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Preface

These proceedings contain the papers that were presented at the 5th Interna-
tional Conference on Language and Automata Theory and Applications (LATA
2011), held in Tarragona, Spain, during May 26-31, 2011.

The scope of LATA is rather broad, including: algebraic language theory;
algorithms for semi-structured data mining; algorithms on automata and words;
automata and logic; automata for system analysis and program verification; au-
tomata, concurrency and Petri nets; cellular automata; combinatorics on words;
computability; computational complexity; computational linguistics; data and
image compression; decidability questions on words and languages; descriptional
complexity; DNA and other models of bio-inspired computing; document engi-
neering; foundations of finite-state technology; fuzzy and rough languages; gram-
mars (Chomsky hierarchy, contextual, multidimensional, unification, categorial,
etc.); grammars and automata architectures; grammatical inference and algo-
rithmic learning; graphs and graph transformation; language varieties and semi-
groups; language-based cryptography; language-theoretic foundations of artificial
intelligence and artificial life; neural networks; parallel and regulated rewriting;
parsing; pattern recognition; patterns and codes; power series; quantum, chem-
ical and optical computing; semantics; string and combinatorial issues in com-
putational biology and bioinformatics; string processing algorithms; symbolic
dynamics; term rewriting; transducers; trees, tree languages and tree machines;
and weighted machines.

LATA 2011 received 91 submissions. Each one was reviewed by four Program
Committee members, many of whom consulted with external referees. After a
thorough and lively discussion phase, the committee decided to accept 36 papers
(which represents an acceptance rate of 39.56%). The conference program also
included three invited talks and two invited tutorials. Part of the success in
the management of such a large number of submissions is due to the excellent
facilities provided by the EasyChair conference management system.

We would like to thank all invited speakers and authors for their contri-
butions, the Program Committee and the reviewers for their cooperation, and
Springer for its very professional publishing work.

March 2011 Adrian-Horia Dediu
Shunsuke Inenaga
Carlos Martin-Vide
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Green’s Relations
and Their Use in Automata Theory

Thomas Colcombet*

L1Ara/CNRs/Université Paris Diderot—Paris 7, France
thomas.colcombet@liafa. jussieu.fr

Abstract. The objective of this survey is to present the ideal theory of
monoids, the so-called Green’s relations, and to illustrate the usefulness
of this tool for solving automata related questions.

We use Green’s relations for proving four classical results related to
automata theory: The result of Schiitzenberger characterizing star-free
languages, the theorem of factorization forests of Simon, the characteri-
zation of infinite words of decidable monadic theory due to Semenov,
and the result of determinization of automata over infinite words of
McNaughton.

Introduction

In this lecture, we will establish several classical results related to automata
theory, respectively due to Schiitzenberger, Simon, Semenov, and McNaughton.
These problems are all related in a more or less direct way to language theory
and automata. Despite their obvious intrinsic interest, these results will be for us
excuses for presenting the approach via monoids and semigroups which allows
to uniformly apprehend these, a priori unrelated, questions. That is why this
lecture is structured as the interleaving of the proofs of the above results with
the necessary algebraic material.

We devote a particular attention to the theory of ideals in monoids, the so
called Green’s relations. When working in language theory using automata, sev-
eral tools comes naturally into play. A typical example is the use of the decom-
position of the graph of the automaton into strongly connected components, and
the use of the dag of the connected components for driving an induction in a
proof. The Green’s relations provide the necessary tools for using similar argu-
ments on the monoid rather than on the automaton. Since monoids are more
informative than automata, the resulting techniques are more powerful than the
corresponding ones on automata (this gain usually comes at the price of a worth
complexity in decision procedures and constructions). The Green’s relations are
well known, and presented in deep detail in several places, see for instance
[UT3]. For this reason we do not establish here the results related to this theory.

* Supported by the project ANR 2010 BLAN 0202 02 FREC, and the ERC Starting
Grant GALE.

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 1-R1], 2011.
© Springer-Verlag Berlin Heidelberg 2011



2 T. Colcombet

We do not try either to be exhaustive in any way. Our goal is different. We are
interested in illustrating how to use this tool.

We use four classical results as illustrations. The first one is the theorem of
Schiitzenberger [I7] characterizing the languages which can be described by star-
free expressions. The second one is the theorem of factorization forests of Simon
[19], which gives a form of generalized Ramsey argument for regular languages.
The third one is a theorem of Semenov [18] which gives a necessary and sufficient
condition for an infinite word to have a decidable monadic second-order theory.
The fourth theorem, due to McNaughton [9], states that automata over infinite
words can be made deterministic.

The lecture is structured as follows. We first briefly recall some basic defi-
nitions concerning semigroups and monoids in Section [II We then present the
results of Schiitzenberger and Simon in Section Pl and [ respectively. We then
introduce the framework of w-semigroups in Section[] and use it for establishing
the results of semenov and McNaughton in Sections [ and [ respectively.

1 Basics on Monoids

A monoid M is a set together with an associative binary operator - which has a
neutral element denoted 1 (such that 1z = x1 = z for all ). An element e such
that ee = e is called an idempotent. A monoid morphism from a monoid M to
another M’ is an application from M to M’ such that «(1) = 1, and «a(ab) =
a(a)a(b) for all a,b in M.

A particular example is the free monoid generated by a set A, it is the set of
words over the alphabet A equipped with the concatenation product. The neutral
element is €. An example of a finite monoid consists of the two elements a,b
equipped with the product aa = ab = ba = a, and bb = b.

A language L C A* is recognizable by a monoid (M, -) if there exists a mor-
phism « from A* to M and a subset F' C M such that L = a~1(F).

Theorem 1 (Rabin and Scott [16] with credit to Myhill). A language of
finite words over a finite alphabet is reqular (i.e., accepted by some standard form
of finite state automaton) if and only if it is recognizable by a finite monoid.

Given a language L there is a particular, minimal, monoid which recognizes it,
the syntactic monoid. The syntactic monoid of a language L over the alphabet A
is an object gathering the minimal amount of information for each word that is
relevant for the language. This is obtained by a quotient of words by the so-called
syntactic congruence ~y. Two words are equivalent for this relation if they are
undistinguishable by the language in any context. Formally, two words u and v
are equivalent for a language L is defined as:

u~pv ifforall z,y € A%, zuy € L iff xzvy € L .

If two words are equivalent for ~j, this means that in any context, one can
safely exchange one for the other. In particular, as its name suggest, ~ is a
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congruence, i.e., v ~y v and u' ~p v’ implies uu’ ~y vv’. This means that
the equivalence classes for ~j can be equipped with a product. The resulting
quotiented monoid My = A*/., is called the syntactic monoid of L. Further-
more, the application n; which to a word associates its equivalence class is a
morphism, called the syntactic morphism.

In particular, setting F' = nr (L), we have u € L if and only if nz(u) € F. In
other words, the syntactic monoid My, recognizes L using the morphism 7y, and
the subset F' = np (L) C M.

For instance, consider the language over the alphabet A = {a,b, ¢} consisting
of “all words which do not contain two consecutive occurrences of the letter a”.
The equivalence classes of the syntactic monoid are €, a((b+c)*a)*, (a(b+c)T)T,
((b+c)Ta)t, (b+c)T(a(b+c)™)* and A*aaA*. We will denote them by 1, a, ab,
ba, b and 0 respectively. The notations 1 and 0 are conventional, and correspond
to the neutral and the absorbing element (absorbing means 0z = z0 = 0; such an
element is unique, but does not always exist). For the other congruence classes,
one fixes a word as representative. The product zy of any two elements x and y
of the monoid is given in the following table:

\Y 1 a ab ba b
1 1 a ab ba b
a a 0 0 a ab

ab ab a ab a ab

ba ba 0 0 ba b
b b ba b ba b
0O 00 0 0 O

cCooco0oO o

The language “no two consecutive occurrences of letter a” is recognized by this
monoid, together with the morphism which maps letter a to a and letters b and ¢
to b, and the subset F' = {1, a, ab, ba,b}.

We see on this example that the table of product is not very informative for
understanding the structure of the monoid. Natural tools, such as the strongly
connected components of the graph of the automaton, are frequently used to
design proofs and constructions in automata theory. We do not see immediately
anything similar in monoids. The Green’s relations that we present below gives
such an insight in the structure of the monoid. Even better, since the syntactic
monoid is more informative than the minimal automaton (at a price: it is also
bigger), the structure of the syntactic monoid reveals even more information
than the analysis of the minimal automaton.

Furthermore, the syntactic monoid is something one can work with:

Proposition 1. The syntactic monoid is finite iff the language is reqular. Fur-
thermore, the syntactic monoid of a reqular language can be effectively computed
from any presentation of the language (by automata, regular expressions, etc...)
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2 Schiitzenberger’s Characterization of Star-Free
Languages

Our first result concerns star-free languages. The star-free languages are the
languages of finite words which can be obtained from finite languages using
union, concatenation and complement (of course, intersection and set difference
can be derived from the union and complement).

An example is simply A* (for A the alphabet), which is star-free since it is the
complement of the empty language, which is itself finite. More generally, B* for
all subsets B of A is star-free since it can be written as A*\ (J g p A*cA"). Very
close is the language of words over A = {a,b, ¢} containing no two consecutive
occurrences of the letter a. It is star-free since it can be written as A*\ (A*aaA*).
However, the language of words of even size is not star-free (we do not prove it
here). In general, all star-free languages are regular, but the converse does not
hold. This motivates the following question:

When is a regular language star-free? Is it decidable?
Schiitzenberger answered the above question as follows:

Theorem 2 (Schiitzenberger[17]). A regular language is star-free iff it is
recognized by a monoid which has only trivial subgroupdl.

This famous result is now well understood and has been enriched in many ways.
In particular, star-free languages are known to coincide with first-order definable
languages as well as with the languages accepted by counter-free automata [10].
This result was the starting point of the very important literature aiming in
precisely classifying families of languages. See for instance [14].

This result in particular establishes the decidability of being star-free. Indeed,
if any monoid recognizing a language has only trivial subgroups, then its syntac-
tic monoid has only trivial subgroups. This yields a decision procedure: construct
the syntactic monoid of the language and check that all its subgroups are trivial.
The later can be done by an exhaustive check.

We will only prove here the right to left direction of Theorem 2] namely,
if a regular language is recognized by some (finite) monoid with only trivial
subgroups, then it is star-free. The interested reader can find good expositions
of the other directions in many places, see for instance [I1]. We assume from
now and on that we are given a language L recognised by M, «;, F', in which M
is a finite monoid which has only trivial subgroups.

The general approach of the proof is natural. For all elements a € M, we

prove that the language L, def {u e A : a(u) =a} is star-free. This concludes
the proof of the right to left direction of Theorem [2] since it yields that

L=aF)= U L, is star-free.
acF

! Here, a subgroup is a subset of the monoid which is equipped of a group struc-
ture by the product of the monoid. This terminology is the original one used by
Schiitzenberger. It is natural in the general context of semigroup theory.
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However, how do we prove that each L, is star-free?
Our basic blocks will be languages consisting of words of length one. For

cach a € M, set C, & {c € A : a(c) = a}. This is a finite (hence star-
free) language, and C, C L,. More precisely, C, captures all the length-one
words in L,. We could try to get closer to L, using only concatenations and
unions of such elementary languages. However, this would only produce finite
languages. This is not sufficient in general. We need another argument. It will
take the form of a good induction parameter: we will pre-order the elements of
the monoid using one of Green’s relations, the <-pre-order, that we introduce

now.

In a monoid M, we define the binary relations <7 and J by:
a<70b ifa=uzbyforsomez,ye M, aJb ifa<sbandb<gsa.

The relation <7 is a preorder, and J is an equivalence relation. In particular,
in free monoid of words, u > 7 v if and only if u appears as a factor of v, i.e.,
v can be written wuw’ for some w and w’. We call this the factor ordering.

One often describes monoids making explicit the J-pre-order, such as in
the following examples.

Our first example is the monoid ({1,...,n}, min). Here, the
neutral element is n, and the absorbing element 1. In this case,
<7 coincide with the usual order <.

Traditionally, the smaller is an element for the relation <7,
the lower it appears in the drawing. When one starts from an
element and successively performs products to the left or to the
right, then the J-class stays the same or goes down. In the later
case, one says falling in a lower J-class. This supports the intu-
ition behind the relation <7 that it captures information that
cannot be undone: it is never possible to climb back to 5 from 2
by making any product, to the left or to the right. Informally, “it
is impossible to recover from falling in the <z order”.

3
56 -6
—

Let us depict now the structure of J-classes of the syntactic
monoid of the language “no two consecutive occurrences of the
letter a”.
: Remark the J-equivalence between a, ab, ba, and b (in general,
b (;a the J-relation is not an order). However, as soon as two consecu-
[ tive a’s are encountered, one falls in the [J-class of 0. Once more
it is impossible, using any product with a word containing two
: consecutive a’s, to produce one without this pattern.
@ In general, falling in a [J-class can be understood as the dis-
covery of a certain pattern as a factor (here aa, but in general
any regular language).

ab, a
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The <g-pre-order is a good idea as an induction parameter. Indeed, unless
b <7 a, one does not see how knowing that L, is star-free can help proving
that L, is also star-free. This is why our proof proceeds by establishing the
following induction step.

Induction step: Assuming L is star-free for all b > 7 a, then L, is star-free.

Assuming this induction step granted for all a € M, we obtain immediately
that L, is star-free for all a € M, and hence L itself is star-free. The theorem is
established. Let us establish now this induction step. We assume from now and
on a fixed, and the hypothesis of the induction step fulfilled. The key lemma is:

Lemma 1. The language Ly ,q 1/ {u : a(u) 27 a} is star-free.

Proof. 1t follows from the following equation which witnesses the star-freeness:

Ly o =A"K A", where K, & U Cy U U CoLcCy
b2ga bed? 7a
c>ga

We prove this equality by establishing a double inclusion. The easiest direction
is the inclusion from right to left. Indeed, we have K, C Ly, by construction.
Furthermore, by definition of the J-pre-order, belonging to Ly ,, is preserved
under any product to the left or to the right. Hence A*K,A* C Ly ,,.

For the opposite inclusion, we prove that every word in Lyx, which is min-
imal (i.e., such that no strict factor belongs to Ly ,) belongs to K,. Let u
be such a minimal word. Clearly u cannot be of length 0, since this would
mean «(u) = In > 7 a, and hence u & Ly 4. If u has length 1 then it directly
falls in szj o Cp, which is the first part in the definition of K,. The interesting
case is when u has length at least 2. In this case, u can be written as u = zvy
for some letters x,y € A.

