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Preface

These proceedings contain the papers that were presented at the 5th Interna-
tional Conference on Language and Automata Theory and Applications (LATA
2011), held in Tarragona, Spain, during May 26–31, 2011.

The scope of LATA is rather broad, including: algebraic language theory;
algorithms for semi-structured data mining; algorithms on automata and words;
automata and logic; automata for system analysis and program verification; au-
tomata, concurrency and Petri nets; cellular automata; combinatorics on words;
computability; computational complexity; computational linguistics; data and
image compression; decidability questions on words and languages; descriptional
complexity; DNA and other models of bio-inspired computing; document engi-
neering; foundations of finite-state technology; fuzzy and rough languages; gram-
mars (Chomsky hierarchy, contextual, multidimensional, unification, categorial,
etc.); grammars and automata architectures; grammatical inference and algo-
rithmic learning; graphs and graph transformation; language varieties and semi-
groups; language-based cryptography; language-theoretic foundations of artificial
intelligence and artificial life; neural networks; parallel and regulated rewriting;
parsing; pattern recognition; patterns and codes; power series; quantum, chem-
ical and optical computing; semantics; string and combinatorial issues in com-
putational biology and bioinformatics; string processing algorithms; symbolic
dynamics; term rewriting; transducers; trees, tree languages and tree machines;
and weighted machines.

LATA 2011 received 91 submissions. Each one was reviewed by four Program
Committee members, many of whom consulted with external referees. After a
thorough and lively discussion phase, the committee decided to accept 36 papers
(which represents an acceptance rate of 39.56%). The conference program also
included three invited talks and two invited tutorials. Part of the success in
the management of such a large number of submissions is due to the excellent
facilities provided by the EasyChair conference management system.

We would like to thank all invited speakers and authors for their contri-
butions, the Program Committee and the reviewers for their cooperation, and
Springer for its very professional publishing work.

March 2011 Adrian-Horia Dediu
Shunsuke Inenaga

Carlos Mart́ın-Vide
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Green’s Relations
and Their Use in Automata Theory

Thomas Colcombet�

Liafa/Cnrs/Université Paris Diderot–Paris 7, France
thomas.colcombet@liafa.jussieu.fr

Abstract. The objective of this survey is to present the ideal theory of
monoids, the so-called Green’s relations, and to illustrate the usefulness
of this tool for solving automata related questions.

We use Green’s relations for proving four classical results related to
automata theory: The result of Schützenberger characterizing star-free
languages, the theorem of factorization forests of Simon, the characteri-
zation of infinite words of decidable monadic theory due to Semenov,
and the result of determinization of automata over infinite words of
McNaughton.

Introduction

In this lecture, we will establish several classical results related to automata
theory, respectively due to Schützenberger, Simon, Semenov, and McNaughton.
These problems are all related in a more or less direct way to language theory
and automata. Despite their obvious intrinsic interest, these results will be for us
excuses for presenting the approach via monoids and semigroups which allows
to uniformly apprehend these, a priori unrelated, questions. That is why this
lecture is structured as the interleaving of the proofs of the above results with
the necessary algebraic material.

We devote a particular attention to the theory of ideals in monoids, the so
called Green’s relations. When working in language theory using automata, sev-
eral tools comes naturally into play. A typical example is the use of the decom-
position of the graph of the automaton into strongly connected components, and
the use of the dag of the connected components for driving an induction in a
proof. The Green’s relations provide the necessary tools for using similar argu-
ments on the monoid rather than on the automaton. Since monoids are more
informative than automata, the resulting techniques are more powerful than the
corresponding ones on automata (this gain usually comes at the price of a worth
complexity in decision procedures and constructions). The Green’s relations are
well known, and presented in deep detail in several places, see for instance
[5,13]. For this reason we do not establish here the results related to this theory.

� Supported by the project ANR 2010 BLAN 0202 02 FREC, and the ERC Starting
Grant GALE.

A.-H. Dediu, S. Inenaga, and C. Martín-Vide (Eds.): LATA 2011, LNCS 6638, pp. 1–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 T. Colcombet

We do not try either to be exhaustive in any way. Our goal is different. We are
interested in illustrating how to use this tool.

We use four classical results as illustrations. The first one is the theorem of
Schützenberger [17] characterizing the languages which can be described by star-
free expressions. The second one is the theorem of factorization forests of Simon
[19], which gives a form of generalized Ramsey argument for regular languages.
The third one is a theorem of Semenov [18] which gives a necessary and sufficient
condition for an infinite word to have a decidable monadic second-order theory.
The fourth theorem, due to McNaughton [9], states that automata over infinite
words can be made deterministic.

The lecture is structured as follows. We first briefly recall some basic defi-
nitions concerning semigroups and monoids in Section 1. We then present the
results of Schützenberger and Simon in Section 2 and 3 respectively. We then
introduce the framework of ω-semigroups in Section 4, and use it for establishing
the results of semenov and McNaughton in Sections 5 and 6 respectively.

1 Basics on Monoids

A monoid M is a set together with an associative binary operator · which has a
neutral element denoted 1 (such that 1x = x1 = x for all x). An element e such
that ee = e is called an idempotent. A monoid morphism from a monoid M to
another M′ is an application from M to M ′ such that α(1) = 1, and α(ab) =
α(a)α(b) for all a, b in M.

A particular example is the free monoid generated by a set A, it is the set of
words over the alphabet A equipped with the concatenation product. The neutral
element is ε. An example of a finite monoid consists of the two elements a, b
equipped with the product aa = ab = ba = a, and bb = b.

A language L ⊆ A∗ is recognizable by a monoid (M, ·) if there exists a mor-
phism α from A∗ to M and a subset F ⊆ M such that L = α−1(F ).

Theorem 1 (Rabin and Scott [16] with credit to Myhill). A language of
finite words over a finite alphabet is regular (i.e., accepted by some standard form
of finite state automaton) if and only if it is recognizable by a finite monoid.

Given a language L there is a particular, minimal, monoid which recognizes it,
the syntactic monoid. The syntactic monoid of a language L over the alphabet A
is an object gathering the minimal amount of information for each word that is
relevant for the language. This is obtained by a quotient of words by the so-called
syntactic congruence ∼L. Two words are equivalent for this relation if they are
undistinguishable by the language in any context. Formally, two words u and v
are equivalent for a language L is defined as:

u ∼L v if for all x, y ∈ A∗, xuy ∈ L iff xvy ∈ L .

If two words are equivalent for ∼L, this means that in any context, one can
safely exchange one for the other. In particular, as its name suggest, ∼L is a
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congruence, i.e., u ∼L v and u′ ∼L v′ implies uu′ ∼L vv′. This means that
the equivalence classes for ∼L can be equipped with a product. The resulting
quotiented monoid ML = A∗/∼L is called the syntactic monoid of L. Further-
more, the application ηL which to a word associates its equivalence class is a
morphism, called the syntactic morphism.

In particular, setting F = ηL(L), we have u ∈ L if and only if ηL(u) ∈ F . In
other words, the syntactic monoid ML recognizes L using the morphism ηL and
the subset F = ηL(L) ⊆ ML.

For instance, consider the language over the alphabet A = {a, b, c} consisting
of “all words which do not contain two consecutive occurrences of the letter a”.
The equivalence classes of the syntactic monoid are ε, a((b+c)+a)∗, (a(b+c)+)+,
((b+ c)+a)+, (b+ c)+(a(b+ c)+)∗ and A∗aaA∗. We will denote them by 1, a, ab,
ba, b and 0 respectively. The notations 1 and 0 are conventional, and correspond
to the neutral and the absorbing element (absorbing means 0x = x0 = 0; such an
element is unique, but does not always exist). For the other congruence classes,
one fixes a word as representative. The product xy of any two elements x and y
of the monoid is given in the following table:

x\y 1 a ab ba b 0
1 1 a ab ba b 0
a a 0 0 a ab 0
ab ab a ab a ab 0
ba ba 0 0 ba b 0
b b ba b ba b 0
0 0 0 0 0 0 0

The language “no two consecutive occurrences of letter a” is recognized by this
monoid, together with the morphism which maps letter a to a and letters b and c
to b, and the subset F = {1, a, ab, ba, b}.

We see on this example that the table of product is not very informative for
understanding the structure of the monoid. Natural tools, such as the strongly
connected components of the graph of the automaton, are frequently used to
design proofs and constructions in automata theory. We do not see immediately
anything similar in monoids. The Green’s relations that we present below gives
such an insight in the structure of the monoid. Even better, since the syntactic
monoid is more informative than the minimal automaton (at a price: it is also
bigger), the structure of the syntactic monoid reveals even more information
than the analysis of the minimal automaton.

Furthermore, the syntactic monoid is something one can work with:

Proposition 1. The syntactic monoid is finite iff the language is regular. Fur-
thermore, the syntactic monoid of a regular language can be effectively computed
from any presentation of the language (by automata, regular expressions, etc...)
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2 Schützenberger’s Characterization of Star-Free
Languages

Our first result concerns star-free languages. The star-free languages are the
languages of finite words which can be obtained from finite languages using
union, concatenation and complement (of course, intersection and set difference
can be derived from the union and complement).

An example is simply A∗ (for A the alphabet), which is star-free since it is the
complement of the empty language, which is itself finite. More generally, B∗ for
all subsets B of A is star-free since it can be written as A∗ \ (

⋃
c �∈B A∗cA∗). Very

close is the language of words over A = {a, b, c} containing no two consecutive
occurrences of the letter a. It is star-free since it can be written as A∗\(A∗aaA∗).
However, the language of words of even size is not star-free (we do not prove it
here). In general, all star-free languages are regular, but the converse does not
hold. This motivates the following question:

When is a regular language star-free? Is it decidable?

Schützenberger answered the above question as follows:

Theorem 2 (Schützenberger[17]). A regular language is star-free iff it is
recognized by a monoid which has only trivial subgroups1.

This famous result is now well understood and has been enriched in many ways.
In particular, star-free languages are known to coincide with first-order definable
languages as well as with the languages accepted by counter-free automata [10].
This result was the starting point of the very important literature aiming in
precisely classifying families of languages. See for instance [14].

This result in particular establishes the decidability of being star-free. Indeed,
if any monoid recognizing a language has only trivial subgroups, then its syntac-
tic monoid has only trivial subgroups. This yields a decision procedure: construct
the syntactic monoid of the language and check that all its subgroups are trivial.
The later can be done by an exhaustive check.

We will only prove here the right to left direction of Theorem 2, namely,
if a regular language is recognized by some (finite) monoid with only trivial
subgroups, then it is star-free. The interested reader can find good expositions
of the other directions in many places, see for instance [11]. We assume from
now and on that we are given a language L recognised by M, α, F , in which M
is a finite monoid which has only trivial subgroups.

The general approach of the proof is natural. For all elements a ∈ M, we
prove that the language La

def= {u ∈ A : α(u) = a} is star-free. This concludes
the proof of the right to left direction of Theorem 2, since it yields that

L = α−1(F ) =
⋃
a∈F

La is star-free.

1 Here, a subgroup is a subset of the monoid which is equipped of a group struc-
ture by the product of the monoid. This terminology is the original one used by
Schützenberger. It is natural in the general context of semigroup theory.
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However, how do we prove that each La is star-free?
Our basic blocks will be languages consisting of words of length one. For

each a ∈ M, set Ca
def= {c ∈ A : α(c) = a}. This is a finite (hence star-

free) language, and Ca ⊆ La. More precisely, Ca captures all the length-one
words in La. We could try to get closer to La using only concatenations and
unions of such elementary languages. However, this would only produce finite
languages. This is not sufficient in general. We need another argument. It will
take the form of a good induction parameter: we will pre-order the elements of
the monoid using one of Green’s relations, the ≤J -pre-order, that we introduce
now.

In a monoid M, we define the binary relations ≤J and J by:

a ≤J b if a = xby for some x, y ∈ M, a J b if a ≤J b and b ≤J a .

The relation ≤J is a preorder, and J is an equivalence relation. In particular,
in free monoid of words, u ≥J v if and only if u appears as a factor of v, i.e.,
v can be written wuw′ for some w and w′. We call this the factor ordering.

One often describes monoids making explicit the J -pre-order, such as in
the following examples.

Our first example is the monoid ({1, . . . , n}, min). Here, the
neutral element is n, and the absorbing element 1. In this case,
≤J coincide with the usual order ≤.

Traditionally, the smaller is an element for the relation ≤J ,
the lower it appears in the drawing. When one starts from an
element and successively performs products to the left or to the
right, then the J -class stays the same or goes down. In the later
case, one says falling in a lower J -class. This supports the intu-
ition behind the relation ≤J that it captures information that
cannot be undone: it is never possible to climb back to 5 from 2
by making any product, to the left or to the right. Informally, “it
is impossible to recover from falling in the ≤J order”.

n

...

n − 1

2

1

b, ba,

1

0

ab, a

Let us depict now the structure of J -classes of the syntactic
monoid of the language “no two consecutive occurrences of the
letter a”.

Remark the J -equivalence between a, ab, ba, and b (in general,
the J -relation is not an order). However, as soon as two consecu-
tive a’s are encountered, one falls in the J -class of 0. Once more
it is impossible, using any product with a word containing two
consecutive a’s, to produce one without this pattern.

In general, falling in a J -class can be understood as the dis-
covery of a certain pattern as a factor (here aa, but in general
any regular language).
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The ≤J -pre-order is a good idea as an induction parameter. Indeed, unless
b ≤J a, one does not see how knowing that La is star-free can help proving
that Lb is also star-free. This is why our proof proceeds by establishing the
following induction step.

Induction step: Assuming Lb is star-free for all b >J a, then La is star-free.

Assuming this induction step granted for all a ∈ M, we obtain immediately
that La is star-free for all a ∈ M, and hence L itself is star-free. The theorem is
established. Let us establish now this induction step. We assume from now and
on a fixed, and the hypothesis of the induction step fulfilled. The key lemma is:

Lemma 1. The language L �≥J a
def
= {u : α(u) �≥J a} is star-free.

Proof. It follows from the following equation which witnesses the star-freeness:

L �≥J a = A∗KaA∗ , where Ka
def=

⋃
b�≥J a

Cb ∪
⋃

bcd �≥J a

c>J a

CbLcCd .

We prove this equality by establishing a double inclusion. The easiest direction
is the inclusion from right to left. Indeed, we have Ka ⊆ L �≥J a by construction.
Furthermore, by definition of the J -pre-order, belonging to L �≥J a is preserved
under any product to the left or to the right. Hence A∗KaA∗ ⊆ L �≥J a.

For the opposite inclusion, we prove that every word in L �≥J a which is min-
imal (i.e., such that no strict factor belongs to L �≥J a) belongs to Ka. Let u
be such a minimal word. Clearly u cannot be of length 0, since this would
mean α(u) = 1M ≥J a, and hence u �∈ L �≥J a. If u has length 1 then it directly
falls in

⋃
b�≥J a Cb, which is the first part in the definition of Ka. The interesting

case is when u has length at least 2. In this case, u can be written as u = xvy
for some letters x, y ∈ A.

Let b = α(x), c = α(v), and d = α(y). We claim that c >J a, and for proving
this, we use the following lemma:

Lemma 2. In a finite monoid, if c J bc J cd, then c J bcd.

This results is in fact a direct consequence of more elementary results pre-
sented below. Let us show this simplicity by giving a proof, though the
necessary material has not been yet given.
Assume cJ bcJ cd, then by Lemma 7, cR cd. Hence by Lemma 3, bcdR bc.
Thus bcd J bc. 	


For the sake of contradiction, assume c �>J a. We have a ≤J bc (by minimality
in the choice of u), hence a ≤J c. Combined with a �<J c, we obtain a J c.
Furthermore we have cJ a ≤J bc ≤J c, hence bcJ c and similarly cdJ c. Using
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Lemma 2, we get bcdJ cJ a. This contradicts u ∈ L �≥J a since α(u) = bcd. Hence
c >J a.

Thus, u ∈ CbLcCd, bcd �≥J a, and c >J a, i.e., u ∈ Ka. Consider now a
word u ∈ L �≥J a. It has a minimal factor u′ ∈ L �≥J a. We have seen that u′ ∈ Ka.
Hence u ∈ A∗KaA∗. 	


We immediately deduce:

Corollary 1. The language LJa = {u : α(u) J a} is star-free.

Proof. This follows from the equation LJa =
⋂

b>J a

L �≥J b \ L �≥J a . 	


At this point, we are able to define the J -class of a. However, we need to be
even more precise, and define precisely a. We will need some more of Green’s
relations.

The order ≤J makes no distinction on whether the products are per-
formed on the left or on the right. The relations ≤L and ≤R refine the ≤J
order as follows:

a ≤L b if a = xb for some x ∈ M, a L b if a ≤L b and b ≤L a ,

a ≤R b if a = bx for some x ∈ M, and a R b if a ≤R b and b ≤R a .

An elementary, but important, property of these relations is:

Lemma 3. If a ≤L b then ac ≤L bc. If a L b then ac L bc.
If a ≤R b then ca ≤R cb. If a R b then ca R cb.

The relation L considers equivalent elements which are convertible one into
the other by product on the left. One can think of the piece of informa-
tions preserved by such conversions as located “close to the right” of the
element. Considering that L identifies information concerning the “right” of
the element, and R information which concerns the “left” of the element,
the two relations L and R may seem rather independent. This intuitive idea
is captured by the following key lemma.

Lemma 4. L ◦ R = R ◦ L .

Thus, we define D def= L ◦ R. In general, we have D ⊆ J , but:

Lemma 5. In a finite monoid, D = J .

This result is the central one in the theory of finite monoids. All results
presented in this lecture using the finiteness assumption are more or less
directly derived from this lemma.

A consequence for us is that we can depict monoids in a refined way.



8 T. Colcombet

The presentation of the syntactic monoid of the language
“no two consecutive occurrences of a” can be refined as shown.
The J -class {a, ab, ba, b} has been subdivided according to the L-
classes and the R-classes, yielding an “egg-box” presentation of
each class. The R-classes are drawn as ‘R’ows (here {1}, {a, ab},
{b, ba} and {0}), and the L-classes as columns (here {1}, {a, ba},
{b, ab} and {0}). The last of Green’s relations is H, defined by:

H def= L ∩R .

1

0

a ab

bba

Quite naturally H-classes correspond to the atomic boxes at the intersec-
tion of rows and columns. In our example, all H-classes are singletons.

For groups, on the contrary, there is only one H-class.

Our next objective is to identify the R-class and L-class of a.

Lemma 6. The language LRa
def
= {u : α(u) R a} is star-free.

Proof. Assume first (the interesting case), that a is not R-equivalent to 1M. In
this case, the star-freeness of LRa is established by the following equation:

LRa = LJa ∩
⎛
⎝ ⋃

bc≤Ra, b>J a

LbCcA
∗

⎞
⎠ .

Clearly, if a word u belongs to the right-hand side of the equation, this means
it has a prefix v belonging to LbCc. We derive α(u) ≤R α(v) = bc ≤R a. Since
furthermore α(u) J a, one can use the following important lemma:

Lemma 7. In a finite monoid, b ≤R a and a J b implies a R b.

(Said differently, if ab J a then ab R a.)

from which we immediately get that α(u) R a, i.e., u ∈ LRa.
Conversely, consider some u ∈ LRa. First of all, clearly u ∈ LJa. Let v be a

minimal prefix of u such that α(v) ≤R a. Since 1M �≤R a we have α(v) �= 1M,
and hence v �= ε. Thus we can write v as wx for some letter x. Setting b = α(w)
and c = α(x), we have that u belongs to LbCcA

∗. Furthermore bc = α(v) ≥R
α(u) ≥R a. Finally, by minimality of v, b = α(w) �≤R a. Since furthermore b =
α(w) ≥R α(u) ≥R a, we obtain b >R a. This means by Lemma 7 that b >J a.

It remains the case 1M ∈ LRa. We use the following lemma.
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Lemma 8. In a finite monoid M, the J -class of 1M coincides with its H-
class.

Proof. Assume 1M J a. Since furthermore a ≤R 1M (by a = 1Ma), we
have a R 1M using Lemma 7. Similarly, a L 1M. Thus a H 1M. 	


Hence LRa = LJa is star-free by Corollary 1. 	


By symmetry, LLa
def= {u : α(u) L a} is also star-free. From which we get.

Corollary 2. The language LHa
def
= {u : α(u) H a} is star-free.

Proof. Indeed LHa = LRa ∩ LLa, and both LLa and LRa are star-free. 	

Here the poof is concluded using the next lemma.

A monoid is called H-trivial if all its H-classes are singltons.

Lemma 9. A monoid has only trivial subgroups if and only if it is H-trivial.

One direction is simple. Indeed, if you consider any subgroup of the monoid,
then all its elements are H-equivalent in the monoid. Thus H-trivial implies
that all subgroups are trivial. The converse requires more work.

Such monoids are also called aperiodic, which signifies that there exists
some n such that an = an+1 for all a ∈ M.

Hence, we deduce that La = LHa which is star-free by Corollary 2. This
completes the proof of the induction step, and hence the proof of the theorem
of Schützenberger.

3 The Theorem of Factorization Forests of Simon

The theorem of forest factorizations is due to Simon [19]. It is at first glance, a
purely algebraic result. It takes a finite monoid as input, as well as a morphism
from words to this monoid, and shows the existence of factorizations with special
properties for every word. However, this result has consequences which are purely
automata related. Some of them are surveyed in [1]. A remarkable application
is its use for proving the decidability of the limitedness problem for distance
automata. Distance automata [6] are non-deterministic finite state automata over
finite words, equipped with a set of special transitions. The function computed by
such an automaton associates to each input word the minimal number of special
transitions contained in some accepting run (∞ if there are no accepting runs).
The limitedness problem consists in deciding whether the function computed by
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a distance automaton is bounded (in fact, over its domain, i.e., the set of words
which are not given value ∞). This problem is decidable [6], and the optimal
algorithm for it is due to Leung [8]. A simplified proof of validity of this theorem
is due to Simon using the factorization forest theorem [20]. The theorem of
factorization forests has other interesting applications. It is used for instance for
characterizing the polynomial closure of classes of regular languages [15].

We fix from now and on a finite monoid M.We will work with sequences of
elements in the monoid. We denote them separated by commas for avoiding
confusion with the product. Given a sequence v = a1, . . . , an, π(v) denotes the
value a1a2 · · · an.

A factorization (tree) (over the monoid M) is a finite unranked ordered tree T
whose leaves are labelled by elements of M (the label of node x is denoted T (x))
such that for every non-leaf node x of children y1, . . . , yk (read from left to right),
T (x) = π(T (y1), . . . , T (yk)). A factorization of a sequence a1, . . . , an (of element
in M) is a factorization tree such that the labels of leaves read from left to
right are a1, . . . , an. Traditionally, the height of a factorization is computed with
leaves excluded, i.e., the height of a single leaf factorization is by convention 0.

A factorization is Ramsey if for all nodes x of rank2 three or more, its chil-
dren y1, . . . , yk are such that T (y1) = · · · = T (yn) = e where e is an idempotent
(in particular, we also have T (x) = e).

Here is for instance an example of a
Ramsey factorization of height 4, in the
context of the syntactic monoid of our
running example: the language of words
“without two consecutive occurrences of
letter a”.

The theorem of factorization forests
is then the following.

b b bbb

0

0ab

ab abab abab

a b b

ba ab

ba baba babaab

Theorem 3 (Simon [19]). Every sequence of elements from a finite monoid M
admits a Ramsey factorization of height at most 3|M | − 1.

We follow here the similar proofs from [4,7]. The original bound given by Simon
is 9|M | instead of 3|M |. The bound of 3|M |−1 has been announced by Kufleitner,
but is proved here. The proof completely follows the descriptions of the monoid
in terms of the Green’s relations.

A sequence a1, . . . , an over M will be called X-smooth for some X ⊆ M if
ai · · · aj ∈ X for all 1 ≤ i ≤ j ≤ n (in particular each ai ∈ X and a1 · · · an ∈ X).

Lemma 10. Let H be an H-class of a finite monoid M , then every H-smooth
sequence admits a Ramsey factorization of height at most 3|H | − 1.

Proof. We need a better understanding of the internal structure of H-classes:

2 The rank of a node is the number of its children.
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Lemma 11. If an H-class H contains an idempotent e, it is a group of
neutral element e. Otherwise ab <J a for all a, b ∈ H

If H contains no idempotent element, then an H-smooth sequence has length at
most 1. In this case, the single node factorization is Ramsey. It has height 1.

The interesting case is when H contains an idempotent e. Given an H-smooth
sequence u = a1, . . . , an, call its width the value |S(a1, . . . , an)| where the set
S(a1, . . . , an) abbreviates {a1 . . . al : 1 ≤ l ≤ n} (remark that S(a1, . . . , an) is
empty iff n = 0). The construction is by induction on the width of the sequence.
The base case is for n = 0. In this case, there exists a factorization of height at
most 0 (this is a somewhat distorted case).

Let v = a1, . . . , an for some n > 0. Define a to be a1 · · · an and let a′ be the
inverse of a in the group H . Set 0 < k1 < · · · < km = n to be the list of indexes
such that a1 · · · aki = a for all i. Let v1 = a1, . . . , ak1−1, v2 = ak1+1, . . . , ak2−1,
etc. . . Remark that S(v1) ⊆ S(v) and a �∈ S(v1). Hence the width of v1 is less
than the one of v. One can apply the induction hypothesis, and get a Ramsey
factorization T1 for v1. Similarly for all i > 1, aS(vi) ⊆ S(v), and a �∈ S(vi).
Furthermore S(vi) = a′aS(vi), hence |S(vi)| ≤ |aS(vi)| < |S(v)|. Thus, we can
also apply the induction hypothesis, and get a Ramsey factorization Ti for vi.
Remark here that some of the vi’s may be empty. We do not pay attention to
this harmless detail.

We now construct the following factorization:

T2

ak3

T3

ak2

ak1

T1

Tm

akmak4 . . .

T4

In this construction, the empty trees are removed, and the labels of nodes are
completed (in a unique way). We have to prove that the resulting factorization
is indeed Ramsey. For this, it is sufficient to prove it for the only new node of
rank possibly greater or equal to 3. Its i’th children has value aki+1 · · · aki+1 . We
compute:

aki+1ak2 = a′aaki+1 · · · ak2

= a′a1 · · ·akiaki+1 · · ·ak2

= a′a = e .

Hence the new node is Ramsey.
For the height, remark that for the width 1, all the Ti’s are empty, and hence

the construction can be simplified, and the resulting height is 2 (recall that leaves
do not count in the height). At each induction step, the height of the factorization
increases by at most 3. Hence, in the end, the factorization resulting from this
construction has height at most 3|H | − 1. 	
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Lemma 12. For R an R-class, every R-smooth sequence has a Ramsey factor-
ization of height at most 3|R| − 1.

Proof. Let v = a1, . . . , an be the R-smooth sequence. The construction is by
induction on the number of H-classes occurring in v. If this number is 0, then
one uses (once more) the distorted case of an empty tree.

Otherwise, let H be the H-class of an. Let 1 ≤ k1 < · · · < km ≤ n be the
indexes such that aki ∈ H . One defines as for the previous lemma v1,. . . ,vm+1

to be such that v = v1, a1, v2, . . . , am, vm+1. Remark first that the H-class H
does not appear in any of v1, . . . , vm+1. Thus, one can apply the induction hy-
pothesis for each of the vi’s, and get a Ramsey factorization Ti. We also know
that π(vi, ai) = π(vi)ai and hence π(vi, ai) ≤L ai. It follows from (the L-version
of) Lemma 7 that π(vi, ai) L ai, which means π(vi, ai) L ai ∈ H . Hence, we can
apply Lemma 10, and get a Ramsey factorization T ′ for π(v1, a1), . . . , π(vm, am).

We now construct the following factorization:

T2T1 T3

a2 a3

T ′

a1
. . .

am

Tm

It is Ramsey since each part it is composed of (namely T1, . . . , Tm+1 and T ′)
is Ramsey. One just needs to check that the values are consistent at the glue
points. However, this is by construction.

Concerning its height. Once more in the pathological case of a single H-class,
the construction gets simpler, and its height is simply the height of T ′, which
is at most 3|H | − 1. Then at each step of the induction, the height increases of
at most 3|H | − 1 where H is the H-class treated at this step of the induction.
Overall we can over approximate it by 3|R| − 1. 	

In the above proof, we count the size of all the H-classes separately. However,
in some situations we would like to have more information. Such results exist:

Lemma 13 (Green’s lemma). Inside a D-class,

– The R-classes have all the same size (more precisely, if baD a, then the
application which to x associates bx is a bijection from the R-class of a
onto the R-class of ba).

– The L-classes have all the same size, (more precisely, if abD a, then the
application which to x associates xb is a bijection from the L-class of a
onto the L-class of ab).

– All H-classes have same size.

Using the exact same proof, decomposing a J -class into R-classes, we obtain:
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Lemma 14. For J a J -class, every J-smooth sequence has a Ramsey factor-
ization of height at most 3|J | − 1.

We are now ready to prove the factorization forest theorem, Theorem 3.

Proof. Let v = a1, . . . , an be a sequence over M. This time, the proof is by
induction on the J -class J of π(v). Assume one knows how to construct a Ramsey
factorization for each sequence w such that π(w) >J π(v).

Let k1 ≥ 1 be the least index such that π(a1, . . . , ak1) ∈ J . Continue by con-
structing k2 > k1 minimal such that π(ak1+1, . . . , ak2) ∈ J , and so on, producing
in the end k1 < · · · < km. One decomposes v as v1, ak1 , v2, . . . , akm , vm+1 as ex-
pected. By minimality property in the definition of the ki’s, π(vi) �∈ J . Since
furthermore, π(vi) ≥J π(v) ∈ J , we obtain π(vi) >J π(v). Thus we can apply
the induction hypothesis, and get a Ramsey factorization Ti for vi. Furthermore,
for all i ≤ m, π(vi, ai) ∈ J by construction. Hence, we can apply Lemma 14 and
get a Ramsey factorization T ′ for π(v1, a1), . . . , π(vm, am).

We construct now the following factorization:

T2T1 T3

a2 a3

T ′

a1
. . .

am

Tm+1

Tm

As in the previous lemmas, it is Ramsey simply because all its components are
Ramsey.

Concerning the height. For a maximal J -class J , the construction can be
slightly simplified since all the Ti’s are empty. Hence, the height is the one of T ′,
which is at most 3|J |− 1. Then, the height increases of the height of T ′ plus one
at each step of the induction, which is at most 3|J | for a J -class J . Overall, we
reach a factorization of height at most 3|M | − 1. 	

An interesting point in this proof is that it is completely driven by the decom-
position of the monoid according to Green’s relations.

4 On ω-Semigroups and Monadic Logic

The remaining results which we consider involve the study of languages of infinite
words, of length ω. We call such words ω-words. Regular languages of ω-words
are usually defined using Büchi automata. We present in this section the corre-
sponding algebraic notion, ω-semigroups. This is the extension of the notion of
monoids (in fact semigroups) which is best suited for dealing with languages of
infinite words.

ω-semigroups. An ω-semigroup is an algebra S = (S+, Sω, π) consisting of
two disjoint sets S+ and Sω and a product π mapping finite sequences in (S+)+
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to S+, finite sequences in (S+)∗Sω to Sω, and infinite sequences in (S+)ω to Sω.
The product π is required to be associative, i.e., for all meaningful choices of
sequences u1, u2,. . . ,

π(π(u1), π(u2), . . . ) = π(u1, u2, . . . ) .

As an example, the free ω-semigroup generated by A consists of S+ = A+,
Sω = Aω, and the product is simply the concatenation product for sequences
(possibly infinite).

An example of a finite3 ω-semigroup consists in S+ = {a, b} and Sω = {0, 1}.
For all finite sequences u over {a, b}, π(u) = a if a occurs in u, b otherwise. For
all finite sequences u, π(u, 0) = 0 and π(u, 1) = 1, and for all ω-sequences w
over {a, b}, π(w) = 1 if w contains infinitely many occurrences of a, π(w) = 0
otherwise.

A morphism of ω semigroups from S to S′ is an application α mapping S+

to S′
+ and Sω to S′

ω which preserves the product, i.e., such that for all meaningful
(possibly infinite) sequences a1, a2, . . . from S,

α(π(a1, a2, . . .)) = π′(α(a1), α(a2), . . .) .

A language of ω-words L is recognizable by an ω-semigroup S if there exists
a morphism α from the free ω-semigroup to S, such that for every ω-word w,
w ∈ L if and only if α(w) ∈ F , where F ⊆ Sω. One also says that L is recognized
by S, α, F .

For instance, the language of infinite words over {a, b, c} which contains in-
finitely many occurrences of letter a is recognized by the above finite ω-semigroup.
The morphism α maps each non-empty finite word to a if it contains an occur-
rence of the letter a, to b otherwise. The morphism also sends each ω-word to 1 if
it contains infinitely many occurrences of the letter a, to 0 otherwise. The finite
subset of Sω is F = {1}.

Given an ω-semigroup (S+, Sω, π), one defines the binary product · over S+

by ab
def= π(a, b). One also uses it from S+×Sω to Sω (with the same definition).

The exponentiation by ω from S+ to Sω is defined with aω def= π(a, a, a, . . .).
It turns out that if S+ and Sω are finite, then π is entirely determined by the
product · and the exponent by ω [22]. We will not use this direction, however, this
explains why it is sufficient to know a finite amount of information for working
effectively with ω-semigroups.

The relationship with the monoids we have been using so far is that (S+, ·)
is a semigroup: a semigroup S = (S, ·) is a set S together with an associative
operator ·. Hence, this is simply a monoid without necessary a neutral element.
This difference is not essential. In our case, it simply reflects the special property
of the empty word (which is the neutral element of the free monoid) in the study
of infinite words: it is the only finite word which, when iterated ω times, does not

3 Finite means that both S+ and Sω are finite, though a priori, the product π requires
an infinite quantity of information for being described.
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yield an infinite word. Using semigroups rather than monoids means avoiding to
treat this particular case.

The structure of semigroups and monoids are highly related. Given a semi-
group S, one defines S1 to be S to which has been added a new neutral ele-
ment 1, if necessary. This makes a monoid out of a semigroup. When we refer to
the Green’s relations of the semigroup, we refer in fact implicitly to the Green’s
relations of the corresponding monoid S1.

Monadic second-order logic. Let us recall here that monadic (second-order)
logic is the first-order logic extended with the ability to quantify over sets. I.e., it
is possible to quantify existentially or universally over elements (e.g., ∃x, ∀y, . . . )
and sets of elements (e.g., ∃X, ∀Y, . . . ), to test membership (e.g., x ∈ Y ), to use
boolean connectives (i.e., ∨,∧, ¬) and to use the predicates of the structure. In
our case, we consider ω-words. In this case, the elements are the positions in the
word, i.e., non-negative integers, and there are two kinds of predicates. For all
letters a, the predicate a(x) allows to test whether the letter at the position x is
an a, and the predicate x ≤ y tests whether the position x occurs to the left of
or at y. Given an ω-word, one says that its monadic theory is decidable if there
is an algorithm which, given any sentence of monadic logic, decides whether it
holds or not over the ω-word. See for instance [21] for more on the subject.

Those various notions are tied together by the following theorem.

Theorem 4 ([2],[12]). A language of ω-words is regular (i.e., definable by
Büchi automata) if and only if it is recognized by a finite ω-semigroup, if and only
if it is definable in monadic logic. Furthermore, the translations are effective.

For this reason, we do not use explicitly monadic logic from now on.

5 The Characterization of Decidable Theories by
Semenov

The result of Semenov we are mentioning answers the following question:

When is the monadic theory of an ω-word decidable?

This question differs, though it is related, to the original question solved by
Büchi [2], which aims at deciding whether a monadic sentence has a model, i.e.,
decide if it is satisfied by some ω-word.

A possible answer to the above question is:

Theorem 5 (variation of Semenov[18]). An ω-word w has a decidable mo-
nadic theory if and only if the following questions are decidable for all regular
languages of finite words L:

(A) Does there exist a finite prefix of w in L? I.e., w ∈ LAω?
(B) Does there exist recurrent factors of L in w ? I.e., w ∈ (A∗L)ω?
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One direction is straightforward. Indeed, it is easy to translate the properties
“w ∈ LAω” and “w ∈ (A∗L)ω” into equivalent monadic formulas. Hence prop-
erties (A) and (B) can be reduced to the decidability of the monadic theory
of w.

The interesting implication is the opposite one. We will use as our major
tool Lemma 18 below. This requires beforehand to disclose some extra facts
concerning the Green’s relations.

An element a in a monoid is called regular if there exists s such that asa =
a.

Lemma 15. Let J be a J -class J in a finite monoid. The following items
are equivalent:

– J contains a regular element,
– J contains an idempotent,
– every element in J is regular,
– every R-class in J contains an idempotent,
– every L-class in J contains an idempotent,
– there exist two elements in J , the product of which belongs to J .

Such J -classes are naturally called regular.
Keeping the same example as above, one enriches the presen-

tation by adding information concerning the idempotents. Each
H-class is now decorated by a star if it contains an idempotent.

This gives an important information:

Lemma 16. In a finite semigroup, if a J b, then ab J a if and
only if there exists an idempotent e such that e R b and e L a,
and in this case, ab R a and ab L b.

ab

b
�

�
a

ba
�

�

�0

1

In our example, on the one hand, abba stays in the same J -class since b
is an idempotent, and the result is a. On the other hand, baab falls in the
lower J -class since a is not an idempotent.

The following technical lemma contains the key arguments we need:

Lemma 17. If aJ bJ abJ c and aLxRc, then there exists y such that c = xy
and c L y R b.

This statement can be depicted as shown.
I.e., x can be completed to the left into a (aLx),
and to the right into c (xR c). Then it is possi-
ble to complete x to the right into c = xy such
that y can be completed into b (b R y).

a b

yx

c

Proof. We have x L a, hence ab L xb by Lemma 3. Thus xb J ab J x. It
follows xb R x R c, once more by Lemma 3. Hence c = xbz for some z.
Let y = bz. Clearly c = xbz = xy. Furthermore y = bz ≤R b, and bz ≥L
xbz = c. Hence by (twice) Lemma 7, c L y R b. 	
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We then obtain by iterated applications of Lemma 17.

Lemma 18. If u = a1, a2, . . . ∈ (S+)ω is J -smooth (i.e., is J-smooth for
some J -class J) then (a) there exists an idempotent e such that eRa1, and
(b) π(u) = eω for all idempotents e such that e R a1.

Proof. Let J be the J -class of a1. Since a1, a2, and a1a2 all belong to J ,
it follows that J is regular by Lemma 15. Hence, still by Lemma 15, there
exists an idempotent e in the R-class of a1 (a).

Let e be such an idempotent. One constructs inductively the ele-
ments xn, yn ∈ S+ such that for all positive integer n:

(1) e L xn R an, and if n = 1, x1 = e, otherwise yn−1xn = e,
(2) an L yn R e, and xnyn = an.

The constructions can be illustrated as follows:

e e e e

a1 a2 a3 a4 a5

x1 y1 x2 y2 x3 y4

e

For n = 1, one chooses x1 = e, and we know by choice of e that eLx1 R a1.
Hence (a) holds for n = 1. Then for all n, assuming (1) establishes (2) using
simply Lemma 17. Similarly, assuming (2), one establishes (1) for n+1 using
again Lemma 17.

It is then easy to conclude. Indeed, using the associativity of π,
we have π(a1, a2, . . . ) = π(x1y1, x2y2, . . . ) = π(x1, y1, x2, y2, . . . ) =
π(x1, y1x2, y2x3, . . . ) = eω . Property (b) holds. 	


Lemma 18 provides us a lot of information concerning the monadic theory of
an ω-word. Given a J -class J and a word w, we say that J occurs in w if w ∈
A∗LJAω where LJ = {u ∈ A+ : α(u) ∈ J}. We say that J is recurrent in w
if w ∈ (A∗LJ)ω.

Lemma 19. For all w, there is a minimum (for the J -pre-order) J -class
recurrent in w.

Proof. Assume that both J and J ′ are recurrent, we shall prove that there is
a J -class below or equal to both J and J ′ which is recurrent. Since both J and J ′

are recurrent, w can be written as u1v1u
′
1v

′
1u2u

′
2 . . ., where vi ∈ LJ and v′i ∈ LJ′

for all i. Let Ji be the J -class of α(viu
′
iv

′
i). By definition of the J -pre-order,

Ji ≤J J and Ji ≤J J ′. Furthermore, since there are only finitely many J -class,
one of the Ji’s has to occur infinitely often, which means it is recurrent in w. 	

Lemma 20. If J is recurrent in w, and no J -class J ′ �≥J J occurs in w, then w
can be decomposed into v1v2 . . . such that α(v1), α(v2), . . . is J-smooth.
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Proof. Find the first non-empty prefix v1 of w such that α(v1) ∈ J . This is
possible since J is recurrent. Then proceeds with the remaining suffix, and con-
struct v2,. . . For the sake of contradiction, assume α(v1), α(v2), . . . is not J -
smooth, this would mean that α(vi . . . vj) �∈ J for some i ≤ j. However, we
have α(vi . . . vj) ≤J α(vi) J J , thus this means that α(vi . . . vj) <J J . A con-
tradiction since by hypothesis no J -class below J does occur in w. 	

Corollary 3. Assume the minimum recurrent J -class of w is J and all J -
classes occurring in w are above or equal to J , then:

– w has a finite prefix u such that α(u) ∈ J ,
– for all prefix u of w such that α(u) ∈ J ,

α(w) = α(u)→ ,

where a→def
= eω for some/all idempotents e such that e R a (if defined).

Proof. By hypothesis and Lemma 20, w can be written as w = v1v2 . . . such
that α(v1), α(v2), . . . is J -smooth. Thus by Lemma 18, α(w) = α(v1)→.

Furthermore, u is either a prefix or a suffix of v1, yielding α(u) ≥J α(v1)
or α(u) ≤J α(v1) respectively. In any case, since α(u) J α(v1), we have α(u) R
α(v1) by Lemma 7. Hence eRα(v1) if and only if eRα(u). This means α(w) =
α(v1)→ = α(u)→. 	

We are now ready to establish Theorem 5.

Proof. Assume that properties (A) and (B) hold for an ω-word w, and that
one is given a monadic sentence ϕ. This sentence ϕ defines a regular language
of ω-words which is recognized by an ω-semigroup S by Theorem 4.

Using (A), we can decide what is the minimum recurrent J -class in w (it
exists by Lemma 19). Call it J . The next step consists in finding a decomposition
of w in uw′ such that all J -class occurring in w′ are above or equal to J . Such
a word u exists. For finding it, one just tries all possible u’s, and stop when
both w ∈ uAω, and w �∈ uA∗L �≥J JAω, where L �≥J J is the set of non-empty
words which are not mapped by α to J or above. This is obviously doable using
iterated applications of item (A). Then one finds v such that uv is a prefix of w,
and α(v) ∈ J . It is sufficient once more to test all possible such v’s using (A).
Then, we have α(w) = α(u)α(v)→ by Corollary 3. Hence, we can decide if ϕ
holds or not. 	


6 Deterministic Automata over ω-Words: McNaughton

A Büchi automaton is a tuple (Q, A, I, Δ, B) where Q is a finite set of states,
A is the alphabet, I ⊆ Q is a set of initial states, Δ ⊆ Q × A × Q is the
transition relation, and B ⊆ Δ is the set of Büchi transitions. An automaton is
deterministic if Δ is a function from Q × A to Q. A run of the automaton over
an ω-word w is defined as usual as an infinite sequence of transitions such that
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the first state is initial, the letters in the transitions yield w, and consecutive
transitions agree on the common states. A run is accepting if it contains infinitely
many Büchi transitions. The language accepted by an automaton A is the set of
ω-words over which there is an accepting run of the automaton. A language is said
regular if it is accepted by some Büchi automaton. A language is deterministic
Büchi if it is accepted by a deterministic Büchi automaton.

It is known that not all regular languages are deterministic Büchi. However
McNaughton’s result still gives a strong relationship:

Theorem 6. A language of ω-words is regular if and only if it is a Boolean
combination of deterministic Büchi languages.

Usually, this theorem is stated as the existence of deterministic automata belong-
ing to more general classes of automata (such as parity/Rabin/Streett/Müller
automata). In fact, with just a slightly more involved construction, one can im-
mediately get a deterministic parity automaton along the lines presented here.
We choose here the simplest presentation. Standard constructions are directly
performed on the automaton, here we translate an ω-semigroup directly into a
Boolean combination of deterministic Büchi automata. The first direct transla-
tion of ω-semigroup to deterministic automata is due to Carton [3].

Once more, we start from a regular language L which is presented by an
ω-semigroup (S+, Sω, π), a morphism α, and some subset F ⊆ Sω.

Lemma 21. Given a J -class J , the language of words such that the minimum
recurrent J -class J ′ is such that J ′ �>J J is deterministic Büchi.

Proof. Without loss of generality, one assumes 1 �∈ J (otherwise, this is the
language Aω). Let K be the set of elements {a ∈ S1

+ : a >J J}. By the
assumption 1 �∈ J , we have 1 ∈ K. One constructs the following deterministic
Büchi automaton:

– The set of states is K.
– The initial state is 1.
– The transition from state a, reading letter x, ends in state

Δ(a, x) =
{

aα(x) if aα(x) ∈ K, (a)
1 otherwise. (b)

– The automaton accepts if some transition of kind (b) is seen infinitely often.

This automaton decomposes an input ω-word into w = u1u2 . . . in such a way
that each ui is minimal such that α(ui) �>J J . It accepts if and only if this
decomposition is infinite.

Assume the automaton accepts an ω-word w. Then there is a J -class visited
by infinitely many ui’s, which is a witness that the minimum recurrent J -class
is not above J . Conversely, assume the automaton does not accept an ω-word w.
This means that after some time no more transitions of kind (b) are visited
anymore. Thus all J -classes appearing after this moment are above J . 	
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Lemma 22. Given a J -class J , the language of ω-words:

L ∩ {w ∈ Aω : J is the minimum recurrent J -class in w}
is the difference of two deterministic Büchi languages.

Proof. We construct a deterministic Büchi automaton such that:

A. It accepts all ω-words such that the minimum recurrent J class is �≥J J .
B. An ω-word such that the minimum recurrent J -class is J is accepted if and

only if it does not belong to L.

Then, it is easy to see that if we subtract this language to the one of Lemma 21,
we obtain the expected language.

Let K be the set of elements {a ∈ S1
+ : a ≥J J}. One constructs the

following deterministic Büchi automaton:

– The set of states is S1
+ × K.

– The initial state is (1, 1).
– The transition from state (a, b) while reading letter x goes to state:

Δ((a, b), x) =
{

(a, bα(x)) if bα(x) ∈ K (a)
(abα(x), 1) otherwise. (b)

Transition (a) is called (a1) if a(bα(x))→ ∈ F , otherwise, it is called (a2).
– The automaton accepts if a transition of the kind (b) or (a2) is visited in-

finitely often.

First of all, remark that, for the same reasons as in the proof of Lemma 21, the
transitions of kind (b) are visited infinitely often if and only if the minimum
recurrent J -class is not above or equal to J . This settles item A.

Consider now some ω-word such that the minimum recurrent J -class is J .
This means that after some steps, no more (b)-transitions will be encountered.
This uniquely decomposes the ω-word into w = uv in which u is the prefix of w
which terminates when the last (b)-transition is visited (possibly u = ε as a
pathological case if no (b)-transition is ever encountered).

One easily sees that for all finite prefix of w of the form uv′, the automaton
reaches the state (α(u), α(v′)) after reading it. Since the minimum recurrent
J -class is J , α(v′) will eventually enter J . By Corollary 3, if w ∈ L, then all
transitions from this moment are of kind (a1) and the word is rejected, while
if w �∈ L, all transitions from this moment are of kind (a2), and the word is
accepted. This settles item B. 	

Of course, Theorem 6 follows directly since L is the union of the languages of
Lemma 22 for J ranging over the possible J -classes.
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1 Introduction

Automata theory has unified many areas of computer science and mathemat-
ics. These include group theory (Thurston automatic groups [11], branch and
self similar groups [1] [24]), computable model theory (the theory of automatic
structures [5] [17] [16]), finite model theory, algorithms and decidability, logic,
model checking and verification.

In this tutorial we emphasize the use of automata in representation of infinite
mathematical structures and concentrate on two topics. One topic is automatic
structures, and the other, representations of groups by automata. There are al-
ready many papers motivating the study of automatic structures and surveying
some of the results in the area (e.g. [28] [16] [18]). The book [11] is a standard
reference for automatic groups in the sense of Thurston. See also a survey by S.
Gersten on automatic groups and their relations with hyperbolic groups [12]. In
this paper we present definitions and theorems in the area of automatic struc-
tures, automatic groups, outline some recent results, and discuss possible topics
for research.

We note that there are several models of automata: finite automata, tree
automata, various types of ω-automata, and ω-tree automata. Here we restrict
ourselves to finite automata and tree automata. Finite automata are designed
to process finite strings over a finite alphabet, while tree automata are designed
to process finite labeled trees. We assume that the reader is familiar with these
automata and their basic properties. For completeness we will, however, provide
definitions for these type of machines in the next section.

A brief outline of this paper is as follows. The next two sections contain
basic definitions, and a proof that each automatic structure posses a decidable
first order theory and is closed under definability. Section 4 stresses the domain
dependency of automatic structures. The main idea is that algebraic (and even
algorithmic) properties of automatic structures depend heavily on the underlying
domains. This is formalized in the definition of the algebraic spectra of automata
recognizable sets. Given a (finite, or tree) automaton recognizable language X ,
we define the algebraic spectrum of X to be the class of automatic structures
whose domain is X . This definition calls for a refined analysis of automaticity
for structures. As an example, we prove that every infinite automatic scattered
linear order is isomorphic to an automatic linear order over the domain of all
finite binary strings. In contrast, no scattered tree-automatic linear order exists
over the domain of all finite trees. As a corollary, no tree-automatic well order
exists on the set of all finite trees.

A.-H. Dediu, S. Inenaga, and C. Martín-Vide (Eds.): LATA 2011, LNCS 6638, pp. 22–40, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Sections 5 and 6 study automaticity in groups. There are several ways to rep-
resent groups by finite automata. The first is to consider finite automata with
letter-by-letter outputs, known as Mealy automata. Every such automaton deter-
mines length preserving functions on the set of strings (over the alphabet of the
automaton). The number of these functions is bounded by the number of states
of the automaton. If these functions are permutations, one can consider groups
generated by them under the composition operation. These determine groups
called automata groups. Examples of such groups include the famous Grigorchuk
groups. The reader is referred [2] for background. The second way is to consider
groups as defined by Thurston and his collaborators [11]. Roughly, a group G
generated by a finite set X is Thurston-automatic if there exists a regular subset
L of X� such that the natural mapping u → ū from L into G is bijective, and
the left-multiplication by each of the generators can be performed by finite au-
tomata. Many natural examples of Thurston-automatic groups arise in topology
and geometry. For instance, all hyperbolic groups are Thurston-automatic. So
are virtually abelian groups. We propose a natural generalization of Thurston
automaticity for groups: Cayley automatic groups. Roughly, a finitely generated
group G is Cayley automatic if there is a coding of the vertices of a Cayley graph
of G under which both the set of codes and multiplication by each of the gen-
erators are finite automata recognizable. Every group, automatic in the sense
of Thurston, is Cayley automatic. However, there are many examples of Cayley
automatic groups that are not Thurston automatic. These include Heisenberg
groups and groups of nilpotency class at most 2. We show that the class of
Cayley automatic groups is closed under many group-theoretic constructions.

The last section discusses the isomorphism problem for automatic structures.
We outline several known results in the study of the isomorphism problem. The
emphasis is on to showing that the isomorphism problem lies in various spec-
trum of decidability and undecidability. This spectrum depends on the classes
of structures (e.g. classes of linearly ordered sets, Boolean algebras, graphs).
We give examples of automatic structures for which the isomorphism problem
is is (highly) undecidable, and examples of automatic structures for which the
isomorphism problem is decidable.

2 Basics

A finite alphabet is denoted by Σ. As always, Σ� denotes the set of all finite
words over Σ. We define finite automata as follows.

Definition 1. A finite automaton is a tuple M = (S, ι, Δ, F ), where S is the
set of states and ι ∈ S is the initial state, Δ ⊆ S×Σ×S is the transition table,
and F ⊆ S is the set of final states. The set S of states is always finite.

Note that given an automaton M, its transition table Δ determines the al-
phabet Σ. A run of the automaton M on word w = σ1σ2 . . . σn ∈ Σ� is a
sequence of states q0, q1, . . . , qn such that q0 = ι and (qi, σi+1, qi+1) ∈ Δ for all
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i ∈ {0, 1, . . . , n − 1}. If qn ∈ F , for some run of M on w, then the automaton
M accepts w. The language of the automaton M is

L(M) = {w | w is accepted by M}.

We call such languages finite automaton (FA) recognisable or regular languages.
We now need to define tree automata. A Σ–tree is a mapping t : dom(t) → Σ

such that the domain dom(t) of t is a finite subtree of the binary tree {0, 1}�

with the property that every non-leaf node v ∈ dom(t) has both its children v0
and v1 in dom(t). The symbol λ denotes the root of dom(t). The boundary of
the domain dom(t) is the set

∂dom(t) = {xb | x is a leaf of dom(t) and b = 0 or b = 1}.

The set of all Σ-trees is denoted by T (Σ).

Definition 2. A tree automaton is a tuple M = (S, ι, Δ, F ), where S is the set
of states and ι ∈ S is the initial state, Δ ⊆ S × Σ × (S × S) is the transition
table, and F ⊆ S is the set of final states. As for finite automata S is always a
finite set.

Next we define tree automata recognizable languages. Let M be a tree au-
tomaton and t be a Σ-tree. A run of M on the tree t is a mapping r :
dom(t) ∪ ∂dom(t) → S such that r(λ) = ι and for all x ∈ dom(t) if t(x) = σ
and r(x) = s then r(x0) = s0 and r(x1) = s1 where (s, σ, (s0, s1)) ∈ Δ. If for
every leaf x ∈ dom(t) we have both r(x0) ∈ F and r(x1) ∈ F , then the run r is
said to be accepting. Automaton M accepts the tree t, if there is a run of M on
t which is accepting. The language of the tree automaton M is

L(M) = {t ∈ T (Σ) | t is accepted by M}.

These languages are called tree-automata recognisable or equivalently regular.
The word and tree languages are subsets of the underlying domains Σ� and

T (Σ), respectively. As such they are unary relations on these domains. Our goal
now is to define automata recognizable relations on these domains. For this, we
need one technical notation.

Let t0, . . ., tn−1 be Σ-trees. For x ∈ dom(t0) ∪ . . . ∪ dom(tn−1) and i < n, we
set t′i(x) = ti(x) if x ∈ dom(ti), and t′i(x) = � if x �∈ dom(ti). The convolution of
the trees t0, . . ., tn−1 is then the tree given by a mapping conv(t0, . . . , tn−1) from
dom(t0) ∪ . . . ∪ dom(tn−1) to (Σ ∪ {�})n which satisfies for all x ∈ dom(t0) ∪
. . . ∪ dom(tn−1) that

conv(t0, . . . , tn−1)(x) = (t′0(x), . . . , t′n−1(x)).

Thus a convolution of an n-tuple of trees t0, . . ., tn−1 is a tree over a larger finite
alphabet. We often identify the convoluted tree conv(t0, . . . , tn−1) with the tuple
(t0, . . . , tn−1).
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Definition 3. We say that an n-ary relation R on T (Σ) is tree-automatic if
its convolution conv(R) = {conv(t0, . . . , tn−1) | (t0, . . . , tn−1) ∈ R} is a tree-
automata recognisable language.

The reader can easily modify the convolution operation for finite strings, and
hence define finite automata recognisable relations on the set Σ�. This allows us
to give the following definition central to this paper.

Definition 4. A structure A = (A; R1, . . . , Rn) is tree-automatic (word-auto-
matic) if domain A and the atomic relations R1, . . ., Rn are all tree-automata
(finite automata) recognisable. For a structure B, if B is isomorphic to the struc-
ture A then we say that A is a tree-automatic (word-automatic) presentation
of B. We often refer to tree and word automatic structures and presentations as
automatic structures and presentations, respectively.

Automatic presentations A of a structure B is thus a finite collections of au-
tomata for the domain and atomic relations of A. For the reader familiar with
the second order logic, we note that the definition of automata presentability is
a Σ1

1-definition in arithmetic. This is because automata presentability of B re-
quires a search for an isomorphism from automatic structures A to B. However,
we often abuse our definition and refer to automata presentable structures as
automatic structures. We also remark that the type of automaticity used (tree
automata or finite automata) in the text will be clear from the content.

Examples of word-automatic structures are the following. (1) The structure
(1�; S,≤)), where S(1n) = 1n+1 and 1n ≤ 1m iff n ≤ m for n, m ∈ Z. (2) The
structure ({0, 1}�;≤lex,≤pref ,≤llex), where the relations are the lexicographical,
prefix, and length-lecocographical orders on strings. (3) the small ordinals ωn,
where n ∈ N. (4) The structure (Basek; Addk), where Basek = {0, 1, . . . , k −
1}� ·{1, . . . , k−1}. In this example each word w = x0 . . . xn ∈ Basek is identified
with the number

valk(w) =
n∑

i=0

xik
i.

This gives the least significant digit first (LSDF) base k representation of natural
numbers. The predicate Addk is the graph of the k-base addition of natural
numbers, that is Addk = {(u, v, w) | valk(u)+valk(v) = valk(w)}. This structure
is isomorphic to the natural numbers with addition (N, +) known as Presburger
arithmetic.

Examples of tree-automatic structures are: (1) all word-automatic structures;
(2) Skolem arithmetic (N;×), (3) term algebras with infinitely many generators,
(4) the ordinal ωω, (5) the countable atomless Boolean algebra. The structures
in Examples (2)-(5) are not word-automatic structures. These require proofs,
some non-trivial, see for instance [4] [19] [20].

3 Decidability and Definability Theorem

Closure properties for both finite and tree automata imply that automatic struc-
tures are closed under first order interpretations. Furthermore, the decidability
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of the emptiness problem for automata can be used to prove that the first order
theory of every automatic structure is decidable. We state an extended version
of this fact in the theorem below, and outline a proof.

Theorem 5 ([5,14,17]). Let FO + ∃ω–logic be the extension of the first-order
logic with the “there are infinitely many" quantifier ∃ω.

1. There is an algorithm that, given an automatic presentation of A and a
formula φ(x1, . . . , xn) in FO + ∃ω–logic, builds an automaton Mφ that rec-
ognizes all n-tuples in A that satisfy the formula.

2. There is an algorithm, that given an automatic presentation of A and a
sentence φ in FO+∃ω–logic, decides if φ is true in A. Hence, the first-order
theory of any automatic structure is decidable.

Proof. We sketch the proof for Part 1. Verification details are left to the reader.
The proof is by induction on complexity of the formula φ(x1, . . . , xn).

If φ(x1, . . . , xn) is an atomic formula, the definition of automaticity implies
the proof. Assume that φ is a disjunction of two formulas, say φ1(x1, . . . , xn)
and φ2(x1, . . . , xn). Since automata recognizable languages are closed under the
union operation, using the inductive hypothesis, one constructs an automa-
ton Mφ from the automaton Mφ1 and Mφ2 that recognizes all tuples that
make φ(x1, . . . , xn) true. The conjunction case is proved similarly. Assume that
φ(x1, . . . , xn) is a negation of the formula ψ(x1, . . . , xn). Then one can construct
the automaton Mφ for the complement of the language recognized by Mψ. Now
assume that φ(x1, . . . , xn) is of the form ∃xn+1ψ(x1, . . . , xn, xn+1). The automa-
ton Mφ is then built from Mψ by “forgetting" the last components of the labels
in the transition table of Mψ. The resulting automaton is non-determinitsic and
accepts exactly those tuples that make φ(x1, . . . , xn) true.

Now consider the formula φ(x̄) of the form ∃<ωyψ(x̄, y). Assuming that there
is an automaton Mψ for ψ(x̄, y), we would like to construct an automaton
for φ(x̄). If the underlying structure A is word-automatic then the formula
∃<ωyψ(x̄, y) is equivalent to the following formula ∃z∀y(y ≤pref z ∨ ¬ψ(x̄, y)).
Since (A,≤pref ) is word-automatic, the former formula is the formula of the
first order language. The reasoning above shows that there exists an automa-
ton that accepts exactly those tuples ā that make φ(x̄) true. Assume that A is
a tree-automatic structure. Then the formula ∃<ωyψ(x̄, y) is equivalent to the
following formula ∃z∀y(dom(y) ⊆ dom(z) ∨ ¬ψ(x̄, y)). Note that there exists a
tree automata that given two Σ-trees y and z recognizes if dom(y) ⊆ dom(z).
Therefore the structure (A,⊆) is tree-automatic structures. As above, we con-
clude that there exists a tree automaton that accepts exactly those tuples ā that
make φ(x̄) true.

For the second part of the theorem, consider the automatic structure A and a
sentence φ. Let Mφ be an automaton constructed for φ as above. Then φ is true
in A if and only if L(Mφ) �= ∅. Since, the emptiness problem for automata is
decidable, we can decide whether or not φ is true in A. This proves the theorem.

One can ask several questions concerning generalizations of Theorem 5. For
instance, we would like to know for what extension of the FO +∃ω-logic and for
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which classes of automatic structures the theorem can be preserved. The reader
is referred to [22] for this and related questions. We also refer the reader to [23]
for a discussion of decision problems on automatic structures.

4 Domain Dependency

Here is an observation that has interesting consequences. Consider the unary
domain 1� (all unary strings over the alphabet {1}). All linearly ordered word-
automatic sets with domain 1� are finite unions of ω (the order of natural num-
bers), Z (the order of integers), ω− (the order of negative integers), and finite
orders [27]. In particular, infinite well ordered sets with domain 1� are exactly
those that are strictly less than ω2. Now let us change the domain. Say, instead
of 1� we consider the domain 0�1�. One can prove that an infinite well-ordered
set with domain 0�1� is word-automatic if and only if it is strictly less than ω3.
Furthermore, every automatic linearly ordered set with domain 1� is isomor-
phic to an automatic linear order with domain 0�1�. This observation tells us
that various automata recognizable domains might realize different automatic
structures. The definition below takes this observation into account, refines the
definition of automaticity and places an emphasis on the underlying automata
recognisable domains of the structures.

For the definition, we fix a class of structures K, where structures are iden-
tified up to isomorphism. For instance, K can be the class of well-ordered sets,
undirected graphs of bounded degree, trees, Abelian groups and so on.

Definition 6. For a FA recognizable language X, the algebraic spectrum of X
with respect to the class K, denoted by AlgSpecK(X), is the class of all struc-
tures B ∈ K such that there exists a word-automatic structure A with domain
X isomorphic to B. If B ∈ AlgSpecK(X) then we say that the set X admits
(the isomorphism type of) the structure B. The spectrum AlgSpecK(X) for tree
automata recognisable languages X is defined similarly.

For example, no tree-automata (or finite automata) recognisable language ad-
mits a structure with undecidable first-order theory. The results in [27] show
that 0� admits a well-order α if and only if α < ω2. In [20] it is proven that if X
is regular and X admits an ordinal α then α < ωω. Generally, Khoussainov and
Minnes [15] showed that if X is FA recognizable and X admits a well-founded
partial order A then the height of A is below ωω. Another nice example is a recent
result by Tsankov [29] showing that no regular language admits the structure
(Q; +), the additive group of rational numbers. The last three examples are sim-
ply non-automaticity results (and are therefore domain independent). However,
we stress that Definition 6 calls for a refined analysis of automaticity. Proving
that a certain structure (e.g. a well order of type ωn) is not admitted by a given
regular or tree-automata recognisable language requires a deep analysis of un-
derlying automata and understanding algebraic and model-theoretic properties
of underlying structures of interest.



28 B. Khoussainov

In order to show examples of domain dependency results, in this section the
class K from Definition 6 will be the class of linearly ordered sets. Recall that
a structure A = (A,≤) is a linearly ordered set if ≤ is a partial order on A
such that for all x, y ∈ A we have either x ≤ y or y ≤ x. A linearly ordered
set A = (A,≤) is a well-order if every non-empty subset of A has a ≤-minimal
element. A linearly ordered set A = (A,≤) is called scattered if no embedding
exists from the natural order of the set of all rational numbers into A. There
is an equivalent definition of scatteredness in terms of Cantor-Bendixson ranks
that we will explain below.

Cantor-Bendixson ranks (CB-ranks for short) are ordinals assigned to linearly
ordered sets. Let L = (L;≤) be a linearly ordered set. Say that x, y ∈ L are
∼–equivalent if the interval between x and y is a finite set. The relation ∼ is
an equivalence relation. The order ≤ naturally induces a linear order on the
quotient set L/ ∼. Denote the resulting order by L′. This new linearly ordered
set L′ is called the derivative of L. We iterate this process of taking derivatives
and produce the sequence of derivatives as follows: L0 = L, L1 = L′

0, Lα+1 = Lα
′

and Lβ is the limit of all Lγ with γ < β for limit ordinals β.

Definition 7. We say that a linearly ordered set L is very discrete if there exists
an α such that Lα is a finite linearly ordered set. The least ordinal α for which Lα

is finite is called the Cantor-Bendixson rank of L. We denote it by CB-rank(L).

It is well-known that L is very discrete if and only it is scattered L [26]. Examples
of scattered linearly ordered sets are the order of integers, well-ordered sets and
their finite sums and products.

Theorem 8. If L = (L;≤) is a word-automatic linearly ordered set with at least
one infinite ∼-class then the set Σ� admits L.

Proof. Consider an infinite ∼-equivalence class [x] = {y | x ∼ y in L} that exists
by the assumption. This class [x] is a finite automata recognizable language.
This follows from the fact that the relation ∼ is definable in FO + ∃ω-logic and
Theorem 5. Consider the following regular language:

C = [x] ∪ (Σ� \ L).

The linearly ordered set ([x];≤), where ≤ is the order in L, is isomorphic to either
the positive integers or the negative integers or all integers. Assume, without loss
of generality, that ([x];≤) is isomorphic to the positive integers, that is, to the
ordinal ω. We now write Σ� as follows:

L[x] ∪ C ∪ R[x],

where L[x] = {z ∈ L | z < x and z �∈ [x]} and R[x] = {z ∈ L | z > x and z �∈ [x]}.
The languages L[x] and R[x] both are FA recognizable. Define the following linear
order ≤new. The order ≤new preserves the old order ≤ on the sets L[x] and R[x],
orders the strings in [x] ∪ (Σ� \ L) length-lexicographically, and declares all the
elements in C be greater than all elements in L[x], and all the elements in C be
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less than all elements in R[x]. The linear order ≤new is clearly finite automata
recognisable.

It is easy to see that ≤new is a linear order on Σ�. In addition, the original
word-automatic linearly ordered set L is isomorphic to (Σ�;≤new). Hence, Σ�

admits L. We have proved the theorem. 	

Since every word automatic infinite scattered linearly ordered set satisfies the
hypothesis of the theorem above, we have the following corollary. The corollary
states that the algebraic spectrum of Σ� in the class of linearly ordered sets
contains all word-automatic scattered linear orders.

Theorem 9 (Scaterdness Theorem (with Jain and Stephan)). The set
Σ� admits every word automatic infinite scattered linearly ordered set. 	


We do not know if the theorem above is true for all infinite word-automatic
linear orders.

We would now like to consider the case of tree-automatic scattered linear
orders. To contrast the situation with word-automatic case, instead of the set
of all finite strings Σ�, consider the set of all Σ-trees T (Σ). A natural ques-
tion arises if the set T (Σ) can admit a tree-automatic scattered linear order. It
turns out that the situation here differs dramatically from finite automata case.
For instance, using (1) Gurevich and Shelah’s theorem stating that no monadic
second-order definable choice function exists on the infinite binary tree T2 [13]
and (2) finite-set-interpretablity of tree-automatic structures on T2 [8], one can
show that no tree-automatic well-order exists on the set of all Σ-trees T (Σ). The
theorem below greatly extends this to scattered linearly ordered sets. The proof
of the theorem consists of a delicate analysis of tree automatic linear orders on
the set T (Σ) of all finite Σ-trees.

Theorem 10 (Non-scaterdness Theorem (with Jain and Stephan)).
The set T (Σ) does not admit a tree-automatic scattered linear order. 	


Naturally, one wonders if T (Σ) admits at least one tree-automatic linear order.
Below we prove that T (Σ) admits a tree-automatic linear order of the type of
rational numbers. We assume that Σ is not a unary alphabet, say Σ = {a, b}
with a < b.

Proposition 11 (with Sanjay and Stephan). The language T (Σ) admits a
tree-automatic linear order of the type of rational numbers.

Proof. For any given two trees p, q ∈ T (Σ) such that p �= q, consider the left-most
node x(p,q) in the convolution tree conv(p, q) for which p′(x(p,q)) �= q′(x(p,q)),
where p′ and q′ are defined in the definition of convolution operation for trees.
Here the left-most node is taken with respect to the pre-order on the nodes of
the tree conv(p, q). Now we define the relation � on T (Σ) as follows. For trees
p, q ∈ T (Σ) declare p � q if and only if either p = q or conv(p, q)(x(p,q)) ∈
{(a, b), (�, b), (a, �)}.
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We now claim that the relation � is the desired one. A tree automaton recog-
nising this relation can be described as follows. On input conv(p, q) the automa-
ton non-deterministically selects a path leading to x(p,q). At all nodes v left of
x(p,q) the automaton verifies that p(v) = q(v). Once the node x(p,q) is reached
the automaton accepts the tree. If node x(p,q) does not exist then the automaton
fails along the non-deterministically chosen path that searches for x(p,q).

It is not hard to verify that the relation � is a linear order on T (Σ). We need
to show that � is dense and has no end-points. To show that the relation has
no endpoints, let us take a tree p ∈ T (Σ). Let v be any leaf of p; thus x(p,q) is a
prefix of v . We now extend p to p1 such that p1(v0) = a and p1(v1) = b, and
we extend p to p2 such that p2(v0) = b and p2(v1) = b. In this way we have
p1 � p � p2.

Let p, q be such that p �= q and p � q. Consider x(p,q). Assume that p(x(p,q)) =
a and either q(x(p,q)) = b or q(x(p,q)) = �. Let v be a leaf of p above x(p,q). Extend
p to p2 (as above) using v. Then p � p2 � q. Assume that p(x(p,q)) = � and
q(x(p,q)) = b. Let w be a leaf of q above x(p,q). Extend q to q1 using the node w.
Then p � q1 � q. Hence the linear order � is dense.

Finally, we point out that Definition 6 implies the following partial order on
the set of all finite automata (tree automata) recognizable languages over the
alphabet Σ. For two infinite (tree automata) finite automata recognizable sets
X and Y we write

X ≤K Y if and only if AlgSpecK(X) ⊆ AlgSpecK(Y ).

There are several interesting questions about this partial order. For instance,
does it have a maximal and minimal elements? What is the height and the width
of this partial order? Is the partial order semi-lattice? Can the order of rational
numbers be embedded into this partial order? Is there an ω-chain in the partial
order? Of course, all these depend on the class K selected. These questions are of
interest since they call for the investigation of interactions between automata and
properties of abstract mathematical structures. Interesting cases for selecting the
class K are the classes of all structures, linearly ordered sets, trees, and various
algebraic structures such as Boolean algebras, groups, and lattices.

5 Automaticity in Groups

In this section we introduce automaticity in groups through their Cayley graphs.
Our definition naturally extends the known definition of automaticity given by
Thurston and his collaborators [11]. We start by considering a labeled directed
graph Γ = (V, E). The labels of the graph are taken from a finite set Σ of labels.
Let σ1, . . . , σn be all labels from Σ.

Definition 12. We view the graph Γ as the following structure:

(V, Eσ1 , . . . , Eσn ),
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where Eσ = {(x, y) | (x, y) ∈ E and the label of (x, y) is σ} for σ ∈ Σ. We
say that the graph Γ is word-automatic if the structure (V, Eσ1 , . . . , Eσn ) is
word-automatic.

Below we give two examples.

Example 1. Let T be a Turing machine. The configuration space of T is the graph
(Conf(T ), ET ), where the set Conf(T ) is the set of all configurations of T , and
the set ET of edges consists of all pairs (c1, c2) of configurations such that T has
an instruction that transforms c1 to c2. The structure (Conf(T ), ET ) is clearly
an automatic directed graph since the transitions (c1, c2) ∈ ET can be detected
by finite automata.

Example 2. Consider the n-dimensional grid Z
n as a labeled graph, where the

labels are e1, . . ., en. Identify each ei with the vector (0, . . . , 0, 1, 0, . . . , 0), whose
all components are 0 except at position i. For any two vectors v and w in Z

n,
put an edge from v to w and label it with ei if v + ei = w. We represent each
vector v ∈ Z

n as an n-tuple (x1, . . . , xn) of integers each written in a binary (or
decimal) notation. Under this coding, the edge relation

Ei = {(v, w) | v + ei = w}
is clearly finite automata recognizable. Hence, the labeled graph Z

n is word-
automatic.

Let G be a group generated by a finite set X . We always assume that X is
closed under the inversion operation, that is x−1 ∈ X for all x ∈ X . We also
assume that the group G is infinite. The group G and X determine the following
graph, called Cayley graph of G and denoted by Γ (G, X). The vertices of the
graph are the elements of the group. For each vertex g we put a directed edge
from g to gx, where x ∈ X , and label the edge by x. Thus, Γ (G, X) is a labeled
directed graph. The proof of the lemma below is standard:

Lemma 13. The Cayley graph Γ (G, X) satisfies the following properties:

1. The graph is strongly connected.
2. The out-degree and in-degree of each node is bounded by |X |.
3. The graph is transitive, that is, for any two vertices g1 and g2 of the graph

there exists an automorphism α such that α(g1) = g2.
4. The group of automorphisms of Γ (G, X) is isomorphic to G. 	


Our definition of automaticity for groups is now the following:

Definition 14. Let G be a group generated by a finite set X of generators. We
say that the group G is Cayley automatic if the graph Γ (G, X) is an automatic
graph.

We give several examples.
Example 3. Consider a finitely generated abelian group G. The group G can be
written as Z

n
⊕

A, where A is a finite abelian group and n ∈ N. The group
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G is generated by A and the vectors e1, . . ., en in Z
n. Using the fact that the

n-dimensional grid Z
n is automatic and that A is finite, it is easy to show that

the group G is Cayley automatic.

Example 4. Consider the Heisenberg group H3(Z) consisting of 3 × 3 matrices
over Z whose entries below the diagonal are all 0 and entries at the diagonal are
1. We identify these matrices with 3-tuples (a, b, c), where a, b, c are integers
written in binary. The multiplication in the group is given by the following rule:

(a, b, c) · (x, y, z) = (a + x, b + y + az, c + z).

The group has 3 generators (1, 0, 0), (0, 1, 0), and (0, 0, 1). The multiplication of
group elements (a, b, c) by each of these generators gives the following equalities:

(a, b, c) · (1, 0, 0) = (a + 1, b, c), (a, b, c) · (0, 1, 0)
= (a, b + 1, c), (a, b, c) · (0, 0, 1) = (a, b, c + 1).

Clearly, each of these operations can be performed by finite automata. Thus, the
group H3(Z) is Cayley automatic.

Example 5. The example above can clearly be generalized to Heisenberg groups
Hn(Z) consisting of all n × n matrices over Z such that they contain 1 on the
diagonal, and all other entries are 0 apart from the entries at the first row or the
last column.

Our goal is to show that Cayley automaticity is preserved under several group-
theoretic constructions. The next proposition shows that the definition of Cayley
automaticity does not depend on the generators.

Proposition 15 (with Kharlampovich and Miasnikov). If G is a Cayley
automatic group with respect to a generating set X then G is Cayley automatic
with respect to any generating set Y of G.

Proof. We start with the following easy which is readily proved through decom-
position of finite automata:

Lemma 16. Let G be Cayley automatic group over a generator set X. Then
for all x1, x2 ∈ X there exists a finite automaton Mx1x2 such that for all v, w ∈
Γ (G, X), the automaton Mx1x2 detects if v = wx1x2.

Consider now the automatic Cayley graph Γ (G, X). Each y ∈ Y can be written
as a product xk1

1 · . . . ·xkn
n of elements of X . We write this product as w(y). Since

Γ (G, X) is automatic there exists an automaton Mx, x ∈ X , such that for all
v, w ∈ Γ (G, X), the automaton Mx detects if v = w · x. By the lemma above,
we can use the automata Mx, x ∈ X , to build a finite automaton Mw(y) that
recognizes all v1, v2 ∈ Γ (G, X) such that v1 = v2y. This proves that Γ (G, Y ) is
an automatic graph.

Let G be a group and H be a normal subgroup of G. We say that G is a finite
extension of H if the quotient group G/H is finite. It turns out that finite
extensions preserve Cayley automaticity:
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Theorem 17 (with Kharlampovich and Miasnikov). Finite extensions of
Cayley automatic groups are Cayley automatic.

Proof. Let H be a Cayley automatic group. Let H � G be a normal subgroup
of a group G such that G/H is finite. Let

G/H = {Hk0, . . . , Hkr−1}
There exists a finite function g such that for all i, s ≤ r−1, we have the equality:

(�) Hki · Hks = Hkg(i,s).

Let h0, . . . , hn−1 be a finite number of generators of H that also include the
identity of the group. The equality (�) above implies that there are sequences
g1(i, s), . . ., gx(i, s) and u1(i, s), . . ., ux(i, s) of integers such that we have

kiks = h
g1(i,s)
u1(i,s), . . . h

gx(i,s)
ux(i,s)kg(i,s),

where i, s ≤ r − 1 and all u1(i, s), . . ., ux(i, s) are non-negative integers all less
than or equal to n − 1. Similarly, there are sequences f1(i, j, s), . . ., fm(i, j, s)
and v1(i, j, s),. . ., vm(i, j, s) of integers such that for all i, s ≤ r−1 and j ≤ n−1
we have the following equalities:

kihjks = h
f1(i,j,s)
v1(i,j,s) · . . . · hfm(i,j,s)

vm(i,j,s)kiks.

This implies that for all all s, i ≤ r − 1, j ≤ n − 1, and h ∈ H we have the
following equalities:

hki hjks = h h
f1(i,j,s)
v1(i,j,s)

· . . . · hfm(i,j,s)
vm(i,j,s)kiks

= h h
f1(i,j,s)
v1(i,j,s)

· . . . · hfm(i,j,s)
vm(i,j,s) h

g1(i,s)
u1(i,s)

, . . . h
gx(i,s)
ux(i,s) kg(i,s).

Let h̄ be the word representing the element h ∈ H under a Cayley automatic
presentation of H . We represent elements hk of the group G as words h̄k. Here
we need to assume that the alphabet of the presentation for H does not contain
symbols k0, . . ., kr−1. The equalities above tell us that there are finite automata
Mi,j that for every ki, hj accept all pairs of words of the form (h̄k, w) such that
the equality w = hkkihj is true in the group G. Note that to build the automata
Mi,j one needs to use (1) the original automata that represent the group H , (2)
remember the sequences g1(i, s), . . ., gx(i, s) and u1(i, s), . . ., ux(i, s), (3) the
sequences f1(i, j, s), . . ., fm(i, j, s) and v1(i, j, s), . . . , vm(i, j, s), (3) the function
g, and (4) build automata for representing the multiplication by elements h

f(i,j,s)
v

and h
g(i,j)
u in the group H . This shows that the group G is Cayley automatic.

The theorem is proved.

For the next theorem we define the restricted wreath product of two groups A
and B. Let Ab be an isomorphic copy of A for each b ∈ B. Consider the direct
sum of groups Ab denoted by K. Thus,

K =
⊕
b∈B

Ab,
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where elements of K are functions f : B → A such that f(b) = 1A for almost
all b ∈ B. We write the elements of K as (ab). Each element c ∈ B induces an
automorphism αc of K as follows:

αc(ab) = (abc).

The wreath product of A by B consists of all pairs of the form (b, k), where
b ∈ B and k ∈ K, with multiplication defined by:

(b1, k1) · (b2, k2) = (b1b2, αb2(k1)k2).

The following theorem gives examples of Cayley automatic groups.

Theorem 18 (with Nies). For every finite group G, the restricted wreath prod-
uct of G by Z is Cayley automatic.

Proof. Consider the restricted wreath product of G by Z. The elements of the
wreath product are of the form

(i, (. . . , g−n, g−n+1, . . . , g−1, g0, g1, . . . , gm−1, gm, . . .)),

where each gj ∈ G and i ∈ Z. We refer to g0 as the element of G at position 0.
Assuming that gk is the identity 1G of the group G for all k > m or k < −n,
and g−n �= 1G, gm �= 1G, we can represent the element above as the following
string

conv(i, g−n . . . g−1(g0, �)g1 . . . gm),

where i is written in binary. Recall that conv represents the convoluted string
that represents the tuple (i, g−n . . . g−1(g0, �)g1 . . . gm) (See Section 2). The al-
phabet of these strings is finite since G is a finite group. The symbol � represents
elements of G at position 0. The generators of the wreath product are elements
represented by the strings conv(0, g) and conv(1, 1G), where g ∈ G. Multiplica-
tion by these generators works as follows:

conv(i, g−n . . . g−1(g0, �)g1 . . . gm) · conv(0, g) = conv(i, gn . . . g−1(g0 · g, �)g1 . . . gm)

and

conv(i, gn . . . g−1(g0, �)g1 . . . gm) · conv(1, 1G) = conv(i + 1, g′
n+1 . . . (g′

0, �)g′
1 . . . g′

m+1),

where g′j+1 = gj for j ∈ {−n, . . . , m}. These operations can clearly be performed
by finite automata. The theorem is proved.

Next, we consider the amalgamated free product of groups. Let A and B be
Cayley automatic groups. Assume that H is a subgroup of both A and B. The
amalgamated product A �H B is a group obtained from the free product A � B
of groups A and B in which the subgroup H in A and B become identified.
It turns out that the amalgamated product is also Cayley automatic if H sat-
isfies some natural automata-theoretic condition. We say that the subgroup H
is a uniformly regular subgroup of A and B if the equivalence relations



Automatic Structures and Groups 35

∼A
H= {(x, y) | x, y ∈ A and xy−1 ∈ H} and ∼B

H= {(x, y) | x, y ∈ B and xy−1 ∈
H} are both FA recognizable.

We note that if H is a regular subgroup of a Cayley automatic group A then
the cosets Ha, where a ∈ A, are all FA recognizable. However, this does not guar-
antee that ∼A

H is regular. On the other hand, strong regularity of H guarantees
that the cosets Ha are all regular. The proof of the theorem below uses A-normal
forms that represent the group elements of the amalgamated product (see for in-
stance, [6]). The set of all A-normal forms is a FA recognizable set.

Theorem 19 (with Kharlampovich and Miasnikov). If A, B are Cayley
automatic groups and H is a uniformly regular subgroup of A and B then the
amalgamated product A�H B is Cayley automatic. In particular, the free product
of Cayley automatic groups is Cayley automatic. 	


Much more can be said about Cayley automatic groups. For instance, we would
like to know the geometry of Cayley graphs of such groups. However, we leave
this to further investigations. We note that in [25], an amalgamated products
of abelian automatic groups is studied. In the paper, automatic groups are the
groups in which the graph of the group operation is FA recognizable.

6 Thurston Automaticity vs. Cayley Automaticity

We now define Thurston automatic groups and show that the class of Thurston
automatic groups is properly contained in the class of Cayley automatic groups.
So, let G be a finitely generated group generated by a finite set X of generators.
We assume that X is closed under inverses, that is x−1 ∈ X if and only if
x ∈ X . Consider the free group F (X) generated by X . The elements of F (X)
are in their reduced form (that is, they dont contain sub-words of the form xx−1,
where x ∈ X). There exists a natural homomorphism v → v̄ that associates the
string v in the group F (X) with its value v̄ in the group G.

Below we define groups that are automatic in the sense of Thurston and
studied by many experts in group theory, geometric group theory and topology
(e.g. D. Epstein, J. W. Cannon, D. F. Holt, S. Levy, M. S. Paterson, and W.
Thurston). We refer to these groups as Thurston-automatic groups. There is a
wide variety of finitely generated groups that are Thurston automatic. These
include all virtually abelian groups, hyperbolic groups, braid groups, and fun-
damental groups of large variety of 3-manifolds.

Definition 20. The group G is Thurston-automatic if there exist a regular lan-
guage L ⊆ X� of reduced words and finite automata Mx, x ∈ X, such that the
following properties are satisfied:

1. The mapping f : L → G(X) defined as f(v) = v̄, with v ∈ L, is a bijection
from L onto G.

2. For each x ∈ X, we have L(Mx) = {(u, v) | u, v ∈ L and ūx = v̄}
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In the last two decades the study of Thurston-automatic groups has attracted
the attention of many experts in group theory. See for instance [7] [11] [12] . We
note that all Thurston-automatic groups are Cayley automatic.

Here we would like to consider nilpotent groups. For this we need to give
several definitions and notations. Let G be a group. Recall the commutator of
two elements x, y ∈ G is given by

[x, y] = x−1y−1xy.

Let H, K be subsets of the group G whose unit element is denoted by e. Define
the set [H, K] = {[h, k] | h ∈ H, k ∈ K}. If H and K are normal subgroups of G
then so is [H, K]. Now define the following two sequence:

γ0(G) = G, and γk+1(G) = [γk(G), G] fork > 0.

We say that G is nilpotent if γr(G) = {e} for some r ∈ ω. The least t such
γt(G) = {e} is called the nilpotency class of the group G. Examples of nilpotent
groups are Heisenberg groups Hn(Z) given in Examples 5, 6.

It turns out that nilpotent groups that are Thurston-automatic are virtually
abelian groups [11]; virtually abelian groups are those groups that have abelian
normal subgroups of finite index. The Heisenberg group H3(Z) in Example 5
is nilpotent and not a virtually abelian group. This group is Cayley automatic.
Hence the class of all Cayley automatic groups contains the class of Thurston-
automatic groups. In fact, the next theorem shows that Cayley automatic groups
contain a large class of nilpotent groups. The proof of the theorem uses the poly-
cyclic nature of nilpotent groups, and revisits matrix representations of nilpotent
groups over integers:

Theorem 21 (with Kharlampovich and Miasnikov). Every finitely gener-
ated group of nilpotency class at most two is Cayley automatic. 	

Thurston-automatic groups also satisfy the following nice property. They are all
finitely presented. In contrast, the class of Cayley-automatic groups contains a
large class of groups that are not finitely presented. Namely, the following is
true:

Proposition 22 (with Nies). There exist Cayley automatic but not finitely
presented groups.

Proof. The restricted wreath product of a non-trivial finite group G by Z, by
Theorem 18, is Cayley automatic. Now we use the following theorem by Baum-
slag [3]. For finitely presented groups A and B, the restricted wreath product
of A by B is finitely presented if and only if either A is trivial or B is finite.
Hence, for nontrivial finite group G, the restricted wreath product of G by Z is
not finitely presented but Cayley automatic.
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7 The Isomorphism Problem

We are often concerned with classifying structures up to isomorphism. This typi-
cally amounts to finding invariants of structures that describe their isomorphism
types. To give an algorithmic spin to the isomorphism problem one would like to
have finite descriptions of structures. For instance, automatic structures have fi-
nite descriptions, and these descriptions are automata that recognize the domain
and relations of the structures. Similarly, finitely presented groups have finite de-
scriptions given through finite set of generators X and finite set of relators R.
From an algorithmic perspective, the isomorphism problem asks if there exists
an algorithm that given finite descriptions of two structures decides whether the
structures are isomorphic. A classical example here is the isomorphism prob-
lem asked by Dehn already at the start of the twentieth century [9] [10]. Dehn
asked to design algorithms that given two finite presentations of groups estab-
lishes if the groups are isomorphic. In the context of automatic structures, the
isomorphism problem is formulated as follows.

Let K be a class of automatic structures. Design an algorithm that given
two automatic structures A and B from the class K decides if A and B are
isomorphic. The point here is that both the structures A and B are given by
automata that represent their domains and atomic relations.

It turns out that the isomorphism problem for automatic structures is unde-
cidable. This was first noted by Blumensath in [4]. The precise complexity of the
problem was studied in [15] [16] [19]. We informally explain here how hard it is
to find out if two automatic structures are isomorphic. Consider the following
set (known as the Halting set for Turing machines):

H = {M | The Turing machine M halts at some input}.
No algorithm exists that computes this set. We can now iterate this process using
ordinals as follows. Set H1 = H . For a successor ordinal α = β + 1, consider

Hα = {M | The Turing machine M , that has access to an oracle for Hβ,
halts at some input}.

No algorithm exists that computes Hα even if one allows to use an oracle that
knows the set Hβ. For α limit ordinal, we set

Hα =
⊕
β<α

Hβ,

where
⊕

represents a disjoint union. As above, no algorithm exists that com-
putes Hα even if one allows to use an oracle that knows the set Hβ for any given
β. The set Hα is called the α-jump of the halting set H . The following theorem
is implicit in [15] [16]:

Theorem 23. No algorithm exists that, given two word-automatic structures A
and B, decides if A and B are isomorphic even if the algorithm uses an oracle
for the α-jump of the halting set H, where α is any given computable ordinal. 	
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In spite the fact that the isomorphism problem for automatic structures is highly
undecidable, there are some natural classes of structures where the isomor-
phism problem can be decided. These include the classes of word-automatic
well-ordered sets and Boolean algebras.

As an example, we give here an algorithm that solves the isomorphism problem
for word-automatic ordinals. Recall that by Cantor’s normal form theorem if α
is an ordinal then it can be uniquely decomposed as n1ω

α1 + n2ω
α2 + . . . +

nkωαk , where α1, α2, . . . , αk are ordinals satisfying α1 > α2 > . . . > αk and
k, n1, n2, · · · , nk are natural numbers. Our proof of deciding the isomorphism
problem for word-automatic ordinals is based on the following two facts: (1)
An ordinal is word-automatic if and only if it is strictly less that ωω [20]; (2)
The Cantor’s normal form of a word-automatic ordinal α can be extracted from
its word-automatic presentations. The first fact is equivalent to saying that the
Cantor-Bendixson rank of α is finite. Below we provide an algorithm that given
word-automatic ordinal α computes its Cantor normal form.

Assume that we have a word-automatic presentation for an ordinal α. The
presentation is given by a regular set R ⊆ Σ∗ for some alphabet Σ and an
automaton for the ordering ≤ord on R. Recall that the ordinal α represented by
(R,≤ord) is of the form

α = nmωm + nm−1ω
m−1 + . . . + n2ω

2 + n1ω + n0

where m, nm, nm−1, . . . , n1, n0 are natural numbers. The algorithm below com-
putes compute the integers m, n0, n1, . . .:

1. Input the presentation (R,≤ord).
2. Let D = R, m = 0, nm = 0.
3. While D �= ∅ Do
4. If D has a maximum u
Then Let nm = nm + 1, let D = D − {u}.
Else Let L ⊆ D be the subset of limit ordinals in D; that is L is the set of

all x ∈ D with no predecessor in D. Replace D by L, let m = m + 1, let
nm = 0.

5. End While
6. Output the formula

nmωm + nm−1ω
m−1 + . . . + n2ω

2 + n1ω + n0

using the current values of m, n0, . . . , nm.

Each step in the algorithm is computable by Theorem 5. Removing the maxi-
mal element from D reduces the ordinal represented of D by 1 while the cor-
responding nm is increased by 1. Replacing D by the set of its limit ordinals
preserves automaticity. This can be proved from Theorem 5 using the fact that
∼-equivalence relation is FA recognizable. Thus, the algorithm computes the
coefficients n0, n1, . . . in this order. The algorithm eventually terminates since
m is bounded by the Cantor-Bendixson rank of α. The following corollary is
immediate.
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Theorem 24. [20] The isomorphism problem for automatic ordinals is decid-
able.

Proof. Given two automatic presentations A and B of ordinals α and β, we
extract the Cantor normal form for both these ordinals. Then the ordinals are
isomorphic if and only if their Cantor normal forms are identical.

We point out that given an automatic linearly ordered set, one can effectively
decide if the linear order is a well-order. Therefore, the theorem above can be
strengthen. Namely, given two automatic structures, one can effectively decide
if these two automatic structures are isomorphic ordinals [20].

It had been a long standing question if the isomorphism problem for word-
automatic linearly ordered sets is decidable. If so, this would greatly extend
the theorem above. However, Kuske, Liu and Lohrey have recently proved that
the isomorphism problem for word-automatic linear orders is undecidable [21].
There still remain many open questions on solving the isomorphism problem for
various classes of word and tree-automatic structures. For instance, these include
automatic groups.

The author would like to thank Andre Nies for proof-reading and comments
on this paper.
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Abstract. A central problem of net theory is the reachability prob-
lem for Vector Addition Systems (VASs). The general problem is known
to be decidable by algorithms exclusively based on the classical Kosaraju-
Lambert-Mayr-Sacerdote-Tenney decomposition (KLMTS decomposi-
tion). Recently from this decomposition, we deduced that a final
configuration is not reachable from an initial one if and only if there
exists a Presburger inductive invariant that contains the initial configu-
ration but not the final one. Since we can decide if a Preburger formula
denotes an inductive invariant, we deduce from this result that there exist
checkable certificates of non-reachability in the Presburger arithmetic. In
particular, there exists a simple algorithm for deciding the general VAS
reachability problem based on two semi-algorithms. A first one that tries
to prove the reachability by enumerating finite sequences of actions and
a second one that tries to prove the non-reachability by enumerating
Presburger formulas. In this paper we provide the first proof of the VAS
reachability problem that is not based on the KLMST decomposition.
The proof is based on the notion of production relations, inspired from
Hauschildt, that directly proves the existence of Presburger inductive
invariants.

1 Introduction

Vector Addition Systems (VASs) or equivalently Petri Nets are one of the most
popular formal methods for the representation and the analysis of parallel
processes [1]. Their reachability problem is central since many computational
problems (even outside the realm of parallel processes) reduce to the reachabil-
ity problem. Sacerdote and Tenney provided in [9] a partial proof of decidability
of this problem. The proof was completed in 1981 by Mayr [7] and simplified by
Kosaraju [4] from [9,7]. Ten years later [5], Lambert provided a further simplified
version based on [4]. This last proof still remains difficult and the upper-bound
complexity of the corresponding algorithm is just known to be non-primitive re-
cursive. Nowadays, the exact complexity of the reachability problem for VASs is
� This version extends the POPL’2011 paper with additional figures and examples.

Some classes of sets get more intuitive names like the polytope conic sets, the poly-
tope periodic sets, and the Petri sets that are now called the definable conic sets,
the asymptotically definable periodic sets, and the almost semilinear sets.
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still an open-problem. Even the existence of an elementary upper-bound complex-
ity is open. In fact, the known general reachability algorithms are exclusively based
on the Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition.

Recently [6] we proved thanks to the KLMST decomposition that Parikh im-
ages of languages accepted by VASs are semi-pseudo-linear, a class that extends
the Presburger sets. An application of this result was provided; we proved that
a final configuration is not reachable from an initial one if and only if there
exists a forward inductive invariant definable in the Presburger arithmetic that
contains the initial configuration but not the final one. Since we can decide if a
Presburger formula denotes a forward inductive invariant, we deduce that there
exist checkable certificates of non-reachability in the Presburger arithmetic. In
particular, there exists a simple algorithm for deciding the general VAS reacha-
bility problem based on two semi-algorithms. A first one that tries to prove the
reachability by enumerating finite sequences of actions and a second one that
tries to prove the non-reachability by enumerating Presburger formulas.

In this paper we provide a new proof of the reachability problem that is
not based on the KLMST decomposition. The proof is based on the production
relations inspired by Hauschildt [3] and it proves directly that reachability sets
are almost semilinear, a class of sets introduced in this paper that extend the
class of Presburger sets and contained in the class of semi-pseudo-linear sets. In
particular this paper provides a more precise characterization of the reachability
sets of VASs.

Outline of the paper : Section 2 provides notations and classical definitions.
Section 3 and Section 4 introduce classes of sets used in the sequel : definable
conic sets and vector spaces in the first one and asymptotically definable periodic
sets, Presburger sets, and almost semilinear sets in the second one. Section 5
and Section 6 show that is sufficient to prove that the reachability relation of a
Vector Addition system is an almost semilinear relation in order to deduce the
existence of forward inductive invariants definable in the Presburger arithmetic
proving the non-reachability. In Section 7 we introduce the class of Vector Addi-
tion Systems and the central notion of production relations. We show in the next
Section 8 that these relations are asymptotically definable periodic. In Section 9
we prove that the reachability relation of a Vector Addition System is an almost
semilinear relation. Finally in Section 10 we combine all the previous results
to deduce the decidability of the Vector Addition System reachability problem
based on Presburger inductive invariants.

2 Notations

We introduce in this section notations and classical definitions used in this paper.
We denote by N, N>0, Z, Q, Q≥0, Q>0 the set of natural numbers, positive

integers, integers, rational numbers, non negative rational numbers, and pos-
itive rational numbers. Vectors and sets of vectors are denoted in bold face.
The ith component of a vector v ∈ Q

d is denoted by v(i). We introduce
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||v||∞ = max1≤i≤d |v(i)| where |v(i)| is the absolute value of v(i). The total order
≤ over Q is extended component-wise into an order ≤ over the set of vectors Q

d.
The addition function + is also extended component-wise over Q

d. Given two
sets V1,V2 ⊆ Q

d we denote by V1 +V2 the set {v1 +v2 | (v1,v2) ∈ V1 ×V2},
and we denote by V1 −V2 the set {v1 − v2 | (v1,v2) ∈ V1 ×V2}. In the same
way given T ⊆ Q and V ⊆ Q

d we let TV = {tv | (t,v) ∈ T × V}. We also
denote by v1 + V2 and V1 + v2 the sets {v1} + V2 and V1 + {v2}, and we
denote by tV and Tv the sets {t}V and T {v}. In the sequel, an empty sum of
sets included in Q

d denotes the set reduced to the zero vector {0}.
A (binary) relation R over Q

d is a subset R ⊆ Q
d × Q

d. The composition of
two relations R and S is the relation denoted by R ◦ S and defined as usual by
the following equality:

R ◦ S =
⋃

y∈Qd

{
(x, z) ∈ Q

d × Q
d | (x,y) ∈ R ∧ (y, z) ∈ S

}

The reflexive and transitive closure of a relation R is denoted by R∗. In this
paper, notions introduced over the sets are transposed over the relations by
identifying Q

d × Q
d with Q

2d.
An order � over a set S is said to be well if for every sequence (sn)n∈N of

elements sn ∈ S we can extract a sub-sequence that is non-decreasing for �, i.e.
there exists a strictly increasing sequence (nk)k∈N of natural numbers in (N,≤)
such that (snk

)k∈N is non decreasing for �. A minimal element of an ordered
set (S,�) is an element s ∈ S such that for every t ∈ T the relation t � s
implies s = t. Given a set Y ⊆ S we denote by min�(Y ) the set of minimal
elements of the ordered set (Y,�). Let us recall that if (S,�) is well ordered
then X = min�(Y ) is finite and for every y ∈ Y there exists x ∈ X such that
x � y.

Let us consider an order � over a set S. We introduce the component-wise
extension of � over the set of vectors Sd defined by s � t if s(i) � t(i) for every
i ∈ {1, . . . , d}.
Lemma 2.1 (Dickson’s Lemma). The ordered set (Sd,�) is well for every
well ordered set (S,�).

Example 2.2. The set (N,≤) is well ordered. Hence (Nd,≤) is also well ordered.
The set (Z,≤) is not well ordered.

3 Definable Conic Sets

A conic set is a set C ⊆ Q
d such that 0 ∈ C, C + C ⊆ C and such that

Q≥0C ⊆ C. A conic set C is said to be finitely generated if there exists a finite
sequence c1, . . . , ck of vectors cj ∈ C such that C = Q≥0c1 + · · · + Q≥0ck.

Definition 3.1. We say that a conic set C is definable if it is definable in
FO (Q, +,≤, 0).
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Fig. 1. The finitely generated conic set Q≥0(1, 1) + Q≥0(1, 0) and the definable conic
set {(0, 0)} ∪ {(c1, c2) ∈ Q

2
>0 | c2 ≤ c1}

In this section definable conic sets are geometrically characterized thanks to the
vector spaces and the topological closure.

Example 3.2. Fig. 1 depicts examples of finitely generated conic sets and (non
finitely generated) definable conic sets. The conic set C = {(c1, c2) ∈ Q

2
≥0 |√

2c2 ≤ c1} is not definable.

A vector space is a set V ⊆ Q
d such that 0 ∈ V, V + V ⊆ V and such that

QV ⊆ V. Let X ⊆ Q
d. The following set is a vector space called the vector space

generated by X.

V =

⎧⎨
⎩

k∑
j=1

λjxj | k ∈ N and (λj ,xj) ∈ Q × X

⎫⎬
⎭

This vector space is the minimal for inclusion among the vector space that
contains X. Note that the vector space V generated by a conic set C satisfies
the equality V = C − C. Let us recall that every vector space V is generated
by a finite set X with at most d vectors. The rank rank(V) of a vector space
V is the minimal natural number r ∈ {0, . . . , d} such that there exists a finite
set X with r vectors that generates V. Note that rank(V) ≤ rank(W) for every
pair of vector spaces V ⊆ W. Moreover, if V is strictly included in W then
rank(V) < rank(W).

Example 3.3. Vector spaces V included in Q
2 satisfy rank(V) ∈ {0, 1, 2}. More-

over these vectors spaces can be classified as follows : rank(V) = 0 if and only if
V = {0}, rank(V) = 1 if and only if V = Qv with v ∈ Q

2\{0}, and rank(V) = 2
if and only if V = Q

2.

The (topological) closure of a set X ⊆ Q
d is the set X of vectors r ∈ Q

d such
that for every ε ∈ Q>0 there exists x ∈ X satisfying ||r − x||∞ < ε. A set X is
said to be closed if X = X. Note that X is closed and this set is the minimal
for inclusion among the closed sets that contain X. Let us recall that a vector
space V is closed and the closure of a conic set is a conic set. Since the classical
topological interior of a conic set C is empty when the vector space generated
by C is not equal to Q

d (the conic set is degenerated), we introduce the notion
of interior of C relatively to the vector space V = C − C. More precisely, a
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Fig. 2. Sets X = (1, 5) × (1, 5) and X = [1, 5] × [1, 5]

h1

h2

Fig. 3. A picture of the duality lemma 3.5

vector c ∈ C is said to be in the interior of C if there exists ε ∈ Q>0 such that
c+v ∈ C for every v ∈ C−C satisfying ||v||∞ < ε. We denote by int(C) the set
of interior vectors of C. Let us recall that int(C) is non empty for every conic
set C, and C1 = C2 if and only if int(C1) = int(C2) for every conic sets C1,C2.

Example 3.4. Let X = (1, 5) × (1, 5). Then X = [1, 5] × [1, 5] (see Fig. 2).

The following lemma characterizes the finitely generated cones.

Lemma 3.5 (Duality). Let V ⊆ Q
d be a vector space. A conic set C ⊆ V

is finitely generated if and only if there exists a sequence (hj)1≤j≤k of vectors
hj ∈ V\{0} such that:

C =
k⋂

j=1

{
v ∈ V |

d∑
i=1

hj(i)v(i) ≥ 0

}

Moreover in this case the following equality holds if and only if V is the vector
space generated by C:

int(C) =
k⋂

j=1

{
v ∈ V |

d∑
i=1

hj(i)v(i) > 0

}

Proof. This is a classical result of duality [10]. 	

Example 3.6. Let us introduce the whole vector space V = Q

2 and the finitely
generated conic set C = Q≥0(1, 1) + Q≥0(1, 0). Fig. 3 shows that C =

⋂
j∈{1,2}

{v ∈ V | ∑d
i=1 hj(i)v(i) ≥ 0} where h1 = (0, 2) and h2 = (2,−2).

Lemma 3.7. The topological closure of a set definable in FO (Q, +,≤, 0) is a
finite union of finitely generated conic sets.
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Proof. Let X ⊆ Q
d be a set definable in FO (Q, +,≤, 0). Since this logic admits

quantification elimination we deduce that there exists a quantifier free formula
in this logic that denotes X. Hence there exists a finite sequence (Aj)1≤j≤k of
finite sets Aj ⊆ Q

d × {>,≥} such that X =
⋃k

j=1 Xj where:

Xj =
⋂

(h,#)∈Aj

{
x ∈ Q

d |
d∑

i=1

h(i)x(i)#0

}

We can assume without loss of generality that Xj is non empty. Moreover if
k = 0 the proof is immediate since X = ∅. So we can assume that k ≥ 1. Let us
introduce the following set Rj :

Rj =
⋂

(h,#)∈Aj

{
x ∈ Q

d |
d∑

i=1

h(i)x(i) ≥ 0

}

Lemma 3.5 shows that Rj is finitely generated. Thanks to Lemma 3.5, we de-
duce that R =

⋃k
j=1 Rj is closed. We are going to prove that X = R. Since

Xj ⊆ Rj we get X ⊆ R. As R is closed we deduce that X ⊆ R. Let us prove
the converse inclusion. Let r ∈ R. There exists j ∈ {1, . . . , k} such that r ∈ Rj .
Since Xj is non empty, there exists xj ∈ Xj . As rj ∈ Rj and xj ∈ Xj we deduce
that rj + Q>0xj ⊆ Xj . Hence rj ∈ Xj and we have proved the other inclusion
R ⊆ X. Therefore X is a finite union of finitely generated conic sets since it is
equal to R. 	

Theorem 3.8. A conic set C ⊆ Q

d is definable if and only if the conic set
C ∩ V is finitely generated for every vector space V ⊆ Q

d.

Proof. Let us first consider a definable conic set C ⊆ Q
d, let V be a vector

space, and let us prove that X is finitely generated where X = C ∩ V. Since X
is definable in FO (Q, +,≤, 0), Lemma 3.7 shows that X =

⋃k
j=1 Cj where Cj

is a finitely generated conic sets. Moreover, as X is non empty we deduce that
k ≥ 1. As X is a conic set we deduce that

∑k
j=1 Cj ⊆ X. Moreover, as 0 ∈ Cj

for every j, we deduce that Cj ⊆ ∑k
j=1 Cj for every j. Thus X =

∑k
j=1 Cj and

we have proved that X is finitely generated.
Conversely, we prove by induction over r that the conic sets C ⊆ Q

d such
that rank(C − C) ≤ r and such that the conic set C ∩ V is finitely generated
for every vector space V ⊆ Q

d are definable. The case r = 0 is immediate since
in this case C = {0}. Let us assume the induction proved for an integer r ∈ N

and let us consider a conic set C ⊆ Q
d such that rank(C−C) ≤ r + 1 and such

that the conic set C ∩ V is finitely generated for every vector space V ⊆ Q
d.

We introduce the vector space W = C−C. Since C = C ∩ V with V = Q
d, we

deduce that C is finitely generated. Lemma 3.5 shows that there exists a finite
sequence (hj)1≤j≤k of vectors hj ∈ W\{0} such that the following equality
holds:

C =
k⋂

j=1

{
x ∈ W |

d∑
i=1

hj(i)x(i) ≥ 0

}
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Since int(C) = int(C) we get the following equality:

int(C) =
k⋂

j=1

{
x ∈ W |

d∑
i=1

hj(i)x(i) > 0

}

In particular int(C) is definable in FO (Q, +,≤, 0, 1). As int(C) ⊆ C ⊆ C
we deduce the following decomposition where Wj = {w ∈ W | ∑d

i=1 hj(i)w
(i) = 0}:

C = int(C) ∪
k⋃

j=1

(C ∩Wj)

Observe that hj ∈ W\Wj and in particular Wj is strictly included in W.
Thus rank(Wj) < rank(W) ≤ r + 1. Note that Cj = C ∩ Wj is a conic set
such that rank(Cj − Cj) ≤ rank(Wj) ≤ r and such that Cj ∩ V is a finitely
generated conic set for every vector space V. Thus by induction Cj is definable in
FO (Q, +,≤, 0, 1). We deduce that C is definable. We have proved the induction.

	

Example 3.9. Observe that the conic set C = {(c1, c2) ∈ Q

2
≥0 | √2c2 ≤ c1} is

not finitely generated. Let us consider V = Q
2 and observe that C ∩ V = C

and since C = C we deduce that C ∩ V is not finitely generated. Theorem 3.8
shows that C is not definable.

4 Presburger Sets and almost Semilinear Sets

In this section we introduce the Presburger sets and the almost semilinear sets.
A periodic set is a subset P ⊆ Z

d such that 0 ∈ P and such that P + P ⊆ P.
A periodic set P is said to be finitely generated if there exists a finite sequence
p1, . . . ,pk of vectors pj ∈ P such that P = Np1 + · · · + Npk (see Fig. 4). A
subset S ⊆ Z

d is called a Presburger set if it can be denoted by a formula in the
Presburger arithmetic FO (Z, +,≤, 0, 1). Let us recall [2] that a subset S ⊆ Z

d

is Presburger if and only if it is semilinear, i.e. a finite union of sets b+P where
b ∈ Z

d and P ⊆ Z
d is a finitely generated periodic set. The class of almost

semilinear sets is obtained by weakening the finiteness property of the periodic
sets P.

Definition 4.1. A periodic set P is said to be asymptotically definable if the
conic set Q≥0P is definable.

Remark 4.2. Every finitely generated periodic set P is asymptotically definable
since in this case Q≥0P is a finitely generated conic set and in particular a
definable conic set.

Example 4.3. The periodic set P = {(p1, p2) ∈ N
2 | √2p2 ≤ p1} is not asymp-

totically definable since Q≥0P = {(c1, c2) ∈ N
2 | √2c2 ≤ c1} is not definable

(see example 3.9).
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p(2)

p(1)

Fig. 4. The finitely generated periodic set P = N(1, 1) + N(2, 0)

p(2)

p(1)

p(1) + 1 ≤ 2p(2)

p(2) ≤ p(1)

Fig. 5. An asymptotically definable periodic set

Example 4.4. The periodic set P = {p ∈ N
2 | p(2) ≤ p(1) ≤ 2p(2) − 1} is

represented in Figure 5. Observe that Q≥0P = {0}∪ {c ∈ Q
2
>0 | p(2) ≤ p(1)} is

a definable conic set. Thus P is an asymptotically definable periodic set.

The following lemma shows that the class of asymptotically definable periodic
sets is stable by finite intersections.

Lemma 4.5. We have (Q≥0P1) ∩ (Q≥0P2) = Q≥0(P1 ∩P2) for every periodic
sets P1,P2 ⊆ Z

d.

Proof. Observe that P1 ⊆ Q≥0P1 and P2 ⊆ Q≥0P2. Hence P1 ∩P2 ⊆ C where
C = (Q≥0P1)∩(Q≥0P2). As C is a conic set we deduce that Q≥0(P1∩P2) ⊆ C.
For the converse inclusion. Let c ∈ C. Since c ∈ Q≥0P1, there exists λ1 ∈ Q≥0

such that c ∈ λ1P1. Symmetrically there exists λ2 ∈ Q≥0 such that c ∈ λ2P2.
Let n1, n2 ∈ N>0 such that n1λ1 ∈ N and n2λ2 ∈ N. Let n = n1n2 and observe
that nc ∈ n2(n1λ1)P1 ⊆ P1 since P1 is a periodic set. Symmetrically nc ∈ P2.
We have proved that nc ∈ P1 ∩ P2. Thus c ∈ Q≥0(P1 ∩ P2) and we get the
other inclusion. 	


Definition 4.6. An almost semilinear set is a subset X ⊆ Z
d such that for

every Presburger set S ⊆ Z
d the set X ∩ S is a finite union of sets b + P where

b ∈ Z
d and P ⊆ Z

d is an asymptotically definable periodic set.

Example 4.7. Let us consider the periodic set P = {(0, 0)} ∪ {(2n, 1) | n ∈
N} ∪ ((1, 2) + N

2) depicted in Fig.6. Observe that Q≥0P is the definable conic
set {(0, 0)}∪Q≥0×Q>0. Note that P is not almost semilinear since P∩(N×{1}) =
{(2n, 1) | n ∈ N} can not be decomposed as a finite union of sets b + P where
b ∈ Z

d and P ⊆ Z
d is an asymptotically definable periodic set.
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Fig. 6. An asymptotically definable periodic set that is not almost semilinear

The class of almost semilinear sets is included in the class of Presburger sets.
The strict inclusion will be proved strict as a direct consequence of a stronger
result proved in this paper. In fact the reachability relation of a Vector Addition
System is proved to be almost semilinear and we know that in general such a
relation is not Presburger.

5 Linearizations

The linearization of a periodic set P ⊆ Z
d is the periodic set lin(P) defined by

the following equality:
lin(P) = (P − P) ∩ Q≥0P

Lemma 5.1. The linearization of an asymptotically definable periodic set is
finitely generated.

Proof. Let V be the vector space generated by P and let us introduce the conic
set C = Q≥0P. Note that Q≥0P ⊆ V and since V is closed we get C ⊆ V.
As Q≥0P is a definable conic set we deduce that C is finitely generated. Hence
there exists c1, . . . , ck ∈ C such that C = Q≥0c1 + · · · + Q≥0ck. As cj ∈ C ⊆
V = Q≥0P − Q≥0P, by replacing cj by a vector in N>0cj we can assume that
cj ∈ P− P for every j ∈ {1, . . . , k}.

We introduce the following set R:

R =

⎧⎨
⎩r ∈ P − P | r =

k∑
j=1

λjcj λj ∈ Q 0 ≤ λj < 1

⎫⎬
⎭

We observe that every vector r ∈ R satisfies ||r||∞ ≤ s where s =
∑k

j=1 ||cj ||∞.
Hence R ⊆ {−s, . . . , s}d and we deduce that R is finite.

Let L be the periodic set generated by the finite set R ∪ {c1, . . . , ck}. Since
this finite set is included in lin(P) we deduce that L ⊆ lin(P). Let us prove
the converse inclusion. Let x ∈ lin(P). Since x ∈ C, there exists a sequence
(μj)1≤j≤k of rational elements μj ∈ Q≥0 such that x =

∑k
j=1 μjcj . Let us

introduce nj ∈ N such that λj = μj−nj satisfies 0 ≤ λj < 1. Let r =
∑k

j=1 λjcj .
As r = x− ∑k

j=1 njcj we get r ∈ P−P. Thus r ∈ R. From x = r +
∑k

j=1 njcj

we get x ∈ L. We have proved that lin(P) is the finitely generated periodic
set L. 	
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We observe that if the intersection (b1 +P1)∩(b2 +P2) is empty where b1,b2 ∈
Z

d and P1,P2 ⊆ Z
d are two asymptotically definable periodic sets then the

intersection (b1 +lin(P1))∩(b2 +lin(P2)) may be non empty (see Example 5.3).
In this section we show that a dimension is strictly decreasing.

Let us first introduce our definition of dimension. The dimension dim(X)
of a non-empty set X ⊆ Z

d is the minimal integer r ∈ {0, . . . , d} such that
there exists k ∈ N>0, a sequence (bj)1≤j≤k of vectors bj ∈ Z

d, and a sequence
(Vj)1≤j≤k of vector spaces Vj ⊆ Q

d such that rank(Vj) ≤ r and such that
X ⊆ ⋃k

j=1 bj + Vj . The dimension of the empty set is defined by dim(∅) = −1.
In the reminder of this section we prove the following Theorem 5.2. All the

other results or definitions introduced in this section are not used in the sequel.

Theorem 5.2. Let b1,b2 ∈ Z
d and let P1,P2 be two asymptotically definable

periodic sets such that the intersection (b1 + P1) ∩ (b2 + P2) is empty. The
intersection X = (b1 + lin(P1)) ∩ (b2 + lin(P2)) satisfies:

dim(X) < max{dim(b1 + P1), dim(b2 + P2)}

Example 5.3. Sets introduced in this example are depicted in Fig. 7. Let us
introduce the asymptotically definable periodic sets P1 = {p ∈ N

2 | p(2) ≤
p(1) ≤ 2p(2) − 1} and P2 = N(1, 0) + N(3,−1). We consider b1 = (0, 0)
and b2 = (7, 2). We observe that the intersection of b1 + P1 and b2 + P2 is
empty. Note that the intersection X of b1 + lin(P1) and b2 + lin(P2) satisfies
X = {(7, 2), (10, 1), (13, 0)}+ N(1, 0). In particular we have dim(X) = 1 whereas
dim(b1 + lin(P1)) = dim(b2 + lin(P2)) = 2.

We first characterize the dimension of a periodic set.

Lemma 5.4. Let V be the vector space generated by a periodic set P. Then
rank(V) = dim(P).

Proof. Let P be a periodic set and let us first prove by induction over k ∈ N>0

that for every sequence (Vj)1≤j≤k of vector spaces Vj ⊆ Q
d, the inclusion

P ⊆ ⋃k
j=1 Vj implies that there exists j ∈ {1, . . . , k} such that P ⊆ Vj . The

case k = 1 is immediate. Assume the property proved for an integer k ∈ N>0

Fig. 7. A figure for Theorem 5.2 and Example 5.3
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and let us assume that P ⊆ ⋃k+1
j=1 Vj . If P ⊆ Vk+1 the property is proved. So we

can assume that there exists p ∈ P\Vk+1. Let us prove that P ⊆ ⋃k
j=1 Vj . We

consider x ∈ P. Observe that if x �∈ Vk+1 then x ∈ ⋃k
j=1 Vj . So we can assume

that x ∈ Vk+1. We observe that p + nx ∈ P for every n ∈ N since the set P is
periodic. We deduce that there exists j ∈ {1, . . . , k + 1} such that p + nx ∈ Vj .
Naturally this integer j depends on n. However, since {1, . . . , k + 1} is finite
whereas N is infinite, there exists j ∈ {1, . . . , k + 1} and n < n′ in N such that
p + nx and p + n′x are both in Vj . As Vj is a vector space, we deduce that
n′(p + nx) − n(p + n′x) is in Vj . Hence p ∈ Vj . As p �∈ Vk+1 we deduce that
j �= k + 1. As Vj is a vector space we deduce that (p + n′x) − (p + nx) ∈ Vj .
Hence x ∈ Vj . We have proved that x ∈ ⋃k

j=1 Vj . Thus P ⊆ ⋃k
j=1 Vj and by

induction there exists j ∈ {1, . . . , k} such that P ⊆ Vj . We have proved the
induction.

Now, let us prove the lemma. We consider a periodic set P and we let V be
the vector space generated by this set. Since P ⊆ V we deduce that dim(P) ≤
rank(V). For the converse inclusion, since P is non empty we deduce that P ⊆⋃k

j=1 bj + Vj where k ∈ N>0, bj ∈ Z
d and Vj ⊆ Q

d is a vector space such that
rank(Vj) ≤ dim(P). Let us consider the set J = {j ∈ {1, . . . , k} | bj ∈ Vj} and
let us prove that P ⊆ ⋃

j∈J Vj . Let p ∈ P and n ∈ N. Since np ∈ P there exists
j ∈ {1, . . . , k} such that np ∈ bj + Vj . Hence there exists j ∈ {1, . . . , k} and
n < n′ in N such that np and n′p are both in bj +Vj. As Vj is a vector space we
deduce that n′p − np ∈ Vj . Thus p ∈ Vj . Moreover as bj ∈ np− Vj ⊆ Vj we
deduce that j ∈ J . We have prove the inclusion P ⊆ ⋃

j∈J Vj . From the previous
paragraph we deduce that there exists j ∈ J such that P ⊆ Vj . By minimality
of the vector space generated by P we get V ⊆ Vj . Hence rank(V) ≤ rank(Vj).
Since rank(Vj) ≤ dim(P) we have proved the inequality rank(V) ≤ dim(P). 	

Next we prove a separation property.

Lemma 5.5. Let C≤ and C≥ be two finitely generated conic sets that generates
the same vector space V and such that the vector space generated by C≤∩C≥ is
strictly included in V. Then there exists a vector h ∈ V\{0} such that for every
# ∈ {≤,≥}, we have:

C# ⊆
{

v ∈ V |
d∑

i=1

h(i)v(i)#0

}

Proof. Lemma 3.5 shows that there exists two finite sets H≤,H≥ included in
V\{0} such that:

C# =
⋂

h∈H#

{
v ∈ V |

d∑
i=1

h(i)v(i) ≥ 0

}

int(C#) =
⋂

h∈H#

{
v ∈ V |

d∑
i=1

h(i)v(i) > 0

}
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Assume by contradiction that the intersection int(C≤) ∩ int(C≥) is non empty
and let c be a vector in this set. Observe that there exists ε ∈ Q>0 such that
c + v ∈ C≤ ∩ C≥ for every v ∈ V such that ||v||∞ < ε. We deduce that the
vector space generated by C≤ ∩ C≥ contains V and we get a contradiction.

We deduce that the following intersection is empty where H = H≤ ∪H≥

⋂
h∈H

{
v ∈ V |

d∑
i=1

h(i)v(i) > 0

}

Farkas’s Lemma [10] shows that there exists a non-zero function f : H → Q≥0

such that
∑

h∈H f(h)h = 0. Let us introduce a =
∑

h∈H≥ f(h)h and b =∑
h∈H\H≥ f(h)h. Assume by contradiction that a = 0. Since a+b = 0 we deduce

that b = 0. As f is not the zero function, there exists h ∈ H such that f(h) �= 0.
Note that either h ∈ H≥ or h ∈ H\H≥. In the first case we deduce that int(C≥)
is empty and in the second case we deduce that int(C≤) is empty. Since both
cases are impossible we get a contradiction. Thus a ��= 0. For every c ∈ int(C≥)
we have

∑d
i=1 a(i)c(i) ≥ 0. Since the set {c ∈ Q

d | ∑d
i=1 a(i)c(i) ≥ 0} is closed

we deduce that for every c ∈ int(C≥) = C≥ the same inequality holds. Now let
us consider c ∈ int(C≤). In this case

∑d
i=1 b(i)c(i) ≥ 0. Since a + b = 0 we get∑d

i=1 a(i)c(i) ≤ 0. We deduce that this inequality holds for every c ∈ C≤. 	

Remark 5.6. The previous Lemma 5.5 is wrong if we remove the finitely gener-
ated condition on the conic sets C≤ and C≥. In fact let us consider the conic sets
C≤ = {x ∈ Q

2
≥0 | x(1) ≤ √

2x(2)} and C≥ = {x ∈ Q
2
≥0 | x(2) ≥ √

2x(2)}. Ob-
serve that C≤∩C≥ = {0}. Hence the vector space generated by the intersection
is strictly included in Q

2. However there does not exist a vector h ∈ Q
2\{0}

satisfying the separation property required by Lemma 5.5. This problem can
be overcome by introducing the vector spaces of R

d. We do not introduce this
extension to simplify the presentation.

We can now provide a proof for Theorem 5.2. We consider two vectors b1,b2 ∈
Z

d and two periodic sets P1,P2 ⊆ Z
d such that (b1 + P1) ∩ (b2 + P2) = ∅.

We introduce the intersection X = (b1 + lin(P1)) ∩ (b2 + lin(P2)). Observe
that if X is empty the theorem is proved. So we can assume that there exists
a vector b in this intersection. Let us denote by V1 and V2 the vector spaces
generated by P1 and P2. Lemma 5.4 shows that rank(Vj) = dim(Pj) and from
dim(bj + Pj) = dim(Pj) we deduce that dim(bj + Pj) = rank(Vj). As X is
included in b+V where V = V1∩V2, we deduce that if V is strictly included in
Vj for one j ∈ {1, 2} then dim(X) ≤ rank(V) < rank(Vj) = dim(bj + Pj) and
the theorem is proved. So we can assume that V1 = V2 = V. Let us consider the
conic sets C1 = Q≥0P1 and C2 = Q≥0P2. Since P1 and P2 are asymptotically
definable periodic sets, we deduce that C1 and C2 are finitely generated conic
sets. Note that C1,C2 ⊆ V. We introduce the intersection C = C1 ∩ C2.

Assume by contradiction that the vector space generated by C is equal to V.
Let us consider a vector c in the interior of C. The characterization given by
Lemma 3.5 shows that in this case int(C) = int(C1) ∩ int(C2). Since int(Cj) =
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int(Q≥0Pj) we deduce that c ∈ (Q≥0P1) ∩ (Q≥0P2). Lemma 4.5 shows that
c ∈ Q≥0(P1 ∩ P2). By replacing c be a vector in N>0c we can assume that
c ∈ P1 ∩ P2.

Let us prove that there exists k1 ∈ N such that b + k1c ∈ b1 + P1. From b ∈
b1 +lin(P1) we deduce that there exists p1,p′

1 ∈ P1 such that b = b1 +p1−p′
1.

Since −p′
1 is in the vector space generated by C and c is in the interior of C,

there exists n1 ∈ N large enough such that n1c+(−p′
1) ∈ C1. Hence there exists

n′
1 ∈ N>0 such that n1n

′
1c−n′

1p
′
1 ∈ P1. Thus n1n

′
1c−p′

1 ∈ (n′
1−1)p′

1+P1 ⊆ P1.
Hence b + k1c ∈ b1 + P1 with k1 = n1n

′
1.

Symmetrically we deduce that there exists k2 ∈ N such that b+k2c ∈ b2+P2.
We have proved that b + (k1 + k2)c ∈ (b1 + P1) ∩ (b2 + P2) and we get a
contradiction since this intersection is supposed to be empty.

We deduce that the vector space generated by C is strictly included in V.
Lemma 5.5 shows that there exists a vector h ∈ V\{0} such that:

C1 ⊆
{

v ∈ V |
d∑

i=1

h(i)v(i) ≥ 0

}

C2 ⊆
{

v ∈ V |
d∑

i=1

h(i)v(i) ≤ 0

}

By replacing h by a vector in N>0h we can assume that h ∈ Z
d. Now let us

consider x ∈ X. Since x − b1 ∈ C1 we deduce that
∑d

i=1 h(i)(x(i) − b1(i)) ≥ 0
and since x−b2 ∈ C2 we deduce that

∑d
i=1 h(i)(x(i)−b2(i)) ≤ 0. We introduce

the integers z1 =
∑d

i=1 h(i)b1(i) and z2 =
∑d

i=1 h(i)b2(i). We have proved that
X can be decomposed into a finite union of slices X =

⋃z2
z=z1

Xz where:

Xz =

{
x ∈ X |

d∑
i=1

h(i)x(i) = z

}

Let us prove that dim(Xz) < rank(V). If Xz is empty the relation is imme-
diate. If Xz is non empty let us consider x ∈ Xz and observe that Xz ⊆ x + W
where:

W =

{
v ∈ V |

d∑
i=1

h(i)v(i) = 0

}

Note that h ∈ V\W. We deduce that W is strictly included in V and in
particular rank(W) < rank(V). Hence dim(Xz) < rank(V).

From X =
⋃z2

z=z1
Xz and dim(Xz) < rank(V) for every z, we deduce that

dim(X) < rank(V) and the theorem is proved.

6 Presburger Invariants

Given a relation R over Z
d and two sets X,Y ⊆ Z

d we introduce the forward image
postR(X) and the backward image preR(Y) defined by the following equalities:{

postR(X) =
⋃

x∈X{y ∈ Z
d | (x,y) ∈ R}

preR(Y) =
⋃

y∈Y{x ∈ Z
d | (x,y) ∈ R}
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We say that a set X ⊆ Z
d is a forward invariant for R if postR(X) ⊆ X and

we say that a set Y ⊆ Z
d is a backward invariant for R if preR(Y) ⊆ Y. In

the reminder of this section we prove the following Theorem 6.1. All the other
results or definitions introduced in this section are not used in the sequel.

Theorem 6.1. Let R∗ be a reflexive and transitive almost semilinear relation
over Z

d and let X,Y ⊆ Z
d be two Presburger sets such that R∗ ∩ (X × Y) is

empty. There exists a partition of Z
d into a Presburger forward invariant that

contains X and a Presburger backward invariant that contains Y.

We first prove the following lemma.

Lemma 6.2. The sets postR(X) and preR(Y) are almost semilinear for every
almost semilinear relation R ⊆ Z

d×Z
d and for every Presburger sets X,Y ⊆ Z

d

Proof. Let us first prove that postR(X) is an almost semilinear set. We consider
a Presburger set S ⊆ Z

d. Observe that X × S is a Presburger relation. Since R
is an almost semilinear relation we deduce that R∩ (X×S) can be decomposed
into a finite union

⋃k
j=1(aj ,bj) + Rj with k ∈ N, (aj ,bj) ∈ Z

d × Z
d and Rj is

an asymptotically definable periodic relation. We deduce that postR(X) ∩ S =⋃k
j=1 bj + Pj where Pj = {v ∈ Z

d | ∃(u,v) ∈ Rj}. Since Rj is a periodic
relation we deduce that Pj is a periodic set. Moreover since Q≥0Rj is definable
we deduce that Cj = {v ∈ Q

d | ∃(u,v) ∈ Q≥0Rj} is definable. Let us prove
that Q≥0Pj = Cj . By construction we have Pj ⊆ Cj . Since Cj is conic we
deduce that Q≥0Pj ⊆ Cj . For the converse inclusion let v ∈ Cj . There exists
u ∈ Q

d such that (u,v) ∈ Q≥0Rj . Hence there exists λ ∈ Q≥0 such that
(u,v) ∈ λRj . Let us consider n ∈ N>0 such that nλj ∈ N and observe that
(nu, nv) ∈ (nλ)Rj ⊆ Rj since Rj is periodic. Thus nv ∈ Pj and we have proved
that v ∈ Q≥0Pj . Hence Q≥0Pj = Cj is a definable conic set and we have proved
that postR(X) is an almost semilinear set. From preR(Y) = postR−1(Y) with
R−1 = {(y,x) | (x,y) ∈ R} we deduce that preR(Y) is an almost semilinear
set. 	

Now, let us prove Theorem 6.1. We consider a reflexive and transitive almost
semilinear relation R∗. We introduce the notion of separators. A separator is a
couple (X,Y) of Presburger sets such that the intersection R∗∩(X×Y) is empty.
Since R∗ is reflexive, the intersection X ∩ Y is empty. The Presburger set D =
Z

d\(X∪Y) is called the domain of (X,Y). We observe that a separator (X,Y)
with an empty domain is a partition of Z

d such that X is a Presburger forward
invariant and Y is a Presburger backward invariant. In particular Theorem 6.1
is obtained thanks to the following Lemma 6.3 with an immediate induction.

Lemma 6.3. Let (X0,Y0) be a separator with a non-empty domain D0. There
exists a separator (X,Y) with a domain D such that X0 ⊆ X, Y0 ⊆ Y and
dim(D) < dim(D0).

Proof. We first observe that a couple (X,Y) of Presburger sets is a separator if
and only if postR∗(X) ∩ preR∗(Y) = ∅ if and only if postR∗(X) ∩ Y = ∅ if and
only if preR∗(Y) ∩ X = ∅.
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Since R∗ is an almost semilinear relation we deduce that postR∗(X0) is an
almost semilinear set. As D0 is a Presburger set, we deduce that postR∗(X0) ∩
D0 =

⋃k
j=1 bj + Pj where bj ∈ Z

d and Pj ⊆ Z
d is an asymptotically definable

periodic set. We introduce the following Presburger set:

S =
k⋃

j=1

bj + lin(Pj)

Observe that postR∗(X0) ∩ D0 ⊆ S. We deduce that the set Y = Y0 ∪ (D0\S)
is such that postR∗(X0) ∩ Y = ∅. Hence (X0,Y) is a separator.

Symmetrically, since R∗ is an almost semilinear relation we deduce that
preR∗(Y) is an almost semilinear set. As D0 is a Presburger set, we deduce that
preR∗(Y) ∩D0 =

⋃n
l=1 cl + Ql where cl ∈ Z

d and Ql ⊆ Z
d is an asymptotically

definable periodic set. We introduce the following Presburger set:

T =
n⋃

l=1

cl + lin(Ql)

Observe that preR∗(Y) ∩D0 ⊆ T. We deduce that the set X = X0 ∪ (D0\T) is
such that preR∗(Y) ∩ X = ∅. Hence (X,Y) is a separator.

Let us introduce the domain D of (X,Y). We have the following equality
where Zj,l = (bj + lin(Pj)) ∩ (cl + lin(Ql)):

D = D0 ∩ (
⋃

1≤j≤k
1≤l≤n

Zj,l)

As (X,Y) is a separator we deduce that postR∗(X) ∩ preR∗(Y) is empty. As
bj +Pj ⊆ postR∗(X0) ⊆ postR∗(X) and cl +Ql ⊆ preR∗(Y) we deduce that the
intersection (bj + Pj)∩ (cl + Ql) is empty. Theorem 5.2 shows that dim(Zj,l) <
max{dim(bj + Pj), dim(cl + Ql)}. Since bj + Pj ⊆ D0 and cl + Ql ⊆ D0 we
deduce that dim(bj + Pj) ≤ dim(D0) and dim(cl + Ql) ≤ dim(D0). We have
proved that dim(D) < dim(D0). 	


7 Vector Addition Systems

In this section we introduce the Vector Addition Systems, the production relations
and a well order over the set of runs of Vector Addition Systems.

A Vector Addition System (VAS) is a finite subset A ⊆ Z
d. A marking is

a vector m ∈ N
d. The semantics of vector addition systems is obtained by

introducing for every word w = a1 . . .ak of vectors aj ∈ A the relation w−→ over
the set of markings defined by x w−→ y if there exists a word ρ = m0 . . .mk of
markings mj ∈ N

d such that (x,y) = (m0,mk) and mj = mj−1 + aj for every
j ∈ {1, . . . , k}. The word ρ is unique and it is called the run from x to y labeled
by w. The marking x is called the source of ρ and it is denoted by src(ρ), and
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m

m + r
m + s

0

Fig. 8. The production relation of a marking m

m

m + r1 m + s1

0
m

m + r2

m + s2

0
m

m + r1 + r2

m + s1 + r2

m + s1 + s2

0

Fig. 9. Production relations are periodic

the marking y is called the target of ρ and it is denoted by tgt(ρ). The set of
runs is denoted by Ω.

The reachability relation is the relation denoted by ∗−→ over the set of markings
defined by x ∗−→ y if there exists a word w ∈ A∗ such that x w−→ y. In the sequel
we often used the fact that x w−→ y implies x + v w−→ y + v for every v ∈ N

d.
The production relation of a marking m ∈ N

d (see Fig. 8) is the relation ∗−→m

over N
d defined by r ∗−→m s if m + r ∗−→ m + s. The production relation of a run

ρ = m0 . . .mk is the relation ∗−→ρ defined by the following composition:

∗−→ρ= ∗−→m0 ◦ · · · ◦ ∗−→mk

Example 7.1. The production relation ∗−→m with m = 0 is the reachability
relation.

The following Lemma 7.2 shows that ∗−→ρ seens as a subset of Z
2d is periodic

for every run ρ as a composition of periodic relations (see Fig. 9). Note that in
Section 8 we prove that these periodic relations are asymptotically definable.

Lemma 7.2. The relation ∗−→m is periodic.

Proof. Let us assume that r1
∗−→m s1 and r2

∗−→m s2. Since r1
∗−→m s1 we deduce

that r1 + r2
∗−→m s1 + r2. Moreover, since r2

∗−→m s2 we deduce that r2 + s1
∗−→m

s2 + s1. Therefore r1 + r2
∗−→m s1 + s2. 	


We introduce a well order over the set of runs based on the following Lemma 7.3

Lemma 7.3. The following inclusion holds for every run ρ:

(src(ρ), tgt(ρ))+ ∗−→ρ ⊆ ∗−→
Proof. Assume that ρ = m0 . . .mk with mj ∈ N

d, and let (r, s) be a couple
in the production relation ∗−→ρ. Since this relation is defined as a composition,
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there exists a sequence (vj)0≤j≤k+1 of vectors vj ∈ N
d satisfying the following

relations with v0 = r and vk+1 = s:

v0
∗−→m0 v1 · · ·vk

∗−→mk
vk+1

We introduce the vector aj = mj−mj−1 for every j ∈ {1, . . . , k}. Since mj−1
aj−→

mj we deduce that mj−1 + vj
aj−→ mj + vj . Moreover, as vj

∗−→mj vj+1, there
exists a word wj ∈ A∗ such that mj + vj

wj−−→ mj + vj+1. We deduce that the
following relation holds:

m0 + v0
w0a1w1...akwk−−−−−−−−−−→ mk + vk+1

Therefore (m0,mk) + (v0,vk+1) is in the reachability relation. 	

We introduce the order � over the set of runs defined by ρ � ρ′ if the following
inclusion holds:

(src(ρ′), tgt(ρ′))+ ∗−→ρ′ ⊆ (src(ρ), tgt(ρ))+ ∗−→ρ

In the reminder of this section we prove the following theorem. All the other
results or definitions introduced in this section are not used in the sequel.

Theorem 7.4. The order � is well.

The order � is proved well thanks to the Higmann’s Lemma. We first recall this
lemma. Let us consider an order � over a set S. We introduce the order �∗ over
the set of words over S defined by u �∗ v where u = s1 . . . sk with sj ∈ S if there
exists a sequence (tj)1≤j≤k with tj ∈ S and sj � tj and a sequence (wj)0≤j≤k

of words wj ∈ S∗ such that v = w0t1w1 . . . tkwk.

Lemma 7.5 (Higmann’s Lemma). The ordered set (S∗,�∗) is well for every
well ordered set (S,�).

We associate to every run ρ = m0 . . .mk the word α(ρ) = (a1,m1) . . . (ak,mk)
where aj = mj −mj−1. Note that α(ρ) is a word over the alphabet S = A×N

d.
We introduce the order � over this alphabet by (a,m) � (a′,m′) if a = a′

and m ≤ m′. Since A is a finite set and ≤ is a well order over N
d, we deduce

that � is a well order over S. From the Higmann’s lemma, the order �∗ is well
over S∗. We introduce the well order � over the set of runs defined by ρ � ρ′

if α(ρ) �∗ α(ρ′), src(ρ) ≤ src(ρ′) and tgt(ρ) ≤ tgt(ρ′). The following lemma
provides a useful characterization of this order.

Lemma 7.6. Let ρ = m0 . . .mk be a run and let ρ′ be another run. We have
ρ � ρ′ if and only if there exists a sequence (vj)0≤j≤k+1 of vectors in N

d such
that ρ′ = ρ′0 . . . ρ′k where ρ′j is a run from mj + vj to mj + vj+1.

Proof. We introduce the sequence (aj)1≤j≤k defined by aj = mj − mj−1.

Assume first that ρ � ρ′.
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Since α(ρ) �∗ α(ρ′) we get α(ρ′) = w0(a1,m′
1)w1 . . . (ak,m′

k)wk where wj ∈
S∗ and m′

j ≥ mj. We introduce the sequence (vj)0≤j≤k+1 defined by v0 =
src(ρ′)−src(ρ), vk+1 = tgt(ρ′)−tgt(ρ) and vj = m′

j−mj for every j ∈ {1, . . . , k}.
Observe that vj ∈ N

d for every j ∈ {0, . . . , k + 1}. We deduce that ρ′ can be
decomposed into ρ′ = ρ′0 . . . ρ′k where ρ′j is the run from mj + vj to mj + vj+1

such that α(ρ′j) = wj .
Conversely let (vj)0≤j≤k+1 be a sequence of vectors in N

d such that ρ′ =
ρ′0 . . . ρ′k where ρ′j is a run from mj + vj to mj + vj+1. We deduce that we have
the following equality where m′

j = mj + vj and a′
j ∈ A:

α(ρ′) = α(ρ′0)(a′
1,m

′
1)α(ρ′1) . . . (a′

k,m′
k)α(ρ′k)

Observe that a′
j = tgt(ρ′j−1)−m′

j = (mj + vj)− (mj−1 + vj) and in particular
a′

j = aj . We deduce that α(ρ) �∗ α(ρ′). Moreover, since src(ρ) ≤ src(ρ′) and
tgt(ρ) ≤ tgt(ρ′) we deduce that ρ � ρ′. 	

Since � is a well order, the following lemma shows that � is a well order. We
have proved Theorem 7.4.

Lemma 7.7. ρ � ρ′ implies ρ � ρ′.

Proof. Assume that ρ = m0 . . .mk. Lemma 7.6 shows that there exists a se-
quence (vj)0≤j≤k+1 of vectors in N

d such that ρ′ = ρ′0 . . . ρ′k where ρ′j is a run
from mj +vj to mj +vj+1. Lemma 7.3 shows that (src(ρ′j), tgt(ρ′j))+ ∗−→ρ′

j
⊆ ∗−→.

Hence (vj ,vj+1)+ ∗−→ρ′
j
⊆ ∗−→mj . We deduce that (v0,vk+1)+ ∗−→ρ′⊆ ∗−→ρ by com-

position. Since (src(ρ′), tgt(ρ′)) = (src(ρ), tgt(ρ))+(v0,vk+1) we get ρ � ρ′ from
the previous inclusion. 	


8 Asymptotically Definable Production Relations

In this section we prove that production relations are asymptotically definable
(Theorem 8.1). All the other results or definitions introduced in the section are
not used in the sequel.

Theorem 8.1. Production relations are asymptotically definable.

The following lemma shows that asymptotically definable periodic relations are
stable by composition. In particular it is sufficient to prove that production
relations ∗−→m are asymptotically definable for every marking m ∈ N

d in order
to deduce that production relations ∗−→ρ are asymptotically definable for every
run ρ.

Lemma 8.2. We have Q≥0(R1 ◦ R2) = (Q≥0R1) ◦ (Q≥0R2) for every periodic
relations over Z

d.

Proof. We have R1 ⊆ Q≥0R1 and R2 ⊆ Q≥0R2. Thus R1 ◦ R2 ⊆ C where
C = (Q≥0R1) ◦ (Q≥0R2). As C is a conic set we get Q≥0(R1 ◦ R2) ⊆ C. For
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the converse inclusion, let us consider (x, z) ∈ C. There exists y ∈ Q
d such

that (x,y) ∈ Q≥0R1 and (y, z) ∈ Q≥0R2. There exists λ1, λ2 ∈ Q≥0 such that
(x,y) ∈ λ1R1 and (y, z) ∈ λ2R2. We introduce n1, n2 ∈ N>0 such that n1λ1 ∈ N

and n2λ2 ∈ N and we deduce that n(x,y) ∈ R1 and n(y, z) ∈ R2 with n = n1n2.
Hence n(x, z) ∈ R1 ◦ R2. We deduce that (x, z) ∈ Q≥0(R1 ◦ R2). 	

Theorem 3.8 shows that the conic set Q≥0

∗−→m is definable if and only if the
following conic set is finitely generated for every vector space V ⊆ Q

d × Q
d:

(Q≥0
∗−→m) ∩ V

We introduce the periodic relation ∗−→m,V defined as the intersection ∗−→m ∩V .
Let us observe that (Q≥0

∗−→m) ∩ V is equal to Q≥0
∗−→m,V . So, we just have to

prove that the conic set Q≥0
∗−→m,V is finitely generated for every m ∈ N

d and
for every vector space V ⊆ Q

d × Q
d.

We introduce the set Ωm,V of runs ρ such that (src(ρ), tgt(ρ)) − (m,m) is in
(Nd ×N

d)∩V . Note that a couple (r, s) ∈ N
d ×N

d satisfies r ∗−→m,V s if and only
if there exists a run ρ ∈ Ωm,V such that src(ρ) = m + r and tgt(ρ) = m + s. We
introduce the set Qm,V of markings q that occurs in at least one run ρ ∈ Ωm,V .
In general the set Qm,V is infinite. We consider the set Im,V of i ∈ {1, . . . , d}
such that {q(i) | q ∈ Qm,V } is infinite. We observe that if i ∈ Im,V there
exists a sequence of markings in Qm,V such that the ith component is strictly
increasing. We are going to prove that there exists a sequence of markings in
Qm,V such that every component in Im,V is strictly increasing. This property is
proved by introducing the intraproductions. An intraproduction for (m, V ) is a
triple (r,x, s) such that x ∈ N

d, (r, s) ∈ (Nd × N
d) ∩ V and such that:

r ∗−→m x ∗−→m s

Since ∗−→m is a periodic relation we deduce that the set of intraproductions is
stable by addition. In particular m + nx occurs in at least one run of Ωm,V

for every intraproduction (r,x, s) and for every n ∈ N. Hence, if x(i) > 0 then
i ∈ Im,V . An intraproduction for (m, V ) is said to be total if x(i) > 0 for every
i ∈ Im,V .
Lemma 8.3. There exists a total intraproduction for (m, V ).

Proof. Since finite sums of intraproductions are intraproductions, it is sufficient
to prove that for every i ∈ Im,V there exists an intraproduction (r,x, s) for
(m, V ) such that x(i) > 0. We fix i ∈ I.

Let us first prove that there exists q ≤ q′ in Qm,V such that q(i) < q′(i).
Since i ∈ I there exists a sequence (qn)n∈N of markings qn ∈ Qm,V such that
(qn(i))n∈N is strictly increasing. Since (Nd,≤) is well ordered, we can extract for
this sequence a subsequence that is non decreasing for ≤. We have proved that
there exists q ≤ q′ in Qm,V such that q(i) < q′(i).

As q ∈ Qm,V then q occurs in a run in Ωm,V . Hence there exists (r, s) ∈
(Nd × N

d) ∩ V such that:

m + r ∗−→ q ∗−→ m + s
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Symmetrically, as q′ ∈ Qm,V there exists (r′, s′) ∈ (Nd × N
d) ∩ V such that:

m + r′ ∗−→ q′ ∗−→ m + s′

Let us introduce v = q′ − q. We deduce:

– (m + r′) + r ∗−→ q′ + r from m + r′ ∗−→ q′.
– q + (v + r) ∗−→ (m + s) + (v + r) from q ∗−→ m + s.
– (m + r) + (v + s) ∗−→ q + (v + s) from m + r ∗−→ q.
– q′ + s ∗−→ (m + s′) + s from q′ ∗−→ m + s′.

Since q′ + r = q + v + r and q + v + s = q′ + s, we have proved the following
relations where x = s + v + r:

r + r′ ∗−→m x ∗−→m s + s′

As (r + r′, s + s′) ∈ (Nd × N
d) ∩ V we deduce that (r + r′,x, s + s′) is an

intraproduction for (m, V ). Since x(i) > 0 we are done. 	

Let us introduce an additional element ∞ �∈ N and let N∞ = N∪ {∞}. A vector
in N

d
∞ is called an extended marking and the set I = {i ∈ {1, . . . , d} | m(i) = ∞}

is called the set of relaxed components of an extended marking m. Given a finite
set I ⊆ {1, . . . , d} and a marking m ∈ N

d, we denote by mI the extended
marking defined by mI(i) = ∞ if i ∈ I and mI(i) = m(i) if i �∈ I. Given a
word w = a1 . . .ak of vectors aj ∈ A, we extend the relation w−→ over the set
of extended markings relaxed over a set I by x w−→ y if there exists a word ρ =
m0 . . .mk of extended markings relaxed over I such that (x,y) = (m0,mk) and
mj(i) = mj−1(i) + aj(i) for every j ∈ {1, . . . , k} and for every i ∈ {1, . . . , d}\I.
The word ρ is unique and it is called the run from x to y labeled by w.

We introduce the finite graph Gm,V = (Q,A, E) where Q = {qIm,V | q ∈
Qm,V } and where E = {(pIm,V , a,qIm,V ) | p,q ∈ Qm,V ∧ q = p + a}. We
introduce the periodic relation Rm,V of couples (r, s) ∈ (Nd ×N

d)∩V such that
r(i) = s(i) = 0 for every i ∈ {1, . . . , d}\Im,V and such that there exists a cycle
in Gm,V on the state mIm,V labeled by a word a1 . . .ak where aj ∈ A such that
r +

∑k
j=1 aj = s.

Lemma 8.4. The periodic relation Rm,V is Presburger.

Proof. This is a classical result based on the fact that the Parikh image of a
regular language is Presburger. 	

Lemma 8.5. The following equality holds:

Q≥0Rm,V = Q≥0
∗−→m,V

Proof. Let us first prove the inclusion ⊇. Let (r, s) such that r ∗−→m,V s. In this
case there exists a word w ∈ A∗ such that m+r w−→ m+ s. Observe that m+nr
and m + ns are in Qm,V for every n ∈ N. Hence r(i) > 0 or s(i) > 0 implies
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i ∈ Im,V and we deduce that mIm,V
w−→ mIm,V . Therefore w is the label of cycle

in Gm,V on mIm,V . We have proved that (r, s) ∈ Rm,V .
Now let us prove the inclusion ⊆. We consider (r, s) ∈ Rm,V . In this case

(r, s) ∈ (Nd×N
d)∩V satisfies r(i) = s(i) = 0 for every i �∈ Im,V and there exists

a word w = a1 . . .ak of vectors aj ∈ A that labels a cycle in Gm,V on mIm,V

and such that m+ r+
∑k

j=1 aj = m+ s. Let us consider a total intraproduction
(r′,x, s′) for (m, V ). Given p ∈ N and j ∈ {0, . . . , k} we introduce the following
vector mp,j :

mp,j = m + r + px + a1 + · · · + aj

Let us first prove that there exists p ∈ N such that mp,j(i) ∈ N for every
i ∈ Im,V and j ∈ {0, . . . , k}. Let i ∈ Im,V and j ∈ {0, . . . , k}, since x(i) > 0,
there exists pi,j ∈ N such that mp,j(i) ∈ N for every p ≥ pi,j . We deduce that
there exists p ∈ N such that mp,j(i) ∈ N for every i ∈ Im,V and j ∈ {0, . . . , k}.

