains the outgroup in S. If A
or D contains the outgroup, then we swap B with E. The splits obtained from swapping

Fast Local Search for Unrooted Robinson-Foulds Supertrees 193

A and D are the same as the splits obtained from swapping B and E. Thus, by the Splits
Equivalence Theorem [27], the trees are isomorphic.

Next, we find the vertices of S
′ with any change in LCA mapping in MS′,T. Based

on the topology of S, there are three cases:

1. x is parent of y and y is parent of z. For all t ∈ I(S′)\{y, z}, MS′,T(t) = MS,T(t).
Further, MS′,T(z) := lca(MS,T(a),MS,T(e)), and MS′,T(y) := lca(MS,T(c),
MS′,T(z)).

2. y is parent of x and z. For all t ∈ I(S′)\{x, z}, MS′,T(t) = MS,T(t). Further,
MS′,T(z) := lca(MS,T(a),MS,T(e), and MS′,T(x) := lca(MS,T(d),MS,T(b)).

3. z is parent of y and y is parent of x. For all t ∈ I(S′)\{y, x}, MS′,T(t) = MS,T(t).
Moreover, MS′,T(x) := lca(MS,T(d),MS,T(b)), and MS′,T(y) := lca(MS,T(c),
MS′,T(x)).

It can be checked in constant time which one of the above three cases holds, and so
the LCA mappings can be updated in constant time too. Let H be a set {u ∈ I(T) :
fS′(u) �= fS(u)}. Set H can be computed in constant time. Observe that H will have
at most four vertices. The new RF score is computed from the change in the f values
of the vertices in H in the following way. For t ∈ H , if fS(t) ≥ 1 and fS′(t) = 0 then
the RF distance increases by 2 for t. Conversely, if fS(t) = 0 and fS′(t) ≥ 1 then the
RF distance decreases by 2 for t. Thus we have shown how the RF distance between a
input tree and S′, in Category 1, can be computed in constant time.

Category 2: Subtree C changes position. In this case the place of C in S′ can be occu-
pied by A, B, D, or E. Further, in each case rest of the four subtrees can be arranged at
vertices x and z in three ways. Thus there are 12 possibilities in this Category. We will
generate all S′s in this in an order that will help us to compute RF distance easily. First,
we will perform one NNI that swaps subtree C with a subtree from {A, B, D, E} and
compute the RF distance for the generated S′. For this S′, we swap one subtree from
x side with one subtree from z side to generate the other two S′s. We will present our
technique for one subtree, say A; the same can be done for the rest of the subtrees.

Once again, our algorithm first checks the topology of S. If A or C has the outgroup,
then we swap the subtrees other than A and C from x and y side of e1. Observe that
this is an NNI operation, and so the RF distance between T and S′ can be computed
in constant time from Lemma 7. The next two moves on S′ are similar to Category 1.
Thus, for each tree the RF distance can be computed in constant time.

We have shown how the RF distance between a input tree and S′, in Categories 1
and 2 can be computed in constant time. This gives us our final result.

Theorem 2. The 2-ECR Search problem can be solved in Θ(n2k) time.

7 Experimental Results

We implemented our unrooted RF heuristic based on 2-ECR local search and ran it
on a published supertree data set from Marsupials [10] as well as two unpublished
data sets from the plant clades Gymnosperm and Saxifragales, where the trees were

194 R. Chaudhary, J. Gordon Burleigh, and D. Fernández-Baca

Table 1. Experimental Results

Data Set Supertree Method RF Distance Improvement

Saxifragales Rooted RF 2220
(959 taxa; 51 trees) Unrooted RF 2152 3.06%
Marsupial Rooted RF 1353
(272 taxa; 158 trees) Unrooted RF 1335 1.33%
Gymnosperm Rooted RF 4112
(950 taxa; 78 trees) Unrooted RF 4050 1.50%

made with data assembled from GenBank. In our analyses, we first ran the SPR-based
rooted RF supertree local search program [2] on each data set and then we selected the
best supertree from the output as the starting supertree for our unrooted RF supertree
program. We then compared the results of the unrooted RF supertree search with the
original rooted RF supertrees (Table 1).

The rooted RF runs took between 53 minutes (for the Marsupial data set) and 32
hours (for the Gymnosperm data set). The unrooted RF runs required 19 search steps
and 1.5 hours for the Saxifragales data set, 5 steps and 8 minutes for the Marsupial data
set, and 13 steps and 1 hour for the Gymnosperm data set. In all three data sets, the
unrooted RF program significantly improved the RF score of the starting supertree.

8 Conclusion

The RF supertree problem directly seeks a supertree that is most similar to input trees
based on the RF distance, making it a desirable and potentially useful approach for
building comprehensive phylogenies. Until now, the only existing heuristics for RF
supertrees required rooted input [2]. However, nearly all recent supertree studies have
included unrooted input trees (e.g., [4,7,10]). Thus, our new heuristics for the unrooted
RF supertree problem greatly extend the utility of the RF supertree method. Further,
our experiments show that they can easily handle data sets with nearly 1000 taxa and
can notably improve upon the quality of rooted RF supertrees. This suggests that the
RF supertree method is a viable alternative to MRP for nearly any data set. There are
several directions for future development. In our experiments, the unrooted heuristic
started from a high quality supertree (the rooted RF supertree). Although this strategy
appears to be effective, it is also costly. Further tests are needed to examine the effects
of the starting tree on the performance of the unrooted heuristic and to identify less
costly strategies to build a starting tree. It is also important, and appears to be relatively
straightforward, to incorporate uncertainty within the input trees into an RF supertree
analysis by weighting the splits when calculating the RF distance.

Acknowledgements. R.C. and D.F.-B. were supported in part by NSF grant DEB-
0829674. J.G.B. was supported in part by the NIMBioS Gene Tree Reconciliation
Working Group, through NSF grant EF-0832858, with additional support from the Uni-
versity of Tennessee.

Fast Local Search for Unrooted Robinson-Foulds Supertrees 195

References

1. Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary
trees. Annals of Combinatorics 5, 1–13 (2001)

2. Bansal, M.S., Burleigh, J.G., Eulenstein, O., Fernández-Baca, D.: Robinson-Foulds su-
pertrees. Algorithms for Molecular Biology 5, 18 (2010)

3. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference,
and the desirability of combining gene trees. Taxon 41, 3–10 (1992)

4. Beck, R.M.D., Bininda-Emonds, O.R.P., Cardillo, M., Liu, F.R., Purvis, A.: A higher-level
MRP supertree of placental mammals. BMC Evolutionary Biology 6, 93 (2006)

5. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A.
(eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

6. Bininda-Emonds, O.R.P., Beck, R.M.D., Purvis, A.: Getting to the roots of matrix represen-
tation. Syst. Biol. 54, 668–672 (2005)

7. Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D.,
Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L., Purvis, A.: The delayed rise of present-
day mammals. Nature 446, 507–512 (2007)

8. Bininda-Emonds, O.R.P., Sanderson, M.J.: Assessment of the accuracy of matrix representa-
tion with parsimony analysis supertree construction. Systematic Biology 50, 565–579 (2001)

9. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune
and regraft distance. Annals of Combinatorics 8, 409–423 (2004)

10. Cardillo, M., Bininda-Emonds, O.R.P., Boakes, E., Purvis, A.: A species-level phylogenetic
supertree of marsupials. Journal of Zoology 264, 11–31 (2004)

11. Chen, D., Eulenstein, O., Fernández-Baca, D., Burleigh, J.G.: Improved heuristics for
minimum-flip supertree construction. Evolutionary Bioinformatics 2, 347–356 (2006)

12. Creevey, C.J., McInerney, J.O.: Clann: Investigating phylogenetic information through su-
pertree analyses. Bioinformatics 21(3), 390–392 (2005)

13. Davies, T.J., Barraclough, T.G., Chase, M.W., Soltis, P.S., Soltis, D.E., Savolainen, V.: Dar-
win’s abominable mystery: insights from a supertree of the angiosperms. Proceedings of the
National Academy of Sciences of the United States of America 101, 1904–1909 (2004)

14. Eulenstein, O., Chen, D., Burleigh, J.G., Fernández-Baca, D., Sanderson, M.J.: Performance
of flip supertree construction with a heuristic algorithm. Systematic Biology 53, 299–308
(2003)

15. Ganapathy, G., Ramachandran, V., Warnow, T.: Better hill-climbing searches for parsimony.
In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 245–258.
Springer, Heidelberg (2003)

16. Ganapathy, G., Ramachandran, V., Warnow, T.: On contract-and-refine transformations be-
tween phylogenetic trees. In: SODA, pp. 900–909 (2004)

17. Goloboff, P.A.: Analyzing large data sets in reasonable times: Solutions for composite op-
tima. Cladistics 15, 415–428 (1999)

18. Goloboff, P.A.: Minority rule supertrees? MRP, compatibility, and minimum flip display the
least frequent groups. Cladistics 21, 282–294 (2005)

19. Holland, B., Penny, D., Hendy, M.: Outgroup misplacement and phylogenetic inaccuracy
under a molecular clock —- a simulation study. Syst. Biol. 52, 229–238 (2003)

20. Huelsenbeck, J., Bollback, J., Levine, A.: Inferring the root of a phylogenetic tree. Syst.
Biol. 51, 32–43 (2002)

21. McMorris, F.R., Steel, M.A.: The complexity of the median procedure for binary trees. In:
Proceedings of the International Federation of Classification Societies (1993)

22. Pisani, D., Wilkinson, M.: MRP, taxonomic congruence and total evidence. Systematic Bi-
ology 51, 151–155 (2002)

196 R. Chaudhary, J. Gordon Burleigh, and D. Fernández-Baca

23. Pisani, D., Yates, A.M., Langer, M.C., Benton, M.J.: A genus-level supertree of the Di-
nosauria. Proceedings of the Royal Society of London 269, 915–921 (2002)

24. Purvis, A.: A modification to Baum and Ragan’s method for combining phylogenetic trees.
Systematic Biology 44, 251–255 (1995)

25. Ragan, M.A.: Phylogenetic inference based on matrix representation of trees. Molecular Phy-
logenetics and Evolution 1, 53–58 (1992)

26. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Bio-
sciences 53, 131–147 (1981)

27. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)
28. Smith, A.: Rooting molecular trees: problems and strategies. Biol. J. Linn. Soc. 51, 279–292

(1994)
29. Wheeler, W.: Nucleic acid sequence phylogeny and random outgroups. Cladistics 6, 363–368

(1990)
30. Yap, V., Speed, T.: Rooting a phylogenetic tree with nonreversible substitution models. BMC

Evol. Biol. 5, 2 (2005)

A Metric for Phylogenetic Trees Based on Matching

Yu Lin, Vaibhav Rajan, and Bernard M.E. Moret

Laboratory for Computational Biology and Bioinformatics,
Swiss Federal Institute of Technology (EPFL),

EPFL-IC-LCBB, INJ 230, Station 14, CH-1015 Lausanne, Switzerland
{yu.lin,vaibhav.rajan,bernard.moret}@epfl.ch

Abstract. Comparing two or more phylogenetic trees is a fundamental task in
computational biology. The simplest outcome of such a comparison is a pairwise
measure of similarity, dissimilarity, or distance. A large number of such measures
have been proposed, but so far all suffer from problems varying from computa-
tional cost to lack of robustness; many can be shown to behave unexpectedly un-
der certain plausible inputs. For instance, similarity measures based on maximum
agreement are too strict, while measures based on the elimination of rogue taxa
work poorly when the proportion of rogue taxa is significant; distance measures
based on edit distances under simple tree operations (such as nearest-neighbor
interchange or subtree pruning and regrafting) are NP-hard; and the widely used
Robinson-Foulds distance is poorly distributed and thus affords little discrimina-
tion, while also lacking robustness in the face of very small changes—reattaching
a single leaf elsewhere in a tree of any size can instantly maximize the distance.

In this paper, we introduce an entirely new pairwise distance measure, based
on matching, for phylogenetic trees. We prove that our measure induces a metric
on the space of trees, show how to compute it in low polynomial time, verify
through statistical testing that it is robust, and finally note that it does not ex-
hibit unexpected behavior under the same inputs that cause problems with other
measures. We also illustrate its usefulness in clustering trees, demonstrating sig-
nificant improvements in the quality of hierarchical clustering as compared to the
same collections of trees clustered using the Robinson-Foulds distance.

1 Introduction

Comparing two or more phylogenetic trees is a fundamental task in computational bi-
ology. The simplest outcome of such a comparison is a pairwise measure of similarity,
dissimilarity, or distance. A large number of such measures have been proposed, but
so far all suffer from problems varying from computational cost to lack of robustness;
many can be shown to behave unexpectedly under certain plausible inputs. For instance,
similarity measures based on maximum agreement are too strict, while measures based
on the elimination of rogue taxa work poorly when the proportion of rogue taxa is sig-
nificant; distance measures based on edit distances under simple tree operations (such
as nearest-neighbor interchange or subtree pruning and regrafting) are NP-hard; and
the widely used Robinson-Foulds distance is poorly distributed and thus affords lit-
tle discrimination, while also lacking robustness in the face of very small changes—
reattaching a single leaf elsewhere in a tree of any size can instantly maximize the
distance.

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 197–208, 2011.
© Springer-Verlag Berlin Heidelberg 2011

198 Y. Lin, V. Rajan, and B.M.E. Moret

In this paper, we introduce an entirely new pairwise distance measure, based on match-
ing, for phylogenetic trees. We prove that our measure induces a metric on the space of
trees, show how to compute it in low polynomial time, verify through statistical test-
ing that it is robust, and finally note that it does not exhibit unexpected behavior under
the same inputs that cause problems with other measures. Our matching metric can be
viewed as a weighted extension of the Robinson-Foulds distance, but can also be inter-
preted in the context of tree editing, thus bridging two types of tree-to-tree measures.

We illustrate the use of our tree metric in clustering trees; we obtain significant im-
provements in the quality of hierarchical clustering as compared to the same collections
of trees clustered using the Robinson-Foulds distance.

2 Background

2.1 Similarity, Editing, and Distance

Phylogenetic trees are leaf-labelled trees, most often unrooted. Perhaps the simplest
way to quantify the similarity of a set of phylogenetic trees is to determine the small-
est collection of leaves that, when removed, induce the same tree (on the remaining
leaves) from each tree in the set. Such an induced tree is called the Maximum Agree-
ment SubTree (MAST). Several variations have been proposed on this theme, all seeking
to identify a tree structure that is common, in exact or approximate form, to all trees in
the given set. For a pair of trees, most such measures are fairly easy to compute. Trees
can also be transformed through various operations that disconnect and reconnect sub-
pieces; given any collection of such operations, and assuming that the operations are
sufficiently powerful to enable us to transform any tree on n leaves into any other tree
on n leaves, we can define an edit distance between two trees as the smallest num-
ber of allowed operations that will tranform one tree into the other. Computing such
edit distances is typically NP-hard, however, nor is it clear which set of operations
should be used in the characterization. Finally, we can focus on the characteristics of
two trees to determine the number of differences and thus induce a distance measure
based on outcomes rather than on transformations. The Robinson-Foulds (RF) distance,
the most commonly used distance measure for trees, counts the number of edges (or,
equivalently, bipartitions of the leaves) present in one tree, but not the other; it can be
computed in linear time. We now look at each of these three approaches in turn.

2.2 Tree Similarity Measures

The MAST problem has been well studied [5,9,12]. While the general problem of find-
ing the MAST of three or more trees is NP-hard [2], it can be solved in O(n logn) time
for two binary trees [18]. Since requiring exact agreement may prove too demanding
and lead to poor results, several authors proposed variations on this formulation, among
them the maximum information subtree (MIST) [3] and the maximum information sub-
tree consensus (MISC) [15], variations that are more robust than MAST in the presence
of “rogue” taxa (taxa whose placement in the tree is unclear and highly variable). These
methods work well in the presence of a small number of rogue taxa, but poorly (both
in terms of running time and of quality of results) when rogues are numerous; they also
work only on sizeable collections of trees, not on pairs of trees.

A Metric for Phylogenetic Trees Based on Matching 199

Fig. 1. NNI, SPR and TBR operations

2.3 Tree Editing

Editing operations are commonly used to explore tree space in phylogenetic inference,
but also for comparing phylogenetic trees. We briefly describe the three most common
operations, in increasing order of generality.

Nearest Neighbor Interchange (NNI). Let e = {u,v} be an internal edge of a tree
T and Su and Sv be the set of subtrees connected to u and v respectively. A single NNI
operation interchanges two subtrees across e: it disconnects one of the subtrees from Su

and connects it to vertex v, then disconnects one of the subtrees from Sv and connects it
to vertex u, as illustrated in Fig. 1.

Subtree Prune and Regraft (SPR). An SPR operation disconnects a subtree from
the larger tree by removing some edge {u,v}; the pruned subtree has vertex u, while
the larger tree has vertex v. If the larger tree was binary, then v now has degree 2 and
is eliminated by merging its two incident edges. Then the subtree is reconnected to the
larger tree by creating a new vertex w on some edge of the larger tree and connecting it
to the pruned subtree by a new edge {u,w}, as illustrated in Fig. 1. The Leaf Prune and
Regraft (LPR) operation is the simplified version in which the subtree pruned always
consists of a single leaf.

Tree Bisection and Reconnection (TBR). Let e = {u,v} be an internal edge of a
tree T and let C1 and C2 be the components of the tree formed by removing e and (if the
tree was binary) suppressing vertices u and v. Form tree T ′ by choosing one edge in C1

and adding a vertex w along that edge, choosing one edge in C2 and adding a vertex x
along that edge, and finally adding the edge {w,x}, as illustrated in Fig. 1. (If any of the
components is just a single vertex, then the newly added edge is attached to the vertex.)

Any tree operation can be used to define an edit distance between trees: the minimum
number of such operations needed to transform one tree into the other. Regrettably,
computing the edit distance for each of the above three operations is NP-hard [1,6,11].
The NNI edit distance between two trees is O(n logn) [13] and can be approximated
within a ratio of O(logn) [6]. The edit distances between two trees for SPR and TBR
are O(n) [1] and there is a 3-approximation algorithm to compute the TBR edit distance
[20]. The LPR edit distance between two trees on n leaves is just n minus the number
of leaves in the MAST of those two trees and so can be computed in polynomial time
for two binary trees.

200 Y. Lin, V. Rajan, and B.M.E. Moret

Fig. 2. An unrooted tree with 5 leaves

2.4 The Robinson-Foulds Distance

The Robinson-Foulds (RF) distance [16] is by far the most widely used measure of
dissimilarity between trees. One of its main advantages is its independence from any
model of tree editing: it does not infer any series of editing operations, but relies only
on the current characteristics of the two trees.

Every internal edge e in a leaf-labeled tree T defines a non-trivial bipartition πe

on the leaves, and hence the tree T is uniquely represented by the set of bipartitions
Γ(T) = {πe | e ∈ E(T)}, where E(T) is the set of internal edges in T . For example the
unrooted tree in Fig. 2 is represented by two nontrivial bipartitions {AB|CDE,ABC|DE}
induced by edges e1 and e2, respectively. Given two unrooted leaf-labeled trees T1 and
T2 on the same set of leaf labels, the Robinson-Foulds (RF) distance between them is
the normalized count of the bipartitions induced by one tree and not the other, that is,

DRF(T1,T2) =
1
2

((|Γ(T1)−Γ(T2)|) + (|Γ(T2)−Γ(T1)|)).

Since there are at most n− 3 non-trivial bipartitions in a tree on n leaves, the largest
possible RF distance between two trees is n−3. The RF distance between two trees can
be computed in linear time [7], while the RF distance matrix for a collection of trees
can be computed in sublinear time [14]. However, the RF distance is overly sensitive to
some small changes in the tree. For example, just moving a leaf at the end of a caterpillar
tree (a single spine to which all leaves are attached) to the other end will create a tree
with the maximum possible RF distance to the original tree, yet this change takes a
single LPR operation. The RF distance between two random binary trees has a very
skewed distribution [17,4] in which most values equal n− 3 (also see section 4.1 for
details).

3 Our Matching Distance

A tree T is uniquely represented by the set of bipartitions Γ(T) = {πe | e ∈ E(T)},
where E(T) is the set of internal edges in T . Given two trees, T1 and T2 on the same set
of leaf labels, we define a complete weighted bipartite graph B(X ,Y,E) with X = Γ(T1)
and Y = Γ(T2), that is, every bipartition is represented by a vertex in B. We denote
this graph by B(T1,T2). An edge (u,v) has weight 0 if the bipartitions u ∈ Γ(T1) and
v ∈ Γ(T2) are the same, otherwise it has weight 1. We can then rephrase the RF distance
between T1 and T2 as the weight of the minimum-weight matching in B(T1,T2).

The binary weighting scheme does not make full use of the information in the bipar-
titions. Each bipartition πe can be represented by a binary vector Ve of length n, where
n is the number of leaves in T1 (or T2). For any leaf i, we set Ve[i] = 1 if leaf i and leaf 1

A Metric for Phylogenetic Trees Based on Matching 201

are on the same side of the bipartition πe and set Ve[i] = 0 otherwise. We set the weight
of each edge e = {u,v} in B(T1,T2) (where vertices u,v in B represent internal edges in
T1 and T2 respectively) to:

W (u,v) = min{DH(Vu,Vv),DH (Vu,V v)},

where DH is the Hamming distance between the two vectors and V , the complement
vector of V , is equal to I−V . The matching distance DM(T1,T2) between trees T1 and T2

is the weight of the minimum-weight matching in B(T1,T2) with the weighting scheme
W . This definition is a natural choice since the Hamming distance between the two
bipartitions represents the minimum number of leaves that must be moved in order to
transform one into the other.

The minimum-weight matching problem can be solved in cubic time [8]. If the input
weights are integers and the value of each weight is not greater than the number of
leaves (as is the case for our matching problem), the running time of the algorithm can
be improved to O(n5/2log(n)) by cost scaling and blocking flow techniques [10] .

3.1 Basic Properties

First, we show that our distance measure is well defined: it is indeed a metric.

Lemma 1. The matching distance DM on binary leaf-labeled trees is a metric.
For any binary trees Ti, Tj and Tk on n labeled leaves, we have

1. DM(Ti,Tj) ≥ 0.
2. DM(Ti,Tj) = 0 if and only if Ti = Tj.
3. DM(Ti,Tj) = DM(Tj,Ti).
4. DM(Ti,Tj) + DM(Tj,Tk) ≥ DM(Ti,Tk).

Proof. Properties 1, 2 and 3 follow directly from the definition of the matching distance.
We prove Property 4. Assume Mi, j and Mj,k are the minimum-weight matchings in
B(Ti,Tj) and B(Tj,Tk). Construct a matching Mi,k = {(u,w)|(u,v)∈Mi, j∧(v,w)∈Mi, j}
in B(Ti,Tk). Since DM(Ti,Tk) is the minimum-weight matching in B(Ti,Tk), we have

DM(Ti,Tk) ≤ ∑
(u,w)∈Mi,k

W (u,w)

≤ ∑
(u,v)∈Mi, j ,(v,w)∈Mj,k

(W (u,v) +W(v,w))

= ∑
(u,v)∈Mi, j

W (u,v) + ∑
(v,w)∈Mj,k

W (v,w)

= DM(Ti,Tj) + DM(Tj,Tk).

Next we investigate extremal properties of our matching distance.

Definition 1. Let T (n) be the space of all binary trees on n labeled leaves. The diameter
(δ) of T (n) with respect to a distance metric D on T (n) is defined as

δ(T (n),D) = max{D(T1,T2) | T1,T2 ∈ T (n)}.

202 Y. Lin, V. Rajan, and B.M.E. Moret

Fig. 3. Example for two trees on n leaves with Matching distance Θ(n2)

Theorem 1

δ(T (n),DRF) = n−3,

δ(T (n),DM) = Θ(n2)

Proof. We prove the bounds on the diameter by explicitly constructing two trees T1 and
T2. For the RF distance, choose T1 and T2 to be two caterpillar trees with different cher-
ries, then no bipartition can appear both in Γ(T1) and Γ(T2), thus (n− 3) mismatches
result in an RF distance of (n−3). For the matching distance, construct two caterpillar
trees T1 and T2 as shown in Fig. 3. The leaves in T1 are ordered as (1, . . . ,n), and the
leaves in T2 are ordered as (n, . . . ,n/2 + 1,1,2, . . . ,n/2). It is easy to verify (by case
analysis) that each bipartition corresponding to an internal edge along the path between
leaf n/8 and leaf 3n/8 in T2 (marked in red) is at least n/8 away from every biparti-
tion in T1. Since there are n/4 such bipartitions in T2, any matching between Γ(T1) and
Γ(T2) will have a weight at least (n/4)∗ (n/8) = Ω(n2). The upper bound is trivial.

3.2 Sensitivity to Tree Editing

We now study the change in the distance measures caused by a single tree editing op-
eration. Let φ(T) be the set of trees derived by applying operation φ to a tree T , where
φ can be one of NNI, SPR, TBR, LPR, or Leaf Label Exchange (LLI), this last an op-
eration that does not alter the tree structure, but simply exchanges the labels of two
leaves.

Definition 2. The gradient of a tree rearrangement operation φ with respect to a dis-
tance metric D on T (n) is defined as

G(T (n),D,φ) = max{D(T1,T2)|T1,T2 ∈ T (n),T2 ∈ φ(T1)}.

Theorem 2

G(T (n),DRF ,NNI) = 1,

G(T (n),DM,NNI) = Θ(n).

Proof. Let T2 be the tree obtained by applying one NNI operation on T1. Every NNI
operation changes only one bipartition in Γ(T1) into a new one in Γ(T2) (induced by the

A Metric for Phylogenetic Trees Based on Matching 203

internal edge which is selected). Thus G(T (n),DRF ,NNI) = 1. Since Γ(T1) and Γ(T2)
share n−4 bipartitions, we can construct a matching M1,2 in B(T1,T2) that contains n−4
matched pairs with weight zero and 1 matched pair with weight at most n. The sum of
the weights for M1,2 is upper bounded by n, and hence DM(T1,T2) ≤ n. Let e = (u,v)
be an internal edge in T1 connecting four rooted subtrees {S1,S2,S3,S4} where S1 and
S2 are attached to u and S3 and S4 are attached to v. Assume each of the four subtrees
contains n/4 leaves and one NNI operation interchanges S2 and S3. The newly created
bipartition by NNI in T2 is now at least Θ(n) distance away from all possible bipartitions
in T1. So any matching in B(T1,T2) will have weight at least Θ(n). From the upper and
lower bounds, we have G(T (n),DM,NNI) = Θ(n).

Theorem 3

G(T (n),DRF ,LPR) = n−3

G(T (n),DM,LPR) = Θ(n).

Proof. The bound for G(T (n),DRF ,LPR) is derived by applying LPR to a caterpil-
lar tree T1, where one leaf at one end of the tree is transposed to the other end of the
tree. Let T2 be the tree obtained by applying one LPR operation on T1. T2 shares no
bipartitions with the tree T1 and the RF distance between them is n− 3. The matching
distance between T1 and T2 is Ω(n) since each pair of bipartitions from Γ(T1) and Γ(T2)
contributes at least 1 to the matching weight and there are n− 3 pairs. Because every
LPR operation only affects two internal edges in Γ(T1) (we remove an internal edge
while pruning and create a new internal edge while regrafting), there are n− 5 inter-
nal edges left untouched and shared by T1 and T2. We can construct a matching M1,2

in B(T1,T2) that contains n− 5 matched pairs corresponding to the shared edges and
another 2 matched pairs. For each matched pair for the shared edges, the weight is at
most 1 since the corresponding bipartitions can only differ at the pruned leaf. For the
other 2 matched pairs, the contribution to the total weight is at most O(n). The weight
for this matching M1,2 is thus bounded by O(n). From the upper and lower bounds, we
have G(T (n),DM ,LPR) = Θ(n).

Theorem 4

G(T (n),DRF ,SPR) = n−3,

G(T (n),DM,SPR) = Θ(n2).

Proof. The bound for G(T (n),DRF ,SPR) follows from Theorem 3 since LPR is a spe-
cial case of SPR and (n−3) is already the maximum change in RF distance. The bound
for G(T (n),DM,SPR) is obtained from the trees in Fig. 3, where one SPR operation on
T1 results in T2 and DM(T1,T2) = Θ(n2).

Theorem 5

G(T (n),DRF ,TBR) = n−3,

G(T (n),DM,T BR) = Θ(n2).

204 Y. Lin, V. Rajan, and B.M.E. Moret

Proof. The results follow directly from Theorem 4 since SPR is a special case of TBR
and both gradients have trivial upper bounds.

Theorem 6

G(T (n),DRF ,LLI) = n−3,

G(T (n),DM ,LLI) = Θ(n).

Proof. The bound for G(T (n),DRF ,LLI) is derived by applying LLI to a caterpillar tree
T1, where the labels of two leaves at two ends of the tree are interchanged. Let T2 be the
tree obtained by applying one LLI operation on T1. T2 shares no bipartitions with the tree
T1, and the RF distance between them is n−3. The matching distance between T1 and
T2 is Ω(n) since each pair of bipartitions from Γ(T1) and Γ(T2) contributes at least 1 to
the matching weight and there are n−3 pairs. Because every LLI operation only affects
two leaves in T1 and T2, all n− 5 internal edges are left untouched. We can construct
a matching M1,2 in B(T1,T2) that contains those n− 3 matched pairs corresponding to
the shared edges. For each matched pair for the shared edges, the weight is at most 2
since the corresponding bipartitions can differ at not more than two leaves. The weight
for this matching M1,2 is thus bounded by O(n). From the upper and lower bounds, we
have G(T (n),DM ,LLI) = Θ(n).

The ratio of the gradient to the diameter is an indication of the sensitivity of the distance
measure. Our theorems indicate that the matching distance has the same asymptotic
sensitivity as the RF distance with respect to NNI, SPR, and TBR, but is more sensitive
than the RF distance with respect to LPR and LLI.

4 Experimental Results

The previous section gave extremal properties of our matching distance, but its main ad-
vantages are best seen by comparing its distribution of values to that of the RF distance.
We have not derived an exact formula for the distribution, but present experimental re-
sults that show that our matching distance on random binary trees yields a distribution
with a fairly broad bell curve, in sharp contrast to the highly skewed distribution of the
RF distance.

4.1 Distribution of the Tree Distance Metrics

We first study the distribution of RF and matching distances by sampling pairs of ran-
dom trees generated in two different ways. The first, uniformly sampled binary trees,
are generated by the randomized leaf attachment process [17]), and the second, birth-
death trees, are generated by a uniform, time-homogeneous birth-death process (birth
rate = 0.1, death rate = 0). Fig. 4 shows the distribution of RF and matching distances
for 100,000 pairs of uniformly sampled binary trees on 100 and 1,000 leaves each and
birth-death trees on 100 leaves. The range of values for each distance is divided into 100
intervals and each point on the x axis represents an interval. Compared to RF (a very
skewed distribution as shown in the figure and in [4]), our matching distance offers a
larger range and is more broadly distributed, and thus also more discriminating.

A Metric for Phylogenetic Trees Based on Matching 205

50 100
0

50,000

100,000

RF Distance (D
RF

)
500 1,000

0

50,000

100,000

RF Distance (D
RF

)
50 100

0

50,000

100,000

RF Distance (D
RF

)

500 1,000 1,500
0

5000

10000

Matching Distance (D
M

)
30,000 60,000

0

5000

10000

Matching Distance (D
M

) 500 1,000
0

5000

10000

15000

Matching Distance (D
M

)

Fig. 4. Distribution of pairwise RF (above) and matching (below) distances between uniformly
sampled binary trees on 100 leaves (left), on 1,000 leaves (middle), and between birth-death trees
on 100 leaves (right)

0 50n 100n
0

500

1,000

of NNI operations

R
F

 D
is

ta
nc

e
(D

R
F
)

0 0.5n n
0

500

1,000

of SPR operations

R
F

 D
is

ta
nc

e
(D

R
F
)

0 n 2n
0

500

1,000

of LLI operations

R
F

 D
is

ta
nc

e
(D

R
F
)

0 50n 100n
0

30,000

60,000

of NNI operations

M
at

ch
in

g
D

is
ta

nc
e

(D
M

)

0 0.5n n
0

30,000

60,000

of SPR operations

M
at

ch
in

g
D

is
ta

nc
e

(D
M

)

0 n 2n
0

30,000

60,000

of LLI operations

M
at

ch
in

g
D

is
ta

nc
e

(D
M

)

Fig. 5. RF (above) and matching (below) distances as a function of the number of NNI operations
(left), SPR operations (middle), and LLI operations (right) for trees on 1,000 leaves (n = 1,000)

4.2 Tree Distance Metrics Under Tree Editing Operations

We study the behavior of both RF and matching metrics under various tree editing
operations. For each operation, we study the change in the distance after successive
applications of the operation. From the distributions of the two distance metrics seen
in the previous section we expect the RF distance to saturate faster and the matching
distance to have a better correlation with the number of tree rearrangement opertions
which is indeed the case. Note that such a comparison with the edit distance (with
respect to the rearrangement operations) is infeasible since it is NP-hard to compute the
distances.

Our experiments start with 1,000 uniformly generated binary trees on 1,000 leaves
each. We summarize the average pairwise RF and matching distances between the trees
and the original as a function of the number of operations applied. Fig. 5 shows RF

206 Y. Lin, V. Rajan, and B.M.E. Moret

and matching distances as a function of the number of NNI operations. While the
RF distance reaches saturation after 10,000 (10n) operations (n = 1,000), our match-
ing distance still shows an increasing trend; indeed, the average matching distance
(~30,000) after 100,000 (100n) operations is still far from the average matching dis-
tance (~50,000) between two randomly selected binary trees on 1,000 leaves (as seen
in Fig. 4). Similar results are shown in Fig. 5 for SPR and LLI operations.

5 Clustering Trees: An Application

In this section we provide a proof-of-concept study of the usefulness of the matching
distance in clustering phylogenetic trees.

Phylogenetic analyses such as maximum-parsimony or maximum-likelihood analy-
ses often produce many (possibly thousands) of candidate trees that are nearly optimal
with respect to the defined objective function. To obtain a biologically relevant tree,
postprocessing of these candidate trees is essential. Consensus tree methods are fre-
quently used to extract the common structure from the candidate trees and summarize
the output; however these methods often lose information and are sensitive to outliers. A
different approach divides the set of candidate trees into several subsets using clustering
methods, each cluster being characterized by its own consensus tree [19]. The authors
of that approach demonstrate an improvement over traditional consensus methods by
obtaining better resolved output trees and by providing details of the distribution of the
candidate trees.

The efficacy of clustering relies on the dissimilarity measure used. We conducted a
preliminary test on RF and matching metrics as dissimilarity measures in clustering. We
generated 100 datasets, each of 200 random binary trees. The trees in each dataset were
generated by a two-step process. We first sampled two binary trees on k leaves (k < 100)
and used them as two different skeletons. Then from each of the two skeletons, a set
of 100 trees is generated by adding the rest of the (n− k) leaves one by one. To add
a new leaf, an edge in the current tree is selected uniformly at random and the new
leaf is attached to that edge. We vary k from 40 (0.4n) to 90 (0.9n). The 200 trees in
each dataset is given as input to the clustering algorithm to check if the algorithm can
distinguish the trees in the two clusters. Trees generated from the same skeleton are
considered to be in the same cluster.

Notice that a MAST-based distance metric can easily distinguish the input trees into
the correct cluster. We deliberately choose this experimental setup to provide a test case
for the matching distance even in those settings where a MAST-based distance will
perform better than RF.

We apply a standard hierarchical clustering approach (recommended for phyloge-
netic postprocessing in [19]) to the pairwise distance matrices generated by RF and
matching distances. The similarity between clusters C1 and C2 is measured by the fol-
lowing three linkage criteria:

1. Complete linkage: max{D(a,b)|a ∈C1,b ∈C2}.
2. Single linkage: min{D(a,b)|a ∈C1,b ∈C2}.
3. Average linkage: 1

|C1||C2| ∑a∈C1,b∈C2
D(a,b).

A Metric for Phylogenetic Trees Based on Matching 207

Table 1. Error rates for the clustering test

0.4n 0.5n 0.6n 0.7n
DRF DM DRF DM DRF DM DRF DM

Complete linkage 70% 0% 71% 0% 38% 0% 3% 0%
Single linkage 22% 8% 23% 0% 0% 0% 0% 0%
Average linkage 49% 0% 3% 0% 0% 0% 0% 0%

A run of the algorithm on a particular dataset is considered to err if it is unable to place
every tree generated from the same skeleton in one cluster. We present the error rate
obtained from 100 such datasets for each parameter in Table 1. For values of k higher
than 0.7n both distance measures perform equally well, but, as expected, the matching
distance has significantly better performance over a large range of input parameters.

6 Conclusion

We have introduced a new tree metric for phylogenetic analysis. This metric can be
computed efficiently, in contrast to various edit distances, and offers better discrimi-
nation than the standard Robinson-Foulds distance, thanks to a much broader and less
biased distribution of distance values. We have given extremal results as well as exper-
imental results to characterize this new metric. Finally, we have demonstrated the use
of this metric in clustering trees with an agglomerative hierarchical clustering method,
where using our metric considerably improved over using the Robinson-Foulds metric.

Acknowledgement

We thank Nicholas D. Pattengale for many helpful discussions.

References

1. Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary
trees. Annals of Combinatorics 5(1), 1–15 (2001)

2. Amir, A., Keselman, D.: Maximum agreement subtree in a set of evolutionary trees: Metrics
and efficient algorithms. SIAM J. Computing 26(6), 1656–1669 (1997)

3. Bryant, D.: Hunting for trees, building trees and comparing trees: Theory and method in
phylogenetic analysis. PhD thesis, University of Canterbury (1997)

4. Bryant, D., Steel, M.: Computing the distribution of a tree metric. ACM/IEEE Trans. on
Comput. Biology and Bioinformatics 6(3), 420–426 (2009)

5. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup, M.: An O(nlogn) al-
gorithm for the maximum agreement subtree problem for binary trees. SIAM J. Comput-
ing 30(5), 1385–1404 (2000)

6. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances between phylo-
genetic trees. In: Proc. 8th ACM/SIAM Symp. Discrete Algs. (SODA 1997), pp. 427–436
(1997)

7. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. J. Classifica-
tion 2(1), 7–28 (1985)

208 Y. Lin, V. Rajan, and B.M.E. Moret

8. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network
flow problems. J. ACM 19(2), 248–264 (1972)

9. Farach, M., Przytycka, T.M., Thorup, M.: On the agreement of many trees. Inf. Process.
Lett. 55(6), 297–301 (1995)

10. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM J. Com-
puting 18(5), 1013–1036 (1989)

11. Hickey, G., Dehne, F., Rau-Chaplin, A., Blouin, C.: SPR distance computation of unrooted
trees. Evol. Bioinform. Online 4, 17–27 (2008)

12. Kao, M.Y.: Tree contractions and evolutionary trees. SIAM J. Computing 27(6), 1592–1616
(1998)

13. Li, M., Tromp, J., Zhang, L.: On the nearest-neighbour interchange distance between evolu-
tionary trees. J. Theor. Biol. 182(4), 463–467 (1996)

14. Pattengale, N.D., Gottlieb, E.J., Moret, B.M.E.: Efficiently computing the Robinson-Foulds
metric. J. Comput. Biol. 14(6), 724–735 (2007)

15. Pattengale, N.D., Swenson, K.M., Moret, B.M.E.: Uncovering hidden phylogenetic consen-
sus. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds.) ISBRA 2010.
LNCS, vol. 6053, pp. 128–139. Springer, Heidelberg (2010)

16. Robinson, D.R., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Bio-
sciences 53, 131–147 (1981)

17. Steel, M., Penny, D.: Distributions of tree comparison metrics—some new results. Syst.
Biol. 42(2), 126–141 (1993)

18. Steel, M., Warnow, T.: Kaikoura tree theorems: computing maximum agreement subtree
problem. Information Processing Letters 48, 77–82 (1993)

19. Stockham, C., Wang, L.-S., Warnow, T.: Statistically-based postprocessing of phylogenetic
analysis using clustering. In: Proc. 10th Conf. Intelligent Systems for Mol. Biol. (ISMB
2002). Bioinformatics, vol. 18, pp. S285–S293. Oxford U. Press, Oxford (2002)

20. Whidden, C., Zeh, N.: A unifying view on approximation and fpt of agreement forests.
In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 390–402.
Springer, Heidelberg (2006)

Describing the Orthology Signal in a PPI

Network at a Functional, Complex Level

Pavol Jancura1, Eleftheria Mavridou2, Beatriz Pontes3, and Elena Marchiori1

1 Institute for Computing and Information Sciences, Radboud University Nijmegen,
Postbus 9010, 6500 GL Nijmegen, The Netherlands

{jancura,elenam}@cs.ru.nl
2 Department of Medical Microbiology, Radboud University Medical Center,

Postbus 9101, 6500 HB Nijmegen, The Netherlands
3 Department of Computer Science, University of Seville,

Avda. Reina Mercedes s/n 41012 Seville, Spain

Abstract. In recent work, stable evolutionary signal induced by orthol-
ogous proteins has been observed in a Yeast protein-protein interaction
(PPI) network. This finding suggests more connected subgraphs of a PPI
network to be potential mediators of evolutionary information. Because
protein complexes are also likely to be present in such subgraphs, it is
interesting to characterize the bias of the orthology signal on the de-
tection of putative protein complexes. To this aim, we propose a novel
methodology for quantifying the functionality of the orthology signal in
a PPI network at a protein complex level. The methodology performs a
differential analysis between the functions of those complexes detected
by clustering a PPI network using only proteins with orthologs in an-
other given species, and the functions of complexes detected using the
entire network or sub-networks generated by random sampling of pro-
teins. We applied the proposed methodology to a Yeast PPI network
using orthology information from a number of different organisms. The
results indicated that the proposed method is capable to isolate func-
tional categories that can be clearly attributed to the presence of an
evolutionary (orthology) signal and quantify their distribution at a fine-
grained protein level.

1 Introduction

In general, two proteins are orthologous if they originated from a common an-
cestor, having been separated in evolutionary time only by a speciation event.
Orthologous proteins have high amino acid sequence similarity and usually retain
the same or very similar function, which allows one to infer biological information
between the proteins. Obviously, orthology as such is very important in studying
evolution. Therefore, the problem of establishing proper orthology relations has
been under the wide investigation in comparative genomics (see for instance [1])
and many databases and public resources of orthologs have been made available,
such as Inparanoid [2] and OrthoMCL-DB[3].

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 209–226, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

210 P. Jancura et al.

Recent studies used this form of evolutionary information to analyse pro-
tein modules and PPI networks, for instance [4,5,6,7,8,9,10,11,12]. In particu-
lar, in a study by Wutchy et al. [6] stable evolutionary signal was found to be
present in a Yeast PPI network as examined by its pairwise orthologs with re-
spect to various different species. They observed that a high local clustering
around protein-protein interactions correlates with evolutionary conservation of
the participating proteins. This means that highly connected proteins and pro-
tein pairs embedded in a well clustered neighbourhood tend to be evolutionary
conserved and therefore retain their evolutionary signal. These findings suggest
also that more connected areas of a PPI network are potential mediators of
evolutionary information.

Because more connected regions of PPI networks contain protein modules or
complexes, in this paper we focus on the explicit use of orthology to see whether
there are functional complexes that can be clearly attributed to this evolution-
ary signal. To this aim, we try to characterize those functions of complexes
predicted by clustering the subgraph of a PPI network induced by all proteins
with orthologs in another given species, but not predicted (or predicted for a
smaller fraction of proteins) when clustering the entire network. We consider
these functions as strong characterization of the underlying evolutionary signal
of orthologs, since they are suppressed or not observed when clustering using
the entire network.

Specifically, we examine highly functionally coherent putative protein com-
plexes as detected by two state-of-the-art clustering techniques in the Yeast PPI
network using only proteins with orthologs in another given organism. Our tar-
get clusters should contain a function which can be genuinely attributed to the
orthology signal and exclude the case that it could be attributed by chance.
Therefore we consider three classes of clusters, consisting of putative complexes
as detected by these clustering techniques applied to the Yeast PPI network
with (1) all proteins, (2) only proteins with ortholog in the considered other
organism, and (3) randomly selected proteins. The latter class of clusters is the
collection of cluster sets produced by the application of clustering to the PPI
network induced by a random selection of a set of proteins (of size equal to that
of the set of proteins used to generate the class (2)) repeated for dozens times.
For all clusters in each class we infer putative functions by measuring their gene
ontology (GO) functional enrichment [13].

In general, protein functions belong to certain functional categories. Hence,
we map all putative functions inferred from the clusters to these categories. For
a set of clusters and a certain category, we compute the fraction of proteins
contained in the clusters and having functions mapped to that category. This
fraction quantifies (at protein level) the presence of that functional category in a
given cluster set. This allows us to identify functional categories whose proteins’
fraction is higher in clusters from the class (2) than in clusters from the other
two classes. We consider the corresponding clusters in class (2) as describing the
orthology signal (with respect to considered species). Furthermore, we analyse
those clusters of class (2) having a predicted function for its proteins that is not

Describing the Orthology Signal in a PPI Network at a Complex Level 211

inferred when using clusters of class (1). Finally we discuss the new meaningful
functions for well-defined as well as for unknown proteins that are present in the
compilation of putative complexes.

2 Other Related Work

In previous works on phylogenetic analysis of protein networks and complexes
evolutionary information was usually used as a mean for evaluating the preser-
vation of orthology information in functional modules [5,8,9,10]. Here, however,
we incorporate evolutionary information beforehand for detecting evolutionary
signal at complex, functional level. Our identification of protein complexes uses
only the topology of the network of the considered species and orthology infor-
mation from another species, without requiring knowledge on the interactome
of the other species.

In general, our approach differs from comparative network methods [14], as
the latter aim to find evolutionary conserved modules across species, and ex-
ploit both orthology and network topology of the considered organisms. The
clusters we obtain are in one species and are related to the orthology signal
with respect to another species, but are not required to be evolutionary con-
served through species (we do not enforce any type of similarity at the graph-
structure level). Furthermore, comparative methods mostly do not use ‘known’
orthologs in available databases but rather they rely on sequence similar proteins,
where the level of required similarity is determined by a minimal similarity score
threshold. Instead, our method exploits the orthology information available in
existing databases.

3 Method

The following terminology is used in the sequel. A PPI network is represented
by means of a graph G(V, E), where V is the set of nodes (proteins) and E is the
set of edges (binary interactions). Let X be a subset of nodes V (e.g. ortholog
set). The set X induces a subgraph G[X] = (X, EX) of G, with set X of nodes
and set EX of those edges of E that join two nodes in X . For a set S, we denote
by |S| the number of its elements.

We are interested in quantifying the orthology signal by means of a set of
functions of putative protein complexes detected by applying clustering to a PPI
network. To this end, we directly exploit evolutionary information of proteins as
described by the presence of orthologs in another, given species. We call these
proteins ’true orthologs’. Specifically, we propose the following methodology.

Given a PPI network G = (V, E) and a given species s, apply the following
steps.

1. Retrieve from a database the set O of ’true orthologs’ of V with respect to s,
with |O| = n.

2. Generate the following three classes of clusters, using a given clustering al-
gorithm.

212 P. Jancura et al.

(a) Class 1 clusters (GC). Apply clustering to the whole PPI network G.
(b) Class 2 clusters (OC). Apply clustering to the sub-network induced by

O.
(c) Class 3 clusters (RC). Apply clustering to the sub-network induced by a

randomly selected subset of V of size n. Repeat the process a number N
of times. Consider all sets of clusters detected across these runs (RC =
{RC1, RC2, . . . , RCN}).

3. For each class of clusters,
(a) Infer putative complexes and their functional categories.
(b) For each functional category, compute the fraction of those proteins in

the detected complexes which have been assigned to that category.
4. Select the set of those functional categories derived using clusters from class

2 and whose fraction are higher than those of the same category derived using
clusters from class 1 or from class 3.

5. Output the set of clusters having at least one of the selected functional cate-
gories.

In this study we consider as putative protein complex only a group of proteins
of a higher complexity than just a single protein-protein interaction. Therefore,
after applying any clustering method we retain only clusters of size greater or
equal than 3.

In the sequel we describe in more detail the main steps of the proposed
methodology.

Inferring Putative Complexes and their Functional Categories. In or-
der to infer the the putative functions of a cluster, we measure the enrichment
of functional annotations of the corresponding protein set, as entailed by the
gene ontology (GO) annotation [13], using one of the well-established tools, the
Ontologizer1 [15]. The Ontologizer offers various algorithms for measuring GO
enrichments. Here, we apply the standard statistical analysis method based on
the one-sided Fisher’s exact test [15], which measures the statistical significance
of an enrichment and assigns to the cluster a p-value for each enriched function.
The p-value is further corrected for multiple testing by means of a Bonferroni
correction procedure.

The GO is known to have a hierarchical structure (directed acyclic graph)
which can be used to define the level of an annotation. Specifically, the level of
an annotation is equal to the length of the shortest path from the root of GO
hierarchy to the annotation. The GO terms closer to the root of GO give more
general description of biological functions while terms closer to the leaves of GO
have granular and very specific biological definitions.

Each detected cluster is a potential protein complex. The quality of a protein
cluster is given by the coherence of biological functions of proteins contained
in the cluster. If a certain subset of proteins in a cluster has a significantly
coherent function, a prediction of that function for all proteins in the cluster can
be made. We may obtain more than one protein function prediction if we find
1 http://compbio.charite.de/index.php/ontologizer2.html

http://compbio.charite.de/index.php/ontologizer2.html

Describing the Orthology Signal in a PPI Network at a Complex Level 213

more significantly coherent functions in the cluster. We say that proteins of a
cluster have a significantly coherent function or functional GO annotation if the
following criteria are satisfied:

1. the GO annotation is significantly enriched by the proteins in the cluster
(p-value < 0.001).

2. more than half of the proteins in the cluster has this significant annotation.
3. the annotation is at least at the GO level four from the root of GO hierarchy.

In such a case the cluster can be used as protein function predictor and the
significantly enriched GO annotation of the cluster is used to predict protein
function of each of the proteins in that cluster. If a cluster does not satisfy the
above conditions, no prediction can be made. Similar criteria were used by, e.g.
[16,17]. The condition on GO hierarchy guarantees that the prediction about bi-
ological functions is sufficiently specific and informative [18]. Each cluster which
is a predictor defines a putative protein complex and the set of significantly
coherent functions defines the set of inferred functions.

Estimating the Frequency of a Functional Category. After identifying
putative protein complexes, we use them to quantify, at a fine-grained, protein
level, the frequency with which a functional category was detected: for each
functional category inferred using the putative protein complexes, we count the
fraction of those proteins in the putative complexes assigned to that category.

Specifically, functional categories are determined by GO slim functional terms,
defined in the GO hierarchy as a subset of the higher level GO terms. Each GO
slim characterizes a certain type of biological functions which have some features
and tasks in common. As a result, each fine-grained term can be mapped to these
GO slims’ terms.

The GO also consists of three main independent domains, biological process,
molecular function and cellular component, and each of them has its own GO
slim terms and hence functional categories. Given a GO domain and proteins of
a cluster group of interest one can map all inferred functions of each protein to
their closest GO slims in the GO hierarchy. Then for every functional category
we can count the number of proteins being mapped to the category. In this
framework we define the frequency of a functional category as follows.

Let C be a set of putative complexes and P (f) denote the set of proteins
contained in C and being mapped to a functional category f . Let B be a set of
background functional categories (functional background). Then the frequency
of a functional category f in C with respect to the background B is

φC(f) =
|P (f)|
|P (B)| , where P (B) =

⋃
∀b∈B

P (b). (1)

Notice that in our definition we consider an individual background for each GO
domain.

The frequency of a functional category can be viewed as the expectation that
a protein in a given set of putative complexes has that functional category. This
results in a distribution of functional categories associated to a set of complexes.

214 P. Jancura et al.

Identifying Orthology-Related Categories. Since we are interested in
analysing the evolutionary (orthology) signal, we use as the functional back-
ground the set of functional categories enriched by the class 2 putative complexes.
Therefore we compute the functional frequencies for each class of putative com-
plexes using this background. For class 3 (random sampling), for each functional
category, we average the frequencies over all random simulations as follows

φRC(f) =
∑N

i=1 φRCi(f)
N

. (2)

Once the functional frequencies are computed, we isolate functional categories
related to the orthology signal by the following simple rule:

A functional category f is orthology-related iff

φOC(f) > max{φGC(f), φRC(f)}. (3)

4 Experimental Settings

4.1 Data Collection

We chose to perform our analysis on the widely used and well-studied species Sac-
charomyces cerevisiae (yeast), which PPI network is one of the best established
and information on functionality of its proteins are one of the most explored.
This makes yeast as a good standard model species for protein network analysis.

We used the same yeast interaction data as in [19] which combines interaction
data from DIP [20] and MPact [21], and interactions from the core datasets of
the TAP mass spectrometry experiments [22,23]. This yeast interaction data are
weighted by the method proposed by Jansen et al. [24] to measure the confidence
of interactome. As a result, the low confidence interactions are ignored and the
final yeast PPI network consists of 3545 proteins and 14354 interactions.

For obtaining orthology information we used the Inparanoid Database of Pair-
wise Ortholog2 [2]. This database contains clusters of ortholog groups (COGs)
constructed by the Inparanoid program, which is a fully automatic method for
finding orthologs and in-paralogs between two species. Ortholog clusters in the
Inparanoid are seeded with a two-way best pairwise match (the seed ortholog
pair), after which an algorithm for adding in-paralogs is applied. The Inparanoid
was found as one of the best performing algorithms for orthology detection with
respect to its false negative and false positive rates [25].

Because in-paralogs are homologs that arise when duplication occurs after
speciation, and the duplicated gene often still retains the function of the ortholog
[26], they should be likely found in one protein complex. Therefore we consider
all proteins present in COGs for inducing an orthology PPI sub-network and, for
simplicity, we consider all proteins in a COG as orthologs. Specifically, further
in this study we call orthologous protein or ortholog a protein which is a part of
an orthologous cluster produced by the Inparanoid when comparing two species.
2 http://inparanoid.sbc.su.se/

http://inparanoid.sbc.su.se/

Describing the Orthology Signal in a PPI Network at a Complex Level 215

In our analysis, COGs were obtained for the following pairs of organisms:

– Saccharomyces cerevisiae vs. Escherichia coli
– Saccharomyces cerevisiae vs. Caenorhabditis elegans
– Saccharomyces cerevisiae vs. Drosophila melanogaster
– Saccharomyces cerevisiae vs. Homo sapiens

Escherichia coli (E.coli), Caenorhabditis elegans (worm), Drosophila melanogaster
(fly) and Homo sapiens (human) are standard organisms used in protein network
and genome comparative studies (e.g [27,28]) and represent the diverse life-forms
from a prokaryote (E.coli) to the highly complex eukaryote (Human). Yeast pro-
teins in the derived ortholog groups are called yeast orthologs. We considered the
following 4 sets of yeast orthologs (present in the yeast PPI data), namely Yeast-
E.coli, Yeast-Worm, Yeast-Fly, Yeast-Human, consisting of 451, 1664, 1724, and
1850 number of proteins.

4.2 Yeast Protein Function Annotations and Gene Ontology Files

In order to measure functional enrichments of clusters we used only experi-
mentally verified annotations as reported in the yeast gene association file of
Saccharomyces Genome Database3 (SGD), available at the GO database4. We
excluded all computationally assigned annotations to yeast proteins to avoid
introducing a possible bias, because many of these techniques use protein struc-
tural or sequence similarity which may often refer to orthology. GO slims and
terms are also available at GO database.

4.3 Clustering

In this study we used two clustering techniques: SiDeS and MCL. We briefly
address their properties:

MCL [29] computes clusters based on simulation of stochastic flow in graphs and
it is widely used on many domains. It is able to use information on weights
of edges of a given network if available. A first successful application of this
algorithm on biological networks was presented in [30]; MCL was also modi-
fied for detecting orthologous groups [31]. A recently published comparative
study [32] indicated that MCL outperforms other algorithms for clustering
PPI networks. The inflation parameter of the algorithm was set to 1.8 as
suggested in [32].

SiDeS [33], in contrast, is not able to use information on weights of edges. How-
ever, the main advantage of SiDeS is that it directly addresses the problem
of statistical significance of cluster density, based on the topological structure
of a PPI network, during computation. Thus, all clusters isolated by SiDeS

3 http://www.yeastgenome.org/
4 http://www.geneontology.org/GO.downloads.shtml, SGD version: 1.1523 date:

11/13/2010, GO version: 1.1.1602 date: 16/11/2010, GO Slim version: 1.1.1543 date:
19/10/2010.

http://www.yeastgenome.org/
http://www.geneontology.org/GO.downloads.shtml

216 P. Jancura et al.

have statistically significant density and therefore the resulting clusters tend
to be more biologically relevant than those produced by other methods,
albeit fewer in number. SiDeS modifies an existing state-of-the-art graph
clustering algorithm, HCS [34], based on recursive partitioning of a graph
and incorporating the computation of statistical significance of clusters.

The above two clustering algorithms are different in their basic concepts and
combining their results for identifying orthology-related functional categories
should effectively minimize the possibility of finding an artefact. Therefore we
applied both clustering algorithms on each yeast PPI sub-network induced by
every set of yeast orthologs as well as on all yeast PPI sub-networks induced by
repeated random protein selection of the same number of proteins as the protein
count of a particular yeast ortholog set. We labelled each resulting cluster group
as follows:

– OYC-E - yeast clusters found in the sub-network induced by the Yeast-E.coli
ortholog set.

– OYC-W - yeast clusters found in the sub-network induced by the Yeast-
Worm ortholog set.

– OYC-F - yeast clusters found in the sub-network induced by the Yeast-Fly
ortholog set.

– OYC-H - yeast clusters found in the sub-network induced by the Yeast-
Human ortholog set.

These groups are of the class (2) and we generally refer to them by the common
name OYC. Analogically we also marked cluster groups induced by randomly
sampled proteins as follows:

– RYC-E - yeast clusters found in the sub-network induced by random sampled
proteins of the same number as the number of proteins in the Yeast-E.coli
ortholog set.

– RYC-W - yeast clusters found in the sub-network induced by random sam-
pled proteins of the same number as the number of proteins in the Yeast-
Worm ortholog set.

– RYC-F - yeast clusters found in the sub-network induced by random sampled
proteins of the same number as the number of proteins in the Yeast-Fly
ortholog set.

– RYC-H - yeast clusters found in the sub-network induced by random sampled
proteins of the same number as the number of proteins in the Yeast-Human
ortholog set.

These groups belong to the class (3) and we generally refer to them by the
common name RYC.

When MCL or SiDeS applied on the whole yeast network, we get clusters of
the class (1) and we refer to them by the name GYC (general yeast clusters).

We randomly sampled proteins 1000 times for each given number of orthologs.
Recall that every run produces one particular RYC group. In order to compare
these clusters with GYC or OYC, we always report average values of RYC groups

Describing the Orthology Signal in a PPI Network at a Complex Level 217

Table 1. Numbers of Clusters

MCL SiDeS

Cluster Group #Clusters #Predictors #Clusters #Predictors

GYC 365 147 122 93

OYC-E 37 14 5 3
RYC-E 34.31 (±3.82) 12.69 (±2.96) 4.71 (±2.08) 3.8 (±1.76)

OYC-W 181 80 66 46
RYC-W 175.22 (±7.21) 67.85 (±5.87) 55.04 (±5.57) 40.32 (±4.54)

OYC-F 191 80 64 51
RYC-F 181.97 (±7.51) 70.32 (±6.01) 57.71 (±5.57) 42.25 (±4.49)

OYC-H 203 90 82 62
RYC-H 196.38 (±7.80) 75.71 (±6.21) 63.42 (±5.67) 46.12 (±4.68)

computed over all 1000 simulations according to a given ortholog set (average
RYC values).

Tables 1 contains the number of all clusters and corresponding cluster predic-
tors for GYC, all four OYC and average RYC, as identified by MCL and SiDeS.

5 Results

The detected cluster predictors are considered as putative protein complexes and
used to identify orthology-related functional categories. For each cluster group
of predictors we compute the functional frequencies with respect to the cate-
gories enriched by OYC, as explained in Section 3. Figure 1 shows the frequency
distribution of GYC, OYC-W and RYC-W clusters as detected by SiDeS.

In Tables 4 and 5 (see the Appendix) frequencies are reported as measured by
MCL and SiDeS OYC-W clusters, respectively. Observe that not all orthology-
related functional categories are shared by MCL or SiDeS cluster groups. To
minimize the possibility of false positives, we employed a conservative approach
and considered as orthology-related functional categories only those identified
by both clustering techniques. The results are listed in Table 2.

5.1 Orthology-Related Functional Categories

For Yeast-E.coli orthologs, the identified clusters have higher frequencies of ribo-
somal and mitochondrial proteins. Indeed, it has been shown that the ribosomes
in the mitochondria of eukaryotic cells resemble those in bacteria, reflecting the
likely evolutionary origin of this organelle [35].

Since worm, fly and human all belong to eukaryotes, we looked at which com-
mon functional categories have yeast clusters containing orthologs with respect
to these species (reported in Table 2 in boldface). Considering molecular func-
tions, we observed that protein binding proteins and kinases activity proteins
are more frequently present in OYC clusters than in GYC clusters or in RYC

218 P. Jancura et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GO:0005623

GO:0005737

GO:0016023

GO:0005768

GO:0005794

GO:0005739

GO:0005840

GO:0005773

GO:0005829

GO:0005622

GO:0005694

GO:0000228

GO:0005856

GO:0005634

GO:0005730

GO:0005654

GO:0043226

GO:0043234

F
re

qu
en

cy

Functional Frequencies of Yeast−Worm SiDeS Predictors

GYC
OYC
RYC

Fig. 1. Functional frequencies for Yeast-Worm orthologs as estimated by SiDeS pre-
dictors. On x-axis GO ids of GO slim functional categories are reported.

clusters. Thus these functional categories might be considered as orthology re-
lated. This is true in particular for proteins of protein kinase activity, which have
been found conserved among eukaryotes: these kinase’ functional conservations
were investigated for yeast, worm, fly and human when studying their evolution
[36]. Moreover, kinases’ proteins are known to regulate the majority of cellu-
lar pathways, especially those involved in signal transduction. As we may see,
signal transduction is also identified as orthology-related functional category.
Regarding orthology-related protein binding, many functions of this category
also showed high sequence conservation among eukaryotes (e.g [37,38]).

The next functional category which is orthology-related is translation. Many
machineries involved with translation are expected to be evolutionary conserved
as supported, e.g., by the evidence of finding a conserved protein family involved
in translation [39], or by the presence of an evolutionary conserved mechanism
for controlling the efficiency of protein translation [40].

Finally, we also observed OYC complexes containing vacuole proteins to be
orthology-related. This is again supported by works which investigated yeast vac-
uole’s proteins and function of their orthologs in other species. In particular, mam-
malian orthologs of yeast vacuolar protein sorting have been found to participate
in early endosomal fusion and to interact with the cytoskeleton [41], and a very
recent study of the same protein group revealed homologous genes and pathways
that promote ageing in organisms ranging from yeast to mammals [42].

Describing the Orthology Signal in a PPI Network at a Complex Level 219

Table 2. Orthology-related functional categories. The spacing reflects the tree struc-
ture of GO slims in GO hierarchy. Functional categories in boldface are those shared
by all OYC groups of eukaryotic orthologs.

Cluster Group GO ID Name GO Domain

OYC-E GO:0005739 mitochondrion Cellular Component
GO:0005840 ribosome Cellular Component

OYC-W GO:0005622 intracellular Cellular Component
GO:0005730 nucleolus Cellular Component

GO:0005773 vacuole Cellular Component
GO:0016023 cytoplasmic membrane-bounded vesicle Cellular Component

GO:0006412 translation Biological Process
GO:0007165 signal transduction Biological Process
GO:0009056 catabolic process Biological Process
GO:0019538 protein metabolic process Biological Process

GO:0005515 protein binding Molecular Function
GO:0003824 catalytic activity Molecular Function

GO:0004721 phosphoprotein phosphatase activity Molecular Function
GO:0016301 kinase activity Molecular Function
GO:0004672 protein kinase activity Molecular Function

OYC-F GO:0005730 nucleolus Cellular Component
GO:0005773 vacuole Cellular Component
GO:0043234 protein complex Cellular Component

GO:0006412 translation Biological Process
GO:0007165 signal transduction Biological Process
GO:0009056 catabolic process Biological Process
GO:0019538 protein metabolic process Biological Process
GO:0006139 nucleobase,-side,-tide and nucl. acid metab. proc. Biological Process

GO:0005515 protein binding Molecular Function
GO:0003677 DNA binding Molecular Function
GO:0008135 translation factor activity, nucleic acid binding Molecular Function
GO:0016301 kinase activity Molecular Function
GO:0004672 protein kinase activity Molecular Function

OYC-H GO:0005654 nucleoplasm Cellular Component
GO:0005773 vacuole Cellular Component
GO:0005829 cytosol Cellular Component
GO:0016023 cytoplasmic membrane-bounded vesicle Cellular Component

GO:0006412 translation Biological Process
GO:0007165 signal transduction Biological Process
GO:0009056 catabolic process Biological Process

GO:0005488 binding Molecular Function
GO:0005515 protein binding Molecular Function

GO:0016740 transferase activity Molecular Function
GO:0016301 kinase activity Molecular Function
GO:0004672 protein kinase activity Molecular Function

5.2 Orthology-Related Putative Protein Complexes

We consider orthology-related clusters those clusters whose proteins perform at
least one function of an orthology-related functional category. In Table 3 we re-
port the number of orthology-related clusters found by the generated predictors.
We call unique MCL or SiDeS clusters those orthology-related clusters whose

220 P. Jancura et al.

proteins have a predicted function that is not inferred for those proteins by any
GYC cluster identified by MCL or by SiDeS, respectively. These are the com-
plexes that are new and derived using (the protein complex composition present
in) the orthology sub-network, that is, uniquely linked to the orthology signal.

Given a unique cluster and its protein having a novel predicted function not
inferred by any GYC cluster containing the protein. Then, if the function pre-
diction is experimentally or computationally annotated in SGD, this prediction
is verified. Analogously, if we find the novel predicted function has not been
experimentally or computationally annotated in SGD, then this prediction is a
new one. Observe that one cluster can have verified as well as new predictions at
the same time. The number of clusters that produce verified and/or new protein
predictions are reported in Table 3.

Examples of these novel complexes are given in the Appendix (Table 6): they
demonstrate that by examining different set of orthologs we found specific pu-
tative complexes, most of them crucial for a living cell.

For instance, proteins of Cluster 1. are predicted to be involved in mitochon-
drial proton-transporting ATP synthase, catalytic core. While ATP1 and ATP2
are indeed the part of the catalytic core, ATP3 is part of the central stalk of
mitochondrial proton-transporting ATP synthase. Cluster 1., however, gives a
proper suggestion for the mechanism of the ATP3. Moreover, as ATP3 interacts
with ATP2 it may be involved also in the catalytic core.

In Cluster 2. polyadenylation-dependent r-,t- and m-RNA catabolic process is
newly predicted for NRD1 protein. This complies with recent findings that NRD1
is RNA-binding protein functioning in the poly(A) independent termination, in
which binding to the combined and/or repetitive termination elements elicits
efficient termination [43].

Cluster 3. is a predictor for INO80 complex. Three proteins, SWR1, IES6 and
VPS72, have not yet been found to be part of this complex, however all of them
associate with chromatin, where IES6 directly associates with the INO80 chro-
matin remodelling complex. This predictor has been found by both clustering
methods independently.

In Cluster 4. ERR3 is a protein of unknown function, which has similarity
to enolases. The predictor was found for Yeast-Worm as well as for Yeast-Fly
orthologs, and it suggests that ERR3 is part of the ubiquitin conjugating enzyme
complex.

Cluster 5. predicts COPII vesicle coat proteins. This cellular component was
not predicted by any GYC predictor. Newly associated proteins with COPII are
HIP1 and BUG1. These predictions seem to correctly suggest their functioning
in a cell, as BUG1 is cis-golgi localized protein involved in endoplasmic reticulum
to Golgi transport, and HIP1 is a high-affinity histidine permease, also involved
in the transport of manganese ions.

Protein predictions for COPI vesicle coat are inferred by Cluster 6., where
novel ones are for ARF1, ARF2 and ERV41 proteins. ARF1 and ARF2 are
ADP-ribosylation factors involved in regulation of coated vesicle formation in
intracellular trafficking within the Golgi. Because vesicles with COPI coats are

Describing the Orthology Signal in a PPI Network at a Complex Level 221

Table 3. Numbers of orthology-related clusters

Cluster Group Method #Predictors #Ort-related. #Unique #Verified #New

OYC-E MCL 14 4 4 3 4
SiDeS 3 2 1 0 1

OYC-W MCL 80 37 32 29 31
SiDeS 46 29 20 19 15

OYC-F MCL 80 57 40 37 38
SiDeS 51 44 34 32 28

OYC-H MCL 90 33 24 20 23
SiDeS 62 31 26 17 21

found associated with Golgi membranes at steady state [44], it suggests that
these predictions might be correct. ERV41 is a protein localized to COPII-coated
vesicles, but again our clusters at least properly predicts a possible role of protein
in a cell.

Clusters 5. and 6. were partially also discovered by Yeast-Worm and Yeast-
Human orthologs. Interestingly, each of them was discovered by a different clus-
tering technique.

Cluster 7. consists of mostly DNA-directed RNA polymerase II proteins. Al-
though proteins DST1, TFG2 and RPA135 have not been found to be directly
part of this complex, the predictor properly associates these proteins with RNA
polymerase system functioning. DST1 is a general transcription elongation factor
TFIIS and it enables RNA polymerase II to read through blocks to elongation.
TFG2 is a Transcription Factor II middle subunit involved in both transcription
initiation and elongation of RNA polymerase II. Finally, RPA135 is RNA poly-
merase I second largest subunit A135. Thus, the protein is correctly associated
with RNA polymerases and additionally our prediction also suggests that it may
play a role in formation of RNA polymerase II.

6 Conclusions

We proposed a novel methodology for quantifying the functionality of the orthol-
ogy signal in a PPI network at a protein complex level. The methodology per-
forms a differential analysis between the functions of those complexes detected
by clustering a PPI network using only proteins with orthologs in another given
species, and the functions of complexes detected using the entire network or a
sub-network generated by random sampling of proteins.

Results of our experimental analysis indicated the usefulness of the proposed
methodology to identify functional categories clearly attributed to the presence
of an evolutionary (orthology) signal. The distribution of these categories was
described by means of protein functions inferred from those putative complexes
detected by clustering a PPI network using an explicit orthology bias incorpo-
rated in the search space.

222 P. Jancura et al.

Acknowledgements. We are grateful to Elisabeth Georgii and Koji Tsuda for
sharing the protein interaction data used in [19].

References

1. Kuzniar, A., van Ham, R.C., Pongor, S., Leunissen, J.A.: The quest for orthologs:
finding the corresponding gene across genomes. Trends in Genetics 24(11), 539–551
(2008)

2. Remm, M., Storm, C.E., Sonnhammer, E.L.: Automatic clustering of orthologs and
in-paralogs from pairwise species comparisons. Journal of Molecular Biology 314(5),
1041–1052 (2001)

3. Chen, F., Mackey, A.J., Stoeckert, C.J., Roos, D.S.: OrthoMCL-DB: querying a
comprehensive multi-species collection of ortholog groups. Nucleic Acids Research
34(suppl 1) D363–D368

4. Vespignani, A.: Evolution thinks modular. Nature Genetics 35(2), 118–119 (2003)
5. Wuchty, S., Oltvai, Z.N., Barabási, A.L.: Evolutionary conservation of motif con-

stituents in the yeast protein interaction network. Nature Genetics 35(2), 176–179
(2003)

6. Wuchty, S., Barabási, A.L., Ferdig, M.: Stable evolutionary signal in a yeast protein
interaction network. BMC Evolutionary Biology 6(1), 8 (2006)

7. Brown, K., Jurisica, I.: Unequal evolutionary conservation of human protein inter-
actions in interologous networks. Genome Biology 8(5), R95 (2007)

8. Campillos, M., von Mering, C., Jensen, L.J., Bork, P.: Identification and anal-
ysis of evolutionarily cohesive functional modules in protein networks. Genome
Research 16(3), 374–382 (2006)

9. Fokkens, L., Snel, B.: Cohesive versus flexible evolution of functional modules in
eukaryotes. PLoS Comput. Biol. 5(1), e1000276 (2009)

10. Erten, S., Li, X., Bebek, G., Li, J., Koyuturk, M.: Phylogenetic analysis of modu-
larity in protein interaction networks. BMC Bioinformatics 10(1), 333 (2009)

11. Yosef, N., Kupiec, M., Ruppin, E., Sharan, R.: A complex-centric view of protein
network evolution. Nucleic Acids Research 37(12), e88 (2009)

12. Woźniak, M., Tiuryn, J., Dutkowski, J.: MODEVO: exploring modularity and evo-
lution of protein interaction networks. Bioinformatics 26(14), 1790–1791 (2010)

13. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M.,
Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. the
gene ontology consortium. Nature Genetics 25(1), 25–29 (2000)

14. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nature Biotechnology 24(4), 427–433 (2006)

15. Bauer, S., Grossmann, S., Vingron, M., Robinson, P.N.: Ontologizer 2.0–a multi-
functional tool for GO term enrichment analysis and data exploration. Bioinfor-
matics 24(14), 1650–1651 (2008)

16. Liang, Z., Xu, M., Teng, M., Niu, L.: Comparison of protein interaction networks
reveals species conservation and divergence. BMC Bioinformatics 7(1), 457 (2006)

17. Jancura, P., Marchiori, E.: Dividing protein interaction networks for modular net-
work comparative analysis. Pattern Recognition Letters 31(14), 2083–2096 (2010)

18. Yon Rhee, S., Wood, V., Dolinski, K., Draghici, S.: Use and misuse of the gene
ontology annotations. Nat. Rev. Genet. 9(7), 509–515 (2008)

Describing the Orthology Signal in a PPI Network at a Complex Level 223

19. Georgii, E., Dietmann, S., Uno, T., Pagel, P., Tsuda, K.: Enumeration of condition-
dependent dense modules in protein interaction networks. Bioinformatics 25(7),
933–940 (2009)

20. Xenarios, I., Salẃınski, �L., Duan, X.J., Higney, P., Kim, S.M., Eisenberg, D.: Dip,
the database of interacting proteins: a research tool for studying cellular networks
of protein interactions. Nucleic Acids Research 30(1), 303–305 (2002)

21. Guldener, U., Munsterkotter, M., Oesterheld, M., Pagel, P., Ruepp, A., Mewes,
H.W., Stumpflen, V.: MPact: the MIPS protein interaction resource on yeast. Nucl.
Acids Res. 34(suppl 1), D436–D441 (2006)

22. Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz,
J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M.,
Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi,
T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A.,
Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M.,
Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga,
G.: Functional organization of the yeast proteome by systematic analysis of protein
complexes. Nature 415, 141–147 (2002)

23. Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu,
S., Datta, N., Tikuisis, A.P., Punna, T., Peregŕın-Alvarez, J.M., Shales, M., Zhang,
X., Davey, M., Robinson, M.D., Paccanaro, A., Bray, J.E., Sheung, A., Beattie,
B., Richards, D.P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A.,
Canete, M.M., Vlasblom, J., Wu, S., Orsi, C., Collins, S.R., Chandran, S., Haw,
R., Rilstone, J.J., Gandi, K., Thompson, N.J., Musso, G., St Onge, P., Ghanny, S.,
Lam, M.H., Butland, G., Altaf-Ul, A.M., Kanaya, S., Shilatifard, A., O’Shea, E.,
Weissman, J.S., Ingles, C.J., Hughes, T.R., Parkinson, J., Gerstein, M., Wodak,
S.J., Emili, A., Greenblatt, J.F.: Global landscape of protein complexes in the yeast
saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)

24. Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung, S., Emili,
A., Snyder, M., Greenblatt, J.F., Gerstein, M.: A Bayesian Networks Approach for
Predicting Protein-Protein Interactions from Genomic Data. Science 302(5644),
449–453 (2003)

25. Chen, F., Mackey, A.J., Vermunt, J.K., Roos, D.S.: Assessing performance of or-
thology detection strategies applied to eukaryotic genomes. PLoS ONE 2(4), e383
(2007)

26. Dolinski, K., Botstein, D.: Orthology and functional conservation in eukaryotes.
Annual Review of Genetics 41(1), 465–507 (2007)

27. Bhardwaj, N., Lu, H.: Correlation between gene expression profiles and protein-
protein interactions within and across genomes. Bioinformatics 21(11), 2730–2738

28. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T.,
Karp, R.M., Ideker, T.: From the Cover: Conserved patterns of protein interaction
in multiple species. Proceedings of the National Academy of Sciences 102(6), 1974–
1979 (2005)

29. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht (May 2000)

30. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-
scale detection of protein families. Nucl. Acids Res. 30(7), 1575–1584 (2002)

31. Li, L., Stoeckert, C.J., Roos, D.S.: OrthoMCL: Identification of Ortholog Groups
for Eukaryotic Genomes. Genome Research 13(9), 2178–2189 (2003)

32. Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein
interaction networks. BMC Bioinformatics 7(1), 488 (2006)

224 P. Jancura et al.

33. Koyuturk, M., Szpankowski, W., Grama, A.: Assessing significance of connectiv-
ity and conservation in protein interaction networks. Journal of Computational
Biology 14(6), 747–764 (2007); PMID: 17691892

34. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf.
Process. Lett. 76(4-6), 175–181 (2000)

35. Benne, R., Sloof, P.: Evolution of the mitochondrial protein synthetic machinery.
Biosystems 21(1), 51–68 (1987)

36. Manning, G., Plowman, G.D., Hunter, T., Sudarsanam, S.: Evolution of protein
kinase signaling from yeast to man. Trends in Biochemical Sciences 27(10), 514–520
(2002)

37. Sedeh, R.S., Fedorov, A.A., Fedorov, E.V., Ono, S., Matsumura, F., Almo, S.C.,
Bathe, M.: Structure, evolutionary conservation, and conformational dynamics of
homo sapiens fascin-1, an f-actin crosslinking protein. Journal of Molecular Biol-
ogy 400(3), 589–604 (2010)

38. Capra, J.A., Laskowski, R.A., Thornton, J.M., Singh, M., Funkhouser, T.A.: Pre-
dicting protein ligand binding sites by combining evolutionary sequence conserva-
tion and 3d structure. PLoS Comput. Biol. 5(12), e1000585 (2009)

39. Frolova, L., Le Goff, X., Rasmussen, H.H., Cheperegin, S., Drugeon, G., Kress,
M., Arman, I., Haenni, A.L., Celis, J.E., Phllippe, M., Justesen, J., Kisselev, L.:
A highly conserved eukaryotic protein family possessing properties of polypeptide
chain release factor. Nature 372, 103–701 (1994)

40. Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y., Zaborske, J., Pan,
T., Dahan, O., Furman, I., Pilpel, Y.: An evolutionarily conserved mechanism for
controlling the efficiency of protein translation. Cell 141(2), 344–354 (2010)

41. Richardson, S.C.W., Winistorfer, S.C., Poupon, V., Luzio, J.P., Piper, R.C.: Mam-
malian late vacuole protein sorting orthologues participate in early endosomal fu-
sion and interact with the cytoskeleton. Mol. Biol. Cell 15(3), 1197–1210 (2004)

42. Fabrizio, P., Hoon, S., Shamalnasab, M., Galbani, A., Wei, M., Giaever, G., Nislow,
C., Longo, V.D.: Genome-wide screen in saccharomyces cerevisiae identifies vacuo-
lar protein sorting, autophagy, biosynthetic, and trna methylation genes involved
in life span regulation. PLoS Genet. 6(7), e1001024 (2010)

43. Hobor, F., Pergoli, R., Kubicek, K., Hrossova, D., Bacikova, V., Zimmermann,
M., Pasulka, J., Hofr, C., Vanacova, S., Stefl, R.: Recognition of Transcription
Termination Signal by the Nuclear Polyadenylated RNA-binding (NAB) 3 Protein.
Journal of Biological Chemistry 286(5), 3645–3657 (2011)

44. Kirchhausen, T.: Three ways to make a vesicle. Nature Reviews. Molecular Cell
Biology 1(3), 187–198 (2000)

Describing the Orthology Signal in a PPI Network at a Complex Level 225

Appendix

Table 4. Frequencies of functional categories for Yeast-Worm MCL predictors.
Orthology-related functional categories are in boldface.