Let b = a(z), ¢ = a(v), and d = a(y). We claim that ¢ > 7 a, and for proving
this, we use the following lemma:

Lemma 2. In a finite monoid, if ¢ J be J cd, then ¢ J bed.

This results is in fact a direct consequence of more elementary results pre-
sented below. Let us show this simplicity by giving a proof, though the
necessary material has not been yet given.

Assume ¢ J be J cd, then by Lemmal[7l ¢R cd. Hence by Lemma [B bed R be.
Thus bed T be. O

For the sake of contradiction, assume ¢ % 7 a. We have a <7 be (by minimality
in the choice of u), hence a <7 ¢. Combined with a £ 7 ¢, we obtain a J c.
Furthermore we have ¢ J a <7 be <7 ¢, hence bc J ¢ and similarly ¢d J c. Using
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Lemma[2 we get bed J ¢ J a. This contradicts w € Ly ,, since a(u) = bed. Hence
c>g a.

Thus, v € CpL.Cy, bed 27 a, and ¢ >7 a, ie.,, u € K,. Consider now a
word u € Ly 4. It has a minimal factor u’ € Ly ,,. We have seen that v’ € K.
Hence u € A*K,A*. a

We immediately deduce:

Corollary 1. The language Lz, ={u : a(u)J a} is star-free.

Proof. This follows from the equation Ly, = () Lz, 5\ Ly a - O
b>ra

At this point, we are able to define the J-class of a. However, we need to be
even more precise, and define precisely a. We will need some more of Green’s
relations.

The order <7 makes no distinction on whether the products are per-
formed on the left or on the right. The relations <, and <g refine the <7
order as follows:

a <, b if a = xb for some z € M, alb ifa<gband b<,a,

a<rpb ifa=bxforsomex e M, and aRb ifa<gbandb<ga.

An elementary, but important, property of these relations is:

Lemma 3. If a <, b then ac <, bc. If a L b then ac L bc.
If a <r b then ca < cb. If a R b then ca R cb.

The relation £ considers equivalent elements which are convertible one into
the other by product on the left. One can think of the piece of informa-
tions preserved by such conversions as located “close to the right” of the
element. Considering that £ identifies information concerning the “right” of
the element, and R information which concerns the “left” of the element,
the two relations £ and R may seem rather independent. This intuitive idea
is captured by the following key lemma.

Lemma 4. LoR=RoL.
Thus, we define D ©f roR. In general, we have D C J, but:
Lemma 5. In a finite monoid, D = J.

This result is the central one in the theory of finite monoids. All results
presented in this lecture using the finiteness assumption are more or less
directly derived from this lemma.

A consequence for us is that we can depict monoids in a refined way.
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The presentation of the syntactic monoid of the language
“no two consecutive occurrences of a” can be refined as shown. ,ZI
The J-class {a, ab, ba, b} has been subdivided according to the £-
classes and the R-classes, yielding an “egg-box” presentation of
each class. The R-classes are drawn as ‘R’ows (here {1}, {a, ab},
{b,ba} and {0}), and the L-classes as columns (here {1}, {a, ba}, ba | b
{b,ab} and {0}). The last of Green’s relations is H, defined by:

L]

H =LNR.

Quite naturally H-classes correspond to the atomic boxes at the intersec-
tion of rows and columns. In our example, all H-classes are singletons.
For groups, on the contrary, there is only one H-class.

Our next objective is to identify the R-class and L-class of a.
Lemma 6. The language Ly, def {u : a(u) Ra} is star-free.

Proof. Assume first (the interesting case), that a is not R-equivalent to 1pg. In
this case, the star-freeness of Ly, is established by the following equation:

Lra=LzaN U A

be<pa, b>7a

Clearly, if a word u belongs to the right-hand side of the equation, this means
it has a prefix v belonging to L,C.. We derive a(u) <g a(v) = bec < a. Since
furthermore «(u) J a, one can use the following important lemma:

Lemma 7. In a finite monoid, b <g a and a J b implies a R b.

(Said differently, if ab J a then abR a.)

from which we immediately get that «(u) R a, i.e., u € Lgq.

Conversely, consider some u € Lg,. First of all, clearly v € L,. Let v be a
minimal prefix of u such that a(v) <g a. Since 1p €r a we have a(v) # 1w,
and hence v # . Thus we can write v as wx for some letter z. Setting b = a(w)
and ¢ = a(z), we have that u belongs to LyC.A*. Furthermore bc = a(v) >x
a(u) >r a. Finally, by minimality of v, b = a(w) €% a. Since furthermore b =
alw) >r a(u) >r a, we obtain b >x a. This means by Lemma [7 that b > 7 a.

It remains the case 1ng € Lr,. We use the following lemma.
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Lemma 8. In a finite monoid M, the J-class of 1n coincides with its H-
class.

Proof. Assume 1z J a. Since furthermore a <g 1pm (by a = 1ma), we
have a R 1y using Lemma [1l Similarly, a £ 1p1. Thus a H 1. O

Hence Lz, = L7, is star-free by Corollary [l O

By symmetry, Lz, {u : a(u) £a} is also star-free. From which we get.

Corollary 2. The language L1q def {u : a(u)Ha} is star-free.
Proof. Indeed Lyq = Lroa N Lzg, and both Ly, and Lg, are star-free. O

Here the poof is concluded using the next lemma.

A monoid is called H-trivial if all its H-classes are singltons.
Lemma 9. A monoid has only trivial subgroups if and only if it is H-trivial.

One direction is simple. Indeed, if you consider any subgroup of the monoid,
then all its elements are H-equivalent in the monoid. Thus H-trivial implies
that all subgroups are trivial. The converse requires more work.

Such monoids are also called aperiodic, which signifies that there exists
some n such that a” = a"*?! for all @ € M.

Hence, we deduce that L, = Ly, which is star-free by Corollary 2l This
completes the proof of the induction step, and hence the proof of the theorem
of Schiitzenberger.

3 The Theorem of Factorization Forests of Simon

The theorem of forest factorizations is due to Simon [I9]. It is at first glance, a
purely algebraic result. It takes a finite monoid as input, as well as a morphism
from words to this monoid, and shows the existence of factorizations with special
properties for every word. However, this result has consequences which are purely
automata related. Some of them are surveyed in [I]. A remarkable application
is its use for proving the decidability of the limitedness problem for distance
automata. Distance automata [6] are non-deterministic finite state automata over
finite words, equipped with a set of special transitions. The function computed by
such an automaton associates to each input word the minimal number of special
transitions contained in some accepting run (oo if there are no accepting runs).
The limitedness problem consists in deciding whether the function computed by
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a distance automaton is bounded (in fact, over its domain, i.e., the set of words
which are not given value co). This problem is decidable [6], and the optimal
algorithm for it is due to Leung [8]. A simplified proof of validity of this theorem
is due to Simon using the factorization forest theorem [20]. The theorem of
factorization forests has other interesting applications. It is used for instance for
characterizing the polynomial closure of classes of regular languages [15].

We fix from now and on a finite monoid M.We will work with sequences of
elements in the monoid. We denote them separated by commas for avoiding
confusion with the product. Given a sequence v = a1, ..., a,, 7(v) denotes the
value ajas - - a,.

A factorization (tree) (over the monoid M) is a finite unranked ordered tree T'
whose leaves are labelled by elements of M (the label of node z is denoted T'(z))
such that for every non-leaf node x of children y1, . .., yx (read from left to right),
T(x) =m(T(y1),..-,T(yr)). A factorization of a sequence ay, . ..,ay (of element
in M) is a factorization tree such that the labels of leaves read from left to
right are aq, ..., a,. Traditionally, the height of a factorization is computed with
leaves excluded, i.e., the height of a single leaf factorization is by convention 0.

A factorization is Ramsey if for all nodes = of rank? three or more, its chil-

dren y1, ...,y are such that T'(y1) = --- = T(yn) = e where e is an idempotent
(in particular, we also have T'(x) = e).

Here is for instance an example of a 0
Ramsey factorization of height 4, in the / \

context of the syntactic monoid of our // ‘\\ / \
ab

running example: the language of words

a
“without two consecutive occurrences of / \b / \ // ‘\\

letter a”. a ba ba ba ba ba

The theorem of factorization forests // ‘\\
is then the following.

Theorem 3 (Simon [19]). Every sequence of elements from a finite monoid M
admits a Ramsey factorization of height at most 3| M| — 1.

We follow here the similar proofs from [4lf7]. The original bound given by Simon
is 9| M| instead of 3| M|. The bound of 3| M |—1 has been announced by Kufleitner,
but is proved here. The proof completely follows the descriptions of the monoid
in terms of the Green’s relations.

A sequence aq,...,a, over M will be called X-smooth for some X C M if
a;---a; € X forall 1 <i<j<n (in particular each a; € X and a1 - - - a,, € X).

Lemma 10. Let H be an H-class of a finite monoid M, then every H-smooth
sequence admits a Ramsey factorization of height at most 3|H| — 1.

Proof. We need a better understanding of the internal structure of H-classes:

2 The rank of a node is the number of its children.
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Lemma 11. If an H-class H contains an idempotent e, it is a group of
neutral element e. Otherwise ab <z a for all a,b € H

If H contains no idempotent element, then an H-smooth sequence has length at
most 1. In this case, the single node factorization is Ramsey. It has height 1.

The interesting case is when H contains an idempotent e. Given an H-smooth
sequence u = daq,...,an,, call its width the value |S(ay,...,a,)| where the set
S(ai,...,a,) abbreviates {a1...a; : 1 <1< n} (remark that S(ay,...,a,) is
empty iff n = 0). The construction is by induction on the width of the sequence.
The base case is for n = 0. In this case, there exists a factorization of height at
most 0 (this is a somewhat distorted case).

Let v = aq,...,a, for some n > 0. Define a to be aj ---a, and let a’ be the
inverse of a in the group H. Set 0 < k1 < -+ < k;;, = n to be the list of indexes
such that a1 ---ag, = a for all i. Let vi = a1,..., 0k, -1, V2 = Qgy+1, .-, Qkp—1,

etc... Remark that S(v1) C S(v) and a ¢ S(v1). Hence the width of v; is less
than the one of v. One can apply the induction hypothesis, and get a Ramsey
factorization Ty for v;. Similarly for all ¢+ > 1, aS(v;) C S(v), and a & S(v;).
Furthermore S(v;) = a’aS(v;), hence |S(v;)| < |aS(v;)| < |S(v)|. Thus, we can
also apply the induction hypothesis, and get a Ramsey factorization T; for v;.
Remark here that some of the v;’s may be empty. We do not pay attention to
this harmless detail.
We now construct the following factorization:

In this construction, the empty trees are removed, and the labels of nodes are
completed (in a unique way). We have to prove that the resulting factorization
is indeed Ramsey. For this, it is sufficient to prove it for the only new node of
rank possibly greater or equal to 3. Its ¢’th children has value ag,41---ax,,,. We
compute:

Ak 410k, = 0 A0k, 41 - -,y
= a/al C Qe Q41 Oy
=da=c¢c.
Hence the new node is Ramsey.
For the height, remark that for the width 1, all the T;’s are empty, and hence
the construction can be simplified, and the resulting height is 2 (recall that leaves
do not count in the height). At each induction step, the height of the factorization

increases by at most 3. Hence, in the end, the factorization resulting from this
construction has height at most 3|H| — 1. O



12 T. Colcombet

Lemma 12. For R an R-class, every R-smooth sequence has a Ramsey factor-
ization of height at most 3|R| — 1.

Proof. Let v = ay,...,a, be the R-smooth sequence. The construction is by
induction on the number of H-classes occurring in v. If this number is 0, then
one uses (once more) the distorted case of an empty tree.

Otherwise, let H be the H-class of a,. Let 1 < k; < --- < k,,, < n be the

indexes such that ax, € H. One defines as for the previous lemma v1,. .. ,0m+1
to be such that v = v1,a1,v9,...,0m, Vms+1. Remark first that the H-class H
does not appear in any of v, ..., Un+1. Thus, one can apply the induction hy-

pothesis for each of the v;’s, and get a Ramsey factorization T;. We also know

that m(v;, a;) = 7(v;)a; and hence (v, a;) <z a;. It follows from (the L-version

of) Lemma [1 that 7(v;, a;) £ a;, which means 7(v;, a;) £ a; € H. Hence, we can

apply Lemma[l0 and get a Ramsey factorization T” for w(v1,a1), ..., 7 (Vm, Gm).
We now construct the following factorization:

It is Ramsey since each part it is composed of (namely T7,...,T,4+1 and T7)
is Ramsey. One just needs to check that the values are consistent at the glue
points. However, this is by construction.

Concerning its height. Once more in the pathological case of a single H-class,
the construction gets simpler, and its height is simply the height of 7", which
is at most 3|H| — 1. Then at each step of the induction, the height increases of
at most 3|H| — 1 where H is the H-class treated at this step of the induction.
Overall we can over approximate it by 3|R| — 1. O

In the above proof, we count the size of all the H-classes separately. However,
in some situations we would like to have more information. Such results exist:

Lemma 13 (Green’s lemma). Inside a D-class,

— The R-classes have all the same size (more precisely, if ba D a, then the
application which to x associates bx is a bijection from the R-class of a
onto the R-class of ba).

— The L-classes have all the same size, (more precisely, if abD a, then the
application which to x associates xb is a bijection from the L-class of a
onto the L-class of ab).

— All H-classes have same size.

Using the exact same proof, decomposing a J-class into R-classes, we obtain:
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Lemma 14. For J a J-class, every J-smooth sequence has a Ramsey factor-
ization of height at most 3|.J| — 1.

We are now ready to prove the factorization forest theorem, Theorem

Proof. Let v = a1,...,a, be a sequence over M. This time, the proof is by
induction on the J-class J of w(v). Assume one knows how to construct a Ramsey
factorization for each sequence w such that 7m(w) > 7 w(v).