Now we prove that mp,j(i) ∈ N for every i ∈ {1, . . . , d}\Im,V and j ∈
{0, . . . , k}. Let j ∈ {0, . . . , k}. Since w is the label of a cycle on mIm,V , there
exists an extended marking qj relaxed over Im,V such that the following relation
holds:

mIm,V
a1...aj−−−−→ qj

We deduce that for every i ∈ {1, . . . , d}\Im,V we have m(i)+a1(i)+ · · ·+aj(i) =
qj(i). Since r(i) = 0 and x(i) = 0 we get mp,j(i) ∈ N.

We have proved that mp,j ∈ N
d for every j ∈ {0, . . . , k}. Since mp,j−mp,j−1 =

aj we deduce that ρp = mp,0 . . .mp,k is a run. Note that mp,0 = m+px+ r and
mp,k = m + px + r +

∑k
j=1 aj = m + px + s. We have proved that the following

relation holds:
m + px + r w−→ m + px + s

In particular (r, s) is in the production relation ∗−→m′ where m′ = m + px. Since
a production relation is periodic we get m′ + nr ∗−→ m′ + ns for every n ∈ N. As
(pr′, px, ps′) is an intraproduction for (m, V ) we get m + pr′ ∗−→ m′ ∗−→ m + ps′.
We deduce the relation (m + pr′) + nr ∗−→ m′ + nr from (m + pr′) ∗−→ m′, and
the relation m′ + ns ∗−→ (m + ps′) + ns from m′ ∗−→ (m + ps′). We deduce that
the following relation holds for every n ∈ N:

m + pr′ + nr ∗−→ m + ps′ + ns

Hence p(r′, s′) + N(r, s) ⊆ ∗−→m,V . Thus (r, s) ∈ Q≥0
∗−→m,V . From the inclusion

Rm,V ⊆ Q≥0
∗−→m,V we get the inclusion Q≥0Rm,V ⊆ Q≥0

∗−→m,V . 	

Lemma 8.6. The conic set Q≥0P is finitely generated for every Presburger
periodic set P.

Proof. Let us consider a Presburger periodic set P. Since P is Presburger then
P =

⋃k
j=1 bj + Pj where bj ∈ Z

d and Pj ⊆ Z
d is a finitely generated periodic

set. We introduce the finitely generated conic set C =
∑k

j=1(Q≥0bj +Cj) where
Cj is the finitely generated conic set Cj = Q≥0Pj . Since P ⊆ C and C is a conic
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set we deduce the inclusion Q≥0P ⊆ C. As C is finitely generated we deduce
that C is closed. Hence Q≥0P ⊆ C. For the other inclusion let p ∈ Pj . For
every n ∈ N we have bj + np ∈ P. Hence 1

nbj + p ∈ Q≥0P for every n ∈ N>0.
We deduce that p ∈ Q≥0P. Therefore Pj ⊆ Q≥0P. We get Cj ⊆ Q≥0P. As
Q≥0bj ⊆ Q≥0P ⊆ Q≥0P we have proved the inclusion C ⊆ Q≥0P. Hence the
previous inclusion is in fact an equality. 	


Now, we can prove Theorem 8.1. Lemma 8.4 shows that Rm,V is a Pres-
burger periodic relation. Lemma 8.6 proves that the conic set Q≥0Rm,V is

finitely generated. Lemma 8.5 shows that Q≥0
∗−→m,V is finitely generated.

Hence (Q≥0
∗−→m) ∩ V is a finitely generated conic set for every vector space

V ⊆ Q
d × Q

d. Theorem 3.8 shows that the conic relation Q≥0
∗−→m is definable.

Hence ∗−→m is an asymptotically definable periodic relation.

9 Almost Semilinear Reachability Relations

In this section we prove the following Theorem 9.1. All the other results or
definitions introduced in this section are not used in the sequel.

Theorem 9.1. The reachability relation of a Vector Addition System is an
almost semilinear relation.

We are interested in proving that ∗−→ is an almost semilinear relation. We first
inspect the intersection ∗−→ ∩((m,n) + P ) where (m,n) ∈ N

d × N
d and P ⊆

N
d × N

d is a finitely generated periodic relation. We introduce the order ≤P

over P defined by p ≤P p′ if p′ ∈ p + P . Since P is finitely generated we
deduce that ≤P is a well order over P (Dickson’s Lemma). We introduce the set
Ωm,P,n of runs ρ such that (src(ρ), tgt(ρ)) ∈ (m,n) + P . This set is well ordered
by the relation �P defined by ρ �P ρ′ if ρ � ρ′, (src(ρ), tgt(ρ)) − (m,n) ≤P

(src(ρ′), tgt(ρ′)) − (m,n). We deduce that min
P (Ωm,P,n) is finite.

Lemma 9.2. The following equality holds:

∗−→ ∩((m,n) + P ) =
⋃

ρ∈min�P
(Ωm,P,n)

(src(ρ), tgt(ρ)) + ( ∗−→ρ ∩P )

Proof. Let us first prove ⊇. Let ρ ∈ Ωm,P,n. Lemma 7.3 shows that the inclusion
(src(ρ), tgt(ρ))+ ∗−→ρ⊆ ∗−→ holds. Since (src(ρ), tgt(ρ)) ∈ (m,n) + P and P is
periodic we deduce the inclusion ⊇.

Let us prove ⊆. Let (x′,y′) in the intersection ∗−→ ∩((m,n)+P ). There exists a
run ρ′ ∈ Ωm,P,n such that x′ = src(ρ′) and y′ = tgt(ρ′). Since �P is a well order,
there exists ρ ∈ min
P (Ωm,P,n) such that ρ �P ρ′. We deduce that (x′,y′) is in
(src(ρ), tgt(ρ))+ ∗−→ρ. We get (x′,y′) ∈ (src(ρ), tgt(ρ)) + ( ∗−→ρ ∩P ) and we have
proved the inclusion ⊆. 	
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Theorem 8.1 shows ∗−→ρ is an asymptotically definable periodic relation. Since
P is a finitely generated periodic relation we deduce that P is asymptotically
definable. Lemma 4.5 shows that the class of asymptotically definable periodic
relations is stable by finite intersections. We deduce that ∗−→ρ ∩P is asymptoti-
cally definable. Thanks to the previous lemma we have proved that ∗−→ is almost
semilinear and Theorem 9.1 is proved.

10 Conclusion

The reachability problem for Vector Additions Systems consists to decide for a
triple (m,A,n) where m,n are two markings of a Vector Addition System A if
there exists a word w ∈ A∗ such that m w−→ n. The following algorithm decides
this problem.

1 Reachability ( m , A , n )
2 k ← 0
3 repeat forever
4 for each word w ∈ A∗ of length k

5 if m w−→ n
6 return ‘‘reachable ’’
7 for each Presburger formula ψ of length k
8 if ψ(m) and ¬ψ(n) are true and
9 x ≥ 0 ∧ y ≥ 0 ∧ ψ(x) ∧ y ∈ x + A ∧ ¬ψ(y) unsat

10 return ‘‘unreachable’’
11 k ← k + 1

The correctness is immediate since when the algorithm returns “reachable” we
deduce that there exists a word w ∈ A∗ such that m w−→ n and when it returns
“unreachable” we deduce a Presburger formula ψ that denotes a set I satisfying
m ∈ I (since ψ(m) is true), n �∈ I (since ¬ψ(n) is true), and such that I is a
forward invariant (since x ≥ 0∧y ≥ 0∧ψ(x)∧y ∈ x+A∧¬ψ(y) is unsatisfiable).
The termination is guaranteed by the following Theorem 10.1.

Theorem 10.1. For every pair of markings (m,n) in the complement of the
reachability relation of a Vector Addition System, there exists a partition of the
set of markings into a Presburger forward invariant that contains m and a Pres-
burger backward invariant that contains n.

Proof. Let us consider X = {m} and Y = {n} and let R∗ be the reachabil-
ity relation of the Vector addition system. Theorem 9.1 shows that R∗ is an
almost semilinear relation. Since R∗ is reflexive and transitive and such that
(X × Y) ∩ R∗ = ∅, Theorem 6.1 shows that there exists a partition of the set
of markings into a Presburger forward invariant set that contains X and a Pres-
burger backward invariant set that contains Y. 	

This algorithm does not require the classical KLMST decomposition. Note how-
ever that the complexity of this algorithm is still open. In fact, the complexity
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depends on the minimal size of a word w ∈ A∗ such that m w−→ n if m ∗−→ n,
and the minimal size of a Presburger formula ψ(x) denoting a forward invariant
I such that m ∈ I and n �∈ I otherwise. We left as an open question the prob-
lem of computing lower and upper bounds for these sizes. Note that the VAS
exhibiting a large (Ackermann size) but finite reachability set given in [8] does
not directly provide an Ackermann lower-bound for these sizes since Presburger
forward invariants can over-approximate reachability sets.

As future work we are interested in providing complexity bounds on formulas
in FO (Q, +,≤, 0, 1) denoting the definable conic sets Q≥0

∗−→m.
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Abstract. We survey various results concerning abstract numeration
systems. We begin with the classical case of the integer base numeration
systems, then examine the more general case of linear numeration sys-
tems. Finally we discuss abstract numeration systems, which generalize
even further the two previous classes of numeration systems.

1 Introduction

The most general definition of a numeration system is simply a rule for repre-
senting numbers as words. We are most familiar with the classical integer base
numeration systems, notably the decimal, or base-10 system, and, for computer
scientists, the binary, or base-2 system. In many cases, the choice of base is
somewhat arbitrary and there are many properties of numbers that are inde-
pendent of their representations as words. However, there are also examples of
rather non-trivial properties of the integers that can be characterized in terms of
their representations in a certain base. For example, Gauss (see Nathanson [29])
proved that a number n is the sum of three squares if and only if n is not of the
form 4a(8m + 7). This condition can be verified rather easily, given the binary
represention of n. Hence the non-trivial property of a number being a sum of
three squares depends very much on the form of its representation in base 2.

If X is a set of integers, the set of representations of the elements of X
in our chosen numeration system forms a language L. Our general object of
study is those sets X for which L can be recognized by the simplest possible
computing device: a finite automaton. Of course, the notion of recognizability
depends on our choice of numeration system. We will consider different classes
of numeration systems in increasing order of generality. We begin with the integer
base numeration systems, proceed to the more general class of linear numeration
systems, and conclude by examining the class of abstract numeration systems,
which contains the other two classes as special cases.

2 Integer Bases

2.1 Basic Definitions and Results

We begin by examining the familiar integer base numeration systems—the sys-
tems wherein we represent integers as sums of powers of a fixed base k. Let k ≥ 2

A.-H. Dediu, S. Inenaga, and C. Martín-Vide (Eds.): LATA 2011, LNCS 6638, pp. 65–79, 2011.
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be an integer. For any non-negative integer n, we denote the base-k representa-
tion of n by [n]k. Similarly, for any word w over the alphabet {0, 1, . . . , k−1}, we
denote the value of w, interpreted as an integer written in base k, by 〈w〉k. A set
X ⊆ N is k-recognizable (or k-automatic) if the language [X ]k consisting of the
base-k representations of the elements of X is accepted by a finite automaton.

Example 1. The set N is k-recognizable for all k, since [N]k is the regular lan-
guage

{0, 1, . . . , k − 1}∗ \ (0{0, 1, . . . , k − 1}∗)
consisting of all words over {0, 1, . . . , k − 1} that do not begin with a 0.

Example 2. The prototypical example of a 2-recognizable set is the Thue–Morse
set

{n ∈ N : [n]2 contains an odd number of 1’s}.
This is clearly 2-recognizable as one can easily define a finite automaton that
accepts those inputs over {0, 1} that contain an odd number of 1’s.

It is clear from the definition of k-recognizable, and from well-known closure
properties of regular languages, that the class of k-recognizable sets is closed
under the Boolean operations of union, intersection, and complement.

The following result gives certain properties of the growth of a k-recognizable
set. Charlier and Rampersad [10] have recently given a more precise description
of the growth of k-recognizable sets.

Theorem 1 (Eilenberg [15]). Let k ≥ 2 be an integer. A k-recognizable set
X = (xn)n≥0 of non-negative integers satisfies either

lim sup
n→∞

(xn+1 − xn) <∞
or

lim sup
n→∞

xn + 1
xn

> 1.

This theorem can be used to show that certain sets are not k-recognizable for
any k.

Example 3. The set {n2 : n ∈ N} of squares is not k-recognizable for any k, since
clearly

lim sup
n→∞

((n + 1)2 − n2) =∞
and

lim sup
n→∞

(n + 1)2

n2
= 1.

Example 4. The set of prime numbers is not k-recognizable for any k. It is well-
known that there can be arbitrarily large gaps between sucessive prime numbers.
Moreover, if pn is the n-th prime, the Prime Number Theorem implies that

pn+1/pn → 1,

so neither condition of Theorem 1 is satisfied.
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2.2 Cobham’s Theorem and Periodicity

It is natural to wonder to what extent the recognizability of a set X depends
on the choice of base k. Can one pass from one base to another without losing
recognizability? A celebrated result of Cobham [13] answers this question. Cob-
ham’s Theorem characterizes the sets that are recognizable in all integer bases
k ≥ 2.

We first need the following definitions. Two numbers k and � are multiplica-
tively independent if km = �n implies m = n = 0. A subset of the integers is
ultimately periodic if it is a finite union of arithmetic progressions.

Theorem 2 (Cobham’s Theorem [13]). Let k, � ≥ 2 be two multiplicatively
independent integers and let X ⊆ N. The set X is both k-recognizable and �-
recognizable if and only if it is ultimately periodic.

Example 5. The set P2 = {2n : n ≥ 0} of powers of 2 is clearly 2-recognizable,
since [P2]2 = 10∗ is a regular language. Clearly P2 is not an ultimately periodic
set. Cobham’s Theorem therefore implies that P2 is not 3-recognizable.

Cobham’s Theorem shows that ultimately periodic sets are of particular interest
among the k-recognizable sets. This leads to the following decidability question,
known as the periodicity problem: Given an automaton accepting the base-k
representations of some set X , determine if X is ultimately periodic.

Theorem 3 (Honkala [21]). The periodicity problem is decidable for k-
recognizable sets.

This decidability result was subsequently reproved several times by various au-
thors, such as Muchnik [28], Fagnot [17], and Allouche et al. [2]. Leroux [26] gave
a polynomial time algorithm.

2.3 Alternative Characterizations

Next we present an alternative characterization of k-recognizable sets. We first
need the following definitions. A map h : Σ∗ → Δ∗ is called a morphism if h
satisfies h(xy) = h(x)h(y) for all x, y ∈ Σ∗. A morphism may be specified by
providing the values h(a) for all a ∈ Σ. This definition is easily extended to
(one-sided) infinite words.

A morphism h : Σ∗ → Σ∗ such that h(a) = ax for some a ∈ Σ and x ∈ Σ∗

is said to be prolongable on a; we may then repeatedly iterate h to obtain the
fixed point

hω(a) = axh(x)h2(x)h3(x) · · · .
A morphism is k-uniform if h(a) has length k for all a ∈ Σ; it is uniform if it is
k-uniform for some k. A morphism is a coding if it is 1-uniform.

Example 6. The Thue–Morse morphism is the 2-uniform morphism μ : {0, 1}∗ →
{0, 1}∗ defined by

0 	→ 01
1 	→ 10.
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The fixed point
t = μω(0) = 0110100110010110 · · ·

is known as the Thue–Morse word. Observe that this is precisely the character-
istic sequence of the Thue–Morse set defined in Example 2.

We have the following alternative characterization of k-recognizable sets.

Theorem 4 (Cobham [14]). Let k ≥ 2. A set X ⊆ N is k-recognizable if and
only if its characteristic sequence is of the form g(hω(a)), where g is a coding
and h is a k-uniform morphism prolongable on the letter a.

Example 7. In Example 5 we observed that the set of powers of 2 is a 2-recognizable
set. Its characteristic sequence can be generated using the 2-uniform
morphism

h : a 	→ ab, b 	→ bc, c 	→ cc

iterated on a and a coding g : a, c 	→ 0, b 	→ 1. We have

hω(a) = abbcbcccbcccccccbcccccccccccccccbcc · · ·

and
g(hω(a)) = 01101000100000001000000000000000100 · · · .

It is also possible to give a logical characterization of k-recognizable sets.
The k-recognizable sets are precisely the sets definable in the first order theory
〈N, +, Vk〉, where Vk(n) is the largest power of k that divides n. For more infor-
mation on this logical characterization of k-recognizable sets, see the survey by
Bruyère et al. [9].

2.4 k-Recognizable Sets and Number Theory

We end this discussion of k-recognizable sets by giving some number-theoretic
applications. In what follows, the notation Fp denotes the finite field of order
p; Fp[T ] denotes the polynomial ring over Fp; and Fp(T ) denotes its field of
fractions. The following result shows that p-recognizable sets occur naturally
when studying algebraicity over fields of positive characteristic.

Theorem 5 (Christol [12]). Let X be a set of non-negative integers and let p
be a prime. Then X is p-recognizable if and only if the formal power series∑

n∈X

T n

is algebraic over Fp(T ).

Example 8. Let X be the Thue–Morse set and let t = t0t1 · · · be its characteris-
tic sequence. We have observed in Example 2 that X is 2-recognizable. Observe
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also that t satisfies the identities t2n = tn and t2n+1 = tn + 1 if we perform the
arithmetic over F2. Consider the formal power series

F (T ) =
∑
n∈X

T n

over F2[T ]. We have

F (T ) =
∑
n≥0

tnT n

=
∑
n≥0

t2nT 2n +
∑
n≥0

t2n+1T
2n+1

=
∑
n≥0

tnT 2n + T
∑
n≥0

(tn + 1)T 2n

= F (T 2) + TF (T 2) +
T

1− T 2
.

Since we are working over F2, we have F (T 2) = F 2(T ), whence we obtain

(1 + T )3F 2(T ) + (1 + T )2F (T ) + T = 0,

so that F is algebraic over F2(T ).

Another remarkable occurrence of p-recognizable sets arises in the theory of
linear recurrence sequences over fields of positive characteristic. Let R be a ring
and let U = (Un)n≥0 be a sequence over R. The sequence U is a linear recurrence
sequence if there exist k ≥ 1 and a0, . . . , ak−1 ∈ R such that for all n ≥ 0

Un+k = ak−1Un+k−1 + · · ·+ a0Un.

Given a linear recurrence sequence U , its zero set is the set Z(U) consisting of
all indices n such that Un = 0.

Theorem 6 (Skolem–Mahler–Lech). Let K be a field of characteristic 0 and
let U be a linear recurrence sequence over K. Then Z(U) is a finite union of
arithmetic progressions.

Example 9. Let A = (An)n≥0 be defined by

An = An−4 + An−2; A0 = A1 = A2 = 0, A3 = 1.

Then Z(A) = {0, 1, 3, 5, 7, . . .}.
This behaviour fails to hold for linear recurrence sequences over fields of pos-

itive characteristic.

Example 10 (Lech). Consider the sequence B = (Bn)n≥0 over Fp(T ) defined by

Bn = (T + 1)n − T n − 1.
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Then B satisfies the linear recurrence

Bn − (2 + 2T )Bn−1 + (1 + 3T + 3T 2)Bn−2 − (T + T 2)Bn−3 = 0

over Fp(T ) for n > 3. However,

Bpj = (T + 1)pj − T pj − 1 = 0.

Since Bn 
= 0 when n is not a power of p, we have

Z(B) = {1, p, p2, p3, . . .},
which is clearly not an ultimately periodic set.

Remarkably, it is possible to describe the zero set of a linear recurrence over a
field of characteristic p in terms of p-recognizable sets.

Theorem 7 (Derksen). Let K be a field of characteristic p > 0 and let U be
a linear recurrence sequence over K. Then Z(U) is a p-recognizable set.

Adamczewski and Bell [1] have recently given a generalization of this result.

3 Linear Numeration Systems

3.1 Basic Definitions and Results

In the classical integer base numeration systems, we represent the integers as a
sum of elements of the sequence (kn)n≥0 of powers of a fixed base k. We now
generalize this idea by considering an arbitrary increasing sequence of integers
U = (Un)n≥0 as a basis for representing the integers. As we shall see, the only
sequences U of interest to us are those defined by a linear recurrence relation.

Let U = (Un)n≥0 be an increasing sequence of integers with U0 = 1 and

CU := sup
n≥0

⌈
Un+1

Un

⌉
<∞.

A greedy representation of a non-negative integer n is a word w = w�−1 · · ·w0

over {0, 1, . . . , CU − 1} such that

�−1∑
i=0

wiUi = n,

and for all j
j−1∑
i=0

wiUi < Uj .

The greedy representation of n with w�−1 
= 0 is denoted by [n]U . A set X of
non-negative integers is U -recognizable if [X ]U := {[x]U : x ∈ X} is accepted by
a finite automaton.
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0

1

0

Fig. 1. The automaton for the Fibonacci numeration system

Example 11 (Fibonacci numeration system). Let U = (Un)n≥0 be the sequence
of Fibonacci numbers defined by Un+2 = Un+1 + Un and U0 = 1, U1 = 2. Then

13 = 1 · 13 + 0 · 8 + 0 · 5 + 0 · 3 + 0 · 2 + 0 · 1,

so the representation of 13 in the Fibonacci system is [13]U = 100000. Note how-
ever that 13 also has the non-greedy representation 11000. Indeed the language
0∗[N]U is the language of all words over {0, 1} that do not contain the factor 11.
The automaton accepting this language is given in Figure 1.

A numeration system U = (Un)n≥0 is said to be linear if it satisfies a linear
recurrence over Z. The importance of linear numeration systems is shown by the
following result.

Theorem 8 (Shallit [37]). If N is U -recognizable, then U is linear.

Proof (Loraud [27]). Suppose that [N]U is a regular language. Then 0∗[N]U is
also a regular language. Let rn be the number of words of length n in [N]U and
let sn be the number of words of length n in 0∗[N]U . Then (sn)n≥0 is a linear
recurrence sequence (this is a well-known result for regular languages). However,
we have

sn =
n∑

i=0

ri = Un,

so U is linear, as required. ��

The converse of this theorem is not true in general.

Example 12 (Shallit [37]). Let U be the sequence given by Un = (n + 1)2 for
n ≥ 0. Then U0 = 1, U1 = 4, U2 = 9, and U satisfies the linear recurrence

Un+3 = 3Un+2 − 3Un+1 + Un.

Suppose that [N]U were a regular language. Then the language

[N]U ∩ 10∗10∗ = {10a10b ∈ {0, 1}∗ : b2 < 2a + 4}

would also be regular; however, one easily shows using the pumping lemma that
this is not the case.
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3.2 Bertrand Systems

In general, the properties of an arbitrary linear numeration system can often
be difficult to analyze. We therefore now restrict our attention to a particular
class of linear numeration systems that are somewhat easier to study. Let U be
a linear numeration system. If

lim
n→∞

Un+1

Un
= β

for some real β > 1, then U is said to satisfy the dominant root condition and β
is called the dominant root of the recurrence.

The properties of linear numeration systems with a dominant root β are often
linked with the properties of the so-called β-expansions of real numbers. Let
β > 1 be a real number. The β-expansion of a real number x ∈ [0, 1] is the
sequence dβ(x) = (xi)i≥1 ∈ N

ω that satisfies

x =
∞∑

i=1

xiβ
−i

and is the lexicographically largest sequence having this property. If

dβ(1) = t1 · · · tm0ω,

with tm 
= 0, then we say that dβ(1) is finite and we set

d∗β(1) = (t1 · · · tm−1(tm − 1))ω.

Otherwise, we set d∗β(1) = dβ(1). If d∗β(1) is ultimately periodic, then β is a
Parry number.

The next theorem gives a necessary condition for N to be U -recognizable when
U is a linear numeration system with a dominant root β.

Theorem 9 (Hollander [20]). Let U be a linear numeration system with dom-
inant root β. If N is U -recognizable, then β is a Parry number.

In general it is a difficult problem to characterize the linear numeration systems
U for which N is U -recognizable. Hollander proved a much stronger result than
the one quoted above: he gave sufficient conditions for N to be U -recognizable
in the case where U has a dominant root β > 1. It remains an open problem to
give a general characterization of all linear numeration systems U for which N is
U -recognizable. Hollander gave a conjectural characterization at the end of his
paper, but this conjecture is still open.

Next we study a particular class of linear numeration systems U for which
N is always U -recognizable. A numeration system U = (Un)n≥0 is a Bertrand
numeration system if it has the following property:

a word w is in [N]U if and only if w0 is in [N]U .
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Example 13. For any integer k > 2, the integer base-k numeration system is
a Bertrand numeration system. The Fibonacci system of Example 11 is also
a Bertrand numeration system. On the other hand, if we change the initial
conditions of the Fibonacci recurrence Un+2 = Un+1 +Un to U0 = 1, U1 = 3, we
obtain a system that is no longer a Bertrand numeration system, since the greedy
representation of the number 2 is the word 2, but the greedy representation of
the number 6 is the word 102, not the word 20.

Let Fact(Dβ) denote the set of factors occurring in the β-expansions of the real
numbers in [0, 1).

Theorem 10 (Bertrand [7]). Let U = (Un)n≥0 be a numeration system.
There exists a real number β > 1 such that 0∗[N]U = Fact(Dβ) if and only
if U is a Bertrand numeration system. In this case, if d∗β(1) = (ti)i≥1, then

Un = t1Un−1 + · · ·+ tnU0 + 1. (1)

If β is a Parry number, then (1) defines a linear recurrence sequence and β is a
root of its characteristic polynomial.

Theorem 11 (Parry [31]). A sequence s = (si)i≥1 over N is the β-expansion
of a real number in [0, 1) if and only if (sn+i)i≥1 is lexicographically less than
d∗β(1) for all n ≥ 1.

As a consequence of Theorems 10 and 11, every Parry number β has an associated
canonical numeration system. The language of the canonical numeration system
associated with β is accepted by the deterministic finite automatonAβ accepting
the language Fact(Dβ). This automaton is defined as follows. Let

d∗β(1) = t1 · · · ti(ti+1 · · · ti+p)ω,

where i ≥ 0 and p ≥ 1 are the minimal preperiod and period respectively. The
set of states of Aβ is Qβ = {qβ,0, . . . , qβ,i+p−1}. All states are final. For every
j ∈ {1, . . . , i + p}, we have tj transitions qβ,j−1 → qβ,0 labeled by 0, . . . , tj − 1
and, for j < i + p, we have one transition qβ,j−1 → qβ,j labeled by tj . There is
also a transition qβ,i+p−1 → qβ,i labeled by ti+p. See, for instance, [16,18,23].

Example 14. Let β be the dominant root of the polynomial X3 − 2X2 − 1. We
have dβ(1) = 2010ω and d∗β(1) = (200)ω. The automaton Aβ is depicted in
Figure 2.

3.3 Pisot Systems

We have seen that for every Parry number β there is an associated Bertrand
numeration system U such that N is U -recognizable. Now we consider linear
numeration systems U whose dominant root is a Pisot number. We shall see
that for such systems the set N is always U -recognizable. A Pisot number is a
real algebraic integer greater than one such that all of its algebraic conjugates
have absolute value less than one.
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Fig. 2. The automaton Aβ for d∗β(1) = (200)ω

Theorem 12 (Bertrand [6]; Schmidt [36]). Every Pisot number is a Parry
number.

In view of this result and the discussion above, every Pisot number β has an as-
sociated Bertrand numeration system U in which N is U -recognizable. However,
there may be many other linear recurrence sequences U that also have dominant
root β yet are not Bertrand systems. Indeed, there will be one choice of initial
values for the recurrence defining U that will result in a Bertrand system, but
other choices of initial values will result in systems that are not Bertrand sys-
tems. Let us call any linear numeration system whose characteristic polynomial
is the minimal polynomial of a Pisot number a Pisot system.

Example 15. The Fibonacci numeration system of Example 11 is a Pisot system,
since the characteristic polynomial x2 − x − 1 of the defining linear recurrence
is the minimal polynomial of the Pisot number (1 +

√
5)/2.

The principal result concerning Pisot systems is the following.

Theorem 13 (Frougny and Solomyak [18]; Bruyère and Hansel [8]).
Let U be a Pisot system. Then N is U -recognizable.

3.4 Further Discussion

As was the case for the integer base numeration systems, it is also possible to
give a morphic characterization as well as a logical characterization of the U -
recognizable sets for the numeration systems U considered in this section. For
more information, see Fabre [16] and Bruyère and Hansel [8].

In Section 2.2 we mentioned that the periodicity problem is decidable for base-
k numeration systems. In the setting of linear numberation systems, the problem
is as follows. Let U be a linear numeration system such that N is U -recognizable.
Given a automaton accepting [X ]U for some set X , determine if X is ultimately
periodic. It is currently unknown if this problem is decidable. For Pisot systems
the problem is decidable; for example, the proofs of Muchnik [28] or Allouche et
al. [2] can be easily adapted to these systems. Charlier et al. [4] showed that the
periodicity problem is decidable for a large class of linear numeration systems,
but the general problem remains open.
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4 Abstract Numeration Systems

4.1 Basic Definitions and Results

Abstract numerations systems were first introduced by Lecomte and Rigo [25].
They generalize linear numeration systems and include them as a special case.
In the case of linear numeration systems, we typically begin with a given linear
recurrence sequence and look for conditions under which this sequence results in
a regular numeration language. In the case of abstract numeration systems, we
change our point of view slightly: instead, we consider any fixed regular language
as being a possible numeration language. Of course, the resulting numeration
system is unlikely to be positional in general; instead, we order our numeration
language genealogically and define the representation of n to be the (n + 1)-th
word of the language.

Let u and v be two finite words of the same length (resp. two infinite words)
over an alphabet A ⊂ N. We say that u is lexicographically less than v if we can
write u = pau′ and v = pbv′, where a and b are letters such that a is less than
b. If u and v are two finite words (not necessarily of the same length), then u is
genealogically less than v if either |u| < |v| or |u| = |v| and u is lexicographically
less than v.

An abstract numeration system is a triple S = (L, Σ, <) where L is an infinite
regular language over a totally ordered finite alphabet (Σ, <). The language L
is called the numeration language. The map [·]S : N→ L is a bijection mapping
n ∈ N to the (n + 1)-th word of L ordered genealogically. The inverse map
is denoted by 〈·〉S : L → N. A set X ⊆ N is S-recognizable if the language
[X ]S = {[n]S : n ∈ X} is regular.

Example 16. The base-k numeration systems are all examples of abstract nu-
meration systems. For each k, the defining numeration language is the language

{0, 1, . . . , k − 1}∗ \ (0{0, 1, . . . , k − 1}∗).

Similarly, the Fibonacci numeration system of Example 11 is also an abstract
numeration system, as are the Pisot systems discussed in the previous section.

Example 17. Recall from Example 3 that the set {n2 : n ∈ N} of squares is not
k-recognizable for any k. However, the set of squares is S-recognizable for the
abstract numeration system

S = (a∗b∗ ∪ a∗c∗, {a, b, c}, a < b < c),

since the language of representations of the squares is the regular language a∗.

If fact, we have the following general result concerning polynomial sequences.

Theorem 14 (Rigo [34]; Strogalov [38]). For any polynomial P ∈ Q[x] such
that P (N) ⊆ N, there exists S such that P is S-recognizable.
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The following result, which shows that Cobham’s characterization of the sets
recgonizable in all integer bases carries through in the more general setting of
abstract numeration systems, provides further confirmation that the notion of
abstract numeration system is indeed a natural generalization of the integer base
numeration systems.

Theorem 15 (Lecomte and Rigo [25]). Let S be an abstract numeration
system. Then every ultimately periodic set is S-recognizable.

Krieger et al. [22] reproved this result with an explicit bound on the size of
the automaton accepting an ultimately periodic set. The same construction was
independently found by Angrand and Sakarovitch [3].

Theorem 16 (Krieger et al. [22]). Let m and r be integers with m ≥ 2
and 0 ≤ r ≤ m − 1. If S is an abstract numeration system whose language
L is accepted by an n-state deterministic finite automaton, then the minimal
deterministic finite automaton accepting the language [mN + r]S has at most
nmn states.

The construction used to establish this result can also be used to prove the
following theorem, originally due to Choffrut and Goldwurm [11] and later re-
proved by Rigo [33] (see [3]). (For the definition of N-rational series, see Berstel
and Reutenauer [5].)

Theorem 17 (Choffrut and Goldwurm [11]). Let S = (L, Σ, <) be an ab-
stract numeration system. The formal series∑

w∈L

〈w〉Sw

is N-rational.

4.2 Alternative Characterizations

In Section 2.3 we gave an equivalent characterization of k-recognizable sets in
terms of uniform morphisms. We have a similar characterization for
S-recognizable sets, but now the morphisms are no longer uniform. We say that
a sequence is morphic if it is of the form g(hω(a)), where g is a coding and h is
a non-erasing morphism prolongable on the letter a.

Theorem 18 (Rigo [32]; Rigo and Maes [35]). Let X ⊆ N. Then there
exists an abstract numeration system S such that X is S-recognizable if and only
if the characteristic sequence of X is morphic.

Example 18. Recall from Example 17 that the set of squares is S-recognizable
for the abstract numeration system

S = (a∗b∗ ∪ a∗c∗, {a, b, c}, a < b < c).
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The characteristic sequence of the set of squares can be generated using the
non-uniform morphism

h : a 	→ abcc, b 	→ bcc, c 	→ c

iterated on a and a coding g : a, b 	→ 1, c 	→ 0. We have

hω(a) = abccbccccbccccccbcccccccc · · ·

and
g(hω(a)) = 1100100001000000100000000 · · · .

4.3 Further Discussion

We end by revisiting the periodicity problem in the general setting of abstract
numeration systems. The problem is as follows. Let S be an abstract numer-
ation system. Given an automaton accepting [X ]S for some set X , determine
if X is ultimately periodic. As mentioned in Section 3.4, the decidability of
this problem is still an open question even in the special case of linear numera-
tion systems, so evidently the problem remains open in the general setting. The
periodicity problem becomes particularly interesting in the general setting of
abstract numeration systems because of its equivalence to a longstanding open
problem in the theory of D0L systems. Theorem 18 gives an equivalence between
S-recognizable sets and morphic sequences. A set X is ultimately periodic if and
only if its characteristic sequence is ultimately periodic, that is, if and only if
its characteristic sequence can be written in the form uvvvv · · · , where u and v
are words. However, the decidability of the periodicity problem for morphic se-
quences is a longstanding open problem in combinatorics on words. If we consider
only purely morphic sequences, that is, sequences of the form hω(a), where h is
a morphism prolongable on the letter a, then Harju and Linna [19] and Pansiot
[30] showed that the periodicity problem is decidable, but the question remains
unsolved for morphic sequences in general. Hence, the periodicity problem for
abstract numeration systems appears to be a difficult one.

There is much more to be said about abstract numeration systems. The theory
of such systems has been extensively developed, in particular by Rigo and his
co-authors. For more information on this topic, one may consult the survey by
Lecomte and Rigo [24].
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Abstract. This paper proposes rule formats for Structural Operational
Semantics guaranteeing that certain binary operators are left distributive
with respect to a set of binary operators. Examples of left-distributivity
laws from the literature are shown to be instances of the provided
formats.

1 Introduction

Over the last three decades, Structural Operational Semantics (SOS), see,
e.g., [7,20,22], has proven to be a powerful way to specify the semantics of pro-
gramming and specification languages. In this approach to semantics, languages
can be given a clear behaviour in terms of states and transitions, where the
collection of transitions is specified by means of a set of syntax-driven inference
rules. This behavioural description of the semantics of a language essentially tells
one how the expressions in the language under definition behave when run on
an idealized abstract machine.

Designers of languages often have expected algebraic properties of language
constructs in mind when defining a language. For example, one expects that a
sequential composition operator be associative and, in the field of process alge-
bra [11,16,17], operators such as nondeterministic and parallel composition are
often meant to be commutative and associative with respect to bisimilarity. Once
the semantics of a language has been given in terms of state transitions, a natural
question to ask is whether the intended algebraic properties do hold modulo the
notion of behavioural equivalence or preorder of interest. The typical approach to
answer this question is to perform an a posteriori verification: based on the seman-
tics in terms of state transitions, one proves the validity of the desired algebraic
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laws, which describe semantic properties of the various operators in the language.
An alternative approach is to ensure the validity of algebraic properties by design,
using the so called SOS rule formats [2]. In this approach, one gives syntactic tem-
plates for the inference rules used in defining the operational semantics for certain
operators that guarantee the validity of the desired laws by design. Not surpris-
ingly, the definition of rule formats is based on finding a reasonably good trade-off
between generality and ease of application. On the one hand, one strives to define
a rule format that can capture as many examples from the literature as possible,
including ones that may arise in the future. On the other, the rule format should
be as easy to apply as possible and, preferably, the syntactic constraints of the
format should be algorithmically checkable.

The literature on SOS provides rule formats for basic algebraic properties of
operators such as commutativity [19], associativity [15], idempotence [3] and the
existence of unit and zero elements [5,8]. The main advantage of this approach
is that one is able to verify the desired property by syntactic checks that can
be mechanized. Moreover, it is interesting to use rule formats for establishing
semantic properties since the results so obtained apply to a broad class of lan-
guages. Apart from providing one with an insight as to the semantic nature of
algebraic properties and its link to the syntax of SOS rules, rule formats like
those presented in the above-mentioned references may serve as a guideline for
language designers who want to ensure, a priori, that the constructs under design
enjoy certain basic algebraic properties.

In the present paper, we develop two rule formats guaranteeing that certain
binary operators are left distributive with respect to others modulo bisimilarity. A
binary operator � is left distributive with respect to a binary operator �, modulo
some notion of behavioural equivalence, whenever the equation (x � y) � z =
(x � z) � (y � z) holds.

A classic example of left-distributivity law within the realm of process algebra
is (x + y)‖ z = (x‖ z) + (y‖ z), where ‘+’ and ‘‖ ’ stand for nondeterministic
choice and left merge, respectively, from [11,17]. (The reader may find many
other examples in the main body of this paper.) Distributivity laws like the
aforementioned one play a crucial role in (ground-)complete axiomatizations
of behavioural equivalences over fragments of process algebras (see, e.g., the
above-mentioned references and [4]), and their lack of validity with respect to
choice-like operators is often the key to the nonexistence of finite (in)equational
axiomatizations of behavioural semantics—see, for instance, [6,18].

In the rule formats, for the sake of simplicity, the � operator ‘behaves like’
some form of nondeterministic choice operator. Both rule formats are based on
syntactic conditions that are decidable over finite language specifications.

We provide a wealth of examples showing that the validity of several left-
distributivity laws from the literature on process algebras can be proved using
the proposed rule formats.

Roadmap of the paper. The paper is organized as follows. Section 2 reviews
some standard definitions from the theory of SOS that will be used in the re-
mainder of this study. Section 3 presents our first rule format guaranteeing that a
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binary operator � is left-distributive with respect to a binary operator � mod-
ulo bisimilarity. The rule format is defined in Section 3.2 and some examples of
its application are given in Section 3.3. We extend our rule format in Section 4
by allowing for a wider set of terms appearing in the target of deduction rules.
Examples that can be handled using the second rule format are offered in the
same section. We refer the reader to [1] for proofs and further results.

2 Preliminaries

In this section we recall some standard definitions from the theory of SOS. We
refer the readers to, e.g., [7] and [20] for more information.

2.1 Transition System Specifications and Bisimilarity

Definition 1 (Signatures, terms and substitutions). We let V denote an
infinite set of variables and use x, x′, xi, y, y′, yi, . . . to range over elements of
V . A signature Σ is a set of function symbols, each with a fixed arity. We call
these symbols operators and usually represent them by f, g, . . . . An operator with
arity zero is called a constant. We define the set T(Σ) of terms over Σ as the
smallest set satisfying the following constraints.

– A variable x ∈ V is a term.
– If f ∈ Σ has arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

We use s, t, u, possibly subscripted and/or superscripted, to range over terms. We
write t1 ≡ t2 if t1 and t2 are syntactically equal. The function vars : T(Σ)→ 2V

gives the set of variables appearing in a term. The set C(Σ) ⊆ T(Σ) is the
set of closed terms, i.e., terms that contain no variables. We use p, q, p′, pi, . . .
to range over closed terms. A substitution σ is a function of type V → T(Σ).
We extend the domain of substitutions to terms homomorphically and write σ(t)
for the result of applying the substitution σ to the term t. If the range of a
substitution is included in C(Σ), we say that it is a closed substitution. For a
sequence x1, . . . , xn of distinct variables and a sequence t1, . . . , tn of terms, we
write [x1 	→ t1, . . . , xn 	→ tn] for a substitution that maps each xi to ti, 1 ≤ i ≤ n.

Definition 2 (Transition system specification). A transition system spec-
ification (TSS) is a triple (Σ,L, D) where

– Σ is a signature.
– L is a set of labels (or actions) ranged over by a, b, l. If l ∈ L and t, t′ ∈ T(Σ),

we say that t
l→ t′ is a positive transition formula and t

l
� is a negative

transition formula. Such formulae are called t-testing. A transition formula
(or just formula), typically denoted by φ or ψ, is either a negative transition
formula or a positive one.

– D is a set of deduction rules, i.e., tuples of the form (Φ, φ) where Φ is a set
of formulae and φ is a positive formula. We call the formulae contained in
Φ the premises of the rule and φ the conclusion.
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We write vars(Φ) to denote the set of variables appearing in a set of formulae Φ.
We say that a formula or a deduction rule is closed if all of its terms are closed.
Substitutions are also extended to formulae and sets of formulae in the natural
way. A set of positive closed formulae is called a transition relation.

We often refer to a positive transition formula t
l→ t′ as a transition with t being

its source, l its label, and t′ its target. A deduction rule (Φ, φ) is typically written
as Φ

φ . For the sake of consistency with SOS specifications of specific operators in

the literature, in examples we use φ1...φn

φ in lieu of {φ1,...,φn}
φ .

An axiom is a deduction rule with an empty set of premises. We write φ for
an axiom with φ as its conclusion, and often abbreviate this notation to φ when
this causes no confusion.

Definition 3. Given a rule d of the form Φ

f(t1,...,tn)
a→ t

, we say that d is f -
defining, and write op(d) = f , d is a-emitting, and toc(d) = t, the target of the
conclusion of d. We also denote by D(f, a) the set of a-emitting and f -defining
rules in a set of deduction rules D.

Example 1 (Choice operators). The choice operator from [17] is defined by the
following rules, where a ranges over the set of actions:

(chla)
x

a→x′

x + y
a→x′

(chra)
y

a→ y′

x + y
a→ y′

.

For each action a, the rules (chla) and (chra) are a-emitting and +-defining. For
rule (chla), we have that toc(chla) = x′.

The meaning of a TSS is defined by the notion of least three-valued stable
model [23]. We write T � p

a→ p′ if the transition p
a→ p′ is in the least three-

valued stable model of T . Since the precise definition of this notion does not
play a role in the remainder of this paper, we omit it for the sake of brevity and
refer our readers to [1] for details.

Definition 4 (Bisimulation and bisimilarity). Let T be a transition system
specification with signature Σ and label set L. A relation R ⊆ C(Σ)×C(Σ) is a
bisimulation relation if and only if R is symmetric and, for all p0, p1, p

′
0 ∈ C(Σ)

and l ∈ L,

(p0R p1 ∧ T � p0
l→ p′0)⇒ ∃p′1 ∈ C(Σ). (T � p1

l→ p′1 ∧ p′0R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by p0 ↔–– p1, when there
exists a bisimulation relation R such that p0R p1.

Bisimilarity is extended to open terms by requiring that s, t ∈ T(Σ) are bisimilar
when σ(s)↔–– σ(t) for each closed substitution σ : V → C(Σ).
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3 The Left-Distributivity Rule Formats

In this section, we present a rule format guaranteeing that a binary operator �
is left-distributive with respect to a binary operator � modulo bisimilarity. The
rule format suffices to handle many examples from the literature.

Definition 5 (Left-distributivity law). We say that a binary operator � is
left-distributive with respect to a binary operator � (modulo bisimilarity) if the
following equality holds:

(x � y) � z ↔–– (x � z) � (y � z). (1)

For all closed terms p, q, r, proving the algebraic law (1) involves two proof
obligations:

– Firability: ensuring that (p � q) � r
a→ if, and only if, (p � r) � (q � r) a→ ,

for each action a;
– Matching conclusions: ensuring that, for each closed term p1, if (p � q)�

r
a→ p1, then there exists some closed term p2 such that (p� r)� (q � r) a→ p2

and p1 ↔–– p2, and vice versa.

3.1 The Firability Condition

We begin by introducing the conditions on sets of rules for two binary operators
� and � that we shall use to guarantee the firability condition for them. First
of all, we present syntactic constraints on the rules for those operators that we
shall use throughout the remainder of the paper.

Definition 6. We say that a deduction rule is of the form (R1) when it has the
structure

Φy

x � y
a→ t

or
{x a→x′} ∪ Φy

x � y
a→ t

,

where

– the variables x, x′, y are pairwise distinct, and
– Φy is a (possibly empty) set of (positive or negative) y-testing formulae such

that x, x′ 
∈ vars(Φy).

A deduction rule is of the form (R2) when it has the structure

{x a→x′}
x � y

a→ t
or

{y a→ y′}
x � y

a→ t
or

{x a→x′, y a→ y′}
x � y

a→ t
,

where the variables x, x′, y, y′ are pairwise distinct. A rule of the form (R1) or
(R2) is non-left-inheriting if x 
∈ vars(t), that is, if x does not appear in the
target of the conclusion of the rule. An operation f specified by rules of the form
(R1) or (R2) is non-left-inheriting if so are all of the f -defining rules.
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Definition 7 (Firability constraint). Given a TSS T , let � and � be bi-
nary operators in the signature of T . For each action a, we write Fire(�, �, a)
whenever the following conditions are met:

– if D(�, a) 
= ∅ then D(�, a) 
= ∅,
– each d ∈ D(�, a) is of the form (R1), and
– each d ∈ D(�, a) is of the form (R2).

Example 2. Recall the choice operator +, presented in Example 1. As our readers
can easily check, Fire(+, +, a) holds for each action a.

The firability constraint in Definition 7 is sufficient to guarantee the aforemen-
tioned firability condition.

Theorem 1 (Firability Theorem). Given a TSS T , let � and � be binary
operators from the signature of T . Suppose that Fire(�, �, a) holds for some
action a. Then,

(p � q) � r
a→ if, and only if, (p � r) � (q � r) a→ ,

for all closed terms p, q, r.

The import of Theorem 1 is that, when proving the validity of (1), we can
guarantee the firability condition for action a just by showing that Fire(�, �, a)
holds. Theorem 1 underlies the soundness of the rule formats we present in what
follows.

The reader will have already noticed that the rule form (R1) does not place
any restriction on tests for the variable y. This is possible because the second
argument of the terms (p � q) � r, p � r and q � r is always the same, i.e. the
term r. This means that, for each �-defining rule, the same tests performed on
the second argument on one side of (1) are performed on the other. Roughly
speaking, one side of (1) may fire as much as the other does, insofar the second
argument is concerned.

3.2 The Matching-Conclusion Condition

Theorem 1 tells us that any rule format, whose constraints imply condition
Fire(�, �, a) for each action a, guarantees the validity of (1) provided that the
matching-conclusion condition is met. Intuitively, in order to guarantee syntac-
tically that the matching-conclusion condition is satisfied, the targets of the
conclusions of �-defining and �-defining rules should ‘match’ when those op-
erators are used in the specific contexts of the left- and the right-hand sides
of (1). In what follows, we shall examine two different ways of ensuring the
above-mentioned ‘match’ of the targets of the conclusions of �-defining and �-
defining rules. The first relies on assuming that the targets of the conclusions
of �-defining rules are target variables of premises of rules of the form (R2).
The resulting rule format, which we present in this section, is based on easily
checkable syntactic constraints and covers a large number of left-distributivity
laws from the literature.
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The First Rule Format. The rule format that we present deals with examples
of left distributivity with respect to operators whose semantics is given by rules of
the form (R2) that, like those for the choice operator we mentioned in Example 1,
have target variables of premises as targets of their conclusions. The following
definition presents the syntactic constraints of the rule format.

Definition 8 (First rule format). Let T be a TSS, and let � and � be binary
operators in the signature of T . We say that the rules for � and � are in the
first rule format for left distributivity if the following conditions are met:

1. Fire(�, �, a) holds for each action a,
2. � is non-left-inheriting,
3. each �-defining rule has a target variable of one of its premises as target of

its conclusion and
4. for each action a, either there is no a-emitting and �-defining rule that tests

both x and y, or if some a-emitting and �-defining rule tests its left argument
x then so do all a-emitting and �-defining rules.

Theorem 2 (Left distributivity over choice-like operators). Let T be a
TSS, and let � and � be binary operators in the signature of T . Assume that
the rules for � and � are in the first rule format for left distributivity. Then

(x � y) � z ↔–– (x � z) � (y � z) .

Remark 1. Condition 4 in Definition 8 is necessary for the soundness of the rule
format for left distributivity proved in the above theorem. To see this, consider
the operations � and � with rules

{x a→x′, y a→ y′}
x � y

a→x′

{x a→x′, y a→ y′}
x � y

a→x′ � y

{y a→ y′}
x � y

a→ y′
.

The above rules satisfy all the conditions in Definition 8 apart from condition 4.
Now, let a be a constant with rule a

a→0, where 0 is a constant with no rules.
As our readers can easily check,

(a � a) � (0 � a) 
↔–– (a � 0) � a.

Indeed, the term (a � a) � (0 � a) can perform a sequence of two a-labelled
transitions, whereas (a � 0) � a cannot because a � 0 affords no transitions.

3.3 Examples of Application of the Rule Format

Theorem 2 provides us with a simple, yet rather powerful, syntactic condition in
order to infer left-distributivity laws for operators like +. Many of the common
left-distributivity laws are automatically derived from Theorem 2, as witnessed
by the examples we now proceed to discuss.



Rule Formats for Distributivity 87

Example 3 (Left merge and interleaving parallel composition). The operational
semantics of the classic left-merge and interleaving parallel composition opera-
tors [11,13,17] is given by the rules below:

x
a→x′

x‖ y
a→x′ ‖ y

x
a→x′

x ‖ y
a→x′ ‖ y

y
a→ y′

x ‖ y
a→x ‖ y′

.

Theorem 2 yields the validity of the following law.

(x + y)‖ z ↔–– (x‖ z) + (y‖ z)

Example 4 (Synchronous parallel composition). Consider the synchronous par-
allel composition from CSP [16]1 specified by the rules below, where a ranges
over the set of actions:

x
a→x′ y

a→ y′

x ‖s y
a→x′ ‖s y′

.

Theorem 2 yields the validity of the following law.

(x + y) ‖s z ↔–– (x ‖s z) + (y ‖s z)

Example 5 (Join and ‘/’ operators). Consider the join operator �� from [12] and
the ‘hourglass’ operator / from [4] specified by the rules below, where a, b range
over the set of actions:

x
a→x′ y

a→ y′

x �� y
a→x′ ∓ y′

x
a→x′ y

b→ y′

x/y
a→x′/y′

,

where ∓ denotes the delayed choice operator from [12]. (The operational spec-
ification of the delayed choice operator is immaterial for the analysis of this
example.) Theorem 2 yields the validity of the following laws.

(x + y) �� z ↔–– (x �� z) + (y �� z) (x + y) / z ↔–– (x / z) + (y / z)

Example 6 (Disrupt). Consider the following disrupt operator � [9,14] with rules

x
a→x′

x � y
a→x′ � y

y
a→ y′

x � y
a→ y′

.

Theorem 2 yields the validity of the following law.

(x + y) � z ↔–– (x � z) + (y � z)

1 In [16], Hoare uses the symbol ‖ to denote the synchronous parallel composition
operator. Here we use that symbol for parallel composition.
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Example 7 (Unless operator). The unless operator 
 from [10] and the operator
Δ from [4, page 23] are specified by the rules

x
a→x′ y

b
� for a < b

x 
 y
a→x′

x
a→x′ y

b
� for a < b

x Δ y
a→ θ(x′)

,

where < is an irreflexive partial order over the set of actions and θ denotes
the priority operator from [10]. (The operational specification of the priority
operator is immaterial for the analysis of this example.) Theorem 2 yields the
validity of the following laws.

(x + y) 
 z ↔–– (x 
 z) + (y 
 z) (x + y) Δ z ↔–– (x Δ z) + (y Δ z)

4 Analyzing Targets of Conclusions of Deduction Rules

In this section, we extend the first rule format by generalizing the matching-
conclusion conditions. We do so by examining different possible targets of the
conclusions of the �- and �-defining rules. By analyzing different possible syn-
tactic shapes for terms, we check which pairs of shapes can be related (possibly
under some further requirements) while preserving the left-distributivity law.

Table 1 summarizes our results. Even though the offered list is not exhaustive,
which, at first sight, seems a challenging task to achieve, we believe Table 1 offers
enough cases to cover almost all practical cases, as demonstrated by the examples
presented in the remainder of this section and in the full version of this paper.

In Table 1, x and y are considered as the variables for the first and second
argument, respectively, for both �- and �-defining rules. When the variable x′

is mentioned, implicitly the considered rule has a premise x
a→x′ (for a-emitting

rules). Similarly, when the variable y′ is mentioned, implicitly the rule consid-
ered has a premise y

a→ y′. The term t stands for a generic open term from the

Table 1. Analysis of the targets of conclusions

toc(d1) toc(d2) result further requirements
1 x′

� y x p � r

2 x′
� y y q � r

3 x x′
� y′ p � q D(�, a) = {d1}

4 x′ x′
� y′ p′

� q′ D(�, a) = {d1}
5 x � t x′

� y′ (p � q) � σ(t) D(�, a) = {d1}, x, x′ �∈ vars(t)
6 x′

� t x′
� y′ (p′

� q′) � σ(t) D(�, a) = {d1}, x, x′ �∈ vars(t)
7 t x′

� y′ σ(t) � idempotent, D(�, a) = {d1}, x, x′ �∈ vars(t)
8 t x′ σ′(t) Condition 4 of Definition 8, x �∈ vars(t)
9 t y′ σ′(t) Condition 4 of Definition 8, x �∈ vars(t)

with σ = [y �→ r, yi �→ ri (i ∈ I)] and σ′ = [y �→ r, x′ �→ p′, yi �→ ri (i ∈ I)]
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signature, and p, q and r are hypothetical closed terms applied to the distribu-
tivity equation in this way: (p � q) � r ↔–– (p � r) � (q � r). The symbols p′, q′,
and ri are considered as targets of possible transitions from p, q and r.

Table 1 is to be read as follows. First of all, d1 ∈ D(�, a) and d2 ∈ D(�, a),
for some action a. In each row, the first column (column toc(d1)) specifies the
form of the target of the conclusion of the �-defining rule d1 (e.g., x in case of
row 3), and the second column (column toc(d2)) specifies the form of the target
of the conclusion of the �-defining rule d2 (e.g., x′ � y′ in case of row 3). If the
conditions in the column further requirements are satisfied (e.g., in row 3, d1

is the only �-defining and a-emitting rule), then the result of the transition of
terms (p�q)�r and (p�r)�(q�r) is specified by the term given in column result
(e.g., p�q in row 3). In rows 5–6, the stated result is up to one application of the
left-distributivity equation (1). The requirement � idempotent means that the
operator � can be proved idempotent, e.g., by means of the rule format offered
in [3].

The reader may want to notice that the first rule format of Section 3.2 is
partly based on the analysis which leads to rows 8 and 9.

Theorem 3 (Soundness of Table 1). Let T be a TSS. Let � and � be binary
operations in the signature of T satisfying

1. Fire(�, �, a), and
2. if D(�, a) 
= ∅ then for each d1 ∈ D(�, a) and for each d2 ∈ D(�, a), the

rules d1 and d2 match a row in Table 1.

It holds that:
(x � y) � z ↔–– (x � z) � (y � z).

In what follows, we apply the rule format provided in this section in order to
check some examples of left-distributivity laws whose validity cannot be inferred
using Theorem 2.

Example 8 (Unit-delay operator and the choice operator from ATP). Consider
any TSS T containing the unit-delay operator � � and the choice operator +∗

from ATP [21]2 and for which the transition relation χ→ is deterministic. (The
distinguished symbol χ denotes the passage of one unit of time.) The semantics
of those operators is defined by the following rules, where a 
= χ:

(uda)
x

a→x′

�x�(y) a→x′
(udχ)

�x�(y)
χ→ y

(extTime)
x

χ→x′ y
χ→ y′

x +∗ y
χ→x′ +∗ y′

(extChla)
x

a→x′

x +∗ y
a→x′

(extChra)
y

a→ y′

x +∗ y
a→ y′

.

2 In [21], the symbol of this operator is �, whose use we prefer to avoid in this paper
for the sake of clarity.
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Table 1 can be used to match the targets of the conclusions as follows: the
combination of uda and extChla follows from row 8, the combination of uda and
extChra follows from row 9, and finally the combination of udχ and extTime
follows from row 7.

Example 9 (Timed left merge and the choice operator from ATP). Consider the
TSS for ATP with the timed extension of the left-merge operator from Example 3
specified by the following rules, where a 
= χ:

(mergea)
x

a→x′

x‖ y
a→x′ ‖ y

(mergeχ)
x

χ→x′ y
χ→ y′

x‖ y
χ→x′‖ y′

.

Table 1 can be used to match the targets of the conclusions as follows: the com-
bination mergea, extChla follows from row 8, the combination mergea, extChra

follows from row 9 and the combination mergeχ, extTime follows from row 6.

In the extended version of this paper [1], we apply our rule formats to several
more examples and also show how they can be applied to obtain distributivity
for unary operators. The full version of the paper also offers a much more gen-
eral format for left distributivity based on a notion of distributivity compliance
between rules of which Table 1 is an approximation.
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Abstract. We propose Mutation Systems as a model of the evolution
of a string subject to the effects of mutations and a fitness function. One
fundamental question about such a system is whether knowing the rules
for mutations and fitness, we can predict whether it is possible for one
string to evolve into another. To explore this issue we define a specific
kind of mutation system with point mutations and a fitness function
based on conserved strongly k-testable string patterns. We show that
for k ≥ 2, such systems can simulate computation by both finite state
machines and asynchronous cellular automata. The cellular automaton
simulation shows that in this framework, universal computation is pos-
sible and the question of whether one string can evolve into another is
undecidable. We also analyze the efficiency of the finite state machine
simulation assuming random point mutations.

1 Introduction

Biological evolution proceeds by variation and selection. Efforts to determine the
evolutionary relationships of different organisms often involve comparing the
DNA sequences of their genomes to find similar subsequences that have been
conserved during evolution, on the assumption that the conserved subsequences
affect the fitness of the organisms. In this work we propose mutation systems as
a simple model of variation and selection acting on strings of symbols, with the
goal of exploring the properties of such systems, specifically what we can predict
and learn about their behavior. Variation is modeled as a mutation function that
maps a string to the set of possible mutations of that string. Selection is modeled
as a fitness function that determines whether each string is fit or not. The main
relation we consider in this paper is whether one fit string can evolve to another
fit string through a sequence of fit strings, each of which is a possible mutation
of its predecessor.

2 Preliminaries

An alphabet Σ is a finite nonempty set of symbols. Σ∗ denotes the set of all
finite strings of symbols from Σ. The empty string is denoted λ. A language is
any subset of Σ∗. Σk denotes those elements of Σ∗ of length k. The symbols in a
string s of length n are indexed from 1 to n and s[i] denotes the ith symbol of s.
� Research supported by the National Science Foundation under Grant CCF-0916389.

A.-H. Dediu, S. Inenaga, and C. Martín-Vide (Eds.): LATA 2011, LNCS 6638, pp. 92–104, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Mutation Systems 93

We consider non-deterministic finite state machines with no accepting states,
defined as follows. A finite state machine (FSM) is a quadruple M = (Σ, Q, q0, δ),
where Σ is the alphabet of input symbols, Q is the set of states, q0 is the initial
state, and δ is the transition function, which maps Q × Σ to subsets of Q. If
every δ(q, a) contains exactly one state, then M is deterministic. In this case we
may write δ(q, a) = q′ instead of δ(q, a) = {q′}.

3 Mutation Systems

We propose a model of the evolution of a string subject to the effects of muta-
tions and a fitness function. A single step consists of a mutation of the current
string followed by an application of the fitness function. If the fitness function
determines that the mutated string is fit, the mutated string replaces the current
string; otherwise the mutated string is discarded and the current string is kept.

Definition 1. A mutation system S = (Σ, μ, f) is composed of an alphabet
Σ, a mutator μ that maps Σ∗ to subsets of Σ∗ and a fitness function f : Σ∗ →
{0, 1}. The mutator μ specifies the set of strings to which a given string can
mutate in one step. The fitness function f determines whether a given string s
is fit (f(s) = 1) or not (f(s) = 0).

Given a mutation system S and two fit strings s1 and s2, we are interested in the
question of whether s1 can evolve to s2 through a sequence of steps permitted
by S.

Definition 2. Let a mutation system S = (Σ, μ, f) and two strings s1, s2 ∈ Σ∗

be given. We say that s1 can mutate to s2 in one step, denoted s1 →μ s2, if
s2 ∈ μ(s1). We say that s1 can evolve to s2 in one step, denoted s1 →S s2,
if f(s1) = f(s2) = 1 and s1 can mutate to s2 in one step.

As is usual, we denote the reflexive transitive closure of these relations by a su-
perscripted ∗ on the arrow. We say that s1 can mutate to s2 if s1 →∗

μ s2, that
is, there is a finite sequence of zero or more mutation steps that carries s1 to s2.
Similarly, we say that s1 can evolve to s2 if s1 →∗

S s2, that is, there is a finite
sequence of zero or more evolution steps that carries s1 to s2. Note that in the
latter case, s1, s2 and any intermediate strings in some evolution must be fit.

3.1 Point Mutations

A point mutation of a string is obtained by deleting or inserting a single oc-
currence of a symbol or by replacing a single occurrence of a symbol by any
symbol.

Definition 3. Let s be any string. The mutators μd, μi, μr, and μp are defined
as follows.

1. μd(s) is the set of strings that can be obtained by deleting exactly one occur-
rence of a symbol from s.
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2. μi(s) is the set of strings that can be obtained from s by inserting exactly
one occurrence of a symbol from Σ into s.

3. μr(s) is the set of strings that can be obtained from s by replacing exactly
one occurrence of a symbol in s by any symbol from Σ.

4. μp(s) = μd(s) ∪ μi(s) ∪ μr(s).

The mutator μp permits any single point mutation of a string. Reversibility is
a relevant property of mutators and mutation systems.

Definition 4. A mutator μ is stepwise reversible if for all strings s1 and s2,

s2 ∈ μ(s1)⇔ s1 ∈ μ(s2).

That is, if s1 can mutate to s2 in one step, then s2 can mutate back to s1 in one
step. A mutation system S = (Σ, μ, f) is reversible if for all strings s1 and s2,

(s1 →∗
S s2)⇔ (s2 →∗

S s1).

That is, if s1 can evolve to s2, then s2 can evolve to s1.

The point mutator μp is stepwise reversible: an insertion can be reversed by a
deletion, a deletion by an insertion, and a replacement by the opposite replace-
ment. The following lemma is immediate.

Lemma 1. If μ is stepwise reversible then S = (Σ, μ, f) is reversible.

3.2 Conservation of Strictly k-Testable Patterns

We consider fitness functions defined by very local properties of a string, namely
properties characterized by strictly k-testable languages [3,7,10]. Head [5] and
Yokomori and Kobayashi [13] describe applications of k-testable languages to
modeling biological phenomena.

Definition 5. Let Σ be an alphabet. A strictly k-testable pattern P = (PRE,
MID, SUF) is composed of three sets of strings with PRE ⊆ Σk−1, MID ⊆ Σk,
and SUF ⊆ Σk−1. The language of P , denoted LP , is the set of all strings s
of length at least k such that the prefix of s of length k − 1 is in PRE, every
substring of s of length k is in MID, and the suffix of s of length k−1 is in SUF.

A fitness function f is defined to be strictly k-testable if there exists a strictly
k-testable pattern P such that for every string s, f(s) = 1 iff s ∈ LP . A k-
simple mutation system is is a mutation system with mutation operator μp

and a strictly k-testable fitness function. In what follows we focus on 2-simple
mutation systems.

The technique of symbol duplication is useful in preventing unwanted point
mutations in a 2-simple mutation system. If the alphabet is Σ, then the du-
plicated alphabet D(Σ) consists of two copies of each symbol a ∈ Σ, one
with index 1, denoted a1, and one with index 2, denoted a2. We define the
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duplication map d from Σ∗ to D(Σ)∗ such that d(s) is obtained from s by
replacing every occurrence of a symbol a in s by the string a1a2. We define a
projection map h1 from D(Σ)∗ to Σ∗ such that h1(s) replaces every index 1
symbol a1 by a and every index 2 symbol a2 by the empty string. For example,
d(abb) = a1a2b1b2b1b2 and h1(a1b1b2a2a1) = aba. Clearly h1(d(s)) = s.

Example: Symbol Duplication. Let Σ = {a, b}. We define a 2-simple mutation
system S2 = (Σ2, μp, f2) that protects strings against point mutations. The
alphabet Σ2 is D(Σ) = {a1, a2, b1, b2} and the strictly 2-testable fitness function
f2 is defined by the prefix strings {a1, b1}, the suffix strings {a2, b2}, and the
middle strings

{a1a2, a2a1, a2b1, b1b2, b2a1, b2b2}.
The set of strings that are fit with respect to f2 are exactly those of the form
d(s) for some nonempty s ∈ Σ∗, for example, a1a2b1b2b1b2. If a fit string under-
goes any non-identity point mutation, the resulting string is not fit with respect
to f2.

4 Simulating FSM Computation

To represent FSM computation using a reversible mutation system, we choose
a reversible representation: FSM computation histories, analogous to Bennett’s
construction to make Turing machines reversible [1]. Let M = (Σ, Q, q0, δ) be a
finite state machine. Choose an element x 
∈ Q and define the state-annotated
alphabet ΣQ as the set of all symbols aq such that a ∈ Σ and q ∈ Q ∪ {x}.
The symbol aq represents the state q of M after reading the symbol a, with x
indicating that the symbol is unread. The main symbol component of aq is a
and the state component is q.

Given a string s ∈ Σ∗ of length n, a computation history of M on s is a
string s′ ∈ (ΣQ)∗ of length n such that the string of main symbol components of
s′ is s, and the sequence of state components consists of q1, q2, . . . , qi ∈ Q followed
by (n− i) x’s for some 0 ≤ i ≤ n, where for each 1 ≤ j < i, qj+1 ∈ δ(qj , s[j]). In
this case, s′ represents the computation in which M has read the first i symbols
of s and for each j gives the state reached after reading the jth input symbol.
The initial computation history of M on s, denoted Ix(s), is obtained from
s by replacing each a by ax, signifying that all the input symbols of s are unread.

Example: M1. Define a deterministic finite state machine M1 = ({a, b}, {0, 1},
0, δ1) with transition function δ1 given by δ1(0, a) = 1, δ1(0, b) = 0, δ1(1, a) = 0,
and δ1(1, b) = 1. The state of M1 indicates whether it has read an odd (1) or
even (0) number of a’s. The computation histories of M1 on the input string
abaa are the following: axbxaxax, a1bxaxax, a1b1axax, a1b1a0ax, a1b1a0a1.

4.1 From FSMs to Mutation Systems

Given a FSM M = (Σ, Q, q0, δ), we describe how to construct a 2-simple muta-
tion system S = (Σ′, μp, f) such that for any non-empty input string s for M ,



96 D. Angluin, J. Aspnes, and R. Barbosa Vargas

a1
x a2

x b1
x b2

x a1
x a2

x a1
x a2

x

a1
1 a2

x b1
x b2

x a1
x a2

x a1
x a2

x

a1
1 a2

1 b1
x b2

x a1
x a2

x a1
x a2

x

a1
1 a2

1 b1
1 b2

x a1
x a2

x a1
x a2

x

a1
1 a2

1 b1
1 b2

1 a1
x a2

x a1
x a2

x

a1
1 a2

1 b1
1 b2

1 a1
0 a2

x a1
x a2

x

a1
1 a2

1 b1
1 b2

1 a1
0 a2

0 a1
x a2

x

a1
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a1
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1 b1
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1 a1
0 a2

0 a1
1 a2

1

Fig. 1. Sequence of mutations for computation of M1 on input abaa

the computation histories of M on input s are represented by the strings that
d(Ix(s)) may evolve to in S. The alphabet Σ′ is D(ΣQ). In the symbol ai

q, the
main symbol component is a, the state component is q and the index is i. For
the example FSM M1,

Σ′ = {a1
x, a2

x, a1
0, a

2
0, a

1
1, a

2
1, b

1
x, b2

x, b1
0, b

2
0, b

1
1, b

2
1}.

Corresponding to the initial computation history Ix(s) of M on input s is the
initial string d(Ix(s)) with every symbol replaced by its duplicates indexed 1 and
2. For the FSM M1, we have

d(Ix(abaa)) = a1
xa2

xb1
xb2

xa1
xa2

xa1
xa2

x.

The strictly 2-testable pattern P = (PRE, MID, SUF) that determines the
fitness function f is defined as follows. The set PRE contains all symbols of
the form a1

x and a1
q such that a ∈ Σ and q ∈ δ(q0, a). The set SUF contains all

symbols of the form a2
x and a2

q such that a ∈ Σ and q ∈ Q. The set MID contains
several types of strings of length 2, as follows.

1. Initial duplicate: a1
xa2

x for all a ∈ Σ.
2. Initial boundary: a2

xb1
x for all a, b ∈ Σ.

3. Duplicate update needed: a1
qa

2
x for all a ∈ Σ and q ∈ Q.

4. Updated duplicate: a1
qa

2
q for all a ∈ Σ and q ∈ Q.

5. Updated boundary: a2
qb

1
x for all a, b ∈ Σ and q ∈ Q.

6. State transition: a2
qb

1
q′ for all a, b ∈ Σ, q ∈ Q, and q′ ∈ δ(q, b).

For example, the sequence of steps of M1 on input abaa can be achieved by the
mutation steps shown in Figure 1. Each FSM step requires two mutations.

4.2 Correctness of the FSM Simulation

To see that S correctly represents computation by M , we establish certain prop-
erties of evolvability in S. Note that for every a, b ∈ Σ, a1

x ∈ PRE, a2
x ∈ SUF,

a1
xa2

x ∈ MID and a2
xb1

x ∈ MID, and therefore for every nonempty s ∈ Σ∗ we
have f(d(Ix(s))) = 1, that is, d(Ix(s)) is fit in S. The following lemmas prove
Theorem 1; their proofs are omitted for lack of space.
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Lemma 2. Let s′ ∈ (Σ′)∗ be any nonempty string such that f(s′) = 1. Then s′

has the following properties.

1. The indices of s′ alternate between 1 and 2, beginning with 1 and ending with
2.

2. If two consecutive symbols of s′ are indexed 1 and 2, they must be a1
xa2

x or
a1

qa
2
x or a1

qa
2
q for some a ∈ Σ and q ∈ Q.

3. If two consecutive symbols of s′ are indexed 2 and 1, they must be a2
xb1

x or
a2

qb
1
x or a2

qb
1
q′ for some a, b ∈ Σ and q, q′ ∈ Q such that q′ ∈ δ(q, b).

4. The state components of s′ consist of a sequence of elements of Q followed
by a sequence of x’s.

5. The string h1(s′) is a computation history of M on the input s composed of
the sequence of main symbol components of h1(s′).

Lemma 3. Let s be a nonempty input string for M . Let s′ be any string
evolvable from d(Ix(s)) in S. Then h1(s′) is a computation history of M on
input s.

Lemma 4. Let s be a nonempty input string for M . If t is any computation
history of M on input s, then d(t) is evolvable in S from d(Ix(s)).

Theorem 1. Let a finite state machine M = (Σ, Q, q0, δ) be given, and let
S = (Σ′, μp, f) be the 2-simple mutation system constructed from M according
to the method described above. Let s ∈ Σ∗ be a nonempty input string for M . For
every string s′ evolvable in S from d(Ix(s)), h1(s′) is a computation history of
M on input s. For every computation history t of M on input s, d(t) is evolvable
from d(Ix(s)).

In case M is nondeterministic, the strings evolvable from d(Ix(s)) in S give all
possible computation histories of M on input s because S is a reversible mutation
system and may evolve backward to the initial string from any string it reaches.
In case M is deterministic, the strings evolvable from d(Ix(s)) form a line graph
of 2n vertices, with d(Ix(s)) at one end and the history in which all symbols
have state components in Q at the other end.

We consider random point mutations, in which each type of mutation
(deletion, insertion, replacement) is selected with some probability, and for each
type, a string position to apply it is selected equiprobably, and a symbol is
selected equiprobably from the alphabet for an insertion or a replacement. For
a deterministic machine M , the result is a Markov chain of 2n vertices that
moves forward when a mutation causes another symbol to have state component
q ∈ Q and backward when a mutation causes another symbol to have state
component x.

In the construction described above, the probability of a forward mutation and
a backward mutation is the same, namely pr/(2n|Σ′|) where pr is the probability
of choosing replacement. By standard results on random walks, this implies that
the expected number of attempted mutations for the simulation to reach the
final string is O(|Σ′|n3/pr). However, by biasing the random walk in the forward
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direction, this can be reduced to O(|Σ′|n2/pr), as suggested by Bennett [2]. For
example, if we make an additional copy of every symbol ai

q such that q ∈ Q,
and treat them as equivalent in the simulation, then the probability of a forward
mutation is twice that of a backward mutation.

5 Simulating Cellular Automata

Cellular automata are a well known model of computation introduced by Von
Neumann [12], motivated by physical and biological problems. In a recent survey
paper, Kari [6] notes that cellular automata have several fundamental properties
of the physical world: they are massively parallel, homogeneous, and reversible,
have only local interactions, and facilitate formulation of conservation laws based
on local update rules. These properties match well with the features of our
mutation system model, and a detailed comparison sheds light on the power and
expressiveness of our new model. We consider one-dimensional asynchronous
reversible cellular automata with insertions and deletions because they support
universal computation [9].

A cellular automaton C = (Σ, δ) is composed of an alphabet of symbols Σ
and a set δ transition rules of the form axb↔ ayb for substitutions or ab↔ axb
for insertions and deletions, where a, b, x, y ∈ Σ. The idea is that the value of
a given cell of the automaton may change only when both its neighbors have
specific values.

For s1, s2 ∈ Σ∗, s1 can reach s2 in one step of C, denoted s1 →C s2,
if applying one transition rule to s1 yields s2. And s1 can reach s2 in C if
s1 →∗

C s2. Given an input string s ∈ Σ∗, a snapshot of C on input s is
any string s′ such that s can reach s′ in C. For example if we have the rules
{abc ↔ adc, dce ↔ dfe, fe ↔ fge}, and an input abce, the snapshots of the
computation on this input are {abce, adce, adfe, adfge}.

5.1 From Cellular Automata to Mutation Systems

Given a cellular automaton C = (Σ, δ), we describe how to construct a 2-simple
mutation system S = (Σ′, μp, f) such that for every nonempty input string
s ∈ Σ∗, the snapshots of C on input s are represented by the strings evolvable
from d(s) in S.

The simulation of a cellular automaton is more complex than the simulation of
a FSM; one step of the cellular automaton may require fourteen point mutations.
To ensure the correct coordination of these mutations, we duplicate the symbols
and also allow them to store information about one or two symbols to the left or
right. The idea is that before performing a transition of the cellular automaton,
the system “locks” the left and right neighbors of the symbol to be changed. The
additional symbol (−) marks the left and right edges of the transition. To permit
insertions and deletions in the string, there is an extra index (∗) besides 1 and
2. As an example, the following string

a1 · a2 · −b1 · bb2 · bbc
1 · c2

dd · d1
d · d2

− · e1 · e2
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represents the string abcde where c has locked its left and right neighbors prepar-
ing for a transition. The explicit concatenation operator (·) separates individual
symbols above. After a transition has been performed, symbols may unlock their
neighbors and return to having empty neighbor information.

Let J = {1, 2, ∗} be the set of indices and N = {λ}∪ {−}∪Σ ∪Σ2 be the set
of possible neighbor strings. Define the alphabet Σ′ for the mutation system as
follows.

Σ′ = {uai
v : a ∈ Σ, i ∈ J, u ∈ N, v ∈ N}.

In the symbol uai
v, a is the main symbol component, i is the index, u (resp. v)

is the left (resp. right) neighbor information. Let Σ1 denote the set of symbols
of the form ai with empty neighbor information and index i ∈ {1, 2}.

The symbol duplication map d maps Σ∗ to (Σ1)∗ by replacing each occurrence
of a symbol a by the string a1 · a2. We define a projection h1 from (Σ′)∗ to Σ∗

that maps each symbol with index 1 to its main symbol component, and maps all
others to the empty string. Thus h1(d(s)) = s for all s ∈ Σ∗. Also, for example,
h1(−a1 · aa2 · aad1 · b2

cc · c1
c · c2

−) = adc.

5.2 Defining the Fitness Function

We describe the strictly 2-testable pattern P = (PRE, MID, SUF) that deter-
mines the fitness function f of the mutation system. PRE consists of all symbols
a1 and −a1 such that a ∈ Σ. SUF consists of all symbols a2 and a2

− such that
a ∈ Σ. The set MID contains strings of length two to deal with the situations:
(1) empty neighbor information, (2) substitution rules, and (3) insertion/deletion
rules.

Empty neighbor information. To permit duplicated symbols we have a1 ·a2 for all
a ∈ Σ. To permit a boundary between symbols we have a2 · b1 for all a, b ∈ Σ.
Together with PRE and SUF, these cases ensure that f(d(s)) = 1 for every
nonempty string s ∈ Σ∗.

Substitution rules. For each substitution rule axb↔ ayb we add strings to MID
that permit d(axb) and d(ayb) to mutate to each other as follows.

To add left neighbor information − to a1 we have c2 ·−a1 and c2
− ·−a1 for all

c ∈ Σ, as well as −a1 · a2. To add right neighbor information − to b2 we have
b2− · d1 and b2− · −d1 for all d ∈ Σ, as well as b1 · b2−.

To add left neighbor information a to the symbol a2 we have −a1 · aa2, as well
as aa2 · x1 and aa2 · y1. To add right neighbor information b to the symbol b1 we
have b1

b · b2−, as well as x2 · b1
b and y2 · b1

b .
To add left neighbor information aa to the symbol x1 or y1 we have aa2 · aax1

and aax1 ·x2, as well as aa2 ·aay1 and aay1 ·y2. To add right neighbor information
bb to the symbol x2 or y2 we have x2

bb · b1
b and x1 · x2

bb, as well as y2
bb · b1

b and
y1 · y2

bb. The strings that permit both left neighbor information of aa on x1 and
right neighbor information bb on x2 (and similarly for y1 and y2) are aax1 · x2

bb

and aay1 · y2
bb.
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Fig. 2. MID strings allowing substitu-
tions for the rule axb ↔ ayb

Fig. 3. MID strings allowing insertions
and deletions for the rule ac ↔ abc

The above strings permit consecutive symbols indexed 1 and 2 only if they
have the same main symbol. However, we need to permit x to be replaced by y
and vice versa. The strings that permit this are aax1 ·y2

bb and aay1 ·x2
bb. Figure 2

shows the strings added to MID for the substitution rule axb ↔ ayb. Each line
connects two symbols forming a string in MID.

Insertion/deletion rules. For each insertion/deletion transition rule ac↔ abc we
add the following strings to MID. To add left neighbor information − to a1 we
have d2 ·−a1 and d2

− ·−a1 for all d ∈ Σ, as well as −a1 · a2. To add right neighbor
information − to c2 we have c2

− · e1 and c2
− · −e1 for all e ∈ Σ, as well as c1 · c2

−.
To add left neighbor information a to a2 we have −a1 · aa2 as well as aa2 · b1

and aa2 · c1. To add right neighbor information c to c1 we have c1
c · c2

− as well
as b2 · c1

c and a2 · c1
1. The string that permits both left neighbor information of

a on a2 and right neighbor information of c on c1 when a2 and c1 are adjacent
is aa2 · c1

c .
To add left neighbor information aa to b1 when a2 is adjacent to b1, we have

aa2 · aab1 and aab1 · b2.
To allow b to be deleted or inserted, we add strings using the ∗ index that

permit b2 to become aab∗cc and vice versa, namely aab1 · aab∗cc and aab∗cc · c1
c .

Finally we add a string that permits the insertion/deletion of b1 and aab∗cc,
namely aa2 · aab∗cc. Figure 3 shows the strings in MID for the insertion/deletion
rule ac↔ abc. Again each line connecting two symbols indicates a string in MID.

This completes the construction of MID and the mutation system S. To see
that f permits the transitions of C to be simulated, we prove the following.

Lemma 5. If s ∈ Σ∗ is nonempty and s→C t then d(s)→∗
S d(t).

Proof. If t is obtained from s by using a substitution rule to substitute ayb for
axb in s, then the sequence of point mutations in Figure 4 applied to the relevant
portion of d(s) shows that d(t) is evolvable from d(s). Symbols (if any) to the
left and right of this portion of d(s) are unchanged.

If t is obtained from s by using an insertion/deletion rule to replace abc in s
by ac, then the sequence of point mutations in Figure 5 applied to the relevant
portion of d(s) shows that d(t) is evolvable from d(s). Symbols (if any) to the
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a1 · a2 · x1 · x2 · b1 · b2

−a1 · a2 · x1 · x2 · b1 · b2

−a1 · a2 · x1 · x2 · b1 · b2
−

−a1 · aa2 · x1 · x2 · b1 · b2
−

−a1 · aa2 · x1 · x2 · b1
b · b2

−
−a1 · aa2 · aax1 · x2 · b1

b · b2
−

−a1 · aa2 · aax1 · x2
bb · b1

b · b2
−

−a1 · aa2 · aay1 · x2
bb · b1

b · b2
−

−a1 · aa2 · aay1 · y2
bb · b1

b · b2
−

−a1 · aa2 · aay1 · y2 · b1
b · b2

−
−a1 · aa2 · y1 · y2 · b1

b · b2
−

−a1 · aa2 · y1 · y2 · b1 · b2
−

−a1 · a2 · y1 · y2 · b1 · b2
−

−a1 · a2 · y1 · y2 · b1 · b2

a1 · a2 · y1 · y2 · b1 · b2

Fig. 4. Sequence of mutations to
achieve d(axb) ↔∗

S d(ayb)

a1 · a2 · b1 · b2 · c1 · c2

−a1 · a2 · b1 · b2 · c1 · c2

−a1 · a2 · b1 · b2 · c1 · c2
−

−a1 · aa2 · b1 · b2 · c1 · c2
−

−a1 · aa2 · b1 · b2 · c1
c · c2

−
−a1 · aa2 · aab1 · b2 · c1

c · c2
−

−a1 · aa2 · aab1 · aab∗cc · c1
c · c2

−
−a1 · aa2 · aab∗cc · c1

c · c2
−

−a1 · aa2 · c1
c · c2

−
−a1 · aa2 · c1 · c2

−
−a1 · a2 · c1 · c2

−
−a1 · a2 · c1 · c2

a1 · a2 · c1 · c2

Fig. 5. Sequence of mutations to
achieve d(abc) ↔∗

S d(ac)

left and right of this portion of d(s) are unchanged. Because point mutations
are reversible, the reverse of this sequence indicates how ac can be replaced by
abc. ��

5.3 Correctness of the Cellular Automaton Simulation

Theorem 2. Let C = (Σ, δ) be a cellular automaton and let S = (Σ′, μp, f) be
the 2-simple mutation system constructed from C as described above. Let s ∈ Σ∗

be a nonempty string. For any string t reachable from s in C, the string d(t)
is evolvable from d(s). Conversely, for any string s′ evolvable in S from d(s),
h1(s′) is reachable from s in C.

Proof. The first part follows by induction on the number of transitions to reach
t from s in C, using Lemma 5.

For the converse, it suffices to show that if d(s) →∗
S s′ and s →∗

C h1(s′) and
s′ →S t then h1(s′)→∗

C h1(t).
Suppose a1 is the first symbol and b2 is the last symbol of d(s). To maintain

fitness, these symbols cannot be deleted, and no symbol can be inserted before
the first or after the last. The only changes they can undergo that result in fit
strings is that a1 can be replaced by −a1 and vice versa, and b2 can be replaced
by b2− and vice versa. Thus we need only consider changes to interior symbols.

Let s′ ∈ (Σ′)∗ be any nonempty fit string. The indices of any three consecutive
symbols in s′ must be one of the seven possibilities: (1, 2, 1), (2, 1, 2), (1, 2, ∗),
(2, 1, ∗), (1, ∗, 1), (2, ∗, 1), and (∗, 1, 2).

If the deletion of a symbol from the interior of s′ yields another fit string t,
then the symbol deleted must be the middle symbol in one of the index sequences:
(1, 2, ∗), (2, 1, ∗) or (2, ∗, 1). In the first and third cases the symbols of index 1
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are unchanged and h1(t) = h1(s′). In the case of (2, 1, ∗), the three symbols in
s′ must be

aa2 · aab1 · aab∗cc,

which implies that abc ↔ ac is a rule in C. Moreover, the symbol before this
triple must be −a1 and the symbol after it must be c1

c , which means that h(t) is
obtained from h1(s′) by replacing abc by ac, and h1(s′)→C h1(t).

Analogously, if an insertion of a symbol in the interior of s′ yields another fit
string t, then only an insertion into (2, ∗) (yielding (2, 1, ∗)) results in h1(t) 
=
h1(s′). This implies that the inserted symbol and its two neighbors to the left
and right in t are as follows:

−a1 · aa2 · aab1 · aab∗cc · c1
c .

Thus, abc↔ ac is a rule of C and h1(t) is obtained from h1(s′) by replacing ac
by abc and h1(s′)→C h1(t).

If a replacement of one interior symbol of s′ by another yields a fit string t,
then either the replacement changes the index of the symbol or not. The only
possible kinds of replacements that change the index of the symbol are of the
form (1, 2, 1) ↔ (1, ∗, 1). This leaves the symbols of index 1 unchanged, and
h1(t) = h1(s′).

Thus only replacements that we must consider are replacements of symbols
of index 1 by symbols of index 1 with a different main symbol, so that h1(t) 
=
h1(s′). The indices of the replaced symbol and its two neighbors must be either
(2, 1, ∗) or (2, 1, 2). In the first case, the three symbols of s′ are of the form

aa2 · aab1 · aab∗cc,

and there is no other symbol that can replace aab1 and yield a fit string t. In the
case of (2, 1, 2) the possibilities for the symbol of index 1 are a1, −a1, a1

a, and
bba

1. When the symbol to its right is one of a2, a2−, or aa2, replacing the symbol
of index 1 in s′ by a symbol of index 1 and main symbol other than a does not
yield a fit string. Thus, the only possibilities in s′ for the symbol of index 1 and
its right neighbor are the following: (1) a1 · a2

bb, (2) bba
1 · a2

cc, (3) bba
1 · c2

dd.
In case (1) the only replacement for a1 that changes the main symbol com-

ponent is of the form ddc
1 and yields

−d1 · dd2 · ddc
1 · a2

bb · b1
b

in t. Then dcb↔ dab is a rule in C and h1(t) is obtained from h1(s′) by replacing
dab by dcb, so that h1(s′)→C h1(t).

In cases (2) and (3) the symbols to the left of bba
1 must be −b1 · bb2. The only

possible replacement for bba
1 that changes the main symbol component is of the

form bbe
1.

In case (2), the result in t is

−b1 · bb2 · bbe
1 · a2

cc · c1
c .

Thus bec↔ bac is a rule in C and h1(t) is obtained from h1(s′) by replacing bac
by bec, so that h1(s′)→C h1(t).
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In case (3), the result in t is

−b1 · bb2 · bbe
1 · c2

dd · d1
d.

Thus both bed↔ bcd and bad↔ bcd are rules in C, and h1(t) is obtained from
h1(s′) by replacing bad by bed. Though this is not necessarily a single step of C,
it is accomplished by two steps: bad →C bcd →C bed, so that h1(s′) →∗

C h1(t),
which concludes the proof of Theorem 2. ��

6 Discussion

We have introduced mutation systems to model the evolution of a string subject
to the effects of mutations and a fitness function. Some possible generalizations
of our definition may be fruitful to explore: a population of evolving strings, a
probabilistic or time-varying fitness function, or a fitness function that depends
on comparing strings in the current population.

Comparing our mutation systems to Valiant’s concept of evolvability [11] we
note that his model is designed to explore the question of what functions can
be efficiently approximated through a polynomial-time evolution process, while
our model does not have a final ideal target, but instead has a variety of evolu-
tion pathways and outcomes defined by the mutation operator and the fitness
function.

We have shown that mutation systems with point mutations and strictly 2-
testable fitness functions can represent general computation, and therefore it is
in general undecidable to predict whether one string can evolve into another in
such systems. By contrast, for any k the class of strictly k-testable languages, and
even the class of concatenations of strictly k-testable languages, are learnable in
the limit from positive data [4,8]. A promising future direction is to explore the
learnability of fitness functions given positive data derived from the evolution of
one or more strings in a mutation system.

Acknowledgements. Raonne Barbosa Vargas is now employed by Microsoft Cor-
poration. The authors thank David Eisenstat and Sarah Eisenstat for help with
aspects of this paper.
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Abstract. We introduce the definition of string language S recognized
via picture language P and prove that there is a one-to-one correspon-
dence between a linear bounded automaton (LBA) for S and a tiling
system for P . As consequence tiling systems become an alternative de-
scription for LBA that possibly exploits some geometric properties of
lines and shapes inside the rectangular pictures. We are able to show a
classification of sub-classes of context-sensitive languages via REC sub-
classes. Moreover we state some relations among languages in Chomsky’s
hierarchy (from regular up to context-sensitive) and the corresponding
size of the picture languages that recognize them.

1 Introduction

Picture languages are sets of rectangular pictures, i.e. two-dimensional arrays of
symbols chosen in a finite alphabet. Tiling recognizable picture languages were
first introduced in [6] as a two-dimensional counterpart of regular string lan-
guages. Their definition is given by extending to two dimensions a characteriza-
tion of recognizable string languages in terms of local languages and projections
(cf. [5]). A local picture language is defined by means of a finite set of 2 × 2
pictures (called tiles), and the pair of a local picture language and a projection
is called tiling system. The family of tiling recognizable languages is referred to
as REC. Family REC is a robust class which can be defined using also other
approaches (logic, automata, algebraic) and satisfies different types of closure
properties; moreover REC coincides with regular string languages in the spe-
cial case of one-row pictures ([7]). Nevertheless, we remark that, unlike regular
string languages, tiling recognizable picture languages are not closed under com-
plementation and therefore the family REC is intrinsically non-deterministic.
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Since its introduction, family REC has been intensively studied by investigat-
ing its properties, by examining relations with other models and by considering
sub-families of particular interest (see e.g. [7,2,3,4,10,11,12]). In particular, in
this paper, we will refer to the families of unambiguous, row-unambiguous and
deterministic tiling recognizable picture languages (referred to as UREC, Row-
UREC and DREC, respectively) that are defined by extending to two dimensions
the concepts of unambiguous and deterministic automata computations.Those
classes are all distinct and define a hierarchy inside REC ([1,2]).

In [10], M. Latteux and D. Simplot use picture languages to represent string
languages. The frontier of a picture p, referred to as fr(p), is defined as the
string in the top row of p, while the frontier of a picture language L, referred
to as fr(L), is the string language containing the frontiers of all pictures in
L. In [10] it is proved that the family of frontiers of tiling recognizable picture
languages is exactly the family of context-sensitive (string) languages.

The Latteux and Simplot Theorem is a quite interesting theoretical result.
Nevertheless, the way it is stated and its proof techniques do not provide a tool
to push further the result. In this paper we will put in one-to-one correspondence
LBA and tiling systems: a local picture p will represent a computation of an LBA
on its frontier in a compact way. As a consequence a tiling system can be taken as
an alternative description for an LBA and we can work to put in correspondence
REC sub-families with sub-families of context-sensitive languages.

We associate a given string s with very simple pictures p such that the first row
of p (i.e. the frontier) is equal to s while all the remaining positions contain the
blank symbol. The interpretation for this kind of pictures will be of a string put
on top of a whiteboard initialized with all blank symbols �s and this whiteboard
is the place where to write the “calculation” to accept string s. We formally give
the definition of string language recognized via picture language (where pictures
are of the simple kind just described) and prove that a string language is context-
sensitive if and only if it is recognized via a tiling recognizable picture language.
Remark that if p belongs to a tiling recognizable picture language then p is
the projection of a local picture p′ and such p′ is actually the “computation” to
accept p. Then if a string s is recognized via a picture p then the corresponding
local picture p′ will be the “calculation” to accept s.

The proof of this theorem gives an algorithm to transform an LBA into a
tiling system and vice-versa and therefore allows to consider tiling systems as
an effective device to recognize strings. We show that, very interestingly, when
we look at the local language corresponding to a tiling system we can “discover”
some geometric properties used to recognize the frontier of the picture. On the
other side, one could exploit reasoning on geometric properties of a local language
for the LBA design. We illustrate this concept with different examples.

Then, the next results are obtained by taking tiling systems as effective de-
scriptions of LBA. In particular we are able to show that recognizability via
picture languages in REC sub-classes Row-UREC and UREC will correspond to
deterministic and unambiguous context-sensitive languages, respectively. We use
a characterization of family Row-UREC in terms of snake deterministic tiling
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system given in [11] and prove that such kind of deterministic properties of the
tiling system can be inherited by the LBA.

We remark that problems on LBA can be translated in the context of tiling
recognizable picture languages. We mention here the most famous one: whether
deterministic LBA are equivalent to non-deterministic ones (or, in complexity
terminology, whether DSPACE(n) is equal to NSPACE(n)). This problem can be
therefore restated as: “Is each string language S, recognized via picture languages
in REC, recognized also via picture languages in Row-UREC?" We recall that,
as picture languages classes, Row-UREC is strictly included in REC.

Another issue we consider here, relates the size of the pictures (actually the
number of rows as function of the number of columns) with the type of the string
language in the Chomsky’s hierarchy. Remark that the size of the picture is not
a measure of space complexity but of time complexity: in fact since pictures are
local, they can be constructed row-by-row (starting from the top) maintaining
always only the last row just calculated. We prove that if S is recognized via a
picture language P then a string s ∈ S of length n is recognized via a picture
p ∈ P of O(1) or O(n) or 2O(n) rows depending whether S is regular, context-free
or context-sensitive, respectively.

2 Preliminaries

We introduce some definitions about two-dimensional languages. The notation
used and more details can be mainly found in [7].

A picture over a finite alphabet Σ is a two-dimensional rectangular array of
elements of Σ. Given a picture p, let pi,j denote the symbol in p with coordi-
nates (i, j), |p|r the number of rows and |p|c the number of columns; the pair
(|p|r, |p|c) is the size of p. The set of all pictures over Σ is denoted by Σ∗∗. A
two-dimensional language (or picture language) over Σ is a subset of Σ∗∗.

In order to identify the symbols on the boundary of a picture p, we consider
the bordered picture p̂ of size (|p|r +2, |p|c +2) obtained by surrounding p with a
special boundary symbol # 
∈ Σ. A tile is a picture of dimension (2, 2) and B2,2(p)
is the set of all sub-blocks of size (2, 2) of a picture p. Given a finite alphabet Γ ,
a two-dimensional language L ⊆ Γ ∗∗ is local if there exists a set Θ of tiles over
Γ ∪ {#} (the set of allowed blocks) such that L = {p ∈ Γ ∗∗|B2,2(p̂) ⊆ Θ} and
we will write L = L(Θ).

2.1 Tiling Recognizable Picture Languages

Tiling recognizable languages are defined as projection of local languages. More
precisely, let Γ and Σ be two finite alphabets and π : Γ → Σ be a projection (π
can be extended, in the usual way, to pictures and languages). A picture p′ ∈ Γ ∗∗

is a pre-image of p ∈ Σ∗∗ if π(p′) = p. A tiling system is a quadruple (Σ, Γ, Θ, π)
where Σ and Γ are finite alphabets, Θ is a set of tiles over Γ∪{#} and π : Γ → Σ
is a projection. A two-dimensional language L ⊆ Σ∗∗ is recognized by a tiling
system (Σ, Γ, Θ, π) if L = π(L(Θ)). The family of all tiling recognizable picture
languages over the alphabet Σ, is denoted by REC(Σ) or simply REC.
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In all the paper, we will avoid to specify the alphabet of a family of languages,
when it does not cause confusion.

Example 1. Consider the language L of square pictures over a one-letter alpha-
bet, say Σ = {a}, that is pictures with same number of rows and columns. L is
not a local language, but it belongs to REC. Indeed it can be obtained as the
projection of the local language of squares over the alphabet {a, X} in which all
the symbols in the main diagonal and below it are X , whereas the remaining
positions carry symbol a. Below it is given a picture p ∈ L together with its
pre-image p′. The reader can infer the set of tiles by taking all possible 2 × 2
sub-pictures of the bordered picture.

p =

a a a a
a a a a
a a a a
a a a a

p′ =

X a a a
X X a a
X X X a
X X X X

Observe that, given a tiling system for a language L, to check whether a given
picture p belongs to L we have to find a pre-image in L(Θ). To do this, we start a
computation process that takes p̂ and rewrites symbols in p in the local alphabet,
in a way that is compatible with the projection π and with the set of allowed
tiles. The process is accomplished following some scanning strategy (e.g. look for
a tile matching the top-left corner of the picture, and then continue filling the
positions on the first column, and so on, column by column). It terminates when
all symbols in p are rewritten in the local alphabet. Note that, in general, such
process is non-deterministic: even if a scanning strategy is fixed, at each step of
the computation there can be several choices.

Taking into account this process of computation, in [1], the definition of de-
terminism in REC was given. More precisely four types of determinism, one for
each corner-to-corner direction of reading of a picture, were introduced. Observe
that this is also the case for string languages: there can be given two notions
of determinism according to the reading direction, classical determinism (from
left-to-right) and co-determinism (from right-to-left). DREC denotes the class
of all deterministic recognizable languages, that is languages that can be rec-
ognized by a deterministic tiling system along one of the four corner-to-corner
directions. In this paper we principally deal with family DRECt, that is the class
of all languages that can be recognized by a tiling system that is deterministic
along a direction from one top corner to the opposite corner.

Still referring to the computation process, a tiling system (Σ, Γ, Θ, π) for
L ⊆ Σ∗∗ is said unambiguous if for any picture p ∈ L there exists a unique local
pre-image p′ ∈ L(Θ). L is unambiguous if it is recognized by an unambiguous
tiling system and UREC denotes the family of all unambiguous two-dimensional
languages (see [6]). Note that this notion is not directed.

In [1], the row-unambiguity was introduced as an intermediate notion between
determinism and unambiguity. There are two types of row-unambiguity, one
along the direction from top-to-bottom (t2b for short) and another one along
the opposite direction (b2t). A tiling system (Σ, Γ, Θ, π) is t2b-unambiguous
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if for any pair of two rows r1 ∈ Γ ∗∗ ∪ {#}∗∗ and s ∈ Σ∗∗, there exists at
most one local row r2 ∈ Γ ∗∗, such that π(r2) = s and B2,2(p) ⊆ Θ where

p =
# r1 #
# r2 # . A language is said row-unambiguous if it is recognized by a

tiling system that is t2b- or b2t-unambiguous. Row-UREC denotes the class of
row-unambiguous languages. In this paper we will be interested in Row-URECt,
the class of all picture languages that are recognized by t2b-unambiguous tiling
systems. Remark that DREC⊂ Row-UREC ⊂ UREC⊂ REC, (see [1]), and the
strict inclusions hold even if the alphabet is unary [2].

A tiling system (Σ, Γ, Θ, π) is snake-deterministic [11] if Γ and Θ can be
partitioned as Γ = Γ1 ∪ Γ2 and Θ = Θ1 ∪Θ2 where (Σ, Γ, Θ1, π) ((Σ, Γ, Θ2, π),
resp.) is a tiling system that is deterministic along the direction from top-left
corner (from top-right corner, resp.) to the opposite corner, and Θ1 (Θ2, resp.)

contains only tiles like a2 b2

a1 b1
( a1 b1

a2 b2
where (a1, b1) 
= (#, #), resp.) with

ai, bi ∈ Γi ∪ {#} for i = 1, 2. It is also proved that the class of all picture
languages that are recognized by t2b-unambiguous tiling systems coincides with
the class of languages recognized by snake-deterministic tiling systems.

2.2 Family REC and Context-Sensitive String Languages

An interesting result due to M. Latteux and D. Simplot points out a relation
between the family REC and the family of context-sensitive languages ([10]).

Recall that a context-sensitive (string) language is a language generated by
a grammar with no length-decreasing rules or recognized by a linear-bounded
automaton (LBA). Moreover one can always assume that such LBA use only the
input cells: for the sequel we assume that an LBA is a non-deterministic Turing
machine (TM) that uses only the portion of the tape containing the input string.
We denote by CSL the family of all context-sensitive languages and by DCSL the
family of all deterministic context-sensitive languages, i.e. those recognized by
deterministic LBA. We recall that it is an open problem whether CSL=DCSL.

Let p ∈ Σ∗∗ be a picture of size (m, n). The frontier of p is the string cor-
responding to the first row of p that is: fr(p) = p1,1p1,2 . . . p1,n. Moreover if L
is a picture language, the frontier of L is defined as fr(L) = {fr(p) | p ∈ L}. It
holds the following theorem.

Theorem 1. [Latteux, Simplot, 97] Let F be a string language. Then F is
context-sensitive if and only if there exists a picture language L in REC such
that F = fr(L).

The proof of this theorem is based on the following observations. The computa-
tion of an LBA can be described as a sequence of instantaneous descriptions and
if we write such descriptions one under the others we get a rectangular picture.
The set of so defined pictures (i.e. corresponding to all accepting computations
of a given LBA) is a language in REC. Conversely, given a tiling system for a
picture language L, we can define a context-sensitive grammar G that generates
exactly the frontiers of pictures in L by associating to each tile a rule for G.
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3 Recognition of String Languages via Picture Languages

The Latteux and Simplot Theorem (Theorem 1) together with its original proof
does not provide any tool to push further the result. Our goal is to put in corre-
spondence sub-families of context-sensitive languages with REC sub-families and
to take advantage of the geometric properties of tiling systems in the recognition
process of the strings. With this aim we will put in one-to-one correspondence
LBA and tiling systems: each local picture p will represent a computation of an
LBA on a string s = fr(p) in a compact way. As a consequence a tiling system
can be taken as an alternative description for an LBA and we can introduce
the definition of string language recognized via a tiling recognizable picture lan-
guage. Moreover we will consider much simpler picture languages (all positions
not in the frontiers contain blank symbol). The interpretation for a string recog-
nized via pictures will be of a string put on top of a whiteboard initialized with
all blank symbols �s.

We introduce the notation Σ
∗
Γ , for some alphabets Σ and Γ , to indicate the

set of pictures with first row symbols on Σ and all other symbols in Γ . When
Γ = {�} we will simply write Σ

∗
	. We will always assume that � 
∈ Σ.

Definition 1. A string language S ⊆ Σ∗ is recognized via picture language P ,
if S = fr(P ) and P ⊆ Σ

∗
	.

In the sequel we will be interested in string languages recognized via picture
languages in REC or in some REC sub-families. In this case, referring to the
mentioned interpretation for a string s recognized via a picture p, the local
picture p′, pre-image of p, will be the computation of s written in the whiteboard.

We first consider a simple example that will help to understand the ideas of
the theorem we prove at the end of this section.

Example 2. Consider the string language S = {anbn | n > 1} over Σ = {a, b}
and let P ⊆ Σ

∗
	 be the language containing pictures of n + 1 rows, whose first

row is anbn while the n rows below contain the “blank” symbol �. It is like
the anbn string put on top of two “empty” squares of side n. Language P is
tiling recognizable as a projection of the local language L over Γ = {a, b, X, Y }
of pictures such that leftmost square has all positions in main diagonal and
below filled with X , and positions above the main diagonal contain a, while the
rightmost square has all positions in main diagonal and below filled with Y and
positions above the diagonal contain b. Essentially the local language “verifies”
that under the two strings an and bn there are two equal squares. Below it is
given the picture p ∈ P with frontier a4b4 together with its pre-image p′.

p =

a a a a b b b b

p′ =

a a a a b b b b
X a a a Y b b b
X X a a Y Y b b
X X X a Y Y Y b
X X X X Y Y Y Y
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Now consider the (usual) TM for S proposed in [9] and reported below.

State\Symbol a b X Y B
q0 (q1, X, R) − − (q3, Y, R) −
q1 (q1, a, R) (q2, Y, L) − (q1, Y, R) −
q2 (q2, a, L) − (q0, X, R) (q2, Y, L) −
q3 − − − (q3, Y, R) (q4, B, R)
q4 − − − − −

It can be easily verified that there is a correspondence between the run of
this TM on a4b4 and picture p′. In particular reading the rows of p′ from top
to bottom we find the shots of the tape contents between two head reversals.
Informally we can say that the local picture p′ is a compact representation of
the LBA computation (the word “compact” is referred to the fact that each row
represents several steps of the computation). With the next theorem we will show
that this correspondence can be always made. As a consequence, tiling systems
can be taken as alternative descriptions of TM. Moreover it is interesting to
notice that the description via local language with its geometric shapes could
describe the algorithm more immediately than the table of the TM transitions.

We are now ready to state our theorem. Remark that the statement resembles
the one of Theorem 1 (instead of the whole family REC it refers to languages

in Σ
∗
	); nevertheless the proof uses very different techniques that allow us to

gain the results given in Section 4. An LBA is called sweeping if it changes head
direction and accepts only on the leftmost or rightmost symbol of the input.

Theorem 2. A string language S is context-sensitive if and only if S is recog-
nized via picture languages in REC.

Proof. (Sketch) Let S ⊆ Σ∗ be a string language recognized by an LBA A.
Without loss of generality, we may suppose that A is a sweeping automaton and
that the alphabet of symbols written by A is disjoint from Σ. Then a picture
language P recognizing S can be obtained as the language recognized by a tiling

system where the local symbols are the transitions of A. A tile
α γ
β η

, with α, β,

γ, δ ∈ Γ , is in Θ iff α and γ (β and η, resp.) are two subsequent transitions,
while the symbol written by transition α (γ, resp.) is the symbol read by β (η,
resp.). Corner and border tiles are defined according to initial and final states,
and to transitions where the direction of the head is reversed (recall that A is
a sweeping automaton). The projection maps a transition to a when the read
symbol is a ∈ Σ, and to � otherwise.

Conversely, let S ⊆ Σ∗ recognized via picture language P given by a tiling
system T . Then it is possible to associate with T , a sweeping LBA A that
recognizes fr(P ). The idea is that A, during a computation on w ∈ Σ∗, attempts
to recover, row by row, a pre-image p′ of p ∈ P such that w = fr(p). The set of
states is partitioned in the states used for moving rightwards and the ones used
for moving leftwards. While the sweeping LBA is doing the i-th scanning of w
(along some direction), if the head is in the j-th position, then it reads p′(i,j)
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and replaces it with p′(i+1,j) according to the set of tiles Θ. If the computation is
successful, then, the concatenation row by row of the content of the tape, before
the head reverses its direction, is exactly picture p′. Note that we can assume
that S is also the frontier of the corresponding local language P ′. ��

3.1 Further Examples and Remarks

Previous theorem entitles recognizable picture languages to be an effective model
of computation for context-sensitive languages. In particular the computation for
a given string w of length n is done in a rectangle with n columns and the length
of the computation is related to the number of rows of the pictures.

We show some other examples of tiling recognizable picture languages used
to recognize some popular string languages. The aim is to emphasize as the
local languages possibly exploit geometrical properties of lines and figures in a
two-dimensional space for counting and comparing symbols in the input strings.

Example 2 (cont.) Consider again language S = {anbn |n > 1} in Example 2
recognized via P . Notice that P can be also accepted as projection of a different
local language L1 of pictures where the first row contains anbn while the n rows
below contain two juxtaposed squares with a sort of “V” shapes filled with as
to the left and bs to the right, while the two outside triangles are filled with Xs
to the left and Y s to the right. The following figure represents a picture in L1

and its “geometric shapes” used to count and compare symbols from the input
string.

a a a a b b b b
X a a a b b b Y
X X a a b b Y Y
X X X a b Y Y Y
X X X X Y Y Y Y

a a a a b b b b
↘↘↘↘↙↙↙↙
↘↘↘↙↙↙
↘↘↙↙
↘↙

Notice that language L1 corresponds to an LBA that accepts strings by match-
ing the leftmost a with the last b, and then the second a with the second-to-last
b, and so on, while L in Example 2 corresponds to an LBA that matches first a
with the leftmost b, then the second a with the second b, and so on.

Another possibility is to recognize S via the language of pictures with n + 2
rows and frontier anbn: this can be obtained as projection of local language L2

that contains pictures with a diagonal stripe of Xs of width n that starts below
the as in the first row and then goes down moving one step right at each row
till it overlays all bs.

a a a a b b b b
X X X X b b b b
a X X X X b b b
a a X X X X b b
a a a X X X X b
a a a a X X X X

a a a a b b b b
↘↘↘↘
↘↘↘↘
↘↘↘↘
↘↘↘↘
↘↘↘↘
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Language L2 corresponds to another strategy: the LBA reads the string from
left-to-right and marks all the as, then reads again the string from left-to-right
and moves all marks one position right and then re-starts from left-to-right
moving all marks one position right and so on until eventually it succeeds in
moving all marks to cover all and only the bs.

Remark that techniques of above example can be applied to recognize lan-
guages of strings anbncn, or even palindromes wwR and other similar variations.

Example 3. Let S = {ww | w ∈ {a, b}∗}. S is recognized via language of pictures
with frontier ww and n + 1 rows where n is the lenght of w. The corresponding
local language is the set of pictures with first row containing ww on top of
two juxtaposed squares. The information about any symbol in the first row
is carried diagonally till the bottom border where continues to be carried one
cell rightwards, and also down vertically till the bottom border. In the bottom
positions of rightmost square it is checked whether the two symbols match.

4 Classification of String Languages by Picture Languages

In this section we use Theorem 2 and the technique introduced in its proof to
push further the result and establish a correspondence among various kinds of
tiling recognizable picture languages and sub-classes of context-sensitive string
languages. In particular we give two main classifications. The first one considers
REC sub-classes DRECt, Row-URECt, and UREC, while the second one relates
the size of the pictures (actually the number of rows as function of the number
of columns) with the type of the string language in the Chomsky’s hierarchy.

We start by considering the family of row-unambiguous tiling recognizable
languages (see Section 2).

Proposition 1. A string language S is deterministic context-sensitive if and
only if S is recognized via picture languages in Row-URECt.

Proof. (Sketch) Let S ⊆ Σ∗ be a string language recognized by a deterministic
LBA A. Also in the deterministic case, we can suppose without loss of generality,
that A is a sweeping automaton. Consider then the tiling system T , obtained as
in Theorem 2, that recognizes picture language P ∈ Σ

∗
	 recognizing S. Since A

is deterministic, then T is t2b-unambiguous and P ∈ Row-URECt.
For the converse, suppose S ⊆ Σ∗ is a string language recognized via picture

language P , where P is a t2b-row unambiguous language. Then, from [11], P is
recognized by a snake-deterministic tiling system T . Applying the construction
of Theorem 2 to T , we obtain an LBA A recognizing S that is deterministic. ��
We recall that a context-sensitive language is unambiguous if it can be recognized
by an unambiguous LBA. Using techniques as in the proof of Proposition 1 it
can be proved an analogous result for UREC and unambiguous context-sensitive
languages (UCSL). Previous results enable us to associate with REC sub-classes
their counterparts as sub-families of context-sensitive languages. We summarize
those results in the following theorem.
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Theorem 3. Let L be a string language.
1. L is CSL iff L is recognized via a picture language in REC.
2. L is UCSL iff L is recognized via a picture language in UREC.
3. L is DCSL iff L is recognized via a picture language in Row-URECt.

We consider also string languages recognized via picture languages in DRECt: we
refer to this family as L(DRECt). By similar technique as in Theorem 2, it can
be proved that L ∈ L(DRECt) iff L is recognized by a special kind of sweeping
deterministic LBA that writes only when moving left-to-right and remains in
the same state when moving right-to-left. For this we affirm that L(DRECt) is
included in the class of deterministic context-sensitive languages but we are not
able to give a precise characterization of this class.

Another interesting point of view to classify pictures that recognize strings is
to consider their sizes. Recalling the interpretation of the picture as a whiteboard
where to write the computation for the string, we remark that, in the construc-
tion of a tiling system from an LBA, the size of the picture (i.e. the “area” of
the whiteboard) is not a measure of space but of time instead (each position is
a step of the corresponding LBA). Let us give the following definition.

Definition 2. S is recognized via P within height f(n) if for any w of length n,
there exists p ∈ P with fr(p) = w such that |p|r ≤ f(n)

Proposition 2. A string language S is context sensitive if and only if it can be
recognized within height 2O(n) via a picture language in REC.

Proof. Any string language S recognized via a picture language in REC is con-
text sensitive by Theorem 2.

Let now S ∈ CSL and A be an LBA recognizing it. Consider the picture
language P ∈ REC recognizing S constructed as in the proof of Theorem 2. We
claim that for any w ∈ S of length n, there exists p ∈ P such that w = fr(p)
and |p|r ≤ kn for some constant k. Suppose by contradiction that there does not
exist a k as above, and let w ∈ S such that any p ∈ P with w = fr(p) has more
than an exponential number of rows in n. Therefore |p|r ≥ γn, where γ is the
cardinality of the local alphabet in the tiling system for P . Then a pre-image
of p has two repeated rows. By removing the part of computation of the LBA
between the two repeated rows, we obtain another valid computation of the LBA
and hence another picture pmin ∈ P with |pmin|r ≤ γn and fr(pmin) = w. ��
Proposition 3. A context-free string language S can be recognized within height
O(n) via a picture language in REC.

Proof. A language S is context-free iff there exists a constant k such that S is
recognized by an LBA that can modify the symbol in a tape cell only in its first
k visits of the cell (cf. [8]). Then the corresponding tiling system, constructed as
in the proof of Theorem 2, contains only pictures with |p|r ≤ k · |p|c. ��
Remark 1. The converse of previous Proposition 3 does not hold. For instance,
language S = {ww | w ∈ {a, b}∗} is recognized within height O(n) via a picture
language in REC as in Example 3, but it is not context-free.
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Proposition 4. A string language S is regular iff it can be recognized within
height O(1) via a picture language in DRECt.

Proof. A language S is regular iff if is recognized by a deterministic finite au-
tomaton that can be viewed as a deterministic tiling system recognizing S taken
as a language of pictures with a single row. ��
We collect the results of previous propositions in the following theorem that
relates the Chomsky’s hierarchy languages with some bounds on corresponding
tiling recognizable picture languages.

Theorem 4. Let S be recognized via a picture language in REC.
1. If S is context-sensitive then it can be recognized within height 2O(n).
2. If S is context-free then it can be recognized within height O(n).
3. If S is regular then it can be recognized within height O(1).

5 Conclusions and Future Works

The paper presented tiling recognizable picture languages as a computational
model for context-sensitive string languages. We proved that properties of sub-
families of REC can be related to properties of sub-classes of context-sensitive
languages and therefore questions on strings can be translated in the context of
pictures. In particular, denoting by L(F) the family of string languages recog-
nized via picture languages in family F, we have proved that

L(DRECt) ⊆ L(Row−URECt) ⊆ L(UREC) ⊆ L(REC)
‖ ‖ ‖

DCSL UCSL CSL

We left open the problem of characterizing class L(DRECt); moreover we do
not know if some of those inclusions are strict. Remark that we cannot use the
fact that inclusions among corresponding picture languages classes are all strict
(cf. [1]), and in fact the problem whether DCSL is equal to CSL (in complexity
theory, whether DSPACE(n)=NSPACE(n)) is a longstanding open problem.

Those problems in the “picture world” can be states as follows. Define two
languages L1 and L2 to be fr-equivalent iff fr(L1) = fr(L2) and then investigate
the quotient of REC and its sub-classes with respect to this relation.

We conjecture that L(DRECt) is strictly included in the class DCSL and
we have different candidate languages. Following the examples in this paper we
can verify that L(DRECt) includes both languages of palindromes wwr and of
squares ww, but we believe that the language of strings that contain a sufficiently
long factor of type wwr or of type ww are not in L(DRECt).
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Abstract. We construct a universal reversible Turing machine (URTM)
from first principles. We take a strict approach to the semantics of re-
versible Turing machines (RTMs), under which they can compute exactly
all injective, computable functions, but not non-injective ones. The natu-
ral notion of universality for RTMs is RTM-universality, where programs
are considered part of both input and output of a URTM.

The machine described here is the first URTM which does not de-
pend on reversibilizing any existing universal machine. The interpretive
overhead of the URTM is limited to a (program dependent) constant
factor slowdown, with no other complexity-wise cost wrt time and space.
The URTM is also able to function as an inverse interpreter for RTMs
at no asymptotic cost, simply by reversing the string representing the
interpreted machine.

1 Introduction

Reversible computation models are time-invertible, forward and backward de-
terministic. For stateful computation models this means that not only the next,
but also the previous state is uniquely defined at all times. There is a wide range
of reversible computation models, from cellular automata [9] and pushdown au-
tomata [7], over logic circuits [16,13] to quantum computing [5,14]. Reversible
computing principles also finds use in program transformations such as inver-
sion [15], reversible programming [3,17] and translation [1], and bidirectional
model transformation [12,6].

Here, we are concerned with the foundational question of universality for
reversible Turing machines (RTMs.) Universality is the (semantic) notion of
a specific machine being able to perform any computation possible within a
computation model. In programming languages, the equivalent notion is that of
a self-interpreter.

Previous work by Morita et al. exists asserting the universality (in the sense of
full Turing completeness) of an RTM [11]. On close examination, their construc-
tion implicitly allows for a semantical relaxation with respect to what function is
being computed. Specifically, one is allowed to extract part of the tape and con-
sider it the output of the computation, whereby information is irreversibly lost.

In recent work [2] we studied the RTMs under the stricter viewpoint that
the entire configuration must be considered for the output. This decouples the
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semantic functionality of RTMs from any particular transformation, such as
Bennett’s method [4]. However, under this interpretation reversibility of a ma-
chine implies injectivity of the computed function. The RTMs are then not fully
Turing complete: They cannot simulate irreversible Turing machines without
changing their functional behavior, and in fact cannot even faithfully simulate
all reversible Turing machines. To amend this, we introduced a more natural no-
tion of universality for reversible Turing machines, RTM-universality: An RTM is
RTM-universal (is a URTM) if it can simulate any RTM while also remembering
the simulated machine’s program text.

Here, for the first time, we show how to construct a 3-tape URTM from first
principles. The URTM is efficient in the sense that the asymptotic complexity
of the interpreted RTM is preserved. The interpretive overhead is limited to a
program dependent constant time factor, and there is no change in the space
behavior except for adding a short string encoding the simulated internal state.
Furthermore, the URTM can function as an inverse interpreter at no asymptotic
cost. This is the first demonstration of a URTM with such properties.

2 Reversible Turing Machines

We here define the reversible Turing machines (RTMs). We state only results
and properties relevant here. For a more complete exposition, see [2,4].

Definition 1 (Turing machine). A TM T is a tuple (Q, Σ, δ, b, qs, qf ) where
Q is a finite set of states, Σ is a finite set of tape symbols, b ∈ Σ is the blank
symbol,

δ ⊆ Δ = (Q× [(Σ ×Σ) ∪ {←, ↓,→}]×Q)

is a partial relation defining the transition relation, qs ∈ Q is the starting state,
and qf ∈ Q is the final state. There must be no transitions leading out of qf nor
into qs. Symbols ←, ↓, → represent the three shift directions (left, stay, right).

Note that we use a triple format for the transition relation, with two kinds of
rule. A symbol rule (q, (s, s′), q′) ∈ δ says that in state q, if the tape head is
reading symbol s, write s′ and change into state q′. A move rule (q, d, q′) ∈ δ
says that in state q, move the tape head in direction d and change into state q′.
This is easily extended to k-tape machines, where we have

Δ = (Q× [(Σ ×Σ)k ∪ {←, ↓,→}k]×Q) .

The configuration of a TM is a tuple (q, (l, s, r)) ∈ Q×(Σ∗×Σ×Σ∗), where q is
the internal state, l, r ∈ Σ∗ are the left and right parts of the tape (as strings),
and s ∈ Σ is the current symbol being scanned. A TM T in configuration C
leads to configuration C′, written as T � C � C′, in a single computation step
in the obvious manner defined by the transition relation.

Definition 2 (Local fwd/bwd determinism). A TM T = (Q, Σ, δ, b, qs, qf )
is local forward deterministic iff for any distinct pair of triples (q1, a1, q

′
1) ∈ δ and
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(q2, a2, q
′
2) ∈ δ, if q1 = q2 then a1 = (s1, s

′
1) and a2 = (s2, s

′
2), and s1 
= s2. A TM

T is local backward deterministic iff for any distinct pair of triples (q1, a1, q
′
1) ∈ δ

and (q2, a2, q
′
2) ∈ δ, if q′1 = q′2 then a1 = (s1, s

′
1) and a2 = (s2, s

′
2), and s′1 
= s′2.

We say a TM is reversible iff it is locally forward and backward deterministic.
As examples, the rules (q, (a, b), p) and (q, (a, c), p) respect backward deter-

minism (but not forward determinism); rules (q, (a, b), p) and (r, (c, b), p) are
not backward deterministic; and neither are (q, (a, b), p) and (r,→, p).

The semantic function of a TM is defined by its input/output behavior on
standard configurations. A TM is in standard configuration iff the tape head is
to the immediate left of a finite, blank-free string s ∈ (Σ\{b})∗, and the rest of
the tape is blank, i.e., it is in configuration (q, (ε, b, s)) for some state q.1

Definition 3 (String transformation semantics). The semantics [[T ]] of a
TM T = (Q, Σ, δ, b, qs, qf ) is given by the relation

[[T ]] = {(s, s′) ∈ ((Σ\{b})∗ × (Σ\{b})∗) | T � (qs , (ε, b, s)) �∗ (qf , (ε, b, s′))} .

A computation with a TM is as follows: From starting state qs with input s in
standard configuration (qs , (ε, b, s)), run the machine until it halts in standard
configuration (qf , (ε, b, s′)) with output s′, or diverges. We say T computes func-
tion f iff [[T ]] = f . Under this semantics, the reversibility of individual steps
leads directly to injectivity in terms of functional behavior.

Theorem 1 (RTMs are injective [2]). If T is an RTM, then [[T ]] is an in-
jective function.

Lemma 1 (RTM inversion, Bennett [4]). Given an RTM T = (Q, Σ, δ, b,

qs, qf ), the RTM T−1 def= (Q, Σ, inv(δ), b, qf , qs) computes the inverse function
of [[T ]], i.e. [[T−1]] = [[T ]]−1, where inv : Δ→ Δ is defined as

inv (q, (s, s′), q′) = (q′, (s′, s), q) inv(q,←, q′) = (q′,→, q)
inv (q, ↓, q′) = (q′, ↓, q) inv(q,→, q′) = (q′,←, q) .

This means that an RTM can be inverted into another RTM very easily.

Theorem 2 (Bennett’s method [4]). Given a 1-tape TM T , there exists a
3-tape RTM B(T ), s.t. [[B(T )]](x) = (x, [[T ]](x)).

This seminal result states that any TM can be reversibilized, i.e. turned into
an RTM. It is important to note that Bennett’s method does not not preserve
semantics, [[T ]] 
= [[B(T )]], as the output of B(T ) includes the input x to T .2

Theorem 3 (Expressiveness [4,2]). The RTMs can compute exactly all in-
jective computable functions. That is, for every 1-tape TM T such that [[T ]] is an
injective function, there is a 3-tape RTM T ′ such that [[T ]] = [[T ′]].
1 The empty string ε denotes the infinite string of blanks bω, and is usually omitted.
2 Output values that are added to ensure reversibility are known as garbage in

reversible computing.
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Thus, even though Theorem 1 restricts RTMs to injective (computable) func-
tions, all of these are nevertheless in scope. Finally, we only need 1 tape and 3
symbols for any RTM computation.

Theorem 4 (Robustness [2]). Let T be a k-tape, m-symbol RTM. Then there
exists a 1-tape, 3-symbol RTM T ′ s.t.

[[T ]](x1, . . . , xk) = (y1, . . . , yk) iff [[T ′]](e(〈x1, . . . , xk〉)) = e(〈y1, . . . yk〉) ,

where 〈·〉 is the convolution of tape contents, and e(·) is a binary encoding.

This is used to simplify our construction of a universal RTM, below.

2.1 Universality for RTMs

A universal machine is a machine that can simulate the (functional) behavior of
any other machine. Usually, a universal TM U is defined as a self-interpreter for
Turing machines:

[[U ]](�T �, x) = [[T ]](x) .

Here, �T � ∈ Σ∗ is a Gödel number (or program text) representing some TM
T . However, [[U ]] is a non-injective function (even if T has to be an RTM), so
the RTMs are not universal in the classical sense. In [2], the authors therefore
argued to define universality for the RTMs as follows.

Definition 4 (RTM-universality [2]). An RTM UR is RTM-universal (or, a
URTM) iff for all RTMs T and all (blank-free) inputs x ∈ Σ∗,

[[UR]](�T �, x) = (�T �, [[T ]](x)) .

Theorem 5 (URTM existence [2]). There exists an RTM UR, such that UR

is RTM-universal.

This follows directly from the expressiveness of the RTMs, Theorem 3.

3 A First-Principles URTM

We shall now describe the design and inner workings of a URTM constructed
from first principles.

Besides novelty, our main motivation for constructing such a machine is to
avoid any use of reversibilization and to limit the interpretive overhead to a
constant factor. Nothing forces us to mechanically reversibilize an irreversible
(classically universal or RTM-universal) machine when constructing a URTM,
and reversibilizations come with considerable drawbacks. Most importantly, they
change the asymptotic complexities of the programs. For instance, the URTM of
Theorem 5 [2] relies on Bennett’s trick [4], which means that the URTM uses as
much (temporary) space as time, regardless of the space usage of the interpreted
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program. This change in complexity is a highly undesirable side effect of using
reversibilization.3

Such asymptotic inefficiency is not necessary: A URTM can (and should)
conserve the asymptotic complexities of the interpreted machines (up to a pro-
gram dependent constant.) However, no URTM with such properties has been
exhibited until now.

Structure and Scope. We know that the 1-tape, 3-symbol RTMs are sufficient
to express every injective computable function. We can therefore restrict our
URTM to interpret exactly these machines. (We shall refer to the interpreted
machine as T .)

We aim for a “textbook” structure for our URTM, with three tapes:

1. The first work tape will directly correspond to T ’s single tape.
2. The second program tape will hold the program text �T � (described below.)
3. The third state tape (blank at start and halt) will hold the encoding of the

internal state of the interpreted machine T during the simulation (using the
same encoding used for states in �T �.)

Our focus here is on simplicity and efficiency, rather than minimization, so it
shall not concern us that the URTM has a large number of states and symbols.
However, for the same reason we shall not show the complete rule table here.

Program Encoding. We encode the interpreted 1-tape, 3-symbol machine
T = (Q, {b, 0, 1}, δ, b, qs, qf ) by a program text �T � as follows: The program is
a string listing the rules in δ. The first rule in this program text must be the
single rule that leaves the starting state qs, and the final rule must be the single
rule that enters the halting state qf . With rules individually translated as below,
such a string is sufficient to uniquely specify T .4

For the actual string �T � we use the alphabet Σ = {b, 0, 1, B, S, M, #}. The two
rule types (symbol and move) are translated by

trans(q, (s, s′), q′) = S#encQ(q)#encΣ(s)encΣ(s′)#rev(encQ(q′))#S
trans(q, d, q′) = M#encQ(q)#encD(d)#rev(encQ(q′))#M ,

where encQ : Q → {0,1}	log |Q|
 is some injective binary encoding of the states
in Q, and where

encΣ(s) =

{
B if s = b

s otherwise ,
encD(d) =

⎧⎪⎨⎪⎩
10 if d =←
BB if d = ↓
01 if d =→ ,

encode the 3 symbols of T and the possible directions. Finally, rev(·) simply
reverses a string. The use of the special symbol B rather than the actual blank
3 In addition to the functional redundancy of conserving the inputs, this complexity-

wise inefficiency is a reason for discarding Bennett’s suggestion of B(U) as a universal
machine.

4 Note that a specific T may have more than one representation, as δ is unordered.
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symbol b ensures that the encoding of a given machine will be a blank-free
string that can be given in standard configuration form. As an example, the
simple RTM T = ({q0, q1, q2, q3}, {b, 0, 1}, δ, b, q0, q3), with transition relation

δ = {(q0,→, q1), (q1, (0, 1), q2), (q1, (1, 0), q2), (q2,←, q3)} ,

can be represented by program text

�T � = M#00#01#10#MS#01#01#01#SS#01#10#01#SM#10#10#11#M ,

where encQ is given by q0 	→ 00, q1 	→ 01, q2 	→ 10 and q3 	→ 11.
This encoding has the great advantage that we can perform program inver-

sion by simply reversing the string, rev(�T �) = �T−1�. (String reversal can be
performed in linear time by a simple 2-tape RTM.)

URTM Program. The URTM program has the following overall structure.

1. Copy the starting state qs (first state of first rule) onto the state tape.
2. Sequentially try to apply each rule on the program tape, from left to right.
3. When all rules have been tried, compare the halting state qf (last state of

last rule) with the encoding of the current state qc (on the state tape). If
identical, clear qc reversibly, rewind the program tape, and halt.

4. If qc and qf are not identical, rewind the program tape head and go to 2.

Thus, the URTM program consists of two nested loops: an inner loop where we
try to apply each of the rules in the interpreted program to the current simulated
configuration, and an outer loop where we test for the halting condition.

This is a straightforward and well-known design for a universal machine. The
difficulty lies in that it now has to be done completely reversibly, which poses
considerable challenges. For instance, there is control flow confluence at step 2,
which is a source of backward non-determinism. In this case the situation is
resolved by testing the equality of the simulated state with the starting state:
They are only equal at the start of the simulation (i.e., if we came from step
1), and (by definition) must be different thereafter (i.e., if we came from step
4). This is closely related to the use of entry assertions in loops in reversible
programming [17].

Fig. 1 shows a state diagram of the program: nodes are states, and edges
are the actions of the associated rules. We have used a notation mixing or-
dinary state diagrams with reversible flowcharts [18]. The diamond (test) and
circle (assertion) with inscribed expressions are reversible control flow operators
(CFOs.) The expression of the assertion must be true when entering from the
branch marked “true”, and false if entering from the branch marked “false”. The
CFOs are here used as shorthand for RTM programs for comparing strings, as
described below.

String Comparison. A central functionality that we rely on throughout the
machine is string comparison. We must continuously compare the encoding of
the current state (on the state tape) with the encodings of states in the rules
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Fig. 1. Overall URTM program structure. The inner loop (topmost, written in ordinary
state diagram form) sequentially tries to apply each rule on the program tape, and the
outer loop (bottommost, written with shorthand reversible flowchart notation) tests
for the halting (and starting) conditions. The symbol rule and move rule phases test for
and apply the current rule on the program tape, passing over it in process. The write
and clear phases initialize and clear the state tape. Edges with the symbolic variable α
encode for three different transitions, with α ∈ {b, 0, 1}.

of the interpreted machine (on the program tape). How does this work in the
reversible setting?

Assume that we want to check strings #s1 . . . sn# and #t1 . . . tn# (each on a
separate tape) for equality, moving the tape heads from the starting # to the
terminating # in the process. As usual, we can scan the cells from left to right
until either the termination symbol # is reached, or a mismatch is found. If the
rightmost # symbol is reached without a mismatch, then the strings are equal
(and this information is stored in the internal state). If there is a mismatch,
however, then we cannot simply pass directly over the rest of the string, like
one would do in the irreversible case.5 Instead, we rewind until the starting #
and then pass obliviously over both strings until the string terminator is found.
Fig. 2 shows a transition diagram for this functionality. Note that this is done
without writing anything to any of the tapes. Also note that the comparison still
takes only linear time, the same as the irreversible case.

A central insight from reversible flowcharts tells us that the inverse of a test
(a conditional split in control flow) is an assertion (a conditional join of control
flow) [18]. Thus, if we invert the transition diagram in Fig. 2 as specified in
Lemma 1, we get an RTM program that can merge two control branches if we
know two strings are equal in one branch, and different in the other. We did this
in the overall URTM program in Fig. 1.

5 The first mismatch is special, in that the prefixes preceding it are equal. If we only
do a single pass of the strings, then the resulting machine cannot be reversible: In
reverse mode, it would have to predict exactly when the prefixes are equal without
having visited them which is clearly impossible.
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Fig. 2. 2-tape RTM state transition diagram for comparing strings #s1s2 . . . sn# and
#t1t2 . . . tn# reversibly. (The reader is encouraged to verify the reversibility of the tran-
sitions.) The tape heads start at the left # and end at the right #. Edges with symbolic
variables α and β encode multiple rules, subject to side conditions (e.g., that α �= #).

Testing and Applying a Rule. We can distinguish symbol and move rules
by their two encompassing S or M symbols, so we have separate subroutines for
each case. We shall here only show the more involved symbol rule.

Application of a given transition rule (q, (s, s′), q′) given current state qc and
current symbol sc is done as follows: We first compare states q and qc. If they
match, we compare symbols s and sc. If these also match, we apply rule, i.e., per-
form the substitution specified by the rule, changing the current state to q′ and
the current symbol to s′. (Appendix A shows the straight-line state transition
diagram for this.)

This means that there are three distinct branches for the control flow. An
irreversible machine would be able to simply merge these directly at the exit.
This is not an option in the reversible setting, as it breaks backward determinism.
We solve this problem as follows.

We have two disjoint branches where the rule was not applicable: One with a
state mismatch q 
= qc, and one where the states matched q = qc but the tape
symbols were different s 
= sc. Thus, we can reversibly merge the control flow of
the two possible failures by comparing the current state to the source state of
the symbol rule, using the inverted string comparator above.

The key problem is to merge the branch where the rule was applied to the
one where it was not. For this we exploit the reversibility of the interpreted ma-
chine. Specifically, only if rule (q, (s, s′), q′) was just applied to cause the step
T � (q, (l, s, r)) � (q′, (l, s′, r)) can the current state and symbol be q′ and s′

simultaneously: reversibility guarantees it. With this insight, we can perform es-
sentially the inverse of the testing we did for applicability to merge the branches.

A reversible flowchart for testing and application of a symbol rule is shown in
Fig. 3. We have left out a few unimportant details (such as moving the program
tape head across string terminators, etc.) Note the use of (reversible) string
comparison for both splits and joins in control flow.

Since there is a fixed number of string comparisons, the symbol rule subroutine
only takes time linear in the size of the rule, and importantly does not need to
inspect any of the other rules in the program. So, even though reversibility is
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qc = q

sc = s

qc = q

apply rule sc = s′

qc = q′

qc = q′
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Fig. 3. Reversible flowchart for application of a symbol rule (q, (s, s′), q′), given current
state qc and current symbol sc. The string comparisons are (implicitly) organized such
that the program tape head moves from the left S in the encoding of the rule to the
right S.

a global property of a program, we can still rely on it for the application of
individual rule as a peephole property.6 Note also that the sole change to the
tape contents is the substitution of symbols on the work tape, and possibly an
update of the state tape.

The case of the move rule is similar.

Asymptotic Complexity. In each pass over the program text at least one
rule is applied and the work and state tapes are updated. This means that the
interpretation cost in terms of time behavior is a slowdown proportional to the
size of the program. A similar program dependent slowdown is also seen for
irreversible UTMs. With respect to space, the URTM completely follows the
interpreted machine, with only the addition of the string encoding the current
simulated state (dominated by the size of the program).

Given a specific program �T �, the URTM thus conserves the asymptotic com-
plexities of the machine T .

Inverse Interpretation. As mentioned, our chosen encoding allows for ex-
tremely simple program inversion, rev(�T �) = �T−1�. This means that we can
use the URTM for reversible inverse interpretation: Simply apply string reversal
to the program before and after running the URTM. Let R1 be an RTM that
reverses its first argument, R1(x, y) = (rev(x), y). We have that

[[R1 ◦ U ◦R1]] (�T �, y) = (�T �, [[T−1]](y)) .

This completes our presentation of the URTM.

4 Related Work

In the recent work [2] the authors studied reversible Turing machines from a
programming language viewpoint, defined RTM-universality, and showed the
results summarized in Sect. 2 about the expressiveness and robustness of the
6 The reliance on the reversibility of the interpreted machine explains why our URTM

is not a general UTM: It will get stuck if the interpreted program is not reversible.
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1-tape 3-symbol RTMs. These results form the theoretical basis for the URTM
developed in this paper.

Morita et al. have also studied RTMs [11,10] and other powerful reversible
computation models, including cellular automata [9]. In [11] a small universal
RTM was proposed, which implements an interpreter for a cyclic tag system (a
Turing complete formalism.) However, under our strict semantics approach, the
proposed machine does not demonstrate universality (or RTM-universality), as
the halting configuration encompasses not just the program and output, but
also the entire string produced by the tag system along the way, analogous to a
Landauer embedding [8]. Of course, the intent with their machine also appears
to be rather different from ours. We did not aim for a minimal machine in terms
of states and symbols, and allowed ourselves 3 tapes compared to only 1 in [11].

5 Conclusion

The study of reversible computation models complements that of deterministic
and non-deterministic models. Despite a long history, the fundamental properties
of reversible computation models are still not well-understood. In our approach,
where reversibility of a Turing machine implies injectivity of its semantical func-
tion, we have that reversible Turing machines (RTMs) are not quite Turing
complete, but still expressive enough to be universal for their own class with
the natural concept of RTM-universality (which allows a universal machine to
remember the interpreted program text).

We here showed the first RTM-universal reversible Turing machine (URTM)
constructed from first principles. The resulting machine is a very clean and simple
design. We did not have to rely on reversibilization techniques, and the URTM
never writes any temporary values to tape, except for the constant-sized string
encoding the current simulated state. The URTM interprets 1-tape 3-symbol
RTMs with a program dependent constant factor slowdown (bounded by the
size of the interpreted program). Importantly, there are no other change in the
time and space behavior as compared to the interpreted machine. Thus, for in-
dividual machines the URTM is effectively complexity preserving, which has not
been seen before with reversible Turing machines. In addition, the URTM is also
able to function as an inverse interpreter for running RTM programs backwards
by simply reversing the program text, again with no impact on asymptotic com-
plexity. These positive qualities were made possible by explicitly exploiting the
promise of reversibility of the interpreted machine in the URTM design.

We conclude that the RTMs can simulate themselves efficiently.
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Appendix A

Rule Application
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Above is given an RTM state transition diagram for applying rule
(
q, (s, s′), q′

)
(represented on the program tape) given that the current interpreted state qc

(on the state tape) is q, and the current interpreted symbol (on the work tape)
is s. States q0 through q3 (corresponding to clear qc = q) deletes the current
interpreted state q from the state tape; states q4 through q7 (corresponding to
write qc = q′) substitutes the current interpreted symbol s on the first tape with
s′; states q8 though q11 writes the new interpreted state q′ on the state tape. α†

in the q4 to q5 and q6 to q7 transitions is b if α = B and α otherwise.
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Abstract. There are many decision problems in automata theory (in-
cluding membership, emptiness, emptiness of intersection, inclusion and
universality problems) that for some classes of tree automata are NP-
hard. The study of their parameterized complexity allows us to find
new bounds of their non-polynomial time algorithmic behaviors. We
present results of such a study for classical tree automata (TA), rigid
tree automata (RTA), tree automata with global equality and disequal-
ity (TAGED) and t-DAG automata.

1 Introduction

Parameterized complexity. In the classical complexity theory the complexity
of a problem is measured by the amount of a resource (time or space) required
to solve the problem, which is presented as a function of the size of the input of
the problem. There are many problems that are hard in this theory, but appear
not to be so hard under a more refined analysis of complexity that takes into
account the structure of the input data. A notable example of such a problem is
LTL (Linear Temporal Logic) model checking (i.e., the problem if a given Kripke
structure satisfies a given formula of the logic LTL) in the area of automated
verification [11]. The problem is hard in classical complexity theory, where we
consider input as a whole, but it becomes tractable if we look into the structure
of the input and assume that the “hard” part (here, the checked formula) is
relatively small in comparison to the “easy” part (the checked Kripke structure).

Parameterized complexity [7] [9] gives a framework for analysis of such prob-
lems. In this theory, an instance x of a problem comes together with a parameter
k (typically, the size of some part of the input x). If a problem is decidable in
time f(k)p(|x|) for some function f and some polynomial p, then the problem
is considered to be tractable (with respect to the parameter k) and is called
fixed-parameter tractable. There are two fundamental hierarchies of problems
that are not known to be fixed-parameter tractable: the W-hierarchy and the
A-hierarchy. It is believed (but there is no proof of that, similarly as there is no
proof of P
=NP) that they do not collapse, so if one proves that a problem is hard
for some levels of these hierarchies, then the existence of efficient algorithms for
this problem is unlikely.
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Tree automata. The theory of finite tree automata [6] is a straightforward ex-
tension of the theory of finite word automata. The main task of this theory is to
provide a finite representation for infinite sets of terms, with efficient operations
for manipulating these sets, and with decidable basic decision problems. In this
paper we investigate parameterized complexity of NP-hard problems for tree au-
tomata. In addition to classical tree automata we also consider recent extensions
like rigid tree automata (RTA), automata with global constraints (TAGED) and
automata on DAG representations of trees (t-DAG). It was known that these ex-
tensions gain additional expressive power for the price of harder (in many cases
NP-hard) decision problems.

Our contribution. Our results are summarized in Table 2 at the end of the pa-
per. In particular, we show that for classical tree automata the inclusion problem
and the universality problem parameterized by the number of states are para-co-
NP-hard. For RTA and TAGED automata the membership problem parameter-
ized by the number of states is W[2]-hard; parameterized by the size of the input
term and the size of the signature it is in W[1]. We also show that for t-DAG
automata the membership problem parameterized by the size of a t-dag and the
size of a signature is W[1]-complete and parameterized by the number of states
of the input automaton it is para-NP-complete while the k-emptiness problem
parameterized by k and the size of a signature is W[1]-complete. A consequence
of all these hardness (which includes completeness) results is that these problems
are not fixed-parameter tractable (unless the W-hierarchy is not strict). This is
rather a bad news for the theory of tree automata, and it was quite surprising
for us — we expected at least some of these problems to be fixed-parameter
tractable.

Related work. We are not aware of any work on parameterized complexity of
decision problems for tree automata. The closest results [12] concern automata
on words. It is shown there that the k−∩-EMPTINESS problem (see Section 3.3
for the definition of the problem) parameterized by either |Σ|+ k, |A| + |Q| or
|Σ|+|Q| is fixed-parameter tractable while parameterized by |A|+k is W[1]-hard
and parameterized by |Q|+ k is W[2]-hard. From the proofs it is not difficult to
infer that ∩-EMPTINESS parameterized by the number of intersected automata
is W[1]-hard.

2 The Parameterized Complexity Theory

Below we recall the most important concepts from the parameterized complexity
theory that are used in this paper ([7],[9]).

Definition 1. A parameterized problem over an alphabet Σ is a pair (A, κ)
consisting of a set A ⊂ Σ∗ and a function κ : Σ∗ → N. The function κ is called
a parameterization of the problem.

Definition 2. Let (A, κA) and (B, κB) be parameterized problems over Σ and Γ
respectively. An FPT-reduction of (A, κA) to (B, κB) is a mapping F : Σ∗ → Γ ∗
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such that for every input x ∈ Σ∗ we have x ∈ A⇔ F (x) ∈ B, there exist a function
h and a polynomial p such that for every x ∈ Σ∗ the result F (x) is computable in
time h(κA(x))p(|x|) and there exists a function g such that for every x ∈ Σ∗ we
have κB(F (x)) � g(κA(x)).

We say that a parameterized problem (A, κ) is fixed parameter tractable or that
it is in the class FPT (respectively, it is in the class para-NP) if there exists
a deterministic (respectively, nondeterministic) algorithm that for all x ∈ Σ∗

decides whether x ∈ A in time f(κ(x))p(|x|), where f is a computable function
and p is a polynomial. A parameterized problem (A, κ) is in the class para-
co-NP class if its complement (Σ∗\A, κ) is in the para-NP class. W[P] is the
class of parameterized problems (A, κ) such that there exists a nondeterministic
algorithm that for all x ∈ Σ∗ decides whether x ∈ A in time f(κ(x))p(|x|) and
uses g(κ(x)) log |x| nondeterministic steps where f, g are computable functions
and p is a polynomial.

The W-hierarchy is a fundamental hierarchy of problems that are not known
to be fixed-parameter tractable. For the purpose of the current paper it is not im-
portant how exactly the levels of this hierarchy are defined; it is more important
that the inclusions

FPT ⊆W[1] ⊆W[2] ⊆ . . . W[P] ⊆ para-NP.

are known to be true (and despite a lot of research already done, they are not
known to be strict or to collapse). The following problems are known to be
complete for the respective levels of these hierarchies (see [9] for proofs). To
simplify the notation, we write values of parameter functions next to inputs of
problems instead of treating parameters as separate functions.

The problem of parameterized model checking for Σ1-formulas and the pa-
rameterized clique problem are W[1]-complete. A clique for a graph G = (V, E)
is a set X ⊆ V such that for every v, v′ ∈ X there is an edge {v, v′} ∈ E.

Problem (p-MC(Σ1)). Instance: A structure A and a first-order formula φ with
quantifier prefix ∃∗. Parameter : |φ|. Question: A |= φ?

Problem (p-CLIQUE). Instance: A graph G and k ∈ N. Parameter : k. Question:
Is there a clique of k elements in G ?

The problem p-DOMINATING-SET is W[2]-complete. A dominating set for a
graph G = (V, E) is a set X ⊂ V such that for every v ∈ V either v ∈ X or
there exists v′ ∈ X such that {v, v′} ∈ E.

Problem (p-DOMINATING-SET). Instance: A graph G and k ∈ N. Parameter :
k. Question: Is there a dominating set of k elements in G ?

The parameterized colorability problem is para-NP-complete. Its dual is para-
co-NP-complete. We say that a graph G = (V, E) is k colorable if there exists a
function α : V → {1, . . . , k} such that for every v, v′ ∈ V if α(v) = α(v′) then
{v, v′} /∈ E.
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Problem (p-COLORABILITY). Instance: A graph G and k ∈ N. Parameter : k.
Question: Is G k-colorable?

Problem (p-NON-COLORABILITY). Instance: A graph G and k ∈ N. Param-
eter : k. Question: Is G a non-k-colorable graph?

3 Finite Automata

3.1 Preliminaries

Before discussing different types of finite automata on trees we introduce a basic
terminology connected with this subject. This is standard terminology when
dealing with tree automata [6].

A signature Σ is a finite set of function symbols with their arity. A term over a
signature Σ is either a constant symbol from Σ or has the form f(t1, t2, . . . , tn),
where f ∈ Σ is an n-ary function symbol and t1, t2, . . . , tn are terms. We identify
terms with their tree representations, so we use both notions of a tree and
a term interchangeably. A size of a term t (in this paper denoted by |t|) is
a number of subterms of this term (or, equivalently, a number of vertices in
its tree presentation). A language over a signature Σ is a set (not necessarily
finite) of terms over Σ. The positions Pos(t) in a term t are sequences of positive
integers (ε, the empty sequence, is the root position; generally a number sequence
represents a node as the path of argument-order edges followed from the root
to get to that node). Hence t can be seen as a function from its set of positions
Pos(t) into a set of function symbols Σ. By t|p, where t is a term and p ∈ Pos(t),
we denote a subterm of t at the position p. A DAG representation of a term (in
short, a t-dag) over a signature Σ is a directed, acyclic, ordered graph with
vertices labeled with symbols from Σ such that if a vertex is labeled with an
n-ary symbol then it has n immediate successors. Moreover, it cannot contain
two different vertices representing the same subterm. The size of a t-dag is the
number of its vertices.

3.2 Classes of Automata

In this section we present the models of automata we are interested in. All
considered automata are nondeterministic.

Classical Tree Automata (TA). This class of automata is described with
details in [6].

Definition 3. A tree automaton (TA) is a 4-tuple 〈Σ, Q, F, δ〉, where Σ is a
finite signature, Q is a finite set of states, F ⊆ Q is a set of final states and δ is
a set of transition rules of the form f(q1, q2 . . . , qn)→ q with q, q1, q2 . . . , qn ∈ Q
and f ∈ Σ of arity n.