GO ID GYC OYC-W RYC-W Name

GO:0005623 0.162 0.083 0.103 (±0.032) cell
GO:0005737 0.120 0.037 0.086 (±0.035) cytoplasm
GO:0016023 0.026 0.031 0.025 (±0.015) cytoplasmic membrane-bounded vesicle
GO:0005783 0.034 0.031 0.018 (±0.012) endoplasmic reticulum
GO:0005768 0.034 0.035 0.014 (±0.010) endosome
GO:0005794 0.052 0.057 0.050 (±0.017) Golgi apparatus
GO:0005739 0.108 0.044 0.114 (±0.021) mitochondrion
GO:0005773 0.008 0.013 0.008 (±0.006) vacuole
GO:0005829 0.015 0.009 0.013 (±0.012) cytosol
GO:0005622 0.629 0.657 0.587 (±0.056) intracellular
GO:0005694 0.107 0.044 0.105 (±0.027) chromosome
GO:0000228 0.077 0.031 0.098 (±0.025) nuclear chromosome
GO:0005856 0.034 0.026 0.033 (±0.020) cytoskeleton
GO:0005634 0.447 0.510 0.461 (±0.057) nucleus
GO:0005730 0.059 0.191 0.111 (±0.044) nucleolus
GO:0005815 0.017 0.006 0.007 (±0.008) microtubule organizing center
GO:0005635 0.013 0.020 0.018 (±0.012) nuclear envelope
GO:0005654 0.140 0.172 0.183 (±0.033) nucleoplasm
GO:0043226 0.605 0.470 0.412 (±0.079) organelle
GO:0005886 0.003 0.009 0.002 (±0.005) plasma membrane
GO:0043234 0.418 0.539 0.536 (±0.053) protein complex

Table 5. Frequencies of functional categories for Yeast-Worm SiDeS predictors.
Orthology-related functional categories are in boldface.

GO ID GYC OYC-W RYC-W Name

GO:0005623 0.130 0.065 0.060 (±0.028) cell
GO:0005737 0.190 0.097 0.105 (±0.045) cytoplasm
GO:0016023 0.020 0.035 0.018 (±0.015) cytoplasmic membrane-bounded vesicle
GO:0005768 0.023 0.012 0.008 (±0.009) endosome
GO:0005794 0.060 0.035 0.048 (±0.021) Golgi apparatus
GO:0005739 0.105 0.029 0.135 (±0.023) mitochondrion
GO:0005840 0.101 0.015 0.123 (±0.029) ribosome
GO:0005773 0.010 0.012 0.007 (±0.008) vacuole
GO:0005829 0.032 0.074 0.038 (±0.030) cytosol
GO:0005622 0.670 0.691 0.660 (±0.065) intracellular
GO:0005694 0.118 0.041 0.100 (±0.031) chromosome
GO:0000228 0.105 0.041 0.100 (±0.030) nuclear chromosome
GO:0005856 0.037 0.026 0.028 (±0.020) cytoskeleton
GO:0005634 0.462 0.479 0.511 (±0.054) nucleus
GO:0005730 0.075 0.141 0.130 (±0.034) nucleolus
GO:0005654 0.216 0.244 0.234 (±0.036) nucleoplasm
GO:0043226 0.463 0.297 0.393 (±0.075) organelle
GO:0043234 0.630 0.594 0.603 (±0.045) protein complex

226 P. Jancura et al.

Table 6. Orthology-related clusters

Cluster ID Proteins Prediction Cluster Group Method

Cluster 1. ATP1
mitochondrial proton-transporting ATP
synthase, catalytic core

OYC-E MCL

ATP2 OYC-E MCL

ATP3 OYC-E MCL

Cluster 2. MTR4
nuclear polyadenylation-dependent r-,t-and
m-RNA catabolic process

OYC-W MCL

TRF5 OYC-W MCL

PAP2 OYC-W MCL

NRD1 OYC-W MCL

Cluster 3. RVB1

INO80 chromatin remodelling complex

OYC-F MCL, SiDeS
RVB2 OYC-F MCL, SiDeS
ARP5 OYC-F MCL, SiDeS
ARP8 OYC-F MCL, SiDeS
INO80 OYC-F MCL, SiDeS
IES6 OYC-F MCL, SiDeS
SWR1 OYC-F MCL, SiDeS
VPS72 OYC-F MCL, SiDeS

Cluster 4. MMS2
ubiquitin conjugating enzyme complex

OYC-F,OYC-W MCL

UBC13 OYC-F,OYC-W MCL

ERR3 OYC-F,OYC-W MCL

Cluster 5. SEC23

COPII vesicle coat

OYC-F,OYC-W,OYC-H MCL

SEC24 OYC-F,OYC-W,OYC-H MCL

SFB2 OYC-F,OYC-W,OYC-H MCL

HIP1 OYC-F,OYC-W,OYC-H MCL

GRH1 OYC-F,OYC-W MCL

BUG1 OYC-F MCL

Cluster 6. RET2

COPI vesicle coat

OYC-F,OYC-H,OYC-W SiDeS

RET3 OYC-F,OYC-H,OYC-W SiDeS

SEC21 OYC-F,OYC-H,OYC-W SiDeS

SEC26 OYC-F,OYC-H,OYC-W SiDeS

SEC27 OYC-F,OYC-H,OYC-W SiDeS

ARF1 OYC-F,OYC-H,OYC-W SiDeS

ARF2 OYC-F,OYC-H,OYC-W SiDeS

COP1 OYC-F,OYC-H SiDeS

ERV41 OYC-F SiDeS

Cluster 7. SPT5

DNA-directed RNA polymerase II

OYC-H SiDeS

RPB2 OYC-H SiDeS

RPB3 OYC-H SiDeS

RPB4 OYC-H SiDeS

RPB7 OYC-H SiDeS

RPB8 OYC-H SiDeS

RPB9 OYC-H SiDeS

RPB11 OYC-H SiDeS

RPO21 OYC-H SiDeS

RPO26 OYC-H SiDeS

RPC10 OYC-H SiDeS

RPA135 OYC-H SiDeS

TFG2 OYC-H SiDeS

DST1 OYC-H SiDeS

Algorithms for Rapid Error Correction for the Gene
Duplication Problem

Ruchi Chaudhary1, J. Gordon Burleigh2, and Oliver Eulenstein1

1 Department of Computer Science, Iowa State University, Ames, IA 50011, USA
{ruchic,oeulenst}@cs.iastate.edu

2 Department of Biology, University of Florida, Gainesville, Florida 32611, USA
gburleigh@ufl.edu

Abstract. Gene tree - species tree reconciliation problems infer the patterns and
processes of gene evolution within the context of an organismal phylogeny. In
one example, the gene duplication problem seeks the evolutionary scenario that
implies the minimum number of gene duplications needed to reconcile a gene
tree and a species tree. While the gene duplication problem can effectively link
gene and species evolution, error in gene trees can profoundly bias the results.
We describe novel algorithms that rapidly search local Subtree Prune and Regraft
(SPR) or Tree Bisection and Reconnection (TBR) neighborhoods of a gene tree
to find a topology that implies the fewest duplications. These algorithms improve
on the current solutions by a factor of n for searching SPR neighborhoods and n2

for searching TBR neighborhoods, where n is the number of vertices in the given
gene tree. They provide a fast error correction protocol for gene trees, in which
we allow small gene tree rearrangements to improve the reconciliation cost. We
tested the SPR tree rearrangement algorithm on a collection of 1201 plant gene
trees, and in every case, the SPR algorithm identified an alternate topology that
implied at least one fewer duplication. We also demonstrate a simple method to
use the gene rearrangement algorithm to improve gene tree parsimony phyloge-
netic analyses, which infer a species tree based on the gene duplication problem.

1 Introduction

With the availability of large-scale genomic data from across a broad phylogenetic spec-
trum, scientists have an unprecedented opportunity to examine gene evolution. Gene
tree - species tree (GT-ST) reconciliation seeks to map the history of gene trees into
the context of species evolution and thus potentially link processes of gene evolution
to phenotypic changes and diversification. One common approach is to infer the mini-
mum number of evolutionary events (e.g., duplication, loss, coalescence, or lateral gene
transfer) that are needed to reconcile a gene tree and species tree topology [21]. GT-ST
reconciliation also can be extended to infer species phylogenies. For example, gene tree
parsimony analyses take a collection of gene trees and seek a species tree that implies
the fewest evolutionary events implied by the gene trees (e.g., [15,17,23,27]). Such ap-
proaches provide a truly genomic perspective on species relationships (e.g., [6,26]).

One underlying complication of all GT-ST reconciliation is uncertainty and error in
the gene trees. Gene tree topologies often are estimated using heuristic methods from

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 227–239, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

228 R. Chaudhary, J. Gordon Burleigh, and O. Eulenstein

short sequence alignments. Consequently, the inferred gene tree topologies likely differ
from the true topologies. Error in gene tree estimates can have radical effects on GT-ST
reconciliation and the interpretation of gene evolution. Rasmussen and Kellis [24] esti-
mated that error in gene tree reconstruction can lead to 2-3 fold overestimates of gene
duplications and losses. Gene tree error also produces biases in GT-ST reconciliations,
often erroneously implying large numbers of duplications near the root of the species
tree [7,18]. Furthermore, error in gene tree topologies can mislead gene tree parsimony
phylogenetic analyses (e.g., [6,19,26]).

Several approaches have been proposed to address gene tree error in GT-ST recon-
ciliation. First, questionable nodes in a gene tree or nodes with low support may be
collapsed prior to gene tree reconciliation, and the resulting non-binary gene trees may
be reconciled with species trees [4,9,29]. Similarly, GT-ST reconciliations can use a dis-
tribution of gene tree topologies, such as bootstrap gene trees, rather than a single gene
tree estimate [7,11,20]. Both of these approaches may help account for stochastic error
and uncertainty in gene tree topologies, but they do not explicitly confront gene tree er-
ror. Methods also exist to simultaneously infer the gene tree topology and the gene tree
reconciliation with a fixed species tree [2,24]. While these sophisticated statistical ap-
proaches appear very promising, they are computationally intensive, and it is unclear if
they will be tractable for large-scale analyses. Another, perhaps a more computationally
feasible approach is to allow a limited number of, local rearrangements in the gene tree
topology if they reduced the reconciliation cost [10,12]. For example, [10,12] described
a method to allow NNI-branch swaps on selected branches of a gene tree to reduced the
reconciliation cost.

Following [10,12], we address gene tree error in the reconciliation process by as-
suming that the correct gene tree can be found in a particular neighborhood of the
given gene tree. Our approach is based on the gene duplication model, which identi-
fies the fewest gene duplications implied from a given gene tree and given species tree.
This neighborhood consists of all trees that are within one edit operation of the gene
tree. While [10,12] use Nearest Neighbor Interchange (NNI) edit operations to define
the neighborhood, we use the standard tree edit operations SPR [1,5] and TBR [1],
which significantly extend on the search space of the NNI neighborhood. These ex-
tended search spaces may be more desirable to find the correct gene tree, if they can
be efficiently searched. The SPR and TBR local search problems find a tree in the SPR
and TBR neighborhood of a given gene tree, respectively, that has the minimum rec-
onciliation cost when reconciled with a given species tree. Using the algorithm from
Zhang [31] the best known (naı̈ve) runtimes are O(n3) for the SPR local search prob-
lem and O(n4) for the TBR local search problem, where n is the number of vertices in
the given gene tree. These runtimes typically forbid the computation of larger GT-ST
reconciliations. We improve on these solutions by a factor of n for the SPR local search
problem and a factor of n2 for the TBR local search problem. This makes the local
search under the TBR edit operation as efficient as under the SPR edit operation, and it
provides a high speed gene tree error-correction protocol that is amenable to large-scale
genomic data sets.

To evaluate the performance of our algorithms we implement the SPR local search
algorithm for brevity. Note, that the SPR neighborhood is properly contained in the

Algorithms for Rapid Error Correction for the Gene Duplication Problem 229

TBR neighborhood for any given tree. Thus the performance of the SPR based program
provides a conservative estimate of the performance of the TBR based program. We test
our program on a collection of 1201 plant gene trees, some of which contain hundreds
of leaves, and we demonstrate how it can be easily incorporated into large-scale gene
tree parsimony phylogenetic analyses.

2 Basic Notations and Preliminaries

2.1 Basic Definitions and Notations

A (phylogenetic) tree is a leaf labeled tree in which the internal vertices have degree at
least two. The set of all vertices of a tree is denoted by V (T) and set of all edges by
E(T). T is rooted if it has exactly one distinguished vertex called root, which we denote
by Ro(T). Let T be a rooted tree. We define ≤T to be the partial order on V (T), where
x ≤T y if y is a vertex on the path from Ro(T) to x. If x ≤T y we call x a descendent
of y, and y an ancestor of x. We also define x <T y if x ≤T y and x �= y, in this case
x is called proper descendent of y and y proper ancestor of x. The set of minima under
≤T is denoted by Le(T) and the contained elements are called leaves. If {x, y} ∈ E(T)
and x ≤T y, then y is called parent of x and denoted by PaT (x), and x a child of y.
We write (y, x) to denote the edge {y, x}, where y = Pa(x). The set of all children
of a vertex y is denoted by ChT (y). Two distinct vertices in T are called siblings if
they have the same parent. We denote sibling of v in T by SbT (v). The set of internal
vertices of T , denoted I(T), is defined to be V (T)\Le(T). The least common ancestor
of a non-empty subset L ⊆ V (T), denoted as LCAT (L), is the unique smallest upper
bound of L under ≤T . We define T (U) the minimum rooted subtree of T that connects
the elements in U for U ⊆ V (T). Furthermore, the restriction of T to U , denoted by
T|U , is the rooted phylogenetic tree that is obtained from T (U) by suppressing all non-
root vertices of degree two. The subtree of T rooted at v ∈ V (T), denoted Tv, is defined
to be T|U , for U := {u ∈ Le(T) : u ≤T v}. T is full binary if every vertex has either
zero or two children. Throughout this paper, the term tree refers to a rooted full binary
tree. If an isomorphism exists between two trees T1, T2, then we write T1 � T2.

2.2 The Gene Duplication Cost Model

A species tree and a gene tree are trees that represent the evolutionary relationships
between species and genes (of a gene family) respectively. We assume that each leaf of
the gene tree is labeled with the species from which that gene was sampled. Let G be a
gene tree and S a species tree. In order to compare G with S, we require a mapping from
each gene g ∈ V (G) to the most recent species s ∈ V (S) that could have contained it.

Definition 1 (Mapping). The leaf-mapping LG,S : Le(G) → Le(S) maps a leaf g ∈
Le(G) to that unique leaf s ∈ Le(S) from which the gene g was sampled. The extension
of LG,S for all vertices of G is MG,S : V (G) → V (S), which is defined as MG,S(g)
:= LCA(LG,S(Le(Gg))).

Definition 2 (Comparability). G is comparable to S, if for each g ∈ Le(G), the leaf-
mapping LG,S(g) is well defined.

230 R. Chaudhary, J. Gordon Burleigh, and O. Eulenstein

Throughout this paper we assume that the gene tree G is comparable to the species tree
S, and in addition to that, Le(S) = ∪g∈Le(G) LG,S(g)1. We also assume that n is the
number of taxa present in both input trees.

Definition 3 (Duplication). A vertex g ∈ I(G) is a (gene) duplication (w.r.t. S) if
MG,S(g) ∈ MG,S(Ch(g))2.

Definition 4 (Duplication Cost). The duplication costs are defined as follows:

(i) The duplication cost from g ∈ G to S, Δ(G, S, g) :=

{
1, if g is a gene duplication;

0, otherwise.
(ii) The duplication cost from G to S, Δ(G, S) :=

∑
g∈G Δ(G, S, g).

2.3 The Error-Correction Problems

Here we give definitions for tree rearrangement operations TBR [1] and SPR [1,5], and
then formulate the Error-Correction problems that were motivated in the introduction.

Definition 5 (TBR operation). Let T be a tree. For this definition, we regard the
planted tree Pl(T) as the tree obtained from adding root edge {r, Ro(T)} to E(T),
where r /∈ V (T). Let e := (u, v) ∈ E(T), and X and Y be the connected components
that are obtained by removing edge e from T such that v ∈ X and u ∈ Y . We define
TBRT (v, x, y) for x ∈ X and y ∈ Y to be the tree that is obtained from Pl(T) by first
deleting edge e, and then adjoining a new edge f between X and Y as follows:

1. If x �= Ro(X) then suppress Ro(X) and create new root by subdividing edge
(Pa(x), x).

2. Create a new vertex y′ that subdivides the edge (Pa(y), y).
3. Add edge f between vertices y′ and Ro(X).
4. Suppress the vertex u, and rename vertex y′ as u.
5. Contract the root edge.

We say that, the tree TBRT (v, x, y) is obtained from T by a tree bisection and re-
connection (TBR) operation that bisects the tree T into the components X and Y , and
reconnects them above the nodes x and y. We define the following neighborhoods for
the TBR operation:

1. TBRG(v, x) := ∪y∈Y TBRG(v, x, y)
2. TBRG(v) := ∪x∈X TBRG(v, x)
3. TBRG := ∪(u,v)∈E(G) TBRG(v)

Definition 6 (SPR operation). The SPR operation is defined as a special case of TBR
operation. Let e := (u, v) ∈ E(T), and X and Y be the connected components that are
obtained by removing edge e from T such that v ∈ X and u ∈ Y . We define SPRT (v, y)
for y ∈ Y to be TBRT (v, v, y). We say that the tree SPRT (v, y) is obtained from T
by performing subtree prune and regraft (SPR) operation that prunes subtree Tv and
regrafts it above y. (See Fig. 1(a).)

1 Note that if Le(G) �= Le(S) then we can simply set the species tree to be S|Le(G). This takes
O(n) time and, consequently, does not affect the time complexity of our final algorithm.

2 Gene duplication is actually a well studied theorem [22,14].

Algorithms for Rapid Error Correction for the Gene Duplication Problem 231

We define the following neighborhoods for the SPR operation:

1. SPRG(v) := ∪y∈Y SPRG(v, y)
2. SPRG := ∪(u,v)∈E(G) SPRG(v)

We now state the error-correction problems.

Problem 1 (SPR Based Error-Correction(SEC)).
Input: A gene tree G and a species tree S.
Output: A gene tree G*∈ SPRG such that Δ(G*, S) = minG′∈SPRG Δ(G′, S).

The TBR based error-correction (TEC) problem is defined analogously to the SPR
based error-correction (SEC) problem.

3 Solving the SEC Problem

We first define a restricted version of SEC problem, called the restricted SPR based
error-correction (R-SEC) problem.

Problem 2 (Restricted SPR Based Error-Correction (R-SEC)).
Input: A gene tree G, a species tree S, and v ∈ V (G).
Output: A gene tree G*∈ SPRG(v) such that Δ(G*, S) = minG′∈SPRG(v) Δ(G′, S).

Observation 1. SEC problem can be solved by solving R-SEC efficiently.

Proof. Observe that there are Θ(n) different ways to select a subtree of G to be pruned.
Let v be the root of pruned subtree. Furthermore, for each tuple 〈G, S, v〉 we call the
solution of R-SEC problem. The tree with minimum duplication score among all R-
SEC outputs is the solution of the SEC problem. 	

We now highlight how the R-SEC problem can be solved in Θ(n) time. In order to
do so, it is sufficient to compute the value Δ(G′, S) for each G′ ∈ SPRG(v). For
a given gene tree G, the size of the SPRG(v) neighborhood is Θ(n); the duplication
cost for a gene tree and a species tree can be computed in Θ(n) time [31]. Thus the
R-SEC problem can be solved in Θ(n2) time. We describe a novel algorithm for R-
SEC that gives the Θ(n) speed-up over this naı̈ve solution. More precisely, we tra-
verse the trees in SPRG(v) neighborhood in such a special sequence in which the
duplication score difference between two consecutive trees can be easily computed in
constant time.

3.1 Structural Properties

In the following, we first define the NNI [1] operation, and then construct a graph on
trees in SPRG(v), in which an edge exists between two trees if they are one NNI
operation apart. We prove that such a graph is a rooted, binary tree. The tree topology
yields an efficient algorithm for R-SEC problem.

232 R. Chaudhary, J. Gordon Burleigh, and O. Eulenstein

Definition 7 (NNI operation). We define the NNI operation as a special case of SPR
operation. Let e := (u, v) ∈ E(T), and X and Y be the connected components that are
obtained by removing edge e from T such that v ∈ X and u ∈ Y . We define NNIT (v) to
be SPRT (v, y) for y := Pa(u), and say that NNIT (v) is obtained from T by performing
nearest neighbor interchange (NNI) operation that prunes subtree Tv and regrafts it
above the parent of v’s parent.

Definition 8. Let the NNI-distance dNNI(T1, T2) between two trees T1 and T2 be the
minimum number of NNI operations required to transform T1 into T2.

Definition 9. The NNI-adjacency graph X = (V, E) is the graph with V = SPRG(v)
and {Gu, Gv} ∈ E ⇐⇒ dNNI(Gu, Gv) = 1.

Lemma 1. X is a tree.

Proof. We prove it by showing that there exists a unique path between any two ver-
tices in X . Let G′, G′′ ∈ V (X), thus G′, G′′ ∈ SPRG(v). Let G′ := SPRG(v, x1),
G′′ := SPRG(v, x2), and let dG(x1, x2) be the distance between vertex x1 and x2 in
G. We use induction on dG(x1, x2). Let dG(x1, x2) = 1 and assume without loss of
generality that x2 = PaG(x1). Thus, G′ = NNIG′′(Sb(x1)). So the hypothesis holds
for dG(x1, x2) = 1. Assume now that the hypothesis is true for dG(x1, x2) ≤ k and
suppose dG(x1, x2) = k + 1. Since G is a tree, there must be a unique path between
x1 and x2; let y be a vertex on this path. Let dG(y, x1) = 1, and Gn := SPRG(v, y). If
y = PaG(x1), then Gn = NNIG′(v); otherwise Gn = NNIG′(Sb(y)). Since dG(y, x2)
= k, thus (by induction hypothesis) the hypothesis is valid for dG(x1, x2) = k + 1. 	

Theorem 1. X is a rooted full binary tree.

Proof. In view of Lemma 1, it suffices to show that except a unique vertex of degree 2
all other vertices in X are of degree 1 or 3. Let G′ ∈ V (X), thus G′ = SPRG(v, y) for
some y ∈ V (G). There are three cases.

Case 1: y is a root. Let y1 ∈ ChG(y). Let G1 := SPRG(v, y1), thus G′ = NNIG1(v).
Hence {G1, G′} ∈ E(X). Since |ChG(y)| = 2, G′ must be degree 2 vertex
in X .

Case 2: y is a leaf. Let y1 = PaG(y). Let G1 := SPRG(v, y1), thus G1 = NNIG′(v).
Hence {G1, G′} ∈ E(X), and consequently, G′ is degree 1 vertex in X .

Case 3: y is an internal vertex. Let y1 = PaG(y) and y2 ∈ ChG(y). Let G1 :=
SPRG(v, y1), thus G1 = NNIG′(v). Let G2 := SPRG(v, y2), thus G′ = NNIG2(v).
Since y has one parent and two children in G, thus G′ is degree 3 vertex in X . 	

3.2 Characterizing Duplications

To solve the R-SEC problem we traverse tree X . Two adjacent trees in V (X) are one
NNI operation apart. We show that duplication score of a tree can be computed in
constant time from the LCA computation of its adjacent tree.

Let e := (G′, G′′) be an edge in X . Let x := Pa(v), y := Sb(v), and z, z′ ∈ Ch(y)
in G′ (see Fig. 1(b)). Without loss of generality, let G′′ := NNIG′(z). (Observe G′′ is
similar to G′

r of Fig. 1(b).)

Algorithms for Rapid Error Correction for the Gene Duplication Problem 233

Fig. 1. (a) The tree G is obtained from G by pruning and regrafting subtree Gv to the root of G.
The vertex x ∈ V (G) is suppressed, and the new vertex above root in G is named x. (b) Two
NNI operations NNIG′(z′) and NNIG′(z) produce left-child G′

l and right-child G′
r of G′ in X .

Lemma 2. MG′′,S(y) = MG′,S(x).

Proof. From NNI operation, v, z′ ∈ ChG′′(x) and z, x ∈ ChG′′(y). Also, G′
z � G′′

z ,
G′

z′ � G′′
z′ , G′

v � G′′
v , so Le(G′′

y) = Le(G′
x). Thus,MG′,S(x) = LCA(LG′,S(Le(G′

x)))
= LCA(LG′′,S(Le(G′′

y))) = MG′′,S(y). 	

Lemma 3. MG′′,S(w) = MG′,S(w), for all w ∈ V (G′)\{x, y}.

Proof. For g ∈ V (G′
v)

⋃
V (G′

z)
⋃

V (G′
z′), since G′

g � G′′
g , therefore MG′,S(g) =

MG′′,S(g). Also, except for subtree G′
x, the rest of the tree remains the same in G′′

x.
Thus by Lemma 2, MG′,S(PaG′(x)) = MG′′,S(PaG′′(y)). Inductively,MG′,S(g) =
MG′′,S(g), for all g ∈ V (G′)\V (G′

x). 	

Lemma 4. MG′′,S(x) = LCA(MG′,S(v),MG′,S(z′)).

Proof. From Lemma 3, MG′′,S(v) = MG′,S(v) and MG′′,S(z′) = MG′,S(z′). Thus,
MG′′,S(x) = LCA(MG′′,S(v),MG′′,S(z′)) = LCA(MG′,S(v),MG′,S(z′)). 	

Lemma 5. Δ(G′′, S, g) = Δ(G′, S, g), for all g ∈ V (G′′)\{x, y}.

Proof. The gene duplication status of a vertex in G′ can change in G′′ if its mapping
or mapping of any of its children changes in MG′′,S . From Lemma 3, and also, since
MG′′,S(w) = MG′,S(w), for w ∈ Ch(PaG′(x)), must have Δ(G′′, S, PaG′(x)) =
Δ(G′, S, PaG′(x)). Thus the Lemma follows. 	

Now, we define score Δe := Δ(G′′, S)−Δ(G′, S), for e := (G′, G′′) ∈ E(X) and the
given species tree S. Observe that this score can be negative too. We study how Δe can
be computed efficiently for each edge e in X .

Theorem 2. Δe =
∑

g∈{x,y}
(Δ(G′′, S, g) - Δ(G′, S, g)).

234 R. Chaudhary, J. Gordon Burleigh, and O. Eulenstein

Proof. Δe = Δ(G′′, S) − Δ(G′, S) =
∑

g∈V (G′′)

(Δ(G′′, S, g) − Δ(G′, S, g))

=
∑

g∈V (G′′)\{x,y}
(Δ(G′′, S, g)−Δ(G′, S, g)) +

∑
g∈{x,y}

(Δ(G′′, S, g)−Δ(G′, S, g))

=
∑

g∈{x,y}
(Δ(G′′, S, g) − Δ(G′, S, g)) 	

Definition 10. Let G := SPRG(v, Ro(G)), and let PG′ be a path from G to G′ in X .
For G′, we define the score-difference ΔG,G′ as ΔG,G′ :=

∑
e∈E(PG′)

Δe.

Theorem 3. For given S, G, and v ∈ V (G), the tree G′ ∈ V (X) is the output of
R-SEC problem iff ΔG,G′ = minG′′∈V (X) ΔG,G′′ .

Proof. Let ΔG,G′ = minG′′∈V (X) ΔG,G′′ . We prove that G′ is the output of R-SEC

problem. Since ΔG,G′ =
∑

e∈E(PG′)
Δe = Δ(G′, S)− Δ(G, S), thus G′ gives the mini-

mum normalized duplication score over all trees in V (X). Hence, G′ must be the output
of R-SEC problem. The other direction follows similarly. 	

3.3 The Algorithm

Following Lemmas 2-5 and Theorems 2-3, we now present our algorithm to solve the
R-SEC problem. In our algorithm, we first regraft the subtree Gv at Ro(G) and call it
G. We then compute LCA mapping and duplication score for G. Further, we traverse
the subtree of G rooted at sibling of v. For each traversed vertex k, we obtain the tree
G′′ := SPRG(v, k). The LCA mapping and duplication score for G′′ can be computed
in constant time from the LCA mapping of the tree G′ := SPRG(v, k′), where vertex
k′ was traversed right before k. Among all trees generated by regrafting Gv, the tree
with the minimum normalized duplication score is returned as output. The algorithm is
called Algo-R-SEC, and its description appears as Algorithm 1.

Lemma 6. The R-SEC problem is correctly solved by Algo-R-SEC.

Proof. It follows from Lemma 2-5 and Theorem 2-3. 	

Lemma 7. The R-SEC and SEC problems can be solved in Θ(n) and Θ(n2) time,
respectively.

Proof. In Algo-R-SEC, step 1 takes constant time. Step 2 precomputes LCA values for
species tree [3], and so, finds LCA mapping and computes duplication score in Θ(n)
time. Step 3 and 4 take constant time. The loop of step 5 runs for Θ(n) time. Inside the
loop, step 10 and 17 run for constant time using pre-computed LCA values from step 2,
resulting the execution of step 6-19 to take constant time. Hence, the R-SEC problem
can be solved in Θ(n) time. From Observation 1, Algo-R-SEC is called Θ(n) times to
solve SEC problem. Thus, the SEC problem can be solved in Θ(n2) time. 	

Algorithms for Rapid Error Correction for the Gene Duplication Problem 235

Algorithm 1. Algo-R-SEC

Input: A gene tree G, a species tree S, and v ∈ V (G)
Output: A tree G* ∈ SPRG(v) such that Δ(G*, S) = minG′∈SPRG(v) Δ(G′, S)

1. Find G by pruning Gv and regrafting at Ro(G)
2. Compute MG,S and Δ(G, S)

3. Set BestTree := G and BestScore := 0
4. Set G′ := G, MG′,S := MG,S , Δ(G′, S) := Δ(G, S), and ΔG,G′ := 0
5. for each node k �= Ro(GSb(v)) in preorder traversal of GSb(v) do
6 if not backtracking, then
7. Set x := PaG′(v), y := SbG′(v)
8. Compute G′′ := NNIG′(SbG′(k))
9. Set MG′′,S := MG′,S and MG′′,S(y) := MG′,S(x)
10. MG′′,S(x) := LCA(MG′,S(k),MG′,S(v))
11. ΔG,G′′ := ΔG,G′ + Δ(G′,G′′)
12. if ΔG,G′′ < BestScore, then BestTree := G′′, BestScore := ΔG,G′′
13. else,
14. Set x := PaG′(v) and y := PaG′(x)
15. Compute G′′ := NNIG′ (v)
16. Set MG′′,S := MG′,S , MG′′ ,S(x) := MG′,S(y)
17. MG′′,S(y) := LCA(MG′,S(SbG′(v)),MG′,S(k))
18. ΔG,G′′ := ΔG,G′ − Δ(G′′ ,G′)
19. Set G′ := G′′, MG′,S := MG′′ ,S , ΔG,G′ := ΔG,G′′
20. return BestTree

4 Solving the TEC Problem

We extend our solution for the SEC problem to solve the TEC problem. A TBR opera-
tion can be viewed as an SPR operation except that the pruned subtree can be rerooted
before it is regrafted. We define the R-TEC problem for the TEC Problem, as we defined
the R-SEC problem for the SEC problem. We will show that the R-TEC problem can
be solved by solving two smaller problems separately and combining their solutions.

Definition 11. Let T be a tree and x ∈ V (T). RR(T, x) is defined to be the tree T , if
x = Ro(T) or x ∈ Ch(Ro(T)). Otherwise, RR(T, x) is the tree obtained by suppress-
ing Ro(T), and subdividing the edge (Pa(x), x) by the new root node.

Lemma 8. Given a tuple 〈G, S, v〉, and G′′ := TBRG(v, x, y), for x ∈ V (Gv), y ∈
V (G)\V (Gv). Then, Δ(G′′, S) ≤G′∈TBRG(v) Δ(G′, S) iff Δ(RR(Gv, x), S)
≤x′∈V (Gv) Δ(RR(Gv, x′), S) and Δ(G′′, S) ≤G′∈TBRG(v,x) Δ(G′, S).

Proof. (⇒) Let G1 := TBRG(v, x1, y), for x1 ∈ V (Gv), and x1 �= x. Now observe
that, ∀g ∈ V (G)\V (Gv), Δ(G′′, S, g) = Δ(G1, S, g). Also, let G2 := TBRG(v, x, y1),
for y1 ∈ V (G)\V (Gv), and y1 �= y. Observe that, ∀g ∈ V (Gv), Δ(G′′, S, g) =
Δ(G2, S, g). Thus, if G′′ gives the minimum duplication score among all trees in
TBRG(v), then the score contribution of vertices in V (Gv) and V (G)\V (Gv) is inde-
pendent. Now looking at vertices of G, the best score is achieved when Gv is rooted at
x, i.e. Δ(RR(Gv, x), S) ≤x′∈V (Gv) Δ(RR(Gv, x′), S); also the best score is achieved

236 R. Chaudhary, J. Gordon Burleigh, and O. Eulenstein

when RR(Gv, x) is regrafted at y, i.e., Δ(G′′, S) ≤G′∈TBRG(v,x) Δ(G′, S). (⇐) This
follows similarly. 	

Lemma 8 implies that a tree in TBRG(v) with the minimum duplication cost can be
obtained by optimizing the rooting for the pruned subtree, and the regraft location, sep-
arately. A best rooting for the pruned subtree is linear time computable [16], and the
solution to the R-SEC problem identifies a best regraft location in Θ(n) time. This al-
lows to obtain a tree in TBRG(v) with the minimum duplication cost by evaluating only
Θ(n) trees. Thus the R-TEC problem can be solved in Θ(n) time. The TEC problem
can be solved by calling the solution of R-TEC problem Θ(n) times, and Theorem 4
follows.

Theorem 4. The TEC problem can be solved in Θ(n2) time.

5 Experimental Results

We tested the performance of the gene tree rearrangement algorithms on a set of 1201
plant gene trees. Specifically, we wanted to examine how often and how much a single
SPR rearrangement in the gene tree reduces the gene duplication score. We first down-
loaded sequences from the gene families from GreenPhyl, an online plant comparative
genomic database [25]. We chose only gene families that had at least one sequence
from all of the 13 land plant species included in the database. They each contained
between 15 and 983 sequences (mean = 62.7; median = 47). We aligned the amino
acid sequences from each gene family using MUSCLE [13] and a performed maximum
likelihood (ML) phylogenetic analysis on each gene alignment using RAxML-VI-HPC
version 7.0.4 [28]. We identified a root for each ML tree that implied the fewest gene
duplications based on an accepted tree of the land plant relationships. The resulting
1201 rooted gene family trees implied between 5 and 667 gene duplications to rec-
oncile with the species tree. The SPR gene tree rearrangement algorithm identified a
new gene tree topology with a lower reconciliation cost (implied duplications) for all
1201 gene trees. The rearrangements reduced the reconciliation cost by between 1 and
6 duplications (ave. 2.2), which corresponded to between a 0.4% to 33% reduction in
estimated duplications.

We also implemented a method to use the gene rearrangement algorithm to correct
for gene tree error in gene tree parsimony phylogenetic analyses. We first took a collec-
tion of input gene trees and performed a SPR species tree search using Duptree [30].
After finding the locally optimal species tree, we used our SPR gene tree rearrangement
algorithm to find gene tree topologies with a lower duplication cost. We then performed
another SPR species tree search using Duptree, starting from the locally optimal species
tree and using the new gene tree topologies. This search strategy is similar to re-rooting
protocol in Duptree, which checks for better gene tree roots after a SPR species tree
search [8,30]. We used this protocol on data set of 6084 genes (with a combined 81,525
leaves) from 14 seed plant taxa. This is the same data set used by [8], except that all
gene tree clades containing sequences from a single species were collapsed to a single
leaf. Our original SPR tree search found a species tree with 23,500 duplications. The
SPR tree search after the gene tree rearrangements identified the same species tree, but

Algorithms for Rapid Error Correction for the Gene Duplication Problem 237

the new gene trees had a reconciliation cost of only 18,213, a 22.5% reduction. The
species tree was consistent with accepted seed plant phylogenetic hypotheses [8]. This
tree search protocol took just under 4 hours on a Mac Powerbook with a 2 GHz Intel
Core 2 Duo processor and 2 GB memory.

6 Conclusion

Gene tree - species tree reconciliation offers a powerful approach to study the patterns,
processes, and effects of gene and genome evolution. Yet it can be thwarted by the error
that is an inherent part of gene tree inference. Any reliable method for GT - ST reconcil-
iation must account for gene tree error, and any useful method must be computationally
tractable for large-scale genomic data. We introduce fast and effective algorithms to cor-
rect error in the gene trees based on the gene duplication problem. These algorithms,
based on SPR and TBR rearrangements, greatly extend upon the range of possible er-
rors in the gene tree from existing algorithms [10,12], while remaining fast enough to
use on data sets with thousands of genes. Our analyses on 1201 plant gene trees demon-
strates not only the feasibility of applying the algorithm to large-scale data but also the
ubiquity of gene tree error, which necessitates an error correction protocol. The SPR
gene rearrangement algorithm reduced the duplication cost in every single gene tree.
The gene tree parsimony analysis emphasized how much gene tree error likely inflates
the duplication scores while providing one possible protocol to address this.

While the results of the experiments are promising, they also suggest several direc-
tions for future research. First, further investigation is needed to characterize the effects
of error on gene tree topologies. For example, it seems likely that in many cases gene
tree errors may extend beyond a single SPR or TBR neighborhood; yet if we allow un-
limited rearrangements, the gene trees will simply converge on the species tree topol-
ogy. One simple improvement may be to weight the possible gene tree rearrangements
based on support for different clades in the gene tree. Thus, well-supported clades may
be rarely or never be subject to rearrangement, while poorly supported clades may be
subject to extensive rearrangements. Finally, these approaches implicitly assume that
all differences between gene trees and species trees are due to either duplications or er-
rors. Future work will also incorporate other evolutionary processes that cause discord
among trees, including gene losses, coalescence, and lateral transfer.

Acknowledgements. This work was conducted in parts with support from the Gene
Tree Reconciliation Working Group at NIMBioS through NSF award EF-0832858, with
additional support from the University of Tennessee. R.C. and O.E. were supported in
parts by NSF awards #0830012 and #10117189.

References

1. Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary
trees. Annals of Combinatorics 5, 1–13 (2001)

2. Arvestad, L., Berglund, A., Lagergren, J., Sennblad, B.: Gene tree reconstruction and or-
thology analysis based on an integrated model for duplications and sequence evolution. In:
RECOMB, pp. 326–335 (2004)

238 R. Chaudhary, J. Gordon Burleigh, and O. Eulenstein

3. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A.
(eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

4. Berglund-Sonnhammer, A., Steffansson, P., Betts, M.J., Liberles, D.A.: Optimal gene trees
from sequences and species trees using a soft interpretation of parsimony. Journal of Molec-
ular Evolution 63, 240–250 (2006)

5. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune
and regraft distance. Annals of Combinatorics 8, 409–423 (2004)

6. Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., Vision, T.J.: Genome-
scale phylogenetics: inferring the plant tree of life from 18,896 discordant gene trees. Sys-
tematic Biology 60(2), 117–125 (2011)

7. Burleigh, J.G., Bansal, M.S., Wehe, A., Eulenstein, O.: Locating large-scale gene duplication
events through reconciled trees: Implications for identifying ancient polyploidy events in
plants. Journal of Computational Biology 16, 1071–1083 (2009)

8. Chang, W., Burleigh, J.G., Fernández-Baca, D., Eulenstein, O.: An ILP solution for the gene
duplication problem. BMC Bioinformatics 12(Suppl 1), S14 (2011)

9. Chang, W., Eulenstein, O.: Reconciling gene trees with apparent polytomies. In: Chen, D.Z.,
Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 235–244. Springer, Heidelberg (2006)

10. Chen, K., Durand, D., Farach-Colton, M.: Notung: a program for dating gene duplications
and optimizing gene family trees. Journal of Computational Biology 7, 429–447 (2000)

11. Cotton, J.A., Page, R.D.M.: Going nuclear: gene family evolution and vertebrate phylogeny
reconciled. P. Roy. Soc. Lond. B Biol. 269, 1555–1561 (2002)

12. Durand, D., Halldórsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to
gene tree reconstruction. Journal of Computational Biology 13(2), 320–335 (2006)

13. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high through-
put. Nucleic Acids Research 32, 1792–1797 (2004)

14. Eulenstein, O.: Predictions of gene-duplications and their phylogenetic development, Ph.D.
thesis, University of Bonn, Germany, 1998, GMD Research Series No. 20 / 1998 (1998)
ISSN: 1435-2699

15. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the
gene lineage into its species lineage. a parsimony strategy illustrated by cladograms con-
structed from globin sequences. Systematic Zoology 28, 132–163 (1979)

16. Górecki, P., Tiuryn, J.: Inferring phylogeny from whole genomes. In: ECCB (Supplement of
Bioinformatics), pp. 116–122 (2006)

17. Guigó, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Molec-
ular Phylogenetics and Evolution 6(2), 189–213 (1996)

18. Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate
genome evolution. Genome Biology 8, R141 (2007)

19. Huang, H., Knowles, L.L.: What is the danger of the anomaly zone for empirical phyloge-
netics? Systematic Biology 58, 527–536 (2009)

20. Joly, S., Bruneau, A.: Measuring branch support in species trees obtained by gene tree parsi-
mony. Systematic Biology 58, 100–113 (2009)

21. Maddison, W.P.: Gene trees in species trees. Systematic Biology 46, 523–536 (1997)
22. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among

genes, organisms, and areas. Systematic Biology 43(1), 58–77 (1994)
23. Page, R.D.M., Charleston, M.A.: From gene to organismal phylogeny: reconciled trees and

the gene tree/species tree problem. Molec. Phyl. and Evol. 7, 231–240 (1997)
24. Rasmussen, M.D., Kellis, M.: A bayesian approach for fast and accurate gene tree recon-

struction. Molecular Biology and Evolution 28, 273–290 (2011)
25. Rouard, M., Guignon, V., Aluome, C., Laporte, M., Droc, G., Walde, C., Zmasek, C.M.,

Périn, C., Conte, M.G.: Greenphyldb v2.0: comparative and functional genomics in plants.
Nucleic Acids Research 39, D1095–D1102 (2010)

Algorithms for Rapid Error Correction for the Gene Duplication Problem 239

26. Sanderson, M.J., McMahon, M.M.: Inferring angiosperm phylogeny from EST data with
widespread gene duplication. BMC Evolutionary Biology 7(suppl 1), S3 (2007)

27. Slowinski, J.B., Knight, A., Rooney, A.P.: Inferring species trees from gene trees: A phy-
logenetic analysis of the elapidae (serpentes) based on the amino acid sequences of venom
proteins. Molecular Phylogenetics and Evolution 8, 349–362 (1997)

28. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)

29. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary species
trees. Computational Systems Bioinformatics 53, 441–452 (2007)

30. Wehe, A., Bansal, M.S., Burleigh, J.G., Eulenstein, O.: Duptree: a program for large-scale
phylogenetic analyses using gene tree parsimony. Bioinformatics 24(13) (2008)

31. Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies.
Journal of Computational Biology 4(2), 177–187 (1997)

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 240–252, 2011.
© Springer-Verlag Berlin Heidelberg 2011

TransDomain: A Transitive Domain-Based Method in
Protein–Protein Interaction Prediction

Yi-Tsung Tang and Hung-Yu Kao

Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan
{p7895125,hykao}@mail.ncku.edu.tw

Abstract. The prediction of new protein–protein interactions is important due
to many unknown functions of biological pathways. In addition, many protein–
protein interaction databases contain different types of protein interactions, i.e.,
protein associations, physical protein associations and direct protein interac-
tions. Moreover, discovering new crucial protein–protein interactions through
biological experiments is still difficult. Therefore, there is increasing demand to
discover not only protein associations but also direct protein interactions. Many
studies have predicted protein–protein interactions by directly using biological
features, such as Gene Ontology (GO) functions and domains of protein struc-
ture between two interacting proteins. In this article, we propose TransDomain,
a new method of predicting potential protein–protein interactions by using a
new strong transitive relationship between interacting protein domains. Our re-
sults demonstrate that TransDomain can effectively predict potential protein–
protein interactions from existing identified protein interaction relationships.
TransDomain achieved 90% precision rate and 91% accuracy in the prediction
of all types of protein–protein interactions and outperformed the existing PPI
prediction systems and simulated GO-based prediction methods.

Keywords: protein-protein interaction, transitive relationship, protein domain.

1 Introduction

Protein–protein interactions (PPIs) play a crucial role in most biological processes,
and their identification is key to understanding global pathways. New PPIs are identi-
fied by pull-down experiments or other protein structure techniques. However, these
experiments are usually too slow and expensive to identified new PPIs. Due to this
reason, many previous works have proposed prediction methods to discover new PPIs
from non-structure data, such as biological literature, biological ontology and
protein domains.

The biological literature contains a diversity of PPIs, and various methods have
been proposed to determine PPIs. Moreover, several bioinformatic tools have been
developed to analyze gene and protein interactions from scientific articles [1]. For
example, Protein Interaction information Extraction (PIE) methods used natural lan-
guage processing and machine learning techniques to extract sentences containing
PPIs from scientific articles [1]. Some methods use word patterns instead of

 TransDomain: A Transitive Domain-Based Method 241

complicated natural language processing techniques to extract PPIs from scientific
articles [2, 3]. Using patterns to discover specific biological information is a common
and useful technique.

There are several public online resources that store identified PPIs, such as HPRD
[4], DIP [5], IntAct [6], BioGRID [7], MINT [8] and Reactome [9]. These databases
provide lists of several kinds of PPIs, including direct and physical interactions etc.
Many of these databases contain protein interactions that are collected from not only
biological techniques and experiments but also from scientific articles.

Each database has its own online interface to search identified PPIs from back-end
databases. Searching for more interaction partners is one problem within PPI
searches. A previous method proposed an ontology-based search engine, that is based
on Gene Ontology (GO) hierarchy relationships, to discover PPIs [10, 11]. Extracting
matches and extended matches from protein interaction database, this ontology-based
method get more terms or concepts, that related to the query protein, for finding more
protein interactions.

The prediction of PPIs remains an important issue in bioinformatics due to the
large numbers of undiscovered protein interactions. The STRING database contains a
text-mining technique based on two proteins described together in the literature [12,
13]. PPI Finder is an online tool for predicting unidentified PPIs of human proteins
[14]. In PPI Finder, the IE module extracts candidate interactions from scientific ar-
ticles and the IR module predicts positive PPI pairs using the GO sharing method. In
this study, two proteins sharing common functions were hypothesized to have a high-
er probability of interaction. GO annotation can also be applied to other GO-based
predicting methods [15]. This method focuses on two GOs (cellular component and
biological process). This method was based on the hypothesis that a protein pair
should have the same protein location and similar biological function.

In previous study, a combination of several orthogonal protein features within a
probabilistic framework was proposed to increase the coverage of the human interac-
tion map [16]. In this framework, a novel scoring function for local network topology,
named “Transitive Module”, was also investigated. This topology feature greatly
enhanced the predictions. The transitive module investigates whether two proteins
that share many common interactors and have few additional interactors that are not
common to both proteins are more likely to interact than two proteins that share few
common interactors. Based on this hypothesis, in this paper we evolved a new rela-
tionship of two proteins, called the strong transitive relationship, to inference the
predicable interaction between two proteins with many common interactors. As
shown in Fig. 1, there are two target proteins, A and C, their common interactors,
B1~Bn, and known interactions between these proteins in this relationship. If these
interactions between A, C and their common interactors can support to inference the
interaction of A and C, we call this relationship a strong transitive relationship. We
hypothesized that the use of the strong transitive relationship among two interaction
proteins and their common interactors can make up for a deficiency of the prediction
performance of the GO-based prediction methods.

Because the protein domain is a crucial factor of the protein interaction, protein
domain is key to find pair domain relationship for PPIs prediction. Consider the ex-
ample in Fig. 1. ER and p65 are known to interact with each other and MYC has not
been identified to interact with ER. An example of the interaction between ER and

242 Y.-T. Tang and H.-Y. Kao

Fig. 1. Example of the strong transitive relationship

BRCA1, ER consists of Zinc-finger domain and Ligand-binding domain and BRCA1
also contains Zinc-finger domain. Due to the obvious relationships between common
interactor and related protein domains, the interaction of ER and p65 can be identified.
This is because that the relationship of Zinc-finger domain and Ligand-binding domain
is a crucial factor within the transitive relationship for predicting protein interaction
between ER and p65. In addition, an interaction between ER and MYC cannot be
identified by their domains and the pair domain relationship because the pair domain
relationship between these two proteins is not strong for protein interaction. Therefore,
considering only pair domain relationship between a protein pair is also not sufficient
for predicting protein interaction consequently. Nevertheless, the domains of a common
interactor, BRCA1 between ER and MYC can support the pair domain relationship for
the protein interaction prediction. For example, BRCA1 is known to interact with MYC
and BRCA1 and ER also the identified interaction protein pair. The domain relationship
among ER, BRCA1 and MYC can be extended by the pair domain relationship for
protein interaction prediction because Zinc-finger domain and Ligand-binding domain
are related domains in the protein interaction. The domain relationship in the transitive
relationship can also support the protein interaction prediction with few common inte-
ractors. Therefore, we hypothesized that the use of relationships among protein domains
can make up for a deficiency of fewer common interactors. As a result, the potential
interactions including the relationships of hub-proteins and non-hub proteins will be
possibly predictable by our proposed method. We aimed to use the common interactors
of a potential protein pair and the relationships of their protein domains in the transitive
relationship to better predict unidentified PPIs.

2 Method

2.1 Overall Architecture of TransDomain

The proposed PPI prediction method named TransDomain used the transitive rela-
tionship and the domain relationships within transitive relationships. In TransDomain,

 TransDomain: A Transitive Domain-Based Method 243

Fig. 2. Overall flowchart of TransDomain

the transitive relationship is an important concept for finding high confidence protein
interacting pairs. We also applied domain co-occurrence relationships within transi-
tive relationships to model the strength of the transitive relationship and filter out low-
confidence protein interacting pairs. In this paper, for predicting unidentified protein
interactions, we use the domain co-occurrence relationships to represent the transitive
patterns to predict unidentified protein interactions. The domain co-occurrence pat-
terns were used for predicting PPIs containing less common interactors. Therefore,
TransDomain used both transitive relationships and transitive domain patterns to
predict new protein interacting pairs.

The overall flowchart of TransDomain is shown in Fig. 2 and is composed of three
major steps: the transitive role feature generation step, the transitive domain pattern
generation step and two-stage PPIs prediction step.

2.2 Transitive Role Feature Generation Step

In the transitive role feature generation step, six roles (RoleA, RoleB, RoleC, RoleA’,
RoleB’ and RoleC’) were defined to represent three important roles in transitive rela-
tionships and partial transitive relationships. RoleA and RoleC are defined as two
interacting proteins while RoleB is the common interactor of RoleA and RoleC. Two
role pairs, i.e., RoleA-RoleB and RoleB-RoleC, are also the identified PPIs. The rela-
tionship among RoleA, RoleC and their common interactor RoleB is defined as the
transitive relationship. In addition, RoleA’ and RoleC’ are defined as two non-
interacting proteins. The relationship among RoleA’, RoleC’ and their common

244 Y.-T. Tang and H.-Y. Kao

interactor, RoleB’ is defined as the partial transitive relationship. The partial transitive
relationship consisted of two identified PPIs, i.e., RoleA’-RoleB’ and RoleB’-RoleC’.
The examples of roles in the transitive relationship and the partial transitive relation-
ship are shown in Fig. 3. RoleB and RoleB’ are defined as an intermediate role in a
transitive relationship. A protein in RoleB and RoleB’ should be the intermediate
protein between RoleA and RoleC. In addition, three roles (RoleA’, RoleB’ and Ro-
leC’) in partial transitive relationships indicate incomplete transitive relationships
with one unidentified protein–protein interaction, such as RoleA’-RoleC’ in Fig. 3.

The relationships among RoleA, RoleB and RoleC represent crucial information in
transitive relationships. The protein domains in each role are extracted from Pfam
database [17] and then used for generating features in the transitive role feature gen-
eration module.

We defined a new weighting scheme, DF-IRF to find transitive role features of Ro-
leA, RoleB and RoleC. The transitive role feature is defined as a protein domain that
plays a crucial role in the transitive relationship. Consider the example in Fig. 3, there
are three domains, i.e., 8, 9, and 10, play RoleA in transitive relationship. There are
four domains, i.e., 1, 3, 4 and 5, play RoleA in transitive relationship and RoleA’
partial transitive relationship. In addition, protein domains 1, 3 and 15 in RoleB and
protein domains 4, 7 and 11 in RoleC also play the crucial roles in transitive relation-
ship. The goal of DF-IRF weighting scheme is to find the protein domains ((8, 9 and
10 in RoleA), (1, 3 and 15 in RoleB) and (4, 7 and 11 in RoleC)) that play the crucial
roles in the transitive relationship.

Fig. 3. Example of transitive role feature generation

The relationships between protein domains and three roles from transitive relation-
ships and partial transitive relationships were also considered. Therefore, we down-
load the SwissPfam data from the Pfam website to get Swissprot and Pfam IDs [17].
The transitive role features of RoleA, RoleB and RoleC of the transitive relationship
were then extracted by the defined weighting scheme, DF-IRF.

The domain frequency (DF) is defined as the number of occurrence of protein do-
mains in some role. DF of each domain is calculated from transitive relationships of
defined training datasets. The domain frequency denotes the number of occurrences
of protein domain i in role r for all transitive relationships. Freqi,r is the number of

 TransDomain: A Transitive Domain-Based Method 245

occurrences that domain i appears in role r. The domain frequency is normalized by
the total frequency of all domains in role r.

In addition, the inverse role frequencies of each domain were calculated from the
transitive relationships of the defined training dataset. The inverse role frequency
(IRF) is defined as the inverse role frequency and has the equation:

N is the total number of roles in the training dataset and Ri denotes the number of

roles that contain domain i. Finally, the weighting score of a domain i in role r of a
transitive relationship was calculated by the DF-IRF weighting scheme according to
the equation:

The transitive role features of three roles (RoleA, RoleB and RoleC) were generat-
ed by calculating DF-IRF weighting scores of domains from the training dataset. A
domain with a high weighting score in a role indicates that the domain is a crucial
transitive role feature. In the high-weighting score results, the ratio of overlapping
domains among the three roles was very low. A few overlapped transitive role fea-
tures appeared in the high-weighting score results, such as “7 transmembrane receptor
(hodopsin family)” because it is a signaling transduction domain in many proteins.
Many proteins can play a signaling transduction role in many pathways. In conclu-
sion, the transitive role features produced by the transitive role feature generation are
very specific.

In transitive role feature generation, the training dataset is needed for generating
transitive role features. Before generate the training dataset, a global answer set of
PPIs was generated firstly by integrating five exists PPI databases: HPRD [4, 18],
MINT [8], DIP [5], BioGRID [7] and Reactome [9] with Swissprot ID and Uniprot
ID. The training datasets were collected from the global answer set. In our experi-
ments, we randomly selected 2,000 transitive relationships and 2,000 partial transitive
relationships from the global answer set as the training datasets of TransDomain.

2.3 Transitive Domain Pattern Generation Step

To predict an interaction between two proteins using TransDomain, the transitive
domain pattern (Ptrans) must be generated after the transitive role feature generation
step. In transitive domain pattern generation step, the generated transitive role features
and defined transitive relationship were used to generate Ptrans. The number of transi-
tive role features of individual role (RoleA, RoleB and RoleC) in the transitive rela-
tionship is 20 due to the ratio of crucial domains. Ptrans denotes the co-occurrence
relationship of domains among RoleA, RoleB and RoleC. Therefore, the co-
occurrence frequencies of triple domains were calculated. An example of transitive
domain pattern generation step is shown in Fig. 4. Three vectors VA(domaina1, domai-
na2, …, domainai), VB(domainb1, domainb2, …, domainbj) and VC(domainc1,

246 Y.-T. Tang and H.-Y. Kao

Fig. 4. Example of generating Ptrans

domainc2, …, domainck) denote the domain vectors of RoleA, RoleB and RoleC, re-
spectively. The triangle graph denotes the co-occurrence frequency of the protein
domains with transitive role features among RoleA, RoleB and RoleC sharing the
same transitive relationship within the training dataset. Ptrans can also be defined as
the domains co-existing in the same transitive relationship and can be denoted as a
vector VPattern(domainai, domainbj, domainck).

In our training dataset, the proteins with a 7-transmembrane-receptor domain will
have a high probability to play RoleB in the transitive relationship, because these
receptors usually play a signaling transduction role in protein interactions.

2.4 Two Stages PPIs Prediction Step

The PPI prediction module of TransDomain has two stages: the transitive relation-
ships extraction stage and the transitive domain pattern matching stage to predict
protein interactions.

The transitive relationships extraction stage can determine a protein pair that shares
many intermediate proteins. The protein pairs will be predicted as interacting protein
pairs according to the high frequency of intermediate proteins in RoleB. An example
of the two-stage PPIs prediction process is shown in Fig. 5. The threshold value with-
in the transitive relationships extraction stage is an average frequency, which is de-
fined as the average count of number of unique intermediate proteins (RoleB) from all
of the tested protein pairs. If the frequency of unique intermediate proteins (RoleB) of
a protein pair is lower than the average frequency, this pair will be filtered out in stage
one and put into the feature relationships extraction stage. By contrast, if the frequen-
cy of unique intermediate proteins (RoleB) of a protein pair is higher than the average
frequency, this pair will be output into the predicted results. A protein pair with a low
frequency of unique intermediate proteins (RoleB) is less likely to interact with each
other.

In the feature relationships extraction stage, the domains of all of the testing pro-
tein pairs and all unique intermediate proteins (RoleB) were found first. A vector of a
testing protein pair Vprotein_pair(VA(domainai), VB(domainbj), VC (domainck)) was used to
match the Ptrans vector Vpattern(domaini, domainj, domaink). If Vprotein_pair of a protein
pair matched Vpattern in the feature relationship extraction stage, this pair is output into
the predicted results. The matching example of feature relationships extraction is
shown in Fig. 5. The matching process of feature relationships extraction consists of
two matching strategies. In the first matching strategy, each domain in RoleA, RoleB

 TransDomain: A Transitive Domain-Based Method 247

Fig. 5. Example of transitive relationships extraction

and RoleC in the testing protein pair matches domains in RoleA, RoleB and RoleC in
learned Ptrans respectively. Secondly, each domain in RoleA in a testing protein
matches RoleB and RoleC in the Ptrans while the first matching strategy is not exactly
matched. RoleB and RoleC have the same processes in the second matching strategy
after RoleA had matched a role within RoleB and RoleC in the Ptrans.

3 Results and Discussions

3.1 Datasets Generation

Two datasets were randomly generated and served as the predefined training datasets
to generate the transitive role features and the Ptrans. Transitive relationships and par-
tial transitive relationships were collected from five exists PPI databases that were
described earlier in the training dataset generation. The dataset represented by RoleA,
RoleB and RoleC contained 2,000 role pairs of transitive relationships. In addition,
2,000 role pairs of partial transitive relationships were used and are represented by
RoleA’, RoleB’ and RoleC’. Two testing datasets, combined interaction (Tmix) and
direct interaction only (Tdirect), were used to evaluate the prediction performance of
PPIs by TransDomain. Tmix consisted of three interactions types, i.e., direct interac-
tion, physical association and association in positive dataset and non-interaction type
in negative dataset. Tdirect contained only direct interaction and non-direct interaction
types in positive datasets and negative datasets respectively. These datasets each con-
tained 200 interacting protein pairs (Positive) and 200 non-interacting protein pairs
(Negative).

3.2 Performance Evaluation of Predicting Combined Protein Interactions

Two domain-based baseline methods were used for comparison with TransDomain.
The domain-based baseline method one (Domainm1) was defined as the comparison of
domain similarity between one testing protein and all of the domains of the neighbor
proteins of another testing protein. The neighbor protein was defined as proteins that
have interaction with one of the testing proteins. In addition, the neighbor proteins of

248 Y.-T. Tang and H.-Y. Kao

one testing protein not consist of another testing protein. Another domain-based base-
line method (Domainm2) was defined as the comparison of domain similarity between
two testing proteins. The STRING database contains a text mining result that two
proteins co-occur in scientific articles [12, 13]. Based on this idea, the co-occurrence
concept was used as a simulated method of STRING in this comparison. PPI Finder is
a recently developed PPI prediction system [14] and contains a protein pair extraction
module and an interacting pair prediction module. PPI Finder is based on two proteins
co-occurring in scientific articles and sharing the same GO function terms. We used
the co-occurrence concept and GO sharing method to simulate the PPI Finder predic-
tion method. Besides, GO Similarity BP CC is a protein localization- and function-
based predicting method by GO annotations [15]. In our comparison, we simulated a
GO annotation-based predicting method by two predicting strategies: sharing the
same location (same cellular component) and functional similarity (similarity of bio-
logical process). The threshold of similarity score was 0.33 due to the coverage of
interacting protein pairs. In addition, the threshold of similarity score was defined as 0
and the protein domains of two domain-based baseline methods were annotated by the
Pfam database.

In addition, three previous methods, two domain-based baseline methods and
TransDomain results were the average from Tmix. The comparative results are shown
in Table 1. PPI Finder had a better precision rate than STRING because it compared
protein functions. GO Similarity BP CC did not have a better precision rate than PPI
Finder, even though it using all of the GO annotations to predict PPIs. Therefore,
sharing a protein location or biological process had little effect in PPI prediction.
DomainB1 had a better precision among two domain-based baseline methods. Consi-
dering domains with the domains of neighbor proteins of another protein is nearly the
biological concept of PPIs prediction. In other words, if a protein pair has a high
probability to interact with each other, one protein of the protein pair also has high
probability to be a neighbor of another protein of the protein pair. However, all of the
domain-based baseline methods not perform good recall rate in Tmix. TransDomain
had a better performance than the simulated methods and all of the domain-based
baseline methods because the transitive relationships combined with the protein do-
mains were successful in predicting PPIs.

Table 1. Performance comparison results in Tmix

Average performance in Tmix
Methods Precision Recall F-measure Accuracy
STRING 0.61 0.61 0.59 0.56

PPI Finder 0.70 0.52 0.59 0.63
GO Similarity BP CC 0.50 0.92 0.65 0.50

Domainm1 0.68 0.14 0.23 0.54
Domainm2 0.53 0.29 0.41 0.50

TransDomain 0.90 0.93 0.91 0.91

In the top-K precision evaluation, TransDomain was evaluated and compared

with three previous methods and two domain-based baseline methods. The performance
values were the average value of Tmix. The comparison result is shown in Fig. 6.

 TransDomain: A Transitive Domain-Based Method 249

Fig. 6. Top-K average precision comparison results in Tmix

STRING and PPI Finder both had good precision rates with the top-100 predicting
results. In addition, GO Similarity BP CC had lower precision rates with the top-100
prediction results. In two domain-based baseline methods, the precision rate of Do-
mainm1 was around 0.8 in each top-N prediction evaluation and the precision rate of
Domainm2 decreased while the prediction results increased. The result of DomainB1
indicates that the similarity between protein domain and the protein domains of their
neighbor proteins is the crucial evidence for protein interaction. In other words, if two
proteins interact with each other, one protein of the two proteins is a neighbor protein
of another protein of the two proteins.

The result of Domainm2 indicates that two proteins will interact with each other
while the domain similarity between their neighbor proteins is very high. However,
TransDomain performed better than the simulated methods in the top-100 comparison
of precision rate because the transitive relationship combined with protein domains
can predict not only indirect protein interactions and physical associations but also all
other protein interaction types. In addition, the AUC of TransDomain also outper-
formed simulated predicting methods. The AUC values of TransDomain were 0.891,
0.984, 0.978, 0.965 and 0.969 of Tmix.

3.3 Performance Evaluation of Predicting Direct Protein Interactions

Direct protein interactions are actual interactions between two interacting proteins and
are crucial in protein interaction predictions. Therefore, the performance of predicting
direct protein interactions was evaluated in the following experiments. Tdirect was used
as the performance evaluation dataset. Three previous methods and two domain-based
baseline methods were also compared with TransDomain.

The comparison results for predicting direct interacting protein pairs are shown in
Table 2. PPI Finder had a better precision rate than STRING due to the comparison of
protein function. In addition, GO Similarity BP CC did not have better precision rate
than PPI Finder by considering shared locations and biological processes. Domainm1
and Domainm2 had a lower recall rate than all of the other compared methods. This is
because identified domains of two testing proteins and neighbor proteins are not suf-
ficient for using neighbor proteins to predict unidentified direct protein interactions.
TransDomain had a better performance than the simulated methods because the tran-
sitive relationship combined with protein domains performs well in this evaluation. In
conclusion, TransDomain can effectively predict potential interacting protein pairs
that are direct interacting protein pairs.

250 Y.-T. Tang and H.-Y. Kao

Table 2. Performance comparison results in Tdirect

Average performance in Tdirect
Methods Precision Recall F-measure Accuracy
STRING 0.50 0.98 0.66 0.51

PPI Finder 0.60 0.83 0.70 0.64
GO Similarity BP CC 0.50 0.95 0.66 0.50

Domainm1 0.80 0.16 0.27 0.56
Domainm2 0.58 0.36 0.44 0.55

TransDomain 0.79 0.81 0.80 0.80

3.4 Case Studies

In this evaluation, TransDomain was applied to predict PPIs not reported in the litera-
ture. Finding protein interactions of the ER receptor protein remains a crucial task in
MCF7 cells used in breast cancer studies. Therefore, ER was selected as the query
protein and TransDomain was used to predict interacting proteins. We used the HPRD
protein interaction database, which contains 39,194 identified PPIs, as the predicting
dataset [18].

First, the identified interacting proteins of ESR1 were filtered from the predicting
dataset and the remaining protein entries were used as the predicting proteins. Top ten
predicted interacting proteins of ER, (NR3C1, RB1, PPARG, STAT3, PPARA, VDR,
HDAC1, PML, CSNK2A1 and MYC) were predicted by TransDomain. After evaluat-
ing the predicted results by two experts, MYC was selected because it is a crucial
protein in breast cancer studies. Zinc finger proteins and tubulin alpha ubiquitous play
RoleB have transitive relationships and have been found in pull-down experiments
with ER and MYC. Previous studies reported an association between ER and MYC
[19] and MYC was found as an interacting protein of ER by pull-down experiments.
These results show that TransDomain is an effective method for predicting unidenti-
fied PPIs.

4 Conclusion

The developed PPI prediction system TransDomain was able to effectively and pre-
cisely predict interacting protein pairs from protein pairs that have not been identified
using transitive role features and Ptrans. These protein pairs were successfully pre-
dicted by the transitive role features and Ptrans. In addition, not only the interactions
between hub proteins and it interaction partners but also the interactions between hub
proteins and non-hub proteins can be predicted by TransDomain. Our proposed me-
thod can also be applied to predict other relationships between biological entities,
such as protein–DNA interactions or gene–protein interactions. The predicted results
were sorted according to the frequency of transitive relationships, indicating that our
method can achieve high accuracies for different kinds of interactions, such as protein
associations, physical protein associations or direct protein interactions. In the future,
the extended transitive relationship of roles will be considered in detail for the predic-
tion of different types of interactions, such as protein–DNA interactions and gene–
protein interactions.

 TransDomain: A Transitive Domain-Based Method 251

References

1. Kim, S., Shin, S.Y., Lee, I.H., Kim, S.J., Sriram, R., Zhang, B.T.: PIE: an online prediction
system for protein-protein interactions from text. Nucleic Acids Res. 36, W411–W415
(2008)

2. Huang, T.W., Tien, A.C., Huang, W.S., Lee, Y.C., Peng, C.L., Tseng, H.H., Kao, C.Y.,
Huang, C.Y.: POINT: a database for the prediction of protein-protein interactions based on
the orthologous interactome. Bioinformatics 20, 3273–3276 (2004)

3. Ono, T., Hishigaki, H., Tanigami, A., Takagi, T.: Automated extraction of information on
protein-protein interactions from the biological literature. Bioinformatics 17, 155–161
(2001)

4. Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath,
V., Niranjan, V., Muthusamy, B., Gandhi, T.K., Gronborg, M., Ibarrola, N., Deshpande,
N., Shanker, K., Shivashankar, H.N., Rashmi, B.P., Ramya, M.A., Zhao, Z., Chandrika,
K.N., Padma, N., Harsha, H.C., Yatish, A.J., Kavitha, M.P., Menezes, M., Choudhury,
D.R., Suresh, S., Ghosh, N., Saravana, R., Chandran, S., Krishna, S., Joy, M., Anand, S.K.,
Madavan, V., Joseph, A., Wong, G.W., Schiemann, W.P., Constantinescu, S.N., Huang,
L., Khosravi-Far, R., Steen, H., Tewari, M., Ghaffari, S., Blobe, G.C., Dang, C.V., Garcia,
J.G., Pevsner, J., Jensen, O.N., Roepstorff, P., Deshpande, K.S., Chinnaiyan, A.M., Ha-
mosh, A., Chakravarti, A., Pandey, A.: Development of human protein reference database
as an initial platform for approaching systems biology in humans. Genome Res. 13, 2363–
2371 (2003)

5. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The Data-
base of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)

6. Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C., Dimmer, E.,
Feuermann, M., Friedrichsen, A., Huntley, R., Kohler, C., Khadake, J., Leroy, C., Liban,
A., Lieftink, C., Montecchi-Palazzi, L., Orchard, S., Risse, J., Robbe, K., Roechert, B.,
Thorneycroft, D., Zhang, Y., Apweiler, R., Hermjakob, H.: IntAct–open source resource
for molecular interaction data. Nucleic Acids Res. 35, D561–D565 (2007)

7. Breitkreutz, B.J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone, M.,
Oughtred, R., Lackner, D.H., Bahler, J., Wood, V., Dolinski, K., Tyers, M.: The BioGRID
Interaction Database: 2008 update. Nucleic Acids Res. 36, D637–D640 (2008)

8. Chatr-aryamontri, A., Ceol, A., Palazzi, L.M., Nardelli, G., Schneider, M.V., Castagnoli,
L., Cesareni, G.: MINT: the Molecular INTeraction database. Nucleic Acids Res. 35,
D572–D574 (2007)

9. Vastrik, I., D’Eustachio, P., Schmidt, E., Gopinath, G., Croft, D., de Bono, B., Gillespie,
M., Jassal, B., Lewis, S., Matthews, L., Wu, G., Birney, E., Stein, L.: Reactome: a know-
ledge base of biologic pathways and processes. Genome Biol. 8, R39 (2007)

10. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasars-
kis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock,
G.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
Nat. Genet. 25, 25–29 (2000)

11. Park, B., Han, K.: An ontology-based search engine for protein-protein interactions. BMC
Bioinformatics 11(Suppl 1), S23 (2010)

12. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., Snel, B.: STRING: a data-
base of predicted functional associations between proteins. Nucleic Acids Res. 31, 258–
261 (2003)

252 Y.-T. Tang and H.-Y. Kao

13. von Mering, C., Jensen, L.J., Kuhn, M., Chaffron, S., Doerks, T., Kruger, B., Snel, B.,
Bork, P.: STRING 7–recent developments in the integration and prediction of protein inte-
ractions. Nucleic Acids Res. 35, D358–D362 (2007)

14. He, M., Wang, Y., Li, W.: PPI finder: a mining tool for human protein-protein interactions.
PLoS One 4, e4554 (2009)

15. De Bodt, S., Proost, S., Vandepoele, K., Rouze, P., Van de Peer, Y.: Predicting protein-
protein interactions in Arabidopsis thaliana through integration of orthology, gene ontolo-
gy and co-expression. BMC Genomics 10, 288 (2009)

16. Scott, M.S., Barton, G.J.: Probabilistic prediction and ranking of human protein-protein in-
teractions. BMC Bioinformatics 8, 239 (2007)

17. Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., Gavin, O.L., Guna-
sekaran, P., Ceric, G., Forslund, K., Holm, L., Sonnhammer, E.L., Eddy, S.R., Bateman,
A.: The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2010)

18. Mishra, G.R., Suresh, M., Kumaran, K., Kannabiran, N., Suresh, S., Bala, P., Shivakumar,
K., Anuradha, N., Reddy, R., Raghavan, T.M., Menon, S., Hanumanthu, G., Gupta, M.,
Upendran, S., Gupta, S., Mahesh, M., Jacob, B., Mathew, P., Chatterjee, P., Arun, K.S.,
Sharma, S., Chandrika, K.N., Deshpande, N., Palvankar, K., Raghavnath, R., Krishna-
kanth, R., Karathia, H., Rekha, B., Nayak, R., Vishnupriya, G., Kumar, H.G., Nagini, M.,
Kumar, G.S., Jose, R., Deepthi, P., Mohan, S.S., Gandhi, T.K., Harsha, H.C., Deshpande,
K.S., Sarker, M., Prasad, T.S., Pandey, A.: Human protein reference database–2006 up-
date. Nucleic Acids Res. 34, D411–D414 (2006)

19. Cheng, A.S., Jin, V.X., Fan, M., Smith, L.T., Liyanarachchi, S., Yan, P.S., Leu, Y.W.,
Chan, M.W., Plass, C., Nephew, K.P., Davuluri, R.V., Huang, T.H.: Combinatorial analy-
sis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-alpha
responsive promoters. Mol. Cell 21, 393–404 (2006)

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 253–261, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Rapid and Accurate Generation of Peptide Sequence
Tags with a Graph Search Approach

Hui Li1, Lauren Scott1, Chunmei Liu1,*, Mugizi Rwebangira1,
Legand Burge1, and William Southerland2

1 Department of Systems and Computer Science
chunmei@scs.howard.edu

2 Department of Biochemistry,
Howard University

2400 Sixth Street, NW
Washington, DC 20059

United States

Abstract. Protein peptide identification from a tandem mass spectrum (MS/MS)
is a challenging task. Previous approaches for peptide identification with database
search are time consuming due to huge search space. De novo sequencing ap-
proaches which derive a peptide sequence directly from a MS/MS spectrum usu-
ally are of high complexities and the accuracies of the approaches highly depend
on the quality of the spectra. In this paper, we developed an accurate and efficient
algorithm for peptide identification. Our work consisted of the following steps.
Firstly, we found a pair of complementary mass peaks that are b-ion and y-ion, re-
spectively. We then used the two mass peaks as two tree nodes and extend the
trees such that in the end the nodes of the trees are elements of a b-ion set and a y-
ion set, respectively. Secondly, we applied breadth first search to the trees to gen-
erate peptide sequence tags. Finally, we designed a weight function to evaluate the
reliabilities of the tags and rank the tags. Our experiment on 2620 experimental
MS/MS spectra with one PTM showed that our algorithm achieved better accu-
racy than other approaches with higher efficiency.

Keywords: Tandem mass spectrum, Post-translational modification (PTM),
Peptide sequence tags.

1 Introduction

Protein identification from a tandem mass spectrum is an important but challenging
problem in proteomics. The problem becomes more difficult if post-translational
modifications (PTMs) present in the spectrum. The presence of post-translation modi-
fications in proteins is very common and most proteins contain one or more PTMs.
Currently, algorithms for protein identification using tandem mass spectrometry
(MS/MS) for proteins that contain PTMs have been extensively developed [1-5, 17].

Existing approaches for protein identification fall into two popular categories. One
category contains database based approaches and the other contains de novo peptide

* Corresponding author.

254 H. Li et al.

sequencing approaches. Database search based approaches usually pre-specify a set of
common PTM types and search databases [5-7]. The approaches align the query
spectrum with a peptide database and use an evaluation function to evaluate the
alignments. If a peptide sequence gives the best alignment score, it will be selected as
the peptide sequence of the query spectrum. However, due to the existence of natural
or artificial modifications in hundreds of species, database search based approaches
may need to explore a huge search space. Moreover, if the peptide sequence of the
query spectrum is not contained in the database, this kind of approaches will fail.

In contrast, de novo sequencing approaches directly find a peptide sequence for a
spectrum [8-12, 19]. De novo sequencing approaches could achieve a good perform-
ance without looking up a peptide database. However, because a spectrum usually is
not complete and contains a lot of noise peaks and PTMs, it is hard to derive a correct
peptide sequence of full length. In other words, the accuracy of a de novo sequencing
approach highly depends on the quality of the query spectra. Recently, approaches for
blind PTM identification have been proposed [5,13,16,18]. For example, in [5], it em-
ploys a point process model to align a query spectrum with the theoretical spectrum of
each peptide sequence in a peptide database. Alternatively, in [13], it proposes a dy-
namic programming algorithm to derive a peptide sequence for each spectrum. The
major obstacle of the approaches is that it is very time consuming for those ap-
proaches to do spectral alignments due to the large size of search space.

Recently, approaches that combine both de novo sequencing and database search
have been proposed. The approaches derive short peptide sequences (peptide
sequence tags) instead of full-length peptide sequences and use the tags to filter a pep-
tide database [13-15, 18]. The peptide sequence tags can filter out most peptide
sequences from the database such that only a small fraction of candidate peptide se-
quences are left for further spectral alignments. The approaches can reduce much search
space and thus significantly speed up the search. For example, PepNovo [14] uses a
score function to evaluate the reliability of sequence tags obtained from de novo se-
quencing with a graph based dynamic programming approach. Using a fragmentation of
a peptide, GutenTag [15] creates many short sequence tags which are contained in the
peptide and uses the tags to find the full-length sequence in a peptide database. SeqTag
[18] uses a tree-decomposition based approach to derive peptide sequence tags and then
use a point process model to align the query spectrum with the theoretical spectrum of
each candidate peptide sequence after database filtration with the tags. The approaches
reduce significant amount of search space and thus can speed up the search process. It
has become a promising direction for protein identification.

In this paper, we derive peptide sequence tags with a novel graph search approach.
The experimental results on a dataset consisting of spectra with one PTM show that
our algorithm achieves better or comparable accuracies on tag lengths of 3 and 4 with
less amount of time than PepNovo [14] and SeqTag [18].

2 Algorithms

Let S = {s1, s2, sk . . , sn} be a tandem mass spectrum, where si = {Pi, Ij}, Pi is the mass
value of the ith peak of the spectrum, and Ij is the intensity of the peak. We have the
following important observations:

 Rapid and Accurate Generation of Peptide Sequence Tags 255

1) The mass difference between two ions of the same type always is equal to the
mass of a single amino acid or the total mass of some amino acids;

2) If the mass difference between two peaks is not equal to the mass of any amino
acid or the total mass of some amino acids, the two peaks must be of different ion
types or at least one peak must be a noise peak; and

3) For each peak, its complementary peak should also be included in the spectrum.
If this is not the case, the complementary ion should be added to the spectrum to make
the spectrum more complete.

For each spectrum, a graph G= (V, E) is constructed. In the graph, each vertex
represents a peak of the spectrum. If the corresponding mass value difference of two
vertices Vi and Vj is the mass of a single amino acid or the total mass of some amino
acids, there is a directed edge from Vi to Vj if the corresponding mass value of Vi is
less than the mass value of Vj.

Extensive graph based algorithms for PTM identification have been developed [8-
10]. In the graph algorithms, each path of the graphs is labeled with an amino acid se-
quence. Although graph based algorithms may successfully identify some PTMs, the
following challenges still exist and need to be attacked:

1) Many noise peaks exist in MS/MS spectral data. In our dataset, the percentage
of noise peaks is more than 75%;

2) There are missing peaks;
3) The computing complexity is usually high due to huge search space; and
4) The existence of PTMs will break the chain of amino acid sequences.

In order to solve the problems above, we propose a novel graph search based ap-
proach. The approach consists of the following stages. Firstly, we find a pair of com-
plementary mass peaks that are b-ion and y-ion, respectively and the pair has the
highest intensity. We then use the two mass peaks as two tree nodes and extend the
trees such that in the end the nodes of the trees are the elements of a b-ion set GB and
a y-ion set GY, respectively. Secondly, we apply breadth first search to the trees to
generate peptide sequence tags. Finally, we design a weight function to evaluate the
reliabilities of the tags. From the observation, the complementary ions that have the
highest intensity are always located in around the middle part of a MS/MS spectrum.
Identifying a correct pair of complementary ions in the first step plays a fundamental
role in identifying correct tags. If noise peaks are identified as the starting nodes to
extend the trees, the identified amino acid sequences will be wrong. In this paper, the
constraint conditions for choosing the complementary pair of mass peaks si= (Pi, Ii)
and sj = (Pj, Ij) are as the following:

1) Pi is complementary to Pj;
2) The sum of the intensities Ii and Ij should be the highest among all complemen-

tary pairs; and
3) The mass difference between Pi-1 and Pi or the mass difference between Pi and

Pi+1 should be equal to the mass of a single amino acid or the combination of
multiple amino acids; the mass difference between Pj-1 and Pj or the mass dif-
ference between Pj and Pj+1 should be equal to the mass of a single amino acid
or the total mass of multiple amino acids.

256 H. Li et al.

B_tree Y_tree

100 6005004003002000

In
te

ns
ity

Mass/Charge

61

132

163

246

319
362

427
470

567

Fig. 1. An example MS/MS spectrum and its two trees

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

W C M N Y Q P R F G A V O T N I E X S L

Amino Acids

P
er

ce
nt

ag
e

of
 f

re
qu

en
cy

Fig. 2. Amino acid frequencies that are calculated from a yeast peptide database

After we find the pair of complementary ions, we use their corresponding vertices as
the starting nodes of two trees, respectively, and extend the trees such that in the end,
the nodes of the two trees are the elements of a b-ion set GB and a y-ion set GY, re-
spectively. Figure 1 shows an example MS/MS spectrum and its two trees.