Let k1 > 1 be the least index such that 7(aq,...,a,) € J. Continue by con-
structing k2 > ki minimal such that 7(ag, +1,...,ak,) € J, and so on, producing
in the end k1 < --- < ky,. One decomposes v as vy, g, , V2, - - -, Gk, ; Um+1 aS €X-
pected. By minimality property in the definition of the k;’s, 7(v;) € J. Since
furthermore, 7 (v;) >7 7(v) € J, we obtain w(v;) >z 7(v). Thus we can apply
the induction hypothesis, and get a Ramsey factorization T; for v;. Furthermore,
for all i < m, 7(v;,a;) € J by construction. Hence, we can apply Lemma [I4] and
get a Ramsey factorization 7" for w(vi,a1),. .., m(Um, Gm).

We construct now the following factorization:

T
Tm+1
i) i T

As in the previous lemmas, it is Ramsey simply because all its components are
Ramsey.

Concerning the height. For a maximal J-class J, the construction can be
slightly simplified since all the T;’s are empty. Hence, the height is the one of T”,
which is at most 3|J| — 1. Then, the height increases of the height of 7" plus one
at each step of the induction, which is at most 3|.J| for a J-class J. Overall, we
reach a factorization of height at most 3|M| — 1. ]

An interesting point in this proof is that it is completely driven by the decom-
position of the monoid according to Green’s relations.

4 On w-Semigroups and Monadic Logic

The remaining results which we consider involve the study of languages of infinite
words, of length w. We call such words w-words. Regular languages of w-words
are usually defined using Biichi automata. We present in this section the corre-
sponding algebraic notion, w-semigroups. This is the extension of the notion of
monoids (in fact semigroups) which is best suited for dealing with languages of
infinite words.

w-semigroups. An w-semigroup is an algebra S = (S4,S,,7) consisting of
two disjoint sets S, and S, and a product m mapping finite sequences in (Sy)*
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to S4, finite sequences in (S1)*S,, to S,,, and infinite sequences in (S4)“ to S.,.
The product 7 is required to be associative, i.e., for all meaningful choices of
sequences Uy, Ug,. - - ,

w(m(u), m(uz),...) = w(ug,ug,...) .

As an example, the free w-semigroup generated by A consists of S, = AT,
S, = A%, and the product is simply the concatenation product for sequences
(possibly infinite).

An example of a finitd? w-semigroup consists in S = {a, b} and S,, = {0,1}.
For all finite sequences u over {a, b}, m(u) = a if a occurs in u, b otherwise. For
all finite sequences u, 7(u,0) = 0 and 7(u,1) = 1, and for all w-sequences w
over {a,b}, m(w) = 1 if w contains infinitely many occurrences of a, w(w) = 0
otherwise.

A morphism of w semigroups from S to S’ is an application o mapping S
to S’ and S, to S/, which preserves the product, i.e., such that for all meaningful
(possibly infinite) sequences a1, ag, ... from S,

a(n(ar,az,...)) =7 (a(ar),alaz),...) .

A language of w-words L is recognizable by an w-semigroup S if there exists
a morphism « from the free w-semigroup to S, such that for every w-word w,
w € L if and only if a(w) € F, where F' C S,,. One also says that L is recognized
by S,a, F.

For instance, the language of infinite words over {a, b, c} which contains in-
finitely many occurrences of letter a is recognized by the above finite w-semigroup.
The morphism « maps each non-empty finite word to a if it contains an occur-
rence of the letter a, to b otherwise. The morphism also sends each w-word to 1 if
it contains infinitely many occurrences of the letter a, to 0 otherwise. The finite
subset of S, is F' = {1}.

Given an w-semigroup (S4, Sy, ), one defines the binary product - over Sy

by ab 2ef m(a,b). One also uses it from S x S, to S, (with the same definition).

The exponentiation by w from Sy to S, is defined with a% Lef m(a,a,a,...).
It turns out that if S, and S, are finite, then 7 is entirely determined by the
product - and the exponent by w [22]. We will not use this direction, however, this
explains why it is sufficient to know a finite amount of information for working
effectively with w-semigroups.

The relationship with the monoids we have been using so far is that (S, ")
is a semigroup: a semigroup S = (5,) is a set S together with an associative
operator -. Hence, this is simply a monoid without necessary a neutral element.
This difference is not essential. In our case, it simply reflects the special property
of the empty word (which is the neutral element of the free monoid) in the study
of infinite words: it is the only finite word which, when iterated w times, does not

3 Finite means that both Sy and S., are finite, though a priori, the product 7 requires
an infinite quantity of information for being described.
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yield an infinite word. Using semigroups rather than monoids means avoiding to
treat this particular case.

The structure of semigroups and monoids are highly related. Given a semi-
group S, one defines S' to be S to which has been added a new neutral ele-
ment 1, if necessary. This makes a monoid out of a semigroup. When we refer to
the Green’s relations of the semigroup, we refer in fact implicitly to the Green’s
relations of the corresponding monoid S*.

Monadic second-order logic. Let us recall here that monadic (second-order)
logic is the first-order logic extended with the ability to quantify over sets. L.e., it
is possible to quantify existentially or universally over elements (e.g., 3z, Yy, ...)
and sets of elements (e.g., 3X,VY,...), to test membership (e.g., x € Y), to use
boolean connectives (i.e., V,A, =) and to use the predicates of the structure. In
our case, we consider w-words. In this case, the elements are the positions in the
word, i.e., non-negative integers, and there are two kinds of predicates. For all
letters a, the predicate a(x) allows to test whether the letter at the position x is
an a, and the predicate z < y tests whether the position x occurs to the left of
or at y. Given an w-word, one says that its monadic theory is decidable if there
is an algorithm which, given any sentence of monadic logic, decides whether it
holds or not over the w-word. See for instance [21I] for more on the subject.
Those various notions are tied together by the following theorem.

Theorem 4 (J2],[12]). A language of w-words is regular (i.e., definable by
Biichi automata) if and only if it is recognized by a finite w-semigroup, if and only
if it is definable in monadic logic. Furthermore, the translations are effective.

For this reason, we do not use explicitly monadic logic from now on.

5 The Characterization of Decidable Theories by
Semenov

The result of Semenov we are mentioning answers the following question:
When is the monadic theory of an w-word decidable?

This question differs, though it is related, to the original question solved by
Biichi [2], which aims at deciding whether a monadic sentence has a model, i.e.,
decide if it is satisfied by some w-word.

A possible answer to the above question is:

Theorem 5 (variation of Semenov[i8]). An w-word w has a decidable mo-
nadic theory if and only if the following questions are decidable for all reqular
languages of finite words L:

(A) Does there exist a finite prefix of w in L? Le., w € LA%?
(B) Does there exist recurrent factors of L inw ? Le., w € (A*L)¥?
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One direction is straightforward. Indeed, it is easy to translate the properties
“w e LAY and “w € (A*L)¥” into equivalent monadic formulas. Hence prop-
erties (A) and (B) can be reduced to the decidability of the monadic theory
of w.

The interesting implication is the opposite one. We will use as our major
tool Lemma [I§ below. This requires beforehand to disclose some extra facts
concerning the Green’s relations.

An element a in a monoid is called regular if there exists s such that asa =
a.

Lemma 15. Let J be a J-class J in a finite monoid. The following items
are equivalent:

— J contains a regular element,

— J contains an idempotent,

— every element in J is regular,

— every R-class in J contains an idempotent,

— every L-class in J contains an idempotent,

— there exist two elements in J, the product of which belongs to J.

Such J-classes are naturally called regular.

Keeping the same example as above, one enriches the presen-
tation by adding information concerning the idempotents. Each @
‘H-class is now decorated by a star if it contains an idempotent.
This gives an important information: a_|ab

Lemma 16. In a finite semigroup, if a J b, then ab J a if and
only if there exists an idempotent e such that e R b and e L a, @
and in this case, ab’R a and ab L b.

In our example, on the one hand, abba stays in the same J-class since b
is an idempotent, and the result is a. On the other hand, baab falls in the
lower [J-class since a is not an idempotent.

The following technical lemma contains the key arguments we need:

Lemma 17. IfaJbJabJc and aLxRec, then there exists y such that ¢ = xy
and c LYy R b.

This statement can be depicted as shown.
Le., x can be completed to the left into a (aLz),
and to the right into ¢ (z R ¢). Then it is possi-
ble to complete x to the right into ¢ = xy such
that y can be completed into b (b R y).

Proof. We have x L a, hence ab £ xb by Lemma Bl Thus zb J ab J z. It
follows b R « R ¢, once more by Lemma [3l Hence ¢ = xbz for some z.
Let y = bz. Clearly ¢ = xzbz = xy. Furthermore y = bz <z b, and bz >
xbz = c. Hence by (twice) Lemmald ¢ Ly R b. O
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We then obtain by iterated applications of Lemma [T

Lemma 18. If u = ay,as9,... € (S4)¥ is J-smooth (i.e., is J-smooth for
some J-class J) then (a) there exists an idempotent e such that e R a1, and
(b) w(u) = e“ for all idempotents e such that e R ay.

Proof. Let J be the J-class of ay. Since a1, a2, and ajas all belong to J,
it follows that J is regular by Lemma Hence, still by Lemma [I5] there
exists an idempotent e in the R-class of a1 (a).

Let e be such an idempotent. One constructs inductively the ele-
ments x,, Yy, € S+ such that for all positive integer n:

(1) eLxy Ray, and if n = 1, z1 = e, otherwise y,_1z, =€,
(2) an Lyn Re, and xpy, = ap.

The constructions can be illustrated as follows:

(451 (45 as

Ty, | To, Y2 | T3, Y4

Gy

€ € € € €

For n = 1, one chooses x1 = e, and we know by choice of e that e Lx1 R a1.
Hence (a) holds for n = 1. Then for all n, assuming (1) establishes (2) using
simply Lemma [[7 Similarly, assuming (2), one establishes (1) for n+1 using
again Lemma [I7

It is then easy to conclude. Indeed, using the associativity of m,
we have w(ay,a9,...) = m(x1y1,22y2,...) = 7(r1,y1,%2,Y2,...) =
m(x1, Y122, Yaxs, ... ) = e* . Property (b) holds. ]

Lemma provides us a lot of information concerning the monadic theory of
an w-word. Given a J-class J and a word w, we say that J occurs in w if w €
A*LjAY where Ly ={ue€ AT : a(u) € J}. We say that J is recurrent in w
ifwe (A*L])w

Lemma 19. For all w, there is a minimum (for the J-pre-order) J-class
recurrent in w.

Proof. Assume that both J and J’ are recurrent, we shall prove that there is
a J-class below or equal to both J and J’ which is recurrent. Since both J and J’
are recurrent, w can be written as ujviujviugus. .., where v; € Ly and v] € Ly
for all i. Let J; be the J-class of a(v;ufv}). By definition of the J-pre-order,
Ji <7 J and J; <5 J'. Furthermore, since there are only finitely many J-class,
one of the J;’s has to occur infinitely often, which means it is recurrent in w. 0O

Lemma 20. If J is recurrent in w, and no J -class J' # 7 J occurs in w, then w
can be decomposed into v1vs ... such that a(vy), a(ve),... is J-smooth.
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Proof. Find the first non-empty prefix v; of w such that a(vi) € J. This is
possible since J is recurrent. Then proceeds with the remaining suffix, and con-
struct ve,... For the sake of contradiction, assume a(vi), a(vs2),... is not J-
smooth, this would mean that a(v;...v;) ¢ J for some ¢ < j. However, we
have a(v;...vj) <7 a(v;) J J, thus this means that a(v;...v;) <z J. A con-
tradiction since by hypothesis no J-class below J does occur in w. g

Corollary 3. Assume the minimum recurrent J-class of w is J and all J-
classes occurring in w are above or equal to J, then:

— w has a finite prefiz u such that a(u) € J,
— for all prefiz u of w such that o(u) € J,

where a— % ew for some/all idempotents e such that e R a (if defined).

Proof. By hypothesis and Lemma 20, w can be written as w = vjvy... such

that a(vy), a(ve),... is J-smooth. Thus by Lemma 08, a(w) = a(vy) ™.
Furthermore, u is either a prefix or a suffix of vy, yielding a(u) >7 a(vi)
or a(u) <7 a(vy) respectively. In any case, since a(u) J «(v1), we have a(u) R
a(vy) by Lemma[7l Hence e R a(vy) if and only if e R a(u). This means a(w) =
O

—

a(v1)” = a(u)
We are now ready to establish Theorem [l

Proof. Assume that properties (A) and (B) hold for an w-word w, and that
one is given a monadic sentence . This sentence ¢ defines a regular language
of w-words which is recognized by an w-semigroup S by Theorem [4

Using (A), we can decide what is the minimum recurrent J-class in w (it
exists by Lemmal[I9). Call it J. The next step consists in finding a decomposition
of w in uw’ such that all J-class occurring in w’ are above or equal to J. Such
a word u exists. For finding it, one just tries all possible u’s, and stop when
both w € uA“, and w € uA*Ly ,;A“, where Ly ,; is the set of non-empty
words which are not mapped by « to J or above. This is obviously doable using
iterated applications of item (A). Then one finds v such that uv is a prefix of w,
and a(v) € J. It is sufficient once more to test all possible such v’s using (A).
Then, we have a(w) = a(u)a(v)™ by Corollary Bl Hence, we can decide if ¢
holds or not. O

6 Deterministic Automata over w-Words: McNaughton

A Biichi automaton is a tuple (Q, A, I, A, B) where @ is a finite set of states,
A is the alphabet, I C (@ is a set of initial states, A C @Q x A x @ is the
transition relation, and B C A is the set of Biichi transitions. An automaton is
deterministic if A is a function from @ x A to Q. A run of the automaton over
an w-word w is defined as usual as an infinite sequence of transitions such that
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the first state is initial, the letters in the transitions yield w, and consecutive
transitions agree on the common states. A run is accepting if it contains infinitely
many Biichi transitions. The language accepted by an automaton A is the set of
w-words over which there is an accepting run of the automaton. A language is said
reqular if it is accepted by some Biichi automaton. A language is deterministic
Biichi if it is accepted by a deterministic Biichi automaton.

It is known that not all regular languages are deterministic Biichi. However
McNaughton’s result still gives a strong relationship:

Theorem 6. A language of w-words is reqular if and only if it is a Boolean
combination of deterministic Biichi languages.

Usually, this theorem is stated as the existence of deterministic automata belong-
ing to more general classes of automata (such as parity/Rabin/Streett/Miiller
automata). In fact, with just a slightly more involved construction, one can im-
mediately get a deterministic parity automaton along the lines presented here.
We choose here the simplest presentation. Standard constructions are directly
performed on the automaton, here we translate an w-semigroup directly into a
Boolean combination of deterministic Biichi automata. The first direct transla-
tion of w-semigroup to deterministic automata is due to Carton [3].