An automaton starts a computation at the leaves of a tree and moves upward
to the root associating inductively states with subtrees in such a way that its
transition rules are fulfilled. The size of a tree automaton A = 〈Σ, Q, F, δ〉 is
equal to |Q|+ |Σ|+ |δ| and is denoted by |A |.
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Definition 4. A run of a TA automaton 〈Σ, Q, F, δ〉 on a term t is a map-
ping r : Pos(t) → Q such that for every position p ∈ Pos(t), if t(p) = f where
f is a n-ary symbol in Σ, r(p) = q and r(pi) = qi for all i ∈ {1, . . . , n} then the
transition f(q1, q2, . . . , qn) → q belongs to δ. A run is successful if it maps the
root of t to a final state.

An automaton A accepts a tree t if there exists a successful run of A on t. The
set of all trees accepted by A is called the language of A and is denoted L (A ).

Tree Automata with Global Equality and Disequality Constraints
(TAGED). The TAGED class is described with details in [8].
Definition 5. A tree automaton with global constraints (TAGED) is a
6-tuple 〈Σ, Q, R=, R�=, F, δ〉, where 〈Σ, Q, F, δ〉 is a tree automaton and R=, R�=
are binary relations on Q.

Definition 6. A run of a TAGED automaton 〈Σ, Q, R=, R�=, F, δ〉 on a
term t is a mapping r that is a run of TA 〈Σ, Q, F, δ〉 on t satisfying additional
conditions for all p1, p2 ∈ Pos(t):

(r(p1), r(p2)) ∈ R= ⇒ t|p1 = t|p2 and (r(p1), r(p2)) ∈ R�= ⇒ t|p1 
= t|p2 .

Rigid Tree Automata (RTA). The RTA class is presented in [10]. It is a
restriction of the TAGET class where some states are identified as rigid.
Definition 7. A rigid tree automaton (RTA) is a 5-tuple 〈Σ, Q, R, F, δ〉,
where 〈Σ, Q, F, δ〉 is a tree automaton and R ⊂ Q is a set of rigid states.
During a computation of an RTA automaton all subtrees associated with one
rigid state must be equal.
Definition 8. A run of an RTA automaton 〈Σ, Q, R, F, δ〉 on a term t is a
mapping r that is a run of TA 〈Σ, Q, F, δ〉 on t satisfying for all p1, p2 ∈ Pos(t)
an additional condition: r(p1) = r(p2) ∈ R ⇒ t|p1 = t|p2 .

Automata on DAG Representations of Trees (t-DAG Automata). The
t-DAG class is introduced in [4] and used in [5] for solving set constraints. It
is a class of automata running on dag representations of terms. In other words,
a t-DAG automaton is a tree automaton that with equal subtrees of a tree
associates equal states. Using the notation from Definition 8 it means that
t|p1 = t|p2 ⇒ r(p1) = r(p2). In this sense it is an automata class dual
to the RTA class.
Definition 9. A t-DAG automaton is a 4-tuple 〈Σ, Q, F, δ〉, where Σ is a
finite signature, Q is a finite set of states, F ⊂ Q is a set of final states and δ is
a set of transitions of a form f(q1, q2 . . . , qn) → q with q, q1, q2 . . . , qn ∈ Q and
f ∈ Σ of arity n.

Definition 10. A run of a t-DAG automaton 〈Σ, Q, F, δ〉 on a t-dag G is
a mapping r from the set of nodes of G to the set Q such that for every node v
of G labeled with n-ary symbol f ∈ Σ, if v1, v2, . . . , vn are successors of v, then
f(r(v1), r(v2), . . . , r(vn)) → r(v) belongs to δ. A run is successful if it maps the
root of G to a final state.
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3.3 Parameterized Decision Problems for Finite Automata on Trees

We introduce some parameterized decision problems for finite automata on trees.
By Q we denote the set of states of an automaton and by Σ its signature. By k we
denote a unary encoded number. For each problem different parameterizations
can be considered.

Problem (EMPTINESS). Instance: An automaton A . Parameter : |Q|, |Σ| or a
sum of them. Question: Is the language recognized by A empty?

Problem (k-EMPTINESS). Instance: An automaton A and k ∈ N. Parameter :
|Q|, |Σ|, k or a sum of some of them. Question: Does there exist a tree/t-dag of
size k accepted by A ?

In the following problems all automata in A are defined over the same signa-
ture Σ. By |Q| we denote the maximal number of states of an automaton from
A.

Problem (∩-EMPTINESS). Instance: A set of automata A = {A1, A2, . . . , An}.
Parameter : |Q|, |Σ|, |A| or a sum of some of them. Question: Does there exist a
tree/t-dag accepted by all automata from A?

Problem (k-∩-EMPTINESS). Instance: A set of automata A = {A1, A2, . . . , An}
and k ∈ N. Parameter : |Q|, |Σ|, |A|, k or a sum of some of them. Question: Does
there exist a tree/t-dag of size k accepted by all automata from A?

Problem (MEMBERSHIP). Instance: An automaton A and a word/tree/t-dag
t. Parameter : |Q|, |Σ|, |t| or a sum of some of them. Question: Is t accepted by
A ?

Problem (UNIVERSALITY). Instance: An automaton A . Parameter : |Q|, |Σ|
or a sum of them. Question: Is the language recognized by A total?

Problem (INCLUSION). Instance: Two automata A1 and A2 defined over the
same signature Σ. Parameter : |Q1|, |Q2|, |Σ| or a sum of some of them. Question:
Is it true that L (A1) ⊆ L (A2)?

3.4 Known Results

The table below presents known results in the area of the classical complexity
of described decision problems. For proofs see [1], [3],[4],[6],[8],[10].

Table 1. Summary of known results

TA RTA TAGED t-DAG

EMPTINESS PTIME PTIME EXPTIME-hard NP-complete
decidable

∩-EMPTINESS EXPTIME-compl EXPTIME-compl EXPTIME-hard
MEMBERSHIP PTIME NP-complete NP-complete NP-complete

UNIVERSALITY EXPTIME-compl undecidable undecidable undecidable
INCLUSION EXPTIME-compl undecidable undecidable undecidable
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4 Results

Most of the theorems from this section are proved by FPT-reductions. A defini-
tion of FPT-reduction can be found in Section 2 (see Definition 2). Due to space
limits some proofs are sketched or omitted. Complete proofs can be found in [2].

4.1 Classical Tree Automata (TA)

k-EMPTINESS, ∩-EMPTINESS and k-∩-EMPTINESS. Our results on
emptiness problems for classical tree automata are summarized in 2. As they are
simple observations we omit the proofs (the proofs can be found in [2]).

UNIVERSALITY

Theorem 1. For TA automata the UNIVERSALITY problem parameterized by
the number of states of an automaton is para-co-NP-hard.

Sketch of proof. We propose a reduction of p-NON-COLORABILITY, which
is a para-co-NP-complete problem. Consider an instance of the p-NON-COL-
ORABILITY problem: a graph G = (V, E) of n vertices v1, v2, . . . , vn and a
number k ∈ N. We construct a TA automaton A = 〈Σ, Q, F, δ〉 such that G
is not k-colorable if and only if A accepts all terms over the signature Σ. Let
Σ = {a1, a2, . . . , ak, f}, where ai is a constant symbol and f is an n-ary function
symbol.

A term over Σ of the form f(x1, x2, . . . , xn) for xi ∈ {a1, a2, . . . , ak} represents
a coloring of G with a set of k-colors (xi = aj means that the vertex vi has the
color j). Let Q = {q1, q2, . . . , qk, q, q′, qF } and F = {qF }. Let δ consist of the
following transitions:

(i) ai 	→ q | qi | qF for i ∈ {1, 2, . . . , k},
(ii) f(p1, p2, . . . , pn) 	→ q | q′ | qF if there exists an edge {vj, vl} ∈ E such that

pj = pl = qi for some i and ps = q for all s 
= j, s 
= l,
(iii) f(p1, p2, . . . , pn) 	→ q | q′ | qF if pj = q′ for some j and pl = q for all l 
= j.

The automaton A accepts a term t if and only if it does not contain a subterm
representing a good coloring. This fact can be proved by the induction on the
structure of a term. Thus, A accepts all terms over the signature Σ if and only if
there are no good k-colorings of G i.e. G is not k-colorable. Moreover, |Q| = k+3
and the size of A depends polynomially on the number k and the size of G. ��
The result above shows that universality is a very hard problem. Even if we fix
the number of states in the input automaton, it remains co-NP-hard. In fact,
since 3-colorability is an NP-complete problem, we can observe that already
universality of automata with 6 states is co-NP-hard. If one identifies (which is
quite common) the number of states of an automaton with its size, this becomes
a surprising result, because for automata of fixed size the problem should be
solvable in constant time.



136 A. Barecka and W. Charatonik

INCLUSION. The following result is a simple observation. We omit the proof
(it can be found in [2]).

Proposition 1. For TA automata INCLUSION problem parameterized by the
size of A2 is in FPT .

Theorem 2. For TA automata INCLUSION problem parameterized by |Q1| +
|Q2| is para-co-NP-hard.

Proof. There is an automaton of one state that accepts all terms over a given
signature. The theorem is a consequence of this fact and Theorem 1. ��

4.2 Rigid Tree Automata (RTA) and Tree Automata with
Equalities and Disequalities (TAGED)

k-EMPTINESS

Theorem 3. For RTA and TAGED automata the k-EMPTINESS problem pa-
rameterized by k + |Σ| is in W[1].

Proof. It is enough to show it for TAGED automata. We reduce the problem to
p-MC(Σ1). Consider a TAGED automaton 〈Σ, Q, R=, R�=, F, δ〉 and a number
k ∈ N. We construct a structure A and a formula φ such that the formula φ
is fulfilled in A if and only if the automaton 〈Σ, Q, R=, R�=, F, δ〉 accepts some
term of size k. Let A be defined over the set A = Θ ∪Q ∪Σ ∪ {⊥}, where Θ is
the set of terms over Σ of size not greater than k. Let M = max{ ar(f) | f ∈ Σ }.
Let there be the following relations in A .

D :=
{
(q0, f, q1, . . . , qM ) |f(q1, . . . , qar(f)) 	→q0∈δ and qi =⊥ for ar(f)< i�M

}
,

T :=
{
(t0, f, t1, . . . , tM ) | f(t1, . . . , tar(f)) = t0 and ti =⊥ for ar(f) < i � M

}
,

T= :=
{
(t, t) | t ∈ Θ

}
, T �= := Θ ×Θ \T= RA= := R=,

RA �= := R�= and FA := F.

Now we define the formula φ = ∃x1, . . . , xk, y1, . . . , yk φ′ where φ′ is the conjunc-
tion∧
f∈Σ

∧
1≤i0,...,iarf≤k

(
T (yi0 , f, yi1 , . . . , yiarf

,⊥, . . . ,⊥)⇒

D(xi0 , f, xi1 , . . . , xiarf
,⊥, . . . ,⊥)

)
∧∧

1≤i1,i2≤n

(
RA=(xi1 , xi2)⇒ T=(yi1 , yi2)

)
∧

(
RA �=(xi1 , xi2)⇒ T �=(yi1 , yi2)

)
∧FA(x1) ∧ ψ(y1, . . . , yk),

where ψ(y1, . . . , yk) is fulfilled if terms y1, . . . , yk form a tree and are written
from the top to the bottom and from the left to the right.

ψ(y1, . . . , yk) :=
∨

t∈Θk

∧
1≤i≤k

T (yi, ft(i), yct(i)+1, . . . , yct(i)+arf ,⊥, . . . ,⊥),
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where Θk is the set of all terms from Θ that have the size k, ct(i) is the index of
the first child of the vertex of the index i in the tree t (we are numbering from
the top to the bottom and from the left to the right) and ft(i) is the function
symbol labeling that vertex. The length of ψ depends only on k and |Σ|. The
size of the structure A depends on k and |Σ| and polynomially on the size of
the automaton. The length of φ depends only on k and |Σ|. ��

MEMBERSHIP

Theorem 4. For RTA and TAGED automata the MEMBERSHIP problem pa-
rameterized by |Q| is W[2]-hard.

Sketch of proof. It is enough to show it for RTA automata. We propose a reduc-
tion of p-DOMINATING-SET. Consider an instance of this problem: a graph
G = (V, E) with V = {v1, v2, . . . , vn} and a number k ∈ N. We construct an
RTA automaton A = (Σ, Q, R, F, δ) and a term t over the signature Σ such
that in G there is a dominating set of k elements if and only if A accepts the
term t.

Let Σ = {xv| v ∈ V } ∪ {fv1,v2 | v1, v2 ∈ V } ∪ {f, g}, where xv are constant
symbols, fv1,v2 are symbols of binary functions and f and g are symbols of n-ary
functions. Let Q = {q1, . . . , qk, q, q0, qF }, R = {q1, . . . , qk}, F = {qF}. States qi

for i ∈ {1, . . . , k} represent a choice of vertices of a dominating set. Let δ consist
of the following transitions.

(i) xv 	→ qi for v ∈ V and i ∈ {0, 1, . . . , k},
(ii) fv,w(qi, qj) 	→ q0 for v, w ∈ V and i, j ∈ {0, 1, . . . , k},
(iii) fv,w(q0, qi) 	→ q for v, w ∈ V such that {v, w} ∈ E and i ∈ {1, 2, . . . , k},
(iv) fv,w(qi, qj) 	→ q for v, w ∈ V, i ∈ {1, 2, . . . , k} and j ∈ {0, 1, . . . , k},
(v) g(p1, p2, . . . , pn) 	→ q, if there exists i ∈ {1, 2, . . . , n} such that pi = q and

pj = q0 for all j 
= i,
(vi) f(q, q, . . . , q) 	→ qF .

Let t be the term:

f
(

g
(
fv1,v1(xv1 , xv1), . . . , fv1,vn(xv1 , xvn)

)
, . . . ,

g
(
fvn,v1(xvn , xv1), . . . , fvn,vn(xvn , xvn)

) )
.

The size of the automaton A and the length of the term t depend polynomially
on the size of the graph G. Indeed, there are n(k +1) transitions of the form (i),
n2(k+1)2 transitions of the form (ii), n2k transitions of the form (iii), n2k(k+1)
transitions of the form (iv), n transitions of the form (v) and one transition of
the form (vi). Moreover, |Q| = k+3. One can check that G has a dominating set
of k elements if and only if A accepts the term t. Indeed, let r be a successful run
of A on t. Let X = {v ∈ V | ∃l ∈ tv r(l) 
= q0}, where tv is the set of all vertices
of t labeled by xv. The rigidity of states qi for i > 0 implies that |X | � k. The
run r is successful, so r

(
g
(
fvi,v1(xvi , xv1), . . . , fvi,vn(xvi , xvn)

))
= q for every
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i ∈ {1, 2, . . . , n}. Thus for exactly one j ∈ {1, ..., n} we have r(fvi,vj (xvi , xvj )) =
q. Then either r(xvi ) 
= q0 and vi ∈ X or r(xvj ) 
= q0, vj ∈ X and {vi, vj} ∈ E.
So vi is dominated by vj . Hence, the set X is a dominating set in G. A proof of
the second implication is omitted. ��
By using similar methods as in Theorem 3 we can solve the membership problem.
The main difficulty is to make the length of the formula φ depend only on the
size of the term t (the input of the membership problem) and not on |Σ|. This
can be done by using only those symbols from Σ that appear in t.

Theorem 5. For RTA and TAGED automata the MEMBERSHIP problem pa-
rameterized by the length of a term belongs to W[1].

4.3 Automata on DAG Representations of Finite Trees (t-DAG
Automata)

EMPTINESS

Proposition 2. For t-DAG automata the EMPTINESS problem parameterized
by |Q| belongs to W[P]. The same problem parameterized by |Q|+ |Σ| belongs to
FPT.

Proof. In [4] it was proved that if a language recognized by a t-DAG automaton
A is nonempty then A accepts a t-dag of size not greater than 2|Q|3 where
Q is the set of states of A . To check the EMPTINESS for A it is enough to
guess a t-dag t of a size not greater than 2|Q|3 and a mapping r from the set
of subterms of t to Q and check if r is an accepting run. The algorithm guesses
2 |Q|3 log( |Σ| ) bits; moreover, there are O(|Q|2|Q|3) possible runs on a term of
size not greater than 2|Q|3.

In the case of parameterization with |Q|+ |Σ|, it is enough to check, for every
t-dag of size not greater than 2|Q|3, if it is accepted by A . One can do this by
analyzing all possible runs of the automaton on this term. There are O(|Q|6|Σ|)
such terms and there are O(|Q|2|Q|3) possible runs on each of them. ��

k-EMPTINESS

Theorem 6. For t-DAG automata the k-EMPTINESS problem parameterized
by k + |Σ| is W[1]-complete.

Sketch of proof. We propose a reduction of p-CLIQUE which is a W[1]-complete
problem. Consider an instance of the p-CLIQUE problem: a graph G = (V, E)
and a number k ∈ N. We construct a t-DAG automaton A = (Σ, Q, F, δ) and a
number k′ such that in G there is a clique of k elements if and only if A accepts
a tree of the size k′.

Let Σ = {x1, x2, . . . , xk}∪{f, g}, where xi is a constant symbol, f is a symbol
of a k(k − 1)-ary function and g is a symbol of a binary function. Let Q =
{q1,2, q1,3, . . . , qk,k−1, qF } ∪ {qv,i| v ∈ V, 1 ≤ i ≤ k}, F = {qF }. Let δ consist of
the following transitions:
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(i) xi 	→ qv,i for v ∈ V and 1 ≤ i ≤ k,
(ii) g(qv1,i, qv2,j) 	→ qi,j for v1, v2 ∈ V such that {v1, v2} ∈ E,
(iii) f(q1,2, q1,3, . . . , qk,k−1) 	→ qF .

Note that t = f(g(x1, x2), g(x1, x3), . . . , g(xk−1, xk)) is the only term that can
be accepted by A .

Let k′ = |t| = 1 + k(k − 1) + 2k(k − 1) = 3k(k − 1) + 1. The size of the
automaton A depends polynomially on the size of the graph G. Moreover, the
parameter k′ depends polynomially on the parameter k. What is more, one can
easily show that in G there is a clique of k elements if and only if A accepts the
term t.

The proof of the fact that the examined problem is in W[1] is similar to the
proof of Theorem 3. ��

MEMBERSHIP. By using similar methods as in Theorem 3 (for the member-
ship in W[1]) and in Theorem 6 (for W[1]-hardness) one can prove the following
theorem.

Theorem 7. For t-DAG automata the MEMBERSHIP problem parameterized
by |t|+ |Σ| is W[1]-complete.

Theorem 8. For t-DAG automata the MEMBERSHIP problem parameterized
by a number of states is para-NP-complete.

Sketch of proof. In order to show para-NP-hardness of the problem we propose
a reduction of p-COLORABILITY. Consider an instance of the this problem:
a graph G = (V, E) with n vertices v1, v2, . . . , vn and m edges e1, e2, . . . , em

and a number k ∈ N. We construct a t-DAG automaton A = 〈Σ, Q, F, δ〉
and a t-dag t such that G is k-colorable if and only if A accepts t. Let Σ =
{v1, v2, . . . , vn, e1, e2, . . . , em, f}, where vi is a constant symbol, ei is a symbol of
a binary function and f is a n-ary function symbol. Let Q = {q1, q2, . . . , qk, q, qF }
and F = {qF }. States q1, q2, . . . , qk symbolize k colors. Let δ consist of the fol-
lowing transitions.

(i) v 	→ qi for i ∈ {1, 2, . . . , k},
(ii) el(qi, qj) 	→ q for 1 ≤ l ≤ m and 1 ≤ i 
= j ≤ k,
(iii) f(q, q, . . . , q) 	→ qF .

Let t = f(e1(v11, v12), e2(v21, v22), . . . , em(vm1, vm2)), where vi1 and vi2 are ver-
tices incident to an edge ei. The size of the automaton A and the size of the t-dag
t depend polynomially on k and on the size of the graph G. Moreover, |Q| = k+2.
One can easily show that G is k-colorable if and only if A accepts t.

The fact that examined problem belongs to the para-NP class is quite obvious.
Indeed, it is solvable by the algorithm that for each vertex of t guesses a state
from Q and then checks in polynomial time if this mapping is an accepting run
of A on t. ��
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Table 2. Summary of our results

problem parameter TA RTA TAGED t-DAG

EMPTINESS |Q| + |Σ| PTIME PTIME FPT
|Q| W[P]

k-EMPTINESS k + |Σ| FPT W[1] W[1] W[1]-complete

∩-EMPTINESS |A| + |Q| FPT
|A| W[1]-hard W[1]-hard W[1]-hard W[1]-hard
|Q| W[2]-hard W[2]-hard W[2]-hard W[2]-hard

k-∩-EMPTINESS |Σ| + |Q| + k FPT
|A| + |Q| FPT
|A| + k W[1]-hard W[1]-hard W[1]-hard W[1]-hard
|Q| + k W[2]-hard W[2]-hard W[2]-hard W[2]-hard

MEMBERSHIP |t| + |Σ| PTIME W[1] W[1] W[1]-complete
|t| W[1] W[1] W[1]-complete
|Q| W[2]-hard W[2]-hard para-NP-compl

UNIVERSALITY |Q| para-co-NP-compl undecidable undecidable undecidable

INCLUSION |A2| FPT undecidable undecidable undecidable
|Q1| + |Q2| para-co-NP-compl

5 Conclusion

We have studied parameterized complexity of several decision problems for the
following classes of automata on finite trees: TA automata, RTA automata,
TAGED automata and t-DAG automata. Results of our studies are presented in
Table 2 (some of values "PTIME" and "undecidable" are rewritten from already
presented Table 1).

These results were quite surprising for us — we had expected more of these
problems to be fixed-parameter tractable. However, a lot of the examined prob-
lems turn to be hard even for such a big parameter as the number of states of
an automaton.

As one can see there are still gaps in the presented table. Moreover, some
issues are partially examined as we have only proved that they belong to some
complexity class or that they are hard in that class. In addition, it seems in-
teresting to check how the complexity will change if one uses binary (instead of
unary) encoding of a number k in k-EMPTINESS and k-∩-EMPTINESS prob-
lems. In consequence, there are left some open questions that we hope to examine
in future.
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Abstract. Language models that use interleaving, or shuffle, operators
have applications in various areas of computer science, including system
verification, plan recognition, and natural language processing. We study
the complexity of the membership problem for such models, i.e., how
difficult it is to determine if a string belongs to a language or not. In
particular, we investigate how interleaving can be introduced into models
that capture the context-free languages.

Keywords: interleaving, shuffle languages, membership problems.

1 Introduction

We study the membership problem for various language classes that make use of
the shuffle operator %. When applied to a pair of strings u and v, the operator
returns the set of all possible interleavings of the symbols in u and v. For example,
the shuffle of ab and cd is {abcd, acbd, acdb, cabd, cadb, cdab}. The operator is
lifted to languages by defining L1 % L2 to be the set

⋃{u% v | u ∈ L1, v ∈ L2}.
We also consider the shuffle closure operator, whose relationship to the shuffle
operator resembles that of the Kleene star to concatenation.

Various aspects of shuffling have been studied in the theory of formal lan-
guages, see, e.g., [15,17,4,13,5,11,20,18,9,7,3]. In this paper, we take the shuffle
languages considered by Gischer [15] and by Jedrzejowicz and Szepietowski [17]
as the starting point. These are the languages defined by regular expressions
augmented with the shuffle and the shuffle closure operators.

Shuffling of languages is of interest in a number of different areas:

– In the modelling and verification of systems, shuffling is, as argued by Garg
and Ragunath [12], useful for modelling the interleaving of processes. There
is a close connection between shuffle languages and Petri nets [15,12,6].

– The shuffle operator (often called interleaving) is used in XML database
systems for schema definitions, see, e.g., Gelade et al. [13].

– In plan recognition, the objective is to identify an agent’s goal or plan, based
on observations of the agent’s actions [8,23]. In a generalised version, a num-
ber independent agents that perform their actions in an interleaved fashion.
To model this multi-agent scenario one could combine shuffle operators and
context-free grammars [16]. For this approach to be tractable, the member-
ship problem for the resulting languages must remain efficiently solvable.

A.-H. Dediu, S. Inenaga, and C. Martín-Vide (Eds.): LATA 2011, LNCS 6638, pp. 142–154, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Table 1. Summary of results for the membership problem. The shuffle languages are
abbreviated by Sh, the regular by Reg, and the context-free by CF. The results of this
paper appear in bold face.

Sh Reg 	 CF Sh 	 CF CF 	 CF CFSA

Non-Uniform P P P NPC NPC
Uniform NPC / W[1]-hard P NPC NPC NPC

– In natural language processing, there is a growing interest in linguistic models
for languages with relatively free word ordering. Recent work in this direction
includes parse algorithms for so-called dependency grammars [22,19].

A number of fundamental questions regarding the complexity of the membership
problem for various models remain unanswered. We answer some of them in
this paper. In particular, we are interested in language classes that capture the
context-free languages. Among the above application areas, such languages are
primarily of interest in plan recognition and natural language processing.

It is important to distinguish the uniform and the non-uniform version of the
membership problem. In the uniform version, both the string and a representa-
tion of the language is given as input. Thus it is important how the language is
represented. In the non-uniform version, only the string to be tested is considered
as input. The language is fixed, and thus its representation is not important.

Contributions. To facilitate the study of languages that combine restricted
forms of recursion and interleaving, we define Concurrent Finite State Automata
(CFSA). We show that the emptiness problem for CFSA is solvable in polynomial
time, list the automata’s closure properties, and identify the language classes
that correspond to certain syntactic restrictions.

Our complexity-results for the membership problems of various language
classes are summarized in Table 1. For the full class of languages recognized by
CFSA, we show that both the uniform and the non-uniform membership prob-
lem are NP-complete. For the shuffle languages (as used in [15,17]), the uniform
membership problem is NP-complete [1,21], while the non-uniform membership
problem can be decided in polynomial time [17]. We shed further light on the
complexity of the membership problem by showing that the uniform version,
parameterized by the number of shuffle operations, is hard for the complexity
class W[1]. This indicates a strong dependence on the number of shufflings.

For the interleaving of a regular language and a context-free language, we show
that the uniform (and thus also the non-uniform) membership problem can be
solved in polynomial time. For the shuffling of a shuffle language and a context-
free language, the uniform problem is NP-hard, since this holds already for the
shuffle languages. The non-uniform problem is, however, solvable in polynomial
time. For the shuffling of two context-free languages, we show that already the
non-uniform version of the membership problem is NP-hard.

It should be noted that we only investigate which broad complexity classes
the problems belong to. In particular, for the problems that belong to P, our
aim has not been to find optimal algorithms.
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Due to space limitations, we only provide proof sketches and intuitions. Full
proofs of our results can be found in [2].

2 Preliminaries

Sets and numbers. If S is a set, then S∗ is the set of all finite sequences
of elements of S, and precl(S) is the set of all finite prefix-closed subsets of S∗.
In other words, for every S′ ∈ precl(S), if uv ∈ S′ for some u, v ∈ S∗ then u ∈ S′.
We write N for the natural numbers. For k ∈ N, we write [k] for {1, . . . , k}. Note
that [0] = ∅. The domain of a mapping f is denoted dom (f).

An alphabet is a a finite nonempty set. Let Σ be an alphabet and let ε be the
empty string, then Σ∪{ε} is denoted by Σε. The length of a string w = α1 · · ·αn

is written |w|, and for every α ∈ Σ, |w|α = |{i ∈ [n] | αi = α}|.
Trees. The set TΣ of (unranked) trees over the alphabet Σ consists of all
mappings t : D → Σ, where D ∈ precl(N). The empty tree, denoted tε, is the
unique tree such that dom (t) = ∅. We henceforth refer to dom (t) as the nodes of t
and write nodes(t) rather than dom (t). The size of t, denoted |t|, is |nodes(t)|.

For a tree t ∈ TΣ and a node v ∈ nodes(t), the subtree of t rooted at v
is denoted by t/v. It is defined by nodes(t/v) = {v′ ∈ N

∗ | vv′ ∈ nodes(t)}
and, for all v′ ∈ nodes(t/v), (t/v)(v′) = t(vv′). The leaves of t is the set
leaves(t) = {v ∈ N

∗ | �i ∈ N s.t. vi ∈ nodes(t)}. The substitution of t′ into
t at node v is denoted t[[v ← t′]]. It is defined by

nodes(t[[v ← t′]]) = (nodes(t) \ {vu | u ∈ N
∗}) ∪ {vu | u ∈ nodes(t′)} ;

and, for every u ∈ nodes(t[[v ← t′]]), if u = vv′ for some v′ ∈ nodes(t′) then
t[[v ← t′]](u) = t′(v′), otherwise t[[v ← t′]](u) = t(u).

For a tree t ∈ TΣ let v1, . . . , vk ∈ nodes(t) be the immediate child nodes of the
root ordered by numeric value. That is, {v1, . . . , vk} = {v ∈ nodes(t) | |v| = 1},
ordered such that vi < vi+1 for all i ∈ [k−1]. Then we will write t as f [t1, . . . , tk],
where f = t(ε) and tj = t/vj for all j ∈ [k]. In the special case where k = 0 (i.e.,
when nodes(t) = {ε}), the brackets may be omitted, thus denoting t as f .

Shuffle operations and shuffle expressions. We recall the definitions of the
operations shuffle and shuffle closure, and of shuffle expressions, from [15,17].

The shuffle operation % is inductively defined as follows: for every u ∈ Σ∗ it
is given by u% ε = ε% u = {u}, and by

α1u1 % α2u2 = {α1w | w ∈ (u1 % α2u2)} ∪ {α2w | w ∈ (α1u1 % u2)} ,

for every α1, α2 ∈ Σ, and u1, u2 ∈ Σ∗. The operation extends to languages with

L1 % L2 =
⋃

u1∈L1,u2∈L2

u1 % u2 .

The shuffle closure of a language L ∈ Σ∗, denoted L�, is

L� =
∞∪

i=0
L�i , where L�0 = {ε} and L�i = L % L�i−1 .
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Shuffle expressions are regular expressions that can additionally use the shuffle
operators. The shuffle expressions over the alphabet Σ are as follows. The empty
string ε, the empty set ∅, and every α ∈ Σ is a shuffle expression. If s1 and s2

are shuffle expressions, then so are (s1 ·s2), (s1 +s2), (s1%s2), s∗1, and s1
�, where

· denotes concatenation and + denotes disjunction. Shuffle expressions that do
not use the shuffle closure operator are called closure free shuffle expressions.
The language L(s) of a shuffle expression s is defined in the usual way. Shuffle
languages are the languages defined by shuffle expressions.

3 Concurrent Finite-State Automata

In this section, we introduce concurrent finite-state automata (CFSA). They
are inspired by recursive Markov models, but differ in that recursive calls can
be made in parallel. This allows an unbounded number of invocations to be
executed simultaneously, but each symbol can only be read by one invocation.
In Defintion 1, p� is to be read as single symbol. In the later definition of CFSA
semantics, transitions of the form (q, α, q′[p�]) will be interpreted as rule schema.

Definition 1 (CFSA). A Concurrent FSA is a tuple M = (Q, Σ, δ, I), where
– Q is a finite set of states ;
– Σ is an alphabet of input symbols ;
– δ ⊆ Q×Σε × T is a set of transitions, where T is the finite set

{q, q[p], q[p, p′], q[p�] | q, p, p′ ∈ Q} ∪ {tε} .

A transition (q, α, t) ∈ δ is
• terminal if |nodes(t)| = 0,
• horizontal if |nodes(t)| = 1, and
• vertical if |nodes(t)| > 1.

– I ⊆ Q is a set of initial states. ��

Remark. For simplicity, we henceforth assume, without loss of generality, that
the terminal transitions form a subset of Q× {ε} × {tε}.

Whereas a FSA is in a single state at a time, a concurrent FSA maintains
a branching call-stack of states, represented as an unranked tree. In each step,
exactly one leaf node of the state tree is rewritten. Vertical transitions model
the invocation of child processes; horizontal transitions the continued execution
within a process; and terminal transitions the completion of a process. A CFSA
accepts a string if, upon reading the string, it can reach a configuration in which
every processes has been completed, i.e., the state tree is empty.

Definition 2 (Concurrent FSA semantics). A configuration of the CFSA
M = (Q, Σ, δ, I) is a tuple (w, t) ∈ Σ∗ × TQ. The set of all configurations of M
is denoted Δ(M). A configuration (w, t) ∈ Δ(M) is initial (with respect to the
string w ∈ Σ∗) if t ∈ I.
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In its initial configuration, M is in the
unique initial state q0 and has yet to con-
sume any input symbol.

( 

��

��, q0)

To proceed, M must nondeterministically
choose the transition (q0, ε, q

′
0[q1, q2]).

( 

��

��, q′0[q1, q2] )

By the transition (q1, 
, q′1[q1]), M reaches
the configuration

( 
��

��, q′0[q
′
1[q1], q2] )

and by (q1, 
, q′1[q1]) and (q2, �, q′2[q2]) the
configuration

( �

��, q′0[q
′
1[q

′
1[q1]], q

′
2[q2]] )

Now M nondeterministically guesses that
it is time to read the symbol �. It prepares
by deleting the leaf labelled q1 using tran-
sition (q1, ε, tε) to get

( �

��, q′0[q
′
1[q

′
1], q

′
2[q2]] )

and then (q′1, �, q1) to get

( 

��, q′0[q
′
1[q1], q

′
2[q2]] )

Again, (q1, 
, q′1[q1]) lets M read 
,
( 
��, q′0[q

′
1[q

′
1[q1]], q

′
2[q2]] )

and (q2, ε, tε), (q
′
2, 
, q2) produces

( ��, q′0[q
′
1[q

′
1[q1]], q2] ) .

Thereafter, applying the transition se-
quence (q1, ε, tε), (q

′
1, �, q1) twice yields

( ε, q′0[q1, q2] ) .

Although the entire input has been read,
M does not accept until the state tree has
been reduced to the empty tree. This can
be done by applying (q1, ε, tε), (q2, ε, tε)
to get

( ε, q′0 ) ,

and finally (q′0, ε, tε) to reach

( ε, tε ) .

Fig. 1. The CFSA M of Example 1 accepts the input string 

��

��

Let (w, t), (w′, t′) ∈ Δ(M). There is a transition step from (w, t) to (w′, t′),
written (w, t)→ (w′, t′), if there is a transition (q, α, s) ∈ δ and node v ∈ nodes(t)
such that w = αw′, t/v = q (so v is a leaf), and either

– s ∈ TQ and t′ = t[[v ← s]], or
– s = p′[p�] and t′ = t[[v ← p′[p, . . . , p︸ ︷︷ ︸]

n

]] for some for p, p′ ∈ Q and n ∈ N.

As usual, the reflexive and transitive closure of → is denoted ∗−→. The language
recognised by M is L(M) = {w ∈ Σ∗ | ∃q ∈ I : (w, q) ∗−→ (ε, tε)}. ��

For the sake of brevity only the state-tree part of a configuration, called a con-
figuration tree, may be shown in cases where the string is irrelevant.

Example 1. Let L1 and L2 be the Dyck languages1 over the symbol pairs �, �
and &, ', respectively. Their shuffle L = L1 %L2 is recognised by the concurrent
FSA M = ({q0, q1, q

′
1, q2, q

′
2}, {�, �, &, '}, δ, {q0}), where

δ = { (q0, ε, q
′[q1, q2]), (q′0, ε, tε), (q1, �, q′1[q1]), (q′1, �, q1),

(q1, ε, tε), (q2, &, q′2[q2]), (q′2, ', q2), (q2, ε, tε) } .

1 A Dyck language consists of all well-balanced strings over a given set of parentheses.
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To illustrate the automaton’s semantics, we step through an accepting run of
M on the string w = ��&��'�� (see Figure 1). Note that since w ∈ w1 % w2 for
w1 = �� �� �� ∈ L1 and w1 = & ' ∈ L2, it follows that w ∈ L1 % L2. �

It is known that L1 = {anbn | n ∈ N} is a context-free language, but it is not
a shuffle language. Conversely, L2 = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} is
a shuffle language but is not context-free. Both L1 and L2 is recognized by a
CFSA, and so is L1 ∪ L2, which is neither a context-free nor a shuffle language.
Thus the CFSA languages properly extend both the context-free languages and
the shuffle languages. They also have comparatively nice closure properties.

Theorem 1. The languages recognised by CFSA are closed under union, con-
catenation, Kleene star, shuffle and shuffle closure. They are not closed under
intersection with a regular language or complementation.

Restrictions and expressive power. The restrictions considered here are as
follows. A CFSA M = (Q, Σ, δ, I) is

– horizontal if δ contains no vertical transitions;
– non-branching if every vertical transition is in Q×Σ × {q′[q] | q, q′ ∈ Q};
– finitely branching if no vertical transition is in Q×Σ × {q′[q�] | q, q′ ∈ Q};
– acyclic if there is no configuration (w, t) ∈ Δ(M) and state q ∈ Q such that

q appears twice on a path from the root of t to a leaf.

Theorem 2. A language is:

– regular if and only if it is recognised by a horizontal CFSA;
– context-free if and only if it is recognised by a non-branching CFSA;
– a shuffle language if and only if it is recognised by an acyclic CFSA;
– a closure-free shuffle language if and only if it is recognised by an acyclic and

finitely branching CFSA.

Since the closure free shuffle languages are regular [14], we can conclude that
acyclic and finitely branching CFSA also recognize the regular languages.

CFSA do not provide the full power of linear bounded Turing machines:

Theorem 3. The languages recognised by CFSA are properly contained in the
context-sensitive languages.

Since not all CFSA-languages are context-free (e.g., there are non-context-free
shuffle languages), we conclude that their expressive powers lies strictly between
that of context-free grammars and that of context-sensitive grammars.

Also unlike linear bounded Turing machines, CFSA can be efficiently checked
for emptiness.

Theorem 4. The emptiness problem for CFSA is decidable in polynomial time.
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4 Membership Problems

The membership problem for unrestricted CFSA is intractable, both in the uni-
form and the non-uniform case.

Theorem 5. Both the uniform and the non-uniform membership problem for
CFSA is NP-complete.

NP-hardness for the uniform membership problem for shuffle expressions is al-
ready known; see, e.g., [1,21]. We postpone the hardness proof for the non-
uniform case until Theorem 9 which shows it for a subclass of the CFSA. The
following lemma establishes that the membership problem for CFSA is in NP.

Lemma 1. Given a CFSA M = (Q, Σ, δ, I) and a string w ∈ Σ∗ it is possible
to determine if w ∈ L(M) in nondeterministic polynomial time.

Proof sketch. We rewrite M so that if (ε, q) ∗−→ (ε, t) for some q ∈ Q and
t ∈ {s ∈ TQ | |s| ≤ 2} then (q, ε, t) ∈ δ. The transitions that must be added
to δ can be identified in polynomial time by iterating over every q ∈ Q and
every tree t ∈ {s ∈ TQ | |s| ≤ 2}. To determine if (ε, q) ∗−→ (ε, tε) corresponds to
the emptiness test (which is polynomial by Theorem 4) on M ′ = (Q, Σ, δ′, {q})
where δ′ ⊆ δ contains only the transitions that reads ε.

The extension of δ allow us to assume that a run of M never needs to cre-
ate “unnecessary” nodes only to later delete them without reading any symbols
from the input string. Consider any w ∈ L(M) and notice that in the shortest
accepting run of M on w, no intermediary configuration tree ever has more than
|w| leaves. Otherwise one of those leaves would consume the empty string and
be superfluous. Similarly, no such tree ever has height greater than |Q|(|w|+ 1).
Otherwise some state q must occur more than |w|+2 times on the longest path,
so at least one section of the path delimited by q nodes reads the empty string,
which means that the run could be shortened by omitting this loop on q.

This establishes that all configuration trees in a shortest accepting run are
polynomial in size of the input string. Since no unnecessary nodes are generated,
only a polynomial number of transitions are needed to go from one configuration
tree to another. Together this means that there is a polynomial that bounds the
length of the shortest accepting run on every string in L(M). Thus, a non-
deterministic algorithm can be constructed by guessing an accepting run and
then verifying that it respects the transitions in δ. ��
We now turn to the membership problem for acyclic CFSA.

Corollary 1. For acyclic CFSA
1. the non-uniform membership problem is solvable in polynomial time, and
2. the uniform membership problem is NP-complete.

The uniform membership problem is NP-complete already for acyclic and finitely
branching CFSA, which only recognise regular languages. This is not too surpris-
ing, since, e.g., the similar NFA(&) from [13], which also recognize the regular
languages, has PSPACE-complete uniform membership. For some languages,



Recognizing Shuffled Languages 149

CFSA offer a more succinct form of representation than nondeterministic finite
automata (and than the shuffle automata from [17]). One example is the lan-
guage family {{an} | n ∈ N}, for which the smallest NFAs (and shuffle automata)
have sizes linear in n, while the smallest CFSAs are logarithmic in n.

Corollary 1 states that the problem is polynomial for a fixed automaton
but NP-hard if the automaton is considered input. The question then remains
whether the size of the automaton merely influences the coefficients of the poly-
nomial or if it affects the degree itself. We give a partial answer by showing that
when parameterized by the maximal size of a configuration tree for the automa-
ton, the uniform membership problem for acyclic and finitely branching CFSAs
is not fixed-parameter tractable, unless FPT = W[1]. This class equivalence is
considered very unlikely and would have far-reaching complexity-theoretic im-
plications. For more on parameterized complexity theory, see, e.g., [10].

We state the result for acyclic and finitely branching CFSA, but it could
be equivalently stated for closure-free shuffle expressions. We first define the
parameterized version of the problem.

Definition 3. An instance of the parameterized uniform membership problem
for acyclic and finitely branching CFSA is a pair (M, w) where M is an acyclic
and finitely branching CFSA over a finite alphabet Σ and w is a string in Σ∗.
The parameter is the maximal size of any configuration tree for M . The question
is whether w ∈ L(M). ��
For acyclic and finitely branching CFSA, the maximal size of the configura-
tion trees depends only on the automaton. If the problem was fixed-parameter
tractable, it would have an algorithm with running time f(k) · nc, where f is
a computable function, k is the parameter (the maximal tree size), n is the in-
stance size, and c is a constant. Theorem 6 gives strong evidence to the contrary.

Theorem 6. The parameterized uniform membership problem for acyclic and
finitely branching CFSA is W[1]-hard.

The proof is by a fixed-parameter reduction from parameterized clique, which is
known to be W [1]-complete [10].

Definition 4. An instance of k-Clique is a pair (G, k), where G = (V, E) is
an undirected graph and k is an integer. The question is whether there is a
set C ⊆ V of size k such that the subgraph of G induced by C is complete. The
parameter is k. ��
Proof sketch. Let (G = (V, E), k) be an instance of k-Clique, and let n = |V |
and m = |E|. We assume that the vertices are named v1, . . . , vn and that the
edges are named ei,j , where i < j, and construct an alphabet Σ = V ∪E. Next,
we construct a word wG = vk

1 ·vk
2 · · · vk

n ·edges , where edges is any enumeration of
the edges in E. It remains to construct an acyclic and finitely branching CFSA
MG such that wG ∈ L(MG) if and only if G has a clique of size k and such that
the maximum configuration tree size for MG depends only on k. The idea is to
let MG read the shuffle of
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– a regular language s = (vk
1 + vk

2 + · · · + vk
n)n−k that consumes all copies of

n− k vertex names;
– a regular language t = V ∗ ·E∗ that does the “garbage collection”; and
– k(k − 1)/2 copies of a regular language u = Σei,j∈E(vi · vj · ei,j).

Each instance of u will thus consume (one instance each of) the names of two
vertices and the name of the edge that connects the two vertices. Since only k
vertex names are represented in wG after s has consumed all copies of n− k of
them, this means that for all copies of u to be matched, there must be k(k−1)/2
edges in G whose endpoints are all in a set of vertices of size k. This, in turn,
means that G has a clique of size k. Constructing an acyclic and finitely branch-
ing CFSA MG that does this is straightforward. It is also clear that MG can
be constructed in such a way that the maximum size of a configuration tree is
bounded by O(k2), which makes this a fixed-parameter reduction. ��
The following corollary is immediate.

Corollary 2. The uniform membership problem for closure-free shuffle expres-
sions, parameterized by the number of shuffle operators, is W[1]-hard.
We next show that the shuffle of a context-free language and a regular language
is efficiently recognizable, even if the language descriptions are part of the input.

Theorem 7. The uniform membership problem for the shuffle of two languages,
one represented by context-free grammar and one represented by a nondetermin-
istic finite automaton, is solvable in polynomial time.
Proof sketch. Let G = (N, Σ, δ, S) and M = (Q, Σ, γ, I, F ) be a context-free
grammar on Chomsky normal form and an NFA, respectively.

To test membership in L(G) % L(M), we extend the CYK algorithm for
context-free grammars. A parse triple for G and M over a string w = a1 · · · am

is a triple (A, q1, q2) ∈ (N ∪ {ε}) × Q × Q such that w ∈ L(Mq1,q2) % L(GA),
where Mq1,q2 = (Q, Σ, γ, {q1}, {q2}), and GA = (N, Σ, δ, A), unless A = ε in
which case L(Gε) = {ε}.

Like in the CYK algorithm the parse triples are computed for each substring,
starting with the substrings of length 1 and then combining triples to form new
triples for successively longer strings. For example, if (A, q, q′) and (B, q′, q′′) are
triples for the strings w′ and w′′ respectively, then (C, q, q′′) is a triple for w′w′′

if G contains the rule C → AB. Since there are at most (|N |+ 1) · |Q|2 distinct
parse triples and O

(|w|2) substrings, this can be done in polynomial time. In
the end, w ∈ L(G)%L(M) if and only if there is a parse triple (S, qI , qF ) for the
whole of w such that S is the start symbol of G, qI ∈ I, and qF ∈ F . ��
Since acyclic and finitely branching CFSA only contribute a more compact repre-
sentation of the regular languages, Theorem 7 extends to non-uniform member-
ship for the shuffle of a context-free language and a closure-free shuffle language:

Corollary 3. The non-uniform membership problem for the shuffle of two lan-
guages, one represented by a context-free grammar and one represented by an
acyclic and finitely branching CFSA, is solvable in polynomial time.
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Extending Theorem 7 with techniques inspired by [17], we get the following:

Theorem 8. The non-uniform membership problem for the shuffle of a shuffle
language and a context-free language is solvable in polynomial time.

Proof sketch. Assume that the languages are represented by an acyclic CFSA
M and a context-free grammar G. Just as in the proof of Theorem 7, we extend
the CYK algorithm to work with triples. The only difference is that each triple
consists of a nonterminal from G and two configuration trees for M .

For the algorithm to run in polynomial time, the number of configuration
trees that need to be stored must be polynomially bounded. It can be shown
that this is the case by taking advantage of symmetries in the configuration trees.
Intuitively, the shuffle-closure should be applied as sparingly as possible. ��
Next, we show that the uniform membership problem for L(A1)%L(A2), where
L(A1) and L(A2) are context-free languages, is NP-complete. The construction
makes use of push-down automata (PDA), which are well known to be equiv-
alent to context-free grammars and can be obtained from them in polynomial
time. It also uses two-stack PDA, which have two independent stacks, and are
known to be equivalent to Turing machines. NP-hardness is demonstrated by
constructing two reductions. The first is a polynomial reduction which takes
an arbitrary nondeterministic Turing machine and constructs two context-free
languages, L(Asim ) and L(Acomp), which depend only on the Turing machine.
The second reduction takes any string w and constructs a string w′ so that
w′ ∈ L(Asim )% L(Acomp) if and only if w is accepted by A. This second reduc-
tion will be polynomial in |w|+ n, where n is the number of steps that A takes
to accept or reject w, which means that A can only be simulated a polynomial
number of steps with a polynomial reduction, but this is sufficient to solve all
problems in NP.

The nondeterministic Turing machine A is assumed to actually be rep-
resented as a nondeterministic two-stack push-down automaton. We assume,
without loss of generality, that A always starts by reading its entire input onto
its first stack, and that the input alphabet is {0, 1}. Additionally, we assume
that there is a polynomial P such that A accepts or rejects a string w in at most
P (|w|) steps.

The input string reductions takes any valid input w for A and constructs

w′ = w · $$ [[push0push1pop0pop1]][[push0push1pop0pop1]] . . .︸ ︷︷ ︸
P (|w|) copies

.

The output alphabet of the reduction is {0, 1, push0, push1, pop0, pop1, ], [, $}.
The push-down automaton Asim is constructed to simulate A. A string is
a valid stack run (VSR) if it is of the form [push0][push1][pop1], that is, the
push/pop symbols surrounded by brackets, such that each popx, x ∈ {0, 1},
corresponds to a pushx earlier in the string. The stack discipline must be main-
tained; [push1][push0][pop1] is not a VSR. Asim is constructed from A so that:
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a string w is accepted by A if and only if there exists some VSR s such that
w · $ · s ∈ L(Asim ). The trick is that Asim simulates the first stack of A on
its own (only) stack, and then exploits this VSR suffix string to simulate the
second stack of A. With this idea in place, the simulation is straightforward. By
assumption, A starts by reading all of its input onto its first stack. Thus Asim

reads all input up until the $ symbol onto its stack and then discards $. At this
point, A and Asim are in equivalent states. If A contains a rule of the form “if
in q we may pop 0 from the first stack and 1 from the second, in which case we
push 1 onto the second stack and go to state q′”, then Asim can, from state q,
pop 0 from its stack, read the string “ [pop1][push0]”, and go to state q′.

The context-free language L(Acomp) is in the shuffle to read the “extra-
neous” symbols from the constructed input string so that the remainder be-
comes exactly what Asim expects. It always starts by reading $, then, for each
[[push0 . . . ]] template, it reads the extra bracket pair, and three of the stack
operations, so that the remainder is any possible VSR (as described above). For
example, since [push1][push0][pop0] is a VSR there is a string

$[push0pop0pop1][push1pop0pop1][push0push1pop1] ∈ L(Acomp).

Constructing this grammar is trivial (start with a Dyck language).

Theorem 9. For the shuffle of two context-free languages, the non-uniform
membership problem is NP-complete.

Proof sketch. The problem is trivially in NP, whereas NP-hardness follows from
the construction above. Take a nondeterministic Turing machine A and construct
Asim and Acomp as above. Take any string w and construct w′ = w · $$ · [[. . . .
What then happens is that Acomp will from w′ read one dollar-sign, and then
for each double-bracketed substring read one bracket-pair and three of the four
stack operation, in such a way that the remainder of the input will have the
form w · $ · s for all possible VSR s. By construction, there exists such a string
that is a member of L(Asim ) if and only if w is accepted by A.

Acomp is a constant language, Asim depends only on A, |w′| is polynomial in
the size of the input string w, and the number of steps taken by A (assumed to
be polynomial), establishing non-uniform NP-completeness. ��

5 Conclusions and Future Work

Concurrent finite-state automata combine the expressive power of context-free
and shuffle languages. The CFSA languages are properly included in the context-
sensitive languages, and minor restrictions of the device suffice to obtain the reg-
ular, context-free, and shuffle languages, respectively. CFSA have comparatively
nice closure properties, and can be sanity-checked in polynomial time.

To be of practical use, at least the non-uniform membership problem needs to
be efficiently decidable. This is known to be true for the shuffle languages, but our
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analysis shows that the efficiency depends heavily on the number of shuffle oper-
ations used. We also obtain that the non-uniform membership problem remains
polynomial for the shuffle of a shuffle language and a context-free language. For
the shuffle of two context-free languages, however, it is NP-complete.

Ideally, also the uniform membership problem should be solvable in polyno-
mial time. The only language class we studied for which this is the case, unless
P=NP, is the interleaving of a regular language and a context-free language.

Future work will strive to determine the complexity of the non-uniform mem-
bership problem for further restrictions of CFSA. If even very sparse use of shuf-
fling has a large negative impact on the complexity, one could consider replacing
the shuffle operator with weaker alternatives, such as unordered shuffle.
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Abstract. A partial word is a sequence of symbols over a finite alpha-
bet that may have some undefined positions, called holes, that match
every letter of the alphabet. Previous work completed the classification
of all unary patterns with respect to partial word avoidability, as well as
the classification of all binary patterns with respect to non-trivial par-
tial word avoidability. In this paper, we pose the problem of avoiding
patterns in partial words very dense with holes. We define the concept
of hole sparsity, a measure of the frequency of holes in a partial word,
and determine the minimum hole sparsity for all unary patterns in the
context of trivial and non-trivial avoidability.

1 Introduction

Notions and techniques related to patterns such as repetitions in strings find ap-
plications in several areas of theoretical and applied computer science, notably
in text processing, data compression, computational biology, string and pattern
matching algorithms (see [7] for an overview on repetitions in strings). In pattern
matching, several algorithms take advantage of the repetitions of the pattern to
speed up the search of its occurrences in a text. On the other hand, non-repetitive
sequences, those avoiding patterns such as squares, or square-free words, have
been used to build several counterexamples in context-free languages, groups, lat-
tice of varieties, partially ordered sets, semigroups, symbolic dynamics, to name
a few (see [8] for a survey on pattern avoidance). For example, Main, Bucher
and Haussler found applications of an infinite square-free co-CFL language [11].
They proved several conjectures on context-free languages by using the set of all
words that are not prefixes of the Thue-Morse infinite sequence, well known to
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be square-free, which provides a CFL language with an infinite square-free com-
plement. Words avoiding more general patterns than squares find applications
in algorithmic problems on algebraic structures.

The topic of (un)avoidable patterns in words has been extensively studied,
providing a framework for better understanding properties of repetitive and
non-repetitive sequences. A pattern p is a non-empty word over an alphabet
of variables, which are usually denoted by α, β, γ, etc. The terminology of avoid-
able pattern was introduced by Bean, Ehrenfeucht and McNulty [2] and by Zimin
[21]. They proved the fundamental result that it is decidable whether a pattern p
is avoidable; in fact, if p is over m variables, then p is avoidable if and only if wm

avoids p, where wm is recursively defined by w1 = 1 and wm = wm−1mwm−1,
m > 1. However, the complexity of deciding avoidability has remained open.
The problem “Is it decidable, given a pattern p and an integer k, whether p is
k-avoidable (or avoidable over a k-letter alphabet)?” has also remained open.
An alternative is the problem of classifying all the patterns over a fixed number
of variables m, that is, to find the smallest k such that p is k-avoidable, called
the avoidability index of p, where p is such pattern. In the context of full words,
the case m = 1 of the unary patterns, or powers of a variable α, were investi-
gated by Thue [19,20]: α is unavoidable, αα is 2-unavoidable but 3-avoidable,
and αn with n ≥ 3 is 2-avoidable. The case m = 2 has been completely clas-
sified [5,10,16,17,18], the case m ≥ 3 has also been the subject of investigation
[5,10,13].

An understanding of avoidable patterns is needed in the more general context
of partial words, which allow for incomplete or corrupted data. A partial word
is a sequence of symbols over a finite alphabet that may have some undefined
positions, called holes, denoted by (’s. Here ( is compatible with, or matches,
every letter of the alphabet. In this context, in order for a pattern p to occur in
a partial word, for each variable α of p, all of its substituted partial words be
pairwise compatible. For the case m = 1, both α and αα are unavoidable, and
so their avoidability indices in partial words is ∞. In [12], the case of αn, n ≥ 3
was considered, the avoidability index in partial words being two, settling the
classification of the unary patterns. For the case m = 2, it turns out that with
respect to non-trivial avoidability, in which no variable is substituted by only
one hole, the avoidability index of a binary pattern, one over two variables α
and β, coincides for both the partial and the full word cases [4]; the avoidability
indices of almost all binary patterns in terms of (not restricted to non-trivial)
avoidability have also been found.

In [14], the authors introduce the concepts of c-approximate and α-similarity.
Here a word uv with |u| = |v|, is considered to be a c-approximate square, if u
and v differ on at most c positions, and a α-similar square if the ratio between
the number of positions u and v agree on and the distance of u is at least α. As
we can see one of the notions is “additive,” while the other “multiplicative,” but
both definitions are based on the Hamming distance representing the number of
positions on which u and v differ.
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Following all this, the next problem is how “dense” in holes can a partial word
defined over a fixed alphabet be, while still avoiding a given pattern. In this
paper, we define a new concept, that of hole sparsity, representing the minimum
length each factor of an infinite word should have, such that it contains at least
a hole. Based on this notion, we compute the minimum hole sparsity necessary
for a word defined over an alphabet of size k to avoid a unary pattern αn.

The contents of our paper is as follows: In Section 2, we recall the basic
definitions regarding partial words and patterns in partial words. In Section 3,
we introduce the concept of hole sparsity, which measures the frequency of holes
in a partial word. Moreover, we pose the problem of determining the minimum
hole sparsity a partial word can have while still avoiding a pattern, and present
some tools that are useful for deciding the avoidability of a pattern over a given
alphabet with a given hole sparsity. In Sections 4 and 5, we determine this
minimum hole sparsity for unary patterns, for words over alphabets of all sizes,
in the context of trivial and non-trivial avoidability. Finally in Section 6, we
conclude with our classification of all unary patterns with respect to hole sparsity.

2 Preliminaries

For more information on partial words, the reader is referred to [3]. For patterns
in full (resp., partial) words, he/she is referred to Chapter 3 of [10] (resp., [4]).

Throughout this paper, A is a fixed non-empty finite alphabet. A finite partial
word of length n over A can be defined as a function u : {0, . . . , n − 1} → A�,
where A� = A∪{(}. We call the elements of A letters (the symbol ( is not called
a letter). Write |u| for the length of u. For 0 ≤ i < n, if u(i) ∈ A, then i belongs
to the domain of u, denoted D(u), and if u(i) = (, then i belongs to the set
of holes of u, denoted H(u). Whenever H(u) is empty, u is a full word. Refer
to an occurrence of the symbol ( as a hole. Denote by A∗ (resp., A∗

�) the set
of all finite words (resp., partial words) over A. Abbreviate A∗\{ε} by A+ and
A∗

�\{ε} by A+
� . Under the concatenation operation, A∗ and A∗

� form monoids
whose identities are the empty word denoted by ε. An infinite partial word over
A is a function u : N→ A�.

A partial word v is a factor of the partial word u if there exist x, y such that
u = xvy. If x = ε, then v is a prefix of u; if y = ε, then v is a suffix of u.
The powers of a finite partial word u are defined recursively by u0 = ε and for
n ≥ 1, un = uun−1. Two partial words u and v of equal length are compatible,
denoted u ↑ v, if u(i) = v(i) whenever i ∈ D(u) ∩D(v). If u, v are non-empty
and compatible, then uv is called a square. The partial word u is contained in v,
denoted u ⊂ v, if |u| = |v| and u(i) = v(i) for all i ∈ D(u).

Let E be a non-empty finite set of symbols, E ∩ A = ∅, whose elements are
denoted by α, β, γ, etc. Symbols in E are called variables, and finite words over
E are called patterns. The pattern p = α0 · · ·αn−1, where each αi is a variable,
occurs in a partial word w (or w meets p) if there is a factor u0 · · ·un−1 in w,
where ui, uj are non-empty and compatible whenever αi = αj ; otherwise, w
avoids p or w is p-free. An occurrence u0 · · ·un−1 of p is non-trivial if ui 
= (
for all i = 0, . . . , n − 1. Otherwise, the occurrence is called trivial. We call w
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non-trivially p-free if w contains no non-trivial occurrence of p. For instance,
the pattern αββα occurs in ab(b a ( bba, while (babbbaaab avoids αββα (the
underlined occurrence of αββα is trivial).

A pattern p is k-avoidable if there are infinitely many partial words in A∗
�

with h holes, for any integer h > 0, that avoid p, where A is any alphabet of
size k. Note that if there is a partial word over A with infinitely many holes
that avoids p, then p is obviously k-avoidable. On the other hand, if, for some
integer h ≥ 0, p occurs in every long enough partial word in A∗� with h holes,
then p is k-unavoidable (it is also called unavoidable over A). Finally, a pattern
p which is k-avoidable for some k is simply called avoidable, and a pattern which
is k-unavoidable for every k is called unavoidable. The avoidability index of p is
the smallest integer k such that p is k-avoidable, or is ∞ if p is unavoidable.

If a pattern p occurs in a pattern q, then p divides q, denoted by p | q. For
example, αα � αβα but αα | αβαβ. When both p | q and q | p hold, p and q are
equivalent ; for instance, αα and ββ are equivalent.

3 Hole Sparsity

Results for pattern avoidance in partial words have thus far been obtained by
hole insertions in selected positions of full words (the letters in selected positions
are replaced by holes). In [4], for example, a binary partial word with infinitely
many holes that avoids the pattern αβαβα is constructed, and has at least 80
letters between any two consecutive holes. We are interested in determining how
frequently holes can appear in a word that avoids a given pattern. First, we give
a precise definition of the notion of “frequency of holes.”

Definition 1. The hole sparsity of a partial word w is the smallest positive
integer λ such that every factor of w of length λ contains at least one hole. In
this case, we call w λ-sparse.

For example, ab(b(ac(bc(a is 3-sparse, since every factor of length three contains
at least one hole and there is a factor of length two that has no holes.

For a fixed pattern p and fixed alphabet A of size k, we want to determine
the smallest λ so that an infinite λ-sparse word over A avoids p.

Definition 2. Let p ∈ E+ be a pattern.

– Define the non-trivial minimum hole sparsity for p over an alphabet of size k,
denoted χk(p), to be the smallest positive integer λ such that there exists an
infinite λ-sparse word w over a k-letter alphabet that avoids all non-trivial
occurrences of p. If no such integer exists, then χk(p) =∞.

– Define the minimum hole sparsity for p over an alphabet of size k, denoted
χ∗

k(p), to be the smallest positive integer λ such that there exists an infinite
λ-sparse word w over a k-letter alphabet that avoids all occurrences of p
(including trivial occurrences). If no such integer exists, then χ∗

k(p) =∞.

We have the following lemma regarding (non-trivial) minimum hole sparsity.
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Lemma 1. For p, q ∈ E+ and integer k > 0, the following statements hold:

1. χk(p) ≥ 2;
2. If k < k′, then χk(p) ≥ χk′ (p);
3. If p | q, then χk(p) ≥ χk(q);
4. If p is k-unavoidable, then χk(p) =∞.

Statements 1–4 hold for the χ∗
k function as well.

Proof. We prove the lemma for the χk function. Statement 4 is trivial, while for
Statement 1, we point out that if an infinite word is 1-sparse, then it consists
only of holes, and therefore meets every pattern. For Statement 2, if k < k′, then
a λ-sparse word avoiding p over the k-letter alphabet will also avoid p over the
k′-letter alphabet. We prove Statement 3 similarly by noting that if p | q then a
word that avoids p also avoids q. ��
Moreover, the backtracking algorithm given in Chapter 2 of [6] can be easily
adapted to list all the λ-sparse words over an alphabet of size k that trivially
or non-trivially avoid p. The following useful definition differs from the usual
preimage definition in that, for all y ∈ ϕ−1(x), we do not require that x = ϕ(y),
but only that x is a factor of ϕ(y).

Definition 3. Let A and B be alphabets, let ϕ : A∗ → B+, and let p be a
pattern. We define the preimage of p under ϕ, denoted ϕ−1(p), to be the set of
all w ∈ A∗ for which ϕ(w) meets p.

4 Non-trivial Minimum Hole Sparsity for Unary Patterns

In this section, we consider all non-trivial occurrences of αn, where n ≥ 1. Since
α is unavoidable over a k-letter alphabet and αn is unavoidable over the unary
alphabet, χk(α) = ∞ and χ1(αn) = ∞ for all k, n ≥ 1. The pattern α2 is
unavoidable over the binary alphabet [19], hence, χ2(α2) = ∞. Moreover, for
all k ≥ 1, χk(α2) > 3. The latter is due to the fact that a((b, a(b(c(, (ab( are
compatible with the non-trivial squares, (ab)2, (acb)2 and (ba)2.

Lemma 2. For all k ≥ 4, χk(α2) = 4.

Proof. Let A = {a, b, c, d} and consider the morphisms ρ : A∗ → A∗ defined
by ρ(a) = ad, ρ(b) = bc, ρ(c) = ab, ρ(d) = ba, and σ : A∗ → A∗

� defined by
σ(a) = dca(, σ(b) = bca(, σ(c) = dba(, σ(d) = bda(. Note that the morphism ρ
has been previously studied; see, for example, exercise 33(c) of 1.6 in [1] (after
a permutation of letters d 	→ c 	→ b 	→ d). We show that the 4-sparse word
σ(ρω(a)) avoids non-trivial squares.

Let us first show that ρω(a) is square-free. By contradiction, assume that ρω(a)
contains a square, and let u2 be the smallest factor in ρω(a) that is a square. It
is trivial to note that |u2| ≥ 4. Checking all four-length factors of ρω(a) we see
that every such factor must contain a c or a d, and therefore u2 must contain
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either two c’s or two d’s. Since c’s and d’s only occur at odd positions in ρω(a),
it follows that |u| must be even.

Suppose u begins with a, the case in which u starts with b is symmetrical.
Note that, the second letter of u is either b or d. If it is d, then u2 = adu′adu′, for
some u′ ∈ A∗. According to the definition of ρ and the fact that this morphism
is prolongable, there exists a factor x ∈ A∗ of ρω(a), such that u2 = ρ(x)2. This
is a contradiction with the minimality of u. If the second letter of u is b, then ab
is an image of either c or db (since ρ(db) = babc). If the preimage is c, we reach
another contradiction in the same manner. If the preimage is db, it follows that
bu2 = babu′babu′b is a factor of ρω(a), for some u′ ∈ A∗. Once more we reach a
contradiction. Now let us suppose u begins with c, the case when u starts with
d is symmetrical. Since b always preceeds c, we have bu2 = bcu′bcu′a is a factor
of ρω(a), for some u′ ∈ A∗. A contradiction is reached similarly to the previous
cases, and we conclude that ρω(a) is square-free.

Assume now, to the contrary, that σ(ρω(a)) contains a factor uv where u ↑ v
with |u| = |v|. Furthermore, every fourth symbol of σ(ρω(a)) is an a. If |u| ≤ 3,
then the only combinations of images of σ that contain squares are (dba(b and
(bda(d, but none of their preimages, xcb, xcd, xda or xdc, occur in ρω(a). Thus,
|u| ≥ 4, and we show that |u| is divisible by 4. Since |u| ≥ 4, it must be that
both u and v contain a’s. If the a’s occur in corresponding positions, then |u| is
divisible by 4. If not, then without loss of generality we assume that an a in u
corresponds to a ( in v. But then the a preceding the hole in v corresponds to
the symbol that precedes the a in u, which is neither a nor (, a contradiction.
Note that if u begins with a, since v begins with a hole, it must be that u ends
in a, and this correspondz to a hole at the end of v, a contradiction according
to the previous case. It follows that u ↑ v implies u = v, since (’s in u occur in
the same positions as those in v. Hence, we may refer to uv as u2.

Let us look at the position of the first hole in u. If u(3) = (, then u starts with
one of the images of σ, and since |u| is divisible by four, it follows that for some
x ∈ A∗ we have u2 = σ(xx), which is a contradiction with the fact that ρω(a)
is square-free. If u(0) = (, we consider the square that begins at u(1) and ends
with the ( that follows u2, which leads to a contradiction as shown above. If
u(1) = ( then u begins with a( and u2 must be followed by a(. Considering the
square that starts at u(2) a contradiction follows as shown above. Finally, assume
u(2) = (. If u starts with b or d, then we know the letter that precedes u, and we
find a new square starting with that letter and obtain a contradiction. If u starts
with c, then u2 = ca(u′zca(u′′z, where u′ = u′′ ∈ A∗

� and z ∈ {b, d}. Suppose
u2 is preceded by d, the case for b is similar. In order to avoid a contradiction
similar to the previous cases, we have z = b. Since the preimage of dca( under σ
is a, and, in ρω(a), a is always followed by b or d, it follows that the first letter of
u′ is b. However, by similar reasoning the first letter in u′′ is a d, a contradiction
since the latest d corresponds to the b in the first copy of u. ��
Next we consider χ3(α2). The backtracking algorithm gives us the bound of
χ3(α2) ≥ 7. We show that this bound is tight.

Lemma 3. The equality χ3(α2) = 7 holds.
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Proof. Let A = {a, b, c, d} and B = {a, b, c}, and the morphism ρ defined
as in Lemma 2. Define π : A∗ → B∗

� by π(a) = abcbac(b(acbabc(, π(b) =
bacabc(a(bcabac(, π(c) = abcacb(, and π(d) = bacbca(. We show that π(ρω(a))
avoids non-trivial squares. Suppose to the contrary that Π = π(ρω(a)) contains
a factor uv where u ↑ v. Note that, every length two factor of ρω(a) has an
image under π of length at least 23. Moreover, all squares of length at most 24
are contained in the image of a factor of length three of ρω(a). There are ten
such factors aba, abc, adb, bab, bad, bca, cab, cad, dba and dbc, and, by exhaustive
checking, we conclude that their images under π are square-free. Thus, it must
be that |uv| > 25.

Let us now show that u = v. In particular, we show that there are no two
non-identical factors of length nine that are compatible. Looking at all 54 length
nine factors of Π obtained from the ten factors of ρω(a) described above, we get
that no two are compatible. Hence, all compatible factors of Π of length nine or
greater must be equal. Since |u| = |v| > 12, we must have u = v.

Looking again at the position of the first hole in u and using an approach
similar to the one in the proof of Lemma 2, the conclusion follows. ��
Let us now move on to α3 and first show that χ2(α3) = 3. The backtracking
algorithm gives the lower bound χ2(α3) ≥ 3.

Lemma 4. The equality χ2(α3) = 3 holds.

Proof. Let A = {a, b, c} and B = {a, b}, and define the morphisms δ : A∗ → A∗

by δ(a) = ab, δ(b) = bc and δ(c) = ab, and υ : A∗ → B∗� by υ(a) = aa(,
υ(b) = ab( and υ(c) = bb(. Note that replacing each c in δ with a yields the
Thue-Morse morphism. It is well-known that the Thue-Morse word avoids the
patterns α3 and αβαβα [9]. Thus, δω(a) also avoids these patterns.

We show that υ(δω(a)) avoids non-trivial cubes. Suppose towards a contradic-
tion, that there exists a non-trivial cube u1u2u3 in υ(δω(a)), where u1, u2, u3 ⊂ u
for some u ∈ B∗

� and ui 
= ( for all i. We first look at the possible starting letters
of u1, u2 and u3 in order to show |u| ≡ 0 mod 3.

If |u| ≡ 1 or 2 mod 3 and |u| > 3, then, because of the compatibility, the ui’s
must begin one with xy(, one with x(z, and one with (yz, where x, y, z ∈ B.
If xy = aa, then the factor a(z implies z = a. The factor aa( is followed by a,
while a(a is followed by b, yielding a contradiction. If xy = ab, then the factor
a(z implies z = a, but the factor (bz implies z = b, a contradiction. Finally, if
xy = bb, then the factor (bz implies z = b. The factor b(b is followed by b, while
bb( is followed by a, a contradiction. Since |u| = 1 implies the occurrence of a
trivial cube, this leaves |u| = 2 in the case when |u| 
≡ 0 mod 3. In this case, u3

is contained in the image of a factor in δω(a) of length three. It is sufficient to
compute all such factors and check their images to see that none of their images
under υ contains a cube.

For |u| ≡ 0 mod 3, we note that u = u1 = u2 = u3. The conclusion follows
similarly to the proof of Lemma 2, based on the position of the first ( in u. ��
Lemma 5. For all k, n ≥ 3, χk(αn) = 2.
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Proof. From Lemma 1 we have χ3(α3) ≥ 2, so it suffices to show that χ3(α3) = 2.
Let A = {a, b, c} and consider ϕω(a), where ϕ : A∗

� → A∗
� is given by ϕ(a) =

a(b(a(c, ϕ(b) = a(b, ϕ(c) = a(c and ϕ(() = (. Observe that ϕω(a) alternates
letters and holes, and hence is 2-sparse. Suppose towards a contradiction, that
ϕω(a) has a factor u1u2u3 with u1, u2, u3 ⊂ u, for some u ∈ A∗

�. If |u| is even,
since holes must occur in the same positions in the ui’s, it follows that u = u1 =
u2 = u3. Moreover, a appears in ϕω(a) exactly once every four symbols. Since
|u3| ≥ 6 and u3 is a cube, u3 contains an a in each of the three copies of u. Thus,
|u| ≡ 0 mod 4.

Assume that u3 begins with an a. The other cases are similar since either
the second symbol in u3 is an a, there is an a immediately to the left of u3,
or there is an a before the symbol that precedes u3. In all these cases u3 shifts
so that it starts with a. Break u3 into factors of length four, each of which is
either s = a(b( or t = a(c(. We can therefore rewrite ϕω(a) in terms of s and
t, such that the cubes in ϕω(a) correspond to cubes in the new word. Note that
ϕ(s) = a(b(a(c(a(b( = sts and ϕ(t) = a(b(a(c(a(c( = stt, and that this new
word is equivalent to ϕ′ω(s), where ϕ′ : {s, t}∗ → {s, t}∗ is given by ϕ′(s) = sts
and ϕ′(t) = stt. We reach the desired contradiction using a result of Richomme
and Wlazinski, who show in [15] that a morphism ϕ′′ on {s, t}∗ avoids cubes
if and only if ϕ′′(ssttststtsttsstsststsstt) is cube-free. It is straightforward to
compute ϕ′(ssttststtsttsstsststsstt) and check that it does not have any cubes.

If n = |u| is odd, then u1 ↑ u3 implies u1 = u3. Hence, we refer to u1u2u3

as xyx, where x ↑ y. Moreover, we may suppose that x(0) = (, since otherwise,
there is another cube, of equal length, starting at x(1) = (. Since x(0) = (, and
|x| is odd, we have x = (x′( with x′ ∈ A∗

�. Since we can break ϕω(a) into factors
of length four that are either a(b( or a(c(, by induction, we deduce that between
any two arbitrary identical letters there are oddly-many letters. Counting the
number of letters between the first letter in the first occurrence of x and the one
in the second occurrence, we get that this number is even. This is a contradiction
with the previous remark, hence, the conclusion follows. ��
Next, we show that for αn, n ≥ 4, a binary alphabet is enough for constructing
an infinite word having a hole every two symbols.

Lemma 6. For all n ≥ 4, χ2(αn) = 2.

Proof. Let A = {a, b} and define μ : A∗
� → A∗

� to be μ(a) = a(b, μ(b) = a(a and
μ(() = (. We show that μω(a) is free of fourth powers. Assume that μω(a) has
a factor u1u2u3u4 such that u1, u2, u3, u4 ⊂ u, for some u ∈ A∗

�.
If |u| is even, since the holes align, we have u = u1 = u2 = u3 = u4. Assume

that u4 begins with a letter. If it is not the case, then there is a fourth power
of equal length that starts at the second symbol of u4, which must be a letter.
Break u4 into factors of length two, each of which is either s = a( or t = b(. We
can therefore write μω(a) in terms of s and t, and the fourth powers in μω(a)
correspond to fourth powers in the new word. Since μ(s) = a(b( = st and μ(t) =
a(a( = ss, the new word is equivalent to μ′ω(s), where μ′ : {s, t}∗ → {s, t}∗ is
given by μ′(s) = st and μ′(t) = ss. We now show that μ′ω(s) is 4th powers free.
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Assume μ′ω(s) has a factor v4 and that v4 is the smallest fourth power in
μ′ω(s). Since, from the definition of μ′, between two consecutive t’s there are
either one or three s’s, by induction, there are an odd number of letters between
any two t’s. Moreover, v4 ≥ 4 and v4 must contain a t and, hence, each copy of
v must contain a t. Thus, |v| must be even. Let v′ ∈ {s, t}∗. If v = stv′, then
the preimage of v4 under μ′ is unique and contains a fourth power. Since μ′ is
prolongable, this contradicts the minimality of v. If v starts with t, then v is
preceded by s, and there exists again a fourth power which is covered above. If
v = sstv′, then v is preceded by ts, and there is also a fourth power (tssstv′)4,
covered above. Finally, if v = ssstv′, then v is preceded by t, and there is a
fourth power (tssstv′)4 in μ′ω(s), which is covered above.

Next, suppose that n = |u| is odd. Note that, u1 ↑ u3 implies u1 = u3 and
u2 ↑ u4 implies u2 = u4, and a b occurs at least every 8 symbols. Since |u4| ≥ 8,
there is at least one b in u4. Assume without loss of generality that b occurs in
u1. Then, there is a corresponding b in u3, and between the two b’s there are
2n− 1 symbols. The remainder of the proof is identical to that of Lemma 5. ��

5 Minimum Hole Sparsity for Unary Patterns

Note that χ∗
k(α) = χ∗

1(α
n) =∞ for all k, n ≥ 1. Since factors of the form a( or

(a appear in all infinite partial words having holes, χ∗
k(α2) =∞ for all k ≥ 1.

Looking at trivial cubes, any 2-sparse word meets the pattern α3, since any
letter a is preceded and followed by a hole. Thus, for all k ≥ 1, we have the lower
bound χ∗

k(α3) ≥ 3. For k ≥ 3, we show that the bound is tight.

Lemma 7. For all k ≥ 3, χ∗
k(α3) = 3.

Proof. Let A = {a, b} and B = {a, b, c}, and define the morphisms ξ : A∗ → A∗

by ξ(a) = ab and ξ(b) = ba, and τ : B∗ → B∗
� by τ(a) = ab( and τ(b) = ac(.

We show that τ(ξω(a)) avoids cubes. Suppose to the contrary that τ(ξω(a))
has a factor u1u2u3 where u1, u2, u3 ⊂ u, for some u ∈ A∗�. If |u| ≡ 1 or 2 mod 3
and |u| > 3, then, again due to compatibility, the ui’s must begin one with xy(,
one with x(z, and one with (yz, where x, y, z ∈ B. Furthermore, since ( is always
followed by a, we must have x = y = z = a, which is absurd. If |u| ≤ 2, then
u3 is contained in the image of a factor in ξω(a) of length 3. It is sufficient to
compute all such factors and check their images under τ for cubes. None of the
images of these under τ contains a cube.

For |u| ≡ 0 mod 3, we note that u = u1 = u2 = u3.
If u = au′ for u′ ∈ B∗� , then the preimage of u3 in ξω(a) contains a cube, a

contradiction since ξ is the cube-free Thue-Morse morphism. If, instead, u = xu′,
x ∈ {b, c, (}, then we can easily find another perfect cube that begins one symbol
to the left, in the case x = b or x = c, or to the right, in the case x = (, of
u(0). The new perfect cube has the form (au′)3, which leads to a contradiction
as shown above. ��
We complete the computation of χ∗

k(α3), k ≥ 1, with the following lemma.
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Lemma 8. The equality χ∗
2(α

3) = 7 holds.

Proof. The backtracking algorithm gives the lower bound of 7. Let A = {a, b},
ξ : A∗ → A∗ the Thue-Morse morphism from the proof of Lemma 7, and define
ζ : A∗ → A∗

� by ζ(a) = babaab(abbaba( and ζ(b) = baabba(.
We show that ζ(ξω(a)) avoids cubes. Suppose towards a contradiction that

ζ(ξω(a)) contains a factor u1u2u3, where u1, u2, u3 ⊂ u for u ∈ A∗�. Since every
factor v of ξω(a) with |v| ≥ 7 has an image ζ(v) such that |ζ(v)| ≥ 70, every
length 63 factor of ζ(ξω(a)) is contained in the image of a factor w of length
eight of ξω(a). There are 22 possible such factors and by exhaustive checking we
find out that none contains cubes. Thus, we have |u| ≥ 21.

The same as in the proof of Lemma 3 we show that in ζ(ξω(a)) there are
no two non-identical factors of length 21 that are compatible. In particular, we
check that each of the 51 factors of length 21 of ζ(ξω(a)) is not compatible with
any other length 21 factor. It follows that any two compatible factors of ζ(ξω(a))
of length 21 or greater must be equal. Since |u| ≥ 21, we have u = u1 = u2 = u3.

Since u3 is sufficiently long, it contains the factor ζ(b) = baabba(. If ζ(b) is
a factor of u then u = u′ζ(b)u′′ with u′′u′ = ζ(w), for w ∈ A∗. Hence, the
Thue-Morse word, contains the factor bwbwb, a contradiction since this word is
overlap-free. If ζ(b) is not a factor of u, then u = u′u′′u′′′ with u′′′u′ = ζ(b) and
u′′ = ζ(w), for w ∈ A∗. This implies that the Thue-Morse word contains the
factor wbwbw, again a contradiction. ��
The following two lemmas settle α4.

Lemma 9. The equality χ∗
2(α

4) = 3 holds.

Proof. The backtracking algorithm provides the lower bound. Let A = {a, b},
ξ : A∗ → A∗ the Thue-Morse morphism from the proof of Lemma 7, and define
κ : A∗ → A∗

� by κ(a) = ab(ab(ba(ba( and κ(b) = ab(ab(ab(ba(ba(.
We show that κ(ξω(a)) avoids fourth powers. Suppose to the contrary that

κ(ξω(a)) contains a factor u1u2u3u4 with u1, u2, u3, u4 ⊂ u, for some u ∈ A∗
�.

Every factor v of ξω(a), |v| ≥ 2, has an image κ(v) such that |κ(v)| ≥ 24. Hence,
every length 24 factor of κ(ξω(a)) is contained in the image of a factor of length
3 of ξω(a). Since none of the images of these six factors contains fourth powers,
we conclude that |u| ≥ 7.

Moreover, suppose that |u| 
≡ 0 mod 3. Since every third symbol is (, at least
one of the ui’s must begin with xy(, where x, y ∈ A and x 
= y. To maintain
compatibility, another ui must begin with (yx, while the third must begin with
x(x. Furthermore, the factor x(x must be followed by y(, while the factor xy(
must be followed by yx( and the factor (yx must be followed by (xy. We conclude
that one of the ui’s should start with x(xy(y, but since neither a(ab(b nor b(ba(a
appear in κ(ξω(a)), this is a contradiction. Therefore, we have 7 ≤ |u| ≡ 0 mod 3.

Next, if |u| ≡ 0 mod 3, then u = u1 = u2 = u3 = u4, and since |u4| ≥ 28, it
must have the factor ba(ba( at least once. Because u4 has four occurrences of u,
the factor ba(ba( must appear at least three times. Taking the preimages of the
last three (identical) factors that end with ba(ba(, we obtain a cube in ξω(a), a
contradiction since the Thue-Morse word ξω(a) is cube-free. ��



Unary Pattern Avoidance in Partial Words Dense with Holes 165

k α α2 α3 α4 α5 · · ·
1 ∞ ∞ ∞ ∞ ∞ · · ·
2 ∞ ∞ 3 2 2 · · ·
3 ∞ 7 2 2 2 · · ·
4 ∞ 4 2 2 2 · · ·
5 ∞ 4 2 2 2 · · ·
...

...
...

...
...

...

Fig. 1. χk(αn)

k α α2 α3 α4 α5 α6 α7 · · ·
1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ · · ·
2 ∞ ∞ 7 3 3 2 2 · · ·
3 ∞ ∞ 3 2 2 2 2 · · ·
4 ∞ ∞ 3 2 2 2 2 · · ·
...

...
...

...
...

...
...

...

Fig. 2. χ∗
k(αn)

Lemma 10. For all k ≥ 3, χ∗
k(α4) = 2.

Proof. Lemma 1 gives the lower bound. Let A = {a, b, c} and define a new
function μ′ : A∗

� → A∗
� as follows μ′(a) = a(b, μ′(b) = a(c, μ′(c) = a(b and

μ′(() = (. Furthermore, note that the infinite word μ′ω(a) is simply a copy
μω(a) from Lemma 6, in which some a’s have been replaced with c’s. Since a
non-trivial fourth power in μ′ω(a) implies the presence of a non-trivial fourth
power in μω(a), which is impossible, we have that μ′ω(a) is non-trivially 4th
power free. It is easy to check that μ′ω(a) avoids trivial fourth powers as well,
since no two consecutive letters of μ′ω(a) are the same. ��
The next two lemmas consider αn, where n ≥ 5.

Lemma 11. The equality χ∗
2(α

5) = 3 holds.

Lemma 12. For all n ≥ 6 and k ≥ 2, χ∗
k(αn) = 2.

Proof. We show that the Thue-Morse word ξω(a) from Lemma 7 with a hole
inserted between every two letters is 6th power free. Suppose to the contrary that
the new word w contains a factor u0 · · ·u5, where ui ⊂ u for some u ∈ {a, b}∗�
and i ∈ {0, . . . , 5}. Moreover, assume that u0 · · ·u5 begins with a letter, for if
it begins with a ( then we consider the sixth power in w that begins with the
second symbol of u0 · · ·u5 and ends with the hole that follows u0 · · ·u5.

Let v0 = u0u1, v1 = u2u3, v2 = u4u5, and v = u2 so that v0, v1, v2 ⊂ v.
We have that |v| = 2|u| is even, and so v0 = v1 = v2 since the (’s occur in
corresponding positions in all v’s. We break v1v2v3 into factors of length two,
each of which are a( or b(. Since v1 = v2 = v3, removing the holes from each
factor of length two of w preserves the cube in the resulting word. However, this
word is ξω(a), which is known to avoid cubes. The conclusion follows. ��

6 Conclusion

Using Lemma 1 and the results from Sections 4 and 5, we conclude with the
following theorem which gives χk(αn) and χ∗

k(αn) for all k, n ≥ 1.

Theorem 1. The values of χk(αn) are given in Figure 1, while the values of
χ∗

k(αn) are given in Figure 2.
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Abstract. We consider compression of a given set S of isomorphic and
disjoint subgraphs of a graph G using node labelled controlled (NLC)
graph grammars. Given S and G, we characterize whether or not there
exists a NLC graph grammar consisting of exactly one rule such that
(1) each of the subgraphs S in G are compressed (i.e., replaced by a
nonterminal) in the (unique) initial graph I , and (2) the set of generated
terminal graphs is the singleton {G}.

1 Introduction

Graph grammars define languages over graphs, in the same way that string
or tree grammars define languages over strings (trees). Several types of graph
grammars have been proposed and studied (e.g., [8,1]). A well-studied and well-
understood type are the NLC grammars (Node Labeled Controlled grammars)
[8]. An NLC grammar consists of a set of node rewriting rules that indicate how,
in the process of generating graphs from an initial graph using the grammar, a
node with a particular label can be rewritten into a subgraph, and how this sub-
graph is connected to the neighbors of the node being rewritten. These so-called
connection rules are in an important difference with string or tree grammars,
which do not need such rules.

While NLC grammars (and the broader class of (e,d)-NCE grammars that
they belong to) have been studied in detail regarding the properties of the lan-
guages they can define, the complexity of parsing their elements, etc., there has
been little research on the induction of such grammars from example graphs. This
is not specific for NLC grammars: induction of graph grammars has in general
not received much interest. This is somewhat remarkable because the learning
of graph languages from example graphs is generally considered an important
topic in machine learning: it has been used, for instance, to classify molecules
[6], analyse network structures [12], recognize objects in images [13], etc. The
induction of graph grammars has the additional advantage that the grammar
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(NWO), project “Annotated graph mining”.

A.-H. Dediu, S. Inenaga, and C. Martín-Vide (Eds.): LATA 2011, LNCS 6638, pp. 167–178, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



168 R. Brijder and H. Blockeel

rules define transformations of graphs and as such can be used to describe the
dynamic behavior of graphs, which is of interest in the context of, for instance,
social network analysis.

Several approaches to the induction of graph grammars have been proposed,
with significant practical success; however, there is little theoretical understand-
ing of the learnability of certain types of graph grammars. In the context of NLC
grammars, some initial work has been done that describes how grammar rules
can be learned from example graphs. In this paper, we continue that thread of
research.

Previous work [4] showed how, given a graph G (or a set of graphs — but such a
set can always be considered a single graph with multiple connected components,
so there is no loss of generality in considering a single graph), one can find a sin-
gle NLC grammar rule r and a graph I that is as small as possible (following the
“maximum compression” or “minimum description length” (MDL) principle that
is commonly used in machine learning), with the property that I uniquely de-
termines G through repeated application of r. This work was limited by the fact
that the subgraphs generated by the rule r cannot “touch”, that is, there cannot
be edges connecting two such subgraphs. In [3], it was shown that when the sub-
graphs can touch, this may lead to non-confluency: the order in which nodes are
rewritten can influence the outcome of the rewriting process (thus, I no longer
uniquely determines G unless this order is fixed). In this paper, we characterize
the exact conditions under which the NLC grammar rule will be confluent.

This result is useful for two reasons. From the point of view of graph compres-
sion, it makes a better compression algorithm possible because the conditions
under which subgraphs can be compressed into a single node can be relaxed.
From the point of view of graph grammar induction (and its applications in
machine learning), it allows for a broader class of grammar rules to be learned.

2 Related Work

As mentioned in the Introduction, there has been little research on graph gram-
mar induction. An important line of work in this area was started by Cook and
Holder with their work on Subdue [5], an algorithm for learning from graphs that,
in several variants, led to classification, clustering, and compression of graphs,
and later on to induction of graph grammars [10,11]. This work is mostly mo-
tivated by practical applications, rather than theory on grammar induction or
graph grammars, and as such these grammars sometimes lack desirable prop-
erties. For instance, node rewriting rules do not always indicate how the new
graph should be connected to the neighborhood of the node being substituted;
as a result, graph compression is not lossless, and the graph grammar lacks a
certain expressive power that other grammars have. Also, potential problems
with non-confluency, overlapping or touching subgraphs, etc., are not studied.

Another line of work is the induction of probabilistic graph grammars in [7,14].
This work builds mostly on methods for constructing probabilistic grammars. It
does not focus on issues such as lossless compression or confluency, which are
not very relevant in that context.
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In [9] the potential of edge replacement grammars for machine learning is
discussed, but we are not aware of further work in that direction.

The most closely related work is [4] and [2,3] on the induction of NLC gram-
mars; this paper builds directly on it. As said in the introduction, the work by
[4] had certain limitations, and the possible effects of lifting these limitations
was studied by [3]. In this paper, we characterize under what conditions the
mentioned limitations can be lifted without undesirable consequences. Before
we can go into detail about this, we need to introduce some terminology and
background.

3 Notation and Terminology

We consider simple graphs G = (V, E), where V is a finite set of nodes and
E ⊆ {{x, y} | x, y ∈ V, x 
= y} is the set of edges — hence no loops or parallel
edges are allowed. We denote V (G) = V and E(G) = E. For S ⊆ V , the induced
subgraph of G is the graph (S, E′) where E′ ⊆ E and for each e ∈ E we have
e ∈ E′ iff e ⊆ S. We consider only induced subgraphs, and therefore we will
write “subgraph” instead of induced subgraph. The neighborhood of S ⊆ V in
G, denoted by NG(S), is {v ∈ V \S | {s, v} ∈ E for some s ∈ S}. If S = {x}
is a singleton, then we also write NG(x) = NG(S). A labelled graph is a triple
G = (V, E, l) where (V, E) is a simple graph and l : V → L is a node labelling
function, where L is a finite set of labels. We write l(G) = l(V ) = {l(v) | v ∈ V }.
As usual, graphs are considered isomorphic if they are identical modulo the
identity of the nodes. It is important to realize that for labelled graphs, nodes
identified by an isomorphism have identical labels. In graphical depictions of
labelled graphs we always represent the nodes by their labels. As we consider
solely labelled graphs from now on, we will often write simply graph to denoted
labelled graphs.

Subgraphs S1 and S2 are called disjoint (or non-overlapping) if V (S1) and
V (S2) are disjoint. They are called touching if they are disjoint and there is an
edge e ∈ E(G) with one node in S1 and the other in S2.

4 NLC Graph Grammars

In this section we briefly recall the notions and definitions concerning NLC gram-
mars used in this paper, and refer to [8] for a gentle and more detailed introduc-
tion to these grammars.

A NLC graph grammar is an ordered 5-tuple Q = (L, L̄, I, P, E), where L is
a finite set of node labels, where the elements of L̄ ⊆ L (L \ L̄, resp.) are called
terminal (nonterminal, resp.) node labels, I is a labelled graph with the nodes
labelled by L called the initial graph, and E ⊆ L2 (where L2 = L×L) is called an
embedding relation. Finally, P is a set of tuples (N, S), called productions, where
N ∈ L \ L̄ and S is a labelled graph with nodes labelled by L. A production
(N, S) is also denoted by N → S.
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b

N N
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b

b a N

→

b

b a b a

Fig. 1. The derivation of graph G (right-hand side) from I (left-hand side) in Ex-
ample 1 using the derivation rule p = N → a− b and embedding relation E =
{(b, a), (b, b), (a,N)}

The semantics of an NLC graph grammar Q are as follows. Let G be a graph
containing a node x labelled by a nonterminal N . Then a production p of the
form N → S is applicable to (defined on) G. The result after applying p to G on
x is another graph G′. The graph G′ is obtained from G by removing node x (and
all edges adjacent to x) and replacing it by (a copy of) S. Moreover, edges are
created between the nodes of S and of NG(x) according to the embedding relation
E: for y ∈ V (S) and z ∈ NG(x), we have {y, z} ∈ E(G′) iff (l(y), l(z)) ∈ E (where
l is the labelling function of G′). Now, the set of graphs with only terminal nodes
obtainable from the initial graph I by iteratively applying productions from P
is the language L(Q) of Q.

In this paper, we consider NLC grammars containing exactly one production
N → S, i.e., |P | = 1. Therefore we (may) assume without loss of generality
that L \ L̄ = {N}. Hence we specify Q by the tuple (L, I, (N, S), E). Also, we
may assume without loss of generality that the node labels of S do not contain
N . Indeed, if the node labels of S contain N , and assuming I contains a node
labelled by N , then L(Q) = ∅ as no graph with only terminal labels can be
generated.

Example 1. Let G be the graph on the left-hand side of Figure 1. Let L =
{a, b, N} be the set of labels (N is the nonterminal), E = {(b, a), (b, b), (a, N)}
be the embedding, and p = N → S be the production, where S is the graph
a b . Note that formally we have only defined S up to isomorphism, however
as we have seen this is not an objection.

Figure 1 now depicts a derivation from an initial graph I where first produc-
tion p is applied to the node labelled by N on the left-hand side, and then p
is applied on the remaining node labelled by N . The obtained graph G (on the
right-hand side of the figure) has only terminal nodes. The derivation from I by
applying p in the other order on the nonterminal nodes obtains the following
graph.

b

��
��

��
��

�

a b a b

This example will be a running example in this paper.
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5 Compatibility and Confluency

In this section we recall the basic notions of compatibility and confluency, and
recall the results from [4] that are necessary for this paper.

We fix some graph G and some graph S. We let S be the set of subgraphs
of G isomorphic to S. We let L̄ = l(G) and, as defined in the previous section
L = L̄ ∪ {N} with N the nonterminal node label.

First we recall the notion of compatibility.

Definition 2. Let G be a graph, S be a set of subgraphs of G isomorphic to
a graph S, and C = (S1, S2, . . . , Sn) be a linear ordering of S. We say that
E ⊆ L×L is compatible with C (in G) if there are graphs G0, . . . , Gn such that
Gn = G and for each i ∈ {1, . . . , n}, Gi is obtained from Gi−1 by producing Si

using NLC grammar Q = (L, G0, (N, S), E).

In case S = {S} is a singleton, we also say that E is compatible with S instead
of (S).

Since the embedding of the new subgraph in the old graph is determined by
node labels, it is impossible that two nodes with the same label in the subgraph
are connected to the neighborhood of the subgraph in a different way. This is
formally expressed as follows.

Lemma 3. Let G be a graph, and S1, . . . , Sn subgraphs of G. If E ⊆ L2 is
compatible with (S1, . . . , Sn), then for any i ∈ {1, . . . , n} and x, y ∈ V (Si) with
l(x) = l(y), we have NG(x) \ V (Si) = NG(y) \ V (Si).

To characterize the notion of compatibility, we need the notions of inset and
outset.

Definition 4. Let Z ⊆ V (G)2. We define the inset of Z, denoted by IZ , as the
set {(l(x), l(y)) | {x, y} ∈ E(G), (x, y) ∈ Z}, and outset of Z, denoted by OZ , as
the set {(l(x), l(y)) | {x, y} 
∈ E(G), (x, y) ∈ Z}.
Let S be an induced subgraph of G. Then the inset (outset, resp.) of S, denoted
by IS (OS , resp.), is defined to be the inset (outset, resp.) of Z = V (S) ×
NG(V (S)).

The following lemma from [4, Section 4.1] characterizes compatibility for a
single graph S in terms of the inset and outset of S: the inset are tuples that
should be in E, while the outset are tuples that should not be in E.

Lemma 5 ([4]). Let S be an induced subgraph of G, and let E ⊆ L× L. Then
E is compatible with S iff IS ⊆ E ⊆ L2\OS (i.e., E separates IS from OS).

Hence, there is an E compatible with S in G iff IS ∩OS = ∅.

Definition 6. Let G be a graph and let S be a set of mutually isomorphic
subgraphs of G. We say that E ⊆ L2 is confluent for S if E is compatible with
any ordering C of S.
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b a

S1 S2

b a

b

Fig. 2. Graph G from Example 1 including a depiction of its subgraphs S1 and S2

Example 7. We continue Example 1. Let us denote the first and second subgraph
introduced in the derivation from I to G by S1 and S2, respectively, see Figure 2.
Example 1 illustrates that the given embedding E is compatible with (S1, S2).
Moreover, one may verify that IS1 = OS1 = {(a, b), (b, b)}, IS2 = {(b, a)}, and
OS2 = {(a, a)}. Note that by Lemma 5, E is not compatible with S1. In fact,
there is no embedding compatible with S1 as IS1 ∩ OS1 
= ∅. The fact that E is
compatible with (S1, S2) but not with S1 implies that S1 could not be generated
by E in its current context, but could be generated if S2 was introduced after S1.

As noted in [4], Lemma 5 can be trivially generalized to a set S of mutually
disjoint, non-touching, and isomorphic subgraphs of G.

Lemma 8 ([4]). Let S be a set of mutually disjoint, non-touching, and isomor-
phic subgraphs of a graph G. Then E ⊆ L×L is confluent for S iff ∪iISi ⊆ E ⊆
L2\(∪iOSi) iff E is compatible for some ordering C of S.

6 Touching Subgraphs

We now consider the case where subgraphs touch. Compatibility for the case
where two subgraphs touch is characterized in [3, Lemma 12] (see also [2]). We
recall this result, cf. Lemma 12 below, and use it to establish another, similar
characterization which we will be useful in the next section.

We distinguish three kinds of insets and outsets associated to pairs of touching
subgraphs.

Definition 9. Let S1 and S2 be touching graphs in G. For Z1 = V (S2) ×
(V (S1)∩NG(S2)), we denote IZ1 and OZ1 by I(S1,S2) and O(S1,S2), respectively.
Moreover, for Z2 = V (S2) × V (S1), we denote IZ2 and OZ2 by I((S1,S2)) and
O((S1,S2)), respectively. Finally, for Z3 = V (S2) × (NG(S2) \ V (S1)), we denote
IZ3 and OZ3 by IS2\S1 and OS2\S1 , respectively.

We remark that we assume no interpretation of “S2\S1” in IS2\S1 and OS2\S1 .
Note that Z1 ∪ Z3 = V (S2)×NG(S2), and therefore I(S1,S2) ∪ IS2\S1 = IS2 and
similarly for outset. Also note that (a, b) ∈ I(S1,S2) iff (b, a) ∈ I(S2,S1). Moreover,
we have always I(S1,S2) = I((S1,S2)) and O(S1,S2) ⊆ O((S1,S2)).

Notice that I(S1,S2) and O(S1,S2) (and also I((S1,S2)) and O((S1,S2))) are con-
cerned with the tuples going from S2 to S1. This is because these tuples are
important in the second step in the derivation to G; the step which creates S2.
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Example 10. We continue Examples 1 and 7. One may verify that I(S1,S2) =
I((S1,S2)) = {(b, a)}, O(S1,S2) = {(a, a)}, O((S1,S2)) = {(a, a), (b, b), (a, b)}, and
IS2\S1 = OS2\S1 = ∅. Moreover, I(S2,S1) = I((S2,S1)) = {(a, b)}, O(S2,S1) =
{(b, b)}, O((S2,S1)) = {(a, a), (b, a), (b, b)}, IS1\S2 = {(b, b)}, and OS1\S2 ={(a, b)}.
We now state an implicit result of [3].

Lemma 11. Let S1 and S2 be touching subgraphs of G, and let x ∈ V (S1) and
y ∈ V (S2) with l(x) = a and l(y) = b. Moreover, E ⊆ L2 be compatible with
(S1, S2). Then {x, y} is an edge iff (b, a) ∈ E and (a, N) ∈ E.

We now recall [3, Lemma 12] (it is slightly reformulated here).

Lemma 12 ([3]). Let S1 and S2 be touching subgraphs of G. Then E ⊆ L2 is
compatible with (S1, S2) iff the following conditions hold:

1. E is compatible with S2,
2. IS1\S2 ⊆ E ⊆ L2\OS1\S2 ,
3. {(a, N) | a ∈ l(V (S1) ∩NG(S2))} ⊆ E, and
4. If (b, a) ∈ O((S1,S2)), then (a, N) 
∈ E or (b, a) 
∈ E (or both).

Note that the fact that E is compatible with (S1, S2) does not imply that E is
compatible with S1. In fact, Example 7 illustrates that we may have IS1 ∩OS1 
=
∅ — hence an embedding compatible with S1 may not even exist.

We now obtain the following consequence of Lemma 12 by noticing that the
sets l(V (S1) ∩NG(S2)) and l(V (S1) \NG(S2)) “should” be treated differently.

Lemma 13. Let S1 and S2 be touching subgraphs of G and E ⊆ L × L. Then
E is compatible with (S1, S2) iff the following conditions hold:

1. E is compatible with S2,
2. IS1\S2 ⊆ E ⊆ L2\OS1\S2 ,
3. {(a, N) | a ∈ l(V (S1) ∩NG(S2))} ⊆ E, and
4. If (a, N) ∈ E with a ∈ l(V (S1)\NG(S2)), then (b, a) 
∈ E for all b ∈ l(V (S2)).

If this is the case, then l(V (S1) ∩NG(S2)) ∩ l(V (S1) \NG(S2)) = ∅.

Proof. We obtain the “if and only if” part by showing now that Condition 4,
referred to as (I), is equivalent with Condition 4 of Lemma 12, referred to as
(II), under the assumption that the other three conditions hold.

First we show that (I) implies (II). Let (b, a) ∈ O((S1,S2)) and (b, a) ∈ E. We
show that (a, N) 
∈ E. Hence there is an x ∈ V (S2) and y ∈ V (S1) with l(x) = b
and l(y) = a such that {x, y} is not an edge of G. Assume y ∈ NG(S2). Then
(b, a) ∈ O(S1,S2), and by Condition 1, (b, a) 
∈ E — a contradiction. Therefore
y 
∈ NG(S2), and by (I), we have (a, N) 
∈ E (as (b, a) ∈ E), and we are done.

We now show that (II) implies (I). Assume the contrary and let (a, N) ∈ E
and (b, a) ∈ E for some a ∈ l(V (S1)\NG(S2)) and b ∈ l(V (S2)). Since (b, a) ∈ E
we have by Condition 1 that (b, a) 
∈ O((S1,S2)). As we assume that (II) and
the other three conditions of Lemma 12 hold, we have by Lemma 12 that E is
compatible for (S1, S2). By Lemma 11, we obtain that there is an edge {x, y} in G
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with x ∈ V (S1), y ∈ V (S2), l(x) = a, and l(y) = b. Clearly, x ∈ V (S1) \NG(S2).
Consequently, (b, a) ∈ O((S1,S2)) — a contradiction.

Finally, let E be compatible with (S1, S2), and assume that a ∈ l(V (S1) ∩
NG(S2))∩ l(V (S1) \NG(S2)). Let x ∈ V (S1)∩NG(S2) and y ∈ V (S1) \NG(S2)
such that l(x) = l(y) = a. As x, y ∈ V (S1), we have by Lemma 3, NG(x) \
V (S1) = NG(y)\V (S1) — a contradiction as x ∈ NG(S2) while y 
∈ NG(S2). ��
For an embedding relation E ⊆ L2, and L′ ⊆ L, we define the restriction of
E to L′ by E[L′] = {(x, y) ∈ E | x, y ∈ L′}. The next corollary follows from
Lemma 13.

Corollary 14. Let S1 and S2 be touching subgraphs of G, let L̄ = L \ {N}, and
let E′ ⊆ L̄2. Then there is an E ⊆ L2, with E[L̄] = E′, compatible with (S1, S2)
iff the following conditions hold:

1. E′ is compatible with S2,
2. IS1\S2 ⊆ E′ ⊆ L̄2\OS1\S2 ,
3. l(V (S1) ∩NG(S2)) ∩ l(V (S1) \NG(S2)) = ∅

Moreover, if this is the case, then E = E′ ∪ {(a, N) | a ∈ l(V (S1) ∩NG(S2))} is
compatible with (S1, S2).

Consider again Corollary 14. Note that E compatible with S1 (i.e., IS1 ⊆ E ⊆
L2\OS1) implies IS1\S2 ⊆ E ⊆ L2\OS1\S2 . Moreover, we show now that if E is
compatible with S1, then the third condition of Corollary 14 also holds.

Lemma 15. Let S1 and S2 be touching subgraphs of G and E ⊆ L× L. If E is
compatible with S1, then l(V (S1) ∩NG(S2)) ∩ l(V (S1) \NG(S2)) = ∅.

Proof. Assume to the contrary that a ∈ l(V (S1)∩NG(S2))∩ l(V (S1) \NG(S2)).
Let x ∈ V (S1) ∩ NG(S2) and y ∈ V (S1) \ NG(S2) such that l(x) = l(y) = a.
As x, y ∈ V (S1), we have by Lemma 3, NG(x) \ V (S1) = NG(y) \ V (S1) — a
contradiction as x ∈ NG(S2) while y 
∈ NG(S2). ��
Hence, by Corollary 14 and Lemma 15 we notice now that an E′ ⊆ L̄2 compatible
for both S1 and S2 can be extended to an E ⊆ L2 compatible for both (S1, S2)
and (S2, S1). However, as we recall again, it may be the case that E is compatible
with (S1, S2), while E is not compatible with S1, see Example 7.

7 Symmetric Connections

In this section we consider the case where the connections between subgraphs S1

and S2 are symmetric, i.e., I(S1,S2) is symmetric as a relation (if (a, b) ∈ I(S1,S2),
then also (b, a) ∈ I(S1,S2)). Clearly, I(S1,S2) is symmetric iff I(S1,S2) = I(S2,S1).

The next lemma is easy to verify.

Lemma 16. Let S1 and S2 be isomorphic touching subgraphs of G where I(S1,S2)

is symmetric. Then l(V (S1))= l(V (S2)), l(V (S1)∩NG(S2)) = l(V (S2)∩NG(S1)),
and l(V (S1) \NG(S2)) = l(V (S2) \NG(S1)).
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Proof. As S1 and S2 are isomorphic we have l(V (S1)) = l(V (S2)). Since I(S1,S2)

is symmetric, we have moreover l(V (S1) ∩ NG(S2)) = l(V (S2) ∩ NG(S1)) and
l(V (S1) \NG(S2)) = l(V (S2) \NG(S1)). ��
We show now a key result.

Lemma 17. Let S1 and S2 be isomorphic touching subgraphs of G where I(S1,S2)

is symmetric. If E ⊆ L2 is compatible for (S1, S2), then E is compatible for S1.

Proof. Recall that we have IS1 = I(S2,S1) ∪ IS1\S2 (and similar for OS1). Hence
to show that E is compatible for S1, i.e., IS1 ⊆ E ⊆ L2 \OS1 , it suffices to show
that (1) IS1\S2 ⊆ E ⊆ L2 \OS1\S2 , and (2) I(S2,S1) ⊆ E ⊆ L2 \O(S2,S1).

The former, (1), follows by Lemma 13 as E is compatible for (S1, S2).
We now show the latter, i.e., (2). As I(S2,S1) = I(S1,S2) and I(S1,S2) ⊆ E since

E is compatible for (S1, S2), we obtain I(S2,S1) ⊆ E.
To show that E ⊆ L2 \ O(S2,S1), it suffices to show that O(S2,S1) = O(S1,S2)

(as E ⊆ L2 \O(S1,S2)).
We have by definition of inset and outset, I(S1,S2)∪O(S1,S2) = K×K ′ where K

is the set of labels of the vertices of S2 and K ′ is the set of labels of the vertices in
V (S1)∩NG(S2). As S1 and S2 are isomorphic and I(S2,S1) = I(S1,S2), we have by
Lemma 16, l(V (S1)∩NG(S2)) = l(V (S2)∩NG(S1)) and so I(S2,S1) ∪O(S2,S1) =
K ×K ′. Hence I(S1,S2) ∪O(S1,S2) = I(S2,S1) ∪O(S2,S1).

Since E is compatible for (S1, S2), we have I(S1,S2) ∩O(S1,S2) = ∅. We show
now that I(S2,S1) ∩O(S2,S1) = ∅. Assume to the contrary that (b, a) ∈ I(S2,S1) ∩
O(S2,S1). As (b, a) ∈ I(S2,S1), there is an edge {x, y} with y ∈ V (S1) and x ∈
V (S2) with l(y) = b and l(x) = a. More specifically, y ∈ V (S1)∩NG(S2) (and x ∈
V (S2)∩NG(S1)). As E is compatible for (S1, S2), we have l(V (S1)∩NG(S2))∩
l(V (S1) \NG(S2)) = ∅ by Lemma 13. Consequently, since (b, a) ∈ O(S2,S1) and
b ∈ l(V (S1) ∩ NG(S2)), we have b 
∈ l(V (S1) \ NG(S2)) and therefore there is
an y′ ∈ V (S1) ∩NG(S2) and x′ ∈ V (S2) with l(y′) = b and l(x′) = a such that
there is no edge between y′ and x′. By definition of O(S1,S2) we have now that
(a, b) ∈ O(S1,S2). As I(S1,S2) ∩O(S1,S2) = ∅, we have therefore (a, b) 
∈ I(S1,S2) =
I(S2,S1) — a contradiction. Therefore I(S2,S1) ∩O(S2,S1) = ∅.

We thus obtain that {I(S1,S2), O(S1,S2)} and {I(S2,S1), O(S2,S1)} are both par-
titions of K ×K ′. Since I(S2,S1) = I(S1,S2) we obtain O(S2,S1) = O(S1,S2). ��
We are ready now to show that if an embedding E is compatible for one order-
ing of touching graphs S1 and S2, then E is compatible for the other ordering
precisely when I(S1,S2) is symmetric.

Theorem 18. Let S1 and S2 be isomorphic touching subgraphs of G and let
E ⊆ L2 be compatible for (S1, S2). Then E is compatible for (S2, S1) iff I(S1,S2)

is symmetric.

Proof. We first show the forward implication. Let E be compatible for both
(S1, S2) and (S2, S1). Let x1 ∈ V (S1), y1 ∈ V (S1), x2 ∈ V (S2), y2 ∈ V (S2) with
l(x1) = l(x2) = a and l(y1) = l(y2) = b (a may be equal to b). We need that
show that if {x1, y2} is an edge of G, then {x2, y1} is an edge of G. If {x1, y2} is
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Fig. 3. Graph G from Example 20 including a depiction of its subgraphs S1 and S2

an edge of G, then we have by Lemma 11 (b, a) ∈ E and (a, N) ∈ E. Since E is
compatible for (S2, S1), we have again by Lemma 11 (and since (b, a) ∈ E and
(a, N) ∈ E) that {x2, y1} is an edge of G.

We now show the reverse implication. Let I(S1,S2) be symmetric. We show
that the conditions of Lemma 13 are fulfilled for (S2, S1). As E is compatible
for (S1, S2), E is compatible for S2, and therefore IS2\S1 ⊆ E ⊆ L2 \ OS2\S1

(Condition 2 of Lemma 13) holds.
By Lemma 16, we have l(V (S1)∩NG(S2)) = l(V (S2)∩NG(S1)) and therefore

Condition 3 of Lemma 13 holds. Similarly, by Lemma 16, l(V (S1)) = l(V (S2))
and l(V (S1) \NG(S2)) = l(V (S2) \NG(S1)) holds and therefore Condition 4 of
Lemma 13 holds (and using again that I(S1,S2) is symmetric).

Next, E is compatible for S1 (Condition 1 of Lemma 13) by Lemma 17. Hence
we obtain that E is compatible for (S2, S1). ��
Example 19. Consider again Example 1. Recall that the given E is compatible
for (S1, S2) (with S1 and S2 as in Figure 2). Now as I(S1,S2) = {(b, a)} (see
Example 10) is not symmetric, we have by Theorem 18 that E is not compatible
for (S2, S1).

Example 20. Consider now graph G and its subgraphs S1 and S2 given in Fig-
ure 3. One may verify that E = {(a, b), (b, a), (b, c), (a, N), (b, N)} is compatible
with (S1, S2). We have I(S1,S2) = {(a, b), (b, a)}, and thus I(S1,S2) is symmetric.
By Theorem 18, E is also compatible with (S2, S1).

Remark 21. One may wonder in view of Theorem 18 whether or not it holds that
E compatible for both (S1, S2) and S1 implies that I(S1,S2) is symmetric (recall
that E being compatible for (S2, S1) implies that E is compatible for S1). It is
straightforward to verify that E = {(a, b), (b, a), (b, N)} and S1 and S2 discrete
graphs of two vertices labelled by a and b with one edge {x, y} with x ∈ V (S1),
y ∈ V (S2), l(x) = a, and l(y) = b form a counterexample. ��
We now generalize Theorem 18 where two subgraphs S1 and S2 are considered
to the case where n subgraphs S = {S1, S2, . . . , Sn} of G are considered. It
characterizes the notion of confluency of an embedding relation E if S is a set
of mutually isomorphic and disjoint subgraphs of G.

Theorem 22. Let G be a graph, let S be a set of mutually isomorphic and
disjoint subgraphs of G, and let E ⊆ L2 be compatible for some ordering C of S.
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Then E is confluent for S iff (1) every E is compatible with Si ∈ S, and (2) if
Sj and Sk in S are touching, then I(Sj ,Sk) is symmetric.

Proof. Let S = {S1, . . . , Sn}. We first prove the forward implication. Assume
that E is confluent for S. Let Si ∈ S. Let C be an ordering of S where Si is at
the last position in C. Then, by definition, Si is compatible with E. Let now Sj

and Sk in S be touching. Again, there are orderings C of S where Sj and Sk

are at the last two positions, in any order, in C. Hence by Theorem 18 I(Sj ,Sk)

is symmetric.
We now prove the reverse implication. Let E be compatible with C =

(Si1 , . . . , Sin) where {i1, . . . , in} = {1, . . . , n}. Assume moreover that the con-
ditions (1) and (2) of the theorem hold for S. It suffices to prove that for any
k ∈ {1, . . . , n − 1}, E is compatible with the ordering C′ of S obtained from C
by interchanging Sk and Sk+1 in C; indeed any ordering of S may be obtained
by iteration of this argument, and the theorem then holds.

As E is compatible with C in G, we have that E is compatible with (Si1 , . . . ,
Sik

, Sik+1) in G′, where G′ is the usual “intermediate graph”. More precisely, G′ is
the unique graph such that G is obtained from G′ by iteratively applying the NLC
grammar rule to create Sik+2 , . . . , Sin (in this order). We have that E is compat-
ible for (Sik

, Sik+1) in G′, and since I(Sj ,Sk) is symmetric (also in G′), E is com-
patible for (Sik+1 , Sik

) in G′. Therefore, E is compatible with (Si1 , . . . , Sik+1 , Sik
)

in G′ and we have that E is compatible with (Si1 , . . . , Sik+1 , Sik
, Sik+2 , . . . , Sin)

in G. This completes the theorem. ��

8 Discussion

To compress a set S of disjoint and isomorphic subgraphs of G, we used NLC
graph grammars consisting of a single production. As decompression should ob-
tain precisely graph G (i.e., no other graphs), we need to ensure that graph
grammar is confluent. Theorem 22 characterizes confluency (in our case under
consideration) in terms of symmetry in the connections between any two touch-
ing subgraphs which are to be generated by the graph grammar. Future research
could focus on extending the results to more rules. In this case one may consider
recursive applications of graph grammar productions.
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Abstract. The notion of expression derivative due to Brzozowski leads
to the construction of a deterministic automaton from an extended regu-
lar expression, whereas the notion of partial derivative due to Antimirov
leads to the construction of a non-deterministic automaton from a sim-
ple regular expression. In this paper, we generalize Antimirov partial
derivatives to regular expressions extended to complementation and in-
tersection. For a simple regular expression with n symbols, Antimirov
automaton has at most n+1 states. As far as an extended regular expres-
sion is concerned, we show that the number of states can be exponential.

1 Introduction

Regular expressions are a basic tool for describing patterns in a text. This is the
reason why they are used in numerous domains that involve pattern specification
or pattern matching, such as electronical document processing, bio-informatics
or data bases. An additional advantage of regular expressions is that they can be
transformed into an equivalent machine, called a finite automaton, that makes it
possible to automatically decide whether a word belongs to the language denoted
by an expression or not.

Simple regular expressions only contain sum, concatenation product and
Kleene star operators whereas extended regular expressions in addition con-
tain boolean operators such as complementation or intersection. Simple regular
expressions have been extensively investigated. Numerous algorithms have been
designed in particular for converting a regular expression into a finite automaton.
These algorithms can be partitioned into two main categories. The algorithms
of the first category are based on the notion of position (of a symbol occurrence
in the expression). It is the case of the algorithm due to Glushkov [9] and to Mc-
Naughton and Yamada [12] that computes a non-deterministic automaton with
n + 1 states from a n-symbol occurrence expression. Let us notice that, under
some assumptions, the inductive algorithm [11,4] computes the same automaton.
The algorithms of the second category are based on the computation of expres-
sion derivatives that is similar to the computation of language quotients [13,14].
It is the case of the algorithm of expression derivatives due to Brzozowski [3]
that computes a deterministic automaton and of the algorithm of partial deriva-
tives due to Antimirov [1] that computes a non-deterministic automaton with
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c© Springer-Verlag Berlin Heidelberg 2011
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at most n + 1 states if there are n symbol occurrences in the expression. Let us
remark that the relations that exist between the two notions of position and of
expression derivative have been studied in [2,5].

As far as extended regular expressions are concerned, many complexity stud-
ies [6] have been realized; we will consider in the following the results of Gelade
and Neven [8] about the succinctness of the operations of complementation and
intersection. On the opposite, there exist few algorithms performing the con-
version of an extended regular expression into an automaton. Actually, boolean
operators (except for the sum) are not compatible with the notion of position and
thus Glushkov algorithm cannot be extended from simple to extended regular
expressions. The inductive algorithm still works for extended regular expres-
sions, but its performance is penalized by the determinization steps required by
the automaton-implementation of some boolean operations. Actually, extended
regular expressions are handled by the algorithm of Brzozowski [3]; however, a
deterministic automaton is computed, which can be a drawback regarding to
space complexity. As far as partial derivatives are concerned, here is what An-
timirov reports in the conclusion of his paper [1]: "It would be useful to find an
appropriate definition of partial derivatives of extended regular expressions (with
intersection, complementation, and other operations). Then, in particular, our
NFA construction would directly extend to this class of regular expressions."

In this paper, we extend the computation of partial derivatives in order to han-
dle the operations of complementation and intersection. It allows us to generalize
the two automaton constructions designed by Antimirov: the non-deterministic
derivated term automaton and the deterministic partial derivative automaton.
We also show that the partial derivative automaton may have a number of states
exponential with respect to the size of the expression.

The main notions used in this paper as well as the computation of expression
derivatives and partial derivatives are recalled in the next section. A generaliza-
tion of the computation of partial derivatives to extended regular expressions is
introduced in Section 3. Section 4 and Section 5 are respectively devoted to the
construction of the derivated term automaton and of the partial derivative au-
tomaton that both recognize the language denoted by a given extended regular
expression.

2 Preliminaries

A finite automaton A is a 5-tuple (Σ, Q, I, F, δ) with Σ the alphabet (a finite
set of symbols), Q a finite set of states, I ⊂ Q the set of initial states, F ⊂ Q
the set of final states and δ ⊂ Q × Σ × Q the set of transitions. The set δ is
equivalent to the function from Q×Σ to 2Q defined by: q′ ∈ δ(q, a) if and only
if (q, a, q′) ∈ δ. The domain of the function δ is extended to 2Q ×Σ∗ as follows:
∀P ⊂ Q, δ(P, ε) = P , δ(P, a) =

⋃
p∈P δ(p, a) and δ(P, a · w) = δ(δ(P, a), w).

The automaton A recognizes the language L(A) = {w ∈ Σ∗ | δ(I, w) ∩ F 
= ∅}.
The automaton A is deterministic if #I = 1 ∧ ∀(q, a) ∈ Q × Σ, #δ(q, a) ≤
1. A deterministic automaton is complete if ∀(q, a) ∈ Q × Σ, #δ(q, a) = 1.
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For every automaton A, there exists a complete deterministic automaton A′

such that L(A′) = L(A) [15].
Let f be a boolean operator of arity k. An extended regular expression E over

an alphabet Σ is inductively defined by E = ∅, E = ε, E = a, E = f(E1, . . . , Ek),
E = (F ·G), E = (F ∗) where a ∈ Σ and F , G, E1, . . . , Ek are extended regular
expressions. The regular expression E is said to be a simple expression if it only
contains sum, concatenation product and Kleene star operators.

The language denoted by the expression E is inductively defined by
L(∅) = ∅, L(ε) = {ε}, L(a) = {a} ∀a ∈ Σ, L(F ·G) = L(F ) · L(G),

L(F ∗) = L(F )∗, L(f(E1, . . . , Ek)) = fL(L(E1), . . . , L(Ek)),
where fL is the language operator associated with the operator1 f.
A language L is regular if and only if there exists a simple regular expression

E such that L(E) = L. It has been proved by Kleene [10] that a language is
regular if and only if it is recognized by a finite automaton. Moreover, given a
complete deterministic automaton A, a deterministic automaton A′ such that
L(A′) = ¬L(A) can be constructed by setting non final the final states and
vice versa. Therefore, the set of regular languages is closed under any boolean
operator.

The quotient of a language L w.r.t. a symbol a is the language a−1(L) = {w ∈
Σ∗ | aw ∈ L}. It can be recursively computed as follows:

a−1(∅) = a−1({ε}) = ∅, a−1({b}) = {ε} if a = b, ∅ otherwise,
a−1(L1 ∪ L2) = a−1(L1) ∪ a−1(L2), a−1(L∗

1) = a−1(L1) · L∗
1

a−1(L1 · L2) =
{

a−1(L1) · L2 ∪ a−1(L2) if ε ∈ L1,
a−1(L1) · L2 otherwise,

a−1(fL(L1, . . . , Lk)) = fL(a−1(L1), . . . , a−1(Lk)).
The quotient w−1(L) of L w.r.t. the word w ∈ Σ∗ is the language {w′ ∈ Σ∗ |

w ·w′ ∈ L}. It can be recursively computed as follows: ε−1(L) = L, (aw′)−1(L) =
w′−1(a−1(L)) with a ∈ Σ and w′ ∈ Σ∗. Myhill-Nerode theorem [13,14] states
that a language L is regular if and only if the set of quotients {u−1(L) | u ∈ Σ∗}
is finite.

The notion of derivative of an expression has been introduced by Brzozowski
[3]. Let E be an extended regular expression over an alphabet Σ and let a and
b be two distinct symbols of Σ. The derivative of E w.r.t. a is the expression
d
da

(E) inductively computed as follows2:
d

da
(∅) = d

da
(ε) = d

da
(b) = ∅, d

da
(a) = ε,

d
da

(f(E1, . . . , Ek)) = f( d
da

(E1), . . . ,
d

da
(Ek)), d

da
(F ∗) = d

da
(F ) · F ∗,

d
da

(F · G) =

{ d
da

(F ) · G + d
da

(G) if ε ∈ L(F ),
d

da
(F ) · G otherwise.

The derivative of E w.r.t. a word w of Σ∗ is defined by:
d

dw
(E) =

{ d
dw′ (

d
da

(E)) if w = a · w′ with a ∈ Σ and w′ ∈ Σ∗

E if w = ε.

1 For instance L(¬E) = ¬L(E), L(E + F ) = L(E) ∪ L(F ).
2 This notation is used in order to distinguish the derivative of an expression from the

quotient of a language.
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The set of derivatives of an expression E is not necessarily finite. It has been
proved by Brzozowski [3] that it is sufficient to use the ACI equivalence (that is
based on the associativity, the commutativity and the idempotence of the sum)
to obtain a finite set of derivatives: the set DE of dissimilar derivatives. Given a
class of ACI-equivalent expressions, a unique representative can be obtained after
deleting parenthesis (associativity), ordering terms of each sum (commutativity)
and deleting redundant subexpressions (idempotence). Let E∼s be the unique
representative of the class of the expression E. The set of dissimilar derivatives
can be computed as follows:

d′
d′

a
(∅) = d′

d′
a
(ε) = d′

d′
a
(b) = ∅, d′

d′
a
(a) = ε,

d′
d′

a
(f(E1, . . . , Ek)) = (f( d′

d′
a
(E1), . . . ,

d′
d′

a
(Ek)))∼s ,

d′
d′

a
(F ∗) = d′

d′
a
(F ) · F ∗,

d′
d′

a
(F · G) =

{
( d′

d′
a
(F ) · G + d′

d′
a
(G))∼s if ε ∈ L(F ),

( d′
d′

a
(F ) · G)∼s otherwise.

Example 1. Let us consider the expression E = a∗·a∗ over the alphabet Σ = {a}.
The set of derivatives of E is infinite since for every w ∈ Σ∗, d

dwa
(E) = d

dw
(E)+

a∗. On the opposite, since d
daa

(E) = a∗ · a∗ + a∗ + a∗ ∼s a∗ · a∗ + a∗ = d
da

(E),
it holds d′

d′
aa

(E) = d′
d′

a
(E). Thus the set of dissimilar derivatives of E is DE =

{a∗a∗, a∗a∗ + a∗}.
The derivative automaton B = (Σ, Q, q0, F, δ) of an extended regular expression
E over an alphabet Σ is defined by Q = DE , q0 = E, F = {q ∈ Q | ε ∈ L(q)},
δ = {(q, a, q′) ∈ Q×Σ×Q | d′

d′
a
(q) = q′}. The automaton B is deterministic and

it recognizes the language L(E). Its size can be exponentially larger than the
number of symbols of E (see Example 2).

Example 2. Consider the expression E = (a+ b)∗a(a+ b)n. The set of its deriva-
tives can be computed as follows, where Σ = a + b:

d′
d′

a
(E) = E + Σn d′

d′
aa

(E) = E + Σn + Σn−1 d′
d′

a
(Σk) = d′

d′
b
(Σk) = Σk−1

d′
d′

b
(E) = E d′

d′
ab

(E) = E + Σn−1

The set DE of dissimilar derivatives of E is equal to the set E∪{E+
∑

F∈F F |
F ⊂ {Σn, . . . , Σ, ε}}. Consequently, #DE = 1+2n+1. The derivative automaton
of E is presented in Figure 1.

Antimirov algorithm [1] constructs a non-deterministic automaton from a simple
regular expression E. It is based on the partial derivative computation. The
partial derivative of a simple regular expression E w.r.t. a symbol a is the set
∂
∂a

(E) of expressions defined as follows:
∂

∂a
(∅) = ∂

∂a
(ε) = ∂

∂a
(b) = ∅, ∂

∂a
(a) = {ε},

∂
∂a

(F + G) = ∂
∂a

(F ) ∪ ∂
∂a

(G), ∂
∂a

(F ∗) = ∂
∂a

(F ) · F ∗,

∂
∂a

(F · G) =

{ ∂
∂a

(F ) · G ∪ ∂
∂a

(G) if ε ∈ L(F ),
∂
∂a

(F ) · G otherwise,
with for a set E of expressions, E · F =

⋃
E∈E E · F .
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E E +Σn

E +Σn +Σn−1

E +Σn−1

E +Σn +Σn−1 +Σn−2

E +Σn−1 +Σn−2

E +Σn +Σn−2

E +Σn−2

b

a

a

b

a

b

a

b

· · ·

· · ·

· · ·

· · ·

Fig. 1. The derivative automaton of E = (a + b)∗a(a + b)n

E Σn Σn−1 · · · Σ ε

a, b

a a, b a, b a, b a, b

Fig. 2. The derivated term automaton of E = (a + b)∗a(a + b)n

The partial derivative of E w.r.t. a word w of Σ∗ is computed as follows:

∂
∂w

(E) =

{
∂

∂w′ (
∂
∂a

(E)) if w = a · w′ with a ∈ Σ and w′ ∈ Σ∗,
∂

∂w
(E) = {E} if w = ε,

with for a set E of expressions, ∂
∂a

(E) =
⋃

E∈E
∂
∂a

(E).
Every element of a partial derivative is called a derivated term of E. It has

been shown by Antimirov [1] that the set D′
E of the derivated terms of E is

such that #D′
E ≤ n + 1. The derivated term automaton A = (Σ, Q, q0, T, δ) of

a simple regular expression E is defined as follows: Q = D′
E , q0 = E, F = {q ∈

Q | ε ∈ L(q)}, δ = {(q, a, q′) ∈ Q × Σ × Q | q′ ∈ ∂
∂a

(q)}. The automaton A
recognizes the language L(E).

Example 3. Consider the expression E = (a + b)∗a(a + b)n of Example 2. The
derivated terms of E are computed as follows:

∂
∂a

((a + b)∗a(a + b)n) = ∂
∂a

((a + b)∗) · a(a + b)n ∪ ∂
∂a

(a(a + b)n)
= {E} ∪ {Σn},

∂
∂b

(E) = {E}, ∂
∂a

(Σk) = ∂
∂b

(Σk) = {Σk−1}.
The set of derivated terms of E is D′

E = {E, Σn, Σn−1, . . . , ε}; the number
of derivated terms is equal to n + 2. The derivated term automaton of E is
represented in Figure 2.

3 Partial Derivatives of an Extended Expression

This section describes two extensions of the computation of partial derivatives
for extended regular expressions. The first one is a natural extension in which the
simple operators (+, · and ∗) activate the standard partial derivative computa-
tion, whereas the boolean operators (except for the sum) activate the Brzozowski
derivative computation. The interest of this technique is to make easier the
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understanding of the second extension, where partial derivatives of a new type
are computed.

3.1 A Natural Extension

A natural extension of the partial derivative computation is achieved by assum-
ing that the partial derivative of a boolean operator (except for the sum) is the
singleton equal to the derivative of this operator.

Definition 1. The partial derivative of an extended regular expression w.r.t. a
symbol a is the set ∂

∂a
(E) of expressions computed as follows:
∂

∂a
(∅) = ∂

∂a
(ε) = ∂

∂a
(b) = ∅, ∂

∂a
(a) = {ε},

∂
∂a

(F + G) = ∂
∂a

(F ) ∪ ∂
∂a

(G), ∂
∂a

(F ∗) = ∂
∂a

(F ) · F ∗,

∂
∂a

(F · G) =

{ ∂
∂a

(F ) · G ∪ ∂
∂a

(G) if ε ∈ L(F ),
∂
∂a

(F ) · G otherwise,
∂

∂a
(f(E1, . . . , Ek)) = { d′

d′
a
(f(E1, . . . , Ek))}

Example 4. This example illustrates the worst case of the natural extension,
where partial derivative computation reduces to derivative computation. Let us
consider the three expressions F , G and E defined by:

F = (a + b)∗a(a + b)n, G = (¬(¬a ∩ ¬b))∗a(a + b)n, E = F ∩G.

According to Definition 1, ∂
∂a

(E) = { d′
d′

a
(E)}. Since the intersection operator

is at the highest level of the syntax tree of E, for all word w in Σ∗, the par-
tial derivative of E w.r.t. w contains a unique derivated term: the derivative of
E w.r.t. w. The expression F has an exponential number of dissimilar deriva-
tives (cf. Example 2) and d′

d′
a
(F ) 
= ∅ ⇔ d′

d′
a
(G) 
= ∅. Consequently, E has an

exponential number of derivated terms.

3.2 Set of Sets Extension

The main strength of the partial derivative computation for a simple regular
expression is to break the partial derivative of a sum into a union of derivated
terms. A partial derivative is a set of simple regular expressions, the language
of which is the union of the languages denoted by these expressions. As far as
recognizers are concerned, the advantage is that the derivated term automaton
is a non-deterministic one, and then it may be exponentially smaller than the
deterministic derivative automaton. For extended regular expressions, Example 4
shows that the computation of a partial derivative is ineffective for any derivated
term for which the highest operator is different from the sum.

We now show how to break the partial derivative of an intersection expression
into a union of derivated terms. Consider the Example 4, where:

F = (a + b)∗a(a + b)n, G = (¬(¬a ∩ ¬b))∗a(a + b)n and E = F ∩G.
Let us set: H1 = {F, Σn, . . . , Σn−k+1} and H2 = {G, Σn, . . . , Σn−k+1}.
In the natural extension, the partial derivative of E w.r.t. ak contains a unique

derivated term T = (F + Σn + . . . + Σn−k+1) ∩ (G + Σn + . . . + Σn−k+1).
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By distributivity of ∩ over +, the expression T is equivalent to the expression
T ′ =

∑
(H1,H2)∈H1×H2

H1 ∩H2.
Let us set: K = {F, Σn, . . . , Σ0} × {G, Σn, . . . , Σ0}. It can be checked that

every derivated term of E is equivalent to a sum of expressions Hi ∩Hj , where
(Hi, Hj) is an element in K. There exist (n+2)2 distinct expressions Hi∩Hj , and
each one will be transformed into a derivated term in our second extension. As
a result of breaking the partial derivative of an intersection just like Antimirov
breaks the partial derivative of a sum, the number of derivated terms can be
exponentially smaller than the number of dissimilar derivatives. Finally, for an
extended regular expression, a partial derivative is a set of derivated terms (the
language of which is a union of languages), and a derivated term is a set of
expressions (the language of which is an intersection of languages). Thus a partial
derivative is a particular set of expression sets. We now study the properties of
sets of expression sets.

Let E be a set of expression sets, with: E =
⋃

E∈E E and, for all E ∈ E,
E =

⋃
E∈E E. The language of E is defined by: L(E) =

⋃
E∈E L(E) and, for all

E ∈ E, L(E) =
⋂

E∈E L(E).
The following properties are satisfied by sets of expression sets.

Lemma 1. Let E and E′ be two sets of expression sets, E and E ′ be two expres-
sion sets, and F be an expression.

(1) L(E) ∩ L(E ′) = L(E ∪ E ′),
(2) L(E) ∩ L(E′) =

⋃
E∈E,E′∈E′ L(E ∪ E ′),

(3) ¬L(E) = L(
⋂

E∈E

∑
E∈E ¬E),

(4) L(E) · L(F ) = L(
∑

E∈E((
⋂

E∈E E) · F )).

Proof. According to definitions and properties of language operators:
(1) L(E) ∩ L(E ′) =

⋂
E∈E L(E) ∩⋂

E′∈E′ L(E′)
=

⋂
E∈E∪E′ L(E) = L(E ∪ E ′)

(2) L(E) ∩ L(E′) =
⋃

E∈E L(E) ∩⋃
E′∈E′ L(E ′)

=
⋃

E∈E,E′∈E′ L(E) ∩ L(E ′) =
⋃

E∈E,E′∈E′ L(E ∪ E ′)
(3) ¬L(E) = ¬⋃

E∈E L(E) = ¬⋃
E∈E

⋂
E∈E L(E)

=
⋂

E∈E

⋃
E∈E ¬L(E) =

⋂
E∈E

⋃
E∈E L(¬E)

=
⋂

E∈E L(
∑

E∈E ¬E) = L(
⋂

E∈E

∑
E∈E ¬E)

(4) L(E) · L(F ) = (
⋃

E∈E L(E)) · L(F ) = (
⋃

E∈E L(E) · L(F ))
= (

⋃
E∈E L(

⋂
E∈E E) · L(F ))

= (
⋃

E∈E L((
⋂

E∈E E) · F ))
= L(

∑
E∈E((

⋂
E∈E E) · F ))

��
Let E and F be two sets of expression sets and G be an expression. The three fol-
lowing operators are defined: E%G =

⋃
E∈E((

⋂
E∈E E)·G), E ∩©F =

⋃
E∈E,F∈F(E∪

F), ¬©E = ∩©E∈E(
⋃

E∈E ¬E). According to Lemma 1, it holds: L(E % F ) =
L(E) ·L(F ), L(E ∩©F) = L(E) ∩L(F) and L( ¬©E) = ¬L(E). These operators are
used to define partial derivatives of an extended regular expression.

Definition 2. The partial derivative of an extended regular expression E w.r.t.
a symbol a is the set ∂

∂a
(E) of expression sets defined by:
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(1) ∂
∂a

(∅) = ∂
∂a

(ε) = ∂
∂a

(b) = ∅, (2) ∂
∂a

(a) = {{ε}}
(3) ∂

∂a
(E + F ) = ∂

∂a
(E) ∪ ∂

∂a
(F ), (4) ∂

∂a
(E∗) = ∂

∂a
(E)% E∗

(5) ∂
∂a

(E · F ) =

⎧⎨
⎩

∂
∂a

(E)% F if ε /∈ L(E)

∂
∂a

(E)% F ∪ ∂
∂a

(F ) otherwise.
(6) ∂

∂a
(¬E) = ¬©( ∂

∂a
(E)), (7) ∂

∂a
(E ∩ F ) = ∂

∂a
(E) ∩© ∂

∂a
(F )

Proposition 1. Let E be an extended regular expression over the alphabet Σ
and a be a symbol in Σ. Then it holds: L( ∂

∂a
(E)) = a−1(L(E)).

Proof. By induction on the structure of extended regular expressions.
According to [1], formulas (1) to (3) are satisfied.

(4) L( ∂
∂a

(E∗)) = L( ∂
∂a

(E) % E∗) = L( ∂
∂a

(E)) · L(E∗)
= a−1(L(E)) · L(E∗) = a−1(L(E∗))

(5) L( ∂
∂a

(E · F )) = L( ∂
∂a

(E)% F ) = L( ∂
∂a

(E)) · L(F )
= a−1(L(E)) · L(F ) = a−1(L(E · F ))

(5’) L( ∂
∂a

(E · F )) = L( ∂
∂a

(E)% F ∪ ∂
∂a

(F ))
= L( ∂

∂a
(E)) · L(F ) ∪ L( ∂

∂a
(F ))

= a−1(L(E)) · L(F ) ∪ a−1(L(F )) = a−1(L(E · F ))
(6) L( ∂

∂a
(¬E)) = L( ¬© ∂

∂a
(E)) = ¬L( ∂

∂a
(E))

= ¬(a−1(L(E))) = a−1(¬(L(E)))
(7) L( ∂

∂a
(E ∩ F )) = L( ∂

∂a
(E) ∩© ∂

∂a
(F )) = L( ∂

∂a
(E)) ∩ L( ∂

∂a
(F ))

= a−1(L(E)) ∩ a−1(L(F )) = a−1(L(E ∩ F ))
��

Every partial derivative of an extended regular expression E w.r.t. a symbol is
a set E in which each element E is a derivated term of E. The partial derivative
of a derivated term is computed as follows.

Definition 3. Let E be an extended regular expression over an alphabet Σ and
a be a symbol in Σ. Let E be a derivated term of E. Then:

∂
∂a

(E) = ∩©Ek∈E( ∂
∂a

(Ek)).

Proposition 2. Let E be an extended regular expression over an alphabet Σ
and a be a symbol in Σ. Let E be a derivated term of E. Then:

L( ∂
∂a

(E)) = a−1L(E).
Proof. By equality of sets:

L( ∂
∂a

(E)) = L( ∩©Ek∈E
∂
∂a

(Ek)) =
⋂

Ek∈E L( ∂
∂a

(Ek))
=

⋂
Ek∈E a−1(L(Ek)) = a−1(L(

⋂
Ek∈E Ek)) = a−1(L(E))

��
The partial derivative of an extended regular expression E w.r.t. a word aw in
Σ+ is defined by ∂

∂aw
(E) =

⋃
E′∈ ∂

∂a
(E)

∂
∂w

(E ′).

Proposition 3. Let E be an extended regular expression over an alphabet Σ
and aw be a word in Σ+. Then it holds: (aw)−1(L(E)) = L( ∂

∂aw
(E)).
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Proof. By induction on the length of w:
L( ∂

∂u
(E)) = L( ∂

∂aw′ (E)) = L( ∂
∂w′ (

∂
∂a

(E))).
By the recurrence hypothesis: L( ∂

∂w′ (
∂
∂a

(E))) = w′−1(L( ∂
∂a

(E))).
According to Proposition 1, L( ∂

∂a
(E)) = a−1(L(E)).

Consequently, L( ∂
∂u

(E)) = w′−1(a−1(L(E))) = u−1(L(E)). ��

4 The Derivated Term Automaton

Let E be an extended regular expression, E be a derivated term of E, and
E be a partial derivative of E such that E ∈ E. Every expression Ek in E is
called a derivated expression of E. This relation is noted Ek ∈©E. According to
Definition 3, for all symbol a ∈ Σ and for all derivated expression Ek ∈© ∂

∂a
(E),

there exists a derivated expression Fk in E such that Ek ∈© ∂
∂a

(Fk). Consequently,
in order to compute the set of derivated terms of E, it is sufficient to compute
the partial derivatives of derivated expressions and then to combine them with
the operator ∩©.

The set D′
E = {E | ∃w ∈ Σ∗, E ∈ ∂

∂w
(E)} is called the set of derivated terms of

E. The derivated term automaton of E, A = (Σ, Q, q0, F, δ), is defined similarly
as for a simple expression: Q = D′

E , q0 = {E}, F = {E ′ ∈ D′
E | ε ∈ L(E ′)}, and

δ = {(F , a,G) ∈ Q×Σ ×Q | G ∈ ∂
∂a

(F)}.
Example 5. Let us consider the expression E = F ∩ G in Example 4. The
derivated terms of E are computed as follows:

∂
∂a

(E) = ∂
∂a

(F ) ∩© ∂
∂a

(G) ∂
∂b

(E) = {{F, G}}
= {{F}, {Σn}} ∩©{{G}, {Σn}}
= {{F, G}, {F, Σn}, {G, Σn}, {Σn}}

∂
∂a

(F ) = {{F}, {Σn}} ∂
∂b

(F ) = {{F}} ∂
∂a

({Σk}) = {{Σk−1}}
∂
∂a

(G) = {{G}, {Σn}} ∂
∂b

(G) = {{G}} ∂
∂b

({Σk}) = {{Σk−1}}
The set of derivated terms is: {F ∩G} ∪ {F, Σn, . . . , ε} × {G, Σn, . . . , ε}.
There are k derivated terms, where:

k = 1 + (n + 2) + (n + 2) + (n + 1) + . . . + 2 = (n+2)(n+4)
2 .

The derivated term automaton of E is represented in Figure 3.

{F ∩G}

{F,G}

{Σn}

{F,Σn}

{Σn, G}

{Σn−1}

{F,Σn−1}

{Σn−1, G}

{Σn, Σn−1}a, b

a, b

aa

a

a
a

a

a, b

a, b

a

a, b

a

· · ·

· · ·

· · ·

· · ·

Fig. 3. The derivated term automaton of E = F ∩ G
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Proposition 4. Let E be an extended regular expression and A be its derivated
term automaton. Then it holds: L(A) = L(E).

Proof. By construction, w ∈ L(A) ⇔ w ∈ L( ∂
∂w

(E)) ⇔ w ∈ L(E). ��
The derivated term automaton of an extended regular expression E may have
an exponential number of states with respect to the width of E. It is the case for
the expression F = ¬En where En = (a+b)∗a(a+b)n. It can be checked however
that in this case, the derivated term automaton is not minimal. This situation
is consistent with the following proposition that addresses the complexity of the
size of the automata that recognize the language L(¬E), where E is a simple
regular expression.

Proposition 5. (1) For every simple regular expression E over an alphabet Σ,
it is possible to compute an automaton D such that:

L(D) = L(¬E) and O(|D|) = O(2|E|+1).
(2) There exists a family of expressions (rn)n∈N such that every automaton

recognizing L(¬rn) has an exponential size with respect to |rn|+ 1.

Proof. Proof of this proposition is based on the following known results:
(a) For every simple regular expression E, a non-deterministic automaton G

can be computed such that L(G) = L(E) and |G| = |E|+1 [9,12] or |G| ≤ |E|+
1 [1]. (b) For every non-deterministic automaton A, there exists a deterministic
and complete automaton D such that L(D) = L(¬E) and |D| ≤ 2|A| [15]. (c)
For every automaton A over an alphabet Σ, a simple regular expression E such
that L(A) = L(E) and O(|E|) = O(|A| × |Σ| × 4|A|) [12,6] can be computed.
(d) For Σ an alphabet of size 4, for all n ∈ N, there exists a simple regular
expression rn which size is O(n) such that for all simple regular expression r
such that L(r) = Σ∗ \ L(rn), |r| ≥ 22n

[8,7].
(1) From (a) and (b).
(2) According to (1), for every simple regular expression E, one can construct

an automaton D such that L(D) = L(¬E) and |D| is at most exponential w.r.t.
|E| + 1. According to (c), D can be converted into an expression F such that
L(D) = L(¬E) = L(F ) and |F | is at most exponential w.r.t. 2|E|+1. Follow-
ing [8,7], let us set E = rn. Then |D| must be exponential w.r.t. |E| + 1 and
|F | must be exponential w.r.t. 2|E|+1 so that condition (d) be satisfied. There-
fore any automaton recognizing L(¬En) has at least an exponential size w.r.t.
|En|+ 1. ��

5 The Partial Derivative Automaton

As in the case of a simple regular expression, the language of an extended regular
expression E is recognized by a deterministic automaton the states of which
are the partial derivatives of E; moreover this automaton can be computed by
applying the subset construction to the derivated term automaton of E.
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Definition 4. Let E be an extended regular expression over the alphabet Σ.
The partial derivative automaton of E is the deterministic automaton A′ =
(Σ, Q′, q′0, F ′, δ′) defined by Q′ = { ∂

∂w
(E) | w ∈ Σ∗}, q′0 = {{E}}, F ′ = {G′ ∈

Q′ | ε ∈ L(G′)}, δ′ = {(G′, a, H ′) | ∂
∂a

(G′) = H ′}.
Proposition 6. Let E be an extended regular expression. The partial deriva-
tive automaton A′ of E is obtained by applying the subset construction to the
derivated term automaton A of E.

Proof. The proof is the same as in the simple regular expression case. Let
A = (Σ, Q, q0, F, δ) and A′ = (Σ, Q′, q′0, F

′, δ′). By definition of A′, for all
w ∈ Σ∗, the state q′0 ·w is the partial derivative of E w.r.t. w. Let us consider the
automaton D = (Σ, S, s0, T, ·) obtained by applying the subset construction to
the automaton A. For all word w ∈ Σ∗, the deterministic state s0 ·w is associated
with the subset δ(q0, w) of states of Q. By definition of A, this subset is equal to
the union of the derivated terms of E w.r.t. w, that is to the partial derivative of
E w.r.t. w. Hence, applying the subset construction to the automaton A yields
the automaton A′.

Proposition 7. Let E be an extended regular expression, B be the derivative
automaton of E and A′ be the partial derivative automaton of E. The automata
B and A′ generally are not comparable.

Proof. A state of B is a derivative of E while a state of A′ is a partial derivative
of E. Thus it seems natural to define a morphism (for example from B to A′)
by associating the state d′

d′
u
(E) to the state ∂

∂u
(E). However this correspondence

only results in a mapping from B to A′ if for all v ∈ Σ∗ such that d′
d′

u
(E) = d′

d′
v
(E),

we also have ∂
∂u

(E) = ∂
∂v

(E). The reasoning is similar for a morphism from A′

to B. We now exhibit extended regular expressions such that there exists no
morphism either from B to A′ or from A′ to B.