In peptide sequences, the frequency of each amino acid is different. We calculate
the frequency of each amino acid in a yeast peptide database.

In order to reduce graph search space, we introduce a heuristic search to find the
best path in the tree graphs. We design a function to estimate the score of an edge. For
an edge (Vi, Vj) labeled with amino acid a, the estimation function F(Vi, Vj) is
defined as follows:

))
1

ln()
1

ln()
1

ln()
1

)(ln((),(
+

+
−

+
+

+
−

=
j

j

j

j

i

i

i

i
ji r

r

r

r

r

r

r

r
afVVF (1)

 Rapid and Accurate Generation of Peptide Sequence Tags 257

Create the OpenList and CloseList.
// All the child nodes of the current parent will be in-

serted into OpenList and all the extended nodes will be inserted
into CloseList.
 For i = 0 To L do (L denotes the layer of the tree graph)

Rank the Openlist by the function in Equation 1;

Add node i to OpenList;
Change the parent index of node i;
If the node is a leaf, record the whole path and re-

cursively search the path; delete node i from
OpenList, and add it to CloseList;

If node i belongs to B_tree, set ArrayMark[i]=1;
If node i belongs to Y_tree and ArrayMark[i]=0, set

ArrayMark[i] to be 2;
If node i belongs to Y_tree and ArrayMark[i]=1, set

ArrayMark[i] to be 3;
Go back to the root;
 If the OpenList in null, break the loop;

End For
For each i, if ArrayMark[i]=1, put the node into Bset
else if ArrayMark[i]=2, put the node into Yset
else if ArrayMark[i]=3, put the node into Cset

Visited edge

Not visited edgeBacktrack path

Search path

Fig. 3. A heuristic search on a tree for identifying a b-ion set and a y-ion set

Where f(a) is the frequency of amino acid a, and ri and rj are the relative intensities of
mass peaks si and sj. We use the following heuristic search algorithm to generate the
b-ion set and y-ion set.

After getting the Bset and Yset as above, we process them as follows:

1) SBset= Bset - CSet
2) SYset= YSet - CSet
3) CSBset is a set after adding the complementary peaks to SBset
4) CSYset is a set after adding the complementary peaks to SYset.

258 H. Li et al.

The following pseudcode describes the entire algorithm:

1) Choose a pair of complementary mass peaks RootB and RootY that are b-
ion and y-ion and has the highest sum of the intensities among complemen-
tary pairs;

2) Create Openlist and Closelist;
3) Use the heuristic search method to get BSet and YSet;
4) Get the sets CSBset and CSYset;
5) BSeqSet =BFS(CSBset) (BSeqSet is the set of sequences obtained from the

breadth first search on CSBset);
6) YSeqSet =BFS(CSYsets) (YSeqSet is the set of sequences obtained from

the breadth first search on CSYset);
7) Generate the tags from the BSeqSet and YSeqSet and use Equation 1 to

rank the tags.

The whole algorithm consists of two components: heuristic search for a b-ion set and
a y-ion set and breath first search for peptide sequence tags. The complexities of the
two components are O(n) and O(e+n), respectively, where n is the number of vertices
and e is the number of edges in the tree graph. Figure 4 shows the flowchart of the
whole algorithm.

start

Root_b Root_y

Search

Graph_b Graph_y

Search

B_set

B ion path Y ion path

Y_set

Add
complementary Cross_set Add

complementary

BFS_search BFS_search

Generate B
tag_set

Generate Y
tag_set

Rank tags

end

Fig. 4. The flowchart of the whole algorithm

 Rapid and Accurate Generation of Peptide Sequence Tags 259

3 Experiments and Results

We tested our algorithm on the same datasets of 2657 annotated yeast ion trap tandem
mass spectra that contain no PTMs and 2620 spectra where each spectrum contains
one artificially added PTM from a common PTM set as in [5]. We have implemented
our algorithm using C++ programming language and run the program on Dell Power
Edge 1950 server with 4 CPUs. Table 1 shows the accuracies of the selections of
complementary pairs on the two datasets. It is shown from the table that our program
is able to correctly identify a pair of complementary ions in 95.3% and 95.2% spectra
in the two datasets, respectively. Table 2 shows the comparison of the results of pep-
tide sequence tag selections of our algorithm with SeqTag [18] and PepNovo [14].
From the table, we can see that our program is able to identify more correct tags as
rank 1 tags for both tag lengths of 3 and 4 and achieves better or comparable accura-
cies for other ranks while use less time than the other two programs.

Table 1. The accuracies of the selections of a pair of complementary ions

 No PTM (2657) One PTM (2620)

 95.3% 95.2%

Table 2. A comparison between the performance of our tag selection program and that of
SeqTag and PepNovo at different tag lengths

Tag length Algorithm R=1(%) R=3(%) R=5(%) R=10(%) R=25(%) T(s)

Ours 69.7 84.2 89.5 92.3 95.3 0.27

SeqTag 68.1 84.8 90.3 94.8 97.1 0.32

3

PepNovo 62.8 83.7 89.7 94.9 97.8 3.59
Ours 55.4 74.1 74.6 85.2 91.2 0.31

SeqTag 53.5 71.2 78.6 84.8 90.0 0.32

4

PepNovo 51.1 71.7 79.3 85.8 91.4 3.65

The table shows the accuracies of peptide sequence tag selections on 2620 experimental spectra
with one artificially added PTM. Columns for R = 1, 3, 5, 10, 25 are the percentages of spectra
that have at least one correct tag in top 1, 3, 5, 10, 25 tags generated by our program, SeqTag,
and PepNovo, respectively; T is the average time in seconds used for generating peptide se-
quence tags for one spectrum.

4 Conclusions

In this paper, we propose a novel graph search approach for identifying peptide se-
quence tags. Considering the fact that an experimental MS/MS spectrum contains a
large amount of noise peaks and missing peaks, we first identify a pair of complemen-
tary ions. The experiments show that our program not only gains better or comparable
accuracy of peptide sequence tag selection than SeqTag and PepNovo but also our
program uses less amount of computing time. In future work, we will use the

260 H. Li et al.

sequence tags the program generates to search a peptide database for candidate pep-
tide sequences. We then will design an alignment algorithm such that for each query
experimental spectrum, we align it with the theoretical spectrum of each candidate
peptide sequence and evaluate each alignment with a score function. The peptide se-
quence that gives the highest alignment score will be chosen as the peptide sequence
of the query spectrum.

Acknowledgement

This work was supported by NSF CAREER (CCF-0845888) (Li, Scott, Liu), NSF
Science & Technology Center grant CCF-0939370 (Li, Scott, Liu, Rwebangira, and
Burge), and 2 G12 RR003048 from the RCMI program, Division of Research Infra-
structure, National Center for Research Resources, NIH (Rwebangira and
Southerland).

References

1. Wilkins, M.R., Gasteiger, E., Gooley, A.A., Herbert, B.R., Molloy, M.P., Binz, P.A., Ou,
K., Sanchez, J.C., Bairoch, A., Williams, K.L., Hochstrasser, D.F.: High-throughput Mass
Spectrometric Discovery of Protein Post-Translational Modifications. Journal of Molecular
Biology 289, 645–657 (1999)

2. Walsh, C.T.: Posttranslational Modification of Proteins: Expanding Nature’s Inventory.
Roberts & Company Publishers, Englewood, Colorado (2005)

3. Mann, M., Jensen, O.N.: Proteomic Analysis of Post-Translational Modifications. Nat.
Biotechnol. 21, 255–261 (2003)

4. Han, Y., Ma, B., Zhang, K.: SPIDER: Software for Protein Identification from Sequence
Tags Containing Sequencing Error. Journal of Bioinformatics and Computational Biology,
97–716 (2005)

5. Yan, B., Zhou, T., Wang, P., Liu, Z., Emanuele II, V.A., Olman, V., Xu, Y.: A Point-
Process Model for Rapid Identification of Post-Translational Modifications. In: Proceed-
ings of 2006 Pacific Symposium on Biocomputing, pp. 327–338 (2006)

6. Liu, C., Yan, B., Song, Y., Xu, Y., Cai, L.: Fast De Novo Peptide Sequencing and Spectral
Alignment via Tree Decomposition. In: Proceedings of the 11th International Pacific Sym-
posium on Biocomputing (PSB 2006), pp. 255–266 (2006)

7. Fu, Y., Jia, W., Lu, Z., Wang, H., Yuan, Z., Chi, H., Li, Y., Xiu, L., Wang, W., Liu, C., et
al.: Efficient Discovery of Abundant Post-Translational Modifications and Spectral Pairs
Using Peptide Mass and Retention Time Differences. BMC Bioinformatics 10(Suppl 1),
S50 (2009)

8. Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., Lajoie, G.: PEAKS:
Powerful Software for Peptide De Novo Sequencing by Tandem Mass Spectrometry.
Rapid Communication in Mass Spectrometry 17, 2337–2342 (2003)

9. Searle, B.C., Dasari, S., Turner, M., Reddy, A.P., Choi, D., Wilmarth, P.A., McCormack,
A.L., David, L.L., Nagalla, S.R.: High-Throughput Identification of Proteins and Unantici-
pated Sequence Modifications Using a Mass-Based Alignment Algorithm for MS/MS De
Novo Sequencing Results. Anal. Chem. 76, 2220–2230 (2004)

 Rapid and Accurate Generation of Peptide Sequence Tags 261

10. Yan, B., Pan, C., Olman, V.N., Hettich, R.L., Xu, Y.: A Graph-Theoretic Approach for the
Separation of b and y Ions in Tandem Mass Spectrometry. Bioinformatics 21, 563–574
(2005)

11. Perkins, D.N., Pappin, D.J., Creasy, D.M., Cottrell, J.S.: Probability-based Protein Identi-
fication by Searching Sequence Databases Using Mass Spectrometry Data. Electrophore-
sis 20, 3551–3567 (1999)

12. Eng, J.K., McCormack, A.L., Yates III, J.R.: An Approach to Correlate Tandem Mass
Spectral Data of Peptides with Amino Acid Sequences in A Protein Database. Journal of
the American Society of Mass Spectrometry 5, 976–989 (1994)

13. Frank, A., Tanner, S., Pevzner, P.: Peptide Sequence Tags for Fast Database Search in
Mass-Spectrometry. Journal of Proteome Research 4, 1287–1295 (2005)

14. Frank, A., Pevzner, P.: PepNovo: De Novo Peptide Sequencing via Probabilistic Network
Modeling. Anal. Chem. 77, 964–973 (2005)

15. Tabb, D.L., Saraf, A., Ates, J.R.: GutenTag: High-Throughput Sequence Tagging via an
Empirically Derived Fragmentation Model. Analytical Chemistry 75, 6415–6421 (2003)

16. Tsur, D., Tanner, S., Zandi, E., Bafna, V., Pevzner, P.: Identification of Post-translational
Modifications by Blind Search of Mass Spectra. Nature Biotechnology 23, 1562–1567
(2005)

17. Tanner, S., Shu, H., Frank, A., Wang, L.C., Zandi, E., Mumby, M., Pevzner, P.A., Bafna,
V.: InsPecT: Identification of Posttranslationally Modified Peptides from Tandem Mass
Spectra. Analytical Chemistry 77, 4626–4639 (2005)

18. Liu, C., Yan, B., Song, Y., Xu, Y., Cai, L.: Peptide Sequence Tag-Based Blind Identifica-
tion of Post-Translational Modifications with Point Process Model. In: The 14th Interna-
tional Conference on Intelligent Systems for Molecular Biology (ISMB 2006), Fortaleza,
Brazil (2006)

19. Liu, C., Yan, B., Song, Y., Xu, Y., Cai, L.: Graph Tree Decomposition Based Fast Peptide
Sequencing and Spectral Alignment. International Journal of Computational Science, Spe-
cial Issue on Bioinformatics and Computational Biology 2, 632–645 (2008)

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 262–273, 2011.
© Springer-Verlag Berlin Heidelberg 2011

In Silico Evolution of Multi-scale Microbial Systems in
the Presence of Mobile Genetic Elements and Horizontal

Gene Transfer

Vadim Mozhayskiy and Ilias Tagkopoulos*

Department of Computer Science and Genome Center
University of California Davis

One Shields Avenue, Davis, CA 95616, USA
 itagkopoulos@ucdavis.edu

Abstract. Recent phylogenetic studies reveal that Horizontal Gene Transfer
(HGT) events are likely ubiquitous in the Tree of Life. However, our knowledge
of HGT’s role in evolution and biological organization is very limited, mainly due
to the difficulty tracing HGT events experimentally, and lack of computational
models that can capture its dynamics. Here, we present a novel, multi-scale model
of microbial populations with the capacity to study the effect of HGT on complex
traits and regulatory network evolution. We describe a parallel load-balancing
framework, which was developed to overcome the innate challenges of simulating
evolving populations of such magnitude and complexity. Supercomputer simula-
tions of in silico cells that mutate, compete, and evolve, show that HGT can
significantly accelerate, but also disrupt, the emergence of advantageous traits in
microbial populations. We show that HGT leaves a lasting imprint to gene regula-
tory networks when it comes to their size and sparsity. In any given experiment,
we observed phenotypic variability that can be explained by individual gain and
loss of function during evolution. Analysis of the fossil mutational and HGT event
record, both for evolved and non-evolved populations, reveals that the distribution
of fitness effect for HGT has different characteristics in terms of symmetry, shape
and bias from its mutational counterpart. Interestingly, we observed that evolution
can be accelerated when populations are exposed in correlated environments of
increased complexity, especially in the presence of HGT.

Keywords: Horizontal Gene Transfer, Microbial Evolution, Biological Net-
works, Simulation, Multi-scale Modeling, High Performance Computing.

1 Introduction

Horizontal Gene Transfer (HGT) is the process of horizontal transfer of genetic ma-
terial within and across species. It is a mechanism of genetic exchange complementa-
ry to vertical transfer, which occurs through cell division and results in the transfer of
genetic information from an ancestor to its offspring cells. Although largely ignored
in the past, recent phylogenetic evidence suggests that its impact on bacterial evolu-
tion is significant and should be investigated more thoroughly [1, 2].

* Corresponding author.

 In Silico Evolution of Multi-scale Microbial Systems 263

Fig. 1. General overview of the simulated ecological setting: Microbial populations evolve
under environment AB either directly (i), or indirectly through an intermediate environment X
of lower complexity (ii). In addition, we test whether pre-exposing to environments A and B
and then merging the respective populations without (iii) or with (iv) HGT changes the rate and
characteristics of evolution.

For instance, it has been estimated that up to a 32% of the bacterial genome is ac-
quired by HGT [3]. However, even this number is a lower bound of the HGT events
that take place through bacterial evolution, since only a small fraction of transferred
material is positively selected, fixed and, consequently, observable through phyloge-
netic analysis [4].

Due to our limited ability to observe HGT dynamics in an experimental setting,
theoretical models have been traditionally employed to elucidate the impact of HGT
on evolution. Continuous kinetic [5, 6] and stochastic models [7-9] were developed to
fit experimentally observed short-term dynamics of HGT in twenty-four-hour experi-
ments [9] and to analyze the interplay between rates of HGT, mutations, and selection
pressure parameters. It was shown that transferred genes can be successfully fixed in a
population if the HGT rate is comparable to the mutational inactivation rate [7] and
that high rates of HGT may affect evolution rate in a simple population model [8].
Previous models, although insightful, have a limited scope as they lack any notion of
gene regulation, cellular networks and processes, multi-scale structures, and temporal
expression dynamics. To address these issues, we extended our previous work [10] to
develop a multi-scale simulation framework, capable of simulating the evolution of
unicellular organisms in the presence of HGT, which is described in Sec. 2 and 3.

An overview of the general simulation setting discussed in this paper is illustrated
in Fig. 1. We start with a random initial population of cells and three dynamic envi-
ronments, namely A, B and AB, where the latter is the combination of the first two,
and hence of higher complexity. The un-evolved initial population is exposed in one
of following three settings: (a) it is directly placed into environment AB, (b) it is first
placed in environment X, which is of lower complexity, (c) it is initially evolved in

264 V. Mozhayskiy and I. Tagkopoulos

environments A and B, which leads to two distinct populations, that are subsequently
randomly sampled (keeping the same effective size) to form a final population that is
then placed in the AB environment with and without HGT. This setting allows us to
investigate questions related to HGT and evolution in environments that are both cor-
related and increasingly more complex.

2 Biological Model

In our model, each in silico organism encompass functions and parameters that model
basic biological phenomena, while its core consists of a gene regulatory and biochem-
ical network with abstract molecular representations. The model has been extended to
incorporate Horizontal Gene Transfer in addition to the other cellular (transcription,
translation, modification, growth, death, etc.) and evolutionary (mutation and natural
selection) processes. In a simulation, a fixed-size population of cells mutates, com-
petes and evolves in well-defined, temporal, multivariate environments. Each cell
comprises three types of nodes: Gene/mRNA, Protein, and Modified Protein (Fig. 2a).
The Promoter/Gene/RNA node captures gene regulation and transcription, while the
Protein and Modified Protein nodes capture translation and post-translational modifi-
cation (acetylation, phosphorylation, etc.), respectively.

Fig. 2. (a) Basic cellular modeling in our simulation framework; a “triplet” captures processes
of transcription, translation, and post-translational modification. (b) Example of a gene regula-
tory and biochemical network in an organism where environmental signals (e.g. oxygen, tem-
perature, etc.) regulate the expression of certain genes/proteins. (c) Environmental signals (s1
and s2) and nutrient abundance for four environments (bottom to top: OR, A, B, XOR) shown
as a function of time steps within one epoch. Nutrient presence is a delayed function of the two
signals.

A “triplet” consists of a specific gene node and its products, i.e. the corresponding
protein and modified protein node, and generally captures the “central dogma” of mole-
cular biology (Fig. 2a). Each organism has its own distinct gene regulatory and bio-
chemical network (i.e. a collection of various triplets and weighted regulatory edges)
that can be depicted as a directed weighted graph (see Fig. 2b). There exists a set of
“special triplets”, which are common in all cells, and encode physiological responses. It
is important to note that we do not impose any objective function or arbitrary

 In Silico Evolution of Multi-scale Microbial Systems 265

selection. Instead, we model the environment in which synthetic organisms live and
evolve, which consists of signals, nutrients and other chemicals (e.g. toxic com-
pounds) with concentrations that can fluctuate over time. In this work, every envi-
ronment has only one nutrient type and each organism possess one special triplet,
whose expression allows the organism to metabolize the nutrients that are present.
Since nutrients are present for a short duration, organisms that evolve the capacity to
infer their presence and be prepared (e.g. express the metabolic triplet) have a selec-
tive advantage, in analogy to real microbial systems. We utilize this framework to
address questions regarding the impact of HGT on trait evolution, and gene regulatory
network organization.

In the setting discussed here, two signals s1 and s2 carry information regarding the
presence of nutrients in the environment (Fig. 2c). For example, in a XOR environ-
ment, the “Nutrients Presence [XOR]” = Delayed (s1 XOR s2). Similarly, the correla-
tion-structure of environments A and B is “Nutrients Presence [A]” = Delayed (s1
AND NOT(s2)) and “Nutrients Presence [B]” = Delayed (NOT(s1) AND s2) respec-
tively. Despite the fact that the combined AB environment (delayed XOR) is a simple
combination of the A and B environments, its complexity is significantly higher when
compared to the other two (A and B) as it is not linearly separable [11]; in contrast to
both A and B environments that can be separated linearly. To assess the fitness level
of each organism, we report the Pearson correlation between nutrient abundance and
response protein expression level over a predefined interval of time, which we call an
“epoch” (4,500 time units in our simulations). We stress that this similarity measure is
used for visualization purposes as a proxy to each organism’s fitness, and at no point
participates or interferes with the selection or evolutionary trajectory of cells during
the simulation.

The probability of molecule creation at each node and at each time step is a func-
tion of the regulatory effect of other nodes on that specific node, and the availability
of substrate molecules. We model the molecule production probability as a two-level
sigmoid function that captures saturation effects for any given regulator and for the
expression of any given node. As such, the molecule production probability of node i
is given by:

1 · ∑ · , , ̃ , 1

where the sigmoid function fij describes the regulatory effect of node j on node i: , , ̃ · 1 ̃ , 2

where wij is the regulatory matrix element (i.e. the strength and direction that exerts
node j to node i), vj is the value of node j, mi and si the midpoint and slope of the tar-
get-specific sigmoid function, and ̃ the midpoint and slope of the regulator spe-
cific sigmoid function, n is number of regulating nodes, basali is the basal expression
parameter.

266 V. Mozhayskiy and I. Tagkopoulos

3 Parallel Simulation Framework

The simulations described here are of unprecedented scale and scope, with integrated
models of the environment, population, organism, biological network and molecular
species. This level of detail is necessary in order to model phenomena that transcend
multiple scales, as in the case of Horizontal Gene Transfer. We had to develop effi-
cient algorithms for HPC communication, balancing and process migration, as cell
death and division creates unforeseen loads to the various computational cores. In
addition, as organisms adapt and evolve, the complexity of their internal networks
constantly increases, and with that the need for computational power. Cells with larg-
er networks can be more efficient in nutrients metabolism and therefore grow and
divide faster in real time. On the contrary, the computational time for cells with ex-
tended genomes is always larger, and scales with O(N2), where N is the number of
nodes within the cellular network. This calls for a synchronization point at each time-
point during our simulations, which may lead to poor scalability due to load imbal-
ance (Fig. 3).

Initially, cells were distributed to MPI processes with one cell per process per
computational core; MPI processes were synchronized at the end of each time step.
However, in this initial implementation the imbalance was a problem even for a small
number of cells, and the code did not scale beyond 64 cores. The model was improved
when a group of cells were assigned to each MPI process, because of averaging ef-
fects (i.e. the average computational load was similar among processes). Strong scal-
ing results (Fig. 4a) showed that for our problem size, a load of 8 cells per core was
ideal as the imbalance between processes was minimal.

Fig. 3. Variation of the computational time per MPI process increases with the number
processes. (a) Standard deviation of the computational time (per time step, per core) five epochs
after cell distribution was balanced, at a constant load of 8 cells/process. (b) Distributions of
computational time across MPI processes for jobs with 512 and 1024 processes (4096 and 8192
cells, respectively). In larger populations, the higher variance between cell size results in unba-
lanced computational loads and increased idling time at synchronization points.

 In Silico Evolution of Multi-scale Microbial Systems 267

Fig. 4. (a) Strong scaling for a population 256 cells. Code scales well for loads of 8 cells/core
or more. (b) Weak scaling up to 8192 cells for the hybrid MPI/OpenMP model. (c) Dynamic
MPI load balancing. Top: in an evolving population, computational time for cells varies with
the cell network size. This results in idle cores (dashed lines) with smaller (i.e. fast-to-compute)
cells, as they synchronize at each time-point. Each bar segment depicts the computational time
of a single cell, and multiple cells, of various complexities, are assigned to a single core. The
maximum of these loads (here, the load of core N) defines the speed of the simulation. Bottom:
with the addition of a dynamic load balancer, cells are redistributed to minimize idling time.

Next, we further extended our model by implementing a hybrid MPI/OpenMP so-
lution: each MPI process is executed on a multi-core computational node; cells as-
signed to each MPI process are stored in the node’s shared memory; computational
cycles for each cell update in an MPI process are dynamically distributed between
available cores. Dynamic cell distribution is carried out by creating a pool of cycles
and cores, and aims to eliminate the idling time during communication. Weak and
strong scaling shows scalability up to 8192 cells with near-linear speedup (Fig. 4b).

Finally, by adding dynamic MPI load balancing (Fig. 4c), computational time is
monitored for each cell and is used to redistribute cells between MPI processes in
order to have a more balanced load between cores. The cell growth rate is used to
predict cell division/death events. Although the current load-balancing implementa-
tion is a distributed process, a scalable hierarchical implementation can further in-
crease the performance of the simulator.

4 Application: Horizontal Gene Transfer

In our model, genes and its products are represented by triplets, and therefore HGT can
be treated as inter-cellular transfer of one or more triplets (mobile genetic elements). For
every HGT event a random fragment (i.e. subset of triplets) is copied from a donor cell

268 V. Mozhayskiy and I. Tagkopoulos

and inserted into the regulatory network of a recipient cell. Fragment size is chosen us-
ing a probability density function (normalized sigmoid function):

· , (3)

where n is the fragment size m and s are the middle point and slope of the probability
density function, respectively. In most cases s=m was used, and therefore 67% of all
transferred fragments were not larger than m triplets (Fig. 5a). The original regulation
of the response protein by the transferred sub-network is preserved (Fig. 5a, insert).
Experimentally observed HGT rates between bacteria in natural environments vary
between 10-7 and 10-11 per generation per cell [12-14], while in some cases the rate
climbs between 10-3 to 10-1 [14, 15]. Default HGT rate used throughout the paper is
5·10-6 per cell per time step.

Fig. 5. (a) HGT transfer probability and genome integration: Probability density function pro-
file used to select fragment sizes; (insert) incorporation of the transferred fragment into the
regulatory matrix, where only the response pathway regulation is conserved. (b) Evolution rate
is a linear function of the population size. Rate is calculated as an average slope of the maxi-
mum fitness increase for population sizes up to 4096 cells (16 replicates). Initial random popu-
lations evolved in the XOR environment until the maximum fitness is stabilized.

First, we looked at how the rate of evolution scales as a function of the population
size. It is believed that evolution speed increases linearly with population size N for
small populations, and with ln(N) for intermediate population sizes [16], while it ap-
proaches a saturation limit for large populations (>109) [17] . We observed a linear
dependence of evolution rate to population size (Fig. 5b) in agreement with theoreti-
cal predictions. Although it is possible that HGT can eventually be beneficial at high
population sizes, where simultaneous emergence of competing beneficial mutations
may decrease the rate of evolution, we did not observe this effect in our simulations
due to the smaller population size.

 In Silico Evolution of Multi-scale Microbial Systems 269

Fig. 6. (Color) Multi-step acceleration and HGT effect in “dual-step” evolution: (a) Evolution
of random population of cells in A, B and XOR environments shown in red, blue, and gray re-
spectively. Maximum fitness averaged over 64 simulations, (b) evolutionary trajectory under
“dual-step” evolution, where population of evolved cells in A and B environments show re-
markably fast adaptation to environment AB (64 simulations). HGT confers an additional acce-
leration of adaptation to new settings. Inset: Maximum fitness curves for 8 out of 64 individual
simulations with (left inset) and without (right inset) HGT are shown in gray. One curve is hig-
hlighted with dark gray for clarity.

4.1 Evolution in Coupled Environments of Increasing Complexity

Recent theoretical predictions [18, 19] suggest that evolution generalizes to new
environments through facilitated variation, a process in which genetic changes are
channeled in useful phenotypic directions. Here we hypothesize that evolution can be
accelerated by exposing evolving populations in similar, correlated environments of
increasing complexity, and we assess whether HGT further accelerates evolution in
such settings. When random populations are exposed directly to environment AB,
more than 4,000 epochs are needed to evolve the delayed XOR function (Fig. 6, gray
curve). In contrast, populations evolve faster in environments of lower complexity,
such as the environments A and B (Fig. 6, red/blue lines). Remarkably, if we sample
equal amounts of cells from A and B and expose the new population in the complex
environment AB with all other parameters being equal (size of population, average
nutrient concentration, etc.), XOR phenotypes of high fitness appear surprisingly fast
(Fig. 6b). This effect is even more pronounced in the presence of HGT, where the
fittest phenotype arises twice as fast as those without HGT present (Fig. 6b, insert).
Analysis of individual simulation runs results in similar observations, with all expe-
riments leading to phenotypes of increased fitness in the presence of HGT.

Detailed statistics of the evolution probability and speed is shown in Table 1. In
“single-step” evolution (un-evolved XOR) only 18 of 32 (56%) experiments were
successful and terminated with an evolved XOR population (after 4,000 epochs).
Success probability of the “dual-step” adaptation process was estimated as a product
of “single-step” probabilities and equals 91% and 82% percent with and without
HGT, respectively. HGT accelerates emergence of the combined phenotype in {A, B}

270 V. Mozhayskiy and I. Tagkopoulos

Table 1. Rate of adaptation a complex XOR environment in different experimental scenarios.
The probability and the speed of phenotype emergence are shown for two fitness thresholds
0.75 (evolved organism) and 0.90 (refined evolved organism). Average speed is the average
epoch number at which maximum fitness surpasses the threshold.

mixed populations by a factor of 1.7. However the probability and the speed of the
phenotypic refinement for fitness levels above 0.9 is less affected by HGT relative to
the initial emergence of the phenotype above the 0.75 threshold (note that any pheno-
type with 0.75 Pearson correlation between metabolic pathway expression and nu-
trients exhibits the XOR I/O characteristic). This is to be expected, since subsequent
fine-tuning is due to mutations, and not insertion of new functional fragments from
other organisms. Evolution through a single environment of intermediate complexity
(un-evolved OR XOR) accelerates the evolution of a XOR phenotype by a factor
1.8, but with a lower probability of highly fit cells to appear in the final population
(only in 5 out of 32 experiments, cells with fitness higher than w>0.90 emerged).

4.2 Effect of Horizontal Gene Transfer on the Network Organization

The full gene regulatory and biochemical networks of evolved cells are usually too
complex to analyze since many of the connections are not relevant to the observed
phenotype. To address this, we employed a reduction algorithm described elsewhere
[10] to extract the “minimal” network that encompasses only essential connections.
As shown in Table 2, average fitness of reduced minimal networks is at least 95% of
the full network’s fitness, however the average number of regulatory edges is signifi-
cantly reduced: from 338 to 14.1 and from 335 to 10.6 with and without HGT respec-
tively. Presence of HGT events results in larger networks that are considerably more
sparse (0.39 vs. 0.22), but with the same average sparsity and reduced network size
difference when it comes to their minimal counterparts.

Emergence of the organism with fitness w
w>0.75 w>0.90

Success
Rate

Average
speed,
epochs

Success
Rate

Average
speed,
epochs

Un-evolved XOR 18/32 2485 15/32 2489

Un-evolved OR 29/32 1179 13/32 >4,000
OR XOR 30/32 210 5/32 2093
Acceleration by stepwise adaptation 1.8 –

Un-evolved A 30/32 1043 29/32 1067
Un-evolved B 31/32 1217 31/32 1319
{A & B} XOR 58/64 234 47/64 448
Acceleration by stepwise adaptation 1.7 1.4

{A & B} XOR + HGT 64/64 138 48/64 406
Acceleration by HGT 1.7 1.1

 In Silico Evolution of Multi-scale Microbial Systems 271

Table 2. Complete and minimal network statistics for populations evolved in a XOR phenotype
with and without HGT

4.3 Distribution of Fitness Effect of Mutational and HGT Events

Mutations and HGT events differ in magnitude and direction when it comes to their
fitness effect. Traditionally, models rely on theoretical or experimentally constructed
distributions of fitness effect (DFE) when introducing mutations in a population. For
mutations, these distributions have been measured experimentally for viruses and bacte-
ria (e.g. [20-22]) and have also been obtained theoretically (e.g. [23] and references
therein). In general, it is assumed that most mutations have a neutral or nearly neutral
effect and the vast majority of mutations have a negative fitness effect [23]. In bacterio-
phage F1, 20% of single point mutations were found to be lethal, while the mean fitness
decrease was around 11% [21]. In E. coli, the average effect of spontaneous deleterious
mutations and random insertions is less than 1% and 3%, respectively [20, 22].

Table 3. Proprieties of Distribution of Fitness Effect for mutational and HGT events in evolved
and un-evolved populations

Here, we use our in silico simulation framework to investigate the shape and changes
in the DFE for both mutations and HGT. Since each organism has its own regulatory
network that results to a distinct phenotypic behavior, we are able to calculate fitness
before and immediately after any HGT event by looking at the expression levels of the
response pathway. This allows us to profile the shape of DFE along the evolutionary
trajectory and to account for genetic drift, which can be a significant force in small pop-
ulations. In both mutational and HGT DFEs, there is a profound decrease in the number
of lethal events (i.e. fitness effect equal to -1) in evolved populations versus the non-
evolved populations (Table 3), a clear indication of mutational robustness. Furthermore,
we observe a decrease in variance and increase in kurtosis (sharpness) of the DFE as
populations evolve, both for HGT and mutations, although the effect is more profound

 Full network Minimal network
 no HGT HGT no HGT HGT

Fitness (St. Dev.) 0.81 (0.052) 0.79 (0.044) 0.78 (0.006) 0.75 (0.006)
Triplets 8.8 13.8 5.5 6.7

Links (St. Dev.) 335 (157) 338 (136) 10.6 (0.03) 14.1 (0.03)
Sparsity 0.39 0.22 0.11 0.10
Modularity 3.8 10.1 3.3 3.1

 Mean
fitness

change, %

Fitness
variance

Skewness Kurtosis Percent of
lethal
events

Mutations:
Un-evolved populations -6.6% 0.109 -0.014 3.10 33.0 %
Evolved populations -4.5% 0.032 -1.028 6.39 3.2 %
Horizontal Gene Transfer:
Un-evolved populations -5.1% 0.063 -0.129 4.49 14.4 %
Evolved populations -6.6% 0.048 -0.064 4.70 4.6 %

272 V. Mozhayskiy and I. Tagkopoulos

in the latter case. As population evolves, mutational DFE becomes more skewed to-
wards negative fitness effects, which is to be expected as most mutations in an evolved
organism result in a decreased fitness. Interestingly, the DFE of HGT events becomes
more symmetric in evolved populations, as the probability for HGT to transfer a benefi-
cial or disrupting fragment increases (the first because of the availability of beneficial
sub-networks, the second because of the high ratio of already fine-tuned cells in the
population which can be disrupted by a HGT event).

5 Discussion

To elucidate the effect of Horizontal Gene Transfer in bacterial evolution, we used in
silico microbial organisms that compete and evolve under dynamic environments in the
presence of HGT. The simulation framework presented here is the first that incorporates
models of cellular and evolutionary processes, together with representations of the envi-
ronment, population, organism, biological network and molecular species. This allows
us to address questions that transcend many levels of biological organization and inves-
tigate the impact of phenomena, such as HGT and environmental perturbations in an
unprecedented scale, albeit at the price of increased computational complexity.

Our results show that multi-step evolution accelerates the emergence of complex
traits, especially in the presence of HGT, and illustrate its effect on adaptation and net-
work organization. We showed that the distribution of fitness effects for HGT presents
some notable differences from its mutational counterpart. There are many future direc-
tions to explore in order to increase the scope and biological realism of our simulator.
The current framework will benefit from the addition of a spatial component, since in
the current setting we assumed a well-mixed, homogeneous environment which clearly
limits us on the number of hypotheses we can test. This will allow us to investigate in-
dividually the various HGT mechanisms, whose effect vary greatly with the spatial
landscape of the environment and population structure. Furthermore, the biological real-
ism of the underlying network can be improved by refining the models that capture cel-
lular processes, as well as adding a metabolic layer and its corresponding models.
Despite its limitations, this work is ground-breaking by creating an overarching model
of biological phenomena, a synthetic environment, where hypotheses can be tested or
automatically generated. This, in conjunction with advanced HPC techniques can prove
to be transformative in predicting evolution and microbial behavior in general.

Acknowledgments. Authors would like to acknowledge Kitrick Sheets (NCSA) for
assistance in parallel code development, Bob Miller and Dr. Kwan-Liu Ma (UC Da-
vis) for the automated network visualization tool, and the members of the Tagkopou-
los Lab for their comments. This research was supported by the NSF-OCI grant
0941360 and is part of the Blue Waters Project.

References

1. Ragan, M.A., Beiko, R.G.: Lateral genetic transfer: open issues. Philosophical Transac-
tions of the Royal Society B-Biological Sciences 364, 2241–2251 (2009)

2. Boto, L.: Horizontal gene transfer in evolution: facts and challenges. Proc. Biol. Sci. 277,
819–827 (2010)

 In Silico Evolution of Multi-scale Microbial Systems 273

3. Koonin, E.V., Makarova, K.S., Aravind, L.: Horizontal gene transfer in prokaryotes:
Quantification and classification. Annual Review of Microbiology 55, 709–742 (2001)

4. Gogarten, J.P., Doolittle, W.F., Lawrence, J.G.: Prokaryotic evolution in light of gene
transfer. Molecular Biology and Evolution 19, 2226–2238 (2002)

5. Koslowski, T., Zehender, F.: Towards a quantitative understanding of horizontal gene
transfer: A kinetic model. Journal of Theoretical Biology 237, 23–29 (2005)

6. Nielsen, K.M., Townsend, J.P.: Monitoring and modeling horizontal gene transfer. Nature
Biotechnology 22, 1110–1114 (2004)

7. Novozhilov, A.S., Karev, G.P., Koonin, E.V.: Mathematical modeling of evolution of ho-
rizontally transferred genes. Molecular Biology and Evolution 22, 1721–1732 (2005)

8. Levin, B.R., Cornejo, O.E.: The Population and Evolutionary Dynamics of Homologous
Gene Recombination in Bacteria. PLoS Genetics 5, Article No.: e1000601 (2009)

9. Philipsen, K.R., Christiansen, L.E., Hasman, H., Madsen, H.: Modelling conjugation with
stochastic differential equations. Journal of Theoretical Biology 263, 134–142 (2010)

10. Tagkopoulos, I., Liu, Y.C., Tavazoie, S.: Predictive behavior within microbial genetic
networks. Science 320, 1313–1317 (2008)

11. Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. Wiley-Interscience, Ho-
boken (1973)

12. Ando, T., Itakura, S., Uchii, K., Sobue, R., Maeda, S.: Horizontal transfer of non-
conjugative plasmid in colony biofilm of Escherichia coli on food-based media. World
Journal of Microbiology & Biotechnology 25, 1865–1869 (2009)

13. Baur, B., Hanselmann, K., Schlimme, W., Jenni, B.: Genetic transformation in freshwater:
Escherichia coli is able to develop natural competence. Appl. Environ. Microbiol. 62,
3673–3678 (1996)

14. Jiang, S.C., Paul, J.H.: Gene transfer by transduction in the marine environment. Applied
and Environmental Microbiology 64, 2780–2787 (1998)

15. McDaniel, L., Young, E., Delaney, J., Ruhnau, F., Ritchie, K., Paul, J.: High Frequency of
Horizontal Gene Transfer in the Oceans. Nature 330, 1 (2010)

16. Park, S.C., Simon, D., Krug, J.: The Speed of Evolution in Large Asexual Populations.
Journal of Statistical Physics 138, 381–410 (2010)

17. Gerrish, P.J., Lenski, R.E.: The fate of competing beneficial mutations in an asexual popu-
lation. Genetica 102-103, 127–144 (1998)

18. Kashtan, N., Noor, E., Alon, U.: Varying environments can speed up evolution. Proceed-
ings of the National Academy of Sciences of the United States of America 104, 13711–
13716 (2007)

19. Parter, M., Kashtan, N., Alon, U.: Facilitated Variation: How Evolution Learns from Past
Environments To Generalize to New Environments. Plos Computational Biology 4 (2008)

20. Elena, S.F., Ekunwe, L., Hajela, N., Oden, S.A., Lenski, R.E.: Distribution of fitness ef-
fects caused by random insertion mutations in Escherichia coli. Genetica 102-103, 349–
358 (1998)

21. Peris, J.B., Davis, P., Cuevas, J.M., Nebot, M.R., Sanjuan, R.: Distribution of Fitness Ef-
fects Caused by Single-Nucleotide Substitutions in Bacteriophage f1. Genetics 185, U308–
U603 (2010)

22. Kibota, T.T., Lynch, M.: Estimate of the genomic mutation rate deleterious to overall fit-
ness in E-coli. Nature 381, 694–696 (1996)

23. Eyre-Walker, A., Keightley, P.D.: The distribution of fitness effects of new mutations. Na-
ture Reviews Genetics 8, 610–618 (2007)

Comparative Evaluation of Set-Level Techniques

in Microarray Classification

Jiri Klema1, Matej Holec1, Filip Zelezny1, and Jakub Tolar2

1 Faculty of Electrical Engineering, Czech Technical University in Prague
2 Department of Pediatrics, University of Minnesota, Minneapolis

Abstract. Analysis of gene expression data in terms of a priori-defined
gene sets typically yields more compact and interpretable results than
those produced by traditional methods that rely on individual genes.
The set-level strategy can also be adopted in predictive classification
tasks accomplished with machine learning algorithms. Here, sample fea-
tures originally corresponding to genes are replaced by a much smaller
number of features, each corresponding to a gene set and aggregating ex-
pressions of its members into a single real value. Classifiers learned from
such transformed features promise better interpretability in that they de-
rive class predictions from overall expressions of selected gene sets (e.g.
corresponding to pathways) rather than expressions of specific genes. In
a large collection of experiments we test how accurate such classifiers
are compared to traditional classifiers based on genes. Furthermore, we
translate some recently published gene set analysis techniques to the
above proposed machine learning setting and assess their contributions
to the classification accuracies.

Keywords: gene set, classifer, learning, predictive accuracy.

1 Introduction

Set-level techniques have recently attracted significant attention in the area of
gene expression data analysis [20,9,13,18,14,23]. Whereas in traditional analysis
approaches one typically seeks individual genes differentially expressed across
sample classes (e.g. cancerous vs. control), the set-level approach aims to iden-
tify entire sets of genes that are significant e.g. in the sense that they contain
an unexpectedly large number of differentially expressed genes. The gene sets
considered for significance testing are defined prior to analysis, using appropri-
ate biological background knowledge. The main advantage brought by set-level
analysis is the improved interpretability of analysis results. Indeed, the long lists
of differentially expressed genes characteristic of traditional expression analysis
are replaced by shorter and more informative lists of actual biological processes.

Predictive classification [11] is a form of data analysis going beyond the mere
identification of differentially expressed units. Here, units deemed significant for
the discrimination between sample classes are assembled into formal models pre-
scribing how to classify new samples whose class labels are not yet known. Predic-
tive classification techniques are thus especially relevant to diagnostic tasks and

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 274–285, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Comparative Evaluation of Set-Level Techniques in Microarray Classification 275

as such have been explored since very early studies on microarray data analysis
[10]. Predictive models are usually constructed by supervised machine learning
algorithms [11] that automatically discover patterns among samples whose la-
bels are already available (so-called training samples). Learned classifiers may
take diverse forms ranging from geometrically conceived models such as Support
Vector Machines [24], which have been especially popular in the gene expression
domain, to symbolic models such as logical rules or decision trees that have also
been applied in this area [27,15].

The main motivation for extending the set-level framework to the machine
learning setting is again the interpretability of results. Informally, classifiers
learned using set-level features acquire forms such as “predict cancer if path-
way P1 is active and pathway P2 is not” (where activity refers to aggregated
expressions of the member genes). In contrast, classifiers learned in the standard
setting derive predictions from expressions of individual genes; it is usually dif-
ficult to find relationships among the genes involved in such a classifier and to
interpret the latter in terms of biological processes.

The described feature transformation incurs a significant compression of the
training data since the number of considered gene sets is typically much smaller
than the number of interrogated genes. This raises the natural question whether
relevant information is lost in the transformation, and whether the augmented
interpretability will be traded off for decreased predictive accuracy. The main
objective of this study is to address this question experimentally.

A further important objective is to evaluate—from the machine learning
perspective—statistical techniques proposed recently in the research on set-level
gene expression analysis. These are namely the Gene Set Enrichment Analysis
(GSEA) method [20], the SAM-GS algorithm [7] and a technique known as the
Global test [9]. Informally, they rank a given collection of gene sets according to
their correlation with phenotype classes. The methods naturally translate into
the machine learning context in that they facilitate feature selection [17], i.e. they
are used to determine which gene sets should be provided as sample features to
the learning algorithm. We experimentally verify whether these methods work
reasonably in the classification setting, i.e. whether learning algorithms produce
better classifiers from gene sets ranked high by the mentioned methods than
from those ranking lower. We investigate classification conducted with a single
selected gene set as well as with a batch of high ranking sets.

To use a machine learning algorithm, a unique value for each feature of each
training sample must be established. Set-level features correspond to multiple
expressions and these must therefore be aggregated. We comparatively evalu-
ate two aggregatation options. The first simply averages the expressions of the
involved genes, whereas the second relies on the more sophisticated method pro-
posed by [23] and based on singular value decomposition.

Let us return to the initial experimental question concerned with how the final
predictive accuracy is influenced by the training data compression incurred by re-
formulating features to the gene set level. As follows from the above, two factors
contribute to this compression: selection (not every gene from the original sample

276 J. Klema et al.

representation is a member of a gene set used in the set-level representation, i.e.
some interrogated genes become ignored) and aggregation (for every gene set in
the set-level representation, expressions of all its members are aggregated into a
single value). We quantify the effects of these factors on predictive accuracy. Re-
garding selection, we experiment with set-level representations based on 10 best
gene sets and 1 best gene set, respectively, and we do this for all three of the above-
mentioned selection methods. We compare the obtained accuracies to the baseline
case where all individual genes are provided as features to the learning algorithm.
For each of the selection cases, we want to evaluate the contribution of the aggre-
gation factor. This is done by comparing both of the above mentioned aggregation
mechanisms to the control case where no aggregation is performed at all; in this
case, individual genes combined from the selected gene groups act as features.

The contribution of the present study lies in the thorough experimental evalu-
ation of a number of aspects and techniques of the gene set framework employed
in the machine learning context. Our contribution is, however, also significant
beyond the machine learning scope. In the general area of set-level expression
analysis, it is undoubtedly important to establish a performance ranking of the
various statistical techniques for the identification of significant gene sets in class-
labeled expression data. This is made difficult by the lack of an unquestionable
ranking criterion—there is in general no ground truth stipulating which gene
sets should indeed be identified by the tested algorithms. The typical approach
embraced by comparative studies (such as [7]) is thus to appeal to intuition (e.g.
the p53 pathway should be identified in p53-gene mutation data). However legit-
imate such arguments are, evaluations based on them are obviously limited in
generality and objectivity. We propose that the predictive classification setting
supported by the cross-validation procedure for unbiased accuracy estimation,
as adopted in this paper, represents exactly such a needed framework enabling
objective comparative assessment of gene set selection techniques. In this frame-
work, results of gene set selection are deemed good if the selected gene sets allow
accurate classification of new samples. Through cross-validation, the accuracy
can be estimated in an unbiased manner.

The rest of the paper is organized as follows. The next section describes the
specific methods and data sets used in our experiments. In Section 3 we ex-
pose the experimental results. Section 4 summarizes the main conclusions and
proposes directions for follow-up research.

2 Methods and Data

Here we first describe the methods adopted for gene set ranking, gene expression
aggregation, and for classifier learning. Next we present the data sets used as
benchmarks in the comparative experiments. Lastly, we describe the protocol
followed by our experiments.

2.1 Gene Set Ranking

Three methods are considered for gene set selection. As inputs, all of the meth-
ods assume a set G = {g1, g2, . . . gn} of interrogated genes, and a set S of m

Comparative Evaluation of Set-Level Techniques in Microarray Classification 277

expression samples where for each si ∈ S, si = (e1,i, e2,i, . . . en,i) ∈ Rn where ej,i

denotes the (normalized) expression of gene gj in sample si. The sample set S is
partitioned into phenotype classes S = C1 ∪ C2 ∪ . . . ∪ Co so that Ci ∩ Cj = {}
for i �= j. For simplicity in this paper we assume binary classification, i.e. o = 2.
A further input is a collection of gene sets G such that for each Γ ∈ G it holds
Γ ⊆ G. In the output, each of the methods ranks all gene sets in G by their
estimated power to discriminate samples into the predefined classes.

Next we give a brief account of the three methods and refer to the original
sources for a more detailed description. In experiments, we used the original
implementations of the procedures as provided by the respective authors.

GSEA [20]. Gene set enrichment analysis tests a null hypothesis that gene rank-
ings in a gene set Γ , according to an association measure with the phenotype, are
randomly distributed over the rankings of all genes. It first sorts G by correla-
tion with binary phenotype. Then it calculates an enrichment score (ES) for each
Γ ∈ G by walking down the sorted gene list, increasing a running-sum statistic
when encountering a gene gi ∈ Γ and decreasing it otherwise. The magnitude of
the change depends on the correlation of gi with the phenotype. The enrichment
score is the maximum deviation from zero encountered in the random walk. The
statistical significance of the ES is estimated by an empirical phenotype-based
permutation test procedure that preserves the correlation structure of the gene
expression data. GSEA was one of the first specialized gene-set analysis tech-
niques. It has been reported to attribute statistical significance to gene sets that
have no gene associated with the phenotype, and to have less power than other
recent test statistics [7,9].

SAM-GS [7]. This method tests a null hypothesis that the mean vectors of
the expressions of genes in a gene set do not differ by phenotype. Each sample
si is viewed as a point in an n-dimensional Euclidean space. Each gene set
Γ ∈ G defines its |Γ |-dimensional subspace in which projections sΓ

i of samples
si are given by coordinates corresponding to genes in Γ . The method judges
a given Γ by how distinctly the clusters of points {sΓ

i |si ∈ C1} and {sΓ
j |sj ∈

C2} are separated from each other in the subspace induced by Γ . SAM-GS
measures the Euclidean distance between the centroids of the respective clusters
and applies a permutation test to determine whether, and how significantly,
this distance is larger than one obtained if samples were assigned to classes
randomly.

Global Test [9]. The global test, analogically to SAM-GS, projects the expression
samples into subspaces defined by gene sets Γ ∈ G. In contrast to the Euclidean
distance applied in SAM-GS, it proceeds instead by fitting a regression function
in the subspace, such that the function value acts as the class indicator. The
degree to which the two clusters are separated then corresponds to the magnitude
of the coefficients of the regression function.

278 J. Klema et al.

2.2 Expression Aggregation

Two methods are considered for assigning a value to a given gene set Γ for a
given sample si by aggregation of expressions of genes in Γ .

Averaging. The first method simply produces the arithmetic average of the ex-
pressions of all Γ genes in sample si. The value assigned to the pair (si, Γ) is
thus independent of samples sj , i �= j.

Singular Value Decomposition. A more sophisticated approach was employed
by [23]. Here, the value assigned to (si, Γ) depends on other samples sj . In
particular, all samples in the sample set S are viewed as points in the |Γ |-
dimensional Euclidean space induced by Γ the same way as explained in Section
2.1. Subsequently, the specific vector in the space is identified, along which the
sample points exhibit maximum variance. Each point sk ∈ S is then projected
onto this vector. Finally, the value assigned to (si, Γ) is the real-valued position
of the projection of si on the maximum-variance vector in the space induced by
Γ . We refer to the paper [23] for detailed explanation.

2.3 Machine Learning

We experimented with five diverse machine learning algorithms to avoid depen-
dence of experimental results on a specific choice of a learning method, namely
Support Vector Machine, 1-Nearest Neighbor, 3-Nearest Neighbors, Naive Bayes
and Decision Tree. These algorithms are explained in depth for example by [11].
In experiments, we used the implementations available in the WEKA software
due to [25], using the default settings. None of the methods above is in principle
superior to the others, although the first one prevails in predictive modeling of
gene expression data and is usually associated with high resistance to noise.

2.4 Expression and Gene Sets

We conducted our experiments using 20 public gene expression datasets, each
containing samples pertaining to two classes. Table 1 shows for each dataset
the number of samples in each class, the number of interrogated genes and the
reference for further details. Some of the two-class datasets were derived from
the three-class problems (Colitis and Crohn, Parkinson).

Besides expression datasets, we utilized a gene set database consisting of 1685
manually curated sets of genes obtained from the Molecular Signatures Database
(MSigDB v2.0) [20]. These gene sets have been compiled from various online
databases (e.g. KEGG, GenMAPP, BioCarta).

2.5 Experimental Protocol

Classifier learning in the set-level framework follows a simple workflow whose
performance is influenced by several factors, each corresponding to a particular
choice from a class of techniques (such as for gene set ranking). We evaluate the

Comparative Evaluation of Set-Level Techniques in Microarray Classification 279

Table 1. Number of genes interrogated and number of samples in each of the two
classes of each dataset

Dataset Genes Class 1 Class 2 Reference

ALL/AML 10056 24 24 [1]
Brain/muscle 13380 41 20 [13]
Colitis and Crohn 1 14902 42 26 [4]
Colitis and Crohn 2 14902 42 59 [4]
Colitis and Crohn 3 14902 26 59 [4]
Diabetes 13380 17 17 [18]
Heme/stroma 13380 18 33 [13]
Gastric cancer 5664 8 22 [12]
Gender 15056 15 17 [20]
Gliomas 14902 26 59 [8]
Lung Cancer Boston 5217 31 31 [3]
Lung Cancer Michigan 5217 24 62 [2]
Melanoma 14902 18 45 [21]
p53 10101 33 17 [20]
Parkinson 1 14902 22 33 [19]
Parkinson 2 14902 22 50 [19]
Parkinson 3 14902 33 50 [19]
Pollution 37804 88 41 [16]
Sarcoma and hypoxia 14902 15 39 [26]
Smoking 5664 18 26 [5]

contribution of these factors to the predictive accuracy of the resulting classifiers
through repeated executions of the learning workflow, varying the factors.

The learning workflow is shown in Fig. 1. Given a set of binary-labeled training
samples from an expression dataset, the workflow starts by ranking the provided
collection of a priori-defined gene sets according to their power to disciminate
sample classes (see Sec. 2.1 for details). The resulting ranked list is subsequently
used to select the gene sets used to form set-level sample features. Each such
feature is then assigned a value for each training sample by aggregating the ex-
pressions in the gene set corresponding to the feature; an exception to this is the
none alternative of the aggregation factor, where expressions are not aggregated,
and features correspond to genes instead of gene sets. This alternative is consid-
ered for comparative purposes. Next, a machine learning algorithm produces a
classifier from the reformulated training samples. Finally, the classifier’s predic-
tive accuracy is calculated as the proportion of samples correctly classifed on an
independent testing sample fold. For compatibility with the learned classifier,
the testing samples are also reformulated to the set level prior to testing, using
the selected gene sets and aggregation as in the training phase.

Six factors along the workflow influence its result. The alternatives considered
for each of them are summarized in Table 2. We want to assess the contribu-
tions of the first three factors (top in table). The remaining three auxiliary fac-
tors (bottom in table) are employed to diversify the experimental material and
thus increase the robustness of the findings. Factor 6 (testing fold) is involved

280 J. Klema et al.

Trainining fold

7. Testing fold

 2. Rank gene sets

 3. Select gene sets

 4. Aggregate

 5. Learn classifier

 Test classifier

 1. Prior gene sets

6. Data set

(Data Set \ Testing Fold)

Fig. 1. The workflow of a set-level learning experiment conducted multiple times with
varying alternatives in the numbered steps. For compatibility with the learned classifier,
testing fold samples are also reformulated to the set level. This is done using gene sets
selected in Step 3 and aggregation algorithm used in Step 4. The diagram abstracts
from this operation.

automatically through the adoption of the 10-fold cross-validation procedure
(see e.g. [11], chap. 7). We execute the workflow for each possible combination of
factor alternatives, obtaining a factored sample of 198,000 predictive accuracy
values.

While the measurements provided by the above protocol allow us to compare
multiple variants of the set-level framework for predictive classification, we also
want to compare these to the baseline gene-level alternative usually adopted in
predictive classification of gene expression data. Here, each gene interrogated by
a microarray represents a feature. This sample representation is passed directly
to the learning algorithm without involving any of the pre-processing factors (1-3
in Table 2). The baseline results are also collected using the 5 different learning
algorithms, the 20 benchmark datasets and the 10-fold crossvalidation procedure
(i.e. factors 4-6 in Table 2 are employed). As a result, an additional sample of
1,000 predictive accuracy values are collected for the baseline variant.

Finally, to comply with the standard application of the cross-validation pro-
cedure, we averaged the accuracy values corresponding to the 10 cross-validation
folds for each combination of the remaining factors. The subsequent statistical
analysis thus deals with a sample of 19,800 and 100 measurements for the set-
level and baseline experiments, described by the predictive accuracy value and
the values of the relevant factors.

3 Results

All statistical tests in this section refer to the paired non-parametric Wilcoxon
test (two-sided unless stated otherwise).1 For pairing, we always related two
1 Preliminary normality tests did not justify the application of the stronger t-test.

Besides, the Wilcoxon test is argued [6] to be statistically safer than the t-test for
comparing classification algorithms over multiple data sets.

Comparative Evaluation of Set-Level Techniques in Microarray Classification 281

Table 2. Alternatives considered for factors influencing the set-level learning workflow.
The number left of each factor refers to the workflow step (Fig. 1) in which it acts.

Analyzed factors Alternatives #Alts

1. Ranking algo (Sec. 2.1) {gsea, sam-gs, global} 3
2. Sets forming features∗ {1, 2, . . . 10,

1676, 1677, . . . 1685,
1:10, 1676:1685} 22

3. Aggregation (Sec. 2.2) {svd, avg, none} 3

Product 198

Auxiliary factors Alternatives #Alts

4. Learning algo (Sec. 2.3) {svm, 1-nn, 3-nn, nb, dt} 5
5. Data set (Sec. 2.4) {d1 . . . d20} 20
6. Testing Fold {f1 . . . f10} 10

Product 1000
∗ identified by rank. 1685 corresponds to the lowest ranking set. i:j denotes that all

of gene sets ranking i to j are used to form features.

measurements equal in terms of all factors except for the one investigated. All
significance results are at the 0.05 level.

Using the set-level experimental sample, we first verified whether gene sets
ranked high by the established set-level analysis methods (GSEA, SAM-GS and
Global test) indeed lead to construction of better classifiers by machine learning
algorithms, i.e. we investigated how classification accuracies depend on Factor
3 (see Table 2). In the top panel of Fig. 2, we plot the average accuracies for
Factor 3 alternatives ranging 1 to 10, and 1676 to 1685. The trend line fitted
by the least squares method shows a clear decay of accuracy as lower-ranking
sets are used for learning. The bottom panel corresponds to Factor 3 values
1:10 (left) and 1676:1685 (right) corresponding to the situations where the 10
highest-ranking and the 10 lowest-ranking (respectively) gene sets are combined
to produce a feature set for learning. Again, the dominance of the former in
terms of accuracy is obvious.

Given the above, there is no apparent reason why low-ranking gene sets should
be used in experiments. Therefore, to maintain relevance of the subsequent con-
clusions, we conducted further analyses only with measurements where Factor 2
(gene set rank) is either 1 or 1:10.

Firstly, we assessed the difference between the remaining alternatives 1 and
1:10 corresponding to more and less (respectively) compression of training data.
Not surprisingly, the 1:10 variant, where sample features capture information
from the ten best gene sets exhibits significantly (p = 0.0007) higher accuracies
than the 1 variant using only the single best gene set to consitute features (a
single feature if aggregation is employed).

We further compared the three gene-set ranking methods by splitting the set-
level sample according to Factor 1. Since three comparisons are conducted in this
case (one per pair), we used the Bonferroni-Dunn adjustment on the Wilcoxon
test result. The Global test turned out to exhibit significantly higher accuracies

282 J. Klema et al.

Gene set rank

A
cc

ur
ac

y
[%

]
64

66
68

70

1 10 1676 1685 best ten worst ten

30
40

50
60

70
80

90
10

0

Gene set rank

A
cc

ur
ac

y
[%

]

Fig. 2. Average predictive accuracy tends to fall as lower-ranking gene sets are used
to constitute features (see text for details). Each point in the left panels and each box
plot in the right panel follows from 16,000 learning experiments. The trend lines shown
in the left panels are the ones minimizing the residual least squares.

than either SAM-GS (p = 0.013) or GSEA (p = 0.027). The difference between
the latter two methods was not significant.

Concerning Factor 3 (aggregation method), there are two questions of interest:
whether one aggregation method (svd, avg) outperforms the other, and whether
aggregation in general has a detrimental effect on performance. As for the first
question, no significant difference between the two methods was detected. The
answer to the second question turned out to depend on Factor 3 as follows.
In the more compressive (1) alternative, the answer is affirmative in that both
aggregation methods result in less accurate classifiers than those not incurring
aggregation (p = 0.015 for svd, p = 0.00052 for avg, both after Bonferroni-Dunn
adjustment). However, the detrimental effect of aggregation vanishes in the less
compressive (1:10) alternative of Factor 2, where none of the two comparisons
yield a significant difference.

The principle trends can also be well observed through the ranked list of
methodological combinations by median classification accuracy, again generated
from measurements not involving random or low-ranking gene sets. This is shown
in Table 3. Position 8 refers to the baseline method where sample features capture
expressions of all genes and prior gene set definitions are ignored (see Section 2.5
for details). In agreement with the statistical conclusions above, the ranked table
clearly indicates the superiority of the Global test for gene-set ranking, and of
using the 10 best gene sets (i.e., the 1:10 alternative) to establish features rather
than relying only on the single best gene set. It is noteworthy that all three
methods involving the combinations of the Global test and the 1:10 alternative
(i.e., ranks 1, 2, 4) outperform the baseline method. This is especially remark-
able given that the two best of them (and two best overall) involve aggregation,
and the learning algorithm here receives training samples described by only 10
real-valued features. Thus, the gene-set framework allows for feature extraction
characterized by vast compression of data (from the original thousands of fea-
tures corresponding to expressions of individual genes, to 10 features) and, at
the same time, by a boost in classification accuracy.

Comparative Evaluation of Set-Level Techniques in Microarray Classification 283

Table 3. Ranking of combinations of gene set methods by median predictive accuracy
achieved on 20 datasets (Table 1, Section 2.4) with 5 machine learning algorithms (Sec-
tion 2.3) estimated through 10-fold cross-validation (i.e. 1,000 experiments per row).
The columns indicate, respectively, the resulting rank by median accuracy, the gene
sets used to form features (1 – the highest ranking set, 1:10 – the ten highest ranking
sets), the gene set selection method, the expression aggregation method (see Section
2 for details on the latter 3 factors), and the median, average, standard deviation and
interquartile range of the accuracy.

Rank Methods Accuracy
Sets Rank. algo Aggrgt Median Avg σ Iqr

1 1:10 global svd 86.5 79.8 17.3 32.0
2 1:10 global avg 86.0 79.4 17.8 30.5
3 1:10 sam-gs none 83.8 78.3 18.5 35.1
4 1:10 global none 83.7 77.7 18.5 34.7
5 1:10 gsea none 82.8 77.7 18.8 34.8
6 1 global none 80.5 78.1 16.1 29.7
7 1:10 gsea avg 79.7 76.3 17.1 28.0
8 all genes used 79.3 77.2 18.9 35.3
9 1 gsea none 77.5 75.0 18.3 33.3
10 1 global svd 77.5 74.8 15.0 25.6
11 1:10 gsea svd 77.1 75.5 16.9 28.2
12 1:10 sam-gs avg 74.2 75.1 16.8 28.5
13 1 sam-gs none 73.9 74.1 15.1 26.3
14 1:10 sam-gs svd 73.8 74.6 17.6 28.9
15 1 global avg 72.8 72.2 14.0 22.2
16 1 gsea avg 68.3 69.6 13.0 16.3
17 1 gsea svd 67.4 68.5 13.2 14.4
18 1 sam-gs avg 65.4 64.7 10.3 15.9
19 1 sam-gs svd 64.2 65.0 12.7 13.0

4 Conclusions and Future Work

The set-level framework can be adopted in the machine learning setting without
trading off classification accuracy. To identify the best a priori-defined gene sets
for classification, the Global test [9] significantly outperforms the GSEA [20] and
SAM-GS [7] methods. To aggregate expressions of genes contained in a gene set
into a value assigned to that set acting as a feature, arithmetic average could
not be differentiated from the method [23] based on singular value decomposi-
tion. Using only 10 features corresponding to genuine gene sets selected by the
Global test, the learned set-level classifiers systematically outperform conven-
tional gene-level classifiers learned with access to all measured gene expressions.
Data compression and increased classification accuracy thus come as additional
benefits to increased interpretability of set-level classifiers.

The above-mentioned effect of data shrinkage accompanied by increased pre-
dictive accuracy could, in principle, also be achieved by generic feature extrac-
tion methods (see e.g. [17]). The advantage of our approach is that our extracted

284 J. Klema et al.

features maintain direct interpretability since they correspond to gene sets that
possess a biological meaning. In future work, it would be interesting to determine
whether the generic feature extraction methods could outperform the present
approach at least in terms of predictive accuracy achieved with a fixed target
number of extracted features. By the same mail, the optimal number of set-level
features employed will vary between data domains. For our experiments, we
chose the ad hoc number of 10 features for all domains. In future experiments,
the optimal domain-specific number may be estimated, e.g. through internal
cross-validation [11].

We applied two previously suggested general methods enabling aggregation of
multiple expression values into a single value assigned to a set-level feature. The
downside of this generality is that substantial information available for specific
kinds of gene sets is ignored. Of relevance to pathway-based gene sets, the recent
study by [22] convincingly argues that the perturbation of a pathway depends on
the expressions of its member genes in a non-uniform manner. It also proposes
how to quantify the impact of each member gene on the perturbation, given
the graphical structure of the pathway. It seems reasonable that a pathway-
specific aggregation method should also weigh member genes by their estimated
impact on the pathway. Such a method would likely result in more informative
pathway-level features and could outperform the two aggregagation methods we
have considered, potentially giving a futher boost to the good performance of
predictive classification based on a small number of set-level features.

Acknowledgement

This research was supported by the Czech Science Foundation through project
No. 201/09/1665 (FZ, MH) and the Czech Ministry of Education through re-
search programme MSM 6840770012 (JK).

References

1. Armstrong, S.A., et al.: MLL translocations specify a distinct gene expression
profile that distinguishes a unique leukemia. Nat. Genet. 30, 41–47 (2002)

2. Beer, D.G., et al.: Gene-expression profiles predict survival of patients with lung
adenocarcinoma. Nat. Med. 8(8), 816–824 (2002)

3. Bhattacharjee, A., et al.: Classification of human lung carcinomas by mrna ex-
pression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad.
Sci. 98(24), 13790–13795 (2001)

4. Burczynski, M.E., et al.: Molecular classification of Crohn’s disease and ulcerative
colitis patients using transcriptional profiles in peripheral blood mononuclear cells.
8(1), 51–61 (2006)

5. Carolan, B.J., et al.: Up-regulation of expression of the ubiquitin carboxyl-terminal
hydrolase L1 gene in human airway epithelium of cigarette smokers. Cancer
Res. 66(22), 10729–10740 (2006)

6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. JMRL 7,
1–30 (2006)

Comparative Evaluation of Set-Level Techniques in Microarray Classification 285

7. Dinu, I.: Improving gene set analysis of microarray data by SAM-GS. BMC Bioin-
formatics 8(1), 242 (2007)

8. Freije, W.A., et al.: Gene expression profiling of gliomas strongly predicts survival.
Cancer Res. 64(18), 6503–6510 (2004)

9. Goeman, J.J., Bühlmann, P.: Analyzing gene expression data in terms of gene sets:
methodological issues. Bioinformatics 23(8), 980–987 (2007)

10. Golub, T.R., et al.: Molecular classification of cancer: Class discovery and class
prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

11. Hastie, T., et al.: The Elements of Statistical Learning. Springer, Heidelberg (2001)
12. Hippo, Y., et al.: Global Gene Expression Analysis of Gastric Cancer by Oligonu-

cleotide Microarrays. Cancer Res. 62(1), 233–240 (2002)
13. Holec, M., et al.: Integrating multiple-platform expression data through gene set

features. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds.) ISBRA 2009. LNCS,
vol. 5542, Springer, Heidelberg (2009)

14. Huang, D.W., et al.: Bioinformatics enrichment tools: paths toward the compre-
hensive functional analysis of large gene lists. Nucleic Acids Res. (2008)

15. Huang, J., et al.: Decision forest for classification of gene expression data. Comput.
Biol. Med. 40, 698–704 (2010)

16. Libalova, H., et al.: Gene expression profiling in blood of asthmatic children living
in polluted region of the czech republic (project airgen). In: 10th International
Conference on Environmental Mutagens (2010)

17. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining.
Kluwer, Dordrecht (1998)

18. Mootha, V.K., et al.: Pgc-1-alpha-responsive genes involved in oxidative phospho-
rylation are coorinately down regulated in human diabetes. Nat. Genet. 34, 267–273
(2003)

19. Scherzer, C.R., et al.: Molecular markers of early Parkinson’s disease based on gene
expression in blood. Proc. Natl. Acad. Sci. 104(3), 955–960 (2007)

20. Subramanian, A., et al.: Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl. Acad.
Sci. 102(43), 15545–15550 (2005)

21. Talantov, D., et al.: Novel genes associated with malignant melanoma but not
benign melanocytic lesions. Clin. Cancer Res. 11(20), 7234–7242 (2005)

22. Tarca, A.L., et al.: A novel signaling pathway impact analysis. Bioinformatics 25(1),
77–82 (2009)

23. Tomfohr, J., et al.: Pathway level analysis of gene expression using singular value
decomposition. BMC Bioinformatics 6, 225 (2005)

24. Vapnik, V.N.: The Nature of Statistical Learning. Springer, Heidelberg (2000)
25. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-

niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
26. Yoon, S.S., et al.: Angiogenic profile of soft tissue sarcomas based on analysis of

circulating factors and microarray gene expression. J. Surg. Res. 135(2), 282–290
(2006)

27. Zintzaras, E., Kowald, A.: Forest classification trees and forest support vector
machines algorithms: Demonstration using microarray data. Cell Cycle 40(5), 519–
524 (2010)

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 286–296, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Gene Network Modules-Based Liner Discriminant
Analysis of Microarray Gene Expression Data

Pingzhao Hu1, Shelley Bull2, and Hui Jiang1

1 Department of Computer Science and Engineering, York University,
4700 Keele Street, Toronto, Ontario M3J 1P3, Canada

2 Samuel Lunenfeld Research Institute, Mount Sinai Hospital,
6000 University Avenue, Toronto, Ontario, M5G 1X5, Canada

phu@cse.yorku.ca

Abstract. Molecular predictor is a new tool for disease diagnosis, which uses
gene expression to classify the diagnostic category of a patient. The statistical
challenge for constructing such a predictor is that there are thousands of genes
to predict for disease category, but only a small number of samples are availa-
ble. Here we proposed a gene network modules-based linear discriminant anal-
ysis (MLDA) approach by integrating ‘essential’ correlation structure among
genes into the predictor in order that the module or cluster structure of genes,
which is related to diagnostic classes we look for, can have potential biological
interpretation. We evaluated performance of the new method with other estab-
lished classification methods using three real data sets. Our results show that the
new approach has the advantage of computational simplicity and efficiency
with lower classification error rates than the compared methods in most cases.

Keywords: Gene network modules, discriminant analysis, correlation-sharing,
microarray.

1 Introduction

With the development of microarrays technology, more and more statistical methods
have been developed and applied to the disease classification using microarray gene
expression data. For example, Golub et al. developed a “weighted voting method” to
classify two types of human acute leukemias [1]. Radmacher et al. constructed a
‘compound covariate prediction’ to predict the BRCA1 and BRCA2 mutation status
of breast cancer [2]. The family of linear discriminant analysis (LDA) has been ap-
plied in such high-dimensional data [3-4]. LDA computes the optimal transformation,
which minimizes the within-class distance and maximizes the between-class distance
simultaneously, thus achieving maximum discrimination. Studies have shown that
given the same set of selected genes, different classification methods often perform
quite similarly and simple methods like diagonal linear discriminant analysis (DLDA)
and k nearest neighbor (kNN) normally work remarkably well [3]. However, because
the data points in microarray data sets are often from a very high-dimensional space
and in general the sample size does not exceed this dimension, which presents unique
challenges to feature selection and predictive modeling. Thus, finding the most

 Gene Network Modules-Based Liner Discriminant Analysis 287

informative genes is a crucial task in building predictive models from microarray
gene expression data to handle the large p (number of genes) and small n (sample
size) problem. To tackle this issue, different clustering-based classification approach-
es were proposed to reduce the data dimensions.

Li et al. developed cluster-Rasch models, in which a model-based clustering ap-
proach was first used to cluster genes and then the discretized gene expression values
were input into a Rasch model to estimate a latent factor associated with disease classes
for each gene cluster [5]. The estimated latent factors were finally used in a regression
analysis for disease classification. They demonstrated that their results were comparable
to those previously obtained, but the discretization of continuous gene expression levels
usually results in a loss of information. Hastie et al. proposed a tree harvest procedure
for find additive and interaction structure among gene clusters, in their relation to an
outcome measure [6]. They found that the advantage of the method could not be dem-
onstrated due to the lack of rich samples. Dettling et al. presented an algorithm to search
for gene clusters in a supervised way. The average expression profile of each cluster
was considered as a predictor for traditional supervised classification methods. Howev-
er, using simple averages will discard information about the relative prediction strength
of different genes in the same gene cluster [7]. Yu also compared different approaches
to form gene clusters; the resulting information was used for providing sets of genes as
predictors in regression [8]. However, clustering approaches are often subjective, and
usually neglect the detailed relationship among genes.

Recently, gene co-expression networks have become a more and more active re-
search area [9-12]. A gene co-expression network is essentially a graph where nodes
in the graph correspond to genes, and edges between genes represent their
co-expression relationship. The gene neighbor relations (such as topology) in the
networks are usually neglected in traditional cluster analysis [11]. One of the major
applications of gene co-expression network has been centered in identifying function-
al modules in an unsupervised way [9-10], which may be hard to distinguish members
of different sample classes. Recent studies have shown that prognostic signature that
could be used to classify the gene expression profiles from individual patients can be
identified from network modules in a supervised way [12].

Based on these motivations, in this work we propose a new formulization of the
traditional LDA. Specifically, we first use a seed based approach to identify gene
network modules. Each of these modules includes a differentially expressed gene
between sample classes, which is treated as seed, and a set of other genes highly co-
expressed with the seed gene. Then we perform LDA in each module. The linear
predictors in all the identified modules are then summed up. The new module-based
classification approach returns signature components of tight co-expression with good
predictive performance. The performance of this method is compared with other state-
of-the-art classification methods. We demonstrate that the new approach has the ad-
vantage of computational simplicity and efficiency with lower classification error
rates than the compared classification methods.

The remainder of this paper is organized as follows: Section 2 gives a detailed de-
scription of our new classification method and briefly discusses the methods to be
compared as well as our evaluation strategy; Section 3 presents the results based on
six classification methods in three real gene expression data sets; Section 4 summa-
rizes our findings in the study.

288 P. Hu, S. Bull, and H. Jiang

2 Methods

2.1 MLDA Algorithm

Let assume there are A and B two sample groups (such as disease and normal

groups), which have and samples, respectively. The data for each sample j

consists of a gene expression profile , where be the log

ratio expression measurement for gene and sample ,

and is equal to 1 if sample j belongs to group A, otherwise, is

equal to 0 if sample j belongs to group B. We assume that expression profiles x from

group k () are distributed as . The multivariate normal distri-

bution has mean vector and covariance matrix .

In a simplified way, we assume that , where

, and is the pooled covariance estimate of gene i and gene i’

for sample groups A and B. Therefore, when is a block-diagonal structure, we have

where C is the number of blocks (gene modules) and is the estimated covariance

matrix for block c .

The linear predictor (LP) with block-diagonal covariance structure is given by

 (1)

where is the expression measurements of the genes in module c for a new sample

to be predicted and (is the mean vector of the genes in module c.

Obviously, linear discriminant analysis (LDA) and diagonal linear discriminant anal-
ysis (DLDA) [3] are the special cases of MLDA. That is, when ,

, where is the expression measure-

ments of p genes for a new sample to be predicted, so MLDA is simplified to LDA;

An Bn

),...,,(21 pjjjj xxxx = ijx

pi ,...,2,1= nj ,...,2,1=

BA nnn += jy jy

},{ BAk ∈),(kkN Σμ

kμ kΣ

piiiiBA ,...,12',', }{ ==Σ=Σ=Σ σ
2
iii σσ = iiii '' σσ = 'iiσ

Σ̂

ppC *

3

2

1

ˆ000

0ˆ00

00ˆ0

000ˆ

ˆ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Σ

Σ
Σ

Σ

=∑

L

MMMMM

L

L

L

cΣ̂
),...,2,1(Cc =

[]∑
=

− −Σ+−=
C

c

c
B

c
Ac

Tc
B

c
AcxLP

1

1
2
1)(ˆ)(μμμμ

T
cx

c
kμ },{ BAk ∈

1=C

[])(ˆ)(1
2
1

BA

T

BAxLP μμμμ −Σ+−= − Tx

 Gene Network Modules-Based Liner Discriminant Analysis 289

when (that is, each module has only one gene),

, where is the expression

measurement of gene i for a new sample to be predicted, so MLDA is simplified to
DLDA.

We estimate the mean vector of the genes in module c as and use the
pooled estimate of the common covariance matrix in each module c

 (2)

where , and is the number of genes in the module

c. is estimated as

 (3)

where and , is the correlation esti-

mate between gene i and gene in module c of sample group k.

is inversible when , that is,

However, in some modules (say module c), it is possible that . In this case,

is not inversible. We apply singular value decomposition (SVD) technology [13]

to solve the problem. Assume is a x covariance matrix, which can be

discomposed uniquely as , where U and V are orthogonal, and

 with . If is a x

nonsingular matrix (for all), then its inverse is given

by where .

pC =

[]∑
=

−+−=
p

i
i

i
B

i
A

Ti
B

i
AixLP

1

2
2
1 }/)ˆˆ{()ˆˆ(σμμμμ ix

c
kμ c

kx

2
)1()1(ˆ

−+
−+−=Σ

BA

c
BB

c
AA

nn

SnSn
c

}ˆ{ '
c
ii

c
kS σ= cpii ,...,2,1', = cp

c
ii 'σ̂

⎩
⎨
⎧

≠
=

=
'ˆˆˆ

'ˆ
ˆ

'

2

'
iiforr

iifor

cii

ic
ii σσ

σσ

}ˆ{ˆ 'iic rmedianr = cpii ,...,2,1', = 'ii ≠ 'îir

'i

cΣ cpn ≥

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Σ

Σ
Σ

Σ

=∑

−

−

−

−

−

1

1

1
2

1
1

1

000

000

000

000

C

c

L

MMMMM

L

L

L

cpn <

cΣ

cΣ cp cp
T

c UDV=Σ
),...,,(21 cpdiagD σσσ= 0,...,21 ≥≥≥≥

cpσσσ cΣ cp cp

iff 0≠iσ),...,2,1(cpii =
T

c UVD 11 −− =Σ)/1,...,/1,/1(21
1

cpdiagD σσσ=−

290 P. Hu, S. Bull, and H. Jiang

The rule to assign a new sample j to group k is, thus, based on: ,

sample j is assigned to group A; otherwise, it is assigned to group B.
To identify gene modules used in Equation 1, we modify the correlation-sharing

method developed by Tibshirani and Wasserman [14], which was originally proposed
to detect differential gene expression. The revised approach works in the following
steps:

 1: Compute test statistic for each gene i using the standard t-

statistics or a modified t-statistics, such as significance of microarrays (SAM) [15].
 2: Rank the absolute test statistic values from the largest one to the smallest one

and select the top m genes as seed genes.
 3: Construct a gene co-expression network between the seed genes and all other

genes. The pairwise Pearson correlation coefficient (r) is calculated between each of
the selected seed genes and all other genes to generate the network.

 4: Find the module membership s for each selected seed gene in the co-
expression network. The module assignments can be characterized by a many to one

mapping. That is, one seeks a particular encoder that maximizes

 (4)

where . The set of genes s for each seed gene
is an adaptively chosen module, which maximizes the average (ave) differential

expression signal around gene . The set of identified genes s should have absolute
(abs) correlation (corr) with larger than or equal to r.

2.2 Comparisons of Different Classification Methods

We compared the prediction performances of MLDA with other established classifica-
tion methods, which include diagonal quadratic discriminant analysis (DQDA), DLDA,
one nearest neighbor method (1NN), support vector machines (SVM) with linear kernel
and recursive partitioning and regression trees (Trees). We used the implementation of
these methods in different R packages (http://cran.r-project.org/), which are sma for
DQDA and DLDA, class for 1NN, e1071 for SVM and rpart for Trees. Default para-
meters in e1071 and rpart for SVM and Tree were used, respectively. For other methods
(DQDA, DLDA, 1NN and MLDA), there are no tuning parameters to be selected. In the
comparisons, seed genes were selected using t-test and SAM, respectively. We eva-
luated the performances of DQDA, DLDA, 1NN, SVM and Trees based on different
number of the selected seed genes and that of MLDA based on different number of gene
modules, which were built on the selected seed genes.