Once more, we start from a regular language L which is presented by an
w-semigroup (Sy,S,,7), a morphism «, and some subset F' C S,,.

Lemma 21. Given a J-class J, the language of words such that the minimum
recurrent J -class J' is such that J' %7 J is deterministic Biichi.

Proof. Without loss of generality, one assumes 1 ¢ J (otherwise, this is the
language A“). Let K be the set of elements {a € SL : a >z J}. By the
assumption 1 ¢ J, we have 1 € K. One constructs the following deterministic
Biichi automaton:

The set of states is K.
The initial state is 1.
The transition from state a, reading letter x, ends in state

aa(z) if aa(z) € K, (a)
Ala,x) = { 1 otherwise. b)

— The automaton accepts if some transition of kind (b) is seen infinitely often.

This automaton decomposes an input w-word into w = ujus ... in such a way
that each u; is minimal such that a(u;) #7 J. It accepts if and only if this
decomposition is infinite.

Assume the automaton accepts an w-word w. Then there is a [J-class visited
by infinitely many u;’s, which is a witness that the minimum recurrent 7-class
is not above J. Conversely, assume the automaton does not accept an w-word w.
This means that after some time no more transitions of kind (b) are visited
anymore. Thus all J-classes appearing after this moment are above J. a
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Lemma 22. Given a J-class J, the language of w-words:
Ln{we A* : J is the minimum recurrent J-class in w}
18 the difference of two deterministic Biichi languages.

Proof. We construct a deterministic Biichi automaton such that:

A. Tt accepts all w-words such that the minimum recurrent J class is 27 J.
B. An w-word such that the minimum recurrent J-class is J is accepted if and
only if it does not belong to L.

Then, it is easy to see that if we subtract this language to the one of Lemma 211,
we obtain the expected language.

Let K be the set of elements {a € S1 : a >7 J}. One constructs the
following deterministic Biichi automaton:

— The set of states is S x K.
— The initial state is (1,1).
— The transition from state (a,b) while reading letter x goes to state:

(a,ba(z)) if ba(z) € K (a)
A((a,b),z) = { (aba(z),1) otherwise.  (b)

Transition (a) is called (al) if a(ba(z))™ € F, otherwise, it is called (a2).
— The automaton accepts if a transition of the kind (b) or (a2) is visited in-
finitely often.

First of all, remark that, for the same reasons as in the proof of Lemma 2] the
transitions of kind (b) are visited infinitely often if and only if the minimum
recurrent J-class is not above or equal to 7. This settles item A.

Consider now some w-word such that the minimum recurrent J-class is J.
This means that after some steps, no more (b)-transitions will be encountered.
This uniquely decomposes the w-word into w = uv in which « is the prefix of w
which terminates when the last (b)-transition is visited (possibly v = ¢ as a
pathological case if no (b)-transition is ever encountered).

One easily sees that for all finite prefix of w of the form uv’, the automaton
reaches the state (a(u),a(v’)) after reading it. Since the minimum recurrent
J-class is J, a(v’) will eventually enter J. By Corollary B, if w € L, then all
transitions from this moment are of kind (al) and the word is rejected, while
if w ¢ L, all transitions from this moment are of kind (a2), and the word is
accepted. This settles item B. a

Of course, Theorem [0l follows directly since L is the union of the languages of
Lemma 22 for J ranging over the possible [J-classes.
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1 Introduction

Automata theory has unified many areas of computer science and mathemat-
ics. These include group theory (Thurston automatic groups [II], branch and
self similar groups [I] [24]), computable model theory (the theory of automatic
structures [5] [I7] [16]), finite model theory, algorithms and decidability, logic,
model checking and verification.

In this tutorial we emphasize the use of automata in representation of infinite
mathematical structures and concentrate on two topics. One topic is automatic
structures, and the other, representations of groups by automata. There are al-
ready many papers motivating the study of automatic structures and surveying
some of the results in the area (e.g. [28] [16] [18]). The book [I1] is a standard
reference for automatic groups in the sense of Thurston. See also a survey by S.
Gersten on automatic groups and their relations with hyperbolic groups [12]. In
this paper we present definitions and theorems in the area of automatic struc-
tures, automatic groups, outline some recent results, and discuss possible topics
for research.

We note that there are several models of automata: finite automata, tree
automata, various types of w-automata, and w-tree automata. Here we restrict
ourselves to finite automata and tree automata. Finite automata are designed
to process finite strings over a finite alphabet, while tree automata are designed
to process finite labeled trees. We assume that the reader is familiar with these
automata and their basic properties. For completeness we will, however, provide
definitions for these type of machines in the next section.

A Dbrief outline of this paper is as follows. The next two sections contain
basic definitions, and a proof that each automatic structure posses a decidable
first order theory and is closed under definability. Section 4 stresses the domain
dependency of automatic structures. The main idea is that algebraic (and even
algorithmic) properties of automatic structures depend heavily on the underlying
domains. This is formalized in the definition of the algebraic spectra of automata
recognizable sets. Given a (finite, or tree) automaton recognizable language X,
we define the algebraic spectrum of X to be the class of automatic structures
whose domain is X. This definition calls for a refined analysis of automaticity
for structures. As an example, we prove that every infinite automatic scattered
linear order is isomorphic to an automatic linear order over the domain of all
finite binary strings. In contrast, no scattered tree-automatic linear order exists
over the domain of all finite trees. As a corollary, no tree-automatic well order
exists on the set of all finite trees.

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 22—@, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Sections 5 and 6 study automaticity in groups. There are several ways to rep-
resent groups by finite automata. The first is to consider finite automata with
letter-by-letter outputs, known as Mealy automata. Every such automaton deter-
mines length preserving functions on the set of strings (over the alphabet of the
automaton). The number of these functions is bounded by the number of states
of the automaton. If these functions are permutations, one can consider groups
generated by them under the composition operation. These determine groups
called automata groups. Examples of such groups include the famous Grigorchuk
groups. The reader is referred [2] for background. The second way is to consider
groups as defined by Thurston and his collaborators [I1]. Roughly, a group G
generated by a finite set X is Thurston-automatic if there exists a regular subset
L of X* such that the natural mapping v — « from L into G is bijective, and
the left-multiplication by each of the generators can be performed by finite au-
tomata. Many natural examples of Thurston-automatic groups arise in topology
and geometry. For instance, all hyperbolic groups are Thurston-automatic. So
are virtually abelian groups. We propose a natural generalization of Thurston
automaticity for groups: Cayley automatic groups. Roughly, a finitely generated
group G is Cayley automatic if there is a coding of the vertices of a Cayley graph
of G under which both the set of codes and multiplication by each of the gen-
erators are finite automata recognizable. Every group, automatic in the sense
of Thurston, is Cayley automatic. However, there are many examples of Cayley
automatic groups that are not Thurston automatic. These include Heisenberg
groups and groups of nilpotency class at most 2. We show that the class of
Cayley automatic groups is closed under many group-theoretic constructions.

The last section discusses the isomorphism problem for automatic structures.
We outline several known results in the study of the isomorphism problem. The
emphasis is on to showing that the isomorphism problem lies in various spec-
trum of decidability and undecidability. This spectrum depends on the classes
of structures (e.g. classes of linearly ordered sets, Boolean algebras, graphs).
We give examples of automatic structures for which the isomorphism problem
is is (highly) undecidable, and examples of automatic structures for which the
isomorphism problem is decidable.

2 Basics

A finite alphabet is denoted by X. As always, L* denotes the set of all finite
words over Y. We define finite automata as follows.

Definition 1. A finite automaton is a tuple M = (S,1, A, F'), where S is the
set of states and ¢ € S is the initial state, A C .S x X' x S is the transition table,
and F C S is the set of final states. The set S of states is always finite.

Note that given an automaton M, its transition table A determines the al-
phabet Y. A run of the automaton M on word w = o105...0, € X* is a
sequence of states qo, q1, - . -, qn such that ¢o = ¢ and (¢, 0i+1,¢i+1) € A for all
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i €{0,1,...,n—1}. If ¢, € F, for some run of M on w, then the automaton
M accepts w. The language of the automaton M is

L(M) = {w | w is accepted by M}.

We call such languages finite automaton (FA) recognisable or regular languages.

We now need to define tree automata. A X' —tree is a mapping t : dom(t) — X
such that the domain dom(t) of t is a finite subtree of the binary tree {0,1}*
with the property that every non-leaf node v € dom(t) has both its children v0
and vl in dom(t). The symbol A denotes the root of dom(t). The boundary of
the domain dom(t) is the set

ddom(t) = {xb | = is a leaf of dom(t) and b=10 or b= 1}.

The set of all YX-trees is denoted by T'(X).

Definition 2. A tree automaton is a tuple M = (S, A, F), where S is the set
of states and ¢ € S is the initial state, A C S x X' x (S x S) is the transition
table, and F' C S is the set of final states. As for finite automata S is always a
finite set.

Next we define tree automata recognizable languages. Let M be a tree au-
tomaton and ¢t be a X-tree. A run of M on the tree ¢t is a mapping 7 :
dom(t) U ddom(t) — S such that r(A) = ¢ and for all z € dom(t) if t(x) = o
and r(z) = s then r(z0) = sp and r(zl) = s1 where (s,0,(s0,$1)) € A. If for
every leaf x € dom(t) we have both r(z0) € F and r(z1) € F, then the run r is
said to be accepting. Automaton M accepts the tree t, if there is a run of M on
t which is accepting. The language of the tree automaton M is

LM)={teT(X)]|tis accepted by M}.

These languages are called tree-automata recognisable or equivalently regular.

The word and tree languages are subsets of the underlying domains X* and
T(X), respectively. As such they are unary relations on these domains. Our goal
now is to define automata recognizable relations on these domains. For this, we
need one technical notation.

Let to, ..., tn,—1 be X-trees. For x € dom(to)U...Udom(t,—1) and i < n, we
set t}(x) = t;(x) if © € dom(t;), and t;(x) = O if © &€ dom(t;). The convolution of
the trees ¢, .. ., t,—1 is then the tree given by a mapping conv(to, . .., t,—1) from
dom(to) U ... Udom(t,—1) to (X U{O})" which satisfies for all x € dom(to) U
...Udom(t,—1) that

conv(ty, ..., tn—1)(x) = (to(x), ..., t,_1(x)).

Thus a convolution of an n-tuple of trees tg, ..., t,_1 is a tree over a larger finite
alphabet. We often identify the convoluted tree conv(to, . . ., t,—1) with the tuple

(tos s tn1).
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Definition 3. We say that an n-ary relation R on T(X) is tree-automatic if
its convolution conv(R) = {conv(tg,...,tn—1) | (to,.-.,tn—1) € R} is a tree-
automata recognisable language.

The reader can easily modify the convolution operation for finite strings, and
hence define finite automata recognisable relations on the set X*. This allows us
to give the following definition central to this paper.

Definition 4. A structure A = (A; Ry,..., Ry) is tree-automatic (word-auto-
matic) if domain A and the atomic relations Ry, ..., R, are all tree-automata
(finite automata) recognisable. For a structure B, if B is isomorphic to the struc-
ture A then we say that A is a tree-automatic (word-automatic) presentation
of B. We often refer to tree and word automatic structures and presentations as
automatic structures and presentations, respectively.

Automatic presentations A of a structure B is thus a finite collections of au-
tomata for the domain and atomic relations of A. For the reader familiar with
the second order logic, we note that the definition of automata presentability is
a X|-definition in arithmetic. This is because automata presentability of B re-
quires a search for an isomorphism from automatic structures A to B. However,
we often abuse our definition and refer to automata presentable structures as
automatic structures. We also remark that the type of automaticity used (tree
automata or finite automata) in the text will be clear from the content.

Examples of word-automatic structures are the following. (1) The structure
(1%; S, <)), where S(1") = 1"*! and 1" < 1™ iff n < m for n,m € Z. (2) The
structure ({0, 1}*; <iex, <pref, <itex), Where the relations are the lexicographical,
prefix, and length-lecocographical orders on strings. (3) the small ordinals w™,
where n € N. (4) The structure (Basey; Addy), where Baser, = {0,1,...,k —
1}*-{1,...,k—1}. In this example each word w = xg ...z, € Basey is identified
with the number

n
valg(w) = lek’
i=0

This gives the least significant digit first (LSDF) base k representation of natural
numbers. The predicate Addy is the graph of the k-base addition of natural
numbers, that is Add, = {(u, v, w) | valg(u)+valg(v) = valg(w)}. This structure
is isomorphic to the natural numbers with addition (N, +) known as Presburger
arithmetic.

Examples of tree-automatic structures are: (1) all word-automatic structures;
(2) Skolem arithmetic (N; x), (3) term algebras with infinitely many generators,
(4) the ordinal w®, (5) the countable atomless Boolean algebra. The structures
in Examples (2)-(5) are not word-automatic structures. These require proofs,
some non-trivial, see for instance [4] [19] [20].

3 Decidability and Definability Theorem

Closure properties for both finite and tree automata imply that automatic struc-
tures are closed under first order interpretations. Furthermore, the decidability
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of the emptiness problem for automata can be used to prove that the first order
theory of every automatic structure is decidable. We state an extended version
of this fact in the theorem below, and outline a proof.

Theorem 5 ([5/14)17]). Let FO + 3 —logic be the extension of the first-order
logic with the “there are infinitely many” quantifier 3¢.

1. There is an algorithm that, given an automatic presentation of A and a
formula ¢(x1,...,2,) in FO + 3 -logic, builds an automaton Mg that rec-
ognizes all n-tuples in A that satisfy the formula.

2. There is an algorithm, that given an automatic presentation of A and a
sentence ¢ in FO -+ 3% -logic, decides if ¢ is true in A. Hence, the first-order
theory of any automatic structure is decidable.

Proof. We sketch the proof for Part 1. Verification details are left to the reader.
The proof is by induction on complexity of the formula ¢(z1, ..., x,).