(1) Let us consider the expression E = a(a + ε)(ba + b)∗ + (ba + b)∗ over the
alphabet Σ = {a, b}. It holds:

d′
d′

a
(E) = (a + ε)(ba + b)∗ d′

d′
b
(E) = (a + ε)(ba + b)∗

∂
∂a

(E) = {{(a + ε)(ba + b)∗}} ∂
∂b

(E) = {{a(ba + b)∗}, {(ba + b)∗}}.
The derivatives of E w.r.t. a and b are equal, although the partial derivatives

of E w.r.t. a and b are not equal.
(2) Let us consider the expression F = (ba∗ ∩ ba∗)b + aa∗b over the alphabet

Σ = {a, b}. It holds:
d′
d′

a
(E) = a∗b d′

d′
b
(E) = (a∗ ∩ a∗)b

∂
∂a

(E) = {{a∗b}} ∂
∂b

(E) = {{a∗b}}.
The partial derivatives of E w.r.t. a and b are equal, although the derivatives

of E w.r.t. a and b are not equal.
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6 Conclusion

Thanks to an appropriate definition of partial derivatives of complementation
and intersection operations, we have generalized the partial derivative compu-
tation to extended regular expressions. As a result, and generalizing Antimirov
algorithm, we have designed an algorithm for converting an extended regular
expression into a non-deterministic automaton. To our knowledge, it is the first
algorithm computing such a non-deterministic automaton. Notice that the other
boolean operations can be expressed through complementation and intersection
operations, for example the set difference L(E \ F ) = L(E) ∩ ¬L(F ) or the
symmetrical difference L(EΔF ) = (L(E)∩¬L(F ))∪ (L(F )∩¬L(E)). Thus the
partial derivatives of the other boolean operations can easily be processed using
the formulae of complementation and intersection operations. For a regular ex-
pression with n positions, the number of states of the derivated term automaton
is bounded by n+1 if the expression is a simple one, whereas it has a worst case
exponential complexity (and this bound is tight) if the expression is an extended
one. It is an open question whether there exists an extension of the notion of
position in an extended regular expression that would generalize the relation
between positions and derivated terms of a simple regular expression.
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Abstract. Automatic classes are classes of languages for which a finite
automaton can decide membership question for the languages in the
class, in a uniform way, given an index for the language. For alphabet
size of at least 4, every automatic class of erasing pattern languages is
contained, for some constant n, in the class of all languages generated
by patterns which contain (1) every variable only once and (2) at most
n symbols after the first occurrence of a variable. It is shown that such a
class is automatically learnable using a learner with long-term memory
bounded by the length of the first example seen. The study is extended
to show the learnability of related classes such as the class of unions of
two pattern languages of the above type.

1 Introduction

The present work carries on investigations of learnability properties in connection
with automatic structures. The underlying model of learnability is inductive
inference [2,9,18]. Additionally, (1) the target class of languages for learning is
an automatic family [10,12,13], that is, membership problem for the class to be
learnt can be recognised by a finite automaton in a uniform way, and (2) the
learner itself is automatic [11]. These learners are given by a function, where in
each step, the learner outputs a hypothesis and updates its long term memory
based on its previous memory and a current input. This function is required to
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be regular, that is it must be recognised by a finite automaton. Such learners
may be considered to be more realistic than learners which have access to all
past data. A further motivation for studying learners which are automatic is
that in some situations (such as space exploration by robots), it may be more
reasonable to have finite automata as a model rather than Turing machines.
Another motivation for the work goes back to the programme of Khoussainov
and Nerode [13] to find which results from recursion theory can be transferred
to automata theory and automatic structures.

Learners with explicit bounds on the long term memory have already been
studied previously (in the general setting of algorithmic learners), see [8,14]. In
the current paper, we consider learners for which the update function of the
learner is automatic. We will mainly be concentrating on learning subclasses of
pattern languages [1] and related classes which are automatic.

Section 2 below gives the preliminaries related to the model (for both learning
and automatic classes) used in this paper. Section 3 deals with the learnabil-
ity properties of certain concrete classes, namely various interesting automatic
classes of pattern languages. The basic class Pn consists of all regular pattern
languages1 which are generated by regular patterns in which variables occur only
within the last n symbols of the pattern. Each class Pn forms an automatic fam-
ily [12] and Theorem 3 shows that each class Pn is learnable by an automatic
learner where the long term memory is bounded by the size of the hypothesis.
Further results in this section investigate the learnability of related classes such
as the class of all (disjoint) unions of two members of Pn. Section 4 deals with
learnability of character pattern languages, where the variables are allowed to
be replaced only by one character.

2 The Model

The convolution of two strings x, y ∈ Σ∗ (denoted conv(x, y)) is the string
(x(0), y(0)), (x(1), y(1)), . . . , (x(n − 1), y(n − 1)), where each pair is a symbol
from (Σ ∪ {�})2. The special symbol � is appended to the shorter string in
order to make both strings to be of the same length n = max{|x|, |y|}. Sim-
ilarly, one can define conv on multiple arguments. A relation R or a function
f is called automatic if the sets {conv(x1, x2, . . . , xn) : R(x1, x2, . . . , xn)} and
{conv(x1, x2, . . . , xm, y) : f(x1, x2, . . . , xm) = y}, respectively, are regular. Some
examples of automatic predicates from the prior literature
include predicates to compare the length of strings, the lexicographic order and
the length-lexicographic order. Here x is length-lexicographically less than y iff

1 Angluin’s pattern languages [2] are those generated by all the positive length sub-
stitution instances in a pattern, such as, for example, 01xy200zx1 — where the
variables (for substitutions) are x, y, z and the constants/terminals are 0, 1, 2. In
the present work, variables are also permitted to be substituted by empty strings.
Shinohara [23] introduced regular pattern languages as those languages which are
generated by a pattern where each variable occurring, occurs only once. These lan-
guage classes have been well-studied and found various applications.
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either |x| < |y| or |x| = |y| and x is lexicographically before y, where |x| denotes
the length of string x.

A family of languages {Lα : α ∈ I}, where each Lα ⊆ D, is said to be
automatic iff D and I are regular sets (over some finite alphabet Σ and Γ
respectively) and the set {conv(α, x) : α ∈ I ∧ x ∈ D ∧ x ∈ Lα} is regular. The
sets D and I above are respectively called the domain and index domain for the
automatic family. It can be shown that the functions and relations which are
first-order definable using an automatic family and other automatic parameters,
is again automatic [10,13]. Automatic structures are structures given by finitely
many automatic relations and functions — where these structures can also be
considered in a more general sense, when they are just isomorphic to a collection
of finitely many automatic predicates and functions with corresponding regular
domains as defined above.

Properties such as decidability of first order theory make automatic struc-
tures a useful tool not only in learning theory but also in other areas such as
model checking and Boolean algebras [6,13,21,22]. Moreover, though the class
of all regular languages is learnable using queries [4], it is not learnable under
the usual inductive inference criteria from positive data [2,9]. Therefore, it is in-
teresting to investigate which subclasses of regular languages are learnable from
positive data and which are not. For example, Angluin [3] considered learnabil-
ity of the class of k-reversible languages. These studies were later extended [7].
In this context, it is useful to consider which automatic families are learnable
and which not.2

The present work considers learning in the setting of automatic structures.
The learning task (also called target class) is a class of languages, L = {Lα :
α ∈ I} over a domain D ⊆ Σ∗, where I is the index domain. The learner uses
a hypothesis space H = {Hβ : β ∈ J} to express its conjectures (here J is the
index domain for the hypothesis space). For this paper both the target class as
well as the hypothesis space are automatic families. A text T is a mapping from
{0, 1, 2, . . .} to D∪{#}. Here # denotes pauses in the presentation of data. The
content of a text T , denoted content(T ), is range(T ) − {#}. A text T is for a
language L iff content(T ) = L. We let σ range over initial segments of texts.

A learner learning a target language L ∈ L from a text T for L, starts (at time
0) with an initial memory (say mem0) and an initial hypothesis (say hyp0). At
time t+1, the learner gets the input T (t), outputs hypothesis hypt+1 and has new
memory memt+1. Here memt+1 and hypt+1 are computed based on just T (t)
and memt (note that the learner does not have access to t, unless it remembers
it as part of its memory). Here we allow hypt to be ?, to denote that the learner
does not change its previous hypothesis (this is useful for some memory limited
models of learner). The memory of the learner is often also referred to as long
term memory of the learner.

2 As noted by Jain, Luo and Stephan [11], even the class of 0-reversible languages is
not automatic; however, as mentioned in the abstract and as will be seen below,
some very nice classes of regular languages are automatic classes and learnable au-
tomatically, that is, by learners which are given using finite automata.
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A learner is called iterative – see [24] – iff at every stage of the learning
algorithm, the memory of the learner is identical to the current hypothesis of
the learner.

A learner M is called automatic learner iff the mapping from (memt, T (t)) →
(memt+1, hypt+1) is automatic.

We say that a learner M learns a language L from a text T for L iff, on input
text T , the sequence of hypothesis hyp0, hyp1, . . . of the learner M converges
syntactically to a conjecture β ∈ J such that Hβ = L. Here, we say that the
sequence hyp0, hyp1, . . . of hypotheses converges to β iff there exists a t such
that (1) hypt = β and (2) for all t′ ≥ t, hypt′ ∈ {β, ?}. The learner M learns L
iff it learns every member L ∈ L from each text T for L. A class L is said to be
learnable iff some learner learns L.

Note that the hypothesis space must contain the family L to be learnt. When
we do not restrict the memory size or computational power of the learner, the
above learning model is equivalent to Gold’s model of inductive inference [9]
(called explanatory learning). Based on a result of Angluin [2] characterising
algorithmic learnability of general indexed classes, Proposition 1 below charac-
terises the general algorithmic learnability of automatic families.3 Note that the
version of Angluin’s condition for automatic classes, as used in Proposition 1,
can be checked explicitly for automatic families. Hence it is decidable whether an
automatic family is learnable by an algorithmic learner or not. In what follows,
for simplicity, the tell-tale condition will be referred to as Angluin’s.

Proposition 1 (Based on Angluin [2]). An automatic family {Lα : α ∈ I}
is learnable by a recursive learner iff, for every α ∈ I, there is a bound bα such
that, for all β ∈ I, the implication

[{x ∈ Lα : |x| ≤ bα} ⊆ Lβ ⊆ Lα] ⇒ Lβ = Lα.

holds. One calls the set {x ∈ Lα : |x| ≤ bα} a tell-tale set for Lα. This condition
is called Angluin’s tell-tale condition. Note that one can take bα = |α|+ c for a
suitable constant c independent of α (see [12]).

Angluin’s condition solves the question of algorithmic learnability of automatic
classes. Therefore, for learning automatic families, it is more interesting to con-
sider automatic learners which have a superior run-time behaviour than usual
learners as hypothesis and updated memory of automatic learners can be com-
puted in time linear in the length of the previous memory and current datum;
this is explained in the following remark.

Remark 2. Any automatic function f can be computed in linear time. To see
this, construct a directed acyclic graph (branching program), with root being the
starting state of the automaton recognising f . The acyclic graph has, at each
depth, nodes representing each state of the automaton. The depth of the acyclic
graph is bounded by |x|+ c (note that length of f(x) is bounded by |x|+ c, for
3 Note that herein the focus will, nonetheless, remain primarily on the automatic

learnability of automatic classes and not on their general algorithmic learnability.
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some constant c). The acyclic graph has transitions from all nodes at depth d to
all nodes at depth d + 1, for each possible symbol in the alphabet used by the
automaton for recognising conv(x, f(x)). In a first pass over the acyclic graph
from the root node to the end, one marks all reachable nodes when the input to f
is x (and f(x) is allowed all possible values); this can be done in linear time. In the
second pass one identifies the unique reachable accepting node which is on level
� ≥ |x|. In the third pass, one goes from this accepting node backwards through
the graph of reachable nodes and notes down the members from f(x)��−|f(x)|

in reverse order. As the computation is unique, it does not matter which choice
one takes in the nodes as long as one remains within the subgraph consisting of
the reachable nodes. This allows one to compute the output of the function in
linear time.

Automatic learners cannot memorise all data they observe; hence the learner can
no longer access the full past history of the data seen so far. Thus, in general,
the requirement of a learner to be automatic is a real restriction and learners
cannot be made automatic by just applying Pitt’s delaying technique [19].

Long term memory limitations were first introduced by Freivalds, Kinber and
Smith [8]. The variations of long term memory in the context of automatic
learners, was considered by Jain, Luo and Stephan [11]. The size of the memory
of a learner may be explicitly bounded in length. The length-restrictions we
consider are:

(1) memory bounded by the size of the longest datum observed so far plus a
constant, that is |memt| ≤ max({|T (s)| : s < t}) + c, for some constant c;

(2) memory bounded by hypothesis size plus a constant, that is |memt| ≤
|hypt|+ c, for some constant c.

For the ease of notation, the “plus a constant” is omitted in the notations below.
Note that the learner is not constrained regarding which alphabet it uses for its
memory. Therefore, the learner might, for example, store the convolution of up
to k examples (in case the memory does not exceed the allowed bound). Note
that, in the case that memory is unbounded or the bound allows storage of the
hypothesis, then the learner can memorise the most recent hypothesis output,
and, thus, abstain from outputting ?.

For many learning paradigms of automatic learning, one can choose the hy-
pothesis space H to be same as L. However, when the amount of the memory
allowed to the learner depends on the size of the hypothesis or when the long
term memory of the learner has to be the most recent hypothesis, as in the case
of iterative learning, this requirement may be a restriction. The main reason for
hypothesis space not to be critical in many cases is that one can automatically
convert the indices from one automatic family to another for the languages which
are common to both automatic families. Only in the case of iterative learning
and bounds given by the size of the hypothesis, it is often important to have
the ability to store some additional information into the hypothesis — which is
impossible in the case of a one-one hypothesis space. For example, Theorem 3 re-
quires a special class preserving hypothesis space, if one considers learning these
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classes using memory bounded by hypothesis size or for iterative learning. Here
a hypothesis space {Hβ : β ∈ J} is called class preserving (class comprising) [16]
for the target class {Lα : α ∈ I}, if {Lα : α ∈ I} = {Hβ : β ∈ J} (respectively,
{Lα : α ∈ I} ⊆ {Hβ : β ∈ J}).

Note that, in contrast, hypothesis spaces do matter for learning general in-
dexed families by recursive learners [16,17].

In the case that the hypothesis space does not matter, often, for the ease of
notation, the languages are given in place of the indices as conjectures of the
learner.

3 Classes of Pattern Languages

Learning theorists have studied the learnability of the class of pattern languages
extensively [1,15,20,23] and they are often used to judge the power of learning
models. Although the full generality of pattern languages cannot be brought
over into an automatic setting, there are still rich automatic classes of pattern
languages which deserve to be investigated [12].

Fix an alphabet set Σ. The notion of pattern languages is based on the notion
of a pattern [1] which is any string over (Σ ∪ V )∗, where V is an infinite set of
variables which is disjoint from Σ. The language associated with a pattern π,
denoted by Lang(π), is the set of strings which can be obtained by replacing
each variable in the pattern by a string over Σ. There are two cases: In the case
of an erasing pattern language one permits that the string chosen can be empty;
in the case of a non-erasing pattern language the string must always contain
at least one symbol. In the present work, a “pattern language” is by default an
“erasing pattern language”.

Shinohara [23] considered the class of languages which are generated by regu-
lar patterns, that is, patterns in which the variables do not repeat. Let Pn denote
the class of pattern languages which can be generated by a regular pattern where
variables, if any, only appear within the last n symbols of the pattern. For ex-
ample, the pattern 010232012012x12y1z generates a language in P6. Jain, Ong,
Pu and Stephan [12] showed that every class Pn can be given as an automatic
family. Furthermore, every automatic class of languages generated by regular
patterns is a subclass of some Pn.

Theorem 3. Every class Pn has an automatic learner. This learner can be made
iterative, if one allows a suitable class preserving hypothesis space. Furthermore,
there is also an automatic learner with the memory limited by the size of the first
datum seen.

Proof. Let S be the set of all L ∈ Pn which are generated by regular patterns
consisting of at most n symbols. Note that S is finite. The memory of the learner
is of the form conv(x, α), where |α| = |x| + 1 and every symbol g in α codes a
subset of S. The conjecture of the learner at any stage is the language associated
with the memory defined as follows. Let A be the set of all languages L such
that, for some prefix y of x and language H in the set coded by α(|y|), L = y ·H .
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The language associated with memory conv(x, α) is the length-lexicographically
first language (based on the length-lexicographic ordering of (y, H) for the lan-
guages y ·H in A) in A such that no proper subset of this language is in A.

The automatic learner conjectures ? until it sees the first datum x �= #. From
then on its memory is of the form conv(x, α) and its conjecture is the language
associated with the above memory, where α is appropriately chosen: For every
prefix y of x, α(|y|) contains all H ∈ S such that y ·H contains all the data seen
so far.

It is easy to verify that the above learner is automatic. Furthermore, the
memory of the learner is bounded by the size of the first datum seen. Note
that the language associated with conv(x, α) is the minimal language in Pn

which contains all the data seen so far. Hence, the learner converges to a correct
hypothesis.

The above learner can be made iterative, by using a class preserving hypothesis
space, which allows one to pad the hypothesis by the memory conv(x, α) — note
that the memory value of the learner above converges in the limit. �

The above algorithm can be used to obtain the following more involved result
(Theorem 6). The result mainly implies that the class of the disjoint unions of
two languages from Pn is learnable.

Bārzdiņš [5] called a learner consistent if the learner, on any input σ, outputs
a hypothesis which contains every data-item occurring in σ. A learner is said to
be confident [18] if for all input texts the sequence of hypotheses output by the
learner syntactically converges to a hypothesis. Note that these constraints are
required even for input texts for a language outside the class to be learnt.

Proposition 4. Let an automatic class L be given. Suppose that the automatic
learners M1, M2, . . . , Mn are consistent and confident. Then, there exists another
automatic learner N which is (1) consistent, (2) confident and (3) converges on
a text T for a language L ∈ L to an index for L whenever at least one of the
learners M1, M2, . . . , Mn converges on T to an index for L.

Note that the learner N in the above proposition would have its memory bounded
by the size of the longest datum seen, if each of the individual learner M1, M2, . . .
satisfy this constraint. Similarly, if one allows class preserving hypothesis space,
then N can be made to satisfy memory bounded by hypothesis size if each of
M1, M2, . . . satisfy this constraint.

Proposition 5. {L ∪ {z} : L ∈ Pn, z ∈ Σ∗ − L} is consistently and confidently
learnable by an automatic learner. Furthermore, the memory of the learner is
bounded by the size of the longest input datum seen.

Theorem 6. For every n, the class Pn ∪ {L∪H : L, H ∈ Pn ∧L ∩H = ∅} has
an automatic learner. Furthermore, this learner is consistent and confident, and
has memory bounded by the size of the longest datum seen by the learner.

Proof. Note that two non-singleton pattern languages L and H in Pn are disjoint
iff there exists a w and different a, b ∈ Σ such that either (1) L ⊆ waΣ∗ and
H ⊆ wbΣ∗ or (2) length of w is at most n and L ⊆ Σ∗aw and H ⊆ Σ∗bw.
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The automatic learner N for this theorem maintains the long term memory
conv(β0, β1, β2, β3, β4, β5, xa, xb, cy, dy). The learner uses 6 sublearners N0, N1,
N2, N3, N4, N5 using parts of this memory which simulate the learner M from
Theorem 3 and the learner from Proposition 5 as follows.

– The learner N0 simulates M on all inputs and β0 is the corresponding
memory.

– The learner N1 simulates the learner from Proposition 5 and uses memory
β1.

– Let x be the longest common prefix of all data observed so far. Furthermore,
if possible, let a, b be different elements of Σ such that each observed datum
either extends xa or extends xb; otherwise, if such elements of Σ do not
exist, then let a = ε and b = ε.

N2 and N3 simulate M on the data extending xa and xb, respectively, main-
taining the corresponding memories β2 and β3 — except that in the case of
a = b = ε, the conjectures of N2 and N3 are Σ∗, rather than the conjecture of
M . Now consider the case that, due to a new datum, the values xa and xb be-
come updated and a �= b. Then, a is chosen such that all previously observed
data extend xa, while the current datum extends xb. Then N2 takes over the
old memory of N0 (before processing the current datum) and simulates M
on all data which extend xa, while N3 simulates M on all data extending xb,
among which the current datum is the first to occur. The long term memories
β2 and β3 of N2 and N3 are maintained accordingly. Note that when a �= b,
then the above process consistently maintains that N2 and N3 simulate M on
all data which extend xa and xb respectively.

– Let y be the longest common suffix, of length at most n + 1, of all data
observed so far. Furthermore, if possible, let c, d be different elements of Σ
such that all observed data have suffix either cy or dy (where length of cy
and dy are at most n + 1); otherwise let c = d = ε.

N4 and N5 simulate M on the data ending with cy and dy, respectively,
maintaining the corresponding memories β4 and β5 — except that in the
case of c = d = ε, the conjectures of N4 and N5 are Σ∗, rather than the
conjecture of M .

Now consider the case that, due to a new datum, the values cy and
dy become updated and c �= d. Then, c is chosen such that all previously
observed data end with cy, while the current datums ends with dy. Then N4

takes over the old memory of N0 (before processing the current datum) and
simulates M on all data which end with cy, while N5 simulates M on all
data ending with dy, among which the current datum is the first to occur.
The long term memories β4 and β5 of N4 and N5 are maintained accordingly.
Note that when c �= d, then the above process consistently maintains that
N4 and N5 simulate M on all data which end with cy and dy, respectively.

The new learner N is a combination of the learners N0, N1, N2, N3, N4 and N5.
When its current memory is updated to conv(β0, β1, β2, β3, β4, β5, xa, xb, cy, dy),
then N ’s hypothesis is calculated from the conjectures L0, L1, L2, L3, L4, L5 of
N0, N1, N2, N3, N4, N5 as follows: L is the first language in the list L0, L1, L2∪L3



200 J. Case et al.

and L4 ∪ L5 which is not a proper superset of any other language in the list. It
is easy to see that the learner N defined like this is automatic.

For the verification, consider first the case that the language L to be learnt
is from Pn. Then N0 learns L and the other learners converge to a superset of
L. If the language to be learnt is of the form L ∪ {z} with L ∈ Pn and z /∈ L,
then N1 converges to the correct hypothesis and all other learners converge to
hypotheses for some supersets of L ∪ {z}.

Otherwise, consider disjoint sets L, H ∈ Pn such that |L|, |H | ≥ 2 and the
target language is L ∪H . Furthermore, let x′, a′, b′, y′, c′, d′ be the final values
of the variables x, a, b, y, c, d, respectively. Note that a, b, c, d can change their
value only by either becoming the empty string or by x or y becoming shorter.
This shows that there are at most 2 times as many updates of these variables
as the length of the first string observed. Note that either L ⊆ x′a′Σ∗ ∧ H ⊆
x′b′Σ∗ ∧ a′ �= b′ or L ⊆ Σ∗c′y′ ∧ H ⊆ Σ∗d′y′ ∧ c′ �= d′ (where, L and H may
be interchanged). Furthermore, if a′ �= b′, then N2 and N3 converge to L and
H , respectively. Similarly, if c′ �= d′, then N4 and N5 converge to L and H ,
respectively.

The invariant of the learning process is that at every time, N0 and N1 conjec-
ture sets containing all data seen so far, N2 conjectures a set containing all data
beginning with xa seen so far, N3 conjectures a set containing all data beginning
with xb seen so far, N4 conjectures a set containing all data ending with cy seen
so far and N5 conjectures a set containing all data ending with dy seen so far.
Furthermore, all learners converge. In the limit, one of the following occurs:

– N0 converges to a language generating the target language;
– N1 converges to a language generating the target language;
– N2 converges to a language consisting of all the strings of the target language

beginning with x′a′ and N3 converges to a language consisting of all strings
of the target language beginning with x′b′;

– N4 converges to a language consisting of all the strings of the target language
ending with c′y′ and N5 converges to a language consisting of all strings of
the target language ending with d′y′.

Hence, one of the languages L0, L1, L2∪L3, L4∪L5 as computed by the learners
above, in the limit, will be same as the target language and be a subset of
the other three languages; therefore, the learner N will converge to the correct
language. �

We now consider the general case of learning unions of pattern languages from
Pn. While the above results also hold for non-erasing pattern languages, the
following results of this section hold only for erasing pattern languages.

Proposition 7. Suppose L0, L1, . . . , Lk are erasing pattern languages generated
by regular patterns. If Σ contains at least k +1 characters, L0 is infinite and the
difference L0 −

⋃
i∈{1,2,...,k} Li is not empty, then this difference is infinite.

Let Gn denote the set of all erasing pattern languages which are generated by a
regular pattern of length at most n which start with a variable. Note that Gn is
finite.
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Theorem 8. Suppose |Σ| ≥ 3. Let L = {L1 ∪ L2 : L1, L2 ∈ Pn, |L1| > 1, |L2| >
1}. Then, L is learnable by an automatic learner (using class comprising hy-
pothesis space) which (1) uses memory bounded by the size of the longest datum
seen so far and (2) for all texts T for a language L, converges to an index for a
language L′ such that L− L′ is finite.

Proof. Note that by Proposition 7 different languages in L are pairwise infinitely
different.

For each H0, H1 ∈ Gn, consider MH0,H1 defined as follows. Conjectures of
MH0,H1 will be of the form conv(x, s0, s1, c), where x, s0, s1 ∈ Σ∗, c ∈ {0, 1, 2}.
The language associated with conv(x, s0, s1, 0) is Σ∗. The language associated
with conv(x, s0, s1, 1) is s0 ·H0. The language associated with conv(x, s0, s1, 2)
is s0 · H0 ∪ s1 · H1. The string x will be the length-lexicographically smallest
string seen in the input.

Whenever MH0,H1 sees an input w which is length-lexicographically smaller
than any previously seen input, it outputs conv(w, s0, s1, c), where if there is a
prefix s of w such that w is the length lexicographically least element of s ·H0,
then s0 = s and c = 1; otherwise, s0 = w and c = 0. In both cases, s1 is ε.

In other cases, suppose the previous conjecture of MH0,H1 is (x, s0, s1, c) and
the new input is w. Then, use the first case below which applies:

Case 1: c = 0 or (w ∈ s0 ·H0). In this case conjecture (x, s0, s1, c).
Case 2: w �∈ H1. In this case conjecture (x, s0, s1, 0).
Case 3: c = 1. In this case let s′1 be the longest prefix of w such that w ∈ s′1 ·H1,

and conjecture (x, s0, s
′
1, 2).

Case 4: c = 2. In this case let s′1 be longest prefix of s1 such that w ∈ s′1 ·H1,
and conjecture (x, s0, s

′
1, 2).

Note that, on all input texts, MH0,H1 converges. Say the converged index is
(x, s0, s1, c). Then, this is either a conjecture for Σ∗, or s0 · H0 contains the
length-lexicographically smallest string in the input and (x, s0, s1, c) represents
the language which is a superset of the input language, except maybe for finitely
many strings.

Furthermore, if the input language is L = s · H ∪ s′ · H ′, for H, H ′ ∈ Gn,
(where s ·H contains the length-lexicographically smallest string in L) then the
following two statements hold:

(a) for each H0, H1, MH0,H1 converges to a superset of L, as this converged
language is a superset of a finite variant of L, and thus by Proposition 7 a
superset of L.

(b) MH,H′ converges to an index for a subset of L (and thus by (a) above
to an index for L). To see this, suppose MH,H′ converges to index (x, s0, s1, c).
Then x is the lexicographically least element of L, s ·H and s0 ·H . Thus s = s0.
Furthermore, if c = 2, we have that s′ ·H ′ ⊇ s1 ·H ′ (since in Case 3 and 4 the
algorithm chooses the longest possible prefix).

Now define M which outputs the convolution of the outputs of all MH,H′ ,
H, H ′ ∈ Gn. This conjecture represents language associated with the conjecture
of MR,R′ , where R, R′ are chosen to be length-lexicographically least such that
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the conjecture of MR,R′ is not a proper subset of the conjecture of any other
MR′′,R′′′ . It follows using (a) and (b) that M learns L. �

A combination of the constructions from Proposition 5 and Theorem 8 can be
used to show the following theorem.

Theorem 9. Suppose |Σ| ≥ 3. Let L = {L1 ∪ L2 : L1, L2 ∈ Pn}. Then, L
is learnable by a learner (using class comprising hypothesis space) which uses
memory bounded by the size of the longest datum seen so far. Furthermore, the
learner, for all texts T for a language L, converges to an index for a language
L′ such that L− L′ is finite.

4 Character Variables

In this section, we consider the following modification of pattern languages. We
consider two types of variables: character variables which can be replaced by one
symbol of Σ and string variables which can be replaced by any string, including
the empty string. Note that one can simulate non-erasing pattern languages (as
studied by Angluin [1]) by putting one character variable followed by one string
variable. The non-erasing pattern language associated with pattern xyxz can
be proven to be regular, by chosing the equivalent pattern abyacz of character
variables a, b, c and erasing string variables y, z.

When investigating the learnability properties of such pattern languages, it
turned out that the character variables make it very difficult to build automatic
learners. For that reason, the case where only character variables are allowed is
considered here.

Let On denote the class of languages formed using patterns with variables only
of the type character variable such that, between the first and last occurrence
of any variable, at most n distinct variables appear in the pattern.

Theorem 10. (1) Each On is learnable by an automatic learner with memory
bounded by the size of the longest datum seen so far in the input.
(2) The class {L ∪H : L ∩H = ∅ ∧ L, H ∈ O0} is not automatically learnable.

Acknowledgments. We thank the anonymous referees for useful comments.
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Abstract. We consider a set of natural operations on languages, and
prove that the orbit of any language L under the monoid generated
by this set is finite and bounded, independently of L. This generalizes
previous results about complement, Kleene closure, and positive closure.

1 Introduction

If t, x, y, z are (possibly empty) words with t = xyz, we say
– x is a prefix of t;
– z is a suffix of t; and
– y is a factor of t.

If t = x1t1x2t2 · · ·xntnxn+1 for some n ≥ 1 and some (possibly empty) words
ti, xj , 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1, then t1 · · · tn is said to be a subword of t. Thus
a factor is a contiguous block, while a subword can be “scattered”.

Let L be a language over the finite alphabet Σ, that is, L ⊆ Σ∗. We consider
the following eight natural operations applied to L:

k : L→ L∗

e : L→ L+

c : L→ L = Σ∗ − L

p : L→ pref(L)
s : L→ suff(L)
f : L→ fact(L)
w : L→ subw(L)
r : L→ LR.

Here
pref(L) = {x ∈ Σ∗ : x is a prefix of some y ∈ L};
suff(L) = {x ∈ Σ∗ : x is a suffix of some y ∈ L};
fact(L) = {x ∈ Σ∗ : x is a factor of some y ∈ L};

subw(L) = {x ∈ Σ∗ : x is a subword of some y ∈ L};
LR = {x ∈ Σ∗ : xR ∈ L};
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c© Springer-Verlag Berlin Heidelberg 2011
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where xR denotes the reverse of the word x.
We compose these operations as follows:

if x = a1a2 · · ·an ∈ {k, e, c, p, s, f, w, r}∗, then
x(L) = a1(a2(a3(· · · (an(L)) · · · ))).

Thus, for example, ck(L) = L∗. We also write ε(L) = L.
Given two elements x, y ∈ {k, e, c, p, s, f, w, r}∗, we write x ≡ y if x(L) = y(L)

for all languages L, and we write x ⊆ y if x(L) ⊆ y(L) for all languages L.
Given a subset S ⊆ {k, e, c, p, s, f, w, r}, we can consider the orbit of languages

OS(L) = {x(L) : x ∈ S∗}
under the monoid of operations generated by S. We are interested in the follow-
ing questions: when is this monoid finite? Is the cardinality of OS(L) bounded,
independently of L?

These questions were previously investigated for the sets S = {k, c} and S =
{e, c} [4,1], where the results can be viewed as the formal language analogues of
Kuratowski’s celebrated “14-theorem” for topological spaces [3,2]. In this paper
we consider the questions for other subsets of {k, e, c, p, s, f, w, r}. Our main
result is Theorem 20 below, which shows finiteness for any subset of these eight
operations.

2 Operations with Infinite Orbit

We point out that the orbit of L under an arbitrary operation need not be finite.
For example, consider the operation q defined by

q(L) = {x ∈ Σ∗ : x there exists y ∈ L such that x is a proper prefix of y }.
Here by “x is a proper prefix of y”, we mean that x is a prefix of y with |x| < |y|.

Let L = {anbn : n ≥ 1}. Then it is easy to see that the orbit

O{q}(L) = {L, q(L), q2(L), q3(L), . . .}
is infinite, since the shortest word in qi(L) ∩ a+b is ai+1b.

The situation is somewhat different if L is regular:

Theorem 1. Let q denote the proper prefix operation, and let L be a regular
language accepted by a DFA of n states. Then O{q}(L) ≤ n, and this bound is
tight.

Proof. Let M = (Q, Σ, δ, q0, F ) be an n-state DFA accepting L. Note that a
DFA accepting q(L) is given by M ′ = (Q, Σ, δ, q0, F

′) where

F ′ = {q ∈ Q : there exists a path of length ≥ 1 from q to a state of F }.
Reinterpreting this in terms of the underlying transition diagram, given a di-
rected graph G on n vertices, and a distinguished set of vertices F , we are
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interested in the number of different sets obtained by iterating the operation
that maps F to the set of all vertices that can reach a vertex in F by a path of
length ≥ 1. We claim this is at most n. To see this, note that if a vertex v is
part of any directed cycle, then once v is included, further iterations will retain
it. Thus the number of distinct sets is as long as the longest directed path that
is not a cycle, plus 1 for the inclusion of cycle vertices.

To see that the bound is tight, consider the language Ln = {ε, a, a2, . . . , an−2},
which is accepted by a (complete) unary DFA of n states. Then q(Ln) = Ln−1,
so this shows |O{q}(Ln)| = n. ��
It is possible for the orbit under a single operation to be infinite even if the
operation is (in the terminology of the next section) expanding and inclusion-
preserving. As an example, consider the operation of fractional exponentiation,
defined by

n(L) = {xα : α ≥ 1 rational } =
⋃
x∈L

x+p({x}).

Proposition 2. Let L = {ab}. Then the orbit O{n}(L) is infinite.

Proof. We have abai ∈ ni({ab}), but abai �∈ nj({ab}) for j < i. ��

3 Kuratowski Identities

Let a : 2Σ∗ → 2Σ∗
be an operation on languages. Suppose a satisfies the following

three properties:

1. L is a subset of a(L) (expanding);
2. If L ⊆M then a(L) ⊆ a(M) (inclusion-preserving);
3. a(a(L)) = a(L) (idempotent).

Then we say a is a closure operation. Examples of closure operations include
k, e, p, s, f, and w.

Note that if a, b are closure operations, then their composition ab trivially
satisfies properties 1 and 2 above, but may not satisfy property 3. For example,
pk is not idempotent, as can be seen by examining its action on L = {ab}
(aab �∈ pk(L), but aab ∈ pkpk(L)).

Lemma 3. Let a ∈ {k, e} and b ∈ {p, s, f, w}. Then aba ≡ bab ≡ ab.

Proof. We prove the result only for b = p; the other results are similar.
Since L ⊆ a(L), we get p(L) ⊆ pa(L), and then ap(L) ⊆ apa(L). It remains

to see apa(L) ⊆ ap(L).
Any element of a(L) is either ε or of the form t = t1t2 · · · tn for some n ≥ 1,

where each ti ∈ L. Then any prefix of t looks like t1t2 · · · ti−1pi for some i ≥ 1,
where pi is a prefix of ti, and hence in p(L). But each ti is also in p(L), so this
shows

pa(L) ⊆ ap(L). (1)
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Since a is a closure operation, apa(L) ⊆ aap(L) = ap(L).
Similarly, we have ap(L) ⊆ pap(L). Substituting p(L) for L in (1) gives

pap(L) ⊆ app(L) = ap(L). ��
Lemma 4. The operations kp, ks, kf, kw, ep, es, ef and ew are closure opera-
tions.

Proof. We prove the result for kp, with the other results being similar. It suffices
to prove property 3. From Lemma 3 we have pkp(L) = kp(L). Applying k to
both sides, and using the idempotence of k, we get kpkp(L) = kkp(L) = kp(L).

��
If a is a closure operation, and c denotes complement, then it is well-known
(and shown, for example, in [4]) that acacaca ≡ aca. However, we will need the
following more general observation, which seems to be new:

Theorem 5. Let x, y be closure operations. Then xcycxcy ≡ xcy.

Proof. xcycxcy ⊆ xcy: We have L ⊆ y(L) by the expanding property. Then
cy(L) ⊆ c(L). By the inclusion-preserving property we have xcy(L) ⊆ xc(L).
Since this identity holds for all L, it holds in particular for cxcy(L). Substituting,
we get xcycxcy(L) ⊆ xccxcy(L). But xccxcy(L) = xcy(L) by the idempotence
of x.

xcy ⊆ xcycxcy: We have L ⊆ x(L) by the expanding property. Then, replac-
ing L by cy(L), we get cy ⊆ xcy. Applying c to both sides, we get cxcy ⊆ ccy = y.
Applying y to both sides, and using the inclusion-preserving property and idem-
potence, we get ycxcy ⊆ yy = y. Applying c to both sides, we get cy ⊆ cycxcy.
Finally, applying x to both sides and using the inclusion-preserving property, we
get xcy ⊆ xcycxcy. ��
Remark 6. Theorem 5 would also hold if c were replaced by any inclusion-
reversing operation satisfying cc ≡ ε.

As a corollary, we get [4,1]:

Corollary 7. If S = {a, c}, where a is any closure operation, and L is any
language, the orbit OS(L) contains at most 14 distinct languages.

Proof. The 14 languages are given by the image of L under the 14 operations

ε, a, c, ac, ca, aca, cac, acac, caca, acaca, cacac, acacac, cacaca, cacacac.
��

Remark 8. Theorem 5, together with Lemma 4, thus gives 196 separate identi-
ties.

In a similar fashion, we can obtain many kinds of Kuratowski-style identities
involving k, e, c, p, s, f, w and r.

Theorem 9. Let a ∈ {k, e} and b ∈ {p, s, f, w}. Then we have the following
identities:
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4. abcacaca ≡ abca
5. bcbcbcab ≡ bcab
6. abcbcabcab ≡ abcab

Proof. We only prove the first; the rest are similar. From Theorem 5 we get
acacaca ≡ aca. Hence ab(acacaca) ≡ ab(aca), or equivalently, aba(cacaca) ≡
aba(ca). Since aba ≡ ab from Lemma 3, we get abcacaca ≡ abca. ��

4 Additional Identities

In this section we prove some additional identities connecting the operations
{k, e, c, p, s, f, w, r}.
Theorem 10. We have

7. rp ≡ sr
8. rs ≡ pr
9. rf ≡ fr

10. rc ≡ cr
11. rk ≡ kr
12. rw ≡ wr
13. ps ≡ sp ≡ f
14. pf ≡ fp ≡ f
15. sf ≡ fs ≡ f
16. pw ≡ wp ≡ sw ≡ ws ≡ fw ≡ wf ≡ w
17. kw ≡ wk
18. rkw ≡ kw
19. ek ≡ ke ≡ k
20. fks ≡ pks
21. fkp ≡ skp
22. rkf ≡ skf ≡ pkf ≡ fkf ≡ kf

Proof. All of these are relatively straightforward. To see (20), note that p(L) ⊆
f(L) for all L, and hence pks(L) ⊆ fks(L). Hence it suffices to show the reverse
inclusion.

Note that every element of ks(L) is either ε or can be written x = s1s2 · · · sn

for some n ≥ 1, where each si ∈ s(L). In the latter case, any factor of x must be
of the form y = s′′i si+1 · · · sj−1s

′
j, where s′′i is a suffix of si and s′j is a prefix of

sj . Then s′′i si+1 · · · sj−1sj ∈ ks(L) and hence y ∈ pks(L).
Similarly, we have pkf ≡ pk(ps) ≡ (pkp)s ≡ (kp)s ≡ k(ps) = kf , which

proves part of (22).

Theorem 11. We have

23. pcs(L) = Σ∗ or ∅.
24. The same result holds for pcf, fcs, fcf, scp, scf, fcp, wcp, wcs, wcf, pcw, scw,

fcw, wcw.
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Proof. Let us prove the first statement. Either s(L) = Σ∗, or s(L) omits some
word v. In the former case, cs(L) = ∅, and so pcs(L) = ∅. In the latter case, we
have s(L) omits v, so s(L) must also omit Σ∗v (for otherwise, if xv ∈ f(L) for
some x, then v ∈ s(L)). So Σ∗v ⊆ cs(L). Hence pcs(L) = Σ∗.

The remaining statements are proved similarly. ��
The following result was proved in [1, Theorems 2 and 3].

Lemma 12. We have ecece ≡ cece.

Theorem 13. Let L be any language.

25. We have kckck(L) = ckck(L) ∪ {ε}.
Proof. First, suppose ε ∈ L. Then e(L) = k(L) and ce(L) = ck(L). Since ε /∈
ck(L), we obtain ece(L) = eck(L) = kck(L)−{ε}. Then, cece(L) = ckck(L)∪{ε}.
So ecece(L) = kckck(L). From Lemma 12, we deduce kckck(L) = ecece(L) =
cece(L) = ckck(L) ∪ {ε}.

Second, suppose ε /∈ L. Then e(L) = k(L) − {ε} and ce(L) = ck(L) ∪ {ε}.
We obtain ece(L) = kck(L) and cece(L) = ckck(L). So ecece(L) = eckck(L) =
kckck(L) − {ε}. From Lemma 12, we deduce kckck(L) = ecece(L) ∪ {ε} =
cece(L) ∪ {ε} = ckck(L) ∪ {ε}.
Lemma 14. Let L be any language.

(a) If xy ∈ kp(L) then x ∈ kp(L) and y ∈ kf(L).
(b) If xy ∈ ks(L) then x ∈ kf(L) and y ∈ ks(L).
(c) If xy ∈ kf(L) then x, y ∈ kf(L).
(d) If xy ∈ kw(L), then x, y ∈ kw(L).

Proof. We prove only (b), with the others being proved similarly. If xy ∈ ks(L),
then x ∈ pks(L) and y ∈ sks(L). But s ⊆ f , so pks ⊆ pkf , and pkf = kf by
(22). Hence x ∈ kf(L). Similarly, sks ≡ ks by Lemma 3, so y ∈ ks(L). ��
Lemma 15. We have pcpckp ⊆ kp.

Proof. Let x ∈ pcpckp(L). Then there exists y such that xy ∈ cpckp(L). So
xy /∈ pckp(L). Then, for all z, we have xyz /∈ ckp(L). Hence xyz ∈ kp(L). Thus
x ∈ pkp(L) = kp(L).

Theorem 16. Let b ∈ {p, s, f, w}. Then

26. kcb(L) = cb(L) ∪ {ε}
27. kckb(L) = ckb(L) ∪ {ε}
28. kbcbckb(L) = bcbckb(L) ∪ {ε}.
Proof. We prove only three of these identities; the others can be proved similarly.

kcp(L) = cp(L) ∪ {ε}: Assume x ∈ kcp(L). Either x = ε or we can write
x = x1x2 · · ·xn for some n ≥ 1, where each xi ∈ cp(L). Then each xi �∈ p(L).
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In particular x1 �∈ p(L). Then x1x2 · · ·xn �∈ p(L), because if it were, then x1 ∈
p(L), a contradiction. Hence x ∈ cp(L).

kckp(L) = ckp(L)∪{ε}: Assume x ∈ kckp(L). Either x = ε or we can write x =
x1x2 · · ·xn for some n ≥ 1, where each xi ∈ ckp(L). Then each xi �∈ kp(L). In
particular x1 �∈ kp(L). Hence x1(x2 · · ·xn) �∈ kp(L), because if it were, then x1 ∈
kp(L) by Lemma 14, a contradiction. Hence x �∈ kp(L), so x ∈ ckp(L), as desired.

kpcpckp(L) = pcpckp(L) ∪ {ε}: Assume x ∈ kpcpckp(L). Either x = ε or we
can write x = x1 · · ·xn, where each xi ∈ pcpckp(L). In particular, there exists y
such that xny ∈ cpckp(L); that is, xny �∈ pckp(L). Assume x �∈ pcpckp(L). Then
xy �∈ cpckp(L), so xy ∈ pckp(L). Then there exists z such that xyz ∈ ckp(L);
that is, xyz �∈ kp(L). But from Lemma 15, we know that every xi is in kp(L).
Further, since xny �∈ pckp(L), we have xnyz �∈ ckp(L); that is, xnyz ∈ kp(L).
This shows that xyz = x1 · · ·xn−1(xnyz) belongs to kp(L), a contradiction. ��
Theorem 17. We have

29. sckp(L) = Σ∗ or ∅.
30. The same result holds for

fckp, pcks, fcks, pckf, sckf, fckf, wckp, wcks, wckf, wckw, pckw, sckw, fckw.

Proof. To prove (29), note that either kp(L) = Σ∗, or kp(L) omits some word
v. In the former case, ckp(L) = ∅, and so sckp(L) = ∅. In the latter case, we
have kp(L) omits v, so kp(L) must also omit vΣ∗ (for otherwise, if vx ∈ kp(L)
for some x, then v ∈ kp(L) by Lemma 14, a contradiction). Then vΣ∗ ∈ ckp(L)
and hence sckp(L) = Σ∗.

The other results can be proved similarly. ��
Lemma 18. Let L be any language.

(a) If xy ∈ skp(L), then x, y ∈ skp(L).
(b) If xy ∈ pks(L), then x, y ∈ pks(L).

Proof. We prove only (a), with (b) being proved similarly.
If xy ∈ skp(L), then x ∈ pskp(L) and y ∈ sskp(L). But pskp ≡ (ps)kp ≡

fkp ≡ skp by (21). So x ∈ skp(L). Also, sskp = skp, so y ∈ skp(L). ��
Theorem 19. We have

31. scskp(L) = Σ∗ or ∅.
32. The same result holds for pcpks.

Proof. We prove only the first result; the second can be proved analogously.
Either skp(L) = Σ∗, or it omits some word v. In the first case we have cskp(L) =
∅ and hence scskp(L) = ∅. In the second case, skp(L) must omit vΣ∗ (for if
vx ∈ skp(L) for any x, then by Lemma 18 we have v ∈ skp(L), a contradiction).
Hence scskp(L) = Σ∗. ��
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5 Results

Our main result is the following:

Theorem 20. Let S = {k, e, c, p, f, s, w, r}. Then for every language L, the set
OS(L) contains at most 5676 distinct languages.

Proof. Our proof was carried out mechanically. We used breadth-first search to
examine the set S∗ = {k, e, c, p, f, s, w, r}∗ by increasing length of the words;
within each length we used lexicographic order with k < e < c < p < f < s <
w < r. The nodes remaining to be examined are stored in a queue Q.

As each new word x representing a series of language operations is examined,
we test it to see if any factor is of the form given in identities (23)–(24) or (30)–
(32). If it is, then the corresponding language must be either Σ∗, ∅, {ε}, or Σ+;
furthermore, each descendant language will be of this form. In this case the word
x is discarded.

Otherwise, we use the remaining identities above to try to reduce x to an
equivalent word that we have previously encountered. If we succeed, then x is
discarded. Otherwise x(L) is potentially a new language, so we append all the
words Sx to the end of the queue. Some simplifications are possible. For example,
using our identities we can assume x contains only a single r and this appears
at the end; this cuts down on the search space.

We treat the identities (25)–(27) somewhat differently. We keep track of
whether a language contains ε or not. For example, when appropriate, we can
replace akcb with acb for a, b ∈ {p, s, f, w}.

If the process terminates, then OS(L) is of finite cardinality.
We wrote our program in APL. For S = {k, c, p, f, s, w, r}, the process termi-

nated with 5672 nodes that could not be simplified using our identities. We did
not count ∅, {ε}, Σ+, and Σ∗. The total is thus 5676.

The longest word examined was ckcpcpckpckpckpcpcpckckcr, of length 25, and
the same word with p replaced by s.

Our program generates a complete description of the words and how they sim-
plify, which can be viewed at www.cs.uwaterloo.ca/~shallit/papers.html.

��
Remark 21. If we use two arbitrary closure operations a and b with no relation
between them, then the monoid generated by {a, b} could potentially be infinite,
since any two finite prefixes of ababab · · · are distinct.

Here is an example. Let p denote prefix, as above, and define the exponentia-
tion operation

t(L) = {xi : x ∈ L and i is an integer ≥ 1}. (2)

Then it is easy to see that t is a closure operation, and hence the orbits O{p}(L)
and O{t}(L) are finite, for all L. However, for L = {ab}, the orbit O{p,t}(L) is
infinite, as abai ∈ (pt)i(L), but abai �∈ (pt)j(L) for all j < i.

Thus our proof of Theorem 20 crucially depends on the properties of the
operations {k, e, c, p, s, f, w, r}.
We now give some results for some interesting subsets of S.
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Fig. 1. DFA accepting a language L with orbit size 14 under operations p and c

Table 1. Final states for composed operations

language final states language final states
L 3,7,8 pcpc(L) 1,5,6,7

c(L) 1,2,4,5,6 cpcp(L) 2,3,6,7
p(L) 1,2,3,5,6,7,8 cpcpc(L) 2,3,4,8
pc(L) 1,2,3,4,5,6,8 pcpcp(L) 1,2,3,5,6,7
cp(L) 4 pcpcpc(L) 1,2,3,4,5,8
cpc(L) 7 cpcpcp(L) 4, 8
pcp(L) 1,4,5,8 cpcpcpc(L) 6, 7

5.1 Prefix and Complement

In this case at most 14 distinct languages can be generated. The bound of 14
can be achieved, e.g., by the regular language over Σ = {a, b, c, d} given by the
regular expression a∗((b + c)(a(ΣΣ)∗ + b + dΣ∗) + dΣ+) and accepted by the
DFA in Figure 1.

Table 1 gives the appropriate set of final states under the operations.

5.2 Prefix, Kleene Star, Complement

The same process, described above for the operations {k, e, c, p, s, f, w, r}, can
be carried out for other subsets, such as {k, c, p}. For this our breadth-first search
gives 1066 languages. The longest word examined was ckcpcpckpckpckpcpcpckckc.

5.3 Factor, Kleene Star, Complement

Similarly, we can examine {k, c, f}. Here breadth-first search gives 78 languages,
so our bound is 78 + 4 = 82. We can improve this bound by considering new
kinds of arguments.

Lemma 22. Let L be any language. There are at most 4 languages distinct
from Σ∗, ∅, Σ+, and {ε} in O{k,f,kc,fc}(f(L)). These languages are among f(L),
kf(L), kckf(L), and kcf(L).

Proof (Sketch). First observe that the set of languages {Σ∗, ∅, Σ+, {ε}} is closed
under any operation of the set {k, c, f}. We make a case study. We consider
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successively the languages generated by {k, f, kc, fc} from fcf(L), kf(L), and
kcf(L). We make use of Identities (22), (24), (26), (27), and (30).

Let alph(L) denote the minimal alphabet of a language L, that is, the minimal
set of letters that occur in words of L.

Lemma 23. Let L be any language. We have kf(L) = k(alph(L)).

Proof. The minimal alphabets of L and f(L) coincide. Thus f(L) ⊆ k(alph(L)),
so kf(L) ⊆ k(alph(L)). Further, alph(L) ⊆ f(L). So k(alph(L)) ⊆ kf(L) as well.

Lemma 24. Let L be any language. There are at most 2 languages distinct from
Σ∗, ∅, Σ+, and {ε} in O{k,f,kc,fc}(fk(L))−O{k,f,kc,fc}(f(L)). These languages
are among fk(L) and kcfk(L).

Proof. Apply Lemma 22 to k(L) and use kfk ≡ kf . To see the latter identity,
use Lemma 23 and observe that alph(k(L)) = alph(L).

Lemma 25. For any language L, we have either f(L) = Σ∗ or fc(L) = Σ∗.

Proof. Assume f(L) �= Σ∗. Then there exists a word in cf(L), say w. Hence
Σ∗wΣ∗ ∩ f(L) = ∅. Since L ⊆ f(L), we also have Σ∗wΣ∗ ∩ L = ∅, that is
Σ∗wΣ∗ ⊆ c(L). This implies fc(L) = Σ∗.

Theorem 26. 50 is a tight upper bound for the size of the orbit of {k, c, f}.
Proof (Sketch). From Lemmas 22 and 24, and Identity (25), starting with an ar-
bitrary language L, the languages in O{k,c,f}(L) that may differ from Σ∗, ∅, Σ+,
and {ε} are among the images of L and c(L) under the 16 operations

f, kf, kckf, kcf, fk, kcfk, fck, kfck, kckfck, kcfck, (3)
fkck, kcfkck, fckck, kfckck, kckfckck, kcfckck.

the complements of these images, together with the 14 languages in O{k,c}(L).
By using Lemma 25, we show that there are at most 32 pairwise distinct

languages among the 64 = 16 · 4 languages given by the images of L and c(L)
under the 16 operations (3) and their complements.

Adding the 14 languages in O{k,c}(L), and Σ∗, ∅, Σ+, and {ε}, we obtain that
50 = 32 + 14 + 4 is an upper bound for the size of the orbit of {k, c, f}.

The bound is tight because the language L given by two copies (over disjoint
alphabets) of the language accepted by the DFA of Figure 2 over the alphabet
{a, b, c, d, e, f, g, h, i} (i is a letter that does not occur in any word of L, i.e.,
i /∈ alph(L)) has 50 pairwise distinct elements in O{k,c,f}(L).

5.4 Kleene Star, Prefix, Suffix, Factor

Here there are at most 13 distinct languages, given by the action of

{ε, k, p, s, f, kp, ks, kf, pk, sk, fk, pks, skp}.
The bound of 13 is achieved, for example, by L = {abc}.
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Fig. 2. The DFA made of two copies of this DFA accept a language L with orbit size
50 under operations k, c, and f

Table 2. Upper bounds on the size of the orbit

r 2 w 2 f 2

s 2 p 2 c 2

k 2 w, r 4 f, r 4

f,w 3 s, w 3 s, f 3

p,w 3 p, f 3 c, r 4

c,w 6∗ c, f 6∗ c, s 14

c, p 14 k, r 4 k, w 4

k, f 5 k, s 5 k, p 5

k, c 14 f, w, r 6 s, f, w 4

p, f, w 4 p, s, f 4 c, w, r 10∗
c, f, r 10∗ c, f, w 8∗ c, s, w 16∗
c, s, f 16∗ c, p, w 16∗ c, p, f 16∗
k,w, r 7 k, f, r 9 k, f, w 6

k, s, w 7 k, s, f 9 k, p, w 7

k, p, f 9 k, c, r 28 k, c, w 38∗
k, c, f 50∗ k, c, s 1070 k, c, p 1070

p, s, f, r 8 p, s, f, w 5 c, f, w, r 12∗
c, s, f, w 16∗ c, p, f, w 16∗ c, p, s, f 16∗
k, f, w, r 11 k, s, f, w 10 k, p, f, w 10

k, p, s, f 13 k, c, w, r 72∗ k, c, f, r 84∗
k, c, f, w 66∗ k, c, s, w 1114 k, c, s, f 1450

k, c, p,w 1114 k, c, p, f 1450 p, s, f, w, r 10

c, p, s, f, r 30∗ c, p, s, f, w 16∗ k, p, s, f, r 25

k, p, s, f, w 14 k, c, f, w, r 120∗ k, c, s, f, w 1474

k, c, p, f, w 1474 k, c, p, s, f 2818 c, p, s, f, w, r 30∗
k, p, s, f, w, r 27 k, c, p, s, f, r 5628 k, c, p, s, f, w 2842

k, c, p, s, f, w, r 5676



Finite Orbits of Language Operations 215

5.5 Summary of Results

Table 2 gives our upper bounds on the number of distinct languages generated
by the set of operations. An entry in bold indicates that the bound is known
to be tight. Some entries, such as p, r, are omitted, since they are the same as
others (in this case, p, s, f, r).

Most bounds were obtained directly from our program, and others by addi-
tional reasoning. An asterisk denotes those bounds for which some additional
reasoning was required to reduce the upper bound found by our program to the
bound shown in Table 2.

6 Further Work

We plan to continue to refine our estimates in Table 2, and pursue the status
of other sets of operations. For example, if t is the exponentiation operation
defined in (2), then, using the identities kt = tk = k, and the inclusion t ⊆ k,
we get the additional Kuratowski-style identities kctckck ≡ kck, kckctck ≡ kck,
kctctck ≡ kck, tctctck ≡ tck, and kctctct ≡ kct. This allows us to prove that
O{k,c,t}(L) is finite and of cardinality at most 126.
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Abstract. The class of ω-regular languages provides a robust specifica-
tion language in verification. Every ω-regular condition can be decom-
posed into a safety part and a liveness part. The liveness part ensures
that something good happens “eventually”. Finitary liveness was pro-
posed by Alur and Henzinger as a stronger formulation of liveness [2]. It
requires that there exists an unknown, fixed bound b such that something
good happens within b transitions. In this work we consider automata
with finitary acceptance conditions defined by finitary Büchi, parity and
Streett languages. We give their topological complexity of acceptance
conditions, and present a regular-expression characterization of the lan-
guages they express. We provide a classification of finitary and classical
automata with respect to the expressive power, and give optimal algo-
rithms for classical decisions questions on finitary automata. We (a) show
that the finitary languages are Σ0

2 -complete; (b) present a complete pic-
ture of the expressive power of various classes of automata with finitary
and infinitary acceptance conditions; (c) show that the languages defined
by finitary parity automata exactly characterize the star-free fragment of
ωB-regular languages [4]; and (d) show that emptiness is NLOGSPACE-
complete and universality as well as language inclusion are PSPACE-
complete for finitary automata.

1 Introduction

Classical ω-regular languages: strengths and weakness. The widely stud-
ied class of ω-regular languages provides a robust language for specification for
solving control and verification problems (see, e.g, [13,14]). Every ω-regular spec-
ification can be decomposed into a safety part and a liveness part [1]. The safety
part ensures that the component will not do anything “bad” (such as violate
an invariant) within any finite number of transitions. The liveness part ensures
that the component will do something “good” (such as proceed, or respond, or
terminate) in the long-run. Liveness can be violated only in the limit, by infinite
sequences of transitions, as no bound is stipulated on when the “good” thing must
happen. This infinitary, classical formulation of liveness has both strengths and
� The research was supported by Austrian NFN ARiSE.
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weaknesses. A main strength is robustness, in particular, independence from the
chosen granularity of transitions. Another main strength is simplicity, allowing
liveness to serve as an abstraction for complicated safety conditions. For exam-
ple, a component may always respond in a number of transitions that depends,
in some complicated manner, on the exact size of the stimulus. Yet for correct-
ness, we may be interested only that the component will respond “eventually”.
However, these strengths also point to a weakness of the classical definition of
liveness: it can be satisfied by components that in practice are quite unsatisfac-
tory because no bound can be put on their response time.

Stronger notion of liveness. For the weakness of the infinitary formulation of
liveness, alternative and stronger formulations of liveness have been proposed.
One of these is finitary liveness [2]: finitary liveness does not insist on a response
within a known bound b (i.e, every stimulus is followed by a response within
b transitions), but on response within some unknown bound (i.e, there exists b
such that every stimulus is followed by a response within b transitions). Note
that in the finitary case, the bound b may be arbitrarily large, but the response
time must not grow forever from one stimulus to the next. In this way, fini-
tary liveness still maintains the robustness (independence of step granularity)
and simplicity (abstraction of complicated safety) of traditional liveness, while
removing unsatisfactory implementations.

Finitary parity and Streett conditions. The classical infinitary notion of
fairness is given by the Streett condition: it consists of a set of d pairs of requests
and corresponding responses (grants) and requires that every request that ap-
pears infinitely often must be responded infinitely often. Its finitary counterpart,
the finitary Streett condition requires that there is a bound b such that in the
limit every request is responded within b steps. The classical infinitary parity
condition consists of a priority function and requires that the minimum priority
visited infinitely often is even. Its finitary counterpart, the finitary parity con-
dition requires that there is a bound b such that in the limit after every odd
priority a lower even priority is visited within b steps.

Results on classical automata. There are several robust results on the lan-
guages expressible by automata with infinitary Büchi, parity and Streett condi-
tions, as follows: (a) Topological complexity: it is known that Büchi languages
are Π0

2 -complete, whereas parity and Streett languages lie in the boolean closure
of Σ0

2 and Π0
2 [12]; (b) Automata expressive power: non-deterministic automata

with Büchi conditions have the same expressive power as deterministic and non-
deterministic parity and Streett automata [9,15]; and (c) Regular expression
characterization: the class of languages expressed by deterministic parity is ex-
actly defined by ω-regular expressions (see the handbook [16] for details).

Our results. For finitary languages, topological, automata-theoretic, regular-
expression and decision problems studies were all missing. In this work we present
results in the four directions, as follows:

1. Topological complexity. We show that finitary Büchi, parity and Streett
conditions are Σ0

2-complete.
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2. Automata expressive power. We show that finitary automata are incompara-
ble in expressive power with classical automata. As in the infinitary setting,
we show that non-deterministic automata with finitary Büchi, parity and
Streett conditions have the same expressive power, as well as deterministic
parity and Streett automata, which are strictly more expressive than deter-
ministic finitary Büchi automata. However, in contrast to the infinitary case,
for finitary parity condition, non-deterministic automata are strictly more
expressive than the deterministic counterpart. As a by-product we derive
boolean closure properties for finitary automata.

3. Regular expression characterization. We consider the characterization of fini-
tary automata through an extension of ω-regular languages defined as ωB-
regular languages by [4]. We show that non-deterministic finitary Büchi au-
tomata express exactly the star-free fragment of ωB-regular languages.

4. Decision problems. We show that emptiness is NLOGSPACE-complete and
universality as well as language inclusion are PSPACE-complete for finitary
automata.

Related works. The notion of finitary liveness was introduced in [2], and games
with finitary objectives was studied in [8]. A generalization of ω-regular lan-
guages as ωB-regular languages was introduced in [4] and variants were studied
in [5] (also see [3] for a survey); a topological characterization has been given
in [11]. Our work along with topological and automata-theoretic studies of fini-
tary languages, explores the relation between finitary languages and ωB-regular
expressions, rather than identifying a subclass of ωB-regular expressions. We
identify the exact subclass of ωB-regular expressions that corresponds to non-
deterministic finitary parity automata.

2 Definitions

2.1 Topological Complexity of Languages

Let Σ be a finite set, called the alphabet. A word w is a sequence of letters,
which can be either finite or infinite, it will be described as a sequence w0w1 . . .
of letters. A language is a set of words: L ⊆ Σ∗ is a language over finite words
and L ⊆ Σω over infinite words.
Cantor topology and Borel hierarchy. Cantor topology on Σω is given by
open sets: a language is open if it can be described as W ·Σω where W ⊆ Σ∗. Let
Σ0

1 denote the open sets and Π0
1 denote the closed sets (a language is closed if its

complement is open): they form the first level of the Borel hierarchy. Inductively,
we define: Σ0

i+1 is obtained as countable union of Π0
i sets; and Π0

i+1 is obtained as
countable intersection of Σ0

i sets. The higher a language is in the Borel hierarchy,
the higher its topological complexity.

Since the above classes are closed under continuous preimage, we can define
the notion of Wadge reduction [17]: L reduces to L′, denoted by L � L′, if there
exists a continuous function f : Σω → Σω such L = f−(L′), where f−(L′) is the
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preimage of L′ by f . A language is hard with respect to a class if all languages of
this class reduce to it. If it additionally belongs to this class, then it is complete.
Classical liveness conditions. We now consider three classes of languages that
are widespread in verification and specification. They define liveness properties,
i.e, intuitively say that something good will happen “eventually”. For an infinite
word w, let Inf(w) ⊆ Σ denote the set of letters that appear infinitely often in
w. The class of Büchi languages is defined as follows, given F ⊆ Σ:

Büchi(F ) = {w | Inf(w) ∩ F �= ∅}

i.e, the Büchi condition requires that some letter in F appears infinitely often.
The class of parity languages is defined as follows, given p : Σ → N a priority
function that maps letters to integers (representing priorities):

Parity(p) = {w | min(p(Inf(w))) is even}

i.e, the parity condition requires that the lowest priority which appears infinitely
often is even. The class of Streett languages is defined as follows, given (R, G) =
(Ri, Gi)1≤i≤d, where Ri, Gi ⊆ Σ are request-grant pairs:

Streett(R, G) = {w | ∀i, 1 ≤ i ≤ d, Inf(w) ∩Ri �= ∅ ⇒ Inf(w) ∩Gi �= ∅}

i.e, the Streett condition requires that for all requests Ri, if it appears infinitely
often, then the corresponding grant Gi also appears infinitely often.

The following theorem presents the topological complexity of the classical
languages:

Theorem 1 (Topological complexity of classical languages [12])
– For all ∅ ⊂ F ⊂ Σ, the language Büchi(F ) is Π0

2 -complete.
– The parity and Streett languages lie in the boolean closure of Σ0

2 and Π0
2 .

2.2 Finitary Languages

The finitary parity and Streett languages have been defined in [8]. We re-
call their definitions, and also specialize them to finitary Büchi languages. Let
(R, G) = (Ri, Gi)1≤i≤d, where Ri, Gi ⊆ Σ, the definition for FinStreett(R, G)
uses distance sequence as follows:

distj
k(w, (R, G)) =

{
0 wk /∈ Rj

inf{k′ − k | k′ ≥ k, wk′ ∈ Gj} wk ∈ Rj

i.e, given a position k where Rj is requested, distj
k(w, (R, G)) is the time steps

(number of transitions) between the request Rj and the corresponding grant Gj .
Note that inf(∅) = ∞. Then distk(w, (R, G)) = max{distj

k(w, p) | 1 ≤ j ≤ d}
and:

FinStreett(R, G) = {w | lim sup
k

distk(w, (R, G)) <∞}
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i.e, the finitary Streett condition requires the supremum limit of the distance
sequence to be bounded.

Since parity languages can be considered as a particular case of Streett lan-
guages, where G1 ⊆ R1 ⊆ G2 ⊆ R2 . . ., the latter allows to define FinParity(p).
The same applies to finitary Büchi languages, which is a particular case of fini-
tary parity languages where the letters from the set F have priority 0 and others
have priority 1. We get the following definitions. Let p : Σ → N a priority
function, we define:

distk(w, p) = inf{k′ − k | k′ ≥ k, p(wk′ ) is even and p(wk′ ) ≤ p(wk)}
i.e, given a position k where p(wk) is odd, distk(w, p) is the time steps between
the odd priority p(wk) and a lower even priority. Then FinParity(p) = {w |
lim supk distk(w, p) <∞}. We define similarly the finitary Büchi language: given
F ⊆ Σ, let:

nextk(w, F ) = inf{k′ − k | k′ ≥ k, wk′ ∈ F}
i.e, nextk(w, F ) is the time steps before visiting a letter in F . Then

FinBüchi(F ) = {w | lim sup
k

nextk(w, F ) < ∞}.

2.3 Automata, ω-Regular and Finitary Languages

Definition 1. An automaton is a tuple A = (Q, Σ, Q0, δ, Acc), where Q is a
finite set of states, Σ is the finite input alphabet, Q0 ⊆ Q is the set of initial
states, δ ⊆ Q×Σ×Q is the transition relation and Acc ⊆ Qω is the acceptance
condition.

An automaton is deterministic if it has a single initial state and for every state
and letter there is at most one transition. The transition relation of deterministic
automata are described by functions δ : Q×Σ → Q. An automaton is complete
if for every state and letter there is a transition.

Acceptance conditions. We will consider various acceptance conditions for
automata obtained from the last section by considering Q as the alphabet. Au-
tomata with finitary acceptance conditions are referred as finitary automata;
classical automata are those equipped with infinitary acceptance conditions.

Notation 1. We use a standard notation to denote the set of languages recog-
nized by some class of automata. The first letter is either N or D, where N stands
for “non-deterministic” and D stands for “deterministic”. The last letter refers
to the acceptance condition: B stands for “Büchi”, P stands for “parity” and S
stands for “Streett”. The acceptance condition may be prefixed by F for “finitary”.
For example, NP denotes non-deterministic parity automata, and DFS denotes
deterministic finitary Streett automata. We have the following combination:{

N
D

}
·
{

F
ε

}
·
⎧⎨
⎩

B
P
S

⎫⎬⎭
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We denote by Lω the set of ω-regular languages ([6,15,9,10]):

Lω = NB = DP = NP = DS = NS .

3 Topological Complexity

In this section we define a finitary operator UniCloOmg that allows us to relate
finitary languages to their infinitary counterparts; we then give their topological
complexity.

Union-closed-omega-regular operator on languages. Given a language
L ⊆ Σω, the language UniCloOmg(L) ⊆ Σω is the union of the languages M
that are subsets of L, ω-regular and closed, i.e, UniCloOmg(L) =

⋃{M | M ⊆
L, M ∈ Π1, M ∈ Lω}.
Proposition 1. For all languages L ⊆ Σω we have UniCloOmg(L) ∈ Σ0

2 .

The following lemma shows that FinStreett(R, G) is obtained by applying the
UniCloOmg operator to Streett(R, G).

Lemma 1. For all (R, G) = (Ri, Gi)1≤i≤d, where Ri, Gi ⊆ Σ, we have

UniCloOmg(Streett(R, G)) = FinStreett(R, G).

Corollary 1. The following assertions hold:
– For all p : Σ → N, we have UniCloOmg(Parity(p)) = FinParity(p);
– For all F ⊆ Σ, we have UniCloOmg(Büchi(F )) = FinBüchi(F ).

Theorem 2 (Topological characterization of finitary languages). The
finitary Büchi, finitary parity and finitary Streett languages are Σ0

2-complete.

Proof. We show that if ∅ ⊂ F ⊂ Σ, then FinBüchi(F ) is Σ0
2 -complete. It fol-

lows from Corollary 1 that FinBüchi(F ) ∈ Σ0
2 . We now show that FinBüchi(F )

is Σ0
2-hard. By Theorem 1 we have that Büchi(Σ \ F ) is Π0

2 -complete, hence
Σω\Büchi(Σ \ F ) is Σ0

2 -complete. We present a topological reduction to show
that Σω\Büchi(Σ \ F ) � FinBüchi(F ). Let b : Σω → Σω be the stuttering
function defined as follows:

w = w0 w1 . . . wn . . .
b(w) = w0 w1w1︸ ︷︷ ︸

2

. . . wnwn . . . wn︸ ︷︷ ︸
2n

. . .

The function b is continuous. We can easily check that the following holds:

Inf(w) ⊆ F iff ∃B ∈ N, ∃n ∈ N, ∀k ≥ n, nextk(b(w), F ) ≤ B.

Hence we get Σω\Büchi(Σ \F ) � FinBüchi(F ), so FinBüchi(F ) is Σ0
2 -complete.

From this we can deduce the two other claims. ��
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4 Expressive Power of Finitary Automata

In this section we consider the finitary automata, and compare their expressive
power to classical automata. We then address the question of determinization.
Deterministic finitary automata enjoy nice properties that allow to describe lan-
guages they recognize using the UniCloOmg operator. As a by-product we get
boolean closure properties of finitary automata.

4.1 Comparison with Classical Automata

Finitary conditions allow to express bounds requirements:

Example 1 (DFB �⊆ Lω). Consider the finitary Büchi automaton shown in Fig. 1,
the state labeled 0 being its only final state. Its language is LB = {(bj0af(0)) ·
(bj1af(1)) · (bj2af(2)) . . . | f : N → N, f bounded, ∀i ∈ N, ji ∈ N}. Indeed, 0-
labeled state is visited while reading the letter b, and the 1-labeled state is
visited while reading the letter a. An infinite word is accepted iff the 0-labeled
state is visited infinitely often and there is a bound between two consecutive
visits of the 0-labeled state. We can easily see that LB is not ω-regular, using
proof ideas from [4]: its complement would be ω-regular, so it would contain
ultimately periodic words, which is not the case.

However, finitary automata cannot distinguish between “many b’s” and “only
b’s”:

Example 2 (DB �⊆ NFB). Consider the language of infinitely many a’s, i.e,
LI = {w | w has an infinite number of a}. The language LI is recognized by
a simple deterministic Büchi automaton. However, we can show that there is
no finitary Büchi automata that recognizes LI . Intuitively, such an automaton
would, while reading the infinite word w = ab ab2 ab3 ab4 . . . abn . . . ∈ LI , have
to distinguish between all b’s, otherwise it would accept a word with only b’s at
the end.

4.2 Deterministic Finitary Automata

Given a deterministic complete automaton A = (Q, Σ, q0, δ, Acc), we define its
finitary restriction by UniCloOmg(A) = (Q, Σ, q0, δ, UniCloOmg(Acc)).

1 0

a

b

ba

Fig. 1. A finitary Büchi automaton A
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Treating the automaton as a transducer, we consider the following function:
CA : Σω → Qω which maps an infinite word w to the unique run ρ of A on w
(there is a unique run since A is deterministic and complete). Then:

L(A) = {w | CA(w) ∈ Acc} = C−
A(Acc).

The property C−
A(UniCloOmg(Acc)) = UniCloOmg(C−

A(Acc)) follows from the
following lemma.

Lemma 2. For all A = (Q, Σ, q0, δ, Acc) deterministic complete automaton, we
have:
1. for all A ⊆ Qω, A is closed ⇒ C−

A(A) closed (CA is continuous).
2. for all L ⊆ Σω, L is closed ⇒ CA(L) closed (CA is closed).
3. for all A ⊆ Qω, A is ω-regular ⇒ C−

A(A) ω-regular.
4. for all L ⊆ Σω, L is ω-regular ⇒ CA(L) ω-regular.

Theorem 3. For any deterministic complete automaton A recognizing a lan-
guage L, the finitary restriction of this automaton UniCloOmg(A) recognizes
UniCloOmg(L).

Theorem 3 allows to extend all known results on deterministic classes to finitary
deterministic classes: as a corollary, we have DFB ⊂ DFP and DFP = DFS .

We now show that non-deterministic finitary parity automata are more ex-
pressive than deterministic finitary parity automata. However, for every language
L ∈ Lω there exists A ∈ DP such that A recognizes L, and by Theorem 3 the de-
terministic finitary parity automaton UniCloOmg(A) recognizes UniCloOmg(L).
Observe that Theorem 3 does not hold for non-deterministic automata, since we
have DP = NP but DFP ⊂ NFP .

Example 3 (DFP ⊂ NFP). As for Example 1 we consider the languages L1 =
{(aj0bf(0)) · (aj1bf(1)) · (aj2bf(2)) . . . | f : N → N, f bounded, ∀i ∈ N, ji ∈ N} and
L2 = {(af(0)bj0) · (af(1)bj1) · (af(2)bj2) . . . | f : N → N, f bounded, ∀i ∈ N, ji ∈
N}. It follows from Example 1 that both L1 and L2 belong to DFP , hence to
NFP . A finitary parity automaton, relying on non-determinism, is easily built to
recognize L = L1∪L2, hence L ∈ NFP . We can show that we cannot bypass this
non-determinism, as by reading a word we have to decide well in advance which
sequence will be bounded: a’s or b’s, i.e, L /∈ DFP . To prove it, we interleave
words of the form (a∗ · b∗)∗ · aω and (a∗ · b∗)∗ · bω, and use a pumping argument
to reach a contradiction.

4.3 Non-deterministic Finitary Automata

We can show that non-deterministic finitary Streett automata can be reduced to
non-deterministic finitary Büchi automata, and this would complete the picture
of expressive power comparison.

Our results are summarized in Corollary 2 and shown in Fig 2.

Corollary 2. We have (a) DFB �⊆ Lω; (b) DFB ⊂ DFP = DFS ⊂ NFB =
NFP = NFS ; (c) DB �⊆ NFB ; (d) Lω �⊆ NFB .
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DFB

DFP = DFS

NFB = NFP = NFS

DB

Lω

Fig. 2. Expressive power classification

4.4 Closure Properties

Theorem 4 (Closure properties). The following closure properties hold:
1. DFP is closed under intersection.
2. DFP is not closed under union.
3. NFP is closed under union and intersection.
4. DFP and NFP are not closed under complementation.

5 Regular Expression Characterization

In this section we address the question of giving a syntactical representation of
finitary languages, using a special class of regular expressions.

The class of ωB-regular expressions was introduced in the work of [4] as an
extension of ω-regular expressions, as an attempt to express bounds in regular
languages. To define ωB-regular expressions, we need regular expressions and
ω-regular expressions.

Regular expressions define regular languages over finite words, and have the
following grammar:

L := ∅ | ε | σ | L · L | L∗ | L + L; σ ∈ Σ

In the above grammar, · stands for concatenation, ∗ for Kleene star and + for
union. Then ω-regular languages are finite unions of L ·L′ω, where L and L′ are
regular languages of finite words. The class of ωB-regular languages, as defined
in [4], is described by finite union of L · Mω, where L is a regular language
over finite words and M is a B-regular language over infinite sequences of finite
words. The grammar for B-regular languages is as follows:

M := ∅ | ε | σ |M ·M |M∗ |MB |M + M ; σ ∈ Σ

The semantics of regular languages over infinite sequences of finite words will
assign to a B-regular expression M , a language in (Σ∗)ω. The infinite sequence
〈u0, u1, . . .〉 will be denoted by u. The semantics is defined by structural
induction as follows.
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– ∅ is the empty language,
– ε is the language containing the single sequence (ε, ε, . . . ),
– a is the language containing the single sequence (a, a, . . . ),
– M1 ·M2 is the language {〈u0 · v0, u1 · v1, . . .〉 | u ∈ M1, v ∈M2},
– M∗ is the language {〈u0 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .〉 | u ∈ M, f : N →

N},
– MB is defined like M∗ but we additionally require the values f(i + 1)− f(i)

to be bounded uniformly in i,
– M1 + M2 is {w | u ∈M1, v ∈M2, ∀i, wi ∈ {ui, vi}}.

Finally, the ω-operator on sequences with nonempty words on infinitely many
coordinates is: 〈u0, u1, . . .〉ω = u0u1 . . . . This operation is naturally extended to
languages of sequences by taking the ω power of every sequence in the language.
The class of ωB-regular languages is more expressive than NFB , and this is
due to the ∗-operator. We will consider the following fragment of ωB-regular
languages where we do not use the ∗-operator for B-regular expressions (however,
the ∗-operator is allowed for L, regular languages over finite words). We call this
fragment the star-free fragment of ωB-regular languages.

Theorem 5. NFB has exactly the same expressive power as star-free ωB-regular
expressions.

To prove that any language in NFB can be described by a star-free ωB-regular
expression, we use the same lines as for ω-regular languages, except that a spe-
cial attention is needed on size of final loops. The converse implication is more
involved. We define acceptance conditions for automata reading infinite sequence
of finite words, and proceed by induction on star-free B-regular expressions to
build a finitary Büchi automaton that recognizes MB. Then, we lift up au-
tomata reading infinite sequences of finite words to automata reading infinite
words. This transformation is possible due to the key, yet simple observation
that for all star-free B-regular expressions M and for all v ∈M we have (|vn|)n

is bounded.

6 Decision Problems

In this section we consider the complexity of the decision problems for finitary
languages. We present the results for finitary Büchi automata for simplicity, but
the arguments for finitary parity and Streett automata are similar.

Theorem 6 (Decision problems). The following assertions hold:

1. (Emptiness). Given a finitary Büchi automaton A, whether L(A) = ∅ is
NLOGSPACE-complete and can be decided in linear time.

2. (Universality). Given a finitary Büchi automaton A whether L(A) = Σω is
PSPACE-complete.

3. (Language inclusion). Given two finitary Büchi automata A and B, whether
L(A) ⊆ L(B) is PSPACE-complete.
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We can show that a finitary Büchi automaton is empty if and only if it is empty
regarded as a Büchi automaton. The PSPACE-hardness for universality and
language inclusion follows from the special case of automata over finite words. For
the PSPACE membership, we design a PSPACE algorithm for language inclusion
(and universality follows as a special case), by performing a synchronous product
of A and a subset construction of B.
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Abstract. We consider two-player graph games whose objectives are
request-response condition, i.e conjunctions of conditions of the form “if
a state with property Rq is visited, then later a state with property Rp
is visited”. The winner of such games can be decided in EXPTIME and
the problem is known to be NP-hard. In this paper, we close this gap by
showing that this problem is, in fact, EXPTIME-complete. We show that
the problem becomes PSPACE-complete if we only consider games played
on DAGs, and NP-complete or PTIME-complete if there is only one player
(depending on whether he wants to enforce or spoil the request-response
condition).

We also present near-optimal bounds on the memory needed to design
winning strategies for each player, in each case.

1 Introduction

Games. Games played on graphs are suitable models for multi-component sys-
tems: vertices represent states; edges represent transitions; players represent
components; and objectives represent specifications. The specification of a com-
ponent is typically given as an ω-regular condition [6], and the resulting ω-regular
games have been used for solving control and verification problems (see, e.g.,
[1,7,8]).

Fairness specifications. The class of fairness objectives is one of the most im-
portant specifications in verification and synthesis. The two classical notions of
fairness are as follows: (a) strong fairness (or Streett) objectives, and (b) request-
response (or assume-guarantee) objectives. The fairness objectives consist of a
set of k pairs of requests and corresponding responses. The Streett objective re-
quires that every request that appears infinitely often must be granted infinitely
often. The request-response objective requires that every request that appears
is granted after it appears. The class of Streett objectives is a canonical and
widely used form of fairness specification [10,6]. The class of request-response
(assume-guarantee) specifications was studied in [11], and it was shown that
a wide range of practical specifications (such as an elevator controller) can be
specified as request-response specifications.

Previous results. Games with Streett objectives have been widely studied and
optimal bounds on computational complexity and memory required by winning
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strategies have been established. The winner problem in games with Streett
objectives with k request-response pairs is coNP-complete [5]. The memory bound
for winning strategies is as follows: there is an optimal (matching lower and
upper) bound of k! for the size of memory for the player with the Streett objective
and the opposing player has a memoryless winning strategy (a strategy that
is independent of the history and depends only on the current vertex) [4]. In
contrast, for games with request-response objectives there are gaps both in the
computational complexity bounds, and memory bounds required for winning
strategies. Games with request-response objectives can be solved in EXPTIME [11]
and are NP-hard [3]. The winning strategies for the player with request-response
objective require a memory of size at least �k/3� · 2�k/3� and memory of size
k · 2k+1 suffices for winning strategies for both players [11].

Our results. We present tight computational complexity bounds for request-
response games, and present near optimal bounds on memory required by win-
ning strategies. Our results are as follows:

1. We first show that games with request-response objectives are EXPTIME-
complete (improving the NP-hardness lower bound). In the study of turn-
based deterministic games with classical objectives such as Rabin, Streett,
Muller the complexities are NP-complete, coNP-complete, PSPACE-complete,
respectively [10]. For turn-based games, several EXPTIME-completeness re-
sults are known for more general class of games such as pushdown games [12]
or imperfect-information games [9]. We show that for perfect-information
finite-state turn-based deterministic games, a natural variant of Streett ob-
jectives lead to EXPTIME-completeness. The EXPTIME-hardness results for
pushdown or imperfect-information games are either due to the infinite store
(stack) or the imperfect-information, whereas our proof is different and shows
how to exploit the simple extension of Streett objectives to request-response
objectives to mimic runs of alternating polynomial space Turing machines.

2. For the special class of DAG-games we show that request-response objec-
tives are PSPACE-complete. We also study the complexity of one player game
graphs: if there is only one player with request-response objectives, then the
problem is NP-complete; and if there is only the opposing player, then the
problem can be solved in polynomial time.

3. We improve the lower bounds for memory required for winning strategies in
games with request-response objectives: we show that the protagonist player
(whose goal is to enforce the request-response objective) requires 2k − 1
and the antagonist (opposing) player requires 2k memory states, (improving
the lower bound of �k/3� · 2�k/3� for the protagonist player, and no bound
was known for the opposing player). With a very simple argument we show
the construction of [11] can be used to obtain an upper bound k · 2k for
the protagonist and 2k for the antagonist. Thus our lower bound of 2k − 1
almost matches the upper bound of k ·2k for the protagonist, and our bound
of 2k for the opposing player is a tight bound. Thus, we present almost
optimal bounds on memory required by winning strategies. For DAG-games
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with request-response objectives, we prove an optimal (matching upper and
lower) bound of memory size

(
k

�k/2�
)

for winning strategies of both players.

2 Definitions

Arenas and plays. A (finite) game arena A is a tuple ((V , E),V◦,V�), where
(V , E) is a finite graph and V◦,V� is a partition of V . The vertices in V◦ are
called Eve’s vertices and those in V� are called Adam’s vertices. For a vertex u
in V , we denote by E(u) the set of successors of u: E(u) = {v ∈ V | (u, v) ∈ E}.
We assume that every vertex has at least one successor. A play ρ on an arena
A is a (possibly infinite) sequence ρ = ρ0, ρ1, . . . of vertices respecting the edge
relation: for all i ≥ 0 we have (ρi, ρi+1) ∈ E .

Strategies. Intuitively, a strategy is a recipe to extend plays. Formally, a strategy
σ for Eve is a function σ : V∗ · V◦ → V such that for all finite plays (or histories)
x ending in a vertex v of Eve, σ(x) is a successor of v. Strategies for Adam are
defined analogously (and are usually denoted τ).

An equivalent definition of strategies uses the notion of memory. A strategy
with memory σ for Eve is a tuple (σM, σi, σn, σu) where σM is the set of memory
states, σi ∈ σM is the initial memory state, σn : V◦ × σM → V is the next-move
function, and σu : V × σM → σM is the memory update function. Notice that any
strategy can be represented as a strategy with memory V∗. A strategy σ has
finite memory if σM is finite (in this case, |σM| is the size of σ); it is memoryless
if σM is a singleton. Notice that a memoryless strategy for Eve is independent of
the history of the play and depends only on the current vertex, and hence can be
described as a function from V◦ to V respecting the edge relation. The notation
for strategies with memory and memoryless strategies for Adam is analogous.

A play ρ is consistent with σ if for all i ≥ 0 such that ρi belongs to Eve we
have ρi+1 is σ(ρ0, ρ1, . . . , ρi). Given an initial vertex v ∈ V , a strategy σ for
Eve and a strategy τ for Adam, we denote by ρ(v, σ, τ) the unique infinite play
starting in v and consistent with σ and τ .

Request-response objectives. A winning condition (objective) Φ for an arena
A is a subset of the plays on the arena. In this paper, we consider the request-
response objectives introduced by Wallmeier, Hütten, and Thomas in [11]. It
refers to vertex properties Rq1, . . . , Rqk which capture k different “requests”,
and other vertex properties Rp1, . . . , Rpk which represent the corresponding
“responses” (each Rqi, Rpi ⊆ V). The associated request-response condition re-
quires that for each i, whenever a vertex in Rqi is visited, then later a vertex
in Rpi is visited. In linear time temporal logic (LTL) the condition is more of-
ten formalized as ∧k

i=1G(Rqi → XF(Rpi)), where G, X, and F denote globally,
next, and eventually, respectively. The Streett objective in LTL is described as
∧k

i=1(G F(Rqi) → G F(Rpi)).
A strategy σ is winning for Eve from a vertex v in a game G = (A, Φ) if,

for any strategy τ for Adam, the play ρ(v, σ, τ) belongs to Φ. A strategy τ
is winning for Adam from a vertex v if for all strategies σ, the play ρ(v, σ, τ)
belongs to ¬Φ = Π \Φ. The winning region of Eve in G, denoted WE(Φ), is the
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set of vertices from which Eve has a winning strategy, and the winning region
for Adam, denoted WA(¬Φ), is defined similarly.

Theorem 1 (Determinacy [11]). For all request-response games, for all ver-
tices v, either Eve or Adam has a winning strategy from v.

3 Complexity of Request-Response Games

In this section, we consider the computational complexity of request-response
games in general. Our main result is an EXPTIME lower bound in complexity,
matching the EXPTIME membership from [11]. We also study the complexity of
the winning strategies in terms of memory, and provide near optimal bounds for
both players.

3.1 Request-Response Games Are EXPTIME-Complete

In [11], the authors show that request-response games can be solved in EXPTIME,
but they do not provide any lower bound in complexity. In this subsection, we
show that the problem is in fact EXPTIME-hard, through a reduction from the
membership problem for alternating polynomial space Turing machines.

An alternating Turing machine (ATM) is a tuple (Q, qin, Q∨, Q∧, I, δ, qacc)
where:

– Q is a finite set of control states, partitioned into existential (Q∨) and uni-
versal (Q∧) states;

– qin ∈ Q is the initial state;
– I = {0, 1} is the tape alphabet;
– δ ⊆ Q× I ×Q× I × {−1, 1} is the transition relation;
– qacc ∈ Q is the accepting state.

For a given polynomial p, the question of whether an ATM M accepts a word
w in space at most p(|w|) is EXPTIME-complete [2]. We reduce this problem to
the winner problem of request-response games. The idea is that the players build
a run of the machine: Eve controls the existential states and Adam the universal
ones; if the run reaches an accepting state, Eve wins; if it goes on forever, Adam
does. A winning strategy for Eve in the game translates as an accepting run tree
of the machine.

We use p(|w|) copies of the control graph of the machine in order to store the
current location of the head. However, the arena does not store the content of
the tape. Instead, at each step, Eve announces the current symbol and Adam
either accepts it or challenges it. If he does the latter, the play stops: Eve wins
if she has been truthful; Adam wins if she cheated. This interaction is described
in Figure 1.

We use request-response pairs to force Eve to announce the correct symbol at
each step. There is a pair �s for each location � and each symbol s. An extra pair
$ guarantees that the correct simulation of an infinite run is winning for Adam.
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(q, �)

(q, �, 0, ?)

(q, �, 1, ?)

(q, �, 0, !)

(q, �, 1, !)

(q, �,⊥)

⎫⎪⎪⎬⎪⎪⎭ Transitions of (q, 0)

⎫⎪⎪⎬⎪⎪⎭ Transitions of (q, 1)

Fig. 1. The consistency gadget at a state (q, �)

The idea is that whenever a symbol s is written on the location �, a request of
type �s is generated. The play begins in the vertex start, which is a request of
type iwi for each i ∈ {0, . . . , |w| − 1}, as well as a request of type $. Then the
token goes to (qin, 0) for the first step.

At the beginning of a step where the machine is in the control state q and its
head is at the �th cell, the token is in the vertex (q, �), which belongs to Eve. Her
first task is to announce the contents of the cell. She does so by granting either
�0 or �1 (by going to (q, �, 0, ?) or (q, �, 1, ?), respectively). At this point, Adam
can challenge her choice by sending the token to (q, �,⊥), which is a sink where
all the pairs except for �0 and �1 are granted. Thus, if Eve has announced the
correct symbol, she wins; otherwise, either �0 or �1 is left pending and she loses. If
Adam chooses to accept Eve’s claim, the token goes to the vertex (q, �, i, !), which
belongs to Eve if q is an existential state and to Adam if q is a universal state.
There, the controlling player chooses a transition of the form t = (q, i, r, j,±) by
going to the vertex (t, �), which generates a request of type �j. The token goes
then to the vertex (r, �± 1) for the next step, unless r = qacc, in which case the
token goes to the sink vertex stop, which grants all the requests.

Let us show that Eve has a winning strategy in G if, and only if, M accepts w.
We call honest a strategy for Eve which always calls the correct symbol in vertices
of the form (q, �), and trusting a strategy for Adam which never challenges the
choices of Eve. It is clear that any winning strategy of Eve has to be honest, and
that an honest strategy of Eve is winning if and only if it is winning against any
trusting strategy of Adam.

There is a natural bijection between (i) plays consistent with an honest strat-
egy for Eve and a trusting one for Adam and (ii) runs of M on w. It can be
extended to a bijection between the honest strategies of Eve and the run trees
of M on w, which matches winning strategies and accepting run trees. Thus Eve
has a winning strategy if and only if M accepts w. It follows that the problem of
deciding the winner in request-response games is EXPTIME-hard. As it is known
to belong to EXPTIME [11], Theorem 2 follows:
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Theorem 2. The problem of deciding the winner in a request-response game is
EXPTIME-complete.

3.2 Strategy Complexity

We consider now the complexity, in terms of memory, of the winning strategies
for both players. In [11], the reduction to Büchi games yields strategies with
memory k · 2k. It is possible to improve these bounds a little with two simple
observations:

– In the original reduction, the arena keeps track of the pending requests (2k

memory) and of an “active” pair which must be satisfied next (k memory);
Eve does not need to discriminate between the vertices where the active pair
is not pending, so she only needs

∑k
i=0 i · (k

i

)
= k · 2k−1.

– By replacing the Büchi condition with a generalized Büchi conditions (with
k target sets), one can get rid of the “active pair” tracker; Adam still has
memoryless winning strategies in the reduced game, so he only needs 2k

memory states in the original request-response game.

The authors presented only a lower bound for Eve, who was shown to need
2�k/3� memory states. In this section, we improve and complete this picture
with a better lower bound for Eve (2k − 1), and a tight bound for Adam (2k).
The games realizing the lower bounds are presented in Figure 2.

In the game of Figure 2(a), the vertex labelled Q is a request of each type;
for each i, a vertex labelled i is a response of type i, and a vertex labelled ī is
a response of every type but i. Intuitively, a play is divided in steps in which
Adam first chooses a pair and Eve then grants either this pair (and the play
continues) or all the others (and the play stops). It is clear that Eve can win
with the following strategy: the first time Adam chooses the ith petal, she grants
the pair i; the second time, she grants all the other pairs1. We show that Adam
can defeat any strategy with less than 2k − 1 memory states.

Let σ = (σM, σi, σn, σu) be a strategy for Eve with less than 2k − 1 memory
states. For each memory state m, we define the stopping set χ(m) of m as the set
of petals where Eve would stop the play if Adam chose them (notice that m is
the memory of Eve in the “heart” vertex: it might change after Adam has made
his choice, but her behaviour is still determined by m and the petal that Adam
chose). As there are less than 2k− 1 memory states, there is a strict subset X of
{1, . . . , k} which is not the stopping set of any memory state. Now, Adam can
win against σ by choosing, at each step, a petal in the symmetric difference of
X and χ(m), where m is Eve’s current memory under σ. Such a play can either
go on forever if Adam keeps to petals in X , or stop the first time he gets out. In
either case, there is at least one request outside of X which is never granted.

In the game of Figure 2(b), the arena has 4k + 1 vertices: there is one copy
of the bottom, middle, left, and top vertices for each request-response pair.
1 This strategy uses 2k memory states, but it is clear that there is no actual need for

a specific memory state to remember that every petal has been visited: in this case,
the play is already won, no matter what Eve does later on.
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Q

1

1̄

2
2̄

3

3̄

i ı̄

k

k̄

(a) Eve: 2k − 1

(i)

i

j

ı̄

(j)

j

i

j̄

(b) Adam: 2k

Fig. 2. Lower bounds in memory

For each pair, say the ith, the vertices labelled i) (left and top) are both requests
and responses (recall that requests have to be granted in the strict future); the
vertex labelled ı̄ (middle) is a response of every type but i. The right and bottom
vertices are neither requests nor responses of any type (the label (i) of the bottom
vertex only serves as a reminder that there are k different copies of this vertex).
From the initial vertex (on the right), Eve can go to any of the bottom vertices;
likewise, from each left vertex, Eve can go to any of the top vertices. By contrast,
in a bottom vertex, say (i), Adam has to go to either the left vertex i or the
middle vertex ı̄. A step of this game can be described by the three following
actions: Eve chooses a pair, say i; Adam either grants it and requests it again
(and the play continues), or grants every other pair (and the game stops); Eve
then chooses a (possibly different) pair, say j, grants it, and requests it again.
Adam can win by stopping the game the second time a pair is requested (thus
with 2k memory states), and we show that he cannot win with less.

Let τ = (τM, τi, τn, τu) be a strategy for Adam with less than 2k memory
states. For a memory state m in τM, we define the stopping set χ(m) of m as the
sets of bottom vertices where Adam would stop the play if Eve chose them (once
again, m is the memory of Adam in the right vertex: it might change after Eve’s
choice, but Adam’s behaviour is determined by m and this choice). As there are
less than 2k memory states, there is a subset X of {1, . . . , k} which is not the
stopping set of any memory state. Now, Eve can win against τ by choosing, at
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each step, a pair in the symmetric difference of X and χ(m), where m is Adam’s
current memory under τ in the right vertex and cycling through the pairs in X
in the left one. Such a play can either go on forever if Eve keeps to petals in X ,
or stop the first time she gets out. In both cases, only requests in X are enabled.
Furthermore, in the first case, each such request is granted infinitely often; in
the second case, each request in X is granted when the play stops, and never
enabled again.

Theorem 3. In any request-response game with k request-response pairs, wher-
ever Eve has a winning strategy, she has a winning strategy with memory k ·2k−1;
wherever Adam has a winning strategy, he has a winning strategy with memory
2k. Furthermore, there is a request-response game with k request-response pairs
in which Eve can only win with at least 2k − 1 memory states, and one where
Adam can only win with at least 2k memory states.

4 Restrictions

In this section, we consider two special types of request-response games, where
the winner problem is easier to solve.

4.1 DAG Arenas

The first one is the case where the arenas have the form of a directed acyclic
graph (no cycles apart from loops on vertices with no other successors). By
contrast to the usual study of “long-term” behaviours, these games focus on
“short-term” objectives. We show that request-response games played on DAG-
arenas are PSPACE-complete, and provide tight bounds for the memory required
of each player.

As with most games played on DAG arenas, it is possible to solve the winner
problem in polynomial space, by enumerating the plays in lexicographic order.
We show PSPACE-hardness through a reduction from the truth problem of quan-
tified boolean formulae. From a QBF in conjunctive normal form with k variables,
we derive a request-response game with 3 · k + 1 vertices as follows: there is a
vertex for each variable and one for each literal; the “variable” vertex leads to
the two corresponding “literal vertices, and belongs to Eve if the variable is ex-
istential or to Adam if is is universal; there is a request-response pair for each
clause, which is requested at the beginning of the play and solved at each literal
present in the clause. For a QBF of the form ∃x1, ∀x2, . . . ,∃xk, the resulting game
is described in Figure 3 (the vertex C is a request of each type).

Theorem 4 follows:

Theorem 4. The problem of deciding the winner in request-response games
played on DAG arenas is PSPACE-complete.

The restriction to DAG arenas also affects the complexity of strategies.
Theorem 5 provides tight bounds for both players:
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C

x1

x1

x2

x2

. . .

xk

xk

Fig. 3. Reduction from QBF to request-response games on DAG arenas

Theorem 5. In any request-response game with k request-response pairs played
on a DAG-arena, wherever a player has a winning strategy, he has a winning
strategy with memory

(
k

�k/2�
)
. Furthermore, for each player there is a request-

response game with k request-response pairs in they can only win with at least(
k

�k/2�
)

memory states.

Proof. In order to devise a winning strategy for either player, it is enough to
remember the current set of unanswered requests: as all the plays are finite,
they are winning if, and only if, they end with all their requests answered.
Furthermore, there is no need to keep two separate memory states for two sets
A and B of pairs such that A ⊂ B: if Eve can win in both cases, she can do so in
both cases by playing as if the set of unanswered requests was B; symmetrically,
Adam can win by playing in both cases as if the set of unanswered requests was
A. As there are at most

(
k

�k/2�
)

incomparable subsets of {1, . . . , k}, both Eve
and Adam can win with memory

(
k

�k/2�
)

in any request-response game with k
request-response pairs.

A family of arenas where this much memory is necessary can be described as
follows:

– Eve. Adam can choose �k/2� requests. Then Eve can choose �k/2� responses.
It is clear that she must choose the exact the same subset that Adam chose.
As there are

(
k

�k/2�
)

possibilities, she needs memory
(

k
�k/2�

)
.

– Adam. All pairs are initially requested. Eve can choose �k/2� responses, then
Adam chooses �k/2� requests. Finally, Eve can choose k−1 responses. Again,
Adam needs to match the subset that Eve chose, so he needs

(
k

�k/2�
)

memory
states.

Theorem 5 follows. ��

4.2 One-Player Arenas

One-player games correspond to the synthesis of controllable systems, with no
interaction from the environment. Game problems are usually much simpler in
this case. For example, if the player tries to ensure a request-response specifica-
tion, the winner problem becomes NP-complete:

Theorem 6. The problem of deciding whether Eve has a winning strategy in a
one-player request-response game is NP-complete.
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Proof. We can reduce SAT to one-player games using the same reduction that we
used in the former section: if all the quantifiers are existential, all the vertices in
the resulting game belong to Eve. Thus the problem is NP-hard.

In order to describe a NP procedure to solve this problem, first observe that
a play always consists of a finite path w followed by infinite occurrences of all
the vertices in a strongly connected component C. It is winning for Eve if every
request unresolved in w or present in C is matched by a corresponding response
in C. The crux of the proof is the fact that we can always choose w of size at
most (k + 1) · |V| by removing from it all the cycles which do not contain the
last occurrence of a response. We can thus guess non-deterministically both w
and C, and the NP-membership follows. ��
If the player is trying to spoil, rather than ensure, a request-response objective,
the winner problem can be decided in polynomial time:

Theorem 7. The problem of deciding whether Adam has a winning strategy in
a one-player request-response game is PTIME-complete.

Proof. The PTIME hardness comes from the trivial reduction from alternating
reachability. In order to describe a PTIME procedure, observe that in order to
win, Adam needs only to reach a request from which he can avoid the corre-
sponding response. As safety and reachability winning regions can be computed
in polynomial time, so can be the winning region of Adam in a one-player game
where he controls all the vertices. ��
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Abstract. Multilingual text compression exploits the existence of the
same text in several languages to compress the second and subsequent
copies by reference to the first. This is done based on bilingual text
alignment, a mapping of words and phrases in one text to their seman-
tic equivalents in the translation. A new multilingual text compression
scheme is suggested, which improves over an immediate generalization
of bilingual algorithms. The idea is to store the necessary markup data
within the source language text; the incurred compression loss due to this
overhead is smaller than the savings in the compressed target language
texts, for a large enough number of the latter. Experimental results are
presented for a parallel corpus in six languages extracted from the EUR-
Lex website of the European Union. These results show the superiority
of the new algorithm as a function of the number languages.

1 Introduction

In countries like Canada, Belgium and Switzerland, where speakers of two or
more languages live side-by-side, all official texts have to be published in mul-
tilingual form. The current legislation of the ever expanding European Union
obliges the translation of all official texts into the languages of all member states.
As a result, there is a growing corpus of important texts, large parts of which
are highly redundant, since they do not have any information content of their
own, and are just transformed copies of some other parts of the text collection.

We wish to exploit this redundancy to improve compression efficiency in such
situations, and introduce the notion of Multilingual Text Compression: one is
given two or more texts, which are supposed to be translations of each other and
are referred to as parallel texts. One of the texts will be stored on its own (or
compressed by means of pointers referencing only the text itself), the other texts
can be compressed by referring to the translation, using appropriate dictionaries.

The basis for enabling multilingual text compression is first the ability to
match the corresponding parts of related texts by identifying semantic corre-
spondences across the various sub-texts, a task generally referred to as align-
ment . As the methods for detailed alignment are quite sensitive to noise, they
� This work has been done while the first author was a PhD student at Bar Ilan
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usually use a rough alignment of the text as an auxiliary input. They might
also use an existing multilingual glossary, but they always generate their own
probabilistic glossary, which corresponds to the processed text (see [3,6,9,2]).

The compression of parallel texts was first treated almost two decades ago in
[12], but without using text alignment tools. The idea of using alignment was
raised in [5], and a detailed algorithm was presented in [4]. Different, though
basically similar algorithms have recently been suggested in [11,1]. However, all
these algorithms relate only to bilingual parallel texts; therefore, should three
or more parallel texts be compressed, the algorithms would be applied to each
source-target pair of texts independently.

The current work proposes a new compression scheme for parallel texts, re-
ferred to as multilingual . Similar to our previous bilingual algorithm [4], the
new method also exploits alignment to increase space efficiency. However, the
current algorithm stores the information regarding the aligned source-text frag-
ments within the source text rather than within each of the target texts. On
one hand, significant savings are made for each target text, but on the other
hand, a large overhead is paid for the source text. Nevertheless, major parts of
the additional information are shared by many of the bilingual alignments and
the incurred overhead converges to a constant rate for a large-enough number
of target texts, which makes it worthy paying in such cases, as our empirical
results clearly confirm.

The next section presents the details of the algorithm, and experimental re-
sults are reported in Section 3.

2 Multilingual Compression Algorithm

Reminiscent of the bilingual algorithm, the multilingual algorithm assumes the
following resources:

1. S, T 1, T 2, . . . , T k: The single source and k target texts, respectively, where
∀h ∈ [1, k], T h is a translation of S.

2. AS,T 1 , AS,T 2 , . . . , AS,T k : Word- and phrase-level alignments of the text pairs
(S, T 1), (S, T 2), . . . , (S, T k), correspondingly.
Let si,l denote the word sequence of length l within S beginning at the ith
word. Similarly, let thj,m denote the word sequence of length m within T h

beginning at the jth word. AS,T h consists of a set of connections of the
form 〈i, l, j, m〉, each of which indicating the fact that si,l and thj,m have been
determined as matching phrases. We assume that for any pair (j, m) there
is at most one connection of the form 〈i, l, j, m〉 within AS,T h . From here and
below, si and thj stand for si,1 (the ith word of S) and thj,1 (the jth word of
T h), correspondingly.

3. S lem, (T 1)lem, (T 2)lem, . . . , (T k)lem: Lemmatized forms of S, T 1, T 2, . . . , T k,
respectively.
Let (si,l)lem and (thj,m)lem denote the lemma sequences corresponding to si,l

and thj,m, respectively. That is, the concatenations of the lemmata of si, si+1,
. . . , si+l−1 and thj , thj+1, . . . , thj+m−1, correspondingly.
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4. LS : A lemmata dictionary corresponding to S. The entries of this dictionary
are the words appearing in S. Each entry stores a list of all possible lemmata
of the keyword, sorted in descending order of frequency.
Let LS(s) denote the lemma list for the word s. For instance, if S is an
English text, then LS(working) = (work, working).

5. VT 1 , VT 2 , . . . , VT k : Variant dictionaries corresponding to the target texts.
For each h ∈ [1, k], the entries of VT h are the lemmata of all words appearing
in T h. Each entry stores a list of all possible morphological variants of the
key lemma, sorted in descending order of frequency.
Let VT h(t) denote the variant list for lemma t. For example, if T 3 is a French
text, then VT 3(normal) = (normal, normale, normaux, normales).

6. GS,T 1 , GS,T 2 , . . . , GS,T k : Bilingual glossaries corresponding to the text pairs
(S, T 1), (S, T 2), . . . , (S, T k), respectively. The entries of these glossaries
are source-language lemma sequences. Each entry includes a list of possible
translations of the key sequence into target-language sequences, sorted in
descending order of frequency. The translations also appear in lemmatized
form.

Let GS,T h(s) denote the translation list of the source-language sequence
s into the language of T h. For instance, if S and T 3 are English and French
texts, correspondingly, then GS,T 3(mineral water) = (eau mineral). Note
that the word eau (water) in French is feminine, which requires a feminine-
form adjective, namely minerale, whereas the adjective mineral—the cor-
responding lemma—is the masculine singular form.

The new algorithm encodes all aligned source sequences appearing in any of the
k alignments within the source text. This is done using some special codewords,
each indicating a different sequence length, inserted just before the first words of
the aimed sequences within the text run. When more than one sequence begins
at the same word, the respective annotations are inserted one after another pre-
ceding the start word. The order by which such successive marks are introduced
can be determined arbitrarily. However, the compression procedure for the tar-
get texts relates to the order of these annotations when computing offset values
for the aligned target sequences. Hence, this order must be decided before any
target text is compressed.

The fact that the entries of the bilingual glossaries are lemmata sequences
means that the aligned source fragments must be stored in a way that enables
retrieving the lemma of each aligned word. Keeping only the lemmatized version
of the source text (S lem) is unacceptable because the original source text, being
an integral part of the multilingual corpus, must be restorable like the k target
texts. Due to space-efficiency consideration, we have chosen to store the inflected
form of each source word along with its lemma index, if more than one lemma
exists.

The output of the annotation procedure can be compressed using any encod-
ing, for instance, Huffman coding with two Huffman trees: HS

1 will store the
words and aligned-sequence marks, whereas HS

2 will hold the lemma indices.
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Following the annotation of the source text, each aligned source sequence can
be referred to using its ordinal number. At that point, each target text T h may
be compressed independently using the algorithm given below.

Beginning at the first position j = 1 within T h, use AS,T h to find the longest
sequence thj,m having a corresponding sequence si,l in S. The redundant connec-
tions can be removed in advance, thereby avoiding redundant source sequences
and their direct and indirect overheads. If a corresponding sequence is found,
replace thj,m with the concatenation of a pointer to si,l with some indices, which
are necessary for the restoration of the missing target words. The substituting
reference consists of the following details:

1. ord (i, l) − expected: Offset of si,l from the expected sequence. This value is
actually a pointer to si,l. ord (i, l) denotes the ordinal number of si,l among
the aligned sequences annotated within S. Initially, expected = 0; after using
a connection 〈i, l, j, m〉, expected is assigned the ordinal number of the next
sequence still not used which follows si,l. As an example, if ord (i, l) = 4, and
the indices of the aligned source sequences used so far are 1, 2, 5 and 8, then
the new value of expected should be 6: the sequence indexed 5 is skipped
since we assume in this example that it has already been used. 4 should now
join the set of used sequences.

2. Index of (thj,m)lem within GS,T h(slem
i,l ). In the case of a single translation, this

index is omitted (same as emitting ε).
3. Indices of thj . . . thj+m−1 within VT h((thj )lem) . . . VT h ((thj+m−1)lem), correspond-

ingly. Again, ε is used in the case of singletons.

The above reference is output preceded by a special codeword meaning “refer-
ence”. The next iteration will work for j = j + m.

If no m is found such that 〈i, l, j, m〉 ∈ AS,T h , thj is written to the output
stream and j is incremented by 1. The process continues while j ≤ |T h|.

The way the expected source sequence (expected) is determined is derived from
the nature of the alignment. Given a pair of aligned source and target sequences,
it is probable that the source counterpart of the next target sequence be the next
source sequence. Of course, differences in word and phrase ordering as well as the
existence of additional source sequences, aligned with sequences in other target
texts, often yield some small deviations, which are overcome using the offset
values. Another quite realistic assumption is that a source sequence already
referred to once during the process will be rarely used again. The search for the
next unreferenced sequence is always very local, meaning that it is performed in
time O(1).

For a single alignment, the expected source sequence for target number n
could be simply n itself. The unification of source sequences from k alignments
into one common list does not permit such an assumption. In this case, relating
to the last known connection as an anchor point is a more conceivable heuristics.

The output for each target text T h can be encoded using three Huffman
codes: HT h

1 will contain the unaligned words as well as the special #REF# escape
sequence, HT h

2 will hold the offset values, and HT h

3 shall store the translation
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n S T 1 AS,T1 T 2 AS,T2

(English) (French) (German)

1 For Aux Im
2 the fins 〈3,1,2,1〉 Sinne
3 purpose de dieses
4 of la Gemeinsamen 〈6,1,4,1〉
5 this présente Standpunkts 〈7,1,5,1〉
6 common position 〈6,2,6,2〉 bedeutet
7 position commune der
8 , , Ausdruck
9 the on :
10 following entend
11 definitions par
12 shall :
13 apply
14 :

Fig. 1. Example of paragraphs with corresponding alignments

and variant indices. Indeed, if the distributions of the offsets and indices for
all k texts are similar, then it might be worthy using two common codes, HT

2

and HT
3 , for all offsets and indices, respectively. As opposed to the indices, the

offset values also include negative integers. Therefore, their distributions are
significantly different, which makes it preferable to use two distinct codes.

One of the important properties of both our bilingual and multilingual sche-
mes is that sections are compressed independently of other sections. The use of
Huffman coding rather than Bzip, LZ or any other encoding with inter-section
dependencies for representing both source and target texts enables storing them
in blocks of any size without any decrease in space efficiency. Nevertheless, adap-
tive encodings are also applicable in our case, but the compression savings might
be hurt in case of partition into small blocks.

The decompression algorithm is straightforward. Note that it needs only the
dictionary files, as all relevant information included in the other files is encoded
within the compressed text itself.

Figures 1 and 2 give an example of the algorithm’s input and output, corre-
spondingly. The index n in the first columns denotes the ordinal token number.
The second column of Figure 1 lists the tokens of an English paragraph, taken
from the experimental multilingual corpus (see Section 3). The third and fifth
columns are the French and German parallels of that paragraph, respectively.
The fourth and sixth columns show the connections suggested by the English-
French and English-German alignments. As an example, the connection 〈6, 2, 6, 2〉
in AS,T 1 indicates the fact that the English sequence common position, begin-
ning at token number 6 and consisting of 2 tokens, is aligned with the French se-
quence position commune, also beginning at token number 6 (but of the French
paragraph) and consisting of 2 tokens. Note that the English-German alignment
(AS,T 2) also relates to the same two English tokens; nevertheless, it aligns each
of them separately with its German counterpart. This difference merely origi-
nates from the way in which the alignment algorithm computes the probabilities
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n Annotated S Compressed T 1 Compressed T 2

(English) (French) (German)

1 For Aux Im
2 the #REF#, 0, ε, 0 Sinne

#AL1#
3 purpose,ε de dieses
4 of la #REF#, 1, 0, 0
5 this présente #REF#, 1, ε, 1

#AL1#
#AL2#

6 common,ε #REF#, 1, ε, 0, 0 bedeutet
#AL1#

7 position,ε der
8 , , Ausdruck
9 the on :
10 following entend
11 definitions par
12 shall :
13 apply
14 :

Fig. 2. Compression of French and German texts using their English parallel

of candidate connections, which also takes into account some offset and length
probabilities.

The second column of Figure 2 displays the English text, playing the role of
the source text, with annotation of the aligned sequences as well as their lemma-
tization indices. In this specific case, ε’s are output as lemmatization indices,
because all 3 aligned tokens have only one possible lemma. The codeword #AL1#
indicates that the next token is the beginning of an aligned sequence of length 1.
Likewise, #AL2# marks the beginning of an aligned sequence of length 2. Notice
that token number 6 is the beginning of two distinct sequences. The former, of
length 1, comes from AS,T 2 , whereas the latter, of length 2, originates in AS,T 1 .
At the same time, token No. 7 is also a 1-token sequence, also coming from
AS,T 2 .

Finally, the third and fourth columns present the compressed forms of the
French and German paragraphs, respectively. The two aligned sequences in each
target text have been replaced with suitable references. For instance, the French
sequence position commune has been substituted with the reference 1, ε, 0, 0.
The offset 1 results from the fact that the previous replacement relates to source
sequence number 0, namely, purpose. Thus, expected for the current connection
is 1, which refers to the sequence common, rather than common position, enu-
merated as number 2. The offset, therefore, is ord (6, 2) − expected = 2 − 1 = 1.

The sequence common position has a single translation in GS,T 1 , that is,
position commune1. As a result, no translation index is written to the output

1 Note that the French lemmatizer has given the feminine form commune as the lemma
of commune. That is because it referred to the feminine noun commune (community)
rather than to the feminine form of the adjective commun (common). However, this
has no significance for our algorithm.
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stream (expressed in the figure by ε). When the decoder reaches the discussed
reference, it will first identify the implied English sequence using the offset value.
Then, after lemmatizing its words using LS , it will look up the sequence in GS,T 1 .
At that point, it will find out that the proposed translation is unique, and there-
fore will not read an index at that stage. The next step will be seeking the word
position in VT 1 , finding there several options such as position, positions,
POSITION etc.. Now the decoder must read the next index, i.e. 0, in order to
choose the right variant. The same process will be performed for the lemma
commune, which also has a few possible variants.

The next section exhibits our empirical results on a real-life corpus and dis-
cusses their consequences.

3 Results and Analysis

In order to assess our algorithms, we extracted a 6-language corpus from the
EUR-Lex website [7], which holds the European Union’s legislative publications
of the last few years in all EU members’ languages (currently 23). Our subset
was formed of all texts published between January 1st and May 31st 2005 in
the following languages: German (de = Deutsch), English (en), Spanish (es =
Español), French (fr), Italian (it) and Portuguese (pt).

Table 1 displays the size of each part of the corpus in MBs and in million
words. Notice that the Portuguese text is significantly smaller than the others.
That is because a very large document, constituting around 11.5% of each of the
other texts, had no Portuguese version. It should also be noted that a few other
small pieces are missing in most of the texts since they have not been translated
or due to technical problems. This situation simulates a real-life corpus, where
not all contents exist in all languages. This fact makes the current results even
more relevant.

The lemmatization of the texts was done using the Tree Tagger [13], a language-
independent part-of-speech tagger and lemmatizer, currently adapted to several
European languages. As the paragraphs of each document in the various lan-
guages were not precisely aligned with each other, we applied a simple adjust-
ment of the DKvec algorithm [8] to all 30 possible pairs of texts in order to obtain
a better paragraph-level alignment. Finally, the bilingual glossaries and detailed
alignments were automatically generated by an extension of the word_align al-
gorithm [6] to multi-word sequences. The average length of an aligned target
sequence for all 30 alignments was around 1.7 words per sequence. The rate of
aligned target words was within the range of 28–40%, depending on the avail-
able level of monolingual pre-processing, the relative nature of the languages of

Table 1. Full sizes of the parallel texts

Unit de en es fr it pt
MB 27.37 25.98 28.03 28.56 27.55 24.28
MW 4.46 4.79 5.10 5.20 4.93 4.41
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Table 2. Averages for monolingual methods

Method

BZip2 GZip HWord

Excluding 1file split 1file split
de 17.5 24.5 22.6 27.3 23.1
en 17.5 24.6 22.7 27.5 22.7
es 17.6 24.7 22.8 27.6 22.9
fr 17.7 24.7 22.8 27.6 22.8
it 17.6 24.7 22.8 27.6 22.8
pt 17.4 24.3 22.6 27.3 22.8

Table 3. Results for bilingual algorithm

Target

de en es fr it pt Avg
Src MB % MB % MB % MB % MB % MB % (%)
de 4.92 18.9 5.27 18.8 5.41 18.9 5.26 19.1 4.63 19.1 19.0
en 4.70 17.2 4.90 17.5 5.00 17.5 4.92 17.8 4.34 17.9 17.6
es 4.85 17.7 4.71 18.1 4.95 17.3 4.84 17.6 4.22 17.4 17.6
fr 4.77 17.4 4.60 17.7 4.75 16.9 4.75 17.2 4.21 17.3 17.3
it 4.77 17.4 4.67 18.0 4.79 17.1 4.88 17.1 4.23 17.4 17.4
pt 4.93 18.0 4.88 18.8 4.97 17.7 5.14 18.0 5.01 18.2 18.1

Avg 17.6 18.3 17.6 17.8 18.0 17.8 17.8

the aligned texts and some other text-specific factors (average rates presented
in Table 7).

As established above, the basic idea of alignment-based compression is to
exploit parallelism to achieve better results compared with general-purpose,
monolingual methods. Therefore, it is necessary to apply several such meth-
ods on the test corpus in order to examine the extent of improvement obtained
by the various multilingual schemes.

We define the compression rate as the fraction, given in percent, of the
size of the compressed file divided by the original size. Table 2 details the
average compression rates yielded by 3 principal methods—Bzip2, Gzip and
HuffWord—for all 6 possible combinations of 5 languages. The first column,
titled “Excluding”, indicates the identity of the text not taken into account. This
is needed for a fair comparison with the performances of our algorithms on each
combination of target languages. BZip2 and GZip were first applied to the tar-
get texts, considering each as a single file (1file), then each file was split into
its 3076 documents, and each fragment was compressed on its own (split). The
increase in the file sizes can be immediately recognized. Note that HWord gives
identical results for both settings.

Table 3 presents the results achieved by the bilingual algorithm for each
source-target pair of texts along with the average compression rates for each
source and target texts and the aggregate average.
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Table 4. Source annotation overheads

Text Text + 1 alignment Text + 5 alignments
Size Size Al. Lem. Tot. Size Al. Lem. Tot.

S. MB MB MB % KB % % MB MB % KB % %
de 5.91 6.43 0.52 8.81 2.83 0.05 8.86 6.77 0.85 14.46 4.53 0.07 14.54
en 6.09 6.71 0.62 10.27 8.95 0.14 10.41 7.19 1.10 18.09 14.46 0.23 18.32
es 6.35 7.00 0.65 10.25 24.29 0.37 10.62 7.52 1.17 18.38 40.47 0.62 19.00
fr 6.56 7.22 0.67 10.15 35.52 0.53 10.68 7.79 1.23 18.82 57.92 0.86 19.68
it 6.39 7.04 0.65 10.19 30.12 0.46 10.66 7.56 1.18 18.46 48.10 0.74 19.20
pt 5.64 6.23 0.59 10.38 23.14 0.40 10.78 6.70 1.06 18.77 35.29 0.61 19.38

Table 5. Additional overhead as function of k (English text as source)

Text + k Diff Add ratio
k alignments (MB) ovrhd (%)
0 6.09
1 6.67 0.58 9.55
2 6.92 0.26 4.21 0.44
3 7.06 0.13 2.17 0.52
4 7.15 0.09 1.51 0.70
5 7.20 0.05 0.87 0.57

It should be noted that the numbers for the bilingual and multilingual algo-
rithms do not include the sizes of the auxiliary files, since in the scenario of a large
multilingual Information Retrieval system, dictionaries and glossaries are needed
anyway and are not stored exclusively as an aid for compression. However, even
if those sizes are to be considered, it should be kept in mind that, according to
Heaps’ Law [10], the size of a dictionary for a text of size n is expected to be αnβ ,
where 0.4 ≤ β ≤ 0.6. The total size of the auxiliary dictionaries for the current
evaluation corpus, compressed using Bzip2 (rather than a dictionary-oriented
compression scheme), is about 9% of the decompressed text. Should a 20GB
corpus be compressed, the corresponding dictionaries would comprise less than
1% of the original text. Obviously, specific dictionary compression can further
decrease that rate.

As stated in Section 2, the multilingual algorithm uses an annotated source
text. Obviously, this annotation is not for free. Table 4 displays the overheads
paid for the markup of aligned source sequences (“Al.”) as well as for lemmatiza-
tion indices (“Lem.”). As already remarked, we used one Huffman code for text
words and alignment marks (for sequence lengths 1–7), and another Huffman
code for the lemma indices. Therefore, the overhead of the alignment data is
calculated by subtracting the size of the HuffWord file encoding the pure text
from that of the file encoding the annotated text, whereas the lemmatization
overhead is simply the cost of storing the series of lemma indices using a distinct
Huffman code. For the sake of briefness, we present only the average overheads
in the case of a single target text. This is acceptable because the differences from
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Table 6. Results for multilingual algorithm (with k = 5)

Oh. Target Inc. Oh. Exc. Oh.
Src. (MB) de en es fr it pt (%) (%)
de 0.86 4.58 4.92 5.05 4.91 4.32 18.3 17.7
en 1.11 4.38 4.50 4.60 4.53 3.99 17.0 16.2
es 1.21 4.51 4.30 4.48 4.39 3.83 17.0 16.1
fr 1.29 4.42 4.19 4.28 4.29 3.79 16.7 15.7
it 1.23 4.43 4.27 4.34 4.42 3.83 16.8 15.9
pt 1.09 4.62 4.51 4.56 4.71 4.60 17.5 16.7

Avg. 17.2 16.4

Table 7. Result summary

Alignment Bilingual Multilingual BZip2 GZip HWord

Src Coverage k = 1 k = 5 k → ∞ 1file split 1file split
de 29.0 19.0 19.4 18.3 17.7 17.5 24.5 22.6 27.3 23.1
en 35.9 17.6 17.7 17.0 16.2 17.5 24.6 22.7 27.5 22.7
es 36.6 17.6 17.6 17.0 16.1 17.6 24.7 22.8 27.6 22.9
fr 38.0 17.3 17.2 16.7 15.7 17.7 24.7 22.8 27.6 22.8
it 37.3 17.4 17.4 16.8 15.9 17.6 24.7 22.8 27.6 22.8
pt 32.8 18.1 18.2 17.5 16.7 17.4 24.3 22.6 27.3 22.8
Avg 34.9 17.8 17.9 17.2 16.4 17.5 24.6 22.7 27.5 22.8

the average values are very small. In addition, this impreciseness has no effect
on the average compression rates.

A glance taken at the overhead table reveals that the ratio between the anno-
tation cost for five targets (k = 5) and for a single target (k = 1) is less than 2.
That is, the additional overhead for another four targets is smaller than the cost
paid for the first target. Table 5 details the growing sizes of the text+alignment
HuffWord files for the English text as source, when each time marks for an addi-
tional alignment are incorporated into the text. The ratio between the additional
overheads for the kth and (k− 1)th alignments is around 0.6, which leads to the
thought that if some more targets were added, the additional overhead would
quickly converge towards 0. Consequently, the annotation overhead in the case
of large enough k’s may be deemed a constant independent of k, which permits
ignoring it and taking into account only the sizes of the compressed targets .

Table 6 exhibits the performances of the multilingual algorithm for k = 5.
The compression rates were computed by accumulating the overhead and the

sizes of the five compressed targets and then dividing the result by the sum of
the sizes of the five decompressed targets. The results for k = 1 were slightly
worse than those achieved by the bilingual algorithm (averages given in Table 7).
This had been quite expected in light of the high overhead paid for a stand-alone
alignment.

The rightmost column of Table 6 shows the compression rate when overheads
are excluded. For k = 5, the average overhead constitutes ca. 0.8% of the entire
decompressed corpus. As Table 5 hints, overhead is unlikely to grow significantly
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even for a sixth target, so we may already deem it maximal. Hence, for k = 23,
the current number of languages in the European Union, the overhead’s relative
part may drop below 0.2%.

Finally, Table 7 puts side-by-side the average alignment coverage rates and
the compression rates achieved by the monolingual, bilingual and multilingual
algorithms. For the monolingual methods, the term “Source” refers to the text not
taken into average account (equivalent to “Excluding” in Table 2). The column
labeled “k →∞” includes the same data presented in the “Exc. Oh.” column of
Table 6. Indeed, the compression rate which could be obtained for a large number
of targets with compressibility similar to that of the current test texts converges
to the rate computed excluding the source annotation overhead. That is because
for large k’s, this overhead converges towards a relatively small constant and
may therefore be neglected.

A close observation into the results would recognize a tight correlation between
alignment coverage and compression rates. This is, of course, expected, because
each aligned target sequence is replaced with a reference, which is shorter, in
average, than the corresponding HuffWord encoding. Hence, the higher the cov-
erage rate, the better the compression. It may be assumed that if the German
text could be stemmed before being aligned, we would get even better results.
In general, if the alignment algorithm yielded denser outputs, the results could
improve significantly.

Bzip2 does not perform as well for small blocks as it does for large blocks, as
opposed to Huffman coding, which is indifferent to block size. Therefore, in cases
where extraction of relatively small pieces is desired, even the bilingual scheme
with Huffman coding would be preferable over regular Bzip2, not to mention the
other 2 monolingual methods. Results also show that it is unworthy using the
multilingual scheme rather than the bilingual one for small k. However, for large
enough k, the multilingual algorithm is advantageous even if each target is to be
stored in a bulk, rather than split into pieces. In that situation, of course, the
encoding method of the compression procedure’s output may be changed from
HWord to BZip2, which is expected to yield a further improved compression.

4 Conclusion

The current work suggests the first specific methods for compressing multilingual
parallel texts, based on text alignment. The algorithm has been tested on a
real-life multilingual corpus and achieved significant improvements over general-
purpose methods.

A prominent advantage of the compression scheme is its static nature, which
enables applying it to blocks of any size without changing compression efficiency.
This property is particularly important for Information Retrieval systems, where
users are frequently interested in relatively small pieces of texts. Compressing
each small piece per se permits transferring and deciphering the desired piece
only, thereby saving a lot of expensive communication and processing time.
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Abstract. We consider the positive singular and the singular Artin
monoids of finite type. These have been the subject of a great deal of
recent research and the main purpose of this paper is to prove that these
monoids are automatic. In order to do this we establish a new criterion
for proving monoids automatic that may be of independent interest.

1 Introduction

The concept of an automatic group was introduced in [4,14] in order to describe
a large class of naturally occurring groups with an easily solvable word problem.
This was then extended to automatic monoids; see [8,18,20] for example. This
notion (see Definition 1) uses the concept of a transducer, a finite automaton
with two input tapes and two one-way heads. If these two heads are required
to move synchronously, we speak of a synchronous transducer. As a transducer
has two input tapes, its language can be described as a binary relation on the
set of strings. Such a relation is said to be (synchronously) rational if it is the
language of a (synchronous) transducer.

When constructing a synchronous transducer, it can be simpler to first build
an asynchronous machine which then is transformed into a synchronous one.
When considering automatic monoids and groups, one technique for this trans-
formation has mainly been used: if the positions of the two asynchronously
moving heads differ uniformly by at most k, then an equivalent synchronous
automaton exists; this technique requires one to show that along any successful
computation, at any given time, the difference does not exceed k (see [17]). Using
a result of Frougny and Sakarovitch [15], this can be relaxed to showing that,
in any successful run, the difference is at most k in the final configuration (see
Proposition 2 below).
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In this paper we apply this new approach to singular Artin monoids of finite
type (Theorems 1 and 2). The Artin groups of finite type all share the remarkable
properties of the braid group Bn and Bn may be studied very fruitfully in its
guise as such a group. The braid group has applications in diverse areas such
as combinatorial group theory, representation theory, trace monoids and low-
dimensional topology; it has even been the focus of interest as a prospect for
a public-key authentication system based on a non-Abelian group [23]. Shortly
after Bn was introduced by Artin, a presentation by generators and relations
with remarkable properties was obtained which led to the definition of the more
general Artin monoids; this motivates the currently developing theory of Garside
structures.

The singular braid monoid SBn was introduced in [3,6] to study Vassiliev
knot invariants; the idea is that the strings of a braid can have intersections. In
the same way that the braid group may be considered as an example of an Artin
group, the definition of singular braid monoid may be extended to arbitrary Artin
type and a singular Artin monoid is obtained [10]. Roughly speaking, a singular
Artin monoid is an Artin monoid with some additional “singular” generators. We
combine part of the normal form from [9] for Artin monoids with the singular
parts of the braids to give automatic structures for singular Artin monoids.

An interesting connection with the theory of trace monoids [11] is that the
submonoid consisting of the purely singular braids of a singular Artin monoid
defined by a graph Γ is isomorphic to the trace monoid on a graph which is
the complement of Γ . Thus the singular Artin monoid is some sort of blend of
an Artin group with a trace monoid, and the normal form for the automatic
structure we obtain in this paper is a blend between that for the (bi)automatic
structure for Artin groups of finite type and the Foata normal form for traces.

The proofs are quite lengthy and combinatorial in nature and we do not give
the full details in this extended abstract; instead we provide a sequence of lemmas
and previously known facts that we have used to prove these theorems and we
hope that these give the reader a feeling as to the overall structure of the proofs
of these results.

2 Automaticity via Rational Relations

Let (M, ·, 1) be a monoid. An M -automaton is a structure A = (Z, δ, ι, F ) where
Z is a finite set of states, δ ⊆ Z × M × Z is a finite transition relation with
(z, 1, z′) ∈ δ if and only if z = z′, ι ∈ Z is an initial state, and F ⊆ Z is a set of
accepting states; thus an M -automaton is a finite graph whose edges are labeled
by elements of the monoid M . A run is a finite sequence (zi, mi, zi+1)1�i�n of
transitions; its label is the element m1 · m2 · · ·mn of the monoid M . A run is
successful if z1 = ι and zn+1 ∈ F . The set L(A) accepted by A is the set of
labels of successful runs. A subset X of M is said to be rational if there is an
M -automatonA with X = L(A), i.e. if it is the behaviour of some M -automaton.

Any finite set X ⊆ M is rational. If X, Y ⊆ M are rational, then so are the
following sets (see [13] for example):
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• X ∪ Y and X · Y = {x · y : x ∈ X, y ∈ Y },
• 〈X〉 = {x1 · x2 · · ·xn : xi ∈ X} (some authors use X∗ in place of 〈X〉).

Conversely, any rational set can be constructed from finite sets using the oper-
ations ∪, ·, and 〈 〉.

If M = Γ ∗ is a finitely generated free monoid then the rational subsets of M
are also known as regular languages; in this case M \X and X ∩ Y are rational
whenever X and Y are rational (but this does not hold for general monoids M).

If M = Γ ∗ ×Δ∗ is the direct product of two finitely generated free monoids
then M -automata are also known as transducers and rational subsets of M as
rational relations or transductions (see [5] for an extensive treatment of rational
relations). To emphasize that the behaviour of a transducer A is a relation we
will write R(A) instead of L(A). For example, if Γ = Δ = {a}, then the relation

{(an, a2n) : n ∈ N} = 〈{(a, aa)}〉
can be realized by an automaton with just one state and a loop labeled (a, aa).

Another way to consider relations accepted by a finite state device is to first
transform the relation into a language and then check whether this language is
regular. Let ⊥ �∈ Γ be a symbol and Γ (2,⊥) = (Γ ∪{⊥})2 \ {(⊥,⊥)}. We define
the convolution ⊗ : Γ ∗ × Γ ∗ → Γ (2,⊥)∗ by:

ε⊗ ε = ε a⊗ ε = (a,⊥) ε⊗ b = (⊥, b) av ⊗ bw = (a, b)(v ⊗ w)

for a, b ∈ Γ and v, w ∈ Γ ∗. If R ⊆ Γ ∗×Γ ∗ let R⊗ = {v⊗w : (v, w) ∈ R} denote
the convolution of R. Note that R⊗ is a language over the alphabet Γ (2,⊥).
Define a homomorphism η : Γ (2,⊥)∗ → Γ ∗ × Γ ∗ by:

η(a, b) = (a, b), η(a,⊥) = (a, ε), η(⊥, b) = (ε, b)

for a, b ∈ Γ . Since R = η(R⊗) and rational sets are closed under homomorphic
images [13], we have that, if R⊗ is rational, then R is rational. The converse is
not true however: for example, if R = 〈(a, aa)〉, then R is rational but R⊗ =
{(a, a)n(⊥, a)n : n ∈ N} is not. Given the following result the reason for this
failure is that the length difference of u and v is unbounded for (u, v) ∈ R:

Proposition 1 (Corollary 2.5 of [15]). If A = (Z, δ, ι, F ) is a transducer and
k ∈ N is such that | |u| − |v| | � k for (u, v) ∈ R(A) then R(A)⊗ is regular.

Given this result, we say that a rational relation R is difference bounded if there
is a constant k such that | |u| − |v| | � k for all (u, v) ∈ R.

Let M be a monoid, Γ a finite set, θ : Γ ∗ →M an epimorphism, and L ⊆ Γ ∗.
Then we define:

L(ε) = {(u, v) ∈ L2 : θ(u) = θ(v)}; L= = L(ε)⊗;

L(a) = {(u, v) ∈ L2 : θ(ua) = θ(v)}; La = L(a)⊗

for a ∈ Γ . We have the following definition of an automatic structure for M :
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Definition 1. An automatic structure for M is a triple (Γ, θ, L) where:

1. Γ is a finite set, θ : Γ ∗ →M is an epimorphism and L ⊆ Γ ∗ is regular;
2. θ(L) = M ; and
3. L= and La are regular for every a ∈ Γ .

A monoid is said to be automatic if it has an automatic structure.

It is not hard to see that the regularity of L follows from the remaining condi-
tions; in the automaton for the language La, we replace labels of the form (a, b)
by a and those of the form (⊥, b) by ε and drop the remaining transitions. We
can assume [8] that θ maps L injectively onto M . In this case, the regularity
of L= follows immediately from the regularity of L: replace transition labels of
the form a by (a, a). The resulting automaton, considered over Γ (2,⊥), accepts
{u ⊗ u : u ∈ L} which equals L= by the injectivity of θ�L. Hence the main
task in showing the automaticity of a monoid is the construction of synchronous
transducers whose language is L(a). Since these transducers describe the multi-
plication by generators, they are called multiplier automata.

Given Proposition 1 one can derive an alternative characterization of auto-
matic monoids as follows:

Proposition 2. Let M be a monoid.

1. If there exists a finite set Γ , an epimorphism θ : Γ ∗ → M and a regular
language L ⊆ Γ ∗ such that L(a) is a rational relation and difference bounded
for any a ∈ Γ , then (Γ, θ, L) is an automatic structure for M .

2. If M has an automatic structure (Γ, θ, L) with θ �L injective and if the set
{x ∈ M : xθ(a) = y} is finite for any y ∈ M and a ∈ Γ then L(a) is
difference bounded for any a ∈ Γ .

Note that the finiteness assumption is necessary in the second part. For example,
if the automatic monoid M contains a zero element, then the relations La cannot
be difference bounded. If the monoid M has a length function, then the finiteness
assumption is always satisfied; this will be the case in our considerations.

We finish this section by introducing some notational conventions. The set
of natural numbers {1, 2, . . . , n} is denoted by [n]. For a monoid (M, ·, 1), we
write x � y if and only if x is a left divisor of y, i.e. if there exists z ∈ M with
x · z = y. Since the monoids under consideration will be cancellative and will
have no nontrivial decomposition of the unit element, � will be a partial order.

3 The Results

A Coxeter graph is a partially edge-labelled (undirected) graph with vertex set
[n] with labels coming from {3, 4, . . .} ∪ {∞}. For a fixed Coxeter graph Γ , we
define mij to be the label of the edge between vertices i and j if it exists, and 2
otherwise; in particular, mij = mji holds. The Coxeter graphs of finite type finite
unions of graps from Fig. 1 (see below for an explanation of this terminology).
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Type Coxeter graph

An (n � 1)
1 2 n − 1 n

Bn (n � 2)
4

1 2 n − 1 n

Dn (n � 4)
1

2

3 n − 1 n

En (n = 6, 7, 8)
1 3 4 n − 1 n

2

F4
4

1 2 3 4

G2
6

1 2

H3
5

1 2 3

H4
5

1 2 3 4

I2(m) (m � 5)
m

1 2

Fig. 1. Connected Coxeter graphs of finite type. Unlabelled edges have value 3.

For a nonempty word w and a natural number n, let 〈w〉n be the prefix of
length n of the word wn.

The positive singular Artin monoid of type Γ , denoted by MΓ , will be defined
via a presentation. The generators are Σ ∪ T where

Σ = {σ1, . . . , σn} and T = {τ1, . . . , τn},
that is, one σ- and one τ -type generator for each vertex of Γ . The relations are
constructed via the edge information. For mij �= ∞, we have the relations:

〈σiσj〉mij = 〈σjσi〉mij (R1)

τi〈σjσi〉mij−1 = 〈σjσi〉mij−1τj(mij mod 2)+i((mij+1) mod 2) (R2)

τiτj = τjτi if mij = 2 (R3)
τiσi = σiτi for i ∈ [n] (R4)

The positive singular Artin monoid MΓ of type Γ is given by the presentation

MΓ = Mon 〈Σ ∪ T : R1 ∪R2 ∪R3 ∪R4〉 .
Our aim is to show that MΓ is automatic and we prove:
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Theorem 1. Any positive singular Artin monoid of finite type is automatic.

Birman [6] and Baez [3] introduced such a monoid in the special case where Γ is
a path and all labels are 3 (type A in Figure 1); the general case was introduced
in [10]. Birman’s conjecture (the “desingularisation map" is an embedding of MΓ

into the group algebra of the braid group) was proved for the monoid of singular
braids [21] and for the singular Artin monoids of right angled type [16] and of
type I2(m) [12]. Antony [1] provides evidence that Birman’s conjecture might
hold in the general case.

Having considered the positive singular Artin monoids of finite type we turn
to a monoid into which they embed, namely the singular Artin monoid.

Let Γ be any Coxeter graph with associated positive singular Artin monoid
MΓ . Define the singular Artin monoid of type Γ , denoted by MΔ

Γ , to be the
monoid defined by the presentation with generators Σ ∪T ∪Σ−1 (the last being
the set of formal inverses of Σ), and relations R1, R2, R3 and R4 (as given above)
together with the additional relations

σiσ
−1
i = σ−1

i σi = 1 for each i .

Our aim is to show that MΔ
Γ is also automatic and we prove:

Theorem 2. Any singular Artin monoid of finite type is automatic.

4 The Positive Singular Artin Monoid MΓ

We now collect together some results about the monoid M = MΓ which we will
need in this paper. The following three results are proved in [10].

(0.1) The monoid M is left and right cancellative.
(0.2) Any subset X ⊆ M has a least common right (respectively left) multiple

precisely when it has a common right (respectively left) multiple. When this
is the case, the lcm is unique. Let X be the set of common left divisors
of elements x and y. Then X has a common right multiple and therefore
a least common multiple that we denote by gcd(x, y) since it equals the
greatest common left divisor of x and y. In particular, any two elements of
M have a greatest common left divisor.

(0.3) For i �= j, τi and τj have a common multiple if and only if τiτj = τjτi, in
which case this is the least common multiple.

Let Rev be the map on words over Σ∪T which reverses the word. Since u = v
is a defining relation precisely when Rev(u) = Rev(v) is a defining relation, Rev
extends to an anti-endomorphism of MΓ (i.e. Rev(xy) = Rev(y) Rev(x) for any
x, y ∈M) and it is easy to see that:

(0.4) The map Rev is an anti-automorphism of MΓ of order two.

Observe that all the relations involving a single element of T on each side
of the equation are all of the form τiw = wτj where w is a word over Σ and
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j may or may not be the same as i. Furthermore, the relations involving more
than one element of T on each side involve only letters from T ; thus we have
a homomorphism ν : MΓ → MΓ defined on generators by mapping σi �→ σi

and τi �→ 1. The image under ν is the submonoid S = SΓ generated by Σ
called the positive Artin monoid ; it has presentation given by generators Σ
and relations R1. If xτiy = zτjw, where x, y, z, w are elements of S, then, by
considering the image under ν, we have that xy = zw.

(0.5) If xτiy = zτjw where x, y, z, w ∈ S, then xy = zw.

The reflection group of type Γ is the quotient of the Artin monoid S obtained
by imposing order 2 on the generators. The Coxeter graph Γ is of finite type
(i.e., is a finite union of graphs from Fig. 1) if and only if the set Σ as a common
multiple in S (see [7]), or, equivalently (given that S embeds in M), has a
common multiple in M . From now on we will restrict ourselves to the case where
Γ is of finite type.

(0.6) [7] For every finite X ⊆ S, the lcm of X always exists. Thus, since S is a
submonoid of M , any finite subset X of M where each x ∈ X is representable
by a word over Σ has a least common multiple that is itself representable as
a word over Σ.

(0.7) [10] For x ∈ S and τ ∈ T , lcm(τ, x) always exists, and is of the form
τxa = xaτ ′ for some a ∈ S and τ ′ ∈ T .

Since MΓ has unique least common multiples whenever common multiples
exist, we have a unique least common multiple Δ of Σ. Let

Q := {q ∈M \ {1} : qp = Δ for some p}.
By preservation of the number of τ ’s (all relations have same number of τ ’s on
both sides, so all words representing any given element of M have the same
number of τ ’s), all elements of Q are elements of S; in fact (see [7]) they are
precisely the non-trivial elements of S which are not expressible in the form uaav
for any generator a ∈ Σ∪T ; given this, they are said to be square-free elements.

(0.8) [7] If qxy = Δ then each of q, x and y is in Q.
(0.9) [10] There is an automorphism · of MΓ defined by wΔ = Δw, which,

in particular, defines a permutation on T , and a permutation on Σ. This
automorphism is either trivial or of order 2, depending on the type of Γ .

By (0.7), lcm(τ, q) exists for any τ ∈ T and q ∈ S and is of the form τqa. The
following two results give some more information on the element a ∈ S provided
that q is square-free. We can use (0.1), (0.5) and (0.8) to prove:

Lemma 1. If q ∈ Q and τ ∈ T , then the least common multiple of q and τ
exists and is of the form qxτj = τqx for some x ∈ S and τj ∈ T , and qx is
square free.

We can then use Lemma 1 to deduce:
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Corollary 1. Let τ ∈ T and z ∈ M with τ � z and let q = gcd(z, Δ). Then
τq = qτ ′ for some τ ′ ∈ T and τq = lcm(q, τ).

The restriction of the following result to elements u, v ∈ S follows from Propo-
sition 2.1 of [19]. As we are only interested in singular Artin monoids of finite
type, one could produce an alternative proof which is a little simpler.

Lemma 2. If u, v ∈M then gcd(uv, Δ) = gcd(u gcd(v, Δ), Δ).

Let T ⊆ M be the set of elements lcm(X) for all nonempty subsets X ⊆ T
having a common multiple in M . For x ∈ M , let

T (x) = lcm{t ∈ T : t � x}.
For x ∈ M \ {1}, let

α(x) =

{
gcd(x, Δ) if gcd(x, Δ) �= 1
T (x) otherwise.

Observe that α(x) ∈ T is equivalent to saying that Σ �� x (which is shorthand
for “no element of Σ left divides x”). We can then use Lemma 2 to prove:

Lemma 3. If x ∈ M and p ∈ Q∪T then the pair (α(x), T (x)) and the element p
determine α(px).

From Corollary 1 one can show:

Lemma 4. If p ∈ Q ∪ T and x ∈M with α(px) = p then T (px) = T (p T (x)).

Suppose τiuτjw = w1τ�τkw2 = w1τkτ�w2 for some elements u, w, w1, w2 of S.
Then, intuitively, the τ ’s in τiuτj can commute after extension with w ∈ S.
Using (0.6) and (0,7) one can prove the following result which shows that they
can commute regardless of w:

Lemma 5. Let u′ = tuτj where u ∈ S, t ∈ T , j ∈ [n] and such that u′ is neither
left nor right divisible by Σ. In addition, let w, w1, w2 ∈ S, s ∈ T and l ∈ [n] be
such that tuτjw = w1sτlw2 = w1τlsw2. Then u = 1.

5 The Language of Normal Forms

Recall that T ⊆ M comprises all the elements lcm(X) for all nonempty subsets
X ⊆ T having a common multiple in M . Since T ⊆ T and Σ ⊆ Q, the singular
Artin monoid M is generated by Q ∪ T . From now on, we will consider words
over the generators Q ∪ T as well as products in M of elements of Q ∪ T . To
avoid confusion, we will use the following conventions.

Let ϕ : (Q ∪ T )∗ → MΓ be the natural epimorphism. For words u and v in
(Q ∪ T )∗, we write u ∼ v if ϕ(u) = ϕ(v), i.e. if u and v represent the same
element of MΓ . If we want to stress that u and v coincide letter by letter, we
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will write u ≡ v. This eliminates any use of u = v for words u and v. On the
other hand, for elements x, y ∈ M , we will write x = y to denote that they are
equal. Since words over S ∪ T of length 1 are actually elements of M as well,
we can then write a = b for a, b ∈ S ∪ T . Clearly, in this case, a = b, a ≡ b, and
a ∼ b are equivalent. To reiterate, a string q1q2 . . . qn of elements of Q ∪ T is to
be understood as word over Q ∪ T and not as the monoid element represented
by this sequence. This monoid element is denoted by ϕ(q1q2 . . . qn) or, if n = 2,
simply by q1 · q2.

Michel (in Section 4 of [19]) defines normal forms from Q∗ for the elements
of S (again without the assumption of finite type). We extend his idea to the
singular Artin monoid of finite type M : for any x ∈M , we define a unique word
NF(x) over Q ∪ T and later (see Lemma 10) show that the set of all words
obtained this way is a regular language in (Q ∪ T )∗.

Let ω(x) be the unique element of M with α(x) · ω(x) = x; then the normal
form is defined inductively by

NF(1) ≡ ε and NF(x) ≡ α(x) NF(ω(x)) for x ∈M \ {1}.
Note that this is well-defined since, as long as x �= 1, we have that α(x) �≡ ε, i.e.
ω(x) is properly shorter than x.1 Let L ⊆ (Q ∪ T )∗ denote the set of all words
NF(x) for x ∈M .

The following results relate the normal forms of x ∈ M and x · τk for some
k ∈ [n]. They will become useful later when we construct an automatic structure
for M . We first use Corollary 1 to deduce:

Lemma 6. Let q1q2 . . . qp be in L, and suppose that the least common multiple
of ϕ(q1q2 . . . qp) and τi ∈ T is ϕ(q1q2 · · · qpτk) for some k ∈ [n]. Then there is
a sequence of integers i = i0, i1, . . . , ip = k such that τi�−1q� ∼ q�τi�

for each
� ∈ [p].

We then use Lemmas 4 and 6 to prove:

Lemma 7. Let pi ∈ Q ∪ T with p1p2 . . . pm ∈ L, x = ϕ(p1p2 . . . pm) and let
k ∈ [n]. Then either NF(x · τk) ≡ p1p2 . . . pm τk or else there are � ∈ [m] and
j ∈ [n] with NF(x · τk) ≡ p1p2 . . . p�−1(p� · τj)p�+1 . . . pm. Furthermore, in this
latter case, we have that lcm(τj , ϕ(p� . . . pm)) = ϕ(p� . . . pmτk).

Having described the relation between the normal forms of x ∈ M and x · τk,
we now obtain similar results for the normal forms of x and x · σk. Somewhat
surprisingly, this turns out to be more involved. Using Corollary 1, we can prove:

Lemma 8. Let tw ∈ L with t ∈ T and w ∈ Q∗. In addition, let q ∈ Q. Then
NF(ϕ(twq)) ≡ psu for some p ∈ Q, s ∈ T and u ∈ Q∗ such that tp ∼ ps.