2.3 Cross-Validation

We performed 10-fold cross-validation to evaluate the performance of these classifi-
cation methods. The basic principle is that we split all samples in a study into 10
subsets of (approximately) equal size, set aside one of the subsets from training and
carried out seed gene selection, gene module construction and classifier fitting by the

)log(
A

B

n
nLP >=

),...,2,1(piTi =

*i

)(*iCr

||max
)(}10{

*
* iiCirs Tavei

r∈≤≤=

})),((:{)(*
* rxxcorrabssiC sir ≥=

*i
*i

*i

 Gene Network Modules-Based Liner Discriminant Analysis 291

remaining 9 subsets. We then predicted the class label of the samples in the omitted
subset based on the constructed classification rule. We repeated this process 10 times
so that each sample is predicted exactly once. We determined the classification error
rate as the proportion of the number of incorrectly predicted samples to the total num-
ber of samples in a given study. This 10-fold cross-validation procedure was repeated
10 times and the averaged error rate was reported.

3 Results

We applied the proposed algorithm and the established classification methods men-
tioned above to three real microarray data sets. The detailed description of these data
sets is shown in Table 1. We got the preprocessed colon cancer microarray expres-
sion data from http://genomics-pubs.princeton.edu/oncology/. For prostate cancer and
lung cancer microarray data sets, we downloaded their raw data from gene expression
omnibus (http://www.ncbi.nlm.nih.gov/geo/) and preprocessed using robust multi-
array average (RMA) algorithm [16].

Table 1. Descriptive characteristics of data sets used for classification

Disease
Response

Type
No.

Samples
No.

Genes Reference

 Colon
 Cancer

Tumor/
Normal 40 / 22 2000 [17]

Prostate
 Cancer

Tumor/
Normal 50 / 38 12635 [18]

 Lung
 Cancer

Tumor/
Normal 60 / 69 22215 [19]

Tables 2, 3 and 4 list the prediction performances of different classification me-

thods applied to microarray gene expression data sets for colon, prostate and lung
cancers, respectively. Here the different number of top seed genes (5, 10, 15, 20, 30,
40, 50) was selected by t-test. Since it is generally time-consuming to search for genes
which are not only correlated with a given seed gene but maximize their averaged test
statistic value (Equation 4), in order to save time, we only tested 10 cutoffs of correla-
tion from 0.5 to 0.95 with interval 0.05. We observed that the averaged correlation
of genes in the identified modules is usually between 0.65 and 0.85 with the number
of genes in the modules from 2 to 56, suggesting that the genes in the modules are
highly co-expressed.

As we can see, the proposed MLDA has the best or comparable classification per-
formances among all being compared classification methods in the three data sets.
Other methods with better classification performances are DLDA and SVM. In gener-
al, all these methods except Tree works well for both colon and lung cancer data sets.
The performances of these methods in prostate cancer data are slightly worse than
those in colon and lung cancer data sets.

r

292 P. Hu, S. Bull, and H. Jiang

Table 2. Error rates of six classification methods applied to colon cancer data set

No.
Genes

DQDA DLDA 1NN Tree SVM MLDA

5 0.113 0.113 0.210 0.226 0.113 0.097
10 0.177 0.177 0.161 0.290 0.129 0.129
15 0.113 0.129 0.129 0.242 0.145 0.113
20 0.145 0.129 0.161 0.258 0.129 0.129
30 0.145 0.129 0.161 0.194 0.145 0.113
40 0.145 0.129 0.145 0.210 0.145 0.129
50 0.145 0.145 0.194 0.226 0.145 0.113

Table 3. Error rates of six classification methods applied to prostate cancer data set

No.
Genes

DQDA DLDA 1NN Tree SVM MLDA

5 0.227 0.239 0.261 0.227 0.216 0.193
10 0.205 0.193 0.284 0.318 0.170 0.182
15 0.250 0.227 0.261 0.295 0.261 0.227
20 0.216 0.227 0.250 0.273 0.193 0.205
30 0.205 0.216 0.239 0.295 0.216 0.205
40 0.261 0.250 0.295 0.318 0.250 0.227
50 0.227 0.227 0.341 0.330 0.216 0.193

Table 4. Error rates of six classification methods applied to lung cancer data set

No.
Genes

DQDA DLDA 1NN Tree SVM MLDA

5 0.170 0.170 0.186 0.201 0.162 0.162
10 0.170 0.147 0.186 0.193 0.170 0.147
15 0.162 0.162 0.201 0.178 0.132 0.147
20 0.147 0.162 0.170 0.193 0.178 0.132
30 0.132 0.125 0.132 0.193 0.147 0.116
40 0.178 0.147 0.162 0.186 0.132 0.132
50 0.125 0.125 0.147 0.178 0.147 0.125

We also used SAM to select seed genes and evaluated their prediction performance
using the same procedure as described above. Similar prediction results are observed
as shown in Tables 5, 6 and 7. Overall, the MLDA has lower error rate than other
being compared classification methods.

 Gene Network Modules-Based Liner Discriminant Analysis 293

Table 5. Error rates of six classification methods applied to colon cancer data set

No.
Genes

DQDA DLDA 1NN Tree SVM MLDA

5 0.129 0.129 0.177 0.242 0.113 0.113
10 0.161 0.161 0.161 0.226 0.129 0.145
15 0.129 0.097 0.129 0.226 0.129 0.113
20 0.145 0.145 0.145 0.177 0.145 0.113
30 0.145 0.129 0.194 0.290 0.145 0.113
40 0.129 0.129 0.210 0.258 0.145 0.129
50 0.145 0.145 0.210 0.290 0.145 0.129

Table 6. Error rates of six classification methods applied to prostate cancer data set

No.
Genes

DQDA DLDA 1NN Tree SVM MLDA

5 0.125 0.136 0.091 0.091 0.114 0.091
10 0.114 0.136 0.148 0.091 0.114 0.102
15 0.091 0.102 0.182 0.136 0.091 0.091
20 0.136 0.170 0.148 0.136 0.114 0.114
30 0.114 0.114 0.091 0.159 0.114 0.114
40 0.125 0.125 0.068 0.170 0.102 0.068
50 0.136 0.148 0.114 0.170 0.125 0.125

Table 7. Error rates of six classification methods applied to lung cancer data set

No.
Genes

DQDA DLDA 1NN Tree SVM MLDA

5 0.178 0.170 0.193 0.225 0.162 0.170
10 0.170 0.170 0.209 0.193 0.178 0.147
15 0.186 0.147 0.201 0.225 0.146 0.116
20 0.147 0.162 0.186 0.178 0.186 0.132
30 0.147 0.178 0.132 0.193 0.101 0.101
40 0.178 0.132 0.178 0.186 0.132 0.132
50 0.162 0.132 0.162 0.186 0.132 0.147

In many cases, we found that the simple method DLDA works well. Its perfor-

mance is comparable with the advanced methods, such as SVM. We also observed
that the performances of predictors with more genes are not necessarily better than
those of the predictors with fewer genes. For example, when t-test was used to select
the seed genes, the best performance was obtained with only 5 genes for MLDA pre-
dictor in colon cancer data set (Table 2), 10 genes for SVM predictor in prostate

294 P. Hu, S. Bull, and H. Jiang

cancer data set (Table 3) and 30 genes for MLDA predictor in lung cancer data set
(Table 4). When SAM was used to select the seed genes, the best performance was
obtained with 15 genes for DLDA predictor in colon cancer data set (Table 5), 40
genes for MLDA and 1NN predictors in prostate cancer data set (Table 6) and 30
genes for SVM and MLDA predictors in lung data set (Table 7).

4 Discussions and Conclusions

In this study we developed a gene network modules-based linear discriminant analysis
approach for tumor classification using microarray gene expression data. The core
idea of the method is to incorporate ‘essential’ correlation structure among genes into
a supervised classification procedure, which has been neglected or inefficiently ap-
plied in many benchmark classifiers. Our method takes into account the fact that
genes act in networks and the modules identified from the networks act as the features
in constructing a classifier. The rationale is that we usually expect tightly co-
expressed genes to have a meaningful biological explanation. For example, if gene A
and gene B has high correlation, which sometimes hints that the two genes belong to
the same pathway or functional module. The advantage of this method over other
methods has been demonstrated by three real data sets. Our results show that this
algorithm works well for improving class prediction.

Our results are consistent with previous findings: the more advanced or compli-
cated methods are not necessary to generate better classification results than simple
methods [3]. This is very likely due to the fact that there are more parameters to be
estimated in the advanced methods than in the simple methods, while our data sets
usually have much smaller number of samples than features. We also tried to use
more top genes (up to 100) in the classification models, but we did not find the classi-
fication results were improved (results were not shown). Although some previous
results showed that better results can be obtained when the number of top genes (up to
200) used in the prediction models are much larger than the number of samples [20],
the improved performance may be due to over fitting effect. Moreover, for clinical
purpose, it is better to include fewer number of genes rather than larger number of
genes in the prediction models.

Many other works have also extended the LDA framework for handle the large p
(number of genes) and small n (sample size) problem [21-22]. The major difference
between our method and those methods is that our framework is based on gene net-
work. We built our classification models using module-specific features.

The MLDA framework can be extended in many ways. For example, we can first
use principal component analysis (PCA) to extract the representing features (such as
super-genes) from each of the identified modules, then any classification methods can
be used to construct the prediction models based on the representing features. Also, it
is possible to directly incorporate the module-specific features in other advanced
discriminant learning approaches (such as SVM). In the future, we will explore these
ideas in details.

Acknowledgments. The authors thank Dr. W He and S Colby for their helpful
discussions and comments.

 Gene Network Modules-Based Liner Discriminant Analysis 295

References

1. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller,
H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular
classification of cancer: class discovery and class prediction by gene expression monitor-
ing. Science 286, 531–536 (1999)

2. Radmacher, M.D., McShane, L.M., Simon, R.: A paradigm for class prediction using gene
expression profiles. J. Comput. Biol. 9, 505–512 (2002)

3. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the clas-
sification of tumors using gene expression data. Journal of the American Statistical Asso-
ciation 97, 77–87 (2002)

4. Guo, Y., Hastie, T., Tibshirani, R.: Regularized linear discriminant analysis and its appli-
cation in microarrays. Biostatistics 8, 86–100 (2007)

5. Li, H., Hong, F.: Cluster-Rasch models for microarray gene expression data. Genome Bi-
ol. 2, 0031.1–0031.13 (2001)

6. Hastie, T., Tibshirani, R., Botstein, D., Brown, P.: Supervised harvesting of expression
trees. Genome Biol. 2, 0003.1–0003.12 (2001)

7. Dettling, D., Bühlmann, P.: Supervised Clustering of Genes. Genome Biol. 3, 0069.1–
0069.15 (2002)

8. Yu, X.: Regression methods for microarray data. Ph.D. thesis, Stanford University (2005)
9. Elo, L., Jarvenpaa, H., Oresic, M., Lahesmaa, R., Aittokallio, T.: Systematic construction

of gene coexpression networks with applications to human T helper cell differentiation
process. Bioinformatics 23, 2096–2103 (2007)

10. Presson, A., Sobel, E., Papp, J., Suarez, C., Whistler, T., Rajeevan, M., Vernon, S.,
Horvath, S.: Integrated weighted gene co-expression network analysis with an application
to chronic fatigue syndrome. BMC Syst. Biol. 2, 95 (2008)

11. Horvath, S., Dong, J.: Geometric interpretation of gene coexpression network analysis.
PLoS Comput. Biol. 4, e1000117 (2008)

12. Taylor, I.W., Linding, R., Warde-Farley, D., Liu, Y., Pesquita, C., Faria, D., Bull, S.,
Pawson, T., Morris, Q., Wrana, J.L.: Dynamic modularity in protein interaction networks
predicts breast cancer outcome. Nat Biotechnol. 27, 199–204 (2009)

13. Jolliffe, I.T.: Principal component analysis. Springer, New York (2002)
14. Tibshirani, R., Wasserman, L.: Correlation-sharing for detection of differential gene ex-

pression. arXiv, math. ST, math/0608061 (2006)
15. Tusher, V., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the io-

nizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001)
16. Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., Speed, T.P.: Summaries

of Affymetrix GeneChip probe level data. Nucleic Acids Research 31, E15 (2003)
17. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad

patterns of gene expression revealed by clustering analysis of tumor and normal colon tis-
sues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96, 6745–6750 (1999)

18. Stuart, R.O., Wachsman, W., Berry, C.C., Wang-Rodriguez, J., Wasserman, L., Klacansky,
I., Masys, D., Arden, K., Goodison, S., McClelland, M., Wang, Y., Sawyers, A., Kalcheva,
I., Tarin, D., Mercola, D.: In silico dissection of cell-type-associated patterns of gene ex-
pression in prostate cancer. Proc. Natl. Acad. Sci. USA 101, 615–620 (2004)

19. Spira, A., Beane, J.E., Shah, V., Steiling, K., Liu, G., Schembri, F., Gilman, S., Dumas,
Y.M., Calner, P., Sebastiani, P., Sridhar, S., Beamis, J., Lamb, C., Anderson, T., Gerry, N.,
Keane, J., Lenburg, M.E., Brody, J.S.: Airway epithelial gene expression in the diagnostic
evaluation of smokers with suspect lung cancer. Nat. Med. 13, 361–366 (2007)

296 P. Hu, S. Bull, and H. Jiang

20. Antoniadis, A., Lambert-Lacroix, S., Leblanc, F.: Effective dimension reduction methods
for tumor classification using gene expression data. Bioinformatics 19, 563–570 (2003)

21. Shen, R., Ghosh, D., Chinnaiyan, A.M., Meng, Z.: Eigengene based linear discriminant
model for gene expression data analysis. Bioinformatics 22, 2635–2642 (2006)

22. Pang, H., Tong, T., Zhao, H.: Shrinkage-based diagonal discriminant analysis and its ap-
plications in high-dimensional data. Biometrics 65, 1021–1029 (2009)

A Polynomial Algebra Method for Computing

Exemplar Breakpoint Distance

Bin Fu1 and Louxin Zhang2

1 Department of Computer Science,
University of Texas-Pan American,

Edinburg, TX 78539, USA
binfu@cs.panam.edu

2 Department of Mathematics,
National University of Singapore,

Singapore 119076
matzlx@nus.edu.sg

Abstract. The exemplar breakpoint distance problem is NP-hard. As-
sume two genomes have at most n genes from m gene families. We de-
velop an O(2mnO(1)) time algorithm to compute the exemplar breakpoint
distance if one of them has no repetition. We develop an O(2mm!nO(1))
time algorithm to compute the exemplar breakpoint distance between
two arbitrary genomes. If one of the given genomes has at most d rep-
etitions for each gene, the computation time of the second algorithm is
only O((2d)mnO(1)). Our algorithms are based on a polynomial algebra
approach which uses a multilinear monomial to represent a solution for
the exemplar breakpoint distance problem.

Keywords: Genome rearrangement, examplar breakpoint distance.

1 Introduction

As the full DNA sequence of an organism, the genome determines its shape
and behavior. All the extant genomes have evolved from their common ancestor
existed above four billion years ago through a series of evolutionary events in-
cluding segment reversals, translocations, gene duplications, fissions and fusions
(see [9] for example). As a result, closely related species often have highly similar
but different genomes and hence two or more genomes are often compared to
infer evolutionary renovations specific to a species lineage. As genes are the most
important constitutes of a genome and they locate on either strand, a genome
is often modeled as an ordered sequence of signed genes, where a negative sign
before a gene indicates that the gene locates on the complement strand.

In the early study of genome rearrangement, a genome was modeled as a
signed permutation over a set of genes; breakpoint distance and signed reversal
distance were introduced in [19] and [16] respectively; and an elegant polynomial
time algorithm for the signed reversal distance was discovered [10].

While the permutation model might be appropriate for studying small viruses
and mitochondria genomes, it becomes problematic when applied to eukaryotic

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 297–305, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

298 B. Fu and L. Zhang

genomes in which paralogous genes that have similar functions often form a large
gene family. Therefore, a more generalized version of the genome rearrangement
problem was formulated by Sankoff in order to taking multiple-gene families into
account. In his seminal paper [17], a genome is modeled as a signed sequence over
a set of genes in which a gene can appear several times. His approach is to delete
all but one member of a gene family in each of the two genomes to minimize
the breakpoint or reversal distance between the two reduced genomes, called
exemplars. Under this model, one may infer gene duplications that are specific to
each considered genome, occurring after their divergence by solving the exemplar
breakpoint or reversal distance problem (see the section 2 for formal definition).
The resulting exemplars indicates the ancestral genes in their common ancestor
for the gene families being studied.

In the past decade, the exemplar breakpoint distance problem has been stud-
ied extensively. It is trivial to find out the breakpoint distance between two
genomes modeled as signed permutations. However, the exemplar breakpoint
distance problem is not only NP-hard [5], but also hard for approximation [6,14]
even for special cases [2,3,4,11]. In addition, different efficient heuristic and exact
algorithms have also been developed [1,4,15].

In this paper, we derive new efficient algorithms for the exemplar breakpoint
distance problem by using monomial to encode a solution and transforming
distance computation into polynomial manipulations. For a genome, its size is
defined as the total number of genes it has. We develop an O(2mnO(1)) time
algorithm to compute the breakpoint distance between two genomes A and B if
one of them has no repetition, where m is the number of gene families contained
in the genomes and n is the size of A or B whichever is larger. We also develop
an O(2mm!nO(1)) time algorithm to compute the exemplar breakpoint distance.
In the case that one of two genomes has at most d repetitions of each gene, the
computation time is O((2d)mnO(1)) for finding the exemplar breakpoint distance.

2 Notations

A genome containing m gene families is considered as a signed sequence over an
alphabet of m letters where each letter represents a gene family and one of its
occurrences denotes a member of the corresponding gene family. In the theory of
genome rearrangement, we do not distinguish the members of each gene family.
For instance, the genome represented by ab-ac-bcd has four gene families; the ‘a’
family contains two gene members appearing on different strands.

If a genome does not have multiple-gene family, then, its representation is
simply a signed permutation. For two such genomes G = g1g2 · · · gk and H =
h1h2 · · ·hk, the breakpoint distance between them is defined to be the number of
consecutive pairs gigi+1 (1 ≤ i ≤ k − 1) such that gigi+1 �= hjhj+1 and gigi+1 �=
-hj+1-hj for any j = 1, 2, · · · , k − 1. We use bd(G, H) to denote the breakpoint
distance between G and H . It is easy to see that bd(G, H) = bd(H, G). For
G = 12-34 and H = 34-2-1, there is a breakpoint in each of 2-3 and -34. Hence,
bd(G, H) = 2. For G = g1g2 · · · gk, define G−1 = −gk · · · − g2 − g1.

Computing Exemplar Breakpoint Distance 299

For a genome represented by a signed sequence G, an exemplar genome
of G is a genome G′ obtained from G by deleting all but one occurrence of
each letter. For example, bcaadagef has two exemplar genomes: bcadgef and
bcdagef .

We use ebd(G, H) to represent the exemplar breakpoint distance between the
sequences G and H :

ebd(G, H) = min{bd(G′, H ′) : G′ and H ′ are an exemplar of G and H resp.}.

The exemplar breakpoint distance problem to find out ebd(G, H) on the input
genomes G and H . Its decision version is as follows:

Instance: For genomes G and H , each having the same gene families; and
integer k.

Question: ebd(G, H) ≤ k?

3 A Simple Algorithm

Let G and H be two genomes each consisting of k gene families
S = {g1, g2, · · · , gm}. We consider G and H as two sequences over alphabet
S. It is not hard to see that G and H have 0 exemplar breakpoint distance if
and only if G and H have a common “permutation” subsequence. One could
solve the zero exemplar breakpoint distance problem for G and H by using the
following simple procedure:

To compute the exemplar breakpoint distance between G and H , we use the
following search method:

Set d = ∞;
For each pair of permutations P, Q over the gene family set,
(i) check whether P and Q are a common subsequence of G and H

respectivel or not;
(ii) if P is an exemplar of G and Q is an exmplar of H , do
(iii) Compute d = min{d, bd(P, Q)};
Output d.

Let G = a1a2 · · ·an and P = p1p2 · · · pm. Assume at is the first residue of
G identical to p1 then, P is a subsequence of G if and only if p2p3 · · · pm is
a subsequence of at+1at+2 · · · an. This implies an O(n) dynamic programming
method for determining whether P is a subsequnce of G or not. Hence, Step (i)
of the above procedure can be executed in O(n) steps, where n is the sum of the
lengths of G and H .

There are (m!)2 pairs of permutations over the gene family set. For each pair
of permutations, Step (i) and Step (ii) can be computed in O(n) and O(m) steps.
Hence, the strategy described above has time complexity O((m!)2n).

To make the above method more efficient, we have to consider how to enu-
merate the exemplars of the given genomes. Considering this problem leads to
the following polynomial method algorithms that are much more efficient than
the above methods.

300 B. Fu and L. Zhang

4 Polynomial Algebra Method

We use the algebraic method that was originally developed by Koutis [12] and
refined by Williams [18]. It was used in designing randomized fixed parameter
tractable algorithms for the k-path problem in a directed graph. A theory for
the connection between testing monomial and complexity theory are developed
by Chen and Fu [7,8]. We use this method to derive deterministic algorithms for
computing breakpoint distance between two genomes.

Definition 1. Assume that x1, · · · , xk are variables.

– A monomial has format xa1
1 xa2

2 · · ·xak

k , where ai are nonnegative
integers.

– A multilinear monomial is a monomial such that each variable has degree at
most one. For examples, x3x5x6 is a multilinear monomial, but x3x

3
5x

2
6 is

not.
– For a polynomial p(x1, · · · , xk), its sum of product expansion is p(x1, · · · , xk)

=
∑

j qj(x1, · · · , xk), where each qj(x1, · · · , xk) is a monomial, which has a
format cjx

a1
1 · · ·xak

k with cj as its coefficient.

4.1 Breakpoint Distance for One Sequence without Repetition

We first consider how to compute the exemplar breakpoint distance between two
genomes when one of them does not have gene repetition. This problem is still
NP-hard [5].

Definition 2. Let S1 and S2 be two input genomes. S2 has no repetition with
all of its genes. We say S1 is directly convertible to S2 if S1 can become S2 or
S−1

2 by removing some genes. If S1 is directly convertible to S2 or S−1
2 , then we

say S1 is convertible to S2.

Lemma 1. A checking if S1 is convertible to S2, which has no repetition with
all its genes, can be done in O(n) time.

Proof. Let n2 = |S2|. Let S1[i] is the last character identical to S2[n2]. We have
that S1 is directly convertible to S2 if and only if S1[1, i−1] is directly convertible
to S2[1, n2 − 1]. This recursion brings an O(n) time algorithm.

Lemma 2. Let G1 and G2 be two genomes. G2 has no repetition with all its
genes. Then the breakpoint distance of G1 and G2 is u if and only if G1 can be
partitioned into G1,1, . . . , G1,v+1, and G2 can be partitioned into G2,1, . . . , G2,v+1

such that each G1,i matches a unique G2,ji , and G1,i is convertible to G2,ji for
i = 1, . . . , v + 1.

Proof. It follows from the definition of breakpoint distance, and Definition 2.

Computing Exemplar Breakpoint Distance 301

Algorithm Construct-Distance-Polynomial(G1, G2, v)
Input: genome G1, genome G2 = g1g2 . . . gm without repetition over m gene

families, and parameter v;
Output: a polynomial represented by a circuit.
Steps:

For all 1 ≤ s ≤ t ≤ m, let Hs,t to be
∏t

i=s xi;
For each 1 ≤ i ≤ j ≤ |G1|

let Li,j =
∑

[s,t]:G1[i, j] is convertible to G2[s, t] Hs,t;
For each 1 ≤ i ≤ |G1|, and 0 ≤ u ≤ v,

Compute Fi,u via a dynamic programming according to the
following recursions
(i) Fi,0 = L1,i, and (ii) Fi,u+1 =

∑
j<i Fj,uLj+1,i;

Output F|G1|,v;
End of Algorithm

Lemma 3. There is a polynomial time algorithm such that given an integer
parameter v, and two genomes G1 and G2 that G2 has no repetition with its
genes, it generates a F|G1|,v that has a multilinear monomial containing every
variable in its sum of product expansion if and only if the exemplar breakpoint
distance of G1 and G2 is at most v.

Proof. Let G1 and G2 be two input genomes. Sequence G2 has no repetition
with its genes. Without loss of generality, let G2 = g1 · · · gm. Let each gene gi

have a variable xi to represent it. There is a polynomial time algorithm to check
if G1[i, j] is convertible to G2[s, t].

If G1 and G2 have breakpoint distance equal to v, we can partition G1 into
G1,1, . . . , G1,v+1, and partition G2 into G2,1, . . . , G2,v+1 such that each G1,i

matches a unique G2,ji , and G1,i is convertible to G2,ji for i = 1, . . . , v + 1.
This induces a multilinear monomial x1 . . . xm in the sum of product expansion
of Fn1,v via the recursions described in Construct-Distance-Polynomial(.).

A multilinear monomial M is a u-conversion monomial from G to G2 if G
can be partitioned into G[y1, z1], . . . , G[yu+1, zu+1] with y1 ≤ z1 < y2 ≤ z2 <
. . . < yu+1 ≤ zu+1, and there are u disjoint intervals [s1, t1], . . . , [su+1, tu+1]
for G2 such that G[yi, zi] is convertible to G2[si, ti] for i = 1, . . . , u + 1, and
M =

∏u+1
i=1 Hsi,ti .

Claim A multilinear monomial M is u-conversion monomial from G1[1, i] to
G2 if and only if Fi,u contains M in its sum of product expansion.

Proof. For the case u = 0, it follows from the definition of Li,j and Fi,0, which
is assigned to L1,i in the recursion (i) of the algorithm Construct-Distance-
Polynomial(.). Assume the claim is true for u − 1. Consider Fi,u.

Let G1[y1, z1], . . . , G1[yu+1, zu+1] be a partition for G1[1, i] with y1 ≤ z1 <
y2 ≤ z2 < . . . < yu+1 ≤ zu+1. There are disjoint intervals [s1, t1], . . . , [su+1, tu+1]
for G2 such that G1[yi, zi] is convertible to G2[si, ti] for i = 1, . . . , u + 1. By
our assumption for the case u, we have that M ′ =

∏u
i=1 Hsi,ti is a monomial

in sum of product expansion of Fyu+1−1,u−1. By the definition of Lyu+1,zu+1 , we

302 B. Fu and L. Zhang

have Hsu+1,tu+1 is one of the monomials in Lyu+1,zu+1 since G1[yu+1, zu+1] is
convertible to G2[su+1, tu+1]. Thus, M =

∏u+1
i=1 Hsi,ti is in the sum of product

expansion of Fi,u by the recursion (ii) in the algorithm Construct-Distance-
Polynomial(.).

We have that the G1 and G2 have breakpoint distance at most v, if and only
if Fn1,v has a multi-linear monomial x1 · · ·xm in its sum of product expansion.
The polynomial Fn1,v can be expressed a polynomial size circuit since we can
have a polynomial time dynamic programming method to compute the entire
recursion.

Lemma 4. There is a 2mnO(1) time algorithm to find out all multilinear mono-
mials in the sum of product expansion of the polynomial generated by Construct-
Distance-Polynomial(G1 , G2, v) with v < |G2|, where G1 is a general genome,
and G2 is a genome without repetition with all of its genes.

Proof. Since G2 has no gene repetition, |G1| ≥ |G2|. Let n = |G1|. Use a bottom
up approach to evaluate a polynomial F|G1|,v generated by Construct-Distance-
Polynomial(G1, G2, v). The total number of multilinear monomials is at most 2m

since each gene gi is represented by a unique variable xi. For each multiplication
Fj,uLj+1,i involved in case (ii) of the recursion, Lj+1,i has at most a polynomial
number of monomials in terms of n. Therefore, each multiplication can be com-
puted in 2mnO(1) time. The circuit size for F|G1|,v is bounded by nO(1). We can
output all the multilinear monomials in the sum of product expansion of F|G1|,v
in O(2mnO(1)) time.

Algorithm Compute-Breakpoint-Distance(G1, G2)
Input: genome G1, genome G2 = g1g2 . . . gm without repetition;
Output: the exemplar breakpoint distance between G1 and G2.
Steps:

For each 0 ≤ v ≤ |G1|
Let F|G1|,v =Construct-Distance-Polynomial(G1, G2, v);
Find all of the multilinear monomials in the sum of product of
F|G1|,v (see Lemma 4);
If there is a monomial x1 . . . xm

then output v and exit;
End of Algorithm

Theorem 1. There is an O(2mnO(1)) time algorithm to compute the exemplar
breakpoint distance between two given genomes if one of them does not contain
gene repetition, where m is the number of genes and n is the maximal length of
genomes.

Proof. Let G1 and G2 be two input genomes. Let n = max(|G1|, |G2|). Sequence
G2 has no repetition with its genes. Without loss of generality, let G2 = g1 · · · gm.

By Lemma 3, using nO(1) time, we can obtain a polynomial F|G1|,v such that
G1 and G2 have breakpoint distance at most v if and only if F|G1|,v has the
multilinear monomial x1 . . . xm in its sum of product expansion.

Computing Exemplar Breakpoint Distance 303

By Lemma 4, the existence of such a multilinear monomial x1 . . . xm can be
checked in O(2mnO(1)) time for each 0 ≤ v ≤ |G1|. Therefore, the total time is
O(2mnO(1)).

4.2 Exemplar Breakpoint Distance between Arbitrary Genomes

In this section, we develop an algorithm for computing the exemplar breakpoint
distance between two general sequences. Its computational complexity is higher
than those in the last two sections, but it is much more efficient than the brute
force algorithm.

Algorithm Compute-General-Breakpoint-Distance(G1, G2)
Input: genome G1, and genome G2;
Output: the breakpoint distance between G1 and G2.
Steps:

Let x = ∞;
For each permutation P of all genes

Check if P is a subsequence of G2 via a dynamic programming
method;
If yes, let x = min(x, Compute-General-Breakpoint-Distance(G1, P));

Output x.
End of Algorithm

Theorem 2. Compute-General-Breakpoint-Distance(.) is an O(2mm!nO(1))
time algorithm to compute the exemplar breakpoint distance between two genomes
of length at most n and at most m genes.

Proof. We convert the problem into the problem that one of genomes has no
repetition. For each permutation gi1 . . . gim of m genes, using the dynamic pro-
gramming method, we can check if such a permutation can be derived via delet-
ing some gene in a genome G. After a permutation G′

2 of genes is derived from
G2, the problem is converted into computing the exemplar breakpoint distance
between G1 and G′

2 that has no repetition. By Theorem 1, it takes O(2mnO(1))
time to compute the distance between G1 and G′

2. Since there are m! cases for
G′

2, the total time is O(2mm!nO(1)).

For the case that one genome has a bounded number of repetitions for each gene,
we have the following improved algorithm stated in Theorem 3.

Algorithm Compute-General-Breakpoint-Distance2(G1, G2)
Input: genome G1, and genome G2 with at most d repetitions for each gene;
Output: the breakpoint distance between G1 and G2.
Steps:

Let x = ∞;
For each permutation P of all genes by selecting one copy of each gene
in G2

let x = min(x, Compute-General-Breakpoint-Distance(G1, P));
Output x.

End of Algorithm

304 B. Fu and L. Zhang

Theorem 3. Compute-General-Breakpoint-Distance2(.) is a O(2mdmnO(1))
time algorithm to compute the exemplar breakpoint distance if one of them two
input sequences has at most d repetitions for each gene.

Proof. Assume that G2 has at most d repetitions for each gene. There are at
most dm ways to select a permutation of all genes. The problem is converted
into dm problems with one genome without repetition that takes O(2mnO(1))
time each by Theorem 1. Therefore, the total time is O(2mdmnO(1)).

5 Conclusions

We have developed a novel polynomial algebra approach for computing the ex-
emplar breakpoint problem between two genomes, which is NP-hard even for
checking zero breakpoint distance and has no any factor polynomial time approx-
imation unless P=NP. An interesting open problem is if the exemplar breakpoint
distance between two genomes can be computed in O(2O(m)nO(1)) time if the
genomes contain at most n genes from m gene families.

Acknowledgements

Bin Fu is supported in part by National Science Foundation Early Career Award
0845376. Louxin Zhang is partially financially supported by AcRF R146-000-109-
112.

References

1. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: A pseudo-Boolean
programming approach for computing the breakpoint distance between two
genomes with duplicate genes. In: Tesler, G., Durand, D. (eds.) RECMOB-CG
2007. LNCS (LNBI), vol. 4751, pp. 16–29. Springer, Heidelberg (2007)

2. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: On the ap-
proximability of comparing genomes with duplicates. J. Graph Algor. Appli. (ac-
cepted)

3. Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with
duplications: A computational complexity point of view. IEEE/ACM IEEE Trans.
Comput. Biol. Bioinform. 4, 523–534 (2007)

4. Blin, G., Fertin, G., Sikora, F., Vialette, S.: The exemplar breakpoint distance
for non-trivial genomes cannot be approximated. In: Das, S., Uehara, R. (eds.)
WALCOM 2009. LNCS, vol. 5431, pp. 357–368. Springer, Heidelberg (2009)

5. Bryant, D.: The complexity of calculating exemplar distance. In: Sankoff, D.,
Nadeau, J. (eds.) Comparative Genomics: Empirical and Analytical Approaches
to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families,
pp. 207–212 (2000)

6. Chen, Z., Fu, B., Zhu, B.: Approximations for the exemplar breakpoint distance
problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp.
291–302. Springer, Heidelberg (2006)

Computing Exemplar Breakpoint Distance 305

7. Chen, Z., Fu, B.: Approximating Multilinear Monomial Coefficients and Maxi-
mum Multilinear Monomials in Multivariate Polynomials, Electronic Colloquium
on Computational Complexity (ECCC-TR10-124)

8. Chen, Z., Fu, B.: The Complexity of Testing Monomials in Multivariate Polyno-
mials, Electronic Colloquium on Computational Complexity (ECCC-TR10-114)

9. Eichler, E.E., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolu-
tion. Science 301, 793–797 (2003)

10. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. J. Assoc. Comput. Mach. 46,
1–27 (1999)

11. Jiang, M.: The zero exemplar distance problem. In: Tannier, E. (ed.) RECOMB-CG
2010. LNCS, vol. 6398, pp. 74–82. Springer, Heidelberg (2010)

12. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

13. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since
divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81, 814–818 (1984)

14. Nguyen, C.T.: Algorithms for calculating exemplar distances. Honors Thesis, De-
partment of Computer Science, National University of Singapore (2005)

15. Nguyen, C.T., Tay, Y.C., Zhang, L.X.: Divide-and-conquer approach for the exam-
plar breakpoint problem. Bioinformatics 21, 2171–2176 (2005)

16. Sankoff, D.: Mechanisms of genome evolution: models and inference. Bull. Int. Stat.
Institut. 47, 461–475 (1989)

17. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15, 909–917
(2009)

18. Williams, R.: Finding paths of length k in o∗(2k) time. Information Processing
Letters 109, 315–318 (2009)

19. Watterson, G.A., Ewens, W.J., Hall, T.E., Morgan, A.: The chromosome inversion
problem. J. Theor. Biol. 99, 1–7 (1982)

The Maximum Clique Enumeration Problem:

Algorithms, Applications and Implementations

John D. Eblen, Charles A. Phillips, Gary L. Rogers, and Michael A. Langston

Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville TN 37996-3450, USA

Abstract. Algorithms are designed, analyzed and implemented for the
maximum clique enumeration (MCE) problem, which asks that we iden-
tify all maximum cliques in a finite, simple graph. MCE is closely related
to two other well-known and widely-studied problems: the maximum
clique optimization problem, which asks us to determine the size of a
largest clique, and the maximal clique enumeration problem, which asks
that we compile a listing of all maximal cliques. Naturally, these three
problems are NP-hard, given that they subsume the classic version of
the NP-complete clique decision problem.

MCE can be solved in principle with standard enumeration meth-
ods due to Bron, Kerbosch, Kose and others. Unfortunately, these tech-
niques are ill-suited to graphs encountered in our applications. We must
solve MCE on instances deeply seeded in data mining and computa-
tional biology, where high-throughput data capture often creates graphs
of extreme size and density. MCE can also be solved in principle using
more modern algorithms based in part on vertex cover and the theory
of fixed-parameter tractability (FPT). While FPT is an improvement,
these algorithms too can fail to scale sufficiently well as the sizes and
densities of our datasets grow.

An extensive testbed of benchmark MCE instances is devised, based
on applications in transcriptomic data analysis. Empirical testing reveals
crucial but latent features of such high-throughput biological data. In
turn, it is shown that these features distinguish real data from
random data intended to reproduce salient topological features. In par-
ticular, with real data there tends to be an unusually high degree of
maximum clique overlap. Armed with this knowledge, novel decompo-
sition strategies are tuned to the data and coupled with the best FPT
MCE implementations. It is demonstrated that the resultant run times
are frequently reduced by several orders of magnitude, and that instances
once prohibitively time-consuming to solve are now often brought into
the domain of realistic feasibility.

Keywords: maximum clique enumeration, maximal clique, gene expres-
sion analysis, software tools and applications.

1 Introduction

Clique is one of the best known and most widely studied combinatorial problems.
Although classically formulated as an NP-complete decision problem [17], the

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 306–319, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Maximum Clique Enumeration Problem 307

search and optimization formulations are probably most often encountered in
practice. In computational biology, one needs to look no farther than PubMed to
gauge clique’s utility in a variety of applications. A notable example is the search
for putative molecular response networks in high-throughput biological data.
Popular clique-centric tools include clique community algorithms for clustering
[24] and paraclique-based methods for QTL analysis and noise abatement [9,10].

A clique is maximal if it cannot be augmented by adding additional vertices.
A clique is maximum if it is of largest size. A maximum clique is particularly
useful in our work on graphs derived from biological datasets. It provides a dense
core that can be extended to produce plausible biological networks [13]. Other
biological applications include the thresholding of normalized microarray data
[6,25], searching for common cis-regulatory elements [3], and solving the compat-
ibility problem in phylogeny [16]. See [5] for a survey of additional applications
of maximum clique.

Any algorithm that relies on maximum clique, however, has the potential
for inconsistency. This is because graphs often have more than just one clique
of largest size. Thus it is that algorithmic idiosyncrasies, not scientific reason,
are apt to lead to an arbitrary choice of cliques. This motivates us to find an
efficient mechanism to enumerate all maximum cliques in a graph. These can
then be examined using a variety of relevant criteria, such as the average weight
of correlations driven by strain or stimulus [2].

We therefore seek to solve the Maximum Clique Enumeration (MCE) prob-
lem. Unlike maximal clique enumeration, for which a substantial body of liter-
ature exists, very little seems to be known about MCE. The only exception we
have found is a game-theoretic approach for locating a predetermined number of
largest cliques [8]. We begin by creating a testbed of graphs derived from gene
expression data on which to test MCE performance. We concentrate on tran-
scriptomic data, given its abundance, and eschew synthetic data, having learned
long ago that effective algorithms for one have little bearing on the other. (The
pathological matchings noted in [15] for vertex cover can be extended to clique,
but likewise they too are of course hugely irrelevant to real data.) We then imple-
ment and compare both standard enumeration algorithms and more advanced
codes based on the theory of fixed-parameter tractability (FPT) [1,11]. In an ef-
fort to improve performance, we scrutinize the structure of transcriptomic graphs
and explore the notion of maximum clique covers and essential vertex sets. In-
deed, we find that with the right preprocessing we are able to tailor algorithms
to the sorts of data we routinely encounter, and that we can now solve instances
previously considered unassailable.

2 Implementation Environment

To test the performance of different algorithmic approaches, we created a testbed
of 75 graphs, 25 from each of three different transcriptomic datasets. The datasets
were selected for diversity within the domain of mRNA microarray expression
experiments. Since experimental conditions drive the correlations used to create
the graphs, we selected datasets with three different types of conditions: strain,

308 J.D. Eblen et al.

time, and stimulus. Two of the datasets were from experiments on M. musculus
(mouse); the third was from an experiment on S. cerevisiae (yeast). In all three,
mRNA microarrays were used to measure the intensity of mRNA expression.

Our first dataset used microarrays containing 45127 probes and consisted
of expression data collected for adult mouse specimens from 41 different BXD
strains. The data was segregated by sex, so we constructed 13 graphs from female
data and 12 from male data. Our second dataset used microarrays containing
46632 probes and measured expression on mice on successive days during prena-
tal and postnatal development on two different strains, C57BL/6 and DBA/2J,
at 12 and 13 time points respectively. Our third dataset used microarrays con-
taining 6214 probes and measured expression on yeast at 16 different oxygen
levels and 15 glucose concentrations.

To analyze expression data, we first constructed weighted graphs in which
vertices represented probes and edge weights were Pearson correlation coeffi-
cients computed across experimental conditions. We then converted the weighted
graphs into unweighted graphs by retaining only those edges whose weights were
at or above some chosen threshold, t. By employing incremental values for t
between 0.7 and 0.94, a range typical of correlation values used to analyze mi-
croarray data, we obtained a testbed of graphs of various sizes and densities.
All size/density values were within the spectrum typically seen in our work with
biological datasets. The smallest graph had 5,300 vertices and 292,829 edges; the
largest had 30,033 vertices and 1,818,945 edges.

The number of maximum cliques for the graphs in our testbed ranged from 5 to
47496, with no discernible pattern based on graph size or density. One might ask
why there is such wide, unpredictable variability. It turns out that the number of
maximum cliques can be extremely sensitive to small changes in the graph. Even
the modification of a single edge can have a huge effect. Consider, for example, a
graph with a unique maximum clique of size k, along with a host of disjoint cliques
of size k − 1. The removal of just one edge from what was the largest clique may
now result in many maximum cliques of size k − 1. Edge addition can of course
have similar effects. See Figure 1 for an illustrative example.

3 Fundamental Approaches to MCE

While very little prior work seems to have been done on MCE, the problem of
maximal clique enumeration has been studied extensively. Since any algorithm
that enumerates all maximal cliques also enumerates all maximum cliques, it
is reasonable to approach MCE by attempting first to adapt existing maximal
clique enumeration algorithms. An implementation of an existing maximal clique
enumeration algorithm also provides a useful runtime benchmark that should be
improved upon by any new approach. For completeness, we also consider other
enumeration algorithms. One possibility is to compute the maximum clique size
and then test all possible combinations of vertices of that size for complete con-
nectivity. While this approach may be reasonable for very small clique sizes, as
the maximum clique size increases the runtime of this approach quickly becomes
prohibitive.

The Maximum Clique Enumeration Problem 309

(a) (b)

Fig. 1. The number of maximum cliques in a graph can be highly subject to perturba-
tions due, for example, to noise. For example, a graph may contain a single maximum
clique C representing a putative network of size k, along with any number of vertices
connected to k− 2 vertices in C. In (a), there is a single maximum clique of size k = 5,
with “many” other vertices (only three are shown) connected to k− 2 = 3 of its nodes.
In (b), noise results in the removal of a single edge, creating many maximum cliques
now of size k − 1 = 4.

Current maximal clique enumeration algorithms can be classified into two gen-
eral types: iterative enumeration (breadth-first traversal of a search tree) and back-
tracking (depth-first traversal of a search tree). Iterative enumeration algorithms,
such as the method suggested by Kose et al [19], enumerate all cliques of size k
at each stage, test each one for maximality, then use the remaining cliques of size
k to build cliques of size k + 1. The process is typically initialized for k = 3 by
enumerating all vertex subsets of size 3 and testing for connectivity. In practice,
such an approach can have staggering memory requirements, because all cliques
of a given size must be retained at each step. In [29], this approach is improved
by using efficient bitwise operations to prune the number of cliques that must be
saved. Nevertheless, storage needs can be excessive, since all maximal cliques of
one size must still be made available before moving on to the next larger size.
Figure 2 shows the number of maximal cliques of each size in a graph near the
mean size in our testbed. This graphic illustrates the enormous lower bounds on
memory that can be encountered with iterative enumeration algorithms.

Many variations of backtracking algorithms for maximal clique enumeration
have been published in the literature. To the best of our knowledge, all can
be traced back to the algorithms of Bron and Kerbosch first presented in [7].
Some subsequent modifications tweak the data structures used. Others change
the order in which vertices are traversed. See [18] for a performance comparison
between several variations of backtracking algorithms. As a basis for improve-
ment, however, we implemented the original, highly efficient algorithm of [7].
We made this choice for three reasons. First, an enormous proportion of the
time consumed by enumeration algorithms is spent in outputting the maximal
cliques that are generated. This output time is a practical limitation on any such
approach. Second, a graph can theoretically contain as many as 3(n/3) maximal
cliques [23]. It was shown in [28] that the algorithm in [7] achieves this bound in
the worst case. No algorithm with a theoretically lower asymptotic runtime can
thus exist. Third, and most importantly, the improvements we introduce do not

310 J.D. Eblen et al.

70
80
90

100

on
s

20
30
40
50
60
70
80
90

100

Co
un

t i
n

M
ill

io
ns

0
10
20
30
40
50
60
70
80
90

100

1 20 40 60 80 100 120 140 160 180

Co
un

t i
n

M
ill

io
ns

Maximal Clique Size

0
10
20
30
40
50
60
70
80
90

100

1 20 40 60 80 100 120 140 160 180

Co
un

t i
n

M
ill

io
ns

Maximal Clique Size

0
10
20
30
40
50
60
70
80
90

100

1 20 40 60 80 100 120 140 160 180

Co
un

t i
n

M
ill

io
ns

Maximal Clique Size

0
10
20
30
40
50
60
70
80
90

100

1 20 40 60 80 100 120 140 160 180

Co
un

t i
n

M
ill

io
ns

Maximal Clique Size

Fig. 2. The maximal clique profile of graph 70 in our testbed. MCE algorithms that
are based on a breadth-first traversal of the search tree will retain at each step all
maximal cliques of a given size. This can lead to titanic memory requirements. This
graph, for example, contains more than 90 million maximal cliques of size 131. These
sorts of memory demands tend to render non-backtracking methods impractical.

depend on the particulars of any one backtracking algorithm; they can be used
in conjunction with any and all of them.

In the following sections, we test multiple approaches to solving MCE. We
first test Basic Backtracking, the algorithm of [7]. We next modify this approach
to take advantage of the fact that we only want to find maximum cliques. We
call this approach Intelligent Backtracking. We then modify our existing tool
for finding a single maximum clique to enumerate all maximum cliques. We call
this approach Parameterized Maximum Clique, or Parameterized MC. This can
be seen as another backtracking approach that goes even further to exploit the
fact that we only want to find maximum cliques. Finally, based on observations
about the properties of biological graphs, we introduce the concepts maximum
clique covers and essential vertex sets, and apply them to improve the runtime
of backtracking algorithms.

3.1 Basic Backtracking

The seminal maximal clique publication [7] describes two algorithms. A detailed
presentation of the second, which is an improved version of the first, is provided.
It is this second, more efficient, method that we implement and test. We shall
refer to it here as Basic Backtracking. All maximal cliques are enumerated with
a depth-first search tree traversal. The primary data structures employed are
three global sets of vertices: COMPSUB, CANDIDATES and NOT. COMPSUB
contains the vertices in the current clique, and is initially empty. CANDIDATES
contains unexplored vertices that can extend the current clique, and initially
contains all vertices in the graph. NOT contains explored vertices that cannot
extend the current clique, and is initially empty. Each recursive call performs
the following steps:

The Maximum Clique Enumeration Problem 311

– Select a vertex v in CANDIDATES and move it to COMPSUB.
– Save CANDIDATES and NOT lists.
– Remove all vertices not adjacent to v from both CANDIDATES and NOT. At

this point, if both CANDIDATES and NOT are empty, then COMPSUB is a
maximal clique. If so, output COMPSUB as a maximal clique and continue
the next step. If not a maximal clique, then make recursive call.

– Restore CANDIDATE and NOT lists.
– Move v from COMPSUB to NOT. Make recursive call.

Note that NOT is used to keep from generating duplicate maximal cliques. The
search tree can be pruned by terminating a branch early if some vertex of NOT
is connected to all vertices of CANDIDATES. Vertices are selected in a way that
causes this pruning to occur as soon as possible, We omit the details since they
are not pertinent to our modifications of the algorithm.

The storage requirements of Basic Backtracking are relatively modest. No
information about previous maximal cliques needs to be retained. In the im-
provements we will test, we focus on speed but also improve memory usage.
Thus, such limitations are in no case prohibitive for any of our tested meth-
ods. Nevertheless, in some environments, memory utilization can be extreme.
We refer the interested reader to [29].

Our implementation of Basic Backtracking solved 29 of the 75 graphs in our
testbed within 24 hours. See Figure 4. We therefore have now an initial bench-
mark upon which we can now try to improve.

3.2 Backtracking with Knowledge of Maximum Clique Size

Given the relative effectiveness with which we can find a single maximum clique,
it seems logical to consider whether knowledge of that clique’s size can be helpful
in enumerating all maximum cliques. We first describe how our software imple-
mentation does its job. We then discuss subtree prunings that work to improve
the backtracking approach. Finally we implement code changes and test the
resultant algorithm on our testbed.

We use the term Maximum Clique Finder (MCF) to denote the software we
have implemented and refined for finding a single clique of largest size [12].
MCF employs a suite of preprocessing rules along with a branching strategy
that mirrors the well-known FPT approach to vertex cover [1,26]. It first invokes
a simple greedy heuristic to find a reasonably large clique rapidly. This clique is
then used for preprocessing, since it puts a lower bound on the maximum clique
size. The heuristic works by choosing the highest degree vertex, v, then choosing
the highest degree neighbor of v. These two vertices form an initial clique C,
which is then iteratively extended by choosing the highest degree vertex adjacent
to all of C. On each iteration, any vertex not adjacent to all of C is removed.
The process continues until no more vertices exist outside C. Since |C| is a lower
bound on the maximum clique size, all vertices with degree less than |C − 1|
can be permanently removed from the original graph. Next, all vertices with
degree n − 1 are temporarily removed from the graph, but retained in a list

312 J.D. Eblen et al.

since they must be part of any maximum clique. MCF exploits a novel form of
color preprocessing [12], used previously in [27] to guide branching. This form
of preprocessing attempts to reduce the graph as follows. Given a known lower
bound k on the size of the maximum clique, for each vertex v we apply fast
greedy coloring to v and its neighbors. If these vertices can be colored with
fewer than k colors, then v cannot be part of a maximum clique and is removed
from the graph. Once the graph is thus reduced, MCF uses standard recursive
branching on vertices, where each branch assumes that the vertex either is or is
not in the maximum clique.

Intelligent Backtracking. Given that MCF rapidly finds a maximum clique,
we now modify Basic Backtracking to make use of this information. First we
compute the maximum clique size k using MCF and apply color preprocessing
as previously described to reduce the graph. Only a slight modification to the
internals of Basic Backtracking is necessary to make use of k to prune the search
tree. Specifically, at each node in the search tree we check if there are fewer than
k vertices in the union of COMPSUB and CANDIDATES. If so, that branch
cannot lead to a clique of size k, and so we return.

While the modification may seem slight, the resultant pruning of the search
tree can lead to a substantial reduction in the search space. As seen in Figure 4,
Intelligent Backtracking results in a significant runtime improvement. We are
now able to solve 58 of the 75 graphs in our testbed, twice the number solvable
by Basic Backtracking.

Parameterized Enumeration. We now modify MCF to find not just one, but
all maximum cliques. The modification is straightforward. We maintain a global
list of all cliques of maximum size found thus far. Whenever a larger maximum
clique is found, the list is flushed and refreshed to contain only the new maximum
clique. When the search space has been exhausted, the list of maximum cliques
is output.

We must take special care, however, to note that certain preprocessing rules
used during interleaving are no longer valid. Consider, for example, the removal of
a leaf vertex. The clique analogue is to find a vertex with degree n−2 and remove its
lone non-neighbor. This rule patently assumes that only a single maximum clique
is desired, because it ignores any clique depending on the discarded vertex.

After implementing these modifications, we are now able to solve 63 of the 75
graphs in our testbed. See Figure 4. While this is encouraging, our algorithms are
still inadequate to handle readily all our test graphs. We will therefore explore
two new approaches that are tailored to exploit properties of the sort of graphs
we need to solve.

4 Maximum Clique Covers

We view MCF as a subroutine that can be called repeatedly. This provides us
with a simple greedy algorithm for computing a maximal set of disjoint maximum

The Maximum Clique Enumeration Problem 313

cliques. We merely compute a maximum clique, remove it from the graph, and
iterate until the size of a maximum clique decreases. To explore the advantages
of computing such a set, we introduce the following notion:

Definition 1. A maximum clique cover of G = (V, E) is a set V ′ ⊆ V with the
property that each maximum clique of G contains some vertex in the cover.

The union of all vertices contained in a maximal set of disjoint maximum cliques
is of course a maximum clique cover (henceforth MCC), because all maximum
cliques must overlap with such a set. This leads to a useful reduction algorithm.
Any vertex not adjacent to at least one member of an MCC cannot be in a
maximum clique, and can thus be removed.

In practice, we find that applying MCC before the earlier algorithms yields
only marginal improvement. When coupled with Intelligent Backtracking, we
can solve 59 of our 75 graphs. Even when coupled with Parameterized MC, we
are still only able to solve 65 of our 75 graphs. Nevertheless, the concept of MCC
leads us to a more useful approach based on individual vertices.

5 Essential Vertex Sets

Our investigation of the MCC algorithm showed us that it typically does not re-
duce the size of the graph more than the preprocessing rules already incorporated
into our clique codes. For example, our clique codes already quickly find a lower
bound on the maximum clique size and removes any vertex with degree lower
than this bound. Upon closer examination, however, we found that for 74 of our
75 graphs, only one clique was needed in an MCC. Moreover, the lone outlier
was sparse and easy to solve. In fact this coincides closely with our experience,
in which we typically see high overlap among large cliques in the transcriptomic
graphs we encounter on a regular basis. Thus, based on this observation, we
shall now refine the concept of MCC. Rather than covering maximum cliques
with cliques, we will cover maximum cliques with individual vertices.

We define an essential vertex as one that is contained in every maximum
clique. Of course no such vertex may exist. On the contrary, however, based on
computations we suspect that there are often numerous essential vertices. But
even just one may suffice. An essential vertex has the potential to be extremely
helpful, because it allows us to remove all its non-neighbors. We employ the
following observation. For any graph G, ω(G) > ω(G/v) if and only if v covers
all maximum cliques, where ω(G) is the maximum clique size of G.

We define an essential set to be the set of all essential vertices, and propose the
Essential Set (ES) Algorithm as described in Figure 3. The goal of this procedure
is to find all essential vertices in hopes that we can compress the graph as much
as possible.

When we run the ES algorithm before Intelligent Backtracking, we are able to
solve 74 of 75 graphs. When we run it before Parameterized MC, we are able to
solve the entire testbed (see Figure 4). Furthermore, the runtime improvement
is great enough to suggest that the algorithm will scale to considerably larger
graphs.

314 J.D. Eblen et al.

The Essential Set (ES) Algorithm for Graph Reduction
input: a simple graph G
output: a reduced graph G′

begin
M = MCF(G) (M is a single maximum clique)
For each vertex v in M

G′ = G/v
M ′ =MCF(G’)
if (|M ′| < |M |) then G = G/vertices not adjacent to v (v

covers all maximum cliques)
end
output G′

end

Fig. 3. Pseudocode for the Essential Set Algorithm

6 Analysis and Discussion

We timed the performance of Basic Backtracking, Intelligent Backtracking, and
Parameterized MC on graphs built from biological data. Basic Backtracking
was found to be non-competitive. We then reduced the graphs using reduc-
tion by MCC and ES and retested with Intelligent Backtracking and Param-
eterized MC. Run times include both the reduction step and Intelligent
Backtracking or Parameterized MC. ES is shown to perform much faster on
such instances. The effect is more pronounced at lower correlations, which cor-
respond to larger graphs, though we do not observe strict monotonicity; such
a non-monotonic runtime progression is not unusual for NP-complete
problems.

ES serves as a practical example of an innovative algorithm tailored to handle
a difficult combinatorial problem by exploiting knowledge of the input space. It
succeeds by exploiting properties of the graphs of interest, in this case the over-
lapping nature of maximum cliques. More broadly, these experiments underscore
the importance of considering graph types when testing algorithms.

It may be useful to examine graph size after applying MCC and ES, and
compare to both the size of the original graph and the amount of reduction
achieved by color preprocessing alone. Figure 5 depicts original and reduced
graph sizes for a selected subgroup of graphs.

While MCC seems as if it should produce better results, in practice we find it
not to be the case for two reasons. First, the vertices in an MCC may collectively
be connected to a large portion of the rest of the graph, and so very little
reduction in graph size takes place. And second, any reduction in graph size
may be redundant with FPT-style preprocessing rules already in place.

The Maximum Clique Enumeration Problem 315

70
80
90

of

40
50
60
70
80
90

Th
ou

sa
nd

s
of

co

nd
s

10
20
30
40
50
60
70
80
90

R
un

tim
e

in
 T

ho
us

an
ds

 o
f

S
ec

on
ds

0
10
20
30
40
50
60
70
80
90

1 20 40 60 75

R
un

tim
e

in
 T

ho
us

an
ds

 o
f

S
ec

on
ds

Graph Instance
Basic Backtracking Intelligent Backtracking Parameterized MC
Intelligent Backtracking with ES Parameterized MC with ES

0
10
20
30
40
50
60
70
80
90

1 20 40 60 75

R
un

tim
e

in
 T

ho
us

an
ds

 o
f

S
ec

on
ds

Graph Instance
Basic Backtracking Intelligent Backtracking Parameterized MC
Intelligent Backtracking with ES Parameterized MC with ES

0
10
20
30
40
50
60
70
80
90

1 20 40 60 75

R
un

tim
e

in
 T

ho
us

an
ds

 o
f

S
ec

on
ds

Graph Instance
Basic Backtracking Intelligent Backtracking Parameterized MC
Intelligent Backtracking with ES Parameterized MC with ES

Fig. 4. Timings on various approaches to MCE on the testbed of 75 biological graphs.
The tests were conducted under the Debian 3.1 Linux operating system on dedicated
machines with Intel Xeon processors running at 3.20 GHz and 4 GB of main memory.
Timings include all preprocessing, as well as the time to find the maximum clique
size, where applicable. Runs were halted after 24 hours and deemed to have not been
solved, as represented by those shown to take 86400 seconds. The graph instances are
sorted first in order of runtimes for Basic Backtracking, then in order of runtimes for
Intelligent Backtracking. This is a reasonable way to visualize the timings, though
not perfect, since graphs that are difficult for one method may not be as difficult for
another, hence the subsequent timings are not monotonic.

5

10

15

20

25

m
b

er
 o

f
ve

rt
ic

es
 i

n

T
h

o
u

sa
n

d
s

0

5

10

15

20

25

graph 6 graph 19 graph 31 graph 44 graph 63

N
u

m
b

er
 o

f
ve

rt
ic

es
 i

n

T
h

o
u

sa
n

d
s

Original Graph Color Preprocessing MCF
MCC Preprocessing ES Preprocessing

(a)

5

10

15

20

u
m

b
er

 o
f

ve
rt

ic
es

 i
n

H

u
n

d
re

d
s

0

5

10

15

20

graph 6 graph 19 graph 31 graph 44 graph 63

N
u

m
b

er
 o

f
ve

rt
ic

es
 i

n

H
u

n
d

re
d

s

Original Graph Color Preprocessing MCF

MCC Preprocessing ES Preprocessing

(b)

Fig. 5. Reduction in graph size thanks to preprocessing. (a) Five representative graphs
are chosen from our testbed. The resulting number of vertices from post-processed
graphs are plotted. (b) A closer view of graph sizes.

7 Contrast to Random Graphs

It would have probably been fruitless to test and design our algorithms around
random graphs. (Yet practitioners do just that with some regularity.) In fact it
has long been observed that the topology of graphs derived from real

316 J.D. Eblen et al.

A
B

C D

E
F G

H

I

Fig. 6. The Subset Cover Problem. The decision version asks if there are k or fewer
subsets that cover all other subsets. A satisfying solution for k = 4 is highlighted.

relationships differs drastically from the Erdös-Rényi random graph model in-
troduced in [14]. Attempts to characterize the properties of real data graphs
have been made, such as the notion of scale-free graphs, in which the degrees
of the vertices follow a power-law distribution [4]. While work to develop the
scale-free model into a formal mathematical framework continues [21], there re-
mains no generally accepted formal definition. More importantly, the scale-free
model is an inadequate description of real data graphs. We have observed that
constructing a graph so the vertices follow a power law (scale-free) degree distri-
bution, but where edges are placed randomly otherwise using the vertex degrees
as relative probabilities for edge placement, still results in graphs with numerous
small disjoint maximum cliques. For instance, constructing graphs with the same
degree distribution as each of the 75 biological graphs in our testbed resulted
in maximum clique sizes no greater than 5 for even the highest density graphs.
Compare this to maximum clique sizes that ranged into hundreds of vertices
in the corresponding biological graphs. Other metrics have been introduced to
attempt to define important properties, such as cluster coefficient and diameter.
Collectively, however, such metrics remain inadequate to model fully the types
of graphs derived from actual biological data. The notions of maximum clique
cover and essential vertices stem from the observation that transcriptomic data
graphs tend to have one very large highly-connected region, and most (very often
all) of the maximum cliques lie in that space. Furthermore, there tends to be a
great amount of overlap between maximum cliques, perhaps as a natural result
of gene pleiotropism. Such overlap is key to the runtime improvement achieved
by the ES algorithm.

8 Future Research Directions

Our efforts with MCE suggest a number of areas with potential for further in-
vestigation. A formal definition of the class of graphs for which ES achieves
runtime improvements may lead to new theoretical complexity results, perhaps
based upon parameterizing by the amount of maximum clique overlap. Further-
more, such a formal definition may form the basis of a new model for real data
graphs. We have noted that the number of disjoint maximum cliques that can be
extracted provides an upper bound on the size of an MCC. If we parameterize
by the maximum clique size and the number of maximum cliques, does an FPT

The Maximum Clique Enumeration Problem 317

algorithm exist? In addition, formal mathematical results may be achieved on
the sensitivity of the number of maximum cliques to small changes in the graph.

Note that any MCC forms a hitting set over the set of maximum cliques,
though not necessarily a minimum one. Also, a set D of disjoint maximum
cliques, to which no additional disjoint maximum clique can be added, forms a
subset cover over the set of all maximum cliques. That is, any maximum clique
C �∈ D contains at least one vertex v ∈ some maximum clique D′ ∈ D. See
Figure 6. To the best of our knowledge, this problem has not previously been
studied. All we have found in the literature is one citation that erroneously
reported it to be one of Karp’s original NP-complete problems [22].

For the subset cover problem, we have noted that it is NP-hard by a simple
reduction from hitting set. But in the context of MCE we have subsets all of the
same size. It may be that this alters the complexity of the problem, or that one
can achieve tighter complexity bounds when parameterizing by the subset size.
Alternately, consider the problem of finding the minimum subset cover given a
known minimum hitting set. The complexity of this tangential problem is not at
all clear, although we conjecture it to be NP-complete in and of itself. Lastly, as
a practical matter, exploring whether an algorithm that addresses the memory
issues of the subset enumeration algorithm presented in [19] and improved in
[29] may also prove fruitful. As we have found here, it may well depend at least
in part on the data.

Acknowledgments

This research was supported in part by the National Institutes of Health under
grants R01-MH-074460, U01-AA-016662 and R01-AA-018776, and by the U.S.
Department of Energy under the EPSCoR Laboratory Partnership Program.
Mouse data were provided by the Goldowitz Lab at the Centre for Molecular
Medicine and Therapeutics, University of British Columbia, Canada. Yeast data
were obtained from the experimental work described in [20].

References

1. Abu-Khzam, F.N., Langston, M.A., Shanbhag, P., Symons, C.T.: Scalable parallel
algorithms for FPT problems. Algorithmica 45, 269–284 (2006)

2. Baldwin, N.E., Chesler, E.J., Kirov, S., Langston, M.A., Snoddy, J.R., Williams,
R.W., Zhang, B.: Computational, integrative, and comparative methods for the
elucidation of genetic coexpression networks. J. Biomed. Biotechnol. 2(2), 172–180
(2005)

3. Baldwin, N.E., Collins, R.L., Langston, M.A., Leuze, M.R., Symons, C.T., Voy,
B.H.: High performance computational tools for motif discovery. In: Proceedings
of 18th International Parallel and Distributed Processing Symposium (2004)

4. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

5. Bomze, I., Budinich, M., Pardalos, P., Pelillo, M.: The maximum clique problem.
Handbook of Combinatorial Optimization 4 (1999)

318 J.D. Eblen et al.

6. Borate, B.R., Chesler, E.J., Langston, M.A., Saxton, A.M., Voy, B.H.: Compari-
son of thresholding approaches for microarray gene co-expression matrices. BMC
Research Notes 2 (2009)

7. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–577 (1973)

8. Bul, S.R., Torsello, A., Pelillo, M.: A game-theoretic approach to partial clique
enumeration. Image and Vision Computing 27(7), 911–922 (2009); 7th IAPR-TC15
Workshop on Graph-based Representations (GbR 2007)

9. Chesler, E.J., Langston, M.A.: Combinatorial genetic regulatory network analysis
tools for high throughput transcriptomic data. In: RECOMB Satellite Workshop
on Systems Biology and Regulatory Genomics (2005)

10. Chesler, E.J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H.C., Mountz, J.D.,
Baldwin, N.E., Langston, M.A., Hogenesch, J.B., Threadgill, D.W., Manly, K.F.,
Williams, R.W.: Complex trait analysis of gene expression uncovers polygenic and
pleiotropic networks that modulate nervous system function. Nature Genetics 37,
233–242 (2005)

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

12. Eblen, J.D.: The Maximum Clique Problem: Algorithms, Applications, and Imple-
mentations. PhD thesis, University of Tennessee (2010),
http://trace.tennessee.edu/utk_graddiss/793/

13. Eblen, J.D., Gerling, I.C., Saxton, A.M., Wu, J., Snoddy, J.R., Langston, M.A.:
Graph algorithms for integrated biological analysis, with applications to type 1
diabetes data. In: Clustering Challenges in Biological Networks, pp. 207–222. World
Scientific, Singapore (2008)

14. Erdős, P., Rényi, A.: Random graphs, pp. 17–61. Publication of the Mathematical
Institute of the Hungarian Academy of Science (1960)

15. Fernau, H.: On parameterized enumeration. In: Proceedings of the 8th Annual
International Conference on Computing and Combinatorics (2002)

16. Fernndez-Baca, D.: The perfect phylogeny problem. In: Cheng, X., Du, D.-Z. (eds.)
Steiner Trees in Industry (2002)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. WH Freeman & Co., New York (1979)

18. Harley, E.R.: Comparison of clique-listing algorithms. In: Proceedings of the In-
ternational Conference on Modeling, Simulation and Visualization Methods, pp.
433–438 (2004)

19. Kose, F., Weckwerth, W., Linke, T., Fiehn, O.: Visualizing plant metabolomic
correlation networks using clique-metabolite matrices. Bioinformatics 17, 1198–
1208 (2001)

20. Lai, L.C., Kosorukoff, A.L., Burke, P.V., Kwast, K.E.: Metabolic-state-dependent
remodeling of the transcriptome in response to anoxia and subsequent reoxygena-
tion in saccharomyces cerevisiae. Eukaryotic Cell 5(9), 1468–1489 (2006)

21. Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free
graphs: Definition, properties, and implications (extended version). Internet Math-
ematics (2005)

22. Malouf, R.: Maximal consistent subsets. Computational Linguistics 33, 153–160
(2007)

23. Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3,
23–28 (1965)

24. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435, 814–818 (2005)

http://trace.tennessee.edu/utk_graddiss/793/

The Maximum Clique Enumeration Problem 319

25. Perkins, A.D., Langston, M.A.: Threshold selection in gene co-expression networks
using spectral graph theory techniques. BMC Bioinformatics 10 (2009)

26. Rogers, G.L., Perkins, A.D., Phillips, C.A., Eblen, J.D., Abu-Khzam, F.N.,
Langston, M.A.: Using out-of-core techniques to produce exact solutions to the
maximum clique problem on extremely large graphs. In: ACS/IEEE International
Conference on Computer Systems and Applications (AICCSA 2009), IEEE Com-
puter Society, Los Alamitos (2009)

27. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global Optimiza-
tion 37, 95–111 (2007)

28. Tomitaa, E., Tanakaa, A., Takahashia, H.: The worst-case time complexity for gen-
erating all maximal cliques and computational experiments. Theoretical Computer
Science 363(1), 28–42 (2006)

29. Zhang, Y., Abu-Khzam, F.N., Baldwin, N.E., Chesler, E.J., Langston, M.A., Sam-
atova, N.F.: Genome-scale computational approaches to memory-intensive appli-
cations in systems biology. In: Supercomputing (2005)

Query-Adaptive Ranking with Support Vector

Machines for Protein Homology Prediction�

Yan Fu1, Rong Pan2, Qiang Yang3, and Wen Gao4

1 Institute of Computing Technology and Key Lab of Intelligent Information
Processing, Chinese Academy of Sciences, Beijing 100190, China

2 School of Information Science and Technology,
Sun Yat-sen University, Guangzhou 510275, China

3 Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong, China
4 Institute of Digital Media, Peking University, Beijing 100871, China

yfu@ict.ac.cn, panr@mail.sysu.edu.cn, qyang@cse.ust.hk, wgao@pku.edu.cn

Abstract. Protein homology prediction is a crucial step in template-
based protein structure prediction. The functions that rank the proteins
in a database according to their homologies to a query protein is the
key to the success of protein structure prediction. In terms of informa-
tion retrieval, such functions are called ranking functions, and are often
constructed by machine learning approaches. Different from traditional
machine learning problems, the feature vectors in the ranking-function
learning problem are not identically and independently distributed, since
they are calculated with regard to queries and may vary greatly in
statistical characteristics from query to query. At present, few existing
algorithms make use of the query-dependence to improve ranking perfor-
mance. This paper proposes a query-adaptive ranking-function learning
algorithm for protein homology prediction. Experiments with the sup-
port vector machine (SVM) used as the benchmark learner demonstrate
that the proposed algorithm can significantly improve the ranking per-
formance of SVMs in the protein homology prediction task.

Keywords: Protein homology prediction, information retrieval, ranking
function, machine learning, support vector machine.

1 Introduction

A good ranking function is crucial for a successful information retrieval system
[1]. A ranking function is based on the measurement of the relevance of database
items to a query. Usually, there are multiple ways to measure the relevance of

� This work was supported by the Research Initiation Funds for President Scholar-
ship Winners of Chinese Academy of Sciences (CAS), the National Natural Science
Foundation of China (30900262, 61003140 and 61033010), the CAS Knowledge In-
novation Program (KGGX1-YW-13), and the Fundamental Research Funds for the
Central Universities (09lgpy62).

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 320–331, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Query-Adaptive Ranking with SVMs 321

database items. An important issue is how to automatically and intelligently
combine these relevance measures into a powerful single function using machine
learning technologies [2,3,4,5].

Protein structures play an important role in biological functions of proteins.
Experimental approach to protein structure determination is both slow and ex-
pensive. Since homologous proteins (evolved from the same ancestor) usually
share similar structures, predicting protein structures based protein homologies
has been one of the most important problems in bioinformatics [6,7,8,9]. Protein
homology prediction is a key step of protein structure prediction and is a typical
ranking problem[10]. In this problem, the database items are protein sequences
with known three-dimensional structures, and the query is a protein sequence
with unknown structure. The objective is to find those proteins in the database
that are homologous to the query protein so that the homologous proteins can
be used as structural templates.

The homology between two proteins can be captured from multiple views,
such as sequence alignment, sequence profile and threading [11]. In this paper,
we will not focus on these homology measures or features, but on the machine
learning algorithms that integrate these features into a single score, i.e., a ranking
function, in order to rank the proteins in a database. Since the proposed algo-
rithm is, in principle, applicable to general ranking-function learning tasks, we
will discuss the problem and describe the algorithm in a somewhat general man-
ner. For example, when we say a ’query’ or ’database item’, it corresponds to a
’protein’ in our protein homology prediction problem, and ’relevant’/’relevance’
means ’homologous’/’homology’.

In ranking-function learning, the items (proteins in our case) in a database
are represented as vectors of query-dependent features, and the objective is to
learn out a function that can rank the database items in order of their relevances
to the query. Each query-dependent feature vector corresponds to a query-item
pair. Training data also consist of relevance (homology in our case) judgments for
query-item pairs, which can be either absolute (e.g., item A is relevant, item B is
not, while item C is moderate, etc.) or relative (e.g., item A is more relevant than
item B). The relevance judgments can be acquired from the manual annotation
of domain experts.

Algorithms for ranking-function learning mainly differ in the form of training
data (e.g., absolute or relative relevance judgments), the type of ranking func-
tion (e.g., linear or nonlinear), and the way to optimize coefficients. In early
years, various regression models were used to infer probability of relevance from
binary judgments, e.g., the polynomial regression [3] and the logistic regres-
sion [12,13]. Information retrieval can also be viewed as a binary classification
problem: given a query, classify all database items into two classes - relevant
or irrelevant[2,14]. An advantage of viewing retrieval as a binary classification
problem is that powerful discriminative models in machine learning, e.g., SVM,
can be directly applied and the resultant ranking function is discriminative.
Between regression and classification is the ordinal regression. Ordinal regres-
sion differs from conventional regression in that the targets are not continuous

322 Y. Fu et al.

but finite and differs from classification in that the finite targets are not nom-
inal but ordered [15,16]. Methods were also proposed to directly learn to rank
things instead of learning the concept of relevance. For example, Joachims ad-
dressed the ranking-function learning problem in the framework of large margin
criterion, resulting in the Ranking SVM algorithm [5]. Learning to rank has
drawn more and more attention from the machine learning field in recent years
(e.g., [17,18]).

A major characteristic of ranking-function learning is that the feature vector
of each database item is computed with regard to a query. Therefore, all feature
vectors are partitioned into groups by queries (each group of data associated
with a query is called a block in this paper). Unlike traditional learning tasks,
e.g., classification and regression, in which data are assumed to be independently
and identically distributed, the ranking data belonging to the same block are cor-
related via the same query. We have observed that the data distributions may
vary greatly from block to block [19]. The same value of a feature may indicate
relevance in one block but irrelevance in another block. In the pure ranking al-
gorithms that take preference judgments as input and do not aim to estimate
relevance, e.g., Ranking SVM [5], training is performed so that rankings are only
consistent within training queries. In this case, the difference between queries
does not pose an obstacle to learning a pure ranking function. However, few ef-
forts have so far been devoted to explicitly making use of the difference between
queries to improve the generalization performance of learned ranking functions.
Since queries in practice differ in various ways, no single ranking function per-
forms well for all queries. A possible way to improve ranking performance is to
use different ranking functions for different queries [20].

In this paper, we describe a query-adaptive ranking-function learning
algorithm for the protein homology prediction task. Our approach, called K-
Nearest-Block Ensemble Ranking, is motivated by the intuitive idea of learning
a ranking function for a query using its similar queries in training data in-
stead of using all available training data. Note that by similar we do not mean
sequence similarity, but rather similarity in distributions of query-dependent
data. To avoid online training, we employ an ensemble method. On each data
block (corresponding to a query protein) in training data, an individual ranking
model is trained offline in advance. Given the data block derived from a new
query, the k ranking models trained on the k most similar blocks to the given
block are applied separately to the given block and the k groups of ranks are
aggregated into a single rank. In this way, incremental learning is also sup-
ported. As support vector machines (SVMs) [21] have been extensively studied
in recently years for ranking-function learning and have been shown to have
excellent performance (see, e.g., [5,15,14,17]), we use the SVM as the bench-
mark learner in this work. Experiments on a public dataset of protein homology
prediction show that the proposed algorithm performs excellently in terms of
both ranking accuracy and training speed, significantly improving the ranking
performance of SVMs.

Query-Adaptive Ranking with SVMs 323

2 Algorithm

In this section, we describe our K-Nearest-Block (KNB) approach to ranking.
Below is the terminology used in this paper.

Query-Dependent Feature Vector. Given a query (a protein sequence here),
a database item (a protein sequence with known structure) is represented as
a vector of (query-dependent) features that measure the relevance (homol-
ogy) of the database item to the query. Each query-dependent feature vector
corresponds to a query-item pair.

Block. A block B is a group of instances of query-dependent feature vectors
associated with the same query. Each block corresponds to a query. A block
usually includes several hundreds or thousands of feature vectors, which are
computed from the most homologous proteins in a database according to
some coarse scoring function.

Training Block. A training block is a block with relevance judgements for all
of the feature vectors in it.

Test Block. A test block is a block in which the relevance judgments are un-
available and are to be made.

Block Distance. A block distance D(Bi, Bj) is a mapping from two blocks
Bi and Bj to a real value that measures the dissimilarity between the two
blocks.

k Nearest Blocks. Just as the name implies, the k nearest blocks to a block
are the k training blocks that are most similar to this blocks according to a
block distance definition.

The block structure of data is a unique feature of the ranking problem. We believe
that the differences among blocks, if appropriately used, can be very valuable
information for training more accurate ranking models. One straightforward idea
is that given the test block corresponding to a new query, all n training blocks
should not be used to learn a ranking model, but only the k(�n) most similar
training blocks to the test block should be used. This is the block-level version of
the traditional K-Nearest Neighbors method for classification or regression and
thus can be called the K-Nearest Block (KNB) approach to ranking.

Three important sub-problems in the KNB approach are:

1. How to find the k nearest training blocks?
2. How to learn a ranking model using the k nearest blocks?
3. How to choose the value of k?

Different resolutions to the above three sub-problems lead to different imple-
mentations of the KNB method for ranking. High speed is a most crucial factor
for a real-world retrieval system. Generating a new ranking model for each new
query seems to apparently conflict with the above criterion. Therefore, the sec-
ond sub-problem is especially important and needs to be carefully addressed.

324 Y. Fu et al.

2.1 K Nearest Blocks (KNB)

To find the k nearest blocks to a given block, a distance between blocks must
be defined in advance. In general, the block distance can be defined in various
ways, either domain-dependent or independent.

The most intuitive way is to represent each block as a vector of block features.
Block features are variables that characterize a block from some views. For ex-
ample, block features can be the data distribution statistics of a block. Given a
vector representation of blocks, any vector-based distance can serve as a block
distance, such as Euclidean distance or Mahalanobis’ distance.

For simplicity and generality, we employ a domain-independent vector pre-
sentation of blocks and use Euclidean distance in this paper. Each block is rep-
resented by the statistics of each feature in the block, that is,

Φ(Bi) = 〈μi1, σi1, μi2, σi2, · · · , μid, σid〉, (1)

where μik and σik are the mean and the standard deviation of the k-th feature
in block Bi, respectively. The distance between two blocks Bi and Bj then is

D(Bi, Bj) =
√
‖ Φ(Bi) − Φ(Bj) ‖2. (2)

2.2 KNB Ensemble Ranking

Given the k nearest blocks, the next step is to learn a ranking model from the
selected training data. The most simple resolution is to train a global model
on the union of all selected blocks. However, as we pointed out previously, a fatal
drawback of doing this is that a training process has to be conducted online for
each new query while the training time to be needed is totally unknown. This is
unacceptable for a practical retrieval system.

To overcome the difficulty of online training, we propose to use an ensemble
model. First, on each training block, a ranking model (called a local model)
is trained offline. All local models are saved for future use. When a new query
comes, a test block is generated and is compared to all training blocks. The k
nearest training blocks to the test block are identified and the k corresponding
local models are separately applied to the test block. Then, the k groups of
relevance predictions are aggregated together to generate the final single rank for
the query. Figure 1 gives the flowchart of the KNB Ensemble Ranking method.

In principle, any ranking model can serve as the local model in the KNB
Ensemble Ranking method. Since SVMs have recently been extensively explored
for ranking, we choose the classification SVM as the base learner and compare the
resulted KNB ensemble SVM with other SVM-based ranking methods. Another
reason for using SVMs is that previous best results on the data set used in this
paper (see next section for detail) were mostly obtained with SVMs [19,22,23,24].

For aggregation, we simply sum over all the predictions made by selected local
models with block distances as weights; that is,

Relevance(B∗) =
∑
i∈I∗

1
D(B∗, Bi)

Modeli(B∗), (3)

Query-Adaptive Ranking with SVMs 325

Find the k nearest training
blocks to B*

New query

Generate the test block B*

Predict for B* using the k
corresponding local models

Aggregate the k groups of
predictions on block B*

Rank

Training blocks

Local Models

Off-line part

Train on separate blocks

Fig. 1. Flowchart of the KNB Ensemble Ranking method

where I∗ is the index of the k nearest training blocks to the test block B∗ and
Modeli(B∗) denotes the predictions made by the local model trained on block Bi.

Compared to the global model, the ensemble model used in the KNB ranking
method has several advantages:

– Firstly, training is fast. The time needed for training a learner (e.g. SVM)
often increases nonlinearly with the number of training examples. Training
on separate blocks is a divide-and-conquer strategy and thus is faster.

– Secondly, test is fast. KNB-based global model must be trained online for
each new query, while local models can be trained offline in advance.