If ¢(x1,...,2,) is an atomic formula, the definition of automaticity implies
the proof. Assume that ¢ is a disjunction of two formulas, say ¢1(z1,...,2,)
and ¢a(x1,...,T,). Since automata recognizable languages are closed under the
union operation, using the inductive hypothesis, one constructs an automa-
ton My from the automaton Mg, and Mg, that recognizes all tuples that
make ¢(z1,...,2,) true. The conjunction case is proved similarly. Assume that
(1, ...,x,) is a negation of the formula (x4, ..., 2z, ). Then one can construct
the automaton My for the complement of the language recognized by M,,. Now
assume that ¢(z1,...,x,) is of the form Iz, 1¢¥(x1, ..., Tn, Tpny1). The automa-
ton My is then built from M, by “forgetting" the last components of the labels
in the transition table of M,;. The resulting automaton is non-determinitsic and
accepts exactly those tuples that make ¢(x1, ..., x,) true.

Now consider the formula ¢(Z) of the form I<“y(Z,y). Assuming that there
is an automaton M, for ¥(Z,y), we would like to construct an automaton
for ¢(z). If the underlying structure A is word-automatic then the formula
I<“yi(z,y) is equivalent to the following formula Iz2Vy(y <pref 2 V —(Z,y)).
Since (A, <prer) is word-automatic, the former formula is the formula of the
first order language. The reasoning above shows that there exists an automa-
ton that accepts exactly those tuples @ that make ¢(Z) true. Assume that A is
a tree-automatic structure. Then the formula 3<“yi)(Z,y) is equivalent to the
following formula 32Vy(dom(y) C dom(z) V —)(Z,y)). Note that there exists a
tree automata that given two X-trees y and z recognizes if dom(y) C dom(z).
Therefore the structure (A, C) is tree-automatic structures. As above, we con-
clude that there exists a tree automaton that accepts exactly those tuples a that
make ¢(Z) true.

For the second part of the theorem, consider the automatic structure A and a
sentence ¢. Let My be an automaton constructed for ¢ as above. Then ¢ is true
in A if and only if L(My) # 0. Since, the emptiness problem for automata is
decidable, we can decide whether or not ¢ is true in A. This proves the theorem.

One can ask several questions concerning generalizations of Theorem 5. For
instance, we would like to know for what extension of the F'O + 3“-logic and for
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which classes of automatic structures the theorem can be preserved. The reader
is referred to [22] for this and related questions. We also refer the reader to [23]
for a discussion of decision problems on automatic structures.

4 Domain Dependency

Here is an observation that has interesting consequences. Consider the unary
domain 1* (all unary strings over the alphabet {1}). All linearly ordered word-
automatic sets with domain 1* are finite unions of w (the order of natural num-
bers), Z (the order of integers), w™ (the order of negative integers), and finite
orders [27]. In particular, infinite well ordered sets with domain 1* are exactly
those that are strictly less than w?. Now let us change the domain. Say, instead
of 1* we consider the domain 0*1*. One can prove that an infinite well-ordered
set with domain 0*1* is word-automatic if and only if it is strictly less than w?.
Furthermore, every automatic linearly ordered set with domain 1* is isomor-
phic to an automatic linear order with domain 0*1*. This observation tells us
that various automata recognizable domains might realize different automatic
structures. The definition below takes this observation into account, refines the
definition of automaticity and places an emphasis on the underlying automata
recognisable domains of the structures.

For the definition, we fix a class of structures K, where structures are iden-
tified up to isomorphism. For instance, K can be the class of well-ordered sets,
undirected graphs of bounded degree, trees, Abelian groups and so on.

Definition 6. For a FA recognizable language X, the algebraic spectrum of X
with respect to the class K, denoted by AlgSpeck(X), is the class of all struc-
tures B € K such that there exists a word-automatic structure A with domain
X isomorphic to B. If B € AlgSpeck(X) then we say that the set X admits
(the isomorphism type of) the structure B. The spectrum AlgSpecy (X) for tree
automata recognisable languages X is defined similarly.

For example, no tree-automata (or finite automata) recognisable language ad-
mits a structure with undecidable first-order theory. The results in [27] show
that 0* admits a well-order « if and only if o < w?. In [20] it is proven that if X
is regular and X admits an ordinal a then o < w*. Generally, Khoussainov and
Minnes [I5] showed that if X is FA recognizable and X admits a well-founded
partial order A then the height of A is below w*. Another nice example is a recent
result by Tsankov [29] showing that no regular language admits the structure
(Q; +), the additive group of rational numbers. The last three examples are sim-
ply non-automaticity results (and are therefore domain independent). However,
we stress that Definition [0] calls for a refined analysis of automaticity. Proving
that a certain structure (e.g. a well order of type w™) is not admitted by a given
regular or tree-automata recognisable language requires a deep analysis of un-
derlying automata and understanding algebraic and model-theoretic properties
of underlying structures of interest.
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In order to show examples of domain dependency results, in this section the
class K from Definition [l will be the class of linearly ordered sets. Recall that
a structure A = (A, <) is a linearly ordered set if < is a partial order on A
such that for all z,y € A we have either x < y or y < z. A linearly ordered
set A = (A, <) is a well-order if every non-empty subset of A has a <-minimal
element. A linearly ordered set A = (A, <) is called scattered if no embedding
exists from the natural order of the set of all rational numbers into A. There
is an equivalent definition of scatteredness in terms of Cantor-Bendixson ranks
that we will explain below.

Cantor-Bendixson ranks (CB-ranks for short) are ordinals assigned to linearly
ordered sets. Let £ = (L; <) be a linearly ordered set. Say that z,y € L are
~—equivalent if the interval between x and y is a finite set. The relation ~ is
an equivalence relation. The order < naturally induces a linear order on the
quotient set £/ ~. Denote the resulting order by £’. This new linearly ordered
set L' is called the derivative of L. We iterate this process of taking derivatives
and produce the sequence of derivatives as follows: Lo = £, £1 = L}, Lov1 = L4
and Lg is the limit of all £, with v < 8 for limit ordinals 3.

Definition 7. We say that a linearly ordered set L is very discrete if there exists
an « such that Ly, is a finite linearly ordered set. The least ordinal « for which L,
is finite is called the Cantor-Bendixson rank of £. We denote it by CB-rank(L).

Tt is well-known that £ is very discrete if and only it is scattered £ [26]. Examples
of scattered linearly ordered sets are the order of integers, well-ordered sets and
their finite sums and products.

Theorem 8. If L = (L; <) is a word-automatic linearly ordered set with at least
one infinite ~-class then the set X* admits L.

Proof. Consider an infinite ~-equivalence class [x] = {y | © ~ y in L} that exists
by the assumption. This class [z] is a finite automata recognizable language.
This follows from the fact that the relation ~ is definable in F'O 4 3“-logic and
Theorem Al Consider the following regular language:

C = [z]U(Z*\ L).

The linearly ordered set ([z]; <), where < is the order in £, is isomorphic to either
the positive integers or the negative integers or all integers. Assume, without loss
of generality, that ([z]; <) is isomorphic to the positive integers, that is, to the

)y —

ordinal w. We now write X™* as follows:
L[m] ucu R[m],

where Ly ={z2€ L|z<zand z ¢ [z]} and R;) = {2z € L | 2>z and z ¢ [2]}.
The languages L, and R[,) both are FA recognizable. Define the following linear
order <,¢w. The order <,.,, preserves the old order < on the sets L[w] and R[x],
orders the strings in [z] U (X* \ L) length-lexicographically, and declares all the
elements in C' be greater than all elements in L,), and all the elements in C' be
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less than all elements in R[,). The linear order <, is clearly finite automata
recognisable.

It is easy to see that <, is a linear order on X*. In addition, the original
word-automatic linearly ordered set L is isomorphic to (X*; <,ew). Hence, X*
admits £. We have proved the theorem. a

Since every word automatic infinite scattered linearly ordered set satisfies the
hypothesis of the theorem above, we have the following corollary. The corollary
states that the algebraic spectrum of X* in the class of linearly ordered sets
contains all word-automatic scattered linear orders.

Theorem 9 (Scaterdness Theorem (with Jain and Stephan)). The set
2* admits every word automatic infinite scattered linearly ordered set. O

We do not know if the theorem above is true for all infinite word-automatic
linear orders.

We would now like to consider the case of tree-automatic scattered linear
orders. To contrast the situation with word-automatic case, instead of the set
of all finite strings X*, consider the set of all X-trees T'(X). A natural ques-
tion arises if the set T'(X) can admit a tree-automatic scattered linear order. It
turns out that the situation here differs dramatically from finite automata case.
For instance, using (1) Gurevich and Shelah’s theorem stating that no monadic
second-order definable choice function exists on the infinite binary tree T [13]
and (2) finite-set-interpretablity of tree-automatic structures on 7% [8], one can
show that no tree-automatic well-order exists on the set of all X-trees T'(X). The
theorem below greatly extends this to scattered linearly ordered sets. The proof
of the theorem consists of a delicate analysis of tree automatic linear orders on
the set T'(X) of all finite X-trees.

Theorem 10 (Non-scaterdness Theorem (with Jain and Stephan)).
The set T'(X) does not admit a tree-automatic scattered linear order. O

Naturally, one wonders if 7'(X) admits at least one tree-automatic linear order.
Below we prove that T'(X) admits a tree-automatic linear order of the type of
rational numbers. We assume that X' is not a unary alphabet, say X = {a, b}
with a < b.

Proposition 11 (with Sanjay and Stephan). The language T'(X) admits a
tree-automatic linear order of the type of rational numbers.

Proof. For any given two trees p, ¢ € T'(X) such that p # ¢, consider the left-most
node z(, 4 in the convolution tree conv(p,q) for which p'(2(, ) # ¢ (T(p.q))s
where p’ and ¢’ are defined in the definition of convolution operation for trees.
Here the left-most node is taken with respect to the pre-order on the nodes of
the tree conv(p, q). Now we define the relation C on T'(X) as follows. For trees
p,q € T(X) declare p C ¢ if and only if either p = g or conv(p,q)(z(.,e)) €

{(a7 b)’ (D7 b)’ (a7 D)}'
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We now claim that the relation C is the desired one. A tree automaton recog-
nising this relation can be described as follows. On input conv(p, ¢) the automa-
ton non-deterministically selects a path leading to x(, 4). At all nodes v left of
Z(p,q) the automaton verifies that p(v) = ¢(v). Once the node z(, 4 is reached
the automaton accepts the tree. If node z(, 4y does not exist then the automaton
fails along the non-deterministically chosen path that searches for z(, ).

It is not hard to verify that the relation C is a linear order on T'(X'). We need
to show that C is dense and has no end-points. To show that the relation has
no endpoints, let us take a tree p € T'(X). Let v be any leaf of p; thus z(, 4) is a
prefix of v . We now extend p to p; such that p;(v0) = a and p;(vl) = b, and
we extend p to pa such that pa(v0) = b and p2(vl) = b. In this way we have
p1 Ep L po.

Let p, ¢ be such that p # ¢ and p C ¢. Consider z, ). Assume that p(x(,,q)) =
a and either q(z(, 4)) = bor q(z(p,q)) = O. Let v be aleaf of p above x(;, 4). Extend
p to pz (as above) using v. Then p E pa C ¢. Assume that p(z(, ) = O and
q(x(p,q)) = b. Let w be a leaf of ¢ above ;o). Extend ¢ to ¢, using the node w.
Then p E ¢; C q. Hence the linear order C is dense.

Finally, we point out that Definition [ implies the following partial order on
the set of all finite automata (tree automata) recognizable languages over the
alphabet X. For two infinite (tree automata) finite automata recognizable sets
X and Y we write

X <k Y if and only if AlgSpeck(X) C AlgSpeck(Y).

There are several interesting questions about this partial order. For instance,
does it have a maximal and minimal elements? What is the height and the width
of this partial order? Is the partial order semi-lattice? Can the order of rational
numbers be embedded into this partial order? Is there an w-chain in the partial
order? Of course, all these depend on the class K selected. These questions are of
interest since they call for the investigation of interactions between automata and
properties of abstract mathematical structures. Interesting cases for selecting the
class K are the classes of all structures, linearly ordered sets, trees, and various
algebraic structures such as Boolean algebras, groups, and lattices.

5 Automaticity in Groups

In this section we introduce automaticity in groups through their Cayley graphs.
Our definition naturally extends the known definition of automaticity given by
Thurston and his collaborators [IT]. We start by considering a labeled directed
graph I' = (V| E). The labels of the graph are taken from a finite set X' of labels.
Let 01,...,0, be all labels from X .

Definition 12. We view the graph I' as the following structure:

(‘/‘;E017"'?E0'7L)’
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where E; = {(z,y) | (z,y) € E and the label of (x,y) is o} for o € X. We
say that the graph I' is word-automatic if the structure (V,Eq,,...,E, ) is
word-automatic.

Below we give two examples.

Example 1. Let T be a Turing machine. The configuration space of T' is the graph
(Conf(T), ET), where the set Conf(T) is the set of all configurations of T', and
the set Er of edges consists of all pairs (¢, ¢2) of configurations such that 7" has
an instruction that transforms ¢; to cz. The structure (Conf(T), Er) is clearly
an automatic directed graph since the transitions (¢1,c2) € Ep can be detected
by finite automata.

Ezample 2. Consider the n-dimensional grid Z™ as a labeled graph, where the
labels are eq, ..., e,. Identify each e; with the vector (0,...,0,1,0,...,0), whose
all components are 0 except at position i. For any two vectors v and w in Z",
put an edge from v to w and label it with e; if v + e; = w. We represent each
vector v € Z™ as an n-tuple (x1,...,2,) of integers each written in a binary (or
decimal) notation. Under this coding, the edge relation

E, ={(v,w)|v+e =w}

is clearly finite automata recognizable. Hence, the labeled graph Z™ is word-
automatic.

Let G be a group generated by a finite set X. We always assume that X is
closed under the inversion operation, that is z=! € X for all # € X. We also
assume that the group G is infinite. The group G and X determine the following
graph, called Cayley graph of G and denoted by I'(G, X). The vertices of the
graph are the elements of the group. For each vertex g we put a directed edge
from g to gz, where x € X, and label the edge by . Thus, I'(G, X) is a labeled
directed graph. The proof of the lemma below is standard:

Lemma 13. The Cayley graph I'(G, X) satisfies the following properties:

1. The graph is strongly connected.

2. The out-degree and in-degree of each node is bounded by |X|.

8. The graph is transitive, that is, for any two vertices g1 and g2 of the graph
there exists an automorphism a such that a(g1) = ga.