We then use (0.5), Lemma 2, Lemma 5 and Lemma 7 to prove:
1 Vershinin [22] defines a similar normal form for positive singular braid monoids;

the only difference is that he sets α(x) = τi where i is minimal with τi � x if
gcd(x, Δ) = 1. His normal form does not allow us to prove the central Lemma 14.
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Lemma 9. Let w ≡ w1t1w2 . . . wktkwk+1 ∈ L with ti ∈ T and wi ∈ Q∗. Let
q ∈ Q ∪ {1} and define qi ∈ Q ∪ {1} for 1 � i � k + 1 by qk+1 = q and
qi = gcd(ϕ(tiwi+1qi+1), Δ). Then there are ui ∈ Q∗ and si ∈ T such that

• NF(ϕ(tiwi+1qi+1)) ≡ qisiui+1,
• NF(ϕ(w1q1)) ≡ u1, and
• NF(ϕ(wq)) ≡ u1s1u2 · · ·ukskuk+1.

6 Automaticity of MΓ

If p ∈ Q∪ T let Wp ∈ (Σ ∪ T )∗ be some representative of p. Define a homomor-
phism η : (Q ∪ T )∗ → (Σ ∪ T )∗ by η(p) = Wp and let K = η(L). We will show
that (Σ ∪T, K) is an automatic structure for the positive singular Artin monoid
of finite type MΓ . We first use Lemmas 3 and 4 to prove:

Lemma 10. The set L ⊆ (Q ∪ T )� is regular.

Given that homomorphic images of regular sets are regular and K = η(L), we
immediately deduce:

Lemma 11. The set K ⊆ (Σ ∪ T )∗ is regular.

We then use Lemmas 6 and 7 to prove:

Lemma 12. If k ∈ [n] then the relation L(τk) = {(u, v) ∈ L × L : uτk ∼ v} is
rational.

Our next aim is to prove that the relation L(q) = {(u, v) ∈ L × L : uq ∼ v} is
rational for q ∈ Q. To this aim, we consider the relations

Hp = {(w, u) ∈ L2 : w, u ∈ Q∗, wp ∼ u}
Rp,r = {(w, u) ∈ L2 : w, u ∈ Q∗, wp ∼ ru}

for p, r ∈ Q and prove (using [9]):

Lemma 13. For p, r ∈ Q, the relations Hp and Rp,r are rational.

We then use Lemma 9 to prove:

Lemma 14. If q ∈ Q then the relation L(q) is rational.

Finally we can prove Theorem 1. Let α ∈ Σ∪T . Since Σ ⊆ Q and T ⊆ T , we can
speak of the relation L(α) which is rational by Lemmas 12 and 14. Since rational
relations are closed under the application of homomorphisms, the relation

K(α) = {(η(u), η(v)) : (u, v) ∈ L(α)}
is rational as well. Since the relation K(α) is difference bounded, Theorem 1
follows from Proposition 2 and Lemma 11.
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7 Automaticity of the Singular Artin Monoid MΔ
Γ

Antony [2] proved that MΓ is a submonoid of MΔ
Γ . Thus Δ, the lcm of Σ in MΓ ,

may be considered as an element of MΔ
Γ , and extending the automorphism ·

to MΔ
Γ in the natural way (σ−1 := σi

−1) preserves the property that wΔ = Δw,
where w is now in MΔ

Γ . Furthermore, since Δ is a common multiple of Σ in MΓ ,
for each σ ∈ Σ, there is a unique Δσ ∈ MΓ defined by the property Δ = Δσσ.
Thus, for each σ, Δσ−1 = Δσ lies in the submonoid MΓ .

Define a language LΔ over Q ∪Q−1 ∪ T as follows:

LΔ := {u−1v : u ∈ L ∩Q∗, v ∈ L and gcd(ϕ(u), ϕ(v)) = 1}.

Let π : (Q ∪Q−1 ∪ T )∗ →MΔ
Γ be the natural extension of ϕ : (Q ∪ T )∗ →MΓ ;

clearly π restricts to a map from LΔ to MΔ
Γ . We will write u ≈ v whenever

π(u) = π(v) holds. We then have:

Lemma 15. The language LΔ is a set of unique normal forms for MΔ
Γ .

We can also establish:

Lemma 16. Let ux, uy ∈ L ∩ Q∗ and vx, vy ∈ L be such that x ≡ u−1
x vx and

y ≡ u−1
y vy belong to LΔ. Furthermore, let τ ∈ T and σ ∈ Σ. Then we have:

(1) xτ ≈ y if and only if uy ≡ ux and vy ≈ vxτ ;
(2) xσ ≈ y if and only if there exists q ∈ Q such that quy ≈ ux and qvy ≈ vxσ;
(3) xσ−1 ≈ y if and only if there exists q ∈ Q such that quy ≈ Δux and

qvy ≈ vxΔσ.

By [9], (Q, L ∩ Q∗) is a biautomatic structure for the positive Artin monoid S
which is the submonoid of MΓ generated by Q. Hence the language

qL = {u⊗ v : u, v ∈ L, ϕ(qu) = ϕ(v)}

is regular for q ∈ Q. This implies that the relation

R′(q) = {(u, v) : u, v ∈ L ∩Q∗, ϕ(qu) = ϕ(v)}

is also rational for any q ∈ Q. We can extend R′(q) to all of L:

Lemma 17. If q ∈ Q then the relation R(q) = {(x, y) ∈ L × L : qx ≈ y} is
rational.

We can then use Lemma 16 to deduce:

Lemma 18. The relation LΔ(t) = {(x, y) ∈ LΔ × LΔ : xt ≈ y} is rational for
any t ∈ Σ ∪Σ−1 ∪ T .

Given all this we can, exactly as in the proof of Theorem 1, deduce Theorem 2.
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Abstract. In this paper we propose a hierarchy of classes of languages,
generated by networks of evolutionary processors with the filters in sev-
eral special classes of regular sets. More precisely, we show that the use of
filters from the class of ordered, non-counting, power-separating, circular,
suffix-closed regular, union-free, definite and combinational languages is
as powerful as the use of arbitrary regular languages and yields net-
works that can generate all the recursively enumerable languages. On the
other hand, the use of filters that are only finite languages allows only
the generation of regular languages, but not all regular languages can
be generated. If we use filters that are monoids, nilpotent languages or
commutative regular languages, we obtain the same family of languages
which contains non-context-free languages but not all regular languages.
These results seem to be of interest because they provide both upper
and lower bounds on the classes of languages that one can use as filters
in a network of evolutionary processor in order to obtain a complete
computational model.

1 Introduction

An important part of theoretical computer science is the study of problems and
processes connected with regular sets. In the last years a lot of papers appeared in
which, for such problems and processes, the effect of going from arbitrary regular
sets to special regular sets was studied. We here mention four such topics.

– It is a classical result that any nondeterministic finite automaton with n
states can be transformed into a deterministic one with 2n states, which
accepts the same language, and that this exponential blow-up with respect
to the number of states is necessary in the worst cases. In [2], this problem is
studied if one restricts to the case that the automata accept special regular
languages only. It is shown, that the situation does not change for suffix-
closed and star-free regular languages; however, for some classes of definite
languages, the size of the deterministic automaton is bounded by 2n−1 + 1.
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– A number α, n ≤ α ≤ 2n, is called magic (w.r.t. n), if there is no nondeter-
ministic finite automaton with n states such that the minimal deterministic
finite automaton has α states. It is known that no magic numbers exist if
n ≥ 3. This situation changes if one considers subregular families of lan-
guages. For instance, only the values α with n + 1 ≤ α ≤ 2n−1 + 1 are
possible for prefix-free regular languages (see [16]).

– In the last 20 years the behaviour of the (nondeterministic) state complexity
under operations is intensively studied, i.e., it is asked for the size of the
minimal (non)deterministic finite automaton for the language obtained from
languages with given sizes. For many operations, the worst case is exactly
determined. It has been shown that one gets smaller sizes if one restricts to
special regular languages (see [13], [14], [3], and [17]).

– In order to enlarge the generative power, some mechanisms connected with
regular languages were introduced, which control the derivations in context-
free grammars. For instance, the sequence of applied rules in a regularly
controlled grammar, the current sentential form in a conditional grammar
and the levels of the derivation tree in a tree controlled grammar have to
belong to given regular languages. In the papers [7], [9], [8], and [11], the
change in the generative power, if one restricts to special regular sets, is
investigated.

In this paper we continue the research along this direction. We consider the effect
of special regular filters for generating evolutionary networks.

Networks of language processors have been introduced in [6] by E. Csuhaj-
Varjú and A. Salomaa. Such a network can be considered as a graph where the
nodes are sets of productions and at any moment of time a language is associated
with a node. In a derivation step any node derives from its language all possible
words as its new language. In a communication step any node sends those words
to other nodes where the outgoing words have to satisfy an output condition
given as a regular language (called output filter), and any node takes words
sent by the other nodes if the words satisfy an input condition also given by a
regular language (called input filter). The language generated by a network of
language processors consists of all (terminal) words which occur in the languages
associated with a given node.

Inspired by biological processes, in [4] a special type of networks of language
processors was introduced which are called networks with evolutionary proces-
sors because the allowed productions model the point mutation known from
biology. The sets of productions have to be substitutions of one letter by an-
other letter or insertions of letters or deletion of letters; the nodes are then
called substitution node or insertion node or deletion node, respectively. Results
on networks of evolutionary processors can be found, e. g., in [4], [5], [18]. For in-
stance. in [5], it was shown that networks of evolutionary processors are complete
in that sense that they can generate any recursively enumerable language.

Modifications of evolutionary networks with evolutionary processors concern
restrictions in the type of the nodes and the mode of applying a rule. In [1],
it is investigated how the generative power behaves if one restricts to networks
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with at most two types of nodes only. Moreover, in the case that one allows that
some insertions and deletions can only be performed at the begin or end of the
word one has also restricted to special regular filters given by random context
conditions.

In this paper, we modify the filters. We require that the filters have to belong
to a special subset of the set of all regular languages. We show that the use of
filters from the class of ordered, non-counting, power-separating, circular, suffix-
closed regular, union-free, definite and combinational languages is as powerful as
the use of arbitrary regular languages and yields networks that can generate all
the recursively enumerable languages. On the other hand, the use of filters that
are only finite languages allows only the generation of regular languages, but
not all regular languages can be generated. If we use filters that are monoids,
nilpotent languages or commutative regular languages, we obtain the same fam-
ily of languages which contains non-context-free languages but not all regular
languages. These results seem to be of interest because they provide both upper
and lower bounds on the classes of languages that one can use as filters in a
network of evolutionary processor in order to obtain a complete computational
model.

By reasons of space we omit some proofs. The omitted proofs can be found in
[10] (see http://theo.cs.uni-magdeburg.de/pubs/preprints/pp-afl-2011-01.pdf).

2 Definitions

We assume that the reader is familiar with the basic concepts of formal language
theory (see e. g. [19]). We here only recall some notations used in the paper.

By V ∗ we denote the set of all words (strings) over V (including the empty
word λ). The length of a word w is denoted by |w|. By V + and V k for some
natural number k we denote the set of all non-empty words and the set of all
words with length k, respectively. Let Vk be the set of all words over V with a
length of at most k, i. e. Vk =

⋃k
i=0 V i.

By REG , CF , and RE we denote the families of regular, context-free, and
recursively enumerable languages, respectively.

For a language L over V , we set

Comm(L) = {ai1 . . . ain | a1 . . . an ∈ L, n ≥ 1, {i1, i2, . . . , in} = {1, 2, . . . , n}},
Circ(L) = {vu | uv ∈ L, u, v ∈ V ∗},
Suf (L) = {v | uv ∈ L, u, v ∈ V ∗}

We consider the following restrictions for regular languages. Let L be a lan-
guage and V = alph(L) the minimal alphabet of L. We say that L is

– combinational iff it can be represented in the form L = V ∗A for some subset
A ⊆ V ,

– definite iff it can be represented in the form L = A ∪ V ∗B where A and B
are finite subsets of V ∗,

– nilpotent iff L is finite or V ∗ \ L is finite,
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– commutative iff L = Comm(L),
– circular iff L = C irc(L),
– suffix-closed (or fully initial or multiple-entry language) iff xy ∈ L for some

x, y ∈ V ∗ implies y ∈ L (or equivalently, Suf (L) = L),
– non-counting (or star-free) iff there is an integer k ≥ 1 such that, for any

x, y, z ∈ V ∗, xykz ∈ L if and only if xyk+1z ∈ L,
– power-separating iff for any x ∈ V ∗ there is a natural number m ≥ 1 such

that either Jm
x ∩ L = ∅ or Jm

x ⊆ L where Jm
x = {xn | n ≥ m},

– ordered iff L is accepted by some finite automaton A = (Z, V, δ, z0, F ) where
(Z,�) is a totally ordered set and, for any a ∈ V , the relation z � z′ implies
the relation δ(z, a) � δ(z′, a),

– union-free iff L can be described by a regular expression which is only built
by product and star.

It is obvious that combinational, definite, nilpotent, ordered and union-free lan-
guages are regular, whereas non-regular languages of the other types mentioned
above exist.

By COMB , DEF , NIL, COMM , CIRC , SUF , NC , PS , ORD , and UF we
denote the families of all combinational, definite, nilpotent, regular commuta-
tive, regular circular, regular suffix-closed, regular non-counting, regular power-
separating, ordered, and union-free languages, respectively. Moreover, we add
the family MON of all languages of the form V ∗, where V is an alphabet (lan-
guages of MON are target sets of monoids; we call them monoidal languages).
We set

G={FIN , MON , COMB , DEF , NIL, COMM , CIRC , SUF , NC , PS , ORD , UF}.
The relations between families of G are investigated e. g. in [15] and [20]. and
their set-theoretic relations are given in Figure 1.

We call a production α→ β a
– substitution if |α| = |β| = 1,
– deletion if |α| = 1 and β = λ.
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Fig. 1. Hierarchy of subregular languages (an arrow from X to Y denotes X ⊂ Y , and
if two families are not connected by a directed path then they are incomparable)
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The productions are applied like context-free rewriting rules. We say that a word
v derives a word w, written as v =⇒ w, if there are words x, y and a production
α → β such that v = xαy and w = xβy. If the rule p applied is important, we
write v =⇒p w.

We introduce insertion as a counterpart of deletion. We write λ → a, where
a is a letter. The application of an insertion λ → a derives from a word w any
word w1aw2 with w = w1w2 for some (possibly empty) words w1 and w2.

We now introduce the basic concept of this paper, the networks of evolutionary
processors (NEPs for short).

Definition 1. Let X be a family of regular languages.
(i) A network of evolutionary processors (of size n) with filters of the set X is

a tuple
N = (V, N1, N2, . . . , Nn, E, j)

where
– V is a finite alphabet,
– for 1 ≤ i ≤ n, Ni = (Mi, Ai, Ii, Oi) where

– Mi is a set of rules of a certain type: Mi ⊆ {a → b | a, b ∈ V } or
Mi ⊆ {a → λ | a ∈ V } or Mi ⊆ {λ→ b | b ∈ V },

– Ai is a finite subset of V ∗,
– Ii and Oi are languages from X over V ,

– E is a subset of {1, 2, . . . , n} × {1, 2, . . . , n}, and
– j is a natural number such that 1 ≤ j ≤ n.

(ii) A configuration C of N is an n-tuple C = (C(1), C(2), . . . , C(n)) where C(i)
is a subset of V ∗ for 1 ≤ i ≤ n.

(iii) Let C = (C(1), C(2), . . . , C(n)) and C′ = (C′(1), C′(2), . . . , C′(n)) be two
configurations of N . We say that C derives C′ in one

– evolutionary step (written as C =⇒ C′) if, for 1 ≤ i ≤ n, C′(i) consists
of all words w ∈ C(i) to which no rule of Mi is applicable and of all
words w for which there are a word v ∈ C(i) and a rule p ∈ Mi such
that v =⇒p w holds,

– communication step (written as C ! C′) if, for 1 ≤ i ≤ n,

C′(i) = (C(i) \Oi) ∪
⋃

(k,i)∈E

(C(k) ∩Ok ∩ Ii).

The computation of an evolutionary network N is a sequence of configura-
tions Ct = (Ct(1), Ct(2), . . . , Ct(n)), t ≥ 0, such that

– C0 = (A1, A2, . . . , An),
– for any t ≥ 0, C2t derives C2t+1 in one evolutionary step,
– for any t ≥ 0, C2t+1 derives C2t+2 in one communication step.

(iv) The language L(N ) generated by N is defined as

L(N ) =
⋃
t≥0

Ct(j)

where Ct = (Ct(1), Ct(2), . . . , Ct(n)), t ≥ 0 is the computation of N .
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Intuitively, a network with evolutionary processors is a graph consisting of some,
say n, nodes N1, N2, . . . , Nn (called processors) and the set of edges given by E
such that there is a directed edge from Nk to Ni if and only if (k, i) ∈ E.
Any processor Ni consists of a set of evolutionary rules Mi, a set of words Ai,
an input filter Ii and an output filter Oi. We say that Ni is a substitution
node or a deletion node or an insertion node if Mi ⊆ {a → b | a, b ∈ V } or
Mi ⊆ {a → λ | a ∈ V } or Mi ⊆ {λ → b | b ∈ V }, respectively. The input
filter Ii and the output filter Oi control the words which are allowed to enter
and to leave the node, respectively. With any node Ni and any time moment
t ≥ 0 we associate a set Ct(i) of words (the words contained in the node at
time t). Initially, Ni contains the words of Ai. In an evolutionary step, we derive
from Ct(i) all words applying rules from the set Mi. In a communication step, any
processor Ni sends out all words Ct(i) ∩Oi (which pass the output filter) to all
processors to which a directed edge exists (only the words from Ct(i)\Oi remain
in the set associated with Ni) and, moreover, it receives from any processor Nk

such that there is an edge from Nk to Ni all words sent by Nk and passing
the input filter Ii of Ni, i. e., the processor Ni gets in addition all words of
Ct(k) ∩Ok ∩ Ii. We start with an evolutionary step and then communication
steps and evolutionary steps are alternately performed. The language consists of
all words which are in the node Nj (also called the output node, j is chosen in
advance) at some moment t, t ≥ 0.

For a family X ⊆ REG, we denote the family of languages generated by
networks of evolutionary processors where all filters are of type X by E(X).

The following fact is obvious.

Lemma 1. Let X and Y be subfamilies of REG such that X ⊆ Y . Then the
inclusion E(X) ⊆ E(Y ) holds.

The following theorem is known (see, e. g., [5]).

Theorem 1. E(REG) = RE .

3 Some General Results

We start with some results which hold for every type of filters.

Lemma 2. For every network N of evolutionary processors, there is a network
N ′ of evolutionary processors that generates the same language as N and has the
property that its output node N ′ has the form N ′ = (∅, ∅, I ′, O′) for some regular
languages I ′, O′ over the network’s working alphabet and no edge is leaving N ′.

Theorem 2. Let X ∈ G. Then each language L ∈ X can be generated by a NEP
N with at most two nodes and with filters from X.

Proof. Let X = FIN . Let L be a finite set over V . Then the evolutionary network
(V, (∅, L, ∅, ∅), ∅, 1) with all filters from FIN generates L.

If X �= FIN , then MON ⊆ X holds by Figure 1. Moreover, let L ∈ X be
a language over an alphabet V . We construct the NEP N = (V, N1, N2, E, 2)
given as
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�
�

�
�

I1 = V ∗

A1 = {λ}

O1 = V ∗

M1 = { λ → a | a ∈ V }

�
�

�
�

I2 = L

A2 = { λ | λ ∈ L }

O2 = V ∗

M2 = ∅

�

� �
�

Every word w ∈ V + will be derived in node N1 and be communicated to node
N2 which accepts all words that also belong to L. The language generated by N
is L(N ) = A2 ∪ (V + ∩ L) = L. All filters are of type X .

Corollary 1. For each class X ∈ G, we have X ⊆ E(X).

Corollary 2. For each class X ∈ G, we have MON ⊆ E(X).

Proof. By the relations given in Figure 1 and Corollary 1, it is sufficient to
show that MON ⊆ E(FIN ). Let V be an alphabet and L = V ∗. Then the
evolutionary network (V, ({ λ → a | a ∈ V } , {λ}, ∅, ∅), ∅, 1) with all filters from
FIN generates L. Thus, any monoidal language L = V ∗ belongs to E(FIN ).

4 Computationally Complete Cases

In this section we present the computational completeness of some families E(X).

Theorem 3. E(SUF ) = RE and E(CIRC ) = RE .

Proof. First we show that E(SUF ) = RE .
Let L be a recursively enumerable set. Let N = (V, N1, N2, . . . , Nn, E, j) be a

network with evolutionary processors and filters from REG such that L(N ) = L.
For any node Ni = (Mi, Ai, Ii, Oi), we construct the sets

I ′i = {X}Ii{Y } ∪ Suf (Ii){Y } ∪ {λ},
O′

i = {X}Oi{Y } ∪ Suf (Oi){Y } ∪ {λ},

where X and Y are two new symbols. By definition, I ′i and O′
i are suffix-closed.

We assume that the network N has the property Nj = (∅, ∅, Ij, Oj) and no edge
leaves the output node (according to the previous Lemma).

We consider the network

N ′ = (V ∪ {X, Y }, N ′
1, N

′
2, . . . , N

′
n, N ′

n+1, N
′
n+2, E

′, n + 2)

with

N ′
i = (Mi, {X}Ai{Y }, I ′i, O′

i) for 1 ≤ i ≤ n,

N ′
n+1 = ({X → λ, Y → λ}, ∅, I ′j , V ∗),

N ′
n+2 = (∅, ∅, V ∗, ∅),
E′ = E ∪ { (i, n + 1) | (i, j) ∈ E } ∪ { (n + 1, n + 2) } .
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It is obvious that the filters of N ′
n+1 and N ′

n+2 are suffix-closed, too. Thus N ′

is a network of type SUF .
We now prove that L(N ) = L(N ′). We start with words of the form XwY

and as long as these words are changed according to rules of Mi, 1 ≤ i ≤ n,
they can only be sent to nodes N ′

s, 1 ≤ s ≤ n, and N ′
n+1. Thus we simulate a

derivation in N (in N ′ we have an X in front of and a Y behind the word w
occurring in N ) and get into N ′

n+1 exactly those words XwY whose subword w
comes into Nj. Now X and Y are removed and the resulting word w is sent to
N ′

n+2. Other words cannot arrive in N ′
n+2 and other words do not appear in Nj .

Hence, L(N ′) = L(N ).
To show that E(CIRC ) = RE , we repeat the previous proof with the following

modifications. We set

I ′i = Circ({X}Ii{Y }) and O′
i = Circ({X}Oi{Y }) for 1 ≤ i ≤ n.

This ensures that Circ(F ) = F for all filters F of the new network N ′. Then the
proof proceeds as in the case of suffix-closed filters.

Theorem 4. E(COMB) = E(DEF ) = E(UF ) = RE .

By the relations shown in Figure 1, Lemma 1, and Theorem 1, we obtain the
following theorem.

Theorem 5. E(ORD) = E(NC ) = E(PS ) = RE .

5 Computationally Non-complete Cases

We first discuss the case of finite filters. We start with a certain normal form for
networks with finite filters.

Lemma 3. For each NEP N with only finite filters, we can construct a NEP
N ′ with only one processor and finite filters that generates the same language
as N .

Theorem 6. E(FIN ) ⊂ REG.

Proof. Let N = (V, N1, N2, . . . , Nn, E, j) be a network with finite filters. Obvi-
ously, a word w is in Nj if and only if it is in Aj or satisfies Ij or is obtained
from a word in Nj by application of a rule in Mj. We set

U = { a | λ→ a ∈Mj } , V ′ = { a′ | a ∈ V } , and U ′ = { a′ | a ∈ U } .

Let h : (V ∪ V ′)∗ → V ∗ be the homomorphism defined by

h(a) = a for a ∈ V and h(a′) =

{
λ, for a′ ∈ U ′,
a, for a′ ∈ V ′ \ U ′,

and τ : (V ∪ V ′)∗ → V ∗ be the finite substitution where τ(a) = τ(a′) for
a ∈ V and τ(a) consists of all b ∈ V ∪ {λ} such that there are an integers
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s ≥ 0 and b0, b1, . . . , bs−1 ∈ V and bs ∈ V ∪ {λ} such that a = b0, b = bs, and
bi → bi+1 ∈ Mj for 0 ≤ i ≤ s− 1 (note that s = 0 implies a = b). Furthermore,
let

k = max { |w| | w ∈ Oj ∪ Ij ∪Aj }+ 1.

We note the following facts:
– Assume that there is a word w of length at least k in L(N ). Then w is in

Ct(j) for some t. By its length, it cannot leave the node, and thus all words
which have a length at least k and can be obtained by application of rules
of Mj to w belong to L(N ), too.

– If w with |w| ≥ k + 1 is in L(N ), then w is obtained from a word v ∈ L(N )
of length k by application of rules in Mj (since substitutions and deletions
do not increase the length, the shortest words in L(N ) with length at least
k are obtained by an insertion from a word of length less than k and thus
they have length k).

Now it is easy to see that

L(N ) = (L(N ) ∩
k−1⋃
i=0

V i) ∪ (τ(h−1(L(N ) ∩ V k)) ∩
⋃
i≥k

V i)

holds. Since finite languages are regular and regular languages are closed under
inverse homomorphisms, finite substitutions, intersection, and union, L(N ) is
regular. Hence E(FIN ) ⊆ REG holds.

Let V = {a} and L = {a} ∪ { an | n ≥ 3 }. Obviously, L is regular.
Suppose the language L is generated by a network with only finite filters.

Then, by Lemma 3, there is a network N with only one node N = (M, A, ∅, O)
that generates L. Since L is infinite, this node must be inserting. Hence, the rule
set is M = {λ → a }. If the initial set A contains λ then λ ∈ L(N ) which is in
contrast to λ /∈ L. If the initial set A contains a or aa then the word aa belongs
to the generated language L(N ) which is in contrast to aa /∈ L. If the initial set
only contains words an with n ≥ 3 then the word a cannot be generated but
a ∈ L which is a contradiction, too. Hence, there is no network with only finite
filters that generates L. Thus, L ∈ REG \ E(FIN ).

The following result shows that the use of filters from the remaining language
families, i. e., from MON or NIL or COMM leads to the same class of languages.

Theorem 7. E(MON ) = E(COMM ) = E(NIL).

We now present some relations of E(MON ) to other language families.

Theorem 8. E(FIN ) ⊂ E(MON ).

Proof. Since FIN ⊂ NIL, we obtain E(FIN) ⊆ E(NIL) by Lemma 1. By Theo-
rem 2, the nilpotent language L = {a} ∪ { an | n ≥ 3 } is contained in E(NIL).
However, by the second part of the proof of Theorem 6, L is not contained in
E(FIN ). Thus E(FIN) ⊂ E(NIL). The statement now follows from Theorem 7.
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Lemma 4. The family E(MON ) contains a non-semi-linear (hence non-regular
and non-context-free) language.

Proof. Let V = {S, A, F, a } and N = (V, N1, N2, N3, N4, N5, E, 5) be the
following network:

�� ��

�� �	

M1 = {S → A, A → F } ,
A1 = {S},
I1 = {S, A }∗ ,
O1 = {S, A }∗





�� ��

�� �	

M2 = {λ → A } ,
A2 = ∅,
I2 = {S, A }∗ ,
O2 = {S, A }∗

��

��
�� ��

�� �	

M5 = ∅,
A5 = ∅,
I5 = { a }∗ ,
O5 = { a }∗

�� ��

�� �	

M3 = {A→ S } ,
A3 = ∅,
I3 = {A }∗ ,
O3 = {S }∗

��

��





�� ��

�� �	

M4 = {S → a } ,
A4 = {S},
I4 = {S }∗ ,
O4 = { a }∗

��

In the beginning, we have the word S in node N1. We consider a word Sn for
n ≥ 1 in node N1 in an even moment (in the beginning or after a communication
step). One occurrence of S is replaced by A, then the word is sent to node N2

where another copy of A is inserted. This word w goes back to node N1 and it
goes on to node N3 which takes it if no S appears in the word. If in N1 the rule
A → F is applied then the symbol F is introduced which cannot be replaced.
Due to the output filter O1, the word will be trapped in N1 for ever. If, in the
word w, no S is present then the only rule which can be applied is A → F and
the cycle is stopped. If w still contains an S then it is replaced by A and N2

inserts another A. So, the words move between N1 and N2 where alternatingly
an S is replaced by A and an A is inserted until the word only contains As. The
word is then An+1. Hence, the number of letters has been doubled.

In N3, each A is replaced by S. The word is Sn+1 when it leaves N3. It moves
to N1 and to N4. In N1, the cycle starts again with a word Sm for m ≥ 1. All
arriving words in N4 have the form Sn with n ≥ 2. In order to cover also the
case n = 1, the initial language of this node consists of S. In N4, every letter S
is replaced by the symbol a before the word leaves to node and moves to the
output node N5.

Hence, L(N ) =
{

a2n | n ≥ 0
}
.

Corollary 3. NIL ⊂ E(MON) and COMM ⊂ E(MON).

Proof. The inclusions follow from Corollary 1 and Theorem 7. The strictness
follows from Lemma 4.

Finally, we give a result which can be understood as a lower bound for the
generative power of monoidal filters.

Theorem 9. Let L be a semi-linear language. Then Comm(L) ∈ E(MON ).
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6 Conclusion

If we combine all the results of the preceding sections, we get the following
diagram which we state as a theorem.

Theorem 10. The following diagram holds.

RE = E(REG) = E(PS ) = E(NC )
= E(ORD) = E(SUF ) = E(CIRC )
= E(DEF ) = E(COMB) = E(UF )

CF



��������������

REG

��

E(MON ) = E(NIL)
= E(COMM )

�������������������������

E(FIN )

�� ��������������������������������������������
NIL

��																					

��




















COMM

��
��������������������������������������������������

FIN

�� ��





















MON

�����������������������������

��������������������������������������������������

The subregular classes considered in this paper are defined by combinatorial
or algebraic properties of the languages. In [12], subclasses of REG defined by
descriptional complexity have been considered. Let REGn be the set of regular
languages which can be accepted by deterministic finite automata. Then we have

REG1 ⊂ REG2 ⊂ REG3 ⊂ · · · ⊂ REGn ⊂ · · · ⊂ REG .

By Lemma 4 and [12], Lemma 4.1 and Theorems 4.3, 4.4., and 4.5, we get

E(REG1) ⊂ E(MON ) ⊂ E(REG2) = E(REG3) = · · · = RE

and the incomparability of E(REG1) with REG and CF .
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Abstract. Interval Markov Chains (IMCs) are the base of a classic prob-
abilistic specification theory by Larsen and Jonsson in 1991. They are
also a popular abstraction for probabilistic systems.

In this paper we study complexity of several problems for this abstrac-
tion, that stem from compositional modeling methodologies. In particu-
lar we close the complexity gap for thorough refinement of two IMCs and
for deciding the existence of a common implementation for an unbounded
number of IMCs, showing that these problems are EXPTIME-complete.
We also prove that deciding consistency of an IMC is polynomial and
discuss suitable notions of determinism for such specifications.

1 Introduction

Interval Markov Chains (IMCs for short) extend Markov Chains, by allowing to
specify intervals of possible probabilities on state transitions. IMCs have been
introduced by Larsen and Jonsson [10] as a specification formalism—a basis
for a stepwise-refinement-like modeling method, where initial designs are very
abstract and underspecified, and are then made continuously more precise, until
they are concrete. Unlike richer specification models such as Constraint Markov
Chains [4], IMCs are difficult to use for compositional specification due to lack of
basic modeling operators. To address this, we study complexity and algorithms
for deciding consistency of conjunctive sets of IMC specifications.

In [10] Jonsson and Larsen have introduced refinement for IMCs, but have not
determined its computational complexity. We complete their work on refinement
by classifying its complexity and characterizing it using structural coinductive
algorithms in the style of simulation.

Consider the issue of combining multiple specifications of the same system. It
turns out that conjunction of IMCs cannot be expressed as an IMC itself, due
to a lack of expressiveness of intervals. Let us demonstrate this using a simple
specification of a user of a coffee machine. Let the model prescribe that a typical
user orders coffee with milk with probability x ∈ [0, 0.5] and black coffee with
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probability y ∈ [0.2, 0.7] (customers also buy tea with probability t ∈ [0, 0.5]).
The vendor of the machine delivers another specification, which prescribes that
the machine is serviceable only if coffee (white or black) is ordered with some
probability z ∈ [0.4, 0.8] from among other beverages, otherwise it will run out
of coffee powder too frequently, or the powder becomes too old. A conjunction
of these two models would describe users who have use patterns compatible
with this particular machine. Such a conjunction effectively requires that all
the interval constraints are satisfied and that z = x + y holds. However, the
solution of this constraint is not described by an interval over x and y. This can
be seen by pointing out an extremal point, which is not a solution, while all
its coordinates take part in some solution. Say x = 0 and y = 0.2 violates the
interval for z, while for each of these two values it is possible to select another
one in such a way that z’s constraint is also held (for example (x = 0, y = 0.4)
and (x = 0.2, y = 0.2)). Thus the solution space is not an interval over x and y.

This lack of closure properties for IMCs motivates us to address the problem
of reasoning about conjunction without constructing it — the, so called, common
implementation problem. In this paper we provide algorithms and complexity
results for consistency, common implementation and refinement of IMCs, in order
to enable compositional modeling. We contribute the following new results:

– In [10] a thorough refinement (TR) between IMCs is defined as an inclusion
of implementation sets. We define suitable notions of determinism for IMCs,
and show that for deterministic IMCs TR coincides with two simulation-like
preorders (the weak refinement and strong refinement), for which there exist
co-inductive algorithms terminating in a polynomial number of iterations.

– We show that the thorough refinement procedure given in [10] can be imple-
mented in single exponential time. Furthermore we provide a lower bound,
concluding that TR is EXPTIME-complete. While the reduction from TR
of modal transition systems [3] used to provide this lower bound is concep-
tually simple, it requires a rather involved proof of correctness, namely that
it preserves sets of implementations in a sound and complete manner.

– A polynomial procedure for checking whether an IMC is consistent (C), i.e.
it admits a Markov Chain as an implementation.

– An exponential procedure for checking whether k IMCs are consistent in the
sense that they share a Markov Chain satisfying all—a common implemen-
tation (CI). We show that this problem is EXPTIME-complete.

– As a special case we observe, that CI is PTIME for any constant value of
k. In particular checking whether two specifications can be simultaneously
satisfied, and synthesizing their shared implementation can be done in poly-
nomial time.

For functional analysis of discrete-time non-probabilistic systems, the theory
of Modal Transition Systems (MTSs) [15] provides a specification formalism
supporting refinement, conjunction and parallel composition. Earlier we have
obtained EXPTIME-completeness both for the corresponding notion of CI [2]
and of TR [3] for MTSs. In [10] it is shown that IMCs properly contain MTSs,
which puts our new results in a somewhat surprising light: in the complexity
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Fig. 1. Examples of Markov Chains, Interval Markov Chains and satisfaction relation

theoretic sense, and as far as CI and TR are considered, the generalization of
modalities by probabilities does come for free.

The paper proceeds as follows. In Section 2 we introduce the basic definitions.
All results in subsequent sections are new and ours. In Section 3 we discuss de-
ciding TR and other refinement procedures. We expand on the interplay of de-
terminism and refinements in Section 4. The problems of C and CI are addressed
in Section 5. We close by discussing the results and related work in Section 6.
Due to space constraints, some algorithms and proofs are given in a long version
of this paper [6].

2 Background

We shall now introduce the basic definitions used throughout the paper. In the
following we will write Intervals[0,1] for the set of all closed, half-open and open
intervals included in [0, 1].

We begin with settling notation for Markov Chains. A Markov Chain (some-
times MC in short) is a tuple C = 〈P, p0, π, A, VC〉, where P is a set of states
containing the initial state p0, A is a set of atomic propositions, VC : P → 2A

is a state valuation labeling states with propositions, and π : P → Distr(P ) is a
probability distribution assignment such that

∑
p′∈P π(p)(p′) = 1 for all p ∈ P .

The probability distribution assignment is the only component that is relaxed
in IMCs:

Definition 1 (Interval Markov Chain). An Interval Markov Chain is a tuple
I = 〈Q, q0, ϕ,A, VI〉, where Q is a set of states containing the initial state q0,
A is a set of atomic propositions, VI : Q → 2A is a state valuation, and ϕ :
Q → (Q → Intervals[0,1]), which for each q ∈ Q and q′ ∈ Q gives an interval of
probabilities.

Instead of a distribution, as in MCs, in IMCs we have a function mapping el-
ementary events (target states) to intervals of probabilities. We interpret this
function as a constraint over distributions. This is expressed in our notation
as follows. Given a state q ∈ Q and a distribution σ ∈ Distr(Q), we say that
σ ∈ ϕ(q) iff σ(q′) ∈ ϕ(q)(q′) for all q′ ∈ Q. Occasionally, it is convenient to think
of a Markov Chain as an IMC, in which all probability intervals are closed point
intervals.
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We visualize IMCs as automata with intervals on transitions. As an example,
consider the IMC in Figure 1b. It has two outgoing transitions from the initial
state A. No arc is drawn between states if the probability is zero (or more
precisely the interval is [0, 0]), so in the example there is zero probability of going
from state A to A, or from B to C, etc. Otherwise the probability distribution
over successors of A is constrained to fall into ]0.7, 1] and [0, 0.3[ for B and C
respectively. States B and C have valuation β, whereas state A has valuation
α, δ. Figure 1a presents a Markov Chain using the same convention, modulo the
intervals. Notice that our formalism does not allow “sink states” with no outgoing
transitions. In the figures, states with no outgoing transitions are meant to have
a self-loop transition with probability 1 (a closed point interval).

There are three known ways of defining refinement for IMCs: strong refine-
ment (introduced as simulation in [10]), weak refinement (introduced under the
name of probabilistic simulation in [7]), and thorough refinement (introduced as
refinement in [10]). We recall their formal definitions:

Definition 2 (Strong Refinement). Let I1 = 〈Q, q0, ϕ1, A, V1〉 and I2 =
〈S, s0, ϕ2, A, V2〉 be IMCs. A relation R ⊆ Q× S is a strong refinement relation
if whenever qR s then

1. The valuation sets agree: V1(q) = V2(s) and
2. There exists a correspondence function δ : Q → (S → [0, 1]) such that, for

all σ ∈ Distr(Q), if σ ∈ ϕ1(q), then
(a) for all q′ ∈ Q such that σ(q′) > 0, δ(q′) is a distribution on S,
(b) for all s′ ∈ S, we have

∑
q′∈Q σ(q′) · δ(q′)(s′) ∈ ϕ2(s)(s′), and

(c) for all q′ ∈ Q and s′ ∈ S, if δ(q′)(s′) > 0, then q′ R s′.

I1 strongly refines I2, or I1≤S I2, iff there exists a strong refinement containing
(q0, s0).

A strong refinement relation requires the existence of a single correspondence,
which witnesses satisfaction for any resolution of probability constraint over
successors of q and s. Figure 2a illustrates such a correspondence between states
A and α of two IMCs. The correspondence function is given by labels on the
dashed lines. It is easy to see that, regardless of how the probability constraints
are resolved, the correspondence function distributes the probability mass in a
fashion satisfying α.

A weak refinement relation requires that, for any resolution of probability
constraint over successors in I1, there exists a correspondence function, which
witnesses satisfaction of I2. The formal definition of weak refinement is identical
to Def. 2, except that the condition opening Point (2) is replaced by a weaker
one:

Definition 3 (Weak Refinement). Let I1 = 〈Q, q0, ϕ1, A, V1〉 and I2 = 〈S, s0,
ϕ2, A, V2〉 be IMCs. A relation R ⊆ Q × S is a weak refinement relation if
whenever qR s, then
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1. The valuation sets agree: V1(q) = V2(s) and
2. For each σ ∈ Distr(Q) such that σ ∈ ϕ1(q), there exists a correspondence

function δ : Q → (S → [0, 1]) such that
(a) for all q′ ∈ Q such that σ(q′) > 0, δ(q′) is a distribution on S,
(b) for all s′ ∈ S, we have

∑
q′∈Q σ(q′) · δ(q′)(s′) ∈ ϕ2(s)(s′), and

(c) for all q′ ∈ Q and s′ ∈ S, if δ(q′)(s′) > 0, then q′ R s′.

I1 weakly refines I2, or I1 ≤W I2, iff there exists a weak refinement containing
(q0, s0).

Figure 2b illustrates a weak refinement between states A and α of another two
IMCs. Here, x stands for a value in [0.2, 1] (arbitrary choice of probability of
going to state C from A). Notably, for each choice of x, there exists p ∈ [0, 1]
such that p · x ∈ [0, 0.6] and (1 − p) · x ∈ [0.2, 0.4].

Satisfaction Relation. This relation establishes compatibility of Markov Chains
(implementations) and IMCs (specifications). The original definition has been
presented in [10,11]. Consider a Markov chain C = 〈P, p0, π, A, VC〉 as an IMC
with only closed point interval probabilities, and let I = 〈Q, q0, ϕ,A, VI〉 be an
IMC. We say that C satisfies I, written C |= I, iff there exists a weak/strong
refinement relation R ⊆ P ×Q, called a satisfaction relation, containing (p0, q0).
Remark that when C is a Markov Chain, the weak and strong notions of refine-
ment coincide. Whenever C |= I, C is called an implementation of I. The set of
implementations of I is written [[I]]. Figure 1c presents an example of satisfaction
on states 1 and A. The correspondence function is specified using labels on the
dashed arrows i.e. the probability mass going from state 1 to 3 is distributed to
state B and C with half going to each.

We say that a state q of an IMC is consistent if its interval constraint ϕ(q) is
satisfiable, i.e. there exists a distribution σ ∈ Distr(Q) satisfying ϕ(q). Obviously,
for a given IMC, it is sufficient that all its states are consistent in order to guar-
antee that the IMC is consistent itself—there exists a Markov Chain satisfying
it. We discuss the problem of establishing consistency in a sound and complete
manner in Section 5.

Finally, we introduce the thorough refinement as defined in [10]:

Definition 4 (Thorough Refinement). IMC I1 thoroughly refines IMC I2,
written I1 ≤T I2, iff each implementation of I1 implements I2: [[I1]] ⊆ [[I2]]

Thorough refinement is the ultimate refinement relation for any specification
formalism, as it is based on the semantics of the models.

3 Refinement Relations

In this section, we compare the expressiveness of the refinement relations. It is
not hard to see that both strong and weak refinements soundly approximate the
thorough refinement (since they are transitive and degrade to satisfaction if the
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Fig. 2. Illustration of strong and weak refinement relations

left argument is a Markov Chain). The converse does not hold. We will now
discuss procedures to compute weak and strong refinements, and then compare
the granularity of these relations, which will lead us to procedures for comput-
ing thorough refinement. Observe that both refinements are decidable, as they
only rely on the first order theory of real numbers. In concrete cases below the
calculations can be done more efficiently due to convexity of solution spaces for
interval constraints.

Weak and Strong Refinement. Consider two IMCs I1 = 〈P, o1, ϕ1, A, V1〉 and
I2 = 〈Q, o2, ϕ2, A, V2〉. Informally, checking whether a given relation R ⊆ P ×Q
is a weak refinement relation reduces to checking, for each pair (p, q) ∈ R,
whether the following formula is true: ∀π ∈ ϕ1(p), ∃δ : P → (Q → [0, 1]) such
that π × δ satisfies a system of linear equations / inequations. Since the set of
distributions satisfying ϕ1(p) is convex, checking such a system is exponential
in the number of variables, here |P | · |Q|. As a consequence, checking whether a
relation on P × Q is a weak refinement relation is exponential in |P | · |Q|. For
strong refinement relations, the only difference appears in the formula that must
be checked: ∃δ : P → (Q → [0, 1]) such that ∀π ∈ ϕ1(p), we have that π × δ
satisfies a system of linear equations / inequations. Therefore, checking whether
a relation on P ×Q is a strong refinement relation is also exponential in |P | · |Q|.

Deciding whether weak (strong) refinement holds between I1 and I2 can be
done in the usual coinductive fashion by considering the total relation P × Q
and successively removing all the pairs that do not satisfy the above formulae.
The refinement holds iff the relation we reach contains the pair (o1, o2). The
algorithm will terminate after at most |P | · |Q| iterations. This gives an upper
bound on the complexity to establish strong and weak refinements: a polynomial
number of iterations over an exponential step. This upper bound may be loose.
One could try to reuse techniques for nonstochastic systems [9] in order to reduce
the number of iterations. This is left to future work.

Granularity. In [10] an informal statement is made that the strong refinement
is strictly stronger (finer) than the thorough refinement: (≤T) � (≤S). In [7] the
weak refinement is introduced, but without discussing its relations to neither
the strong nor the thorough refinement. The following theorem resolves all open
issues in relations between the three:
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Theorem 1. The thorough refinement is strictly weaker than the weak refine-
ment, which is strictly weaker than the strong refinement: (≤T) � (≤W) � (≤S).

The first inequality is shown by exhibiting IMCs I4 and I5 such that I4 thor-
oughly but not weakly refines I5 (Figure 3). All implementations of I4 satisfy I5,
but state B cannot refine any of β1 or β2: Let σ be a distribution admitted in B
giving probability 1 to state C. Because of the interval [0, 0.5] on the transition
from β1 to δ1, at least 0.5 must be assigned to γ1, but C and γ1 cannot be re-
lated. A similar argument shows that B cannot refine β2. The second inequality
is shown by demonstrating two other IMCs, I3 and I2 such that I3 weakly but
not strongly refines I2 (Figure 2b). State A weakly refines state α: Given a value
x for the transition A → C, we can split it in order to match both transitions
α

p·x−−→ δ1 and α
(1−p)·x−−−−−→ δ2. Define δ(C)(δ1) = p and δ(C)(δ2) = (1 − p), with

p = 0 if 0.2 ≤ x ≤ 0.4, p = x−0.3
x if 0.4 < x < 0.8, and p = 0.6 if 0.8 ≤ x. The

correspondence function δ witnesses weak refinement between A and α. How-
ever, there is no such value of p that would work uniformly for all x, which is
required by the strong refinement.

Deciding Thorough Refinement. As weak and strong refinements are strictly
stronger than thorough refinement, it is interesting to investigate complexity
of deciding TR. In [10] a procedure computing TR is given, albeit without a
complexity class, which we establish now, closing the problem:

Theorem 2. The decision problem TR of establishing whether there exists a
thorough refinement between two given IMCs is EXPTIME-complete.

The upper-bound in checking whether I1 thoroughly refines I2 is shown by ob-
serving that the complexity of the subset-simulation algorithm of [10] is O(|Q| ·
2|P |), where Q and P are the set of states of I1 and I2, respectively (see [6]).

Summarizing, all three refinements are in EXPTIME. Still, weak refinement
seems easier to check than thorough refinement. For TR, the number of iterations
on the state-space of the relation is exponential while it is only polynomial for
the weak refinement. Also, the constraint solved at each iteration involves a
single quantifier alternation for the weak, and three alternations for the thorough
refinement.
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The lower bound of Theorem 2 is shown by a polynomial reduction of the
thorough refinement problem for modal transition systems to TR of IMCs. The
former problem is known to be EXPTIME-complete [3].

A modal transition system (an MTS in short) [15] is a tuple M = (S, s0, A,
→, ���), where S is the set of states, s0 is the initial state, and →⊆ S×A×S are
the transitions that must be taken and ���⊆ S×A×S are the transitions that
may be taken. In addition, it is assumed that (→) ⊆ (���). An implementation
of an MTS is a labelled transition system, i.e., an MTS where (→) = (���).
Formal definitions of refinement and satisfaction for MTSs are given in [6].

We describe here a translation of MTSs into IMCs which preserves imple-
mentations, while we delegate the technicalities of the proof to [6]. We assume
we only work with modal transition systems that have no deadlock-states, in
the sense that each state has at least one outgoing must transition. It is easy
to transform two arbitrary MTSs into deadlock-free ones without affecting the
thorough refinement between them [6].

The IMC M̂ corresponding to a MTS M = (S, s0, A,→, ���) is defined by
the tuple M̂ = 〈Q, q0, A ∪ {ε}, ϕ, V 〉 where Q = S × ({ε} ∪ A), q0 = (s0, ε), for
all (s, x) ∈ Q, V ((s, x)) = {x} and ϕ is defined as follows: for all t, s ∈ S and
b, a ∈ ({ε}∪A), ϕ((t, b))((s, a)) =]0, 1] if t a→ s; ϕ((t, b))((s, a)) = [0, 0] if t � a��� s;
and ϕ((t, b))((s, a)) = [0, 1] otherwise. The encoding is illustrated in Figure 4.

Now one can show that I |= M iff [[Î]] ⊆ [[M̂ ]], and use this to show that the
reduction preserves thorough refinement. This observation, which shows how
deep is the link between IMCs and modal transition systems, is formalized in
the following theorem lifting the syntactic reduction to the level of extensional
semantics:

Theorem 3. Let M and M ′ be two Modal Transition Systems and M̂ and M̂ ′
be the corresponding IMCs defined as above. We have

M ≤T M ′ ⇐⇒ M̂ ≤T M̂ ′

Crucially the translation is polynomial. Thus if we had a subexponential al-
gorithm for TR of IMCs, we could use it to obtain a subexponential algorithm
for TR of MTSs, which is impossible [3].
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4 Determinism

Although both are in EXPTIME, deciding weak refinement is easier than de-
ciding thorough refinement. Nevertheless, since these two refinements do not
coincide in general, a procedure to check weak refinement cannot be used to
decide thorough refinement.

Observe that weak refinement has a syntactic definition very much like simula-
tion for transition systems. On the other hand thorough refinement is a semantic
concept, just as trace inclusion for transition systems. It is well known that sim-
ulation and trace inclusion coincide for deterministic automata. Similarly for
MTSs it is known that TR coincides with modal refinement for deterministic
objects. It is thus natural to define deterministic IMCs and check whether thor-
ough and weak refinements coincide on these objects.

In our context, an IMC is deterministic if, from a given state, one cannot
reach two states that share common atomic propositions.

Definition 5 (Determinism). An IMC I=〈Q, q0, ϕ,A, V 〉 is deterministic iff
for all states q, r, s∈Q, if there exists a distribution σ ∈ ϕ(q) such that σ(r) > 0
and σ(s) > 0, then V (r) �= V (s).

Determinism ensures that two states reachable with the same admissible distri-
bution always have different valuations. In a semantic interpretation this means
that there exists no implementation of I, in which two states with the same
valuation can be successors of the same source state. Another, slightly more
syntactic but semantically equivalent notion of determinism is given in [6].

It is worth mentioning that deterministic IMCs are a strict subclass of IMCs.
Figure 5 shows an IMC I whose set of implementations cannot be represented
by a deterministic IMC.

B2

A

B1 C

β

α

β γ

1]0, 1]

]0, 1]
1

1

Fig. 5. An IMC I whose implementations
cannot be captured by a deterministic
IMC

We now state the main theorem of
the section that shows that for deter-
ministic IMCs, the weak refinement,
and indeed also the strong refinement,
correctly capture the thorough refine-
ment:

Theorem 4. Given two deterministic
IMCs I and I ′ with no inconsistent
states, it holds that I ≤T I ′ iff I ≤W I ′

iff I≤S I
′.

5 Common Implementation and Consistency

We now turn our attention to the problem of implementation of several IMC
specifications by the same probabilistic system modeled as a Markov Chain. We
start with a formal definition of the problem:

Definition 6 (Common Implementation (CI)). Given k > 1 IMCs Ii, i =
1 . . . k, does there exist a Markov Chain C such that C |= Ii for all i?
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Somewhat surprisingly we find out that, similarly to the case of TR, the CI
problem is not harder for IMCs than for modal transition systems:

Theorem 5. Deciding the existence of a CI between k IMCs is EXPTIME-
complete.

We sketch the line of argument below, delegating to [6] for details. To establish
a lower bound for CI of IMCs, we reduce from CI of modal transition systems,
which is known to be EXPTIME-complete [2]. For a set of modal transition
systems Mi, i = 1 . . . k, translate each Mi, into an IMC M̂i, using the same
rules as in Section 3. It turns out that the set of created IMCs has a common
implementation if and only if the original modal transition systems had. Since
the translation is polynomial, the problem of CI for IMCs has to be at least
EXPTIME-hard (otherwise it would give a sub-EXPTIME algorithm for CI of
MTSs).

To address the upper bound we first propose a simple construction to check
if there exists a CI for two IMCs. We start with the definition of consistency
relation that witnesses a common implementation between two IMCs.

Definition 7. Let I1 = 〈Q1, q
1
0 , ϕ1, A, V1〉 and I2 = 〈Q2, q

2
0 , ϕ2, A, V2〉 be IMCs.

The relation R ⊆ Q1 × Q2 is a consistency relation on the states of I1 and I2
iff, whenever (u, v) ∈ R, then

– V1(u) = V2(v) and
– there exists a distribution ρ ∈ Distr(Q1 ×Q2) such that

1. ∀u′ ∈ Q1 :
∑

v′∈Q2
ρ(u′, v′) ∈ ϕ1(u)(u′) ∧ ∀v′ ∈ Q2 :

∑
u′∈Q1

ρ(u′, v′) ∈
ϕ2(v)(v′), and

2. ∀(u′, v′) ∈ Q1 ×Q2, if ρ(u′, v′) > 0, then (u′, v′) ∈ R.

It can be shown that two IMCs indeed have a common implementation if and
only if there exists a consistency relation containing their initial states. The
consistency relation can be computed in polynomial time using a standard coin-
ductive fixpoint iteration, where pairs violating Definition 7 are successively
removed from Q1 × Q2. Each iteration requires solving a polynomial number
of linear systems, which can be done in polynomial time [14]. For the general
problem of common implementation of k IMCs, we can extend the above defi-
nition of consistency relation to the k-ary relation in the obvious way, and the
algorithm becomes exponential in the number of IMCs k, as the size of the state
space

∏k
i=1 |Qi| is exponential in k.

As a side effect we observe that, exactly like MTSs, CI becomes polynomial
for any constant value of k, i.e. when the number of components to be checked
is bounded by a constant.

Consistency. A related problem is the one of checking consistency of a single
IMC I, i.e. whether there exists a Markov chain M such that M |= I.

Definition 8 (Consistency (C)). Given an IMC I, does it hold that [[I]] �= ∅?
It turns out that, in the complexity theoretic sense, this problem is easy:
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Theorem 6. The problem C, to decide if a single IMC is consistent, is polyno-
mial time solvable.

Given an IMC I = 〈Q, q0, ϕ,A, V 〉, this problem can be solved by constructing a
consistency relation over Q×Q (as if searching for a common implementation of
I with itself). There exists an implementation of I iff there exists a consistency
relation containing (q0, q0). Obviously, this can be checked in polynomial time.

The fact that C can be decided in polynomial time casts an interesting light on
the ability of IMCs to express inconsistency. On one hand, one can clearly specify
inconsistent states in IMCs (simply by giving intervals for successor probabilities
that cannot be satisfied by any distribution). On the other hand, this inconsis-
tency appears to be local. It does not induce any global constraints on implemen-
tations; it does not affect consistency of other states. In this sense IMCs resemble
modal transition systems (which at all disallow expressing inconsistency), and
are weaker than mixed transition systems [5]. Mixed transition systems relax the
requirement of modal transition systems, not requiring that (→) ⊆ (���). It is
known that C is trivial for modal transition systems, but EXPTIME-complete
for mixed transition systems [2]. Clearly, with a polynomial time C, IMCs cannot
possibly express global behaviour inconsistencies in the style of mixed transition
systems, where the problem is much harder.

We conclude the section by observing that, given the IMC I and a consistency
relation R ⊆ Q×Q, it is possible to derive a pruned IMC I∗ = 〈Q∗, q∗0 , ϕ

∗, A, V ∗〉
that contains no inconsistent states and accepts the same set of implementations
as I. The construction of I∗ is as follows: Q∗ = {q ∈ Q|(q, q) ∈ R}, q∗0 = q0,
V ∗(q∗) = V (q∗) for all q∗ ∈ Q∗, and for all q∗1 , q∗2 ∈ Q∗, ϕ∗(q∗1)(q∗2) = ϕ(q∗1)(q∗2).

6 Related Work and Conclusion

This paper provides new results for IMCs [10] that is a specification formalism
for probabilistic systems. We have studied the expressiveness and complexity
of three refinement preorders for IMCs. The results are of interest as existing
articles on IMCs often use one of these preorders to compare specifications (for
abstraction) [10,12,7]. We have established complexity bounds and decision pro-
cedures for these relations, first introduced in [10]. Finally, we have studied the
common implementation problem. Our solution is constructive in the sense that
it can build such a common implementation.

There exist many other specification formalisms for describing and analyzing
stochastic systems; the list includes process algebras [1,16] or logical frameworks,
[8]. We believe that IMCs is a good unification model. A logical representation is
suited for conjunction, but nor for refinement and vice-versa for process algebra.
As an example, it is not clear how one can synthesize a MC (an implementation)
that satisfies two Probabilistic Computation Tree Logic formulas.

In [12,13], Katoen et al. have proposed an extension of IMCs to the continuous
timed setting. It would be interesting to see our results extend to this new model.
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Abstract. Building on the celebrated Krohn-Rhodes Theorem we char-
acterize classes of regular languages in terms of the cascade decomposi-
tions of minimal DFA of languages in those classes. More precisely we
provide characterizations for the classes of piecewise testable languages
and commutative languages. To this end we use biased resets, which are
resets in the classical sense, that can change their state at most once.
Next, we introduce the concept of the scope of a cascade product of reset
automata in order to capture a notion of locality inside a cascade prod-
uct and show that there exist constant bounds on the scope for certain
classes of languages. Finally we investigate the impact of biased resets
in a product of resets on the dot-depth of languages recognized by this
product. This investigation allows us to refine an upper bound on the
dot-depth of a language, given by Cohen and Brzozowski.

1 Introduction

A significant result in the structure theory of regular languages is the Krohn-
Rhodes Theorem [7], which states that any finite automaton can be decomposed
into simple “prime factors” (a detailed exposition is given in [4,6,9,10]).

We use the Krohn-Rhodes Theorem to characterize classes of regular lan-
guages in terms of the decompositions of the corresponding minimal automata.
In [8] this has been done for star-free languages by giving an alternative proof
for the famous Schützenberger Theorem [11]. In [1] R-trivial languages are char-
acterized (among other things) by proving structural properties of the cascade
products covering their minimal automata. We continue these studies, in an at-
tempt to improve our understanding of the potential of automata decompositions
for classifying regular languages, an approach which is as yet not well developed
in comparison to the structure theory of regular languages based on algebraic
methods (wreath product and block product decomposition of monoids, see [14]).

We treat here the case of piecewise testable and commutative languages, as
well as the star-free languages in their classification by the dot-depth hierarchy.
To this end, we use the concept of a biased reset (called a half reset in [1]) and
introduce locally i-triggered cascade products in order to characterize piecewise
testable languages. For commutative languages we use the notion of one letter
automaton (OLA) and a corresponding one letter cascade product. We show
that a language is commutative iff its minimal automaton is covered by a direct
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product of a one letter cascade product of biased resets and one letter simple
cyclic grouplike automata.

Next we introduce the notion of scope of resets within a cascade product in or-
der to further refine our analysis of the Krohn-Rhodes decomposition. Informally
speaking, the scope of a product of resets is the maximal number of preceding
automata, to which any given factor is still sensitive. The scope measures a
notion of locality in the product. As initial results we show that the scope of
cascade products recognizing R-trivial languages is bounded by 2 and that for
piecewise testable languages, it is bounded by 1.

Finally we pick up a result from Cohen and Brzozowski [2], which bounds the
dot-depth of a star-free language by the number of factors of a cascade product of
resets recognizing it. We show that this result can be refined by counting blocks
of biased resets as a single reset. To this end we show that multiplying (w.r.t.
the cascade product) an arbitrary number of biased resets to an automaton A
increases the dot-depth of languages recognized by the product by at most one
(compared to the dot-depth of languages already recognized by A).

The present paper is based on the diploma thesis [5].

2 Preliminaries

A semiautomaton is a tuple A = (Q,Γ, δA), where Q is a finite set of states, Γ is
a finite set of letters, called the input alphabet of A and δA : Γ → QQ is the state
transition function assigning a mapping aA : Q → Q to each letter a ∈ Γ . By
function composition we can extend these mappings to words w = a1 · · ·an ∈ Γ ∗

by setting wA(q) = an
A(an−1

A(· · · a1
A(q) · · · ))1. A subsemiautomaton of A is a

structure A0 = (Q0, Γ, δ
A
0 ), where Q0 ⊆ Q is closed under the mappings δA(a)

for all a ∈ Γ and δA
0 (a) is the restriction of δA(a) to Q0, a ∈ Γ . A homomorphism

from A = (Q,Γ, δA) to B = (P, Γ, δB) is a mapping ϕ : Q → P with ϕ(aA(q)) =
aB(ϕ(q)) for all q ∈ Q and a ∈ Γ . A covers a semiautomaton B (of the same
input alphabet), written B ≤ A, if B is the image of a subsemiautomaton of A
under some homomorphism ϕ.

A deterministic finite automaton (DFA) is a semiautomaton A = (Q,Γ, δ)
with a designated initial state q0 ∈ Q and a set F ⊆ Q of final states. In
this situation we sometimes write (A, q0, F ) or (using the same symbol for the
DFA and the corresponding semiautomaton) A = (Q,Γ, q0, δ, F ). If A is a DFA,
then the language accepted by A is denoted by L(A) = {w ∈ Γ ∗|wA(q0) ∈ F}.
A single semiautomaton constitutes the foundation of several DFA. Hence, a
semiautomaton “recognizes” a set of languages: L(A) = {L ⊆ Γ ∗|∃q0 ∈ Q, F ⊆
Q : L = L(A, q0, F )}. If L ∈ L(A) we say L is recognized by A. Given a regular
language L ⊆ Γ ∗ we denote the canonical DFA for L by AL. As noted above,
we often identify a DFA with the underlying semiautomaton. This identification
is used in the following proposition, the proof of which is left to the reader:

Proposition 1. Given a semiautomaton A and a regular language L, we have
L ∈ L(A) iff AL ≤ A.
1 Note that the empty word induces the identity mapping.
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In what follows we will often deal with two kinds of semiautomata: resets and per-
mutation automata. A reset automaton2 is a semiautomaton R = ({0, 1}, Γ, δR),
where for any input a ∈ Γ the induced mapping aR is either the identity on B :=
{0, 1} or has constant value x ∈ B. Conversely, a permutation automaton is an au-
tomaton P = (Q,Γ, δP), such that every input a ∈ Γ induces a permutation (that
is, a bijective function).

Recall that a monoid M divides a monoid N , written M ≺ N , if there exists
a surjective monoid homomorphism ψ : N0 → M from a submonoid N0 of N
onto M . As with coverings of automata, the division relation is transitive and
reflexive. We recall that the transition monoid of an automaton is the set M(A)
of all mappings wA : Q → Q for w ∈ Γ ∗. In the special case where A is a
permutation automaton, the monoid M(A) is a group G. If A has precisely |G|
states we call A a grouplike automaton. Notice that in this case, we may identify
the states from Q with elements from G. G is the group associated with A.
A grouplike automaton G is simple (cyclic) if the associated group is simple
(cyclic). Since the number of states is equal to |G| it makes sense to speak of the
order of G, which we define to be the order of G.

Given two automata A = (Q,Γ, δA) and B = (P, Γ ×Q, δB) we define

δA∗B(a) := aA∗B : Q× P → Q× P

(q, p) �→ (aA(q), (a, q)
B

(p))

The automaton A ∗ B = (Q×P, Γ, δA∗B) is called the cascade product of A and
B. We recall a few important properties of the cascade product:

Theorem 1 (see [6]). Let A, B and C be semiautomata with input alphabets
of the suitable format. Then the following hold:

(1) (A ∗ B) ∗ C = A ∗ (B ∗ C)
(2) If A ≤ B then C ∗ A ≤ C ∗ B

The following theorem is the basis for our task of characterizing language classes:

Theorem 2 (Krohn, Rhodes, [7]). Let A be a semiautomaton. Then

A ≤ F1 ∗ · · · ∗ Fn

for semiautomata Fi, such that each Fi is either a reset or a simple grouplike
automaton with M(Fi) ≺ M(A).

A detailed exposition of the Krohn-Rhodes Theorem is given in [3,4,6]. We will
call a decomposition of an automaton A, which is of the form stated in Theorem
2, a Krohn-Rhodes decomposition (of A).

2 Reset automataareoften introduced in amoregeneral fashion, allowing for an arbitrary
numberof states.However, if a reset automatonhasmore than2 states, it canbe covered
by a direct product of 2-state reset automata (see, for instance, [6]).
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3 Piecewise Testable Languages

In this section we want to characterize piecewise testable languages in terms
of their cascade products. Recall that a language is piecewise testable iff it is a
Boolean combination of expressions of the form Γ ∗a1Γ

∗ · · ·Γ ∗anΓ
∗ for letters

a1, . . . , an ∈ Γ , n ∈ N0 (if n = 0 we obtain Γ ∗). There are several character-
izations for piecewise testable languages (see for instance [1,9,10,12,15,13]). It
should be mentioned that the characterization from [13] (stated in terms of ma-
trices over a semiring) is very similar to the one we give below, yet not stated
in terms of semidirect products. This result is again mentioned in [15] in the
context of a discussion of restricted semidirect products. The decomposition ob-
tained thereby is indeed very close the one we give below. As we give a purely
automaton theoretic proof (the proof from [15] is purely algebraic) it would be
interesting to investigate whether one can be obtained from the other.

Definition 1. Let R1 ∗ · · · ∗ Rn be a cascade product of resets.

(a) We say the reset Ri has scope k if for every pair of inputs (a, (x1, . . . , xi−1))
and (a, (y1, . . . , yi−1)) with yj = xj for all i − k ≤ j ≤ i − 1 the induced
mappings are equal, i.e.

(a, (x1, . . . , xi−1))
Ri

= (a, (y1, . . . , yi−1))
Ri

(b) The scope of Ri is the minimal number k, such that Ri has scope k. The
scope of the product R1 ∗ · · · ∗ Rn is the maximal scope of a reset Ri.

(c) If b ∈ B, we call the product above strictly locally b-triggered, if it has scope
1 and for every reset Ri every input of the form (a, (x1, . . . , xi−2, 1 − b))
induces the identity mapping. A product is called locally b-triggered, if it is
a direct product of strictly locally b-triggered products.

In other words, the scope of a reset counts the number of resets preceding it in
a cascade, such that it is sensitive to the state of these resets. For example, a
cascade product degenerates to a direct product iff it has scope 0. Strictly locally
b-triggered products add another constraint to this, namely that the reset may
only alter its state if the immediately preceding reset is in state b. We will return
to the scope of a cascade product in Sec. 5.

A reset R = (B, Γ, δ) is b-biased, where b ∈ B, if for every input a ∈ Γ we
have aR = idB or for all q ∈ B we have aR(q) = b. In the second case, we write
aR ≡ b. A reset R is biased if it is b-biased for some b. We can now state:

Theorem 3. A language L is piecewise testable iff it is recognized by a locally
b-triggered cascade product of b-biased resets.

Notice that this yields a Krohn-Rhodes decomposition of AL by Proposition 1.
We will dedicate the remainder of this section to proving this result. To this end
we first verify that all piecewise testable languages are recognized by a locally
b-triggered cascade product of b-biased resets. Without loss of generality we will
henceforth assume b = 1 (otherwise we rename the states).



290 M. Gelderie

By the definition of piecewise testable languages above it is sufficient to show
that every language of the form L = Γ ∗a1Γ

∗ · · ·Γ ∗anΓ
∗ is recognized by such

a product: Boolean combinations can be recognized by direct products and a
direct product of locally 1-triggered products is again locally 1-triggered. Given
L, we define n 1-biased resets R1, . . . ,Rn by setting3:

(a, (x1, . . . , xi−1))
Ri(b) =

{
1 if xi−1 = 1 ∧ a = ai

b otherwise

for all b ∈ B, a ∈ Γ and (x1, . . . , xi−1) ∈ Bi−1. Then every Ri is 1-biased and
R1 ∗ · · · ∗ Rn is strictly locally 1-triggered and evidently accepts L with initial
state q0 = (0, . . . , 0) and final states {(1, . . . , 1)}.

Before embarking on showing the converse, we need a bit of preparation:

Remark 1. Let R = (B, Γ, δ) be a 1-biased reset and let Γ1 = {a ∈ Γ |aR ≡ 1}.
Then4 L(R) = {∅, Γ ∗,

⋃
a∈Γ1

Γ ∗aΓ ∗,
⋂

a∈Γ1
Γ ∗aΓ ∗}. In particular all languages

from L(R) are piecewise testable.

We now investigate the languages recognized by cascade products of biased
resets:

Lemma 1. Let A = (Q,Γ, δA) be a semiautomaton and let R = (B, Γ ×Q, δR)
be a 1-biased reset. Then every language recognized by A ∗ R is a finite union of
languages of one of the following three forms (for suitable p0, pF ∈ Q):

(1) L ∈ L(A)
(2) L =

⋃
(a,q)∈S1

L(A, p0, {q}) · a · L(A, aA(q), {pF })

(3) L =
( ⋃

(a,q)∈S1

L(A, p0, {q}) · a · Γ ∗
)
∩ L(A, p0, {pF})

where S1 = {(a, q) ∈ Γ ×Q | (a, q)
R ≡ 1}.

The proof of this lemma is not difficult, but omitted due to space constraints.
The reader is referred to [5].

Lemma 2. If A := R1 ∗ · · · ∗ Rn is a strictly locally 1-triggered cascade product
of 1-biased resets Ri = (B, Γ × Bi−1, δRi), i = 1, . . . , n, then every language
recognized by A with accepting states {(x1, . . . , xn)|xn = 1} ⊆ Bn is a finite
union of languages of the form Γ ∗a1Γ

∗ · · ·Γ ∗amΓ ∗, m ∈ N0.

The proof of this lemma is by induction on n and uses Lemma 1 and Remark 1.
For details the reader is again referred to [5].

This enables us to complete the proof of Theorem 3. Let A be a locally 1-
triggered cascade product of 1-biased resets. Then A is a direct product of strictly
3 We use the convention Γ × B0 = Γ and accordingly (a, (x1, . . . , xi−1)) = a if i = 1.
4 Given a language L ⊆ Γ ∗ we denote the complement language by L = Γ ∗ \ L.
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locally 1-triggered cascade products of 1-biased resets. Therefore all languages
from L(A) are Boolean combinations of the languages recognized by strictly lo-
cally 1-triggered products. Since the piecewise testable languages form a Boolean
algebra, it is sufficient to show that all strictly locally 1-triggered cascade prod-
ucts of 1-biased resets recognize only piecewise testable languages.

Hence assume that A := R1 ∗ · · · ∗ Rn is strictly locally 1-triggered. Let
q0 ∈ Bn and F = {(f1,1, . . . , f1,n), . . . , (fr,1, . . . , fr,n)}. Since L(A, q0, F ) =⋃r

i=1 L(A, q0, {(fi,1, . . . , fi,n)}) we may assume that F = {(f1, . . . , fn)}. Sup-
pose q0 = (q0,1, . . . , q0,n) and let q0,i = 1. Then, because A is strictly lo-
cally 1-triggered, L = L(A, q0, F ) is the intersection of the languages J =
L(R1 ∗ · · · ∗ Ri, (q0,1, . . . , q0,i), {(f1, . . . , fi)}) and K = L(R̃i+1 ∗ Ri+2 ∗
· · · ∗ Rn, (q0,i+1, . . . , q0,n), {(fi+1, . . . , fn)}) where R̃i+1 is obtained from Ri+1

by treating all inputs a ∈ Γ as (a, (0, . . . , 0, 1)). Since both resulting products
are again strictly locally 1-triggered, we may assume that q0 = (0, . . . , 0).

Now assume that fn = 1. Then, since A is strictly locally 1-triggered and
since all resets are 1-biased, we have f1 = . . . = fn = 1 or the language L =
L(A, q0, {(f1, . . . , fn)}) is empty. Hence L(A, q0, {(x1, . . . , xn)|xn = 1}) = L,
since (1, . . . , 1) is the only state with xn = 1 reachable from q0. By Lemma 2 we
see that L is a finite union of languages of the form Γ ∗a1Γ

∗ · · ·Γ ∗arΓ
∗.

If fn = 0 we pick i ∈ {1, . . . , n − 1} maximal (if it exists) with fi = 1. If
no such i exists, then clearly L = L(R1, 0, {1}), which is piecewise testable.
Hence we assume such an index i exists. Since A is strictly locally 1-triggered
we see that f1 = · · · = fi = 1, since otherwise (f1, . . . , fn) is again unreachable
from q0. Furthermore we must have fi+2 = · · · = fn = 0 for the same rea-
son. This implies that Ri+2, . . . ,Rn are irrelevant to the acceptance behavior of
(A, q0, (f1, . . . , fn)). Thus we may assume that i = n− 1.

Using the results from the case fn = 1 we get that K := L(R1 ∗ · · · ∗
Rn−1, (0, . . . , 0), {(1, . . . , 1)}) is a finite union of languages Γ ∗a1Γ

∗ · · ·Γ ∗arΓ
∗.

Now by Lemma 1 L is a finite union of languages of the form KσΓ ∗ ∩K. Since
the piecewise testable languages are closed under the Boolean operations this
concludes the proof.

4 Commutative Languages

In this section we embed the well known results on commutative languages
into our framework. We first recall the definition. For w = a1 · · · an ∈ Γ ∗ let
Perm(w) = {aπ(1) · · · aπ(n)|π ∈ Sn}, where Sn denotes the symmetric group
on n points. A language L is commutative if Perm(w) ⊆ L for every w ∈ L.
This is evidently the case iff M(L) is commutative iff AL is commutative. Recall
that a semiautomaton is commutative if wA(p) = q implies vA(p) = q for all
v ∈ Perm(w).

Definition 2. Let L ⊆ Γ ∗ be regular.
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(a) If there exists N ⊆ N0 and a0 ∈ Γ with L = {w ∈ Γ ∗| |w|a0 ∈ N}, then L is
called 1-semilinear (with respect to a0)56.

(b) A semiautomaton A, such that there exists a letter a0 ∈ Γ with a0
A �= id

and aA = id for all a0 �= a ∈ Γ is called one letter automaton (OLA) (with
respect to a0).

1-semilinear languages are commutative. Clearly languages accepted by OLA are
1-semilinear. Furthermore 1-semilinear languages yield canonical DFA, which are
OLA (for the proof one can use, for instance, Moore’s minimization algorithm).
A cascade product, such that the automaton it defines is an OLA, is a one letter
cascade product. We recall that a language is commutative iff it is a Boolean
combination of 1-semilinear languages (for details the reader is referred to [10]).

We now turn towards characterizing OLA by their Krohn-Rhodes decomposi-
tions. We first observe that minimal OLA (i.e. those that are canonical DFA for
some (1-semilinear) language L) have a very simple form. If AL = (Q,Γ, q0, δ, F )
is the minimal DFA for a 1-semilinear language L (with respect to a ∈ Γ ) then
there exist i < j minimal, such that wi

AL(q0) = wj
AL(q0), where wk = ak for

k ∈ N0. Since AL is an OLA w.r.t. a all states from Q occur in the sequence
w0

AL(q0), w1
AL (q0), . . . , wj−1

AL(q0) (AL is minimal). Set qk := wk
AL(q0). Then

we obtain two disjoint sets Qtail = {q0, . . . , qi−1} and Qloop = {qi, . . . , qj−1}.

Lemma 3. Let AL be an OLA. Then AL ≤ R1 ∗ · · · ∗ Ri × C, where R1 ∗ · · · ∗
Ri is a one letter cascade product of 1-biased resets and C is a cyclic one letter
grouplike automaton of order j − i (where i < j are as above).

Proof. Choose i and j as in the previous paragraph. For R1 ∗ · · · ∗ Ri we
pick the product recognizing (Γ ∗aΓ ∗)i as constructed in Sec. 3. We define C =
(Qloop, Γ, δ

′) by δ′(x) = xAL |Qloop
for x ∈ Γ . Pick r ∈ Qloop such that wi

C(r) =
qi, i.e. r is chosen such that after seeing i a’s we end up in the first state of
Qloop visited when starting from q0. Define A ⊆ Bi ×Qloop by starting out from
(0, . . . , 0, r) and adding all states reachable in R1 ∗ · · · ∗ Ri ×C. Then A defines
a subsemiautomaton. Notice that for (x1, . . . , xi, q) ∈ A there exists 0 ≤ k ≤ i
such that x1 = · · · = xk = 1 and xk+1 = · · · = xi = 0. Denote this integer k by
max(x1, . . . , xi). Then we define ψ : A → Q by (x1, . . . , xi, q) �→ qmax(x1,...,xi) if
max(x1, . . . , xi) < i and q otherwise. Is is left to the reader to verify that ψ is a
surjective homomorphism onto AL. ��

The grouplike automaton C in the lemma above need not be simple. Hence we
decompose C further in order to arrive at a Krohn-Rhodes decomposition. It is
well known that for every finite cyclic group C we have C ∼= Z/mZ ∼= ×s

i=1Z/miZ
where |C| = m =

∏s
i=1 mi and the mi are pairwise coprime prime powers. We

will give an automaton theoretic equivalent of this fact. Denote by Cn the group
(Z/nZ,+), n ∈ N, and denote the n-class of an integer i by [i]n. Returning to

5 The name results from the fact that the Parikh image of such a language is deter-
mined by just one dimension.

6 Here |w|a denotes the number of occurrences of the letter a ∈ Γ in w.
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the grouplike automaton from the previous lemma, let the order of C be m.
Define H = (Cm, Γ, δH) where xH([i]m) = [i + 1]m if x = a and [i]m otherwise,
x ∈ Γ . Evidently C ∼= H and so in particular C ≤ H. Define Ci = (Cmi , Γ, δ

Ci)
in the same way as H (that is for x ∈ Γ let xCi([k]mi) = [k + 1]mi if x = a and
[k]mi otherwise). Then evidently all Ci are one letter cyclic grouplike automata
and we have H ∼= C1 × · · · × Cs. For the proof of this statement, one uses the
(group) isomorphism obtained from classical group theory and verifies that it is
also a homomorphism of automata. It remains to decompose grouplike one letter
automata of the form C = (Cpk , Γ, δ) for some prime p and some k ∈ N.

Lemma 4. C ≤ (Cp, Γ, δ
1) ∗ · · · ∗ (Cp, Γ × Ck−1

p , δk), for cyclic grouplike au-
tomata (Cp, Γ × Ci−1

p , δi), 1 ≤ i ≤ k. The cascade product defines an OLA.

Proof. The proof is by induction on k. If k = 1 there is nothing to show.
For the induction step we define D = (Cp, Γ, δ

D) by xD([i]p) = [i + 1]p if
x = a ∈ Γ and [i]p otherwise, x ∈ Γ . Then define H = (Cpk−1 , Γ × Cp, δ

H)

by (a, [p− 1]p)
H

([i]pk−1) = [i + 1]pk−1 and (x, [r]p)
H

([i]pk−1) = [i]pk−1 for all
(x, [r]p) �= (a, [p−1]p). Observe that D ∗ H is an OLA. By the induction hypoth-
esis and Theorem 1 we are done if we show that C ≤ D ∗ H. To this end define
ϕ : Cp ×Cpk−1 → Cpk by ϕ([i]p, [j]pk−1) = [(i mod p) + j · p]pk . This mapping is
well-defined (as one easily verifies) and is a homomorphism of semiautomata. We
only treat the case of the letter a, the case of the remaining letters being trivial.
We have aC(ϕ([p− 1]p, [j]pk−1)) = [(p− 1 + j · p) + 1]pk = ϕ([0]p, [j + 1]pk−1). If
0 ≤ i < p− 1, then aC(ϕ([i]p, [j]pk−1)) = [i+ j · p+ 1]pk = ϕ([i+ 1]p, [j]pk−1). ��
In summary, we have shown:

Theorem 4. Let L ⊆ Γ ∗. The following are equivalent:

(1) L is commutative
(2) AL ≤ (×k

i=1 Ri,1 ∗ · · · ∗ Ri,ni

)× (×r
i=1 Ci,1 ∗ · · · ∗ Ci,mi

)
, where all cascade

products define one letter automata, all resets are biased, all grouplike au-
tomata are cyclic of prime order and the orders of Ci,j and Ci′,j′ are equal
iff i = i′.

5 The Scope of Cascade Products

In Definition 1 we introduced the scope of a cascade product. Notice this defini-
tion was only stated for cascade products consisting of resets. We are therefore
only dealing with star-free languages. We now want to use this notion to in-
vestigate language classes: Given a class C of star-free languages (e.g. piecewise
testable languages, R-trivial languages etc.), what can be said about the scope
of a cascade product recognizing the languages from C? If there exists k ∈ N0,
such that every L ∈ C is recognized by a cascade product of scope at most k,
then we say C has constant scope or has scope k. From Theorem 3 we can deduce:
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Proposition 2. The class of piecewise testable languages has scope 1.

Recall that a language is R-trivial if its syntactic monoid M(L) is R-trivial, i.e.
if mM(L) = nM(L) iff m = n for all m,n ∈ M(L). We have:

Theorem 5. The class of R-trivial languages has scope 2.

The idea of the proof is to decompose an R-trivial language L into a union of left-
deterministic products7 and then to show how to cover the minimal automata
for such products by a scope 2 product of biased resets. For a detailed proof,
which we omit due to space constraints, the reader is referred to [5].

6 Cascade Products and Dot-Depth

In this section we will make extensive use of first order logic. We will be using
formulas from the logic FO[min,max, (Pa)a∈Γ , <, S]. Such formulas will be in-
terpreted in word models: Let w = b1 · · · bm ∈ Γ ∗. Then the model associated
with w is denoted w = ({1, . . . ,m}, 1,m, ({i|bi = a})a∈Γ , <, S) where S(x, y)
iff y = x + 1 and < is the usual order on natural numbers. If ϕ is a sentence
we write L(ϕ) = {w ∈ Γ ∗| w |= ϕ} for the language specified or accepted by
ϕ. If ϕ(x̄) has free variables x̄ = (x1, . . . , xn) then we write (w, k̄) |= ϕ(x̄) for
k̄ = (k1, . . . , kn) if ϕ holds in w with xi interpreted by ki.

As usual we denote by Σn the set of FO-formulas, which are equivalent to
a formula in prenex normal form with n quantifier alternations beginning with
a block of existential quantifiers, e.g. ∃x̄1∀x̄2 · · ·Qnx̄nϕ(x̄1, . . . , x̄n) where ϕ is
quantifier free and Qn is existential iff n odd. We then define Πn to be the set of
formulas, the negation of which is in Σn and we set Δn = Σn∩Πn. Given a set of
formulas Φ we define BC(Φ) to be the set of all Boolean combinations of formulas
in Φ. Immediately from the definitions one gets BC(Σn) = BC(Πn) ⊆ Δn+1 and
BC(Δn) = Δn for all n ∈ N. Also, we recall that disjunctions and conjunction
of Σn (resp. Πn) formulas is again a Σn (resp. Πn) formula. Given a set Φ of
formulas, we often write L ∈ Φ if L = L(ϕ) for some sentence ϕ ∈ Φ.

We now recall the dot-depth of star-free languages. To this end let B0 be the
set of all finite and co-finite languages. For n ∈ N0 define Bn+1 to be the set of all
Boolean combinations of languages L1a1L2 · · ·Ln−1an−1Ln where L1, . . . , Ln ∈
Bn and a1, . . . , an ∈ Γ . One can show that

⋃
n∈N0

Bn is the set of star-free
languages8. The dot-depth of a language L is the number n ∈ N, such that
L ∈ Bn \ Bn−1 (or 0 if L ∈ B0). The dot-depth is intimately tied to logic:

Theorem 6 (Thomas, [16]). L ∈ Bn iff L ∈ BC(Σn) for n ∈ N.

Notice the theorem makes no statement about level 0. The following theorem is
due to Brzozowski and Cohen. In its original formulation it did not make any

7 Recall a product Γ0a1Γ1a2Γ2 · · · anΓn is left-deterministic if for every i = 1, . . . , n
we have ai /∈ Γi−1 (see [1,9] for details).

8 See [2,9,10] for details.
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references to logic. We give an alternative proof using logic and can thereby place
the languages more precisely within a given level of the hierarchy9:

Theorem 7 (Cohen, Brzozowski, [2]). Let L be recognized by a cascade prod-
uct R1 ∗ · · · ∗ Rn of n resets. Then L ∈ Δn+1 and so has dot-depth at most
n + 1.

Proof. The proof is by induction on n. The induction start is left to the reader.
For the induction step write A = R1 ∗ · · · ∗ Rn−1 = (Q,Γ, δA). Then L(A) ⊆ Δn

by the induction hypothesis. Let L(q, b) = L(A ∗ Rn, (q0, b0), {(q, b)}). Then
every language in L(A ∗ Rn) is a union of languages of this form. It is sufficient
to show L(q, b) ∈ Σn+1 for all states (q, b). The claim follows from the fact that
L(q, b) ∈ Σn+1 as well, hence L(q, b) ∈ Σn+1 ∩Πn+1 = Δn+1.

We pick a formula ϕq(x) ∈ Δn, such that for w = a1 · · · am ∈ Γ ∗ we have
(w, k) |= ϕq(x) iff a1 · · · ak ∈ L(q) = L(A, q0, {q}) for q ∈ Q. Denote by Γ (i) ⊆
Γ × Q the set of inputs inducing the constant i-mapping in Rn for i ∈ B.
Then L(q, b) is specified by ϕq(max)∧∃x∃z1∀y∀z2

(∨
(a,q′)∈Γ (b) ϕq′ (x)∧Pa(z1)∧

S(x, z1) ∧
(

(S(y, z2) ∧ y > x) → ∧
(a,q′)∈Γ (1−b)(¬ϕq′ (y) ∨ ¬Pa(z2))

))
, which is

in Σn+1 since ϕq ∈ Δn for all q ∈ Q. ��
We will now refine the result from Theorem 7. However, before moving on, we
recall from [1] that the state set Q of a cascade product of biased resets is
partially ordered, i.e. there exists a partial order � on Q, such that for all a ∈ Γ
and all q ∈ Q we have q � a(q). We note that we can extend this partial order,
to a total order, which is still compatible with the transitions in the way just
outlined. We will say the state set is ordered.

Lemma 5. Let A = (Q,Γ, δA) be a semiautomaton, such that L(A) ⊆ Δn for
some n ∈ N. Then L(A ∗ R1 ∗ · · · ∗ Rk) ⊆ Δn+1, where Ri is a biased reset for
i = 1, . . . , k, k ∈ N.

Proof. Let S = {1, . . . , r} be the state space of O = R1 ∗ · · · ∗ Rk. We may
assume the compatible order on S to coincides with ≤ (the usual order on N).
Denote by Γi,j ⊆ Γ ×Q the set of inputs which map i to j. Notice that in a run
O can change its state at most r − 1 times.

Write B := A ∗ O. Let L = L(B, (q0, i0), {(qF , f)}), where q0, qF ∈ Q and
i0, f ∈ S. Then all languages in L(B) are unions of languages of this form (and
therefore defined by disjunctions of the corresponding formulas). For q ∈ Q and
w = a1 · · ·am ∈ Γ ∗ let ϕq(x) ∈ Δn be such that (w, t) |= ϕq(x) iff a1 · · ·at ∈
L(A, q0, {q}). Then clearly L(A, q0, {q}) = L(ϕq(max)). We treat only the case
i0 �= f . The other case requires an adjustment term, which checks the possibility
of staying in i0 = f . Define θ to be

9 The result from [2] yields L ∈ Bn+1 = BC(Σn+1), which is a superset of Δn+1.
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r−1∨
j=1

∃x1 · · · ∃xj∀y0 · · · ∀yj

(
y0 < x1 < y1 · · · < yj−1 < xj < yj ∧

∨
(i1,...,ij−1)∈Sj−1(

ψi0,i1(x1) ∧ . . . ∧ ψij−1,f(xj) ∧
j−1∧
k=0

∧
s�=ik

¬ψik,s(yk) ∧
∧
s�=f

¬ψf,s(yj)
))

where ψt,u(x) ≡ (
x = min∧∨

(a,q0)∈Γt,u
Pa(min)

) ∨ (
x > min∧∃y(S(y, x) ∧∧

(a,q)∈Γt,u
ϕq(y)∧Pa(x))

)
. ψt,u(x) verifies that O changes to state u upon read-

ing the letter at position x if O was in state t before. θ says that for some suitable
j we have precisely j state changes leading from i0 to f . Since we can replace
∃y(S(y, x)∧· · · by ∀y(S(y, x) → · · · , we have ψi,j ∈ Δn, hence θ ∈ Σn+1. Again
(see proof of Theorem 7) we conclude θ ∈ Δn+1 (the complement language is
also in Σn+1). Clearly L = L(θ ∧ ϕqF (max)), which is a Δn+1 formula. ��
Hence biased resets as factors in a cascade product have a limited impact on the
dot-depth. We now define the biased reset complexity of a cascade product. In-
formally, the biased reset complexity is the number of resets in a product, where
every block of biased resets is counted as a single reset. For instance, indicating
biased resets by a square and non-biased resets by a circle, the following product
has biased reset complexity 6:

More formally, let R1 ∗ · · · ∗ Rn be a cascade product of resets. Let B =
{(i, j)|Rk biased for i ≤ k ≤ j and Ri−1,Rj+1 not biased}. Let m be the num-
ber of biased resets in the product. The biased reset complexity is n−m + |B|.
The following theorem is now immediate:

Theorem 8. Let R1 ∗ · · · ∗ Rn be a cascade product of resets with biased reset
complexity k. Then L(R1 ∗ · · · ∗ Rn) ⊆ Δk+1.

The following example shows that the bound given in Theorem 8 is not tight.

Example 1. Consider L := Γ ∗aΓ ∗bΓ ∗aΓ ∗bΓ ∗ where Γ = {a, b}. Then define
three resets as depicted in Fig. 1. The cascade product R1 ∗ R2 ∗ R3 recognizesL
with initial state (0, 0, 0) and final states {(0, 1, 1), (1, 1, 1)}. Notice that Theorem
7 yields L ∈ Δ4, Theorem 8 yields L ∈ Δ3, but L ∈ Σ1 as one easily verifies.

10

a

b

b

a

(a) R1

10
(b, 1)

(b, 1)

(b) R2

10
(b, 1, 1)

(b, 1, 1)

(c) R3

Fig. 1. Resets for the language L. Inputs, which have not been specified, are assumed
to induce the identity mapping.
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7 Conclusion

Motivated by the Krohn-Rhodes Theorem we classified several classes of regu-
lar languages via their cascade decompositions. The concepts used, respectively
introduced in this study, were biased resets, locally triggered cascade products,
and the scope and the biased reset complexity of cascade products.

This paper gives initial results on the introduced concepts; it leads to several
interesting questions left open here. For example, it should be answered whether
for each n there is a star-free language Ln which needs at least scope n in the
cascade decomposition of any (minimal) automaton accepting Ln. As another
direction for future research (connected with the final result), we mention that
the biased reset complexity of decompositions of automata for star-free languages
seems to deserve a closer study.

Acknowledgments. The author thanks his supervisor Wolfgang Thomas and
the reviewers of this paper for their advice and many helpful suggestions.
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Abstract. Let g1, h1 : {a, b}∗ → {a, b}∗ be successor morphisms of
non-periodic binary morphisms g, h. Suppose that g, h have a minimal
solution which is not simple. Let (e, f), (e′, f ′) be letter blocks of g1, h1,
that is, a prefix minimal pairs of words such that g1(e) = h1(f) and
g1(e′) = h1(f ′). In this paper we will show that if the primitive roots of
words {g1(a), g1(b), h1(a), h1(b), e, f, e′, f ′} have the length at least
two, then the length of both letter blocks (e, f), (e′, f ′) is bounded by a
constant.

1 Introduction

An equality word, also called a solution, of morphisms g, h : Σ∗ → Δ∗ is a word
w satisfying g(w) = h(w). All equality words of the morphisms g, h constitute
the set Eq(g, h), which is called the equality language of g and h. The concept
of equality language was first introduced in [12] and since then has been widely
studied. Equality languages have achieved particular importance in the represen-
tation theory of formal languages since every recursively enumerable language
can be effectively found as a morphic image of an equality language, see [1].

The simplest non-trivial equality language is the equality language of binary
morphisms. Although the binary equality language may seem at first sight very
simple, in reality its structure is still unknown. One of the important results
concerning binary equality languages is that the set of all binary equality lan-
guages containing at least one non-empty word is recursive (see [2], a complete
proof given in [5]). This algorithmic problem known as the PCP(2) is a special
variant of the Post Correspondence Problem (PCP), whose undecidability was
proved by E. Post in [10].

As the PCP is one of the most emblematic algorithmic problems, lot of at-
tention has been paid to its special variants. It is known that the PCP remains
undecidable for instances whose domain alphabet is of size at least seven. On the
other hand, the marked version of the PCP, that is when image words of both
morphisms start with different letters of the target alphabet, was proved to be
decidable (see [6]). The complexity of described decision algorithms for both the
PCP(2) and the marked PCP is exponential. However, in case of the PCP(2), a
polynomial algorithm was found in 2002 (see [7]).

The leading role in the proof of decidability of the PCP(2) is played by a
reduction sequence of successor morphisms. Successor morphisms in the reduc-
tion sequence of g, h are in most cases strictly simpler than the previous pair

A.-H. Dediu, S. Inenaga, and C. Martín-Vide (Eds.): LATA 2011, LNCS 6638, pp. 298–309, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of morphisms. A measure of ‘simplicity’ of a morphism in this case is its suffix
complexity, which is simply the number of different non-empty suffixes of either
of two image words. Although during the process we can reach a pair of mor-
phisms with the same suffix complexity as its predecessor, these exceptions are
known and can be treated separately. The complete classification of morphisms
with stable suffix complexity can be found in [8].

Importantly, since elements of binary equality language are also transformed
into simpler structures during the process of creation of the reduction sequence,
determining the length of this sequence would be useful in the analysis of the
structure of binary equality languages. Notice, however, that even though the
problem of finding the structure of binary equality languages uses some facts
from the proof of the PCP(2), both problems are significantly different.

Let g1, h1 : {a, b}∗ → {a, b}∗ be a pair of successor morphisms of g, h. Sup-
pose that morphisms g, h have a minimal solution which does not have unique
overflows. Let (e, f), (e′, f ′) be letter blocks of g1, h1, that is, a prefix minimal
pairs of words such that g1(e) = h1(f) and g1(e′) = h1(f ′). In this paper we will
show that the length of both letter blocks (e, f), (e′, f ′) is bounded by a constant
unless any of the words from {g1(a), g1(b), h1(a), h1(b), e, f, e′, f ′} are a power of
a letter.

From the bound for the length of the letter blocks of morphisms g1, h1 we can
get directly the bound for the suffix complexity of their successors and thus a
bound for the length of the reduction sequence of successor morphisms of g, h.

2 Basic Concepts and Definitions

The standard terminology and basic facts of combinatorics on words (see for
example [9] and [11]) will be used throughout the text. Particularly, a reader
shall recall that a binary morphism g : {a, b}∗ → Δ∗ is marked if the image
words g(a) and g(b) start with different letters. We shall use u ≤p v when u is
a prefix of v and u <p v when u is a non-empty proper prefix of v. Similarly,
u ≤s v expresses the fact that u is a suffix of v and u <s v means that u is a
non-empty proper suffix of u. The set of all suffixes of a word u will be denoted
by Suff(u). Two words are suffix comparable if one is a suffix of another. The
greatest common prefix of two words u and v shall be denoted by u∧ v. A (one-
way) infinite word composed of infinite number of copies of a word u will be
denoted by uω. By the length of a word u we mean the number of its letters
and we denote it by |u|. Similarly, the number of occurrences of the letter a in u
will be denoted by |u|a. It should be also mentioned that the primitive root of a
word u is the shortest word p such that u = pk for some positive k. The notation
prefk(u) will be used for the word v ≤p u such that |v| = k. Since any alphabet
can be encoded by two letters, we will suppose that g : {a, b}∗ → {a, b}∗.

It is a well-known fact that two words u, v commute if and only if they have
the same primitive root. A binary morphism g : {a, b}∗ → {a, b}∗ is called non-
periodic if its image words g(a) and g(b) do not commute. In what follows, we
will be interested only in non-periodic morphisms.
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Binary morphims have the following very important property: For each non-
periodic binary morphism g : {a, b}∗ → {a, b}∗ there is a uniquely given marked
(non-periodic) binary morphism gm : {a, b}∗ → {a, b}∗ and a word zg such that
for all words w ∈ {a, b}∗ we have g(w) = zggm(w)z−1

g . One should note that zg

is in fact equal to g(ab) ∧ g(ba) (see [11], p. 348).

Critical overflow. Let g, h : {a, b}∗ → {a, b}∗ be two binary non-periodic mor-
phisms and gm, hm be their marked versions. If the words zg and zh are suffix
comparable, we define the critical overflow c(g, h) of g, h by

c(g, h) = zhz
−1
g .

Note that if the original morphisms g and h are marked, the critical overflow
exists and is empty.

Solution. Let g, h : {a, b}∗ → {a, b}∗ be two binary morphisms. A word w is a
solution of g, h if g(w) = h(w). We say that a solution w is minimal if it is not
a prefix of any other solution. A solution w is called simple if all overflows are
unique. That is, if w1, w1u, w2 and w2u

′ are prefixes of wω such that

g(w1)z = h(w2) and g(w1u)z = h(w2u
′)

for some word z ∈ {a, b}∗ ∪ ({a, b}−1)∗, then |u| = |u′| = k|w| for some k ∈ N+.
Notice that every simple solution is minimal. However, the reverse implication
does not hold (see Example 1).

Block decomposition of a solution. It is known that every minimal non-
simple solution decomposes into simple structures called letter blocks. The letter
block of binary morphisms g, h is a (prefix) minimal pair of words (e, f) such
that

c(g, h)g(e) = h(f)c(g, h) . (1)

Notice that if both morphisms g and h are marked, the letter blocks are just
minimal pairs of words (e, f) such that g(e) = h(f). It follows from (1) that
for morphisms g, h, the corresponding marked morphisms gm, hm have the same
letter blocks as g, h. For each pair of binary morphisms there are at most two dif-
ferent letter blocks (e, f), (e′, f ′) such that ef and e′f ′ are non-empty. Moreover,
pref1(e) �= pref1(e′) and pref1(f) �= pref1(f ′).

For every minimal non-simple solution w of binary morphisms g and h there
is a sequence

(u0, v0), . . . , (un, vn)

such that w = u0 . . . un = v0 . . . vn and (unu0, vnv0) and (ui, vi), 0 < i < n, are
letter blocks of g and h. This sequence is called a block decomposition of the
solution w (see Fig. 1).
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Fig. 1. Block decomposition of a solution

Successor morphisms. Morphisms g1, h1 : {a, b}∗ → {a, b}∗ are called suc-
cessor morphisms if there exist non-periodic binary morphisms g, h : {a, b}∗ →
{a, b}∗ such that (g1(a), h1(a)) and (g1(b), h1(b)) are their letter blocks.

Quite naturally, morphisms g, h will be called predecessor morphisms. Ob-
viously, the predecessor morphisms are not uniquely given. Notice as well that
successor morphisms are necessarily marked. This follows from the fact that
for two different letter blocks (e, f), (e′, f ′) we have pref1(e) �= pref1(e′) and
pref1(f) �= pref1(f ′).

Definition. A pair of successor morphisms (g1, h1) is called saturated if at least
one pair of their predecessor morphisms has a non-simple minimal solution.

The following example shows that the condition that at least one pair of predeces-
sor morphisms has a solution does not imply that the other pairs of predecessor
morphisms of g1 and h1 have to possess a solution as well.

Example 1. Let g1, h1 : {a, b}∗ → {a, b}∗ be binary morphisms defined in the
following way:

g1(a) = a, h1(a) = ab,

g1(b) = bb, h1(b) = b .

It is easy to check that the following two pairs of morphisms (g, h) and (g′, h′)
are predecessor morphisms of (g1, h1):

g(a) = abb, h(a) = a,

g(b) = b, h(b) = bb,

g′(a) = babab, h′(a) = b,

g′(b) = ab, h′(b) = baba .

The morphisms g, h have a minimal solution w = abb. Moreover, this solution
is non-simple since it has two overflows which are the same. Namely, for w1 =
a,w2 = ab and u = b2, u′ = b we have

g(w1) = h(w2) and g(w1u) = h(w2u
′) ,

but |u| is not a multiple of |w|. Therefore, the pair of morphisms (g1, h1) is
saturated. However, it can be checked easily that the pair (g′, h′) does not have
any solution.
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Definition. Let g, h : {a, b}∗ → {a, b}∗ be binary morphisms and let (e, f),
(e′, f ′) be their letter blocks. A pair of morphisms (g, h) is called combinatorially
rich if the primitive roots of words {g(a), g(b), h(a), h(b), e, f, e′, f ′} have the
length at least two.

Notice that since the length of the primitive roots is at least two, each image
word as well as each letter block word of combinatorially rich morphisms have
to contain both letters a and b at least once.

We can now formulate our main result. Up to the morphisms which are not
combinatorially rich, the block structure of successor morphisms is quite re-
stricted. In fact, the length of both letter blocks of combinatorially rich successor
morphisms is bounded by a constant.

Theorem 1. Let g1, h1 : {a, b}∗ → {a, b}∗ be a pair of combinatorially rich
saturated successor morphisms and let (e, f), (e′, f ′) be their letter blocks. Then
|e| + |e′| < 1412 and |f | + |f ′| < 68 or vice versa.

The proof of the theorem is based on the analysis of the suffix complexity of
successor morphisms of g1, h1.

Suffix complexity. The suffix complexity σ(g) of a morphism g is defined as
the number of different non-empty suffixes of g(a) or g(b). Formally,

σ(g) = |{u, u �= ε and u ∈ Suff(g(a)) ∪ Suff(g(b))}| .

The suffix complexity of a pair of morphisms (g, h) is defined as the sum of
their suffix complexities. The concept was first introduced in the proof of the
decidability of the binary PCP. It is known that suffix complexity of successor
morphisms is less than or equal to the suffix complexity of its predecessors (see
[2]). In this sense each successor morphism is simpler than its predecessor.

The suffix complexity of a morphism g is related to its length in the following
way:

1
2

(|g(a)| + |g(b)|) < σ(g) ≤ |g(a)| + |g(b)| . (2)

The suffix complexity of successor morphisms can be bounded by the number
of certain types of overflows inside the letter blocks of their predecessor. Suppose
that g1, h1 are successor morphisms of g, h and let (e, f), (e′, f ′) be letter blocks
of g, h. Let gm, hm be corresponding marked morphisms of g, h. We define a set
Og as the set of all non-empty suffixes of gm(a) or gm(b) which occur as overflows
inside at least one of the letter blocks. More formally, u ∈ Og if u is a non-empty
suffix of gm(a) or gm(b) and there are words e1, e2, f1 and f2 such that

gm(e1) = hm(f1)u and ugm(e2) = hm(f2) .

Each u ∈ Og determines uniquely a non-empty word f2 ∈ Suff(f) ∪ Suff(f ′).
This defines a mapping

πg : Og → {Suff(f) ∪ Suff(f ′)}\{ε} .



The Block Structure of Successor Morphisms 303

Since words f and f ′ are in fact words h1(a) and h1(b), we have obtained a
mapping between Og and σ(h1). Notice that this mapping is surjective, since for
each non-empty s ∈ Suff(f) we can find u ∈ Og as gm(e1)(hm(fs−1))−1 where
e1 is a minimal prefix of e such that |gm(e1)| > |hm(fs−1)|. Surjectivity of πg

immediately implies the following bound for the suffix complexity of h1:

σ(h1) ≤ |Og| . (3)

Now, one can easily find a bound for the length of the letter blocks of g, h simply
by combining (2) and (3):

|f | + |f ′| = |h1(a)| + |h1(b)| < 2σ(h1) ≤ 2|Og| . (4)

Similarly, we can define the set Oh and obtain

|e| + |e′| = |g1(a)| + |g1(b)| < 2σ(g1) ≤ 2|Oh| . (5)

3 One Letter Bound for Successor Morphisms

We have seen that in order to prove Theorem 1, it is enough to find a bound for
the cardinality of the sets Og1 and Oh1 . Obviously, if the morphisms g1, h1 had
bounded lengths, this task would be trivial. However, the difficulty of finding a
length bound for morphisms g1, h1 is one of the reasons why the structure of
binary equality languages remains unknown. Fortunately, it has turned out that
to prove our theorem it is enough to bound the number of just one of the letters
a, b inside the image words of g1 and h1. This section will discuss the problem
of obtaining a one letter bound in more details.

The following lemma deals with the structure of sufficiently long letter blocks.
In fact, it is a variation of the result obtained in [4] for simple solutions. This
should not be surprising, since both simple solutions and letter blocks are simple
structures. The proof uses practically same methods as the proof of the similar
result in [3] and therefore will be omitted.

Lemma 1. Let g, h : {a, b}∗ → {a, b}∗ be binary morphisms which have a non-
simple minimal solution. Let (e, f), (e′, f ′) be letter blocks of g, h and suppose
that the word h(b) is the longest of all four image words {g(a), h(a), g(b), h(b)}.
If |f |b ≥ 9 or |f ′|b ≥ 9, then one of the two letter blocks belongs to the following
set:

{(bi, pj), (ai, pj), (pi, bj), (si, bj)} (6)

where i, j ∈ N and p, s are primitive words such that |p|b = 1 and |s|a = 1.

Notice that the assumption that the word h(b) is the longest of all four im-
age words {g(a), h(a), g(b), h(b)} in the previous lemma allows us to distinguish
between letters a and b.

It follows from the previous lemma that at least one morphism in a pair of
combinatorially rich saturated successor morphisms has a bounded number of
one of the letters.
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Corollary 1. Let g1, h1 : {a, b}∗ → {a, b}∗ be a pair of combinatorially rich
saturated successor morphisms. Then |h1(a)|d ≤ 8 and |h1(b)|d ≤ 8, or |g1(a)|d ≤
8 and |g1(b)|d ≤ 8, for some letter d ∈ {a, b}.

Proof. Let g, h be predecessor morphisms of g1 and h1. Since g1, h1 are saturated,
we can suppose that g, h have a minimal non-simple solution. Let (e, f), (e′, f ′)
be letter blocks of g, h and suppose that h(b) is the longest of all four image
words {g(a), h(a), g(b), h(b)}. By Lemma 1, either |f |b ≤ 8 and |f ′|b ≤ 8, or one
of the letter blocks belongs to the set (6). The latter possibility means that either
(g1(a), h1(a)) or (g1(b), h1(b)) belongs to (6). This contradicts the assumption
that g1, h1 are combinatorially rich morphisms. Therefore, |h1(a)|b = |f |b ≤ 8
and |h1(b)|b = |f ′|b ≤ 8. ��
In the previous lemma we have proved that at least one morphism in a pair
of combinatorially rich saturated successor morphisms is bounded in one of the
letters. However, in order to prove our theorem, we need to find the similar bound
for the remaining morphism as well. We will start with the following lemma:

Lemma 2. Let g1, h1 : {a, b}∗ → {a, b}∗ be a pair of combinatorially rich sat-
urated successor morphisms and suppose that for a letter d ∈ {a, b} it holds
|h1(a)|d ≤ 8 and |h1(b)|d ≤ 8. Then |g1(a)|d ≤ 8 or |g1(b)|d ≤ 8.

Proof. Let g, h be predecessors of g1 and h1. We can suppose that g, h have a
minimal non-simple solution w. Let (e, f), (e′, f ′) be letter blocks of g, h. Since
w is minimal and non-simple, each of the two letter blocks has to be included in
the block decomposition of w at least once. Looking at the block decomposition
of w we obtain the following equality for the letter d:

|w|d = i|e|d + j|e′|d = i|f |d + j|f ′|d,

where i ≥ 1 and j ≥ 1. Therefore, |e|d ≥ |f |d if and only if |e′|d ≤ |f ′|d. In other
words, either |e|d or |e′|d is less than or equal to eight, since by our assumption
|f |d = |h1(a)|d ≤ 8 and |f ′|d = |h1(b)|d ≤ 8. This completes the proof. ��
We have seen that there is a one letter bound for three out of four image words
of a pair of combinatorially rich saturated successor morphisms. It turns out
that finding a bound for the fourth word is much more complicated. The rest of
this section is dedicated to this task.

The following slightly technical lemma is based on properties of cyclic words
discussed in [4] and [3]. Because of space limitation, the proof will be omitted.

Lemma 3. Let g, h : {a, b}∗ → {a, b}∗ be binary marked morphisms and suppose
that

g(u1c
iu2) = v1h(du3du4d)v2

for some letters c, d ∈ {a, b} and words u1, u2, u3, u4 ∈ {a, b}∗, v1, v2 ∈ {a, b}∗
such that |h(d)| ≥ |g(c)|, v2v1 ∈ Im h, |g(u1)| ≤ |v1| and |g(u2)| ≤ |v2|. Then
either u1u2 ∈ c+, or g(c) commutes with h(v), for some word v ∈ {a, b}+.
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Notice that if in previous lemma g(c) commutes with h(v), then g(cj) = h(vk),
for some j, k ∈ N+. Let (e, f) be a letter block of morphisms g, h such that
c ≤p e. From the prefix minimality of (e, f) we obtain that e ∈ c+. Thus, if we
suppose that morphisms g, h from the previous lemma are combinatorially rich
marked morphisms, then the words g(c) and h(v) cannot commute and therefore,
necessarily u1u2 ∈ c+.

The key ingredient in finding a bound for the remaining image word of succes-
sor morphisms g1, h1 is the fact that under certain conditions the block decompo-
sition of a solution of predecessor morphisms g, h cannot contain long sequences
of the same letter block. This is expressed more generally in the following way:

Lemma 4. Let g1, h1 : {a, b}∗ → {a, b}∗ be a pair of combinatorially rich
marked morphisms and suppose that |h1(a)|b ≤ 8, |h1(b)|b ≤ 8, and |h1(b)|b <
|g1(b)|b. Let w be a word such that zg1(w) = h1(w)z, for a word z ∈ {a, b}∗ ∪
{a−1, b−1}∗, and |w|b �= 0. Then a49 is not a factor of w.

Proof. Suppose for a contradiction that a49 is a factor of w. Since (g1, h1) is a
combinatorially rich pair of morphisms, we know that |g1(a)|b �= 0, otherwise the
length of the primitive root of g1(a) would be one. Notice that since zg1(w) =
h1(w)z, we can find words u1, u2, v1, v2, v such that

g1(w) = g1(u1a
49u2) = v1h1(v)v2 ,

v2v1 ∈ Im h1, |g1(u1)| ≤ |v1| and |g1(u2)| ≤ |v2|. Let v be the longest possible
word satisfying this property. Then |h1(v)|b ≥ 33|g1(a)|b ≥ 33 because |g1(a)|b �=
0 and we suppose that |h1(a)|b ≤ 8 and |h1(b)|b ≤ 8. And thus |v| ≥ 5. Therefore,
either |v|a ≥ 3 or |v|b ≥ 3. Since |g1(w)| = |h1(w)|, also

|w|a(|h1(a)|b − |g1(a)|b) = |w|b(|g1(b)|b − |h1(b)|b) .

From the fact that w contains both letters a and b and the assumption that
|h1(b)|b < |g1(b)|b, we can see that |h1(a)|b > |g1(a)|b. Then, if h1(a) is a factor
of g1(a)ω, we have as well |h1(a)| > |g1(a)|. We are left with the following three
cases:

1) |v|a ≥ 3. Then h1(a) is a factor of g1(a)ω and |h1(a)| > |g1(a)|. Therefore, we
can apply Lemma 3 and obtain that w ∈ a+, a contradiction with the assumption
that |w|b �= 0.
2) |v|b ≥ 3 and |h1(b)| ≥ |g1(a)|. Again we can apply Lemma 3 and get that
w ∈ a+, a contradiction with the assumption that |w|b �= 0.
3) |v|b ≥ 3, |v|a ≤ 2 and |h1(b)| < |g1(a)|. We will show that in this case there are
at least five g1(a) inside g1(a)49 covered by h1(b)ω . Then we can just exchange
morphisms g1 and h1 and apply Lemma 3. We will obtain that w ∈ b+ and the
proof will be complete. Let u1, u2, u3 ∈ b∗ be words such that v = u1a

i1u2a
i2u3,

where i1, i2 ∈ {0, 1}. Since |h1(v)|b ≥ 33|g1(a)|b and |h1(a)|b ≤ 8 ≤ 8|g1(a)|b, we
have |h1(uj)|b > 5|g1(a)|b for at least one j ∈ {1, 2, 3}. Since h1(uj) is a factor
g1(a)ω, we have as well |h1(uj)| > 5|g1(a)| and the proof is complete. ��
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In order to illustrate the connection between the previous lemma and the block
decomposition of a solution of predecessor morphisms, suppose that g1, h1 are
combinatorially rich successor morphisms of g, h. Let w be a non-simple minimal
solution of g, h and let

(u0, v0), . . . , (un, vn)

be a block decomposition of w. Then w = u0 . . . un = v0 . . . vn, (unu0, vnv0) =
(g1(cn), h1(cn)) and (ui, vi) = (g1(ci), h1(ci)), 0 < i < n, where ci ∈ {a, b},
0 < i ≤ n. We can suppose that |v0| ≤ |u0|. Then

(v−1
0 u0)g1(c1 . . . cn−1cn) = h1(c1 . . . cn−1cn)(v−1

0 u0) .

Since w is a non-simple minimal solution, the block decomposition includes each
letter block at least once. Therefore, for w′ = c1 . . . cn we have |w′|b �= 0 and
|w′|a �= 0. By Corollary 1, we can suppose that |h1(a)|d ≤ 8 and |h1(b)|d ≤ 8, for
a letter d ∈ {a, b}. If we suppose that |h1(b)|d < |g1(b)|d, then from the previous
lemma we obtain that c49 is not a factor of w′, where c �= d. Therefore, the
length of a maximal continuous sequence of letter blocks corresponding to the
letter c in the block decomposition of w is at most 48.

Finally, let us formulate the following lemma which establishes a bound for
the number of one of the letters inside the remaining image word of successor
morphisms.

Lemma 5. Let g1, h1 : {a, b}∗ → {a, b}∗ be a pair of combinatorially rich satu-
rated successor morphisms. Suppose that the number of b’s in the image words
h1(a), h1(b) and g1(a) is less than or equal to eight. Then |g1(b)|b ≤ 344.

Proof. Suppose, for a contradiction, that |g1(b)|b ≥ 345. Then |g1(b)|b > |h1(b)|b.
From the assumption that g1, h1 are combinatorially rich morphisms, we obtain
that |g1(a)|b ≥ 1. Let g, h : {a, b}∗ → {a, b}∗ be predecessor morphisms of g1 and
h1 and let w be their non-simple minimal solution with the block decomposition:

(u0, v0), . . . , (un, vn) .

Then w = u0 . . . un = v0 . . . vn, (unu0, vnv0) = (g1(cn), h1(cn)) and (ui, vi) =
(g1(ci), h1(ci)), 0 < i < n, where ci ∈ {a, b}, 0 < i ≤ n. Let w′ = c1 . . . cn.
Notice that

(v−1
0 u0)g1(w′) = h1(w′)(v−1

0 u0) ,

and since w is a non-simple minimal solution, |w′|b �= 0 and |w′|a �= 0. It follows
from the |g1(w′)| = |h1(w′)| that

|w′|b(|g1(b)|b − |h1(b)|b) = |w′|a(|h1(a)|b − |g1(a)|b) .

Since |g1(b)|b > |h1(b)|b, necessarily |g1(a)|b < |h1(a)|b. Then it follows from
inequalities |g1(a)|b ≤ 8, |h1(a)|b ≤ 8, |h1(b)|b ≤ 8 that

7|w′|a ≥ (345 − 8)|w′|b = 337|w′|b > 7 · 48|w′|b .

By the pigeonhole principle, there is a consecutive sequence of 49 letters a inside
the word w′, which contradicts Lemma 4. ��
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4 Proof of Theorem 1

In this concluding section, we will argue that there is a bound for the cardinality
of the sets Og1 and Oh1 based on the previously found bounds for the number
of one of the letters inside the the image words of successor morphisms. Then,
having in mind (4) and (5), the proof of Theorem 1 will become substantially
easy.

The next lemma (see [4]) is an easy application of the fact that for a marked
morphism g there is at most one factorization of a word w into the image words
g(a) and g(b).

Lemma 6. Let g be a marked morphism and u, v, w be words satisfying

g(u) ∧ w <p g(v) ∧ w .

Then g(u) ∧ w = g(u ∧ v).

The following claim plays an important role in counting overflows inside the set
Og1 of the type a+. For combinatorially rich marked morphisms g, h, there are
at most two different g-overflows of the type a+ inside the letter blocks of g and
h.

Lemma 7. Let g, h : {a, b} → {a, b}∗ be marked binary morphisms and let
(e, f), (e′, f ′) be their letter blocks. Let (e1, f1), (e2, f2) and (e3, f3) be prefixes of
(e, f) or (e′, f ′) such that

g(e1) = h(f1)ai, g(e2) = h(f2)aj and g(e3) = h(f3)ak,

where 1 ≤ i < j < k. Then g, h are not combinatorially rich morphisms.

Proof. Suppose for contradiction that g, h are combinatorially rich morphisms.
Let ha be an image word h(a) or h(b) starting with a. Since g, h are combinato-
rially rich morphisms, there is a number m ∈ N+ such that amb ≤p ha. Notice
that since the morphism h is marked, overflows ai, aj and ak cannot be longer
than m. Then, there are words u, v such that

am−jb ≤p g(u),

am−ib ≤p g(v) .

Therefore, g(u)∧aω <p g(v)∧aω. According to Lemma 6, we get that g(u∧v) =
am−j . Then g(a) ∈ a+ or g(b) ∈ a+ which is in contradiction to g, h being
combinatorially rich morphisms. ��
The same lemma as the previous one can be formulated for h-overflows; there
are at most two different h-overflows of the type a+ inside the letter blocks of g
and h.

Finally, we will demonstrate that the cardinality of the sets Og1 and Oh1 is
bounded.
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Lemma 8. Let g1, h1 : {a, b}∗ → {a, b}∗ be a pair of combinatorially rich satu-
rated successor morphisms. Then |Og1 | ≤ 706 and |Oh1 | ≤ 34 or vice versa.

Proof. Firstly, let us recall that successor morphisms are marked. Therefore, the
set Og1 consists of all words u such that u is a non-empty suffix of g1(a) or g1(b)
and there are words e1, e2, f1 and f2 such that

g1(e1) = h1(f1)u and ug1(e2) = h1(f2) .

According to Corollary 1 and Lemma 2, we can suppose that the number of b’s
in image words h1(a), h1(b), g1(a) is less than or equal to eight. Applying Lemma
5, we then obtain that |g1(b)|b ≤ 344. Let us count the elements of Oh1 which
are suffixes of h1(a):
- starting with b: Since |h1(a)|b ≤ 8, the number of different suffixes of h1(a)
starting with the letter b is at most eight.
- starting with a: Since g1, h1 are combinatorially rich morphisms, there is a
number m ∈ N+ such that amb ≤p g1(a) or amb ≤p g1(b). Then the number of
possible overflows starting with the letter a longer than m+1 is at most eight. It
remains to deal with overflows which have at most m letters. Since the morphism
g1 is marked, these overflows have to be of the form a+. But by Lemma 7, there
are at most two different h1-overflows of the form a+ inside the letter blocks of
g1, h1.
Suffixes of h1(b), g1(a) and g1(b) can be counted in the same way as suffixes
of h1(a). Again, we would find at most eight different suffixes starting with the
letter b and eight different sufficiently long suffixes starting with the letter a for
h1(b) and g1(a). In the case of g1(b), the only difference is that |g1(b)|b ≤ 344.
Therefore, there are at most 344 different suffixes starting with the letter b and
344 different sufficiently long suffixes starting with the letter a.

Having counted also overflows of the type a+, we obtain that the cardinality
of Oh1 is less than or equal to 34 and cardinality of Og1 is less than or equal to
706, which completes the proof. ��
Now, it becomes easy to prove our theorem.

Proof of Theorem 1. From (4) and (5), we obtain that

|f | + |f ′| < 2|Og1 |, |e| + |e′| < 2|Oh1 | .

By Lemma 8, we get

|f | + |f ′| < 1412, |e| + |e′| < 68 ,

or vice versa. This completes the proof. ��

5 Reduction Sequence of Successor Morphisms

We have already mentioned that by the straightforward application of Theorem
1 we can find a bound for the reduction sequence of successors of morphisms g, h
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which have non-simple minimal solution. Indeed, if (gi, hi)i≥1 is the sequence
of successors of non-periodic binary morphisms g, h : {a, b}∗ → {a, b}∗ with
decreasing suffix complexity, than it follows from (4) and (5) that the length of
the sequence is at most |Og1 | + |Oh1 | + 1 = 741 unless any of the image words
{gi(a), gi(b), hi(a), hi(b)}{i=1,2} are a power of a letter.

Knowing this bound is particularly important in the analysis of the structure
of binary equality languages. The specific application in this field is a question
for further research.
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Abstract. We investigate weighted asynchronous cellular automata
with weights in valuation monoids. These automata form a distributed
extension of weighted finite automata and allow us to model concurrency.
Valuation monoids are abstract weight structures that include semirings
and (non-distributive) bounded lattices but also offer the possibility to
model average behaviors. We prove that weighted asynchronous cellu-
lar automata and weighted finite automata which satisfy an I-diamond
property are equally expressive. The main result of this paper gives a
characterization of this expressiveness by weighted MSO logics.

1 Introduction

During the last decades, a fruitful connection between automata and logics re-
vealed. This process started with Büchi [3] who used finite automata to obtain
decidabilty results for logical problems. In particular, during his investigations
he characterized the expressive powers of finite automata, i.e. the class of regu-
lar languages, by means of monadic second-order logics (MSO logics). However,
finite automata are suitable only for modeling qualitative systems.

The interest in modeling quantitative systems led to several specialized exten-
sions of finite automata like probabilistic automata and lattice automata [18].
A more generic approach is provided by the theory of weighted automata [8]. A
weighted automaton is essentially a finite automaton with the additional feature
that weights from an arbitrary semiring are assigned to each transition. Using
the operations of the semiring such an automaton assigns weights to words.
Although there is a well developed theory of weighted automata and the first
prominent result was established by Schützenberger [21] already in the 1960s,
semiring weighted logics were not taken into account for a long time. Droste
& Gastin [7] closed this gap by characterizing the expressiveness of weighted
automata by weighted MSO logics. Nowadays, such logics are still an ongoing
subject of research [1,11].

Despite the very general nature of semirings there are quantitative aspects
which cannot be modeled in this framework of weighted automata. These are
aspects like the average consumption of some resource [4] or weights from –
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potentially non-distributive – bounded lattices [12], which are used in multi-
valued logics. Recently, Droste & Meinecke [10] introduced valuation monoids to
capture this variety of possible weight structures within one uniform framework.
They studied weighted automata over such structures and characterized their
expressive powers by certain fragments of weighted MSO logics.

All the automaton models mentioned so far take words as input and can conse-
quently model concurrency only as interleaving. A valuable concept for modeling
distributed systems are traces [6] in combination with Zielonka’s asynchronous
cellular automata [23]. Generalizing Büchi’s result, Thomas [22] characterized
the expressiveness of these automata again by MSO logics. Later on, this con-
nection was extended to infinite traces by Ebinger & Muscholl [13].

Weighted asynchronous cellular automata with weights from a commutative
semiring were introduced by Kuske [19], who showed them to be equally expres-
sive as weighted I-diamond automata as well as weighted automata with a trace
closed behavior. Afterwards, Meinecke [20] characterized this expressive power by
weighted MSO logics. The combination of these results [14] generalizes Büchi’s
theorem to a distributed and semiring weighted setting. This naturally raises
the question whether a similar characterization also exists when the weights are
taken from a valuation monoid instead of a semiring. Therefore, this paper is
devoted to the investigation of that issue.

The main results are as follows. First, we present weighted asynchronous cel-
lular automata over valuation monoids as a model for quantitative distributed
systems. Moreover, we define weighted I-diamond automata for modeling the
interleaving behavior of such systems and show that both kinds of weighted au-
tomata are equally expressive. Second, we introduce weighted MSO logics over
valuation monoids. The main theorem of this paper characterizes the expres-
siveness of weighted asynchronous cellular automata by this logics. In the end,
we mention how the logics can be slightly extended if the valuation monoid has
some additional properties. Altogether, we provide a joint extension of the re-
sults of Droste & Gastin [7], Fichtner, Kuske & Meinecke [14], and Droste &
Meinecke [10].

2 Background: Traces and Asynchronous Cellular
Automata

This section is intended to give the necessary background in trace theory. For a
more general overview we refer the reader to [5,6].

2.1 Traces and Finite Automata

The architecture of a distributed system is modeled by a graph (L,D) consisting
of a non-empty, finite set L of locations and a symmetric and reflexive dependence
relation D on L. For any � ∈ L the set of all m ∈ L with (�,m) ∈ D is denoted
with D(�). For the rest of this paper, we fix the graph (L,D).
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A distributed alphabet is a family Σ = (Σ�)�∈L of mutually disjoint alphabets.
Abusing notation, we denote the set

⋃
�∈LΣ� by Σ as well. Moreover, we obtain

a map loc : Σ → L by putting loc(a) = � for every a ∈ Σ�.
A trace over Σ is a triplet t = (V,�, λ) consisting of a non-empty, finite set V ,

a partial order � on V , and a labeling λ : V → Σ such that for all x, y ∈ V the
following two conditions are satisfied, where loct = loc ◦λ : V → L:

(i) if (loct(x), loct(y)) ∈ D, then x � y or y � x,
(ii) if x � y and there is no z ∈ V with x � z � y, then (loct(x), loct(y)) ∈ D.

The set of all (isomorphism classes of) traces is denoted with T(Σ) and subsets
L ⊆ T(Σ) are called trace languages.

To each word w = a1 . . . an ∈ Σ+ we assign a trace trc(w) = (V,�, λ) ∈ T(Σ)
as follows: V = { 1, . . . , n }, λ(i) = ai, and � is the transitive closure of

E = { (i, j) ∈ V × V | i ≤ j and (loc(ai), loc(aj)) ∈ D } .

In this way, we obtain a surjective map trc : Σ+ → T(Σ). In the case of |L| = 1,
the order � is the natural linear order on V and the map trc: Σ+ → T(Σ) is a
bijection. Thus, we can consider words as a special case of traces.

Two words w,w′ ∈ Σ+ are called trace equivalent if trc(w) = trc(w′).
The independence relation I is the set of all pairs (a, b) ∈ Σ × Σ with
(loc(a), loc(b)) �∈ D. It is well known that two words are trace equivalent iff they
are related by the least equivalence relation ∼I on Σ+ satisfying uabv ∼I ubav
for all (a, b) ∈ I and u, v ∈ Σ∗.

A finite automaton over Σ (FA for short) is a tuple M = (Q, I, T, F ) consist-
ing of a finite set Q of states, a transition relation T ⊆ Q×Σ ×Q, and two sets
I, F ⊆ Q of initial and final states. A run of M on a word a1 . . . an ∈ Σ+ is a
sequence σ = (q0, a1, q1)(q1, a2, q2) . . . (qn−1, an, qn) ∈ T n with q0 ∈ I. The run
σ is successful if qn ∈ F . The language recognized by M is the set L(M) of all
words w ∈ Σ+ which admit a successful run.

An FA M has the I-diamond property if for all p, q, r ∈ Q and (a, b) ∈ I with
(p, a, q), (q, b, r) ∈ T there is some q′ ∈ Q such that (p, b, q′), (q′, a, r) ∈ T . In this
situation the language recognized by M is trace closed, i.e., for all u, v ∈ Σ+ with
u ∼I v we have u ∈ L(M) iff v ∈ L(M). Therefore, FAs with the I-diamond
property can be used as recognizers for trace languages.

2.2 Asynchronous Cellular Automata

Asynchronous cellular automata [23] are a distributed extension of classical finite
automata. An asynchronous cellular automaton overΣ (ACA for short) is a tuple
A = ((Q�)�∈L, I, (T�)�∈L, F ) consisting of a finite set of local states Q� and a local
transition relation T� ⊆ (∏

m∈D(�) Qm

) ×Σ� × Q� for each � ∈ L, and two sets
I, F ⊆ ∏

�∈LQ� of global initial and final states. The ACA A is deterministic if
I is a singleton and each T� is a partial map

(∏
m∈D(�)Qm

)×Σ� → Q�.
For any transition τ = ((pm)m∈D(�), a, q) ∈ T� we put readm(τ) = pm for

m ∈ D(�), act(τ) = a, and write(τ) = q. A run of A on a trace t = (V,�, λ) ∈
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T(Σ) is a pair ρ = (ι, r) consisting of a global initial state ι = (ιm)m∈L ∈ I and
a map r : V → ⋃

�∈L T� such that for every x ∈ V the following two conditions
are satisfied, where τ = r(x) and � = loct(x):

(i) τ ∈ T� and act(τ) = λ(x), and
(ii) for every m ∈ D(�) we have either readm(τ) = write(r(ymax)) where ymax is

the greatest (w.r.t. �) y ∈ V with y � x and loct(y) = m, or readm(τ) = ιm
if no such y exists.

The run ρ is successful if there is some f = (fm)m∈L ∈ F such that for every
m ∈ L we have either fm = write(r(xmax)) where xmax is the greatest (w.r.t.
�) x ∈ V with loct(x) = m, or fm = ιm if no such x exists. The language
recognized by A is the set L(A) of all traces t ∈ T(Σ) which admit a successful
run. The connection between ACAs and FAs with the I-diamond property was
established by Zielonka:

Theorem 2.1 (Zielonka [23]). Let L ⊆ T(Σ) be a trace language. The follow-
ing are equivalent:

(1) L is recognized by some ACA over Σ,
(2) L is recognized by some deterministic ACA over Σ,
(3) trc−1(L) is recognized by some FA over Σ,
(4) trc−1(L) is recognized by some deterministic FA over Σ having the I-diamond

property.

2.3 MSO Logic on Traces

For the rest of this section, we provide two disjoint infinite sets V0 and V1 of
elementary and set variables, respectively. The syntax of MSO logics over Σ is
given by the grammar

ϕ ::= x ≤ y | λ(x) = a | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ ,

where a ∈ Σ, x, y ∈ V0, and X ∈ V1. Let ϕ be an MSO-sentence, i.e., an MSO-
formula without free variables. For every trace t = (V,�, λ) ∈ T(Σ) there is an
obvious meaning of t |= ϕ under the assumption that variables from V0 resp. V1

range over elements resp. subsets of V and ≤ is interpreted by �. The language
defined by ϕ is the set L(ϕ) of all traces t ∈ T(Σ) with t |= ϕ. The connection
between ACAs and MSO logics was established by Thomas:

Theorem 2.2 (Thomas [22]). Let L ⊆ T(Σ) be a trace language. Then L is
recognized by some ACA over Σ if and only if L is defined by some MSO-sentence
ϕ over Σ.

3 Weighted Asynchronous Cellular Automata

In this section we want to extend the model of asynchronous cellular automata by
adding transition weights. As weight structures we consider valuation monoids,
which were recently introduced by Droste & Meinecke [10]. The highlight of this
section is a weighted version of Thm. 2.1 on page 316.
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3.1 Valuation Monoids and Weighted Finite Automata

A valuation monoid is an algebraic structure (D,+,Val,0) consisting of a com-
mutative monoid (D,+,0) and a valuation function Val: D+ → D such that
Val(d) = d for all d ∈ D, and Val(d1, . . . , dn) = 0 whenever di = 0 for some
i ∈ { 1, . . . , n }.
Example 3.1. The following structures are valuation monoids:

(a) (Q ∪ {−∞} ,max, avg,−∞) and (Q ∪ {∞} ,min, avg,∞) where

avg(d1, . . . , dn) =
d1 + · · · + dn

n
,

(b) (K,+,
∏
,0) where (K,+, · ,0,1) is a semiring and

∏
(d1, . . . , dn) = d1 · · ·dn,

(c) (L,∨, inf ,⊥) where (L,∨,∧,⊥,�) is a (non-distributive) bounded lattice and
inf(d1, . . . , dn) = d1 ∧ · · · ∧ dn.

The valuation monoid in (a) allows us to model the average consumption of
some resource, an aspect which cannot be captured by the semiring weighted
framework. For more examples we refer the reader to [10].

Before introducing weighted asynchronous cellular automata, we recall the
weighted automaton model of Droste & Meinecke [10]. A weighted finite au-
tomaton over an alphabet Σ and a valuation monoid D (wFA for short) is a
tuple M = (Q, I, T, F, γ) consisting of an FA (Q, I, T, F ) over Σ and a transi-
tion weight function γ : T → D. (Successful) runs of M are defined as for the
underlying FA. The weight of a run σ = τ1 . . . τn ∈ T+ is

γ(σ) = Val
(
γ(τ1), . . . , γ(τn)

)
and the behavior of M is the mapping ‖M‖ : Σ+ → D defined by

‖M‖(w) =
∑

{ γ(σ) | σ is a successful run of M on w } .

3.2 Weighted Asynchronous Cellular Automata

In the definition of behavior above, Val is used to combine the transition weights
of a single run, whereas + is used to collect the weights of all different successful
runs on one trace. Since there is no natural execution order of the transitions of
an ACA, we require another property of valuation monoids:

Definition 3.2. A valuation monoid (D,+,Val,0) is order independent if

Val(d1, . . . , dn) = Val(dπ(1), . . . , dπ(n))

holds true for all (d1, . . . , dn) ∈ D+ and permutations π of { 1, . . . , n }.
Example 3.3. The valuation monoids in Example 3.1 (a) and (c) are order inde-
pendent, whereas this is only the case for (b) iff K is commutative.
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For the rest of this section we fix a distributed alphabet Σ and an order indepen-
dent valuation monoid (D,+,Val,0).

Definition 3.4. A weighted asynchronous cellular automaton over Σ and D
(wACA for short) is a tuple A = ((Q�)�∈L, I, (T�)�∈L, F, (γ�)�∈L) consisting
of an ACA ((Q�)�∈L, I, (T�)�∈L, F ) over Σ and transition weight functions
γ� : T� → D.

(Successful) runs of a wACA are defined as for the underlying ACA. The weight
of a run ρ = (ι, r) on a trace t = (V,�, λ) ∈ T(Σ) is

γ(ρ) = Val
((

γloct(x)(r(x))
)

x∈V

)
.

This definition does not depend on the order in which the elements of V are
enumerated, since D is order independent.

Definition 3.5. Let A be a wACA over Σ and D. The behavior of A is the
function ‖A‖ : T(Σ) → D defined as

‖A‖(t) =
∑

{ γ(ρ) | ρ is a successful run of A on t } .

This definition suggests that maps T(Σ) → D are subject to our interest. Thus,
they get the concise name trace series from now on. In particular, we are in-
terested in those trace series that can occur as the behavior of some wACA.
Similarly, mappings Σ+ → D are called word series.

3.3 The I-diamond Property and Its Relationship to wACAs

In order to use wFAs in the context of trace series we are interested in those
automata M with a trace closed behavior, i.e., for all u, v ∈ Σ+ with u ∼I v
we have ‖M‖(u) = ‖M‖(v). In general, it is undecidable whether a given wFA
has this property, cf. Prop. 3.1 in [17]. However, the following definition gives a
syntactical property of wFAs which is sufficient for a trace closed behavior. For
some wFA M = (Q, I, T, F, γ) over Σ and all a, b ∈ Σ and p, r ∈ Q we put

Qa,b
p,r = { q ∈ Q | (p, a, q) ∈ T and (q, b, r) ∈ T } .

Definition 3.6. A wFA M = (Q, I, T, F, γ) has the I-diamond property if for
all p, r ∈ Q and (a, b) ∈ I there is a bijective map f = fa,b

p,r : Qa,b
p,r → Qb,a

p,r such
that for any q ∈ Qa,b

p,r we have

γ(p, a, q) = γ(f(q), a, r) and γ(q, b, r) = γ(p, b, f(q)) .

The idea behind is depicted in the figure on the right.
Consider some states p, r ∈ Q and a pair of indepen-
dent letters (a, b) ∈ I. For any path from p to r (via
some q ∈ Q) labeled with ab and weighted by d1 and d2

there must be path between p and r (via fa,b
p,r (q)) which

is labeled with ba and has the same weights, but in the
opposite order. Moreover, this correspondence between

p

q

fa,b
p,r (q)

r

a|d1 b|d
2

b|d
2 a|d1
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pathes has to be one-to-one. Intuitively, in this situation the execution order of
the independent actions a and b does not matter. This condition is similar to
that in a semiring weighted setting [14], where the transition matrices of inde-
pendent letters are required to commute. But since valuation monoids provide
less algebraic properties than semirings, we need the existence of the bijections
fa,b

p,r in order to prove the following lemma:

Lemma 3.7. If a wFA M over Σ has the I-diamond property, then its behavior
‖M‖ is trace closed.

Proof. Due to the definition of ∼I it suffices to show that ‖M‖(w) = ‖M‖(w′)
holds true for all w = uabv and w′ = ubav with u, v ∈ Σ∗ and (a, b) ∈ I.
Consider a successful run σ of M on w and let τ = (p, a, q) and τ ′ = (q, b, r) be
the transitions within this run which belong to the distinguished letters a and
b in w. If we replace τ and τ ′ in σ by (p, b, q′) and (q′, a, r), where q′ = fa,b

p,r (q),
the result is a successful run σ′ on w′. Due to the order independence of D, this
run satisfies γ(σ) = γ(σ′). Since fa,b

p,r is a bijection, this construction yields a
weight preserving one-to-one correspondence between the successful runs of M
on u and those on v. ��
In order to formulate our first new result, we need to assign to each trace series
S : T(Σ) → D a word series trc−1(S) : Σ+ → D defined by

trc−1(S)(w) = S(trc(w)) .

Theorem 3.8. Let S : T(Σ) → D be a trace series. The following are equiva-
lent:

(1) S is the behavior of some wACA over Σ,
(2) trc−1(S) is the behavior of some wFA over Σ with the I-diamond property,
(3) trc−1(S) is the behavior of some wFA over Σ.

The implication (2) ⇒ (3) is trivial and (1) ⇒ (2) is shown below. Proving
(3) ⇒ (1) needs some preperation and is done afterwards.

Proof (Sketch for (1) ⇒ (2)). Let A = ((Q�)�∈L, I, (T�)�∈L, F, (γ�)�∈L) be a
wACA such that ‖A‖ = S. We construct a wFA M = (Q, I, T, F, γ) as follows:
its state space is Q =

∏
�∈LQ�, the transition relation T is the set of all tuples

(p, a, q) ∈ Q×Σ ×Q such that, with � = loc(a), we have ((pm)m∈D(�), a, q�) ∈ T�

and pm = qm for all m �= �, and the weight γ(p, a, q) of such a transition is
given as γ�((pm)m∈D(�), a, q�). To verify that M has the I-diamond property,
for p, r ∈ Q and (a, b) ∈ I we can choose fa,b

p,r (q) = q′ with q′loc(b) = rloc(b) and
q′� = p� for � �= loc(b).

In order to show ‖M‖ = trc−1(S), consider a word w = a1 . . . an ∈ Σ+, the
trace t = trc(w) ∈ T(Σ), and a successful run σ = (q0, a1, q1) . . . (qn−1, an, qn) ∈
T n of M on w. For each i = 1, . . . , n we put r(i) =

(
((qi−1)m)m∈D(�), ai, (qi)�),

where � = loc(a). Then, ρ = (q0, r) is a successful run of A on t with γ(σ) = γ(ρ).
Moreover, this constrution yields a bijection between the successful runs of M
on w and those of A on t. We can conclude ‖M‖ = trc−1(‖A‖) = trc−1(S). ��
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In order to prove the remaining implication we need the concept of lexicographic
normal forms, which was already used by Kuske [19] for a similar purpose.
Therefore, we fix a linear order � on L and denote the induced lexicographic
order on L+ also by �. To each w = a1 . . . an ∈ Σ+ we assign the sequence
loc(w) = loc(a1) . . . loc(an) ∈ L+. A word w ∈ Σ+ is in lexicographic normal
form if for all u ∈ Σ+ with w ∼I u we have loc(w) � loc(u). For every trace
t ∈ T(Σ) there is exactly one word lnf(t) ∈ trc−1(t) which is in lexicographic
normal form.

The main idea behind the missing proof is as follows: from a wFA M with
behavior trc−1(S) we construct a wACA which simulates M on the lexicographic
normal form of each given trace.

Proof (Sketch for Thm. 3.8 (3) ⇒ (1)). Let M = (Q, I ′, T, F ′, γ) be a wFA
such that ‖M‖ = trc−1(S). We consider the distributed alphabet Γ = (Γ�)�∈L
with Γ� = { (p, a, q) ∈ T | a ∈ Σ� } and let L ⊆ Γ+ be the set of all success-
ful runs of M on words in lexicographic normal form. Using the same argu-
ments as in the proof of Prop. 4.6 in [19], there exists a deterministic ACA
A = ((Q�)�∈L, I, (T�)�∈L, F ) over Γ recognizing trc(L) ⊆ T(Γ ). We extend
A to a wACA A′ = (A, (γ�)�∈L) by putting γ�((pm)m∈D(�), τ, q) = γ(τ). For
u = (U,�, μ) ∈ trc(L) we obtain

‖A′‖(u) = Val
((

γ(μ(x))
)

x∈U

)
(1)

and ‖A′‖(u) = 0 for all other u ∈ T(Γ ).
Now, we extend the projection π : Γ → Σ, (p, a, q) �→ a to the trace level

by putting π(u) = (U,�, π ◦ μ) for any u = (U,�, μ) ∈ T(Γ ). Since π(Γ�) ⊆
Σ� for every � ∈ L, this defines a map π : T(Γ ) → T(Σ). Applying the same
construction as in the proof of Prop. 4.10 in [19] to A′ yields a wACA B over
Σ such that ‖B‖(t) =

∑
u∈π−1(t) ‖A′‖(u) for any t ∈ T(Σ). In combination with

(1), we obtain

‖B‖(t) =
∑

(U,�,μ)∈π−1(t)∩trc(L)

Val
((

γ(μ(x))
)

x∈U

)
.

Since π−1(t) ∩ trc(L) encodes exactly the successful runs of M on lnf(t), the
claim follows. ��

4 Weighted MSO Logics

The goal of this section is to characterize the class of trace series which can
occur as the behavior of some wACA by means of weighted MSO logics. Since
valuation monoids neither provide an operation for interpreting conjunction nor
a natural candidate for the truth value “true”, we need to extend them to product
valuation monoids [10].
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4.1 Product Valuation Monoids

A product valuation monoid (pv-monoid) is a structure (D,+,Val, !,0,1) con-
sisting of a valuation monoid (D,+,Val,0), a constant 1 ∈ D, and a binary
operation ! on D such that 0 ! d = d ! 0 = 0 and 1 ! d = d ! 1 = d for all d ∈ D,
and Val(1, . . . ,1) = 1. A pv-monoid is order independent if the underlying valu-
ation monoid has this property. Notice that ! and Val restricted to { 0,1 } model
classical boolean conjunction and universal quantification.

An order independent pv-monoid D is regular if for any d ∈ D the constant
word series Σ+ → D,w �→ d is the behavior of some wFA, or equivalently, the
constant trace series T(Σ) → D, t �→ d is the behavior of some wACA. This
property does not depend on the choice of the distributed alphabet Σ.

Example 4.1 (Continues Example 3.1). The following are regular pv-monoids:

(a) (Q ∪ {−∞} ,max, avg,+,−∞, 0) and (Q ∪ {∞} ,min, avg,+,∞, 0),
(b) (K,+,

∏
, · ,0,1) for any commutative semiring (K,+, · ,0,1),

(c) (L,∨, inf ,∧,⊥,�) for any bounded lattice (L,∨,∧,⊥,�).

4.2 Weighted MSO Logics for Traces

For the rest of this section we fix a distributed alphabet Σ and an order indepen-
dent product valuation monoid (D,+,Val, !,0,1). Again, we provide two disjoint
infinite sets V0 and V1 of elementary and set variables, respectively. The syntax
of weighted MSO logics over Σ and D (wMSO logics for short) is given by the
grammar1

β ::= x ≤ y | λ(x) = a | x ∈ X | ¬β | β ∧ β | ∀xβ | ∀X β ,

γ ::= d | β | γ ∨ γ | γ ∧ γ ,

ϕ ::= γ | ϕ ∨ ϕ | β ∧ ϕ | ϕ ∧ β | ∃xϕ | ∃X ϕ | ∀xγ ,

where d ∈ D, a ∈ Σ, x, y ∈ V0, and X ∈ V1. The logics consists of three kinds of
formulas: boolean formulas β, almost boolean formulas γ, and wMSO-formulas ϕ.
Notice that conjunctions ϕ ∧ ϕ and universal quantifications ∀xϕ are not part
of the syntax. A wMSO-sentence is a wMSO-formula without free variables.

For a trace t = (V,�, λ) a t-assignment is a mapping α : V0∪V1 → V ∪2V such
that α(V0) ⊆ V and α(V1) ⊆ 2V . For x ∈ V0 and v ∈ V we define a t-assignment
α[x/v] by α[x/v](x) = v and α[x/v](y) = α(y) for all y �= x. Similarly, we define
α[X/U ] for X ∈ V0 and U ⊆ V .

The semantics �ϕ� of a wMSO-formula ϕ assigns an element of D to each
pair (t, α) consisting of a trace t = (V,�, λ) ∈ T(Σ) and a t-assignment α. This
semantics �ϕ� is defined inductively on the structure of ϕ as follows: �d�(t, α) = d

1 Actually, this grammar describes the ∀- and strongly ∧-restricted fragment of the
weighted MSO logics from [10], but for simplicity of notation we use the term
weighted MSO logics here. More on this can be found in the conclusions.
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and

�x ≤ y�(t, α) =

{
1 if α(x) � α(y)
0 otherwise

�λ(x) = a�(t, α) =

{
1 if λ(α(x)) = a

0 otherwise

�x ∈ X�(t, α) =

{
1 if α(x) ∈ α(X)
0 otherwise

�¬β�(t, α) =

{
1 if �β�(t, α) = 0
0 otherwise

�ϕ ∨ ψ�(t, α) = �ϕ�(t, α) + �ψ�(t, α) �ϕ ∧ ψ�(t, α) = �ϕ�(t, α) ! �ψ�(t, α)

�∃xϕ�(t, α) =
∑
v∈V

�ϕ�(t, α[x/v]) �∀xϕ�(t, α) = Val
((

�ϕ�(t, α[x/v])
)

v∈V

)
�∃X ϕ�(t, α) =

∑
U⊆V

�ϕ�(t, α[X/U ]) �∀X ϕ�(t, α) = Val
((

�ϕ�(t, α[X/U ])
)

U⊆V

)
Since D is order independent, we do not need to specify in which order the ele-
ments of V and 2V are enumerated in the definitions for universal quantification.

Remark 4.2. Every boolean formula β is an MSO-formula in the sense of Sec-
tion 2.3. Hence, for any trace t ∈ T(Σ) and t-assigment α, there is an obvious
meaning of (t, α) |= β. By induction on β we can show that �β�(t, α) = 1 if
(t, α) |= β and �β�(t, α) = 0 otherwise.

Notice that the boolean formulas include neither disjunction nor existential
quantification. Even worse, for two boolean formulas β1 and β2 the value of
�β1 ∨ β2�(t, α) does not need to be 0 or 1. However, the following abbrevations
provide the semantics we expect from such logical connectives:

β1 ∨ β2 := ¬(¬β1 ∧ ¬β2) and ∃xβ := ¬∀x(¬β) .

Finally, from the definition of the semantics one sees that �ϕ�(t, α) only depends
on α for those variables which are free in ϕ. In particular, if ϕ is a sentence, then
�ϕ�(t, α) does not depend on α at all, justifying the following definition:

Definition 4.3. Let ϕ be a wMSO-sentence. The trace semantics of ϕ is the
trace series �ϕ�t : T(Σ) → D defined by

�ϕ�t(t) = �ϕ�(t, α) ,

where α is an arbitrary t-assigment.

The following theorem is the main result of this paper:

Theorem 4.4. Let D be a regular order independent product valuation monoid
and S : T(Σ) → D a trace series. Then S is the behavior of some wACA if and
only if S is the trace semantics of some wMSO-sentence.
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We prove this theorem using a technique introduced by Ebinger & Muscholl [13].
The main idea is to reduce to the corresponding characterization for word series
by a translation of formulas. First, notice that the syntax of wMSO logics does
not depend on the architecture (L,D) and recall that we can consider any word
w ∈ Σ+ as a trace for |L| = 1. Thus, every wMSO-sentence ϕ also induces a
word series �ϕ�w : Σ+ → D,w �→ �ϕ�(w,α), for some arbitrary w-assignment α,
which is called the word semantics of ϕ. This semantics coincides with that of
Droste & Meinecke [10].