– Thirdly, incremental learning is supported. When a new training block comes,
a new local model can be trained on it and be added into the repository of
local models.

– Fourthly, a training block can be easily weighted according to its distance
from the test block.

– Finally, an ensemble model often outperforms a global model in complex
learning problems.

3 Experiments

In this section, we apply the KNB ensemble ranking algorithm to the protein
homology prediction problem and demonstrate that the algorithm is superior to
other SVM-based ranking methods in both ranking accuracy and training speed.

326 Y. Fu et al.

Table 1. Statistics of the protein homology data set

#Queries Block size #Examples #Features

Training data 153 ∼ 1000
145,751

74
Test data 150 139,658

3.1 Data Set

Protein homology search is a routine task in current biology and bioinformat-
ics researches. The task of protein homology prediction is to rank/predict the
homologies of database proteins to a query protein. In this paper, we use the
KDDCUP2004 data set of protein homology prediction [25]. In this data set,
each database protein is characterized by 74 features measuring its homology to
the query protein. The data are generated by the program LOOPP (Learning
Observing and Outputting Protein Patterns), a protein fold recognition program
[26]. The homology features include length of alignment, percentage of sequence
identity, z-score for global sequence alignment, etc. [11]. On this data set, we have
obtained the Tied for First Place Overall Award in the KDDCUP2004 compe-
tition. In the original winning solution, we successfully developed and used the
intra-block data normalization and support-vector data sampling technologies
for ranking-function learning [19].

The statistics of the data are summarized in Table 1. They include 153 train-
ing queries and 150 training queries. For each query, the examples (candidate
homologous proteins) were obtained from a preliminary scoring/ranking func-
tion. The labels (homology judgments) are in binary form (0 for homology and
1 for non-homology) and are available for training data. Labels for test data
are not published. The predictions for test data can be evaluated online at the
competition web site. This provides a relatively fair manner for researchers to
test and compare their methods.

For computing the block distance, we globally normalize the query-dependent
features so that the mean is zero and the variance is one in the whole training
data. For training local SVMs, we locally normalize the features so that the
mean is zero and the variance is one within each block. We found that this
kind of intra-block normalization resulted in improved prediction performance
compared to the global normalization [19].

3.2 Performance Evaluation

Four metrics are used to evaluate the performance of a ranking method. They
are TOP1, RKL (average rank of the last relevant item), APR (mean average
precision), and RMS (root mean squared error). Each of the four metrics is first
computed on individual blocks, and then averaged over all blocks.

TOP1. (maximize) TOP1 is defined as the fraction of blocks with a relevant
item ranked highest. It measures how frequently a search engine returns a
relevant item to the user at the top position.

Query-Adaptive Ranking with SVMs 327

RKL. (minimize) RKL is defined as the average rank of the last relevant item.
It measures how many returned items have to be examined sequentially in
average so that all relevant items can be found. If the purpose is to find out
all relevant items, then RKL is a more suitable metric than TOP1.

APR. (maximize) APR is defined as the average of a kind of average ranking
precision on each block. The average precision on single block is quite similar
to the AUC (Area Under presision/recall Curve) metric. APR provides an
overall measurement of the ranking quality.

RMS. (minimize) RMS is the average root mean square error. It evaluates how
accurate the prediction values are if they are used as estimates of relevance
(1 for absolute relevance and 0 for absolute irrelevance).

The first three metrics exclusively depend on the relative ranking of the items in
a block while RMS needs relevance estimates. Since the target values are binary,
we found that to a large extent RMS seems to rely on a good normalization of
the prediction values more than on a good ranking or classification. Therefore,
we place emphasis on the first three metrics, although we have obtained the best
result of RMS on test data.

To evaluate a learning algorithm and perform model selection, cross validation
is the most widely used strategy. Since the performance measures for ranking
are calculated based on blocks, it becomes natural to divide the training data by
blocks for cross validation. We extend the traditional cross validation method
Leave-One-Out (LOO) to a block-level version which we call Leave-One-Block-
Out (LOBO). Given a training data set, the LOBO cross validation puts one
block aside as the validation set at a time and uses other blocks for training. After
all blocks have their turns as the validation set, an averaged performance measure
is computed at the end. The LOBO cross validation is different from both the
traditional LOO and the n-fold cross validation. It is a graceful combination
of these two common cross validation strategies, taking advantage of the block
structure of ranking data.

3.3 Results

Four algorithms are compared, including the standard classification SVM, the
Ranking SVM, the KNB global SVM, and the KNB ensemble SVM. For Ranking
SVM, relative relevance judgments are derived from binary labels. In all experi-
ments, the SVMlight package [27] is used. In most cases, the linear kernel is used
for SVM training, based on the following considerations:

– High speed is crucial for a real-word retrieval system and linear ranking
function are more efficient than nonlinear ones. Especially, a linear SVM
can be represented by a weight vector while a nonlinear SVM has to be
represented by a group of support vectors, the number of which is in general
uncontrollable.

– Nonlinear kernels introduce additional parameters, thus increasing the diffi-
culty of model selection. In our case, experiments have shown that training
with nonlinear kernels, e.g., RBF kernel, on the entire data set we used is
extremely slow and does not show better results.

328 Y. Fu et al.

Table 2. Cross-validation performance on training data set (the results of Standard
SVM and Ranking SVM were obtained after intra-block data normalization, a method
we previously proposed [19]; otherwise they would perform much worse. It is the same
with Table 3).

Method
TOP1 RKL APR RMS
(maximize) (minimize) (maximize) (minimize)

Standard SVM 0.8758 51.94 0.8305 0.0367
Ranking SVM 0.8562 36.83 0.8257 N/A
KNB global SVM 0.8889 45.18 0.8560 0.0354
KNB ensemble SVM 0.8889 39.50 0.8538 0.0357

Table 3. Performance on test data set

Method
TOP1 RKL APR RMS
(maximize) (minimize) (maximize) (minimize)

Standard SVM 0.9133 59.21 0.8338 0.0357
Ranking SVM 0.9000 45.80 0.8369 N/A
KNB global SVM 0.9067 45.90 0.8475 0.0379
KNB ensemble SVM 0.9067 40.50 0.8476 0.0364

– In the KNB SVM ensemble approach, the linear local SVMs can be easily
combined into a single linear function before prediction, thus decreasing the
online computational burden. Moreover, it has been shown that in ensemble
machine learning, a good generalization ability is often achieved using weak
(e.g., linear) base learners rather than strong (e.g., nonlinear) ones.

– The use of linear kernel is fair for all the SVM-based methods compared.

The only parameter in the linear SVM is the parameter C, the tradeoff between
training error and learner complexity. Another parameter in the KNB-based
methods is k, the number of selected local models. To do model selection and
performance evaluation on the training data, we use the LOBO cross-validation
as described above. Table 2 gives the best results obtained using various methods.
It shows that on the TOP1, APR and RMS metrics, KNB-based methods are
superior to the other two methods. On the RKL metric, the Ranking SVM
obtains the best result. On all metrics, the KNB ensemble SVM is comparable
or superior to the KNB global SVM.

On the test data, predictions, made by models trained with the parameter
values optimized for each metric, were evaluated on online. Table 3 gives the test
results. The KNB ensemble SVM obtains the best results on the RKL and APR
metrics among the four methods. In fact, they are the best known results on
these two metrics (up to the time that this paper is submitted). On the other two
metrics, KNB ensemble SVM does not perform best. However, the differences are
very small and once again we argue that the RMS metric is very sensitive to the
normalization of prediction values. On average, the solution of KNB ensemble
SVM is the best result among all the original and subsequent submissions to the
competition (http://kodiak.cs.cornell.edu/cgi-bin/newtable.pl?prob=bio).

Query-Adaptive Ranking with SVMs 329

10 12 14 16 18 20
38

40

42

44

46

48

50

k in KNB Ensemble Ranking

R
K

L
(m

in
im

iz
e)

Our Result
Previous Best Result

Fig. 2. RKL performance on test data set vs. k in KNB ensemble SVM in comparison
with previous best result

Table 4. Training speed comparison

Method Training mode Training time (seconds)

Standard SVM Offline 95
Ranking SVM Offline 32255
KNB global SVM Online dependent on k
KNB ensemble SVM Offline 9

It is also found that the KNB ensemble SVM is not sensitive to k, the number of
selected nearest blocks. Figure 2 shows the RKL result of KNB ensemble SVM on
the test data with the k as a variable. It can be seen that between a large range of
the value of k (from 10 to 20), the RKL is rather stable and is considerably better
than the previous best result obtained by Foussette et al. [22].

Besides the ranking accuracy, the training speed is another important factor.
Table 4 lists the training mode and training time of the four methods. Standard
classification SVM and Ranking SVM are trained on all available blocks. KNB
global SVM is trained online on selected k nearest blocks, and the training time
is dependent on k and is unpredictable in practice. For KNB ensemble SVM,
local SVMs are trained offline on separate blocks. We can see that the offline
training of KNB ensemble SVM only costs 9 seconds, 3600 times faster than
ranking SVM. These experiments were performed on a Solaris/SPARC Server
with 8 Sun Microsystems Ultra-SPARC III 900Mhz CPUs and 8GB RAM.

4 Conclusion and Future Work

In this paper, we have proposed a K-Nearest-Blocks (KNB) ensemble ranking
algorithm with SVMs used as the base learners, and applied it to the protein
homology prediction problem. Experiments show that compared to several other
SVM-based ranking algorithms, the proposed one is significantly better on most
performance evaluation metrics and meanwhile is extremely fast in training

330 Y. Fu et al.

speed. Here, we have used a public data set. It is possible to develop more
measures of protein homology to improve the accuracy of protein homology pre-
diction. On the other hand, since the method is domain-independent, it is in
principle applicable to general ranking problems. A potential problem with the
KNB approach is that when the number of training blocks becomes very large,
finding the k nearest blocks may be computationally expensive. However, all
methods for expediting the traditional K-Nearest Neighbor method can also be
used for the KNB method. In addition, we used a very simply definition of block
distance in this paper. In fact, it can be improved in various ways, for example,
refinement of block features, feature selection, distance learning, etc. We will try
to address some of these aspects in our future work.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley-
Longman, Harlow (1999)

2. Robertson, S.E., Sparck Jones, K.: Relevance weighting of search terms. Journal
of American Society for Information Sciences 27, 129–146 (1976)

3. Fuhr, N.: Optimal polynomial retrieval functions based on the probability ranking
principle. ACM Transactions on Information Systems 7, 183–204 (1989)

4. Cohen, W., Shapire, R., Singer, Y.: Learning to order things. Journal of Artificial
Intelligence Research 10, 243–270 (1999)

5. Joachims, T.: Optimizing Search Engines Using Clickthrough Data. In: 8th ACM
Conference on Knowledge Discovery and Data Mining, pp. 133–142. ACM Press,
New York (2002)

6. Baker, D., Sali, A.: Protein structure prediction and structural genomics. Sci-
ence 294, 93–96 (2001)

7. Zhang, Y., Skolnick, J.: The protein structure prediction problem could be solved
using the current PDB library. Proc. Natl. Acad. Sci. USA 102, 1029–1034 (2005)

8. Ginalski, K.: Comparative modeling for protein structure prediction. Current Opin-
ion in Structural Biology 16, 172–177 (2006)

9. Zhang, Y.: Progress and challenges in protein structure prediction. Current Opinion
in Structural Biology 18, 342–348 (2008)

10. Soding, J.: Protein homology detection by HMMCHMM comparison. Bioinformat-
ics 2, 951–960 (2005)

11. Teodorescu, O., Galor, T., Pillardy, J., Elber, R.: Enriching the sequence substi-
tution matrix by structural information. Proteins: Structure, Function and Bioin-
formatics 54, 41–48 (2004)

12. Cooper, W., Gey, F., Chen, A.: Information retrieval from the TIPSTER collection:
an application of staged logistic regression. In: 1st NIST Text Retrieval Confer-
ence, pp. 73–88. National Institute for Standards and Technology, Washington, DC
(1993)

13. Gey, F.: Inferring Probability of Relevance Using the Method of Logistic Regres-
sion. In: 17th Annual International ACM Conference on Research and Development
in Information Retrieval, Dublin, Ireland, pp. 222–231 (1994)

14. Nallapati, R.: Discriminative Models for Information Retrieval. In: 27th Annual
International ACM Conference on Research and Development in Information Re-
trieval, pp. 64–71. ACM Press, New York (2004)

Query-Adaptive Ranking with SVMs 331

15. Herbrich, R., Obermayer, K., Graepel, T.: Large margin rank boundaries for ordi-
nal regression. In: Smola, A.J., Bartlett, P., Schölkopf, B., Schuurmans, C. (eds.)
Advances in Large Margin Classifiers, pp. 115–132. MIT Press, Cambridge (2000)

16. Crammer, K., Singer, Y.: Pranking with ranking. In: Advances in Neural Informa-
tion Processing Systems, vol. 14, pp. 641–647. MIT Press, Cambridge (2002)

17. Chapelle, O., Keerthi, S.S.: Efficient algorithms for ranking with SVMs. Informa-
tion Retrieval Journal 13, 201–215 (2010)

18. McFee, B., Lanckriet, G.: Metric Learning to Rank. In: 27th International Confer-
ence on Machine Learning, Haifa, Israel (2010)

19. Fu, Y., Sun, R., Yang, Q., He, S., Wang, C., Wang, H., Shan, S., Liu, J., Gao,
W.: A Block-Based Support Vector Machine Approach to the Protein Homology
Prediction Task in KDD Cup 2004. SIGKDD Explorations 6, 120–124 (2004)

20. Fu, Y.: Machine Learning Based Bioinformation Retrieval. Ph.D. Thesis, Institute
of Computing Technology, Chinese Academy of Sciences (2007)

21. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York
(1995)

22. Foussette, C., Hakenjos, D., Scholz, M.: KDD-Cup 2004 - Protein Homology Task.
SIGKDD Explorations 6, 128–131 (2004)

23. Pfahringer, B.: The Weka Solution to the 2004 KDD Cup. SIGKDD Explorations 6,
117–119 (2004)

24. Tang, Y., Jin, B., Zhang, Y.: Granular Support Vector Machines with Association
Rules Mining for Protein Homology Prediction. Special Issue on Computational
Intelligence Techniques in Bioinformatics, Artificial Intelligence in Medicine 35,
121–134 (2005)

25. Caruana, R., Joachims, T., Backstrom, L.: KDD Cup 2004: Results and Analysis.
SIGKDD Explorations 6, 95–108 (2004)

26. Tobi, D., Elber, R.: Distance dependent, pair potential for protein folding: Results
from linear optimization. Proteins, Structure Function and Genetics 41, 16–40
(2000)

27. Joachims, T.: Making large-Scale SVM Learning Practical. In: Schölkopf, B.,
Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learn-
ing, pp. 115–132. MIT Press, Cambridge (1999)

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 332–343, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Novel Core-Attachment Based Greedy Search Method
for Mining Functional Modules in Protein

Interaction Networks

Chaojun Li1,2, Jieyue He1,2,*, Baoliu Ye2, and Wei Zhong3

1 School of Computer Science and Engineering, Southeast University,
Nanjing, 210018, China

2 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing, 210093, China

3 Division of Mathematics and Computer Science, University of South Carolina Upstate
800 University Way, Spartanburg, SC 29303, USA

chaojunli@126.com, jieyuehe@seu.edu.cn, yebl@nju.edu.cn,
wzhong@uscupstate.edu

Abstract. As advances in the technologies of predicting protein interactions,
huge data sets portrayed as networks have been available. Therefore, computa-
tional methods are required to analyze the interaction data in order to effective-
ly detect functional modules from such networks. However, these analysis
mainly focus on detecting highly connected subgraphs in PPI networks as pro-
tein complexes but ignore their inherent organization. A greedy search method
(GSM) based on core-attachment structure is proposed in this paper, which de-
tects densely connected regions in large protein-protein interaction networks
based on the edge weight and two criteria for determining core nodes and at-
tachment nodes. The proposed algorithm is applied to the protein interaction
network of S.cerevisiae and many significant functional modules are detected,
most of which match the known complexes. The comparison results show that
our algorithm outperforms several other competing algorithms.

Keywords: protein interaction network, functional module, clustering.

1 Introduction

Most real networks typically contain parts in which the nodes are more highly con-
nected to each other than to the rest of the network. The sets of such nodes are usually
called clusters, communities, or modules [1,2,3,4]. The presence of biologically relevant
functional modules in Protein-Protein Interaction (PPI) graphs has been confirmed by
many researchers [4,5]. Identification of functional modules is crucial to the understand-
ing of the structural and functional properties of networks [6,7]. There is a major dis-
tinction between two biological concepts, namely, protein complexes and functional
modules [7]. A protein complex is a physical aggregation of several proteins (and
possibly other molecules) via molecular interaction (binding) with each other at the
same location and time. A functional module also consists of a number of proteins (and

* Corresponding author.

 A Novel Core-Attachment Based Greedy Search Method 333

other molecules) that interact with each other to control or perform a particular cellular
function. Unlike protein complexes, proteins in a functional module do not necessarily
interact at the same time and location. In this paper, we do not distinguish protein com-
plexes from functional modules because the protein interaction data used for detecting
protein complex in this work do not provide temporal and spatial information.

Many graph clustering approaches have been used for mining functional modules
[8,9]. These studies are mainly based on the observation that densely connected re-
gions in the PPI networks often correspond to actual protein functional modules. In
short, they detect densely connected regions of a graph that are separated by sparse
regions. Some graph clustering approaches using PPI networks as the dataset for min-
ing functional modules are introduced in the following.

Bader and Hogue [10] proposed the Molecular COmplex Detection (MCODE) al-
gorithm that utilizes connectivity values in protein interaction graphs to mine for
protein complexes. The algorithm first computes the vertex weight value (vertex
weighting step) from its neighbor density and then traverses outward from a seed
protein with a high weighting value (complex prediction step) to recursively include
neighboring vertices whose weights are above a given threshold. However, since the
highly weighted vertices may not be highly connected to each other, the algorithm
does not guarantee that the discovered regions are dense.

Amin et al. [11] proposed a cluster periphery tracking algorithm (DPClus) to detect
protein complexes by keeping track of the periphery of a detected cluster. DPClus
first weighs each edge based on the common neighbors between its two proteins and
further weighs nodes by their weighted degree. To form a protein complex, DPClus
first selects the seed node, which has the highest weight as the initial cluster and then
iteratively augments this cluster by including vertices one by one, which are out of but
closely related with the current cluster.

Adamcsek et al. [12] provided a software called CFinder to find functional mod-
ules in PPI networks. CFinder detects the k-clique percolation clusters as functional
modules using a Clique Percolation Method [13]. In particular, a k-clique is a clique
with k nodes and two k-cliques are adjacent if they share (k – 1) common nodes. A
k-clique percolation cluster is then constructed by linking all the adjacent k-cliques as
a bigger subgraph.

Above computational studies mainly focus on detecting highly connected sub-
graphs in PPI networks as protein complexes but ignore their inherent organization.
However, recent analysis indicates that experimentally detected protein complexes
generally contain Core/attachment structures. Protein complexes often include cores in
which proteins are highly co-expressed and share high functional similarity. And core
proteins are usually more highly connected to each other and may have higher essential
characteristics and lower evolutionary rates than those of peripheral proteins [19]. A pro-
tein complex core is often surrounded by some attachments, which assist the core to
perform subordinate functions. Gavin et al.'s work [21] also demonstrates the similar
architecture and modularity for protein complexes. Therefore, protein complexes have
their inherent organization [19, 20,22] of core-attachment.

To provide insights into the inherent organization of protein complexes, some me-
thods [14,19,22] are proposed to detect protein complexes in two stages. In the first
stage, protein complex cores, as the heart of the protein complexes, are first detected.
In the second stage, protein complexes are generated by including attachments into

334 C. Li et al.

the protein complex cores. Wu et al. [14] presented a COre-AttaCHment based me-
thod (COACH) and Leung et al. also developed an approach called CoreMethod to
detect protein complexes in PPI networks by identifying their cores and attachments
separately [22]. To detect cores, COACH performs local search within vertex's neigh-
borhood graphs while the CoreMethod [22] computes the p-values between all the
proteins in the whole PPI networks.

In this paper, a greedy search algorithm called GSM is introduced. Comparing with
the other methods of core-attachment, the new edge weight calculation method and
evaluation criterion for judging a node as a core node or an attachment node are pro-
posed in our GSM algorithm. GSM uses a pure greedy procedure to move a node
between two different sets. The detected clusters are also core-attachment structures.
In particular, GSM firstly defines seed edges of the core from the neighborhood
graphs based on the highest weight and then detects protein-complex cores as the
hearts of protein complexes. Finally, GSM includes attachments into these cores to
form biologically meaningful structures. The new algorithm is applied to the protein
interaction network of S.cerevisiae and the identified modules are mapped to the
MIPS [15] benchmark complexes and validated by GO [16] annotations. The experi-
mental results show that the identified modules are statistically significant. In terms of
prediction accuracy, our GSM method outperforms several other competing algo-
rithms. Moreover, most of the previous methods cannot detect the overlapping func-
tional modules by generating separate subgraphs. But our algorithm can not only
generate non-overlapping clusters, but also overlapping clusters.

Briefly then, the outline of this paper is as follows. In Section 2 we describe in de-
tail the implementation of our methods. In Section 3, we apply our algorithm to the
protein interaction network of S.cerevisiae yeast and analyze the results. In Section 4,
we give our conclusions.

2 Methods

2.1 Definitions

Protein interaction network can be represented as an undirected graph ,

where V is the set of vertices and is the set of edges between

the vertices. For a node , the set of v’s direct neighbors is denoted as

where . Before introducing details of the algorithm,

some terminologies used in this paper are defined.

The closeness of any node n with respect to some node k in cluster c is de-

fined by (1).

 (1)

Here, is the set of n’s direct neighbors in cluster c, and is the set of k’s

direct neighbors in cluster c.

()EVG ,=
(){ }VvuvuE ∈= ,|,

Vv ∈ vN

{ }EvuVuuNv ∈∈=),(,|

nkcn

||

||

k

kn
nk NC

NCNC
cn

∩=

nNC kNC

 A Novel Core-Attachment Based Greedy Search Method 335

The DPClus algorithm defines the weight wuv of an edge as the num-

ber of the common neighbors of the nodes u and v. It is likely that two nodes that
belong to the same cluster have more common neighbors than two nodes that do not.
For two edges having the same number of common neighbors, the one that has more
interactions between the common neighbors is more likely to belong to the same
cluster.

Therefore, the definition of is modified in the paper by (2)

 (2)

Here , and is

the interaction factor to indicate how important the interactions are. ’s default
value is set as 1.

The number of common neighbors between any two nodes is actually equal to the
number of paths of length 2 between them. This definition of weight is used to cluster
the graphs that have densely connected regions separated by sparse regions. In rela-
tively sparse graphs, the nodes on the paths of length 3 or length 4 between the two
nodes of one edge can be considered.

The highest edge weight of a node n is defined as for all u

such that . The highest weight edge (n,v) of node n is the edge satisfying

the condition that .

2.2 Greedy Search Method (GSM)

Because core and peripheral proteins may have different roles and properties due to
their different topological characteristics, a Greedy Search Method (GSM) is pro-
posed based on the definition of the edge weight and two evaluation criterion for judg-
ing a node as a core node or an attachment node. GSM uses a greedy procedure to get
the suitable set of clusters. It first generates the core of a cluster, and then selects
reliable attachments cooperating with the core to form the final cluster. The algorithm
is divided into six steps: 1) Input & initialization; 2) Termination check; 3) Seed se-
lection; 4) Core formation; 5) attachments selection; 6) Output & update. The func-
tional modules are determined by final clusters. The whole description of algorithm
GSM is shown in the following.

2.2.1 Input and Initialization
The input to the algorithm is an undirected simple graph and hence the associated
matrix of the graph is read first. The user need decide the minimum value for close-

ness in cluster formation. The minimum value will be referred to as . Each

edge’s weight is computed. It is computed just once and will not be recalculated in the
following steps.

Evu ∈),(

uvw

uvuvuv ENw *α+=

vuuv NNN ∩= },,),(|),{(uvkjkjkjuv NvvEvvvvE ∈∈= α
α

()nun whw max=
() Eun ∈,

nnv hww =

incn

336 C. Li et al.

2.2.2 Termination Check
Once a cluster is generated, it is removed from the graph. The next cluster is then
formed in the remaining graph and the process goes on until no seed edge whose
weight is above one can be found in the remaining graph.

2.2.3 Seed Selection
Each cluster starts at a deterministic edge called the seed edge. The highest weight
edge of the remaining graph is considered as the seed edge.

2.2.4 Core Formation
A protein complex core is a small group of proteins which show a high co-expression
patterns and share high degree of functional similarity. It is the key functional unit of
the complex and largely determines the cellular role and essentiality of the complex
[14,19,20,21]. For example, a protein in a core often has many interacting partners
and protein complex cores often correspond to small, dense and reliable subgraphs in
PPI networks [21].

The core starts from a single edge and then grows gradually by adding nodes one
by one from the neighbors. The neighbors of a core are the nodes connected to any
node of the core but not part of the core. The core is referred to as C. For a neighbor u
of C, if u’s neighbor v linked by u’s highest weight edge (u,v) is in C, we consider to

adding it to the core. Before adding u to C, we check the condition: .

We add the neighbor whose highest edge weight is biggest in all satisfying the condi-
tion. This process goes on until no such neighbor can be found, and then the core of
one cluster is generated.

2.2.5 Attachments Selection
After the core of one cluster has been detected, we will extract the peripheral informa-
tion of each core and select reliable attachments cooperating with it to form the final
cluster. For each neighbor u of the core C, if u’s neighbor v linked by u’s highest

weight edge (u,v) is in C, is computed. is the common neighbors of u and

v in the core C. is the common neighbors of u and v in graph G. If ,

u will be selected as an attachment. After all neighbors of the core are checked, the
final cluster is generated.

2.2.6 Output and Update
Once a cluster is generated, graph G is updated by removing the present cluster, i.e.
The nodes belonging to the present cluster and the incident edges on these nodes are
marked as clustered and not considered in the following. Then in the remaining graph,
each node’s highest edge weight is updated by not considering the edges that have
been marked. The pseudocode of GSM algorithm is shown in Table 1.

inuv cncn >=

uv

uv

N

V
uvV

uvN 5.0>
uv

uv

N

V

 A Novel Core-Attachment Based Greedy Search Method 337

Table 1. Algorithm of GSM

Algorithm GSM

input: a graph G = (V,E), parameters cnin;

output: identified modules;

(1) for each edge e(u, v)∈E do

compute its weight;

 end for

(2) select the edge e(u,v) with highest weight in G;

 if e(u,v) does not exist then break;

 initial core C={u,v};

 while neighbor i whose neighbor j linked by i’s highest weight
edge is in C and cnij>=cnin can be found do

 //among them, neighbor n’s highest edge weight is biggest

 C.add(n);

 end while

(3)for each neighbor u of the core C do

 if u’s neighbor v linked by u’s highest weight edge is in C, and
 then

 u is selected as attachment of C

 end if

 end for each

(4)output C and mark C as clustered, update each
vertex’s highest edge weight in the remaining graph

 goto(2)

2.3 Generation of Overlapping Clusters

In the above algorithm, once a cluster is generated it is marked as clustered and not
considered in the following, and the next cluster is generated in the remaining graph.
Therefore, non-overlapping clusters are generated. In order to generate overlapping
clusters, we extend the existing non-overlapping clusters by adding nodes to them
from their neighbors in the original graph (considering the marked nodes and edges).
Then in the original graph excluding the edges between the nodes that have been
marked as clustered, each node’s highest edge weight is updated.

3 Experiments and Results

In order to evaluate effectiveness of the new system, our algorithm is applied to the
full DIP (the Database of Interacting Proteins) [17] yeast dataset, which consists of
17201 interactions among 4930 proteins [14]. The full dataset is more complex and

5.0>
uv

uv

N

V

338 C. Li et al.

more difficult to identify the modules than the core dataset. The performance of our
method is compared with several competing algorithms including MCODE, CFinder,
DPClus, and COACH. The values of the parameters in each algorithm are selected
from those recommended by the author. For comprehensive comparisons, several
evaluation measures, including f-measure and p-value are employed.

The experimental results using a reference dataset of known yeast protein com-
plexes retrieved from the MIPS are evaluated [15]. While it is probably one of the
most comprehensive public datasets of yeast complexes available, it is by no means a
complete dataset—there are still many yeast complexes that need to be discovered.
After filtering the predicted protein complexes and complexes composed of a single
protein from the dataset, a final set of 214 yeast complexes as our benchmark for
evaluation are obtained.

The overlapping score [10] between a predicted complex and a real complex in the

benchmark, , is used to determine whether they match with

each other, where i is the size of the intersection set of a predicted complex with a
known complex, p is the size of the predicted complex and b is the size of the known
complex. If , they are considered to be matching (is set as 0.20

which is adopted in the MCODE paper [10]). We assume that P is the sets of com-
plexes predicted by a computational method and B is the sets of target complexes in
the benchmark respectively. The set of true positives (TP) is defined as

, while the set of false negatives (FN) is

defined as . The set of false positives

(FP) is , while the set of known benchmark complexes matched by
predicted complexes (TB) is . The sensitivity and specificity [10] are
defined as:

 (3)

 (4)

s-measure, as the harmonic mean of sensitivity and specificity, can be used to eva-
luate the overall performance of the different techniques.

 (5)

Table 2. Results of various algorithms compared with MIPS complexes using DIP data

())*/(, 2 bpibpOS =

ω≥),(bpOS ω

(){ }ω≥∈∃∈= bpOSBbPppTP ,,,|

{ })),((,,| ω<∀∈∈= bpOSpBbPpbFN
TPPFP −=

FNBTB −=

()FNTPTPysensitivit += /

)/(FPTPTPyspecificit +=

)/(**2 spesenspesenmeasures +=−

Algorithms MCODE CFinder DPClus COACH GSM
#predicted complexes 59 245 1143 745 353
|TP| 18 52 133 155 105
|TB| 19 61 144 106 119
s-measure 0.132 0.231 0.198 0.307 0.380

 A Novel Core-Attachment Based Greedy Search Method 339

Table 2 shows the results of several methods compared with MIPS benchmark
complexes. In Table 2, for MCODE, CFinder, DPClus and GSM, the number of cor-
rectly predicted complexes is less than the number of benchmark complexes matched
by predicted complexes. But COACH is opposite. Because COACH detects the clus-
ters from each node, the overlapping rate is high. Although the redundancy-filtering
procedure is used, some predicted complexes are still similar and match the same
benchmark complex. From Table 2, we notice that the s-measure of COACH (0.307)
is highest among the methods of MCODE, CFinder, DPClus, and the s-measure of
GSM (0.380) is significantly higher than that of COACH. In addition, the overall
performance of COACH is much better than CoreMethod[14] which is another
approach based on core-attachment structure.

To evaluate the biological significance of our predicted complexes, we calculate
their p-values, which represent the probability of co-occurrence of proteins with
common functions. Low p-value of a predicted complex generally indicates that the
collective occurrence of these proteins in the module does not happen merely by
chance and thus the module has high statistical significance. In our experiments, the
p-values of complexes are calculated by the tool, SGD’s Go::TermFinder [16], using
all the three types of ontology Biological Process(BP), Molecular Function(MF) and
Cellular Component(CC). The cutoff of p-value is set as 0.01. The average

 of all modules is calculated by mapping each module to the anno-

tation with the lowest p-value.
Let the total number of proteins be N with a total of M proteins sharing a particular

annotation. The p-value of observing m or more proteins that share the same annotation
in a cluster of n proteins, using the Hyper-geometric Distribution is defined as (6):

(6)

The average f-measure is used to evaluate the overall significance of each algo-
rithm. f-measure of an identified module is defined as a harmonic mean of its recall
and precision [18].

 (7)

 (8)

 (9)

Where is a functional category mapped to module M. The proteins in functional

category are considered as true predictions, the proteins in module M are

()valuep −− log

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=−
n

mi

n

N

in

MN

i

M

valuep

precisionrecall

precisionrecall
measuref

+
=− **2

||

||

i

i

F

FM
recall

∩=

||

||

M

FM
precision i∩=

iF

iF

340 C. Li et al.

considered as positive predictions, and the common proteins of and M are consi-

dered as true positive predictions. Recall is the fraction of the true-positive predictions
out of all the true predictions, and precision is the fraction of the true-positive predic-
tions out of all the positive predictions [18]. The average f-measure value of all mod-
ules is calculated by mapping each module to the function with the highest f-measure
value.

Table 3. Comparison of the results before and after adding attachments

Table 4. Statistical significance of functional modules predicted by various methods

Table 5. Comparison of f-measure based the three types of GO of GSM and other algorithms

Algorithms
f-measure

BP MF CC
MCODE 0.296 0.245 0.374
CFinder 0.246 0.145 0.266
DPClus 0.335 0.231 0.402
COACH 0.272 0.180 0.315
GSM 0.362 0.241 0.453

Comparison of the results before and after adding attachments is shown in Table 3.

The comparison shows that after adding attachments the average size of modules

grows. f-measure and also increase.

Comparisons of biological significance of modules predicted by several algorithms
are shown in Table 4. Because MCODE just generates a little number of modules, we
don’t consider it. From Table 4, we can see that the proportion of significant modules

predicted by GSM is highest, and are also higher than the other

algorithms. Moreover, in all of the other methods, the average f-measure of DPClus is
highest (0.335), however, the average f-measure of GSM is 0.362, which is higher
than that of DPClus. The detailed comparison of f-measure using the three types of
ontology is shown in Table 5. From Table 5, we can see the average f-measure of
Cellular Component GSM is also highest (0.453).

iF

 Average Size f-measure of BP -log(p-value)

before 5.29 0.356 7.2
after 7.37 0.362 8.6

()valuep −− log

()valuep −− log

Algorithms No. of
Modules
size>=3

No. of
Significant
Modules

Average
Size

Maximum
Size

f-measure
of BP

-log(p-
value)

Parameters

MCODE 59 54 83.8 549 0.296 10.87 fluff=0.1;
VWP=0.2

CFinder 245 157 10.2 1409 0.246 4.49 K=3
DPClus 217 187 5.23 25 0.335 6.78 Density=0.7;

CPin =0.5
COACH 746 608 8.54 44 0.272 6.96 Null
GSM 187 168 7.37 79 0.362 8.60 CNin=0.5

 A Novel Core-Attachment Based Greedy Search Method 341

Fig. 1. The effects of cnin on clustering. (a) the size of the biggest cluster, (b) the total number
of the clusters of size>2, (c) the average size of the clusters of size>2,(d) the average f-measure

We also study the generated clusters by changing the parameter . The effects

of the parameter are shown in Figure 1. When changes from 0.1 to 0.9,

the size of the biggest cluster and the average size of clusters decrease but the number
of cluster increases. The sizes of the biggest overlapping clusters are same as that of
the non-overlapping clusters, so Figure 1(a) just draws one line. In Figure 1(b), the
total number of the overlapping clusters is more than that of the non-overlapping
clusters. In Figure 1(c), the average size of the overlapping clusters is bigger than that

of the non-overlapping clusters. The effect of on f-measure is shown in Figure

1(d). From the figure, we can see when , the f-measure is relatively lower.

Because when is close to 1, the core of cluster is almost clique. It may be too

strict to match well with the known annotations. When , the f-measure

is basically stable. So we set as 0.5.

4 Conclusions

Identification of functional modules is crucial to the understanding of the structural and
functional properties of protein interaction networks. The increasing amount of protein
interaction data has enabled us to detect protein functional modules. In this paper, a
greedy search clustering algorithm called GSM is proposed to mine functional modules

(a)

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

cnin

S
iz

e
of

 th
e

bi
gg

es
t c

lu
st

er
(b)

0

50

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1

cnin

T
he

 n
um

be
r

of
 c

lu
st

er
s

(s
iz

e>
2) NO

Ov

(c)

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1
cnin

A
ve

ra
ge

 s
iz

e
of

 c
lu

st
er

s
(s

iz
e>

2)

NO

Ov

(d)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.3 0.5 0.7 0.9
cnin

A
ve

ra
ge

 f-
m

ea
su

re

NO

incn

incn incn

incn

5.0>incn

incn

5.0<=incn

incn

342 C. Li et al.

from the protein interaction networks. Because core and peripheral proteins may have
different roles and properties due to their different topological characteristics, GSM
defines edge weight and two criterion for determining core nodes and attachment nodes.
It first generates the core of a module, and then forms the module by including attach-
ments into the core. GSM is applied to the typical PPI networks of S.cerevisiae. The
MIPS benchmark and the GO annotation is used to validate the identified modules and
compare the performances of our algorithm and several other algorithms including
MCODE, CFinder, DPClus, COACH. The evaluation and analysis show that most of
the functional modules predicted by our algorithm have high functional similarity and
match well with the benchmark. The quantitative comparisons reveal that our algorithm
outperforms the other competing algorithms. But there are some sparse modules in
actual PPI network. In the future, we hope to detect the sparse modules and also apply
the algorithm to the weighted graph.

Acknowledgments. This research work is supported by State Key Laboratory for
Novel Software Technology of Nanjing University (KFKT2010B03) and Open Re-
search Foundation of Key Laboratory for Computer Network and Information Inte-
gration, Southeast University (K93-9-2010-19).

References

1. Everitt, B.S.: Cluster Analysis, 3rd edn. Edward Arnold, London (1993)
2. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B 38, 321–330

(2004)
3. Watts, D.J., Dodds, P.S., Newman, M.E.J.: Identity and search in social networks.

Science 296, 1302–1305 (2002)
4. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc.

Natl. Acad. Sci. 99, 7821–7826 (2002)
5. Brun, C., Herrmann, C., Guenoche, A.: Clustering proteins from interaction networks for

the prediction of cellular functions. BMC Bioinformatics 5(95) (July 2004)
6. Wu, L.F., Hughes, T.R., Davierwala, A.P., Robinson, M.D., Stoughton, R., Altschuler,

S.J.: Large-scale prediction of saccharomyces cerevisiae gene function using overlapping
transcriptional clusters. Nature Genetics 31, 255–265 (2002)

7. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks.
Proc. Natl Acad. Sci. USA 100, 12123–12128 (2003)

8. Gao, L., Sun, P.G.: Clustering Algorithms for detecting functional modules in protein inte-
raction networks. Journal of Bioinformatics and Computational Biology 7, 1–26 (2009)

9. Li, X., Wu, M., Kwoh, C.-K., Ng, S.-K.: Computational approaches for detecting protein
complexes from protein interaction networks: a survey. BMC Genomics 11(Suppl 1), S3
(2010)

10. Bader, G.D., Hogue, C.W.: An Automated Method for Finding Molecular Complexes in
Large Protein Interaction Networks. BMC Bioinformatics 4, 2 (2003)

11. Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Development and
implementation of an algorithm for detection of protein complexes in large interaction
networks. BMC Bioinformatics 7, 207 (2006)

12. Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: CFinder: locating cliques and
overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023 (2006)

 A Novel Core-Attachment Based Greedy Search Method 343

13. Palla, G., Dernyi, I., Farkas, I., et al.: Uncoverring the overlapping community structure of
complex networks in nature and society. Nature 435(7043), 814–818 (2005)

14. Wu, M., Li, X.L., Kwoh, C.K., Ng, S.K.: A Core-Attachment based Method to Detect Pro-
tein Complexes in PPI Networks. BMC Bioinformatics 10, 169 (2009)

15. Mewes, H.W., et al.: MIPS: analysis and annotation of proteins from whole genomes.
Nucleic Acids Res. 32(Database issue), D41–D44 (2004)

16. Dwight, S.S., et al.: Saccharomyces Genome Database provides secondary gene annotation
using the Gene Ontology. Nucleic Acids Research 30(1), 69–72 (2002)

17. Xenarios, I., et al.: DIP: the Database of Interaction Proteins: a research tool for studying
cellular networks of protien interactions. Nucleic Acids Res. 30, 303–305 (2002)

18. Cho, Y.R., Hwang, W., Ramanmathan, M., Zhang, A.D.: Semantic integration to identify
overlapping functional modules in protein interaction networks. BMC Bioinformatics 8,
265 (2007)

19. Luo, F., Li, B., Wan, X.-F., Scheuermann, R.H.: Core and periphery structures in protein
interaction networks. BMC Bioinformatics 10, S8 (2009)

20. Dezso, Z., Oltvai, Z.D., Barabasi, A.L.: Bioinformatics Analysis of Experimentally Deter-
mined Protein Complexes in the Yeast Saccharomyces cerevisiae. Genome Res. 13, 2450–
2454 (2003)

21. Gavin, A., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen,
L.J., Bastuck, S., Dumpelfeld, B., et al.: Proteome survey reveals modularity of the yeast
cell machinery. Nature 440(7084), 631–636 (2006)

22. Leung, H., Xiang, Q., Yiu, S., Chin, F.: Predicting protein complexes from ppi data: A
core-attachment approach. Journal of Computational Biology 16(2), 133–144 (2009)

ProPhyC: A Probabilistic Phylogenetic Model for
Refining Regulatory Networks

Xiuwei Zhang and Bernard M.E. Moret

Laboratory for Computational Biology and Bioinformatics
EPFL (Ecole Polytechnique Fédérale de Lausanne), Switzerland

and Swiss Institute of Bioinformatics
{xiuwei.zhang,bernard.moret}@epfl.ch

Abstract. The experimental determination of transcriptional regulatory
networks in the laboratory remains difficult and time-consuming, while compu-
tational methods to infer these networks provide only modest accuracy. The latter
can be attributed in part to the limitations of a single-organism approach. Com-
putational biology has long used comparative and, more generally, evolutionary
approaches to extend the reach and accuracy of its analyses. We therefore use an
evolutionary approach to the inference of regulatory networks, which enables us
to study evolutionary models for these networks as well as to improve the accu-
racy of inferred networks.

We describe ProPhyC, a probabilistic phylogenetic model and associated in-
ference algorithms, designed to improve the inference of regulatory networks for
a family of organisms by using known evolutionary relationships among these
organisms. ProPhyC can be used with various network evolutionary models and
any existing inference method. We demonstrate its applicability with two differ-
ent network evolutionary models: one that considers only the gains and losses of
regulatory connections during evolution, and one that also takes into account the
duplications and losses of genes. Extensive experimental results on both biolog-
ical and synthetic data confirm that our model (through its associated refinement
algorithms) yields substantial improvement in the quality of inferred networks
over all current methods.

1 Introduction

Transcriptional regulatory networks are models of the cellular regulatory system that
governs transcription. Because establishing the topology of the network from bench
experiments is very difficult and time-consuming, regulatory networks are commonly
inferred from gene-expression data. Various computational models, such as Boolean
networks [1], Bayesian networks [9], dynamic Bayesian networks (DBNs) [15], and
differential equations [6], have been proposed for this purpose. Results, however, have
proved mixed: the high noise level in the data, the paucity of well studied networks, and
the many simplifications in the models all combine to make inference difficult, in terms
of both accuracy and computation.

Bioinformatics has long used evolutionary approaches to improve the accuracy of
computational analyses. Recent work on the evolution of regulatory networks has

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 344–357, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ProPhyC: A Probabilistic Phylogenetic Model 345

demonstrated the applicability of such approaches to regulatory networks. Although
regulatory networks produced from bench experiments are available for only a few
model organisms, other types of data have been used to assist in the comparative study
of regulatory mechanisms across organisms. For example, gene-expression data [22],
sequence data such as transcription factor binding site (TFBS) [7,21], and cis-regulatory
elements [22] have all been used in this context. Moreover, a broad range of model or-
ganisms have been studied, including bacteria [3], yeast [7,22], and fly [21]. These
studies have identified a number of evolutionary events, such as adding or removing
network edges, and the duplication and loss of genes [3,20,23]. Results have also ap-
peared on the evolution of metabolic networks and protein interaction networks [4,17].

Phylogenetic relationships are well established for many groups of organisms; as the
regulatory networks evolved along the same lineages, the phylogenetic relationships
informed this evolution and so can be used to improve the inference of regulatory net-
works. Indeed, Bourque and Sankoff [5] developed an integrated algorithm to infer reg-
ulatory networks across a group of species whose phylogenetic relationships are known,
under a simple parsimony criterion. In previous work [25,26], we presented refinement
algorithms, based on phylogenetic information and using a likelihood framework, that
boost the performance of any chosen network inference method, hereafter called a base
method. These refinement algorithms, RefineFast and RefineML, are two-step iterative
algorithms. The networks to be refined are placed at the corresponding leaves of the
known phylogeny. In the first step, ancestral networks for the phylogeny (strings la-
belling internal nodes) are inferred; in the second step, these ancestral networks are
used to refine the leaf networks. These two steps are then repeated as needed. On both
simulated and biological data, the receiver-operator characteristic (ROC) curves for
our algorithms consistently dominated those of the base methods used alone.

We present ProPhyC, a probabilistic phylogenetic model and associated algorithms,
designed to refine regulatory networks for a family of organisms. ProPhyC can accom-
modate a large variety of evolutionary models of regulatory networks with only slight
modifications, as we demonstrate in the results section. Given that the evolution of reg-
ulatory networks is not yet well understood and given the several different models for
regulatory network evolution [7,23,5], such flexibility is highly desirable. We present
algorithms and experimental results in this refinement model for two network evolution-
ary models: a basic model that includes only gains and losses of regulatory interactions,
and an extended model that also accounts for duplications and losses of genes. We also
show how to take advantage of position-specific confidence values, if any, assigned to
the input networks by the base inference method. Our probabilistic phylogenetic model
confirms the usefulness of phylogenetic information in obtaining better inference of
regulatory networks. Extensive experiments show that ProPhyC model not only brings
significant improvement to base network inference algorithms, but also dominates the
performance of existing refinement algorithms.

2 Background

Our approach posits that the evolution of regulatory networks correlates strongly with
the evolution of the respective organisms, so that independent network inference errors
can be corrected by using the phylogenetic relationships between the networks.

346 X. Zhang and B.M.E. Moret

2.1 Base Network Inference Methods

We chose dynamic Bayesian inference (DBI), the method devised for DBNs, as the
base inference method in our experiments. When DBNs are used to model regulatory
networks, an associated structure-learning algorithm is used to infer the networks from
gene-expression data [15,16]; so as to avoid overly complex networks, a penalty on
graph structure complexity is usually added to the ML score, thereby reducing the num-
ber of false positive edges. In [25] we used a coefficient kp to adjust the weight of this
penalty and studied different tradeoffs between sensitivity and specificity, yielding the
optimization criterion logPr(D|G,Θ̂G)− kp#G logN, where D denotes the dataset used
in learning, G is the (structure of the) network, Θ̂G is the ML estimate of parameters
for G, #G is the number of free parameters of G, and N is the number of samples in D.

2.2 Reconciliation of Species Tree and Gene Trees

To recover the gene contents of ancestral networks under the extended model, we need
a full history of gene duplications and losses. We reconstruct this history by reconciling
the gene trees and the species tree, that is, by using the differences between these trees
to infer past duplication and loss events. While reconciliation is a hard computational
problem, algorithms have been devised for it in a Bayesian framework [2] or using a
simple parsimony criterion, as in the software Notung [8].

3 Models and Methods

We begin by presenting two network evolutionary models, then describe the ProPhyC
refinement framework, and finally give associated refinement algorithms, one for each
network evolutionary model.

3.1 Network Evolutionary Models

We present a basic model and an extended model. In both models, the networks are rep-
resented by binary adjacency matrices. For the basic model, the evolutionary operations
are: edge gain, in which an edge between two genes is generated with probability p01,
and edge loss, an existing edge is deleted with probability p10. The model parameters
are thus (i) the base frequencies of 0 and 1 entries in the given networks Π =

(
π0 π1

)
,

and (ii) the substitution matrix of 0s and 1s, P = (pi j). The extended model has two
additional evolutionary operations, gene duplication and gene loss, with corresponding
additional model parameters pd and pl . In gene duplication, a gene is duplicated with
probability pd ; after duplication, edges for the newly generated copy are assigned ac-
cording to (i) neutral initialization, where the new copy gets connected to other genes
randomly according to the proportion π1 of edges in the background network; or (ii)
inheritance initialization, where the new copy inherits the connections of the original,
then loses or gains connections at some fixed rate, following reports of strong correla-
tions between the connections of the new copy and those of the original copy [3,20,23].
In gene loss, a gene is deleted along with all its connections with probability pl .

ProPhyC: A Probabilistic Phylogenetic Model 347

Fig. 1. The ProPhyC model

3.2 The ProPhyC Framework

ProPhyC is a probabilistic phylogenetic model designed to refine the inferred (and
error-prone) regulatory networks for a family of organisms by making use of known
phylogenetic information for the family. ProPhyC is also a graphical model: the phy-
logeny of this family is the main information to determine its structure as illustrated
in Fig. 1. The shaded nodes labeled in upper case represent the input noisy networks,
while the nodes labeled in lower case represent the correct networks for these organisms
that we want to infer. In turn, the correct networks are the leaves of the rooted phylo-
genetic tree of these organisms, while internal nodes correspond to ancestral regulatory
networks. The edges in this graph fall into two categories: (i) edges in the phylogenetic
tree, representing the evolution from a parent network to a child network, and (ii) edges
from correct leaf networks to noisy ones, representing the error-prone process of infer-
ring networks from latent correct networks. The parameters for this model are thus the
substitution matrices P and Q, where P represents the transition parameters from an an-
cestral network to its child network—subject to the network evolutionary model—and
Q represents the difference between the “true” networks and the inferred (observed,
from the point of view of the ProPhyC model) noisy networks—associated with one’s
confidence in the base network inference method.

The input information is thus the evolutionary model, the phylogenetic tree, and the
noisy leaf networks. With a dynamic programming algorithm to maximize the likeli-
hood of the whole graph, we can infer the ancestral networks and the “true” leaf net-
works. These “true” leaf networks inferred are the refined networks for these organisms
and the output of the refinement algorithm. The framework can easily be generalized
to fit different network evolutionary models. Some base inference methods can predict
regulatory networks with different confidence on different edges or non-edges of the
networks, so in this case Q can vary for different entries of different leaf networks.
Our model can incorporate these position-specific confidence values to get better re-
finements. We name this version of the refinement algorithm ProPhyCC.

348 X. Zhang and B.M.E. Moret

3.3 ProPhyC Under the Basic Model

Under the basic model, all networks have the same size and gene contents. Each net-
work is represented by its binary adjacency matrix, so the character set is S = {0,1}.
The parameters to calculate the likelihood are those from the evolutionary model, Π and
P, and the error parameter for the base inference method, Q = (qi j). We assume inde-
pendence between the network entries, so that we can process separately each entry in
the adjacency matrices. Let i, j, k denote nodes in the tree and a,b,c∈ S denote possible
values of a character. For each character a at each node i, we maintain two variables:

– Li(a): the likelihood of the best reconstruction of the subtree with root i, given that
the parent of i is assigned character a.

– Ci(a): the optimal character for i, given that its parent is assigned character a.

When the phylogenetic tree is binary, our inference algorithm works as follows:

1. For each leaf node i, if its corresponding noisy network has character b, then for
each a ∈ S, set Li(a) = maxc∈S pac ·qcb and Ci(a) = argmaxc∈S pac ·qcb.

2. If i is an internal node and not the root, its children are j and k, and it has not
yet been processed, then for each a ∈ S, set Li(a) = maxc∈S pac ·Lj(c) ·Lk(c) and
Ci(a) = argmaxc∈S pac ·Lj(c) ·Lk(c).

3. If there remain unvisited nonroot nodes, return to Step 2.
4. If i is the root node, with children j and k, assign it the value a ∈ S that maximizes

πa ·Lj(a) ·Lk(a).
5. Traverse the tree from the root, assigning to each node its character by Ci(a).

3.4 ProPhyC Under the Extended Model

The extended model includes gene duplications and losses, so that the gene content may
vary across networks. While the gene content of the leaf networks is known, we need to
reconstruct the gene content for ancestral networks, that is, to reconstruct the history of
gene duplications and losses. This part can be solved by using an algorithm to reconcile
the gene trees and species tree [2,8,19] or by the algorithms that we presented in earlier
work under the duplication-only or loss-only model [27].

Under the basic model, we assumed independence among the entries of the adja-
cency matrices and so greatly simplified the computation. To enable us to do the same
under the extended model, we embed each network into a larger one that includes every
gene that appears in any network. We then represent a network with a ternary adjacency
matrix, where the rows and columns of the missing genes are filled with a special char-
acter x. All networks are thus represented with adjacency matrices of the same size.
Since the gene contents of ancestral networks are known thanks to reconciliation, the
entries with x are already identified in their matrices; the other entries are reconstructed
by the refinement algorithm using the new character set S′ = {0,1,x}. The substitution
matrix P′ for S′ can be derived from the model parameters, without introducing new
parameters. Assuming that at most one gene duplication and one gene loss can happen
at each evolutionary step, we have:

P′ =

⎛⎝p′00 p′01 p′0x
p′10 p′11 p′1x
p′x0 p′x1 p′xx

⎞⎠ =

⎛⎝(1− pl) · p00 (1− pl) · p01 pl

(1− pl) · p10 (1− pl) · p11 pl

pd ·π0 pd ·π1 1− pd

⎞⎠ .

ProPhyC: A Probabilistic Phylogenetic Model 349

We also extend the parameter Q to be Q′ to fit the new character set S′:

Q′ =

⎛⎝q′00 q′01 q′0x
q′10 q′11 q′1x
q′x0 q′x1 q′xx

⎞⎠ =

⎛⎝q00 q01 0
q10 q11 0

0 0 1

⎞⎠ .

The transition probabilities in Q′ remain the same as in Q, since the gene contents of
the “true” and corresponding noisy network are the same. For each character a at each
tree node i, we calculate Li(a) and Ci(a) for each site with the following procedure:

1. For each leaf node i, if its corresponding noisy network has character b, then for
each a ∈ S′, set Li(a) = maxc∈S′ p′ac ·q′cb and Ci(a) = argmaxc∈S′ p′ac ·q′cb.

2. If i is an internal node and not the root, its children are j and k, and it has not yet
been processed, then

– if i has character x, for each a ∈ S′, set Li(a) = p′ax ·Lj(x) ·Lk(x) and Ci(a) = x;
– otherwise, for each a ∈ S′, set Li(a) = maxc∈S p′ac · Lj(c) · Lk(c) and Ci(a) =

argmaxc∈S p′ac ·Lj(c) ·Lk(c).

3. If there remain unvisited nonroot nodes, return to Step 2.
4. If i is the root node, with children j and k, assign it the value a ∈ S that maximizes

πa ·Lj(a) ·Lk(a), if the character of i is not already identified as x.
5. Traverse the tree from the root, assigning to each node its character by Ci(a).

3.5 Refinement Algorithm ProPhyCC Using Confidence Values

Parameter Q (or Q′) models the errors introduced in the base inference process; its
values are obtained from one’s confidence in that method and in the source data. The
ProPhyC algorithm uses the same matrix for all entries in all leaf networks. When
sufficient information is available to produce different confidence values for different
entries in different networks, we can take advantage of the extra information through
the ProPhyCC algorithm.

If the noisy networks are predicted from gene-expression data by DBN models,
to obtain the confidence values, we first estimate the conditional probability tables
(CPTs) of the DBI inferred networks from the gene-expression data on the inferred
structure [11], and then calculate the confidence values from the CPTs. Following [16],
we use binary gene-expression levels in our experiments, where 1 and 0 indicate that
the gene is, respectively, on and off. For each gene gi, if mi nodes have arcs directed
to gi in the network, let the expression levels of these nodes be denoted by the vector
y = y1y2 · · ·ymi and the confidence values of their arcs by the vector c = c1c2 · · ·cmi . We
use signed weights to represent the strength of these arcs, denoted by w = w1w2 · · ·wmi .
Considering that if an arc is predicted with high weight, then this arc is very likely
to be true, we assign high confidence values to the arcs predicted with high abso-
lute weight values. Let k be a coefficient value to normalize probabilities, we have
k ·w ·y = Pr(gi is on|y). Since there are 2mi configurations of y, there are 2mi such equa-
tions. The value of Pr(gi is on|y) can be directly taken from the CPTs. So w can be
obtained by solving these equations, and c derived directly from w.

350 X. Zhang and B.M.E. Moret

4 Experimental Design

We designed a comprehensive collection of experiments to assess our model and its as-
sociated algorithms. The accuracy of the output is calculated by comparing the output
with the “true” networks for the chosen family of organisms, where the “true” net-
works are either obtained through simulation or collected from biological datasets. We
compare the accuracies of the networks produced by the base method DBI and of the
networks after refinement, to get absolute assessments. We also use our previous refine-
ment algorithms [25,26,27] to refine the same networks and compare the outcome with
that of our new refinement model, to get relative assessments.

Since regulatory networks are usually reconstructed from gene-expression data, we
follow the same path in our assessment. With networks inferred from gene-expression
data as input for ProPhyC, ProPhyCC, RefineFast and RefineML, we run experiments
with different combinations of networks evolutionary models and types of datasets. Un-
der each setting, we show both absolute and relative assessments.

4.1 Biological Data Collection

Transcription factor binding site (TFBS) data is used to study regulatory networks, as-
suming that the regulatory interactions determined by transcription factor binding share
many properties with the real interactions [7,10,21]. Given this close relationship be-
tween regulatory networks and TFBSs and given the large amount of available data on
TFBSs, we chose to use TFBS data to derive regulatory networks for the organisms
as their “true” networks. The TFBS data is drawn from the work of Kim et al. [14],
where the TFBSs are annotated for the Drosophila family (whose phylogeny is well
studied) with 12 species. They reported TFBS annotations for 7 transcription factors
on 51 cis-regulatory modules (CRMs) for all 12 species. Since each CRM corresponds
to a target gene, we get a regulatory network with 58 nodes for each organism as the
“true” network for this organism. We add noise into these “true” networks to obtain
noisy networks as input to our refinement algorithm.

4.2 Data Simulation

In simulation experiments, we generate gene-expression data from simulated leaf net-
works. This step helps in decoupling the generation and the reconstruction phases. The
data simulation procedure consists of two main steps: (i) generate the “true” leaf net-
works according to the evolutionary model and (ii) generate the gene-expression data.
The whole process starts from three pieces of information: the phylogenetic tree, the
network at its root, and the evolutionary model. Since we need quantitative relation-
ships in the networks in order to generate gene-expression data from each network, in
the network generation process, we use adjacency matrices with signed weights.

We take specific precautions against systematic bias during data simulation and re-
sult analysis. We use a wide variety of phylogenetic trees from the literature (of modest
sizes: between 20 and 60 taxa) and several choices of root networks, the latter variations
on part of the yeast network from the KEGG database [13]. The root network has be-
tween 14 and 17 genes, a relatively easy case for inference algorithms and thus a more
challenging case for a refinement algorithm. We explore a wide range of evolutionary
rates, including rates of gene duplication and loss and rates of edge gain and loss.

ProPhyC: A Probabilistic Phylogenetic Model 351

Simulating networks. Denote the weighted adjacency matrix of the root network as
Ap. Under the basic model, we obtain the adjacency matrix for its child Ac by mutating
Ap according to the substitution matrix. By repeating this process as we traverse down
the tree we obtain weighted adjacency matrices at the leaves. In other words, we evolve
the weighted networks down the tree according to the model parameters, following stan-
dard practice in the study of phylogenetic reconstruction [12,18]. Under the extended
model, to get the adjacency matrix for the child network of Ap, we follow two steps:
evolve the gene contents and evolve the regulatory connections. First, genes are dupli-
cated or lost by pd and pl . If a duplication happens, a row and column for this new copy
will be added to Ap, the values initialized either according to the neutral initialization
model or the inheritance initialization model. Call this intermediate adjacency matrix
A′

c. Now edges in A′
c are mutated according to p01 and p10 to get Ac. Again we repeat this

process as we traverse down the tree to obtain weighted adjacency matrices at the leaves.

Generating gene-expression data. From the “true” networks, we use DBNSim [25],
based on the DBN model, to generate time-series gene-expression data. Note that, while
DBNSim and DBI are both based on Bayesian networks, which might artificially im-
prove the performance of DBI, this bias can only make it more difficult for ProPhyC to
achieve significant improvements.

For all experiments on simulated gene-expression data, we run the generation pro-
cess 10 times for each choice of tree structure and parameters to compute a mean and a
standard deviation. Under the basic model, for each leaf network, we generate 200 time
points for its gene-expression matrix. Under the extended model, we generate 13× n
time points for a leaf network with n genes, since larger networks generally need more
samples to gain inference accuracy comparable to smaller ones.

4.3 Measurements

We want to examine the predicted networks at different levels of sensitivity and speci-
ficity. With DBI, we use a penalty coefficient on structure complexity so as to obtain
different tradeoffs between sensitivity and specificity. On each dataset, we apply differ-
ent penalty coefficients to predict regulatory networks, from 0 to 0.5, with an interval of
0.05, which results in 11 discrete coefficients. For each penalty coefficient, we apply our
approach (and any method chosen for comparison) on the predicted networks, measure
specificity and sensitivity, and plot the values into ROC curves. (In these ROC plots, the
closer the curves are to the top left corner of the coordinate space, the better the results.)

5 Results and Analysis

5.1 Performance Under the Basic Model on Simulated Data

Absolute results. We show experimental results on two representative trees: one has 37
nodes on 7 levels and the other has 41 nodes on 6 levels. We only plot part of the curves
within the 11 penalty coefficients to give a more detailed view of the comparison. Fig. 2
shows the results of ProPhyC and ProPhyCC on the networks predicted by DBI. We can
see that ProPhyC and ProPhyCC significantly improve both sensitivity and specificity
over the base inference algorithm DBI. The improvement remains similar on different

352 X. Zhang and B.M.E. Moret

0 0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

DBI
ProPhyC
ProPhyCC

(a) On the tree with 37 nodes and 7 levels

0 0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

DBI
ProPhyC
ProPhyCC

(b) On the tree with 41 nodes and 6 levels

Fig. 2. Comparison of ProPhyC and ProPhyCC with base inference algorithm DBI under the
basic model. In part (a), the dotted lines join data points for the same model penalty coefficient.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

DBI
ProPhyC
ProPhyCC
RefineFast
RefineML

(a) On the tree with 37 nodes and 7 levels

0 0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

DBI
ProPhyC
ProPhyCC
RefineFast
RefineML

(b) On the tree with 41 nodes and 6 levels

Fig. 3. Comparison of ProPhyC and ProPhyCC with RefineFast and RefineML under the basic
model

tree structures. ProPhyCC further improves ProPhyC, which shows the advantage of
using position-specific confidence values. For example, the dots in Fig. 2(a) marked by
triangles correspond to the same penalty coefficient on the three curves, showing that,
in going from DBI to ProPhyCC, the sensitivity increases from 77% to 86% while the
specificity increases from 86% to 96%. Similar improvements can be observed with
other trees, other evolutionary rates, and other base methods.

Relative results. Fig. 3 shows the same experiments as in Fig. 2, but adds curves
for RefineFast and RefineML to provide a comparison between different refinement ap-
proaches. Among the four refinement algorithms, ProPhyCC and RefineML take advan-
tage of the position-specific confidence values, which gives them better performance
than ProPhyC and RefineFast. ProPhyCC is obviously the best among all refinement
algorithms, while ProPhyC outperforms RefineFast. From Figs. 2 and 3, we conclude
that refinement algorithms under our new model outperform not only base inference
algorithms, but also our previous refinement algorithms on simulated data.

ProPhyC: A Probabilistic Phylogenetic Model 353

Fig. 4. The phylogeny connecting the 12
Drosophila species [24]

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

Refined networks
Noisy networks

Fig. 5. Results of ProPhyC under the basic
model on biological datasets

Table 1. Performance of ProPhyC under different tradeoffs

sensitivity (noisy → refined) specificity (noisy → refined)
improve both 59.9% → 66.3% 80.0% → 86.5%

focus on sensitivity 59.5% → 69.2% 69.3% → 72.7%
focus on specificity 57.7% → 58.5% 70.1% → 80.0%

5.2 Performance Under the Basic Model on Biological Data

Here we show our results on the datasets for 12 species of Drosophila, whose phyloge-
netic tree is illustrated in Fig. 4. We use different noise rates to get noisy networks with
different false positives and false negatives. Then for each set of noisy networks we use
ProPhyC to obtain refined networks with different parameter settings. Fig. 5 shows the
accuracies of these networks plotted as points. The cloud of points for ProPhyC clearly
dominates that of the noisy networks, and the two clouds are well separated; the average
improvement brought by ProPhyC is roughly 7% in each of sensitivity and specificity.

By adjusting the penalty parameter, we can choose whether to emphasize sensitivity
over specificity or the reverse, i.e., we can choose in which part of the ROC curve to
operate; Table 1 gives some examples.

5.3 Performance Under the Extended Model on Simulated Data

In evaluating performance under the extended model, we must first consider the effect
of the first phase, in which the history of gene duplications and losses is reconstructed.
In [27] we analyzed various duplication-loss history models and their effect on the
performance of RefineFast and RefineML. Our experiments showed that accurate his-
tory information with reliable orthology assignments helps the refinement algorithms to
get good performance. Here we test ProPhyC and ProPhyCC with two representative
histories. One is the “true” history which is available in the framework of simulation
experiments; with this history we can exclude the error introduced by the history infer-
ence step, and test purely the performance of the refinement algorithms. The other is
the history inferred by gene tree and species tree reconciliation algorithms without any

354 X. Zhang and B.M.E. Moret

prior information. As the rates of gene duplication and loss during evolution can also
affect the performance of refinement algorithms, we conduct simulation experiments
with different rates of duplication and loss.

We run refinement algorithms with the two gene duplication and loss histories: the
true history and the history reconstructed by Notung [8]. In the following we show
results on one representative phylogenetic tree with 35 nodes on 7 levels, and a root
network of 15 genes. Since the results of using the neutral initialization model or the in-
heritance initialization model in data generation are very similar, we only show results
with the former. For each experiment we show two plots: the left plot has relatively low
rates of gene loss (resulting in 19 duplications and 15 losses along the tree on average),
while the right one has significantly higher rates(with 20 duplications and 23 losses).

Absolute results, with true history. Fig. 6 shows the comparison of ProPhyC, Pro-
PhyCC and the base inference algorithm DBI, using the true history of duplications and
losses. Given the size of the tree and the root network, the rates of gene duplication
and loss are quite high, yet the improvement gained by our refinement algorithms re-
mains significant in both plots – almost as much as the improvement gained under the
basic model shown in Fig. 2. ProPhyCC further dominates ProPhyC in both sensitivity
and specificity, thanks to the appropriate use of the position-specific confidence values.
Once again, we obtain similar improvements with other trees, other evolutionary rates,
and other base methods.

Relative results, with true history. Fig. 7 shows the results of the same experiments
as in Fig. 6, with RefineFast and RefineML added. Although RefineFast and RefineML
still clearly improve on DBI, the improvement is less pronounced than with the basic
model (Fig. 3). Gene duplications and losses give rise to a large overall gene population,
yet many of them exist only in a few leaf networks; for these underrepresented genes,
phylogenetic information is much reduced and so the refinement is less successful. Re-
fineFast and RefineML are affected by this shortage, however, ProPhyC and ProPhyCC
are more robust and easily outperform RefineFast and RefineML.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

DBI
ProPhyC
ProPhyCC

(a) with lower duplication and loss rates

0 0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

DBI
ProPhyC
ProPhyCC

(b) with higher duplication and loss rates

Fig. 6. Results of refinement algorithms with extended network evolutionary model, comparison
of ProPhyC and ProPhyCC with DBI, with true gene duplication and loss history

ProPhyC: A Probabilistic Phylogenetic Model 355

0 0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

DBI
ProPhyC
ProPhyCC
RefineFast
RefineML

(a) with lower duplication and loss rates

0 0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

DBI
ProPhyC
ProPhyCC
RefineFast
RefineML

(b) with higher duplication and loss rates

Fig. 7. Results of refinement algorithms with extended model, comparison of ProPhyC and Pro-
PhyCC with RefineFast and RefineML, with true gene duplication and loss history

0 0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

DBI
ProPhyC
ProPhyCC

(a) with lower duplication and loss
rates

0 0.05 0.1 0.15 0.2 0.25 0.3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−specificity

se
ns

iti
vi

ty

DBI
ProPhyC
ProPhyCC

(b) with higher duplication and loss
rates

Fig. 8. Results of refinement algorithms with extended network evolutionary model, comparison
of ProPhyC and ProPhyCC with DBI, with inferred gene duplication and loss history by Notung

Absolute results, with inferred history. Here we use Notung to reconstruct the his-
tory of duplications and losses without any orthology input. In these experiments, with
reliable gene tree input, Notung correctly predicts duplication events (modulo changes
in the networks), but usually misses recent loss events (it shows those events as hap-
pening earlier on the lineages). Furthermore, Notung not only infers the gene contents
for ancestral networks, but also alters the gene contents of the leaves, which causes
some difficulty for the refinement procedure. Fig. 8 shows the results of ProPhyC and
ProPhyCC with Notung reconstructed gene contents for the ancestral networks. We see
that in Fig. 8(a), the two ends of the ProPhyC curve have lost a little specificity while
gaining sensitivity or vice versa, a tradeoff rather than an outright gain. However, Pro-
PhyC dominates DBI through the useful range of specificity and sensitivity. In Fig. 8(b),
ProPhyC barely improves DBI, because the high rate of gene loss reduces the perfor-
mance of refinement algorithms in two ways: first a high rate affects the performance of
Notung (which does a poor job at inferring losses); secondly it increases the total popu-
lation of genes and decreases the frequency of occurrence of an ortholog in the leaf net-
works, thus limiting the phylogenetic information. However, ProPhyCC still improves
DBI significantly in both plots. Our probabilistic framework can incorporate the prior

356 X. Zhang and B.M.E. Moret

information in an appropriate way, so as to gain good performance even when the phy-
logenetic information, including the history of gene duplication and loss, is noisy and
incomplete.

6 Conclusions

We described ProPhyC, a probabilistic phylogenetic model designed to improve the
inference of regulatory networks for a family of organisms by using the phylogenetic
relationships among these organisms. This model and its associated refinement algo-
rithms can easily be adapted to work with different network evolutionary models. We
conducted experiments on both simulated and biological data to test the performance of
the refinement algorithms. With both the basic and extended network evolutionary mod-
els, the corresponding versions of ProPhyC and ProPhyCC outperformed those of our
previous algorithms RefineFast and RefineML, and all four refinement algorithms out-
performed the base inference algorithm. The improvement of ProPhyC and ProPhyCC
over RefineFast and RefineML was more significant under the extended model, where
the performance of RefineFast and RefineML was affected by the decrease of the phy-
logenetic information for each ortholog, while ProPhyC and ProPhyCC were hardly
influenced. Our probabilistic phylogenetic model is thus quite robust against changes
in these network evolutionary models. Our probabilistic phylogenetic model can easily
be extended into a probabilistic graphical model to incorporate the evolution of both
regulatory networks and binding sites.

References

1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number
of gene expression patterns under the Boolean network model. In: Proc. 4th Pacific Symp.
Biocomp. (PSB 1999), pp. 17–28. World Scientific, Singapore (1999)

2. Arvestad, L., Berglund, A.-C., Lagergren, J., et al.: Gene tree reconstruction and orthology
analysis based on an integrated model for duplications and sequence evolution. In: Proc. 8th
Conf. Comput. Mol. Bio. (RECOMB 2004), pp. 326–335. ACM Press, New York (2004)

3. Babu, M.M., Teichmann, S.A., Aravind, L.: Evolutionary dynamics of prokaryotic transcrip-
tional regulatory networks. J. Mol. Bio. 358(2), 614–633 (2006)

4. Berg, J., Lassig, M., Wagner, A.: Structure and evolution of protein interaction networks: a
statistical model for link dynamics and gene duplications. BMC Evol. Bio. 4(1), 51 (2004)

5. Bourque, G., Sankoff, D.: Improving gene network inference by comparing expression time-
series across species, developmental stages or tissues. J. Bioinform. Comput. Bio. 2(4), 765–
783 (2004)

6. Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations.
In: Proc. 4th Pacific Symp. Biocomp. (PSB 1999), pp. 29–40. World Scientific, Singapore
(1999)

7. Crombach, A., Hogeweg, P.: Evolution of evolvability in gene regulatory networks. PLoS
Comput. Biol. 4(7), e1000112 (2008)

8. Durand, D., Halldórsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to
gene tree reconstruction. J. Comput. Bio. 13(2), 320–335 (2006)

9. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze ex-
pression data. J. Comput. Bio. 7(3-4), 601–620 (2000)

ProPhyC: A Probabilistic Phylogenetic Model 357

10. Harbison, C.T., Gordon, D.B., Lee, T.I., et al.: Transcriptional regulatory code of a eukaryotic
genome. Nature 431, 99–104 (2004)

11. Heckerman, D.: Learning in graphical models. In: A Tutorial on Learning with Bayesian
Networks, pp. 301–354. MIT Press, Cambridge (1999)

12. Hillis, D.M.: Approaches for assessing phylogenetic accuracy. Sys. Bio. 44, 3–16 (1995)
13. Kanehisa, M., Goto, S., Hattori, M., et al.: From genomics to chemical genomics: new de-

velopments in KEGG. Nucleic Acids Res. 34, D354–D357 (2006)
14. Kim, J., He, X., Sinha, S.: Evolution of regulatory sequences in 12 Drosophila species. PLoS

Genet. 5(1), e1000330 (2009)
15. Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data

using dynamic Bayesian networks. Briefings in Bioinf. 4(3), 228–235 (2003)
16. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm

for inference of genetic network architectures. In: Proc. 3rd Pacific Symp. Biocomp. (PSB
1998), pp. 18–29. World Scientific, Singapore (1998)

17. Mithani, A., Preston, G.M., Hein, J.: A Bayesian approach to the evolution of metabolic
networks on a phylogeny. PLoS Comput. Bio. 6(8), e1000868 (2010)

18. Moret, B.M.E., Warnow, T.: Reconstructing optimal phylogenetic trees: A challenge in ex-
perimental algorithmics. In: Fleischer, R., Moret, B.M.E., Schmidt, E.M. (eds.) Experimental
Algorithmics. LNCS, vol. 2547, pp. 163–180. Springer, Heidelberg (2002)

19. Page, R.D.M., Charleston, M.A.: From gene to organismal phylogeny: Reconciled trees and
the gene tree/species tree problem. Mol. Phyl. Evol. 7(2), 231–240 (1997)

20. Roth, C., Rastogi, S., Arvestad, L., et al.: Evolution after gene duplication: models,
mechanisms, sequences, systems, and organisms. J. Exper. Zoology Part B: Mol. Devel.
Evol. 308B(1), 58–73 (2007)

21. Stark, A., Kheradpour, P., Roy, S., Kellis, M.: Reliable prediction of regulator targets using
12 Drosophila genomes. Genome Res. 17, 1919–1931 (2007)

22. Tanay, A., Regev, A., Shamir, R.: Conservation and evolvability in regulatory networks: The
evolution of ribosomal regulation in yeast. Proc. Nat’l Acad. Sci. 102(20), 7203–7208 (2005)

23. Teichmann, S.A., Babu, M.M.: Gene regulatory network growth by duplication. Nature Ge-
netics 36(5), 492–496 (2004)

24. Tweedie, S., Ashburner, M., Falls, K., et al.: Flybase: enhancing Drosophila Gene Ontology
annotations. Nucleic Acids Res. 37, D555–D559 (2009)

25. Zhang, X., Moret, B.M.E.: Boosting the performance of inference algorithms for transcrip-
tional regulatory networks using a phylogenetic approach. In: Crandall, K.A., Lagergren, J.
(eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 245–258. Springer, Heidelberg (2008)

26. Zhang, X., Moret, B.M.E.: Improving inference of transcriptional regulatory networks based
on network evolutionary models. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS,
vol. 5724, pp. 415–428. Springer, Heidelberg (2009)

27. Zhang, X., Moret, B.M.E.: Refining transcriptional regulatory networks using network evo-
lutionary models and gene histories. BMC Algs. for Mol. Bio. 5(1), 1 (2010)

Prediction of DNA-Binding Propensity of

Proteins by the Ball-Histogram Method

Andrea Szabóová1, Ondřej Kuželka1, Sergio Morales E.2,
Filip Železný1, and Jakub Tolar3

1 Czech Technical University, Prague, Czech Republic
2 Instituto Tecnológico de Costa Rica ITCR
3 University of Minnesota, Minneapolis, USA

szaboand@fel.cvut.cz

Abstract. We contribute a novel, ball-histogram approach to DNA-
binding propensity prediction of proteins. Unlike state-of-the-art meth-
ods based on constructing an ad-hoc set of features describing the charged
patches of the proteins, the ball-histogram technique enables a system-
atic, Monte-Carlo exploration of the spatial distribution of charged amino
acids, capturing joint probabilities of specified amino acids occurring in
certain distances from each other. This exploration yields a model for the
prediction of DNA binding propensity. We validate our method in predic-
tion experiments, achieving favorable accuracies. Moreover, our method
also provides interpretable features involving spatial distributions of se-
lected amino acids.

1 Introduction

The process of protein-DNA interaction has been an important subject of recent
bioinformatics research, however, it has not been completely understood yet.
DNA-binding proteins have a vital role in the biological processing of genetic
information like DNA transcription, replication, maintenance and the regula-
tion of gene expression. Several computational approaches have recently been
proposed for the prediction of DNA-binding function from protein structure.

In the early 80’s, when the first three-dimensional structures of protein-DNA
complexes were studied, Ohlendorf and Matthew noticed that the formation of
protein-DNA complexes energetically driven by the electrostatic interaction of
asymmetrically distributed charges on the surface of the proteins complement the
charges on DNA [1]. Large regions of positive electrostatic potentials on protein
surfaces has been suggested to be a good indication of DNA-binding sites.

Stawiski et al. proposed a methodology for predicting Nucleic Acid-binding
function based on the quantitative analysis of structural, sequence and evolu-
tionary properties of positively charged electrostatic surfaces. After defining the
electrostatic patches they found the following features for discriminating the
DNA-binding proteins from other proteins: secondary structure content, surface
area, hydrogen-bonding potential, surface concavity, amino acid frequency and

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 358–367, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Prediction of DNA-Binding Propensity of Proteins 359

composition and sequence conservation. They used 12 parameters to train a
neural network to predict the DNA-binding propensity of proteins [2].

Jones et al. analysed residue patches on the surface of DNA-binding proteins
and developed a method of predicting DNA-binding sites using a single feature of
these surface patches. Surface patches and the DNA-binding sites were analysed
for accessibility, electrostatic potential, residue propensity, hydrophobicity and
residue conservation. They observed that the DNA-binding sites were amongst
the top 10% of patches with the largest positive electrostatic scores [3].

Tsuchiya et al. analysed protein-DNA complexes by focusing on the shape
of the molecular surface of the protein and DNA, along with the electrostatic
potential on the surface, and constructed a statistical evaluation function to
make predictions of DNA interaction sites on protein molecular surfaces [4].

Ahmad and Sarai trained a neural network based on the net charge and the
electric dipole and quadrupole moments of the protein. It was found that the
magnitudes of the moments of electric charge distribution in DNA-binding pro-
tein chains differ significantly from those of a non-binding control data set. It
became apparent that the positively charged residues are often clustered near
the DNA and that the negatively charged residues either form negatively charged
clusters away from the DNA or get scattered throughout the rest of the protein.
The entire protein has a net dipole moment, because of the topological distri-
bution of charges. The resulting electrostatic force may steer proteins into an
orientation favorable for binding by ensuring that correct side of the protein is
facing DNA [5].

Bhardwaj et al. examined the sizes of positively charged patches on the surface
of DNA-binding proteins. They trained a support vector machine classifier using
positive potential surface patches, the protein’s overall charge and its overall and
surface amino acid composition [6]. In case of overall composition, noticeable
differences were observed (in binding and non-binding cases) with respect to the
frequency of Lys and Arg. These are positively charged amino acids, so their
over-representation in DNA-binding proteins is evident.

Szilágyi and Skolnick created a logistic regression classifier based on ten vari-
ables to predict whether a protein is DNA-binding from its sequence and low-
resolution structure. To find features that discriminate between DNA-binding
and non-DNA-binding proteins, they tested a number of properties. The best
combination of parameters resulted in the amino acid composition, the asymme-
try of the spatial distribution of specific residues and the dipole moment of the
protein. When ranking these parameters by relative importance, they found out
that the Arginine content was the strongest predictor of DNA-binding, followed
by the Glycine and Lysine. The dipole moment was the fourth most important
variable [7].

Here we contribute a novel approach to DNA-binding propensity prediction,
called the ball-histogram method, which improves on the state-of-the-art ap-
proaches in the following way. Rather than constructing an ad-hoc set of features
describing the charged patches of the proteins, we base our approach on a system-
atic, Monte-Carlo-style exploration of the spatial distribution of charged amino

360 A. Szabóová et al.

acids (under normal circumstances, Arg and Lys are positively charged, whereas
Glu and Asp are charged negatively). For this purpose we employ so-called ball
histograms, which are capable of capturing joint probabilities of specified amino
acids occurring in certain distances from each other. Another positive aspect of
our method is that it provides us with interpretable features involving spatial
distributions of selected amino acids.