4. The group of automorphisms of I'(G, X) is isomorphic to G. g

Our definition of automaticity for groups is now the following;:

Definition 14. Let G be a group generated by a finite set X of generators. We
say that the group G is Cayley automatic if the graph I'(G, X) is an automatic
graph.

We give several examples.

Example 3. Consider a finitely generated abelian group G. The group G can be
written as Z" @ A, where A is a finite abelian group and n € N. The group
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G is generated by A and the vectors ey, ..., e, in Z"™. Using the fact that the
n-dimensional grid Z" is automatic and that A is finite, it is easy to show that
the group G is Cayley automatic.

Ezample 4. Consider the Heisenberg group Hs3(Z) consisting of 3 x 3 matrices
over Z whose entries below the diagonal are all 0 and entries at the diagonal are
1. We identify these matrices with 3-tuples (a,b, ), where a, b, ¢ are integers
written in binary. The multiplication in the group is given by the following rule:

(a,b,¢) - (x,y,2) = (a+x,b+y+az,c+ z).

The group has 3 generators (1,0,0), (0,1,0), and (0,0, 1). The multiplication of
group elements (a, b, ¢) by each of these generators gives the following equalities:

(a7ba C) : (17030) = (a + 1>ba C)7 (a7ba C) ’ (Oa 170)
- (a>b+ 1>C)v (aaba C) ’ (0703 1) = (CL,b,C+ 1)

Clearly, each of these operations can be performed by finite automata. Thus, the
group H3(Z) is Cayley automatic.

Ezxample 5. The example above can clearly be generalized to Heisenberg groups
H.(Z) consisting of all n x n matrices over Z such that they contain 1 on the
diagonal, and all other entries are 0 apart from the entries at the first row or the
last column.

Our goal is to show that Cayley automaticity is preserved under several group-
theoretic constructions. The next proposition shows that the definition of Cayley
automaticity does not depend on the generators.

Proposition 15 (with Kharlampovich and Miasnikov). If G is a Cayley
automatic group with respect to a generating set X then G is Cayley automatic
with respect to any generating set Y of G.

Proof. We start with the following easy which is readily proved through decom-
position of finite automata:

Lemma 16. Let G be Cayley automatic group over a generator set X. Then
for all z1,29 € X there exists a finite automaton My, ., such that for all v,w €
I'(G, X), the automaton My, ., detects if v = wxixs.

Consider now the automatic Cayley graph I'(G, X). Each y € Y can be written
as a product 2% ... zF» of elements of X. We write this product as w(y). Since
I'(G, X) is automatic there exists an automaton M,, x € X, such that for all
v,w € I'(G, X), the automaton M, detects if v = w - 2. By the lemma above,
we can use the automata M, o € X, to build a finite automaton M, that
recognizes all v1,v9 € I'(G, X)) such that v; = vay. This proves that I'(G,Y) is
an automatic graph.

Let G be a group and H be a normal subgroup of G. We say that G is a finite
extension of H if the quotient group G/H is finite. It turns out that finite
extensions preserve Cayley automaticity:
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Theorem 17 (with Kharlampovich and Miasnikov). Finite extensions of
Cayley automatic groups are Cayley automatic.

Proof. Let H be a Cayley automatic group. Let H < G be a normal subgroup
of a group G such that G/H is finite. Let

G/H = {Hk,..., Hky_1}

There exists a finite function g such that for all i, s < r—1, we have the equality:

(%) Hk; - Hks = Hkgy; o).
Let hg,...,hn,_1 be a finite number of generators of H that also include the
identity of the group. The equality (x) above implies that there are sequences
91(2,8), ...y gz(i,8) and w1 (i, 8), ..., uz(i, s) of integers such that we have

_ 191(%,9) 9 (4,8)
kiks = hull(i,s)’ te huz(i,s)k‘g(i’s)7

where i, s <7 — 1 and all u1(3, s), ..., u,(i,s) are non-negative integers all less
than or equal to n — 1. Similarly, there are sequences f1(4,7,$), ..., fm(i,7,5)
and vy (i, 74, S),. .., vm (i, J, s) of integers such that for all i,s <r—1land j <n-—1
we have the following equalities:

g pfids) o fm(idis)

kihjks = hyy 50y oo iy 5 e Kiks.

This implies that for all all s, < r—1, j < n—1, and h € H we have the
following equalities:

hk; hike = h hI 000l (00 g g

’ul(z:,]:,sg vmgzj,j,s; ) )
=h hfl(’h.%é‘ . . hfm 2,7,8 g1(i,8) 9 (1,9)

T BuiGdes) T Mo (ngs) Pua(ies)? T Mg (i) M9 (68)”

Let h be the word representing the element 4 € H under a Cayley automatic
presentation of H. We represent elements hk of the group G as words hk. Here
we need to assume that the alphabet of the presentation for H does not contain
symbols kg, ..., k-—1. The equalities above tell us that there are finite automata
M; ; that for every k;, h; accept all pairs of words of the form (hk,w) such that
the equality w = hkk;h; is true in the group G. Note that to build the automata
M; ; one needs to use (1) the original automata that represent the group H, (2)
remember the sequences ¢1(, ), ..., g.(i,8) and ui(i,s), ..., uy(i,s), (3) the
sequences f1(i,7,5), ..., fm(4,4,8) and v1(i,75,9),...,vm(%,7,8), (3) the function
g, and (4) build automata for representing the multiplication by elements hfj (0.5,9)
and hﬂ(i’j ) in the group H. This shows that the group G is Cayley automatic.
The theorem is proved.

For the next theorem we define the restricted wreath product of two groups A
and B. Let A be an isomorphic copy of A for each b € B. Consider the direct
sum of groups A; denoted by K. Thus,

K=& A,

beB
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where elements of K are functions f : B — A such that f(b) = 14 for almost
all b € B. We write the elements of K as (ap). Each element ¢ € B induces an
automorphism «,. of K as follows:

ac(ap) = (ape)-

The wreath product of A by B consists of all pairs of the form (b, k), where
b € B and k € K, with multiplication defined by:

(b1, k1) - (b2, k2) = (b1b2, o, (K1)k2).
The following theorem gives examples of Cayley automatic groups.

Theorem 18 (with Nies). For every finite group G, the restricted wreath prod-
uct of G by Z is Cayley automatic.

Proof. Consider the restricted wreath product of G by Z. The elements of the
wreath product are of the form

(ia ( cs9-ny9—n+1y---,9-1,90,915- - -y 9m—1,9Gm; - - ))7

where each g; € G and i € Z. We refer to gg as the element of G' at position 0.
Assuming that gj is the identity 14 of the group G for all k > m or k < —n,
and g_, # lg, gm # lg, we can represent the element above as the following
string
conv(i, g—n-- -971(903 *)91 .. -gm)>

where ¢ is written in binary. Recall that conv represents the convoluted string
that represents the tuple (¢, g_n ...9-1(go,*)g1...gm) (See Section 2). The al-
phabet of these strings is finite since G is a finite group. The symbol * represents
elements of G at position 0. The generators of the wreath product are elements
represented by the strings conv(0, g) and conv(1,1¢), where g € G. Multiplica-
tion by these generators works as follows:

conv(iy,g—n ...g—1(go, *)g1 - .. gm) - conv(0, g) = conv(i, gn ... g—1(go * g, *)g1 - . - gm)

and
conv(i, gn - - g—1(go, %)g1 - - - gm) - conv(1,1g) = conv(i + 1, gni1 - (90, %) g1 - - - Grat1)s

where g§+1 = g; for j € {—n,...,m}. These operations can clearly be performed
by finite automata. The theorem is proved.

Next, we consider the amalgamated free product of groups. Let A and B be
Cayley automatic groups. Assume that H is a subgroup of both A and B. The
amalgamated product A g B is a group obtained from the free product A x B
of groups A and B in which the subgroup H in A and B become identified.
It turns out that the amalgamated product is also Cayley automatic if H sat-
isfies some natural automata-theoretic condition. We say that the subgroup H
is a uniformly regular subgroup of A and B if the equivalence relations
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NfI: {(z,y) | v,y € A and zy~* € H} and Ng: {(z,y) | z,y € Band zy~! €

H} are both FA recognizable.

We note that if H is a regular subgroup of a Cayley automatic group A then
the cosets Ha, where a € A, are all FA recognizable. However, this does not guar-
antee that Nﬁ is regular. On the other hand, strong regularity of H guarantees
that the cosets Ha are all regular. The proof of the theorem below uses A-normal
forms that represent the group elements of the amalgamated product (see for in-
stance, [6]). The set of all A-normal forms is a FA recognizable set.

Theorem 19 (with Kharlampovich and Miasnikov). If A, B are Cayley
automatic groups and H is a uniformly regular subgroup of A and B then the
amalgamated product Axg B is Cayley automatic. In particular, the free product
of Cayley automatic groups is Cayley automatic. a

Much more can be said about Cayley automatic groups. For instance, we would
like to know the geometry of Cayley graphs of such groups. However, we leave
this to further investigations. We note that in [25], an amalgamated products
of abelian automatic groups is studied. In the paper, automatic groups are the
groups in which the graph of the group operation is FA recognizable.

6 Thurston Automaticity vs. Cayley Automaticity

We now define Thurston automatic groups and show that the class of Thurston
automatic groups is properly contained in the class of Cayley automatic groups.
So, let G be a finitely generated group generated by a finite set X of generators.
We assume that X is closed under inverses, that is ! € X if and only if
xz € X. Consider the free group F'(X) generated by X. The elements of F(X)
are in their reduced form (that is, they dont contain sub-words of the form zx =1,
where z € X). There exists a natural homomorphism v — ¥ that associates the
string v in the group F(X) with its value ¥ in the group G.

Below we define groups that are automatic in the sense of Thurston and
studied by many experts in group theory, geometric group theory and topology
(e.g. D. Epstein, J. W. Cannon, D. F. Holt, S. Levy, M. S. Paterson, and W.
Thurston). We refer to these groups as Thurston-automatic groups. There is a
wide variety of finitely generated groups that are Thurston automatic. These
include all virtually abelian groups, hyperbolic groups, braid groups, and fun-
damental groups of large variety of 3-manifolds.

Definition 20. The group G is Thurston-automatic if there exist a reqular lan-
guage L C X* of reduced words and finite automata M, x € X, such that the
following properties are satisfied:

1. The mapping f : L — G(X) defined as f(v) = v, with v € L, is a bijection
from L onto G.
2. For each x € X, we have L(My) = {(u,v) | u,v € L and ux = v}
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In the last two decades the study of Thurston-automatic groups has attracted
the attention of many experts in group theory. See for instance [7] [11] [I2] . We
note that all Thurston-automatic groups are Cayley automatic.

Here we would like to consider nilpotent groups. For this we need to give
several definitions and notations. Let G be a group. Recall the commutator of
two elements z,y € G is given by

[z,y] = 2~ 'y ay.
Let H, K be subsets of the group G whose unit element is denoted by e. Define
the set [H, K] = {[h,k] | h € H,k € K}. If H and K are normal subgroups of G
then so is [H, K]. Now define the following two sequence:

70(G) = G, and y41(G) = [w(G), G| fork > 0.

We say that G is nilpotent if +,.(G) = {e} for some r € w. The least ¢ such
7(G) = {e} is called the nilpotency class of the group G. Examples of nilpotent
groups are Heisenberg groups H,,(Z) given in Examples 5, 6.

It turns out that nilpotent groups that are Thurston-automatic are virtually
abelian groups [I1]; virtually abelian groups are those groups that have abelian
normal subgroups of finite index. The Heisenberg group Hs3(Z) in Example
is nilpotent and not a virtually abelian group. This group is Cayley automatic.
Hence the class of all Cayley automatic groups contains the class of Thurston-
automatic groups. In fact, the next theorem shows that Cayley automatic groups
contain a large class of nilpotent groups. The proof of the theorem uses the poly-
cyclic nature of nilpotent groups, and revisits matrix representations of nilpotent
groups over integers:

Theorem 21 (with Kharlampovich and Miasnikov). Every finitely gener-
ated group of nilpotency class at most two is Cayley automatic. O

Thurston-automatic groups also satisfy the following nice property. They are all
finitely presented. In contrast, the class of Cayley-automatic groups contains a
large class of groups that are not finitely presented. Namely, the following is
true:

Proposition 22 (with Nies). There exist Cayley automatic but not finitely
presented groups.

Proof. The restricted wreath product of a non-trivial finite group G by Z, by
Theorem [I8 is Cayley automatic. Now we use the following theorem by Baum-
slag [3]. For finitely presented groups A and B, the restricted wreath product
of A by B is finitely presented if and only if either A is trivial or B is finite.
Hence, for nontrivial finite group G, the restricted wreath product of G by Z is
not finitely presented but Cayley automatic.
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7 The Isomorphism Problem

We are often concerned with classifying structures up to isomorphism. This typi-
cally amounts to finding invariants of structures that describe their isomorphism
types. To give an algorithmic spin to the isomorphism problem one would like to
have finite descriptions of structures. For instance, automatic structures have fi-
nite descriptions, and these descriptions are automata that recognize the domain
and relations of the structures. Similarly, finitely presented groups have finite de-
scriptions given through finite set of generators X and finite set of relators R.
From an algorithmic perspective, the isomorphism problem asks if there exists
an algorithm that given finite descriptions of two structures decides whether the
structures are isomorphic. A classical example here is the isomorphism prob-
lem asked by Dehn already at the start of the twentieth century [9] [1I0]. Dehn
asked to design algorithms that given two finite presentations of groups estab-
lishes if the groups are isomorphic. In the context of automatic structures, the
isomorphism problem is formulated as follows.

Let K be a class of automatic structures. Design an algorithm that given
two automatic structures A and B from the class K decides if A and B are
isomorphic. The point here is that both the structures A and B are given by
automata that represent their domains and atomic relations.

It turns out that the isomorphism problem for automatic structures is unde-
cidable. This was first noted by Blumensath in [4]. The precise complexity of the
problem was studied in [I5] [I6] [I9]. We informally explain here how hard it is
to find out if two automatic structures are isomorphic. Consider the following
set (known as the Halting set for Turing machines):

H = {M | The Turing machine M halts at some input}.

No algorithm exists that computes this set. We can now iterate this process using
ordinals as follows. Set H' = H. For a successor ordinal o = 3 + 1, consider

H® = {M | The Turing machine M, that has access to an oracle for H”,
halts at some input}.