Theorem 4.5 (Droste & Meinecke [10]). Let D be a regular product valu-
ation monoid and S : Σ+ → D a word series. Then S is the behavior of some
wFA if and only if S is the word semantics of some wMSO-sentence.

4.3 The Relationship between wMSO Logics for Traces and Words

This section is devoted to the proof of the following theorem which, in combi-
nation with Thms. 3.8 and 4.5, implies Thm. 4.4:

Theorem 4.6. Let D be an order independent product valuation monoid and
S : T(Σ) → D a trace series. Then S is the trace semantics of some wMSO-
sentence if and only if trc−1(S) is the word semantics of some (other) wMSO-
sentence.

Proof (Sketch). First, assume S = �ϕ�t for some wMSO-sentence ϕ. The key idea
is to construct a boolean first order formula β(x, y) such that for any w ∈ Σ+

and all w-assigments α we have (w,α) |= β(x, y) iff (trc(w), α) |= x ≤ y. By
replacing every subformula of the shape x ≤ y in ϕ by β(x, y) we obtain a
wMSO-sentence ϕ̃ with trc−1(S) = �ϕ̃�w.

Therefore, we consider w ∈ Σ+ and trc(w) = (V,�, λ). By definition, for
i, j ∈ V we have i � j precisely if j is reachable from i in the graph (V,E) with
(i, j) ∈ E iff i ≤ j and

(
loc ◦λ(i), loc ◦λ(j)

) ∈ D. If the latter holds true, then
there is also a path where all nodes, except maybe the first and the last one, are
assigned to different locations. Moreover, since E is reflexive, we obtain i � j iff
there is a path from i to j with exactly |L| edges. Obviously, E is definable in
w by a boolean first order formula which does not depend on w. Thus, using ∃
we can construct the desired formula β(x, y).

For the converse direction, we consider once more a linear order � on L
and derive the notion of a lexicographic normal form as in Section 3.3. We are
interested in a boolean first order formula β(x, y) which satisfies (trc(w), α) |=
β(x, y) iff (w,α) |= x ≤ y for any w ∈ Σ+ in lexicographic normal form and
every w-assignment α. Replacing all occurrences of x ≤ y by β(x, y) in a wMSO-
sentence ϕ satisfying �ϕ�w = trc−1(S) yields a wMSO-sentence ϕ̄ with �ϕ̄�t = S.

The key idea how to construct such a formula β(x, y) is described in the proof
of Thm. 6.1 ii) in [5]. Adopting another idea from [9] to our setting, we inductively
define for each n = 1, . . . , |L| a formula βn(x, y) as follows: β1(x, y) = x ≤ y and

βn(x, y) = x ≤ y ∨ ∃z (loc(x) ≺ loc(z) ∧ ¬βn−1(z, x) ∧ z ≤ y
)
,
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where loc(x) ≺ loc(z) abbreviates
∨

a,b∈Σ,loc(a)≺loc(b)

(
λ(x) = a ∧ λ(z) = b

)
.

Then, β|L|(x, y) is the desired formula. ��

5 Discussion

Depending on the properties of the pv-monoid, Droste & Meinecke [10] charac-
terized the expressive powers of wFAs by one of three fragments of their wMSO
logics. The logics in this paper corresponds to their ∀- and strongly ∧-restricted
formulas. The other two fragments are the ∀- and ∧-restricted formulas and
the ∀- and commutatively ∧-restricted formulas, which are both less restrictive
concerning the conjunction of wMSO-formulas. The former fragment charac-
terizes the expressiveness of wFAs if the pv-monoid has a property called left-
distributivity, whereas the latter gives a characterization in case of cc-valuation
semirings. Since both fragments are closed under the substitutions made in the
proof of Thm. 4.6, these two results can be extended to the trace level, yielding
an analogue of Thm. 4.4, without any further difficulties, cf. [16].

Like many other results, which were lifted in a similar way, this showed that
traces form a robust generalization of words for modeling concurrency. Further-
more, in the unweighted situation many results for infinite words were extended
to infinite traces. However, it is still not clear whether similar extensions are
possible in a weighted setting, neither for (complete) semirings nor ω-valuation
monoids. Since there is no suitable (lexicographic) normal form for infinite traces,
new techniques will be necessary for proving analogues of Thms. 3.8 and 4.6, as
this was already the case in the boolean setting, cf. [13].

Finally, message sequence charts (MSCs) provide a more generic framework
for modeling distributed systems. Finite automata for MSCs and MSO logics over
such structures were proven to be equally expressive, in an unweighted [15] as well
as in a semiring weighted setting [2]. This naturally raises the question whether
we can generalize these results to a situation with weights from a valuation
monoid.
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Abstract. Heap-based data structures play an important role in mod-
ern programming concepts. However standard verification algorithms
cannot cope with infinite state spaces as induced by these structures.
A common approach to solve this problem is to apply abstraction tech-
niques. Hyperedge replacement grammars provide a promising technique
for heap abstraction as their production rules can be used to partially ab-
stract and concretise heap structures. To support the required concretisa-
tions, we introduce a normal form for hyperedge replacement grammars
as a generalisation of the Greibach Normal Form for string grammars
and the adapted construction.

1 Introduction

The verification of programs that use pointers to implement dynamic data struc-
tures is a highly challenging and important task, as memory leaks or dereferenc-
ing null pointers can cause great damage especially when software reliability is
at stake. As objects can be created at runtime, dynamic data structures induce a
possibly infinite state space and therefore cannot be handled by standard verifi-
cation algorithms. Abstraction techniques such as shape analysis [18] that yield
finite representations for these data structures are a common way to address this
problem. Other popular techniques are based on separation logic [10,14] (dual-
ity with hyperedge replacement grammars is observed in [4]) and regular tree
automata [2].

Our approach is to verify pointer-manipulating programs using hyperedge re-
placement grammars (HRGs) [7]. Dynamic memory allocation and destructive
updates are transcribed on hypergraphs representing heaps. Production rules of
the HRG reflect employed data structures. Terminal edges model variables and
pointers, whereas nonterminal edges represent abstract parts of a heap. Thus,
hypergraphs are heap configurations that are partially concrete and partially
abstract, such that heap fragments relevant for the current program state are
concrete while a finite heap representation is achieved. Concretisation of abstract
heap fragments is obtained by classical forward grammar rule application, ab-
straction by backward application. This use of HRGs has been first proposed
by us in [15]; tool support and the successful verification of the Deutsch-Schorr-
Waite tree traversal algorithm have been reported in [8]. Graph grammars for
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c© Springer-Verlag Berlin Heidelberg 2011
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heap verification have also been advocated in, e.g. [18,12,11,1,13]. Primarily this
yields a rather intuitive and easy-to-grasp heap modelling approach, where no
abstract program semantics is needed. In particular, it avoids a (often tedious)
formal proof how this relates to a concrete semantics, see e.g. [3]. Pointer state-
ments such as assignments and object creation are realised on concrete sub-
graphs only. Thus if pointer assignments “move” program variables too close to
abstract graph fragments, a local concretisation is carried out. To enable this,
our heap abstraction HRGs are required to be in a specific form that is akin to
the well-known Greibach normal form (GNF) for string grammars.

In [15] we proposed to use the GNF introduced in [6] for this purpose, re-
stricting manageable data structures to ones where each object is referenced by
a bounded number of objects. This paper defines a normal form for HRGs as
a generalisation of the original GNF for string grammars. Compared to [6], it
allows us to model data structures without restrictions to referencing and in gen-
eral results in grammars with less and smaller production rules. Furthermore our
normal form allows to adapt the well-known GNF transformation algorithm for
string to graph grammars. We present the adapted construction and its correct-
ness in Section 3. In Section 2, the above concepts are formalised, we consider a
notion of typing for HRGs, and provide all relevant theoretical results. The full
version of this paper1 contains the omitted proofs.

2 Preliminaries

Given a set S, S� is the set of all finite sequences (strings) over S including the
empty sequence ε. For s ∈ S�, the length of s is denoted by |s|, the set of all
elements of s is written as [s], and by s(i) we refer to the i-th element of s.
Given a tuple t = (A,B,C, . . . ) we write At, Bt etc. for the components if their
names are clear from the context. Function f � S is the restriction of f to S.
Function f : A → B is lifted to sets f : 2A → 2B and to sequences f : A� → B�

by point-wise application. We denote the identity function on a set S by idS .

2.1 Heaps and Hypergraphs

The principal idea behind our Juggrnaut framework [8,15] is to represent (ab-
stract) heaps as hypergraphs.

Definition 1 (Hypergraph). Let Σ be a finite ranked alphabet where rk : Σ →
N assigns to each symbol a ∈ Σ its rank rk(a). A (labelled) hypergraph over Σ
is a tuple H = (V,E, att , lab, ext) where V is a set of vertices and E a set of
hyperedges, att : E → V � maps each hyperedge to a sequence of attached vertices,
lab : E → Σ is a hyperedge-labelling function, and ext ∈ V � a (possibly empty)
sequence of pairwise distinct external vertices.

1 Technical Report AIB-2011-04 available from
http://aib.informatik.rwth-aachen.de

http://aib.informatik.rwth-aachen.de
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For e ∈ E, we require |att(e)| = rk (lab(e)) and let rk(e) = rk(lab(e)). The set
of all hypergraphs over Σ is denoted by HGΣ.

Hypergraphs are graphs with edges as proper objects which are not restricted
to connect exactly two vertices. Two hypergraphs are isomorphic if they are
identical modulo renaming of vertices and hyperedges. We will not distinguish
between isomorphic hypergraphs.

To set up an intuitive heap representation by hypergraphs we consider finite
ranked alphabets Σ = VarΣ " SelΣ , where VarΣ is a set of variables, each
of rank one and SelΣ a set of selectors each of rank two. We model heaps as
hypergraphs over Σ. Objects are represented by vertices, and pointer variables
and selectors by edges connected to the corresponding object(s) where selector
edges are understood as pointers from the first attached object to the second
one. To represent abstract parts of the heap, we use nonterminal edges i.e. with
labels from an additional set of nonterminals N of arbitrary rank (and we let
ΣN = Σ ∪ N). The connections between hyperedges and vertices are called
tentacles.

L

list

head tail

3

1 2

1

Fig. 1. Heap as hypergraph

Example 1. A typical implementation of a doubly-
linked list consists of a sequence of list elements
connected by next and previous pointers and an
additional list object containing pointers to the
head and tail of the list. We consider an extended
implementation where each list element features
an additional pointer to the corresponding list ob-
ject. Fig. 1 depicts a hypergraph representation of
a doubly-linked list. The three circles are vertices representing objects on the
heap. Tentacles are labeled with their ordinal number. For the sake of readabil-
ity, selectors (head and tail) are depicted as directed edges. A variable named
list referencing the list object is represented as an edge of rank one. The L-
labeled box represents a nonterminal edge of rank three indicating an abstracted
doubly-linked list between the first and second attached vertex, where each ab-
stracted list element has a pointer to the list object. In Section 2.2 we will see
how abstract structures are defined.

Note that not every hypergraph represents a feasible heap: it is necessary that
each variable and each a-selector (for every a ∈ SelΣ ) refers to at most one
object. Therefore we introduce heap configurations as restricted hypergraphs:

Definition 2 (Heap Configuration). H ∈ HGΣN is a heap configuration if:

1. ∀a ∈ SelΣ , v ∈ VH : |{e ∈ EH | att(e)(1) = v, lab(e) = a}| ≤ 1, and
2. ∀a ∈ VarΣ : |{e ∈ EH | lab(e) = a}| ≤ 1

We denote the set of all heap configurations over ΣN by HCΣN . If a heap con-
figuration contains nonterminals it is abstract, otherwise concrete.
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2.2 Data Structures and Hyperedge Replacement Grammars

As pointed out earlier, both abstraction and concretisation are transformation
steps on the hypergraph representation of the heap. We use hyperedge replace-
ment grammars for this purpose, implementing abstraction and concretisation
as backward and forward application of replacement rules respectively.

Definition 3 (Hyperedge Replacement Grammar). A hyperedge replace-
ment grammar (HRG) over an alphabet ΣN is a set of production rules of the
form X → H, with X ∈ N and H ∈ HGΣN where |extH | = rk(X). We denote
the set of hyperedge replacement grammars over ΣN by HRGΣN .

Example 2. Fig. 2 specifies an HRG for doubly-linked lists. n, p stand for next
and previous while l is the pointer to the corresponding list object shared by all
elements. head and tail (cf. Fig. 1) do not occur as they are not abstracted.

L → 3 1 2

n

p

l

3 1 L 2

n

p

l

3

1 2

Fig. 2. A grammar for doubly-linked lists

The HRG derivation steps are defined through hyperedge replacement.

Definition 4 (Hyperedge Replacement). Let H,K ∈ HGΣN , e ∈ EH a
nonterminal edge with rk(e) = |extK |. W.l.o.g. we assume that VH ∩VK = EH ∩
EK = ∅ (otherwise the components in K have to be renamed). The substitution
of e by K, H [K/e] = J ∈ HGΣN , is defined by:

VJ = VH ∪ (VK \ [extK ]) EJ = (EH \ {e}) ∪EK

labJ = (labH � (EH \ {e})) ∪ labK extJ = extH

attJ = attH � (EH \ {e}) ∪mod ◦ attK

with mod = idVJ ∪ {[extK(1) �→ attH(e)(1), . . . , extK(rk (e)) �→ attH(e)(rk(e))}.

L

list

head tail

n

p

l
3

21

1

Fig. 3. Hyperedge replacement

Example 3. Reconsider the hypergraph H
of Fig. 1 as well as the second rule in
Fig. 2, denoted by L → K. In H we re-
place the nonterminal edge e labelled with
L by K, which yields H [K/e]. This is pos-
sible since rk(L) = |extK | = 3. Replacing
the L-edge we merge external node ext(1)
with the node connected to the first ten-
tacle, ext(2) with the second and so on.
The resulting graph is shown in Fig. 3.
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Definition 5 (HRG Derivation). Let G ∈ HRGΣN , H,H ′ ∈ HGΣN , p =
X → K ∈ G and e ∈ EH with lab(e) = X. H derives H ′ by p iff H ′ is
isomorphic to H [K/e]. H

e,p
==⇒ H ′ refers to this derivation. Let H

G=⇒ H ′ if
H

e,p
==⇒ H ′ for some e ∈ EH , p ∈ G. If G is clear from the context ⇒� denotes

the reflexive-transitive closure.

The definition of HRGs does not include a particular starting graph. Instead, it
is introduced as a parameter in the definition of the generated language.

Definition 6 (Language of a HRG). Let G ∈ HRGΣN and H ∈ HGΣN .
LG(H) = {K ∈ HGΣ | H ⇒� K} is the language generated from H using G.

We write L(H) instead of LG(H) if G is clear from the context. To define the
language of a nonterminal we introduce the notion of a handle which is a hyper-
graph consisting of a single hyperedge attached to external vertices only.

Definition 7 (Handle). Given X ∈ N with rk(X) = n, an X-handle is the
hypergraph X• = ({v1, . . . , vn}, {e}, [e �→ v1 . . . vn], [e �→ X ], v1 . . . vn) ∈ HGΣ.

Thus L(X•) is the language induced by nonterminal X . For H ∈ HCΣN , L(H)
denotes the set of corresponding concrete heap configurations. Note that it is
not guaranteed that L(H) ⊆ HCΣ , i.e., L(H) can contain invalid heaps.

Definition 8 (Data Structure Grammar). G ∈ HRGΣN is called a data
structure grammar (DSG) over ΣN if ∀X ∈ N : L(X) ⊆ HCSelΣ . We denote
the set of all data structure grammars over ΣN by DSGΣN .

Theorem 1. It is decidable whether a given HRG is a DSG.

Later we will see that DSGs are still too permissive for describing heap abstrac-
tion and concretisation. In Section 2.4, we will therefore refine this definition to
so-called heap abstraction grammars.

2.3 Execution of Program Statements

The overall goal of our framework is to reduce the large or even infinite program
state spaces induced by dynamic data structures. To this aim, heap configura-
tions are partially abstracted by backward application of replacement rules. As
long as pointer manipulations are applied to concrete parts of the heap, they
can be realised one-to-one. In order to avoid the need of defining an abstract
semantics we avoid manipulations on abstract parts by applying local concreti-
sation steps before. As pointers are not dereferenced backwards, restricting the
dereferencing depth to one reduces the (potentially) affected parts of the heap
to those nodes that are directly reachable from variable nodes by outgoing edges.

Definition 9 (Outgoing Edges). Let H ∈ HCΣ , v ∈ VH . The set of outgoing
edges at vertex v in H is defined as: out(v) = {e ∈ EH | att(e)(1) = v}.
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In abstract heap configurations, variable vertices can have abstracted outgoing
edges derivable at connected nonterminal tentacles.

Definition 10 (Tentacle). Let X ∈ N , i ∈ [1, rk(X)], the pair (X, i) is a
tentacle. (X, i) is a reduction tentacle if, for all H ∈ L(X•), out(extH(i)) = ∅.

Example 4. Reconsider the grammar of Fig. 2. (L, 3) is a reduction tentacle, as
no outgoing terminal edges are derivable at external vertex 3.

A heap configuration is inadmissible if variable nodes are connected to non-
reduction tentacles.

Definition 11 (Admissibility). For H ∈ HCΣN , e ∈ EH , and i ∈ N, the
pair (e, i) is called a violation point if (lab(e), i) is not a reduction tentacle and
∃e′ ∈ EH : lab(e′) ∈ VarΣ ∧ att(e′)(1) = att(e)(1). H is called admissible if it
contains no violation point, and inadmissible otherwise.

Heap manipulations may introduce violation points. This inadmissibility can be
resolved by concretisation, that is, by considering all possible replacements of the
corresponding edge. Notice that concretisation generally entails nondeterminism,
viz. one successor state for each applicable replacement rule.

Example 5. On the left side of Fig. 4, an inadmissible heap configuration is de-
picted. While its list object is only connected to concrete edges and reduction
tentacle (L, 3), there is a violation point at the shaded (L, 1)-tentacle. Concreti-
sation by applying both production rules of the grammar given in Fig. 2 results
in the two admissible configurations on the right.

L

list

pos

head tail

3

1 2

1

1

L

list

pos

head tail

n

p

l
3

21

1

1

list

pos

head
tail

n

p

l

1

1

Fig. 4. Concretisation of inadmissible heap configurations

Theorem 2. For G ∈ HRGΣN , H ∈ HCΣN , e ∈ EH , X ∈ N with X = lab(e):

L(H) =
⋃

∀X→K∈G

L(H [K/e])

This theorem follows directly from the confluence property of HRGs [16].
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While concretisation is realised by standard, forward application of produc-
tion rules, abstraction is handled by backward rule application. Thus we call
H ∈ HCΣN an abstraction of H ′ ∈ HCΣN if H ⇒� H ′. Obviously L(H ′) ⊆ L(H)
and therefore abstraction leads to an over-approximation of the state space. The
latter fact together with Theorem 2 yields the soundness of our heap abstraction
approach. We apply the principle “Abstract if possible – Concretise when nec-
essary" to obtain the best possible results in terms of the size of the resulting
state space.

2.4 Heap Abstraction Grammars

As mentioned before, DSGs are not sufficient in our setting. Additional restric-
tions that ensure termination and correctness of the abstraction technique are
listed and discussed in detail below.

Definition 12 (Heap Abstraction Grammar). G ∈ DSGΣN is a heap ab-
straction grammar (HAG) over ΣN if:

(1) G is productive ∀X ∈ N : L(X•) �= ∅
(2) G is increasing ∀X → H ∈ G : |EH | ≤ 1 ⇒ H ∈ HGΣ

(3) G is typed see below
(4) G is locally concretisable see below

We denote the set of all heap abstraction grammars over ΣN by HAGΣN .

Productivity (1) is a well-known notion from string grammars, ensuring that each
abstract configuration represents at least one concrete configuration. A rule is
increasing if its right-hand side is terminal or “bigger” than the corresponding
handle. Increasing grammars (2) guarantee termination of abstraction, as ap-
plying rules backwards reduces the size of the heap representation. We call a
grammar typed (3) if every concrete vertex has a well-defined type as induced
by the set of outgoing edges.

Definition 13 (Typedness). G ∈ DSGΣN is typed if ∀X ∈ N, i ∈ [1, rk(X)],
∃type(X, i) ⊆ Σ : ∀H ∈ L(X•) : type(X, i) = outH(extH(i)).

As DSGs restrict the number of outgoing edges to a finite set of selectors, every
untyped nonterminal can be replaced by a typed one for each derivable type.

Theorem 3. It is decidable whether a HRG is typed. For any untyped DSG an
equivalent typed DSG can be constructed.

Local concretisability (4) ensures that admissibility of a heap configuration can
be established within one concretisation step.

Example 6. Fig. 5(left) reconsiders the original heap configuration given in Fig. 4
with variable pos set to the tail of the list. This leads to an inadmissible config-
uration and two corresponding concretisations, cf. Fig. 5(right). While the first
concretisation is an admissible configuration, the second one remains inadmissi-
ble. Successive concretisations would lead to further inadmissible configurations.
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Fig. 5. Inadmissible concretisation

Ignoring the second rule yields termination but is unsound as Theorem 2 requires
concretisations by every corresponding rule.

Let G ∈ HRGΣN with p = X → H ∈ G. (X, i) →p (Y, j) denotes that (X, i)
can be replaced by (Y, j), i.e. extH(i) is connected to a (Y, j)-tentacle.

Example 7. For p the second rule of Fig. 2 it holds that (L, 3) →p (L, 3) and
(L, 3) →p (l, 2) denoting an incoming l-selector edge.

For simplicity we use GX as the set of all rules X → H ∈ G and GX = G \GX .

Definition 14 (Local Concretisability). G ∈ HRGΣN is locally concretis-
able if for all X ∈ N there exist grammars GX

1 , · · · , GX
rk(X) ⊆ GX such that:

1. ∀i ∈ [1, rk(X)], L
GX

i ∪GX (X•) = LG(X•)

2. ∀i ∈ [1, rk(X)], a ∈ type(X, i), p ∈ GX
i : (X, i) →p (a, 1)

Theorem 4. For each DSG an equivalent HAG can be constructed.

Property (1) can be achieved easily by removing non-productive rules, typedness
(3) by introducing new, typed nonterminals. The Local Greibach Normal Form
presented in the next section ensures properties (2) and (4), cf. Theorem 6.

3 Local Greibach Normal Form

The Greibach Normal Form (GNF) for string grammars restricts production
rules to the form X → aN1 . . . Nk such that using left derivation only a word w ∈
ΣnN� is derived after n derivation steps. Thus terminal words are constructed
from left to right extending a terminal prefix by one symbol each step.

Up to now the normal form given in [6] is the only notion of a GNF for graph
grammars widely known and accepted. In contrast to [6], where graph derivation
is from outside to inside, we consider a generalisation of GNF for strings where
one-sided derivation is of interest.
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Definition 15 (Local Greibach Normal Form). G ∈ DSGΣN is in local
Greibach Normal Form (LGNF) if for every non-reduction tentacle (X, i) there
exists GX

i ⊆ GX with:

1. L
GX

i ∪GX (X•) = LG(X•)

2. ∀ p ∈ GX
i : (X, i) →p (Y, j) implies Y ∈ Σ or (Y, i) is a reduction tentacle.

Example 8. Strings can be uniquely represented by HGs containing chains of
terminal edges only, production rules can be translated to HRGs analogously
[7]. In Fig. 6, graph representations for word w = aab and string grammar
X → aX | b are given. As nonterminals are of rank two and (X, 2) is a reduction
tentacle for each nonterminal X exactly one GX

i remains namely GX
1 containing

the string GNF rules.

a a b

(a) String Representation
N → 1 N 2

a 1 2
1 2

b

(b) String Grammar Representation

Fig. 6. String Graphs

The LGNF for DSG G is established by merging corresponding sets GX
i ,

constructed in four steps along the lines of the GNF construction for string
grammars: Assume a total order on the non-reduction tentacles T1, . . . , Tn over
N . For increasing i ∈ [1, n] (1) every rule p, such that Ti →p Tj with j < i,
is eliminated, then (2) local recursion is removed. In a next step (3) all rules
are brought into LGNF using simple hyperedge replacements. Finally (4) rules
for nonterminals introduced during the construction are transformed. In the
following we guide through the four construction steps and define them in detail.

For each non-reduction (X, i)-tentacle we initialise the set GX
i = GX and we

define an ordering T1, . . . , Tn on non-reduction tentacles.

Step 1: Elimination of rules. We first eliminate the rules p = X → H ∈ GX
i

with (X, i) = Tk →p Tl, l < k. Let Tl = (Y, j), e ∈ EH with lab(e) = Y and
att(e)(j) = ext(i). Then p is replaced by the set {X → H [K/e] | Y → K ∈ GY

j }.
Theorem 2 states that this procedure does not change the language.

Lemma 1. Let G ∈ HRGΣN . For a grammar G′ originating from G by elimi-
nating a production rule, it holds that LG(H) = LG′(H) for all H ∈ HGΣN .

Note that GY
j does not contain any rule p with Tl →p Tm, m < l, as they

are removed before. Thus after finitely many steps all corresponding rules are
eliminated.

Step 2: Elimination of local recursion. After step 1, rules p with Ti →p Ti remain.

Definition 16 (Local Recursion). Let G ∈ HRGΣN , X ∈ N , i ∈ [1, rk(X)].
G is locally recursive at (X, i) if there exists a rule p with (X, i) →p (X, i).



332 C. Jansen et al.

Let GX
r ⊆ GX

i be the set of all rules locally recursive at (X, i). To remove local
recursion in p = X → H ∈ GX

i we introduce a new nonterminal B′
j , a recursive

rule B′
j → Jn and an exit rule B′

j → Jt. Jt corresponds to graph H , where edge
e causing local recursion is removed. We also remove all external nodes singly
connected to e (VR = {v ∈ [extH ] | ∀e′ ∈ EH : v ∈ [attH(e′)] ⇒ e = e′}).
By removing border-edge e, its previously connected internal nodes move to the
border and get external. Thus Vext = ([attHj (e)] ∪ [extHj ]) ∩ VJt is the set of
arbitrary ordered external nodes.

Jn extends Jt by an additional edge e′ labelled by B′
j . As this edge models the

structure from the other side, it is connected to the remaining external nodes
of H that will not be external any longer. Note that the rank of B′

j is already
given by Jt and therefore introduced gaps in the external sequence are filled by
new external nodes that are connected to edge e′ (fill(i) = extJt(i) if extJt(i) ∈
attH(e), a new node otherwise). To build up the same structure as (X, i) “from
the other side” edge e′ has to be plugged in correctly:

plug(g) =
{
extHj (y) if extJn(g) ∈ VJt

extJt(g) otherwise , with attHj (e)(y) = extJt(g).

B′
j → Jt with:

VJt = VHj \ VR(e)
EJt = EHj \ {e}

labJt = labHj � EJt

attJt = attHj � EJt

extJt ∈ V ∗
ext

B′
j → Jn with:

VJn = VJt ∪ [extJn ]
EJn = EJt ∪ {e′}

labJn = labJt ∪ {e′ → B′
j}

attJn = attJt ∪ {e′ → plug}
extJn = fill

Newly introduced nonterminals are collected in a set N ′, Σ′ = Σ ∪ N ′. For
mirrored derivations, each terminal rule in GX

i can be the initial one thus we
add a copy, extended by an additional B′

j-edge, the GX
i .

Lemma 2. Let G ∈ DSGΣN . For the grammar GX
i over Σ′ = Σ ∪ { B′ |

B′ newly introduced nonterminal } originating from grammar G by eliminating
the (X, i)-local recursion as described above, it holds that LG(H) = LGX

i
(H) for

all H ∈ HGΣN .

Example 9. The doubly-linked list HRG with production rules L → H | J given
in Fig. 2 is locally recursive at (L, 2). We introduce nonterminal B′ and the rules
B′ → Jt | Jn, cf. Fig. 7. The terminal right-hand side Jt corresponds to J with
removed L-edge and attached external node ext(2). Jn is a copy of Jt with an
additional B′-edge and replaced external node ext(1). Intuitively, local recur-
sion is eliminated by introducing new production rules which allow “mirrored”
derivations.

Step 3: Generation of Greibach rules. Starting at the highest order tentacle, for
each GX

i LGNF can be established by elimination of every non-reduction (Y,j)-
tentacle connected to external node i. That is because (Y,j) is of higher order
and thus already in LGNF.
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B′ → 3 1 2

n

p

l

3 1 B′ 2

n

p

l

3

1 2

Fig. 7. Doubly-Linked Lists: GB′
2

Step 4: Transforming new nonterminals to GNF . In the final step we apply steps
one to three to the newly added nonterminals from step two. Obviously further
nonterminals could be introduced. To avoid nontermination we merge nontermi-
nals if the right-hand sides of the corresponding production rules are equal.

Theorem 5. After finite many steps a nonterminal can be merged, thus the
construction of LGNF terminates.

Note that step 2 is nondeterministic as the order on external nodes can be chosen
arbitrarily. Unnecessary steps introduced by unsuitable orders can be avoided by
considering permutations of external nodes isomorphic. If we reach an isomorphic
nonterminal after arbitrary many steps all nonterminals in between represent the
same language and thus can be merged as long as the rank of the nonterminals
permit this.

Example 10. Applying steps 1 to 3 to GB′
1 results in a new nonterminal B′′

isomorphic to L. Thus we can merge L with B′′ and even B′ as the latter
occurred between the formers.

Theorem 6. Any DSG can be transformed into an equivalent DSG in LGNF.

Note that LGNF directly implies the local concretisable property of HAGs. It
additionally ensures the increasingness property, as every production rule be-
longs to at least one GX

i composed by rules with terminal edges at external
node ext(i).

Lemma 3. Each DSG in LGNF is increasing.

While we restrict the normalisable grammars to DSGs here the procedure can
easily be lifted to arbitrary bounded HRGs.

4 Related Work

The idea of using HRGs for verifying heap manipulating programs was proposed
in [8,15]. No technique for transforming a given HRG into a suitable grammar
was provided though, instead using the GNF construction from [6] was proposed,
allowing hypergraphs to be concretised from outer to inner. This generally results
in more and larger rules compared to our LGNF approach, as LGNF generalises
GNF, i.e. every resulting grammar from [6] is in LGNF. Considering the exam-
ple grammar for binary trees with linked frontier [6], its GNF consists of 135
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production rules whereas our local Greibach construction results in 36 rules. In
number of nodes and edges our largest rule is half the size of the normalised
example rule given in [6]. Note that [6] restricts the input grammars to bounded
degree ones, i.e. those allowing only boundedly many references to each object,
excluding for instance rooted grammars like the one given in Fig. 2. Adapting
the construction to HAGs without additional restrictions leads to a complex
construction with poor results.

A further GNF approach for HRGs can be found in [5]. The basic idea is to
use the string GNF construction on a linearisation of the considered HRG. It
is however not clear how to re-obtain the HRG from the resulting linearisation.
Further normal form constructions addressing node replacement can be found
in [17] and [9].

5 Conclusion

This paper presented the theoretical underpinnings of heap abstraction using
hyperedge replacement grammars (HRGs). We showed that concretisation and
abstraction are naturally obtained by forward and backward rule application
respectively. The main contribution is a Greibach normal form (GNF) together
with a procedure to transform an HRG into (local) GNF.

Future work will concentrate on advancing our prototypical tool [8], incre-
mental LGNF construction, and on the automated synthesis of heap abstraction
grammars from program executions.
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Abstract. Given a pattern graph H of fixed size, and a host graph G
guaranteed to contain at most one occurrence of a subgraph isomorphic
to H , we show that both the problem of finding such an occurrence (if
any) as well as the decision version of the problem are as hard as in the
general case when G may contain several occurrences of H.

1 Introduction

The problems of detecting subgraphs or induced subgraphs of a host graph that
are isomorphic to a given pattern graph have been widely studied. They are
important both in their own rights as well as subproblems for other problems in
algorithmics and its applications, for instance in the area of bioinformatics [1,5]
or automatic design [21].

The aforementioned problems are generally termed subgraph isomorphism and
induced subgraph isomorphism problems, respectively. Their decision, finding,
counting and even enumeration versions have been extensively investigated in
the literature. In particular, the decision versions include as special cases such
well-known NP-hard problems as the independent set, clique, Hamiltonian cycle
or path problems [10]. For arbitrary graphs, they are known to admit polynomial-
time solutions only in the case when the pattern graph is of fixed size.

For a given pattern graph H on k vertices and an arbitrary host graph on n
vertices, the detection of an induced or non-necessarily induced subgraph in G
that is isomorphic to H can be done in time O(nω(�k/3�,�(k−1)/3�,�k/3�), where
ω(p, q, r) is the exponent of fast arithmetic matrix multiplication of an np × nq

matrix by an nq × nr matrix (cf. [7,11,13,16]).
The subgraph isomorphism and induced subgraph isomorphism for pattern

graphs of fixed size are known to admit more efficient algorithmic solutions
when restricted to special graph classes, e.g., sparse graphs [6,7] or in particular
planar graphs [8].

Already a restriction of the pattern graph of fixed size to a special graph
class, e.g., graphs of bounded treewidth, cycles, graphs having a relatively large
independent set leads to faster algorithms (cf. [3,4,12,13,15,17,20]).
� Research supported by the grant of the Polish Ministry of Science and Higher
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In this paper, we address the question of whether or not the guarantee that the
host graph contains at most one occurrence of the pattern graph can yield more
efficient solutions to the subgraph isomorphism problem with pattern graph of
fixed size, than those in the general case where the number of occurrences of the
pattern graph is unrestricted.

There are several known examples of combinatorial problems admitting more
efficient algorithms under the assumption of solution uniqueness.

For instance, Gabow et al. [9] show that detecting if a given graph on n vertices
and m edges has a unique perfect matching, and finding one if it exists, can be
done in time O(m log4 n). In a weighted setting, a variation of this problem is to
decide whether a given perfect maximum-weight matching in a graph is unique.
The latter problem has applications in computational biology, namely, in RNA
structure prediction.

Next, unique lowest common ancestors in directed acyclic graphs can be found
more efficiently than those non-necessarily unique [14]. On the other hand, it is
well known that the SAT problem restricted to instances having at most one
satisfying assignment is as hard as SAT [19].

We provide a negative answer to the addressed question. Namely, we show that
the subgraph isomorphism problem with pattern graph of fixed size efficiently
reduces to its restricted case where the host graph is guaranteed to have at most
one occurrence of the pattern graph. Our reduction is randomized and it can be
regarded as a generalization of the reduction of the problem of finding witnesses
of Boolean matrix product to the problem of finding unique witnesses of Boolean
matrix product [2,18]. It can be derandomized by using small probability spaces
similarly as that in [2].

2 A Reduction to Instances with at Most One Occurrence

The fact that uniqueness of solutions does not help on the level of NP-hard
problems is well known [19]. Here we show that analogously uniqueness does not
help in finding and reporting small subgraphs.

Throughout the paper, almost certainly stands for with probability at least
1− 1

nα for some constant α ≥ 1. Furthermore, an occurrence of a pattern graph
in a host graph denotes a subgraph of the host graph isomorphic to the pattern
graph.

In Algorithm 1, we use the technique of gradually diluting the host graph
interleaved with testing for unique occurrence of the pattern graph which can
be seen as an extension of that for witnesses of Boolean matrix product [2].

Let F i denote the current graph F after i iterations of the while loop in
Algorithm 1. It follows that F 0 = G.

Remark 1. The probability that the number of occurrences of H in F i+1 is at
most 3/4 of the number of occurrences of H in F i is at least 1/3.

To see this, note that the expected number of occurrences of H in F i+1 is half
the number of occurrences of H in F i. The statement then follows from Markov
inequality.
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Note that this holds even if we assume only that every l deletions of edges are
independent.

Algorithm 1

Input: A host graph G with n vertices and m edges and a pattern graph
H with l edges

Output: An occurrence of H in G if there is any (almost certainly).

Set F to G and c to 16 logn;

while F has at least l edges do:

1. Delete each edge in F with probability 1−2−
1
l uniformly at random;

2. for k = 1, ..., c do:
3. iterate 16k logn times the following four steps:

– Set K to F ;
– Delete each edge in K with probability 1 − k−

1
l ;

– Run the hypothetical procedure for unique occurrence of H on
K;

– If an occurrence of H in K is found then output it and stop
(alternatively in the decision version, if the existence of an oc-
currence of H in K is reported then report this and stop)

Output “no H”

We now formalize our argument in the following lemma.

Lemma 1. Algorithm 1 outputs an occurrence of H (or reports it, respectively)
if the input graph contains any with probability at least 1

2 (1 − e−1). Let U(n)
be the running time of the hypothetical procedure for unique occurrence of H
in a graph on n vertices. Algorithm 1 runs in time Õ(l(m + n + U(n))) almost
certainly (the notation Õ( ) suppresses polylogarithmic in n factors).

Proof. After 3l log2 n iterations of the while block, a given edge remains with
probability n−3. Hence, the expected number of edges remaining after 3l log2 n
iterations of the block is at most n−1 and it is not less than l ≥ 1 with the
probability of at most n−1l−1 by Markov’s inequality. We conclude that the
number of iterations is O(l logn) almost certainly. Since each iteration takes
time Õ(m + n + U(n)), the upper bound on the running time of Algorithm 1
follows.

Suppose that the input graph contains o occurrences of H. Suppose first that
o ≤ c. Then, during the first iteration of the while loop, for k = o, the expected
number of occurrences of H in K after the deletion of edges with probability
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1−k−
1
l is 1. It follows from Markov’s inequality that the number of occurrences

of H in K after such edge deletions is greater than 1 with probability at most
1
2 . Note that each set S of the deleted edges from K which leaves at most one
occurrence of H contains a maximal subset S′ of edges which deletes at most
o − 1 occurrences of H while any extension of the subset within S has not this
property. Note also that S \ S′ is either empty when S leaves one occurrence of
H or S \ S′ contains exactly one occurrence of H otherwise.

It follows that the conditional probability that each of say k non-necessarily
consecutive iterations of the deletions of edges from K for k = o which result in
at most one occurrence of H would result in 0 occurrences of H is not greater
than the probability that a single occurrence of H would disappear after each of
the k iterations. In turn, the latter value is not greater than (1 − 1

k )k ≤ e−1.
On the other hand, among the 16k logn iterations of the deletions of edges

from K for k = o, there is almost certainly a subsequence of k iterations each
of which results in at most one occurrence of H . We conclude that at least one
of the iterations in the subsequence ends with exactly one occurrence of H in
K with probability at least 1 − e−1. Then, the hypothetical procedure would
output it.

Suppose in turn o > c. Let j be the maximum i such that F i contains more
than c occurrences of H. Since the expected number of occurrences of H in F j+1

is not less than c/2, F j+1 contains at least one occurrence of H with probability
at least 1/2 (and at most c occurrences of H by the definition of j). It is sufficient
now to plug in the argumentation from the first case to conclude that in the
j + 1th iteration of the while loop Algorithm 1 will output an occurrence of H
with probability at least 1

2 (1 − e−1). ��
Now, we can state our main theorem.

Theorem 1. Let H be a pattern graph with l vertices. If the problem of finding
(respectively, detecting) an occurrence of H in a host graph on n vertices having
at most one occurrence of H is solvable in time U(n) then the problem of finding
(or, respectively, detecting) an occurrence of H in a host graph on n vertices and
m edges is almost certainly solvable in time Õ(l(U(n) + m + n)).

Proof. The reduction consists in iterating the method of Lemma 1, i.e., Algo-
rithm 1 a logarithmic number of times. In this way, we can obtain an occurrence
of H (or, respectively, report it) if any, almost certainly. ��
Corollary 1. Let H be a pattern graph on O(1) vertices. If the problem of find-
ing (respectively, detecting) an occurrence of H in a host graph on n vertices
having at most one occurrence of H is solvable in time U(n) then the problem
of finding (or, respectively, detecting) an occurrence of H in a host graph on n

vertices and m edges is almost certainly solvable in time Õ(U(n) + m + n).

Alon and Naor derandomized a randomized algorithm for the so called witnesses
of Boolean matrix multiplication by using c-wise ε-dependent probability spaces
of polylogarithmic size for c = O(log logn) [2]. The property of such spaces
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is that for any subset of random variables of size i ≤ c, the probability that
the random variables attain a given configuration deviates from 1

2i at most by
ε. The known constructions of these spaces have size polynomial in c, 1

ε and
logn. In similar fashion, we can derandomize the reduction, i.e., the iterations
of Lemma 1, increasing the time performance solely by a polylogarithmic factor
for l = O(1).

3 Conclusions

We have shown that for a pattern graph H of a fixed size and an arbitrary host
graph G, the problem of detecting or finding a subgraph isomorphic to H in G
under the assumption that the number of occurrences of a subgraph isomorphic
to H in G is at most one is basically as hard as in the general case.

As one of the referees observed our reduction cannot be directly extended
to include induced subgraph isomorphism. Simply, an induced subgraph of a
diluted graph is not necessarily an induced subgraph of the original graph.
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Abstract. We study the effect of using supplementary information on
the complexity of deterministic pushdown automata. This continues the
study of assisted problem solving initiated in [Gaži, Rovan 2008]. We
study deterministic PDA that can assume its input to be in a given
regular advisory language. We first show that no suitable complexity
measure for DPDA combining the number of states and stack symbols
exists. Next we prove tight bounds on the state complexity of an infinite
sequence of deterministic context-free languages and show that no sup-
plementary regular information can decrease the state complexity of the
DPDA recognizing them. We also find an infinite sequence of determin-
istic context-free languages for which a suitable supplementary regular
information enables the construction of a significantly simpler DPDA.

1 Introduction

In this paper we continue to study the notion of usefulness of information initi-
ated in [1]. We examine the effect of supplementary information on the complex-
ity of recognizing languages. Given an automaton recognizing a certain language,
we attempt to construct a simpler automaton recognizing the same language
under the assumption that the input is not an arbitrary word from Σ∗, but it
belongs to some advisory language LA. We define the language L accepted by
the automaton A with an advisory language LA as follows:

L = L(A,LA) = {w | A accepts w ∧ w ∈ LA} . (1)

If L and LA are recognized by automata AL and AA respectively, then it holds
L = L(AL) ∩ L(AA). This problem is then equivalent to the problem of de-
composing an automaton into two new automata such that the result of the
computation of the original automaton can be determined from the results of
the computations of the new automata. The decomposition is nontrivial if the
new automata are simpler than the original automaton.

There are similar approaches studied in the literature (advice functions,
promise problems). We insist on having the simpler automaton and the “adviser”
� This research was supported in part by the grant VEGA 1/0726/09.

A.-H. Dediu, S. Inenaga, and C. Martín-Vide (Eds.): LATA 2011, LNCS 6638, pp. 342–353, 2011.
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to solve together the original problem (possibly viewing the adviser to work in
parallel) and therefore stressing also the lower complexity of the adviser.

Decompositions of certain types of automata have been studied in the past.
Results for the sequential machines can be found in [2][3], decompositions of
deterministic finite automata have been studied in [1]. We turn our attention to
deterministic pushdown automata (DPDA) with regular supplementary infor-
mation. In order to study the usefulness of additional information we first need
to introduce a measure of complexity for DPDA and show some of its properties.

2 Deterministic Pushdown Automata

We shall use the standard definition of the deterministic pushdown automaton
A = (K,Σ, Γ, δ, q0, Z0, F ).1 We shall use the empty stack accepting mode of
DPDA thereby restricting our attention to prefix-free deterministic context-free
languages (denoted by LeDPDA). To avoid listing all components of the tuple
for an automaton every time, we shall adopt the following convention: if the
automaton has an index or some other marker (e.g. A1) then we use the com-
ponents of the tuple with the same index or marker (K1, δ1, q01, etc.). We shall
write the bottom of the stack as the leftmost symbol of a word.

3 Complexity of Deterministic Context-Free Languages

In order to be able to tell if some information simplifies an automaton, we must
be able to compare the complexity of automata. Defining the complexity of finite
automata is simple: a natural measure of complexity is the number of states of the
automaton. In the case of DPDA, we have at least two parameters: the number
of states and the number of stack symbols. And if we have two automata, one
having more states and the other more stack symbols, it is not immediately clear
which one should be considered “simpler”. Measures of complexity (the number
of states, stack symbols, total size of PDA description, etc.) have been considered
already (see e.g. [4]). In this section we shall show that a measure of complexity
that combines the two parameters and possesses some natural properties does
not exist. This justifies the choice of a simpler and more coarse measure — the
number of states — used in the rest of the paper.

Let � and ≺ denote the standard partial order on pairs of natural numbers

(i.e., (a, b) � (a′, b′) def⇐⇒ a ≤ a′ ∧ b ≤ b′).

Definition 1. Let A and A′ be DPDA. A is simpler than A′ if (|K|, |Γ |) ≺
(|K ′|, |Γ ′|). A is not more complex than A′ if (|K|, |Γ |) � (|K ′|, |Γ ′|).
This definition handles the simple case: if the first automaton has less states
and stack symbols than the second one, then it is natural to say that the first
1 Formal definition along with all the omitted proofs can be found in the full version

of this text at http://www.st.fmph.uniba.sk/˜labath2/master/
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automaton is less complex. This will be our reference definition, to which we shall
compare other complexity functions — any reasonable function should preserve
the ordering induced by ≺.

3.1 Measuring Complexity of Automata

Although we could use ≺ to compare the complexity of DPDA, it is preferable to
define complexity in a way that induces a total order on the set of automata. A
desirable property of such a combined measure is the following: Any two equiv-
alent automata which are minimal in the sense of ≺ have the same complexity
using the combined measure. We shall now illustrate these ideas using several
examples and show that a combined measure of complexity having this property
does not exist.

It is easy to see that the following three automata all accept (by empty stack)
the language L = {anbn | n ∈ N

+}. We have shown that they are minimal in
the sense of ≺.

K1 = {q0, q1} K2 = {q0, q1, q2} K3 = {q0}
Γ1 = {Z0, a} Γ2 = {Z0} Γ3 = {Z0, a, b}
δ1(q0, a, Z0) = (q0, a) δ2(q0, a, Z0) = (q1, Z0) δ3(q0, a, Z0) = (q0, a)
δ1(q0, a, a) = (q0, aa) δ2(q1, a, Z0) = (q1, Z0Z0) δ3(q0, a, a) = (q0, ba)
δ1(q0, b, a) = (q1, ε) δ2(q1, b, Z0) = (q2, ε) δ3(q0, b, a) = (q0, ε)
δ1(q1, b, a) = (q1, ε) δ2(q2, b, Z0) = (q2, ε) δ3(q0, b, b) = (q1, ε)

Theorem 1. The automata A1, A2 a A3 are minimal automata accepting L
(with respect to definition 1).

Proof. A smaller automaton must have parameters (1, 2), (2, 1) or (1, 1). We have
shown through a detailed analysis of possible values for the transition function
that no such automaton can accept L.

Note 1. Although no smaller automaton can accept L, the same does not hold
for a very similar language: L′ = {an−1bn | n ∈ N

+}. L′ is accepted by the
following automata:

K4 = {q0} K5 = {q0, q1}
Γ4 = {Z0, b} Γ5 = {Z0}
δ4(q0, a, Z0) = (q0, bZ0) δ5(q0, a, Z0) = (q0, Z0Z0)
δ4(q0, b, Z0) = (q0, ε) δ5(q0, b, Z0) = (q1, ε)
δ4(q0, b, b) = (q0, ε) δ5(q1, b, Z0) = (q1, ε)

This example shows how delicate is the complexity of languages — even a small
change in the language can enable us to recognize it with a simpler automaton.

Since A1, A2 and A3 are minimal automata, it would be desirable to assign them
the same complexity. Looking at these automata, one might conclude that the
function “sum of the number of states and stack symbols” is a good complexity
measure. However, it is easy to find an example where the product of the two
numbers would fit better. We shall now show that a combined measure assigning
the same complexity to A1, A2 and A3 does not exist.
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Theorem 2. There is no function f : N × N → N such that for each pair of
automata A and A′ accepting the same language L it holds:

1. (|K|, |Γ |) ≺ (|K ′|, |Γ ′|) =⇒ f(|K|, |Γ |) < f(|K ′|, |Γ ′|)2
2. If A and A′ are minimal automata for L then f(|K|, |Γ |) = f(|K ′|, |Γ ′|)

Proof. By contradiction. Let us assume such a function f does exist. Let us
examine the following (regular) language

Lmod2 = {wc | w ∈ {a, b}∗ ∧ #a(w) ≡ #b(w) ≡ 0 (mod 2)} . (2)

Consider a minimal automaton for Lmod2. If we fix the number of stack symbols
to 1 then it must have at least 4 states corresponding to the 4 combinations of
remainders. Clearly, 4 states suffice because one can easily construct a 4-state
automaton accepting Lmod2. If we allow the automaton to use 2 states then
2 stack symbols are sufficient. The latter automaton can count the number of
symbols a (modulo 2) in the state and the number of symbols b on the stack,
while the former can do it all in the state. When the automata read c they empty
the stack if the remainders are 0.

Hence, it must hold f(4, 1) = f(2, 2). From our study of the language L we
know that A1 and A2 are its minimal automata and therefore f(2, 2) = f(3, 1).
But this contradicts the first requirement which states that f(4, 1) > f(3, 1).

��
3.2 State Complexity

In view of Theorem 2 we shall use a simpler (and coarser) measure of complexity
— the number of states. Note that this is not a trivial measure, since there is
no “one state normal form” like we have for nondeterministic PDA.

Definition 2. The state complexity of DPDA A is the number of its states and
we shall denote it by STATE(A). A is simpler (resp. not more complex) than
DPDA A′ if it holds |K| < |K ′| (resp. |K| ≤ |K ′|). The complexity of L ∈
LeDPDA is the complexity of the simplest automaton accepting L and is denoted
by STATE(L).

Note 2. State complexity induces a total order on the set of automata and it is
compatible with ≺. Furthermore, due to well-orderedness of natural numbers,
the state complexity of languages is well defined.

In Sect. 4, we examine the effect of supplementary information on the complexity
of automata and languages. To see if some information simplifies a language we
need a tight bound on the complexity of some languages. Here we focus our
attention on the following sequence of languages:

L1 = L = {anbn | n ∈ N
+} (3)

Li+1 = {anwbn | n ∈ N
+ ∧ w ∈ Li

∗} . (4)
2 We require the strict inequality to disallow trivial functions assigning the same value

to all inputs.
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The words in Li contain correctly parenthesized symbols a and b. The differ-
ence between the languages is in the level of nesting. For example, the word
aaaaaaabbabbbaabbbbb belongs to L3 − L2 because

aaaaaaabbabbbaabbbbb = a3 a2

∈L1︷︸︸︷
a2b2

∈L1︷︸︸︷
ab b2︸ ︷︷ ︸

∈L2−L1

a2b2︸︷︷︸
∈L2

b3 ∈ L3 − L2 . (5)

These words can also be represented graphically. Two such examples can be
found in Fig. 1 (page 352).

Our intention is to prove that the complexity of language Ln is exactly n.
To prove the upper bound, we shall construct an automaton having n states
and n + 2 stack symbols. After that, we shall prove that there is no automaton
accepting Ln with a smaller number of states.

Theorem 3. STATE(Ln) = n for each n ∈ N
+.

Proof. We first show that STATE(Ln) ≤ n. We construct an automaton An =
({q1, . . . , qn}, {a, b}, {Z0, Z1, . . . , Zn−1, a, b}, δn, q1, Z0, ∅) for each n:
δn(q1, a, Z0) = (q1, a); δn(q1, a, a) = (q1, ba); δn(q1, b, a) = (q1, ε);
δn(qi, b, b) = (qi, ε) for i = 1 . . . n;
δn(qi, b, Zj) = (qmax(i,j)+1, ε), δn(qi, a, Zj) = (q1, Zmax(i,j)a) for i, j = 1 . . . n−1.
δn(qi, a, b) = (q1, Zia) for i = 1 . . . n− 1;
The automaton operates similarly to A2 from Subsection 3.1 — always preserving
the invariant “number of open parentheses” = “number of symbols on the stack”.
Additionally, it must check the nesting level. It does that in two places. It stores
the symbols Zi on the stack to indicate the place where a nest ends. The state
of the automaton indicates the nesting level of the currently processed nest.

We now show (by contradiction) that STATE(Ln) ≥ n. Let us assume that an
automaton A such that |KA| = n− 1 does exist. Let z = |ΓA|. The computation
of A on the word c1c2 · · · cl (ci ∈ {a, ε}) is

(p0, c1c2 · · · cl, z0) # (p1, c2 · · · cl, s1z1) # · · · # (pl, ε, slzl) . (6)

For each i ∈ N
+, ai is a prefix of a word in Ln. Hence, A must not halt while read-

ing ai. According to the pigeonhole principle, for l > z ·n some pair (state, stack
symbol) must occur twice. After that, the automaton will operate in “cycles”.
The pairs must not repeat themselves because then the automaton could not
know how many symbols it has read. Therefore, the stack will gradually grow,
but it will contain a repeating block. Formally, after reading ai for a sufficiently
large i, the pair will be (spγ

ks
(i)
s , q(i)) (with sp fixed, k gradually increasing and

s
(i)
s and q(i) periodically repeating).
Let us fix ss = s

(i)
s for some i. For k = 1, 2, . . . let nk be a number such that

after reading ank the stack of A will be spγ
kss. Let us define a sequence of words

wi by w1 = ab and wi+1 = awibab. We shall use these words to control the nesting
level of the words containing them. E.g., aw2b = a aw1b ab b = a aabb ab b is in
L2 because it contains two words from L1 (aabb and ab) surrounded by a and b.
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Let us consider the behavior of the automaton while reading ui = ankwib
nk ∈

Ln for i = 1 . . . n. The stack cannot shrink significantly while A is reading
the middle part since it would “forget” the number of symbols read. A must
empty the stack after having read bnk . Therefore, at some point it will reach
the configuration (qxi , b

li , spγ
k−1) for some li, xi. A has only n − 1 states �

qxi = qxj for some i, j ∈ {1, 2, . . . , n}; i < j. Let

vi = ankwib
nk−li(abb)n−i

bli−(n−i) ∈ Ln (7)

vj = ankwjb
nk−lj (abb)n−j

blj−(n−j) ∈ Ln . (8)

These words have the same prefixes as ui and uj. While reading them, A will
reach configurations (qxi , (abb)

n−i
bli−(n−i), spγ

k−1) and (qxj , (abb)
n−j

blj−(n−j),
spγ

k−1). But qxi = qxj � the stack-state pairs are the same and A cannot tell
these configurations apart. We can swap the suffixes and the corresponding parts
of the computation and we shall obtain an accepting computation on the word
ankwjb

nk−lj (abb)n−ibli−(n−i), which does not belong to Ln, because it contains
more than n nests � contradiction with N(A) = Ln. ��
The automaton An needed n states because it had to store the information about
the nesting level even when the stack was shrinking. It can be shown that this is
the only case when an automaton must store information in its state. States that
are not reachable from stack-shrinking rules can be replaced by stack symbols.
Given an automaton A, we can construct an equivalent automaton A′ which will
have Kε as the set of states, where

Kε = {p ∈ K | ∃q ∈ K ∃x ∈ Σ ∪ {ε} ∃Z ∈ Γ δ(q, x, Z) = (p, ε)} . (9)

The idea is that the new automaton can store the state on its stack (in the
top symbol, which will be a pair consisting of the state and the original stack
symbol). This approach works when the stack does not shrink. When the stack
does shrink, we must store the information in the state, and this means the
automaton needs |Kε| states. It is important to realize that this optimization
does not have to produce a minimal automaton for the given language. A different
automaton, operating in a completely different way, may exist and it may have
a smaller number of states.

Introducing the state complexity point of view to DPDA can lead to improve-
ments in some “standard” constructions. For example, the exponential increase
of the number of states for the complement construction is not necessary and
it can be shown that a linear increase suffices. In fact, the construction of the
“automaton reads the whole input” normal form (which is the key part of the
complement construction) can be done by adding only one state.

4 Usefulness of Supplementary Information

In this section we study how (and if) can regular supplementary information
help a deterministic pushdown automaton. In the first part we show examples
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when the information enables us to construct a substantially simpler automaton.
We conclude the section by showing that no regular information can help the
minimal automata for Ln (i.e., the languages are not decomposable, they cannot
be written as the intersection of a regular language and a deterministic context-
free language accepted by a simpler automaton).

4.1 Decomposable Languages

We can study the effect of supplementary information from two points of view.
The first possibility is to take a specific automaton A and then try to find an
advisory language which would enable us to construct a simpler automaton A′.
The new automaton must recognize the same language but it will have help in
the form of a regular advisory language.

Let us study the following sequence of automata A1, A2, . . .

An = ({q0, . . . , qn−1}, {a, b}, {Z0, Z1, a}, δn, q0, Z0, ∅)
δn(q0, a, Z0) = (q(1 mod n), Z1)
δn(qi, a, x) = (q(i+1) mod n, xa) i ∈ {0, . . . , n− 1} x ∈ {Z1, a}
δn(qi, b, a) = (qi, ε) i ∈ {0, . . . , n− 1}
δn(q0, b, Z1) = (q0, ε)

The automaton An recognizes the language

D(mod n) = {awb | w ∈ D1 ∧ #a(awb) ≡ 0 (mod n)} , (10)

where D1 is the Dyck language consisting of balanced pairs of parentheses (sym-
bols a and b in our case). The automaton has complexity n. However, it is easy
to see that if we choose

L(mod n) = {w ∈ {a, b}+ | #a(w) ≡ 0 (mod n)} (11)

as the advisory language we can accept D(mod n) with only one state: when we
know the input has the correct number of symbols a it is sufficient to check the
balancing. The automaton A′ = A1 can do that with one state, therefore it holds

D(mod n) = L(A1, L(mod n)) = LA1 ∩ L(mod n) (12)

The problem with this approach is that, in general, we are not able to tell
whether the simplification of the automaton is a consequence of the help pro-
vided by the advisory language. It is possible that there is an automaton Am

recognizing the same language which is simpler than our automaton An. The
automaton can even be simpler than A′.

Therefore, it is better to study the effect of supplementary information from
the language point of view. We can identify a language with its minimal au-
tomaton. If we now show that the new automaton is simpler than a minimal
automaton it is clear this was caused by the presence of the advisory language
and that the information contained within is in this particular case3 useful. Then
3 The same information may be totally useless for some other language/automaton.
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the most complicated part is to prove that an automaton is a minimal automa-
ton for the given language. In the case of L(mod n), An is indeed a minimal
automaton. The proof is similar to that of Theorem 3 and is omitted due to lack
of space.

Theorem 4. STATE(D(mod n)) = n for each n ∈ N
+ (i.e., the automaton An

is a minimal automaton for the language D(mod n)).

This shows that the information whether a word belongs to L(mod n) is relevant
when testing whether a word belongs to D(mod n) and allows us to reduce the
number of states from n to 1. Hence, we can say that the decomposition of the
language D(mod n) to languages L(mod n) and D1 is nontrivial, according to the
following definition.

Definition 3. Let L,L1 ∈ LeDPDA. Let L2 be a regular language and let L =
L1 ∩L2. Let A and A1 be automata recognizing languages L and L1 respectively
and let A be a minimal automaton recognizing L (using the “number of states”
criterion). The language L is nontrivially decomposable to languages L1 and
L2 if the automaton A1 has (strictly) less states than A.

This definition does not limit the complexity of the finite automaton recognizing
L2. That means the automaton may possibly have significantly more states than
the original automaton A. Despite that, we shall consider this to be a nontrivial
decomposition since the finite automaton (even when it has more states) is a
“simpler” kind of a device than the deterministic pushdown automaton. We shall
show examples of languages which are not decomposable even when we allow
the finite automaton to have an arbitrary number of states.

4.2 Non-decomposable Languages

In Sect. 3 we have defined the sequence of languages {Ln}∞n=1 and proved that
the complexity of the nth language is exactly n. We would like to know if some
regular information would enable us to simplify the automaton recognizing Ln.
At first, one might think it is possible — we have the limitation on the nesting
level, which is a constant (for a fixed n) and one might want to construct a finite
automaton checking that. This would leave the DPDA with the task of checking
the balancing of the symbols, which we know can be done using just one state.

However, this is not true. Namely, the nesting level depends too much on the
exact number of symbols in a word. For example, the word

a3mbmambmamb3m = amam

∈L1︷ ︸︸ ︷
ambm

∈L1︷ ︸︸ ︷
ambm

∈L1︷ ︸︸ ︷
ambm bmbm (13)

belongs in L2, but the word

a3mbmamb2mamb2m = am am

∈L1︷ ︸︸ ︷
ambm

∈L1︷ ︸︸ ︷
ambm bm︸ ︷︷ ︸

∈L2−L1

ambm︸ ︷︷ ︸
∈L2

bm (14)
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is in L3 −L2. In this subsection we shall prove that the languages Ln cannot be
decomposed. The formal proof consists of two parts.

1. We shall find an infinite set of words (let us call it Lbad) which must be
accepted by an automaton accepting a superset of Ln with less than n states.
This part is similar to the proof of Theorem 3, where we find a single such
word. However, here we must analyze the behavior of the automaton in more
detail, because we need an infinite (and non-regular) set, so we can use it in
the second step.

2. We shall show that there is no DFA that accepts all words from Ln while
rejecting every word from Lbad. We shall use the non-regularity of Lbad to
show that the finite automaton cannot distinguish “good” words from Ln

and “bad” words from Lbad.

To improve readability, we have split the first step into several lemmas. The first
one handles the simplest case — the language L2.4 Due to the lack of space,
we shall omit the proof for the more complex languages. Instead, we shall only
briefly describe the differences.

Lemma 1. Let A be a single-state DPDA such that L2 ⊆ N(A). There exists
m ∈ N

+ such that for each j, l ∈ N
+ there exist i, k, t ∈ N0 : k > 2j such that A

accepts
aibt albl bjm ab b(k−j)mbi−t−km . (15)

Before we can prove this theorem we need to introduce some definitions.

Definition 4. Let A be a DPDA with a single state q0. Partial functions cA :
Γ ∗ → N0, BA : Γ ∗ → {b}∗ are defined as follows:

Let s ∈ Γ ∗. Let there exist m ∈ N0 such that5

(q0, bm, s) #∗
A (q0, ε, ε) . (16)

Then cA(s) = m, BA(s) = bm. If there is no such m the functions are undefined.
If it is clear which automaton we have in mind, we omit the index A.

We shall use these functions in the piecewise construction of the input for the
automaton. We shall give the automaton a part of the input, look at the contents
of the stack after the automaton has read it and based on that information we
shall give the automaton the next part of the input word. If we know that the
input can be completed to a word from the accepted language with a number
of symbols b then the function cA returns that number. E.g., if the word w′

has that property and the stack after reading it is s1s2 then the stack after
reading w′bc(s2) = w′B(s2) is s1. Additionally, the functions have the following
properties:

c(s2s1) = c(s1) + c(s2) , (17)
B(s2s1) = B(s1) · B(s2) . (18)

Now we can proceed with the proof.
4 One need not consider L1 since its minimal automaton already has only one state.
5 If such an m exists, it is unique, because A is deterministic.
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Proof (of Lemma 1). The stack of A after reading sufficiently long ai will be
spγ

ks
(i)
s . As in the proof of Theorem 3 we shall choose a fixed ss and vary i.

After reading u = aiB(γss) the stack will be spγ
k−1. What will the stack look

like after reading u albl, l ∈ N
+? While processing albl the stack will never drop

below spγ
k−2. We shall show this by contradiction. Let the stack after reading

uu0 be spγ
k−2, where u0 is some prefix of albl. Then it holds #a(u0) ≥ #b(u0)

and A will accept the word uu0B(spγ
k−2), but not uu0b

#a(uu0)−#b(uu0) ∈ L2,
because

#a(uu0) − #b(uu0) ≥ i− #b(u) = c(spγ
kss) − c(γss) > c(spγ

k−2) . (19)

Therefore, the stack after reading u albl can be written as spγ
k−2γ′. The exact

value of γ′ may depend on l, but for each l it must hold c(γ′) = c(γ) because
u albl has the same number of “open brackets”6 as u.

For j = 2 . . . k − 1 after reading

vj = u albl B(γj−2γ′) = aiB(γss) albl B(γj−2γ′) = aiB(γss) albl B(γj − 1)
(20)

the stack will be spγ
k−j . However, the automaton will have the same stack after

reading wj = aiB(γjss) as well. vja is not a prefix of a word from L2, but wja
is. Since A cannot tell the words apart, we can say that the stack after reading
vja and wja will be spγ

k−1−jγ′′, where

c(γ′′) = c(γ) + 1 . (21)

Since A accepts wjaB(spγ
k−1−jγ′′) ∈ L2, it must also accept

vjaB(spγ
k−1−jγ′′) = aiB(γss) albl B(γj)aB(spγ

k−1−jγ′′) . (22)

Using (21) and (18) we can rewrite the word as

aiB(γss) albl B(γ)j ab B(γ)k−jB(sp) . (23)

We can chose i arbitrarily large and so for each j ∈ N
+ we can find an i such

that k = k(i) > 2j. When we replace c(γss) with t and c(γ) with m we get

aibt albl bjm ab b(k−j)mB(sp) . (24)

From the definition of c it follows that

i = c(spγ
kss) = c(sp) + kc(γ) + c(ss) = c(sp) + km + t . (25)

Hence, it holds c(sp) = i − t − km and so the word meets all the requirements
of the lemma. ��
The next step is to prove a similar lemma for the language L3. A minimal
automaton for this language has 3 states, thus a simpler automaton may have
6 #a(u albl) − #b(ualbl) = #a(u) − #b(u).
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more than one state. This means that we cannot use some of the arguments from
the previous proof. The biggest difference is that we have to take the state of
the automaton into account when constructing the words using the cA and BA

functions and we look for words that produce the same stack, we need to make
sure the automaton is in the same state as well.

After that, we can prove the lemma for the general case. The difference from
the previous one is that we must use induction for the piecewise construction of
words from Ln+1 − Ln which have the desired form.

Lemma 2. Let n ∈ N
+. Let A be a DPDA such that |KA| = n − 1 and Ln ⊆

N(A). Then there exists m ∈ N
+ such that for all sufficiently large j, l ∈ N

+

there exist i, k, t, x1, . . . xn−1 ∈ N0 : k > 2j such that A accepts

aibt albl bjm abbx1 · · · abbxn−1 b(k−j)mbi−t−km−∑ n−1
s=1 xs (26)

This lemma finds words which are accepted by a simpler automaton accepting
all the words from Ln. We then prove that there is no finite automaton that can
reject all these bad words while accepting all the good words from Ln. From this
it follows that the intersection of the languages accepted by these two automata
cannot be Ln and that Ln (and its minimal automaton) is non-decomposable.

Theorem 5. The languages Ln for n ∈ N
+ are not (non-trivially) decompos-

able.

Proof. By contradiction. Let A be a DPDA and A′ an FSA such that N(A) ∩
L(A′) = Ln. Then it holds Ln ⊆ N(A) and according to the previous lemmas
there exists m ∈ N

+ such that for each (sufficiently large) j, l ∈ N
+ there exist

i, k, t, x1, . . . xn−1 ∈ N0 : k > 2j such that A accepts

wj,l = aibt albl bjm abbx1 · · · abbxn−1 b(k−j)mbi−t−km−∑ n−1
s=1 xs . (27)

wj,l (the word for n = 3 is depicted on Fig. 1 left) is accepted by A but it does
not belong in Ln and so A′ must not accept wj,l for any j and l.

L1 L1

L2 L2

L3 L3

L4

L1 L1 L1

L2 L2

L3

Fig. 1. Word wj,t before and after “pumping”
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Let l = j = |KA′ |!. How will A′ behave when processing wj,l? The length of
the part blbjm is |KA′ |! · (m + 1). That is more than the number of states of
the automaton and so the automaton will cycle. The length of the cycle evenly
divides |KA′ |! · m so we can surely remove that number of symbols b and the
automaton will not “notice” that — it will reject the word

aibt a|KA′ |!b|KA′ |! abbx1 · · · abbxn−1 bk−|KA′ |!bi−t−km−∑ n−1
s=1 xs (28)

as well. Now let us focus on the part b(k−|KA′ |!)m. Its length is at least |KA′ |!
(since k > 2j) and so we can add |KA′ |!·m symbols b. That means the automaton
will also reject the word

w′=aibt a|KA′ |!b|KA′ |! abbx1 · · ·abbxn−1 bkmbi−t−km−∑ n−1
s=1 xs

=ai−t−∑ n−1
s=1 xs axn−1 · · · ax1

∈L1︷︸︸︷
atbt

∈L1︷ ︸︸ ︷
a|KA′ |!b|KA′ |! abbx1︸ ︷︷ ︸

∈L2

· · ·
∈L1︷︸︸︷
ab bxn−1bi−t−∑n−1

s=1 xs

︸ ︷︷ ︸
∈Ln

(29)
w′ (Fig. 1 right) is not in L(A′), hence it cannot be in the intersection of L(A′)
and N(A). That contradicts the assumption N(A) ∩ L(A′) = Ln. ��

5 Conclusion

There are several ways to extend this research. One can study the (closure)
properties of the class of decomposable and non-decomposable languages. Also,
one could study other definitions of the complexity of pushdown automata: non-
decomposable languages according to the “number of states” measure could be-
come decomposable if one used a finer measure. Another option is to consider
modifications of the DPDA (e.g., accepting by state, a stack with a fixed bottom-
of-stack symbol) or a more powerful model of computation.
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Abstract. We study normalization of deterministic sequential top-down
tree-to-word transducers (stws), that capture the class of deterministic
top-down nested-word to word transducers. We identify the subclass of
earliest stws (estws) that yield unique normal forms when minimized.
The main result of this paper is an effective normalization procedure
for stws. It consists of two stages: we first convert a given stw to an
equivalent estw, and then, we minimize the estw.

1 Introduction

The classical problems on transducers are equivalence, minimization, learning,
type checking, and functionality [2,13,14,6]. Except for the latter two questions,
one usually studies deterministic transducers because non-determinism quickly
leads to fundamental limitations. For instance, equivalence of non-deterministic
string transducers is known to be undecidable [8]. We thus follow the tradition
to study classes of deterministic transducers. The problems of equivalence, min-
imization, and learning are often solved using unique normal representation of
transformations definable with a transducer from a given class [9,7,5,11]. Nor-
malization i.e., constructing the normal form of a given transducer, has been
studied independently for various classes, including string transducers [4,3], top-
down tree transducers [5], and bottom-up tree transducers [7].

In this paper, we study the normalization problem for the class of determin-
istic sequential top-down tree-to-word transducers (stws). stws are finite state
machines that traverse the input tree in top-down fashion and at every node
produce words obtained by the concatenation of constant words and the results
from processing the child nodes. The main motivation to study this model is
because tree-to-word transformations are better suited to model general xml
transformations as opposed to tree-to-tree transducers [5,11,14]. This follows
from the observation that general purpose xml transformation languages, like
xslt, allow to define transformations from xml documents to arbitrary, not nec-
essarily structured, formats. Also, stws capture a large subclass of deterministic
nested-word to word transducers (dn2w), which have recently been the object
of an enlivened interest [6,15,16].
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Expressiveness of stws suffers from two limitations: 1) every node is visited
exactly once, and 2) the nodes are visited in the fix left-to-right preorder traver-
sal of the input tree. Consequently, stws cannot express transformations that
reorder the nodes of the input tree or make multiple copies of a part of the input
document. Stws remain, however, very powerful and are capable of: concate-
nation in the output, producing arbitrary context-free languages, deleting inner
nodes, and verifying that the input tree belongs to the domain even when delet-
ing parts of it. These features are often missing in tree-to-tree transducers, and
for instance, make stws incomparable with the class of top-down tree-to-tree
transducers [5,11].

Normal forms of transducers are typically obtained in two steps: output
normalization followed by machine minimization. A natural way of output nor-
malization is (re)arranging output words among the transitions rules so that
the output is produced as soon as possible when reading the input, and thus
transducers producing output in this fashion are called earliest. Our method
subscribes to this approach but we note that it is a challenging direction that
is not always feasible in the context of tree transformations. For instance, it
fails for bottom-up tree-to-tree transducers, where ad-hoc solutions need to be
employed [7].

We propose a natural normal form for stws because on being earliest for stws
and define the corresponding class of earliest stws (estws) using easy to verify
structural requirements. We present an effective procedure to convert an stw to
an equivalent estw. This process is very challenging and requires novel tools on
word languages. We point out that while this procedure works in time polynomial
in the size of the output estw, we only know a doubly-exponential upper-bound
and a single-exponential lower bound of the size of the output estw. This high
complexity springs from the fact that the output language of an stw may be an
arbitrary context-free language. We also show that minimization of earliest stws
is in ptime thanks to a fundamental property: two equivalent estws have rules
of the same form and allow bisimulation. General stws are unlikely to enjoy a
similar property because their minimization is np-complete.

Overall, we obtain an effective normalization procedure for stws. Our results
also offer an important step towards a better understanding of the same problem
for dn2ws because stws capture a large class of top-down dn2ws modulo the
standard first-child next-sibling encoding and the conversion from one model to
another can be done efficiently [16]. It is a significant result because there exist
arguments suggesting that arbitrary dn2ws are unlikely to have natural normal
forms [1].

Organization. In Section 2 we present basic notions and introduce stws and
estws. Section 3 introduces important tools on word languages and presents an
stw to estw conversion algorithm. In Section 4 we deal with minimization of
stws and estws. Section 5 summarizes our work and outlines future directions.
Because of space restrictions we omit the proofs, which can be found in the full
version at http://hal.inria.fr/inria-00566291/en/.
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2 Sequential Top-Down Tree-to-Word Transducers

A ranked alphabet is a finite set of ranked symbols Σ =
⋃

k≥0 Σ
(k) where Σ(k) is

the set of k-ary symbols. We assume that every symbol has a unique arity i.e.,
Σ(i) ∩Σ(j) = ∅ for i �= j. We use f, g, . . . to range over symbols of non negative
arity and a, b, . . . to range over constants i.e., symbols of arity 0. We write f (k)

to indicate that f ∈ Σ(k) if the arity of f is not known from the context. A
tree is a ranked ordered term over Σ. We use t, t0, t1, . . . to range over trees. For
instance, t0 = f(a, g(b)) is a tree over Σ = {f (2), g(1), a(0), b(0)}.

For a finite set Δ of symbols by Δ∗ we denote the free monoid on Δ. We write
u · v for the concatenation of two words u and v and ε for the empty word. We
use a, b, . . . to range over Δ and u, v, w, . . . to range over Δ∗. For a word w by
|w| we denote its length. Given a word u = up · uf · us, up is a prefix of u, uf

a factor of u, and us a suffix of u. The longest common prefix of a nonempty
set of words W , denoted lcp(W ), is the longest word u that is a prefix of every
word in W . Analogously, we define the longest common suffix lcs(W ).

Definition 1. A deterministic sequential top-down tree-to-word transducer
(stw) is a tuple M = (Σ,Δ,Q, init , δ), where Σ is a ranked alphabet of in-
put trees, Δ is a finite alphabet of output words, Q is a finite set of states,
init ∈ Δ∗ ·Q ·Δ∗ is the initial rule, δ is a partial transition function from Q×Σ
to (Δ ∪ Q)∗ such that if δ(q, f (k)) is defined, then it has exactly k occurrences
of elements from Q. By stws we denote the class of deterministic sequential
top-down tree-to-word transducers.

In the sequel, if u0 ·q0 ·u1 is the initial rule, then we call q0 the initial state. Also,
we often view δ as a set of transition rules i.e., a subset of Q × Σ × (Δ ∪ Q)∗,
which allows us to quantify over δ. The size of the stw M is the number of its
states and the lengths of its rules, including the lengths of words used in the
rules. The semantics of the stw M is defined with the help of auxiliary partial
functions Tq (for q ∈ Q), recursively defined on the structure of trees as follows:

Tq(f(t1, . . . , tk)) =

⎧⎪⎨⎪⎩
u0 · Tq1(t1) · u1 · . . . · ·Tqk

(tk) · uk,

if δ(q, f) = u0 · q1 · u1 . . . · qk · uk,
undefined, if δ(q, f) is undefined.

The transformation TM defined by M is a partial function mapping trees over
Σ to words over Δ defined by TM (t) = u0 · Tq0(t) · u1, where init = u0 · q0 · u1.
Two transducers are equivalent iff they define the same transformation.

Example 1. We fix the input alphabet Σ = {f (2), g(1), a(0)} and the output
alphabet Δ = {a, b, c}. The stw M1 has the initial rule q0 and the following
transition rules:

δ(q0, f) = q1 · ac · q1, δ(q1, g) = q1 · abc, δ(q1, a) = ε.
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It defines the transformation TM1(f(gm(a), gn(a))) = (abc)mac(abc)n, where
m,n ≥ 0, and TM1 is undefined on all other input trees. The stw M2 has the
initial rule p0 and these transition rules:

δ(p0, f) = p1 · p3 · ab, δ(p1, g) = a · p2, δ(p2, g) = ab · p3, δ(p3, g) = p3,

δ(p0, a) = ba, δ(p1, a) = ε, δ(p2, a) = ε, δ(p3, a) = ε.

Now, TM2(a) = ba and for n ≥ 0, the result of TM2(f(gm(a), gn(a)) is ab for
m = 0, aab for m = 1, and aabab for m ≥ 2; TM2 is undefined for all other input
trees. Note that p3 is a deleting state: it does not produce any output but allows
to check that the input tree belongs to the domain of the transducer. ��
In the sequel, to simplify notation we assume every state belongs to exactly
one transducer, and so Tq above is defined in unambiguous manner. We con-
sider only trimmed stws i.e., transducers where all states define a nonempty
transformation and are accessible from the initial rule. Also, by domq we denote
the set dom(Tq), the domain of Tq i.e., the set of trees on which Tq is defined,
and by Lq the range of Tq i.e., the set of words returned by Tq. For instance,
domq0 = {f(gm(a), gn(a) | m,n ≥ 0} and Lq0 = (abc)∗ac(abc)∗. We observe that
domq is a regular tree language and Lq is a context-free word language (cfl).

Next, we introduce the notion of being earliest that allows us to identify
normal forms of transformations definable with stws. It is a challenging task
because the notion of being earliest needs to be carefully crafted so that every
transducer can be made earliest. Take, for instance, the transformation turn that
takes a tree over Σ = {a(1), b(1),⊥(0)} and returns the sequence of its labels in
the reverse order e.g., turn(a(b(b(⊥)))) = bba. It is definable with a simple stw.

δ(qturn , a) = qturn · a, δ(qturn , b) = qturn · b, δ(qturn ,⊥) = ε.

One way to view the transformation is a preorder traversal of the input tree that
produces one output word upon entering the node and another word prior to
leaving the node. When analyzing turn from this perspective, the earliest mo-
ment to produce any output is when the control reaches ⊥, and in fact, the whole
output can be produced at that point because all labels have been seen. This
requires storing the label sequence in memory, which is beyond the capabilities
of a finite state machine, and thus, turn cannot be captured with a transducer
satisfying this notion of being earliest.

We propose a notion of being earliest that is also based on preorder traversal
but with the difference that both output words are specified on entering the
node and the output of a node is constructed right before leaving the node.
Intuitively, we wish to push up all possible factors in the rules. Clearly, the stw
above satisfies the condition. We remark that in some cases the output words
in the rule can be placed in several positions, e.g. the rule δ(q1, g) = q1 · abc in
M1 (Examples 1) can be replaced by δ(q1, g) = abc · q1 without changing the
semantics of M1. Consequently, we need an additional requirement that resolves
this ambiguity: intuitively, we wish to push left the words in a rule as much as
possible.
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Definition 2. An stw M = (Σ,Δ,Q, init , δ) is earliest (estw) iff the following
two conditions are satisfied:

(E1) lcp(Lq) = ε and lcs(Lq) = ε for every state q,
(E2) lcp(Lq0 · u1) = ε for the initial rule u0 · q0 · u1 and for every transition

δ(q, f) = u0 ·q1 ·. . .·qk ·uk and 1 ≤ i ≤ k we have lcp(Lqi ·ui · . . .·Lqk
·uk) = ε.

Intuitively, the condition (E1) ensures that no factor can be pushed up in the
traversal and (E2) ensures that no factor can be pushed left. We note that (E1)
and (E2) can be efficiently checked in an stw because we need only to check
that the results of lcp and lcs are ε. The main contribution of this paper follows.

Theorem 1. For every stw there exists a unique minimal equivalent estw.

The proof consists of an effective procedure that works in two stages: In the
first stage we normalize the outputs, i.e. from the input stw we construct an
equivalent estw, and in the second stage we minimize the obtained estw. The
first stage is, however, quite complex as illustrated in the following example.

Example 2 (contd. Example 1). M1 is not earliest because (E1) is not satisfied
at q0: every word of Lq0 = (abc)∗ac(abc)∗ begins with a i.e., lcp(Lq0) = a, and
ends with c i.e., lcs(Lq0) = c. Consequently, we need to push up these two
symbols to the new initial rule a · q′0 · c, but we also need to retract them from
the rule δ(q0, f) = q1 ·ac ·q1 producing a new state q′0 and new rules for this state.
Essentially, we need to push the symbol a to the left through the first occurrence
of q1 and push the symbol c to the right through the second occurrence of q1.
Pushing symbols through states produces again new states with rules obtained
by reorganizing the output words. Finally, we obtain

δ′(q′0, f) = q′1 · q′′1 , δ′(q′1, g) = bca · q′1, δ′(q′′1 , g) = cab · q′′1 , δ′(q′1, a) = δ′(q′′1 , a) = ε.

M2 is not earliest because (E2) is not satisfied by δ(p0, f) = p1 · p3 · ab: every
word produced by this rule starts with a. First, we push the word ab through the
state p3, and then we push the symbol a through the state p1. Pushing through
p3 is easy because it is a deleting state and the rules do not change. Pushing
through p1 requires a recursive push through the states of the rules of p1 and
this process affects the rules of p2. Finally, we obtain an estw with the initial
rule p′0 and the transition rules

δ′(p′
0, f) = a · p′

1 · b · p′
3, δ′(p′

1, g) = a · p′
2, δ′(p′

2, g) = ba · p′
3, δ′(p′

3, g) = p′
3,

δ′(p′
0, a) = ba, δ′(p′

1, a) = ε, δ′(p′
2, a) = ε, δ′(p′

3, a) = ε. ��

3 Output Normalization

The first phase of normalization of an stw consists of constructing an equivalent
estw, which involves changing the placement of the factors in the rules of the
transducer and deals mainly with the output. Consequently, we begin with sev-
eral notions and constructions inspired by the conditions (E1) and (E2) but set
in a simpler setting of word languages. We consider only nonempty languages
because in trimmed stws the ranges of the states are always nonempty.
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3.1 Reducing Languages

Enforcement of (E1) corresponds to what we call constructing the reduced de-
composition of a language. A nonempty language L is reduced iff lcp(L) = ε and
lcs(L) = ε. Note that the assumption that we work with a nonempty language
is essential here. Now, take a nonempty language L, that is not necessarily re-
duced. We decompose it into its reduced core Core(L) and two words Left(L)
and Right(L) such that Core(L) is reduced and

L = Left(L) · Core(L) · Right(L). (1)

We observe that different decompositions are possible. For instance, L = {a, aba}
has two decompositions L = a · {ε, ba} · ε and L = ε · {ε, ab} · a. We resolve the
ambiguity by choosing the former decomposition because it is consistent with
(E1) and (E2) which indicate to push to the left. Formally, Left(L) = lcp(L) and
Right(L) = lcs(L′), where L = Left(L)·L′. The reduced core Core(L) is obtained
from (1). As an example, the reduced decomposition of Lq0 = (abc)∗ac(abc)∗

from Example 1 is Left(Lq0) = a, Right(Lq0) = c, and Core(Lq0) = (bca)∗(cba)∗.

3.2 Pushing Words through Languages

In this subsection, we work with nonempty and reduced languages only. Condi-
tion (E2) introduces the problem that we call pushing words through languages.
To illustrate it, suppose we have a language L = {ε, a, aa, aaab} and a word
w = aab, which together give L ·w = {aab, aaab, aaaab, aaabaab}. The goal is to
find the longest prefix v of w such that L · w = v · L′ · u, where w = v · u and
L′ is some derivative of L. Intuitively speaking, we wish to push (a part of) the
word w forward i.e., from right to left, through the language L. In the example
above, the solution is v = aa, L′ = {ε, a, aa, abaa}, and u = b (note that L′ is
different from L). In this section, we show that this process is always feasible
and for cfls it is constructive.

The result of pushing a word w through a language L will consist of three
words: push(L,w) the longest part of w that can be pushed through L, rest(L,w)
the part that cannot be pushed through, and offset(L,w) a special word that
allows to identify the corresponding derivative of L. There are three classes of
languages that need to be considered, which we present next together with an
outline of how the pushing is done.

The first class contains only the trivial language L = {ε} e.g., the range of
the state p3 of M2 in Example 1. This language allows every word to be pushed
through and it never changes in the process. For instance, if w0 = ab, then
push(Lp3 , w0) = ab, rest(Lp3 , w0) = ε, and offset(Lp3 , w0) = ε.

The second class consists of non-trivial periodic languages, essentially lan-
guages contained in the Kleene closure of some period word. An example is
Lq1 = (abc)∗ = {ε, abc, abcabc, . . .} whose period is abc. Periodic languages allow
to push multiplicities of the period and then some prefix of the period e.g., if we
take w1 = abcabcaba, then push(Lq1 , w1) = abcabcab and rest(Lq1 , w1) = a. The
offset here is the corresponding prefix of the period: offset(Lq1 , w1) = ab.
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The third class contains all remaining languages i.e., non-trivial non-periodic
languages. Interestingly, we show that for a language in this class there exists a
word that is the longest word that can be pushed fully through the language, and
furthermore, every other word that can be pushed through is a prefix of this word.
For instance, for Lp1 = {ε, a, aab} from Example 1, aa is the longest word that
can be pushed through. If we take w2 = ab, then we get push(Lp1 , w2) = a and
rest(Lp1 , w2) = b. Here, the offset is the prefix of aa that has been already pushed
through: offset(Lp1 , w2) = a. Note that this class also contains the languages
that do not permit any pushing through e.g., Lp0 = {ba, ab, aab} does not allow
pushing through because it contains two words that start with a different symbol.

We now define formally the pushing process. First, for L ⊆ Δ∗ we define the
set of words that can be pushed fully through L:

Shovel (L) = {w ∈ Δ∗ | w is a common prefix of L · w}.
For instance, Shovel (Lp1) = {ε, a, aa} and Shovel (Lq0) = (abc)∗ · {ε, a, ab}. We
note that Shovel ({ε}) = Δ∗ and Shovel (L) always contains at least one element
ε because L is assumed to be nonempty. Also, as we prove in appendix, Shovel(L)
is prefix-closed and totally ordered by the prefix relation.

Next, we define periodic languages (cf. [12]). A language L ⊆ Δ∗ is periodic iff
there exists a nonempty word v ∈ Δ∗, called a period of L, such that L ⊆ v∗. A
word w is primitive if there is no v and n ≥ 0 such that w = vn. Recall from [12]
that every non-trivial periodic language L has a unique primitive period, which
we denote Period(L). For instance, the language {ε, abab, abababab} is periodic
and its primitive period is ab; abab is also its period but not primitive. In the
sequel, by Prefix (w) we denote the set of prefixes of the word w.
Proposition 1. Given a reduced and non-trivial language L, Shovel (L) is infi-
nite iff L is periodic. Furthermore, if L is periodic then Shovel(L) = Period(L)∗ ·
Prefix (Period(L)).
This result and the observations beforehand lead to three relevant cases in the
characterisation of Shovel (L) for a language L.
0o L = {ε} (trivial language), and then Shovel (L) = Δ∗,
1o L is periodic, L �= {ε}, and then Shovel (L) = Period(L)∗ ·Prefix(Period(L)).
2o L is non-periodic, and Shovel (L) = Prefix (v) for some v ∈ Shovel (L).

Now, suppose we wish to push a word w ∈ Δ∗ through a language L ⊆ Δ∗ and
let s = max≤prefix

(Prefix (w) ∩ Shovel (L)) and w = s · r. We define push(L,w),
rest(L,w), and offset(L,w) depending on the class L belongs to:
0o L = {ε}: push(L,w) = w, rest(L,w) = ε, and offset(L,w) = ε.
1o L is non-trivial and periodic: s = Period(L)k · o for some (maximal) proper

prefix o of Period(L), and we assign push(L,w) = s, rest(L,w) = r, and
offset(L,w) = o.

2o L is non-periodic: push(L,w) = s, rest(L,w) = r, and offset(L,w) = s.

Offsets play a central role in the output normalization procedure, which is feasi-
ble thanks to the following result.
Proposition 2. The set {offset(L,w) | w ∈ Δ∗} is finite for any reduced L.
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3.3 Pushing Words Backwards

Until now, we have considered the problem of pushing a word through a language
from right to left. However, in Example 1 if we consider the second occurrence of
q1 in the rule δ(q0, f) = q1 ·ac · q1, we realize that pushing words in the opposite
direction needs to be investigated as well. These two processes are dual but
before showing in what way, we present a natural extension of the free monoid
Δ∗ to a pregroup (or groupoid) GΔ. It allows to handle pushing in two directions
in a unified manner and simplifies the output normalization algorithm.

A pregroup of words over Δ is the set GΔ = Δ∗∪{w−1 | w ∈ Δ+}, where w−1

is a term representing the inverse of an nonempty word w. This set comes with
two operators, a unary inverse operator: (w)−1 = w−1, ε−1 = ε, and (w−1)−1 =
w for w ∈ Δ∗, and a partial extension of the standard concatenation that satisfies
the following equations (complete definition in appendix): w−1 · w = ε and
w · w−1 = ε for w ∈ Δ∗, and v−1 · u−1 = (uv)−1 for u, v ∈ Δ∗. We note
that some expressions need to be evaluated diligently e.g., ab · (cb)−1 · cd =
ab · b−1 · c−1 · cd = ad, while some are undefined e.g., ab · a−1. In the sequel, we
use w, u, v, . . . to range over Δ∗ only and z, z1, . . . to range over elements of GΔ.

Now, we come back to pushing a word w backwards through L, which consists
of finding u · v = w and L′ such that w · L = u · L′ · v. We view this process
as pushing the inverse w−1 through L i.e., we wish to find u · v = w such that
L · w−1 = v−1 · L′ · u−1 because then L · v−1 = v−1 · L′, and consequently,
w · L = (u · v) · (v−1 · L′ · v) = u · L′ · v.

But to define pushing backwards more properly we use another perspective
based on the standard reverse operation of a word e.g., (abc)rev = cba. Namely,
pushing w backwards through L is essentially pushing wrev through Lrev be-
cause (w · L)rev = Lrev · wrev and if Lrev · wrev = v0 · L0 · u0, then w · L =
urev

0 · Lrev
0 · vrev

0 . Thus push(L,w−1) = (push(Lrev, wrev)rev)−1, rest(L,w−1) =
(rest(Lrev, wrev)rev)−1, and offset(L,w−1) = (offset(Lrev, wrev)rev)−1.

Now, the main condition of pushing words through languages is: for every L
and z ∈ GΔ we have L ·z = push(L, z) ·(offset(L, z)−1 ·L ·offset(L, z)) ·rest(L, z).
Because the output normalization procedure works on stws and not languages,
to prove its correctness we need a stronger statement treating independently
every word of the language.

Proposition 3. Given a reduced and nonempty language L ⊆ Δ∗ and z ∈ GΔ,
for any word u ∈ L

u · z = push(L, z) · (offset(L, z)−1 · u · offset(L, z)) · rest(L, z).

3.4 Output Normalization Algorithm

We fix an stw M = (Σ,Δ,Q, init , δ) and introduce the following macros:

L̂q = Core(Lq), Left(q) = Left(Lq), Right(q) = Right(Lq),

push(q, z) = push(L̂q, z), offset(q, z) = offset(L̂q, z), rest(q, z) = rest(L̂q, z).
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Also, let Offsets(q) = {offset(q, z) | z ∈ GΔ} and note that by Proposition 2 it
is finite. The constructed stw M ′ = (Σ,Δ,Q′, init ′, δ′) has the following states

Q′ = {〈q, w〉 | q ∈ Q, w ∈ Offsets(q)}.
Our construction ensures that TM = TM ′ and for every q ∈ Q, every z ∈
Offsets(q), and every t ∈ domq

T〈q,z〉(t) = z−1 · Left(q)−1 · Tq(t) · Right(q)−1 · z
If init = u0 · q0 · u1, then init ′ = u′

0 · q′0 · u′
1, where u′

0, u′
1, and q′0 are calculated

as follows:

1: v := Right(q0) · u1

2: q′0 := 〈q0, offset(q0, v)〉
3: u′

0 := u0 · Left(q0) · push(q0, v)
4: u′

1 := rest(q0, v)

For a transition rule δ(p, f) = u0 ·p1 ·u1 · . . . ·uk−1 ·pk ·uk and any z ∈ Offsets(p)
we introduce a rule δ′(〈p, z〉, f) = u′

0 · p′1 · u′
1 · . . . · u′

k−1 · p′k · u′
k, where u′

0, . . . , u
′
k

and p′1, . . . p
′
k are calculated as follows:

1: zk := Right(pk) · uk · Right(p)−1 · z
2: for i := k, . . . , 1 do
3: u′

i := rest(pi, zi)
4: p′i := 〈pi, offset(pi, zi)〉
5: zi−1 := Right(pi−1) · ui−1 · Left(pi) · push(pi, zi)
6: u′

0 := z−1 · Left(p)−1 · z0

where (for convenience of the presentation) we let Right(p0) = ε. We remark that
not all states in Q′ are reachable from the initial rule and in fact the conversion
procedure can identify the reachable states on the fly. This observation is the
basis of a conversion algorithm that is polynomial in the size of the output.

Example 3. We normalize the stw M1 from Example 1. The initial rule q0 be-
comes a · 〈q0, ε〉 · c with Left(q0) = a and Right(q0) = c being pushed up from q0
but with nothing pushed through q0. The construction of the state 〈q0, ε〉 triggers
the normalization algorithm for the rule δ(q0, f) = q1 · ac · q1 with Left(q0) = a
and Right(q0) = c to be retracted from left and right side resp. (and nothing
pushed through since z = ε). This process can be viewed as a taking the left hand
side of the original rule with the inverses of retracted words a−1 ·q1 ·ac·q1 ·c−1 and
pushing words forward as much as possible, which gives a−1 ·q1 ·ac ·c−1 ·〈q1, c−1〉
and then a−1 ·a·〈q1, a〉·〈q1, c−1〉. This gives δ′(〈q0, ε〉, f) = 〈q1, a〉·〈q1, c−1〉. Note
that while Offsets(q1) = {(bc)−1, c−1, ε, a, ab}, only two states are constructed.

Next, we need to construct rules for the new state 〈q1, a〉 with z = a and
Left(q1) = Right(q1) = ε. We start with the rule δ(q1, a) = ε and to its left hand
side we add a−1 at the beginning and a at its end: a−1 · ε · a = ε, which yields
the rule δ′(〈q1, a〉, a) = ε. Now, for the rule δ(q1, g) = q1 · abc we obtain the
expression a−1 · q1 · abca. Recall that Lq1 = (abc)∗ is a periodic language, and so
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push(q1, abca) = abca, rest(q1, abca) = ε, and offset(q1, abca) = a. Consequently,
we obtain the rule δ′(〈q1, a〉, g) = bca·〈q1, a〉. Here, it is essential to use the offsets
to avoid introducing a redundant state 〈q1, abca〉 and entering an infinite loop.
Similarly, we obtain: δ′(〈q1, c−1〉, g) = cab · 〈q1, c−1〉 and δ′(〈q1, c−1〉, a) = ε. ��
Theorem 2. For an stw M let M ′ be the stw obtained with the method de-
scribed above. Then, M ′ is equivalent to M and satisfies (E1) and (E2). Fur-
thermore, M ′ can be constructed in time polynomial in the size M ′, which is at
most doubly-exponential in the size of M .

Because of space limitations, the details on complexity have been omitted and
can be found in the full version available online.

3.5 Exponential Lower Bound

First, we show that the size of a rule may increase exponentially.

Example 4. For n ≥ 0 define an stw Mn over the input alphabet Σ = {f (2), a(0)}
with the initial rule q0, and these transition rules (with 0 ≤ i < n):

δ(qi, f) = qi+1 · qi+1, δ(qn, a) = a.

The transformation defined by Mn maps a perfect binary tree of height n to a
string a2n

. Mn is not earliest. To make it earliest we need to replace the initial
rule by a2n · q0(x0) and the last transition rule by δ(qn, a) = ε. ��
The next example shows that also the number of states may become exponential.

Example 5. For n ≥ 0 and take the stw Nn with Σ = {g(1)
1 , g

(1)
0 , a

(0)
1 , a

(0)
0 }, the

initial rule q0, and these transition rules (with 0 ≤ i < n):

δ(qi, g0) = qi+1, δ(qn, a0) = ε,

δ(qi, g1) = qi+1 · a2i

, δ(qn, a1) = a2n · #.

While the size of this transducer is exponential in n, one can easily compress the
exponential factors 22i

and obtain an stw of size linear in n (cf. Example 4). Mn

satisfies (E1) but it violates (E2), and defines the following transformation.

TNn = {(gb0(gb1(. . . gbn−1(a0) . . .)), ab) | b = (bn−1, . . . , b0)2} ∪
{(gb0(gb1(. . . gbn−1(a1) . . .)), a2n · # · ab) | b = (bn−1, . . . , b0)2},

where (bn−1, . . . , b0)2 =
∑

i bi∗2i. The normalized version N ′
n has the initial rule

〈q0, ε〉 and these transition rules:

δ′(〈qi, a
j〉, g0) = 〈qi+1, a

j〉, δ′(〈qn, a
k〉, a0) = ε,

δ′(〈qi, a
j〉, g1) = a2i · 〈qi+1, a

j+2i〉, δ′(〈qn, a
k〉, a1) = a2n−k#ak,

where 0 ≤ i < n, 0 ≤ j < 2i, and 0 ≤ k < 2n. We also remark that N ′
n is the

minimal estw that recognises TNn . ��
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4 Minimization

In this section we investigate the problem of minimizing the size of a trans-
ducer. Minimization of estws is simple and relies on testing the equivalence of
estws known to be in ptime [16]. For an estw M the minimization procedure
constructs a binary equivalence relation ≡M on states such that q ≡M q′ iff
Tq = Tq′ . The result of minimization is the quotient transducer M/≡M obtained
by choosing in every equivalence class C of ≡M exactly one representative state
q ∈ C, and then replacing in rules of M every state of C by q.

To show that the obtained estw is minimal among all estws defining the
same transformation, we use an auxiliary result stating that all estws defining
the same transformation use rules with the same distribution of the output words
and allow bisimulation.

A labeled path is a word over
⋃

k>0 Σ
(k) × {1, . . . , k}, which identifies a node

in a tree together with the labels of its ancestors: ε is the root node and if a
node π is labeled with f , then π · (f, i) is its i-th child. By paths(t) we denote
the set of labeled paths of a tree t. For instance, for t0 = f(a, g(b)) we get
paths(t0) = {ε, (f, 1), (f, 2), (f, 2) · (g, 1)}. We extend the transition function δ to
identify the state reached at a path π: δ(q, ε) = q and δ(q, π · (f, i)) = qi, where
δ(q, π) = q′ and δ(q′, f) = u0 · q1 · u1 · . . . · qk · uk. Now, the lemma of interest.

Lemma 1. Take two estws M = (Σ,Δ,Q, init , δ) and M ′ = (Σ,Δ,Q′, init ′, δ′)
defining the same transformation T = TM = TM ′ and let init = u0 · q0 · u1 and
init ′ = u′

0 ·q′0 ·u′
1. Then, u0 = u′

0 and u1 = u′
1, and for every π ∈ paths(dom(T )),

we let q = δ(q0, π) and q′ = δ′(q′0, π), and we have

1. Tq = Tq′ ,
2. δ(q, f) is defined if and only if δ′(q′, f) is, for every f ∈ Σ, and
3. if δ(q, f) = u0 · q1 ·u1 · . . . · qk ·uk and δ′(q′, f) = u′

0 · q′1 · u′
1 · . . . · q′k ·u′

k, then
ui = u′

i for 0 ≤ i ≤ k.

The proof is inductive and relies on properties (E1) and (E2), and the determin-
ism of the transducers. We show the correctness of our minimization algorithm
by observing that it produces an estw whose size is smaller than the input one,
and Lemma 1 essentially states that the result of minimization of two equivalent
transducers is the same transducer (modulo state renaming). This argument also
proves Theorem 1. We also point out that Lemma 1 (with M = M ′) allows to
devise a simpler and more efficient minimization algorithm along the lines of the
standard dfa minimization algorithm [10].

Theorem 3. Minimization of estws is in ptime.

In stws the output words may be arbitrarily distributed among the rules, which
is the main pitfall of minimizing general stws. This difficulty is unlikely to be
overcome as suggested by the following result.

Theorem 4. Minimization of stws i.e., deciding whether for an stw M and
k ≥ 0 there exists an equivalent stw M ′ of size at most k, is np-complete.
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5 Conclusions and Future Work
We have presented an effective normalization procedure for stws, a subclass of
top-down tree-to-word transducers closely related to a large subclass of nested-
word to word transducers. One natural continuation of this work is find whether
it can be extended to a Myhill-Nerode theorem for stws, and then, to a polyno-
mial learning algorithm. Also, the question of exact complexity of the normal-
ization remains open. Finally, the model of stws can be generalized to allow
arbitrary non-sequential rules and multiple passes over the input tree.
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Abstract. In this paper we investigate the complexity of planarity of
knot diagrams encoded by Gauss words, both in terms of recognition
by automata over infinite alphabets and in terms of classical logarith-
mic space complexity. As the main result, we show that recognition of
planarity of unsigned Gauss words can be done in deterministic logarith-
mic space and by deterministic register automata. We also demonstrate
generic results on the mutual simulations between logspace bounded clas-
sical computations (over finite alphabets) and register automata working
over infinite alphabets.

1 Introduction

Knot theory is the area of mathematics that studies mathematical knots and
links. A knot (a link) is an embedding of a circle (several circles) in 3-dimensional
Euclidean space, R3, considered up to a smooth deformation of the ambient space.
It is a well established and active area of research with strong connections to
topology, algebra and combinatorics. Some major problems in the main focus
of knot theory have algorithmic or computational nature: equivalence problem
(how to recognise that two knots are equivalent), or unknottedness problem (how
to recognise that a knot is a trivial one). Consideration of such problems led
to fruitful interactions between knot theory and computer science. In particular,
the questions of computational complexity of knot problems have been addressed
in [9]. Examples of other interactions include works on formal language theory
[11] and quantum computing [1,7,16].

One of the earliest questions of algorithmic nature related to knots was the
question of characterisation of Gauss words [8]. With every knot one can asso-
ciate a word, called a Gauss word, which is a sequence of labels for the cross-
ings read off directly from the projection of the knot on a plane. Depending on
whether the information on the orientation is present the word can be signed or
unsigned. The simple property of any Gauss word is that every label (index) in
it appears twice. The converse is not true, there are the words with every symbol
appearing twice which do not correspond to any classical planar knot diagram.
The question of characterisation of “true”, or planar Gauss words was posed by
Gauss himself [8] and was eventually resolved by Nagy in [20]. Since then there
has been proposed many criteria and algorithms both for recognition of signed
[3,13] and unsigned [17,22,24,25,12,4,5,6,24,18,26] Gauss words. The questions
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of computational complexity of the proposed algorithms were rarely explicitly
addressed with notable exceptions being [13] where linear time algorithm for the
signed case is proposed, and in [25] where a linear time complexity for unsigned
case is established and compared with earlier quadratic bounds in [22].

In [15] we proposed to evaluate the complexity of problems of recognising knot
properties in terms of the computational power of devices needed to recognise the
properties. Following the proposal we demonstrated lower and upper bounds for
recognisability of knot properties in terms of various automata models over infinite
alphabets (see Section 2.2 below). The infinite alphabet appeared naturally due
to the fact that the number of crossings in knots is unbounded. The main property
addressed was planarity of signed Gauss words [13] (see Section 3). We have shown
that planarity of signed Gauss words can be recognised by deterministic register
automata working over infinite alphabets. It follows that signed planarity problem
is in L (deterministic logspace).

In this paper we continue this line of research focussing mainly on the un-
signed case. Our contribution is as follows:
1) We provide an analysis of Cairns-Elton algorithm for unsigned planarity and
show that it is implementable by co-non-deterministic register automata.
2) We demonstrate generic results on the mutual simulations between logspace
bounded classical computations (over finite alphabets) and register automata
working over infinite alphabets. New characterisation of languages recognisable
by register automata is more general than one proposed in [21].
3) We further show that Cairns-Elton algorithm is implementable in SL (sym-
metric logspace) and therefore in L . It follows that planarity of unsigned Gauss
words is recognisable by deterministic register automata, refuting the conjecture
from [15].

2 Preliminaries

We use standard notations from complexity theory and assume that the reader
is familiar with the complexity classes L (deterministic logspace), SL (sym-
metric logspace), NL (nondeterministic logspace), co-NL (co-non-deterministic
logspace) and SPACE(f(n)) (space is bounded by a function f(n)).

2.1 Automata over an Infinite Alphabet

Register automata are finite state machines equipped with a finite number of
memory cells called registers which may hold values from an infinite alphabet. It
is one of the weakest models of automata over infinite alphabets. It was initially
introduced in [10] and then studied further in [21]. The model we consider is
computationally equivalent to the original version in [21], which is modified by
adding two extra rules (see Definition 1) [15].

Let D be an infinite set called an alphabet. A word, or a string over D, or
shortly, D-word or D-string is a finite sequence d1, . . . , dn where di ∈ D, i =
1, . . . , n. A language over D (D-language) is a set of D-words. For a word w and
a symbol d denote by | w |d the number of occurrences of d in w. As usual | w |
denotes the length of the word w.
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Definition 1. [15,21] A non-deterministic two-way k-register automaton over
an infinite alphabet D is a tuple (Q,q0,F,τ 0 ,P) where Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, τ 0 : {1,...,k}→ D ∪
{	,
 } is the initial register assignment and P is a finite set of transitions :

1) (i, q) → (q′, d) (If a current state is q and the observed symbol on the tape
equals to a value in the register i then enter the state q′ and move along the
string according to the specified direction d where i ∈ {1, .., k}, q, q′ ∈ Q and
d ∈ {stay, left, right})

2) q → (q′, i, d) (If a current state is q and the observed symbol on the tape
does not equal to any value held in registers then enter the state q′, copy
the current symbol to a specified register i and move along the string ac-
cording to the specified direction d, where i ∈ {1, .., k}, q, q′ ∈ Q and d ∈
{stay, left, right}).

3) (i, q) → (q′, j, d) (If a current state is q and the observed symbol equals to
a value in the register i then enter the state q′, copy the current symbol to
a register j and move along the string according to the specified direction d
where i, j ∈ {1, .., k}, q, q′ ∈ Q and d ∈ {stay, left, right}).

4) q → (q′, d) (If a current state is q and the observed symbol does not equal
to any value held in registers then enter the state q′ and move along the
string according to the specified direction d, where q, q′ ∈ Q and d ∈
{stay, left, right}).

Deterministic and co-non-deterministic register automata as well as the language
accepted by automata are defined in the standard way. We denote by DRA, NRA,
coNRA to be the classes of languages recognisable by deterministic, nondeter-
ministic and co-non-deterministic two-way register automata, respectively.

Words and Data Words. In previous works on the computational models
on infinite alphabets it has been acknowledged that in many situations it is
natural to consider infinite alphabets as the subsets of Σ×Δ where Σ is a finite
set and Δ is an infinite set. Thus, the symbol here is an ordered pair (a, b). The
words over such alphabets are called data words [2]. In particular Gauss words
are introduced in Section 2.2 as natural instances of data words. In the definition
of automata over data words, it is sensible to assume that when an automaton
reads a symbol (a, b) it has a direct access to both components of the pair. For
this purpose, the form of transition rules can be adapted to include one extra
argument on the left-hand sides.

2.2 Knots

A knot is defined as a closed, non-self-intersecting curve that is embedded in R3.
Knots can be described in many ways, including various discrete representations.
A common method of representing a knot is a knot diagram that is a projection
of the knot to a plane in a general position involving only double crossings.

At each crossing we indicate which branch is “over” and which is “under”,
which allows us to recreate the original knot. For oriented knots each crossing
has a well-defined sign (‘+’ or ‘−’). To determine the sign of each crossing, we
label the crossing with a + if we can rotate its under-strand clockwise to make
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the arrows line up and a − if the rotation of the under-strand is counter-clockwise
(see the picture in left-hand side of Figure 1).

A knot diagram can be encoded by a string of symbols Oi’s (over) and Ui’s
(under) known as a Gauss word. The procedure of writing a Gauss word can
be described as follows. Starting from a base point on a knot diagram, write
down the labels of the crossings and their types of strand ordered according
to the orientation of the knot. The oriented trefoil in Figure 1 is encoded by
the signed Gauss word O1

+U2
+O3

+U1
+O2

+U3
+. Removing signs leads to the

unsigned Gauss word. Indices of crossings can be arbitrarily permuted, so one
knot diagram can be encoded by many Gauss words. A shadow Gauss word can
be obtained from an unsigned Gauss word by removing the Us and Os from
each label.

1 2

3

+ +

+

O1
+U2

+O3
+U1

+O2
+U3

+

Signed Gauss word

1 2

3

Shadow Gauss word
1 2 3 1 2 3

1 2

3

Unsigned Gauss word
O1U2O3U1O2U3

Signs on crossings

Fig. 1. Discrete representations of a knot

Definition 2. An unsigned Gauss word w is a data word over the alphabet Σ×N

where Σ = {U,O}, such that for every n ∈ N either

• |w|(U,n) = |w|(O,n) = 0, or
• |w|(U,n) = |w|(O,n) = 1.

Definition 3. A signed Gauss word w is a data word over the alphabet Σ × N

where Σ = {U+, O+, U−, O−}, such that for every n either

• |w|(U+,n) = |w|(O+,n) = |w|(U−,n) = |w|(O−,n) = 0, or
• |w|(U+,n) = |w|(O+,n) = 1 and |w|(U− ,n) = |w|(O−,n) = 0, or
• |w|(U−,n) = |w|(O−,n) = 1 and |w|(U+,n) = |w|(O+,n) = 0.

Definition 4. A shadow projection of a (signed/unsigned) Gauss word w =
(A1, i1), ..., (An, in) is a shadow Gauss word sp(w) = i1, ..., in where Ai ∈ Σ and
ij ∈ N.

Definition 5. A signing s is a mapping s : N → {+,−}.

2.3 Planarity of Knot Diagrams Represented by Gauss Words

Every knot diagram can be represented by a Gauss word but not every Gauss
word represents a knot diagram. The fact that every knot can be represented by
a Gauss word directly follows from the constructive definition of a Gauss word
and the second fact that not every Gauss word represents a classical knot in R3 is
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illustrated in Figure 2. For example, any attempt to reconstruct a knot diagram
from the Gauss word O1O2U1O3U2U3 will lead to new (virtual ) crossings which
are not present in the Gauss word (virtual crossings are marked on the diagram
in Figure 2 with a small circle around the crossing). Such an observation was
one of the motivations for introducing virtual knot theory [12]. A Gauss word
which represents a classical knot diagram, that is a diagram embeddable into a
plane without virtual crossings, is called classical or planar. The question about

Fig. 2. Non-planar knot diagram

planarity of knot diagrams encoded by Gauss words is formulated separately for
signed and unsigned cases. For Signed Gauss words the planarity question can
be described as given a signed Gauss word w, does w represents a planar knot
diagram? We will refer to this problem as SIGNED PLANARITY. For unsigned
Gauss words, the question is stated in the following way: Given an unsigned
Gauss word w, does there exist a choice of signings that can be assigned to w
such that w represents a planar knot diagram? This problem will be referred to
as UNSIGNED PLANARITY.

In [15], we showed that an algorithm for the decision of planarity of un-
signed Gauss words proposed by Kauffman in [12] can be implemented by Lin-
ear Bounded Memory Automata over an infinite alphabet and conjectured that
UNSIGNED PLANARITY is not recognisable by non-deterministic register au-
tomata. Here, we refute this conjecture and show that UNSIGNED PLANARITY
can be recognised by deterministic register automata.

3 Main Results

In this section we present an upper bound for the planarity problem of unsigned
Gauss words by first showing that it is recognisable by a co-non-deterministic
register automata. Then we refine this result to show that the only part that
requires non-determinism can be reduced to the search of cycles with simply
checkable properties. We further show that the search is implementable in de-
terministic logspace. Finally, we show that deterministic logspace computations
can be modelled by a deterministic register automata.

3.1 Cairns-Elton Algorithm

Cairns and Elton presented an algorithm in [4] which deals with UNSIGNED
PLANARITY. We will first begin with definitions that will be used to describe
the main steps of the algorithm.
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Definition 6. For a Gauss word w, denote by αi(w) the number of symbols that
occur in w in cyclic order between the symbols Ui and Oi, taken modulo 2.

Definition 7. For an unsigned Gauss word w and a signing s, a signed word
ws is obtained from w by replacing all symbols (U,i) with (Us(i), i) and (O,i)
with (Os(i), i). Let Si denote the subset of symbols that occur in ws in cyclic
order between, either the symbols U+

i and O+
i , or O−

i and U−
i . Let S̄i denote

{Us(i)
i , O

s(i)
i } ∪ Si and S−1

i denote the set Si after swapping Us with Os, that is
S−1

i = {(Us(j), j)|(Os(j), j) ∈ Si} ∪{(Os(j), j)|(Us(j), j) ∈ Si}. Then βij(ws) is
the number of elements in the intersection of S̄i and S−1

j taken modulo 2 (i.e.
βij(ws) = |S̄i ∩ S−1

j | (mod 2)).

Notice that βij(ws) depends on signs s(i) and s(j) but not on s(k) for k �= i, j.

Definition 8. Given an unsigned Gauss word w, the vertices of the interlace-
ment graph G(w) are labels in a shadow projection sp(w) (natural numbers) and
the edges of G(w) are the pairs of labels (i, j) such that i and j are interlaced in
sp(w) (i occurs once between two occurrences of j and vice versa).

Example 1. Given w = U1O3U4U2O1U5O2U3O5O4, the interlacement graph
G(w) of w is shown in figure 4. Let i = 1, j = 2, s(1) = + and s(2) = +.
Then α1(w) = |{O3, U4, U2}| = 3 ≡ 1 (mod 2), and β12(ws) = |S̄1 ∩ S−1

2 | =
|{Us(1)

1 , O
s(3)
3 , U

s(4)
4 , U

s(2)
2 , O

s(1)
1 } ∩{Us(1)

1 , O
s(5)
5 }| = |{Us(1)

1 }| ≡ 1 (mod 2).

0

11

1

1
1

Fig. 3. Non-planar Gauss word w and its corresponding interlacement graph G(w) with
edges (i, j) labelled by βij(ws)

For a signed word ws and for each edge eij in G(w), we assign the number
βij(ws) ∈ Z2. According to [4] that assignment defines a Z2 1-cochain B(ws)
and the property that the Cairns-Elton algorithm checks is whether this co-
chain is closed. For the purpose of this paper we need only characterisation of
the closedness of B(ws) in terms of notions we have already introduced: B(ws)
is closed if and only if for every closed path P in G(w), the sum of the numbers
βij(ws) ≡ 0 (mod 2) for each edge (ij) ∈ P . The closed path is in fact a simple
cycle with no repeated vertices other than starting and ending vertices.
The Propositions 1 and 2 provide with the properties crucial for the efficient
implementation of the Cairns-Elton algorithm. Also as an easy consequence of
Proposition 1, we formaulate Lemma 1.

Proposition 1. [4, page 139] βij(ws) does not depend on s whenever i and j do
not interlace.
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Lemma 1. Let G(w) denote the interlacement graph of the Gauss word w and
N(vi) denote the set of vertices connected to vi, then βij(w) = |N(vi) ∩N(vj)|
(mod 2) whenever i and j do not interlace in w.

Proposition 2. [4, Lemma 1] The condition B(ws) to be closed depends on w
but not on s.

For all positive signing s, that is s(i) = + for all i ∈ N, we denote B(ws) by
B(w) and βij(ws) by βij(w).
Cairns-Elton Algorithm: Given an unsigned Gauss word w, the algorithm
proceeds by checking that
1. For all i ∈ w, αi(w) = 0.
2. For all i, j ∈ w, βi,j(w) = 0 whenever i and j do not interlace.
3. B(w) is closed.

If conditions 1,2 and 3 are satisfied then the algorithm returns “the word w is
planar”, otherwise if any of the conditions is not satisfied, the algorithm returns
“the word w is non-planar”.

3.2 Implementation of Cairns-Elton Algorithm

We will show in this subsection that the checking of first two conditions of the
above algorithm is implementable by a deterministic register automata whereas
the checking of the third condition is implementable by a co-non-deterministic
register automata.

First, we refine the above description of the algorithm and present it in more
details. Given an unsigned Gauss word w, the algorithm proceeds in three stages.

1. The input word is checked on whether the number of neighbours of vi is odd
for some vi in G(w). If “yes”, the algorithm stops with the result “the input
word is non-planar”, otherwise the algorithm proceeds to the second stage.

2. The input word is checked on whether βij(w) is odd for some pair of vertices
(vi, vj) in G(w) that are not connected by an edge. If “yes”, the algorithm
stops with the result “the input word is non-planar”, otherwise the algorithm
proceeds to the third stage.

3. For all positive signing s, the input word is checked on whether there exists
a cycle in G(w) such that the sum of βij(ws) assigned to its edges eij is odd.
If “yes”, the algorithm stops with the result “the input word is non-planar”,
otherwise the algorithm stops with the result “the input word is planar”.

Theorem 1. The language of non-planar unsigned Gauss words (UNSIGNED
NONPLANARITY) can be recognised by a two-way non-deterministic register
automaton.

Proof. The proof is divided into two parts. In the first part we show that the
first two conditions can be implemented by a deterministic register automata
and in the second part we show the third condition can be implemented by a
non-deterministic register automata. Let w be an unsigned Gauss word and G(w)
be the interlacement graph of w. Denote by N(vi) the set of all neighbours of a
vertex vi ∈ G(w).
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Part 1. For the first condition, the automaton will check the number |N(vi)|
of neighbours of each vertex vi ∈ G(w). It will store in the register the first
occurrence of the label i in w which corresponds to vertex vi and store the
parity of |N(vi)| in finite state control of the automaton. To check the parity of
|N(vi)|, the automaton goes through each symbol j in between the pair of the
labels i and i−1 in w (where i−1 represents the second occurrence of i in w) and
on the first occurrence of j it moves first to an odd state and then alternates
between odd and even states for any further occurrences. If i−1 is reached and
the current state is odd then it moves to an accepting state. Otherwise if, for all
vertices vi ∈ G(w), the parity of |N(vi)| is even then it checks condition (2).

For the second condition, we use Lemma 1 where the automaton is required to
check the number of common neighbours (|N(vi)∩N(vj)|) for any pair of vertices
(vi, vj) that are not connected by an edge in G(w). To verify that a vertex vi is
not connected to any vertex vj , the automaton stores in the registers the first
occurrence of i and the first occurrence of each j and then it checks whether
there is an even number (either 2 or 0) of occurrences of each j in between i and
i−1. If the number of occurrences of j in between i and i−1 is even then it stores
the symbol k in the register (which occurs in between i and i−1) and compares
it with the symbols in between j and j−1. The parity of |N(vi)∩N(vj)| is stored
in finite state control of the automaton. If there is a match, it will move first
to an odd state and then alternate between odd and even states for any further
matches. If i−1 is reached and current state is odd, the automaton moves to
an accepting state. Otherwise if, for all pairs of vertices vi, vj ∈ G(w) that are
not connected by an edge, the parity of |N(vi) ∩ N(vj)| is even then it checks
condition 3.

Part 2. For checking Condition 3, we assume that s is all positive signing. First,
we show how to check if two vertices vi and vj are connected by an edge and
how to compute their βij(ws) value. Then we show how to sum up the βij(ws)
values online during the traversal of a cycle. To verify that two vertices vi and
vj are connected by an edge of G(w), the automaton keeps a copy of i and j
in the registers and checks that there is only one occurrence of j in between
Ui and Oi. Now to calculate the value of βij(ws) for all positive signing s, the
automaton moves its head to find the symbol Uj then compares the counterpart
of each symbol k in between Uj and Oj (notice that all such counterparts form
the set S−1

j ) with the symbols in the set S̄i(Ui, . . . , Oi). If there is a match it
will move first to an odd state and then alternate between odd and even states
for any further matches until Oj is reached. Finally to traverse a cycle in G(w),
the automaton non-deterministically chooses a vertex vi and moves along chosen
edge. During the traversal, it sums up the βij(ws) values of each visited edge
by incrementing the counter by 1 (mod 2) only if the value of βij(ws) is odd,
and continue updating the counter until the same vertex vi is met for the second
time. If vi is met for the second time and the value of the counter is odd then
the automaton moves to an accepting state. ��

Corollary 1. UNSIGNED PLANARITY can be recognised by two-way co-non-
deterministic register automata.
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3.3 RA to LOGSPACE

We will show that if a language L over the infinite alphabet D is acceptable by
two-way register automata then the encoding of L over a finite alphabet can
be accepted by a Turing machine in log space memory. Let us first define the
encoding of L over a finite alphabet as follows.

Let L be a language over the infinite alphabet D. For any symbol y of a
word w ∈ L we denote by ordw(y) (or ord(y) if w is understood) the number of
distinct symbols in w to the left of the first occurrence of y in w. So, for example,
if w = aacbca then ordw(a) = 0, ordw(c) = 1 and ordw(b) = 2.

If φ is a mapping from natural numbers into their binary encoding, φ : N →
{0, 1}∗, then for any word w = w1, ..., wk ∈ L where wi ∈ D the mapping
ψ(w) : D∗ → {0, 1,#}∗ is an encoding of a word w, where each binary encoding
of wi is separated by a special symbol #:

ψ(w) = #φ(ord(w1))#φ(ord(w2))#, ...,#φ(ord(wk)).

Thus a language Lfinite = {ψ(w)|w ∈ L} is an encoding of L over the finite al-
phabet {0, 1,#} and Lbinary is a natural encoding of Lfinite over {0, 1} alphabet,
where 0 → 00, 1 → 01 and # → 11.

Proposition 3. If L is recognisable by a finite register automata then Lfinite

is recognisable by a Turing machine in log space memory.

Proof. Let L denote the language accepted by a finite register automaton A with
r registers. Let us show that the language Lfinite is recognisable by a Turing
machine M that uses at most O(log n) space. Let w = w1, ..., wn ∈ L and |w| = n,
then w consists of no more than n different symbols, so the length of the binary
encoding of wi is no more than logn, i.e. |φ(ord(wi))| ≤ log n. So M can mimic
all the computations of A by keeping the value of the registers of A on its work
tape. The finite state control in A will correspond to the finite state control in
M (including non-determinism) and the content of r registers in A will be stored
on the work tape in M , which require r logn cells and r is a constant. The only
two operations of register automata are: to store a symbol in a register and to
compare the register value with a symbol on a tape will not require any extra
space apart from r logn cells. ��
Corollary 2. UNSIGNED PLANARITY is in co-NL and therefore is in NL.

Next we refine the complexity bounds of planarity recognition by 1) demonstrat-
ing general result on simulation of Logspace bounded computations on register
automata and 2) showing that UNSIGNED PLANARITY is in L.

3.4 UNSIGNED PLANARITY in L
We have shown in subsection 3.2 that planarity of Gauss words is recognisable by
co-nondeterministic register automata and therefore belongs to the complexity
class co-NL ( = NL ). Using simple arguments one can show that in terms of
classical complexity classes the result can be refined further, that is UNSIGNED
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PLANARITY belongs to L (deterministic logspace). Indeed, the only place when
one needs nondeterminism in the proof of Theorem 1 is in PART 2 where the
search for the cycles in the interlacement graph bearing odd sum of labels. It is
routine to check that the rest of the algorithm can be easily implemented in L.
It follows then that UNSIGNED NONPLANARITY is logspace reducible to the
problem from the following proposition and therefore is in L .

Proposition 4. The following problem is in L (deterministic logspace).

GIVEN: An undirected graph G with every edge labelled by 0 or 1
QUESTION: Is there any cycle C in G that the sum of labels of all edges in

C is odd?
Proof. The search for the required cycle can be be done nondeterministically in
logspace by guessing next edge in the cycle and computing the parity of the sum
of labels online. Since the graph is undirected, the search can be implemented in
symmetric logspace [14]. By [23] SL = L . Since L is closed under complemen-
tation, it follows that UNSIGNED PLANARITY is in L . ��

3.5 LOGSPACE to DRA

For a word w we define its variability v(w) as a number of distinct symbols in
w. For a language L and an integer function f(n) we say that variability of L
is of the order f(n) iff minw∈L,|w|=nv(w) ≥ f(n), i.e. f(n) is a lower bound of
variabilities of words of length n in L.

Lemma 2. Computations of a Turing Machine on a work tape T of size c·log(k)
over a binary alphabet can be simulated by Register Automata model on an input
string S, where v(S)=k.

Proof. Assume that a head H is on a work tape T at the position T (i). First all
operations under the tape head such as rewriting, checking current symbol on a
tape and head moves can be simulated by operations on two pushdown stacks,
where first stack keeps the front part of T : T (0) . . . T (i) and the second part of T ,
is stored in the second pushdown stack with T (i+1) on the top [19]. Also it is easy
to see that a binary word on a stack can be represented by an integer x, where
empty stack corresponds to 1 value, push a 0 onto the top of a stack corresponds
to x �→ 2x and pushing a 1 corresponds to x �→ 2x+ 1; checking the top symbol
can be done by checking divisibility by 2 and popping of a 1 or 0 can be done
by operations x �→ (x − 1)/2 or x �→ (x − 1)/2 respectively. Further we notice
that the register automata on an input with k distinct symbols can simulate
any finite number of counters of size kc for any constant c with the following
main operations: increment, decrement, multiplication by 2, division by 2 and
zero testing. Storing a symbol x in a register represents a value ord(x) + 1 of a
counter. The implementation of all required operations is straightforward albeit
tedious. The operation of increment (decrement) by one can be implemented by
moving forward to the first occurrence of the next (previous) distinct symbol
on an input string [15]. Testing of a counter to be equal to 1 corresponds to
checking whether a stored symbol appear as a first symbol of an input. Also it is
well known that operation of multiplication (or division) by 2 and divisibility by
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2 can be implemented by a finite number of extra counters with increment and
decrement operations and zero testing (or testing to be equal to 1) [19]. Thus, all
operations for integer representations of pushdown stacks can be implemented
by a register automaton. In this case since the virtual counters can store a value
of size kc and simulate two pushdown stacks of size log(kc) we have that the
length of a work tape T which is simulated by register automaton on an input
with k distinct symbols is bounded by log(kc). ��
Theorem 2. Given a language L with a variability of the order f(n), if a finite
projection Lbinary of L belongs to SPACE(log(f(n))) then L can be recognised by
a register automata.
Proof. The binary code of each symbol in w ∈ L is of a logarithmic size from
the number of distinct symbols in w. So for any word of size n over an infinite
alphabet, the length of the binary code for each symbol is no more than log(n).
Since the number of distinct symbols in any word w ∈ L is at least f(n), thus
by Lemma 2 we can simulate virtual tape over a binary alphabet of a length
c · log(f(n)) for any integer constant c. Therefore register automaton can take
any symbol y from an infinite alphabet on an input string and convert it into a
finite binary representation in the virtual work tape over a binary alphabet, by
counting the number of previously appeared distinct symbols from the beginning
of an input string and storing it on a virtual tape, i.e. converting y into a binary
representation of ord(y). Also by the same Lemma 2 we have that any extra
memory of size O(log(f(n)) can be implemented by a finite number of registers
on a language L with a variability of the order f(n). So any computations over
language Lbinary that requires SPACE(log(f(n))) can be implemented by a reg-
ister automaton on a language L with a variability of the order f(n). ��
Corollary 3. UNSIGNED PLANARITY is in DRA.
The above corollary follows from Proposition 4 and Theorem 2.

4 Conclusion

In this paper we have investigated the complexity of planarity of knot diagrams
represented by Gauss words. We have shown that planarity of unsigned Gauss
words can be recognised in deterministic logarithmic space on classical compu-
tational models and by deterministic register automata over infinite alphabets.
To demonstrate these results we have used generic mutual simulation between
both computations models for the languages of bounded variability. Notice that
unlike the case of signed Gauss words [15] we do not provide explicit determin-
istic LOGSPACE bounded decision procedure for planarity of unsigned Gauss
words and rather refer to the general reduction of SL to L [23]. An explicit de-
terministic LOGSPACE algorithm for the later case as well as the comparison of
its complexity with the algorithm(s) for signed case is a topic for further work.
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Abstract. In this paper, functorial languages with the following char-
acteristic are investigated: if two functor-argument structures occur in at
last one common functorial context, then they are intersubstitutable on
arguments’ positions in all elements (sentences) of a language. We prove
learnability of the class of all such languages (in the model of Gold).
Since our class has infinite elasticity, we could not employ a widely used
method of learnability proving. Instead, we adopted Buszkowski’s dis-
covery procedure, based on unification.

Keywords: categorial grammar, grammatical inference, learning, posi-
tive data, unification.

1 Introduction

Formal learning theory is an important branch of the theory of inductive infer-
ence. Its mathematical shape has been proposed by Solomonoff [17,18] and Gold
[11]. Rudimentary Gold’s results concerning identification of languages from pos-
itive data seemed to be of no perspectives at first. Yet, Angluin’s [1,2,3] contribu-
tion made a breakthrough — non-trivial learnable classes were presented. Many
examples of learnable classes of different sorts were described so far. The classes
are most often defined through some restrictions, mainly numerical imposed on
the shape of the grammars (or automata). Language theoretic properties of the
languages under considerations are usually neglected.

Angluin’s reversible languages [3], were described both ways — through au-
tomaton properties and language theoretic. The latter conforms with so-called
Tarski’s principle (see [19]) — expressions mutually substitutable in at least one
sentential context are mutually substitutable in all sentential contexts. Anal-
ogous condition, this time concerning context-free languages, one can find in
[10].

According to Buszkowski [5,8], Tarski’s principle also holds for rigid func-
torial languages. Since it applies also to some non-rigid ones (as for exam-
ple {(a, c)1, (b, c)1, (d, a)2, (d, b)2}), a natural question arises whether it implies
learnability of functorial languages (recall that learnability of rigid languages
was established by Kanazawa [12,13]). The question above is still open, but we
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can show that, when restricted to argument substructures only, Tarski’s principle
constitutes a sufficient condition for learnability.

The class of functorial languages we present in this paper is learnable despite
infinite elasticity. The elements (languages) from the class have been charac-
terized in a purely language theoretic way — each two structures, occurring in
at least one common functorial context, are intersubstitutable in all argument
positions. Following Kanazawa [12,13] we make substantial use of the method
involving unification, introduced by Buszkowski [6], and further developed by
Buszkowski and Penn [9]. Also we employ the properties of infinite and unifiable
sets of types, established in [15,16].

2 Preliminaries

2.1 Functor-Argument Structures

The set FS(A ) of all functor-argument structures over a set A of atoms is
defined as the smallest set fulfilling conditions: A ⊆ FS(A ), if Aj ∈ FS(A ) for
j = 1, . . . , n, then (A1, . . . , An)i ∈ FS(A ). Ai is the functor of (A1, . . . , An)i,
whereas each Aj , for j �= i is its argument. We set width((A1, . . . , An)i) = n.

The signature ρ — a function that assigns a sequence of pairs of natural
numbers to each functor-argument structure, is defined inductively as follows: if
a ∈ A then ρ(a) = λ (empty string), ρ((A1, . . . , An)i) = ρ(Ai) · 〈n, i〉, where ·
denotes concatenation.

For any T ⊆ FS(A ) we define the set SUB(T ) of all its substructures, as
the smallest set fulfilling: T ⊆ SUB(T ), if (A1, . . . , An)i ∈ SUB(T ), then Aj ∈
SUB(T ), for j = 1, . . . , n.

By SUBa(T ) we will denote the set of all argument substructures of the ele-
ments from T :

B ∈ SUBa(T ) ↔ (∃(A1, . . . , An)i ∈ SUB(T ))(∃j ∈ {1, . . . , n} \ {i})(B = Aj).

The functorial path of a structure A ∈ FS(A ), is the maximal sequence
F1, . . . , Fk of substructures of A, such that F1 is the functor of A, and for all
i = 2, . . . , k, Fi is the functor of Fi−1. Then Fk is an atom and it will be denoted
by ↑f(A). The length of the functorial path of a structure A will be denoted by
height(A) (for a ∈ A we set height(a) = 0).

2.2 Substitutions

Suppose that A = C ∪ V , where C denotes a set of constants, V variables
and C ∩ V = ∅. A function Θ : FS(A ) �→ FS(A ) is a substitution over A ,
if Θ(c) = c, for each c ∈ C , and Θ((A1, . . . , An)i) = (Θ(A1), . . . , Θ(An))i, for
every (A1, . . . , An)i ∈ FS(A ).

By ◦ we denote composition of substitutions: Θ = Θ1 ◦ Θ2 iff Θ(A) =
Θ1(Θ2(A)). If T ⊆ FS(A ), then Θ[T ] denotes the image of T .

A substitution Θ is variable-pure, if for each X ∈ V also Θ(X) ∈ V .
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2.3 Functorial Languages

Let us fix a finite vocabulary (or lexicon) V . By a functorial language over V ,
we mean any subset of FS(V ).

3 Functorial Contexts

We fix the set X = {�(i,j) : i, j ∈ �} of special purpose variables (for technical
reasons indexed with pairs of natural numbers). The elements of X will play
the role of argument placeholders. We also assume that V ∩ X = ∅.
Definition 1. A functorial context (f-context) is a functor argument structure
over V ∪ X , defined inductively as follows:

– each v ∈ V is an f-context of height(v) = 0,
– if C is an f-context and height(C) = k − 1, then

(�(k,1), . . . ,�(k,i−1), C,�(k,i+1), . . . ,�(k,n))i,

for n > 1, 0 < i � n, k > 0 is an f-context of height equal to k.

Definition 2. Let A ∈ FS(V ). We define f-cont(A) — the functorial context
determined by A:

– if v ∈ V , then f-cont(v) = v, height(v) = 0,
– if A = (A1, . . . , An)i, then

f-cont(A) = (�(k,1), . . . ,�(k,i−1), f-cont(Ai),�(k,i+1), . . . ,�(k,n))i,

where k = height(A) = height(Ai) + 1.

For a language L ⊆ FS(V ), we define:

F-CONTa(L) = {f-cont(A) : A ∈ SUBa(L)},
F-CONTL(L) = {f-cont(A) : A ∈ L}.

F-CONT(L) = F-CONTL(L) ∪ F-CONTa(L)

Let C = f-cont(A). There is exactly one substitution Φ over V ∪X , involving
all and only the variables from X , occurring in C, such that Φ(C) = A. We will
denote [A](i,j) = Φ(�(i,j)), for each such a variable �(i,j). If a variable �(i,j)

does not occur in the f-context of A, we assume that [A](i,j) is unspecified.

In a way (i, j) may be treated as the coordinates of the argument substructure
[A](i,j) within the structure A.

In what follows we will assume that whenever used, both i and j are restricted
to such values that [A](i,j) is specified.

Fact 3. For any A,B ∈ FS(V ):

f-cont(A) = f-cont(B) ↔ ↑f(A) =↑f(B) ∧ ρ(A) = ρ(B).
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Definition 4. Let L ⊆ FS(V ). We define the relation ∼L⊆ [SUBa(L)]2:
B1 ∼L B2 iff there are A1, A2 such that {A1, A2} ⊆ L or {A1, A2} ⊆ SUBa(L)
and i, j ∈ �, such that f-cont(A1) = f-cont(A2) and B1 = [A1](i,j), B2 =
[A2](i,j).

It is clear that the relation ∼L is reflexive and symmetric, but not necessarily
transitive. The sense of the relation is the following: two structures are related
if they appear at least once (on corresponding positions) in the same functorial
context.

Definition 5. We define the argument intersubstitutability relation
≈L⊆ [FS(V )]2 : B1 ≈L B2 iff B1 and B2 are substitutable in all argument posi-
tions of the elements of L. More precisely: Let A[B1 := B2] denotes the outcome
of the replacement of some argument occurrences of B1 with B2. Then:

B1 ≈L B2 iff (∀A ∈ FS(V ))(A ∈ L ↔ A[B1 := B2] ∈ L).

Fact 6. For any L ⊆ FS(V ), ≈L is an equivalence relation on FS(V ).

Lemma 7. Let B1, B2 ∈ FS(V ). Then:

f-cont(B1) = f-cont(B2) →
[
(∀i, j)

(
[B1](i,j) ≈L [B2](i,j)

)
→ B1 ≈L B2

]
.

Proof. Let the sequence 〈i1, j1〉, . . . , 〈in, jn〉 consists of all and only pairs such
that [B1](ik,jk) is specified. (of course [B1](ik,jk) is specified, whenever [B2](ik,jk)

is specified). Let C0, C1, . . . , Ck be such that C0 = B1 and
Ck = Ck−1

[
[B1](ik,jk) := [B2](ik,jk)

]
and Ck = B2. For any A ∈ FS(V ) and

k ∈ {1, . . . , n} we have A [Ck−1 := Ck] = A
[
[B1](ik,jk) := [B2](ik,jk)

]
, which im-

plies Ck−1 ≈L Ck. Our thesis is thus a consequence of transitivity of ≈L. ��
Quite similarly one can prove the following:

Fact 8. Let B1 ∈ L, B2 ∈ FS(V ). Then:

f-cont(B1) = f-cont(B2) →
[
(∀i, j)([B1](i,j) ≈L [B2](i,j)) → B2 ∈ L

]
.

Definition 9. The symbol ≈a
L will denote the restriction of ≈L to the set

SUBa(L).

Fact 10. For each L ⊆ FS(V ) we have ≈a
L⊆∼L.

Definition 11. A language L ⊆ FS(V ) is said to be argument-explicit, if

∼L=≈a
L .

Fact 12. Let L be argument-explicit, A1 ∈ L and A2 ∈ FS(V ). Then:

f-cont(A1) = f-cont(A2) →
[
(∀i, j)([A1](i,j) ≈

a
L [A2](i,j)) ↔ A2 ∈ L

]
.
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Definition 13. A language L ⊆ FS(V ) is finitely describable, if

– max{height(C) : C ∈ F-CONT(L)} < ℵ0,
– max{width(A) : A ∈ SUB(L)} < ℵ0.

We aim to prove, that the class of all finitely describable argument-explicit
languages is identifiable in the limit.

4 Types and Grammars

Definition 14. By Pr = Var∪{S} we denote the set of primitive (or atomic)
types, where Var is a countable set of variables and S �∈ Var is the only constant
primitive type (sentence type). The elements of the set Tp = FS(Pr) will be called
types.

Definition 15. A classical categorial grammar G is an indexed family
{IG(v)}v∈V where, for each v ∈ V , IG(v) ⊆ Tp. The function IG : V �→ 2Tp

is the initial type assignment of a grammar G.
IG extends to the terminal type assignment: TG : FS(V ) �→ 2Tp:

– TG(v) = IG(v), for v ∈ V ,
– TG((A1, . . . , An)i) =

= {t ∈ Tp : (∃(t1, . . . , tn)i ∈ TG(Ai))(t = ti ∧ tj ∈ TG(Aj), for j �= i)}.
FL(G) = {A ∈ FS(V ) : S ∈ TG(A)} — the functorial language determined by

G.
A grammar G is finite, if each IG(v) is finite, rigid, if each IG(v) has at most

one element. In such a case we will write t = TG(A) rather than t ∈ TG(A).
We will write G1 ⊆ G2 iff (∀v ∈ V )IG1(v) ⊆ IG2(v).

Lemma 16. Let G be a rigid grammar, A ∈ FS(V ), TG(A) = t. Then ↑f

(TG(↑f(A))) =↑f(t). In particular, if TG(A) = p ∈ Pr, then ↑f (TG(↑f (A))) = p.

Proof. By structural induction. The case A ∈ V is trivial. Suppose
A = (A1, . . . , An)i and the thesis holds for Ai. We have TG((A1, . . . , An)i)
= ti for some (t1, . . . , tn)i = TG(Ai). Hence ↑f (TG(↑f(A))) =↑f(TG(↑f (Ai)))
by induction

= ↑f((t1, . . . , tn)i) =↑f(ti). ��
Lemma 17. Let G be a rigid grammar, A ∈ FS(V ) and TG(A) �= ∅. Then

ρ (TG (↑f(A))) = ρ (TG (A)) · ρ (A)R .

where the superscript R denotes reversal.
In particular, if TG(A) = p ∈ Pr, then ρ (TG (↑f (A))) = ρ (A)R

.

Proof. By induction along functorial path of a structure A. If A ∈ V then the
thesis is trivially fulfilled. Suppose A = (A1, . . . , An)i and the thesis holds for
Ai. We have
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↑f (A) =↑f(Ai) , (1)

ρ (TG (Ai)) = ρ (TG (A)) · 〈n, i〉, (2)

ρ(A) = ρ(Ai) · 〈n, i〉. (3)

Hence:
ρ (TG (↑f (A)))

by (1)
= ρ (TG (↑f (Ai)))

by induction
= ρ (TG (Ai)) · ρ (Ai)

R =
by (2)

= ρ (TG(A)) · 〈n, i〉 · ρ(Ai)R = ρ (TG(A)) · (ρ(Ai) · 〈n, i〉)R by (3)
=

ρ (TG(A)) · ρ(A)R. ��

Definition 18 ([6,7,9]). Let A ∈ FS(V ). We will describe a construction of a
grammar GF(A) — general form determined by A. Let us denote V = V × �.
Any 〈v, i〉 ∈ V (denoted by vi) is a copy of an atom v ∈ V . Now choose any
A ∈ FS(V ), such that each atom from V occurs in A at most once, and A
becomes A after erasing all superscripts following atoms. By induction, we define
the mapping �→ from SUB({A}) to Tp:

– at first we set A �→ S,
– then we assign different variables to all the elements of SUBa({A}).
– Finally we ’calculate’ types of all functor substructures of A, following the

rule:
If (A1, . . . , An)i �→ t and Aj �→ xkj for each j �= i, then

Ai �→ (xk1 , . . . , xki−1 , t, xki+1 , . . . , xkn )i.

We can now define the grammar GF(A):

IGF(A)(v) = {t : (∃i ∈ �)vi �→ t}.
For L ⊆ FS(V ) we set:

IGF(L)(v) =
⋃

A∈L

IGF(A)(v),

assuming that each variable may occur in GF(A) for at most one A ∈ L. The
grammar GF(L) will be called the general form determined by L. We admit the
case of L being infinite.

It is easy to observe that a general form has the following properties:

Fact 19. Let L ⊆ FS(V ), v ∈ V and t ∈ IGF(L)(v). Then:

– t1 ∈ SUBa(t) → t1 ∈ Var,
– each variable occurs in t at most once.

Fact 20 ([9,15]). For any (even infinite) L ⊆ FS(V ), we have

FL(GF(L)) = L.
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5 Unification

From now on we will consider only substitutions over Pr.

Definition 21. Let ϕ be a substitution. For a family T = {Ti}i∈I of sets of
types, we define ϕ[T ] = {ϕ[Ti]}i∈I .
In particular, we denote ϕ[G] = {ϕ[IG(v)]}v∈V .

Fact 22 ([9]). For any grammar G and a substitution ϕ:

FL(G) ⊆ FL(ϕ[G])

Definition 23. Let T = {Ti}i∈I be a family of sets of types. A substitution σ
unifies a family T , if card(σ(Ti)) � 1, for each i ∈ I.

A unifier η of T is called a most general unifier (mgu) of T if, for any unifier
σ of T , there exists a substitution α, fulfilling σ = α ◦ η
Fact 24 ([16]). Let T = {Ti}i∈I be finite and unifiable family of sets of types.
There exists a family U = {Ui}i∈I of finite sets, such that Ui ⊆ Ti for each
i ∈ I, and for any family V = {Vi}i∈I , fulfilling Ui ⊆ Vi ⊆ Ti for i ∈ I, there
are mgus η of T and σ of V , such that, for each i ∈ I: η[Ti] = σ[Vi].

Definition 25. Two types t1 and t2 are alphabetic (or substitutional) variants
(t1 �� t2), if there are two substitutions ϕ1 and ϕ2 fulfilling: t1 = ϕ2(t2) and
t2 = ϕ1(t1).

Fact 26. Let v ∈ V , types t1, t2 ∈ IGF(L)(v) are such ρ(t1) = ρ(t2) and the
primitives ↑f (t1) and ↑f (t2) are both variables or both equal to S. Then t1 �� t2.

Fact 27. �� is an equivalence relation on Tp.

Definition 28. Let ∼ be any equivalence relation on Tp and T ⊆ Tp. By T/∼
we denote the partition of T induced by ∼. For a family T = {Ti}i∈I of sets of
types, we set

T /∼ =
⋃
i∈I

(Ti/∼) .

Please observe, that T /∼ is also a family of sets of types.

Fact 29. For any family T = {Ti}i∈I of sets of types, the family T /�� is
unifiable (but does not have to be finite).

Fact 30. For any family T = {Ti}i∈I of sets of types, an mgu of T /�� is
variable-pure.

Fact 31. If L ⊆ FS(V ) is finitely describable, then GF(L)/ �� is finite.

Definition 32. Let L ⊆ FS(V ) be finitely describable and let η be an mgu of
GF(L)/��. We define the grammar AEG(L) = η[GF(L)].

Lemma 33. The grammar AEG(L) has the following properties:
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a) all argument subtypes are variables:

(∀v ∈ V )(∀t ∈ IAEG(L)(v))(∀t1 ∈ Tp)(t1 ∈ SUBa(t) → t1 ∈ Var),

b) for any v ∈ V and types t1, t2 ∈ IAEG(L)(v) such that ρ(t1) = ρ(t2), if ↑f

(t1) =↑f(t2) or {↑f(t1) , ↑f(t2)} ⊆ Var, then t1 = t2.
c) structures with the same functorial context get the same variable type:

f-cont(A) = f-cont(B) ∧ TAEG(L)(A) ∩ Var �= ∅ ∧ TAEG(L)(B) ∩ Var �= ∅ →
→ TAEG(L)(A) ∩ Var = TAEG(L)(B) ∩ Var,

d) each structure gets at most one variable type:

{x, y} ⊆ TAEG(L)(A) → x = y,

Proof. a) The property is inherited from the grammar GF(L) (see Fact 19), since
variable-pure substitution does not affect it.

b) There are u1, u2 ∈ IGF(L) such that t1 = η(u1) and t2 = η(u2), where
AEG(L) = η[GF(L)]. Since variable-pure substitution does not change the
signature, we have ρ(u1) = ρ(u2) and hence, by Fact 26, u1 �� u1, which
implies t1 = t2.

c) Let x ∈ TAEG(L)(A) and y ∈ TAEG(L)(B). By Fact 3, v =↑f(A) =↑f(B).
By Lemma 16 there are types t1, t2 ∈ IAEG(L)(v) such that ↑f(t1) = x and
↑f (t2) = y. By Fact 3 and Lemma 17 ρ(t1) = ρ(t2). From b) we get t1 = t2
and x = y accordingly.

d) It suffices to replace B with A in the proof of c). ��
Definition 34. Let L ⊆ FS(V ) be finitely describable. We denote:

AEL(L) = FL(AEG(L)).

From Fact 20 and Fact 22, one gets immediately:

Fact 35. L ⊆ AEL(L).

For a finitely describable L the grammar AEG(L) is finite by, Fact 31, so the lan-
guage AEL(L) is also finitely describable. It is now easy to observe the following
characteristics of finitely describable languages:

Fact 36. A language L ⊆ FS(V ) is finitely describable, if and only if L ⊆ FL(G)
for some finite grammar G.

Lemma 37. Let p ∈ Pr, A1, A2 ∈ SUB(AEL(L)).
If p ∈ TAEL(L)(A1) ∩ TAEL(L)(A2) and f-cont(A1) = f-cont(A2), then

(∀i, j)(∃x ∈ Var)TAEG(L)

(
[A1](i,j)

)
∩ TAEG(L)

(
[A2](i,j)

)
∩ Var = {x}.

Proof. Let v =↑f(A1) =↑f(A2), α = ρ(A1) = ρ(A2). There is exactly one type
t ∈ IAEG(L)(v) such that ρ(t) = αR and ↑f(t) = p. Since the type of a functor
determines the types of its arguments, our thesis holds. ��
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Theorem 38. For any finitely describable L ⊆ FS(V ), the language AEL(L) is
argument-explicit.