The rest of the paper is organized as follows. Section 2 describes the protein
data sets we use in the study. In Section 3 we explain the ball histogram method.
Section 4 exposes the results of applying the method on the protein data. In
Section 5 we conclude the paper.

2 Data

DNA-binding proteins are proteins that are composed of DNA-binding domains.
A DNA-binding domain is an independently folded protein domain that contains
at least one motif that recognizes double- or single-stranded DNA. We decided
to investigate structural relations within these proteins following the spatial
distributions of certain amino acids in available DNA-protein complexes.

We decided to work with a positive data set (PD138) of 138 DNA-binding
protein sequences in complex with DNA. It was created using the Nucleic Acid
Database by [7] - it contains a set of DNA-binding proteins in complex with DNA
strands with a maximum pairwise sequence identity of 35% between any two
sequences. Proteins have ≤ 3.0Å resolution. An example DNA-binding protein
in complex with DNA is shown in Fig.1.

Fig. 1. Exemplary DNA-binding protein in complex with DNA shown using the protein
viewer software [8]. Secondary structure motifs are shown in green (α-helices), light blue
(turns) and pink (coils); the two DNA strands are shown in blue.

Prediction of DNA-Binding Propensity of Proteins 361

Rost and Sander constructed a dataset (RS126) for secondary structure pre-
diction. Ahmad & Sarai [5] removed the proteins related to DNA binding from
it, thus getting a final dataset of non-DNA-binding proteins. We used this set of
non-DNA-binding proteins as our negative dataset (NB110).

From the structural description of each protein we extracted the list of all
contained amino acids with information on their type and spatial structure.

3 Method

In this section we describe our novel method for predictive classification of pro-
teins using so-called ball histograms. The classification method consists of three
main steps. First, ball histograms are constructed for all proteins in a training
set and then a transformation method is used to convert these histograms to a
form usable by standard machine learning algorithms. Finally, a random forest
classifier [9] is learned on this transformed data and then it is used for classifi-
cation. Random forest classifier is known to be able to cope with large numbers
of attributes such as in our case of ball histograms [10].

3.1 Ball Histograms

In this section we describe protein ball histograms. We start by defining several
auxiliary terms. A template is a list of amino acid types or amino acid properties.
An example of a template is (Arg, Lys) or (Positive, Negative, Neutral). We
say that an amino acid complies with a property f1 if it has the corresponding
property. For example, if A is an Arginine then it complies both with property
Arg and with property Positive. A bounding sphere of a protein is a sphere with
center located in the geometric center of the protein and with radius equal to
the distance from the center to the farthest amino acid of the protein plus the
diameter of sampling ball which is a parameter of the method. We say that an
amino acid falls within a sampling ball if the alpha-carbon of that amino acid is
contained in the sampling ball in geometric sense.

Given a protein, a template τ = (f1, . . . , fk), a sampling-ball radius R and a
bounding sphere S, a ball histogram is defined as:

Hτ (t1, . . . , tk) =

∫ ∫ ∫
(x,y,z)∈S IT,R(x, y, z, t1, . . . , tk)dxdydz∑

(t′1,...,t′k)

∫ ∫ ∫
(x,y,z)∈S IT,R(x, y, z, t′1, . . . , t

′
k)dxdydz

(1)

where IT,R(x, y, z, t1, . . . , tk) is an indicator function which we will define in turn.
The expression

∑
(t′1,...,t′k)

∫ ∫ ∫
(x,y,z)∈S IT,R(x, y, z, t′1, . . . , t

′
k)dxdydz is meant as

a normalization factor - it ensures that
∑

(t1,...,tk) HT (t1, . . . , tk) = 1. In order to
define the indicator function IT,R we first need to define an auxiliary indicator
function I ′T,R(x, y, z, t1, . . . , tk)

362 A. Szabóová et al.

Fig. 2. Illustration of the Ball Histogram Method - Amino acids are shown as small
balls in sequence forming an amino acid chain. A sampling ball is shown in violet.
Some of the amino acids which comply with properties of an example template are
highlighted inside the sampling ball area. They have different colors according to their
type.

I ′T,R(x, y, z, t1, . . . , tk) =

⎧⎪⎪⎨⎪⎪⎩
1 if there are exactly t1amino acids complying

with f1, t2 amino acids complying withf2 etc.
in a sampling ball with center x, y, z and radius R

0 otherwise

Notice that I ′T,R(x, y, z, 0, . . . , 0) does not make any distinction between a sam-
pling ball that contains no amino acid at all and a sampling ball that contains
some amino acids none of them complying with the parameters in the template
T . Therefore if we used I ′T,R in place of IT,R the histograms would be affected
by the amount of empty space in the bounding spheres. Thus, for example, there
might be a big difference between histograms of otherwise similar proteins where
one would be oblong and the other one would be more curved. In order to get
rid of this unwanted dependence of the indicator function IT,R on proportion of
empty space in sampling spheres we define IT,R in such a way that it ignores the
empty space. For (t1, . . . , tk) �= 0 we set

IT,R(x, y, z, t1, . . . , tk) = I ′T,R(x, y, z, t1, . . . , tk).

In the cases when (t1, . . . , tk) = 0 we set IT,R(x, y, z, t1, . . . , tk) = 1 if and only
if I ′T,R(x, y, z, t1, . . . , tk) = 1 and if the sampling ball with radius R at (x, y, z)
contains at least one amino acid.

Ball histograms capture the joint probability that a randomly picked sam-
pling ball (See Fig. 2) containing at least one amino acid will contain exactly t1
amino acids complying with f1, t2 amino acids complying with f2 etc. They are
invariant to rotation and translation of proteins which is an important property
for classification. Also note that the histograms would not change if we increased
the size of the bounding sphere.

Prediction of DNA-Binding Propensity of Proteins 363

Fig. 3. Example ball histograms with template (Arg,Lys) and sampling-ball radius
R = 12Å constructed for proteins 1A31 and 1A3Q from PD138

The indicator function IT,R makes crisp distinction between amino acid falls
within a sampling ball and amino acid does not fall within a sampling ball. It
could be changed to capture a more complex case by replacing 1 by the fraction
of the amino acid that falls within the sampling ball, however, for simplicity we
will not consider this case in this extended abstract.

3.2 Ball-Histogram Construction

Computing the integral in Eq. 1 precisely is infeasible therefore we decided to
use a Monte-Carlo method. The method starts by finding the bounding sphere.
First, the geometric center C of all amino acids of a given protein P is computed
(each amino acid is represented by coordinates of its alpha-carbon). The radius
RS of the sampling sphere for the protein P is then computed as

RS = max
Res∈P

(distance(Res, C)) + R

where R is a given sampling-ball radius. After that the method collects a pre-
defined number of samples from the bounding sphere. For each sampling ball the
algorithm counts the number of amino acids in it, which comply with the par-
ticular properties contained in a given template and increments a corresponding
bin in the histogram. In the end, the histogram is normalized.

Example 1. Let us illustrate the process of histogram construction by a small
example. Let us have a template (Arg, Lys). We assume that we already have
a bounding sphere. The algorithm starts by placing a sampling ball randomly
inside the bounding sphere. Let us assume that the first such sampling ball
contained the following amino acids: 2 Arginins and 1 Leucine therefore we
increment a counter in the histogram associated with vector (2, 0). Then in the
second sampling ball, we get 1 Histidine and 1 Aspartic acid so we increment a
counter associated with vector (0, 0). We continue in this process until we have
gathered a sufficient number of samples. In the end we normalize the histogram.
Examples of such histograms are shown in Fig. 3.

364 A. Szabóová et al.

3.3 Predictive Classification Using Ball Histograms

In the preceding sections we have explained how to construct ball-histograms
but we have not explained how we can use them for predictive classification.
One possible approach would be to define a metric on the space of normalized
histograms and then use either a nearest neighbour classifier or a nearest-centroid
classifier. Since our preliminary experiments with these classifiers did not give us
satisfying predictive accuracies, we decided to follow a different approach inspired
by a method from relational learning known as propositionalization [11] which is
a method for transferring complicated relational descriptions to attribute-value
representations.

The transformation method is quite straightforward. It looks at all histograms
generated from the proteins in a training set and creates a numerical attribute
for each vector of property occurrences which is non-zero at least in one of the
histograms. After that an attribute vector is created for each training exam-
ple using the collected attributes. The values of the entries of the attribute-
vectors then correspond to heights of the bins in the respective histograms.
After this transformation a random forest classifier is learned on the attribute-
value representation. This random forest classifier is then used for the predictive
classification.

In practice, there is a need to select an optimal sampling-ball radius. This can
be done by creating several sets of histograms and their respective attribute-
value representations corresponding to different radiuses and then selecting the
optimal parameters using an internal cross-validation procedure1.

4 Results

In this section we present experiments performed on real-life data described
in Section 2. We performed two types of experiments. First, we decided to
study distribution of charged amino acids (represented by ball histograms). We
constructed histograms with template (Arg, Lys, Glu, Asp) and three different
sampling-ball radiuses: 6, 8 and 10Å. We trained random forest classifiers select-
ing optimal sampling-ball radius and an optimal number of trees for each fold
by internal cross-validation. The estimated accuracy is shown in Table 1. As we
can see, the accuracy of our method is comparable with the accuracy obtained
by the method used in [7]. They used properties of the following amino acids:
Arg, Lys, Gly, Asp, Asn, Ser and Ala, whereas we used only the distribution
of the charged amino acids. A natural question is whether our results could be
improved by taking into account also this set of amino acids. Therefore, we per-
formed the second set of experiments. In this case, the accuracy obtained by our
method exceeded the accuracy of [7].
1 When evaluating the classifiers’ performance in Section 4 using 10-fold cross-

validation, we optimize the sampling-ball radius parameter always on the nine train-
ing folds and then use it for the remaining testing fold, which is a standard way to
obtain an unbiased estimate of the predictive performance of a classifier with tunable
parameters.

Prediction of DNA-Binding Propensity of Proteins 365

Table 1. Accuracies estimated by 10-fold cross-validation on PD138/NB110

Method Accuracy [%]

Szilágyi et al. 81.4
Ball Histogram using Charged Amino Acids 80.2
Ball Histogram using the Second Set of Amino Acids 84.7

Table 2. The three most informative features according to the χ2 criterion using the
distribution of the charged amino acids

Arg Lys Glu Asp

1st feature 1 1 0 0

2nd feature 2 0 0 0

3rd feature 1 0 0 0

Table 3. The three most informative features according to the χ2 criterion using the
distribution of the selected set of amino acids

Arg Lys Gly Asp Asn Ser Ala

1st feature 1 1 0 0 0 0 0

2nd feature 1 0 0 0 0 0 0

3rd feature 2 0 0 0 0 0 0

In addition to improved accuracy, our method provides us with interpretable
features involving spatial distributions of selected amino acids. We show the
three most informative features according to the χ2 criterion for the first set of
experiments in Table 2 and for the second set of experiments in Table 3. Given
a protein each feature captures the fraction of sampling balls, which contain the
specified numbers of amino acids of given types. For example: the first feature
from Table 2 denotes the fraction of sampling balls, which contain exactly one
Arginine, one Lysine, no Glutamic acid and no Aspartic acid.

A quick look at the most informative features in the presented Tables 2 and 3
suggests that the major role is played by the amino acids: Arginine and Lysine.
These amino acids are known to often interact with the negatively charged back-
bone as well as with the bases [12,13,14]. In order to get a global view on the
differences between spatial distributions of these amino acids in DNA-binding
and non-DNA-binding proteins, we computed the average ball histograms for
these two classes of proteins. They are shown in Fig. 4. The histogram obtained
by subtracting the average ball histogram for DNA-binding proteins from the
average ball histogram for non-DNA-binding proteins is shown in Fig. 5. We
can notice a remarkable difference of spatial distribution of Arginine and Lysine
between DNA-binding and non-DNA-binding proteins.

366 A. Szabóová et al.

‘

Fig. 4. Ball histograms with template (Arg,Lys) and sampling-ball radius R = 12Å
averaged for all proteins from PD138 (left panel) and all proteins from NB110 (right
panel)

Fig. 5. Difference between histograms from Fig. 4

5 Conclusion

We contributed a novel, ball-histogram approach to the prediction of DNA-
binding propensity of proteins. We validated the method in prediction exper-
iments with favorable results. Observing only the distribution of charged amino
acids we achieved accuracies comparable to the state of the art [7]. Importantly
though, the results reported by [7] had been achieved using the results of a
prior systematic search for the best combination of parameters. In particular,
the following amino acids were identified as critical: Arg, Lys, Gly, Asp, Asn, Ser
and Ala. Using this set of amino acids instead of the original set of all charged
amino acids, our accuracies in fact exceeded those of [7]. Moreover, our method
provides us with interpretable features involving spatial distributions of selected
amino acids.

Prediction of DNA-Binding Propensity of Proteins 367

Acknowledgement. Andrea Szabóová and Filip Železný were supported by
external project ME10047 granted by the Czech Ministry of Education. An-
drea Szabóová was further supported by the Czech Technical University internal
grant #10-801940. Ondřej Kuželka was supported by the Czech Technical Uni-
versity internal grant OHK3-053/11. Sergio Morales was supported by Costa
Rica Council for Scientific and Technological Research.

References

1. Ohlendorf, D.H., Matthew, J.B.: Electrostatics and flexibility in protein-DNA in-
teractions. Advances in Biophysics 20, 137–151 (1985)

2. Stawiski, E.W., Gregoret, L.M., Mandel-Gutfreund, Y.: Annotating nucleic acid-
binding function based on protein structure. J. Mol. Biol. (2003)

3. Jones, S., Shanahan, H.P., Berman, H.M., Thornton, J.M.: Using electrostatic po-
tentials to predict DNA-binding sites on DNA-binding proteins. Nucleic Acid Re-
search 31(24), 7189–7198 (2003)

4. Tsuchiya, Y., Kinoshita, K., Nakamura, H.: Structure-based prediction of DNA-
binding sites on proteins using the empirical preference of electrostatic potential
and the shape of molecular surfaces. Proteins: Structure, Function, and Bioinfor-
matics 55(4), 885–894 (2004)

5. Ahmad, S., Sarai, A.: Moment-based prediction of DNA-binding proteins. Journal
of Molecular Biology 341(1), 65–71 (2004)

6. Bhardwaj, et al.: Kernel-based machine learning protocol for predicting DNA-
binding proteins. Nuc. Acids Res. (2005)

7. Szilágyi, A., Skolnick, J.: Efficient Prediction of Nucleic Acid Binding Function
from Low-resolution Protein Structures. Journal of Molecular Biology 358, 922–
933 (2006)

8. Moreland, J.L., Gramada, A., Buzko, O.V., Zhang, Q., Bourne, P.E.: The Molecular
Biology Toolkit (MBT): A Modular Platform for Developing Molecular Visualiza-
tion Applications. BMC Bioinformatics (2005)

9. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)
10. Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of su-

pervised learning in high dimensions. In: International Conference on Machine
Learning (ICML), pp. 96–103 (2008)

11. Lavrač, N., Flach, P.: An Extended Transformation Approach to Inductive Logic
Programming. ACM Transactions on Computational Logic 2, 458–494 (2001)

12. Pabo, C.O., Sauer, R.T.: Transcription factors: structural families and principles
of DNA recognition. Annual Review of Biochemistry 20, 137–151 (1992)

13. Mandel-Gutfreund, Y., Schueler, O., Margalit, H.: Comprehensive analysis of hy-
drogen bonds in regulatory protein DNA-complexes: in search of common princi-
ples. Journal of Molecular Biology 253, 370–382 (1995)

14. Jones, S., van Heyningen, P., Berman, H.M., Thornton, J.M.: Protein-DNA inter-
actions: a structural analysis. Journal of Molecular Biology 287, 877–896 (1999)

Multi-label Correlated Semi-supervised Learning

for Protein Function Prediction

Jonathan Q. Jiang

Department of Computer Science
City University of Hong Kong

Tat Chee Avenue, Kowloon, Hong Kong
qiajiang@cityu.edu.hk

Abstract. The advent of large volume of molecular interactions has led
to the emergence of a considerable number of computational approaches
for studying protein function in the context of network. These algorithms,
however, treat each functional class independently and thereby suffer
from a difficulty of assigning multiple functions to a protein simultane-
ously. We propose here a new semi-supervised algorithm, called MCSL,
by considering the correlations among functional categories which im-
proves the performance significantly. The guiding intuition is that a pro-
tein can receive label information not only from its neighbors annotated
with the same category in functional-linkage network, but also from its
partners labeled with other classes in category network if their respective
neighborhood topologies are a good match. We encode this intuition as a
two-dimensional version of network-based learning with local and global
consistency. Experiments on a Saccharomyces cerevisiae protein-protein
interaction network show that our algorithm can achieve superior per-
formance compared with four state-of-the-art methods by 5-fold cross
validation with 66 second-level and 77 informative MIPS functional cat-
egories respectively. Furthermore, we make predictions for the 204 un-
characterized proteins and most of these assignments could be directly
found in or indirectly inferred from SGD database.

1 Introduction

Although the high-throughput techniques have made it possible to monitor hun-
dreds or even thousands of molecular simultaneously, most of their functions
still remain mysteries for us. For example, even for a well-investigated species,
such as Saccharomyces cerevisiae, there are 944 uncharacterized ORFs (∼ 14%
out of all 6607 genes) and 811 dubious ORFs (∼ 12 %) in the MIPS database1

until January 20, 2011. Therefore, function annotation of proteins is one of the
fundamental issues in the post-genomic era.

Traditional computational approaches for protein annotation mainly relied on
collecting a set of features from each protein and then applying machine learning
algorithms (particularly, the support vector machine) to get the final decisions [12].
1 http://mips.helmholtz-muenchen.de/genre/proj/yeast/

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 368–379, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://mips.helmholtz-muenchen.de/genre/proj/yeast/

Predicting Multiple Functions of Proteins 369

Thanks to the availability of large volume of molecular interactions, either physical
or genetic, we can possibly adopt a top-down point of view and investigate protein
function in the context of a network. This idea has led to the emergence of a consid-
erable number of network-based studies [8,10,14,17]. Although these implementa-
tions are seemingly quite different, their common start point is exploiting the same
underlying assumption, i.e., a concept often referred to as guilt-by-association [14].
That is, proteins are firstly large-scale linked in case they are physically interacted
[6,14,9], co-expressed [4] or co-regulated [7] and even have similar phylogenetic pro-
files [13]. After constructing the comprehensive functional-linkage map, one can
infer the protein function in the following two types of approaches: direct annota-
tion schemes and module-assisted schemes. See recent review [15] for more details.
We focus here only on the first scenario.

The straightforward algorithm is the neighborhood counting that determines
the function of a protein based on the known function of proteins lying in its
immediate neighborhood [14,8,3]. Although it is simple and effective, we are not
clear what the appropriate radius is and whether neighborhoods of different sizes
should be selected for different nodes or for different functions. In contrast to
the local methods, graph algorithms are global and take the full structure of the
network into consideration. The recent study [17] utilized cut-based methodology
so as to minimize the number of times that different annotations are associated
with neighboring proteins. Such idea has been applied in [10] by a local search
procedure and in [11] by integer linear programming (ILP). In addition, Nabieva
et al [11] also introduce an algorithm by simulating the spread over time of
”functional flow” through the network. Thus, this method considers both local
and global effects.

The main drawback of these existing methods is that they treat each class
independently. Thus, all of them ignored, more or less, the correlations among
different classes, which often could be an important hint for deciding the class
memberships. In fact, the majorities of 12 known functions of protein YAL041W
are indeed correlated. For example, the two functional categories 18.02.03:
”guanyl-nucleotide exchange factor (GEF)” and 18.02.05:”regulator of G-protein
signaling” share a common parent 18.02 ”regulation of protein activity”2. There-
fore, we expect that incorporating the inherent correlations among multiple func-
tional classes into semi-supervised learning strategy could improve predictive
performance which has been confirmed in other fields, such as text categoriza-
tion and image annotation [18,2].

In this paper, we propose a new semi-supervised algorithm for protein func-
tion annotation by considering the correlations among functional categories.
This method can be encoded as a two-dimensional version of graph-based learn-
ing with local and global consistency [19]. We use a Saccharomyces cerevisiae
protein-protein interaction network consisting of 2988 proteins and 15806 in-
teractions derived form the BioGRID database (Release 2.0.58)3. 5-fold cross

2 http://mips.helmholtz-muenchen.de/genre/proj/yeast/singleGeneReport.

html?entry=YAL041w
3 http://thebiogrid.org/download.php

http://mips.helmholtz-muenchen.de/genre/proj/yeast/singleGeneReport.html?entry=YAL041w
http://mips.helmholtz-muenchen.de/genre/proj/yeast/singleGeneReport.html?entry=YAL041w
http://thebiogrid.org/download.php

370 J.Q. Jiang

validation experiments show that our algorithm can achieve superior perfor-
mance compared with four state-of-the-art approaches (see Section 4.4). Further-
more, we give the predictions for 204 uncharacterized proteins, most of which
are found in or supported by SGD database.

2 Multi-label Correlated Semi-supervised Learning

For a multiple function prediction problem where we have K functional cate-
gories, given a protein set P = {pi}i=1,...,n where the first l proteins are labeled
as {y1, . . . ,yl} with yik = 1 in case the i-th protein is associated with the k-th
function, our goal is to predict the labels {yl+1, . . . ,yn} for the remaining unla-
beled proteins {pl+1, . . . , pn}. The functional-linkage network of these proteins
can be represented as a graph G = (V , E, W), with nodes set V = L∪U where L
corresponds to labeled proteins and U corresponds to uncharacterized proteins.
The element wuv of the affinity matrix W ∈ �n×n indicates the strength of
functional linkage between protein u and v.

We aim at developing a method to predict the labels of the unannotated
proteins from both labeled and unlabeled ones. Such a learning problem is often
called semi-supervised or transductive. The key to this strategy is the consistent
assumption [19], which means: (1) nearby points are likely to share the same
label; and (2) points on the same structure (typically referred to as a cluster
or a manifold) are likely to have the same label. This can be expressed in a
regularization framework where the first term is a loss function to penalize the
deviation from the given labels, and the second term is a regularizer to prefer the
label smoothness. We follow this pipeline and give its two-dimensional version.
Our work is inspired by these prior works [19,18,2], additionally by the recent
study [16].

To make use of the correlations among multiple functional classes, we build
a category network G′ = (V ′, E′, W ′) where each node represent one functional
class. The symmetric weight matrix W ′ ∈ �K×K captures the functional similar-
ity4 between each class. It is worthwhile to point out that w′

ii =
√∑

j �=i w′
ij , ∀i.

This allows that different proteins nearby can be associated with the same func-
tion class and is rather distinct with other existing one-dimensional approaches.
Let Y ∈ �n×K be the known label matrix, and F := [f1, . . . , fn]T where fik is
the confidence that pi can be annotated with label k. Following the framework
[19], our objective function consists of two components: a loss function Hl(F)
and a smoothness regularizer Hf (F). Specifically, Hl(F) corresponds to the first
property to penalize the deviation from the given multi-label assignments, and
Hf (F) address the multi-label smoothness on the whole functional-linkage net-
work. Then, the proposed framework can be formulated to minimize

H(F) = Hf (F) + μHl(F) (1)

4 We postpone the discussions of similarity between different functional class until
Section 4.3.

Predicting Multiple Functions of Proteins 371

where μ > 0 is the regularization parameter. The terms Hf (F) and Hl(F) can
be specified in a way similar to that adopted in existing graph-based methods
[19,2,18]. Specifically, we define them as

Hf (F) =
n∑

u,v=1

K∑
i,j

wuvw′
ij

∥∥∥∥∥∥ fui√
DuuD′

ii

− fvj√
DvvD′

jj

∥∥∥∥∥∥
2

(2)

Hl(F) = ‖F− Y‖2
F (3)

where ‖ · ‖F denote the Frobenius norm of matrix and D = diag(
∑

j �=i wij),
D′ = diag(

∑
j �=i w′

ij) respectively. We can understand the smoothness term as
the sum of local variations whose justification will be given in Section 3.2.

Differentiating H(F) with respect to F and denoting S = D−1/2WD−1/2,
S′ = D′−1/2W ′D′−1/2, we have

∂H
∂F

|F=F∗ = Vec(F∗) − S′T ⊗ ST Vec(F∗) + μ(F∗ − Y) = 0 (4)

where Vec(·) denote the vectorization of a matrix5 and ⊗ the Kronecker product.
Let α = 1

μ+1 and follow a similar procedure as [19], then we can get

Vec(F∗) = (I − αS′T ⊗ ST)−1Vec(Y) (5)

3 Algorithm, Justification and Extension

In this section, we propose an iterative algorithm to solve the minimization
problem (1) similar as that presented in [19]. Then, there follows the justification
why we design the regularizer Hf as Eq.(2) and some natural extensions.

3.1 Iterative Algorithm

The algorithm is given in Algorithm 1. We can see clearly that in this algorithm
each protein receives the functional category information from its neighbors (the
first term) and also retains its initial label information (the second term) dur-
ing each iteration of the second step. The parameter α specifies the relative
amount of these two information. Different with previous uncorrelated learn-
ing [19,18,2], the first term depicts the strength of match between one specific
protein’s respective neighborhood topologies of the functional-linkage network
and functional category network (more details, see 3.2). It is worth mentioning
that self-reinforcement is removed in functional-linkage network as suggested by
[19,2,18] but remains in functional category network since proteins nearby can
be assigned the same functional class which is rather distinct with the network
alignment problem [16].

5 http://en.wikipedia.org/wiki/Vectorization_(mathematics)

http://en.wikipedia.org/wiki/Vectorization_(mathematics)

372 J.Q. Jiang

Algorithm 1. MCSL: Iterative algorithm for multi-label correlated semi-
supervised learning
Input

– W = (wuv) ∈ �n×n: weighted matrix of functional-linkage network
– W ′ = (w′

ij) ∈ �K×K : weighted matrix of functional category network
– Y = (yui) ∈ �n×K : the known initial label matrix

Output

– F = (fui) ∈ �n×K : the final label matrix

Steps

1. Construct the matrices S = D−1/2WD−1/2 and S′ = D′−1/2W ′D′−1/2;
2. Iterate Vec(F(t + 1)) = αS′T ⊗ST Vec(F(t)) + (1−α)Vec(Y(t)) until convergence;
3. let F∗ denote the limit of the sequence {F(t)}. Assignment each functional class

to proteins by a threshold selection method proposed in [5] and return F;

3.2 Justification and Extensions

As mentioned in Section 2, the term Hf is the smoothness regularizer that
addressed the multi-label smoothness on the whole functional-linkage network.
Intuitively, we can divide this term into two components: (1) the intra-class
term that describes the sum of the local variations of functional assignment
for one specific functional class; and (2) the inter-class term that depicts the
smoothness of functional assignment on proteins nearby for different classes. The
first component is just the regularizer of traditional graph-based semi-supervised
learning. That has been introduced in [19] and utilized in following works[2,18].
We extend it to multiple classes as

Hintra
f :=

K∑
c=1

Hintra(c)
f =

K∑
c=1

n∑
u,v=1

wuv

∥∥∥∥ fuc√
Duu

− fvc√
Dvv

∥∥∥∥2

(6)

For the second component, we pursue the intuition [16]: one protein should be
assigned to one specific function class in case their respective neighbors are a
good match with each other. See the illustrative example given in Fig.1 where we
want to associate an uncharacterized protein pu with the function ci ”Transcrip-
tion”. Besides receiving label information from its four neighbors, the protein
can also receive information with two of these four partners annotated with
functions closely related with ci, for example, cj ”Metabolism”. Consider the
pair of functional assignment (pu, ci) and (pv, cj), and its local variation can be
reformulated as

Hinter(u,i)(v,j)
f := wuvw′

ij

∥∥∥∥∥∥ fui√
DuuD′

ii

− fvj√
DvvD′

jj

∥∥∥∥∥∥
2

(7)

Predicting Multiple Functions of Proteins 373

?pu

pv

ci

cj

Metabolism

Cell biogenesis

Carbohydrate
Metabolism

Transcription

Functional-linkage network Functional category network

Cell cycle

Fig. 1. An illustrative example for our algorithm. We here want to associate an unchar-
acterized protein pu with the function ci: ”Transcription” (red dashed line). Clearly, pu

can not only receive label information from its four neighbors for function ci, but also
receive information from its two partners annotated with functions closely correlated
with ci, for example, cj . The respective neighborhood topologies of pu and ci form a
good match.

Therefore, summing all the potential pairs, we get

Hinter
f =

n∑
u,v=1

K∑
i,j=1,i�=j

wuvw′
ij

∥∥∥∥∥∥ fui√
DuuD′

ii

− fvj√
DvvD′

jj

∥∥∥∥∥∥
2

(8)

Obviously, the smoothness regularizer Eq.(2) is the sum of Eq.(6) and Eq.(8).
Further, we can naturally generalize this term as a linear combination of these
two components, i.e., Hf = Hintra

f + βHinter
f , where 0 ≤ β ≤ 1 is a trade-off

between these two competing constraints, which can be understood as compar-
ative reliability of inter-class information. Note that the formulation Eq.(7) is
slightly different with that used in [16]. If we use that term for our framework,
Eq.(5) can be illustrated as a random walk on the assembled bi-correlation graph
of proteins and functional categories. The matrix (I − αS′T ⊗ ST)−1 in fact is
the diffusion kernel which propagates the label information through the two-
dimensional assembled network. We omit the detail here due to out of the scope
of this paper.

4 Experiment

4.1 Setup

We construct the functional-linkage network using the protein interaction dataset
complied from BioGRID (release 2.0.58)[1]. In order to reduce the false positive,
we used only those interactions that were confirmed by at least two publications.
The largest connected component of such network consists of 2988 proteins with
15806 interactions. It is well known that the edges’ weight has a very important
influence on the results, even if networks are based on the same underlying
topology [11,10,3]. We introduce two types of schemes for applying our algorithm.

374 J.Q. Jiang

The first variant attempts to capture only qualitative functional links between
proteins by PPI. In the second scheme, we simply weighted each edge by the
number of its experiment support. In the rest of this paper, we call these variants
as ”PPI-only” and ”PPI-weight” network, respectively. We use the functional
annotation scheme taken from MIPS Funcat-2.06 that consists of 473 functional
classes (FCs) arranged in hierarchical order. Note that a protein annotated with
a FC is also annotated with all its super-classes. To avoid this biases, we consider
two different studies, one for the 66 second-level FCs (referred to as ”2-level”)
and another for the 75 informative FCs (referred to as ”infor”). We define an
informative FC as the one having (1) at least 30 proteins annotated with it and
(2) no subclass meeting the requirement [11].

4.2 Evaluation Metrics

In traditional classification problems, the standard evaluation criteria is the ac-
curacy. By contrast, we can not so simply to determine whether a prediction
is right or wrong because of the partially correct phenomenon in multi-label
learning [5]. We adopt here the widely-used performance metric, Mean Average
Precision (MAP), as suggested by TRECVID7. In addition, we also choose the
F-score to evaluate both the precision and recall together. The F-score for kth
category and the macro-average F-score are defined as

Fk =
2

∑n
u=1 ŷukyuk∑n

u=1 ŷuk +
∑n

u=1 yuk
macroF =

1
K

K∑
k=1

Fk

where ŷuk is the predicted label.

4.3 Construct Functional Category Network

The key for building functional category network is how to measure the similarity
between different FCs. Intuitively, we can use the data-driven manner via cosine
similarity

w′
ij = cos(zi, zj) =

〈zi, zj〉
‖zi‖‖zj‖

(9)

where Z = [z1, . . . , zK] = Y. Note that the hierarchical architecture of MIPS
Funcat is a tree. So we design the following biology-driven manner: (1) the
similarity between FCs in different branches equals to zero; (2) the similarity
between FCs in the same branch is defined as

w′
ij = 1/ log C(i, j) (10)

where C(i, j) denotes the number of proteins annotated with the lowest common
super-class of FC ci and cj . We refer to our methods for these two different
category networks as MCSL-d and MCSL-b hereafter.
6 ftp://ftpmips.gsf.de/catalogue/
7 http://www-nlpir.nist.gov/projects/trecvid/

ftp://ftpmips.gsf.de/catalogue/
http://www-nlpir.nist.gov/projects/trecvid/

Predicting Multiple Functions of Proteins 375

Table 1. 5-fold cross validation for five algorithms

2level infor

macroF MAP macroF MAP

PPI-only

Majority 0.3024 ± 0.0026 0.3052 ± 0.0055 0.4960 ± 0.0025 0.5035 ± 0.0078
χ2 − 11 0.3028 ± 0.0018 0.3155 ± 0.0061 0.5092 ± 0.0021 0.5164 ± 0.0069
χ2 − 2 0.1747 ± 0.0013 0.1424 ± 0.0019 0.3791 ± 0.0019 0.3323 ± 0.0023
χ2 − 3 0.1704 ± 0.0003 0.1690 ± 0.0014 0.2918 ± 0.0016 0.2885 ± 0.0050
GMC 0.2961 ± 0.0020 0.3141 ± 0.0039 0.5042 ± 0.0025 0.5135 ± 0.0066

FCflow 0.2954 ± 0.0022 0.3135 ± 0.0036 0.5033 ± 0.0024 0.5127 ± 0.0075
MCSL-b 0.3055 ± 0.0021 0.3242 ± 0.0090 0.5163 ± 0.0029 0.5319 ± 0.0075
MCSL-d 0.3167 ± 0.0040 0.3154 ± 0.0048 0.5017 ± 0.0027 0.4949 ± 0.0062

PPI-weight

Majority 0.3023 ± 0.0025 0.3245 ± 0.0033 0.5186 ± 0.0021 0.5125 ± 0.0049
GMC 0.3070 ± 0.0014 0.3225 ± 0.0051 0.5338 ± 0.0025 0.5275 ± 0.0032

FCflow 0.3071 ± 0.0013 0.3234 ± 0.0061 0.5323 ± 0.0020 0.5246 ± 0.0024
MCSL-b 0.3222 ± 0.0029 0.3354 ± 0.0051 0.5441 ± 0.0025 0.5426 ± 0.0020
MCSL-d 0.3358 ± 0.0041 0.3478 ± 0.0061 0.5333 ± 0.0024 0.5264 ± 0.0023

1 χ2 − k denotes the χ2-like score method with radius k.
2 ± means standard variation.

4.4 5-Fold Cross Validation

We test the performance using 5-fold cross-validation, i.e, these yeast proteins is
randomly divided into 5 groups, and each group, in turn, is separated from orig-
inal dataset and used for testing. In our implementation, we fixed the parameter
α = 0.99 as suggested by [19]. The trade-off parameter β is selected through
the validation process. We compare our algorithm to four state-of-the-art meth-
ods: (1) Majority approach [14], (2) χ2-like score [8], (3) GenMultiCut (GMC)
[17,10] and (4) FunctionFlow (FCflow) [11]. Note that the χ2-like score can only
perform on the ”PPI-only” network. The results are summarized in Table 1.

From these results, we have the following observations:

1. Our algorithm MCSL consistently, sometimes significantly, outperforms the
other four approaches. In particular, macroF improves about 5.86%, 2.61%,
9.93% and 3% on the 2-level ”PPI-only”, infor ”PPI-only”, 2-level ”PPI-
weight” and infor ”PPI-weight” experiment, respectively. Similarly, as ex-
pected, MAP improves about 3.89%, 3.98%, 6.54% and 4.04%, respectively.

2. Generally speaking, the metric values of infor experiment are much higher
than its counterparts of 2-level for all the approaches. The reason is that
there are fewer annotated proteins in some 2-level FCs, i.e., data sparsity
problem occurs. Typical examples are 02.10 ”tricarboxylic-acid pathway”,
20.09 ” transport routes” and 42.03 ” cytoplasm” (see Fig.2)

3. Consistent with previous works[10,11,3], edge weights of the functional-
linkage network have an important influence on the prediction results. In
our study, the macroF and MAP are improved 6.03%, 5.38% and 7.28%,
2.01% on the 2-level and infor experiment, respectively, even if the weighted
strategy is so simple.

376 J.Q. Jiang

02.10 20.09 42.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
−m

ea
su

re

PPI−only

 Majority

 χ2−1

 χ2−2

 χ2−3

 GMC

 FCflow

 MCSL−b

 MCSL−d

02.10 20.09 42.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
PPI−weight

 Majority
 GMC
 FCflow
 MCSL−b
 MCSL−d

Fig. 2. F-measure of three functional classes in 2-level where the sparsity problem oc-
curs. Clearly, the performance of our method MCSL is significantly improved compared
with other approaches. It is because proteins can receive label information from other
functional classes that are closely correlated with the category of interest.

4. For the FC similarity measure, the data-driven manner Eq.(9) achieves the
best performance on the 2-level experiment. By contrast, the biology-driven
manner Eq.(10) outperforms on the infor experiment. This phenomenon can
be explain as follows. The 2-level experiment only considers the FCs belong-
ing to the second-level of the MIPS Funcat hierarchy. Therefore, each FC
has sparse correlation with others if we use biology-driven manner since they
are under different branches; meanwhile, they are more closely correlated if
the data-driven manner utilized. Similar explanations can made for the infor
experiment.

We further check the F-measure for each functional category on both experi-
ments. Fig.2 gives the F-measures of three functional classes on 2-level experi-
ment where the sparsity problem occurs. We can see clearly that the four previous
methods almost can not successfully associate proteins with the three categories
which there are only 9,4 and 1 proteins annotated with in the functional-linkage
network. As the benefit of receiving label information from other classes that
are closely correlated with the three categories, our algorithm, as expected, sig-
nificantly improved the predictive performances. In particular, the F-measure of
MCSL-d and MCSL-b respectively improved 40.41 and 35.75 times for FC 42.03
”cytoplasm” even though there is only one protein labeled with this category.

4.5 Predict Function for Uncharacterized Proteins

There are still 204 ”unclassified proteins” in our functional-linkage network. We
further apply our algorithm MCSL-b to the ”PPI-weight” network for associ-
ated these uncharacterized proteins with ”infor” categories. Only the first ten
predictions are listed in Table 2 due to the page limits of this paper. Most of our
predictions could be found in or supported by SGD database8. For example,
8 http://www.yeastgenome.org/

http://www.yeastgenome.org/

Predicting Multiple Functions of Proteins 377

Table 2. Function predictions for the first ten uncharacterized proteins in our study.
Most of them can be found in or supported by SGD database.

ORF Predicted function SGD annotation

YAL027W
32.01.09

GO:0000736, GO:0006974
10.01.05.01

YAL053W
16.19.03 GO:0015230, GO:0015883

34.01.01.01

YBL046W 11.02.03.01.04 GO:0019888,GO:0005634

YBR025C

10.01.02

GO:0000166
10.01.03.05

10.01.05.03.01
10.01.09.05

16.19.03 GO:0016887

YBR187W
01.04

GO:0000324
14.07.03

YBR273C
14.13.01.01 GO:0006511

16.19.03 GO:0005783

YBR280C

14.01 GO:0004842, GO:0031146,GO:0019005
16.19.03

01.04
10.03.02

YDL139C
10.03.01.01.11 GO:0000086

10.03.04.05 GO:0007059

YDL204W 34.11.03.13 GO:0032541,GO:0005789,GO:0005635

YDR084C 20.09.13 GO:0016192,GO:0030173

the first protein YAL027W is associated with two functional categories 32.01.09
”DNA damage response” and 10.01.05.01 ”DNA repair”. This prediction can be
directly found in SGD database where this protein is annotated with GO:0000736
”double-strand break repair via single-strand annealing” and GO:0006974 ”re-
sponse to DNA damage stimulus”. Several predictions cannot be directly found
but supported by an indirect inference. We predict the protein YBR187W be-
longing to two classes 01.04 ”phosphate metabolism” and 14.07.03 ”modification
by phosphorylation, dephosphorylation, autophosphorylation”. In fact, such pro-
tein has been labeled with GO:0000324 ”fungal-type vacuole”. As we known, the
fungal vacuole is a large, membrane-bounded organelle that functions as a reser-
voir for the storage of small molecules (including polyphosphate, amino acids,
several divalent cations (e.g. calcium), other ions, and other small molecules)
as well as being the primary compartment for degradation. All these results
illustrate that our predictions are accuracy and effective.

5 Concluding Remarks

We propose a new semi-supervised learning framework for associating proteins
with multiple functional categories simultaneously. It can effectively overcome
the sparsity of label instance problem that previous approaches[10] often suffer

378 J.Q. Jiang

from (see Fig.2), as a benefit of taking the correlation between different labels
into account. In our implementations, during each iteration, the proteins receives
the label information not only from their neighbors annotated with the same
class in the functional-linkage network, but also from partners annotated with
other closely related classes. Therefore, our framework could be understood as a
two-dimensional version of the traditional graph-based semi-supervised learning
with local and global consistency [19]. 5-fold cross validations on a yeast protein-
protein interaction network derived from the BioGRID database show that our
algorithm can achieve superior performance compared with four state-of-the-art
approaches. Further, we assign functions to 204 uncharacterized proteins, most
of which can be directly found in or indirectly support by the SGD database.

As we known, the weight of edge has a very important influence on the pre-
diction results. The performances of our algorithm are significantly improved
even if a rather simple weighted strategy is introduced in our study. We expect
that the performance can further improved once we adopt the more compre-
hensive weighted scheme, for example, the terms used in [3,11]. We fix here the
parameter α = 0.99 as suggested by [19] and select the parameter β through the
cross validation process. In fact, choosing these two parameters is a combinato-
rial optimization problem and should be pay more attentions on it. We left all
above-mentioned issues for our further investigation.

Acknowledgments. The author would like to thank Maoying Wu and Lisa J.
McQuay for their useful discussions and comments, and the anonymous reviewers
for their constructive suggestions to improve the work.

References

1. Breitkreutz, B.J., Stark, C., Reguly, T., et al.: The BioGRID Interaction Database:
2008 update. Nucleic Acids Res. 36(Database issue), D637–D640 (2008)

2. Chen, G., Song, Y., Wang, F., Zhang, C.: Semi-supervised Multi-label Learning by
Solving a Sylvester Equation. In: SIAM International Conference on Data Mining
(2008)

3. Chua, H.N., Sung, W.K., Wong, L.: Exploiting indirect neighbours and topological
weight to predict protein function from protein-protein interactions. Bioinformat-
ics 22, 1623–1630 (2006)

4. Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210
(2002)

5. Fan, R.-E., Lin, C.-J.: A Study on Threshold Selection for Multi-label Classifica-
tion. Technical Report, National Taiwan University (2007)

6. Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz,
J., Rick, J.M., Michon, A.M., Cruciat, C.M., et al.: Functional organization of the
yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147
(2002)

7. Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford,
T.W., Hannett, N.M., Tagne, J.-B., Reynolds, D.B., Yoo, J., et al.: Transcriptional
regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)

Predicting Multiple Functions of Proteins 379

8. Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of predic-
tion accuracy of protein function from proteinCprotein interaction data. Yeast 18,
523–531 (2001)

9. Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K.,
Kuhara, S., Sakaki, Y.: Toward a protein-protein interaction map of the budding
yeast: a comprehensive system to examine two-hybrid interactions in all possible
combinations between the yeast proteins. Proc. Natl Acad. Sci. USA 97, 1143–1147
(2000)

10. Karaoz, U., Murali, T.M., Letovsky, S., Zheng, Y., Ding, C., Cantor, C.R., Kasif,
S.: Whole-genome annotation by using evidence integration in functional-linkage
networks. Proc. Natl. Acad. Sci. USA 101, 2888–2893 (2004)

11. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome pre-
diction of protein function via graph-theoretic analysis of interaction maps. Bioin-
formatics 21(Suppl 1), i302–i310 (2005)

12. Pavlidis, P., Weston, J., Cai, J., Grundy, W.N.: Gene functional classification from
heterogeneous data. In: Proceedings of the Fifth Annual International Conference
on Computational Biology. ACM Press, Montreal (2001)

13. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: As-
signing protein functions by comparative genome analysis: protein phylogenetic
profiles. Proc. Natl. Acad. Sci. USA 96, 4285–4288 (1999)

14. Schwikowski, B., Uetz, P., Fields, S.: A network of proteinCprotein interactions in
yeast. Nat. Biotechnol. 18, 1257–1261 (2000)

15. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function.
Molecular Systems Biology 3, 88 (2007)

16. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction
networks with application to functional orthology detection. Proc. Natl. Acad. Sci.
USA 105, 12763–12768 (2008)

17. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function
prediction from proteinCprotein interaction networks. Nat. Biotechnol. 21, 697–700
(2003)

18. Zha, Z., Mei, T., Wang, J., Wang, Z., Hua, X.: Graph-based semi-supervised learn-
ing with multi-label. In: IEEE International Conference on Multiamedia and Expo
(2008)

19. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B.: Learning with local
and global consistency. In: Advances in Neural Information Processing Systems
(NIPS), vol. 16, pp. 321–328. MIT Press, Cambridge (2004)

Regene: Automatic Construction of a Multiple

Component Dirichlet Mixture Priors Covariance
Model to Identify Non-coding RNA

Felipe Lessa1, Daniele Martins Neto2, Kátia Guimarães3, Marcelo Brigido4,
and Maria Emilia Walter1

1 Department of Computer Science, University of Brasilia
2 Department of Mathematics, University of Brasilia

3 Center of Informatics, Federal University of Pernambuco
4 Institute of Biology, University of Brasilia

Abstract. Non-coding RNA (ncRNA) molecules do not code for pro-
teins, but play important regulatory roles in cellular machinery. Recently,
different computational methods have been proposed to identify and clas-
sify ncRNAs. In this work, we propose a covariance model with multi-
ple Dirichlet mixture priors to identify ncRNAs. We introduce a tool,
named Regene, to derive these priors automatically from known ncR-
NAs families included in Rfam. Results from experiments with 14 fami-
lies improved sensitivity and specificity with respect to single component
priors.

1 Introduction

The classic central dogma of molecular biology says that genetic information
flows from DNA to proteins with different types of RNAs as intermediates, the
DNA storing information of the genotype, and the proteins producing pheno-
types. This orthodox view of the central dogma suggests that RNA is an auxiliary
molecule involved in all stages of protein synthesis and gene expression. But re-
cent research [7] have shown that some types of RNA may indeed regulate other
genes and control gene expression and phenotype by themselves. Many other
functions of RNAs are already known, and new functions are continuously being
discovered. Roughly speaking, RNAs can be divided into two classes, mRNAs
– which are translated into proteins, and non-coding RNAs (ncRNAs) – which
play several important roles besides protein coding in the cellular machinery.

Supporting the biologists findings to distinguish mRNAs from ncRNAs, re-
cently, many computational methods based on different theories and models
have been proposed. It is remarkable that methods that successfully identified
mRNAs, such as BLAST, in general fail when used to identify ncRNAs, al-
though they work in some cases [13]. Examples of these models use thermody-
namics [19,10], Support Vector Machine (SVM) like CONC [12], CPC [11] and
PORTRAIT [2], or Self-Organizing Maps [17].

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 380–391, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Regene: Automatic Construction of a Multiple Component Dirichlet 381

Particularly, for the problem of RNA similarity search, Eddy et al. [6] proposed
a covariance model (CM) and implemented it in the tool Infernal (from INFEr-
ence of RNA aLignment) [15]. Infernal is used by the Rfam [8] database, which
is continously growing, but contains 1,372 RNA families in its current version
9.1. Nawrocki and Eddy [14] obtained better sensitivity and specificity results
including informative Dirichlet priors through the use of Bayesian inference. The
principle of this theory is to combine prior information with information obtained
from the sample (likelihood) to construct the posterior distribution, which syn-
thesizes all the information. So, this method adds, in a transparent way, prior
knowledge to the data. Priors play a key role in this case, since they allow to
include subjective information and knowledge about the analyzed problem. Infor-
mative prior expresses specific information about a variable, and non-informative
prior refers to vague and general information about this variable.

The objectives of this work are to create a new tool to automatically derive
priors and to evaluate the use of Dirichlet mixture priors with more than one
component in CMs. The main justification is to make more precise the identifi-
cation of this CM transition distribution within empirical data. The tool Regene
(from the character Regene Regetta of the japanese anime Gundam 00 and gene)
to derive the Dirichlet mixture priors from Rfam is built, as well as a module to
automatically draw the CM and the parse tree diagrams.

In Section 2, we describe CMs, particularly the CM proposed by Eddy and
Durbin [6] that was used in the tests. In Section 3, we first show how the Dirichlet
mixture priors are estimated using the Expectation-Maximization (EM) method,
and then describe the Conjugate Gradient Descent method, used to minimize
the objective function. In Section 4, we present our method and show some im-
plementation details. In Section 5, we discuss experiments with 14 Rfam families
and compare the obtained results with those of Nawrocki and Eddy [14]. Finally,
in Section 6, we conclude and suggest future work.

2 Covariance Models

The covariance model (CM) proposed by Eddy and Durbin [6] represents a
specific family of non-coding RNAs. These CM s are a subset of the stochastic
context-free grammars (SCFGs), called a “profile SCFG” [5]. The main types of
production used in these CMs are P → aXb for base pairs in a stem, L → aX and
R → Xb for single stranded bases, and B → SS for bifurcations that are used
to separate a loop with multiple stems. Each non-terminal is called a “state”,
and terminals (i.e. bases of the sequences) are called “emissions”, noting that
this terminology has been borrowed from hidden Markov models (HMMs) [4].

These grammars are “profiles” because states are mechanically constructed
from the secondary structure consensus. A “guide tree” is then built, where the
nodes represent single stranded bases, base pairs, and loops with multiple stems.

For example, in Figure 1 we present the consensus secondary structure of
a fictitious family of tRNAs and the generated data structures. In this figure,
MATP nodes represent both sides of a stem, and two BIF nodes are used to rep-
resent the internal loop. See Eddy [5] for a detailed explanation about the CM

382 F. Lessa et al.

building process. We note that the guide tree diagrams shown in this figure were
automatically created by our Regene tool (regene-diagrams module).

We now explain how the model is used. Each state may emit zero, one or
two bases and indicate a set of allowed transitions. We generate RNA sequences
from the model by “walking” through the states, collecting its emissions. Each
“walk” is called a parse tree.

Parse trees may be used to align a new sequence to an existing CM. Although
there are possibly many parse trees that emit a given sequence, each parse tree
has an associated probability, which allows us to find the tree presenting the
highest probability. However, in this paper we are more interested in a particular
type of a parse tree, named fake parse tree [1]. It is constructed by walking
over consensus-representing states, not including probability values, and going
to insertion or deletion states only when that column of the sequence is not in
the consensus. In Figure 2 we show the diagrams of fake parse trees constructed
from the CM shown in Figure 1.

In order to calculate the probabilities of a CM, a fake parse tree is created
for each one of the sequences in the multiple alignment. The transitions and
emissions generated in each state of all parse trees are counted, and these counts
are then converted into probabilites using the posterior Dirichlet mixture prob-
abilites as described in Sections 3 and 4.

Fake parse trees are used to obtain the Dirichlet mixture priors in a first step.
For every family of the corresponding set used for training, a CM and its fake
parse trees are constructed. Instead of observing transition counts of individual
states, transitions of a particular type are counted [14]. Each type defines the
guide tree node, the origin state of a transition, and its destination node. For
example, transitions of type “MATL/D → MATR” may go to IL, MR or D state
type. Each family count is then used as a training vector for the corresponding
Dirichlet mixture.

3 Dirichlet Mixture Priors

To identify ncRNAs using CMs, it is essential to estimate the transition pa-
rameters. In Infernal [15], transition parameters are mean posterior estimates,
combining observed counts from an input that is a RNA multiple alignment with
an informative Dirichlet prior. Nawrocki and Eddy [14] use this prior through a
Dirichlet mixture with a single component, based on the fact that they accurately
predict target subsequence lengths, mainly when there are few query alignments
sequences. The use of informative priors is more efficient for a small number of
observations. Considering this, and with the purpose of facilitating the identifica-
tion of transitions within empirical data, we use as informative prior a mixture of
Dirichlet densities with more than one component. Sjölander et al. [18] has used
such a tool for estimating amino acids distributions. In this work, we estimate
the transition probabilities of a CM in the process of identifying ncRNAs.

Following we present the model and the structure used to obtain the transition
estimates of a CM, and after that the CG DESCENT method to minimize the
objective function.

Regene: Automatic Construction of a Multiple Component Dirichlet 383

Fig. 1. Diagrams of a fictitious tRNA family extracted from the trna.5.sto file of
Infernal’s tutorial, noting that (b) and (c) were automatically drawn by Regene. (a)
The consensus secondary structure. Dashed lines show bifurcations created by BIF

nodes to separate stems. (b) The corresponding guide tree. (c) The CM created from
this guide tree.

384 F. Lessa et al.

F
ig

.
2
.

(a
)

M
u

lt
ip

le
se

q
u

en
ce

a
li
g
n

m
en

t
o
f

th
e

C
M

sh
ow

n
in

F
ig

u
re

1
.

(b
)

D
ia

g
ra

m
s

o
f

th
e

fa
k
e

p
a
rs

e
tr

ee
s

fo
r

th
e

th
re

e
se

q
u

en
ce

s,
tR

N
A

1
,

tR
N

A
2

a
n

d
tR

N
A

3
,

cr
ea

te
d

b
y

R
eg

en
e

(r
e
g
e
n
e
-
d
i
a
g
r
a
m
s

m
o
d

u
le

).

Regene: Automatic Construction of a Multiple Component Dirichlet 385

3.1 Obtaining the Mixture Prior

Let N = (N1, . . . , Nm) be a random vector of transition counts, where Ni is
a random number of times that each ith transition occurs. Assume that N is
multinomial distributed with a parameter p. In this case, p = (p1, . . . , pm) is the
vector of transition probabilities to be estimated, where pi is the ith transition
probability, and m is the fixed number of transitions.

The Bayesian approach is used, with some prior knowledge of p, to estimate
the transition parameters p1, . . . , pm. In this paper, we consider that the prior
density of p, denoted by ρ, is the following Dirichlet mixture density:

ρ = q1ρ1 + · · · + qlρl , (1)

where each ρj is a single Dirichlet density with parameter αj = (αj1, . . . , αjm),
with αji > 0, i = 1, . . . , m, qj > 0, and

∑l
j=1 qj = 1. The ρj densities are called

mixture components, and the qj values are called mixture coefficients. The entire
set of parameters defining a prior in the case of a mixture, which are obtained
from the Rfam database, is Θ = (α1, . . . , αl, q1, . . . , ql).

The p̂i estimated probability of the ith transition is the mean posterior esti-
mate, given by:

p̂i = E(pi | N = n) =
l∑

j=1

P (αj | N = n)
αji + ni

αj0 + n0
, (2)

where n0 =
∑m

i=1 ni, αj0 =
∑m

i=1 αji, and n = (n1, . . . , nm) is the data observed
from variable N. Probability P (αj | N = n), calculated from the Bayes rule,
with P (N = n | Θ, n0) =

∑l
k=1 qkP (N = n | αk, n0), is:

P (αj | N = n) =
qjP (N = n | αj , n0)
P (N = n | Θ, n0)

. (3)

From the model, and taking Γ (.) as the Gamma function, we have:

P (N = n | αj , n0) =
Γ (n0 + 1)Γ (αj0)

Γ (n0 + αj0)

m∏
i=1

Γ (ni + αji)
Γ (ni + 1)Γ (αji)

. (4)

Note that, in the case of a single-component density (l = 1), we have Θ =
α = (α1, . . . , αm) and the estimate for the ith transition probability is:

p̂i = E(pi | N = n) =
αi + ni

α0 + n0
. (5)

In this context, to introduce prior knowledge about p through the density
ρ, it is necessary to inform about Θ. Therefore, we have used the maximum
likelihood estimator for Θ, observing the count vectors of the ncRNA families of
the Rfam database.

386 F. Lessa et al.

Given a set of r fake parse trees, which are constructed from r Rfam fam-
ilies, we get a count vector of transitions for each family, based on the mul-
tiple alignment obtained for each family. The result is a set of count vectors
n1 = (n11, . . . , n1m) , . . . ,nr = (nr1, . . . , nrm), where nji is the number of times
that the ith transition occurs in the jth fake parse tree.

Our objective is to estimate, using maximum likelihood, the parameters of
mixture priors obtained from the set of count vectors. Therefore, we want to find
Θ that maximizes

∏r
t=1 P (N = nt | Θ, nt0), where nt0 =

∑m
i=1 nti, or equiva-

lently, Θ that minimizes the following objective function:

f (Θ) = −
r∑

t=1

log P (N = nt | Θ, nt0) . (6)

Next, we present the procedure to estimate the parameters of the mixture pri-
ors, using the EM (expectation-maximization) algorithm, which has been shown
to be efficient to find the maximum likelihood estimate in such cases (see Duda
and Hart [3]).

In a mixture density, there are two sets of parameters, αj and qj , j = 1, . . . , l,
that are jointly estimated in an iterative two steps process. First one is estimated,
keeping the other fixed, and then the process is reverted. Next, we present two
procedures to separately estimate each set of parameters. For more details, see
Sjölander et al. [18].

Estimating the α Parameters. The αji parameters are strictly positive and
we use the CG DESCENT method (see Section 3.2) to estimate them via EM. In
this case, a reparametrization is needed, which takes αji = ewji , where wji is
a real number with no restrictions. Thus, the partial derivate of the objective
function with respect to wji, taking Ψ(.) = Γ ′(.)

Γ (.) as the digamma function, is:

∂f (Θ)
∂wji

= −
r∑

t=1

∂ log P (N = nt | Θ, nt0)
∂αji

αji (7)

= −
r∑

t=1

αji [Ψ (αj0) − Ψ (nt0 + αj0) + Ψ (nti + αji) − Ψ (αji)] . (8)

Estimating the q Parameters. To estimate the mixture coefficients qj , j =
1, . . . , l, which must be non-negative and sum to 1, a reparametrization is also
needed. Let qj = Qj

Q0
, where Qj is strictly positive and Q0 =

∑
j Qj. The partial

derivate of the objective funtion with respect to Qj is:

∂f (Θ)
∂Qj

= −
r∑

t=1

∂ log P (N = nt | Θ, nt0)
∂Qj

=
m

Q0
−

∑r
t=1 P (αj | N = nt)

Qj
. (9)

Regene: Automatic Construction of a Multiple Component Dirichlet 387

It follows that the maximum likelihood estimate of Qj is:

Q̂j =
Q0

r

r∑
t=1

P (αj | N = nt) , (10)

and hence the estimate for qj is:

q̂j =
Qj

Q0
=

1
r

r∑
t=1

P (αj | N = nt) . (11)

3.2 Conjugate Gradient Method

EM method requires minimization of the objective function. Since the objective
function is not simple, analytic methods are not good choices to compute its
minimum. Instead, we compute its gradient and iteratively optimize it.

There are many different ways of optimizing a nonlinear function. Sjölander
et al. [18] suggested a gradient descent method, while Nawrocki used a nonlinear
conjugate gradient method with the Polak-Ribière formula [14]. We used the
nonlinear conjugate gradient method proposed by Hager and Zhang [9], called
CG DESCENT. This relatively new method was chosen for two reasons. First, it
performs well on a set of different nonlinear functions. The other advantage
is that the CG DESCENT 3.0 library, written by the authors, is robust, fast and
well-tested.

4 Multiple Component Dirichlet Mixture Priors

We first present our method and then important implementation details.

4.1 Regene Method

We created the new Regene tool that combines the techniques described in the
previous sections into a complete program that maps a set of ncRNA families into
a Dirichlet mixture. Particularly, we used the EM method for Dirichlet mixtures
and the CG DESCENT method (Section 3), and counted the transitions of CMs
built from those ncRNA families (Section 2). Note that we did not estimate the
emission priors, but the transition priors. We used the same emission priors from
Nawrocki and Eddy [14].

We first inform the objective function and its gradient as a black box to the
CG DESCENT method, that implements the EM method. EM method was used
with our countings in a similar way. Since each counting has a meaning, we
used these countings as training sequences for the EM method. We did not
need to code any knowledge about CMs in our EM method, nor change our
counting method to estimate the Dirichlet mixtures. In a nutshell, we separately
implemented each module, and combined them through a pipeline (Figure 3).

388 F. Lessa et al.

Rfam
families

Covariance
models

Parse trees
Count
vectors

EMCG DESCENT New prior

Fig. 3. The Regene tool pipeline to derive a multiple component Dirichlet mixture
prior. The new prior is used to construct CMs.

4.2 Regene Implementation Details

The pipeline of Figure 3 was developed in 5,900 source lines of code in the Haskell
language. Bindings were created to use the CG DESCENT 3.0 library with Haskell
functions, which were packed with the name nonlinear-optimization.

The EM method was implemented into a generic library that may be used
for any kind of Dirichlet density or mixture. It is now hardcoded to use the
CG DESCENT method, although another method could be easily used as well. The
library is packed into the statistics-dirichlet library.

Counting the transitions is somewhat more involved, as there are many details
to be considered. Infernal has a non documented option for printing the counts
of a given family, as clarified by personal communication with E. Nawrocki. We
reimplemented whatever needed into the regene library, from parsers of the
Stockholm file format (used to store the ncRNA families’ data) to CM data
structures. Using the library, we created the regene-priori program that glues
everything together.

As a nice result of our reimplementation of the data structures, we also created
the regene-diagrams program. It may be used to create diagrams of guide trees,
CMs (in a flat or in a graph-like view) and fake parse trees. Besides having an
easy-to-use graphical user interface, it also has a console interface that may be
used to automatically create diagrams from other programs, such as a website.
Our code is available in the Hackage’s public repository under the free GNU
Public License (GPL) [16].

Unfortunately, the objective function did not behave very well in all cases.
Sometimes, CG DESCENT would find solutions with high α value, especially when
dealing with a high number of components. High α values imply that data from
the specific family would not be used. Our implementation allows to discard
values above a given threshold. In our experiments, we used threshold 104.

5 Results and Discussion

To measure the sensitivity and specificity of our priors, we used the same cmark-1
benchmark used by Nawrocki and Eddy [14], which is included in Infernal. From
the seed alignments of Rfam 7.0, they selected 51 families, from which we used 14
families in our tests. These families were chosen due to their different sequence

Regene: Automatic Construction of a Multiple Component Dirichlet 389

Table 1. Minimum error rate (MER) calculated from our tests. Column “#QSs”
represent the number of query sequences, column “N” is the MER using Nawrocki’s
prior. Columns “A1”, “A2”, “A3”, “A4”, “A5” and “A10” show the MER using our
priors constructed from Rfam 6.1 data (same data as Nawrocki’s) with 1, 2, 3, 4, 5
and 10 components, respectively. Columns “B1” to “B10” show the MER using priors
constructed from Rfam 9.1 data with 1 to 10 components.

Rfam 7.0 family Using Rfam 6.1 Using Rfam 9.1
ID Name #QSs N A1 A2 A3 A4 A5 A10 B1 B2 B3 B4 B5 B10

RF00004 U2 76 0 0 0 0 0 0 0 0 0 0 0 0 0
RF00009 RNaseP nuc 26 19 19 19 19 19 19 19 19 19 19 19 19 19
RF00011 RNaseP bact b 30 0 0 0 0 0 0 0 0 0 0 0 0 0
RF00017 SRP euk arch 28 7 6 6 6 6 6 6 9 9 8 9 9 9
RF00023 tmRNA 19 12 11 13 11 11 11 11 11 11 11 11 11 11
RF00029 Intron gpII 7 2 1 1 1 1 1 1 2 1 2 2 2 1
RF00030 RNase MRP 18 3 3 3 3 3 3 3 3 3 3 3 3 3
RF00031 SECIS 11 16 17 17 17 16 17 17 19 19 19 19 19 19
RF00037 IRE 36 1 1 1 1 1 1 1 1 1 1 1 1 1
RF00168 Lysine 33 0 0 0 0 0 0 0 0 0 0 0 0 0
RF00174 Cobalamin 87 0 0 0 0 0 0 0 0 0 0 0 0 0
RF00177 SSU rRNA 5 145 3 4 4 4 4 4 4 4 4 4 4 0 4
RF00234 glmS 8 0 0 0 0 0 0 0 0 0 0 0 0 0
RF00448 IRES EBNA 7 1 1 1 1 1 1 1 1 1 1 1 1 1

Summed across all families 64 63 65 63 62 63 63 69 68 68 69 65 68
Summary MER statistics 78 76 79 78 76 74 76 79 78 78 79 77 79

lengths and distinct biological functions. They also used some sequences to cre-
ate CMs for the benchmark, while others were used as test sequences. Those
test sequences were inserted into a 1 Mb pseudo-genome with independent and
identically distributed background distribution of bases. The test consists in the
use of the CMs to find those test sequences. Results were reported as minimum
error rate (MER), the sum of the number of false positives and false negatives
for the best found threshold. We did exactly the same steps to realize our tests.

But while Nawrocki and Eddy [14] used Infernal v0.72 bit scores, we used
Infernal v1.0 E-values, and then we had to “calibrate” the CMs. Therefore, our
results were slightly different, although using the same data. E-values were cho-
sen since they present the best criterion regarding to statistical significance [1].
Besides, biologists commonly use E-values when analyzing the Infernal results.

The results for Nawrocki’s prior and twelve priors created by regene-priori
are presented in Table 1. In the line ”Summary MER statistics”, note that,
among the priors constructed with Rfam 6.1 data, we reach the optimal point
with 5 components (column “A5”, presenting the lowest “Summary MER Statis-
tics”), which is the best prior data that we tested. Priors constructed using
Rfam 9.1 data did not behave very well in the tests, with the best one having
5 components (column “B5”). Perhaps that could be explained by the fact that
the tests used the Rfam 7.0 families.

390 F. Lessa et al.

Fig. 4. ROC curves for representatives priors. (a) Comparisons of our priors A1, A5
and A10. (b) Comparisons of our A1 and A5 priors with Nawrocki’s (N).

Figure 4 shows two ROC curves for the most representative priors, as indicated
in the “Summary MER Statistics” line of Table 1. ROC curves show how the
sensitivity increases while the specificity decreases. The right part of the graphics
show that high specificity leads to low sensitivity, while the left part shows
that most sequences can be found with low specificity. Figure 4(a) shows that
multiple component mixtures improve sensitivity and specificity relative to the
single component mixture. Note that the mixture with 10 components (A10)
does not improve the mixture with 5 components (A5), so using more than 5
components is not necessary. Besides, our 5 component prior slightly improved
Nawrocki’s single component prior (N). However, Figure 4(b) shows that our
single component prior (A1) is worse when compared to the one obtained by
Nawrocki, although both priors were constructed from the same Rfam 6.1 data.
This result could be explained by the fact that the estimation methods are
different. We believe that using more than one component in the method used
by Nawrocki and Eddy [14] would improve their results.

6 Conclusions and Future Work

In this work we created a new tool to automatically derive priors and evaluated
the use of Dirichlet mixture priors with more than one component in CMs. We
built a tool named Regene to automatically derive the priors from Rfam data,
as well as a module to automatically draw guide trees, Eddy’s CMs (in a flat or
in a graph-like view) and fake parse trees. Experiments were done with 14 Rfam
families, comparing 13 different priors – with 1, 2, 3, 4, 5 and 10 components
using Rfam 6.1 and Rfam 9.1 data, and with Nawrocki’s prior with 1 component.
The use of multiple components improved sensitivity and specificity.

We plan to run experiments using Rfam 9.1 instead of Rfam 7.0, and also to
extend the experiments to more families. We will also look into other estimation
methods such as Monte-Carlo EM, which could improve the results.

Acknowledgements

FL, DMN and MEW thank Brazilian sponsoring agency FINEP, and KG, MB
and MEW thank Brazilian sponsoring agency CNPq for financial support.

Regene: Automatic Construction of a Multiple Component Dirichlet 391

References

1. The Infernal’s user guide, http://infernal.janelia.org/
2. Arrial, R., Togawa, R., Brigido, M.: Screening non-coding RNAs in transcriptomes

from neglected species using PORTRAIT: case study of the pathogenic fungus
Paracoccidioides brasiliensis. BMC Bioinformatics 10, 239 (2009)

3. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley,
Chichester (1973)

4. Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998)
5. Eddy, S.R.: A memory-efficient dynamic programming algorithm for optimal align-

ment of a sequence to an RNA secondary structure. BMC Bioinformatics 3, 18
(2002)

6. Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nucleic
Acids Research 22(11), 2079–2088 (1994)

7. Griffiths-Jones, S.: Annotating Noncoding RNA Genes. Annu. Rev. Genomics
Hum. Genet. 8, 279–298 (2007)

8. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., Bateman,
A.: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Re-
search 33, D121–D124 (2005), http://www.sanger.ac.uk/Software/Rfam/

9. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed de-
scent and an efficient line search. SIAM J. on Optimization 16(1), 170–192 (2005)

10. Hofacker, I.L., Fekete, M., Stadler, P.F.: Secondary Structure Prediction for
Aligned RNA Sequences. Journal of Molecular Biology 319(5), 1059–1066 (2002)

11. Kong, L., Zhang, Y., Ye, Z.-Q., Liu, X.-O., Zhao, S.-O., Wei, L., Gao, G.: CPC: as-
sess the protein-coding potential of transcripts using sequence features and support
vector machine. Nucleic Acids Res. 35, 345–349 (2007)

12. Liu, J., Gough, J., Rost, B.: Distinguishing protein-coding from non-coding RNAs
through Support Vector Machines. PLoS Genet. 2(4), e29–e36 (2006)

13. Mount, S.M., Gotea, V., Lin, C.F., Hernandez, K., Makalowski, W.: Spliceosomal
Small Nuclear RNA Genes in Eleven Insect Genomes. RNA 13, 5–14 (2007)

14. Nawrocki, E.P., Eddy, S.R.: Query-Dependent Banding (QDB) for Faster RNA
Similarity Searches. PLoS Computational Biology 3(3), e56 (2007)

15. Nawrocki, E.P., Kolbe, D.L., Eddy, S.R.: Infernal 1.0: Inference of RNA alignments.
Bioinformatics 25, 1335–1337 (2009)

16. Regene, http://regene.exatas.unb.br
17. Silva, T.C., et al.: SOM-PORTRAIT: Identifying Non-coding RNAs Using Self-

Organizing Maps. In: Guimarães, K.S., Panchenko, A., Przytycka, T.M. (eds.)
BSB 2009. LNCS, vol. 5676, pp. 73–85. Springer, Heidelberg (2009)

18. Sjölander, K., et al.: Dirichlet mixtures: a method for improved detection of weak
but significant protein sequence homology. Computer Applications in the Bio-
sciences 12(4), 327–345 (1996)

19. Zucker, M., Matthews, D.H., Turner, D.H.: Algorithms and thermodynamics for
RNA secondary structure prediction: A practical guide. In: RNA Biochemistry and
Biotechnology. NATO ASI Series, pp. 11–43. Kluwer Academic, Dordrecht (1999)

http://infernal.janelia.org/
http://www.sanger.ac.uk/Software/Rfam/
http://regene.exatas.unb.br

Accurate Estimation of Gene Expression Levels

from DGE Sequencing Data

Marius Nicolae and Ion Măndoiu

Computer Science & Engineering Department, University of Connecticut
371 Fairfield Way, Storrs, CT 06269
{man09004,ion}@engr.uconn.edu

Abstract. Two main transcriptome sequencing protocols have been pro-
posed in the literature: the most commonly used shotgun sequencing of
full length mRNAs (RNA-Seq) and 3’-tag digital gene expression (DGE).
In this paper we present a novel expectation-maximization algorithm,
called DGE-EM, for inference of gene-specific expression levels from DGE
tags. Unlike previous methods, our algorithm takes into account alter-
native splicing isoforms and tags that map at multiple locations in the
genome, and corrects for incomplete digestion and sequencing errors.
The open source Java/Scala implementation of the DGE-EM algorithm
is freely available at http://dna.engr.uconn.edu/software/DGE-EM/.

Experimental results on real DGE data generated from reference RNA
samples show that our algorithm outperforms commonly used estima-
tion methods based on unique tag counting. Furthermore, the accuracy
of DGE-EM estimates is comparable to that obtained by state-of-the-art
estimation algorithms from RNA-Seq data for the same samples. Results
of a comprehensive simulation study assessing the effect of various ex-
perimental parameters suggest that further improvements in estimation
accuracy could be achieved by optimizing DGE protocol parameters such
as the anchoring enzymes and digestion time.

1 Introduction

Massively parallel transcriptome sequencing is quickly replacing microarrays as
the technology of choice for performing gene expression profiling due to its wider
dynamic range and digital quantitation capabilities. However, accurate estima-
tion of expression levels from sequencing data remains challenging due to the
short read length delivered by current sequencing technologies and still poorly
understood protocol- and technology-specific biases. To date, two main tran-
scriptome sequencing protocols have been proposed in the literature. The most
commonly used one, referred to as RNA-Seq, generates short (single or paired)
sequencing tags from the ends of randomly generated cDNA fragments. An al-
ternative protocol, referred to as 3’-tag Digital Gene Expression (DGE), or high-
throughput sequencing based Serial Analysis of Gene Expression (SAGE-Seq),
generates single cDNA tags using an assay including as main steps transcript
capture and cDNA synthesis using oligo(dT) beads, cDNA cleavage with an an-
choring restriction enzyme, and release of cDNA tags using a tagging restriction

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 392–403, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://dna.engr.uconn.edu/software/DGE-EM/

Accurate Estimation of Gene Expression Levels from DGE Sequencing Data 393

enzyme whose recognition site is ligated upstream of the recognition site of the
anchoring enzyme.

While computational methods for accurate inference of gene (and isoform)
specific expression levels from RNA-Seq data have attracted much attention re-
cently (see, e.g., [4,6,8]), analysis of DGE data still relies on direct estimates
obtained from counts of uniquely mapped DGE tags [1,10]. In part this is due to
salient features of the DGE protocol, which, unlike RNA-Seq, guarantees that
each mRNA molecule in the sample generates at most one tag and obviates
the need for length normalization. Nevertheless, ignoring ambiguous DGE tags
(which, due to the severely restricted tag length, can represent a sizeable fraction
of the total) is at best discarding useful information, and at worst may result in
systematic inference biases. In this paper we seek to address this shortcoming of
existing methods for DGE data analysis. Our main contribution is a rigorous sta-
tistical model of DGE data and a novel expectation-maximization algorithm for
inference of gene and isoform expression levels from DGE tags. Unlike previous
methods, our algorithm, referred to as DGE-EM, takes into account alternative
splicing isoforms and tags that map at multiple locations in the genome, and cor-
rects for incomplete digestion and sequencing errors. Experimental results show
that DGE-EM outperforms methods based on unique tag counting on a multi-
library DGE dataset consisting of 20bp tags generated from two commercially
available reference RNA samples that have been well-characterized by quanti-
tative real time PCR as part of the MicroArray Quality Control Consortium
(MAQC).

We also take advantage of the availability of RNA-Seq data generated from
the same MAQC samples to directly compare estimation performance of the
two transcriptome sequencing protocols. While RNA-Seq is clearly more pow-
erful than DGE at detecting alternative splicing and novel transcripts such as
fused genes, previous studies have suggested that for gene expression profiling
DGE may yield accuracy comparable to that of RNA-Seq at a fraction of the cost
[7]. We find that the two protocols achieve similar cost-normalized accuracy on
the MAQC samples when using state-of-the-art estimation methods. However,
the current protocol versions are unlikely to be optimal. Indeed, the results of a
comprehensive simulation study assessing the effect of various experimental pa-
rameters suggest that further improvements in DGE accuracy could be achieved
by using anchoring enzymes with degenerate recognition sites and using partial
digest of cDNA with the anchoring enzyme during library preparation.

2 DGE Protocol

The DGE protocol generates short cDNA tags from a mRNA population in
several steps (Figure 1). First, PolyA+ mRNA is captured from total RNA using
oligo-dT magnetic beads and used as template for cDNA synthesis. The double
stranded cDNA is then digested with a first restriction enzyme, called Anchoring
Enzyme (AE), with known sequence specificity (e.g., the NlaIII enzyme cleaves
cDNA at sites at which the four nucleotide motif CATG appears). We refer to

394 M. Nicolae and I. Măndoiu

Cleave with anchoring enzyme (AE)

Attach primer for tagging enzyme (TE)

Cleave with tagging enzyme

AAAAA

AAAAACATG

AE

TCCRAC AAAAACATGC G

AETE

CATG

Map tags

A B C D E

Fig. 1. Schematic representation of the DGE protocol

12k …
3’5’

AE site

MRNA

Tag formation
probability

pp(1-p)p(1-p)k-1

Fig. 2. Tag formation probability: p for the rightmost AE site, geometrically decreasing
for subsequent sites

the cDNA sites cleaved by the anchoring enzyme as AE sites. The recognition
site of a second restriction enzyme, called Tagging Enzyme (TE) is ligated to
the fragments of cDNA that remain attached to the beads after cleavage with
the AE, immediately upstream of the AE site. The cDNA fragments are then
digested with TE, which cleaves several bases away from its recognition site.
This results in very short cDNA tags (10 to 26 bases long, depending on the
TE used), which are then sequenced using any of the available high-throughout
technologies.

Since the recognition site of AE is only 4 bases long, most transcripts contain
multiple AE sites. Under perfect experimental conditions, full digest by AE
would ensure that DGE tags are generated only from the most 3′ AE site of
each transcript. In practice some mRNA molecules release tags from other AE
sites, or no tag at all. As in [10], we assume that the cleavage probability of the
AE, denoted by p, is the same for all AE sites of all transcripts. Since only the
most 3′ cleaved AE site of a transcript releases a DGE tag, the probability of
generating a tag from site i = 1, . . . , k follows a geometric distribution with ratio
1 − p as shown in Figure 2, where sites are numbered starting from the 3′ end.
Note that splicing isoforms of a gene are likely to share many AE sites. However,
the probability of generating a tag from a site is isoform specific since it depends
on the number downstream AE sites on each isoform. Thus, although the primary
motivation for this work is inference of gene expression levels from DGE tags, the
algorithm presented in next section must take into account alternative splicing
isoforms to properly allocate ambiguous tags among AE sites.

Accurate Estimation of Gene Expression Levels from DGE Sequencing Data 395

3 DGE-EM Algorithm

Previous studies have either discarded ambiguous DGE tags (e.g. [1,10]) or used
simple heuristic redistribution schemes for rescuing some of them. For example,
in [9] the rightmost site in each transcript is identified as a “best” site. If a tag
matches several locations, but only one of them is a best site, then the tag is
assigned to that site. If a tag matches multiple locations, none of which is a best
site, the tag is equally split between these locations. In this section we detail
an Expectation Maximization algorithm, referred to as DGE-EM, that proba-
bilistically assigns DGE tags to candidate AE sites in different genes, different
isoforms of the same gene, as well as different sites within the same isoform.

In a pre-processing step, a weight is assigned to each (DGE tag, AE site) pair,
reflecting the conditional probability of the tag given the site that releases it. This
probability is computed from base quality scores assuming that sequencing errors
at different tag positions arise independently of one another. Formally, the weight
for the alignment of tag t with the jth rightmost AE site in isoform i is wt,i,j ∝∏|t|

k=1[(1−εk)Mtk
+ εk

3 (1−Mtk
)], where Mt,k is 1 if position k of tag t matches the

corresponding position at site j in the transcript, 0 otherwise, while εk denotes
the error probability of the k-th base of t, derived from the corresponding Phred
quality score reported by the sequencing machine. In practice we only compute
these weights for sites at which a tag can be mapped with a small (user selected)
number of mismatches, and assume that remaining weights are 0. To each tag t
we associate a “tag class” yt which consists of the set of triples (i, j, w) where i
is an isoform, j is an AE site in isoform i, and w > 0 is the weight associated
as above to tag t and site j in isoform i. The collection of tag classes, y = (yt)t,
represents the observed DGE data.

Let m be the number of isoforms. The parameters of the model are the rela-
tive frequencies of each isoform, θ = (fi)i=1,...,m. Let ni,j denote the (unknown)
number of tags generated from AE site j of isoform i. Thus, x = (ni,j)i,j repre-
sents the complete data. Denoting by ki the number of AE sites in isoform i, by
Ni =

∑ki

j=1 ni,j the total number of tags from isoform i, and by N =
∑m

i=1 Ni

the total number of tags overall, we can write the complete data likelihood as

g(x|θ) ∝
m∏

i=1

ki∏
j=1

[
fi(1 − p)j−1p

S

]ni,j

(1)

where S =
∑m

i=1

∑ki

j=1 fi(1 − p)j−1p =
∑m

i=1 fi

(
1 − (1 − p)ki

)
. Put into words,

the probability of observing a tag from site j in isoform i is the frequency of that
isoform (fi) times the probability of not cutting at any of the first j − 1 sites
and cutting at the jth [(1− p)j−1p]. Notice that the algorithm effectively down-
weights the matching AE sites far from the 3′ end based on the site probabilities
shown in Figure 2. Since for each transcript there is a probability that no tag is
actually generated, for the above formula to use proper probabilities we have to
normalize by the sum S over all observable AE sites.