No algorithm exists that computes H® even if one allows to use an oracle that
knows the set H?. For a limit ordinal, we set

H* = H,

B<a

where € represents a disjoint union. As above, no algorithm exists that com-
putes H® even if one allows to use an oracle that knows the set H? for any given
B. The set H® is called the a-jump of the halting set H. The following theorem
is implicit in [15] [16]:

Theorem 23. No algorithm exists that, given two word-automatic structures A
and B, decides if A and B are isomorphic even if the algorithm uses an oracle
for the a-jump of the halting set H, where « is any given computable ordinal. O
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In spite the fact that the isomorphism problem for automatic structures is highly
undecidable, there are some natural classes of structures where the isomor-
phism problem can be decided. These include the classes of word-automatic
well-ordered sets and Boolean algebras.

As an example, we give here an algorithm that solves the isomorphism problem
for word-automatic ordinals. Recall that by Cantor’s normal form theorem if «
is an ordinal then it can be uniquely decomposed as niw®' + now® + ... +
nrw®, where ai,as,...,ap are ordinals satisfying a3 > as > ... > aj and
k,ni,ne, - ,ng are natural numbers. Our proof of deciding the isomorphism
problem for word-automatic ordinals is based on the following two facts: (1)
An ordinal is word-automatic if and only if it is strictly less that w* [20]; (2)
The Cantor’s normal form of a word-automatic ordinal o can be extracted from
its word-automatic presentations. The first fact is equivalent to saying that the
Cantor-Bendixson rank of « is finite. Below we provide an algorithm that given
word-automatic ordinal « computes its Cantor normal form.

Assume that we have a word-automatic presentation for an ordinal a. The
presentation is given by a regular set R C X* for some alphabet Y and an
automaton for the ordering <,,.q on R. Recall that the ordinal o represented by
(R, <ord) is of the form

a=npw™ +nm_1wm 4+ new? + nw + ng

where m, Ny, Nm—1, - - ., N1, No are natural numbers. The algorithm below com-
putes compute the integers m,ng,nq,...:

1. Input the presentation (R, <,.q).

2. Let D=R, m=0,n, =0.

3. While D # () Do

4. If D has a maximum u

Then Let n,, =n,, + 1, let D =D — {u}.

Else Let L C D be the subset of limit ordinals in D; that is L is the set of
all x € D with no predecessor in D. Replace D by L, let m =m+1, let
Nm = 0.

5. End While

6. Output the formula

-1 2
N + N1 W™ .+ now” + njw + ng
using the current values of m,ng, ..., nm,.

Each step in the algorithm is computable by Theorem Bl Removing the maxi-
mal element from D reduces the ordinal represented of D by 1 while the cor-
responding n,, is increased by 1. Replacing D by the set of its limit ordinals
preserves automaticity. This can be proved from Theorem [B] using the fact that
~-equivalence relation is FA recognizable. Thus, the algorithm computes the
coefficients ng,n1,... in this order. The algorithm eventually terminates since
m is bounded by the Cantor-Bendixson rank of a. The following corollary is
immediate.
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Theorem 24. [20] The isomorphism problem for automatic ordinals is decid-
able.

Proof. Given two automatic presentations A and B of ordinals o and (3, we
extract the Cantor normal form for both these ordinals. Then the ordinals are
isomorphic if and only if their Cantor normal forms are identical.

We point out that given an automatic linearly ordered set, one can effectively
decide if the linear order is a well-order. Therefore, the theorem above can be
strengthen. Namely, given two automatic structures, one can effectively decide
if these two automatic structures are isomorphic ordinals [20].

It had been a long standing question if the isomorphism problem for word-
automatic linearly ordered sets is decidable. If so, this would greatly extend
the theorem above. However, Kuske, Liu and Lohrey have recently proved that
the isomorphism problem for word-automatic linear orders is undecidable [21].
There still remain many open questions on solving the isomorphism problem for
various classes of word and tree-automatic structures. For instance, these include
automatic groups.

The author would like to thank Andre Nies for proof-reading and comments
on this paper.
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Abstract. A central problem of net theory is the reachability prob-
lem for Vector Addition Systems (VASs). The general problem is known
to be decidable by algorithms exclusively based on the classical Kosaraju-
Lambert-Mayr-Sacerdote-Tenney decomposition (KLMTS decomposi-
tion). Recently from this decomposition, we deduced that a final
configuration is not reachable from an initial one if and only if there
exists a Presburger inductive invariant that contains the initial configu-
ration but not the final one. Since we can decide if a Preburger formula
denotes an inductive invariant, we deduce from this result that there exist
checkable certificates of non-reachability in the Presburger arithmetic. In
particular, there exists a simple algorithm for deciding the general VAS
reachability problem based on two semi-algorithms. A first one that tries
to prove the reachability by enumerating finite sequences of actions and
a second one that tries to prove the non-reachability by enumerating
Presburger formulas. In this paper we provide the first proof of the VAS
reachability problem that is not based on the KLMST decomposition.
The proof is based on the notion of production relations, inspired from
Hauschildt, that directly proves the existence of Presburger inductive
invariants.

1 Introduction

Vector Addition Systems (VASs) or equivalently Petri Nets are one of the most
popular formal methods for the representation and the analysis of parallel
processes [I]. Their reachability problem is central since many computational
problems (even outside the realm of parallel processes) reduce to the reachabil-
ity problem. Sacerdote and Tenney provided in [9] a partial proof of decidability
of this problem. The proof was completed in 1981 by Mayr [7] and simplified by
Kosaraju [4] from [97]. Ten years later [5], Lambert provided a further simplified
version based on [4]. This last proof still remains difficult and the upper-bound
complexity of the corresponding algorithm is just known to be non-primitive re-
cursive. Nowadays, the exact complexity of the reachability problem for VASs is

* This version extends the POPL’2011 paper with additional figures and examples.
Some classes of sets get more intuitive names like the polytope conic sets, the poly-
tope periodic sets, and the Petri sets that are now called the definable conic sets,
the asymptotically definable periodic sets, and the almost semilinear sets.

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 41—@, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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still an open-problem. Even the existence of an elementary upper-bound complex-
ity is open. In fact, the known general reachability algorithms are exclusively based
on the Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition.

Recently [6] we proved thanks to the KLMST decomposition that Parikh im-
ages of languages accepted by VASs are semi-pseudo-linear, a class that extends
the Presburger sets. An application of this result was provided; we proved that
a final configuration is not reachable from an initial one if and only if there
exists a forward inductive invariant definable in the Presburger arithmetic that
contains the initial configuration but not the final one. Since we can decide if a
Presburger formula denotes a forward inductive invariant, we deduce that there
exist checkable certificates of non-reachability in the Presburger arithmetic. In
particular, there exists a simple algorithm for deciding the general VAS reacha-
bility problem based on two semi-algorithms. A first one that tries to prove the
reachability by enumerating finite sequences of actions and a second one that
tries to prove the non-reachability by enumerating Presburger formulas.

In this paper we provide a new proof of the reachability problem that is
not based on the KLMST decomposition. The proof is based on the production
relations inspired by Hauschildt [3] and it proves directly that reachability sets
are almost semilinear, a class of sets introduced in this paper that extend the
class of Presburger sets and contained in the class of semi-pseudo-linear sets. In
particular this paper provides a more precise characterization of the reachability
sets of VASs.

Outline of the paper: Section [2] provides notations and classical definitions.
Section Bl and Section @ introduce classes of sets used in the sequel : definable
conic sets and vector spaces in the first one and asymptotically definable periodic
sets, Presburger sets, and almost semilinear sets in the second one. Section
and Section [f] show that is sufficient to prove that the reachability relation of a
Vector Addition system is an almost semilinear relation in order to deduce the
existence of forward inductive invariants definable in the Presburger arithmetic
proving the non-reachability. In Section [f] we introduce the class of Vector Addi-
tion Systems and the central notion of production relations. We show in the next
Section [§] that these relations are asymptotically definable periodic. In Section
we prove that the reachability relation of a Vector Addition System is an almost
semilinear relation. Finally in Section [I0] we combine all the previous results
to deduce the decidability of the Vector Addition System reachability problem
based on Presburger inductive invariants.

2 Notations

We introduce in this section notations and classical definitions used in this paper.

We denote by N,Ns,7Z,Q,Q>0,Qx¢ the set of natural numbers, positive
integers, integers, rational numbers, non megative rational numbers, and pos-
itive rational numbers. Vectors and sets of vectors are denoted in bold face.
The ith component of a vector v € Q¢ is denoted by v(i). We introduce
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[|V]|oo = maxi<i<q|v(i)| where |v(i)| is the absolute value of v(i). The total order
< over Q is extended component-wise into an order < over the set of vectors Q<.
The addition function + is also extended component-wise over Q%. Given two
sets V1, Vo C Q7 we denote by Vi + Vy the set {vi +va | (v1,Vv2) € Vi x Va},
and we denote by Vi — Vg the set {vq —va | (v1,v2) € V1 x Va}. In the same
way given T C Q and V C Q? we let TV = {tv | (t,v) € T x V}. We also
denote by vi + V3 and Vi + va the sets {vi} + V3 and V; + {vz2}, and we
denote by tV and T'v the sets {t}V and T{v}. In the sequel, an empty sum of
sets included in Q¢ denotes the set reduced to the zero vector {0}.

A (binary) relation R over Q¢ is a subset R C Q¢ x Q?. The composition of
two relations R and S is the relation denoted by R o S and defined as usual by
the following equality:

RoS= ] {(x2)€Q'xQ'|(x,y) R A (y,z) € S}

yeQd

The reflexive and transitive closure of a relation R is denoted by R*. In this
paper, notions introduced over the sets are transposed over the relations by
identifying Q¢ x Q¢ with Q.

An order C over a set S is said to be well if for every sequence (sy)nen of
elements s, € S we can extract a sub-sequence that is non-decreasing for C, i.e.
there exists a strictly increasing sequence (ny)ken of natural numbers in (N, <)
such that (s, )ken is non decreasing for C. A minimal element of an ordered
set (S,C) is an element s € S such that for every ¢ € T the relation ¢t C s
implies s = t. Given a set ¥ C S we denote by minc(Y) the set of minimal
elements of the ordered set (Y,C). Let us recall that if (S,C) is well ordered
then X = minc(Y) is finite and for every y € Y there exists z € X such that
z Ly

Let us consider an order C over a set S. We introduce the component-wise
extension of C over the set of vectors S? defined by s C t if s(i) C t(i) for every
ie{l,...,d}.

Lemma 2.1 (Dickson’s Lemma). The ordered set (S¢,C) is well for every
well ordered set (S,C).

Ezample 2.2. The set (N, <) is well ordered. Hence (N%, <) is also well ordered.
The set (Z, <) is not well ordered.

3 Definable Conic Sets

A conic set is a set C C Q% such that 0 € C, C + C C C and such that
Q>0C C C. A conic set C is said to be finitely generated if there exists a finite
sequence ci,. .., c of vectors c; € C such that C = Q>oc1 + - + Q>oCy.

Definition 3.1. We say that a conic set C is definable if it is definable in
FO(Q, +,<,0).
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Fig. 1. The finitely generated conic set Q>0(1,1) + Q@>0(1,0) and the definable conic
set {(0,0)} U {(c1,c2) € Q%o | 2 < et}

In this section definable conic sets are geometrically characterized thanks to the
vector spaces and the topological closure.

Ezample 3.2. Fig. [l depicts examples of finitely generated conic sets and (non
finitely generated) definable conic sets. The conic set C = {(c1,¢2) € Q% |

V2ca < ¢1} is not definable.

A wector space is a set V. C Q7 such that 0 € V, V +V C V and such that
QV C V. Let X C Q<. The following set is a vector space called the vector space
generated by X.

k
V=<3 \x;|keNand (A),x;) €Qx X

j=1

This vector space is the minimal for inclusion among the vector space that
contains X. Note that the vector space V generated by a conic set C satisfies
the equality V. = C — C. Let us recall that every vector space V is generated
by a finite set X with at most d vectors. The rank rank(V) of a vector space
V is the minimal natural number r € {0,...,d} such that there exists a finite
set X with r vectors that generates V. Note that rank(V) < rank(W) for every
pair of vector spaces V. C W. Moreover, if V is strictly included in W then
rank(V) < rank(W).

Example 3.3. Vector spaces V included in Q2 satisfy rank(V) € {0,1,2}. More-
over these vectors spaces can be classified as follows : rank(V) = 0 if and only if
V = {0}, rank(V) = 1 if and only if V = Qv with v € Q*\{0}, and rank(V) = 2
if and only if V = Q2.

The (topological) closure of a set X C Q% is the set X of vectors r € Q% such
that for every € € Qs there exists x € X satisfying ||r — X||cc < €. A set X is
said to be closed if X = X. Note that X is closed and this set is the minimal
for inclusion among the closed sets that contain X. Let us recall that a vector
space V is closed and the closure of a conic set is a conic set. Since the classical
topological interior of a conic set C is empty when the vector space generated
by C is not equal to Q¢ (the conic set is degenerated), we introduce the notion
of interior of C relatively to the vector space V = C — C. More precisely, a
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Fig. 2. Sets X = (1,5) x (1,5) and X = [1, 5] x [1, 5]

Fig. 3. A picture of the duality lemma

vector ¢ € C is said to be in the interior of C if there exists € € Q¢ such that
c+v € C for every v € C— C satisfying ||v||s < €. We denote by int(C) the set
of interior vectors of C. Let us recall that int(C) is non empty for every conic
set C, and Cy = Cy if and only if int(C;) = int(Cy) for every conic sets Cy, Ca.

Ezample 3.4. Let X = (1,5) x (1,5). Then X = [1, 5] x [1, 5] (see Fig. D).
The following lemma characterizes the finitely generated cones.

Lemma 3.5 (Duality). Let V C Q% be a vector space. A conic set C C 'V
is finitely generated if and only if there exists a sequence (hj)i<j<i of vectors
h; € V\{0} such that:

d
c=) {v €V hy(iv(i) > 0}

j=1 i=1

Moreover in this case the following equality holds if and only if V is the vector
space generated by C:

k d
int(C) = ﬂ {v eV hy(i)v(i) > 0}

Proof. This is a classical result of duality [10]. O

Example 3.6. Let us introduce the whole vector space V. = Q? and the finitely
generated conic set C = Qx0(1,1) + Qx0(1,0). Fig. Blshows that C =1,y 5

{veV| Z?Zl h;(i)v(i) > 0} where hy; = (0,2) and hy = (2, —2).