Proof. Assume B1 ∼AEL(L) B2. There exist A1 and A2 such that

{A1, A2} ⊆ SUBa(AEL(L)) or {A1, A2} ⊆ AEL(L),

f-cont(A1) = f-cont(A2) and B1 = [A1](i,j), B2 = [A2](i,j). Since TAEG(L)(A1) ∩
TAEG(L)(A2)∩Pr �= ∅, by Lemma 37, both B1 and B2 must have the same unique
variable type and are therefore intersubstitutable on argument positions. ��
The above proof justifies the following:

Corollary 39. For any B1, B2 ∈ SUBa(AEL(L)), B1 ≈a
AEL(L) B2 iff AEG(L)

assigns the same variable type to both B1 and B2.

Fact 40
F-CONTL(L) = F-CONTL(AEL(L)),

F-CONTa(L) = F-CONTa(AEL(L)).

We intend to show, that AEL(L) is the smallest argument-explicit language
containing L. We need some auxiliaries.

Definition 41. Let 'L denote the closure of ∼L — the smallest equivalence
relation on FS(V ), fulfilling:

a) ∼L ⊆ 'L,
b) if A1, A2 ∈ FS(V ) are such that f-cont(A1) = f-cont(A2) and for each pair

i, j holds [A1](i,j) 'L [A2](i,j), then A1 'L A2.

Lemma 42. Let L′ be argument-explicit and L ⊆ L′. Then 'L ⊆ ≈L′ .

Proof. Since we have ∼L⊆∼L′=≈a
L′⊆≈L;, the relation ≈L′ fulfills the condition

a) from the Definition 41. By Lemma 7 it also fulfills the condition b). Hence
the thesis follows from the minimality of 'L. ��
Lemma 43. Let L ⊆ FS(V ) be finitely describable. Then

≈a
AEL(L) ⊆ 'L .

Proof. We first show the following:

A1, A2 ∈ SUBa(L) ∧ TAEG(L)(A1) ∩ TAEG(L)(A2) ∩ Var �= ∅ → A1 'L A2. (4)

If A1, A2 ∈ SUBa(L), then the grammar GF(L) assigns some variables to A1 and
A2, say xi and xj respectively. By Fact 24 there are: a finite grammar G such
that GF({A1, A2}) ⊆ G ⊆ GF(L), the mgu σ of G/ �� such that AEG(L) = σ[G].
For any x, y ∈ Var we will write x ' y if there are v ∈ V , t1, t2 ∈ IG(v) such that
t1 �� t2 and x occurs in t1 in the same position as y in t2 (here types are treated as
sequences of symbols representing them). Since σ(xi) = σ(xj) there is some finite
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sequence of variables xi0 , . . . , xin , introduced during the construction of GF(L),
such that xi0 = xi, xin = xj , and for each k = 1, . . . , n we have xik−1 ' xik

(see [14,9]). Since GF(L) assigns each variable to at most one structure, there is
exactly one sequence of structures Ai0 , . . . , Ain such that xik

∈ TGF(L)(Aik
) for

k = 0, . . . , n.
Observe that xik−1 and xik

either both occur on argument positions of some t1
and t2, or xik−1 =↑f(t1) and xik

=↑f(t2). In the former case we have Aik−1 'L

Aik
, in the latter Aik−1 'L Aik

by conditions a) and b) of the Definition 41
respectively. Since A1 = Ai0 , A2 = Ain and 'L is transitive, we get A1 'L A2,
which finishes the proof of (4).

Our next task is as follows:

(∀B ∈ SUBa(AEL(L))) (∃A ∈ SUBa(L))(
A 'L B ∧ TAEG(L)(A) ∩ TAEG(L)(B) ∩ Var �= ∅) . (5)

We prove the above by structural induction on f-cont(B). When B ∈ V then
A = B fulfills (5).

Suppose B ∈ SUBa(AEL(L)) and (5) holds for all [B](i,j). By Fact 40 there
exists A ∈ SUBa(L) such that f-cont(A) = f-cont(B). According to Lemma 33,
the grammar AEG(L) assigns to A and B the same variable type, so it suffices
to show that A 'L B.

By the induction hypothesis, for each pair i, j there exists Cij ∈ SUBa(L)
fulfilling: Cij 'L [B](i,j) and TAEG(L)(Cij) ∩ TAEG(L)([B](i,j)) ∩ Var �= ∅. More-
over, by Lemma 37, TAEG(L)([A](i,j)) = TAEG(L)([B](i,j)) ∩ Var �= ∅. Then also
TAEG(L)(Cij) ∩ TAEG(L)([A](i,j)) ∩ Var �= ∅ and therefore, by (4), Cij 'L [A](i,j).
Consequently [A](i,j) 'L [B](i,j) which justifies (5).

Finally, Assume that B1 ≈a
AEL(L) B2. By Corollary 39 we have TAEG(L)(B1) ∩

TAEG(L)(B2) ∩ Var = {x} for some x ∈ Var. By (5) there are A1, A2 ∈ SUBa(L)
such that A1 'L B1, A2 'L B2 and TAEG(L)(A1) = TAEG(L)(A2) = {x}. Then we
have B1 'L B2 because A1 'L A2 on the ground of (4). ��
Theorem 44. If L ⊆ FS(V ) is finitely describable, then AEL(L) is the smallest
finitely describable argument-explicit language, containing L.

Proof. Let L ⊆ L′, where L′ is argument-explicit. Let A ∈ AEL(L). By Fact 40
there is some B ∈ L such that f-cont(A) = f-cont(B). For any i, j we have:
[A](i,j) ≈

a
AEL(L) [B](i,j) — by Fact 12,

[A](i,j) 'L [B](i,j) — by Lemma 43,
[A](i,j) ≈L′ [B](i,j) — by Lemma 42.
Consequently, by Fact 8, we have A ∈ L′. ��

6 Learnability

We limit our attention to the learnability in the sense of Gold’s identification in
the limit (see [11]).
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Definition 45. Let CCG denote the class of all classical categorial grammars.
We define a learning function φ : FS(V )∗ �→ CCG:

φ(〈A1, . . . An〉) = AEG({A1, . . . , An}).

Theorem 46. The function φ identifies in the limit (from functor-argument
structures) the class of all finitely describable argument-explicit languages.

Proof. We have to show that for any infinite sequence A1, A2, . . . fulfilling

{A1, A2, . . . } = L,

where L is some finitely describable argument-explicit language, there is some
n ∈ � such that for all i � n we have FL (φ(〈A1, . . . , Ai〉)) = L. Indeed, let
L ⊆ FS(V ) be an element of the class under consideration. By Theorem 44,
L = AEL(L) = FL(AEG(L)). By Fact 24, there is some finite D ⊆ L fulfilling
AEG(E) = AEG(L) for each E such that D ⊆ E ⊆ L. ��
Fact 47. It is easy to observe, that the learning function φ is

– set driven — follows directly from the definition of φ,
– consistent — {A1, . . . , An} ⊆ FL(φ(〈A1, . . . , An〉)),
– responsive — because φ is always defined,
– prudent — FL(φ(〈A1, . . . , An〉)) is argument-explicit,
– conservative — if An+1 ∈ FL(φ(〈A1, . . . , An〉)) then

φ(〈A1, . . . , An+1〉) = φ(〈A1, . . . , An〉) (up to the choice of variables).

Definition 48 ([20]). A class C of languages has infinite elasticity if there
exist an infinite sequence of structures 〈Ai〉i∈� and an infinite sequence 〈Li〉i∈�
of languages from C such that, for each i ∈ �
– {A0, . . . , Ai} ⊆ Li+1,
– Ai �∈ Li

A class of languages has finite elasticity if it does not have infinite elasticity.

Classes with infinite elasticity are considered to be ’difficult’ from the point of
view of their learnability. For examples of such classes see for instance [3,4].

Theorem 49. The class of all finitely describable argument-explicit languages
has infinite elasticity.

Proof. It suffices to show that there exists an infinite sequence 〈Li〉i∈�
of argument-explicit languages with the property: L0 
 L1 
 · · · 
 Ln 
 . . .
Let L0 be any finitely describable argument-explicit language. By induction, let
Ai be any structure such that f-cont(Ai) �∈ F-CONT(L). Such a structure always
exists since every finitely describable language is bounded in height and width.
We define Li+1 = AEL(Li ∪{Ai}). Then of course Ai ∈ Li+1 \Li and Li ⊆ Li+1.

��



Tarski’s Principle, Categorial Grammars and Learnability 389

References

1. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst.
Sci. 21(1), 46–62 (1980)

2. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45(2), 117–135 (1980)

3. Angluin, D.: Inference of reversible languages. Journal of the ACM 29(3), 741–765
(1982)

4. Béchet, D., Foret, A.: k-valued non-associative lambek grammars are learnable
from generalized functor-argument structures. Theor. Comput. Sci. 355(2), 139–
152 (2006)

5. Buszkowski, W.: Typed functorial languages. Bull. Polish Acad. Sci. Math. 21,
495–505 (1986)

6. Buszkowski, W.: Discovery procedures for categorial grammars. In: Klein, E.,
van Benthem, J. (eds.) Categories, Polymorphism and Unification. Universiteit
van Amsterdam, Amsterdam (1987)

7. Buszkowski, W.: Solvable problems for classical categorial grammars. Bull. Polish
Acad. Sci. Math. (35), 373–382 (1987)

8. Buszkowski, W.: Classical categorial grammars. In: Kálmán, L., Pólos, L. (eds.)
Papers from the Second Symposium on Logic and Language, Budapest, Akadémiai
Kiadó, pp. 243–260 (1990)

9. Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Studia Logica XLIX(4), 431–454 (1990)

10. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)

11. Gold, E.M.: Language identification in the limit. Information and Control 10,
447–474 (1967)

12. Kanazawa, M.: Identification in the limit of categorial grammars. Journal of Logic,
Language and Information 5(2), 115–155 (1996)

13. Kanazawa, M.: Learnable Classes of Categorial Grammars. In: Studies in Logic,
Language and Information. CSLI Publications & FoLLI, Stanford (1998)

14. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1987)
15. Marciniec, J.: Infinite set unification with application to categorial grammar. Studia

Logica LVIII(3), 339–355 (1997)
16. Marciniec, J.: Optimal unification of infinite sets of types. Fundamenta Informati-

cae 62(3,4), 395–407 (2004)
17. Solomonoff, R.J.: A formal theory of inductive inference. part I. Information and

Control 7(1), 1–22 (1964)
18. Solomonoff, R.J.: A formal theory of inductive inference. part II. Information and

Control 7(2), 224–254 (1964)
19. Tarski, A.: A decision method for elementary algebra and geometry. Technical

Report R-109, The Rand Corporation, Santa Monica, CA, USA (1957)
20. Wright, K.: Identification of unions of languages drawn from an identifiable class.

In: COLT 1989: Proceedings of the Second Annual Workshop on Computational
Learning Theory, pp. 328–333. Morgan Kaufmann Publishers Inc., San Francisco
(1989)



Globally Deterministic CD-Systems

of Stateless R(1)-Automata�

Benedek Nagy1 and Friedrich Otto2

1 Department of Computer Science, Faculty of Informatics
University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary

nbenedek@inf.unideb.hu
2 Fachbereich Elektrotechnik/Informatik

Universität Kassel, 34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract. Although the component automata of a cooperating
distributed system (CD-system) of stateless deterministic R(1)-automata
are all deterministic, the CD-system itself is not. Here we study CD-
systems of stateless deterministic R(1)-automata that are themselves
completely deterministic. These CD-systems correspond to deterministic
finite-state acceptors with translucent letters. We investigate the expres-
sive power of these systems, study the closure properties of the class of
languages they accept, and show that the inclusion problem for these
systems is undecidable, while their universe problem is decidable.
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1 Introduction

Cooperating distributed systems (CD-systems) of restarting automata have been
defined in [4], and in [5,6] various types of deterministic CD-systems of restarting
automata have been studied. As expected CD-systems are much more expres-
sive than their component automata themselves. On the other hand, stateless
restarting automata, that is, restarting automata with only a single state, have
been introduced and studied in [3]. In [8] we introduced CD-systems of stateless
deterministic R(1)-automata, that is, of stateless deterministic restarting auto-
mata with a read/write window of size 1 that restart immediately after executing
a rewrite operation. The languages accepted by these CD-systems in mode = 1
have semi-linear Parikh images, they include all rational trace languages, and
this class of languages is closed under union, product, Kleene star, and com-
mutative closure, but it is not closed under intersection with regular languages,
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complementation, or ε-free morphisms [7]. In addition, for these CD-systems the
emptiness and the finiteness problems are easily solvable, while the regularity,
inclusion, and equivalence problems are undecidable in general.

Although all the component automata of such a CD-system are deterministic,
in general the CD-system itself is not. In fact, these CD-systems correspond to
nondeterministic finite-state acceptors with translucent letters [9]. Here we study
CD-systems of stateless deterministic R(1)-automata that are themselves com-
pletely deterministic. Actually, following the development in [5,6] we introduce
two different kinds of deterministic CD-systems: the strictly deterministic sys-
tems and the globally deterministic systems. In a strictly deterministic system,
there is a single initial component, and each component automaton has a single
successor component only. This ensures that all computations of such a system
are deterministic, but at the same time it severely restricts the expressive power
of these systems. In fact, these systems do not even accept all finite languages.
Therefore, we concentrate on globally deterministic systems, which also have a
single initial component only, but for which the successor component of an R(1)-
automaton is chosen deterministically based on the symbol that is deleted in the
current cycle. This still guarantees that each computation is deterministic, but
it allows for much more flexibility. In fact, globally deterministic CD-systems
of R(1)-automata correspond to deterministic finite-state acceptors with translu-
cent letters [9]. These systems accept all regular languages, but they are strictly
less expressive than the CD-systems considered in [8].

This paper is structured as follows. In Section 2 we repeat the definition of stl-
det-local-CD-R(1)-systems from [8], we restate some of their main properties, and
we shortly consider strictly deterministic CD-systems of stateless deterministic
R(1)-automata. Then in Section 3 we define the stl-det-global-CD-R(1)-systems.
We show that these systems accept all regular languages, we present a normal form
for them, and we prove that they do not accept all rational trace languages. Also
we present some closure and non-closure properties on the class of languages ac-
cepted by these CD-systems, showing that with respect to closure properties these
systems are much weaker than the systems of [8]. Finally, we consider decision
problems for these systems in Section 4. While the decidability of the membership,
emptiness, and finiteness problems follows immediately from the corresponding
results in [7], closure under complementation implies that also the universe prob-
lem is decidable for these systems. This is an important constrast to the situation
for stl-det-local-CD-R(1)-systems, where the regularity, inclusion, and equivalence
problems are shown to be undecidable by a reduction from the universe problem.
Here we present a reduction from the Post Correspondence Problem to show that
the inclusion problem is undecidable for stl-det-global-CD-R(1)-systems. The pa-
per closes with a short summary and some open problems.

2 CD-Systems of Stateless Deterministic R(1)-Automata

A stateless deterministic R(1)-automaton is a one-tape machine that is described
by a 5-tuple M = (Σ, c, $, 1, δ), where Σ is a finite alphabet, the symbols c, $ �∈ Σ
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serve as markers for the left and right border of the workspace, respectively,
the size of the read/write window is 1, and δ : Σ ∪ {c, $} → {MVR,Accept, ε}
is the (partial) transition function. There are three types of transition steps:
move-right steps (MVR), which shift the window one step to the right, combined
rewrite/restart steps (denoted by ε), which delete the content a of the window,
thereby shortening the tape, and place the window over the left end of the tape,
and accept steps (Accept), which cause the automaton to halt and accept. We
use the notation δ(a) = ∅ to express the fact that the function δ is undefined
on a. Some additional restrictions apply in that the sentinels c and $ must not
be deleted, and that the window must not move right on seeing the $-symbol.

A configuration of M is described by a pair (α, β), where either α = ε (the
empty word) and β ∈ {c} · Σ∗ · {$} or α ∈ {c} · Σ∗ and β ∈ Σ∗ · {$}; here
αβ is the current content of the tape, and it is understood that the head scans
the first symbol of β. A restarting configuration is of the form (ε, cw$), where
w ∈ Σ∗; to simplify the notation a restarting configuration (ε, cw$) is usually
simply written as cw$. By #M we denote the single-step computation relation
of M , and #∗

M denotes the reflexive transitive closure of #M .
The automaton M proceeds as follows. Starting from an initial configuration

cw$, the window moves right until a configuration of the form (cx, ay$) is reached
such that δ(a) = ε. Here w = xay and a ∈ Σ. Now the latter configuration is
transformed into the restarting configuration cxy$. This sequence of computa-
tional steps, which is called a cycle, is expressed as w #c

M xy. A computation of
M consists of a finite sequence of cycles that is followed by a tail computation,
which consists of a sequence of move-right operations possibly followed by an
accept step. An input word w ∈ Σ∗ is accepted by M , if the computation of M
which starts with the initial configuration cw$ finishes by executing an accept
step. By L(M) we denote the language consisting of all words accepted by M .

We can partition the alphabet Σ into four disjoint subalphabets:

(1.) Σ1 = { a ∈ Σ | δ(a) = MVR }, (3.) Σ3 = { a ∈ Σ | δ(a) = Accept },
(2.) Σ2 = { a ∈ Σ | δ(a) = ε }, (4.) Σ4 = { a ∈ Σ | δ(a) = ∅ }.

It has been shown in [8] that the language L(M) can be characterized as

L(M) =

⎧⎨
⎩

Σ∗, if δ(c) = Accept,
(Σ1 ∪Σ2)∗ ·Σ3 ·Σ∗, if δ(c) = MVR and δ($) �= Accept,
(Σ1 ∪Σ2)∗ · ((Σ3 ·Σ∗) ∪ {ε}), if δ(c) = MVR and δ($) = Accept.

A CD-system of stateless deterministic R(1)-automata consists of a finite col-
lection M = ((Mi, σi)i∈I , I0) of stateless deterministic R(1)-automata Mi =
(Σ, c, $, 1, δi) (i ∈ I), successor relations σi ⊆ I (i ∈ I), and a subset I0 ⊆ I
of initial indices. Here it is required that I0 �= ∅, and that σi �= ∅ for all i ∈ I.
In [8] it was required in addition that i �∈ σi for all i ∈ I, but this requirement
is easily met by using two isomorphic copies of each component automaton Mi,
i ∈ I. Therefore, we abondon it here in order to simplify the presentation.

Various modes of operation have been introduced and studied for CD-systems
of restarting automata, but here we are only interested in mode = 1 computa-
tions. A computation of M in mode = 1 on an input word w proceeds as follows.
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First an index i0 ∈ I0 is chosen nondeterministically. The automaton Mi0 starts
the computation with the initial configuration cw$, and executes a single cycle.
Thereafter an index i1 ∈ σi0 is chosen nondeterministically, and Mi1 continues
the computation by executing a single cycle. This continues until, for some l ≥ 0,
the machine Mil

accepts. Such a computation will be denoted as

(i0, w) #c
M (i1, w1) #c

M · · · #c
M (il, wl) #∗

Mil
Accept.

Should at some stage the chosen automaton Mil
be unable to execute a cycle

or to accept, then the computation fails. By L=1(M) we denote the language
that consists of all words w ∈ Σ∗ that are accepted by M in mode = 1. By
L=1(stl-det-local-CD-R(1)) we denote the class of languages that are accepted by
mode = 1 computations of stl-det-local-CD-R(1)-systems, that is, by CD-systems
of stateless deterministic R(1)-automata.

Example 1. Let M = ((Mi, σi)i∈I , I0), where Σ = {a, b, c}, I = {a, b, c}, I0 =
{a}, σa = {b}, σb = {c}, σc = {a}, and Ma, Mb, and Mc are the stateless
deterministic R(1)-automata that are given by the following transition functions:

Ma : δa(c) = MVR, δa(a) = ε, δa($) = Accept,

Mb : δb(c) = MVR, δb(a) = MVR, δb(c) = MVR, δb(b) = ε,

Mc : δc(c) = MVR, δc(a) = MVR, δc(b) = MVR, δc(c) = ε.

Then L=1(M) is the non-context-free language Labc = {w ∈ {a, b, c}∗ | |w|a =
|w|b = |w|c ≥ 0, and for each prefix u of w : |u|a ≥ max{|u|b, |u|c} }.

In [8] the following results were established. Here ψ : Σ∗ → N
|Σ| denotes the

Parikh mapping defined by ψ(w) = (|w|a1 , . . . , |w|an), if Σ = {a1, . . . , an}.

Proposition 1. (a) Each language L ∈ L=1(stl-det-local-CD-R(1)) contains a
regular sublanguage E such that ψ(L) = ψ(E) holds.

(b) L=1(stl-det-local-CD-R(1)) properly contains the class of all rational trace
languages, and therewith it contains all regular languages.

It follows from Proposition 1 (a) that each language which is accepted by a stl-
det-local-CD-R(1)-system in mode = 1 is semi-linear, that is, it has a semi-linear
Parikh image. As the deterministic linear language L = { anbn | n ≥ 0 } does not
contain a regular sublanguage that is letter-equivalent to the language itself, L is
not accepted by any stl-det-local-CD-R(1)-system. Together with Example 1 this
implies that the language class L=1(stl-det-local-CD-R(1)) is incomparable to the
classes DLIN, LIN, DCFL, and CFL with respect to inclusion. Here DLIN denotes
the class of deterministic linear languages, which is the class of languages that
are accepted by deterministic one-turn pushdown automata, LIN is the class of
linear languages, and DCFL and CFL denote the classes of deterministic context-
free and context-free languages.

Although all the component automata of a stl-det-local-CD-R(1)-system are
deterministic, in general the system itself is not. Here we introduce a type of CD-
system of stateless R(1)-automata that is completely deterministic. The idea and
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the notation is taken from [5], where a corresponding notion was introduced for
CD-systems of general restarting automata.

A CD-system M = ((Mi, σi)i∈I , I0) of stateless deterministic R(1)-automata
is called strictly deterministic if |I0| = 1 and |σi| = 1 for all i ∈ I. Then, for
each word w ∈ Σ∗, M has a unique computation that begins with the initial
configuration corresponding to input w. Thus, M is completely deterministic. By
L=1(stl-det-strict-CD-R(1)) we denote the class of languages that are accepted
by strictly deterministic stateless CD-R(1)-systems working in mode = 1.

Observe that the CD-system in Example 1 is strictly deterministic. On the
other hand, we have the following negative result, which is easily established.

Lemma 1. The finite language L0 = {aaa, bb} is not accepted by any strictly
deterministic stateless CD-R(1)-system working in mode = 1.

This yields the following immediate consequence.

Corollary 1. The language class L=1(stl-det-strict-CD-R(1)) is incomparable
under inclusion to the language classes FIN of finite languages, REG of regu-
lar languages, and CFL of context-free languages. In particular, it follows that
the inclusion L=1(stl-det-strict-CD-R(1)) ⊆ L=1(stl-det-local-CD-R(1)) is strict.

From the definition it is easily derived that L=1(stl-det-strict-CD-R(1)) is closed
under complementation. On the other hand, based on Lemma 1 it can be shown
that this class is an anti-AFL, that is, it is not closed under union, product,
Kleene star, intersection with regular sets, ε-free morphisms, and inverse mor-
phisms. Further, it is neither closed under reversal nor under the operation of
taking the commutative closure.

3 Globally Deterministic CD-R(1)-Systems

A stateless globally deterministic CD-R(1)-system M = ((Mi, σi)i∈I , I0, δ) con-
sists of a CD-system of stateless deterministic R(1)-automata ((Mi, σi)i∈I , I0)
satisfying |I0| = 1 and a global successor function δ :

⋃
i∈I({i} × Σ

(i)
2 ) → I

satisfying δ(i, a) ∈ σi for all i ∈ I and all a ∈ Σ
(i)
2 . Here, for each i ∈ I, Σ(i)

2

denotes the set of letters that are deleted by the component automaton Mi. The
global successor function is used to determine the successor components within
computations of M. If (i, w) is the current configuration of M, that is, the com-
ponent Mi is activated with the restarting configuration cw$, and w = uav for
some u ∈ Σ

(i)
1

∗
and a ∈ Σ

(i)
2 , then δ(i, a) ∈ σi gives the successor component,

that is, we have the partial computation (i, w) = (i, uav) #c
M (j, uv), where

j = δ(i, a). It follows that, for each input word w ∈ Σ∗, the system M has a
unique computation that starts from the initial configuration corresponding to
input w, that is, M is completely deterministic. By L=1(stl-det-global-CD-R(1))
we denote the class of languages that are accepted by stateless globally deter-
ministic CD-R(1)-systems working in mode = 1.

Obviously, each stateless strictly deterministic CD-R(1)-system is globally de-
terministic. However, the stateless globally deterministic CD-R(1)-systems are



Globally Deterministic CD-Systems of Stateless R(1)-Automata 395

much more expressive than the strictly deterministic ones. In fact, we have the
following proper inclusion.

Lemma 2. REG � L=1(stl-det-global-CD-R(1)).

Proof. From Example 1 we see that L=1(stl-det-global-CD-R(1)) contains lan-
guages that are not even context-free. Thus, it remains to show that each regular
language is accepted by a stateless globally deterministic CD-R(1)-system.

Let L ⊆ Σ∗ be a regular language, and let A = (Q,Σ, p0, F, δA) be a complete
deterministic finite-state acceptor for L. From A we construct a stl-det-global-CD-
R(1)-system M = ((Mi, σi)i∈I , I0, δ) as follows:

– I = Q, I0 = {p0}, σi = I for all i ∈ I,
– for each i ∈ I, the automaton Mi is defined through

δi(c) = MVR, δi(a) = ε for all a ∈ Σ, δi($) = Accept, if i ∈ F,

– and δ is defined through δ(i, a) = δA(i, a) for all i ∈ I and all a ∈ Σ.

By induction on |w| it is now easily shown that, for all w ∈ Σ∗ and all i ∈ I,
δA(p0, w) = i if and only if (p0, w) #c∗

M (i, ε). Hence, it follows that L=1(M) = L
holds. ��
In particular, this yields the following proper inclusion.

Corollary 2. L=1(stl-det-strict-CD-R(1)) � L=1(stl-det-global-CD-R(1)).

To simplify the discussions and proofs below we now introduce a normal form
for stl-det-global-CD-R(1)-systems.

Definition 1. A stl-det-global-CD-R(1)-system M = ((Mi, σi)i∈I , {i0}, δ) is in
normal form if it satisfies the following conditions:

1. Each component Mi is reachable from the initial component Mi0 , that is, for
each i ∈ I, there exists an input w ∈ Σ∗ such that (i0, w) #c∗

M (i, z) holds for
some z ∈ Σ∗.

2. For each component Mi, δi(c) = MVR.
3. For each component Mi and each letter a ∈ Σ, δi(a) ∈ {MVR, ε}, that is,

Σ
(i)
3 = ∅ = Σ

(i)
4 for all i ∈ I.

Thus, if M = ((Mi, σi)i∈I , {i0}, δ) is in normal form, then each computation of
M ends with a component that accepts or rejects on the $-symbol. The following
normalization result holds.

Proposition 2. From a stl-det-global-CD-R(1)-system M = ((Mi, σi)i∈I , {i0},
δ), a stl-det-global-CD-R(1)-system M′ = ((M ′

j , σ
′
j)j∈J , {j0}, δ′) can be

constructed such that M′ is in normal form, and L=1(M′) = L=1(M).

Based on this normal form result the following inclusion can be derived.

Proposition 3. L=1(stl-det-global-CD-R(1)) ⊆ L=1(stl-det-local-CD-R(1)).
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Below we prove that this inclusion is strict by showing that stl-det-global-CD-
R(1)-systems do not even accept all rational trace languages. Recall from [8]
(see also, e.g., [2]) that a language L ⊆ Σ∗ is a rational trace language if there
exists a reflexive and transitive binary relation D on Σ (a dependency relation)
such that L =

⋃
w∈R [w]D for some regular language R on Σ. Here [w]D denotes

the congruence class of w with respect to the congruence ≡D = { (uabv, ubav) |
u, v ∈ Σ∗, a, b ∈ Σ, (a, b) �∈ D }.
Proposition 4. The rational trace language

L∨ = {w ∈ {a, b}∗ | ∃n ≥ 0 : |w|a = n and |w|b ∈ {n, 2n} }
is not accepted by any stateless globally deterministic CD-R(1)-system.

Proof. Obviously, L∨ is simply the commutative closure of the regular language
R∨ = (ab)∗ ∪ (abb)∗, and hence, it is indeed a rational trace language.

Assume that M = ((Mi, σi)i∈I , I0, δ) is a stl-det-global-CD-R(1)-system such
that L=1(M) = L∨. Without loss of generality we can assume that I = {0, 1, . . . ,
m− 1} and that I0 = {0}.

Let n > 2m, and let w = anbn ∈ L∨. Then the computation of M on input
w is accepting, that is, it is of the form

(0, anbn) #c
M (i1, w1) #c

M · · · #c
M (ir, wr) #∗

Mir
Accept,

where Mir accepts the tape contents cwr$. If |wr|a > 0 and |wr|b > 0, then Mir

would also accept the tape contents wra
nb5m for any m ≥ 0, and therewith M

would accept the input wanb5n = anbnanb5n. As this word is not contained in
L∨, this contradicts our assumption that L=1(M) = L∨. Hence, it follows that
|wr|a = 0 or |wr|b = 0. If wr = as for some s > 0, then it follows analogously
that with w, M would also accept the word wam for all m ≥ 0. Hence, it would
accept the word wan = anbnan �∈ L∨, which yields the same contradiction as
above. Thus, |wr |a = 0, and analogously it can be shown that |wr|b = 0, that is,
wr = ε. Hence, in the above computation 2n cycles are executed that delete the
input w = anbn symbol by symbol, and then Mir accepts the empty word.

As n > m, there exists an index i ∈ I and integers s, t, k, � ≥ 0, m ≥ s+ t ≥ 0
and m ≥ k + � > 0, such that the above computation can be written as follows:

(0, anbn) #c∗
M (i, an−sbn−t) #c+

M (i, an−s−kbn−t−�) #c∗
M (ir, ε) #∗

Mir
Accept.

Obviously, M will also execute the following shortened computation:

(0, an−kbn−�) #c∗
M (i, an−s−kbn−t−�) #c∗

M (ir, ε) #∗
Mir

Accept,

that is, M accepts on input an−kbn−�. From our assumption that L=1(M) = L∨
we can therefore conclude that k = �, as n > 2m.

Now consider the computation of M on input anb2n. As anb2n ∈ L∨, this
computation is accepting, that is, it has the following form:

(0, anb2n) #c∗
M (i, an−sb2n−t) #c+

M (i, an−s−kb2n−t−k) #c∗
M (i′, ε) #∗

Mi′ Accept.



Globally Deterministic CD-Systems of Stateless R(1)-Automata 397

But then M will also execute the following computation:

(0, an−kb2n−k) #c∗
M (i, an−s−kb2n−t−k) #c∗

M (i′, ε) #∗
Mi′ Accept,

that is, it accepts on input an−kb2n−k �∈ L∨. It follows that L=1(M) �= L∨, that
is, L∨ is not accepted by any stateless globally deterministic CD-R(1)-system
working in mode = 1. ��
As all rational trace languages are accepted by stateless locally deterministic CD-
R(1)-systems, it follows that the inclusion in Proposition 3 is proper. The Dyck
language D′

1
∗ (see, e.g., [1]) is not a rational trace language, but it is easily seen

that it is accepted by a stateless strictly deterministic CD-R(1)-system. Thus, we
have the following consequence.

Corollary 3. L=1(stl-det-strict-CD-R(1)) and L=1(stl-det-global-CD-R(1)) are
incomparable to the class of rational trace languages with respect to inclusion.

Next we concentrate on closure properties of L=1(stl-det-global-CD-R(1)).

Proposition 5. (a) The language class L=1(stl-det-global-CD-R(1)) is closed
under complementation.

(b) The language class L=1(stl-det-global-CD-R(1)) is not closed under union,
intersection with regular sets, and alphabetic morphisms.

(c) The language class L=1(stl-det-global-CD-R(1)) is not closed under the oper-
ation of taking the commutative closure.

Let L≥ be the language L≥ = {w ∈ Σ∗
0 | |w|a ≥ |w|b ≥ 0 } on Σ0 = {a, b}. For

this language we have the following technical results.

Lemma 3. (a) L≥ ∈ L=1(stl-det-global-CD-R(1)).
(b) L≥ is not accepted by any stl-det-global-CD-R(1)-system that first completely

erases the given input and that then accepts on the empty word.

Lemma 3 implies in particular that for stl-det-global-CD-R(1)-systems we do not
have the strong normal form that we have for stl-det-local-CD-R(1)-systems (see,
[7]). Based on this technical lemma we can now prove the following non-closure
property.

Corollary 4. The language class L=1(stl-det-global-CD-R(1)) is not closed un-
der product.

Proof. We consider the product Lpr = L≥ ·Lc of the languages L≥ and Lc = {c},
where c �∈ {a, b} is a new letter. While L≥ ∈ L=1(stl-det-global-CD-R(1)) by
Lemma 3 (a), Lc ∈ L=1(stl-det-global-CD-R(1)) is obvious. We claim, however,
that the product Lpr is not accepted by any stl-det-global-CD-R(1)-system.

Assume to the contrary that M = ((Mi, σi)i∈I , {i0}, δ) is a stl-det-global-CD-
R(1)-system such that L=1(M) = Lpr.

Claim. For each word w = uc ∈ Lpr, the accepting computation of M on input
w is of the form (i0, w) = (i0, uc) #c|u|

M (im, c) #c
M (j, ε) #∗

Mj
Accept.
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Proof. As M must verify that the given input w ends with the symbol c, one
of the components of M must read the symbol c in the course of the accepting
computation of M on input w. Assume that Mim is this particular component.
If δim(c) is undefined, then Mim would get stuck, and so the computation of M
on input w would not accept. Thus, δim(c) is defined.

If δim(c) = MVR, then after executing the corresponding step, Mim would
read the $-symbol. As the computation considered is accepting, this means that
Mim must accept at this point. But then M would also accept the word wc =
ucc �∈ Lpr, as the computation of M on input wc would be exactly the same as
the one on input w. This, however, contradicts our assumption above. Hence, it
follows that δim(c) = ε.

Let j = δ(im, c) be the index of the corresponding successor component. Then
the accepting computation of M on input w has the following form:

(i0, w) = (i0, uc) #r
M (im, vc) #c

M (j, v) #∗
M Accept.

Thus, it remains to show that v = ε, that is, r = |u| must hold. Assume to the
contrary that v �= ε. Then δim(x) = MVR for all letters x ∈ {a, b} satisfying
|v|x ≥ 1. Let v = v′x, where x ∈ {a, b}, and let z = u′cx be the word that is
obtained from w = uc by moving the last occurrence of the letter x to the right
end of the word. Then the computation of M on input z looks as follows:

(i0, z) = (i0, u′cx) #r
M (im, v′cx) #c

M (j, v′x) = (j, v) #∗
M Accept.

This, however, contradicts our assumption above, as z = u′cx �∈ Lpr. Hence, it
follows that v = ε, which proves the above claim. ��
Note that, for each component Mi that can only encounter an occurrence of
the symbol c in a non-accepting computation, we can simply take δi(c) to be
undefined.

Now we modify the system M to obtain a stl-det-global-CD-R(1)-system M′

as follows. For each index i ∈ I, if δi(c) is defined, that is, if δi(c) = ε according to
our observations above, then we remove this transition and take δi($) = Accept.
Then, for each word u ∈ L≥, the computation of M′ on input u will parallel
the computation of M on input uc, and thus, we see from the claim above that
it will first erase u completely and then accept on reaching the empty word.
Now Lemma 3 (b) implies that L≥ � L=1(M′), that is, there exists a word
u ∈ {a, b}∗ � L≥ such that M′ accepts on input u. But then M will accept on
input uc �∈ Lpr, which contradicts our assumption above. Hence, it follows that
Lpr is not accepted by any stl-det-global-CD-R(1)-system. ��
Consider the language LR

pr = { cw | w ∈ {a, b}∗, |w|a ≥ |w|b ≥ 0 }. From
Lemma 3 (a) we have a stl-det-global-CD-R(1)-system M = ((Mi, σi)i∈I , {0}, δ)
for L≥. Let M′ be obtained from M by introducing a new initial component
Mini that is defined by the transition function δini(c) = MVR, δini(c) = ε, and
the successor set σini = {0}, and by extending the successor function δ by taking
δ(ini, c) = 0. Then it is easily seen that L=1(M′) = LR

pr holds. Thus, together
with the fact that the language Lpr is not accepted by any stl-det-global-CD-R(1)-
system this yields the following additional non-closure result.



Globally Deterministic CD-Systems of Stateless R(1)-Automata 399

Corollary 5. The language class L=1(stl-det-global-CD-R(1)) is not closed un-
der reversal.

Finally we claim that L=1(stl-det-global-CD-R(1)) is not closed under Kleene star.
To derive this result we introduce the language Lpra = Lpr · {a}∗, for which the
following results can be shown.

Lemma 4

(a) Lpra ∈ L=1(stl-det-global-CD-R(1)).
(b) L∗ = (Lpra)∗ �∈ L=1(stl-det-global-CD-R(1)).

This lemma yields the following non-closure result.

Corollary 6. The language class L=1(stl-det-global-CD-R(1)) is not closed un-
der Kleene star.

The table below summarizes the closure and non-closure properties of the lan-
guage classes that are accepted by the various types of stateless CD-R(1)-systems,
where ∪ denotes union, ∩REG denotes intersection with a regular language, c de-
notes complementation, · denotes product, ∗ denotes Kleene star, h denotes ε-free
morphisms, h−1 denotes inverse morphisms, com denotes commutative closure,
and R denotes reversal:

Types of CD-Systems Operations

∪ ∩REG
c · ∗ h h−1 com R

stl-det-local-CD-R(1) + − − + + − ? + ?

stl-det-global-CD-R(1) − − + − − − ? − −
stl-det-strict-CD-R(1) − − + − − − − − −

Here “+” denotes the fact that the corresponding class is closed under the given
operation, “−” denotes the fact that it is not closed, and “?” indicates that the
status of this property is still open.

4 Decision Problems

As stl-det-global-CD-R(1)-systems are a special type of stl-det-local-CD-R(1)-sys-
tems, and as the language class L=1(stl-det-global-CD-R(1)) is closed under com-
plementation, we obtain the following decidability results from [7].

Corollary 7. The membership problem, the emptiness problem, the universe
problem, and the finiteness problem are effectively decidable for stl-det-global-
CD-R(1)-systems.

The universe problem is undecidable for stl-det-local-CD-R(1)-systems, and the
regularity, inclusion and equivalence problems are shown to be undecidable for
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stl-det-local-CD-R(1)-systems by a reduction from the universe problem [7]. Ob-
viously, this proof does not carry over to stl-det-global-CD-R(1)-systems. Accord-
ingly we have to find a new approach for establishing corresponding undecidabil-
ity results for these systems. Below we begin this investigation by studying the
following variant of the intersection emptiness problem:

Intersection With Regular Language Emptiness Problem:
Instance : A stl-det-global-CD-R(1)-system M and a finite-state acceptor A.
Question : Does L=1(M) ∩ L(A) = ∅ hold?

Theorem 1. The Intersection With Regular Language Emptiness Problem is
undecidable for stl-det-global-CD-R(1)-systems.

This result can be shown by a reduction from the Post Correspondence Prob-
lem (PCP). Based on this undecidability result we can prove that the following
variant of the inclusion problem is undecidable.

Corollary 8. The following inclusion problem is undecidable in general:
Instance : A stl-det-global-CD-R(1)-system M and a finite-state acceptor A.
Question : Does L=1(M) ⊆ L(A) hold?

Proof. Let M be a stl-det-global-CD-R(1)-system on Σ, and let A be a finite-
state acceptor on Σ. From A we can construct a finite-state acceptor Ac for the
language Σ∗ � L(A). Then L=1(M) ∩ L(A) = ∅ iff L=1(M) ⊆ L(Ac). Thus, it
follows from Theorem 1 that the above inclusion problem is undecidable. ��
As each regular language is accepted by some stl-det-global-CD-R(1)-system,
Corollary 8 yields the following undecidablility result.

Corollary 9. The inclusion problem is undecidable for stl-det-global-CD-R(1)-
systems.

5 Concluding Remarks

We have studied two deterministic variants of the stl-det-local-CD-R(1)-systems:
the stl-det-strict-CD-R(1)-systems and the stl-det-global-CD-R(1)-systems. The
former type of system is quite weak, as it does not even accept all finite languages,
while the latter type accepts all regular languages; however, it does not accept
all rational trace languages. Thus, the three types of CD-systems of stateless
deterministic R(1)-automata give a proper hierarchy of three levels.

We have investigated the closure properties of the language classes defined by
the two types of CD-systems introduced in this paper. As it turned out, both
classes are closed under complementation, but apart from that we could only
establish non-closure properties. However, it remains open whether the language
class L=1(stl-det-global-CD-R(1)) is closed under inverse morphisms.

Finally we have also considered decision problems for stl-det-global-CD-R(1)-
systems. In contrast to the situation for stl-det-local-CD-R(1)-systems, the uni-
verse problem is decidable for stl-det-global-CD-R(1)-systems. On the other hand,



Globally Deterministic CD-Systems of Stateless R(1)-Automata 401

we could show that the inclusion problem is undecidable, but it remains open
whether the regularity problem or the equivalence problem are decidable for
these systems.
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wandten Mathematik und Mechanik, vol. 38, Teubner Studienbücher, Teubner
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Bit-coded Regular Expression Parsing�

Lasse Nielsen and Fritz Henglein

DIKU, University of Copenhagen, Denmark

Abstract. Regular expression parsing is the problem of producing a
parse tree of a string for a given regular expression. We show that a
compact bit representation of a parse tree can be produced efficiently,
in time linear in the product of input string size and regular expression
size, by simplifying the DFA-based parsing algorithm due to Dubé and
Feeley to emit the bits of the bit representation without explicitly ma-
terializing the parse tree itself. We furthermore show that Frisch and
Cardelli’s greedy regular expression parsing algorithm can be straight-
forwardly modified to produce bit codings directly. We implement both
solutions as well as a backtracking parser and perform benchmark ex-
periments to gauge their practical performance. We observe that our
DFA-based solution can be significantly more time and space efficient
than the Frisch-Cardelli algorithm due to its sharing of DFA-nodes, but
that the latter may still perform better on regular expressions that are
“more deterministic” from the right than the left. (Backtracking is, un-
surprisingly, quite hopeless.)

1 Introduction

A regular expression over finite alphabet Σ, as introduced by Kleene [12], is a
formal expression generated by the regular tree grammar

E,F ::= 0 | 1 | a | E + F | E × F | E∗

where a ∈ Σ, and ∗, × and + have decreasing precedence. (In concrete syntax,
we may omit × and write | instead of +.) Informally, we talk about a regular
expression matching a string, but what exactly does that mean?

In classical theoretical computer science, regular expression matching is the
problem of deciding whether a string belongs to the regular language denoted by
a regular expression; that is, it is membership testing [1]. In this sense, abdabc
matches ((ab)(c|d)|(abc))*, but abdabb does not. This is captured in the
language interpretation for regular expressions in Figure 1.

In programming, however, membership testing is rarely good enough: We do not
only want a yes/no answer, we also want to obtain proper matches of substrings
against the subexpressions of a regular expression so as to extract parts of the
input for further processing. In a Perl Compatible Regular Expression (PCRE)1

� This work has been partially supported by the Danish Strategic Research Council
under Project “TrustCare”. The order of authors is insignificant.

1 See http://www.pcre.org

A.-H. Dediu, S. Inenaga, and C. Mart́ın-Vide (Eds.): LATA 2011, LNCS 6638, pp. 402–413, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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matcher, for example, matching abdabc against E = ((ab)(c|d)|(abc))* yields
a substring match for each of the 4 parenthesized subexpressions (“groups”): They
match abc, ab, c, and ε (the empty string), respectively. If we use a POSIX matcher
[10] instead, we get abc, ε, ε, abc, however. The reason for the difference is that
((ab)(c|d)|(abc))* is ambiguous : the string abc can match the left or the right
alternative of (ab)(c|d)|(abc), and returning substring matches makes this dif-
ference observable.

A limitation of Perl- and POSIX-style matching is that we only get at most one
match for each group in a regular expression. This is why only abc is returned, the
last substring of abdabc matching the group ((ab)(c|d)|(abc)) in the regular
expression above. Intuitively, we might expect to get the list of all matches
[abd, abc]. This is possible with regular expression types [9]: Each group in a
regular expression can be named by a variable, and the output may contain
multiple matches for the same variable. For a variable under two Kleene stars,
however, we cannot discern the matches belonging to different level-1 Kleene-star
groups.

An even more refined notion of matching is thus regular expression parsing:
Returning a parse tree of the input string under the regular expression read as
a grammar. Automata-theoretic techniques, which exploit equivalence of regular
expressions under their language interpretation, typically change the grammat-
ical structure of matched strings and are thus not directly applicable. Only
recently have linear-time2 regular expression parsing algorithms been devised
[6,7].

In this paper we show how to generate a compact bit-coded representation
of a parse tree highly efficiently, without explicitly constructing the parse tree
first. A bit coding can be thought of as an oracle directing the expansion of
a grammar—here we only consider regular expressions—to a particular string.
Bit codings are interesting in their own right since they are typically not only
smaller than the parse tree, but also smaller than the string being parsed and
can be combined with other techniques for improved text compression [4,3].

In Section 2 we recall that parse trees can be identified with the elements of
regular expressions interpreted as types, and in Section 3 we describe bit codings
and conversions to and from parse trees. Section 4 presents our algorithms for
generating bit coded parse trees. These are empirically evaluated in Section 5.
Section 6 summarizes our conclusions.

2 Regular Expressions as Types

Parse trees for regular expressions can be formalized as ad-hoc data structures
[6,2], representing exactly how the string can be expressed in the regular ex-
pression. This means that both membership testing, substring groups and reg-
ular expression types can be found by filtering away the extra information in
the parse tree. Interestingly, parse trees also arise completely naturally by in-
terpreting regular expressions as types [7,8]; see Figure 2. For example, the
2 This is the data complexity; that is for a fixed regular expression, whose size is

considered constant.
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L[[0]] = ∅ L[[1]] = {ε} L[[a]] = {a}
L[[E + F ]] = L[[E]] ∪ L[[F ]] L[[E × F ]] = L[[E]] L[[F ]] L[[E∗]] = {⋃i≥0 L[[E]]i

where ε is the empty string, S T = {s t | s ∈ S ∧ t ∈ T}, and S0 = {ε}, Si+1 = S Si.

Fig. 1. The language interpreation of regular expressions

T [[0]] = ∅ T [[1]] = {()} T [[a]] = {a}
T [[E + F ]] = T [[E]] + T [[F ]] T [[E × F ]] = T [[E]] × T [[F ]] T [[E∗]] = T [[E]] list

where () is distinct from all alphabet symbols, S + T = {inl x | x ∈ S}∪{inr y | y ∈ T}
is the disjoint union, S × T = {(x, y) | x ∈ S, y ∈ T} the Cartesian product of S and

T , and S list = {[v1, . . . , vn] | vi ∈ S} the finite lists over S.

Fig. 2. The type interpreation of regular expressions

type interpretation of regular expression ((ab)(c|d)|(abc))∗ is (({a} × {b}) ×
({c} + {d}) + {a} × ({b} × {c})) list. We call elements of a type values ; e.g.,
p1 = [inl ((a, b), inr d), inr (a, (b, c))] and p2 = [inl ((a, b), inr d), inl ((a, b), inl c)]
are different elements of (({a} × {b})× ({c} + {d}) + {a} × ({b} × {c})) list and
thus represent different parse trees for regular expression ((ab)(c|d)|(abc))∗.

We can flatten (unparse) any value to a string by removing the tree structure.

Definition 2.1. The flattening function flat(.) from values to strings is defined
as follows:

flat(()) = ε flat(a) = a
flat(inl v) = flat(v) flat(inrw) = flat(w)

flat((v, w)) = flat(v) flat(w) flat(fold v) = flat(v)

Flattening the type interpretation of a regular expression yields its language
interpretation:

Theorem 2.1. L[[E]] = {flat(v) | v ∈ T [[E]]}
A regular expression is ambiguous if and only if its type interpretation contains
two distinct values that flatten to the same string. With p1, p2 as above, since
flat(p1) = flat(p2) = abdabc, this shows that ((ab)(c|d)|(abc))∗ is grammatically
ambiguous.

3 Bit-coded Parse Trees

The description of bit coding in this section is an adaptation from Henglein and
Nielsen [8]. Bit coding for more general types than the type interpretation of
regular expressions is well-known [11]. It has been applied to certain context-
free grammars [3], but its use in this paper for efficient regular expression parsing
seems to be new.
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code(() : 1) = ε
code(a : a) = ε
code(inl v : E + F ) = 0 code(v : E)
code(inr w : E + F ) = 1 code(w : F )
code((v, w) : E × F ) = code(v : E) code(w : F )
code([v1, . . . , vn] : E∗) = 0 code(v1 : E) . . . 0 code(vn : E) 1

Fig. 3. Type-directed encoding function from syntax trees to bit sequences

decode′(d : 1) = ((), d)
decode′(d : a) = (a, d)
decode′(0d : E + F ) = let (v, d′) = decode′(d : E)

in (inl v, d′)
decode′(1d : E + F ) = let (w, d′) = decode′(d : F )

in (inr w, d′)
decode′(d : E × F ) = let (v, d′) = decode′(d : E)

(w, d′′) = decode′(d′ : F )
in ((v,w), d′′)

decode′(0d : E∗) = let (v1, d
′) = decode′(d : E)

(�v, d′′) = decode′(d′ : E∗)
in (v1 :: �v, d′)

decode′(1d : E∗) = ([], d)
decode(d : E) = = let (w, d′) = decode′(d : E)

in if d′ = ε thenw else error

Fig. 4. Type-directed decoding function from bit sequences to syntax trees

A bit-coded parse tree is a bit sequence representing a parse tree for a given
regular expression. Intuitively, bit coding factors a parse tree p into its static
part, the regular expression E it is a member of, and its dynamic part, a bit
sequence that uniquely identifies p as a particular element of E. The basic idea
is that the bit sequence serves as an oracle for the alternatives that must be
taken to expand a regular expression into a particular string.

Consider, for example, the values p1 = [inl ((a, b), inr d), inr (a, (b, c))] and p2 =
[inl ((a, b), inr d), inl ((a, b), inl c)] from Section 2, which represent distinct parse
trees of abdabc for regular expression ((ab)(c|d)|(abc))*. The bit coding arises
from throwing away everything in the parse tree except the list and the tag
constructors, which yields [inl inr , inr ]. We code inl by 0 and inr by 1, which
gives us [01, 1]. Finally we code the list itself: Each element is prefixed by 0, and
the list is terminated by 1. The resulting bit coding is b1 = 001 01 1 (whitespace
added for readability). Similarly, the bit coding of p2 is b2 = 001 000 1. More
compact codings for lists are possible by generalizing regular expressions to tail-
recursive μ-terms [8]. We stick to the given coding of lists here, however, since
the focus of this paper is on constructing the bit codings, not their effect on text
compression.
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Figures 3 and 4 define regular-expression directed linear-time coding and de-
coding functions from parse trees to their bit codings and back:

Theorem 3.1. If v ∈ T [[E]] then decode(code(v : E) : E) = v

Proof: By structural induction on v.

Note that bit codings are only meaningful in the context of a regular expression,
because the same bit sequence may represent different strings for different regular
expressions, and may be invalid for other regular expressions.

Bit codings are not only more compact than parse trees. As we shall see, they
are also more suitable for automaton output, as it is not necessary to generate
list structure, pairing or even the alphabet symbols occurring in a parse tree.

4 Parsing Algorithms

We present two bit coding parsing algorithms in this section. The first can be
understood as a simplification of Dubé and Feeley’s [6] DFA-generation algo-
rithm, producing bit codings instead of explicit parse tree. We also show that
Frisch and Cardelli’s [7] algorithm can be straightforwardly modified to produce
bit codings.

4.1 Dubé/Feeley-Style Parsing
Our algorithm DFA performs the following steps: Given regular expression E
and input string s,

1. generate an enhanced Thompson-style NFA with output actions (finite state
transducer);

2. use the subset construction to produce an enhanced DFA with additional
information on edges to capture the output actions from the NFA;

3. use the enhanced DFA as a regular DFA on s;
– if it rejects terminate with error (no parse tree);
– if it accepts, return the path in the DFA induced by the input string;

4. combine, in reverse order of the path, the output information on each edge
traversed to construct the bit coding of a parse tree.

The steps are described in more detail below.

Enhanced NFA generation. The left column of Figure 5 shows Thompson-
style NFA generation. We enhance it by adding single bit outputs to the outedges
of those states that have two outgoing ε-transitions, shown in the right column.
The output bits can be thought of indicators for an agent traversing the NFA: 0
means turn left, 1 means turn right. The other edges carry no output bit since
their traversal is forced.

When traversing a path p in an enhanced NFA, the sequence of symbols read is
denoted by read(p), and the sequence of symbols written is denoted by write(p).

Lemma 4.1 (Soundness and completeness of enhanced NFAs). Let NE

be the extended NFA for regular expression E according to Figure 5 (right). Then
for each s ∈ Σ∗ we have {v|v ∈ T [[E]] ∧ flat(v) = s} = {decode(write(p) : E) | p
is a path in NE from initial state to final state such that read(p) = s}.
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Proof: By structural induction on E.

In other words, an extended NFA generates exactly the bit codings of the parse
trees of the strings it accepts. Observe furthermore that no two distinct paths
from initial to final state have the same output bits. This means that a bit
coding uniquely determines a particular path from initial to final state, and
vice versa. Dubé and Feeley [6] also instrument Thompson-style NFAs, but with
more output symbols on more edges so as to be able to generate an external
representation of a parse tree. Figure 6 shows their enhanced NFA for E =
a× (b + c)� × a on the left. Our corresponding enhanced NFA is shown on the
right.

Enhanced subset construction. During subset construction additional infor-
mation is computed:

1. A map init from the NFA states q in the initial DFA state to an output
init(q). The output init(q) must be write(p) for some path p from the initial
NFA state to q where read(p) = ε. These paths are traversed when finding
the ε-closure of the initial NFA state, which is how the initial DFA state is
constructed in the subset construction, and is thus easy to generate.

2. A map outpute for each edge e in the DFA, that maps each NFA state q2 in
the destination DFA state to a pair (q1, o) of an NFA state q1 in the source
DFA state, and an output o. The output o must be write(p) for some path
p from q1 to q2 where read(p) is the input of the DFA edge e. These paths
are traversed, when the destination state of the edge is computed, and are
thus simple to generate.

The DFA for the NFA from Fig. 6 (right) is shown in Fig. 7, and the result of
adding the information described above is shown in Fig. 8.

The additional information captures basically the same information as in Dubé
and Feeley’s DFA construction, but it stores the additional information directly
in the DFA edges, where Dubé and Feeley use an external 3-dimensional table.
Most importantly, the additional information we need to store is reduced, since
we only generate bit codings, not explicit parse trees.

Bit code construction. After accepting s = a1 . . . an we have a path p =
[A0, A1, · · · , An] in the extended DFA, where A0, . . . , An are DFA states, each
consisting of a set of NFA states, with A0 containing the initial NFA state qi

and An the final NFA state qf .
We construct the bit code of a parse tree for s by calling write(p, qf ) where

write traverses p from right to left as follows:

write([A0], q) = initq

write([A0, A1, . . . , Ak−1, Ak], q) = write([A0, A1, . . . , Ak−1], q′) · b′
where (q′, b′) = outputAk−1→Ak

(q)

Lemma 4.2 (Bit coding preservation). Let DE be the extended DFA gener-
ated from the extended NFA NE for E. If p is a path from the initial state in D
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to a state containing the NFA state q and if write(p, q) = b then there is a path
p′ in NE from the initial state in NE to the state q such that read(p) = read(p′)
and write(p, q) = write(p′).

Proof: Induction on the number of steps in p.

We can now conclude that the bit sequence found represents a parse tree for the
input string.

Theorem 4.1 (Correctness of DFA algorithm). If DE is an extended DFA
generated from an extended NFA NE for regular expression E, and p is a path
from the initial state to a final state in DE, and qf is the final state of NE then
read(p) = flat(decode(write(p, qf ) : E)).

Proof: This follows from first applying Lemma 4.2 and then Lemma 4.1.

Once the DFA has been generated, this method results in very efficient regular
expression parsing. The DFA traversal takes time Θ(|s|), and the bit code gen-
eration takes time Θ(|s|+ |b|), where |b| is the length of the output bit sequence.
This means the total run time complexity of parsing is Θ(|s| + |b|) which is
(sequentially) optimal, since the entire string must be read, and the entire bit
sequence must be written.

Example. Consider the extended DFA for DFA steps
Step q Symbol new q b
3 → 2 9 a 8 ””
4 → 3 8 b 3 ”1”
3 → 4 3 c 4 ”00”
1 → 3 4 b 3 ”01”
0 → 1 3 a 0 ”00”

the regular expression a(b + c)�a in Fig. 8.
If we use it to accept the string abcba, then
we get the path p = 0 → 1 → 3 → 4 →
3 → 2. Tracing the path backwards, keeping
track of the output bit-sequences b and NFA
states q we get the steps in the table on the
right. Since init0 = ”” we get the bit code
b = ”” · ”00” · ”01” · ”00” · ”1” · ”” = ”0001001”. We can verify that the DFA
parsing algorithm has given us a correct bit coding since flat(decode(”0001001” :
a(b + c)�a)) = abcba.

4.2 Frisch/Cardelli-Style Parsing

Instead of building a Thompson-style NFA from the regular expressions, Frisch
and Cardelli [7] build an NFA with one node for each position in the regular ex-
pression, with the final state as the only additional node. The regular expression
positions are identified by the path used to reach the position. The positions
λend(E) in a regular expression E are defined as lists of choices (the choices
are fst and snd for sequence, lft and rgt for sum and star for �). E.l is used to
denote the subexpression of E found by following the path l. The transitions
δ(E) in the NFA of a regular expression E are defined using a successor relation
succ on the paths.

The NFA is used to generate a table Q(l, i), which maps each position l ∈
λend(E) and input string position i to true, if l accepts the ith suffix of s and
false otherwise.
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The table Q can be constructed by starting with Q(l, i) = false for all
l ∈ λend(E) and i = 1 . . . |s|, and calling SetPrefix(Q, end, |s|), which updates
Q as defined below.

SetPrefix(Q, l, i) = if Q(l, i) then return;
Q(l, i) := true;
for (l′, ε, l) ∈ δ(E) do SetPrefix(Q, l′, i);
if i > 0 then for (l′, s[i], l) ∈ δ(E) do SetPrefix(Q, l′, i − 1);

The run time cost and memory consumption of computing Q is asymptotically
bounded by the size of Q, which is in Θ(|s| · |E|).

After Q is built, it is easy to check whether s matches the regular expression E,
simply by looking up Q([], 0). We modify Frisch and Cardelli’s build function to
construct a bit coding representing the greedy leftmost (or first and greedy [14])
parse tree for s, if s matches E, as follows (notice that l :: x means appending x
after l):

build(l, i) = case E.l of
a: return (ε, i + 1)
1: return (ε, i)
E1 × E2: let (b1, j) = build(l :: fst, i)

in let (b2, k) = build(l :: snd, j) in return (b1b2, k);
E1 + E2: if Q(l :: lft, i)

then let (b1, j) = build(l :: fst, i) in retuen (0b1, j)
else let (b2, j) = build(l :: snd, i) in return (1b2, j);

E�
1 : if Q(l :: star, i)

then let (b1, j) = build(l :: star, i)
in let (b2, k) = build(l, j) in return (0b1b2, k)

else return (1, j);

The run time cost and memory consumption of build([], 0) is asymptotically
bounded by the number of cells in Q, which is in Θ(|E| · |s|) and which is
therefore the time complexity and memory consumption of the entire algorithm.
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Fig. 5. NFA generation schema



410 L. Nielsen and F. Henglein

0 1

2
3

4

5

6
7

8 9
a/a ε/[ ]

ε/[ b/b

c/c

ε/,

ε/]

a/a 0 1

2
3

4

5

6
7

8 9
a/ε ε/1

ε/0

ε/0

ε/1

b/ε

c/ε

ε/ε

ε/ε

ε/ε

a/ε

Fig. 6. Extended NFAs for a(b + c)�a

0: 0 1: 1,2,3,4,8 2: 〈9〉

3: 1,2,3,4,5,7,8

4: 1,2,3,4,6,7,8

a

a

b

c

a

b

c ab

c

Fig. 7. DFA for a(b + c)�a

0 : = 0:  0

1 : = 0 +

2 : = 0 + 0

3 : = 0 + 0 0

4 : = 0 + 0 1

8 : = 0 + 1

a
1:  1 ,2 ,3 ,4 ,8

9 : = 8 +

a

1 : = 3 +

2 : = 3 + 0

3 : = 3 + 0 0

4 : = 3 + 0 1

5 : = 3 +

7 : = 3 +

8 : = 3 + 1

b

1 : = 4 +

2 : = 4 + 0

3 : = 4 + 0 0

4 : = 4 + 0 1

6 : = 4 +

7 : = 4 +

8 : = 4 + 1

c

2 :  < 9 >

3:  1 ,2 ,3 ,4 ,5 ,7 ,8

9 : = 8 +
a

1 : = 3 +

2 : = 3 + 0

3 : = 3 + 0 0

4 : = 3 + 0 1

5 : = 3 +

7 : = 3 +

8 : = 3 + 1

b

1 : = 4 +

2 : = 4 + 0

3 : = 4 + 0 0

4 : = 4 + 0 1

6 : = 4 +

7 : = 4 +

8 : = 4 + 1

c

4:  1 ,2 ,3 ,4 ,6 ,7 ,8

9 : = 8 +

a

1 : = 3 +

2 : = 3 + 0

3 : = 3 + 0 0

4 : = 3 + 0 1

5 : = 3 +

7 : = 3 +

8 : = 3 + 1

b

1 : = 4 +

2 : = 4 + 0

3 : = 4 + 0 0

4 : = 4 + 0 1

6 : = 4 +

7 : = 4 +

8 : = 4 + 1

c

Fig. 8. Extended DFA for a(b + c)�a

5 Empirical Evaluation

We have implemented the algorithms described in Section 4 as a C++ library [13]
and performed a series of performance tests on a PC with a 2.50GHz Intel Core2
Duo CPU and 4Gb of memory, running Ubuntu 10.4. We test four different
parsing methods. NFA based backtracking (backtracking), implemented by a
depth-first search for an accepting path in our enhanced Thompson-style NFA.
FRCA is the algorithm based on Frisch and Cardelli from Section 4.2. DFA
is the algorithm based on Dubé and Feeley from Section 4.1. DFASIM is the
same algorithm as DFA, but where the nodes and edges of the DFA are not
precomputed, but generated dynamically by need.

5.1 Backtracking Worst Case: (an : (a + 1)nan)

The regular expression is (a+ 1)nan, where we use the notation En to represent
E × · · · × E (n copies). This is a well-known example [5], which captures the
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problematic cases for backtracking.3 The results of matching an (denoting n as)
to (a + 1)n × an are in the two leftmost graphs below.
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When parsing a string with n as, the backtracking algorithm traverses 2n differ-
ent paths before eventually finding the match. The cost of generating the DFA
is Θ(n2) (2 · n nodes containing n NFA-nodes on average). Since only half of the
DFA-nodes are used, DFASIM is faster than generating the whole DFA, but the
run time complexity is still Θ(n2). The time used for FRCA is Θ(n), since there is
exactly one suffix that can be parsed from each position in the regular expression.
The reason FRCA performs much better than the other algorithms in this exam-
ple is that the example was designed to be hard to parse from the left to right,
and FRCA processes the string in its first phase from right to left. If we change
the regular expression to an(1+a)n, it becomes hard to process from right to left,
as shown in the rightmost graph above. It is generally advantageous to process a
string in the “more deterministic” direction of the regular expression.

5.2 DFA Worst Case (am+1 : (a + b)�a(a + b)n)

The following is a worst-case scenario for the DFA based algorithm, and a best-
case scenario for the FRCA and backtracking algorithms. The regular expression
is (a + b)�a(a + b)n, and the string is am+1.

The two leftmost graphs below show the execution time when n = m, and
the right graph shows the execution time when n = 13. When n is fixed to 13,
the runtime of both FRCA, DFASIM and DFA are linear, but even though DFA
has a large initialization time for building the DFA, FRCA uses more time for
large m, because it uses more time per character.
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The DFA will haveO(2n) DFA-nodes. This causes the DFA algorithm to have a run
time complexity of Θ(m · 2n). This exponential explosion is avoided by DFASIM,
which only builds as many states as needed for the particular input string.

3 If a fixed regular expression is preferred, then (a + a)� × b or (a� × a)� × b provokes
the same behavior.
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5.3 Practical Examples

We have tested 9 of the 10 examples of “real world” regular expressions from
Veanes et al. [15] to compare the performance of each algorithm. (Their example
nr. 3 is uninteresting for performance testing since it only accepts strings of a
bounded length).

Examples 1,4,5,7,8,9,10 are different ways of expressing the language of email
addresses, while Example 2 defines the language of dollar-amounts, and Example
6 defines the language of floating point values.
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The DFA and Precompiled DFA (a staged version of DFA) graphs are missing
in many of the examples. This is because the DFA generation runs out of memory.
We may conclude that there are many cases where it is not feasible to generate the
full DFA. The two best algorithms for these tests are FRCA and DFASIM, with
DFASIM being faster by a large factor (at least 10) in all cases. Apart from the di-
rection of processing NFA-nodes in their respective first passes, the key difference
between DFASIM and FRCA is that DFASIM memoizes and reuses DFA-states at
multiple positions in the input string, whereas FRCA essentially produces what
amounts to a separate DFA-state for each position in the input string. In compar-
ison to FRCA, the DFA-state memoization not only saves space, but also compu-
tation time whenever the same transition is traversed more than once.

6 Conclusion

We have designed and implemented a number of regular expression parsing al-
gorithms, which produce bit coded representations of parse trees without ever
materializing the parse trees during parsing. Producing bit codings is advan-
tageous since it carries the dual advantage of yielding a compressed parse tree
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representation and of speeding its construction. Our DFA simulation algorithm
DFASIM, in the style of Dubé and Feeley [6], and FRCA, a modified version of
the greedy algorithm of Frisch and Cardelli [7], have shown the best asymptotic
performance, with DFA simulation beating FRCA on a suite of real world exam-
ples. As for the potential for further improvements, compact NFA-construction,
efficient computation of the sub-NFA induced by an input string (left-to-right
or right-to-left or, preferably, something better), and memoized DFA-state con-
struction appear to be key to obtaining practically improved regular expression
parsing without sacrificing asymptotic scalability.
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Abstract. It is known that converting an n-state nondeterministic nested
word automaton (a.k.a. input-driven automaton; a.k.a. visibly pushdown
automaton) to a corresponding deterministic automaton requires in the

worst case 2Θ(n2) states (R. Alur, P. Madhusudan: Adding nesting struc-

ture to words, DLT’06). We show that the same worst case 2Θ(n2) size blow-
up occurs when converting a nondeterministic nested word automaton to
an unambiguous one, and an unambiguous nested word automaton to a de-
terministic one. In addition, the methods developed in this paper are used
to demonstrate that the state complexity of complementation for nonde-

terministic nested word automata is 2Θ(n2), and that the state complexity

of homomorphism for deterministic nested word automata is 2Θ(n2).

1 Introduction

Nested words provide a natural computational model for applications like
XML document processing, where the data has a dual linear-hierarchical struc-
ture [1,4,5]. Finite automata operating on nested words, called nested word au-
tomata, were introduced by Alur and Madhusudan [3,4]. This model is equivalent
to input-driven pushdown automata [23,7] operating on ordinary strings without
a hierarchical structure, which have recently been actively studied under yet
another name of visibly pushdown automata [2,4,8,26]. Finite tree automata [9]
on unranked (or ranked) trees can be viewed as special cases of nested word au-
tomata and the latter model is equivalent to pushdown forest automata [10,24].
The model of nested word automata has been recently extended to more general
graph automata by Madhusudan and Parlato [22]. In the same way as an input-
driven pushdown automaton can be simulated by a finite automaton operating
on nested words, other types of machines with auxiliary storage can be realized
by finite graph automata working on specialized graphs, and the structure of the
graphs allows one to obtain decidability results for the corresponding auxiliary
storage model [22].

The family of regular nested word languages recognized by finite nested word
automata retains many of the desirable properties of ordinary regular languages.

A.-H. Dediu, S. Inenaga, and C. Mart́ın-Vide (Eds.): LATA 2011, LNCS 6638, pp. 414–426, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In particular, a nondeterministic nested word automaton can be determinized,
however, the state space blow-up is worse than in the case of ordinary finite
automata. A deterministic nested word automaton equivalent to a nondetermin-
istic automaton with O(n) states needs in the worst case 2n2

states [3]. Since
nested word automata are a nontrivial generalization of ordinary finite automata,
questions related to state complexity of conversions between different types of
models are of interest. Recent work on state complexity of finite automata is
presented in survey papers by Holzer and Kutrib [15,16].

Here we consider unambiguous nested word automata, that is, nondetermin-
istic automata where each accepted word has a unique accepting computation.
There has been much work done on unambiguous finite automata (UFA) and on
automata employing different degrees of ambiguity [11,19,20,29,25].

We show that converting an n-state unambiguous nested word automaton to a
deterministic one, or an n-state nondeterministic automaton to an unambiguous
automaton requires in the worst case 2Θ(n2) states, that is, in both cases the
state space explosion is the same as for determinizing a nondeterministic nested
word automaton.

To establish lower bounds on the size of nondeterministic nested word au-
tomata, we use fooling set methods [13,28], that have been originally intro-
duced for proving lower bounds for (ordinary) nondeterministic finite automata
(NFAs) [6,33]. Fooling set methods can be viewed as a special case of communi-
cation complexity arguments [17]. The only known general lower bound method
for UFAs is based on the rank of a fooling set matrix; it was developed by
E.M. Schmidt [32] already in 1978, see Leung [20] for a self-contained presentation.
In this paper, we will extend this method to unambiguous nested word automata.

We consider also complementation of nondeterministic nested word automata.
It is known that the complement of an n-state NFA needs in the worst case
2n states [14,18]. In other recent work, the complementation of two-way finite
automata was studied by Geffert et al. [12], and complementation of unary UFAs
was investigated by Okhotin [25].

Operational state complexity of deterministic and nondeterministic nested
word automata has been considered in [13,27,28,31]. In particular, Han and
Salomaa [13] gave a lower bound of

√
n! for the complement of nondetermin-

istic nested word automata, leaving the precise state complexity of complemen-
tation open. As a modification of our lower bound construction for converting a
nondeterministic nested word automaton into an unambiguous automaton, we
show in Section 6 that in order to complement a nondeterministic nested word
automaton, in the worst case, we have to essentially determinize the automaton
and the state complexity of complementation of nondeterministic nested word au-
tomata is 2Θ(n2). In the last Section 7, we give a tight state complexity bound for
homomorphic images of deterministic nested word automata. The lower bound
construction again relies on a modification of the nested word languages used for
the lower bound for the conversion from a nondeterministic to an unambiguous
nested word automaton.

This extended abstract omits many of the proofs.
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2 Preliminaries

We assume that the reader is familiar with with the basics of formal languages
and finite automata, see [30,33,34]. Here we briefly recall some definitions asso-
ciated with automata operating on nested words. More details on nested words
and their applications can be found in the works by Alur and Madhusudan [3,4].

In the following Σ denotes always a finite alphabet. The set of strings over Σ
is Σ∗, and Σ+ is the set of nonempty strings. Let Σ�m with m � 0 denote the
set of all strings over Σ of length at most m. We refer to sequences of symbols
as strings, while sequences of symbols associated with a hierarchical nesting
structure (as defined below) will be called nested words.

For m ∈ N we denote [m] = {1, . . . ,m}. For every binary string w = b�−1 ·
b1b0 ∈ {0, 1}∗, denote its numerical value by (w)2 =

∑�−1
i=0 bi2i.

The tagged alphabet corresponding to an alphabet Σ is Σ̂ = Σ ∪ 〈Σ ∪ Σ〉,
where 〈Σ = {〈a | a ∈ Σ} is the set of call symbols and Σ〉 = {a〉 | a ∈ Σ} is
the set of return symbols. Elements of Σ are called internal symbols. A tagged
string over Σ is a sequence of symbols of Σ̂, w = a1a2 · · · am, with ai ∈ Σ̂ for
i = 1, 2, ...,m. We define recursively a hierarchical matching relation in a tagged
string. For w as above, a call symbol ai ∈ 〈Σ matches a return symbol aj ∈ Σ〉,
i < j, if in the subsequence ai+1ai+2 · · · aj−1 every call symbol (respectively,
return symbol) has a matching return symbol (respectively, call symbol). Symbol
occurrences ai ∈ 〈Σ that do not have a matching return, 1 � i � m, are pending
calls , and ai ∈ Σ〉 that does not have a matching call is a pending return. The
above conditions define a unique matching relation between the call symbol
occurrences and the return symbol occurrences in any tagged string.

By a nested word we mean a tagged string that is associated with the usual
linear ordering of symbols and the hierarchical matching relation between oc-
currences of call and return symbols. The underlying string of a nested word is
the corresponding tagged string without the hierarchical matching relation, that
is, the underlying string is an ordinary string over the alphabet Σ̂. When there
should be no confusion, we sometimes refer to a nested word simply as a “word”,
for short. The set of nested words over Σ is denoted NW(Σ). A nested word
language is any subset of NW(Σ).

A nested word is well-matched if every call symbol has a matching return
and vice versa. An example of a nested word is ab〉a〈caa〈dc〉ad〉ab〉a〈b. Here all
occurrences of a are linear, the call-symbol 〈c (respectively, 〈d) matches return
symbol d〉 (respectively, c〉), both occurrences of b〉 are pending returns and 〈b
is a pending call.

Language operations are extended in the natural way to sets of nested words.
Let h : Σ̂ → NW(Σ) be a mapping such that for each b ∈ Σ, h(b) is well-nested
and for each b ∈ 〈Σ (respectively, b ∈ Σ〉), h(b) contains exactly one pending call
and no pending returns (respectively, contains exactly one pending return and
no pending calls). The mapping h determines a homomorphism h : NW(Σ) →
NW(Σ) by setting h(ε) = ε, and for b ∈ Σ̂, w ∈ NW(Σ) we define h(bw) as
the unique nested word whose underlying string is h(b)h(w). When there is no
confusion we use h in place of h. We say that the homomorphism h is an internal
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relabeling if h is identity on 〈Σ and Σ〉, and maps internal symbols of Σ into Σ
(not necessarily injectively).

The notion of “homomorphism that respects nesting” has been considered
in [4]. These mappings are, in general, multiple-valued substitutions and require
that in words of h(〈a) (respectively, h(a〉)) the unmatched call (respectively,
unmatched return) has to occur as the first (respectively, the last) symbol. A
one-valued homomorphism that respects nesting is a special case of the homo-
morphism defined above.

Next we recall the definition of nested word automata from Alur and Mad-
husudan [4]. This definition explicitly distinguishes the linear states that the
computation passes following the linear ordering of the symbols and the hierar-
chical states that are passed from a call symbol to a matching return symbol. An
earlier paper [3] used a simplified definition that does not make the distinction
between different types of states.

Definition 2.1. A nondeterministic nested word automaton, NNWA, is a tuple

A = (Σ,Q,Q0, Qf , P, P0, Pf , δc, δi, δr),

where Σ is the input alphabet, Q is the finite set of linear states, Q0 ⊆ Q is the
set of initial linear states, Qf ⊆ Q is the set of final linear states, P is the finite
set of hierarchical states, Q ∩ P = ∅, P0 ⊆ P is the set of initial hierarchical
states, Pf ⊆ P is the set of final hierarchical states, δc : Q × 〈Σ −→ 2Q×P is
the call transition function, δi : Q×Σ −→ 2Q is the internal transition function,
and δr : Q× P ×Σ〉 −→ 2Q is the return transition function.

Consider a nested word w = u1 · · ·um, ui ∈ Σ̂, i = 1, . . . ,m that has k occur-
rences of call symbols and let A be as in Definition 2.1. A computation of A on
w consists of a sequence of linear states qi ∈ Q, i = 0, . . . ,m, and a sequence of
hierarchical states pj ∈ P , j = 1, . . . , k, corresponding to call symbol occurrences
in w, such that q0 ∈ Q0, and for i ∈ {1, . . . ,m}, the following holds:

(i) If ui ∈ Σ is an internal symbol, then qi ∈ δi(qi−1, ui).
(ii) If ui ∈ 〈Σ is the jth call symbol occurrence, 1 � j � k, then (qi, pj) ∈

δc(qi−1, ui).
(iii) Assume that ui ∈ Σ〉 is a return symbol occurrence. If ui is matched with

the jith call symbol occurrence, 1 � ji � k, then qi ∈ δr(qi−1, pji , ui). If ui

is a pending return, then qi ∈ δr(qi−1, p0, ui) for some p0 ∈ P0.

Intuitively, A begins a nondeterministic computation in some initial linear state
q0 ∈ Q0. It reads an internal symbol using the internal transition function simi-
larly as an ordinary NFA. When encountering a call symbol 〈a in a linear state
q, A sends along the linear edge a state q′ ∈ Q and along the hierarchical edge
a state p′ ∈ P where (q′, p′) ∈ δc(q, 〈a) is nondeterministically chosen. When A
encounters a return-symbol a〉 in a linear state state q and receives state p ∈ P
along the hierarchical edge, the computation continues in some linear state of
δr(q, p, a〉). If a〉 is a pending return, A uses an arbitrary initial hierarchical state
p0 ∈ P0 as the second argument for δr.
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The frontier of a computation of A corresponding to a prefix w1 of the input
w = w1 · w2 is a tuple (p1, . . . , pr, q), where pi ∈ P , i = 1, . . . , r, r � 0, are
the states sent along pending hierarchical edges and q ∈ Q is the linear state
reached at the end of w1. Here pending hierarchical edges refer to call symbols
such that the current prefix w1 does not have a matching return. A matching
return may, or may not, occur in the remainder of the input w2. The frontier of
the computation completely determines how the computation can be continued
on the remainder of the input.

Analogously, for w ∈ NW(Σ) and (p1, . . . , pr, q) ∈ P r × Q, r � 0, pi ∈ P ,
1 � i � r, q ∈ Q, by a computation of A on w with initial frontier (p1, . . . , pr, q)
we mean a computation beginning with linear state q and where for the first
r unmatched returns in w (if w has r unmatched returns) the computation
uses the hierarchical states pr, pr−1, . . . , p1, in this order. If w has more than
r unmatched calls, the computation uses the initial hierarchical state for the
additional unmatched calls.

A computation C of the NNWA is accepting if the frontier at the end of the
computation is of the form (p1, . . . , pr, q), q ∈ Qf , pi ∈ Pf , i = 1, . . . , r, r � 0.
The NNWA A accepts a nested word w if it has an accepting computation on
w. The nested word language recognized by A is denoted L(A). A nested word
language is regular if it is recognized by an NNWA.

We note that there is a natural correspondence between nested word automata
and input-driven pushdown automata [23,7], recently studied under the new
name of visibly pushdown automata [2,4,8]. The computation of an NNWA A
on a nested word w can be viewed as a computation of an input-driven push-
down automaton B on the underlying string of w where the linear states of A
constitute the set of states of B and the hierarchical states are the stack symbols
of B.

As special cases of the automata of Definition 2.1 we obtain the unambiguous
and the deterministic nested word automata. A nested word automaton A is
unambiguous (a UNWA) if it has exactly one accepting computation for any
w ∈ L(A). A nested word automaton A is said to be deterministic (a DNWA)
if Q0 and P0 are singleton sets and δc (respectively, δi, δr) is a partial function
Q × 〈Σ → Q× P (respectively, Q × Σ → Q, Q× P ×Σ〉 → Q). Note that we
allow a DNWA to be incomplete, that is, some values of the transition functions
may be undefined. Any DNWA can be completed in the usual way, that is, the
transition functions can be made to be total functions by adding at most one
linear and one hierarchical state.

An extension of the subset construction allows a deterministic simulation of
an NNWA. An NNWA is said to be linearly accepting if all hierarchical states
are final. A linearly accepting NNWA decides whether or not to accept the input
based only on the linear state it reaches at the end of the computation. An
arbitrary NNWA can be converted to a linearly accepting one by doubling the
number of states. The following result by Alur and Madhusudan [4,3], gives an
upper bound for the size blow-up of determinizing an NNWA. The upper bound
is tight within a multiplicative constant.
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Proposition 2.1 (Alur and Madhusudan [4]). A linearly accepting NNWA
with k linear and h hierarchical states can be simulated by a DNWA with 2k·h

linear and 2h2
hierarchical states. There exist languages of nested words Ln,

n � 1, recognized by an NNWA with O(n) (linear and hierarchical) states such
that any DNWA for Ln needs 2n2

states.

3 Lower Bounds for the Size of Nested Word Automata

We recall some techniques for establishing lower bounds on the size of deter-
ministic and nondeterministic nested word automata [13,28]. These results are
straightforward extensions of the well known fooling set method for NFAs [6,33].
However, note that also in the case of deterministic nested word automata these
methods do not always yield a precise lower bound [31].

A finite set of nested words S is a k-set, k � 1, if each word in S has exactly k
pending calls. A finite set of pairs of nested words F = {(xi, yi) | i = 1, 2, . . . ,m}
is said to be a paired k-set, k � 1, if each word xi has exactly k pending calls.

Definition 3.1. Let L be a nested word language over Σ.

(i) A k-set S ⊆ NW(Σ) is a k-separator set for L if every element of S is a
prefix of some word in L and for any two element set {u, v} ⊆ S, u �= v,
there exists x ∈ NW(Σ) such that ux ∈ L if and only if vx �∈ L.

(ii) A paired k-set F = {(xi, yi) | i = 1, 2, . . . ,m} is said to be a k-fooling set
for L if:
(iia) xiyi ∈ L, i = 1, 2, . . . ,m, and
(iib) for any 1 � i < j � m, xiyj �∈ L or xjyi �∈ L.

Lemma 3.1 ([13,28]). Let A be a (deterministic or nondeterministic) nested
word automaton with a set of linear states Q and a set of hierarchical states P .

(i) If A is a DNWA and S is a k-separator set for L(A) then |P |k · |Q| � |S|.
(ii) If L(A) has a k-fooling set F , then |P |k · |Q| � |F |.
The definition of a fooling set is similar to the so called (extended) fooling sets
of Birget [6]. In the case of DNWAs there is a unique computation on a given
prefix which means that instead of pairs of words it is sufficient to consider
only individual words to be separated. The requirement that all words of a
separator set (or first components of a fooling set) must have the same number
of unmatched calls limits the use of Lemma 3.1.

We need a stronger lower bound condition for UNWAs to establish a trade-
off for converting a nondeterministic automaton to an unambiguous one. The
first lower bound argument for UFAs was given by Schmidt [32, Thm. 3.9] in
his proof of a 2Ω(

√
n) lower bound on the NFA–UFA tradeoff. We recall here a

general statement of Schmidt’s lower bound method due to Leung [20]:

Schmidt’s Theorem [32,20]. Let L ⊆ Σ∗ be a regular language and let
{(u1, v1), . . . , (un, vn)} with n � 1 and ui, vi ∈ Σ∗ be a finite set of pairs of strings.
Consider the integer matrix M ∈ Zn×n defined by Mi,j = 1 if uivj ∈ L, and
Mi,j = 0 otherwise. Then every UFA recognizing L has at least rankM states.



420 A. Okhotin and K. Salomaa

We translate Schmidt’s Theorem for unambiguous nested word automata. Let L
be a regular nested word language and F = {(xi, yi) | i = 1, . . . , n} is a paired
k-set. Analogously as above we define an integer matrix M(F,L) ∈ Zn×n by
setting M(F,L)i,j = 1 if xiyj ∈ L and M(F,L)i,j = 0 otherwise.

Lemma 3.2. Let F = {(xi, yi) | i = 1, . . . , n} be a paired k-set. Suppose that a
regular nested word language L is recognized by an UNWA A with a set of linear
states Q and a set of hierarchical states P . Then

|P |k · |Q| � rankM(F,L).

The proof is analogous to the one given by Leung [20, Thm. 2], except that
instead of the states that A reaches at the end of the words xi we now consider
the frontiers of computations of A reached at the end of the words xi.

4 From Unambiguous to Deterministic

The state blow-up of converting an UNWA to a DNWA turns out to be, in the
worst case, the same as for determinizing a general nondeterministic nested word
automaton.

Theorem 4.1. For every n � 1 there exists a nested word language Un recog-
nized by an UNWA with O(n) states, such that any DNWA for Un needs 2n2

states.

Proof. Let Σ = {0, 1,#, $}. For n � 1 define the language

U ′
n =

{ 〈#x0#x1# . . .#x�$v$〉u ∣∣ xi ∈ {0, 1}∗, 1 � i � �,

u, v ∈ {0, 1}�log n�, bit number (v)2 in x(u)2 is 1
}

The language U ′
n is recognized unambiguously as follows. In the following discus-

sion we assume that the input word is in 〈#({0, 1}∗#)∗{0, 1}∗${0, 1}∗$〉{0, 1}∗,
that is, of the general form given in the definition of the language U ′

n. By in-
creasing the number of states of the UNWA with a multiplicative constant it is
easy to guarantee that all computations reject otherwise.

An UNWA A guesses at the first call symbol a word u ∈ {0, 1}�log n� and
sends an encoding of u both in the linear and the hierarchical state. The linear
computation finds the (u)2th binary subword x(u)2 , and nondeterministically
guesses v ∈ {0, 1}�logn�. After this the linear computation “remembers” v but
not u. The computation verifies that the (v)2’th bit of x(u)2 is 1 and then checks
that the binary string occurring after the marker $ equals to v. Finally the
computation verifies using the hierarchical state that the binary string after
the return symbol $〉 is equal to u. All nondeterministic choices in a successful
computation are “pre-determined” by the suffix of the input v$〉u, and for any
input there can be only one accepting computation.
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For every set R ⊆ {0, . . . , n− 1}2, consider the unique word

wR = 〈#x0#x1# . . .#xn−1$ , where xi ∈ {0, 1}n,

the jth bit of xi is 1 iff (i, j) ∈ R, 0 � i, j � n− 1.

We show that the set of words wR, R ⊆ {0, . . . , n − 1}2, is a 1-separator set
for U ′

n. Indeed, for any distinct sets R1 �= R2 there is a pair (i, j) belonging
to one of them but not to the other; assume, without loss of generality, that
(i, j) ∈ R1 − R2. Let i = (u)2 and j = (v)2, u, v ∈ {0, 1}�log n�. Now we have
wR1v$〉u ∈ U ′

n and wR2v$〉u �∈ U ′
n.

By Lemma 3.1 (i), any DNWA for U ′
n needs at least 2

n2
2 states. In the state-

ment of the theorem we can choose Un = U ′
�√2�·n. ��

5 From Nondeterministic to Unambiguous

We show that transforming an NNWA to an equivalent UNWA entails, in the
worst case, again the same 2n2

state space blow-up.
Let Σ = {0, $,#,%}. For n � 1, define

Ln =
{ 〈##u1$v1#u2$v2# · · ·#ur$vr%v′1$u′

1#v′2$u′
2# · · ·#v′s$u′

s#〉 ∣∣ (1)
ui, vi, u

′
j, v

′
j ∈ 0+, r, s � 1, 1 � i � r, 1 � j � s,

(∃1 � i1 � r, 1 � j1 � s) ui1 = u′
i1 , vj1 = v′j1 , |ui1 | � n, |vi1 | � n

}
.

The language Ln can be recognized by an NNWA A with O(n) states. At the
first call symbol 〈# the automaton A guesses a string u ∈ {0}�n and sends an
encoding of u in the linear and the hierarchical states. In the notations of (1), u
is the word ui1 . The linear computation of A nondeterministically selects in the
prefix of the input preceding the marker % a subword #ui1$vi1# and verifies
that u = ui1 and |vi1 | � n. Now the linear computation “forgets” u and stores
in the linear state an encoding of vi1 . After seeing the middle marker %, the
automaton nondeterministically selects a subword #v′j1$u′

j1
# and verifies that

vi1 = v′j1 . The linear computation then checks that |u′
j1
| � n, stores it in the

state and at the last call symbol with the help of the horizontal state verifies
that u′

j1
= u. At each stage of the computation it is sufficient to store a unary

string of length at most n, to compare the string stored in the state with a
nondeterministically chosen unary string (limited by markers at both ends), and
to remember whether or not the computation has passed the marker %. The
computation can be done with n hierarchical and O(n) linear states.

Lemma 5.1. Any UNWA B for the language Ln needs at least 2�
n2
2 �−1 states.

Proof. Denote z = )n2

2 *. In the following, let

p(1,0), p(1,1), p(2,0), p(2,1), . . . , p(z,0), p(z,1) (2)
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be an arbitrary (but fixed) enumeration of [n] × [n], where n is even. If n is
odd, the list (2) contains all elements of ([n] × [n]) \ (n, n). For v = b1b2 · · · bz,
bi ∈ {0, 1} and i ∈ {1, . . . , z}, we define a binary relation on [n] by setting

Rv = {p(1,b1), p(2,b2), . . . , p(z,bz)}.

The definition guarantees that for any v1,v2 ∈ {0, 1}z,

v1 �= v2 implies Rv1 ∩Rv2 �= ∅. (3)

Here R stands for [n]× [n]\R. The property (3) will be the basis for constructing
a suitable paired 1-set that can be used for Lemma 3.2.

For each v = b1b2 · · · bz ∈ {0, 1}z we define the nested words x[v] and y[v].
Intuitively, x[v] will consist of a list of pairs of unary words that encode the
elements of Rv and y[v] consists of a list of pairs of unary words that encode
the complement of Rv.

First, for each pair p(i,b) with 1 � i � z and b ∈ {0, 1}, as in (2), we denote

p(i,b) = (αi,b, βi,b).

We set

x[v] = 〈##0α1,b1 $0β1,b1 #0α2,b2 $0β2,b2 # · · ·#0αz,bz $0βz,bz %.

Let (δ1, γ1), . . . , (δz′ , γz′) be an arbitrary enumeration of elements of Rv. Here
z′ = z if n is even and z′ = z + 1 if n is odd. Denote

y[v] = 0γ1$0δ1#0γ2$0δ2# · · ·#0γz′$0δz′#〉.

Now we define the paired 1-set

F1 = { (x[v], y[v]) | v ∈ {0, 1}z }.

By the choice of the words x[v] and y[v] for any v1,v2 ∈ {0, 1}z,

x[v1] · y[v2] ∈ Ln iff Rv1 ∩Rv2 �= ∅.

The above means that in the matrix M(F1, Ln) all diagonal elements are 0.
On the other hand, the property (3) implies that all non-diagonal elements of
M(F1, Ln) are 1 and, thus, rankM(F1, Ln) is equal to the number of rows, 2�

n2
2 *.

Let A be an arbitrary UNWA for Ln with a set of linear states Q and a set
of hierarchical states P . Now Lemma 3.2 implies that |P | · |Q| � 2�

n2
2 �. ��

We have proved the following:

Theorem 5.1. There exists an NNWA A with n states such that any UNWA
equivalent to A needs 2Ω(n2) states.
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6 Complementing Nondeterministic Automata

We show that complementing an n-state NNWA requires, in the worst case,
2Θ(n2) states. We consider again the languages Ln with n � 1, defined in (1). The
following lemma can be proved by relying on Lemma 3.1 (ii) and the construction
of the fooling set is slightly simpler than in the proof of Lemma 5.1.

Lemma 6.1. Let A be an NNWA with sets of linear and hierarchical states Q
and P , respectively. If A recognizes Ln, then |P | · |Q| � 2n2

.

Now we can state a state complexity bound for the complementation of an
NNWA that is tight within a multiplicative constant.

Theorem 6.1. The worst case state complexity of the complement of an n-state
NNWA is 2Θ(n2).

Proof. Proposition 2.1 gives an upper bound 2O(n2). From Section 5 we recall
that Ln can be recognized by an NNWA with O(n) states and hence the result
follows by Lemma 6.1. ��

7 Homomorphic Images of Deterministic Automata

We establish a tight bound for the deterministic state complexity of homomor-
phisms. For the worst case lower bound it is sufficient to consider relabelings of
the internal symbols.

We use a modification of the language (1), where, roughly speaking, the pairs
of subwords to be compared occur in positions marked by a new symbol �. Let
Σ = {0, 1, �,#, $,%}. For n � 1 we define the language L′

n to consist of all words
of the form

w〈#(#0+$0+)∗�u$v(#0+$0+)∗%(0+$0+#)∗�v$u(#0+$0+)∗#〉 (4)

where w ∈ {0, 1}�log n�, u = 0(w)2, and v ∈ 0�n. It can be verified that the
language L′

n is recognized by a DNWA A with O(n) states.
Let h be the homomorphism that maps the symbol � to # and the symbol

1 to 0, and h maps the rest of the symbols to themselves. Note that h is an
internal relabeling.

Lemma 7.1. Any DNWA for h(L′
n) needs 2

n2
2 states.

Now we can state a tight bound for the state complexity of homomorphism for
deterministic nested word automata. The upper bound can be established by
constructing an NNWA to recognize the homomorphic image.

Theorem 7.1. Let h be a homomorphism and A a DNWA with n states. The
nested word language h(L(A)) can be recognized by a DNWA with 2O(n2) states.

There exists an internal relabeling h and regular languages L′′
n, n � 1, rec-

ognized by a DNWA with O(n) states such that any DNWA for L′′
n needs 2n2

states.



424 A. Okhotin and K. Salomaa

8 Conclusion

We have shown that both the conversion of an n-state unambiguous nested
word automaton to a deterministic one and the conversion of an n-state nonde-
terministic automaton to an unambiguous nondeterministic automaton needs in
the worst case 2Θ(n2) states. Both state complexity bounds are tight within a
multiplicative constant. Future work may try to determine the associated multi-
plicative constants more precisely. It can be noted that also for the worst case
lower bound given in [4] for determinizing a general nondeterministic nested
word automaton the precise multiplicative constant is not known.

Another subject for future research is the state complexity of operations on
unambiguous nested word automata, of which nothing is yet known. Not much is
known about the operational state complexity of unambiguous finite automata
either [25], and finding out these properties would lead to a better understanding
of the power of unambiguous nondeterminism in automata.
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5. Arenas, M., Barceló, P., Libkin, L.: Regular languages of nested words: Fixed points,
automata, and synchronization. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
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Abstract. Sand pile models are dynamical systems emphasizing the
phenomenon of Self Organized Criticality (SOC). From N stacked grains,
iterating evolution rules leads to some critical configuration where a small
disturbance has deep consequences on the system, involving numerous
steps of grain fall. Physicists L. Kadanoff et al inspire KSPM, a model
presenting a sharp SOC behavior, extending the well known Sand Pile
Model. In KSPM with parameter D we start from a pile of N stacked
grains and apply the rule: D−1 grains can fall from column i onto the
D−1 adjacent columns to the right if the difference of height between
columns i and i+1 is greater or equal to D. We propose an iterative
study of KSPM evolution where one single grain addition is repeated
on a heap of sand. The sequence of grain falls following a single grain
addition is called an avalanche. From a certain column precisely studied
for D = 3, we provide a plain process describing avalanches. We hope
that this process is a first stone toward the study of KSPM fixed points
structure.

Keywords: discrete dynamical system, self-organized criticality, sand
pile model.

1 Introduction

Sand pile models were introduced in [1] as systems presenting a critical self-
organized behavior, a property of dynamical systems having critical points as
attractors. In the scope of sand piles, starting from an initial configuration of N
stacked grains the local evolution of particles is described by one or more iteration
rules. Successive applications of such rules alter the configuration until it reaches
an attractor, namely a stable state from which no rule can be applied. SOC
property means those attractors are critical in the sense that a small perturbation
— adding some more grains — involves an arbitrary deep reorganization of the
system. Sand pile models were well studied in recent years ([9],[5],[6],[15]).
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1.1 Kadanoff Sand Pile Model

In [12], Kadanoff proposed a generalization of classical models closer to physical
behavior of sand piles in which more than one grain can fall from a column during
one iteration. Informally, Kadanoff sand pile model with parameter D and N
grains is a discrete dynamical system, which initial configuration is composed of
N stacked grains, moving in discrete space and time according to a transition
rule: if the height difference between column i and i + 1 is greater or equal to
D, then D − 1 grains can fall from column i to the D − 1 adjacent columns on
the right (see figure 1).

≥ D

Fig. 1. KSPM(D) transition rule

Sand pile models are specializations of
Chip Firing Games (CFG). A CFG is played
on a directed graph in which each vertex
v has a load l(v) and a threshold t(v) =
deg+(v), 1 and the transition rule is: if l(v) ≥
t(v) then v gives one unit to each of its neigh-
bors (we say v is fired). As a consequence, we
inherit all properties of CFGs.

Kadanoff sand pile is referred to a linear
chip firing game in [11]. The authors show
that the set of reachable configurations en-
dowed with the order induced by the successor relation has a lattice structure,
in particular it has a unique fixed point. Since the model is non-deterministic,
they also prove strong convergence i.e. the number of iterations to reach the
fixed point is the same whatever the evolution strategy is. The morphism from
KSPM(3) to CFG is depicted on figure 2.

Nsink 0 0 0 0 0

Fig. 2. The initial configuration σ of KSPM(3) is presented as a CFG where each
vertex corresponds to a column (except the sink) seen as a difference of height

More formally, the sand pile models we consider are defined on the space of
ultimately null decreasing integer sequences. Each integer represents a column
of stacked sand grains and transition rules describe how grains can move from
columns. Let h = (h0, h1, h2, . . . ) denote a configuration of the model, where
each integer hi is the number of grains on column i. Configurations can also be
given as height difference σ = (σ0, σ1, σ2, . . . ), where for all i ≥ 0, σi = hi−hi+1.
We will use this latter representation throughout the paper, within the space of
ultimately null non-negative integer sequences.

1 deg+(v) denotes the out-degree of v.
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Definition 1. The Kadanoff sand pile model with parameter D, KSPM(D), is
defined by:

– A set of configurations, consisting in ultimately null non-negative integer
sequences.

– A set of transition rules: we have a transition from a configuration σ to a
configuration σ′ on column i, and we note σ

i→ σ′ if
• σ′

i−1 = σi−1 + D − 1 (for i �= 0)
• σ′

i = σi −D,
• σ′

i+D−1 = σi+D−1 + 1
• σ′

j = σj for j �∈ {i− 1, i, i + D − 1}.

Remark that according to the definition of the transition rules, a condition for
σ′ to be a configuration is that σi ≥ D.

1.2 Strategies and Avalanches

A basic property of the KSPM model is the diamond property. If there exists
two distinct integers i and j such that σ

i→ σ′ and σ
j→ σ′′, then there exists a

configuration σ′′′ such that σ′ j→ σ′′′ and σ′′ i→ σ′′′. We note σ → σ′ when there
exists an integer i such that σ

i→ σ′. We define the transitive closure ∗→ of →,
and say that σ′ is reachable from σ when σ

∗→ σ′.
A strategy is a sequence s = (s1, . . . , sT ). We say that σ′ is reached from σ via

s when σ
s1→ σ′′ s2→ . . .

sT→ σ′ and we note σ
s→ σ′. We also say, for each integer t

such that 0 < t ≤ T , that the column st is fired at time t in s. (informally, the
index of the sequence is interpreted as time).

For any strategy s and any nonnegative integer i, we state |s|i = #{t|st = i}.
Let s0, s1 be two strategies such that σ

s0→ σ0 and σ
s1→ σ1. We have the

equivalence: [∀ i, |s0|i = |s1|i] ⇔ σ0 = σ1. A strategy s such that σ
s→ σ′ is

called leftmost if it is the minimal strategy from σ to σ′ according to lexicographic
order. A leftmost strategy is such that at each iteration, the leftmost possible
transition is performed.

We say that a configuration σ is stable, or a fixed point if no transition is
possible from σ. As a consequence of the diamond property, one can easily check
that, for each configuration σ, there exists a unique stable configuration, denoted
by π(σ), such that σ

∗→ π(σ). Moreover, for any configuration σ′ such that
σ

∗→ σ′, we have π(σ′) = π(σ) (see [11] for details).
In this paper, we are interested in the iterative process defined below. Starting

with no grain, we successively add a single grain on column 0, and make all the
possible firings until a fixed point is reached. We denote by π(k) the configuration
obtained with this process using k grains (from the structure of KSPM described
above, one easily checks that π(k) = π((k, 0ω))).

Let σ be a configuration, σ↓0 is the configuration obtained by adding one grain
on column 0. In other words, if σ = (σ0, σ1, . . . ), then σ↓0 = (σ0 + 1, σ1, . . . ).



430 K. Perrot and E. Rémila

Formally the process is defined by π(0) = 0ω and the recurrence formula:

π(π(k − 1)↓0) = π(k).

The kth avalanche sk is the leftmost strategy from π(k − 1)↓0 to π(k). The
goal of the present paper is the description of avalanches. Informally, we want
to describe what happens when a new grain is added in a previously stabilized
sand pile.

For D = 2, i.e. the classical SPM, this description is easy: the added grain
moves rightwards until it arrives in a plateau. But, for D > 2, the situation is
not so simple. We now state our results.

In the general case, we prove (Section 2) the following properties:

– Each column is fired at most once,
– For any avalanche, as soon as an interval {L,L+1, . . . , L+D−1} of successive

fired columns exists, the execution of the avalanche on the right part of this
interval can be turned into a pseudo local and elementary process.

Informally, this means that the knowledge of such an interval guarantees a reg-
ular behavior of the avalanche on its right part. This behavior is precisely de-
scribed in section 2.

In the case when D = 3, we prove (Section 3) the property below:

– For each avalanche sk, there exists an integer L(k) in O(log k) such that
either no column is fired on the right of L(k), or columns L(k) and L(k) + 1
both are fired (and therefore, the property of the second item above applies).

Informally, this means that the regular behavior emerges after a transitional and
complex phase, but this phase has an asymptotically negligible size.

These results give a better understanding of avalanches for sufficiently large
columns. We hope that in future work, they will help us in the approach of the
structure of fixed points π(k).

1.3 The Context

The problem of describing and proving regularity properties, experimentally
checked, for models issued from basic dynamics is really a present challenge
for physicists, mathematicians, and computer scientists. There exists a lot of
conjectures, issued from simulations, on discrete dynamical systems with simple
local rules (sandpile model [3] or chip firing games, but also rotor router [13], the
famous Langton ant[7][8]. . . ) but very few results have actually been proved. As
regards sand pile models, the prediction problem (namely, the problem of com-
puting the fixed point π(k) knowing π(k − 1)) has been proven in [14] to be in
NC3 for KSPM(1), which means that the time needed to compute an avalanche
is in O(log3 N) where N is the number of grains, and P-complete when the
dimension is ≥ 3. A recent study ([10]) showed that in the two dimensional gen-
eralization of KSPM(D), the avalanche problem (given a configuration σ and a
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column i on which we add one grain, does it have an influence an index j?) is
P-complete, which points out an inherently sequential behavior.

This study will provide tools to understand sand pile evolution. We hope that
those tools form a basis to obtain some good descriptions of fixed points π(k),
but are also deeply related with other subjects around sand piles such as unit
elements of abelian group structures presented in [2] and [4].

2 Avalanche Process in the General Case

This section begins with a glance at avalanches, allowing notation simplifications.
Then avalanches are studied in details, leading to a simplified description of its
behavior.

Proposition 1. For each strategy s such that π(N)↓0 s→ π(N + 1) and any
column i ∈ N, we have |s|i ∈ {0, 1}.
Proof. Let s = (s1, . . . , sT ) be a strategy such that π(N)↓0 s→ π(N + 1). We
have to prove that, for 1 ≤ l < m ≤ T , we have sl �= sm (obviously, |s|i ≥ 0 for
all i). To do it, we prove by induction on t ≤ T that for 1 ≤ l < m ≤ t, we have
sl �= sm.

For initialization this is obviously true for t = 1. Now assume that the condi-
tion is satisfied for an integer t such that t < T , and let i be a column such that
there exists an integer l ≤ t such that i = sl. Let σ be the configuration such
that π(N)↓0 s1→ . . .

st→ σ.
Notice that the transitions which can possibly change the value of the current

configuration at i could be: i (which decreases the value by D units), i+1 (which
increases the value by D− 1 units) or i−D + 1 (which increases the value by 1
unit).

Thus we have σi ≤ π(N)↓0i − D + D − 1 + 1 since by definition, between
π(N) and σ, exactly one transition has occurred in i, at most one transition
has occurred in i + 1, and at most one transition has occurred in i − D + 1.
For i ≥ 1, we get σi ≤ π(N)i. On the other hand, since π(N) is a fixed point,
we have: π(N)i < D, which guarantees that st+1 �= i. For i = 0, there is no
possible transition in i−D + 1, thus we get σ0 ≤ π(N)↓00 −D +D− 1, which is
σ0 ≤ π(N)0 + 1 −D +D− 1. Thus σ0 ≤ π(N)0 < D which also gives: st+1 �= 0.

This ensures that the result is true for t + 1, and, by induction, for T .

When talking about an avalanche s, Lemma 1 allows us to write i ∈ s instead
of |s|i = 1 without lose of information. We denote by s[u,v] the subsequence of s
from u to v included.

We will now study avalanches in details. For D = 2, i.e. the classical SPM,
avalanches are quite simple, the added grain moves rightwards until it finds a
stable position. For D > 2, the situation is more complex, and needs a precise
study, given by the following Lemmas.

We first explain the “pseudo locality” of avalanches : at a time t + 1, a fired
column can’t be at distance greater — neither on the left nor on the right — than
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D−1 of the greatest fired column of s[1,t]. Imagine, during an avalanche, that you
follow the greatest fired column with a frame of size 2(D− 1) − 1, Lemma 1 tells
that you won’t miss any firing.

Lemma 1. Let s = (s1, . . . , stk
) be the kth avalanche. Let rt = max s[1,t].

– Assume that st+1 < rt. Then st+1 is the largest column number satisfying
this inequality, which has not yet been fired at time t. In other words:

st+1 = max{i | i < rt and i /∈ s[1,t]}
Moreover, we have rt − st+1 < D − 1.

– Assume that st+1 > rt. Then we have st+1 − rt ≤ D − 1.

Proof. We order fired columns by causality. Precisely, a column i has two poten-
tial predecessors, which are i+ 1 and i−D+ 1. State i = su. These columns are
really predecessors of i if they are elements of s[1,u], i.e if they are fired before i.
Using the transitive closure, we define a partial order relation (denoted <caus.)
on fired columns for s.

Now, consider the set At+1 of ancestors of st+1 (i.e. the set of columns i such
that i <caus. st+1) and the set St of columns which have st as an ancestor (i.e.
columns i such that st <caus. i). We necessarily have rt ∈ At+1. Otherwise, we
have At+1 ∩ St = ∅, and this allows another strategy s′, constructed from s by
postponing the transitions at rt and elements of St after the transition on st+1.
This contradicts the fact that s is leftmost.

Let (i0, i1, . . . , ip) be a finite sequence such that i0 = rt, ip = st+1 and, for
each j with 0 ≤ j < p, ij is a predecessor of ij+1. Such a sequence exists since
rt ∈ At+1. Let us prove by induction that ij = rt − j: this is true for j = 0.
Assume it is true until the integer j < p. We have either ij+1 = ij − 1 or
ij+1 = ij + D− 1. But from the induction hypothesis, ij + D− 1 is an ancestor
of ij+1, thus ij+1 = ij − 1. This gives that st+1 is the largest column number i
such that i < rt and i /∈ s[1,t].

Now if we assume, by contradiction, that p ≥ D − 1, then rt − D + 1 is
not a predecessor of rt, which yields that rt has no predecessor, which is a
contradiction. This gives the inequality of the first item. The second item is
obvious, since st+1 ha a unique predecessor which is st+1 −D + 1.

Lemma 1 induces a partition of fired columns between those which make a
progress (i.e. increases the greatest fired column) and those which do not. This
distinction is important in further development, so let us give progress firings a
name. Let s = (s1, . . . , sT ) be an avalanche, a column st is called a peak if and
only if st > max s[1,t−1].

Remark 1. Two peaks p �= q can be compared using chronological (<T ) or spatial
(<S) orders. Nevertheless, by definition of peaks we obviously have p <T q ⇐⇒
p <S q.

The next Lemma explains precisely the way peaks appear, as soon as a D − 1
successive columns are fired. It follows an intuitive idea : a peak at time t+ 1 is
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a column which only receives grains from the left part of the sand pile (within
s[1,t]). Therefore, the amount it receives is at most 1 and a peak must have an
initial value of D − 1 units of height difference. Also, a non-peak column isn’t
fired when it receives 1 unit of height difference so it has to wait for its right
successor to be fired, in a kind of chain reaction.

Lemma 2. Let s be the kth avalanche. Assume that there exists a column l,
such that for each column i with l ≤ i < l + D − 1, i ∈ s, and a fired column
i′ ∈ s such that i′ ≥ l +D− 1. Let l′ be the lowest peak such that l′ ≥ l +D− 1.
There exists a time t such that

{
for all i with l′ −D + 1 < i ≤ l′, i ∈ s[1,t]

for all i with l′ < i, i /∈ s[1,t]

Moreover l′ is the lowest integer such that l′ ≥ l + D − 1 and σt
l′ = D − 1.

Informally, the lemma above claims that the space threshold l′ induces a corre-
sponding time threshold t: columns fired before time t are on the left of l′, while
columns fired after time t are on the right of l′.

Proof. Let t0 be the time when st0 = l′, i.e. the first time such that st0 ≥ l+D−1,
and let j be the largest integer such that, for 0 ≤ j′ ≤ j, we have st0+j′ = st0−j′.
Let us state t = t0 + j. We have j < D − 1.

Let σt denote the configuration obtained from π(k − 1) via s[1,t]. Let i, with
i < l′, such that i /∈ s[1,t]. We claim that we have: i /∈ s. To prove it, we prove by
induction that for any t′ ≥ t, i /∈ s[1,t′]. Assume that this is satisfied for a fixed
t′. This means that all the transitions of s[t+1,t′] are done on columns larger than
l′. Thus, σt′

i = σt
i and no transition is possible on i for σt since s is leftmost

(the only potential column to be fired is st0 − j − 1, but by assumption, either
this column has been previously fired, or it cannot be fired by definition of j,
according to Lemma 1) .

By contraposition, it follows that for each column i with l ≤ i < l+D−1, we
have i ∈ s[1,t]. A simple (reverse sense) induction shows that, for l+D−1 ≤ i ≤ l′

Âă we have i ∈ s, since by hypothesis i + 1, and i + 1 −D both are in s. Thus,
by contraposition of the claim above, for l+D−1 ≤ i ≤ l′, Âă we have i ∈ s[1,t].
This gives the the fact that for all i with l′ −D + 1 < i ≤ l′, i ∈ s[1,t]

The fact that for all i with l′ < i, i /∈ s[1,t] is trivial, by definition of t0 and t.
We have l′ > l + D − 2 and σt

l′ = D − 1. assume that there exists l′′ < l′

satisfying the same properties. Notice that for t0 ≤ t′ ≤ t we have s′t > l′−D−1.
Thus the time t1 such that st1 = l′′ − D + 1 is such that t1 < t0. That means
that l′′ should have been fired before t0, a contradiction.

Lemma 2 describes in a very simple way the behavior of avalanches. Thanks to
it, the study of an avalanche can be turned into a pseudo linear execution, in
which transitions are organized in a clear fashion:

Theorem 1. Let s = (s1, . . . , sT ) be the kth avalanche and (p1, . . . , pq) be its
sequence of peaks. Assume that there exists a column l, such that for each column
i with l ≤ i < l + D − 1, i ∈ s. Then for any column p such that p ≥ l + D − 1,
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p is a peak of s ⇐⇒ π(k − 1)p = D − 1 and ∃i s.t. pi < p ≤ pi + D − 1

Furthermore, Let i ≤ q and t such that pi = st, with pi ≥ l + D − 1. Then

T ≥ t+ pi − pi−1 − 1 and for all t′ s.t. t < t′ ≤ t+ pi − pi−1 − 1, st′ = st′−1 − 1

A graphical representation of this statement is given on figure 3.

Proof. The first part is a straight induction on Lemma 2.
The second part follows from an induction summed up in the following fact: any
column i such that π(k − 1)i < D − 1 must wait for its right neighbor i + 1 to
be fired, and it should be fired when both i + 1 and i −D + 1 have been fired
(besides, i−D + 1 has already been fired). Since any of such i is fired to reach
a fixed point, T ≥ t + pi − pi−1 − 1.

l

Fig. 3. Illustration of Theorem 1 with D = 6; surrounded columns l to l + D − 2 are
supposed to be fired; black column is the greatest peak strictly lower than l + D − 1; a
column is grey if and only if its value is D − 1; following arrows depicts the avalanche

Theorem 1 easily allows us to compute the right part of the kth avalanche
(from column l + D − 1), only knowing π(k − 1). The sequence of peaks is
computed as follows. The first one is the lowest column i greater or equal to
l +D− 1 such that π(k− 1)i = D− 1. Then, given a peak i, the next one is the
lowest j such that π(k − 1)j = D − 1 and j − i ≤ D − 1. If such a j does not
exist, then there is no more peak and i is the largest fired column.

We can distinguish two movements within an avalanche: before a certain col-
umn it has an unknown behavior, and from that column to the end the behavior
is pseudo local, in the sense that when an index is fired ahead (on the right)
then any ‘hole’ is filled before the progress can continue.

An important direct implication of Theorem 1 is that if there exists a column
l such that for the kth avalanche sk, we have for all l ≤ i < l + D − 1, i ∈ sk,
then for all j such that l+D−1 ≤ j < max sk, we have j− (D−1), j, j + 1 ∈ sk

and therefore π(k)j = π(k − 1)j . Intuitively, this equality hints some similarity
between successive avalanches.

Note that the previous results also apply for a grain addition on column 0 of
any fixed point configuration of KSPM(D).

This study constitutes a simplified understanding of the behavior of
avalanches, which we hope will be helpful toward the description of fixed points.
As motivated above, next section studies, for KSPM(3), the previous result
hypothesis that for an avalanche sk there exists a column l such that for all
l ≤ i < l + D − 1, i is element of sk.
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3 Short Transitional Phase When D = 3

In this section we prove that in KSPM(3), there exists a column l(N) in O(logN)
such that Lemmas hypothesis is verified for any avalanche sk, with k ≤ N , such
that max sk > l(k). In other words, considering the N first avalanches, from a
logarithmic column, we can apply Theorem 1 and consider avalanches pseudo
locally, as described on figure 3. Here is the statement:

Proposition 2. Let s be the kth avalanche of KSPM(3). There exists a column
l(k) in O(log k) such that for any k, when max s > l(k), l(k) and l(k) + 1 both
are elements of s.

Proof. Let i be a fixed column. If i, i + 1 ∈ sk, then, Theorem 1 states that for
all i′ such that i ≤ i′ < max{j|j ∈ s}, we have i′, i′ + 1 ∈ s. If i, i + 1 /∈ s, then,
from Proposition 1, we have max s < i.

Let j be a fixed positive integer. Assume that the avalanche s fires 2j but not
2j− 1. From Remarks above, columns 0, 2, 4, . . . , 2j are fired in s while columns
1, 3, 5, . . . , 2j − 1 are not fired.

If a column i+1 is fired while i is not, then we necessarily have π(k−1)i = 0,
since the firing in i+ 1 increases the value in column i from 2 units. Moreover, if
the column i+1 is fired while i+2 is not, then we necessarily have π(k−1)i+1 = 2,
since the i + 1 receives at most one grain, by preceding firings.

On the other hand, obviously, the assumption on j enforces that π(k−1)0 = 2
This yields that (2, 0)j−2 is a prefix of π(k − 1).

We have the following fact:

Claim. There exist constant numbers A and B, with A > 0 such that if a
configuration π(N) has a prefix of the form (2, 0)j then N > A4j + B

This is obtained by the linear algebra analysis below. This gives the result of the
Proposition.

Let π(N) = (σ0, σ1, . . . ) be the configuration and a = (a0, a1, . . . ) be its shot
vector i.e. ai is the number of times when the column i has be fired in the first
N avalanches. According to the iteration rule we have the relation:

σi = ai−2 − 3ai + 2ai+1

i.e.
ai+1 =

1
2

(σi − ai−2 + 3ai)

We set A :=

⎛⎝ 0 1 0
0 0 1

−1/2 0 3/2

⎞⎠. We denote by vi the column vector such that and

vT
i = (0, 0, σi/2), and ui the column vector such that uT

i = (ai−2, ai−1, ai) (with
the convention that uT is the row vector obtained by transposition of the column
vector u) . The equality above can be algebraically written in

ui+1 = Aui + vi
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By iteration we get:
ui+2 = A2ui + Avi + vi+1

If i < j then σ2i = 2 and σ2i+1 = 0 so vT
2i = (0, 0, 1) and vT

2i+1 = (0, 0, 0). With
this specification, we get:

u2(i+1) = A2u2i + b

with bT = (0, 1, 3/2). From this last relation we will deduce a condition on N to
get the sequence (2, 0)j .

Let us first find a new basis to get the matrix A on Jordan canonical form. The
characteristic polynomial of A is 1

2 (2x+ 1)(x− 1)2 and its eigenvalues are − 1
2 of

algebraic multiplicity 1 and 1 of algebraic multiplicity 2. Since dim(ker(A−Id)) =
1 the Jordan canonical form of A is

AJordan =

⎛⎝1 1 0
0 1 0
0 0 −1/2

⎞⎠
And the new basis E′ = (e′1, e′2, e′3) according to the canonical one E = (eT

1 =
(1, 0, 0), eT

2 = (0, 1, 0), eT
3 = (0, 0, 1)) is given by the linear relations:

e′1 = e1 + e2 + e3

e′2 = e2 + 2e3

e′3 = 4e1 − 2e2 + e3

Let p be the linear mapping consisting in the projection on the line D3 generated
by e′3 according to the direction the plane P1,2 generated by e′1 and e′2. For any
vector u, we have: p(A2u) = p(A2(p(u)+u−p(u)) = p(A2(p(u))+p(A2(u−p(u)).
Notice that, by definition of p, u− p(u) is element of P1,2, and, therefore A(u−
p(u)) and A2(u−p(u)) also are elements of P1,2. This yields that p(A2(u−p(u)))
is null. On the other hand, since p(u) is element of D3, A(p(u)) = −1

2 p(u) and
A2(p(u)) = 1

4p(u); thus p(A2(p(u)) = 1
4p(u). As a conclusion, we get p(A2u) =

1
4p(u), which, in particular, allows the following equalities:

p(u2(i+1)) = p(A2u2i + b)
= p(A2u2i) + p(b)
= 1

4p(u2i) − 1
18e

′
3

Let v be the unique vector collinear with e′3 satisfying the equation

v =
1
4
v − 1

18
e′3

i. e. v = −2
27 e

′
3. Remember that p(v) = v. We have

p(u2(i+1) − v) = p(u2(i+1)) − v
= 1

4p(u2i) − 1
18e

′
3 − (1

4v − 1
18e

′
3))

= 1
4p(u2i − v)

This gives by induction:

p(u0 − v) = 4jp(u2j − v)
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Now we specify the sequence of vectors ui, assuming that values ai are the
shot vectors of a configuration σ beginning by (2, 0)j . (For convention we also
state a−2 = N and a−1 = 0, thus we have uT

0 = (N, 0, a0), uT
1 = (0, a0, a1) and

uT
i = (ai−2, ai−1, ai) for i ≥ 2).
An easy computation gives that: p(u0 − v) = N+a0+

2
27

9 e′3
Let xj be defined by p(u2j − v) = xje

′
3. We obtain the equality:

N + a0 + 2
27

9
= 4jxj

Obviously a0 ≤ N
D = N

3 , which ensures that N + a0 + 2
27 ≤ 4N

3 + 1.
Furthermore, we necessarily have xj > 0, and, from Lemma 3 proved on the

bounce, each element of p(Z3) is a multiple of ce′3, where c is a positive constant.
If v is element of p(Z3) we can conclude that xj ≥ c. If v is not element of p(Z3),
we can conclude that xj ≥ min{|ck + 2

27 |, k ∈ Z}. In any case, there exists a
positive real d, not depending on j, such that xj ≥ d.

We conclude that 4N
3 + 1 ≥ 4jd, which gives N > 3d

4 4j − 3
4 to get a sand pile

of the form σ = (2, 0)jσ′.

We now give the Lemma used in the previous proof.

Lemma 3. (constant steps) There exists a positive real c such that pe′
3
(Z3) =

{i ce′3, i ∈ Z}.
Proof. The set of reals r such that there exists an element x in Z3 such that
pe′

3
(x) = re′3 is obviously a group. So we only have to prove that this group

is discrete, i.e. that there is no sequence (rn)n∈Z of positive reals such that
lim

n→∞(rn) = 0.
Assume, by contradiction, the existence of such a sequence, and let (xn)n∈Z

be a sequence of vectors such that, for each integer n, pe′
3
(xn) = rn.

A key-point is that vectors e′1, e′2 and e′3 have integer components, so we
can state xn = ane

′
1 + bne

′
2 + cne

′
3. The sequence (x′n)n∈Z defined by x′n =

(an − )an*)e′1 + (bn − )bn*)e′2 + cne
′
3 also is a sequence of integer vectors such

that for each integer n, pe′
3
(x′n) = rn. Moreover this sequence is bounded. Thus

(x′n)n ∈ Z takes a finite number of values, which enforces that the sequence
(rn)n ∈ Z also takes a finite number of values, which is a contradiction.

For KSPM(3), after a short transitional of logarithmic length, the hypotheses
of Theorem 1 are verified , and the study of avalanches can be turned into a
pseudo linear process. Note that a trivial framing of the maximal non-empty
column e(N) of a fixed point with N grains shows that e(N) is in Ω(

√
N).

As a consequence, pseudo local process stands for the asymptotically complete
behavior of avalanches.

Unfortunately, the approach above does not hold for D > 3. The main reason
is that, for D = 3 unfired columns induce a very particular and periodic prefix
((2, 0)j) on configurations. From D = 4, the structure of such a possible prefix
is more complex and we did not yet get a tractable characterization of those
prefixes.
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4 Perspectives

In this paper we described avalanches as pseudo local processes from a certain
column l.

We proved this column to be logarithmic in the number of grains N for
KSPM(3), leading to an asymptotically complete description of avalanches in
that case. Simulations for other parameter D suggest that the same outcome
also holds.

The pseudo local process description involves some properties on avalanches,
which we hope will be useful toward the study of fixed points shape. For an
avalanche s, a particularly interesting consequence is that two successive fixed
points are equal from l+D−1 to (max s)−1, which hints that the next avalanche
reaching this part of the configuration may have a similar behavior. This would
lead to a knowledge on the likeness of successive avalanches and therefore a
foresee on the shapes of fixed points. Further work may concentrate on this
point, where the main purpose is to go ahead iterating evolution rules, and to
characterize fixed points with a plain formula.
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Abstract. Recently, strong immersion was shown to be a well-quasi-
order on the class of all tournaments. Hereditarily finite sets can be
viewed as digraphs, which are also acyclic and extensional. Although
strong immersion between extensional acyclic digraphs is not a well-
quasi-order, we introduce two conditions that guarantee this property.
We prove that the class of extensional acyclic digraphs corresponding to
slim sets (i.e. sets in which every memebership is necessary) of bounded
skewness (i.e. sets whose ∈-distance between their elements is bounded)
is well-quasi-ordered by strong immersion.

Our results hold for sets of bounded cardinality and it remains open
whether they hold in general.

Keywords: well-quasi-order, hereditarily finite set, strong immersion,
extensional digraph.

1 Introduction

Sets are directed graphs (digraphs) when one interprets the membership relation
∈ as the adjacency relation ←:

a ∈ b ⇔ a ← b.

Such a digraph is called the membership digraph of a set. According to this view,
set-theoretic axioms isolate classes of digraphs whose study can be “assisted” by
the underlying set-theoretic semantics. The most natural and initial of such
classes of digraphs is the one defined using the axiom of extensionality: no two
vertices of a digraph in such a class have the same set of out-neighbors. More
intriguing (even though still very basic) axioms can be considered. In this paper
we study the problem of existence of well-quasi-orders on subclasses of the class
of digraphs, with such set-theoretic assistance. We start with finite extensional
acyclic digraphs, that is, membership digraphs of hereditarily finite sets.

One of the earliest results on well-quasi-orderings of graphs belongs to Kruskal
[8], who showed that the class of all finite trees is well-quasi-ordered by the
topological minor relation. This study culminated with the celebrated theorem of
Robertson and Seymour [13] stating that the minor relation is a well-quasi-order

A.-H. Dediu, S. Inenaga, and C. Martín-Vide (Eds.): LATA 2011, LNCS 6638, pp. 440–451, 2011.
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on the class of all finite graphs. Later [14], they showed that this is also the case
for weak immersion between graphs, which was a conjecture of Nash-Williams
[10]. In the case of digraphs not much is known. Immersion between eulerian
digraphs was studied by Johnson (cf. [3, p. 517], [5]). Recently, Chudnovsky and
Seymour [5] proved that strong immersion between digraphs is a well-quasi-order
on the set of all tournaments (i.e., orientations of complete graphs). In view of
this result, we will focus in this paper on strong immersion between digraphs.

Notice that, requiring acyclicity and extensionality, tournaments are forced
to be isomorphic to the membership digraphs of the so-called von Neumann’s
numerals. Starting from this observation and given that the full family of hered-
itarily finite sets is not well-quasi-ordered by strong immersion (see below), it is
natural to ask for other (sub-)collections of the hereditarily finite sets that could
be well-quasi-ordered by strong immersion.

The result of this paper has been obtained by introducing two conditions:
the first (slimness) guarantees that the number of sets at any given rank in the
transitive closure of a set is bounded by its cardinality; the second (bounded
skewness) guarantees that arcs (memberships) do not reach too freely into its
membership digraph. Notice that both these facts are true in the membership
digraphs of von Neumann’s numerals.

Our result is based on the fact that slimness together with bounded cardinal-
ity and skewness are sufficient to ensure that the entire transitive closure of a
hereditarily finite set can be described as a sequence of characters in a suitable
finite alphabet. From this, the existence of a wqo follows by standard means.

It is not clear exactly to what extent slimness and bounded skewness are nec-
essary, even though in the conclusion we observe that the bounds on cardinality
and skewness cannot be both dropped on slim sets without losing wqo.

Wqo’s proved to be a key ingredient in generalizing and unifying many results
concerning the decidability of verification problems (e.g. coverability) on infinite-
state transition systems (cf. [6,1] and the references therein). To be more precise,
a transition system is said to be well-structured when its transition relation
is monotonic w.r.t. a wqo of its states; the classical example is that of Petri
nets: the states of the transition system is the set of all configurations of the
net, while the wqo is the inclusion between their markings. In this light, our
contribution can also be viewed as laying the set-theoretic groundwork for a
class of well-structured transition systems having as states the hereditarily finite
sets considered in this paper.

The outline of the paper is the following. In Sec. 2 we give the main definitions
and argue that weak immersion is not a wqo on the class of all extensional
acyclic digraphs. Sec. 3 gives some lemmas about the structure of slim sets,
which are then used in Sec. 4 to provide an encoding for slim sets of bounded
cardinality and skewness. All results are assembled in Sec. 5, by proving that
strong immersion is a wqo on the class of membership digraphs corresponding
to slim sets of bounded cardinality and skewness. Finally, some open questions
are put forward in Sec. 6.
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2 Basics and Notation

2.1 Sets and Digraphs

Our notation follows [9,3]. In this paper we consider hereditarily finite sets, that
is, sets belonging to the first ω levels of the von Neumann’s cumulative hierarchy.
Their collection, which we denote by HF, is defined as HF =

⋃
i∈ω Vi, where

V0 = ∅, Vi+1 = P(Vi),

and P(·) stands for the power-set operator. We will use the following, standard,
notion of rank of a set x:

rk(x) =def sup {rk(y) + 1 | y ∈ x},

and we will denote the set of elements in x at a given rank r as x=r = {y ∈
x | rk(y) = r}. Analogously, x�r = {y ∈ x | rk(y) � r}. For any set x, we denote
by TrCl(x) the transitive closure of x, defined through the recursion:

TrCl(x) =def x ∪
⋃
y∈x

TrCl(y),

where we denote by
⋃
x the union-set of x, that is the set {z | z ∈ y ∧ y ∈ x}.

We say that a set x is transitive if
⋃
x ⊆ x. Plainly, the transitive closure of a

set x is a transitive set.

Definition 1. The skewness of a set x is

skewness(x) =def sup {rk(y) − rk(z) | y, z ∈ TrCl(x) ∧ z ∈ y}.

We will also consider Ackermann’s order ≺A between hereditarily finite sets [2],
defined recursively as

x ≺A y ⇔def max≺A

(x \ y) ≺A max≺A

(y \ x),

where we let, by convention, max≺A
∅ ≺A x, for any x ∈ HF \ {∅}.

Given a digraph G = (V,E) we say that V (G) =def V is its set of vertices
and E(G) =def E is its set of arcs. We will write uv as a shorthand for the arc
(u, v) ∈ E(G) (u and v are called its endpoints). Given v ∈ V (G) we denote by
N+(v) the set of its out-neighbors in G, namely the set {w ∈ V (G) | vw ∈ E(G)}.
If N+(v) = ∅, then we say that v is a sink, whereas v is a source if v is not an
out-neighbor of any vertex of G. We say that H is a subdigraph of a digraph
G if V (H) ⊆ V (G), E(H) ⊆ E(G) and every arc of G with both endpoints in
V (H) is also in E(H). In this case, we say that H is a subdigraph of G induced
by the vertices in V (H).

Any set in HF can be seen as a digraph, whose vertices correspond to sets and
whose arc relation corresponds to the inverse of the membership relation, - (see
Fig. 1). To be more precise, consider the following definition.
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∅

{∅}

{{∅}} {∅, {∅}}

Fig. 1. The membership digraph of the set x =
{{{∅}}, {∅, {∅}}}; we have ∅ ≺A {∅} ≺A

{{∅}} ≺A {∅, {∅}}

Definition 2. Given a set x, we denote by Gx the digraph (x,Ex), with

Ex =def {uv | u, v ∈ x ∧ v ∈ u},

and call the membership digraph of x the digraph GTrCl(x).

The well-foundedness of the membership relation among sets ensures that mem-
bership digraphs are acyclic, while the extensionality principle guarantees that
they are also extensional, in the following sense:

Definition 3. A digraph G is extensional if for any distinct vertices u and v in
V (G), it holds N+(v) �= N+(u).

Moreover, the converse also holds: any finite extensional acyclic digraph is the
membership digraph of a hereditarily finite set. The following notion is in-
strumental to our results and establishes a link between a set and its graph-
theoretical representation.

Definition 4. A set x is slim if the digraph obtained by removing any arc from
GTrCl(x) is not extensional.

Def. 4 is equivalent to saying that x is slim if for any vertex y of GTrCl(x) and
for any out-neighbor of it z, there exists a vertex y′ of GTrCl(x) whose set of
out-neighbors is precisely N+(y) \ {z}. In set-theoretic terms, a set x is slim
if ∀y ∈ TrCl(x) and ∀z ∈ y, it holds that y \ {z} ∈ TrCl(x). Observe that the
transitive closure of a slim set x is closed under taking subsets for its elements,
in the sense that for any y ∈ TrCl(x), P(y) ⊂ TrCl(x). For example, the set x
whose membership digraph is depicted in Fig. 1 is slim.

In equivalent graph-theoretic terms, the rank of a set is the length of the
longest simple (i.e. without repeated vertices) directed path in its membership
digraph. The notion of skewness of a set can thus be interpreted as the length
of the longest simple directed path in its membership digraph, so that its two
endpoints are also connected by an arc. See Fig. 2 for an example of a membership
digraph of skewness 5. Finally, it can be also easily seen that the Ackermann’s
order among hereditarily finite sets can be analogously defined for the vertices
of membership digraphs.
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rank: 0 1 2 3 4 5 6

Fig. 2. A membership digraph of skewness 5

2.2 Well-Quasi-Orders and Digraph Immersion

A quasi-order is a pair (Q,�) where Q is a set and � is a transitive and reflexive
binary relation on Q. We say that a quasi-order (Q,�) is a well -quasi-order,
or wqo, if for every infinite sequence (qi)i=1,2,... of elements of Q, there exist
1 � i < j such that qi � qj .

We refer here to the notions of weak and strong immersion, as considered in
[5]. A weak immersion of a digraph H into G is a map η such that:

– for every v ∈ V (H), η(v) ∈ V (G);
– for every u, v ∈ V (H) with u �= v, it holds that η(u) �= η(v);
– for each arc uv ∈ E(H), η(uv) is a directed path in G from η(u) to η(v) (all

paths considered are simple, i.e., do not have repeated vertices);
– if e, f ∈ E(H) are distinct, then η(e) and η(f) have no arcs in common,

although they may share vertices.

The map η is called a strong immersion when it also holds that if v ∈ V (H),
e ∈ E(H), and e is not incident with v in H , then η(v) is not a vertex on the
directed path η(e). We say that a digraph H is weakly (strongly) immersed into
a digraph G, and write H �w

i G (H �s
i G), if there exists a weak (strong)

immersion of H into G.
As already observed in [5], weak immersion is not a wqo on the set of all

digraphs. Just consider the acyclic digraphs Dn formed by orienting the edges
of a cycle of length 2n alternately clockwise and counterclockwise (see Fig. 3).
That being so, the collection {Dn | n � 2} has the property that none of its
elements can be weakly immersed into another one.

a1 a2 a3

... ...
an−1 an

b1 b2 bn−1 bn

Fig. 3. Digraphs Dn, n � 2

Since the collection of transitive closures of sets is a collection of digraphs, it
is natural to ask whether �w

i or �s
i form a wqo on such a collection. The answer

is no, since the collection of membership digraphs Fn, n � 3, constructed as in
Fig. 4 has, analogously to the corresponding Dn’s, the property that no digraph
can be weakly immersed into another one.
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a1 a2 a3

... ...
an−1 an

b1 b2 bn−1 bn

b′n

Fig. 4. Membership digraphs Fn, n � 3; notice that Fn is acyclic and extensional

Indeed, given Fn and Fm, with n < m, and supposing that η is a weak immer-
sion of Fn into Fm, observe that η(bn) must be bm, since bn has 3 out-neighbors
in Fn and bm is the only vertex of Fm having more than 2 out-neighbors. Then,
η(a1) = a1 and η(b′n) = b′m. Next, η(b1) = b1, since otherwise the directed paths
η(b1a1) and η(a2a1) would have to share the arc a2a1, against the fact that η
is an immersion. This implies that η(a2) = a2. By a similar argument, induc-
tively, η(bi) = bi and η(ai+1) = ai+1 hold for all 1 � i < n. Moreover, for all
1 � i < n, the image of the arc biai is the 2-vertex directed path (bi, ai), and the
image of ai+1ai is the directed path (ai+1, ai). At this point, the arc bnan must
be mapped to the directed path (bm, am, am−1, . . . , an), and b′nan is mapped to
(b′m, am, am−1, . . . , an), contradicting the arc-disjointness of η.

3 Slim Sets and Discrimination

Given a slim set x and a subset F ⊆ TrCl(x), we will characterize in this
section the elements of

⋃F . In particular, Lemma 4 tackles the case when
F = TrCl(x)=r , for some rank r. To begin with, consider a slightly weaker
version of slimness.

Definition 5. Let F be a finite family of sets. A z ∈ ⋃F is said to be redundant
if |F| = |{v \ {z} | v ∈ F}|. We say that F is irredundant if no element of

⋃F
is redundant.

Plainly, a slim set F whose elements have the same rank is irredundant, since if
there would exist a redundant z ∈ ⋃F so that z ∈ v ∈ F , then the removal of
the arc vz from GTrCl(F) would maintain the resulting digraph extensional.

If F is irredundant then
⋃F is also called a minimal differentiating set for

F . The following lemma puts a bound on the size of minimal differentiating sets.

Lemma 1 ([12,4]). Given an n-element irredundant family F ,∣∣∣⋃F
∣∣∣ � n− 1.

Lemma 2 (Discrimination lemma [11]). Given an n-element nonempty
family F = {v1, . . . ,vn}, we can determine z1, . . . , zk ∈ ⋃F , with k � n − 1,
so that the family

{vi ∩ {z1, . . . , zk} | vi ∈ F}
is irredundant and has cardinality n.
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Lemma 3 (Slim discrimination lemma). Given an n-element slim and
nonempty family F = {v1, . . . ,vn} such that ∅ /∈ F , we can determine
z1, . . . , zk ∈ ⋃F , with k � n, so that:

(1) the family {vi ∩ {z1, . . . , zk} | vi ∈ F} ∪ {∅} is irredundant, of cardinality
n + 1 and

(2) if rk(F) =  + 2 and there is a 1 � j � n so that |vj ∩ {z1, . . . , zk}| > 1,
then |{zi | rk(zi) =  }| < n.

Proof. We reason by induction on n. If n = 1 the claim is clear, since v1 �= ∅
and we can thus find z1 ∈ v1 to satisfy (1) and (2).

If n > 1, apply the discrimination lemma to F ∪{∅} and let z1, . . . , zk ∈ ⋃F ,
with k � n, so that (1) holds for z1, . . . , zk. If there is a vj with rk(vj) �  ,
then, since vj ∩ {z1, . . . , zk} �= ∅, one of z1, . . . , zk is of rank strictly smaller
than  , and we are done. Therefore, we can assume that k = n, and that for all
1 � j � n, rk(vj) =  + 1 and rk(zj) =  .

Accordingly, suppose for a contradiction that there exists 1 � j � n so that

vj ∩ {z1, . . . , zn} = {z′1, . . . , z′l}, where l � 2.

Denote by P (vj) the set

P (vj) =def {v ⊆ vj | v ∩ {z′1, . . . , z′l} �= ∅}
and observe that any element of P (vj) belongs to F , since rk(z′1) = · · · = rk(z′l) =
 and F is slim. Consider now F ′ =def F \ P (vj) and Z ′ =def {z1, . . . , zn} \
{z′1, . . . , z′l}, which entails Z ′ ⊆ ⋃F ′. Since l � 2, |P (vj)| � 2l−1 > l, and thus
|F ′| < |Z ′| < n. This implies that there exists v′ ∈ F ′ with |v′ ∩ Z ′| > 1. At
this point, we can repeatedly apply the above argument to the strictly smaller
finite sets F ′ and Z ′, which brings the desired contradiction. ��
Lemma 4 (Slim structure lemma). For any slim set x and for every 0 <
r < rk(x), the following properties hold:

(1) |TrCl(x)=r−1 \ x| � |TrCl(x)=r |;
(2) |TrCl(x)=r | � |x�r |.
Proof. To prove (1), assume for a contradiction that r is a rank such that
|TrCl(x)=r−1 \ x| > |TrCl(x)=r|; this entails r < rk(x)− 1, since TrCl(x)=rk(x)−1 \
x = ∅.

We claim that there exists a z ∈ TrCl(x)=r−1\x which is not an element of any
y ∈ TrCl(x)=r. If this were not to hold, then by the discrimination lemma applied
to the family TrCl(x)=r ∪ {∅} we obtain z1, . . . , zk, k � |TrCl(x)=r|, so that the
family {v ∩ {z1, . . . , zk} | v ∈ TrCl(x)=r} ∪ {∅} is irredundant, of cardinality
|TrCl(x)=r| + 1. Therefore, there exists t ∈ (

TrCl(x)=r−1 \ x) \ {z1, . . . , zk} so
that any arc from any element y ∈ TrCl(x)=r to t can be removed from GTrCl(x)

without interfering with its extensionality. This contradicts the slimness of x.
Accordingly, taking z ∈ TrCl(x)=r−1 \ x which is not an element of any y ∈

TrCl(x)=r, there must be a w ∈ TrCl(x)>r so that z ∈ w; take such a w to
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be ⊆-minimal in TrCl(x)>r. Since rk(w) > r, there must exist u ∈ w of rank
greater than or equal to r. From the minimality of w, rk(w \ {u}) = r. Since
no y ∈ TrCl(x)=r contains z as element, we have that w \ {u} /∈ TrCl(x). Thus,
removing the arc wu from GTrCl(x) maintains its extensionality, which is against
the slimness of x.

To see that (2) holds as well, proceed again by contradiction and take r
maximum such that |TrCl(x)=r| > |x�r|. Observe that r < rk(x) − 1, since oth-
erwise TrCl(x)=rk(x)−1 = x�rk(x)−1. The choice of r implies that |TrCl(x)=r+1| �
|x�r+1|. From (1) we thus have

|TrCl(x)=r \ x| � |TrCl(x)=r+1| � |x�r+1|,
which brings the desired contradiction, since
|TrCl(x)=r| � |TrCl(x)=r \ x| + |x=r| � |x�r+1| + |x=r| = |x�r|. ��

4 Encoding

Let us begin by considering the set of ∈-digraphs of slim sets of bounded cardi-
nality and skewness:

Ms
h = {GTrCl(x) | x is slim ∧ |x| � s ∧ skewness(x) � h}.

Point (2) of the slim structure lemma implies that at any rank of GTrCl(x) ∈ Ms
h

there are at most s vertices. Point (1) implies that the number of vertices at any
given rank r of GTrCl(x) is non-increasing (for decreasing r), save for at most
|x| � s times, when a bounded number of sources (which are elements of x)
appear in GTrCl(x). Additionally, from the slim discrimination lemma it follows
that whenever x ∩ TrCl(x)=r = ∅ and |TrCl(x)=r+1| = |TrCl(x)=r |, then each
element of TrCl(x)=r+1 has cardinality 1, and thus has exactly one out-going arc
towards an element of TrCl(x)=r , and conversely, each element of TrCl(x)=r is
the out-neighbor of exactly one element of TrCl(x)=r+1.

Let us say that a rank r is a juncture rank of a slim set x if there is a source at
rank r in GTrCl(x), or there is a change in cardinality when passing from TrCl(x)=r

to TrCl(x)=r−1. For uniformity, we also consider 0 to be a juncture rank. The
previous two observations imply that two factors need to be taken into account
in order to show that strong immersion is a wqo on Ms

h.
First, the subdigraphs of GTrCl(x) induced by the vertices at a juncture rank

and by their out-neighbors can be encoded by characters drawn from an alphabet
Σs,h consisting of all such membership digraphs. On the other hand, in order
to manage the directed paths linking these subdigraphs, it suffices to encode
their lengths and their endpoints. We will use natural numbers for the first item,
while for the second, we will require that the membership digraphs from the
alphabet Σs,h have their sinks labeled. Entering into details, Σs,h consists of all
pairs (D,λ) satisfying the following properties:

(i) D is a digraph, which is acyclic and weakly extensional, in the sense that
for any distinct vertices u and v in V (D), if u is not a sink, then N+(u) �=
N+(v);
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(ii) removing any arc from D either increases the number of sinks of D or makes
it no longer weakly extensional;

(iii) D has at most s sources;
(iv) for any u, v ∈ V (D) with v ∈ N+(u) it holds that rk(u) − rk(v) � h;
(v) if all vertices of D at some rank r have exactly one out-neighbor, then either

(a) there is a source of D of rank r, or
(b) there exist u ∈ V (D) and v ∈ N+(u) such that rk(v) < r < rk(u);

(vi) denoting by T the set of sinks of D, λ is a label-assigning bijection λ : T →
{1, . . . , |T |}.

Given a pair (D, λ) ∈ Σs,h, we can define an Ackermann-line order on the vertices
of D in the following recursive way:

– for any sinks u, v of D, let u ≺(D,λ) v ⇔def λ(u) < λ(v);
– for any sink u of D any any other non-sink vertex v of D, set u ≺(D,λ) v;
– for any non-sink vertices u, v of D, let u ≺(D,λ) v ⇔def max≺(D,λ)(u\v) ≺(D,λ)

max≺(D,λ)(v \ u).

Given a slim set x having |x| � s and skewness(x) � h, we give two encodings for
it: σ(x), a string over the alphabet Σs,h, and δ(x), a string of positive integers.
They are obtained in the following algorithmic way. First, compute Ackermann’s
order ≺A on the elements of TrCl(x). Put also  = 1 + max{rk(y) | y ∈ TrCl(x)}.

The ith (i = 1, 2, ...) characters of σ(x) and δ(x) are obtained as follows.
Let r be the greatest juncture rank of x satisfying r <  , and let r′ be the
smallest rank such that r′ � r, and the subdigraph induced by the vertices in
TrCl(x)=r ∪TrCl(x)=r−1∪· · ·∪TrCl(x)=r′

, which we denote by Di, is isomorphic
to a digraph appearing in a pair of the alphabet Σs,h. Then, the ith character
of σ(x) is that pair (D, λ) such that there exists an isomorphism f : Di → D
with the additional property that for any sinks u, v ∈ V (Di) it holds u ≺A

v ⇔ λ(f(u)) < λ(f(v)). It thus holds that for any u, v sources of Di, we have
u ≺A v ⇔ f(u) ≺(D,λ) f(v).

Moreover, set the ith character of δ(x) to be  − r. Next, update  to be r′

and go on to computing the (i+ 1)th characters of σ(x) and δ(x). Observe that
the strings σ(x) and δ(x) have the same lengths, and that, for uniformity, we
have chosen to always set the first character of δ(x) as 1.

An example of a membership digraph of a slim set x is given in Fig. 5, where
the digraphs appearing in the characters of σ(x) are marked in gray.

5 Main Result

The proof that strong immersion if a wqo on Ms
h proceeds as follows. First, we

argue that for any such slim set x of bounded cardinality and skewness, the
length of the string σ(x) is bounded. Thus, given an infinite sequence (xi)i=1,2,...

of such sets, we can find an infinite subsequence (xij )j=1,2,... such that σ(xi1 ) =
σ(xi2 ) = . . .. This implies that between the membership digraphs corresponding
to two consecutive characters of σ(xij ), for any j, we have the same number of
directed paths. Observe also that |δ(xi1 )| = |δ(xi2 )| = . . ..
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rk 2rk 7rk 12rk 15

3 3

2

Fig. 5. The membership digraph of a slim set x of cardinality 6 and skewness 3; we
have δ(x) = 1 3 3 2

However, this not yet sufficient, since the directed paths between these di-
graphs can have arbitrary lengths. For this reason, we use a basic fact from
the theory of wqo’s (see e.g. [7]). If (Q,�) is a wqo, then so is the set of fixed
length sequences over Q, componentwise ordered by �. That is, the pair (Q�,��)
is a wqo, where for any (x1, . . . , x�), (y1, . . . , y�) ∈ Q� we have (x1, . . . , x�) ��

(y1, . . . , y�) ⇔def xi � yi, for all 1 � i � �. Since (N,�) is a wqo, this implies
that we can find xij and xik

in the aforementioned infinite sequence such that
taking � = |δ(xi1 )| we have δ(xij ) �� δ(xik

). To ensure that these directed paths
also have corresponding endpoints, we will finally make use of the labeling of the
sinks, obtained by Ackermann’s order.

Lemma 5. For any s, h � 1, there exists a computable function g(s, h) such that
for any slim set x, with |x| � s and skewness(x) � h, it holds |σ(x)| � g(s, h).

Proof. We first argue that the cardinality of Σs,h is finite. Given (D, λ) ∈ Σs,h,
observe that point (2) of the slim structure lemma entails that the number of
vertices of D at a given rank is bounded by s. Then, for any t, 1 � t � s, there
are at most sh ranks r with the property that D has exactly t vertices of rank
r. Indeed, (ii), (iv) and the slim structure lemma imply that there can be at
most h consecutive ranks at which there are exactly t vertices of D. Moreover,
this cardinality t of vertices at the same rank can repeat itself for at most s
non-consecutive ranks, the culprits being the sources of D, which are at most s.
To conclude, D can have at most sh

∑s
t=1 t vertices, and hence the cardinality

of Σs,h is bounded by s!3(
1
2 s2(s+1)h

2 ), since there can be at most s sinks in a
character of Σs,h, and s! distinct ways to label them.

Observe now that a character inside the encoding σ(x) of a slim set x can
appear more than once, but only because of a source of GTrCl(x) (that is, one of
the elements of x). Since the cardinality of x is bounded by s, then g(s, h) can
be taken to be s|Σs,h|. ��
Theorem 1. The pair (Ms

h,�s
i ) is a wqo.
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Proof. Let (GTrCl(xi))i=1,2,... be an infinite sequence of membership digraphs
belonging to Ms

h. By Lemma 5, there exists an infinite subsequence of it,
(GTrCl(xij

))j=1,2,..., such that σ(xi1 ) = σ(xi2 ) = . . .. As noted before, |σ(xij )| =
|δ(xij )| holds for any j, and if we denote their length by �, we have that there
exists 1 � j < k such that for y =def xij and z =def xik

, we have δ(y) �� δ(z).
Given a string σ, denote by σ[m] its mth character, 1 � m � |σ|. Let

(Dm, λm) =def σ(y)[m], for any 1 � m � �. Let also r(m) be the juncture
rank of y responsible for the introduction of the mth character of σ(y). Re-
call that r(m) > r(m + 1), for any 1 � m < �. We will show by induction on t,
0 � t < �, that we have a strong immersion of the subdigraph of GTrCl(y) induced
by the elements of TrCl(y)�r(�−t) into GTrCl(z).