396 M. Nicolae and I. Măndoiu

Taking logarithms in (1) gives the complete data log-likelihood:

log g(x|θ) =
m∑

i=1

ki∑
j=1

ni,j [log fi + (j − 1) log (1 − p) + log p − log S] + constant

=
m∑

i=1

ki∑
j=1

ni,j [log fi + (j − 1) log(1 − p)]

+ N log p − N log

(
m∑

i=1

fi

(
1 − (1 − p)ki

))
+ constant

3.1 E-Step

Let ci,j = {yt|∃w s.t. (i, j, w) ∈ yt} be the collection of all tag classes that are
compatible with AE site j in isoform i. The expected number of tags from each
cleavage site of each isoform, given the observed data and the current parameter
estimates θ(r), can be computed as

n
(r)
i,j := E(ni,j |y, θ(r)) =

∑
yt∈ci,j ,(i,j,w)∈yt

fi(1 − p)j−1pw∑
(l,q,z)∈yt

fl(1 − p)q−1pz
(2)

This means that each tag class is fractionally assigned to the compatible isoform
AE sites based on the frequency of the isoform, the probability of cutting at
the cleavage sites where the tag matches, and the confidence that the tag comes
from each location.

3.2 M-Step

In this step we want to select θ that maximizes the Q function,

Q(θ|θ(r)) = E
[
log g(x|θ)|y, θ(r)

]
=

m∑
i=1

ki∑
j=1

n
(r)
i,j [log fi + (j − 1) log(1 − p)]

+ N log p − N log

(
m∑

i=1

fi

(
1 − (1 − p)ki

))
+ constant

Partial derivatives of the Q function are:

δQ(θ|θ(r))
δfi

=
1
fi

ki∑
j=1

n
(r)
i,j + N

1 − (1 − p)ki∑m
l=1 fl (1 − (1 − p)kl)

Letting C = N/(
∑m

l=1 fl

(
1 − (1 − p)kl

)
) and equating partial derivatives to 0

gives

N
(r)
i

fi
+ C

(
1 − (1 − p)ki

)
= 0 =⇒ fi = − N

(r)
i

C (1 − (1 − p)ki)

Accurate Estimation of Gene Expression Levels from DGE Sequencing Data 397

Since
∑m

i=1 fi = 1 it follows that

fi =
N

(r)
i

1 − (1 − p)ki

(
m∑

l=1

N
(r)
l

1 − (1 − p)kl

)−1

(3)

3.3 Inferring p

In the above calculations we assumed that p is known, which may not be the case
in practice. Assuming the geometric distribution of tags to sites, the observed
tags of each isoform provide an independent estimate of p [10]. However, the
presence of ambiguous tags complicates the estimation of p on an isoform-by-
isoform basis. In order to globally capture the value of p we incorporate it in
the DGE-EM algorithm as a hidden variable and iteratively re-estimate it as the
distribution of tags to isoforms changes from iteration to iteration.

We estimate the value of p as N1/D, where D denotes the total number
of RNA molecules with at least one AE site, and N1 =

∑m
i=1 ni1 denotes the

total number of tags coming from first AE sites. The total number of RNA
molecules representing an isoform is computed as the number of tags coming
from that isoform divided by the probability that the isoform is cut. This gives
D =

∑m
i=1 Ni/(1− (1− p)ki), which happens to be the normalization term used

in the M step of the algorithm.

3.4 Implementation

For an efficient implementation, we pre-process AE sites in all the known iso-
form sequences. All tags that can be generated from these sites, assuming no
errors, are stored in a trie data structure together with information about their
original locations. Searching for a tag is performed by traversing the trie, per-
mitting for as many jumps to neighboring branches as the maximum number
of mismatches allowed. The Expectation Maximization part of DGE-EM, which
follows after mapping, is given in Algorithm 1 (for simplicity, the re-estimation
of p is omitted).

In practice, for performance reasons, tags with the same matching sites and
weights are collapsed into one, keeping track of their multiplicity. Then the EM
algorithm can process them all at once by factoring in their multiplicity when
increasing the n(iso, site) counter. This greatly reduces the running time and
memory footprint.

4 Results

4.1 Experimental Setup

We conducted experiments on both real and simulated DGE and RNA-Seq
datasets. In addition to estimates obtained by DGE-EM, for DGE data we also
computed direct estimates from uniquely mapped tags; we refer to this method

398 M. Nicolae and I. Măndoiu

Algorithm 1. DGE-EM algorithm
assign random values to all f(i)
while not converged do

initialize all n(iso, site) to 0
for each tag class t do

sum =
∑

(iso,site,w)∈t w × f(iso) × (1 − p)site−1

for (iso, site, w) ∈ t do
n(iso, site)+ = w × f(iso) × (1 − p)site−1/sum

end for
end for
for each isoform i do

Ni =
∑sites(i)

j=1 n(i, j)

f(i) = Ni/(1 − (1 − p)sites(i))
end for

end while

as “Uniq”. RNA-Seq data was analyzed using both our IsoEM algorithm [6],
which was shown to outperform existing methods of isoform and gene expres-
sion level estimation, and the well-known Cufflinks algorithm [8]. As in previous
works [4,6], estimation accuracy was assessed using the median percent error
(MPE), which gives the median value of the relative errors (in percentage) over
all genes.

Real DGE datasets included nine libraries kindly provided to us (in fastq
format) by the authors of [1]. These libraries were independently prepared and
sequenced at multiple sites using 6 flow cells on Illumina Genome Analyzer (GA)
I and II platforms, for a total of 35 lanes. The first eight libraries were prepared
from the Ambion Human Brain Reference RNA, (Catalog #6050), henceforth
referred to as HBRR and the ninth was prepared from the Stratagene Universal
Human Reference RNA (Catalog #740000) henceforth referred to as UHRR.
DpnII, with recognition site GATC, was used as anchoring enzyme and MmeI
as tagging enzyme, resulting in approximately 238 million tags of length 20 across
the 9 libraries. Unless otherwise indicated, Uniq estimates are based on uniquely
mapped tags with 0 mismatches (63% of all tags) while for DGE-EM we used
all tags mapped with at most 1 mismatch (83% of all tags) since preliminary
experiments (Section 4.2) showed that these are the optimal settings for each
algorithm.

For comparison, we downloaded from the SRA repository two RNA-Seq datasets
for the HBRR sample and six RNA-Seq datasets for the UHRR sample (SRA study
SRP001847 [2]). Each RNA-Seq dataset contains between 47 and 92 million reads
of length 35. We mapped RNA-Seq reads onto Ensembl known isoforms (version
59) using bowtie [3] after adding a polyA tail of 200 bases to each transcript. Al-
lowing for up to two mismatches, we were able to map between 65% and 72% of
the reads. We then ran IsoEM and Cufflinks assuming a mean fragment length of
200 bases with standard deviation 50.

Accurate Estimation of Gene Expression Levels from DGE Sequencing Data 399

75

80

85

M
ed

ia
n�
Pe

rc
en

t�E
rr
or

Uniq�0�mismatches Uniq�1�mismatch Uniq�2�mismatches

DGE�EM�0�mismatches DGE�EM�1�mismatch DGE�EM�2�mismatches

65

70

75

80

85

0 10 20 30 40 50 60

M
ed

ia
n�
Pe

rc
en

t�E
rr
or

Million�Mapped�Tags

Uniq�0�mismatches Uniq�1�mismatch Uniq�2�mismatches

DGE�EM�0�mismatches DGE�EM�1�mismatch DGE�EM�2�mismatches

Fig. 3. Median Percent Error of DGE-EM and Uniq estimates for varying number of
allowed mismatches and DGE tags generated from the HBRR library 4

To assess accuracy, gene expression levels estimated from real DGE and RNA-
Seq datasets were compared against TaqMan qPCR measurements (GEO ac-
cession GPL4097) collected by the MicroArray Quality Control Consortium
(MAQC). As described in [5], each TaqMan Assay was run in four replicates
for each measured gene. POLR2A (ENSEMBL id ENSG00000181222) was cho-
sen as the reference gene and each replicate CT was subtracted from the average
POLR2A CT to give the log2 difference (delta CT). For delta CT calculations,
a CT value of 35 was used for any replicate that had CT > 35. Normalized ex-
pression values are reported: 2(CT of POLR2A)−(CT of the tested gene). We used the
average of the qPCR expression values in the four replicates as the ground truth.
After mapping gene names to Ensembl gene IDs using the HUGO Gene Nomen-
clature Committee (HGNC) database, we got TaqMan qPCR expression levels
for 832 Ensembl genes. Expression levels inferred from DGE and RNA-Seq data
were similarly divided by the expression level inferred for POLR2A prior to
computing accuracy.

Synthetic error-free DGE and RNA-Seq data was generated using an approach
similar to that described in [6]. Briefly, the human genome sequence (hg19, NCBI
build 37) was downloaded from UCSC and used as reference. We used isoforms
in the UCSC KnownGenes table (n = 77, 614), and defined genes as clusters
of known isoforms in the GNFAtlas2 table (n = 19, 625). We conducted simu-
lations based on gene expression levels for five different tissues in GNFAtlas2.
The simulated frequency of isoforms within gene clusters followed a geometric
distribution with ratio 0.5. For DGE we simulated data for all restriction en-
zymes with 4-base long recognition sites from the Restriction Enzyme Database
(REBASE), assuming either complete digestion (p = 1) or partial digestion with
p = 0.5. For RNA-Seq we simulated fragments of mean length 250 and standard
deviation 25 and simulated polyA tails with uniform length of 250bp. For all
simulated data mapping was done without allowing mismatches.

400 M. Nicolae and I. Măndoiu

75

80

85

90

95

100

M
ed

ia
n�
Pe

rc
en

t�E
rr
or

RNA�UHRR�1,�Cufflinks

RNA�UHRR�2,�Cufflinks

RNA�UHRR�3,�Cufflinks

RNA�UHRR�4,�Cufflinks

RNA�UHRR�5,�Cufflinks

RNA�UHRR�6,�Cufflinks

RNA�HBRR�1,�Cufflinks

RNA�HBRR�2,�Cufflinks

DGE�HBRR�1,�DGE�EM

DGE�HBRR�2,�DGE�EM

DGE�HBRR�3,�DGE�EM

DGE�HBRR�4,�DGE�EM

DGE�HBRR�5,�DGE�EM

DGE�HBRR�6,�DGE�EM

DGE�HBRR�7,�DGE�EM

DGE HBRR 8 DGE EM

60

65

70

75

80

85

90

95

100

0 250 500 750 1000 1250 1500 1750 2000

M
ed

ia
n�
Pe

rc
en

t�E
rr
or

Million�Mapped�Bases

RNA�UHRR�1,�Cufflinks

RNA�UHRR�2,�Cufflinks

RNA�UHRR�3,�Cufflinks

RNA�UHRR�4,�Cufflinks

RNA�UHRR�5,�Cufflinks

RNA�UHRR�6,�Cufflinks

RNA�HBRR�1,�Cufflinks

RNA�HBRR�2,�Cufflinks

DGE�HBRR�1,�DGE�EM

DGE�HBRR�2,�DGE�EM

DGE�HBRR�3,�DGE�EM

DGE�HBRR�4,�DGE�EM

DGE�HBRR�5,�DGE�EM

DGE�HBRR�6,�DGE�EM

DGE�HBRR�7,�DGE�EM

DGE�HBRR�8,�DGE�EM

DGE�UHRR�1,�DGE�EM

RNA�UHRR�1,�IsoEM

RNA�UHRR�2,�IsoEM

RNA�UHRR�3,�IsoEM

RNA�UHRR�4,�IsoEM

RNA�UHRR�5,�IsoEM

RNA�UHRR�6,�IsoEM

RNA�HBRR�1,�IsoEM

RNA�HBRR�2,�IsoEM

Fig. 4. Median Percent Error of DGE-EM, IsoEM, and Cufflinks estimates from vary-
ing amounts of DGE/RNA-Seq data generated from the HBRR MAQC sample

4.2 DGE-EM Outperforms Uniq

The algorithm referred to as Uniq quantifies gene expression based on the number
of tags that match one or more cleavage sites in isoforms belonging to the same
gene. These tags are unique with respect to the source gene. Figure 3 compares
the accuracy of Uniq and DGE-EM on library 4 from the HBRR sample, with the
number of allowed mismatches varying between 0 and 2. As expected, counting
only perfectly mapped tags gives the best accuracy for Uniq, since with the
number of mismatches we increase the ambiguity of the tags, and thus reduce
the number of unique ones. When run with 0 mismatches, DGE-EM already
outperforms Uniq, but the accuracy improvement is limited by the fact that it
cannot tolerate any sequencing errors (tags including errors are either ignored,
or, worse, mapped at an incorrect location). Allowing 1 mismatch per tag gives
the best accuracy of all compared methods, but further increasing the number of
mismatches to 2 leads to accuracy below that achieved when using exact matches
only, likely due to the introduction of excessive tag ambiguity for data for which
the error rate is well below 10%.

4.3 Comparison of DGE and RNA-Seq Protocols

Figure 4 shows the gene expression estimation accuracy for 9 DGE and 8 RNA-
Seq libraries generated from the HBRR and UHRR MAQC sample. All DGE
estimates were obtained using the DGE-EM algorithm, while for RNA-Seq data
we used both IsoEM [6] and the well-known Cufflinks algorithm [8]. The cutting

Accurate Estimation of Gene Expression Levels from DGE Sequencing Data 401

10

15

20

25

30
M
ed

ia
n�
Pe

rc
en

t�E
rr
or

0

5

10

15

20

25

30

GATC GGCC CATG TGCA AGCT YATR ASST RGCY

M
ed

ia
n�
Pe

rc
en

t�E
rr
or

Uniq�p=1.0 Uniq�p=0.5 DGE�EM�p=1.0 DGE�EM�p=.5
(a)

85

90

95

100

75

80

85

90

95

100

GATC GGCC CATG TGCA AGCT YATR ASST RGCY

%�Genes�Cut %�Unique�Tags�(p=1.0) %�Unique�Tags�(p=0.5)

(b)

Fig. 5. (a) Median Percent Error of Unique and DGE-EM estimates obtained from 30
million 21bp DGE tags simulated for anchoring enzymes with different restriction sites
(averages over 5 GNF-Atlas tissues) (b) Percentage of genes cut and uniquely mapped
tags for each anchoring enzyme.

probability inferred by DGE-EM is almost the same for all libraries, with a mean
of 0.8837 and standard deviation 0.0049. This is slightly higher than the esti-
mated value of 70−80% suggested in the original study [1], possibly due to their
discarding of non-uniq or non-perfectly matched tags. Normalized for sequencing
cost, DGE performance is comparable to that of RNA-Seq estimates obtained
by IsoEM, with accuracy differences between libraries produced using different
protocols within the range of library-to-library variability within each of the two
protocols. The MPE of estimates generated from RNA-Seq data by Cufflinks is
significantly higher than that of IsoEM and DGE-EM estimates, suggesting that
accurate analysis methods are at least as important as the sequencing protocol.

402 M. Nicolae and I. Măndoiu

4.4 Possible DGE Assay Optimizations

To assess accuracy of DGE estimates under various protocol parameters, we
conducted an extensive simulation study where we varied the anchoring en-
zyme used, the number of tags, the tag length and the cutting probability. We
tested all restriction enzymes with 4-base long recognition sites from REBASE.
Figure 5(a) gives MPE values obtained by the Unique and DGE-EM algorithms
for a subset of these enzymes on synthetic datasets with 30 million tags of length
21, simulated assuming either complete or p = .5 partial digest. Figure 5(b) gives
the percentage of genes cut and the percentage of uniquely mapped DGE tags
for each of these enzymes. These results suggest that using enzymes with high
percentage of genes cut leads to improvements in accuracy. In particular, en-
zymes like NlaIII (previously used in [9]) with recognition site CATG and CviJI
with degenerate recognition site RGCY (R=G or A, Y=C or T) cut more genes
than the DpnII (GATC) enzyme used to generate the MAQC DGE libraries, and
yield better accuracy for both Uniq and DGE-EM estimates. Furthermore, for
every anchoring enzyme, partial digestion with p = .5 yields an improved DGE-
EM accuracy compared to complete digestion. Interestingly, Unique estimates
are less accurate for partial digest due to the smaller percentage of uniquely
mapped reads. For comparison, IsoEM estimates based on 30 million RNA-Seq
tags of length 21 yield an MPE of 8.3.

5 Conclusions

In this paper we introduce a novel expectation-maximization algorithm, called
DGE-EM, for inference of gene-specific expression levels from DGE tags. Our
algorithm takes into account alternative splicing isoforms and tags that map
at multiple locations in the genome within a unified statistical model, and can
further correct for incomplete digestion and sequencing errors. Experimental
results on both real and simulated data show that DGE-EM outperforms com-
monly used estimation methods based on unique tag counting. DGE-EM has
cost-normalized accuracy comparable to that achieved by state-of-the-art RNA-
Seq estimation algorithms on the tested real datasets, and outperforms them
on error-free synthetic data. Simulation results suggest that further accuracy
improvements can be achieved by tuning DGE protocol parameters such as the
degeneracy of the anchoring enzyme and cutting probability. It would be inter-
esting to experimentally test this hypothesis.

Acknowledgment

This work has been supported in part by NSF awards IIS-0546457 and IIS-
0916948. The authors wish to thank Yan Asmann for kindly providing us with
the DGE data from [1].

Accurate Estimation of Gene Expression Levels from DGE Sequencing Data 403

References

1. Asmann, Y., Klee, E.W., Thompson, E.A., Perez, E., Middha, S., Oberg, A., Th-
erneau, T., Smith, D., Poland, G., Wieben, E., Kocher, J.-P.: 3’ tag digital gene
expression profiling of human brain and universal reference RNA using Illumina
Genome Analyzer. BMC Genomics 10(1), 531 (2009)

2. Bullard, J., Purdom, E., Hansen, K., Dudoit, S.: Evaluation of statistical meth-
ods for normalization and differential expression in mRNA-Seq experiments. BMC
Bioinformatics 11(1), 94 (2010)

3. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology 10(3),
R25 (2009)

4. Li, B., Ruotti, V., Stewart, R.M., Thomson, J.A., Dewey, C.N.: RNA-Seq gene
expression estimation with read mapping uncertainty. Bioinformatics 26(4), 493–
500 (2010)

5. MAQC Consortium: The Microarray Quality Control (MAQC) project shows
inter- and intraplatform reproducibility of gene expression measurements. Nature
Biotechnology 24(9), 1151–1161 (2006)

6. Nicolae, M., Mangul, S., Măndoiu, I., Zelikovsky, A.: Estimation of Alternative
Splicing isoform Frequencies from RNA-Seq Data. In: Moulton, V., Singh, M. (eds.)
WABI 2010. LNCS, vol. 6293, pp. 202–214. Springer, Heidelberg (2010)

7. ’t Hoen, P.A., Ariyurek, Y., Thygesen, H.H., Vreugdenhil, E., Vossen, R.H.,
de Menezes, R.X., Boer, J.M., van Ommen, G.-J.J., den Dunnen, J.T.: Deep
sequencing-based expression analysis shows major advances in robustness, reso-
lution and inter-lab portability over five microarray platforms. Nucleic Acids Re-
search 36(21), e141 (2008)

8. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J.,
Salzberg, S.L., Wold, B.J., Pachter, L.: Transcript assembly and quantification
by RNA-Seq reveals unannotated transcripts and isoform switching during cell
differentiation. Nature Biotechnology 28(5), 511–515 (2010)

9. Wu, Z.J., Meyer, C.A., Choudhury, S., Shipitsin, M., Maruyama, R., Bessarabova,
M., Nikolskaya, T., Sukumar, S., Schwartzman, A., Liu, J.S., Polyak, K., Liu, X.S.:
Gene expression profiling of human breast tissue samples using SAGE-Seq. Genome
Research 20(12), 1730–1739 (2010)

10. Zaretzki, R., Gilchrist, M., Briggs, W., Armagan, A.: Bias correction and Bayesian
analysis of aggregate counts in SAGE libraries. BMC Bioinformatics 11(1), 72
(2010)

An Integrative Approach for Genomic Island

Prediction in Prokaryotic Genomes

Han Wang1, John Fazekas1, Matthew Booth1, Qi Liu2,�, and Dongsheng Che1,�

1 Department of Computer Science, East Stroudsburg University,
East Stroudsburg, PA 18301, USA

dche@po-box.esu.edu
2 College of Life Science and Biotechnology, Tongji University,

Shanghai, 200092, P.R. China
qiliu@tongji.edu.cn

Abstract. A genomic island (GI) is a segment of genomic sequence that
is horizontally transferred from other genomes. The detection of genomic
islands is extremely important to the medical research. Most of current
computational approaches that use sequence composition to predict ge-
nomic islands have the problem of low prediction accuracy. In this paper,
we report, for the first time, that gene information and inter-genic dis-
tance are different between genomic islands and non-genomic islands.
Using these two sources and sequence information, we have trained the
genomic island datasets from 113 genomes, and developed a decision-
tree based bagging model for genomic island prediction. In order to test
the performance our approach, we have applied it on three genomes:
Salmonella typhimurium LT2, Streptococcus pyogenes MGAS315, and
Escherichia coli O157:H7 str. Sakai. The performance metrics have shown
that our approach is better than other sequence composition based ap-
proaches. We conclude that the incorporation of gene information and
intergenic distance could improve genomic island prediction accuracy.
Our prediction software, Genomic Island Hunter (GIHunter), is avail-
able at http://www.esu.edu/cpsc/che_lab/software/GIHunter.

Keywords: Genomic islands, gene information, intergenic distance,
sequence composition.

1 Introduction

Genomic islands (GIs) are chromosomal sequences in some bacterial genomes,
whose origins can be either from viruses or other bacteria [1]. The studies of GIs
are very important to biomedical research, due to the fact that such knowledge
can be used to explain why some strains of bacteria within the same species
are pathogenic while others are not [2], or the phenomena that some strains of
bacteria can adapt to extreme environments while others cannot. Therefore, it
is urgent to develop computational tools to detect GIs in bacterial genomes.
� Corresponding authors.

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 404–415, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.esu.edu/cpsc/che_lab/software/GIHunter

An Integrative Approach for Genomic Island Prediction 405

In general, GIs do have sequence compositional biases such as G + C content
difference [3], codon usage bias [4,5], oligo-nucleotide frequency bias [6], when
compared with the remaining sequences in the host genome. Some GIs also
contain insertion sequences [7], flanking tRNA genes [1] and mobile genes such
as integrase and transposes [8]. Despite of strutural features, GIs are difficult to
be characterized as not all GIs have such features, and the sizes of GIs can range
from 5 kb to 500 kb.

Current practices of detecting GIs include comparative genomic analysis and
sequence composition approaches [9]. A typical procedure of using comparative
genome analysis consists of collecting the genome sequences of phylogenetically
closely related species, aligning these genome sequences, and then considering
those genome segments present in a query genome but not present in others to be
GIs [10]. The tools using comprative genome analysis include MobilomeFinder
[11] and IslandPick [10]. While this type of approach is very reliable, it is limited
to those genomes which have closely related genomes as reference genomes, and
sometimes it needs manual involvement [12].

Sequence composition based approach, on the other hand, does not require
reference genomes and manual adjustment. It is generally believed that each
genome has an unique genomic sequence signature. Thus, GIs that are integrated
into the host genome can be detected by analyzing the sequence composition.
The sequence compositional biases can be evaluated by analyzing G + C content,
k -mer frequency, codon adaption index (CAI). Such sequence composition based
tools include AlienHunter [13], Centroid [14], IslandPath [15], PAI-IDA [16] and
SIGI-HMM [17].

While sequence composition based approaches can be used to predict GIs for
any prokaryotic genome, the prediction accuracy is typically low. This is due
to the amelioration of the genome [4]. After several generations that GIs are
integrated into the host genome, GIs are subject to the same mutational process
as those of the remaining sequences in the host genome, and thus making it dif-
ficult to differentiate GIs and host genome sequences. On the other hand, some
parts of host genome sequences, such as those involved in ribosomal activity [6],
are different from the rest of the host genomes in terms of sequence composi-
tion. Therefore, it may not be sufficient to use the sequence composition bias
to determine a sequence is a GI or not, and it is necessary to incorporate more
GI-associated features for accurate GI detection.

In this paper, we report two features, gene information and intergenic distance
that are useful for accurate GI prediction. We show that the gene information
and intergenic distance are different between GIs and non-GIs, and they can
be combined with sequence information for more accurate GI prediction. We
present our computational framework that integrates three sources of data, and
build an ensemble of decision tree models for genome scale GI prediction. We
show our decision tree based bagging model performs better than other sequence
composition based approaches in terms of prediction accuracy and other perfor-
mance metrics. The remainder of the paper is organized as follows: Section 2

406 H. Wang et al.

describes the Materials and Methods. Section 3 analyzes the features, as well as
prediction results of our approach. The paper is concluded in Section 4.

2 Materials and Methods

2.1 Dataset

The GIs and non-GIs datasets that we used in this study were obtained from [10].
The dataset contains 713 GIs and 3,517 non-GIs, covering 113 genomes in total.
The whole list of these 113 genomes can be found in Supplementary Data (http://
www.esu.edu/cpsc/che_lab/software/GIHunter/SupplementaryData.pdf).

The sequence lengths of original GIs and non-GIs vary from 8 kb to 31 kb,
making it less meaningful to compare the associated feature values among GIs (or
non-GIs) with different lengths, and thus making the prediction of genomic island
difficult. In order to simplify this problem, we split each whole genomic island
(or non-genomic island) into the same sizes of segments. We chose the segment
of 8 kb in this study because this is smallest genomic island in the dataset. This
splitting process led to 2,232 GI segments and 8,525 non-GI segments.

In order to obtain the feature values for GIs and non-GIs, we also downloaded
the corresponding complete genome sequences and the annotations from the
National Center for Biotechnology Information (NCBI) FTP server (fpt:://
ftp.ncbi.nih.gov/genomes/Bacteria).

2.2 Computational Framework

Our computational framework for genomic island prediction consists of the
following steps:

1. Extract genomic island-related features. The feature values corresponding to
GI segments and non-GI segments are calculated (See Section 2.3).

2. Build the genomic island model. The feature values obtained in Step 1 are
used to train a general genomic island model (See Section 2.4).

3. Predict genomic islands using the trained model. The model is used to scan
the whole genome, and the genomic island regions in the whole genome can
be predicted (See Section 2.5).

We describe the details for each of these steps as follows.

2.3 Feature Extraction

Sequence composition. The sequence composition feature values for each GI
segment (or non-GI segment) are evaluated by AlienHunter [13]. AlienHunter
evaluates compositional biases of genomic sequences by using Interpolated Vari-
able Order Motifs (IVOMs), and it has been reported to capture the local com-
position of a sequence accurately [10]. AlienHunter accepts the whole genome
sequence as an input, and calculates the IVOM scores for each sequence seg-
ment. Generally speaking, the higher the IVOM score, the more GI segment the
genomic sequence looks like.

http://www.esu.edu/cpsc/che_lab/software/GIHunter/SupplementaryData.pdf
http://www.esu.edu/cpsc/che_lab/software/GIHunter/SupplementaryData.pdf
fpt:://ftp.ncbi.nih.gov/genomes/Bacteria
fpt:://ftp.ncbi.nih.gov/genomes/Bacteria

An Integrative Approach for Genomic Island Prediction 407

Gene information. Karlin et al. [5] discovered that the codon frequencies of
highly expressed genes deviated significantly from those of average genes of the
genome. Thus, gene information such as highly expressed genes, when combined
with sequence information, might be useful to differentiate a genome segment
is GI or non-GI. To test this feature, we enumerate the number of highly ex-
pressed genes within the segments of GIs and non-GIs. In this study, we consider
ribosomal protein (RP) genes, translation and transcriptional processing factor
(TF) genes (e.g., RNA helicase, RNA polymerase, tRNA synthetase), chaperone-
degradation (CH) genes, and genes involved in energy metabolism (e.g., NADH)
to be highly expressed genes [18].

Intergenic distance. The intergenic distance between two adjacent genes is
the number of base pairs between them. The intergenic distance reflects the tran-
scriptional or functional relatedness between them to some degree. For example,
the genes under the same transcription unit tend to stay together, and thus the
intergenic distance between them is usually short. As genomic islands involve
the integration process of alien genes into the recipient genome, we hypothesize
that the distribution of intergenic distances of genomic islands is different from
that of non-genomic islands.

Let N be the number of all genes within the genomic segment, and id(gi, gi+1)
be the intergenic distance between adjacent genes gi and gi+1, then the average
intergenic distance within a GI segment (or non-GI segment), avgID, can be
calculated as follows,

avgID =
1

N − 1

N−1∑
i=1

id(gi, gi+1) (1)

2.4 Model Construction

The genomic island model is a bootstrap aggregating (bagging) [19] of base
classifiers, in which each base classifier is a decision tree in this study. We chose
this model since it has proven to perform better than other machine learning
methods for GI classification in our previous study [20]. The decision trees are
constructed based on training examples. The training examples are a set of tuples
<x, c>, where c is the class label, and x is the set of features. In this study, the
training examples include 2,232 GI segments and 8,525 non-GI segments, x is the
set of features: sequence composition, gene information and intergenic distance,
and c is the label of GI or non-GI. The architecture of decision tree bagging
model for genomic island is sketched in Fig. 1. The construction of decision
trees, as well as bagging, is described as follows.

Decision tree. The decision trees built are based on the ID3 algorithm [21],
which implements a top-down greedy search schema to search through all possi-
ble tree spaces. It starts with all training set (S) and chooses the best feature as
the root node. It then splits the set based on the possible values of the selected
best feature. If the all instances in a subset have the same classification, then the

408 H. Wang et al.

Fig. 1. Architecture of decision-tree based bagging. F1, F2, and F3 are the features used
for constructing decision-tree classifiers. The features used in this study are sequence
composition, gene information and intergenic distance. DT 1, DT 2, and DT N are
decision tree classifiers.

algorithm assigns the node to a leaf node, with the label of this classification.
Otherwise, and the next best feature is chosen again based on the subset of the
training examples. The whole process will be repeated until there are no further
distinguishing features.

The best feature is the one that has the highest information gain (IG), i.e.,

F ∗ = arg max
F

IG(S, F) (2)

where IG is defined as follows,

IG(S, F) = E(S) −
∑

v∈V alue(F)

|Sv|
S

E(Sv) (3)

E(S) is the entropy of S, defined as

E(S) = −pGI log2pGI − pNGlog2pNG (4)

where pGI is the percentage of GIs in S, and conversely, pNG is the percentage of
non-GIs in S. V alue(F) is the set of all possible values for the feature F . Sv is the
subset of S in which feature F has the value of v (i.e., Sv = {s ∈ S|F (s) = v}).

Bagging. The Bagging model consists of N decision trees as base classifiers.
The training set used for constructing each tree is sampled by bootstrap sam-
pling, i.e., randomly selecting a subset of given dataset with replacement. The
final classification of bagging takes the majority votes of all decision tree classi-
fications, i.e.,

H(x) = sgn(
N∑
i

Hi(x)) (5)

where Hi(x) is the ith classification result.

An Integrative Approach for Genomic Island Prediction 409

Fig. 2. A schematic view of the genome scale genomic island prediction. (A). A sliding-
window based approach for predicting genomic island. The feature values (F1, F2, and
F3) within the window are extracted and used for genomic island classification, based
on our genomic island model trained. (B). The resulting genomic islands predicted.
The contiguous segments classified as GI segment from (A) are considered to be one
genomic island.

2.5 Genome-Scale Genomic Island Prediction

The whole genome scale genomic island prediction for any prokaryotic genome
is based on our decision-tree based bagging model built upon the training sets
of 113 genomes. The inputs for the GI prediction are: (a) the whole genome
sequence; and (b) the gene annotation of the genome. The schematic view for
the GI prediction is represented in Fig. 2, and the whole procedure can be
described as follows:

1. Slide a window of appropriate size (8 kb in this study) along the query
genome. We chose the window size of 8 kb since 8kb-long sequence segment
was the smallest GI found so far. For those longer GIs, we concatenate them
in Step 4.

2. Calculate the feature values (IVOM score, HEG, and AverageID) for each
window.

3. Classify the segment for each window we scan using our decision-tree based
bagging model. The resulting value is either a GI segment or non-GI segment;

4. Postprocess the classified ones from Step 3. If we see several contiguous GI
segments, we treat them as one big GI.

2.6 Performance Evaluation

To evaluate the performance our model, we compared the predicted GIs with the
benchmark dataset from the literature. True positives (TP) are the nucleotides
in the positive dataset predicted to be genomic islands. True negatives (TN) are
the nucleotides in the negative dataset predicted to be non-genomic islands. False
positives (FP) are the nucleotides in the negative dataset predicted to genomic
islands. False negatives (FN) are the nucleotides within the positive dataset not
predicted to be genomic islands. We focus on three validation measures, recall,
precision and accuracy, which are defined as follows,

Recall =
TP

TP + FN
(6)

410 H. Wang et al.

Precision =
TP

TP + FP
(7)

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

3 Experimental Results

3.1 Feature Analysis

Analysis of IVOM scores. We used the software, AlienHunter, to generate the
IVOM scores of GI segments and non-GI segments for each of 113 genomes. For
the purpose of illustration, we chose four genomes, Bradyrhizobium sp. BTAi1,
Pseudomonas syringae pv. phaseolicola 1448A, Pseudomonas putida GB-1, and
Burkholderia cenocepacia MC0-3, to discuss feature value differences between
GI and non-GI datasets. We found the IVOM scores for non-GIs tend to be
small while those of GIs tend to large (Fig. 3). The average IVOM scores for
non-GIs of the genomes of B. sp. BTAi1, P. syringae pv. phaseolicola 1448A, P.
putida GB-1, and B. cenocepacia MC0-3 are 8.352, 6.918, 9.291 and 8.298, while
the average IVOM scores for corresponding GIs are 22.066, 33.654, 42.866, and
24.466.

Analysis of gene information. For each GI segment and non-GI segment,
we analyzed the distribution of number of highly expressed genes (HEG). For
the genome of B. sp. BTAi1, GI segments either do not contain highly expressed
genes or at most one (Fig. 3). The distribution of the numbers of highly expressed
genes for non-GIs seems to be wide, even though most of them contain no or a

Fig. 3. Feature distribution comparison between GI segments and non-GI segments
in Bradyrhizobium sp. BTAi1. The values in x -axis represent the IVOM scores, the
number of HEGs, and the average intergenic distance among genes, and the values in
y-axis represent the percentage for each range of values in x -axis.

An Integrative Approach for Genomic Island Prediction 411

few highly expressed genes. Similar distribution difference patterns between GIs
and non-GIs are shown in other three genomes (http://www.esu.edu/cpsc/
che_lab/software/GIHunter/SupplementaryData.pdf).

The gene information distribution difference between GIs and non-GIs can aid
in classifying GIs. For instance, in the genome of B. sp. BTAi1, the IVOM score
for the segment between position 5282656 and 5290656 is 19.76, dramatically
different from that of the typical host genome. Thus, this region is predicted by
AlienHunter to be a GI. However, the gene information shows that this region
contains 14 ribosomal related genes, and this feature can be used to correct the
classification by AlienHunter.

Analysis of intergenic distances. We also compared the average inter-genic
distance for GI segments and non-GI segments. We found that the average in-
tergenic distance for non-GIs, in general, tends to be short. For the genome of
B. sp. BTAi1, there are only a few cases that the average intergenic distances
for non-genomic islands are greater than 250 (Fig. 3). In contrast, we found
that about 30% genomic island segments contain genes whose average intergenic
distance are greater than 250 (Fig. 3). The intergenic distance distribution dif-
ference between GIs and non-GIs can also be seen in other three genomes shown
in Supplementary Data.

While the mechanism of why the genes within GIs are widely spaced re-
mains to be investigated, the average intergenic distance distribution difference
between GIs and non-GIs seems to be able to discriminate GIs from non-GIs,
when combining other features such as sequence information.

3.2 GI Structural Model

We have used the training dataset of 113 genomes, extracted three feature values
(IVOM score, HEG and AverageID) for each training example, and generated
the decision tree based bagging model described in Section 2 for genomic island
prediction.

To evaluate the trained model, we measured the ROC (Receiver Operating
Characteristic) curve, a graphic representation of tradeoff between sensitivity
and specificity. The area under the curves (AUC) takes the value of between
0 and 1, and a random classifier has the AUC vlaue of 0.5. Theoretically, a
well-performing classifier should have a high AUC value. The AUC value for our
model is 0.8927, indicating that our model obtains high classification accuracy.

For the purpose of comparison, we also plotted ROC curves for the decision-
tree based bagging models that used the sequence feature only (i.e., IVOM),
and two feature combinations, IVOM + AverageID and IVOM + HEG. The
AUC value for the IVOM model is 0.783, and the AUC values for the IVOM +
AverageID and IVOM + HEG models are 0.837 and 0.829 (Fig. 4). These AUC
values strongly indicate that both intergenic distance (AverageID) and gene
information (HEG) improve model accuracies for genomic island prediction, and
the combination of all three features generates the most accurate model.

http://www.esu.edu/cpsc/che_lab/software/GIHunter/SupplementaryData.pdf
http://www.esu.edu/cpsc/che_lab/software/GIHunter/SupplementaryData.pdf

412 H. Wang et al.

Fig. 4. The ROC curves of decision tree based bagging models. The legend of “All
three” indicates all three features are combined to build the model.

3.3 Prediction Accuracy

To test the performance of our approach, we searched the literature, collected
the genomic islands of three genomes, Salmonella typhimurium LT2 [24], Strep-
tococcus pyogenes MGAS315 [23], and Escherichia coli O157:H7 str. Sakai [22],
and compared these published ones with the ones predicted by our program GI-
Hunter. It should be noted that these three genomes selected for performance
testing were not included in 113 genomes trained in our model, so that the
performance on these three genomes should be applicable to other genomes in
general.

In the genomes of S. typhimurium LT2 and E. coli O157:H7 str. Sakai, our
approach has the precisions of 100%. The corresponding recalls are 37.8% and
53.4%. In the genome of S. pyogenes MGAS315, our approach has the precision
of 42.1%, and the recall of 75.1%. The overall accuracies for S. typhimurium
LT2, S. pyogenes MGAS315 and E. coli O157:H7 str. Sakai are 91.5%, 93.3%
and 80.4%.

For the comparison purpose, we also evaluated other sequence composition
based tools, including SIGI-HMM [17], Centroid [14], PAI-IDA [16], IslandPath1

[15], and AlienHunter [13]. As shown in Fig. 5, Centroid and PAI-IDA cannot
detect any genomic island in the genomes of S. typhimurium LT2 and S. pyo-
genes MGAS315. IslandPath cannot detect any genomic island in the genome of

1 We chose the dinucleotide and mobile gene information in IslandPath.

An Integrative Approach for Genomic Island Prediction 413

Fig. 5. Precision, recall and accuracy of GI computational tools on the genomes of
(A) Salmonella typhimurium LT2; (B) Streptococcus pyogenes MGAS315; and (C) Es-
cherichia coli O157:H7 str. Sakai

S. pyogenes MGAS315. This indicates that these three approaches are relative
conservative in GI detection, which was also reported in previous studies [10].

When we compared our program GIHunter with SIGI-HMM, we found that
GIHunter performs better than SIGI-HMM in the genomes of S. typhimurium
LT2 and E. coli O157:H7 str. Sakai with all three metrics. In the genome of S.
pyogenes MGAS315, our program GIHunter has lower precision but with higher
recall when compared with SIGI-HMM. Finally, when compared with Alien-
Hunter, GIHunter dramatically increase precision and accuracy, but with losing
some recall. Overall, our program GIHunter performs better than other sequence
composition methods on the tests of these three genomes, further indicating that
multiple sources could improve prediction accuracy.

4 Conclusion and Discussion

In this paper, we have analyzed the gene information and intergenic distance
for GIs and non-GIs, and reported the distribution differences of these features
between GIs and non-GIs. By combining these two features into sequence compo-
sition, we have developed an ensemble of decision tree model for genomic island

414 H. Wang et al.

prediction. Our program, GIHunter, based on the trained model, has shown to
be more accurate than other sequence composition based approaches in general.

The better performance of our approach over previous ones is due to the in-
corporation of gene information (i.e., HEG) and intergenic distance into the se-
quence composition information, which can be seen clearly in their ROC curves.
We must be aware, however, using a single feature of gene information for GI
prediction may not be as effective as sequence composition information. The
reason is most of 8kb long sequence segments, including both GI segments and
non-GI segments, do not contain any HEG genes. In this perspective, the gene
information feature is a complement to the feature of sequence composition, and
could improve the prediction accuracy when combined with sequence composi-
tion. This is similar to the feature of inter-genic distance.

In our future study, we will include other GI-associated features, such as
integrase, phages and tRNA genes to see whether we could improve our genomic
island model. We hope the incorporation of these GI-associated features, as well
as the ones we discovered in this study, will make the model more accurate for
genomic island prediction.

Acknowledgment

This research was partially supported by President Research Fund (3012101113
and 3012101100) at East Stroudsburg University of Pennsylvania, and Shanghai
White Magnolia Talent Fund (2010B127), China.

References

1. Hacker, J., Kaper, J.B.: Pathogenicity islands and the evolution of microbes. Annu.
Rev. Microbiol. 54, 641–679 (2000)

2. Hacker, J., Bender, L., Ott, M., et al.: Deletions of chromosomal regions coding
for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal
Escherichia coli isolates. Microb. Pathog. 8(3), 213–225 (1990)

3. Hacker, J., Blum-Oehler, G., Muhldorfer, I., et al.: Pathogenicity islands of viru-
lent bacteria: structure, function and impact on microbial evolution. Mol. Micro-
biol. 23(6), 1089–1097 (1997)

4. Lawrence, J.G., Ochman, H.: Amelioration of bacterial genomes: rates of change
and exchange. J. Mol. Evol. 44(4), 383–397 (1997)

5. Karlin, S., Mrazek, J., Campbell, A.M.: Codon usages in different gene classes of
the Escherichia coli genome. Mol. Microbiol. 29(6), 1341–1355 (1998)

6. Karlin, S.: Detecting anomalous gene clusters and pathogenicity islands in diverse
bacterial genomes. Trends Microbiol. 9(7), 335–343 (2001)

7. Hensel, M.: Genome-based identification and molecular analyses of pathogenicity
islands and genomic islands in Salmonella enterica. Methods Mol. Biol. 394, 77–88
(2007)

8. Cheetham, B.F., Katz, M.E.: A role for bacteriophages in the evolution and transfer
of bacterial virulence determinants. Mol. Microbiol. 18(2), 201–208 (1995)

9. Langille, M.G., Hsiao, W.W., Brinkman, F.S.: Detection of genomic islands using
bioinformatics approaches. Nature Reviews Microbiology 8(5), 373–382 (2010)

An Integrative Approach for Genomic Island Prediction 415

10. Langille, M.G., Hsiao, W.W., Brinkman, F.S.: Evaluation of genomic island pre-
dictors using a comparative genomics approach. BMC Bioinformatics 9, 329 (2008)

11. Ou, H.Y., He, X., Harrison, E.M., et al.: MobilomeFINDER: web-based tools for
in silico and experimental discovery of bacterial genomic islands. Nucleic Acids
Res. 35, W97–W104 (2007)

12. Vernikos, G.S., Parkhill, J.: Resolving the structural features of genomic islands: a
machine learning approach. Genome Res. 18(2), 331–342 (2008)

13. Vernikos, G.S., Parkhill, J.: Interpolated variable order motifs for identification of
horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioin-
formatics 22(18), 2196–2203 (2006)

14. Rajan, I., Aravamuthan, S., Mande, S.S.: Identification of compositionally distinct
regions in genomes using the centroid method. Bioinformatics 23(20), 2672–2677
(2007)

15. Hsiao, W., Wan, I., Jones, S.J., et al.: IslandPath: aiding detection of genomic
islands in prokaryotes. Bioinformatics 19(3), 418–420 (2003)

16. Tu, Q., Ding, D.: Detecting pathogenicity islands and anomalous gene clusters by
iterative discriminant analysis. FEMS Microbiology Letters 221, 269–275 (2003)

17. Waack, S., Keller, O., Oliver, A., et al.: Score-based prediction of genomic islands
in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7(1),
142 (2006)

18. Karlin, S., Mrazek, J.: Predicted highly expressed genes of diverse prokaryotic
genomes. J. Bacteriology 182(18), 5238–5250 (2000)

19. Brieman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)
20. Che, D., Hockenbury, C., Marmelstein, R., Rasheed, K.: Classification of ge-

nomic islands using decision trees and their ensemble algorithms. BMC Ge-
nomics 11(Suppl 2), S1 (2010)

21. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Mateo (1993)

22. Perna, N.T., Plunkett, G., Burland, V., et al.: Complete genome Sequence of En-
terohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001)

23. Beres, S.B., Sylva, G.L., Barbian, K.D., et al.: Genome Sequence of a serotype
M3 strain of group A Sreptococcus: Phage-encoded toxins, the high-virulence phe-
notype, and clone emergence. Proceedings of National Academy of Science 99,
10078–10083 (2002)

24. McClelland, M., Sanderson, K.E., Spieth, J., et al.: Complete genome Squence of
Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856 (2001)

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 416–427, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Systematic Comparison of Genome Scale
Clustering Algorithms

(Extended Abstract)

Jeremy J. Jay1, John D. Eblen2, Yun Zhang2, Mikael Benson3,
Andy D. Perkins4, Arnold M. Saxton2, Brynn H. Voy2,

Elissa J. Chesler1, and Michael A. Langston2,*

1 The Jackson Laboratory, Bar Harbor ME 04609, USA
2 University of Tennessee, Knoxville TN 37995, USA
3 University of Göteborg, SE40530 Göteborg, Sweden

4 Mississippi State University, Mississippi State MS 39762, USA
langston@cs.utk.edu

Abstract. A wealth of clustering algorithms has been applied to gene co-
expression experiments. These algorithms cover a broad array of approaches,
from conventional techniques such as k-means and hierarchical clustering, to
graphical approaches such as k-clique communities, weighted gene co-expression
networks (WGCNA) and paraclique. Comparison of these methods to evaluate
their relative effectiveness provides guidance to algorithm selection, development
and implementation. Most prior work on comparative clustering evaluation has
focused on parametric methods. Graph theoretical methods are recent additions to
the tool set for the global analysis and decomposition of microarray data that have
not generally been included in earlier methodological comparisons. In the present
study, a variety of parametric and graph theoretical clustering algorithms are
compared using well-characterized transcriptomic data at a genome scale from
Saccharomyces cerevisiae.Clusters are scored using Jaccard similarity coefficients
for the analysis of the positive match of clusters to known pathways. This
produces a readily interpretable ranking of the relative effectiveness of clustering
on the genes. Validation of clusters against known gene classifications
demonstrate that for this data, graph-based techniques outperform conventional
clustering approaches, suggesting that further development and application of
combinatorial strategies is warranted.

ISBRA Topics of Interest: gene expression analysis, software tools and
applications.

1 Background

Effective algorithms for mining genome-scale biological data are in high demand. In
the analysis of transcriptomic data, many approaches for identifying clusters of genes
with similar expression patterns have been used, with new techniques frequently

* Corresponding author.

 A Systematic Comparison of Genome Scale Clustering Algorithms 417

being developed (for reviews see [1, 2]). Many bench biologists become mired in the
challenge of applying multiple methods and synthesizing or selecting among the
results. Such a practice can lead to biased selection of “best” results based on
preconceptions of valid findings from known information, which begs the question of
why the experiment was performed. Given the great diversity of clustering techniques
available, a systematic comparison of algorithms can help identify the relative merits
of different techniques [3, 4]. Previous reviews and comparisons of clustering
methods have often concluded that the methods do differ, but offer no consensus as to
which methods are best [3, 5-9]. In this paper, we compare a broad spectrum of
conventional, machine-learning, and graph-theoretic clustering algorithms applied to
a high quality, widely used reference data set from yeast.

A popular and diverse set of clustering approaches that have readily available
implementations were employed in this analysis (Supplementary Table 1). These
include five traditional approaches: k-means clustering [10], and the de facto standard
hierarchical clustering, on which we tested four agglomeration strategies: average
linkage, complete linkage, and the methods due to McQuitty [11] and Ward [12]. These
approaches create clusters by grouping genes with high similarity measures together.
Seven graph-based approaches are examined: k-clique communities [13], WGCNA
[14], NNN [15], CAST [16], CLICK [17], maximal clique [18-20], and paraclique [21].
These methods use a graph approach, with genes as nodes and edges between genes
defined based on a similarity measure. Finally, two other approaches are included: self-
organizing maps [22], and QT Clust [23]. SOM is a machine learning approach that
groups genes using neural networks. QT Clust is a method developed specifically for
expression data. It builds a cluster for each gene in the input, outputs the largest, then
removes its genes and repeats the process until none are left.

Many issues influence the selection and tuning of clustering algorithms for gene
expression data. First, genes can either be allowed to belong to only one cluster or be
included in many clusters. Non-disjoint clustering conforms more accurately to the
nature of biological systems, but at a cost of creating hundreds to thousands of
clusters. Second, because each method has its own set of parameters for controlling
the clustering process, one must determine the ideal parameter settings in practice.
There are many different metrics for this problem, which have been evaluated
extensively [6, 24]. Because there is no way of measuring bias of one metric for a
particular clustering method and data set, most clustering comparisons evenly sample
the reasonable parameter space for each method [7, 25].

Metrics for comparing clusters can be categorized into two types: internal and
external [26]. Internal metrics are based on properties of the input data or cluster
output, and are useful in determining how or why a clustering method performs as it
does. It provides a data-subjective interpretation that is typically only relevant to a
single experimental context. Examples of internal metrics include average correlation
value, Figure of Merit (FOM) [27], or diameter[23] which are difficult to compare.
External metrics, on the other hand, provide an objective measure of the clusters
based on data not used in the clustering process, such as biological annotation data.
An external metric does not depend on the experimental context that produced it.
Such metrics enable a comparison of the relative merits of these algorithms based on
performance in a typical biological study, and can be compared regardless of the
annotation source.

418 J.J. Jay et al.

External metrics have been used in many previous studies of clustering performance.
Some comparisons use receiver operating characteristic (ROC) or precision-recall
curves [5]. These metrics are simple to calculate, but they provide too many dimensions
(two per cluster) for a straightforward comparison of the overall performance of the
methods. Many other studies [7, 25, 27, 28] have used the Rand Index [29], which
generates a single value to measure similarity of clustering results to a known
categorization scheme such as GO annotation. Rand, however, it is subject to many
sources of bias, including a high number of expected negatives typically confirmed
when comparing clustering results to categorized gene annotations [5, 26]. The Jaccard
similarity coefficient ignores true negatives in its calculation, resulting in a measure less
dominated by the size of the reference data, particularly in the large number of true
negatives that are often confirmed. This idea has been raised in early work using the
Rand Index and other partition similarity measures [30] and in the context of comparing
clustering algorithms [1]. The Jaccard coefficient has not been widely adopted, due in
part to the historical sparseness of annotations in reference sets for comparison. With
deep ontological annotation now more widely available, however, external metrics such
as the Jaccard coefficient provide a much more relevant, objective, and simplified basis
for comparison.

A variety of tools are available to calculate functional enrichment of biological
clusters [31-33]. Most are not suitable for high-throughput genome-scale analysis due
to interface, speed or scalability limitations. (They often cannot easily handle the
large number of clusters produced from whole genome clustering.) Several of the
tools are meant exclusively for Gene Ontology terms, precluding the use of the large
variety of publicly available annotation sources.

In the present study, we perform an evaluation of both combinatorial and
conventional clustering analyses using an evenly distributed parameter set and
biological validation performed using Jaccard similarity analysis of KEGG and GO
functional gene annotations. For this analysis we developed a new enrichment analysis
tool, specifically designed to handle genome-scale data (and larger) and any gene
category annotation source provided. Results of clustering algorithms were compared
across all parameters and also in a manner that simulates use in practice by selection of
the optima generated from each method.

2 Results

For each clustering method and parameter, clusters of different sizes were obtained.
Because there is an exponential distribution of annotation category sizes, matches
among small categories are more readily detectable. We binned these results into
three size categories (3-10, 11-100, and 101-1000 genes), and ranked the clusters
based on Jaccard similarity scores. In practice, users generally are only interested in
the few highest-scoring clusters. In many biological studies, only the top 5 to 10
clusters are scrutinized. Data-torturing is not uncommon in microarray studies due to
the wealth of tools available, and in practice, some individuals may perform
clustering until a satisfactory result is found. To simulate this practice, we therefore
focused on the top five cluster scores for each size grouping (i.e., those with highest
Jaccard similarity to annotations), whether derived from match to GO or KEGG

 A Systematic Comparison of Genome Scale Clustering Algorithms 419

annotations, and computed their average score (Average Top 5 or AT5). We chose
AT5 as a comparison score because most of the methods produce at least five clusters
of each size bin, but for some of the methods, cluster scores drop off quickly after
these top five results, making a larger average meaningless. It is also significant that
in practice users often adjust parameter settings to improve clusters. Accordingly, for
each choice of method and cluster size category, we chose the highest AT5 values
across all parameter settings (Best Average Top 5 or BAT5) for that method-size
combination. These values are reported in Figure 1. It should be noted that for AT5
and BAT5, maximal clique, like any method that allows non-disjoint cluster
membership, creates bias in this score by including results from similar clusters.

Fig. 1. Algorithms Ranked by Best Average Top 5 Clusters. BAT5 Jaccard values are shown
for each clustering method and cluster size classification. (H) = Hierarchical clustering
agglomeration method.

Another metric of clustering performance is whether a given method is able to find
clusters that are readily identified by other methods. This is a direct comparison of the
consistency of clustering algorithms. We identified any annotation category that
received a Jaccard score greater than 0.25 in any of the hundreds of clustering runs we
performed over all parameter settings. This produced a list of 112 annotation
categories, 97 from Gene Ontology and 15 from KEGG. We then found the best
category match score that each clustering method received on each of these selected
annotations and averaged them. Graph based methods scored highest on this internal
consistency metric. The best scoring among these were CAST, maximal clique and
paraclique. For each clustering algorithm, we averaged the BAT5 scores from the
three size bins, and ranked them by their average. High-averaging methods not only
found good results, but they found them in all three size classifications, indicating
robustness to variation in cluster size. These values provide a straightforward way to
compare clustering methods irrespective of cluster size.

3 Discussion

In our comparison of clustering results by size, we found that maximal clique and
paraclique perform best for small clusters; k-clique communities and paraclique

420 J.J. Jay et al.

perform best for medium clusters; Ward and CAST are the top performing methods
for large clusters (Figure 1). Combined analysis of the clustering results across result
sizes based upon the quartile of the results reveals that the performance is best for k-
clique communities, maximal clique, and paraclique, shown in red in Supplementary
Table 2.

For the analysis of consensus of clustering methods for cluster matches to
annotation, we found that CAST, maximal clique and paraclique are best at
identifying clustering results found by any other method (Figure 2).

Fig. 2. Algorithms Ranked by Prominent Annotations. 112 annotations received a Jaccard
score above 0.25. Each clustering method was ranked by the average of its highest Jaccard
score for each of these annotations. (H) = Hierarchical agglomeration method.

This analysis of the performance of diverse clustering algorithms reveals a
performance distinction between graph-based and conventional parametric methods.
In our study, the best ranking methods are almost uniformly graph-based, building
upon the rigorous cluster definition provided by cliques. Traditional methods suffer
from relatively poor performance due to their less rigorous cluster definition or their
heuristic nature, which often rely on growth of clusters around individual genes in a
neighborhood joining or centroid proximity. These methods do not necessarily result
in high correlation among all cluster members, whereas clique and other
combinatorial algorithms typically require this by definition.

Conventional clustering algorithms frequently focus on details before looking at
the bigger picture, by starting from a single gene instead of the full genome. Thus,
these methods, such as hierarchical and k-means, lack a global consideration of the
data set. Clusters are built incrementally at each step, beginning with a single gene’s
neighborhood, not a highly correlated geneset. Clusters will therefore tend to
converge to a local optimum. This is why repeated randomized, as is frequently done
with k-means, can typically improve results simply by selecting genes with larger
neighborhoods. Neural network approaches like SOM suffer from a similar problem,
as training takes place with incomplete views of the full data. Even QT Clust suffers
from these issues, but overcomes to some extent them through additional
computation. Clusters are built incrementally for each gene, but only the highest
scoring cluster is partitioned from the rest of the data, at which time its individual
genes are partitioned out. The process continues iteratively until no genes remain.

 A Systematic Comparison of Genome Scale Clustering Algorithms 421

Thus, QT clust avoids bias introduced by arbitrarily selecting genes, but still has the
same problem of incremental local growth of clusters.

Three of the combinatorial approaches, CAST, CLICK and WGCNA, represent
data as graphs, but compute only heuristic solutions to the underlying graph-theoretic
metrics. CAST approximates a solution to cluster editing. CLICK approximates a
minimum weight cut. WGCNA represents data as a weighted graph, but applies
hierarchical clustering to compute its final set of clusters.

NNN computes exact solutions to somewhat arbitrary problem parameters. The
poor performance that we observe for it on this data may be because its objectives
differ from those of other clustering algorithms. NNN connects genes based on
relative correlation among gene pairs. Two genes G and G’ are considered related if
their correlation is high compared to all other correlations involving G and G’, as
opposed to all correlations for all genes. Thus, NNN may find clusters that have less
pronounced relationships among all cluster members. These clusters may not be
present in the high-level GO annotations, but may have biological relevance through
more distant and indirect functional relationships.

Our work suggests that graph-based algorithms provide superior reliability and a
highly promising approach to transcriptomic data clustering. Most of these methods
attempt to find and exploit cliques), with the exception of CLICK which uses
minimum cut. It has been suggested that clique-based approaches possess the best
potential for identifying sets of interacting genes, due to the highly inter-correlated
nature of the clusters produced [34]. The results reported here appear to corroborate
that, given that four of the six best performing clustering methods in Supplementary
Table 2 are based on clique. It should be noted that we applied the algorithms on a
single data set for which both deep experimental data and strong biological ground
truth are available, and that results may differ when a different data set is used. It is
challenging, however, to conceive of a correlation matrix that would be
fundamentally biased toward one type of algorithm, especially given that we provided
the selection of parameters over a large range of values.

Graph-based problems relevant to clustering are often thought to be difficult to
solve (that is, they are NP-hard) because globally optimal solutions are required. This
can explain both the effectiveness of exact solutions and also why so few algorithms
rely on exact solutions. Our results suggest that exact solutions are truly valuable in
practice, and that continued research into computing exact solutions to NP-hard
problems is probably worthwhile.

Though combinatorial approaches to clustering may perform better, implementation
challenges have limited widespread adoption to date. Maximal clique’s stand-alone
utility is rather limited. Even with the best current implementations, it can take a
staggering amount of time to run to completion. It tends to overwhelm the user by
returning an exhaustive collection of vast numbers of overlapping clusters, even for a
small genome such as yeast. Paraclique and k-clique communities are appealing
alternatives due to the more manageable nature of their results. They employ a form of
soft thresholding, which helps to ameliorate the effects of noise and generate nicely-
enriched clusters without excessive overlap. From a sea of tangled correlations, they
produce dense subgraphs that represent sets of genes with highly significant, but not
necessarily perfect, pair-wise correlations. Paraclique relies on maximum clique, and
thus operates in a top-down fashion. It generates impressive results through the use of

422 J.J. Jay et al.

its rigorous cluster definition followed by more lenient expansion, leading to very high
average intra-cluster correlations. By avoiding the enumeration problems of maximal
clique, it is also highly scalable. Moreover, through its complementary duality with
vertex cover, it is amenable to advances in fixed-parameter tractability [35].
Paraclique’s main drawback is its use of multiple parameters, making algorithm tuning
more challenging. In contrast, k-clique communities relies on maximal clique and so
operates in a bottom-up manner. It also generates impressive results, but its dependence
on maximal clique severely restricts its scalability. Even for a small genome such as that
of S. cerevisiae, and even for graphs in which there are no large maximal cliques, we
could not run k-clique communities to completion without resorting to our own
maximal clique implementation. A faster version of community’s CFinder exists (I.
Farkas, pers. comm.), but it achieves speed only by setting timeout values for maximal
clique computations, thereby creating an approximation method rather than an
optimization method. Thus, given the exponential growth rate of maximal cliques, exact
algorithms that rely on such cliques are hobbled by memory limitations on larger
genomes and denser correlation graphs. We are rather optimistic, however, that
approaches exploiting high performance architectures [20] may have the potential to
change this picture. The fourth clique-based approach, this time via cluster editing, is
CAST. Although its execution is relatively fast, its heuristic nature ensures only
mediocre results and difficult tuning. CAST is simply not an optimization technique. It
seems able to detect pieces of important clusters (as evidenced by its prominence in
Figure 2), but it is often not comprehensive. Given the extreme difficulty of finding
exact solutions to cluster editing [36], we think an optimization analog of CAST is
unlikely to be feasible in the foreseeable future.

4 Conclusions

Using Jaccard similarity for clustering results to gene annotation categories, we
performed a comparative analysis of conventional and more recent graph-based
methods for gene co-expression analyses using a well studied biological data set.
Jaccard similarity provides a simple and objective metric for comparison that is able
to distinguish between entire classes of clustering methods without the biases
associated with the Rand Index. Our analysis revealed that the best performing
algorithms were graph based. Methods such as paraclique provide an effective means
for combining mathematical precision, biological fidelity and runtime efficiency.
Further development of these sorts of algorithms and of user-friendly interfaces is
probably needed to facilitate more wide-spread adoption.

5 Materials and Methods

5.1 Data

Saccharomyces cerevisiae was fully sequenced in 1996 and has been extensively
studied and annotated since. It is therefore an ideal source for biological annotation.
We compared the performance of the selected clustering techniques using the
extensively studied gene expression data set from Gasch et al. [37]. This data was

 A Systematic Comparison of Genome Scale Clustering Algorithms 423

created to observe genomic expression in yeast responding to two DNA-damaging
agents: the methylating agent methylmethane sulfonate (MMS) and ionizing
radiation. The set includes 6167 genes from seven yeast strains, collected over 52
yeast genome microarrays.

The microarray data for yeast gene expression across the cell cycle was obtained
from http://www-genome.stanford.edu/mec1. These data are normalized, background-
corrected, log2 values of the Cy5/Cy3 fluorescence ratio measured on each
microarray. We performed clustering either directly on this preprocessed data or on
the correlation matrix computed from the data. In the latter case, correlations for gene
pairs with five or fewer shared measurements were set to zero. The absolute values of
Pearson's correlation coefficients were used, except when a particular clustering
approach demands otherwise.

5.2 Clustering Methods

In order to evaluate a wide spectrum of approaches likely to be used in practice, and
to avoid the difficult task of choosing the arbitrary “best” parameter setting, we
selected roughly 20 evenly distributed combinations of reasonable parameter settings
for each implementation. To facilitate comparison, we reduced the myriad of output
formats to simple cluster/gene membership lists, grouped into three sizes (3-10, 11-
100, and 101-1000 genes).For example, hierarchical clustering produces a tree of
clusters, which we simply “slice” at a particular depth to determine a list of clusters.

5.3 Comparison Metrics

Given the prevalence of publicly available gene annotation information, we compared
the computationally-derived clusters with manually curated annotations. Yeast
annotation sources include Gene Ontology [38], KEGG Pathways [39], PDB [40],
Prosite [41], InterPro [42] and PFAM [43]. For clarity and brevity, and to take
advantage of their evenly distributed annotation sizes, the results presented here
employ only the Gene Ontology and KEGG Pathways as sources.

We used Jaccard similarity as the basis for our analysis. It is easy to calculate, and
concisely compares clusters with a single metric. Jaccard similarity is usually
computed as the number of true positives divided by the sum of true positives, false
positives, and false negatives.In the case of cluster comparisons, this equates to the
number of genes that are both in the cluster and annotated, divided by the total
number of genes that are either in the cluster or annotated.Thus Jaccard measures how
well the clusters match sets of co-annotated genes, from 0 meaning no match to 1.0
meaning a perfect match.

We implemented a simple parallel algorithm to search all annotation sources for
the genes in each cluster. For each annotation source, we found all annotations that
match at least 2 genes in a given cluster. We then computed the number of genes in
the cluster that match the annotation (true positives), the number of genes with the
annotation but not in the given cluster (false negatives), and the number of genes in
the cluster that did not match the annotation (false positives). We ignored genes in the
cluster not found in the annotation source. Finally, the highest matching Jaccard score
and annotation is assigned to the cluster.

424 J.J. Jay et al.

We grouped Jaccard computations by method and parameter settings and
then separated each grouping into three cluster size bins: 10 or fewer genes (“small”),
11-100 genes (“medium”), and 101-1000 genes (“large”). When running a clustering
algorithm to validate a hypothesis, one generally has an idea of the desired cluster
size, which we try to account for with these size classifications. A researcher looking
for small clusters is often not interested in a method or tuning that produces large
clusters, and vice versa. It is important to note that the use of average cluster size to
determine cluster number (as is needed in k-means, hierarchical and SOM clustering)
does not mean that all clusters will be of average size. Thus we find that these
methods still generate clusters with small, medium and large sizes.

Each individual cluster was scored against the entire annotation set, and the highest
Jaccard score match was returned for that cluster. This list of scores was then grouped
by cluster size and sorted by Jaccard score. The highest 5 Jaccard scores per cluster
size class were averaged to get the Average Top 5 (AT5). This process was then
repeated for each parameter setting tested, amassing a list of around 20 AT5 scores
per size class. From each list of AT5 scores, the largest value was selected and
assigned to the Best Average Top 5 (BAT5) for that size class. This process is then
applied to the next clustering algorithm’s results. When all data has been collected,
the BAT5 scores are output to a summary table, averaged, and sorted again
(Supplementary Table 2).

Community Resources

Data and implementations are available upon request.Supplementary material may be
found at: http://web.eecs.utk.edu/~aperkins/clustercomp/

Acknowledgments

This research was supported in part by the National Institutes of Health under grants
R01-MH-074460, U01-AA-016662 and R01-AA-018776, by the Department of
Energy under the EPSCoR Laboratory Partnership Program, and by the National
Science Foundation under grant EPS-0903787.The research leading to these results
has received funding from the European Community's Seventh Framework
Programme ([FP7/2007-2013] under grant agreement number 223367. This research
used resources of the National Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. Illes Farkas provided us with useful information
about the CFinder software. Khairul Kabir and Rajib Nath helped generate sample
results.

References

1. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: a survey. IEEE
Transactions on Knowledge and Data Engineering 16(11), 1370–1386 (2004)

2. Quackenbush, J.: Computational analysis of microarray data. Nature Reviews
Genetics 2(6), 418–427 (2001)

 A Systematic Comparison of Genome Scale Clustering Algorithms 425

3. Kerr, G., Ruskin, H.J., Crane, M., Doolan, P.: Techniques for clustering gene expression
data. Computers in Biology and Medicine 38(3), 283–293 (2008)

4. Laderas, T., McWeeney, S.: Consensus framework for exploring microarray data using
multiple clustering methods. Omics: A Journal of Integrative Biology 11(1), 116–128
(2007)

5. Myers, C., Barrett, D., Hibbs, M., Huttenhower, C., Troyanskaya, O.: Finding function:
evaluation methods for functional genomics data. BMC Genomics 7(1), 187 (2006)

6. Giancarlo, R., Scaturro, D., Utro, F.: Computational clustering validation for microarray
data analysis: experimental assessment of Clest, Consensus Clustering, Figure of Merit,
Gap Statistics and Model Explorer. BMC Bioinformatics 9(1), 462 (2008)

7. de Souto, M., Costa, I., de Araujo, D., Ludermir, T., Schliep, A.: Clustering cancer gene
expression data: a comparative study. BMC Bioinformatics 9(1), 497 (2008)

8. Mingoti, S.A., Lima, J.O.: Comparing SOM neural network with Fuzzy c-means, K-means
and traditional hierarchical clustering algorithms. European Journal of Operational
Research 174(3), 1742–1759 (2006)

9. Datta, S., Datta, S.: Methods for evaluating clustering algorithms for gene expression data
using a reference set of functional classes. BMC Bioinformatics 7(1), 397 (2006)

10. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A K-Means Clustering Algorithm.
Applied Statistics 28(1), 100–108 (1979)

11. McQuitty, L.L.: Similarity Analysis by Reciprocal Pairs for Discrete and Continuous Data.
Educational and Psychological measurement 26(4), 825–831 (1966)

12. Ward, J.H.: Hierarchical Grouping to Optimize an Objective Function. Journal of the
American Statistical Association 58(301), 236–244 (1963)

13. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

14. Zhang, B., Horvath, S.: A General Framework for Weighted Gene Co-Expression Network
Analysis. Statistical Applications in Genetics and Molecular Biology 4(1) (2005)

15. Huttenhower, C., Flamholz, A., Landis, J., Sahi, S., Myers, C., Olszewski, K., Hibbs, M.,
Siemers, N., Troyanskaya, O., Collier, H.: Nearest Neighbor Networks: clustering
expression data based on gene neighborhoods. BMC Bioinformatics 8(1), 250 (2007)

16. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. Journal of
Computational Biology: A Journal of Computational Molecular Cell Biology 6(3-4),
291–297 (1999)

17. Sharan, R., Maron-Katz, A., Shamir, R.: CLICK and EXPANDER: a system for clustering
and visualizing gene expression data. Bioinformatics 19(14), 1787–1799 (2003)

18. Abu-Khzam, F.N., Baldwin, N.E., Langston, M.A., Samatova, N.F.: On the Relative
Efficiency of Maximal Clique Enumeration Algorithms, with Applications to High-
Throughput Computational Biology. In: Proceedings of the International Conference on
Research Trends in Science and Technology (2005)

19. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM 16(9), 575–577 (1973)

20. Zhang, Y., Abu-Khzam, F.N., Baldwin, N.E., Chesler, E.J., Langston, M.A., Samatova,
N.F.: Genome-Scale Computational Approaches to Memory-Intensive Applications in
Systems Biology. In: Gschwind, T., Aßmann, U., Wang, J. (eds.) SC 2005. LNCS,
vol. 3628. Springer, Heidelberg (2005)

21. Chesler, E.J., Langston, M.A.: Combinatorial Genetic Regulatory Network Analysis Tools
for High Throughput Transcriptomic Data. In: RECOMB Satellite Workshop on Systems
Biology and Regulatory Genomics (2005)

426 J.J. Jay et al.

22. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander,
E.S., Golub, T.R.: Interpreting patterns of gene expression with self-organizing maps:
Methods and application to hematopoietic differentiation. Proceedings of the National
Academy of Sciences of the United States of America 96(6) (1999)

23. Heyer, L.J., Kruglyak, S., Yooseph, S.: Exploring Expression Data: Identification and
Analysis of Coexpressed Genes. Genome Research 9(11), 1106–1115 (1999)

24. Milligan, G., Cooper, M.: An examination of procedures for determining the number of
clusters in a data set. Psychometrika 50(2), 159–179 (1985)

25. Thalamuthu, A., Mukhopadhyay, I., Zheng, X., Tseng, G.C.: Evaluation and comparison
of gene clustering methods in microarray analysis. Bioinformatics 22(19), 2405–2412
(2006)

26. Handl, J., Knowles, J., Kell, D.B.: Computational clustering validation in postgenomic
data analysis. Bioinformatics 21(15), 3201–3212 (2005)

27. Yeung, K.Y., Haynor, D.R., Ruzzo, W.L.: Validating clustering for gene expression data.
Bioinformatics 17(4), 209–318 (2001)

28. Yao, J., Chang, C., Salmi, M., Hung, Y.S., Loraine, A., Roux, S.: Genome-scale cluster
analysis of replicated microarrays using shrinkage correlation coefficient. BMC
Bioinformatics 9(1), 288 (2008)

29. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classificiation 2(1), 193–218
(1985)

30. Wallace, D.L.: A Method for Comparing Two Hierarchical Clusterings: Comment. Journal
of the American Statistical Association 78(383), 569–576 (1983)

31. Beissbarth, T., Speed, T.P.: GOstat: find statistically overrepresented Gene Ontologies
within a group of genes. Bioinformatics 20(9), 1464–1465 (2004)

32. Dennis, G., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., Lempicki, R.A.:
DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome
Biology 4(9), R60 (2003)

33. Khatri, P., Draghici, S.: Ontological analysis of gene expression data: current tools,
limitations, and open problems. Bioinformatics 21(18), 3587–3595 (2005)

34. Butte, A.J., Tamayo, P., Slonim, D., Golub, T.R., Kohane, I.S.: Discovering functional
relationships between RNA expression and chemotherapeutic susceptibility using
relevance networks. Proceedings of the National Academy of Sciences of the United States
of America 97(22), 12182–12186 (2000)

35. Abu-Khzam, F.N., Langston, M.A., Shanbhag, P., Symons, C.T.: Scalable Parallel
Algorithms for FPT problems. Algorithmica 45(3), 269–284 (2006)

36. Dehne, F., Langston, M., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The Cluster Editing
Problem: Implementations and Experiments. In: Parameterized and ExactComputation
(2006)

37. Gasch, A.P., Huang, M., Metzner, S., Botstein, D., Elledge, S.J., Brown, P.O.: Genomic
Expression Responses to DNA-damaging Agents and the Regulatory Roleof the Yeast
ATR Homolog Mec1p. Molecular Biology of the Cell 12(10), 2987–3003 (2001)

38. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene Ontology: tool for the unification of
biology. Nature Genetics 25(1), 25–29 (2000)

39. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T.,
Kawashima, S., Okuda, S., Tokimatsu, T., et al.: KEGG for linking genomes tolife and the
environment. Nucleic Acids Research 36(Suppl 1), D480–D484 (2008)

40. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov,
I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research 28(1), 235–242 (2000)

 A Systematic Comparison of Genome Scale Clustering Algorithms 427

41. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B.A., Castro, E., Lachaize, C.,
Langendijk-Genevaux, P.S., Sigrist, C.J.A.: The 20 years of PROSITE. Nucleic Acids
Research 36(Suppl 1), D245–D249 (2008)

42. Mulder, N.J., Apweiler, R., Attwodd, T.K., Bairoch, A., Bateman, A., Binns, D., Bork, P.,
Bulliard, V., Cerutti, L., Copley, R., et al.: New developments in theInterPro database.
Nucleic Acids Research 35(Suppl 1), D224–D228 (2007)

43. Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.-R., Ceric, G.,
Forslung, K., Eddy, S.R., Sonnhammer, E.L.L., et al.: The Pfam protein familiesdatabase.
Nucleic Acids Research 36(Suppl 1), D281–D288 (2008)

Mining Biological Interaction Networks Using

Weighted Quasi-Bicliques

Wen-Chieh Chang1, Sudheer Vakati1, Roland Krause2,3, and Oliver Eulenstein1

1 Department of Computer Science, Iowa State University, Ames, IA, 50011, U.S.A.
{wcchang,svakati,oeulenst}@iastate.edu

2 Max Planck Institute for Molecular Genetics, Berlin, Germany
3 Free University Berlin, Berlin, Germany

roland.krause@molgen.mpg.de

Abstract. Biological network studies can provide fundamental insights
into various biological tasks including the functional characterization of
genes and their products, the characterization of DNA-protein
interactions, and the identification of regulatory mechanisms. However,
biological networks are confounded with unreliable interactions and are
incomplete, and thus, their computational exploitation is fraught with
algorithmic challenges. Here we introduce quasi-biclique problems to
analyze biological networks when represented by bipartite graphs. In dif-
ference to previous quasi-biclique problems, we include biological inter-
action levels by using edge-weighted quasi-bicliques. While we prove that
our problems are NP-hard, we also provide exact IP solutions that can
compute moderately sized networks. We verify the effectiveness of our
IP solutions using both simulation and empirical data. The simulation
shows high quasi-biclique recall rates, and the empirical data corrobo-
rate the abilities of our weighted quasi-bicliques in extracting features
and recovering missing interactions from the network.

1 Introduction

Proteins are the elementary building blocks of molecular machines that mediate
cellular processes such as transcription, replication, metabolic catalyses, or the
transport of substances. In these processes proteins interact with each other and
can form sophisticated modules of protein-protein interaction (PPI) networks.
Analyzing these networks is a thriving field in proteomics [14] and has extensive
implications for a host of issues in biology, pharmacology [14], and medicine [6].
Computationally capturing the modularity of PPI networks accurately will gain
insights into cellular processes and gene function. Yet, before such modularities
can be reliably identified, challenging problems have to be overcome.

These problems are caused by incomplete and error-prone PPI networks,
which can largely obfuscate the reliable identification of modules [11,13]. Protein-
protein interaction can not be measured to the accuracy of the genome sequences,
leaving some guesswork in identifying modularities correctly. Some interactions
are highly transient and can only be measured indirectly, while others withstand

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 428–439, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Weighted Quasi-Bicliques 429

A
R
O
2

M
E
T
6

IL
V
3
_d

A
V
T
5

C
H
A
1

A
A
T
2
_d

V
B
A
2

R
T
G
1

C
Y
S
3

R
T
G
2

Y
K
L
0
9
6
W

N
U
P
1
3
3

Y
N
L
1
4
0
C

P
M
L
3
9

A
R
X
1

A
S
M
4

K
A
P
1
2
2

N
U
P
1
3
3

0
.1
8
8
7

0
.1
8
1
9

0.1
38
5

0
.1
6
3
8

0.1761

0.207

0
.1
3
0
4

0.1718

0.1773

0.
18
24

0
.1
2
4
8

0
.1
4
0
3

Fig. 1. A quasi-biclique (solid nodes/edges) identified from a gene interaction network
in one of our experiment set where the edge weights are interaction scores. The bipartite
graph is unweighted if only the existence of edges are considered.

denaturing agents. Functional interaction does not even have to be realized via
physical interactions. Thus, computational methods for capturing modularity
can not directly rely on presence or absence of interactions in PPI networks and
need to be able to cope with substantial error rates.

Unweighted quasi-biclique approaches have been used in the past to identify
modularity in PPI networks when presented as bipartite graphs that are spanned
between different features of proteins, e.g. binding sites and domain content
function [10, 11]. An example is depicted in Fig. 1. While these approaches aim
to solve NP-hard problems using heuristics they were able to identify some of
the highly interactive protein complexes in PPI networks [4, 9].

Unweighted quasi-biclique approaches are sensitive to the quantitative uncer-
tainties intrinsic to PPI networks. In particular, protein-protein interactions are
only represented by an unweighted edge in the bipartite graph if they are above
some user-specified threshold. Therefore, unweighted quasi-biclique approaches
are prone to disregard many of the invaluable protein-protein interactions that
are below the threshold, and treat all protein-protein interactions above the
threshold the same. Further, some interactions may or may not be represented
due to some seemingly insignificant error in the measurement. Consequently,
many of the crucial modules may be concealed and remain undetected by using
unweighted quasi-biclique approaches.

Here we introduce novel weighted quasi-biclique problems that incorporate
the level of protein-protein interactions by using bipartite graphs where edges
are weighted by the level of the corresponding protein-protein interactions, e.g.,
Fig. 1. We show that these problems are, similar to their unweighted versions,
NP-hard. However, in practice, exact Integer Programming (IP) formulations
can tackle very efficiently many NP-hard real-world problems [3]. Therefore,
we describe exact Integer Programming (IP) solutions for our weighted quasi-
biclique problems. Furthermore our IP solutions exploit the typical sparseness
of PPI networks when represented as bipartite graphs. This allows us to verify

430 W.-C. Chang et al.

the ability of our IP solutions using a moderately sized PPI network that was
published in the literature [2], and simulation studies. In addition our IP so-
lutions can provide exact results for instances of the unweighted quasi-biclique
approaches that were previously not possible.

Related Work. PPI networks can be represented as bipartite graphs and max-
imal bicliques in these graphs are self-contained elements characterizing highly
interactive protein complexes that typically represent modules in PPI networks
(e.g., [9,11]). Bipartite graphs are special kinds of graphs whose vertices can be
bi-partitioned into sets X and Y such that each edge is incident to vertices in
X and Y . A biclique is a subgraph of a bipartite graph where every vertex in
one partition is connected to every vertex in the other partition by an edge. A
biclique is maximal if it is not properly contained in any other biclique, and it
is maximum if no other maximal bicliques have larger total edge weights. The
problem of finding maximum bicliques is well studied in the literature of graph
theory and is known to be NP-complete [12] and effective heuristics for this
problem have been described and used in various applications [1]. However, bi-
cliques are too stringent for identifying modules in PPI networks. For example a
module is not identified through a biclique that is incomplete by one single edge.
Quasi-bicliques are partially incomplete bicliques that overcome this limitation.
They allow a specified maximum number of edges to be missed in order to form
a biclique [16]. While quasi-bicliques are less stringent for the identification of
modules, they might contain proteins that are interacting with only a few or
none other of the proteins. Such situations occur when the missing edges are not
homogeneously distributed throughout. The δ-quasi-bicliques (δ-QB) [15] allow
to control the distribution of missing edges by setting lower bounds, parameter-
ized by δ, on the minimum number of incident edges to vertices in each of the
quasi-biclique’s vertex sets.

Our Contributions. Here we define a “weighted” version of δ-QB, called α,β-
weighted quasi-bicliques (α,β-WQB), to improve on the identification of modules
in PPI networks by using the interaction levels between proteins. Thus, α,β-
WQB’s may be better applicable to handle noisy data sets as they distribute
the overall missing information across the vertices of the quasi-biclique as shown
in our simulations. Finding a maximum α,β-WQB in a given edge weighted bi-
partite graph is NP-hard, since it is a generalization of the NP-hard problem
to find δ-QBs in unweighted bipartite graphs [11]. We also introduce a “query”
version of the α,β-WQB problem that allows biologists to focus their analyzes
on proteins of their particular interest. Given a PPI network and specific pro-
teins from this network, called query, the query problem is to find a maximum
weighted α,β-WQB that includes the query. We prove this problem is NP-hard.
While the α,β-WQB problem and its query version are NP-hard, we provide
exact IP solutions to solve both problems. By reducing the number of required
variables and exploiting the sparseness of bipartite graphs representing PPI net-
works, our solutions solve moderate-sized instances. This allowed us to verify the
applicability of α,β-WQB by analyzing the most complete data set of genetic

Weighted Quasi-Bicliques 431

interactions available for the Eukaryotic model organism Saccharomyces cere-
visiae. Our results not only extract meaningful yet unexpected quasi-bicliques
under functional classes, but also suggest higher possibilities of recovering miss-
ing interactions not presented in the input.

2 Basic Notation, Definitions and Preliminaries

A bipartite graph, denoted by (U + V, E), is a graph whose vertex set can be
partitioned into the sets U and V such that its edge set E consists only of
edges {u, v} where u ∈ U and v ∈ V (U and V are independent sets). Let
G := (U + V, E) be a bipartite graph. The graph G is called complete if for any
two vertices u ∈ U and v ∈ V there is an edge {u, v} ∈ E. A biclique in G is
a pair (U ′, V ′) that induces a complete bipartite subgraph in G, where U ′ ⊆ U
and V ′ ⊆ V . Since any subgraph induced by a biclique is a complete bipartite
graph, we use the two terms interchangeably. A pair (U, V) includes another
pair (U ′, V ′) if U ′ ⊆ U and V ′ ⊆ V . In such case, we also say that the pair
(U ′, V ′) is included in (U, V). A pair (U, V) is non-empty if both U and V are
non-empty. A weighted bipartite graph, denoted by (U + V, E, ω), is a complete
bipartite graph (U + V, E) with a weight function ω : E → [0, 1].

2.1 Maximum Weighted Quasi-Biclique (α,β-WQB) Problem

Definition 1 (α,β-WQB). Let G := (U + V, E, ω) and α, β ∈ [0, 1]. An α, β-
weighted quasi-biclique, denoted as α,β-WQB , in G is a non-empty pair (U ′, V ′)
that is included in (U, V) and satisfies the two properties:
(1) ∀u ∈ U ′ :

∑
v∈V ′ ω(u, v) ≥ α|V ′|, and (2) ∀v ∈ V ′ :

∑
u∈U ′ ω(u, v) ≥ β|U ′|.

The weight of an α,β-WQB is defined as the sum of all its edge weights.

Definition 2 (Maximum α,β-WQB). A α,β-WQB, is a maximum weighted
α,β-WQB of a weighted bipartite graph G := (U + V, E, w), if its weight is at
least as much as the weight of any other α,β-WQB in G.

Problem 1 (α,β-WQB)
Instance: A weighted bipartite graph G := (U +V, E, ω), and values α, β ∈ [0, 1].
Find: A maximum weighted α,β-WQB in G.

Note that, we use the same notation (α,β-WQB) for a α, β-weighted quasi-
biclique and maximum weighted α, β-weighted quasi-biclique problem. The con-
text in which we use the notation will make the difference clear.

2.2 Query Problem

A common requirement in the analysis of networks is to provide the environment
of a certain group of genes, which translates into finding the maximum weighted
α,β-WQB which includes a specific set of vertices. We call this the query problem
and is defined as follows.

432 W.-C. Chang et al.

Problem 2 (Query)
Instance: A weighted bipartite graph G := (U +V, E, ω), values α, β ∈ [0, 1], and
a pair (P, Q) included in (U, V).
Find: The α,β-WQB which includes (P, Q) and has a weight greater than or
equal to the weight of any α,β-WQB which includes (P, Q).

2.3 Time Complexity Results

Here we prove the NP-hardness of the α,β-WQB problem by a reduction from
the maximum edge biclique problem, and of the query problem by reductions
from the partition problem.

Lemma 1. The α,β-WQB problem is NP-hard.

Proof. Given a bipartite graph G := (U + V, E) and an integer k, the maximum
edge biclique problem asks if G contains a biclique with atleast k edges. The
maximum edge biclique problem is NP-complete [12]. Let G′ := (U + V, E′, ω)
be a weighted bipartite graph where ω(u, v) is set to 1 if (u, v) ∈ E or is set to
0 otherwise. Note that, there is a biclique with k edges in G if and only if the
maximum weighted α,β-WQB in G′ has a weight of atleast k when α and β are
set to 1. Therefore, the α,β-WQB problem is NP-hard. 	

To prove the hardness of query problem we need some auxiliary definitions.
A modified weighted bipartite graph, denoted by (U + V, E, Ω), is a complete
bipartite graph (U + V, E) with a weight function Ω : E → [0, 1] where, for any
two edges e and e′, |Ω(e) − Ω(e′)| ≤ 1.

Definition 3 (Modified α,β-WQB (MO-WQB))
Let G := (U + V, E, Ω) be a modified weighted bipartite graph. A non-empty
pair (U’, V’) included in (U, V) is a MO-WQB of G, if it satisfies the three
properties: (1) (U ′, V ′) includes (∅, V), (2) ∀u ∈ U ′ :

∑
v∈V ′ w(u, v) ≥ 0, and

(3) ∀v ∈ V ′ :
∑

u∈U ′ w(u, v) ≥ 0.

Problem 3 (Existence)
Instance: A weighted bipartite graph G := (U + V, E, ω), values α, β ∈ [0, 1].
Find: If there exists a α,β-WQB (U ′, V ′) in G which includes the pair (∅, V).

Problem 4 (Modified Existence)
Instance: A modified weighted bipartite graph G := (U + V, E, Ω).
Find: If there exists a MO-WQB in G.

The series of reductions to prove the hardness of the query problem are as
follows. We first reduce the partition problem, which is NP-complete [5], to the
modified existence problem. The modified existence problem is then reduced to
the existence problem. The existence problem reduces to the query problem.

Lemma 2. The modified existence problem is NP-complete.

Weighted Quasi-Bicliques 433

Proof. The proof of MO-WQB ∈ NP is omitted for brevity. We are left to
show that partition ≤p MO-WQB. Given a finite set A, and a size s(a) ∈ Z+

associated with every element a of A, the partition problem asks if A can be
partitioned into two sets (A1, A2) such that Σa∈A1s(a) = Σa∈A2s(a).

a. Construction: Let SUM be the sum of sizes of all elements in A. Build a
modified weighted bipartite graph G := (U + V, E, Ω) as follows. For every
element a in A there is a corresponding vertex ua in U . The set V contains two
vertices v+ and v−. For every vertex ua ∈ U , Ω(ua, v+) = s(a)/(2 × SUM)
and Ω(ua, v−) = −s(a)/(2 × SUM). Add an additional vertex usum to set
U . Set Ω(usum, v+) to -1/4 and Ω(usum, v−) to 1/4. Note that, the weights
assigned to edges of G satisfy the constraint on Ω for a modified weighted
bipartite graph.

b. ⇒: Let (A1, A2) be a partition of A such that the sum of the sizes of elements
in A1 is equal to the sum of the sizes of elements in A2. Let U1 = {ua : a ∈
A1}. The sum of weights of all edges from v+ to the vertices in U1 is equal to
1/4. Let U ′ = U1 ∪usum. The sum of weights of all edges from v+ to vertices
of U ′ is 0. Similarly, the sum of weights of all edges from v− to vertices of U ′

is 0. Thus, (U ′, V) is a MO-WQB of G.
⇐: Let (P, V) be a MO-WQB of G. The edge from v− to usum is the only
positive weighted edge from vertex v−. So, P will contain vertex u∑ . Since
Ω(v+, usum) is negative, set P will also contain vertices from U − usum. The
sum of the weights of edges from v− to vertices in P −usum cannot be smaller
than -1/4. Similarly, the sum of the weights of edges from v+ to vertices in
P − usum cannot be smaller than 1/4. So, the sum of all elements in A
corresponding to the vertices in P − usum should be equal to SUM/2. This
proves that if G contains a MO-WQB, set A can be partitioned. 	

Lemma 3. The existence problem is NP-complete.

Proof. Similarly, the proof of existence ∈ NP is omitted for brevity. Next we
show MO-WQB ≤p existence. We prove this problem to be NP-complete by a
reduction from the modified existence problem. The reduction is as follows.

a. Construction: Let G := (U + V, E, Ω) be the modified weighted bipartite
graph in an instance of the modified existence problem. We build a graph
G′ := (U + V, E, ω) for an instance of existence problem from G. Notice that
the partition and vertices remain the same. If the weight of every edge in
the G is non negative, set α= β= 0 and ω(u, v) = Ω(u, v) for every edge
(u, v) ∈ E. Otherwise, set α and β to |x| and ω(u, v) = Ω(u, v) − x for every
edge (u, v) ∈ E, where x is the minimum edge weight in G.

b. ⇒ and ⇐: Let (U ′, V) be a MO-WQB of graph G. If weights of all edges
in G are non negative, the constraints for both the problems are the same.
If G has negative weighted edges, the constraints of both the problems will
be the same when α, β and ω for the existence problem instance are set as
mentioned in the construction. It can be seen that there is a MO-WQB in
G if and only if there is a α,β-WQB in the graph G′ which includes the pair
(∅, B). 	

434 W.-C. Chang et al.

The existence problem can be reduced to the query problem by setting (P, Q)
to (∅, V). The next lemma follows.

Lemma 4. Query problem is NP-hard.

3 IP Formulations for the α,β-WQB Problem

Although greedy approaches are often used in problems of a similar structure,
e.g., multi-dimensional knapsack [8], δ-QB [11], our early greedy approach did
not identify solutions close enough to the optimal. Here we present integer pro-
gramming (IP) formulations solving the α,β-WQB problem in exact solutions.
Our initial IP requires quadratic constraints, which are then replaced by linear
constraints such that it can be solved by various optimization software pack-
ages. Our final formulation is further improved by adopting the implication rule
to simplify variables involved. This improved formulation requires variables and
constraints linear to the number of input edges, and thus, suits better for sparse
graphs. Throughout the section, unless stated otherwise, G := (U + V, E, ω)
represents a weighted bipartite graph, and G′ = (U ′, V ′) represents the max-
imum weighted α,β-WQB of G and E′ represents the edges induced by G′

in G.

Quadratic Programming. For each u ∈ U (v ∈ V), a binary variable xu

(xv) is introduced. The variable xu (xv) is 1 if and only if vertex u (v) is in
U ′ (V ′). The integer program to find the solution G′ can be formulated as
follows.

Binary variables: xu, s.t. xu = 1 iff u ∈ U ′ for each u ∈ U (1)
xv, s.t. xv = 1 iff v ∈ V ′ for each v ∈ V (2)

Subject to:
∑

v∈V ω(u, v) · xvxu ≥ α
∑

v∈V xvxu for all u ∈ U (3)∑
u∈U ω(u, v) · xuxv ≥ β

∑
u∈U xuxv for all v ∈ V (4)

Maximize:
∑

(u,v)∈U×V xuxv · ω(u, v) (5)

The quadratic terms in the constraints are necessary because, α and β thresh-
olds apply only to vertices in U ′ and V ′. This formulation uses variables and
constraints linear to the size of input vertices, i.e., O(|U | + |V |). Since solving
a quadratic program usually requires a proprietary solver, we reformulate the
program so that all expressions are linear.

Converted Linear Programming. A standard approach to convert a
quadratic program to a linear one is introducing auxiliary variables to replace
the quadratic terms. Here we introduce a binary variable yuv for every edge (u, v)
in G, such that, yuv = 1 if and only if xu = xv = 1, i.e., the edge (u, v) is in G′.
The linear program to find the solution G′ is formulated as follows.

Weighted Quasi-Bicliques 435

Binary variables: Same as in (1) and (2)
yuv, s.t., yuv = 1 iff xu = xv = 1 for all (u, v) ∈ E (6)

Subject to: yuv ≤ (xu + xv)/2 for all (u, v) ∈ E (7)
yuv ≥ xu + xv − 1 for all (u, v) ∈ E (8)∑

v∈V ω(u, v) · yuv ≥ α
∑

v∈V yuv for all u ∈ U (9)∑
u∈U ω(u, v) · yuv ≥ β

∑
u∈U yuv for all v ∈ V (10)

Maximize:
∑

(u,v)∈U×V ω(u, v) · yuv (11)

Expressions (7) and (8) state the condition that yuv = 1 if and only of xu =
xv = 1. Expression (8) ensures that, for any edge whose end points (u, v) are
chosen to be in G’, yuv is set to 1. Due to the use of yuv variables, this formulation
requires O(|U ||V |) variables and constraints.

Improved Linear Programming. Observe that constraint (7) becomes trivial
if yuv = 0. In other words, this constraint formulates implications, e.g., for binary
variables p and q, the expression p ≤ q is equivalent to p → q. Expanding on
this idea, we eliminate the requirement of variables yuv in constraints (9) and
(10) in the next formulation while sharing the rest of the aforementioned linear
program.

Subject to:
∑

v∈V (ω(u, v) − α) xv ≥ |V |(xu − 1) for all u ∈ U (12)∑
u∈U (ω(u, v) − β) xu ≥ |U |(xv − 1) for all v ∈ V (13)

There is a variable xv for every vertex v in G. There is a variable yuv for every
edge (u, v) in G whose weight is not 0. The variable yuv is set to 1 if and only if
both xu and xv are set to 1. For any vertex u ∈ U (v ∈ V), the variable xu (xv) is
set to 1 if and only if vertex u (v) is in G′. Constraint (12) can also be explained
as follows. If xu = 1, the constraint transforms to the second constraint in the
α,β-WQB definition. If xu = 0, constraint (12) becomes trivial. Constraint (13)
can be explained in a similar manner.

If there are n vertices in U and m vertices in V , there will be a total of
m + n + 2k constraints and m + n + k variables where k is the number of edges
whose weight is not equal to 0. The above formulations can be modified to solve
the query problem by adding an additional constraint xv = 1 to the formulation,
for every vertex v ∈ P ∪ Q.

4 Results and Discussion

Finding appropriate values for α and β is a critical part in an application. With
no specific standard set to compare to, we simulated data sets to explore the
problem. We then use our IP model to explore α,β-WQB’s in a real world ap-
plication, a recent data set of functional groups formed in genetic interactions.
The filtered data set, compared to the raw data, served to investigate the role of
non-existing edges in the input bipartite graph. While mathematically equiva-
lent in the modeling step, a non-edge in a PPI graph can represent either a true

436 W.-C. Chang et al.

non-interaction or a false-negative. Assuming the input consists of meaning-
ful features, our preliminary results show that α,β-WQB’s may recover missing
edges with potentially higher weights better than δ-quasi-bicliques.

Simulations. We evaluated two different methods of choosing α and β values,
by trying to retrieve a known α,β-WQB from a weighted bipartite graph. In
each simulation experiment we do the following. The pair (U, V) represents the
vertices of a weighted bipartite graph G. We randomly choose U ′ ⊆ U and
V ′ ⊆ V as vertices of the known quasi biclique in G. The sizes of both U ′ and
V ′ are set the same and is picked randomly. Random edges between the vertices
of U ′ and V ′ in G are introduced according to a pre-determined edge density d.
The edges between vertices of U\U ′ and V \V ′ of G are also generated randomly
according to a pre-determined density d′. The edge weights of the known quasi-
biclique (U ′, V ′) are determined by a Gaussian distribution with a mean mn
and standard deviation dev. Weights of the edges of G not present in the quasi-
biclique are also determined by a Gaussian distribution with a lower mean mn′

and standard deviation dev′.
The values of α and β are then chosen in two different ways. As part of the

simulation we evaluate the performance of both methods. The first method sets
both α and β to the mean of the weights of the edges of the quasi biclique. In
the second method, α and β are calculated as given below:

α =min {Cu′ | Cu′ = (
∑

v′∈V ′ w(u′, v′))/|V ′| for all u′ ∈ U ′}
β =min {Cv′ | Cv′ = (

∑
u′∈U ′ w(u′, v′))/|U ′| for all v′ ∈ V ′}

The corresponding ILP model of the α,β-WQB problem is generated in Python,
and solved in Gurobi 3.0 [7] on a PC with an Intel Core2 Quad 2.4 GHz CPU
with 8 GB memory.

For the evaluation, let (U ′′, V ′′) represent the maximum weighted α,β-WQB
returned by the ILP model. The number of vertices of U ′ in U ′′ and V ′ in V ′′

is our evaluation criterion. The percentage of vertices of U ′ (V ′) in U ′′ (V ′′)
is called the recall of U ′ (V ′). For a specific graph sizes experiments were run
by varying the values mn and mn′. The values dev and dev′ were set 0.1. The
densities d and d′ are set to 0.8 and 0.2. The experiments were run for graphs
of size 16× 16, 32× 32 and 40× 40. Each experiment is repeated thrice and the
average number of recalled vertices is calculated. The recall of the experiments
can be seen in Table 1. As the difference between the means increases, so does
the average recall. The second method of choosing α and β yields a consistently
higher recall.

4.1 Genetic Interaction Networks

A comprehensive set of genetic interaction and functional annotation published
recently by Costanzo et al. [2] is amongst the best single data sources for weighted
biological networks. The aim of our application is to identify the maximum
weighted quasi-bicliques consisting of genes in different functional classes in the
Costanzo dataset.

Weighted Quasi-Bicliques 437

Table 1. Recall of vertices in the simulation. For every experiment, the value in the
AU (AV) column represents the average recall of U ′(V ′).

mn mn′
16 × 16 32 × 32 40 × 40

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2
AU AV AU AV AU AV AU AV AU AV AU AV

0.5 0.5 60 50 60 50 16 11 33 33 58 40 41 20

0.55 0.45 55 33 55 33 42 43 53 23 53 31 66 37

0.6 0.4 50 27 66 55 53 50 66 66 50 50 58 60

0.65 0.35 100 49 100 49 60 93 73 100 51 48 60 61

0.7 0.3 72 88 100 88 100 73 100 86 69 75 100 100

0.75 0.25 66 72 100 83 76 93 100 100 75 71 100 94

0.8 0.2 55 100 72 100 100 83 100 100 91 49 100 73

Pairwise comparisons of the total 18 functional classes provide 153 sets. For
every distinct pair (A, B) of such classes, we build a weighted bipartite graph
(UA + VB, E, ω) where genes from functional class A are represented as vertices
in UA and genes from functional class B are represented as vertices in VB .

The absolute values of the interaction score ε, are used as the edge weights.
Values greater than 1 are rounded off to 1. Any gene present in both the func-
tional classes A and B is represented as different vertices in the partitions UA

and VB and the edge between those vertices is given a weight of 1. We build
LP models for the bipartite graphs to identify the maximum weighted quasi-
bicliques.

Biological Interpretation and Examples. Genes with high degree and
strong links dominate the results. In several instances, the quasi-bicliques are
trivial in the sense that only one gene is present in U ′, and it is linked to more
than 20 genes in V ′. Such quasi-bicliques are maximal by definition but pro-
vide limited insight. A minimum of m = 2 genes per subset was included as an
additional constraint to the LP model. It might be sensible to implement such
restrictions in the application in general.

Given the low overall weight, the data set generated with the parameters
α = β = 0.1 and m = 2 provided the most revealing set of maximum weighted
quasi-bicliques. A notable latent set that was obtained identified genes involved
in amino acid biosynthesis (SER2, THR4, HOM6, URE2) and was found to form
a 4 × 10 maximum weighted quasi-biclique with genes coding for proteins of
the translation machinery, elongation factors in particular (ELP2, ELP3, ELP4,
ELP6 , STP1, YPL102C, DEG1, RPL35A, IKI3, RPP1A). These connections,
to our knowledge, are not described and one might speculate that this is a way
how translation is coupled to the amino-acid biosynthesis.

In some cases the maximum weighted quasi-biclique is centered around the
genes that are annotated in more than one functional class as they provide strong
weights. These genes are involved in mitochondrial to nucleus-signaling and are
examples where our approach recovers known facts. Using the query approach,
it is possible to obtain quasi-bicliques around a gene set of interest quickly and
extend the approach proteins of interest.

438 W.-C. Chang et al.

Table 2. A comparison of e under various QB parameters showing improvements of
recovered edge weight expectation in α,β-WQB’s

QB d05/m1 d05/m2 ab/m2 a005/m2 a01/m2 a02/m2 a03/m2 a04/m2 a05/m2

avg(e) 0.0855 0.0844 0.0850 0.0806 0.0830 0.0867 0.0905 0.0934 0.1169

Recovering Missing Edges. The published data sets have edges under dif-
ferent thresholds removed. To sample such missing edges, we calculate the av-
erage weight of all the edges removed in the 153 bipartite graphs (generated
above), and the calculated average weight is 0.0522. For each of the 153 maxi-
mum weighted quasi-bicliques, the missing edges induced by the quasi-bicliques
are then identified, and the average missing edge weight e of each is calculated,
and e is always greater than 0.0522. In other words, we observe that a missing
edge in a maximum weighted quasi-biclique has a higher expected weight than
the weight of a randomly selected missing edge.

We further compare e from our approach to e from the δ-quasi-bicliques (δ-
QB) described by Liu et al. [11]. All quasi-bicliques (including exact δ-QB using
our IP formulation) used to induce average missing edge weight e are:
(1) d05/m1: δ-QB with δ = 0.5 and minimum node size is 1, i.e., m = 1.
(2) d05/m2: δ-QB with δ = 0.5; m = 2.
(3) ab/m2: α,β-WQB using the minimum average edge weights found from

d05/m2 as α and β; m = 2.
(4) aX/m2: α,β-WQB where X = α = β ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}; m = 2.

Comparing the averages of e from a005/m2 to a05/m2, we see a steady increase.
Since α and β can be seen as expected edge weights of the resulting QB, the
changes in e shows that QB identifies subgraphs of expected edge weights. In
this particular case, the removed edge weights are at most 0.16, hence e can
never approach closely to the parameter α.

5 Conclusions and Outlook

We address noise and incompleteness in biological networks by introducing a
graph-theoretical optimization problem that identifies weighted quasi-bicliques.
These quasi-bicliques incorporate biological interaction levels and can improve on
the usage of un-weighted quasi-bicliques. To meet demands of biologists we also
provide a query version of (weighted) quasi-biclique problems. We prove that our
problems are NP-hard, and describe IP formulations that can tackle moderate-
sized problem instances. Simulations solved by our IP formulation suggest that
our weighted quasi-biclique problems are applicable to various other biological
networks.

Future work will concentrate on the design of algorithms for solving large-scale
instances of weighted quasi-biclique problems within guaranteed bounds. Greedy
approaches may result in effective heuristics that can analyze ever-growing bio-
logical networks. A practical extension to the query problem is the development
of an efficient enumeration of all maximal α,β-WQB’s.

Weighted Quasi-Bicliques 439

Acknowledgments. We thank Heiko Schmidt for discussions that initiated the
concept of weighted quasi-bicliques. Further, we thank Nick Pappas and John
Wiedenhoeft for valuable comments. WCC, SV, and OE were supported in part
by NSF awards #0830012 and #1017189.

References

1. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus
algorithms for the generation of all maximal bicliques. Discrete Appl. Math. 145(1),
11–21 (2004)

2. Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E., Sevier, C., Ding,
H., Koh, J., Toufighi, K., Mostafavi, S., et al.: The genetic landscape of a cell.
Science 327(5964), 425 (2010)

3. Dietrich, B.: Some of my favorite integer programming applications at IBM. Annals
of Operations Research 149(1), 75–80 (2007)

4. Ding, C., Zhang, Y., Li, T., Holbrook, S.: Biclustering Protein Complex Interac-
tions with a Biclique Finding Algorithm. In: ICDM, pp. 178–187 (2006)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W H Freeman, New York (1979)

6. Goh, K., Cusick, M., Valle, D., Childs, B., Vidal, M., Barabási, A.: The human
disease network. PNAS 104(21), 8685 (2007)

7. Gurobi Optimization Inc.: Gurobi Optimizer 3.0 (2010)
8. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg

(2004)
9. Li, H., Li, J., Wong, L.: Discovering motif pairs at interaction sites from protein

sequences on a proteome-wide scale. Bioinformatics 22(8), 989 (2006)
10. Liu, H., Liu, J., Wang, L.: Searching maximum quasi-bicliques from protein-protein

interaction network. JBSE 1, 200–203 (2008)
11. Liu, X., Li, J., Wang, L.: Modeling protein interacting groups by quasi-bicliques:

Complexity, algorithm, and application. IEEE TCBB 7(2), 354–364 (2010)
12. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Appl.

Math. 131(3), 651–654 (2003)
13. Sim, K., Li, J., Gopalkrishnan, V.: Mining maximal quasi-bicliques: Novel algo-

rithm and applications in the stock market and protein networks. Analysis and
Data Mining 2(4), 255–273 (2009)

14. Waksman, G.: Proteomics and Protein-Protein Interactions Biology, Chemistry,
Bioinformatics, and Drug Design. Springer, Heidelberg (2005)

15. Wang, L.: Near Optimal Solutions for Maximum Quasi-bicliques. In: Thai, M.T.,
Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 409–418. Springer, Heidel-
berg (2010)

16. Yan, C., Burleigh, J.G., Eulenstein, O.: Identifying optimal incomplete phyloge-
netic data sets from sequence databases. Mol. Phylogenet. Evol. 35(3), 528–535
(2005)

Towards a Characterisation of the Generalised

Cladistic Character Compatibility Problem for
Non-branching Character Trees

Ján Maňuch1,2, Murray Patterson2, and Arvind Gupta2

1 Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
2 Department of Computer Science, UBC, Vancouver, BC, Canada

Abstract. In [3,2], the authors introduced the Generalised Cladistic
Character Compatibility (GCCC) Problem which generalises a variant
of the Perfect Phylogeny Problem in order to model better experiments
in molecular biology showing that genes contain information for cur-
rently unexpressed traits, e.g., having teeth. In [3], the authors show
that this problem is NP-complete and give some special cases which are
polynomial. The authors also pose an open case of this problem where
each character has only one generalised state, and each character tree is
non-branching, a case that models these experiments particularly closely,
which we call the Benham-Kannan-Warnow (BKW) Case.

In [18], the authors study the complexity of a set of cases of the
GCCC Problem for non-branching character trees when the phylogeny
tree that is a solution to this compatibility problem is restricted to be
either a tree, path or single-branch tree. In particular, they show that
if the phylogeny tree must have only one branch, the BKW Case is
polynomial-time solvable, by giving a novel algorithm based on PQ-trees
used for the consecutive-ones property of binary matrices.

In this work, we characterise the complexity of the remainder of the
cases considered in [18] for the single-branch tree and the path. We show
that some of the open cases are polynomial-time solvable, one by using
an algorithm based on directed paths in the character trees similar to
the algorithm in [2], and the second by showing that this case can be
reduced to a polynomial-time solvable case of [18]. On the other hand,
we will show that other open cases are NP-complete using an interesting
variation of the ordering problems we study here. In particular, we show
that the BKW Case for the path is NP-complete.

1 Introduction

Here we study the problem of constructing a phylogenetic tree for a set of
species [7]. A qualitative character assigns to each species a state from a set
of states, e.g., “is a vertebrate”, or “number of legs”. When the evolution of the
states of the character is known, e.g., evolution from invertebrate to vertebrate
is only forward, the character is called cladistic. This evolution of the states
is usually represented by a rooted tree, called a character tree, on the set of

J. Chen, J. Wang, and A. Zelikovsky (Eds.): ISBRA 2011, LNBI 6674, pp. 440–451, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards a Characterisation of the GCCC Problem 441

states. The Qualitative Character Compatibility Problem, or Perfect Phylogeny
Problem, is NP-complete [4,23], while it is polynomial-time solvable when any
of the associated parameters is fixed [1,15,16,19]. When characters are cladistic,
the problem, called the Cladistic Character Compatibility Problem, is the prob-
lem of finding a perfect phylogeny tree on the set of species such that it can be
contracted to a subtree of each character tree. This problem is polynomial-time
solvable [6,12,25].

Experimental research in molecular biology [14,17,24,8] shows that traits can
disappear and then reappear during the evolution of a species, suggesting that
genes contain information about traits that are not always expressed. In [3,2],
the authors argue that a new model for characters is needed in order for the
resultant phylogenetic trees to capture this phenomenon. The authors thus de-
vise the generalised character, which assigns to each species a subset of a set
of states, where we only know that the expressed trait (state) is in this subset.
The Generalised Cladistic Character Compatibility (GCCC) Problem is then the
Cladistic Character Compatibility Problem on a set of species with generalised
characters where we first have to pick one state from the subset for each char-
acter. Interestingly, generalised characters capture also the case of qualitative
characters with missing data (the “Incomplete Perfect Phylogeny” Problem).
Here, missing data can be replaced by a “wildcard” generalised state containing
all possible states of the character. This problem was shown to be NP-complete
even if the number of states is constant in [13].

The authors of [3,2] give a polynomial-time algorithm for the case of the
GCCC Problem where for each character, the set of states of each species forms
a directed path in its character tree. It thus follows that if the character trees
are non-branching, then the Incomplete Cladistic Character Compatibility Prob-
lem can be solved in polynomial time. The complexity of this case when each
character has at most two states was further improved in [22]. In [3,2], it was
shown that the GCCC Problem is NP-complete using a construction involving
character trees that are branching. However, the authors argued that in this
setting the situation when a trait becomes hidden and then reappears does not
happen, hence in [3] they posed an open case of the GCCC Problem where each
character tree has one branch 0 → 1 → 2 and the collection of sets of states for
each species is {{0}, {1}, {2}, {0, 2}}. We call this the Benham-Kannan-Warnow
(BKW) Case. They then showed in [2] that if a “wildcard” set {0, 1, 2} is added
to the collection, the problem is NP-complete.

In [18], the authors then study the complexity of cases of the GCCC Problem
for non-branching character trees with 3 states and set of states chosen from the
set {{0}, {1}, {2}, {0, 2}, {0, 1, 2}} when the phylogeny tree that is a solution to
this problem is restricted to be (a) any single-branch tree, (b) path or (c) tree, cf.
Table 1. In [11], the authors state that searching for path phylogenies is strongly
motivated by the characteristics of human genotype data: 70% of real instances
that admit a tree phylogeny also admit a path phylogeny. In [18], the authors
have the following results. For (5a–b) of Table 1 they show that the problem is
equivalent to the Consecutive-Ones Property (C1P) Problem [9,20]. They then

442 J. Maňuch, M. Patterson, and A. Gupta

Table 1. Complexity of all cases of the GCCC Problem for the character tree 0 →
1 → 2 and set of states chosen from the set Q ⊆ {{0}, {1}, {2}, {0, 2}, {0, 1, 2}}. The
BKW Case is marked with *.

Q\soln (a) branch (b) path (c) tree

(1) Q ⊆ {{0}, {1}, {2}} P [18] P [18] P [3,2]

(2) {{0, 1, 2}} ⊆ Q ⊆ {{0}, {1}, {2}, {0, 1, 2}}; |Q| ≤ 2 trivial trivial trivial

(3) {{0, 1, 2}} ⊆ Q ⊆ {{0}, {1}, {2}, {0, 1, 2}}; |Q| ≥ 3 P (Th. 1) NP-c (Th. 3) P [3,2]

(4) Q ⊆ {{0}, {0, 2}, {0, 1, 2}} or Q ⊆ {{2}, {0, 2}, {0, 1, 2}} trivial trivial trivial

(5) {{1}, {0, 2}} P [18] P [18] ?

(6) {{0}, {1}, {0, 2}} P [18] NP-c (Th. 3) ?

(7) {{0}, {2}, {0, 2}}(∪{{0, 1, 2}}) P (Th. 1) NP-c (Th. 3) P [3,2]

(8) {{1}, {2}, {0, 2}} P [18] P (Cor. 1) ?

(9) {{0}, {1}, {2}, {0, 2}} ∗ P [18] NP-c (Th. 3) ?

(10) {{1}, {0, 2}, {0, 1, 2}} ⊆ Q NP-c [18] NP-c (Th. 2) NP-c [2]

show that the BKW Case is polynomial-time solvable by giving an algorithm
based on PQ-trees [5,20] used for the C1P Problem, giving also the entries (6a),
(8a) and (9a) of Table 1. They show that (10a) is NP-complete by reduction
from the Path Triple Consistency (PTC) Problem (cf. Section 3). Finally, they
observe that (1a–b) are special cases of the Qualitative Character Compatibility
Problem that are polynomial by [1].

In this work, we characterise the complexity of the remaining cases considered
in [18] of the GCCC Problem for non-branching character trees for (a) and (b),
completing these two columns in Table 1. This paper is structured as follows. In
Section 2 we formally define the Generalised Cladistic Character Compatibility
Problem. In Section 3 we study several types of ordering problems, some being
polynomial, while others are NP-complete; one of them is then used to determine
the complexity of several cases in Table 1. Section 4 contains the tractability
results of this work. Section 4.1 gives a polynomial-time algorithm based on
that of [3,2] for the case of the GCCC Problem for (a) where for each character,
the set of states of each species forms a directed path in its character tree,
giving entries (3a) and (7a) of Table 1. In Section 4.2 we show that case (8b) is
polynomial by showing that any instance of this case can be reduced to solving
an instance of polynomial case (8a) of [18]. In Section 5, we show that case (10b)
is NP-complete by reduction from the PTC Problem of Section 3, and that cases
(3b), (6b), (7b) and (9b) are NP-complete by reduction from the LEF-PTC
Problem of Section 3. Note that this last result includes the fact that case (9b),
the BKW Case of the GCCC Problem for (b) is NP-complete. Finally, Section 6
concludes the paper with some open problems and future work.

2 Generalised Cladistic Character Compatibility Problem

Let S be a set of species. A generalised (cladistic) character [3,2] on S is a pair
α̂ = (α, Tα), such that:

(a) α is a function α : S → 2Qα , where Qα denotes the set of states of α̂.
(b) Tα = (V (Tα), E) is a rooted character tree with nodes bijectively labelled

by the elements of Qα.

Towards a Characterisation of the GCCC Problem 443

The Generalised Cladistic Character Compatibility (GCCC) Problem is to find
a perfect phylogeny [4] of a set of species with generalised characters:

Generalised Cladistic Character Compatibility (GCCC) Problem
Input: A set S of species and a set C of generalised characters on S.
Question: Is there a rooted tree T = (VT , ET) and a “state-choosing” function
c : VT × C →

⋃
α̂∈C Qα such that the following holds:

(1) For each species s ∈ S there is a vertex vs in T such that for each α̂ ∈ C,
c(vs, α̂) ∈ α(s).

(2) For every α̂ ∈ C and i ∈ Qα, the set {v ∈ VT | c(v, α̂) = i} is a connected
component of T .

(3) For every α̂ ∈ C, the tree T (α) is an induced subtree of Tα, where T (α) is
the tree obtained from T by labelling the nodes of T only with their α-states
(as chosen by c), and then contracting edges having the same α-state at their
endpoints.

Essentially, the first condition is that each species is represented somewhere
in the tree T , and the second condition is that the set of nodes labelled by a
given state of a given character form a connected subtree of T , just as with
the Character Compatibility Problem. Finally, condition three is that the state
transitions for each character α̂ must respect its character tree Tα.

The GCCC Problem is NP-complete [3,2], however it is polynomial for many
special cases of the problem [3,2,18]. We will consider the following variants of
the GCCC Problem. The GCCC Problem with non-branching character trees
(GCCC-NB Problem) is a special case of the GCCC Problem in which character
trees have a single branch, i.e., each character tree Tα is 0 → 1 → · · · → |Tα|−1.
If we restrict the solution of the GCCC-NB Problem (a phylogeny tree) to have
only one, or two branches starting at the root, we will call this problem the
Single-Branch GCCC-NB (SB-GCCC-NB) Problem, and the Path GCCC-NB
(P-GCCC-NB) Problem, respectively. In addition, if in any of these problems,
say in problem X , we restrict the set of states to be from the set Q, we will call
this problem the Q-X Problem. Table 1 summarises the cases studied here.

3 Ordering Problems

In this section, we discuss several different types of ordering problems. These
problems are related to the Single-Branch and Path GCCC-NB Problems. We
will use one of these variants to obtain a hardness result in Section 5.

The Path Triple Consistency (PTC) Problem is a simplified version of the
extensively studied Quartet Consistency (QC) Problem [23]. In the QC Problem,
given a set S and the collection of quartets (ai, bi : ci, di), where ai, bi, ci, di ∈ S,
the task is to construct a tree T containing vertices S such that for each quartet
there is an edge of T whose removal separates vertices {ai, bi} from vertices
{ci, di}. This problem was shown to be NP-complete in [23]. In [18], we have
observed that the problem remains NP-complete when we restrict the tree to be
a path. In this case it is easy to see that (i) we can assume the path contains

444 J. Maňuch, M. Patterson, and A. Gupta

only vertices in S and (ii) each quartet (ai, bi : ci, di) can be replaced with the
three triples (ai, bi : ci), (ai, bi : di) and (ci, di : ai). The PTC Problem can be
viewed as a total ordering problem with negative constraints ci /∈ [ai, bi], where
[ai, bi] is the set of all elements between ai and bi in the total ordering. The Total
Ordering (TO) problem with positive constraints ci ∈ [ai, bi] was shown to be
NP-complete in [21].

Here, we study two subclasses of the PTC Problem and one subclass of the
TO Problem in which one element of each constraint is fixed:

Left Element Fixed Path Triple Consistency (LEF-PTC) Problem
Input: A set S = {1, . . . , n}, an element r �∈ S, and a set of triples {(ai, r :
ci)}k

i=1 where ai, ci ∈ S for every i ∈ {1, . . . , k}.
Question: Is there a path (an ordering) P on vertices S∪{r} such that for each
i ∈ {1, . . . , k}, there is an edge of P whose removal separates {r, ai} from ci.

Right Element Fixed Path Triple Consistency (REF-PTC) Problem
Input: A set S = {1, . . . , n}, an element r �∈ S, and a set of triples {(ai, bi :
r)}k

i=1 where ai, bi ∈ S for every i ∈ {1, . . . , k}.
Question: Is there a path (an ordering) P on vertices S∪{r} such that for each
i ∈ {1, . . . , k}, there is an edge of P whose removal separates {ai, bi} from r.

One Element Fixed Total Ordering (OEF-TO) Problem
Input: A set S = {1, . . . , n}, an element r �∈ S, and a set of triples {(ai, bi, ci)}k

i=1

where for every i ∈ {1, . . . , k}, either ai, ci ∈ S and bi = r, or ai, bi ∈ S and
ci = r.
Question: Is there a path (an ordering) P on vertices S∪{r} such that for each
i ∈ {1, . . . , k}, bi appears between ai and ci on P .

In what follows, we will show that the first problem (LEF-PTC) is NP-complete,
while the other two problems (REF-PTC and OEF-TO) are solvable in polyno-
mial time. Thus, the LEF-PTC Problem seems to be the simplest version of the
problem which is still intractable.

Lemma 1. The LEF-Path Triple Consistency Problem is NP-complete.

Proof. Here, we give a reduction from Not-All-Equal-3SAT (NAE-3SAT) [10].
The NAE-3SAT Problem is: given a set of Boolean variables X = {x1, . . . , xn}
and a set of clauses {C1, . . . , Cm}, where each clause contains three literals,
is there a truth assignment to the set of variables such that in no clause,
its three literals are all true or all false. Given an instance of NAE-3SAT,
let S be the union of variable symbols {v1, v̄1, . . . , vn, v̄n} and literal symbols
{	1

1, 	
2
1, 	

3
1, . . . , 	

1
m, 	2

m, 	3
m}.

The basic principle of the reduction is the following observation. The triple
(ai, r : ci) is equivalent to the following condition on the elements in S ∪ {r}:

r < ci ⇔ ai < ci . (1)

The Boolean value of predicate r < vi will represent the value of variable xi,
for i ∈ {1, . . . , n}. First, we introduce the triples (vi, r : v̄i) and (v̄i, r : vi), for

Towards a Characterisation of the GCCC Problem 445

i ∈ {1, . . . , n}. These triples are equivalent to the following logical statement:
r < v̄i ⇔ vi < v̄i ⇔ vi < r. Hence, they enforce v̄i < r iff r < vi, and hence the
Boolean value of predicate r < v̄i represents the value of ¬xi.

Now, let clause Cj contain variables xk1 , xk2 and xk3 . We will use symbols
	1
j , 	

2
j , 	

3
j to represent the values of the three literals of Cj : the Boolean value of

the i-th literal of Cj will be equal to the value of predicate r < 	i
j . To achieve this,

we will reuse the above constraints. For each variable xki with positive occurrence
in Cj , we introduce the triples (i

j , r : v̄ki) and (v̄ki , r : 	i
j), and for each variable

xki with a negated occurrence in Cj , triples (i
j, r : vki) and (vki , r : 	i

j). These
triples will guarantee that predicate r < 	i

j represents the Boolean value of the
i-th literal of Cj . The reason why we have a symbol for each literal is that the
position of the literal symbol 	i

j and the position of the variable symbol vki (or
v̄ki) are only very weakly dependent: one is smaller than r if and only if the
other is, but otherwise they are independent. This is important, since the clause
gadgets introduced in the next paragraph might put some ordering restrictions
on its literal symbols, and hence if we would use the variable symbols vki (v̄ki)
in several clause gadgets, the ordering restrictions from different clause gadgets
might not be compatible.

The clause gadget for clause Cj will contain the three triples (1
j , r : 	2

j),
(2

j , r : 	3
j) and (3

j , r : 	1
j). The purpose of these constraints is to guarantee that

in any ordering at least one and not all literals in the clause Cj are true. For
instance, assume that all literals are true, i.e., r < 	i

j for i ∈ {1, 2, 3}. By (1),
this is equivalent to 	1

j < 	2
j , 	2

j < 	3
j and 	3

j < 	1
j , which leads to a contradiction.

Similarly, if literals are false in the ordering, all three inequalities will reverse
their direction, and we get a contradiction again. Hence, each clause is satisfied
and predicates r < vi define a solution to the instance of NAE-3SAT.

Now, assume that the instance of NAE-3SAT has a solution ψ : X →
{false, true}. Consider the ordering of elements of S∪{r} satisfying the following
conditions:

(a) for each vi ∈ {v1, . . . , vn}, vi appears to the right of r, i.e., r < vi in the
ordering, if and only if ψ(xi) = true for the xi corresponding to vi;

(b) for each clause Cj , the relative ordering of the literal symbols 	1
j , 	

2
j , 	

3
j and r

is one of the following: (1
j , r, 	

2
j , 	

3
j), (3

j , 	
2
j , r, 	

1
j), (2

j , r, 	
3
j , 	

1
j), (1

j , 	
3
j , r, 	

2
j),

(3
j , r, 	

1
j , 	

2
j) and (2

j , 	
1
j , r, 	

3
j).

Note that for any valid combination of truth assignments to the literals of Cj ,
there is one ordering in the list above. This ordering imposes a restriction on the
relative ordering of the two literal symbols appearing on the same side of r, the
reason why we created the literal symbols. It is easy to see that for each s ∈ S,
other than on which side of r the s appears, there is at most one constraint
specifying its relative ordering to another element. Hence, it is always possible
to find an ordering satisfying the above conditions.

Let us verify that this ordering satisfies all triple constraints. The constraints
(vi, r : v̄i) and (v̄i, r : vi) (respectively, (i

j , r : vki) and (vki , r : 	i
j); (i

j , r : v̄ki)
and (v̄ki , r : 	i

j)) are satisfied just by the placement of symbols to the correct

446 J. Maňuch, M. Patterson, and A. Gupta

sides of r. For instance, if r < vi then the relative ordering of vi, v̄i, r is v̄i, r, vi

and this ordering satisfies both triples. For the constraints for clause Cj , only
the relative ordering of elements 	1

j , 	
2
j , 	

3
j and r is important. It is easy to check

that any of the six orderings of these elements listed above satisfies all three
triples for Cj . Hence, the constructed ordering is a solution to the corresponding
instance of the LEF-PTC Problem. 	

Lemma 2. Any instance of the REF-Path Triple Consistency Problem always
has a solution, and thus the problem is solvable in constant time.

Proof. Consider any ordering of S ∪ {r} with r as the first (last) element. Then
the first (last) edge separates r from any pair of elements in S. Thus, such an
ordering is a solution to any instance of the REF-PTC Problem. 	

Lemma 3. The OEF-Total Ordering Problem can be solved in linear time.

Proof. The algorithm will work in two stages. In the first stage the elements
will be clustered into parts each appearing on different sides of r. In the second
stage, we will determine the ordering of the elements in each part.

Constraint (ai, r, ci) is satisfied if and only if ai and ci appear on opposite
sides of r. Constraint (ai, bi, r) is satisfied if and only if (i) ai and bi appear on
the same side of r, and (ii) bi is closer to r than ai, which we write as bi ≺ ai.
Consider the graph with vertex set S and edges between any two vertices u, v ∈
such that u and v appear together in some triple (ai, bi, ci). Let C be a connected
component of this graph. It is easy to see that once we fix the side of one element
in the component, the side of all elements in the component will be determined.
Hence, we can uniquely partition C into two (paired) clusters such that all edges
from constraints of type (ai, r, ci) are between two clusters and all edges from
constraints of type (ai, bi, r) are inside one of the two clusters. Now, pick one
cluster from each pair and place all its elements on one side of r and all other
clusters to the other side. Note that there can many ways how to do this, the
number of ways is exponential in the number of pairs of clusters.

It remains to satisfy the precedence conditions. These conditions (bi ≺ ai)
define a partial ordering on each side of r. Any total ordering compatible with
these partial orderings will form a solution to the problem. Such an ordering can
be found in time O(n + k). 	

4 Tractability Results

4.1 An Algorithm for Cases of the SB-GCCC Problem

Here we show that when each α(s) induces a directed path in Tα, for each α̂ ∈ C,
s ∈ S, the SB-GCCC Problem is polynomial-time solvable. The algorithm we
use, while much simpler, is based on the algorithm given in [2].

Theorem 1. The SB-GCCC Problem is solvable in time O(|S|
∑

α̂∈C |Qα|), if
each α(s) induces a directed path in Tα, for each α̂ ∈ C, s ∈ S.

Towards a Characterisation of the GCCC Problem 447

Proof. Consider an instance of the SB-GCCC Problem (S, C) with the required
property. Let startα(s) and endα(s) be the first and the last node on the directed
path induced by α(s). We define the partial ordering on the nodes of Tα by
saying v �α w if the directed path from the root rα of Tα to w passes through v.
Similarly, for each solution (T, c) we define the partial ordering �T on S based on
T . Since T has a single branch, �T is a total ordering, i.e., for every s1, s2 ∈ S,
s1 and s2 are comparable by �T . Hence, for every α̂ ∈ C, c(s1, α̂) and c(s2, α̂)
are comparable by �α. Therefore, for all s ∈ S, c(s, α̂) lie on a single branch
(directed path starting in the root) Pα of Tα. Since startα(s1) �α c(s1, α̂) and
startα(s2) �α c(s2, α̂), we can assume that for all s ∈ S, startα(s) lie on a
subpath P ′

α of Pα starting in the root rα of Tα and ending in startα(α), where
	α ∈ S and startα(s) �α startα(α) for every s ∈ S. If that is not the case, there
is no solution. This can be checked in time O(|S||Qα|) for each α̂ ∈ C.

Next, we will argue that it is enough to consider only solutions in which c maps
all elements in S to P ′

α. Consider a solution (T, c). Any c(s, α̂) /∈ P ′
α must lie on

the subpath of Pα ending at vertex startα(α). Since startα(s) �α startα(α),
we can remap c(s, α̂) to startα(α). It is easy to check that conditions (1)–(3) of
the GCCC Problem remain satisfied after mapping all such c(s, α̂) to startα(α).
Hence, we can assume that c(s, α̂) ∈ α′(s) = α(s) ∩ P ′

α, for each α̂ ∈ C and
s ∈ S. Note that for all s ∈ S, α′(s) induce directed subpaths of P ′

α.
Now, we are ready to present the algorithm for solving the SB-GCCC problem

with the required property. First, we will build a set C of constraints on the
ordering of the nodes of T which have to be satisfied in any solution (T, c). If for
s1, s2 ∈ S and α̂ ∈ C, the paths induced by α′(s1) and α′(s2) are disjoint, and
the path induced by α′(s1) is closer to the root rα, then we must have s1 ≺T s2.
Therefore, we add this constraint to the set C. Let T be a single branch tree
that satisfies all these constraints in C and let s1 ≺T s2 ≺T · · · ≺T s|S| be the
elements of S ordered according to this tree. (If such a tree does not exist, there
is no solution.) For each character α̂ ∈ C, we will map c(si, α̂) to α′(si) using
Algorithm 1, where max(a, b) is the element (a or b) further from the root if a
and b are comparable, and undefined otherwise.

Algorithm 1. Iterative algorithm that assigns to each species a state
1: c(s1, α̂) ← startα(s1)
2: for i = 2 up to |S| do
3: c(si, α̂) ← max(startα(si), c(si−1, α̂))
4: end for

Let us verify that (T, c) is indeed a solution. First, note that since all startα(si)
lie on the path P ′

α, the arguments of the max function are always compa-
rable. Furthermore, it is easy to see that all c(si, α̂) are assigned to the set
{startα(s); s ∈ S}, and that c(s1, α̂) �α c(s2, α̂) �α . . . �α c(s|S|, α̂). It re-
mains to show that for each i, c(si, α̂) ∈ α′(si). Let i be the smallest index
for which c(si, α̂) /∈ α′(si). We must have that endα(si) ≺α c(si, α̂). Since
c(si, α̂) = startα(sj) for some j < i, the subpath of P ′

α induced by α′(si) is

448 J. Maňuch, M. Patterson, and A. Gupta

closer to the root than the subpath induced by α′(sj). Hence, C must contain
the constraint si ≺T sj , which contradicts the fact that T satisfies all these
constraints. It follows that (T, c) is a solution.

Finally, let us analyse the running time of the algorithm. We can verify
whether this set C of constraints defines a partial ordering and find a total
ordering T compatible with this partial ordering in time O(|S| + m), where m
is the number of constraints. For each α̂ ∈ C, we can have at most |Qα| disjoint
induced paths, and it is enough to consider the constraint between the neigh-
bouring disjoint induced paths only. Hence, m = O(

∑
α̂∈C |Qα|). 	

We remark that this type of theorem does not hold for the case of path phylogeny,
cf. Table 1.

4.2 The {{1}, {2}, {0, 2}}-P-GCCC-NB Problem

We will show that if there is a solution to an instance (S, C) of the Q∗-P-GCCC-
NB Problem then there is a solution to the instance (S, C) of the Q∗-SB-GCCC-
NB Problem, and vice versa, where Q∗ = {{1}, {2}, {0, 2}}. Since the single
branch version of this problem can be solved in polynomial time [18], it follows
that also the path version is polynomial-time solvable.

Lemma 4. An instance (S, C) of the {{1}, {2}, {0, 2}}-P-GCCC-NB Problem
has a solution if and only if the instance (S, C) of the {{1}, {2}, {0, 2}}-SB-
GCCC-NB Problem has a solution.

Proof. Let Q∗ = {{1}, {2}, {0, 2}}. Obviously, a solution to the instance (S, C)
of the Q∗-SB-GCCC-NB Problem is also a solution to the instance (S, C) of the
Q∗-P-GCCC-NB Problem. Now, assume that (T, c) is a solution to the instance
(S, C) of the Q∗-P-GCCC-NB Problem. Let P1 and P2 be two branches of T
starting at the root r. Let T ′ be the tree obtained by attaching P2 to the last
vertex of P1. To define the state-choosing function c′ we only need to determine
the values of c′(s, α̂) when α(s) = {0, 2}. Consider s ∈ S and α̂ ∈ C such that
α(s) = {0, 2}. If there is a species s′ ≺T s such that α(s′) = {1} then we set
c′(s, α̂) = 2, otherwise we set c′(s, α̂) = 0. We will show that (T ′, c′) is a solution
to the instance (S, C) of the Q∗-SB-GCCC-NB Problem.

For each α̂ ∈ C, the set of species Sα̂,{1} = {s ∈ S|α(s) = {1}} must induce a
connected component in T . Since α(r) = 0, this component lies entirely in P1 or
in P2. Hence, the set Sα̂,{1} induces a connected component K in T ′ as well. By
the definition of c′, all species that lie below K in T ′ are assigned value 2 and
all species s such that α(s) = {0, 2} that lie above K in T ′ are assigned value 0.
Hence, the only possible violation is if there is a species s such that α(s) = {2}
that lies above K in T ′. This species s either lies above K in T or lies in the
branch that does not contain K in T . In either case, (T, c) cannot be a solution
to the instance (S, C) of the Q∗-P-GCCC-NB Problem, a contradiction. 	

Corollary 1. The {{1}, {2}, {0, 2}}-P-GCCC-NB Problem is polynomial-time
solvable.

Towards a Characterisation of the GCCC Problem 449

5 Hardness Results

In this section, we show that the {{1}, {0, 2}, {0, 1, 2}}- and {{0}, {1}, {0, 1}}-P-
GCCC-NB Problems are NP-complete. We will show the first result by reduction
from the Path Triple Consistency (PTC) Problem [18] and the second from the
Left Element Fixed Path Triple Consistency (LEF-PTC) Problem (Lemma 1).

In [18], it was shown using a reduction from the PTC Problem that the
{{1}, {0, 2}, {0, 1, 2}}-GCCC-NB and -SB-GCCC-NB Problems are NP-
complete. We will use the same reduction to show that the {{1}, {0, 2}, {0, 1, 2}}-
P-GCCC-NB Problem is NP-complete as well.

Theorem 2. The {{1}, {0, 2}, {0, 1, 2}}-P-GCCC-NB Problem is NP-complete.

Proof. Let Q� = {{1}, {0, 2}, {0, 1, 2}}. Let S and {(ai, bi : ci)}k
i=1 be an in-

stance of the PTC Problem. We will construct an instance of the Q�-P-GCCC-
NB Problem as follows. Let S be the set of species and C = {α̂1, . . . , α̂k} the
set of characters. For every α̂ ∈ C, we let αi(ai) = αi(bi) = {1}, αi(ci) = {0, 2}
and for all s ∈ S \ {ai, bi, ci}, αi(s) = {0, 1, 2}.

We will show that the instance of the PTC Problem has a solution if and only if
the constructed instance of the Q�-P-GCCC-NB Problem has a solution. First,
consider a path P containing vertices S which is a solution to the constructed
instance. Consider the ordering of elements in S as they occur on P starting
from the leaf on one branch of P and ending with the leaf on the other branch.
For every i ∈ {1, . . . , k}, all elements in [ai, bi] must have state 1 for character
α̂i, hence, ci /∈ [ai, bi], i.e., this ordering is a solution to the PTC Problem.

On the other hand, let ordering O be a solution to the PTC Problem. Consider
a tree T with a single branch consisting of the all-zero root followed by vertices
in S ordered by O. Note that, for every i ∈ {1, . . . , k}, ci appears either above
both ai and bi, or below them. The state-choosing function is defined as follows.
For every node in S, we choose for character α̂i state 0 if they are above both
ai and bi, state 1 if they are between ai and bi, and state 2 otherwise. Clearly,
this tree is compatible with all character trees and it is easy to see that each
c(s, α̂) ∈ α(s), i.e., T is a solution to the Q�-P-GCCC-NB Problem. 	

We now show that the {{0}, {1}, {0, 1}}-P-GCCC-NB Problem is NP-complete,
by giving a reduction from the LEF-PTC Problem (Lemma 1).

Theorem 3. The {{0}, {1}, {0, 1}}-P-GCCC-NB Problem is NP-complete.

Proof. Given an instance of the LEF-PTC Problem S = {1, . . . , n}, r, and the
set of k triples (ai, r : ci), let S be the set of species, and C = {α̂1, . . . , α̂k} be
the set of characters. For each α̂i ∈ C, we let αi(ai) = {0} and αi(ci) = {1},
while for all other s ∈ S \ {ai, ci} we let αi(s) = {0, 1}.

Let path phylogeny T be a solution to this instance of the {{0}, {1}, {0, 1}}-P-
GCCC-NB Problem. Let r be the root of T , i.e., r is the all-zero vertex. Consider
the ordering of elements in S ∪ {r} based on the ordering of vertices on path
T starting in the leaf of one branch and ending in the leaf of the other branch.

450 J. Maňuch, M. Patterson, and A. Gupta

Assume the triple (ai, r : ci) is not valid, i.e., ci appears between ai and r.
However, this is not possible since vertex ai is then below ci in T and we have
a transition from 1 to 0 somewhere on the path from ci to ai for character α̂i.
Hence, the ordering is a solution to the LEF-PTC Problem.

Conversely, let path/ordering P be a solution to the LEF-PTC Problem. Con-
sider the path phylogeny obtained from P by rooting it at r and the state-
choosing function assigning 1 to ci and all nodes below ci and 0 to all other
nodes for character α̂i. Clearly, this tree is compatible with all character trees.
The state choosing function could only fail, if ai is below ci, in which case
c(ai, α̂i) = 1, but αi(ai) = {0}. However, this is not possible as then ci would
be between r and ai on P which violates the constraint (ai, r : ci). The claim
follows by Lemma 1. 	

Note that Theorem 3 implies NP-completeness of several cases of the P-GCCC-
NB Problem. In fact, any case of the problem in which set Q contains two distinct
state singletons {a} and {b}, and a set containing states 0, c and d such that
a �α c �α b and b �α d in Tα is NP-complete. For instance, for a = c = 0,
b = 1 and d = 2, we have that the {{0}, {1}, {0, 2}}-P-GCCC-NB Problem is
NP-complete ((6b) in Table 1).

6 Conclusions and Open Problems

We have characterised the complexity of the remainder of the cases of the
Q-SB-GCCC-NB and Q-P-GCCC-NB Problems for Q ⊆ {{0}, {1}, {2}, {0, 2},
{0, 1, 2}}. This leaves open, however, some interesting cases of the GCCC-NB
Problem. In [18], the authors show that when Q′ = {{1}, {0, 2}}, the input corre-
sponds to a binary matrix M , hence the Q′-SB-GCCC-NB Problem is equivalent
to the C1P Problem. That is, the Q′-SB-GCCC-NB (resp., Q′-GCCC-NB) Prob-
lem is to find a single-branch path (resp., tree) with vertex set containing the
columns of M such that for each row of M , the set of vertices labelled 1 by this
row forms a connected subpath (resp., subtree), i.e., M has the C1P (resp., a
“connected-ones property” of trees). If we can determine in poly-time that the
connected-ones property holds (like we can for the C1P), it might provide an an-
swer to the BKW Case. Finally, it would be interesting to study these problems
for all subsets of 2{0,1,2}, as it would complete the study for all possible inputs
to the GCCC-NB Problem when character trees are 0 → 1 → 2.

References

1. Agarwala, R., Fernandez-Baca, D.: A polynomial-time algorithm for the perfect
phylogeny problem when the number of character states is fixed. SIAM J. Com-
puting 26(6), 1216–1224 (1994)

2. Benham, C., Kannan, S., Paterson, M., Warnow, T.: Hen’s teeth and whale’s feet:
Generalized characters and their compatibility. J. Computational Biology 2(4),
515–525 (1995)

Towards a Characterisation of the GCCC Problem 451

3. Benham, C., Kannan, S., Warnow, T.: Of chicken teeth and mouse eyes, or gener-
alized character compatibility. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS,
vol. 937, pp. 17–26. Springer, Heidelberg (1995)

4. Bodlaender, H., Fellows, M., Warnow, T.: Two strikes against perfect phylogeny.
In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg
(1992)

5. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Computer and System
Sciences 13(3), 335–379 (1976)

6. Estabrook, G., McMorris, F.: When is one estimate of evolutionary relationships
a refinement of the another? J. Mathematical Biology 10, 327–373 (1980)

7. Felsenstein, J.: Numerical methods for inferring evolutionary trees. The Quarterly
Review of Biology 57(4), 379–404 (1982)

8. Figuera, L., Pandolfo, M., Dunne, P., Cantu, J., Patel, P.: Mapping the congenital
generalized hypertrichosis locus to chromosome Xq24-q27.1. Nature 10, 202–207
(1995)

9. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pacific J. Math-
ematics 15, 835–855 (1965)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

11. Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: Haplotyping with missing data
via perfect path phylogenies. Discrete Applied Mathematics 155, 788–805 (2007)

12. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21,
19–28 (1991)

13. Gusfield, D.: The multi-state perfect phylogeny problem with missing and remov-
able data: Solutions via integer-programming and chordal graph theory. In: Bat-
zoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 236–252. Springer, Heidel-
berg (2009)

14. Janis, C.: The sabertooth’s repeat performances. Natural History 103, 78–82 (1994)
15. Kannan, S., Warnow, T.: Inferring evolutionary history from DNA sequences.

SIAM J. Computing 23(4), 713–737 (1994)
16. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration

of perfect phylogenies. In: Proc. of SODA 1995, pp. 595–603 (1995)
17. Kollar, E., Fisher, C.: Tooth induction in chick epithelium: Expression of quiescent

genes for enamel synthesis. Science 207, 993–995 (1980)
18. Maňuch, J., Patterson, M., Gupta, A.: On the Generalised Character Compatibility

Problem for Non-branching Character Trees. In: Ngo, H.Q. (ed.) COCOON 2009.
LNCS, vol. 5609, pp. 268–276. Springer, Heidelberg (2009)

19. McMorris, F., Warnow, T., Wimer, T.: Triangulating vertex colored graphs. SIAM
J. Discrete Mathematics 7(2), 296–306 (1994)

20. Meidanis, J., Porto, O., Telles, G.P.: On the consecutive ones property. Discrete
Applied Mathematics 155, 788–805 (2007)

21. Opatrny, J.: Total ordering problem. SIAM J. Computing 8(1), 111–114 (1979)
22. Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny.

SIAM J. Computing 33, 590–607 (2004)
23. Steel, M.: The complexity of reconstructing trees from qualitative characters and

subtrees. J. Classification 9, 91–116 (1992)
24. Trowsdale, J.: Genomic structure and function in the MHC. Trends in Genetics 9,

117–122 (1993)
25. Warnow, T.: Tree compatibility and inferring evolutionary history. J. Algo-

rithms 16, 388–407 (1994)

Author Index

Badr, Ghada 73
Benson, Mikael 416
Booth, Matthew 404
Brigido, Marcelo 380
Bull, Shelley 286
Burge, Legand 253
Burleigh, J. Gordon 172, 184, 227

Chang, Wen-Chieh 428
Chaudhary, Ruchi 184, 227
Che, Dongsheng 404
Chen, Eric 123
Chen, Xin 136
Chesler, Elissa J. 416
Chiu, Po-I 49
Chu, Qi 61

Eblen, John D. 306, 416
Eulenstein, Oliver 148, 172, 227, 428

Fazekas, John 404
Fernández-Baca, David 184
Fu, Bin 297
Fu, Yan 320

Gao, Wen 320
Górecki, Pawe�l 148
Guimarães, Kátia 380
Guo, Fei 25
Gupta, Arvind 440

Hasegawa, Takanori 160
He, Jieyue 332
Hodgkinson, Luqman 111
Hoksza, David 37
Holec, Matej 274
Hu, Pingzhao 286
Huang, Hsuan-Cheng 49

Imoto, Seiya 160

Jancura, Pavol 209
Jay, Jeremy J. 416
Jiang, Hui 286
Jiang, Jonathan Q. 368

Kao, Hung-Yu 240
Karp, Richard M. 111
Klema, Jiri 274
Krause, Roland 428
Kuželka, Ondřej 358

Langston, Michael A. 306, 416
Lessa, Felipe 380
Li, Chaojun 332
Li, Hui 253
Li, Min 12, 87
Lin, Harris T. 172
Lin, Yu 197
Liu, Binbin 12
Liu, Chunmei 253
Liu, Qi 404
Liu, Yu-Cheng 49
Liu, Zhiyong 61

Măndoiu, Ion 392
Maňuch, Ján 440
Marchiori, Elena 209
Mavridou, Eleftheria 209
Miyano, Satoru 160
Morales E., Sergio 358
Moret, Bernard M.E. 4, 197, 344
Mozhayskiy, Vadim 262

Nagasaki, Masao 160
Neto, Daniele Martins 380
Nicolae, Marius 392

Pan, Rong 320
Pan, Yi 87
Pattengale, Nicholas D. 123
Patterson, Murray 440
Perkins, Andy D. 416
Phillips, Charles A. 306
Pontes, Beatriz 209

Rajan, Vaibhav 197
Ren, Jun 12
Rogers, Gary L. 306
Rwebangira, Mugizi 253

454 Author Index

Sankoff, David 2, 99, 123
Saxton, Arnold M. 416
Schwartz, Russell 1
Scott, Lauren 253
Southerland, William 253
Svozil, Daniel 37
Swenson, Krister M. 123
Szabóová, Andrea 358

Tagkopoulos, Ilias 262
Tang, Yi-Tsung 240
Tolar, Jakub 274, 358
Tseng, Vincent S. 49
Turcotte, Marcel 73

Vakati, Sudheer 428
Voy, Brynn H. 416

Walter, Maria Emilia 380
Wan, Xiaohua 61
Wang, Han 404

Wang, Huan 12, 87
Wang, Jianxin 12, 87
Wang, Lusheng 25
Wei, Liping 8

Xing, Eric 11

Yamaguchi, Rui 160
Yang, Jian-Yi 136
Yang, Qiang 320
Ye, Baoliu 332

Zelezny, Filip 274
Železný, Filip 358
Zhang, Fa 61
Zhang, Louxin 297
Zhang, Xiuwei 344
Zhang, Yun 416
Zheng, Chunfang 99
Zhong, Wei 332

	Title Page
	Preface
	Symposium Organization
	Table of Contents
	Phylogenetics of Heterogeneous Samples
	OMG! Orthologs for Multiple Genomes - Competing Formulations
	Phylogenetic Analysis of Whole Genomes
	Introduction
	Some Extant Problems
	Some Encouraging Results from My Group
	Conclusions

	Genetic and Pharmacogenetic Studies of Neuropsychiatric Disorders: Increasingly Critical Roles of Bioinformatics Research and Applications(Keynote Talk)
	Genome-Phenome Association Analysis of Complex Diseases a Structured Sparse Regression Approach
	Prediction of Essential Proteins by Integration of PPI Network Topology and Protein Complexes Information
	Introduction
	Method
	Six Centrality Measures
	The Correlation of Protein Complexes and Essential Proteins
	Algorithm ECC

	Results
	Identification of Essential Proteins by Integration of PPI Network Topology and Protein Complexes Information
	Comparison with Six Centrality Methods in Identifying Essential Proteins
	Comparison with Six Centrality Methods in Identifying Low-Connectivity Essential Proteins

	Conclusions and Future Work
	References

	Computing the Protein Binding Sites
	Introduction
	Methods
	Step 1: Local Sequence Alignment
	Step 2: Identifying Surface Segments
	Step 3: Computing Rigid Transformations to Match Candidate Binding Sites

	Implementation
	Results
	Comparison with Existing Methods
	Evaluation of Prediction
	Comparison of Running Time
	Performance of Programs for Different Families
	Search a Binding Site in PDB

	Discussion
	Conclusion

	SETTER - RNA SEcondary sTructure-based TERtiary Structure Similarity Algorithm
	Introduction
	Method Principles
	Single GSSU Pairwise Comparison
	Multiple GSSU Structure Comparison

	Speed Up
	Experimental Results
	Conclusion

	Prediction of Essential Genes by Mining Gene Ontology Semantics
	Introduction
	Related Work
	Essential Gene Prediction
	Association Rule Mining
	Frequent Closed Itemset Mining
	Classification Based on Associations

	Materials and Methods
	GO Association Rule Classifier
	Features GOARC and GOCBA
	Data for Evaluation
	Evaluation Method

	Results and Discussion
	Evaluation of Individual Features
	Performance Enhancement by GOARC and GPCBA
	Classifier Evaluation
	Discussion of GO Association Rules

	Conclusions and Future Work
	References

	High-Performance Blob-Based Iterative Reconstruction of Electron Tomography on Multi-GPUs
	Introduction
	Related Work
	Blob-Based Iterative Reconstruction Methods
	GPU Computation Model

	Multilevel Parallel Strategy for Blob-Based Iterative Reconstruction
	Coarse-Grained Parallel Scheme Using OpenMP
	Fine-Grained Parallel Scheme Using CUDA

	Asynchronous Communication Scheme
	Blob-ELLR Format with Symmetric Optimization Techniques
	Result
	Conclusion

	Component-Based Matching for Multiple Interacting RNA Sequences
	Introduction
	Backtracking Approach
	Simple Structure for Patterns
	Backtracking Algorithm

	Component-Based Structure for Patterns
	Trie-Based LLP Structure for Sequences
	The LLP Approach
	Updating the LLP Structure for INTRAM Components
	Updating the LLP Structure for INTERM Components
	Pruning Search Space in LLP

	Experimental Setup
	Results and Discussion
	Conclusion

	A New Method for Identifying Essential Proteins Based on Edge Clustering Coefficient
	Introduction
	Materials and Methods
	Experimental Data
	Centrality Measures
	Degree Centrality (DC).
	Betweenness Centrality (BC).
	Closeness Centrality (CC).
	Subgraph Centrality (SC).
	Eigenvector Centrality (EC).
	Information Centrality (IC).

	Edge Clustering Coefficient
	Evaluation Methods
	Sensitivity (SN).
	Specificity (SP).
	Positive Predictive Value (PPV).
	Negative Predictive Value (NPV).
	F-measure (F).
	Accuracy (ACC).

	Results and Discussion
	Conclusions

	Gene Order in Rosid Phylogeny, Inferred from Pairwise Syntenies among Extant Genomes
	Introduction
	Six Eudicotyledon Sequences
	Formal Background
	Rearrangement Distance
	The Median Problem and Small Phylogeny Problem

	The OMG Problem
	Pairwise Orthologies
	Multi-genome Orthology Sets

	PATHGROUPS
	Inferring the Gene Content of Ancestral Genomes
	Median and Small Phylogeny Problems with Unequal Genomes

	Results on Rosid Evolution
	Properties of the Solution as a Function of Synteny Block Size
	Block Validation

	Discussion and Future Work

	Algorithms to Detect Multiprotein Modularity Conserved during Evolution
	Introduction
	Algorithms
	Biologically Motivated Algorithm Goals
	Experiments and Results
	Conclusion

	The Kernel of Maximum Agreement Subtrees
	Introduction
	Definitions
	Properties of a MAST and the KAST

	A Dynamic Programming Algorithm to Find the MAST
	Finding the KAST
	Experiments
	Applications
	Analyses on Flatworm Phylogenies
	Analyses on -Proteobacteria Phylogenies

	Conclusion

	A consensus approach to predicting protein contact map via logistic regression
	Introduction
	Materials and Methods
	Datasets
	Contact Definition
	Performance Evaluation
	Consensus Prediction via Logistic Regression
	Overall Architecture
	Selection of Residue Pairs

	Results
	Results on the CASP9 Dataset
	Results on the D856 Dataset

	Discussions
	The Impact of Residue Pair Selection
	The Impact of Individual Predictors
	The Impact of Classification Algorithm

	Conclusions

	A Linear Time Algorithm for Error-Corrected Reconciliation of Unrooted Gene Trees
	Introduction
	Duplication-Loss Model
	Introduction to Unrooted Reconciliation

	Algorithm
	General Reconstruction Problems

	Experiments
	Discussion
	References

	Comprehensive Pharmacogenomic Pathway Screening by Data Assimilation
	Introduction
	Method
	Corticosteroid Pharmacokinetic and Pharmacogenomics Models
	Data Assimilation for Parameter Estimation and Model Selection

	Pharmacogenomic Pathway Screening for Corticosteroid 58 Models
	Time-Course Gene Expressions
	Results of Pathway Screening with Data Assimilation

	Discussion

	The Deep Coalescence Consensus Tree Problem is Pareto on Clusters
	Introduction
	Preliminaries
	Basic Definitions
	Deep Coalescence
	Consensus Tree
	Cluster and Pareto

	Theorem Overview
	Supporting Lemmata
	Shallowest Regrouping Operation
	Properties of the Shallowest Regrouping Operation
	Counting the Number of Degree-Two Nodes

	Main Theorem
	Algorithm for Improving a Candidate Solution
	Experiment
	Discussion
	Conclusion and Future Work

	Fast Local Search for Unrooted Robinson-Foulds Supertrees
	Introduction
	Preliminaries
	Basic Notations and Problem Definition
	Local Search Problems

	Structural Properties
	Preprocessing
	Solving the NNI Search Problem
	Solving the 2-ECR Search Problem
	Experimental Results
	Conclusion

	A Metric for Phylogenetic Trees Based on Matching
	Introduction
	Background
	Similarity, Editing, and Distance
	Tree Similarity Measures
	Tree Editing
	The Robinson-Foulds Distance

	Our Matching Distance
	Basic Properties
	Sensitivity to Tree Editing

	Experimental Results
	Distribution of the Tree Distance Metrics
	Tree Distance Metrics Under Tree Editing Operations

	Clustering Trees: An Application
	Conclusion

	Describing the Orthology Signal in a PPI Network at a Functional, Complex Level
	Introduction
	Other Related Work
	Method
	Inferring Putative Complexes and their Functional Categories.
	Estimating the Frequency of a Functional Category.
	Identifying Orthology-Related Categories.

	Experimental Settings
	Data Collection
	Yeast Protein Function Annotations and Gene Ontology Files
	Clustering

	Results
	Orthology-Related Functional Categories
	Orthology-Related Putative Protein Complexes

	Conclusions

	Algorithms for Rapid Error Correction for the Gene Duplication Problem
	Introduction
	Basic Notations and Preliminaries
	Basic Definitions and Notations
	The Gene Duplication Cost Model
	The Error-Correction Problems

	Solving the SEC Problem
	Structural Properties
	Characterizing Duplications
	The Algorithm

	Solving the TEC Problem
	Experimental Results
	Conclusion

	TransDomain: A Transitive Domain-Based Method in Protein–Protein Interaction Prediction
	Introduction
	Method
	Overall Architecture of TransDomain
	Transitive Role Feature Generation Step
	Transitive Domain Pattern Generation Step
	Two Stages PPIs Prediction Step

	Results and Discussions
	Datasets Generation
	Performance Evaluation of Predicting Combined Protein Interactions
	Performance Evaluation of Predicting Direct Protein Interactions
	Case Studies

	Conclusion
	References

	Rapid and Accurate Generation of Peptide Sequence Tags with a Graph Search Approach
	Introduction
	Algorithms
	Experiments and Results
	Conclusions
	References

	In Silico Evolution of Multi-scale Microbial Systems in the Presence of Mobile Genetic Elements and Horizontal Gene Transfer
	Introduction
	Biological Model
	Parallel Simulation Framework
	Application: Horizontal Gene Transfer
	Evolution in Coupled Environments of Increasing Complexity
	Effect of Horizontal Gene Transfer on the Network Organization
	Distribution of Fitness Effect of Mutational and HGT Events

	Discussion
	References

	Comparative Evaluation of Set-Level Techniques in Microarray Classification
	Introduction
	Methods and Data
	Gene Set Ranking
	Expression Aggregation
	Machine Learning
	Expression and Gene Sets
	Experimental Protocol

	Results
	Conclusions and Future Work

	Gene Network Modules-Based Liner Discriminant Analysis of Microarray Gene Expression Data
	Introduction
	Methods
	MLDA Algorithm
	Comparisons of Different Classification Methods
	Cross-Validation

	Results
	Discussions and Conclusions
	References

	A Polynomial Algebra Method for Computing Exemplar Breakpoint Distance
	Introduction
	Notations
	A Simple Algorithm
	Polynomial Algebra Method
	Breakpoint Distance for One Sequence without Repetition
	Exemplar Breakpoint Distance between Arbitrary Genomes

	Conclusions

	The Maximum Clique Enumeration Problem: Algorithms, Applications and Implementations
	Introduction
	Implementation Environment
	Fundamental Approaches to MCE
	Basic Backtracking
	Backtracking with Knowledge of Maximum Clique Size
	Intelligent Backtracking.
	Parameterized Enumeration.

	Maximum Clique Covers
	Essential Vertex Sets
	Analysis and Discussion
	Contrast to Random Graphs
	Future Research Directions

	Query-Adaptive Ranking with Support Vector Machines for Protein Homology Prediction
	Introduction
	Algorithm
	K Nearest Blocks (KNB)
	KNB Ensemble Ranking

	Experiments
	Data Set
	Performance Evaluation
	Results

	Conclusion and Future Work

	A Novel Core-Attachment Based Greedy Search Method for Mining Functional Modules in Protein Interaction Networks
	Introduction
	Methods
	Definitions
	Greedy Search Method (GSM)
	Generation of Overlapping Clusters

	Experiments and Results
	Conclusions
	References

	ProPhyC: A Probabilistic Phylogenetic Model for Refining Regulatory Networks
	Introduction
	Background
	Base Network Inference Methods
	Reconciliation of Species Tree and Gene Trees

	Models and Methods
	Network Evolutionary Models
	The ProPhyC Framework
	ProPhyC Under the Basic Model
	ProPhyC Under the Extended Model
	Refinement Algorithm ProPhyCC Using Confidence Values

	Experimental Design
	Biological Data Collection
	Data Simulation
	Measurements

	Results and Analysis
	Performance Under the Basic Model on Simulated Data
	Performance Under the Basic Model on Biological Data
	Performance Under the Extended Model on Simulated Data

	Conclusions

	Prediction of DNA-Binding Propensity of Proteins by the Ball-Histogram Method
	Introduction
	Data
	Method
	Ball Histograms
	Ball-Histogram Construction
	Predictive Classification Using Ball Histograms

	Results
	Conclusion

	Multi-label Correlated Semi-supervised Learning for Protein Function Prediction
	Introduction
	Multi-label Correlated Semi-supervised Learning
	Algorithm, Justification and Extension
	Iterative Algorithm
	Justification and Extensions

	Experiment
	Setup
	Evaluation Metrics
	Construct Functional Category Network
	5-Fold Cross Validation
	Predict Function for Uncharacterized Proteins

	Concluding Remarks

	Regene: Automatic Construction of a Multiple Component Dirichlet Mixture Priors Covariance Model to Identify Non-coding RNA
	Introduction
	Covariance Models
	Dirichlet Mixture Priors
	Obtaining the Mixture Prior
	Conjugate Gradient Method

	Multiple Component Dirichlet Mixture Priors
	Regene Method
	Regene Implementation Details

	Results and Discussion
	Conclusions and Future Work

	Accurate Estimation of Gene Expression Levels from DGE Sequencing Data
	Introduction
	DGE Protocol
	DGE-EM Algorithm
	E-Step
	M-Step
	Inferring p
	Implementation

	Results
	Experimental Setup
	DGE-EM Outperforms Uniq
	Comparison of DGE and RNA-Seq Protocols
	Possible DGE Assay Optimizations

	Conclusions

	An Integrative Approach for Genomic Island Prediction in Prokaryotic Genomes
	Introduction
	Materials and Methods
	Dataset
	Computational Framework
	Feature Extraction
	Model Construction
	Genome-Scale Genomic Island Prediction
	Performance Evaluation

	Experimental Results
	Feature Analysis
	GI Structural Model
	Prediction Accuracy

	Conclusion and Discussion

	A Systematic Comparison of Genome Scale Clustering Algorithms
	Background
	Results
	Discussion
	Conclusions
	Materials and Methods
	Data
	Clustering Methods
	Comparison Metrics

	References

	Mining Biological Interaction Networks Using Weighted Quasi-Bicliques
	Introduction
	Basic Notation, Definitions and Preliminaries
	Maximum Weighted Quasi-Biclique (,-WQB) Problem
	Query Problem
	Time Complexity Results

	IP Formulations for the ,-WQB Problem
	Results and Discussion
	Genetic Interaction Networks

	Conclusions and Outlook

	Towards a Characterisation of the Generalised Cladistic Character Compatibility Problem for Non-branching Character Trees
	Introduction
	Generalised Cladistic Character Compatibility Problem
	Ordering Problems
	Tractability Results
	An Algorithm for Cases of the SB-GCCC Problem
	The {{1},{2},{0,2}}-P-GCCC-NB Problem

	Hardness Results
	Conclusions and Open Problems

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