The subdigraph induced by TrCl(y)�r(�) is isomorphic to D�, and hence iso-
morphic to TrCl(z)�r(�), which proves our claim for t = 0.

Assume now that η is a strong immersion of TrCl(y)�r(�−t) into GTrCl(z), for
t < �−1. Construct the strong immersion η′ of TrCl(y)�r(�−(t+1)) into GTrCl(z) as
follows. For any vertex in TrCl(y)�r(�−t) and any arc between two such vertices,
let η′ coincide with η. The elements of TrCl(y)�r(�−(t+1)) \ TrCl(y)�r(�−t) can
be divided into those vertices forming the subdigraph Dy of GTrCl(y) isomorphic
to D�−(t+1), and those vertices forming the subdigraph Py of GTrCl(y) consisting
of vertex-disjoint directed paths linking the sinks of Dy to vertices at juncture
rank r(� − t).

Map the vertices of Dy to those vertices of GTrCl(z) to which they are mapped
according to the isomorphisms which gave σ(y)[� − (t + 1)] = σ(z)[� − (t + 1)].
To be more precise, denote by Dz the subdigraph of GTrCl(z) responsible for
the choice of (D�−(t+1), λ�−(t+1)) as the (� − (t + 1))th character of σ(z). De-
note also by fy : Dy → D�−(t+1) and by fz : Dz → D�−(t+1) the correspond-
ing label-preserving isomorphisms. Then, let η′(v) = f−1

z (fy(v)) and η′(uv) =
(f−1

z (fy(u)), f−1
z (fy(v))) for any v, u ∈ V (Dy).

Let now P z be the induced subdigraph of GTrCl(z) consisting of those vertex-
disjoint paths between the sinks of Dz to the vertices of GTrCl(z) at that juncture
rank responsible for the introduction of the (� − (t + 1))th character of σ(z).
Clearly, Py and P z consist of the same number of vertex disjoint paths, since
σ(y) = σ(z). Moreover, all paths of Py and P z, have the same lengths, respec-
tively. Additionally, since δ(y) �� δ(z), we have that all paths of Py have length
less than, or equal, to all paths of P z. It remains to show that their endpoints
correspond.

From the way σ(y) and σ(z) were constructed, for any sinks u, v of Dy it
holds that u ≺A v ⇔ η′(u) ≺A η′(v). Similarly, for any vertices u, v of GTrCl(y)

at juncture rank r(� − t), u ≺A v ⇔ η′(u) ≺A η′(v) also holds. Consider now a
directed path py of Py with endpoints v, a sink of Dy, and w, a vertex of rank
r(� − t). From the above two observations and the definition of Ackermann’s
order, it follows that in P z there is a directed path pz with endpoints η′(v)
and η′(w). Since |py| � |pz|, py can thus be strongly immersed into pz by an
extension of η′. ��
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6 Conclusion

We consider the results of this paper a first step in studying digraph immersion
and well-quasi-orders for various classes of sets. It is thus of particular interest to
what extent the constraints considered here can be weakened. Observe, however,
that dropping the bounds on cardinality and on skewness at the same time no
longer ensures the wqo property for slim sets, since the membership digraphs
Fn in Fig. 4, which have unbounded cardinality and skewness, can be easily
rendered slim (it suffices to add 4 vertices with sets of out-neighbors {an}, {b′n},
{an, b

′
n}, and {a1, b

′
n}, respectively).

It would be interesting to know if the same strategy employed in this paper
could be extended to prove that the collection of hereditarily finite slim sets of
bounded skewness (with no bound on the cardinality) admits a wqo. In order to
do this a generalization of the results in Sec. 5 dealing with alphabets Σs,h for
various values of s would be sufficient.
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On the Interval-Bound Problem for Weighted
Timed Automata
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Abstract. A weighted timed automaton is a timed automaton equipped
with weights on transitions and weight rates on locations. These weights
may be positive or negative, corresponding to the production and con-
sumption of some resources. We consider the interval-bound problem:
does there exist an infinite run such that the accumulated weight for
each prefix of the run is within some given bounds? We show that this
problem is undecidable if the weighted timed automaton has more than
one clock and more than one weight variable. We further prove that
the problem is PSPACE-complete if we restrict the time domain to the
natural numbers.

1 Introduction

During the last years, weighted timed automata [2,3] have received much at-
tention in the real-time community. A weighted timed automaton is a timed
automaton extended with weight variables, whose values may grow or fall lin-
early with time while being in a state, or discontinuously grow or fall during a
state change. In this way, weighted timed automata can be used to model both
continuous and discrete production and consumption of resources, like energy,
bandwidth or money. This allows for interesting applications e.g. in operations
research, in particular, optimal scheduling.Recently [5], three interesting resource
scheduling problems for weighted timed automata were introduced: the existence
of an infinite run during which the values of the weight variables never fall below
zero (lower-bound), never fall below zero and never exceed a given upper bound
(interval-bound), and never fall below zero and never exceed a given weak upper
bound, meaning that when the weak upper bound is reached, the value of the
weight variable is not increased but maintained at this level (lower-weak-upper-
bound). For weighted timed automata with a single clock and a single weight
variable, the lower-bound-problem and the lower-weak-upper-bound-problem are
decidable in polynomial time [5], albeit with the restriction that the weighted
timed automaton does not allow for discontinuous updates of the weight vari-
ables during state changes. In [4] it is proved that the lower-bound-problem is
also decidable if this restriction is lifted and if the values of the weight variables
may not only change linearly but also exponentially in time. The interval-bound-
problem is undecidable for weighted timed automata with a single clock and a
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single weight variable in a game setting; in the corresponding existential setting,
however, the problem is open to the best of our knowledge.

In this paper, we show that the interval-bound-problem is undecidable for
weighted timed automata with two clocks and two weight variables (or more).
The proof is a reduction from the infinite computation problem for two-counter
machines [8]. The undecidability proof does not require discrete updates of the
weight variables in the automaton. As a second main result, we show that the
interval-bound-problem is PSPACE-complete if we restrict the time domain to
the natural numbers. This result is irrespective of the number of clocks and
weight variables. The proof for PSPACE-membership is based on a polynomial-
time reduction to the recurrent reachability problem for timed automata [7,1].
These two results are a big step towards the precise decidability border for the
interval-bound problem for weighted timed automata.

2 Preliminaries

We let � and � denote the set of integers and reals, respectively, and we let �
and �≥0 be the set of positive integers and reals, respectively. We let � ∈ {�,�},
and define �≥0 to be the set {x ∈ � | x ≥ 0}.

Let X be a finite set of clock variables ranging over �≥0. We define clock
constraints φ over X to be conjunctions of formulas of the form x ∼ c, where c ∈
�, x ∈ X and ∼ ∈ {<,≤, =,≥, >}. Let Φ(X ) be the set of all clock constraints
over X . A clock valuation ν : X → �≥0 is a function that assigns a value to
each clock variable. A clock valuation ν satisfies a clock constraint φ, written
ν |= φ, if φ evaluates to true according to the values given by ν. For δ ∈ �≥0

and λ ⊆ X , we define the clock valuation ν + δ to be (ν + δ)(x) = ν(x) + δ for
each x ∈ X and the clock valuation ν[λ := 0] by (ν[λ := 0])(x) = 0 if x ∈ λ and
(ν[λ := 0])(x) = ν(x) otherwise.

Let W be a finite set of weight variables ranging over �. A weight valuation
μ : W → � is a function that assigns a value to each weight variable.

A weighted timed automaton over time domain � is a tuple

A = (L, l0,X ,W , E, ι, ewt, lwt),

where

– L is a finite set of locations,
– l0 ∈ L is an initial location,
– X is a finite set of clock variables,
– W is a finite set of weight variables,
– E ⊆ L× Φ(X) × 2X × L is a finite set of edges,
– ι ∈ �

W is an initial weight function,
– ewt : E → �

W is a function assigning a weight function to each edge,
– lwt : L → �

W is a function assigning a weight rate function to each location.

A weighted timed automaton does not allow for discrete updates of its weight
variables if ewt(e) = {0}W for each e ∈ E. A timed automaton over � is a
weighted timed automaton A over � where the set of weight variables is empty.
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A state of a weighted timed automaton is a triple (l , ν, μ) ∈ L × �
X
≥0 × �

W .
Between two states (l , ν, μ) and (l ′, ν′, μ′) there is a timed transition, written
(l , ν, μ) δ−→ (l , ν′, μ′), if there is some δ ∈ �≥0 such that l ′ = l , ν′ = ν + δ
and μ′(w) = μ(w) + lwt(l)(w) · δ for each w ∈ W . Between two states (l , ν, μ)
and (l ′, ν′, μ′) there is a discrete transition, written (l , ν, μ) e−→ (l , ν′, μ′), if
there is some e = (l , φ, λ, l ′) ∈ E such that ν |= φ, ν′ = ν[λ := 0] and
μ′(w) = μ(w) + ewt(e)(w) for each w ∈ W . A finite run in A is a sequence∏n

i=1(li−1, νi−1, μi−1)
δi−→ (li−1, ν

′
i, μ

′
i)

ei−→ (li, νi, μi) of alternating timed and
discrete transitions for some n ∈ �. An infinite run in A is an infinite sequence∏∞

i=0(li−1, νi−1, μi−1)
δi−→ (li−1, ν

′
i, μ

′
i)

ei−→ (li, νi, μi) of alternating timed and
discrete transitions. We say that a run is initialized if ν0(x) = 0 for each x ∈ X
and μ0 = ι. For b ∈ �

W , we say that a finite (or infinite, respectively) run is
b-feasible if the run satisfies 0 ≤ μi(w), μ′

i(w) ≤ b(w) for each w ∈ W and each
i ∈ {0, ...n} (i ≥ 0, respectively). We say that a state (l , ν, μ) is reachable in A
if there is an initialized finite run in A ending in (l , ν, μ). Given a set F ⊆ L, we
say that an infinite run is F -accepting if some l ∈ F occurs on it infinitely often
(standard Büchi acceptance condition).

In this paper, we are interested in the following resource scheduling problem,
introduced in [5].

The interval-bound problem
INPUT: A weighted timed automaton A over � with the set X of clock

variables, the set W of weight variables, the edge cost function
ewt and initial weight function ι, and an upper bound function
b ∈ �W satisfying ι(w) ≤ b(w) for each w ∈ W .

QUESTION: Does there exist an initialized infinite b-feasible run in A?

3 Undecidability Result

Theorem 1. The interval-bound problem for weighted timed automata over �
is undecidable if � = �, |X | ≥ 2, |W| ≥ 2, and ewt satisfies ewt(e) = {0}W for
each e ∈ E.

Proof. The proof is a reduction from the infinite computation problem for two-
counter machines [8]. A two-counter machine M is a finite sequence (Ij)n

j=1 of
instructions operating on two counters denoted by C1 and C2, where Ij is one
of the following instructions (with i ∈ {1, 2} and j, k, m ∈ {1, ..., n}):

increment Ij :Ci := Ci + 1; go to Ik

zero test/decrement Ij : if Ci = 0 then go to Ik else Ci :=Ci − 1; go to Im

stop Ij : stop

A configuration of a two-counter machine M is a triple γ = (J, c1, c2) ∈
{I1, ..., In}×�×�, where J indicates the current instruction, and c1 and c2 are
the current values of the counters C1 and C2, respectively. A computation of M
is a finite or infinite sequence (γi)i≥0 of configurations, such that γ0 = (I1, 0, 0)
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and γi+1 is the result of executing the instruction of γi on γi for each i ≥ 0. The
infinite computation problem for two-counter machines asks, given a two-counter
machine M, whether there is an infinite computation of M. This problem is
undecidable [8].

We simulate a two-counter machine M by a weighted timed automaton AM
with the set X = {x, y} of clock variables and the set W = {w1, w2} of weight
variables, and an upper bound function b ∈ �

W with b(w1) = b(w2) = 5, and
show that there is an infinite computation of M if and only if there exists an
initialized infinite b-feasible run in AM.

We use the first weight variable w1 to encode the values of the two counters
of M. If c1 and c2 are the values of the two counters, then the value of w1 is
5 − 1

2c13c2 . We let ι(w1) = 4 to model that both C1 and C2 are initialized to 0.
The second weight variable w2 is needed for encoding the zero test instruction
of M. We let ι(w2) = 0.

The instructions of M are encoded as weighted timed automata widgets. We
label a location l with α, β to denote that the weight rate function lwt(l) is
defined by lwt(l)(w1) = α and lwt(l)(w2) = β for some α, β ∈ �. In the following,
we let 0 < e = 1

2c13c2 ≤ 1 for some c1, c2 ∈ �.

Incrementing the value of C1. The widget for incrementing the value of C1

is shown in Fig. 1. The idea (adopted from [5]) is to use the interval-bound of

−6, 0 5, 0 −30,0 5, 0 −3, 0
x, y := 0 y := 0 y := 0 x, y := 0

x = 3
Ij m1 m2 m3 m3 Ik

y = 1 y = 1

Fig. 1. Widget for the instruction Ij : C1 := C1 + 1; go to Ik

the value of w1 to force the weighted timed automaton to pass exactly as much
time as is needed to obtain a new value of w1 corresponding to the increment of
C1. Note that incrementing C1 corresponds to dividing e by 2.

Lemma 1. Let r be a finite b-feasible run from (Ij , ν, μ) to (Ik, ν′, μ′) with
μ(w1) = 5 − e and μ(w2) = 0. Then μ′(w1) = 5 − e/2 and μ′(w2) = 0.

Testing the value of C1 against zero and decrement it. In this widget
we have to check whether c1 = 0, i.e., whether e = 3−c2 for some c2 ∈ �. The
idea for the construction of this widget is adopted from [6]. We first transfer the
value of e into the clock variable x and then multiply the value of x by 3. If at
some point the value of x equals 1, we know that e = 3−c2 for some c2 ∈ �,
and thus the value of C1 is zero. If on the other hand the value of x exceeds 1,
we can conclude that e �= 3−c2 for all c2 ∈ � and thus C1 is not zero. We then
reconstruct the original values of x and, depending on whether C1 is zero or not,
we either go to Ik, or we multiply the original value of x (i.e., e) by 2 and go
to Im. We use the interval-bounds of the weight variables to force the weighted
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timed automaton to spend as much time as is needed for the construction. The
widget is shown in Fig. 2. We remark that in the widget the clock variable y is
reset at every edge. Due to lack of space, we do not display this in the picture.

Lemma 2. Let r be a finite b-feasible run from (Ij , ν, μ) to (Ik, ν′, μ′) with
μ(w1) = 5 − e and μ(w2) = 0. Then μ′(w1) = 5 − e and e = 3−n for some
n ∈ �, and μ′(w2) = 0.

Lemma 3. Let r be a finite b-feasible run from (Ij , ν, μ) to (Im, ν′, μ′) with
μ(w1) = 5−e and μ(w2) = 0. Then μ′(w1) = 5−2e and e �= 3−n for each n ∈ �,
and μ′(w2) = 0.

C2. Incrementing C2 and testing the value of C2 against zero and decrement it
can be done in a similar way, but is not explained here due to lack of space.

Stop. The widget for the stop instruction consists of a single location lf with
no outgoing edges.

Simulation of the two-counter machine. Let M = (I1, ..., In) for some n ∈
� be a two-counter machine. For each i ∈ {1, ..., n}, let Ai be the weighted timed
automaton widget corresponding to Ii according to the constructions presented
above. Now, let AM be the weighted timed automaton obtained by plugging the
corresponding Ai with each other. Then the following lemma holds.

Lemma 4. There is an infinite computation of M if and only if there is an
initialized infinite (5, 5)-feasible run in AM.

4 Decidability Result

Theorem 2. The interval-bound problem for weighted timed automata A over
� is PSPACE-complete if � = �.

The lower bound of this problem follows immediately from the PSPACE-com-
pleteness of the recurrent reachability problem for timed automata over � with
three or more clock variables [7,1]: given a timed automaton with a designated
set F of locations, is there an initialized F -accepting run? For showing that the
problem is in PSPACE, we give a polynomial-time translation to the recurrent
reachability problem. Let A = (L, l0,X ,W , E, ι, ewt, lwt) be a weighted timed
automaton and let b ∈ �

W be an upper bound function such that ι(w) ≤ b(w)
for each w ∈ W . We define a timed automaton Ab with location set Lb ⊇ L such
that the following lemma holds:

Lemma 5. There is an initialized infinite b-feasible run in A if and only if there
is an initialized L-accepting run in Ab.

The timed automaton Ab is composed of timed automata modelling the edges
of A. Let e = (l , φ, λ, l ′) ∈ E. We define the timed automaton Ae to be a
combination of timed automata widgets (see Fig. 5 on p.11 for an example). The
main widgets are the addition widget and the subtraction widget, which may be
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Fig. 2. Widget for the instruction Ij : if C1 = 0 then go to Ik else C1 := C1 − 1; go
to Im. The clock y is reset at each edge. This is not displayed due to lack of space.
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executed several times. In short, the idea of Ae is as follows. For each clock
variable x in A, we introduce a clock variable x′ in Ae. Likewise, for each weight
variable w in A, we introduce a clock variable w′ in Ae. We further let d, d′ be
clock variables representing the time delay and its copy, respectively, and y be
an auxiliary clock variable. The purpose of Ae is to model the elapse of time
in the source location of the edge followed by the execution of e in A. If in Ae

we let δ time units pass in l , the values of both the clock variables x′ and w′

are increased by δ. However, since w′ represents the weight variable w, we want
its value to be the sum of its old value and lwt(l)(w) · δ. For positive weight
rates, this is done in the addition widget: We read out the value of δ (which is
stored in the clock variable d), and add the product of lwt(l)(w)−1 and δ to the
value of w′, so that finally the value of w′ is as wanted. Negative weight rates
are treated similarly using the subtraction widget. Thereafter, we add the edge
cost ewt(e)(w) to the value of w′ using another instance of the addition widget
or the subtraction widget, respectively. In between, we check whether the value
of w′ satisfies the interval-bound. If this is the case, we reset the values of the
clock variables according to λ and go to l ′. If not, the timed automaton is stuck
in a dead end.

In all widgets, we have to read out and change the values of some clock
variables. One difficulty is to maintain the original values of the other clock
variables. For the widgets, we need several bounds on the values of clock variables.
The following lemma claims that we can assume that all values of clock variables
in A are bounded above. The proof of the lemma is similar to the proof of
Theorem 2 in [3].

Lemma 6. Let A be a weighted timed automaton over � with weight variables
W and initial weight function ι, and let b ∈ �W be an upper bound function sat-
isfying ι(w) ≤ b(w) for each w ∈ W. Then there is a weighted timed automaton
A′ over � such that for each reachable state (l , ν, μ) in A′ we have ν(x) < u for
some u ∈ � and each x ∈ X , and there is an initialized b-feasible run in A if
and only if there is an initialized b-feasible run in A′.

Let u ∈ � be the upper bound referred to in Lemma 6. In the remaining paper,
we let n ∈ � be the smallest number α > 1 such that 2α > max({b(w) | w ∈
W} ∪ {u}) + u. In the following, we explain the addition widget and thereafter
the other widgets needed. Finally, we explain how the widgets are combined to
make up Ae.

4.1 The Addition Widget

The addition widget is shown in Fig. 3. It is called by ADD〈z, d, i,U〉, where z
and d are clock variables, i ∈ � and U is a set of clock variables. We assume
that the values of all clock variables are strictly less than 2n. In the widget,
the value of the clock variable z is increased by the product of the value of the
clock variable d and 2i. The entering values of the clock variables x ∈ U are
maintained. This is done as follows.

First, we read out the value of the clock variable d. The idea is adopted
from [7]. The value of d is at most 2n − 1. The widget consists of n phases.
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Fig. 3. The addition widget ADD〈d, z, i,U〉. Edges labeled with, e.g., x = 2p, indicate
that for each x ∈ U there is an edge with clock constraint x = 2p.
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The first phase is called phase n, the second n − 1, and so forth, until we reach
the last phase called phase 1. For each j ∈ {n, ..., 1}, we check whether in phase
j the jth bit of the value of d is set or not by using the clock constraint d ≥ 2j−1

and d < 2j−1, respectively.
If the jth bit is set, we take one of the the upper paths in phase j. Here,

we add 2j+i−1 to the value of z. This is done by letting exactly 2j+i−1 time
units elapse between locations ej and gj

1. Doing so, the value of z is increased
by 2j+i−1. Note that the value of d is not increased by 2j+i−1 because it is reset
to zero when its value equals 2j+i−1. After that we set the jth bit of d to zero
in order to be able in the next phase j − 1 to check whether the (j − 1)th bit is
set or not. This is done between locations gj

1 and aj−1.
If the jth bit is not set, we take one of the lower paths in phase j. In this case,

we neither need to change the value of z nor the value of d. However, we want the
time that is spent between locations aj and aj−1 to be the same, independent
on whether we take the upper or lower path, in order to be able to reconstruct
the original values of x ∈ U after phase 1. In the upper paths, between ej and
aj−1, exactly 2j+i−1 +2j−1 time units elapse. This sum is added to the values of
z and x ∈ U . Hence, we want 2j+i−1 + 2j−1 to be added to the values of x ∈ U
also in the lower paths. In contrast to the upper path, here we do not want to
add 2j+i−1 to the value of z. Thus, we have to reset the value of z to zero if its
value equals 2j+i−1 before we compare y against 2j+i−1. However, the value of
z may be greater than 2j+i−1, and we thus need to use another upper bound
for testing against the value of z. We let m ∈ � be the smallest number α such
that 2α ≥ 2i+n +

∑n
j=1 2j . We use the two upper bounds 2n and 2m in the clock

constraints in the widget to let exactly the same time 2m + 2j+i−1 + 2j−1 elapse
between aj and aj−1, no matter whether the jth bit is set or not. For this reason,
in the following lemma the values of the clock variables contain some “unwanted”
summands.

Lemma 7. Let i ∈ �, and let νn ∈ �
U∪{d,y,z} be a clock valuation satisfying

νn(d), νn(z), νn(x) < 2n for each x ∈ U and νn(y) = 0. Then there is a unique
run from (an, νn) to (a0, ν0), and ν0 satisfies

– ν0(x) = νn(x) + (
∑n−1

j=0 2m + 2j+i) + (2n − 1) for each x ∈ U ,
– ν0(y) = 0,
– ν0(z) = νn(z) + νn(d) · 2i + (2n − 1).

We observe that in location a0, the values of the clock variables z and x ∈ U
share the same summand 2n − 1. We get rid of this summand between locations
a0 and c0 in the product widget. In the following, we explain how this is done.

We first determine a new upper bound of the values of the clock variables
when entering a0. Let p ∈ � be the smallest number α such that 2α ≥ 2n +∑n−1

j=0 2m + 2j+i. Then we have ν0(c) < 2p + (2n − 1) for each c ∈ U ∪ {y, z}.
We use the clock variable y to let exactly 2p time units pass between entering
a0 and entering c0. In between, the values of z and x ∈ U are reset to zero
when their values equal 2p + (2n − 1). As a result, the values of z and x ∈ U
are decreased by 2n − 1. In particular, the value of z equals νn(z) + νn(d) · 2i
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when the automaton enters c0. Note that ν0(z) < ν0(x) for each x ∈ U , and thus
the clock constraint

∧
x∈U x < 2p + (2n − 1) guarantees that each clock variable

x ∈ U is reset before we take the edge to c0. Using similar ideas we get rid of the
common summand

∑n−1
j=0 2m + 2j+i in the values of x ∈ U , while maintaining

the value of z. Altogether, we obtain the following lemma.

Lemma 8. If the addition widget is called by ADD〈z, d, i,U〉 for some i ∈ �, and
the values of d, z and x ∈ U are given by the clock valuation ν, then we leave the
subtraction widget if and only if ν satisfies ν(d), ν(z), ν(x) < 2n for each x ∈ U .
When leaving the widget, the new values of d, z and x ∈ U are given by the clock
valuation ν′ satisfying ν′(x) = ν(x) for each x ∈ U , ν′(z) = ν(z) + ν(d) · 2i and
ν′(d) = 0.

4.2 Other Widgets

For dealing with negative edge weights and weight rates, respectively, we use
the subtraction widget, see Fig. 4. It is called by SUB〈z, d, i,U〉, where z, d, i
and U are as above. In the widget, the value of the clock variable z is decreased
by the product of the value of the clock variable d and 2i. The entering values
of the clock variables x ∈ U are maintained. For copying the value of one
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Fig. 4. The subtraction widget SUB〈d, z, i,U〉. Edges labeled with, e.g., x = 2p, indicate
that for each x ∈ U there is an edge with clock constraint x = 2p.

clock variable d to another clock variable z, we use instances of the copy widget,
called by COPY〈z, d,U〉. Moreover, we can assign some constant i to a clock
variable z, while maintaining the values of some set U of clock variables, using
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instances of the assignment widget, called by ASGN〈z, i,U〉. Both the copy and
the assignment widget are constructed using ideas explained in the preceding
subsection.

4.3 Arrangement of the Widgets

For the edge e = (l , φ, λ, l ′) with lwt(l)(wi) = ki and ewt(e)(wi) = k′
i for each

wi ∈ W , the widget Ae is composed from instances of the addition, subtraction,
copy and assignment widget as follows. Recall that the clock variables of Ae are
Xe = {x′ | x ∈ X} ∪ {w′ | w ∈ W} ∪ {d, d′, y}.

The clock variables d and d′ represent the time delay and its copy, respectively.
The initial location is l , and d and d′ are initialized to zero. From l there is an
edge to some location l1 labeled with the clock constraint φ and the reset set
{y}. Note that when the automaton enters l1 the values of all clock variables
are increased by the time δ that is spent in l . In particular, the values of d and
d′ equal δ. We treat the weight variables consecutively and start with w1. If
k1 = 0, no weight is supposed to be added to the value of w′

1 and thus the delay
δ must be subtracted from the value of w′

1 again. For this, we call the subtraction
widget SUB〈w′

1, d, 0,Xe\{w′
1, d}〉. If k1 �= 0, we let ρ = k − 1 and repeatedly add

widgets to Ae until ρ = 0 as follows. Assume |ρ| = 2i for some i ∈ �\{0}. If
k1 > 0, we have to add the value of d 2i times to the value of w′

1. For this, call
the addition widget ADD〈w′

1, d, i,Xe\{w′
1, d}〉, and put ρ = 0. Analogously, if

k1 < 0, we have to subtract the value of d exactly 2i times from the value of w′
1.

In this case, call the subtraction widget SUB〈w′
1, d, i,Xe\{w′

1, d}〉, and put ρ = 0.
If |ρ| �= 2i for all i ∈ �, let j ∈ � be the greatest number α such that 2α < |ρ|.
If k1 > 0, call the addition widget ADD〈w′

1, d, j,Xe\{w′
1, d}〉, and decrement

ρ by 2j. Otherwise, call the subtraction widget SUB〈w′
1, d, j,Xe\{w′

1, d}〉, reset
the value of d by calling the copy widget COPY〈d, d′,Xe\{d, d′}〉, and increment
ρ by 2j. If eventually ρ = 0, the value of w′

1 equals the value of w1 after the
time delay in l . We check whether this value is within the interval-bound using
an edge labelled with the clock constraint 0 ≤ w′

1 ≤ b(w1). Then, we add the

d,d′
:=0

l l1
φ

y := 0

◦ ADD
〈w′,d, 2,
Xe\{w′,d}〉

◦ COPY
〈d, d′,
Xe\{d,d′}〉

◦ ADD
〈w′,d, 0,
Xe\{w′,d}〉

◦� ASGN
〈d, 4,
Xe\{d}〉

◦ SUB
〈w′, d, 0,
Xe\{w′,d}〉

◦�
λ

l ′

Fig. 5. Widget Ae for e = (l , φ, λ, l ′), lwt(l)(w) = 6 and ewt(e)(w) = −4 (� stands for
the clock constraint 0 ≤ w′ ≤ b(w) and ◦ stands for the clock constraint y = 0).

edgecost k′
1 (if unequal to 0) to the value of w′

1 using the addition or subtraction
widget, respectively. For this, the absolute value k′

1 is assigned to a clock variable
by calling the assignment widget ASGN〈d, |k′

1|,Xe\{d}〉. After the addition or
subtraction widget, respectively, we call the copy widget again, to reset the
value of d to δ. From there, we add an edge where we check whether the value
of w′

1 is within the interval-bound using the clock constraint 0 ≤ w′
1 ≤ b(w1).
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We remark that the edges between all widget instances must be labelled with
a clock constraint y = 0 in order to avoid that time elapses. We proceed in the
same manner with the remaining weight variables. Finally, we add an edge to
the final location l ′. At this edge we reset all clock variables in λ according to
the edge e.

Lemma 9. Let ν ∈ �
X , μ ∈ �W and νe ∈ �

Xe such that νe(x′) = ν(x) for each
x ∈ X , νe(w′) = μ(w) and 0 ≤ μ(w) ≤ b(w) for each w ∈ W, and δ ∈ �. Then
(l , ν, μ) δ−→ (l , ν′′, μ′′) e−→ (l ′, ν′, μ′) is a finite b-feasible run in A if and only if
there is a unique run from (l , νe) to (l ′, ν′

e) in Ae, where ν′
e(x′) = ν′(x) for each

x ∈ X and ν′
e(w

′) = μ′(w) for each w ∈ W.

5 Open Problems

In this paper, we move towards a precise decidability border for the interval-
bound problem for weighted timed automata. The decidability of the interval-
bound problem for weighted timed automata over � with exactly one clock or one
weight variable is still an open problem. Also, it is interesting to consider the
lower-bound-problem and the lower-weak-upper-bound-problem mentioned in
the introduction for weighted timed automata over time domain � with two clock
or weight variables. Last but not least, all three resource scheduling problems
are practically interesting also for weighted timed automata over different weight
structures. One step into this direction was recently [4] done for weighted timed
automata with exponentially growing value of the weight variable.
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Abstract. In the present paper, we introduce and study the problem
of computing, for any given finite set of words, a shuffle word with a
minimum so-called scope coincidence degree. The scope coincidence de-
gree is the maximum number of different symbols that parenthesise any
position in the shuffle word. This problem is motivated by an applica-
tion of a new automaton model and can be regarded as the problem of
scheduling shared memory accesses of some parallel processes in a way
that minimises the number of memory cells required. We investigate the
complexity of this problem and show that it can be solved in polynomial
time.

Keywords: String Algorithms, Shuffle, Memory Access Scheduling.

1 Introduction

A shuffle word of two words u and v is any word w that can be produced by
inserting all symbols of u somewhere into v, in such a way that their relative
order, given by u, is preserved. Thus, w comprises both u and v as a (scattered)
subword, and each of its letters corresponds to exactly one letter of either u or
v. Shuffle words of more than two words are constructed iteratively.

In the present paper, we wish to propose and study a question on shuffle words
that is mainly motivated by the following problem on scheduling of memory
accesses: Let us assume we have k processes and m values stored in memory
cells, and all these processes need to access the stored values at some points
during their execution. A process does not necessarily need all the m values at
the same time, so a process might get along with less than m memory cells by,
for example, first using a memory cell for a value x and then, as soon as x is
not needed anymore, using the same cell for another, and previously unneeded,
value y. As an example, we assume that process w1 uses the values a, b and
c in the order abacbc. This process only needs two memory cells: In the first
cell, b is permanently stored, and the second cell first stores a until it is not
required anymore and then stores value c. This is possible, since the part of
w1 where a occurs and the part where c occurs can be completely separated
� Corresponding author.
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from each other. If we now assume that the k processes cannot access the shared
memory simultaneously, then the question arises how we can sequentially arrange
all memory accesses such that a minimum overall number of memory cells is
required. For example, if we assume that, in addition to process w1 = abacbc,
there is another process w2 := abc, then we can of course first execute w1 and
afterwards w2, which results in the memory access sequence abacbcabc. It is
easy to see that this requires a memory cell for each value a, b and c. On the
other hand, we can first execute aba of process w1, then process w2 = abc, and
finally the remaining part cbc of w1. This results in abaabccbc, which allows us
to use a single memory cell for both values a and c as before.

This scheduling problem can directly be formalised as a question on shuffle
words. To this end, we merely have to interpret each of the k processes as a word
over an alphabet of cardinality m, where m is the number of different values to
be stored. Hence, our problem of finding the best way to organise the memory
accesses of all processes directly translates into computing a shuffle word of the
k processes that minimises the parameter determining the number of memory
cells required. Unfortunately, even for k = 2, there is an exponential number
of possible ways to schedule the memory accesses. However, we can present an
algorithm solving this problem for arbitrary input words and a fixed alphabet
size in polynomial time.

The above described problem is similar to the task of register allocation (see,
e. g., [4,6]), which plays an important role in compiler optimisation. However, in
register allocation, the problem is to allocate a number of m values accessed by
a process to a fixed number of k registers, where k < m, with the possibility to
temporarily move values from a register into the main memory. Since accessing
the main memory is a much more expensive CPU operation, the optimisation
objective is to find an allocation such that the number of memory accesses is
minimised. The main differences to the problem investigated in this work are
that the number of registers is fixed, the periods during which the values must
be accessible in registers can be arbitrarily changed by storing them in the main
memory, and there is usually not the problem of sequentialising several processes.

Our practical motivation and the definition of the above introduced problem
result from an application of a new automaton model with two input heads [7].
In our application, these two input heads need to travel over factors of the
input word; to this end, they need to know the lengths of these factors. Thus,
each input head movement can be interpreted as a process that needs to access
lengths of factors in a certain order. Within the scope of [7], the overall number
of values that need to be stored simultaneously does not only affect the memory
usage of the automaton; it also has a significant impact on the runtime of its
computations. Thus, our problem on shuffle words is crucial in this context.
Although we consider this nontrivial problem fundamental and believe that it
might occur in other practical situations as well, it is not covered by any literature
on scheduling (see, e. g., [1,3]) we are aware of, and the same holds for the research
on the related common supersequence problems (see, e. g., [5]).
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2 Basic Definitions

In the following, let Σ be a finite alphabet. A word (over Σ) is a finite sequence
of symbols from Σ, and ε stands for the empty word. The symbol Σ+ denotes the
set of all nonempty words over Σ, and Σ∗ := Σ+∪{ε}. For the concatenation of
two strings w1, w2 we write w1 ·w2 or simply w1w2. We say that a string v ∈ Σ∗

is a factor of a string w ∈ Σ∗ if there are u1, u2 ∈ Σ∗ such that w = u1 · v · u2.
If u1 = ε (or u2 = ε), then v is a prefix of w (or a suffix, respectively). The
notation |K| stands for the size of a set K or the length of a string K. The term
alph(w) denotes the set of all symbols occurring in w and, for each a ∈ alph(w),
|w|a refers to the number of occurrences of a in w. If we wish to refer to the
symbol at a certain position j, 1 ≤ j ≤ n, in a word w = a1 ·a2 · · · · ·an, ai ∈ Σ,
1 ≤ i ≤ n, we use w[j] := aj. Furthermore, for each j, j′, 1 ≤ j < j′ ≤ |w|, let
w[j, j′] := aj · aj+1 · · · · · aj′ and w[j,−] := w[j, |w|]. In case that j > |w|, we
define w[j,−] = ε.

We now formally introduce the notion of a shuffle word. The shuffle operation,
denoted by 
, is a binary operation on words, defined inductively by

– u 
 ε = ε 
 u = {u}, for each u ∈ Σ∗,
– a · u 
 b · v = a · (u 
 b · v) ∪ b · (a · u 
 v), for all u, v ∈ Σ∗ and a, b ∈ Σ.

We extend the definition of the shuffle operation to the case of more than two
words in the obvious way. Furthermore, for arbitrary words w1, w2, . . . , wk ∈ Σ∗,
we call Γ := w1 
 w2 
 . . . 
 wk the shuffle of w1, . . . , wk and each word w ∈ Γ
is a shuffle word of w1, . . . , wk. For example, bcaabac ∈ abc 
 ba 
 ca.

Finally, we introduce a special property of words that is important for our
central problem. For an arbitrary w ∈ Σ∗ and any b ∈ alph(w) let l, r, 1 ≤
l, r ≤ |w|, be chosen such that w[l] = w[r] = b and there exists no k, k < l, with
w[k] = b and no k′, r < k′, with w[k′] = b. Then the scope of b in w (scw(b) for
short) is defined by scw(b) := (l, r). Note that in the case that for some word w
we have w[j] = b and |w|b = 1, the scope of b in w is (j, j). Now we are ready to
define the so called scope coincidence degree: Let w ∈ Σ∗ be an arbitrary word
and, for each i, 1 ≤ i ≤ |w|, let

scdi(w) := |{b ∈ Σ | b �= w[i], scw(b) = (l, r) and l < i < r}| .

We call scdi(w) the scope coincidence degree of position i in w. Furthermore,
the scope coincidence degree of the word w is defined by

scd(w) := max{scdi(w) | 1 ≤ i ≤ |w|} .

As an example, we now consider the word w := acacbbdeabcedefdeff. It can
easily be verified that scd8(w) = scd9(w) = 4 and scdi(w) < 4 if i /∈ {8, 9}.
Hence, scd(w) = 4.
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3 The Problem of Computing Shuffle Words with
Minimum Scope Coincidence Degree

In our practical motivation given in the introduction, we state that we wish
to sequentially arrange parallel sequences of memory accesses. These sequences
shall be modelled by words and the procedure of sequentially arranging them
is described by the shuffle operation. Furthermore, our goal is to construct a
shuffle word such that, for any memory access in the shuffle word, the maximum
number of values that already have been accessed and shall again be accessed
later on is minimal. For instance, in the shuffle word abaabccbc of abacbc and
abc, for each position i, 1 ≤ i ≤ 9, there exists at most one other symbol that
has an occurrence to either side of position i. On the other hand, with respect
to the shuffle word abacbcabc we observe that at position 4 symbol c occurs
while both symbols a and b have an occurrence to either side of position 4.
This number of symbols occurring to both sides of an occurrence of another
symbol is precisely the scope coincidence degree. Hence, our central problem is
the problem of finding, for any given set of words, a shuffle word with a minimum
scope coincidence degree.

Problem 1. For an arbitrary alphabet Σ, let the problem SWminSCDΣ be the
problem of finding, for given wi ∈ Σ∗, 1 ≤ i ≤ k, a shuffle word w ∈ w1
 . . .
wk

with minimum scope coincidence degree.

Note that in the definition of SWminSCDΣ , the alphabet Σ is constant and
not part of the input; hence, for each alphabet Σ, inputs for the problem
SWminSCDΣ have to consist of words over the alphabet Σ exclusively. This
shall be important for complexity considerations.

A naive approach to solving SWminSCDΣ on input (w1, w2, . . . , wk) would
be to enumerate all elements in w1 
 w2 
 . . . 
 wk in order to find one with
minimum scope coincidence degree. However, the size of this search space is too
large, as the cardinality of the shuffle w1 
 w2 
 . . . 
 wk is, in the worst case,
given by the multinomial coefficient [2]. More precisely,

|w1 
 w2 
 . . . 
 wk| ≤
(

n

|w1|, |w2|, . . . , |wk|
)

=
n!

|w1|! × |w2|! × . . . × |wk|! ,

where n :=
∑k

i=1 |wi|, and x! denotes the factorial of an integer x. This demon-
strates that the search space of a naive algorithm can be exponentially large.
Therefore, a polynomial time algorithm cannot simply search the whole shuffle
u1 
 u2 
 . . . 
 uk, which implies that a more sophisticated strategy is required.

Before we present a successful approach to SWminSCDΣ in the next section,
we discuss some simple observations. First, we note that solving SWminSCDΣ

on input w1, w2, . . . , wk by first computing a minimal shuffle word w of w1 and
w2 (ignoring w3, . . . , wn) and then solving SWminSCDΣ on the smaller input
w, w3 . . . , wn and so on is not possible. This can be easily comprehended by
considering the words w1 := aa and w2 := bb and observe that w := aabb is
a shuffle word of w1 and w2 that is optimal, since scd(w) = 0. Now, it is not
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possible to shuffle w with w3 := ba in such a way that the resulting shuffle word
has a scope coincidence degree of 0; however, w′ := bbbaaa ∈ w1 
 w2 
 w3 and
scd(w′) = 0.

Intuitively, it seems obvious that the scope coincidence degree only depends on
the leftmost and rightmost occurrences of the symbols. In other words, removing
a symbol from a word that does not constitute a leftmost or rightmost occurrence
should not change the scope coincidence degree of that word. For instance, if we
consider a word w := α · c · β, where c is a symbol occurring in α and β, then all
symbols in the word w that are in the scope of c are still in the scope of c with
respect to the word α · β.

Consequently, we can first remove all occurrences of symbols that are neither
leftmost nor rightmost occurrences, then solve SWminSCDΣ on these reduced
words and finally insert the removed occurrences into the shuffle word in such
a way that the scope coincidence degree does not increase. A formalisation and
proof of correctness of this approach is omitted. This reduction of the input
words results in a smaller, but still exponentially large search space. Hence, this
approach does not seem to help us solving SWminSCDΣ in polynomial time.

In the following section, we shall establish basic results about the scope coin-
cidence degree of words. These results shall then be applied later on in order to
analyse the scope coincidence degree of shuffle words.

4 Further Properties of the Scope Coincidence Degree

In this section, we take a closer look at the scope coincidence degree. We are
particularly interested in how words can be transformed without increasing their
scope coincidence degree. First, we consider a proposition which describes a very
basic property of the scope coincidence degree that directly follows from its
definition. It can roughly be stated by saying that the scope coincidence degree
of a certain position i does not depend on the order of the symbols occurring to
the left and to the right of i.

Proposition 1. Let u, v ∈ Σ∗ with |u| = |v|. If, for some i, 1 ≤ i ≤ |u|,
u[i] = v[i] and u[1, i − 1] is a permutation of v[1, i − 1] and u[i + 1,−] is a
permutation of v[i + 1,−], then scdi(u) = scdi(v).

Hence, for every position in a word we can permute the part to the left or to
the right of this position without changing its scope coincidence degree. The
scope coincidence degree of the positions in the parts that are permuted is not
necessarily stable, and thus the scope coincidence degree of the whole word may
change. However, if a factor of a word w satisfies a certain property, i. e., it
contains no leftmost occurrence of a symbol with respect to w (it may, however,
contain rightmost occurrences of symbols), then we can arbitrarily permute this
factor without changing the scope coincidence degree of the whole word:

Lemma 1. Let α, β, π, π′ ∈ Σ∗, where π is a permutation of π′ and alph(π) ⊆
alph(α). Then scd(α · π · β) = scd(α · π′ · β).
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The next two lemmas show that if certain conditions hold, then we can move one
or several symbols in a word to the left without increasing the scope coincidence
degree. The first result of that kind is related to the situation where only one
symbol is moved, and the second lemma describes the case where several symbols
are moved and therefore makes use of the first lemma.

We can informally summarise the first lemma in the following way. We assume
that at position i in a word w a certain symbol b occurs and, furthermore, this
is not the leftmost occurrence of b. Then we can move this symbol to the left
without increasing the scope coincidence degree of w as long as it is not moved
to the left of the leftmost occurrence of a b in w. This seems plausible, as such
an operation shortens the scope of symbol b or leaves it unchanged. However, we
might move this certain b into a region of the word where many scopes coincide;
thus, it is possible that the scope coincidence degree of the new position of b
increases compared to its old position. We can show that this increase of the scope
coincidence degree of that certain position does not affect the scope coincidence
degree of the whole word:

Lemma 2. For all α, β, γ ∈ Σ∗ and for each b ∈ Σ with b ∈ alph(α),

scd(α · b · β · γ) ≤ scd(α · β · b · γ) .

Obviously, if for some word w the condition of Lemma 2 is satisfied not only for
one symbol b but for several symbols d1, d2, . . . , dn, then we can separately move
each of these di, 1 ≤ i ≤ n, to the left and conclude that the scope coincidence
degree of the resulting word does not increase compared to w. This observation
is described by the following lemma.

Lemma 3. Let α, γ, βi ∈ Σ∗, 0 ≤ i ≤ n, n ∈ N, and let di ∈ Σ, 1 ≤ i ≤ n,
such that di ∈ alph(α), 1 ≤ i ≤ n. Then

scd(α ·d1 ·d2 · · · · ·dn ·β1 ·β2 · · · · ·βn ·γ) ≤ scd(α ·β1 ·d1 ·β2 ·d2 · · · · ·βn ·dn ·γ) .

Concerning the previous lemma, we observe that we can as well position the
symbols di, 1 ≤ i ≤ n, in any other order than d1·d2· · · · ·dn and would still obtain
a word with a scope coincidence degree that has not increased. Furthermore, with
Lemma 1, we can conclude that the scope coincidence degree is exactly the same,
no matter in which order the symbols di, 1 ≤ i ≤ n, occur between α and β1.

5 Solving the Problem SWminSCDΣ

In this section, we present an efficient way to solve SWminSCDΣ . Our approach
is established by identifying a certain set of well-formed shuffle words which
contains at least one shuffle word with minimum scope coincidence degree and,
moreover, is considerably smaller than the set of all shuffle words. To this end,
we shall first introduce a general concept for constructing shuffle words, and
then a simpler and standardised way of constructing shuffle words is defined.
By applying the lemmas given in the previous section, we are able to show that
there exists a shuffle word with minimum scope coincidence degree that can be
constructed in this simple way.
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Let w1, w2, . . . , wk ∈ Σ∗ be arbitrary words. We consider these words as stack-
like data structures where the leftmost symbol is the topmost stack element. Now
we can empty these stacks by successively applying the pop operation and every
time we pop a symbol from a stack, we append this symbol to the end of an
initially empty word w. Thus, as soon as all stacks are empty, we obtain a word
built up of symbols from the stacks, and this word is certainly a shuffle word of
w1, w2, . . . , wk.

It seems to be useful to reason about different ways of constructing a shuf-
fle word rather than about actual shuffle words, as this allows us to ignore the
fact that in general a shuffle word can be constructed in several completely
different ways. In particular the following unpleasant situation seems to compli-
cate the analysis of shuffle words. If we consider a shuffle word w of the words
w1, w2, . . . , wk, it might be desirable to know, for a symbol b on a certain posi-
tion j, which wi, 1 ≤ i ≤ k, is the origin of that symbol. Obviously, this depends
on how the shuffle word has been constructed from the words wi, 1 ≤ i ≤ k, and
for different ways of constructing w, the symbol b on position j may originate
from different words wi, 1 ≤ i ≤ k. In particular, if we want to alter shuffle
words by moving certain symbols, it is essential to know the origin words wi,
1 ≤ i ≤ k, of the symbols, as this determines how they can be moved without
destroying the shuffle properties.

We now formalise the way to construct a shuffle word by utilising the stack
analogy introduced above. An arbitrary configuration (of the content) of the
stacks corresponding to words wi, 1 ≤ i ≤ k, can be given as a tuple (v1, . . . , vk)
of suffixes, i. e. wi = ui · vi, 1 ≤ i ≤ k. Such a configuration (v1, . . . , vk) is
then changed into another configuration (v1, . . . , vi−1, v

′
i, vi+1, . . . , vk), by a pop

operation, where vi = b · v′i for some i, 1 ≤ i ≤ k, and for some b ∈ Σ. Initially,
we start with the stack content configuration (w1, . . . , wk) and as soon as all
the stacks are empty, which can be represented by (ε, . . . , ε), our shuffle word
is complete. Hence, we can represent a way to construct a shuffle word by a
sequence of these tuples of stack contents:

Definition 1. A construction sequence for words w1, w2, . . . , wk, wi ∈ Σ∗, 1 ≤
i ≤ k, is a sequence s := (s0, s1, . . . , sm), m := |w1 · · · · · wk| such that

– si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ m, where, for each i, 0 ≤ i ≤ m, and for
each j, 1 ≤ j ≤ k, vi,j is a suffix of wj ,

– s0 = (w1, . . . , wk) and sm = (ε, ε, . . . , ε),
– for each i, 0 ≤ i ≤ m − 1, there exists a ji, 1 ≤ ji ≤ k, and a bi ∈ Σ such

that vi,ji = bi · vi+1,ji and vi,j′ = vi+1,j′ , j′ �= ji.

The shuffle word w = b0 · b1 · · · · · bm−1 is said to correspond to s. In a step
from si to si+1, 0 ≤ i ≤ m− 1, of s, we say that the symbol bi+1 is consumed.

To illustrate the definition of construction sequences, we consider an example
construction sequence s := (s0, s1, . . . , s9) corresponding to a shuffle word of the
words w1 := a · b · a · c · b · c and w2 := a · b · c:
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s := ((a · b · a · c · b · c, a · b · c), (b · a · c · b · c, a · b · c), (b · a · c · b · c, b · c),
(b · a · c · b · c, c), (a · c · b · c, c), (a · c · b · c, ε), (c · b · c, ε),
(b · c, ε), (c, ε), (ε, ε)) .

The shuffle word corresponding to s is w := a · a · b · b · c · a · c · b · c, and it is
easy to see that scd(w) = 2.

In the next definition, we introduce a certain property of construction se-
quences that can be easily described in an informal way. Recall that in an arbi-
trary step from si to si+1 of a construction sequence s, exactly one symbol b is
consumed. Hence, at each position si = (v1, . . . , vk) of a construction sequence,
we have a part u of already consumed symbols, which is actually a prefix of the
shuffle word we are about to construct and some suffixes v1, . . . , vk that remain
to be consumed. A symbol b that is consumed can be an old symbol that already
occurs in the part u or it can be a new symbol that is consumed for the first
time. Now the special property to be introduced next is that this consumption
of symbols is greedy with respect to old symbols: Whenever a new symbol b is
consumed in a step from si to si+1 = (v1, . . . , vk), we require the construction
sequence to first consume as many old symbols as possible from the remaining
v1, . . . , vk before another new symbol is consumed. For the sake of uniqueness,
this greedy consumption of old symbols shall be defined in a canonical order, i. e.
we first consume all the old symbols from v1, then all the old symbols from v2 and
so on. Obviously, there are still several possible greedy construction sequences
for some input words wi, 1 ≤ i ≤ k, as whenever a new symbol is consumed, we
have a choice of k possible suffixes to consume this symbol from. We formally
define this greedy property of construction sequences.

Definition 2. Let w ∈ w1 
 w2 
 . . . 
 wk, wi ∈ Σ∗, 1 ≤ i ≤ k, and let
s := (s0, s1, . . . , s|w|) with si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ |w|, be an arbitrary
construction sequence for w. An element si, 1 ≤ i ≤ |w| − 1, of s satisfies the
greedy property if and only if w[i] /∈ alph(w[1, i − 1]) implies that for each j,
1 ≤ j ≤ k, si+|u1· ··· ·uj | = (vi,1, . . . , vi,j , vi,j+1, . . . , vi,k), where vi,j = uj · vi,j

and uj is the longest prefix of vi,j such that alph(uj) ⊆ alph(w[1, i]).
A construction sequence s := (s0, s1, . . . , s|w|) for some w ∈ Σ∗ is a greedy

construction sequence if and only if, for each i, 1 ≤ i ≤ |w| − 1, si satisfies
the greedy property. A shuffle word w that corresponds to a greedy construction
sequence is a greedy shuffle word.

As an example, we again consider the words w1 = a ·b ·a ·c ·b ·c and w2 = a ·b ·c.
This time, we present a greedy construction sequence s := (s0, s1, . . . , s9) for w1

and w2:

s := ((a · b · a · c · b · c, a · b · c), (b · a · c · b · c, a · b · c),
(b · a · c · b · c, b · c), (b · a · c · b · c, c), (a · c · b · c, c),
(c · b · c, c), (c · b · c, ε), (b · c, ε), (c, ε), (ε, ε)) .

Obviously, the shuffle word w := a · a · b · b · a · c · c · b · c corresponds to the
construction sequence s and scd(w) = 1. To show that s is a greedy construction
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sequence, it is sufficient to observe that s1, s3 and s6 (the elements where a new
symbol is consumed) satisfy the greedy property. We only show that s3 satisfies
the greedy property as s1 and s6 can be handled analogously. First, we recall
that s3 = (b · a · c · b · c, c) and note that, in terms of Definition 2, we have
u1 := b · a, v3,1 := c · b · c, u2 := ε and v3,2 := c. By definition, s3 only satisfies
the greedy property if s3+|u1| = (v3,1, v3,2) and s3+|u1·u2| = (v3,1, v3,2). Since
|u1| = |u1 · u2| = 2, v3,1 = c · b · c, v3,2 = v3,2 = c and s5 = (c · b · c, c), this
clearly holds.

In the following, we show how we can transform an arbitrary construction
sequence s := (s0, s1, . . . , sm) into a greedy one. Informally speaking, this is done
by determining the first element si that does not satisfy the greedy property and
then we simply redefine all the elements sj , i+1 ≤ j ≤ m, in a way such that si

satisfies the greedy property. If we apply this method iteratively, we can obtain
a greedy construction sequence. Next, we introduce the formal definition of that
transformation and explain it in more detail later on.

Definition 3. We define an algorithm G that transforms a construction se-
quence. Let s := (s0, s1, . . . , sm) with si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ m, be an
arbitrary construction sequence that corresponds to a shuffle word w. In the case
that s is a greedy construction sequence, we define G(s) := s. If s is not a greedy
construction sequence, then let p, 1 ≤ p ≤ m, be the smallest number such that
sp does not satisfy the greedy property. Furthermore, for each j, 1 ≤ j ≤ k, let uj

be the longest prefix of vp,j with alph(uj) ⊆ alph(w[1, p]) and let vp,j = uj · vp,j.
For each j, 1 ≤ j ≤ k, let σj : Σ∗ → Σ∗ be a mapping defined by σj(x) := vp,j

if |x| > |vp,j | and σj(x) := x otherwise, for each x ∈ Σ∗. Furthermore, let the
mapping σ : (Σ∗)k → (Σ∗)k be defined by σ((v1, . . . , vk)) := (σ1(v1), . . . , σk(vk)),
vj ∈ Σ∗, 1 ≤ j ≤ k. Finally, we define G(s) := (s′0, s′1, . . . , s′m′), where the ele-
ments s′i, 0 ≤ i ≤ m′, are defined by the following procedure.

1: s′i := si, 0 ≤ i ≤ p
2: for all j, 1 ≤ j ≤ k, do
3: s′p+|u1· ··· ·uj | := (vp,1, . . . , vp,j , vp,j+1, . . . , vp,k)
4: for all lj, 2 ≤ lj ≤ |uj|, do
5: sp+|u1· ··· ·uj−1|+lj−1 := (vp,1, . . . , vp,j−1, uj [lj ,−] · vp,j , vp,j+1, . . . , vp,k)
6: end for
7: end for
8: q′ ← p + 1
9: q′′ ← p + |u1 · · · · · uk| + 1

10: while q′ ≤ m do
11: if σ(sq′−1) �= σ(sq′ ) then
12: s′q′′ := σ(sq′ )
13: q′′ ← q′′ + 1
14: end if
15: q′ ← q′ + 1
16: end while
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As mentioned above, we explain the previous definition in an informal way and
shall later consider an example. Let s := (s0, s1, . . . , sm) be an arbitrary con-
struction sequence and let p and the uj, 1 ≤ j ≤ k, be defined as in Definition 3.
The sequence s′ := (s′0, s

′
1, . . . , s

′
m′) := G(s) is obtained from s in the following

way. We keep the first p elements and then redefine the next |u1 · · · · ·uk| elements
in such a way that s′p satisfies the greedy property as described by Definition 2.
This is done in lines 1 to 9 of the algorithm. Then, in order to build the rest of
s′, we modify the elements si, p + 1 ≤ i ≤ m. First, for each component vi,j ,
p+1 ≤ i ≤ m, 1 ≤ j ≤ k, if |vp,j | < |vi,j | we know that vi,j = uj ·vp,j , where uj is
a suffix of uj . In s′, this part uj has already been consumed by the new elements
s′i, p+1 ≤ i ≤ p+ |u1 · · · · ·uk|, and is, thus, simply cut off and discarded by the
mapping σ in Definition 3. More precisely, if a component vi,j , p + 1 ≤ i ≤ m,
1 ≤ j ≤ k, of an element si is longer than vp,j , then σj(vi,j) = vi,j . If on the
other hand |vi,j | ≤ |vp,j |, then σ(vi,j) = vi,j . This is done in lines 10 to 18 of the
algorithm.

The following proposition shows that G(s) actually satisfies the conditions to
be a proper construction sequence:

Proposition 2. For each construction sequence s of some words w1, . . . , wk,
G(s) is also a construction sequence of the words w1, . . . , wk.

Now, as an example for Definition 3, we consider the construction sequence

s := ((a · b · a · c · b · c, a · b · c), (b · a · c · b · c, a · b · c),
(b · a · c · b · c, b · c), (b · a · c · b · c, c), (a · c · b · c, c),
(a · c · b · c, ε), (c · b · c, ε), (b · c, ε), (c, ε), (ε, ε))

of the words w1 = a·b·a·c·b·c and w2 = a·b·c, as given below Definition 1. The
shuffle word that corresponds to this construction sequence is w := a ·a ·b ·b ·c ·a ·
c ·b ·c. We now illustrate how the construction sequence s′ := (s′0, s

′
1, . . . , s

′
m) :=

G(s) is constructed by the algorithm G. First, we note that s3 = (b ·a ·c ·b ·c, c)
is the first element that does not satisfy the greedy property, since in the step
from s4 to s5, the symbol c is consumed before the leftmost (and old) symbol a
from v4,1 is consumed. Thus, s′i = si, 1 ≤ i ≤ 3. As w[1, 3] = a ·a ·b, we conclude
that u1 := b · a and u2 := ε. So the next to elements s′4 and s′5 consume the
factor u1 from b · a · c · b · c, hence, s′4 = (a · c · b · c, c) and s′5 = (c · b · c, c).
Now let σ be defined as in Definition 3, thus,

σ(s3) = (c · b · c, c), σ(s4) = (c · b · c, c), σ(s5) = (c · b · c, ε),
σ(s6) = (c · b · c, ε), σ(s7) = (b · c, ε), σ(s8) = (c, ε), σ(s9) = (ε, ε) .

Since σ(s3) = σ(s4) and σ(s5) = σ(s6), we ignore σ(s4) and σ(s6); hence,

s′6 = σ(s5) = (c · b · c, ε), s′7 = σ(s7) = (b · c, ε),
s′8 = σ(s8) = (c, ε), s′9 = σ(s9) = (ε, ε) .



Shuffle Words for Optimal Scheduling of Shared Memory Access 475

In conclusion

s′ = ((a · b · a · c · b · c, a · b · c), (b · a · c · b · c, a · b · c),
(b · a · c · b · c, b · c), (b · a · c · b · c, c), (a · c · b · c, c),
(c · b · c, c), (c · b · c, ε), (b · c, ε), (c, ε), (ε, ε)) .

Next, we show that if in a construction sequence s := (s0, s1, . . . , sm) the
element sp is the first element that does not satisfy the greedy property, then in
G(s) := (s′0, s

′
1, . . . , s

′
m) the element s′p satisfies the greedy property. This follows

from Definition 3 and has already been informally explained.

Proposition 3. Let s := (s0, s1, . . . , sm) be any construction sequence that is
not greedy, and let p, 0 ≤ p ≤ m, be the smallest number such that sp does not
satisfy the greedy property. Let s′ := (s′0, s

′
1, . . . , s

′
m) := G(s) and, if s′ is not

greedy, let q, 0 ≤ q ≤ m, be the smallest number such that s′q does not satisfy
the greedy property. Then p < q.

More importantly, we can also state that the scope coincidence degree of the
shuffle word corresponding to G(s) does not increase compared to the shuffle
word that corresponds to s. To this end, we shall employ the lemmas introduced
in Section 4.

Lemma 4. Let s be an arbitrary construction sequence that corresponds to the
shuffle word w and let w′ be the shuffle word corresponding to G(s). Then
scd(w′) ≤ scd(w).

The previous lemma is very important, as it implies our next result, which can
be stated as follows. By iteratively applying the algorithm G, we can transform
each construction sequence, including the ones corresponding to shuffle words
with minimum scope coincidence degree, into a greedy construction sequence
that corresponds to a shuffle word with a scope coincidence degree that is the
same or even lower:

Theorem 1. Let w ∈ w1 
 . . .
wk, wi ∈ Σ∗, 1 ≤ i ≤ k, be an arbitrary shuffle
word. There exists a greedy shuffle word w′ such that scd(w′) ≤ scd(w).

This particularly implies that there exists a greedy shuffle word with minimum
scope coincidence degree. Hence, SWminSCDΣ reduces to the problem of finding
a greedy shuffle word with minimum scope coincidence degree.

The following algorithm – referred to as SolveSWminSCD – applies the above
established way to construct greedy shuffle words and enumerates all possible
greedy shuffle words in order to solve SWminSCDΣ .

Next, we state that this algorithm works correctly and establish its time com-
plexity.

Theorem 2. On an arbitrary input (w1, w2, . . . , wk) ∈ (Σ∗)k, the algorithm
SolveSWminSCD computes its output w ∈ w1
w2
 . . .
wk in time O(|w1 · · · · ·
wk| × k|Σ|) and there exists no w′ ∈ w1 
 w2 
 . . . 
 wk with scd(w′) < scd(w).
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Algorithm 1. SolveSWminSCD
1: optShuffle := ε, minscd := |Σ|, push (ε, (w1, . . . , wk))
2: while the stack is not empty do
3: Pop element (w, (v1, . . . , vk))
4: if |v1 · v2 · · · · · vk| = 0 and scd(w) < minscd then
5: optShuffle := w
6: minscd := scd(w)
7: else
8: for all i, 1 ≤ i ≤ k, with vi 	= ε do
9: b := vi[1]

10: vi := vi[2,−]
11: Let uj , 1 ≤ j ≤ k, be the longest prefix of vj with alph(uj) ⊆ alph(w · b)
12: Push (w ·b·u1 ·u2 · · · · ·uk, (v1[|u1|+1,−], v2[|u2]+1,−], . . . , vk[|uk|+1,−]))
13: end for
14: end if
15: end while
16: Output optShuffle

By applying the observation from Section 3 – i. e., we can solve SWminSCD by
first deleting all the occurrences of symbols in the input words that are neither
leftmost nor rightmost occurrences and then solving SWminSCD for the reduced
input words – we can prove the following result about the time complexity of
SWminSCD:

Theorem 3. The problem SWminSCD on an arbitrary input (w1, w2, . . . , wk) ∈
(Σ∗)k can be solved in time O(|Σ| × k|Σ|+1).
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Abstract. We compute the cardinality of the syntactic monoid of the
language 0∗ repb(mN) made of base b expansions of the multiples of the
integer m. We also give lower bounds for the syntactic complexity of
any (ultimately) periodic set of integers written in base b. We apply
our results to some well studied problem: decide whether or not a b-
recognizable sets of integers is ultimately periodic.

1 Introduction

Syntactic complexity has received some recent and renewed interest. See for in-
stance [6] for some background and we quote “ in spite of suggestions that syntac-
tic semigroups deserve to be studied further, relatively little has been done on the
syntactic complexity of a regular language”. In this paper syntactic complexity
is introduced in the framework of numeration systems.

We compute the syntactic complexity of the set mN written in base b, i.e.,
the cardinality Mb,m of the syntactic monoid of the language 0∗ repb(mN) made
of base b expansions of the multiples of the integer m. A similar problem was
solved for the state complexity of the language 0∗ repb(mN), i.e., the number of
states of its minimal automaton. As usual (m, n) denotes the GCD of m and n.

Theorem 1 (B. Alexeev [1]). Let b, m ≥ 2 be integers. Let N, M be such
that bN < m ≤ bN+1 and (m, 1) < (m, b) < · · · < (m, bM ) = (m, bM+1) =
(m, bM+2) = · · · . The minimal automaton of 0∗ repb(mN) has exactly

m

(m, bN+1)
+

inf{N,M−1}∑
t=0

bt

(m, bt)
states.

For the binary system, the first few values of M2,m are given below. Let b ≥
2. In this paper, we obtain an explicit formula for Mb,m as a consequence of
Theorems 2, 3 and 4 where we discuss three cases: the constant m and the base
b are coprime or, m is a power of b or, m = bnq with (q, b) = 1, q ≥ 2 and
n ≥ 1. Furthermore, we provide lower bounds for the syntactic complexity of
any ultimately periodic set of integers written in base b, i.e., any finite union
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of arithmetic progressions. In the framework of numeration systems, syntactic
complexity has an advantage in comparison to left or right quotients, we have the
opportunity to work simultaneously on prefixes and suffixes of base b expansions,
that is on most and least significant digits.

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
M2,m 3 6 5 20 13 21 7 54 41 110 20 156 43 60 9 136 109 342 62 126 221

A motivation for this work comes from the following decision problem. Let S
be an abstract numeration system built on a regular language. See [4, Chap. 3] for
background. It is well-known that any ultimately periodic set is S-recognizable,
i.e., it has a regular language of representations within the system S. An instance
of the decision problem is given by an abstract numeration system S and a DFA
accepting some S-recognizable set X ⊆ N. The question is therefore to decide
whether X is ultimately periodic or not. This problem was settled positively for
integer base systems by Honkala in [10]. See also [2] and in particular [5] for a first
order logic approach. Recently this decision problem was settled positively in [3]
for a large class of numeration systems based on linear recurrence sequences.
Considering this decision problem for any abstract numeration system turns out
to be equivalent to the so-called ω-HD0L ultimate periodicity decision problem,
see again [4], or [11]. In its full generality, this problem is still open.

Since syntactic complexity provides an alternative measure for the complexity
of a regular language, one could try to develop new decision procedures based
on the syntactic complexity instead of the state complexity of the corresponding
languages. A step in that direction is to consider first integer base numeration
systems. As a consequence of our results, we present such a procedure restricted
to a prime base in Section 4.

In the next section, we recall basic definitions and fix notation. Section 3
contains our main results: Theorems 2, 3, 4 are about the particular sets mN

and Propositions 2, 3 as well as Theorem 2 are about any periodic set. We end
the paper with a procedure for the decision problem described above and we
present some directions for future work.

2 Definitions

For i ≤ j, we denote by [[i, j]] the interval of integers {i, i + 1, . . . , j − 1, j}.
A deterministic finite automaton (or DFA) over the alphabet A is a 5-tuple
A = (Q, q0, F, A, δ) where Q is the set of states, q0 is the initial state, F is the
set of final states and δ : Q × A∗ → Q is the (extended) transition function. We
denote by |u| the length of the word u ∈ A∗ and by #P the cardinality of P .
Integer Base Numeration Systems. Let b ≥ 2 be an integer. We denote by
Ab the canonical alphabet of digits [[0, b − 1]]. For any word u = u� · · ·u0 ∈ A∗

b ,
we define the numerical value of u as

valb(u) =
�∑

i=0

ui bi.
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Note that valb(uv) = valb(u) b|v| + valb(v) for all u, v ∈ A∗
b . For any integer

n > 0, we denote the usual base b expansion of n by repb(n). We assume that
such a greedy expansion does not start with 0. By convention, repb(0) is the
empty word ε. A set X of integers is said to be b-recognizable if the language
repb(X) ⊆ A∗

b is a regular language accepted by some DFA.
A set X ⊆ N is periodic of period p if for all n ∈ N, n ∈ X ⇔ n + p ∈ X .

The period is always understood to be the minimal period of X . In particular,
if X ⊆ N is periodic of period p, then for all i, j ∈ N,

i �≡ j mod p ⇒ ∃r ∈ [[0, p− 1]] : (i + r ∈ X, j + r �∈ X) or (i + r �∈ X, j + r ∈ X).
(1)

A set X ⊆ N is ultimately periodic of period p and index I > 0 if for all n ≥ I,
n ∈ X ⇔ n + p ∈ X and exactly one of the two elements I − 1, I + p − 1 is in
X . Again, index and period are always understood to be minimal. It is easy to
see that any ultimately periodic set is b-recognizable for all bases b ≥ 2.
Syntactic Complexity. Let L be a language over the finite alphabet A. The
context of a word u ∈ A∗ with respect to L is given by the set of pairs

CL(u) = {(x, y) ∈ A∗ × A∗ | xuy ∈ L}.
If L is clearly understood, we will simply write C(u). Define the Myhill congruence
[12] of L by u ↔L v if and only if, for all x, y ∈ A∗, xuy ∈ L ⇔ xvy ∈ L. In
other words, u ↔L v if and only if CL(u) = CL(v). This congruence is also known
as the syntactic congruence of L. The monoid A∗/↔L made of the equivalence
classes of the relation ↔L, is the syntactic monoid of L. It is well-known that L
is a regular language if and only if A∗/↔L is finite. The syntactic complexity of
L is the cardinality of its syntactic monoid. If X ⊆ N is a b-recognizable set of
integers, by extension we define the syntactic complexity of X (w.r.t. b) as the
syntactic complexity of the language 0∗ repb(X).

Proposition 1. Let L be a language over A. Two words u, v ∈ A∗ are such that
u ↔L v if and only if they perform the same transformation on the set of states
of the minimal automaton M = (QL, q0,L, FL, A, δL) of L, i.e., for all r ∈ QL,
δL(r, u) = δL(r, v). In particular, if u, v are such that δL(q0,L, u) �= δL(q0,L, v),
then u �↔L v.

Definition 1. A language L ⊆ A∗ is weakly n-definite, if for any x, y ∈ A∗

satisfying |x| ≥ n, |y| ≥ n and having the same suffix of length n, x ∈ L if and
only if y ∈ L [13,7]. In other words, L can be written as G∪A∗F where F (resp.
G) is finite and contains only words of length n (resp. less than n). Let n ≥ 1.
A language is n-definite if it is weakly n-definite and not weakly (n−1)-definite.
One also finds the terminology suffix testable in the literature, see [14].

3 Main Results

Let m, x ≥ 2 be integers such that (m, x) = 1. We denote by ordm(x) the order of
x in the multiplicative group U(Z/mZ) made of the invertible elements in Z/mZ.
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That is ordm(x) is the smallest positive integer j such that xj ≡ 1 mod m. In
particular, ordm(x) is the period of the sequence (xn mod m)n≥0.

We first consider the case where the base and the period are coprime. Inter-
estingly, the syntactic complexity depends only on the period and not on the
structure of the periodic set.

Theorem 2. Let m, b ≥ 2 be integers such that (m, b) = 1. If X ⊆ N is periodic
of (minimal) period m, then its syntactic complexity is given by m. ordm(b). In
particular, this result holds for X = mN.

Proof. Let X ⊆ N be a periodic set of period m. For a word w ∈ A∗
b , the context

(w.r.t. X and b) of w is C(w) = {(x, y) ∈ A∗
b × A∗

b | xwy ∈ 0∗ repb(X)}. Let
u, v ∈ A∗

b . Let us first show that we have

u ↔0∗ repb(X) v ⇔ C(u) = C(v) ⇔
{

valb(u) ≡ valb(v) mod m,
|u| ≡ |v| mod ordm(b). (2)

Let α be a multiple of ordm(b) such that bα > m. Since (bi mod m)i≥0 is a purely
periodic sequence of period ordm(b), it follows that valb(u0α) ≡ valb(u) mod m.
Assume that valb(u) �≡ valb(v) mod m. Using (1) there exists r ∈ [[0, m−1]] such
that valb(u) + r ∈ X and valb(v) + r �∈ X (the other case is treated similarly).
So (ε, 0α−| repb(r)| repb(r)) belongs to C(u) and not to C(v). Now assume that
valb(u) ≡ valb(v) mod m and |u| �≡ |v| mod ordm(b). In that case, we obtain
that valb(1u) �≡ valb(1v) mod m and we can proceed as in the first situation,
there exists some r ∈ [[0, m−1]] such that (1, 0α−| repb(r)| repb(r)) belongs to C(u)
and not to C(v).

Now proceed to the converse and assume that u, v are such that
valb(u) ≡ valb(v) mod m and |u| ≡ |v| mod ordm(b). For all x, y ∈ A∗

b , we have

valb(xuy) = valb(x) b|u|+|y| + valb(u) b|y| + valb(y)
≡ valb(x) b|v|+|y| + valb(v) b|y| + valb(y) ≡ valb(xvy) mod m

and we have again used the fact that the sequence (bi mod m)i≥0 is purely
periodic of period ordm(b).

To conclude the proof, by considering words of the kind 0α−| repb(r)|+j repb(r),
for r ∈ [[0, m − 1]] and j ∈ [[1, ordm(b)]], one can show that we have m. ordm(b)
non-empty classes of ↔0∗ repb(X).

Remark 1. Let I > 0. This remark will be useful for the discussion in Section 4.
With the same notation and assumptions as for the previous proof, for all T ≥ 0
and for all u ∈ A∗

b , using (2) we have

u ↔0∗ repb(X) (1 0ordm(b)−1)Tm u.

Therefore, for each class of ↔0∗ repb(X), there exists an arbitrarily large integer
k > I such that repb(k) belongs to this class.

Now consider the case where the period is a power of the base.
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Theorem 3. Let b ≥ 2 and m = bn with n ≥ 1. Then the syntactic complexity
of 0∗ repb(mN) is given by Mb,m = 2n + 1.

Proof. The words ε, 0, . . . , 0n, 1, 10, . . . , 10n−1 have pairwise different contexts
w.r.t. the language 0∗ repb(mN). For i = 0, . . . , n, (10n−i, ε) belongs to C(0i+�),
for all � ≥ 0, but does not belong to C(0j) for j < i nor C(10k), for 0 ≤ k ≤ n−1.
In the same way, for i = 1, . . . , n, (ε, 0i) belongs to C(10n−j), for 0 ≤ j ≤ i, but
not to C(10j) for j < n− i. So the syntactic monoid of 0∗ repb(mN) has at least
2n + 1 elements. Now consider some word u ∈ A+

b . Write u = v0i where v is
either empty or ends with a non-zero digit. If i ≥ n, then u ↔0∗ repb(mN) 0n. If
v �= ε and i < n, then u ↔0∗ repb(mN) 10i. If v = ε and i < n, the case u = 0i

was already considered.

Proposition 2. Let b ≥ 2. If X ⊆ N is a periodic set of (minimal) period
m = bn with n ≥ 1, then the syntactic complexity of L = 0∗ repb(X) is greater
than or equal to n+1. Moreover there exist arbitrarily large integers t1, . . . , tn+1

such that the n + 1 words repb(t1), . . . , repb(tn+1) belong to different equivalence
classes of ↔L.

Proof. Let X ⊆ N be a periodic set of period bn, n ≥ 1. Note that there exist
k words s1, . . . , sk of length n such that a word of length at least n belongs to
L if and only if it belongs to A∗

b{s1, . . . , sk}. By minimality of the period there
exist V ∈ A∗

b , σ, τ ∈ Ab such that σ �= τ , |V | = n − 1, and for all u ∈ A∗
b , we

have valb(uσV ) ∈ X and valb(uτV ) �∈ X . (If that was not the case, the fact
that a word w belongs to L would only depend on its suffix of length n − 1,
so in particular, we would have valb(w) ∈ X if and only if valb(w) + bn−1 ∈ X
for all words w. This contradicts the fact that bn is the period of X .) In other
words, L is a n-definite language (see Definition 1). Define an accessible DFA
A = (Q, qε, F, Ab, δ) where

Qn = {qw | |w| = n} and Q = Qn ∪ {qw | |w| < n}
and for all u ∈ A∗

b such that |u| < n and a ∈ Ab, we have δ(qu, a) = qua. Now if
|u| = n, then u = cx for some c ∈ Ab, |x| = n − 1 and we have δ(qu, a) = qxa.
Notice that A restricted to the states in Qn is a strongly connected component
isomorphic to the de Bruijn graph of order n over Ab. The set of final states
of A is easily defined in such a way that the language accepted by A is L. In
particular, a state in Qn is final if and only if it is of the form qsi for i ∈ [[1, k]].

Consider the minimal automaton of L denoted by M = (QL, q0,L, FL, Ab, δL)
and the canonical morphism [9] of automata Φ : Q → QL from A to M such
that Φ(δ(r, w)) = δL(Φ(r), w) for all r ∈ Q and w ∈ A∗

b . Let R := Φ(Qn). In
other words, R is the set of states of M reached by words of length at least
n. Using the same arguments as in [13], let us show that #R ≥ n + 1. For all
r, r′ ∈ R and i ≥ 0, define

Ei(r, r′) ⇔ (∀x ∈ A∗
b)

[|x| ≥ i ⇒ (δL(r, x) ∈ FL ⇔ δL(r′, x) ∈ FL)
]
.

This equivalence relation Ei over R induces a partition Pi of R into #Pi equiva-
lence classes. It is clear that Ei(r, r′) implies Ei+1(r, r′) and thus #Pi ≥ #Pi+1.
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Consider the words σV and τV introduced in the first part of this proof with
V = v1 · · · vn−1 . Let T ≥ n and i ∈ [[0, n − 1]]. Take the two states r =
Φ(δ(qε, 10T σv1 · · · vn−i−1)) and r′ = Φ(δ(qε, 10T τv1 · · · vn−i−1)) in R. By con-
sidering the word vn−i · · · vn−1 of length i, the states r and r′ do not satisfy
Ei(r, r′) but for all words u of length at least i + 1, we have

δ(qε, 10T σv1 · · · vn−i−1u) = qS = δ(qε, 10T τv1 · · · vn−i−1u)

where S is the suffix of length n of v1 · · · vn−i−1u and thus Ei+1(r, r′). We have
just shown that Ei is a refinement of Ei+1 and #P0 > #P1 > · · · > #Pn−1 >
#Pn ≥ 1. Consequently, #R ≥ #P0 ≥ n + 1.

The minimal automaton M of L contains at least n + 1 distinct states of the
kind Φ(qu1), . . . , Φ(qun+1) ∈ R for some words u1, . . . , un+1 ∈ A∗

b of length n. Let
I > 0. Take a large enough T such that, for all i ∈ [[1, n + 1]], valb(10T ui) > I
and observe that

Φ(δ(qε, 10T ui)) = Φ(qui) = δL(q0,L, 10T ui) ∈ R.

The words 10T ui, i = 1, . . . , n + 1, perform pairwise distinct transformations on
the set of states of the minimal automaton M and the syntactic monoid of L
contains at least n + 1 classes (see Proposition 1).

Remark 2. The bound in Proposition 2 is tight. One can for instance consider
the set 5 + 8N. The corresponding syntactic monoid has exactly four infinite
equivalence classes.

We now turn to the case where m = bnq with (q, b) = 1 and n ≥ 1. For
convenience, we set s = ordq(b) in all what follows.

Remark 3. The sequence (bi mod m)i≥0 is ultimately periodic of period ordq(b)
and preperiod n. For instance, the sequence (2i mod 24)i≥0 = (1, 2, 4, (8, 16)ω)
has preperiod 3 = log2 8 and period ord3(2). Indeed, (bi mod q)i≥0 is purely
periodic of period ordq(b) and (bi mod bn)i≥0 = (1, b, b2, . . . , bn−1, 0, 0, . . .) is
ultimately periodic with preperiod n and period 1.

Lemma 1. Let b ≥ 2 and m = bnq where n ≥ 1 and (q, b) = 1 and q ≥ 2. Let
X ⊆ N be a periodic set of (minimal) period m. For any words u, v ∈ A∗

b of
length at least n, the following implications hold

((|u| ≡ |v| mod s) ∧ (valb(u) ≡ valb(v) mod m)) ⇒ u ↔0∗ repb(X) v, (3)

((|u| �≡ |v| mod s) ∨ (valb(u) �≡ valb(v) mod q)) ⇒ u �↔0∗ repb(X) v. (4)

Proof. The arguments are similar to the ones developed in the proof of The-
orem 2. Let u, v ∈ A∗

b be two words of length at least n. Using the fact that
bk ≡ bk+s mod m, for all k ≥ n, notice that if u, v are such that |u| ≡ |v| mod s
and valb(u) ≡ valb(v) mod m, then, for all x, y ∈ A∗

b , valb(xuy) ≡ valb(xvy) mod
m which means that u ↔0∗ repb(X) v. We have just shown that (3) holds.
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Now we want to show that (4) holds. The reader may notice that a main
difference between (3) and (4) is that congruences of numerical values are con-
sidered modulo m and q respectively. Let α > 0 be such that bα ≥ m. As a
first case, suppose that valb(u) �≡ valb(v) mod q. Since (b, q) = 1, we get that
valb(u)bα �≡ valb(v)bα mod q. Hence valb(u) bα �≡ valb(v) bα mod m and, using
(1), there exists r ∈ [[0, m−1]] such that valb(u)bα +r ∈ X and valb(v)bα +r �∈ X
(the other case is treated similarly). We can conclude that (ε, 0α−| repb(r)| repb(r))
belongs to C(u) and not to C(v). As a second case, suppose that valb(u) ≡
valb(v) mod q but that |u| �≡ |v| mod s. This implies that b|u| �≡ b|v| mod q.
Therefore valb(1u) �≡ valb(1v) mod q and we proceed as in the first case. There
exists r ∈ [[0, m − 1]] such that (1, 0α−| repb(r)| repb(r)) belongs to C(u) and not
to C(v).

Corollary 1. Let b ≥ 2 and m = bnq where n ≥ 1 and (q, b) = 1 and q ≥ 2. If
X ⊆ N be a periodic set of (minimal) period m and u, v ∈ A∗

b are two words of
length at least n, then u ↔0∗ repb(X) v implies that the following conditions hold

i) |u| ≡ |v| mod s
ii) either, valb(u) ≡ valb(v) mod m or, there exists a unique i ∈ [[0, n − 1]] such

that (valb(u) ≡ valb(v) mod biq) ∧ (valb(u) �≡ valb(v) mod bi+1q).

Remark 4. The converse does not hold. Consider X = 12N and b = 2, one can
check with u = 100 and v = 10110 that i) and ii) are fulfilled but (1, ε) belongs
to C(u) but not to C(v).

Proof. Using (4), we conclude that |u| ≡ |v| mod s. Proceed by contradiction
and assume that ii) does not hold. In other words, valb(u) �≡ valb(v) mod m and
for all i ∈ [[0, n − 1]],

(valb(u) �≡ valb(v) mod biq) ∨ (valb(u) ≡ valb(v) mod bi+1q)

but with (4), we get valb(u) ≡ valb(v) mod q and since the above condition holds
for i = 0, we must have valb(u) ≡ valb(v) mod qb. Now using the same above
condition for i = 1, we must have valb(u) ≡ valb(v) mod qb2 and iterating the
argument, we must have valb(u) ≡ valb(v) mod qbn contradicting the fact that
valb(u) �≡ valb(v) mod m.

A word u ∈ A∗
b of length at least n has three features: its length modulo s,

|u| mod s, its value modulo q, valb(u) mod q, and its suffix of length n (i.e., its
value modulo bn). Observe that if we know valb(u) mod q and valb(u) mod bn,
then we obtain valb(u) mod bnq.

Lemma 2. Let q, b ≥ 2 be two coprime integers, w ∈ A∗
b and i ∈ [[0, q − 1]].

There exists some word x ∈ (0s−11)∗0∗ such that valb(xw) ≡ i mod q.

Proof. Let L ≥ max{n, |w|} be smallest multiple of ϕ(q), where ϕ is the Euler
totient. We set z = valb(w) mod q. Using the periodicity of (bk mod q)k≥0, we
have

valb[(0s−11)i+q−z 0L−|w|w] ≡
i+q−z−1∑

k=0

bL+ks + z ≡ i mod q.
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Corollary 2. For all word w ∈ A∗
b of length at least n, i ∈ [[0, q − 1]], � ∈

[[0, s − 1]] and I > 0, there exists a word u having w as suffix and such that
valb(u) ≡ i mod q, |u| ≡ � mod s and valb(u) > I.

Proof. With the previous lemma, there exists x such that valb(xw) ≡ i mod q.
To conclude the proof, one has to add a prefix of the kind 0r(0s−11)tq.

Theorem 4. Let b ≥ 2 and m = bnq where n ≥ 1 and (q, b) = 1 and q ≥ 2.
Then the syntactic complexity of 0∗ repb(mN) is given by

Mb,m = (n + 1).Mb,q + n = (n + 1).q. ordq(b) + n.

Proof. Let X = mN. Notice that d ∈ N is a multiple of m if and only if
repb(d) = x0n and valb(x) is a multiple of q. We get the first term in the for-
mula. Let u, v be two words of length at least n. From (4), if |u| �≡ |v| mod s
or valb(u) �≡ valb(v) mod q, then u and v belong to two different classes for
↔0∗ repb(mN). Now assume that |u| ≡ |v| mod s and valb(u) ≡ valb(v) mod q.
Observe that if u ends with exactly i ∈ [[0, n − 1]] zeroes and v ends with
j zeroes with j > i, then u �↔0∗ repb(mN) v. With the same construction as
in the proof of Lemma 2, there exists some word x ∈ (0s−11)∗0∗ such that
valb(xu) ≡ valb(xv) ≡ 0 mod q and we can conclude that (x, 0max{n−j,0}) be-
longs to C(v) and not C(u). This proves with Corollary 2 that words of length
at least n provide the syntactic monoid of 0∗ repb(mN) with at least (n + 1).q.s
classes.

Now observe that for any two words u, v of length at least n such that
|u| ≡ |v| mod s, valb(u) ≡ valb(v) mod q and u, v, either end with exactly the
same number i of zeroes with i < n, or both end with at least n zeroes, then
u ↔0∗ repb(mN) v. This proves that words of length at least n provide the syntactic
monoid of 0∗ repb(mN) with no more than (n + 1).q.s classes.

Now we take into account words of length less than n and show that they
provide the syntactic monoid of 0∗ repb(mN) with n new classes giving the second
term in the expression of Mb,m. The n words ε, 0, . . . , 0n−1 have pairwise different
contexts: for all � ∈ [[0, n − 1]],

C(0�) ∩ {(repb(q), 0
k) | k ≥ 0} = {(repb(q), 0

k) | k ≥ n − �}.
Let � ∈ [[0, n− 1]]. We show by contradiction that they are indeed n new classes.
Assume that there exists u ∈ A∗

b such that |u| ≥ n and u ↔0∗ repb(mN) 0�. Since
(ε, ε) belongs to C(0�), we deduce that valb(u) ≡ 0 mod m. We have

valb(1u) ≡ b|u| mod m and valb(10�) ≡ b� mod m

but since the sequence (bk mod m)k≥0 is ultimately periodic with period s and
preperiod n, from � < n ≤ |u| we conclude that

valb(1u) �≡ valb(10�) mod m.

Let t ≥ n be a multiple of s. We have

valb((0t−11)m u) ≡ valb(u) ≡ 0 mod m
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and

valb((0t−11)m 0�) = b� +
m−1∑
k=1

b�+kt ≡ b� + (m − 1)b�+t mod m.

Since � < n ≤ � + t, we have b� �≡ b�+t mod m. We conclude that

valb((0t−11)m 0�) �≡ 0 mod m

proving that ((0t−11)m, ε) belongs to C(u) and not to C(0�).
To conclude the proof, we have to consider some word u �∈ 0∗ of length less

than n and prove that u does not provide any new equivalence class. This comes
from the fact that u ↔0∗ repb(mN) 0ksu where k is chosen large enough such that
ks + |u| ≥ n. It is enough to show that u ↔0∗ repb(mN) 0su. Let x, y ∈ A∗

b .
If |uy| ≥ n then valb(xuy) ≡ valb(x0suy) mod m and |xuy| ≡ |x0suy| mod s
and we can use (3). Otherwise |uy| < n and since u �∈ 0∗, this means that we
simultaneously have valb(xuy) �≡ 0 mod m and valb(x0suy) �≡ 0 mod m. This
means that xuy ∈ 0∗ repb(mN) if and only if x0suy ∈ 0∗ repb(mN).

Proposition 3. Let b be a prime number and m = bnq where n ≥ 1 and (q, b) =
1 and q ≥ 2. If X ⊆ N is periodic of (minimal) period m, then the syntactic
complexity of 0∗ repb(X) is greater than or equal to (n + 1).q. Moreover there
exist arbitrarily large integers t1, . . . , t(n+1)q such that repb(t1), . . . , repb(t(n+1)q)
belong to different equivalence classes of ↔0∗ repb(X).

Proof. Take a periodic set X of period m = bnq. Consider the characteristic word
(xt)t≥0 ∈ {0, 1}ω of X where xt = 1 if and only if t ∈ X . This infinite word is
periodic of period m. The q infinite words (xqt)t≥0, (xqt+1)t≥0, . . . , (xqt+q−1)t≥0

are periodic and their own period divides bn. By minimality of the period m of
X , there exists i ∈ [[0, q − 1]] such that (xqt+i)t≥0 has period1 exactly bn. For
any T ≥ 0 such that | repb(qT + i)| ≥ n, consider the bn words

repb(qT + i), repb(q(T + 1) + i), . . . , repb(q(T + bn − 1) + i).

Notice that these words have pairwise different suffixes of length n. Indeed,
proceed by contradiction and assume j, k are such that 0 ≤ j < k < bn and
repb(q(T + j) + i) and repb(q(T + k) + i) have the same suffix of length n,
then q(k − j) ≡ 0 mod bn. Since (q, b) = 1, we get k ≡ j mod bn which is a
contradiction.

Since (xqt+i)t≥0 has (minimal) period bn, there exists j ∈ [[0, (b− 1)bn−1 − 1]]
such that q(T + j) + i ∈ X and q(T + j + bn−1) + i �∈ X (or equivalently
q(T + j) + i �∈ X and q(T + j + bn−1) + i ∈ X). We can assume that there exist
a word V of length n− 1, some prefixes p, p′ and two distinct symbols σ, τ ∈ Ab

such that
repb(q(T + j) + i) = pσV ∈ 0∗ repb(X) and

1 If b is a composite number of the kind b = pα1
1 · · · pαk

k , then there exists i such that
(xqt+i)t≥0 has period pβ1

1 · · · pβk
k where max αr = max βr which would lead to extra

technicalities in the discussion.
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repb(q(T + j + bn−1) + i) = p′τV �∈ 0∗ repb(X).

In particular, if valb(u) ≡ i mod q and u has σV (resp. τV ) as a suffix, then u
belongs to 0∗ repb(X); 0∗ repb(X ∩ (qN + i)) is n-definite. We use the same kind
of construction as in the second part of the proof of Proposition 2. Let

Si = {w ∈ A∗
b | (valb(w) ≡ i mod q) ∧ (|w| ≥ n) ∧ (|w| ≡ 0 mod s)}.

For all j ≥ 0, define the equivalence relation ∼j over Si by

u ∼j v ⇔ (∀x, y ∈ A∗
b )[|y| ≥ j ⇒ (xuy ∈ 0∗ repb(X) ⇔ xvy ∈ 0∗ repb(X))].

Note that ∼0 is exactly ↔0∗ repb(X) and u ∼j v implies u ∼j+1 v. Denote by
#Pj the number of equivalence classes of ∼j over Si. Write V as v1 · · · vn−1. For
k ∈ [[0, n − 1]], consider the words pσv1 . . . vn−k−1 and p′τv1 . . . vn−k−1. Using
Corollary 2, there exist two words xk, yk such that rk := xkpσv1 . . . vn−k−1

and tk := ykp′τv1 . . . vn−k−1 belong to Si. We have rk �∼k tk but rk ∼k+1 tk
proving that #Pk > #Pk+1. Indeed, with the same construction as in the proof
of Lemma 2 there exists some word x such that |x| ≡ 0 mod s and

valb(xrkvn−k · · · vn−1) ≡ valb(xtkvn−k · · · vn−1) ≡ i mod q

and since xrkvn−k · · · vn−1 (resp. xtkvn−k · · · vn−1) has suffix σV (resp. τV ) it
belongs to (resp. does not belong to) 0∗ repb(X). For any word y of length at
least k +1, the two words rky and tky have the same suffix of length n and have
numerical values congruent modulo q. Therefore, their values are also congruent
modulo m and rky and tky have the same length modulo s. Using (3), we get
rky ↔0∗ repb(X) tky and rk ∼k+1 tk. We conclude that we have a partition of Si

into at least n + 1 congruence classes for ∼0. Let w1, . . . , wn+1 be words in Si

belonging to pairwise distinct classes. The (n + 1).q words2

(0s−11)kwj , j = 1, . . . , n + 1, k = 0, . . . , q − 1

belong to pairwise distinct equivalence classes for ↔0∗ repb(X). Indeed, consider
the two words x = (0s−11)kwj and y = (0s−11)k′

wj′ . Observe that |wj | ≡ |wj′ | ≡
0 mod s. If k �= k′, then valb(x) �≡ valb(y) mod q and we can use (4). To conclude
with the proof, assume that k = k′ and j �= j′. Assume that x ↔0∗ repb(X) y,
then we get

wj ↔0∗ repb(X) (0s−11)q−kx ↔0∗ repb(X) (0s−11)q−ky ↔0∗ repb(X) wj′

which is a contradiction. To get the first equivalence, observe that the two words
have the same suffix of length n (so valb(wj) ≡ valb((0s−11)q−kx) mod bn) and
also valb(wj) ≡ valb((0s−11)q−kx) mod q, thus we can apply (3).

Since for all words w of length at least n, w ↔0∗ repb(X) (0s−11)qw, the ele-
ments of the different equivalence classes can be chosen arbitrarily large.
2 Note that all these words have length congruent to 0 modulo s. By considering words

of the kind 0r(0s−11)kwj for r ∈ {0, . . . , s − 1}, using (4) we can even improve the
result to obtain (n + 1).q.s distinct equivalence classes for ↔0∗ repb(X).
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4 Application to a Decision Procedure

Let X ⊆ N be a b-recognizable set of integers such that 0∗ repb(X) is accepted
by some DFA A. A usual technique for deciding whether or not X is ultimately
periodic is to prove that whenever X is ultimately periodic, then its period and
its preperiod must be bounded by some quantities depending only on the size of
the DFA A. Therefore, one has a finite number of admissible periods and prepe-
riods to test leading to a decision procedure. For details, see [3]. In particular,
the following result [3, Prop. 44] stated in full generality for any abstract nu-
meration system (i.e., the language of numeration is a regular language) shows
that we have only to obtain an upper bound on the admissible periods.

Proposition 4. Let S = (L, Σ, <) be an abstract numeration system. If X ⊆ N

is an ultimately periodic set of period pX such that repS(X) is accepted by a DFA
with d states, then the preperiod of X is bounded by an effectively computable
constant C depending only on d and pX .

The following result is a consequence of Theorem 2, Propositions 2 and 3.

Theorem 5. Let b be a prime number. If X ⊆ N is an ultimately periodic set
of period pX = bnq with (q, b) = 1 and n ≥ 0, then the syntactic complexity of
0∗ repb(X) is greater than or equal to (n + 1)q.

Proof. Let I be the preperiod of X . Even if Remark 1, Propositions 2 and 3
are about (purely) periodic sets of integers, if we consider instead an ultimately
periodic set, since we can choose words belonging to different equivalence classes
in such a way that their numerical value is greater than I, then the lower bound
on the number of classes is still valid for the ultimately periodic case.

Assume that b ≥ 2 is a prime number3. Therefore, giving a DFA A accept-
ing 0∗ repb(X) and so the corresponding syntactic monoid, if X is ultimately
periodic, then we get an upper bound on its period.

5 Further Work

We will try to extend the present work to a wider class of numeration sys-
tems. For instance, for the Fibonacci numeration system (defined by the se-
quence Fn+2 = Fn+1 + Fn, F0 = 1, F1 = 2) where integers are represented
using the greedy algorithm, the syntactic complexity of 0∗ repF (mN) is given
by MF,m = 4.m2.PF (m) + 2 where PF (m) is the period of (Fi mod m)i≥0. The
proof essentially follows the same lines as in the proof of Theorem 2 and [8]. Re-
call that a word is a valid representation if it does not contain a factor 11. This
later fact explains the factor 4 in the expression MF,m. Let u = uk · · ·u0, v =
v� · · · v0 ∈ {0, 1}∗. We have u ↔0∗ repF (mN) v if and only if

3 If b is not a prime number, there are integers of the kind m = bnq where n is maximal
and (b, q) > 1, as an example take b = 4 and m = 72 = 4.18. Such a situation is not
taken into account by Theorem 2, Propositions 2 and 3.
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(valF (u) ≡ valF (v) mod m) ∧ (valF (u0) ≡ valF (v0) mod m) ∧
(|u| ≡ |v| mod PF (m)) ∧ (uk = v�) ∧ (u0 = v0).

For the Tribonacci numeration system, the syntactic complexity of 0∗ repT (mN)
is given by MT,m = 9.m3.PT (m) + 3.
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Abstract. We consider the regularity-preserving operations of intersec-
tion and marked catenation and construct an infinite sequence Ci, i =
1, 2, . . . , of compositions formed from the two operations. We construct
also an infinite sequence of polynomials Si, i = 1, 2, . . . , with positive
integer coefficients. As a main result we prove that it is undecidable
whether or not Si is a state complexity function of Ci. All languages
needed are over a fixed alphabet with at most 50 letters. We also con-
sider some implications and generalizations, as well as present some open
problems.
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1 Introduction

The study of state complexity has been one of the most vigorously investigated
research areas in automata theory. It is well known that, for every regular lan-
guage L, there is a unique finite deterministic automaton accepting L and mini-
mal with the respect to the number of states. The effect of a regularity-preserving
operation on the number of states is customarily referred to as the state com-
plexity of that operation. For instance, if Li, 1 ≤ i ≤ 3, are regular languages
accepted by automata with xi states, respectively, how many states does the
union L1 ∪ L2 ∪ L3 require in terms of the numbers xi?

The effect of basic regularity-preserving operations was settled in [9]. The
recent study of state complexity has been motivated by many new applications of
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automata, e.g., in natural language and speech processing, software engineering,
and parallel processing, which utilize finite automata of very large sizes. The
state complexity gives a good estimate of the size of the application and a lower
bound of its time and space complexities.

Apart from the basic operations alone, also combined operations have been
very much investigated [5,2,7,1]. The worst-case state complexity of the compo-
sition of two operations can be smaller than the one obtained directly from the
(known) complexities of the two operations. For instance, the state complexity
of the star operation on the result of the union of two regular languages, with the
state complexities m and n, respectively, is 2m+n−1−2m−1−2n−1 +1. However,
the mathematical composition of the two state complexities is 2mn−1 + 2mn−2,
which is much higher than the actual state complexity [5].

Could there be a general method of determining the state complexity of arbi-
trary compositions of operations? If such a method existed, then studies concern-
ing compositions of individual operations would become unnecessary. However,
the undecidability results presented in this paper render the search of such a
general method futile. Many known state complexity results require exponenti-
ation [8]. However, it will be shown below that undecidability can be obtained
already in the simple case where the proposed state complexity function is a
polynomial with positive integer coefficients.

In our undecidability proof we will use reduction to Hilbert’s Tenth Problem.
Since we are dealing with polynomials, the arithmetical operations under con-
sideration are product and sum. Two natural regularity-preserving operations
associated with these operations are marked catenation and intersection, respec-
tively. Therefore, the composition sequences considered below will mainly consist
of these two operations. If reduction to some other undecidable problem is ap-
plied, then in general some other regularity-preserving operations must be used
in compositions.

A brief outline of the contents of the paper follows. In Section 2 the un-
decidability of Hilbert’s Tenth Problem is modified to a form suitable for our
purposes. Also estimates concerning the degree of the polynomials, the number
of variables, as well as the size of the overall alphabet are given. The following
section contains a general discussion about state complexity and auxiliary re-
sults concerning the two relevant operations. The actual proof of undecidability
is given in Section 4. In the final section we outline some possible variations of the
undecidability result, as well as some generalizations of our results concerning
the interconnection between arithmetical and regularity-preserving operations.

2 Diophantine Preliminaries
We begin with the universal unsolvability of Hilbert’s Tenth Problem. For a proof
of the following result, see Theorem 3.10 in [3].
Theorem 1. There is a polynomial Q(x0, x1, . . . , xm) with integer coefficients
such that no algorithm exists for deciding whether or not an arbitrary equation
of the form

Q(x0, x1, . . . , xm) = 0,
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where x0 is a given positive integer, has a solution in nonnegative integers
x1, . . . , xm.

We will now modify this result to a form more suitable for our purposes.
Denote by Qi(x1, . . . , xm), i = 1, 2, . . . , the polynomial resulting from Q when

the variable x0 is substituted by the positive integer i. Consider the inequalities

0 ≤ 2(Qi(x1, . . . , xm)2) − 1, i = 1, 2, . . .

Clearly, for any given i, this inequality is valid for all m-tuples (x1, . . . , xm) of
nonnegative integers exactly in case the equation

Qi(x1, . . . , xm) = 0

possesses no solution in nonnegative integers. Therefore, by Theorem 1, there is
no algorithm of deciding, given i, whether or not the inequality

0 ≤ 2(Qi(x1, . . . , xm)2) − 1

holds for all m-tuples (x1, . . . , xm) of nonnegative integers. We now move all
negative terms from the right side to the left side. This gives rise to an inequality,
equivalent to the original one,

Ri(x1, . . . , xm) ≤ Si(x1, . . . , xm),

where Ri and Si are polynomials with positive integer coefficients.
Given i, our original inequality

0 ≤ 2(Qi(x1, . . . , xm)2) − 1

is valid for exactly those m-tuples (x1, . . . , xm) of nonnegative integers for which
the inequality

1 ≤ 2(Qi(x1, . . . , xm)2) − 1

is valid. This means that, when comparing the polynomials Ri and Si, it makes
no difference if we take Ri + 1 instead of Ri. Consequently, we have obtained
the following result.

Theorem 2. There is no algorithm of deciding, given a positive integer i,
whether or not the inequality

Ri(x1, . . . , xm) + 1 ≤ Si(x1, . . . , xm)

holds for all m-tuples (x1, . . . , xm) of nonnegative integers. Here Ri and Si are
effectively constructible polynomials with positive integer coefficients, over a fixed
set of variables {x1, . . . , xm}.
In the sequel we will associate the polynomials Ri with specific compositions of
regular operations, whereas the polynomials Si will constitute the proposed state
complexities. At this stage some further observations concerning the polynomials
Ri are in order.
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The polynomials Ri and Si result from the original polynomial Q by giving
an integer value to one of the variables. The polynomial Q itself is a (finite) sum
of terms of the form

xj0
0 xj1

1 · · ·xjm
m , jν ≥ 0, 0 ≤ ν ≤ m,

provided with integer coefficients. This means that each Ri is a (finite) sum of
terms of the form

xj1
1 · · ·xjm

m , jν ≥ 0, 1 ≤ ν ≤ m,

provided with positive integer coefficients depending on i. Thus, we have a fixed
set, independent of i, of terms of this form. The choice of i affects only the
multiplicity of each term, i.e., it tells how many times each term appears in the
polynomial Ri.

These observations will be important in the sequel. Upper bounds can be given
both for the number of variables m, as well as for the degree of the polynomials
Ri. These bounds are relevant if one wants to estimate the alphabet size in our
main results. The polynomial Q can be assumed to be of degree 4, [3], so each
Ri will be of degree at most 8. However, there is also a trade-off between the
estimates of the degree and of m. A good combined estimate, [3], is (5, 5): in Q
we can assume that both m and the degree are 5. This gives the upper bound 10
for the degree of each Ri, and the upper bound 5 for the number m of variables.
These values will be used in some estimations below.

3 State Complexity. Auxiliary Results from Automata
Theory

We assume that the reader is familiar with the basics of finite automata theory.
(For instance, [4], Vol. 1, Chapter 2 can be consulted.)

We consider in this paper only finite deterministic automata. We assume that
the automata are complete, that is, for every input letter and state, the transition
function determines a unique next state. An automaton has a specific initial
state and a specific set of final states. We make the convention that, whenever
we use the term automaton, we mean a finite deterministic automaton of the
kind described above.

A state of an automaton is called a sink if no sequence of transitions leads
from it to a final state. (Sinks are often also referred to as garbage states.)

In this paper we are mainly concerned with compositions of regular languages.
By

Cn(L1, . . . , Ln), n ≥ 1,

we mean a composition of regular languages Li, 1 ≤ i ≤ n, using regularity-
preserving operations. For instance,

((L1 ∪ L2)r ∩ L3) ∪ ((∼ L3) ∩ L1L2)

would be such a composition. There is no need for a formal definition of a general
composition because we need only two regularity-preserving operations for our
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undecidability result: intersection and marked catenation L1�L2� · · · �Ln, where
� is a letter not in the alphabets of the languages L1, . . . , Ln, n ≥ 2. We now
give a formal definition in terms of these two operations.

Definition 1. A (∩, �)-composition over the set {L1, . . . , Ln}, n ≥ 2, of lan-
guage variables is an expression

β1�β2� · · · �βr, r ≥ 2,

where each βi is of the form

βi = K1 ∩ · · · ∩ Kj(i), j(i) ≥ 1,

such that the K’s are different ones among the language variables Lν , 1 ≤ ν ≤ n.

For instance,
(L1 ∩ L3)�(L1 ∩ L3)�(L2)�(L1 ∩ L2 ∩ L3)

is a (∩, �)-composition over the set {L1, L2, L3}. Observe that the same term
(here (L1 ∩ L3)) may occur several times. Observe also that Definition 1 gives
only a very simple way of nesting the two operations. However, it is the one
needed in the sequel.

It is well known that, for a regular language L, there is a unique minimal
automaton accepting L. The number of states in this automaton is referred to
as the state complexity of L.

The situation is more involved for compositions of variable regular languages.
We will now give a general definition of state complexity functions. The definition
is given for arbitrary compositions, although we actually need it only for (∩, �)-
compositions. The functions we are considering will be polynomials with integer
coefficients. This is sufficient for our undecidability result because we will then
consider only (∩, �)-compositions. (For general compositions also exponentiation,
for instance, is needed.) In the usual state complexity considerations, each variable
of the function corresponds to a unique language. We allow also the more general
case, where several languages are associated with the same variable.

Definition 2. Consider a polynomial P (x1, . . . , xm), m ≥ 1, with integer coef-
ficients, a composition Cn(L1, . . . , Ln), n ≥ m, as well as a surjective mapping
ϕ of the index set {1, . . . , n} onto the index set {1, . . . , m} . Then the polynomial
P (x1, . . . , xm) is a state complexity function of the composition Cn(L1, . . . , Ln)
if the following condition is satisfied. Let (x1, . . . , xm) be an arbitrary m-tuple
of nonnegative integers. Whenever 1 ≤ i ≤ m and each Lj, j ∈ ϕ−1(i), is a
regular language with state complexity xi, then the composition Cn(L1, . . . , Ln)
is accepted by an automaton with at most P (x1, . . . , xm) states.

Note that when we say that a polynomial P (x1, . . . , xm) is a state complex-
ity function of the composition Cn(L1, . . . , Ln), this means that the value of
P (x1, . . . , xm) gives an upper bound for the state complexity of the language
Cn(L1, . . . , Ln) when each variable xi is assigned the state complexity of the
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languages Lj such that ϕ(j) = i. Here it is restricted that all languages Lj ,
j ∈ ϕ−1(i) have the same state complexity.

In the undecidability proof presented in the following section, we will associate
a specific (∩, �)-composition with each of the polynomials Ri constructed in the
preceding section. The end of this section will consist of material preparatory
for this purpose. We begin with a result concerning intersections. It is similar to
a construction in [9].

Theorem 3. Assume that Li, 1 ≤ i ≤ r, are regular languages with the state
complexity σi. Then the state complexity of the regular language L1 ∩ . . . ∩ Lr

is at most the product σ = σ1 · · ·σr . Moreover, for any r-tuple (σ1, . . . , σr) of
nonnegative integers, it is possible to construct regular languages Ki, 1 ≤ i ≤ r,
with the state complexity σi such that the intersection of the languages Ki has
exactly the state complexity σ = σ1 · · ·σr , and none of the minimal automata for
Ki, 1 ≤ i ≤ r, has a sink.

Proof. The first claim is proved by considering an automaton whose states are
r-tuples whose components simulate the state transitions of the automata for
the languages Li. The languages Ki are over the alphabet {a1, . . . , ar}. For each
i, 1 ≤ i ≤ r. The language Ki consists of all words w such that the number of
occurrences of the letter ai in w is divisible by σi. It is then easy to see that the
state complexity of Ki is σi and that the minimal automaton has no sink, as
well as that the product σ = σ1 · · ·σr is the state complexity of the intersection
of all languages Ki. �

The following result will take care of the sums appearing in the polynomials Ri.
Since all coefficients are nonnegative, we can write Ri as a sum of products of
variables, each product in each Ri coming from a specific finite set of products,
determined by the original Q.

Theorem 4. Assume that Li are regular languages (maybe over different alpha-
bets) with state complexities σi, 1 ≤ i ≤ r, r ≥ 2. Assume, further, that for each
i, 1 ≤ i ≤ r, the minimal automaton Ai for Li has no sinks. Then the marked
catenation

L1�L2� · · · �Lr

is accepted by an automaton A with

r∑
i=1

σi + 1 = σ

states but by no automaton with fewer than σ states. The alphabet of A consists
of the union of the alphabets of Li and of �. The initial state of A1 is the initial
state of A, and the final states of Ar constitute the set of final states of A.

Proof. An automaton A accepting the marked catenation is obtaining by joining
the automata Ai, 1 ≤ i ≤ r, in the following way. From each final state of
Ai, 1 ≤ i ≤ r − 1, introduce a transition labeled by � to the initial state of
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Ai+1. From all other states of Ai, 1 ≤ i ≤ r − 1, as well as from all states of
Ar, introduce a transition labeled by � to an additional sink state. It is clear
that A accepts the marked catenation and has σ states. On the other hand,
no automaton with fewer states can accept the marked catenation. Each word
has to have exactly r − 1 occurrences of �. States in two different automata Ai

cannot be combined because this would result into too many occurrences of the
letter �. �

If some of the automata Ai possess a sink, then the various sinks can be com-
bined, and the total number σ can be reduced accordingly. For instance, consider
the languages

L1 = ((a + b)2)∗, L2 = (ab + bab + aba)∗

of state complexities 2 and 7, respectively. The automaton accepting L2 has a
sink. Consequently, the marked catenation L1�L2 is accepted by an automaton
with only 9 states. Final states are marked by double circles in the picture. The
sink and the transitions leading to it are omitted from the picture.

b

a

a

a

b b b b a

a, b

�

4 Undecidability

We will now construct a sequence of polynomials Pi with integer coefficients, as
well as a sequence of (∩, �)-compositions Ci, for i = 1, 2, . . . , such that there is
no algorithm of deciding whether or not Pi is a state complexity function of Ci.
The polynomials will be the polynomials Si already constructed above in Section
2. (Observe that they have nonnegative integer coefficients.)

The (∩, �)-compositions Ci are obtained from the polynomials Ri by the fol-
lowing association procedure.

The set of variables of the polynomials Ri is {x1, . . . , xm}. For each j, 1 ≤
j ≤ m, there is a number Mj such that every exponent of xj in every Ri is at
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most Mj . Thus, Mj is independent of the index i of the polynomial Ri. This
important fact follows because, as explained at the end of Section 2, a change of
the index i in Ri affects only the multiplicities of the summands in Ri, not the
summands themselves.

Consider now language variables

Lν
j , 1 ≤ j ≤ m, 1 ≤ ν ≤ Mj.

The variables Lν
j , 1 ≤ ν ≤ Mj correspond to xj in the sense of the mapping

ϕ in Definition 2. (We have used upper indices to avoid complications in the
notation.)

With each summand
xν1

1 · · ·xνm
m

in Ri, we associate the intersection

L1
1 ∩ . . . ∩ Lν1

1 ∩ . . . ∩ L1
m ∩ . . . ∩ Lνm

m .

The (∩, �)-composition Ci associated with Ri is now defined to be the marked
catenation of all these intersections.

As a simple example, assume that

Ri(x1, x2, x3) = x1x
2
2 + 3x3

2x3 + x1x2x3.

Then

Ci = (L1
1 ∩ L1

2 ∩ L2
2)�(L

1
2 ∩ L2

2 ∩ L3
2 ∩ L1

3)
�(L1

2 ∩ L2
2 ∩ L3

2 ∩ L1
3)�(L

1
2 ∩ L2

2 ∩ L3
2 ∩ L1

3)�(L
1
1 ∩ L1

2 ∩ L1
3).

The following result is now an immediate consequence of Theorems 3 and 4.

Theorem 5. For each i = 1, 2, . . . ,, the polynomial Ri(x1, . . . , xm)+1 is a state
complexity function of the (∩, �)-composition Ci.

Introduce now the alphabet Σ consisting of the letters

aν
j , 1 ≤ j ≤ m, 1 ≤ ν ≤ Mj.

Consider an arbitrary m-tuple (x1, . . . , xm) of nonnegative integers. Let

Lν
j , 1 ≤ j ≤ m, 1 ≤ ν ≤ Mj

be the language over Σ consisting of all words w such that the number of oc-
currences of the letter aν

j in w is divisible by xj . Finally, let Di be the regular
language, resulting from Ci by substituting these particular languages for the
language variables. Then, again by Theorems 3 and 4, we get the following result.

Theorem 6. For every m-tuple (x1, . . . , xm) of nonnegative integers, the state
complexity of the language Di equals Ri(x1, . . . , xm) + 1.
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Using known upper bounds for the number m of variables and the degree δ of
the polynomial Q in Theorem 1, we get upper bounds for the cardinality of
the alphabet Σ. Observe that Mj ≤ 2δ, 1 ≤ j ≤ m. For instance, using the
known, [3], upper bound 5 for both m and δ, we get the upper bound 50 for the
cardinality of Σ.

We are now ready for our main result.

Theorem 7. For the sequence of polynomials Si and (∩, �)-compositions Ci, i =
1, 2, . . . , as constructed above, it is undecidable whether or not Si is a state
complexity function of Ci.

Proof. We know by Theorem 5 that Ri+1 is a state complexity function of Ci. On
the other hand, by Theorem 6, we can construct, for every m-tuple (x1, . . . , xm)
of nonnegative integers, a language resulting from Ci whose state complexity
equals exactly Ri(x1, . . . , xm)+1. Consequently, Si is a state complexity function
of Ci exactly in case the inequality

Ri(x1, . . . , xm) + 1 ≤ Si(x1, . . . , xm)

holds for all m-tuples (x1, . . . , xm) of nonnegative integers. But this problem is
undecidable, by Theorem 2. �


5 Further Considerations and Open Problems

In conclusion we briefly mention three related topics worth of further study. The
topics generalize some of the constructions above.

5.1 The Effect of the Undecidability Reduction on the Associated
Operations

When we used the undecidability of Hilbert’s Tenth Problem, we had to interpret
sum and product in terms of regularity-preserving operations. Marked catenation
and intersection turned out to be natural ones in this respect. Reduction to other
undecidable problems will in general lead to other operations. The undecidability
of the state complexity will then concern composition sequences in terms of these
operations.

5.2 Borderline between Decidability and Undecidability

As an example we consider marked catenation and form arbitrarily long compo-
sitions

L1#L2# · · ·#Ln,

where some of the languages Li may be equal. We want to test polynomials
Si(x1, . . . , xm) as possible state complexity functions of such compositions. In our
undecidability result above the state complexities of the languages Lj depended
on the values for the variables xj in a rather complicated way. On the other hand,
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if we assume that the state complexity of each of the component languages equals
directly the value of one of the variables, then the state complexity of the marked
catenation is a linear function of the variables xj , 1 ≤ j ≤ m, and our problem
is clearly decidable.

What about cases in between? If we assume that the state complexity of each
component language is of the form xt

j , where t is a positive integer, then the
problem seems decidable but we have no formal proof. If the state complexities
are products of powers of two variables, we might already have an undecidable
problem.

Similar considerations apply to long composition sequences of operations other
than marked catenation.

5.3 Regularity-Preserving Operations Associated with Classes of
Functions

Above we considered certain polynomials Ri, and expressed their values in terms
of state complexities, thus obtaining composition sequences associated with poly-
nomials. Instead of polynomials, we might try to associate other function classes
with composition sequences similarly as above. For instance, using the “maximal
blow-up” result from [6], such an association is possible for polynomials with
positive integer coefficients, in terms of variables and powers of the form 2x,
where x is a variable. We omit the details of this construction.
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Abstract. We present a study on lookahead hierarchies for restarting
automata with auxiliary symbols and small lookahead. In particular, we
show that there are just two different classes of languages recognised
by RRWW automata, through the restriction of lookahead size. We also
show that the respective (left-) monotone restarting automaton models
characterise the context-free languages and that the respective right-left-
monotone restarting automata characterise the linear languages both
with just lookahead length 2.

1 Introduction

Restarting automata work in phases of scanning their input from the left end
marker towards the right end marker, rewriting the lookahead contents with a
shorter substring once per phase, and then restarting at some point before or at
the right end marker. They were introduced to model the analysis by reduction
grammar verification technique in the analysis of sentences in free-word order
natural language. It has been shown that through various restrictions on the
model, an important number of traditional and new formal language classes may
be defined. Study of restarting automata has therefore also become important
for both its original intent of computational linguistic application development,
as well as for being an alternative machine model for investigating properties of
traditional and newly distinguished formal language classes.

In his study of lookahead hierarchies, Mraz [1] showed that the expressive
power of restarting automata without auxiliary symbols increases with the size
of the lookahead. Schluter [3] later showed that for deterministic monotone and
monotone restarting automata with auxiliary symbols, separation of rewrite and
restart step is not a significant restriction on expressive power for any fixed
lookahead size k ≥ 3, and that for the deterministic model, the difference in
power of the models can be overcome by approximately doubling the lookahead
size, when k ≥ 3. In both studies, it was remarked that lookahead hierarchies
collapse for (left-)mon-RWW and (left-)mon-RRWW automata to k = 3. This
paper presents a study on lookahead hierarchies for k < 3 of restarting automata
with auxiliary symbols. In doing so, we also establish lookahead hierarchies for
the most general model of restarting automata, for any k. In particular, we show

A.-H. Dediu, S. Inenaga, and C. Martín-Vide (Eds.): LATA 2011, LNCS 6638, pp. 499–510, 2011.
© Springer-Verlag Berlin Heidelberg 2011



500 N. Schluter

that there are only two different classes of languages recognised by RRWW
automata, through restrictions on lookahead size.

We also partially improve a result from [3] and [1], by showing that the re-
spective monotone and left-monotone restarting automaton models characterise
the context-free languages with only lookahead size 2. And, we establish a corre-
sponding result for the characterisation of the linear languages by the respective
right-left-monotone restarting automata with lookahead size 2.

Following the definition of restarting automata and presentation of some useful
properties in Section 2, we present our main results in Section 3.

Some notation. We refer to the ith symbol of a string x as x[i], and its substring
from the ith to jth symbols as x[i, j]. When we want to make the length of a
string v such that |v| = k explicit, we may refer to v as v[1, k].

For i, j ∈ N, with i < j, [i, j] alone denotes the set {i, . . . , j}. If i = 1, we say
[j] := [1, j].

If S is a set of symbols, then by Si we denote the set of strings of length i ∈ N

with symbols from S. Also λ := S0 is the empty string.
Finally, REG, LIN and CFL denote the classes of regular, linear, and context-

free languages respectively.

2 Preliminaries

A restarting automaton or RRWW-automaton, M = (Q, Σ, Γ, ¢, $, q0, k, δ), is a
nondeterministic machine model with a finite control unit and a lookahead (or
read/write) window of size k (including the symbol under its scanning head,
which is the first symbol of the lookahead contents) that works on a list of
symbols delimited by end markers (or sentinels) ({¢, $}), where ¢ is the left
sentinel and $ is the right sentinel. Σ is the input alphabet and Γ ⊇ Σ the work
tape alphabet. The symbols Γ − Σ are called auxiliary symbols. Q is the finite
set of states and q0 ∈ Q is the initial state. M ’s transition relation, δ, describes
four types of transition steps (or instructions), where u is the contents of the
lookahead.

(1) A move-right step is of the form q′ ∈ δ(q, u), where q, q′ ∈ Q. This means that
M advances one tape square to the right and enters state q′ upon reading u.

(2) A rewrite step is of the form (q′, REWRITE(v)) ∈ δ(q, u), where q, q′ ∈ Q, and
v is such that |v| < |u| (u, v ∈ Γ ∗). This means that M replaces its window
contents u with v, advances to the tape square directly to the right of v, and
enters state q′. In this rewrite instruction, we will refer to u as the redex and
v as the reduct.

(3) A restart step is of the form RESTART ∈ δ(q, u), where q ∈ Q, in which M
moves its read/write window to the beginning of the input and enters the
initial state.

(4) An accept step is of the form ACCEPT ∈ δ(q, u), in which M halts and accepts.
(This may also be viewed as the accept state.)
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If δ(q, u) = ∅, in which case we say that δ is undefined, M halts and rejects; we
could exclude this possibility through the use of a model with both accept and
reject states, in which case all possibilities for δ are defined. If |δ(q, u)| ≤ 1 for
all q, u, then the restarting automaton is deterministic.

A configuration of M is uqv, where u ∈ {λ}∪{¢}·Γ ∗ is the contents of the work-
tape from the left sentinel to the position of the head, q ∈ Q is the current state
and v ∈{¢,λ}·Γ ∗ ·{$, λ} is the contents of the worktape from the current first sym-
bol under the scanning head to the right sentinel, and uv is the current contents of
the worktape. The head scans the first k symbols of v (or all of v when |v| ≤ k). A
restarting configuration, for a word w ∈ Γ ∗, is of the form q0¢w$. If w ∈ Σ∗, q0¢w$
is an initial configuration. An accepting configuration is a configuration with an
accepting state.

A computation of M for an input word w ∈ Σ∗ is a sequence of configurations
starting with an initial configuration, where two consecutive configurations are
in the relation �M induced by a finite set of instructions of one of the above
mentioned types. The transitive closure of �M is denoted �∗

M . A phase of a
computation begins with a restarting configuration and (exclusively) either (1)
ends with the next encountered restarting configuration, in which case it includes
exactly one rewrite step and is called a cycle, or (2) halts, in which case it includes
at most one rewrite step and is called a tail phase. We refer to segments of a
computation within a single phase before (resp. after) a rewrite as left (resp.
right) computation.

An input word w is accepted or recognised by M if there is a computation which
starts on the initial configuration and finishes in an accepting configuration. Also,
we define L(M) as the language recognised by M .

Consider a cycle C and say the configuration from which M carries out a
rewrite step is uqv in C; we define to the right distance of C as Dr(C) := |v|
and the left distance as Dl(C) := |u|. Let C = C1, C2, . . . , Cn be a sequence
of cycles of a restarting automaton M that, together with possibly a (final)
tail phase, are M ’s computation on some input. If Dr(Ci) ≥ Dr(Ci+1) for all
i ∈ [n − 1], we say that C is right-monotone or simply monotone. Similarly, if
Dl(Ci) ≥ Dl(Ci+1) for all i ∈ [n−1], we say that C is left-monotone. If C is both
right- and left-monotone, then we say that C is right-left-monotone. If all the
sequences of cycles corresponding to computations of a restarting automaton M
are monotone (respectively left-monotone, right-left-monotone) then we say that
M is monotone (respectively left-monotone, right-left-monotone). We denote
the class of monotone RRWW-automata (respectively left- or right-left-RRWW
automata), mon-RRWW (left-mon-RRWW or right-left-mon-RRWW).

Through restrictions on the restarting automaton model, we obtain many
types of restarting automata. For instance, RRW-automata are RRWW-automa-
ta with no auxiliary symbols (Γ = Σ). An RR-automaton is an RRW-automaton
with rewrite instructions that can only delete symbols. An RWW-automaton is
an RRWW-automaton, which restarts immediately after any rewrite instruc-
tion, and an RW-automaton is an RRW-automaton that restarts immediately
after any rewrite instruction. Finally, an R-automaton is an RR-automaton that
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restarts after any rewrite instruction. All notions of monotonicity and determin-
ism and corresponding notation extend to these more restrictive versions in the
obvious way.

An X automaton, X ∈ {R, RR, RW, RWW, RRW, RRWW}, with lookahead
size k, will be denoted by X(k). For example, an RRWW(k) automaton is an
RRWW automaton with lookahead size k.

2.1 Four Useful Properties

This section presents four basic lemmata used in the proofs of the main results
in Section 3, without proof.1

The correctness preserving property is a fundamental property of restarting
automata.

Proposition 1 (Correctness Preserving Property [2]). Let M be a restart-
ing automaton, and u, v be arbitrary input words from Σ∗. If u ∈ L(M) and
u �∗

M v is an initial segment of an accepting computation of M , then v ∈ L(M).

It will be useful to simplify the computations of the restarting automata that
we discuss (without reducing their power). The next three lemmata serve this
purpose.

A nondeterministic restarting automaton M = (Q, Σ, Γ,¢, $, q0, k, δ) is in RR-
semidet-form if (1) halting (and restarting for automata with separate re- write
and restart steps) occurs only when the right sentinel is under the lookahead,
and (2) move-right steps are deterministic. The following lemma shows that
non-deterministic restarting automata with lookahead length k can be assumed
w.l.o.g. to be (1) in RR-semidet-form and (2) making move-right steps based
only on the first symbol under the lookahead.2

Lemma 2. For any X-Y automaton, M1 = (Q, Σ, Γ,¢, $, q0, k, δ), where X ∈
{(right-left-, left-)mon-,λ} and Y ∈ {R, RR, RW, RRW, RWW, RRWW}, there
is X-Y automaton, M2 = (Q′, Σ, Γ,¢, $, q′0, k, δ′), such that

1. M2 is in RR-semidet form,
2. M2 makes move-right steps based on the couple (u[1], q), where u[1] is the

first symbol under the lookahead and q is M2’s current state,

and L(M1) = L(M2).

If a restarting automaton M only rewrites when the contents of its lookahead is
full, we say that M has fixed rewrite size.

Lemma 3. For any X-Y automaton, M1, where X ∈ {(right-left-, left-)mon-
,λ} and Y ∈ {R, RR, RW, RRW, RWW, RRWW}, there exists an X-Y au-
tomaton, M2, that has fixed rewrite size, such that L(M1) = L(M2).
1 Proofs of Lemmata 2, 3, and 4 may be found in the full version of this paper [4].
2 Here, the decision whether or not to move-right remains non-deterministic; however,

the decision of which move-right step to carry out becomes deterministic.
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Lemma 4. For any X-Y automaton, M1, where X ∈ {(right-left-, left-)mon-
,λ} and Y ∈ {RWW, RRWW}, with lookahead size k, there exists an X-Y
automaton, M2, with lookahead size k, that reduces its input by only one symbol
per cycle, and is such that L(M1) = L(M2).

For the remainder of this paper, we will assume w.l.o.g. that all discussed non-
deterministic restarting automata with auxiliary symbols (1) are in RR-semi-det
form, (2) carry out move-right steps based on the current state and the first
symbol under the lookahead, (3) have fixed rewrite size, and (4) reduce their
input by only one symbol per cycle.

3 Main Results

For restarting automata with auxiliary symbols and lookahead of size 1, Mráz
(2001) showed that the separation of rewrite and restart step results in an in-
crease in power for these automata. In fact, it is simple to slightly improve this
result for monotonicity.3

Proposition 5 ([1]). For X ∈ {(right-left-, left-)mon-,λ},
REG = L(X-RWW(1)) � L(right-left-mon-RRWW(1)).

We can also distinguish the classes of languages recognised by (monotone-) RWW
(RRWW) automata with lookahead lengths 1 and 2.

Proposition 6. For all X ∈ {(right-left, left-)mon, λ}, Y ∈ {RWW, RRWW},
L(X-Y (2)) − L(X-Y (1)) �= ∅.

It turns out that further separation of language classes for RRWW is not possible.
This is the main result of this paper: Theorem 7 and Corollary 12.

Theorem 7. For k ≥ 2 and X ∈ {(right-left-, left-)mon, λ}, we have

L(X-RRWW(k)) = L(X-RRWW(k + 1)).

Proof. Assume M1 = (Q1, Σ, Γ1,¢, $, q0, k + 1, δ1) is an RRWW(k+1) automa-
ton. We construct M2 = (Q2, Σ, Γ2,¢, $, q0, k, δ2) an RRWW(k) automaton to
simulate M1, such that L(M1) = L(M2).

For this construction, the nondeterminacy of M2 is essential. M2’s lookahead
is one symbol shorter than M1’s. So, M2 will simulate M1’s rewrites by guessing
the contents of the tape square, τR, following the last symbol of its lookahead,
contained in tape square τL. It will verify this guess within up to one step (of the
same cycle), using a compound state holding this information, leaving behind
in the compound symbol τL, how M2 should read the guessed contents of τR in
subsequent cycles; we’ll call this instruction I. If there is a rewrite starting in
3 The proofs of Propositions 5 and 6 may be found in the full version of this paper [4].
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τR in a subsequent cycle, Ci, then M2 will record in τR that it should ignore
I in all cycles after Ci, using a Matching Lemma (Lemma 11) concerning the
“interaction” of information in τL and τR. Note that this simulation could not
work for k = 1, because then M1 can only delete.

We now give the formal proof of the Theorem.

M2’s Work Tape. Let Θt,C = πi−1πi0πi1πi2 · · ·πin−mπin−m+1πin−m+3 denote M2’s
work tape at time t in cycle Cm (m ≥ 1) of computation C on an initial input of
length n, where each πij is a tape square boundary, for j ∈ {−1, 0}∪ [n−m+3].
Further, with respect to Θt,C , we let τR(πij , t) denote the contents of tape square
to the right of πij at time t (if it exists) and τL(πij , t) the contents of the tape
square to the left of πij at time t (if it exists). So, we always have, for example,
τR(π−1, t) =¢= τL(π0, t). We call a tape square boundary internal if it is between
two tape squares. With each cycle, one tape square and boundary are destroyed
and for this proof, we say that the second tape square involved in the redex and
its boundary to the left are destroyed in the rewrite of the cycle.

Verification Information and Rewrite Set Notation. By verification information,
VerInf, we will just mean some member of the set of M1’s rewrites, or the special
blank symbol, B /∈ Γ2, and we will denote the set of verification information as

Π := {(q, u[1, k + 1], v[1, k], q′) | (q′, REWRITE(v[1, k])) ∈ δ1(q, u[1, k + 1])}∪ {B}.
We’ll also refer to Π1 := Π−{B} as the set of M1’s rewrites. For ρ = (q, u[1, k+
1], v[1, k], q′) ∈ Π1, we denote to the components of ρ as follows:

redex(ρ) := u, reduct(ρ) := v, from_state(ρ) : q, and to_state(ρ) := q′.

So, for example, reduct(ρ)[k + 1] = u[k + 1] and redex(ρ)[k] = v[k]. Finally, we
denote by Π2, the set of M2’s rewrites (which will be defined shortly):

Π2 := {(q, x[1, k], y[1, k − 1], q′) | (q′, REWRITE(y[1, k − 1])) ∈ δ2(q, x[1, k])}.

M2’s Tape Alphabet. M2 has tape alphabet Γ2 := Γ1 ∪ Δ, where

Δ := {(x, VerInf, c1, c2) | x ∈ Γ1, VerInf ∈ Π, c1, c2 ∈ {0, 1, neutral}}.
The second through fourth components of the information from these com-

pound symbols in Δ are used for verifying rewrite guesses, updating tape con-
tents, and determining whether updating is necessary.

If VerInf = B, we say that VerInf is blank ; we refer to the set of compound
symbols with blank verification information as ΔB . Also, we refer to the set of
compound symbols with the last component, c2, not equal to neutral as Δ01.

M2 uses compound symbols as either the last and possibly also the first symbol
of a reduct. The information VerInf is used for verifying rewrite guesses and
updating tape contents; this component will be non-blank in the last symbol of a
reduct. VerInf represents the latest simulated rewrite introducing a compound
symbol in the tape square as the last symbol of the reduct.
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The last two components of the 4-tuples in Δ take values that help determine
when verification information is out of date; the third component gives instruc-
tions about information in the following tape square and the fourth component
gives instructions about information in the preceding tape square. Their usage
will be made precise in Remark 8 and in the description of M2’s rewrite and
move-right instructions.

To refer to the different components of compound symbols z = (z′, VerInf, c1,
c2) ∈ Δ, we introduce the notation compi(z), i ∈ {2, 3, 4}, which refers to the
ith component of z. On the other hand, comp1 is defined as a homomorphism
comp1 : Γ2 ∪ {¢, $} → Γ1 ∪ {¢, $} as follows, for z ∈ Γ2 ∪ {¢, $}

comp1(z) :=

{
z if z ∈ Γ1 ∪ {¢, $}
x if z = (x, VerInf, c1, c2) ∈ Δ.

Then we extend comp1 in the natural way to comp1 : (Γ2 ∪ {¢, $})∗ → (Γ1 ∪
{¢, $})∗.

Further, we inductively define a mapping h : (Γ2 ∪ {λ,¢}) × (Γ2 ∪ {¢, $})∗ →
(Γ1 ∪ {¢, $})∗ by

h(z′, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
comp1(z) if z′ ∈ Γ1 ∪ ΔB ∪ {¢}, or if z′ = λ, or

if z′ ∈ Δ − ΔB, z ∈ Δ01, and
comp4(z) = comp3(z

′)
reduct(comp2(z

′))[k] otherwise.

Then we let h(z′, zα) := h(z′, z)h(z, α), where z is a single symbol.
Since compound symbols may have various components in common, we will

sometimes speak of components being introduced into tape squares. If at time
t a tape square τ holds compound symbol z with some component compi(z),
but at time t − 1, τ ’s contents held some symbol z′ ∈ Γ2 without the same
component|that is, either z′ ∈ Γ1 or compi(z

′) �= compi(z)|then we say that
compi(z) was introduced (into tape square τ) at time t.

M2’s State Set. For the definition of Q2, we first define the two-by-two mutually
exclusive sets Q21 and Q22 (which are also each mutually exclusive with Q1).

Q21 := {(q, VerInf, c, d) | q ∈ Q1 − {ACCEPT, REJECT}, VerInf ∈ Π,

c ∈ {0, 1, neutral}, d ∈ {verify, ignore, neutral}}
Q22 := {qu[1,k] | q ∈ Q1, u[1, k] ∈ (Γ1 ∪ {¢})k and

δ1(q, u[1, k]$) ∈ {ACCEPT, REJECT}}
M2 has the state set Q2 := Q1 ∪ Q21 ∪ Q22, where Q22 is the set of all possible
contexts leading to an accept state for M1, used on exactly the accept step in
M2’s computations. The compound states (from Q21) are only used to “pick up”
information from compound symbols.

To refer the different components of compound symbols q = (q′, VerInf, c, d)
∈ Q21, we introduce the notation COMPi(q), i ∈ {2, 3, 4}, which refers to the ith



506 N. Schluter

component of q. We further define the homomorphism COMP1(q) : Q2 → Q1 as
follows, for q ∈ Q2.

COMP1(q) :=

{
q if q ∈ Q1

p if q = pu[1,k] ∈ Q22, or if q = (p, VerInf, c, d) ∈ Q21.

The presentation of the proof is somewhat eased by first presenting some
guiding properties for M2 that the definition of rewrite and move-right steps
will have to obey; this is the purpose of Remark 8 (some comments on Remark 8
follow). After this, we will prove some facts about M2 based on these properties
and use these results in the remainder of our definition of M2 that follows.

Remark 8. M2 will be defined according to the six following invariants:

(I1) M2’s rewrites will be of the form (p, REWRITE(y[1, k − 1])) ∈ δ2(q, x[1, k])
where:

(a) The last symbol of the reduct, y[k− 1], is from Δ−ΔB and is such that
comp2(y[k − 1]) ∈ Π1 is the rewrite of M1 simulated.

(b) The first symbol of the reduct, y[1], is from Δ01 ∪ Γ1.
(c) All remaining symbols of the reduct, y[i], i ∈ {2, . . . , k − 2} are from Γ1.

(I2) M2 will only write a symbol from Δ01 if in a compound state. In particular,
if M2 is in compound state q and writes symbol y ∈ Δ01, then comp2(y) =
COMP2(q) and comp4(y) = COMP3(q).

(I3) M2 will always enter a compound state after carrying out a rewrite step. In
fact, if M2 is in compound state q after writing compound symbol y[k−1] ∈
Δ−ΔB, then COMP2(q) = comp2(y[k− 1]), COMP3(q) = comp3(y[k− 1]), and
COMP4(q) ∈ {verify, ignore}.

(I4) M2 enters a compound state after reading a compound symbol from Δ−ΔB

as the first symbol under the lookahead. Otherwise, after a move-right step
M2 must be in a state from Q1. In fact, if M2 reads symbol z ∈ Δ, then
it enters a compound state q such that COMP2(q) = comp2(z), COMP3(q) =
comp3(z), and COMP4(q) = neutral.

(I5) M2 in compound state q with COMP4(q) ∈ {verify, ignore} rejects if it
reads a compound symbol z ∈ Δ such that COMP3(q) = COMP4(z).
Moreover, if M2 does not reject and COMP4(q) = verify, then M2 checks
that reduct(COMP2(q))[k + 1] = comp1(z) (M2 verifies the symbol currently
scanned).
Then M2 (in both cases of COMP4(q)) enters some state p such that COMP1(q)
= COMP1(p) and if p /∈ Q1, then COMP4(p) = neutral and COMPi(p) =
compi(z) for i ∈ {2, 3}.

(I6) Let p ∈ Q2 − ({ACCEPT, REJECT} ∪ Q22).
(a) There is some left computation on prefix ¢α ∈ Γ ∗

2 in which M2 reaches
state p if and only if there is some left computation on prefix h(λ,¢α)
that puts M1 in state q = COMP1(p).

(b) There is some right computation on prefix4 zα after which M2 enters
state p where z ∈ Γ2, α ∈ Γ ∗

2 starting in state p′ if and only if there
4 By prefix in a right computation we mean the prefix of the segment of work tape

contents following the rewrite.
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is some right computation on prefix h(z, α) after which M1 enters state
COMP1(p) starting in state COMP1(p′).

(I1-I3) concern rewrite steps, (I4-I5) concern move-right steps, and (I6) is the
main statement that ensures this proof works (valid simulations).

(I4) ensures that M2 can update tape contents after reading a compound
symbol from Δ, but that it should not verify that the rewrite guess indicated
in this information is correct (COMP4(q) = neutral). In fact, this verification
should have taken place directly following the rewrite (in the same cycle) as
is indicated in (I3) (COMP4(q) ∈ {verify, ignore}). Points (I3-I5) together
indicate that M2 can only be in a state with fourth component equal a member
of {verify, ignore} at most once in a cycle: verification of the rewrite guess
happens during a single move-right step in the same cycle.

(I2) ensures that M2 can detect when an update of the tape contents has
been written onto the tape. (I5) permits M2 to keep track of cycle orders, to the
extent that is necessary here. (See Lemma 11.)

From Remark 8, we easily obtain the following three facts:

Lemma 9. At no time t in M2’s computation C is there an interior square
boundary π on M2’s work tape Θt,C such that τL(π, t) ∈ Γ1 ∪ ΔB ∪ {¢} and
τR(π, t) ∈ Δ01. (No symbol from Γ1 ∪ ΔB ∪ {¢} directly precedes a symbol from
Δ01 on M2’s work tape at any time t in the computation.)

Proof. This follows from (I1-I4).

Corollary 10. M2 cannot read a symbol from Δ01 in a state from Q1.

The following Matching Lemma shows that M2 can detect the order of rewrites
over consecutive tape squares.

Lemma 11 (Matching Lemma). At time t in M2’s computation C let π be an
interior tape square boundary on M2’s work tape Θt,C. Suppose τL(π, t) ∈ Δ−ΔB

and τR(π, t) ∈ Δ01. Then there are two cycles Cj1 , Cj2 ∈ C, such that

1. M2 uses rewrite ρi = (qi, xi[1, k], yi[1, k−1], q′i) at time ti in Cji (i ∈ [2]) such
that Cj1 introduced comp1(τL(π, t)) = comp1(y1[k − 1]), and Cj2 introduced
comp4(τR(π, t)) = comp4(y2[1]) ∈ {0, 1}.

2. (a) comp3(τL(π, t1)) = comp4(τR(π, t2)), implies t1 < t2.
(b) comp3(τL(π, t1)) �= comp4(τR(π, t2)), implies t1 > t2.

Proof. (1) follows from (I1). (2a) follows from (I2) and (I4). (2b) follows from
(I3) and (I5).

In case (2a) of the Matching Lemma, M2 should update the tape square (in
memory) τR(π, t) as it reads it, and in case (2b), M2 should ignore the instruction
in τL(π, t) to update the information in τR(π, t), since it is now “out of date”.
We also remark that the Matching Lemma helped provide the definition of the
mapping h.

We now describe the rewrite and move-right instruction for M2 with k > 2.
The case for k = 2 is easily obtained from this by merging the requirements for
the first and last symbols in reducts of the case k > 2.
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Rewrite steps of M2. Let ρ = (q, u[1, k + 1], v[1, k], q′) ∈ Π1. We define a set of
M2’s rewrites required for simulating ρ of the form

ρ′ = (p, x[1, k], y[1, k − 1], p′) ⊆ Π2

with the following component requirements.

1. p = q if p ∈ Q1, and p = (q, ρ′′, comp3(τL(π, t)), neutral), otherwise, where
ρ′′ has further constraints with respect to x[1]. (See Item (7).)

2. p′ = (q′, ρ, comp3(y[k − 1]), d) where d ∈ {verify, ignore} (by (I3)). In
particular,

d =

{
ignore if x[k] ∈ Δ − ΔB, and
verify otherwise (x[k] ∈ Γ1 ∪ ΔB).

3. Any x[2, k − 1] ∈ Γ k−2
2 such that h(x[1], x[2, k − 1]) = u[2, k − 1].

4. y[2, k − 2] = v[2, k − 2].
5. y[k − 1] = (v[k − 1], ρ, c1, neutral), with c1 ∈ {0, 1}, by (I1).
6. (a) x[k] ∈ Γ1 such that x[k] = u[k], or

(b) any x[k] ∈ ΔB such that h(x[k−1], x[k]) = u[k], comp3(x[k]) = neutral,
and comp4(x[k]) ∈ {0, 1} or

(c) any x[k] ∈ Δ − ΔB such that reduct(comp2(x[k]))[k] = u[k + 1], and
comp3(x[k]) ∈ {0, 1}.

7. Finally for x[1], y[1],
– If p ∈ Q1, then y[1] = v[1] and any x[1] ∈ Γ2 ∪{¢} such that comp1(x[1])

= u[1] will suffice.
– If p ∈ Q21, then y[1] = (v[1],B, neutral, COMP3(p)) and

• any x[1] ∈ (Γ2 ∪ {¢}) − Δ01 such that comp1(x[1]) =
redex(COMP2(p))[k + 1] and reduct(COMP2(p))[k] = u[1], or

• any x[1] ∈ Δ01 such that
∗ COMP3(p) �= comp4(x[1]), comp1(x[1]) = redex(COMP2(p))[k + 1]

and reduct(COMP2(p))[k] = u[1], or
∗ COMP3(p) = comp4(x[1]) and comp1(x[1]) = u[1].

by the Matching Lemma.

There are no other rewrites in δ2.
Note that M2 cannot rewrite over the right sentinel, since it always simulates

M1’s rewrites using only the first k symbols and M1 has fixed rewrite size.

Move-right steps of M2. There are two types of move-right steps for M2 that
are not derived from M1’s move right steps, for verifying rewrite guesses. These
two cases, for δ2(p, x[1, k]) are when p ∈ Q21 with COMP4(p) ∈ {verify, ignore}.
According to (I5), if x[1] ∈ Δ01, then we must have comp4(x[1]) �= COMP3(p), so
M2 will know that the rewrite guess just made was made after x[1]′s information
was written onto the tape (Matching Lemma). If this is not the case, M2 rejects.
Otherwise, x[1] ∈ Γ2 − Δ01 and

1. if COMP4(p) = verify, then M2, having just made a rewrite guess must now
verify it; we must have redex(comp2(p))[k + 1] = comp1(x[1]) otherwise M2

rejects. There are no other constraints on x[1]. Moreover,
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2. if COMP4(p) = ignore, then M2 rewrote over a previous rewrite guess and
should not check anything else in this tape square.

If x[1] ∈ Γ1, M2 then moves right and into state COMP1(p). Otherwise M2 moves
into state

(COMP1(p), comp2(x[1]), comp3(x[1]), neutral),

indicating that M2 remains in the “same” state (with respect to M1’s state),
picks up x[1]’s verification information (in case it must update tape contents),
and its matching information (to keep track of the order of rewrites). The fourth
component is always neutral in the compound state following any step that
does not verify a rewrite step.

Otherwise, M2’s move-right steps nondeterministically simulate those of M1

simultaneously updating tape contents because of rewrite guesses. Recall that
since M1 is in the RR-semidet-form, we only need to consider the first symbol
under the lookahead for M1’s move-right steps (so, in particular, we can talk
about move-right steps in δ1 on a lookahead contents of size k instead of k + 1).

Let
q′ ∈ δ1(q, u[1, k + 1]) (1)

be a move-right step for M1. Then, q′ ∈ δ2(q, u[1, k]). In addition, M2 has the
following instructions.

If q′ = ACCEPT (so u[k + 1] = $), then we have, for qu[1,k] ∈ Q22, qu[1,k] ∈
δ2(p, x[1, k]), and

δ2(qu[1,k], x[2, k]z) �
{
ACCEPT if z = $, and
REJECT otherwise.

for all p such that COMP1(p) = q and COMP4 = neutral, and for all x[1, k] ∈
(Γ2 ∪ {$}) ·Γ k−1

2 , z ∈ Γ2. Here, M2 first guesses that M1 would accept and then
verifies its guess. We must have COMP4 = neutral, because in the step after
rewriting, M2 should only be verifying or ignoring the symbol and not halting
(for a valid simulation of M1).

If q′ = REJECT, then we have simply REJECT ∈ δ2(p, x[1, k]) for all p such that
COMP1(p) = q and for all x[1, k] ∈ (Γ2∪{$})·Γ k−1

2 , so long as COMP4(p) = neutral.
M2 can guess that the M1 would reject; if this is not the case, there is still some
computation that does not reject.

By Corollary 10, the remaining cases for the simulation of (1) are where M2

reads a compound symbol (as the first symbol under the lookahead) and/or is
in a compound state.

Suppose p ∈ Q1, then p = q. By Corollary 10, we must have x[1] ∈ Δ − Δ01

and therefore comp1(x[1]) = u[1]. Now M2 simply picks up the information in
x[1] and moves right as M1 would:

(q′, comp2(x[1]), comp3(x[1]), neutral) ∈ δ2(p, x[1, k]). (2)

Finally, suppose p ∈ Q21; then COMP1(p) = q. The only case left to treat is
where COMP4(p) = neutral.
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1. If x[1] ∈ (Γ2 ∪ {¢} − Δ01, then comp1(x[1]) = redex(COMP2(p))[k + 1] and
reduct(COMP2(p))[k] = u[1].

2. If x[1] ∈ Δ01. Then by the Matching Lemma,
(a) COMP3(p) �= comp4(x[1]), comp1(x[1]) = redex(COMP2(p))[k + 1] and

reduct(COMP2(p))[k] = u[1], or
(b) COMP3(p) = comp4(x[1]) and comp1(x[1]) = u[1].

M2 rejects for all other contexts (except where it can rewrite).
M2’s rewrite and move-right steps being determined by M1’s, it follows that

L(M1) = L(M2). �

As a corollary of Theorem 7, we have the following lookahead hierarchy collapsal.

Corollary 12. For k ≥ 2 and X ∈ {(left-, right-left-)mon, λ}, we have

L(X-RRWW) =
∞⋃

k=2

L(X-RRWW(k)) = L(X-RRWW(2))

Corollary 12 reduces the most important question concerning restarting au-
tomata|whether the separation of rewrite and restart steps results in an increase
in power|to the same question about restarting automata with lookahead length
2: L(RWW ) = L(RRWW ) ⇐⇒ L(RWW ) = L(RRWW (2)). It also leads to
the following improvements on results of [3].
Corollary 13. For all k ≥ 2 and X ∈ {left-mon, mon}, we have
L(X-RRWW(k)) = CFL.
Corollary 14. For all k ≥ 2, we have L(right-left-RRWW(k)) =LIN.

4 Concluding Remarks

We showed that the restriction on lookahead length is not as important a re-
striction for restarting automata with auxiliary symbols as opposed to those
without auxiliary symbols, so long as restart and rewrite steps are separated,
distinguishing only two different language classes for RRWW automata. The
respective question for RWW automata remains open.

Acknowledgements. We thank the anonymous reviewers for their helpful
comments.
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Högberg, Johanna 142
Horn, Florian 227
Huschenbett, Martin 310

Ingolfsdottir, Anna 80

Jain, Sanjay 192
Jansen, Christina 323

Katoen, Joost-Pieter 323
Khoussainov, Bakhadyr 22
Klein, Shmuel Tomi 238
Kowaluk, Miros�law 336
Kuske, Dietrich 250

Labath, Pavel 342
Larsen, Kim G. 274
Laurence, Grégoire 354
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