Lemma 3.7. The topological closure of a set definable in FO (Q,+,<,0) is a
finite union of finitely generated conic sets.
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Proof. Let X C Q¢ be a set definable in FO (Q, +, <, 0). Since this logic admits
quantification elimination we deduce that there exists a quantifier free formula
in this logic that denotes X. Hence there exists a finite sequence (A4;)1< <k of

finite sets 4; C Q% x {>, >} such that X = U§:1 X, where:

d
xi- () {xeetSuommn)

(h,#)€A;

We can assume without loss of generality that X; is non empty. Moreover if
k = 0 the proof is immediate since X = (). So we can assume that k > 1. Let us
introduce the following set R;:

d
R;= () {x €Q' > h(ix(i) > o}

(h,#)€A, i=1
Lemma shows that R; is finitely generated. Thanks to Lemma B0 we de-
duce that R = U?Zl R; is closed. We are going to prove that X = R. Since
X; CR; we get X C R. As R is closed we deduce that X C R. Let us prove
the converse inclusion. Let r € R. There exists j € {1,...,k} such that r € R;.
Since X; is non empty, there exists x; € X;. Asr; € R; and x; € X; we deduce
that r; + Qsox; € X;. Hence r; € X; and we have proved the other inclusion
R C X. Therefore X is a finite union of finitely generated conic sets since it is
equal to R. a

Theorem 3.8. A conic set C C Q% is definable if and only if the conic set
C NV is finitely generated for every vector space V.C Q<.

Proof. Let us first consider a definable conic set C C Q¢, let V be a vector
space, and let us prove that X is finitely generated where X = CN'V. Since X
is definable in FO (Q, +, <,0), Lemma [B77] shows that X = U’;Zl C; where C;
is a finitely generated conic sets. Moreover, as X is non empty we deduce that
k > 1. As X is a conic set we deduce that Z?=1 C,; C X. Moreover, as 0 € C;
for every j, we deduce that C; C Z’;Zl C; for every j. Thus X = Z§=1 C; and
we have proved that X is finitely generated.

Conversely, we prove by induction over r that the conic sets C C Q¢ such
that rank(C — C) < r and such that the conic set CN'V is finitely generated
for every vector space V C Q? are definable. The case r = 0 is immediate since
in this case C = {0}. Let us assume the induction proved for an integer » € N
and let us consider a conic set C C Q¢ such that rank(C — C) < 7 + 1 and such
that the conic set C NV is finitely generated for every vector space V. .C Q<.
We introduce the vector space W = C — C. Since C = CN'V with V = Q%, we
deduce that C is finitely generated. Lemma shows that there exists a finite
sequence (hj)i<j<x of vectors h; € W\{0} such that the following equality

holds: .
C= ﬂ {x €W | > hy(i)x(i) > 0}

]:1 1=
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Since int(C) = int(C) we get the following equality:

k

d
int(C) = ) {x EW | Zhj(z’)x(i) > o}

j=1

In particular int(C) is definable in FO (Q,+,<,0,1). As int(C) € C C C
we deduce the following decomposition where W, = {w € W | Zle h;(i)w

(i) = 0}:

k
= int(C U CNWw;)
J=1
Observe that h; € W\W; and in particular W is strictly included in W.
Thus rank(W,) < rank(W) < r + 1. Note that C; = C N W, is a conic set
such that rank(C; — C;) < rank(W;) < r and such that C; NV is a finitely
generated conic set for every vector space V. Thus by induction C; is definable in
FO(Q,+, <,0,1). We deduce that C is definable. We have proved the induction.
O

Ezample 3.9. Observe that the conic set C = {(c1,c2) € Q% | V22 < ¢1} is
not finitely generated. Let us consider V = Q2 and observe that CN'V = C
and since C = C we deduce that C NV is not finitely generated. Theorem [3.8]
shows that C is not definable.

4 Presburger Sets and almost Semilinear Sets

In this section we introduce the Presburger sets and the almost semilinear sets.

A periodic set is a subset P C Z¢ such that 0 € P and such that P+ P C P.
A periodic set P is said to be finitely generated if there exists a finite sequence
P1,--.,Pk of vectors p; € P such that P = Npy + --- + Npy, (see Fig. M). A
subset S C Z% is called a Presburger set if it can be denoted by a formula in the
Presburger arithmetic FO (Z, +,<,0,1). Let us recall [2] that a subset S C Z?
is Presburger if and only if it is semilinear, i.e. a finite union of sets b+ P where
b € Z% and P C Z% is a finitely generated periodic set. The class of almost
semilinear sets is obtained by weakening the finiteness property of the periodic
sets P.

Definition 4.1. A periodic set P is said to be asymptotically definable if the
conic set Q>oP is definable.

Remark 4.2. Every finitely generated periodic set P is asymptotically definable
since in this case Q>oP is a finitely generated conic set and in particular a
definable conic set.

Ezample 4.3. The periodic set P = {(p1,p2) € N? | v/2py < p;} is not asymp-
totically definable since Q>oP = {(c1,c2) € N? | V2c3 < ¢} is not definable

(see example [3.9).
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Fig. 5. An asymptotically definable periodic set

Ezample 4.4. The periodic set P = {p € N? | p(2) < p(1) < 2P® — 1} is
represented in Figure[fl Observe that Q0P = {0} U{c € Q%, | p(2) < p(1)} is
a definable conic set. Thus P is an asymptotically definable periodic set.

The following lemma shows that the class of asymptotically definable periodic
sets is stable by finite intersections.

Lemma 4.5. We have (Q>oP1) N (Q>0P2) = Q>0(P1 NP3) for every periodic
sets P1, Py C 74,

Proof. Observe that P; C Q>oP; and Py C Q>P>. Hence P; NPy C C where
C = (Q>0P1)N(Q>oP2). As C is a conic set we deduce that Q>¢(P1NP2) C C.
For the converse inclusion. Let ¢ € C. Since ¢ € Q>oP1, there exists Ay € Q>¢
such that ¢ € \{P;. Symmetrically there exists Ay € Q>¢ such that c € A;Ps.
Let n1,no € N5 such that n1A\; € N and naAy € N. Let n = nino and observe
that nc € na(niA1)P1 C Py since Py is a periodic set. Symmetrically nc € Ps.
We have proved that nc € P1 N Psy. Thus ¢ € Q>o(P1 NP3) and we get the
other inclusion. O

Definition 4.6. An almost semilinear set is a subset X C Z¢ such that for
every Presburger set S C Z the set X NS is a finite union of sets b+ P where
b € Z% and P C Z% is an asymptotically definable periodic set.

Ezample 4.7. Let us consider the periodic set P = {(0,0)} U {(2",1) | n €
N} U ((1,2) + N?) depicted in Figlll Observe that Q>oP is the definable conic
set {(0,0) }UQ>0xQs¢. Note that P is not almost semilinear since PN(Nx{1}) =
{(2",1) | n € N} can not be decomposed as a finite union of sets b + P where
b € Z¢ and P C Z¢ is an asymptotically definable periodic set.
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Fig. 6. An asymptotically definable periodic set that is not almost semilinear

The class of almost semilinear sets is included in the class of Presburger sets.
The strict inclusion will be proved strict as a direct consequence of a stronger
result proved in this paper. In fact the reachability relation of a Vector Addition
System is proved to be almost semilinear and we know that in general such a
relation is not Presburger.

5 Linearizations

The linearization of a periodic set P C Z% is the periodic set lin(P) defined by
the following equality:
lin(P) = (P -P)NQxcP

Lemma 5.1. The linearization of an asymptotically definable periodic set is
finitely generated.

Proof. Let V be the vector space generated by P and let us introduce the conic
set C = Q>oP. Note that Q>¢P C V and since V is closed we get C C V.
As Q>¢P is a definable conic set we deduce that C is finitely generated. Hence
there exists c1,...,c; € C such that C = Qx>pc1 + -+ + Q>pck. Asc; € C C
V = Q>oP — Q>(P, by replacing c; by a vector in Ny gc; we can assume that
c; € P—P forevery j € {1,...,k}.

We introduce the following set R.:

k
R = I'EP—P‘I':Z)\]‘C]‘ )\jEQ 0§)\j<1

j=1

We observe that every vector r € R satisfies ||r||cc < § where s = Z?:l 1€ loo-
Hence R C {—s,...,s}% and we deduce that R is finite.

Let L be the periodic set generated by the finite set R U {cy,...,cx}. Since
this finite set is included in lin(P) we deduce that L C lin(P). Let us prove
the converse inclusion. Let x € lin(P). Since x € C, there exists a sequence
(15)1<j<k of rational elements pu; € Qs such that x = Z?Zl pic;. Let us
introduce n; € Nsuch that A\; = pu; —n; satisfies 0 < Aj < 1. Let r = Z§=1 Ajc;.
Asr=x— Zle njc; we getr € P—P. Thusr € R. From x =r + Zle n;c;
we get x € L. We have proved that lin(P) is the finitely generated periodic
set L. O



50 J. Leroux

We observe that if the intersection (b; +P1)N (b +P3) is empty where by, by €
74 and P1,Py C Z% are two asymptotically definable periodic sets then the
intersection (by +1in(P1))N(bs +1in(P2)) may be non empty (see Example 5.3)).
In this section we show that a dimension is strictly decreasing.

Let us first introduce our definition of dimension. The dimension dim(X)
of a non-empty set X C Z? is the minimal integer r € {0,...,d} such that
there exists k € N5, a sequence (b;)1<;<x of vectors b; € Z%, and a sequence
(V;)1<j<k of vector spaces V; C Q7 such that rank(V;) < r and such that
X C U;?:l b, + V. The dimension of the empty set is defined by dim(()) = —1.

In the reminder of this section we prove the following Theorem All the
other results or definitions introduced in this section are not used in the sequel.

Theorem 5.2. Let by, by € Z% and let P, Py be two asymptotically definable
periodic sets such that the intersection (b1 + P1) N (be + P2) is empty. The
intersection X = (by + 1lin(P1)) N (be + lin(P3)) satisfies:

dim(X) < max{dim(b; + P1),dim(bz + P3)}

Ezample 5.3. Sets introduced in this example are depicted in Fig. [l Let us
introduce the asymptotically definable periodic sets P; = {p € N2 | p(2) <
p(1) < 2P® — 1} and Py = N(1,0) + N(3,—-1). We consider b; = (0,0)
and by = (7,2). We observe that the intersection of by + Py and bs + Ps is
empty. Note that the intersection X of by + lin(P7) and bs + lin(Ps) satisfies
X ={(7,2),(10,1),(13,0)} + N(1,0). In particular we have dim(X) = 1 whereas
d1m(b1 + hn(Pl)) = dlm(bg + hn(Pg)) =2.

We first characterize the dimension of a periodic set.

Lemma 5.4. Let 'V be the vector space generated by a periodic set P. Then
rank(V) = dim(P).

Proof. Let P be a periodic set and let us first prove by induction over k € Nxq
that for every sequence (V;)i<j<r of vector spaces V; C Q?, the inclusion
P C U;?:l V; implies that there exists j € {1,...,k} such that P C V. The
case k = 1 is immediate. Assume the property proved for an integer k € Ny

\
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Fig. 7. A figure for Theorem and Example (.3
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and let us assume that P C Uf;rll V,;. If P C Vi, the property is proved. So we

can assume that there exists p € P\'V41. Let us prove that P C U§=1 V;. We

consider x € P. Observe that if x € Vi1 then x € U?Zl V. So we can assume
that x € V1. We observe that p + nx € P for every n € N since the set P is
periodic. We deduce that there exists j € {1,...,k+ 1} such that p+nx € V;.
Naturally this integer j depends on n. However, since {1,...,k + 1} is finite
whereas N is infinite, there exists j € {1,...,k+ 1} and n < »n/ in N such that
p + nx and p + n'x are both in V;. As V; is a vector space, we deduce that
n'(p + nx) —n(p + n'x) is in V;. Hence p € V;. As p & V41 we deduce that
Jj #k+1. As V; is a vector space we deduce that (p + n'x) — (p + nx) € V;.
Hence x € V,;. We have proved that x € U§=1 V;. Thus P C U?Zl V, and by
induction there exists j € {1,...,k} such that P C V;. We have proved the
induction.

Now, let us prove the lemma. We consider a periodic set P and we let V be
the vector space generated by this set. Since P C V we deduce that dim(P) <
rank(V). For the converse inclusion, since P is non empty we deduce that P C
U?Zl b; +V; where k € N5, b; € 7% and V; C Q? is a vector space such that
rank(V;) < dim(P). Let us consider the set J = {j € {1,...,k} |b; € V,} and
let us prove that P C (.. ; V;. Let p € P and n € N. Since np € P there exists
j € {1,...,k} such that np € b; + V. Hence there exists j € {1,...,k} and
n < n’ in N such that np and n’p are both in b;+V;. As V; is a vector space we
deduce that n'p —np € V;. Thus p € V;. Moreover as b; € np — V; C V; we
deduce that j € J. We have prove the inclusion P C | J ies V ;. From the previous
paragraph we deduce that there exists j € J such that P C V;. By minimality
of the vector space generated by P we get V. C V. Hence rank(V) < rank(V}).
Since rank(V;) < dim(P) we have proved the inequality rank(V) < dim(P). O

Next we prove a separation property.

Lemma 5.5. Let C< and C> be two finitely generated conic sets that generates
the same vector space V and such that the vector space generated by C<NCyx is
strictly included in V. Then there exists a vector h € V\{0} such that for every
# € {<, >}, we have:

d
Cu C {v ev| Zh(i)v(i)#o}

i=1

Proof. Lemma shows that there exists two finite sets H<, H> included in
V\{0} such that:

d
Cy= ) {v eV Zh(i)v(i) > 0}

hcH,

d
int(Cyx) = ) {v ev| Zh(i)v(i) > 0}

hecHy
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Assume by contradiction that the intersection int(C<) N int(C>) is non empty
and let ¢ be a vector in this set. Observe that there exists € € Qs such that
c+v € C<NCs for every v € V such that ||[v]|eo < €. We deduce that the
vector space generated by C< N C> contains V and we get a contradiction.
We deduce that the following intersection is empty where H = H< U H>

d
N {v €V | Zh(z’)v(i) > 0}

heH

Farkas’s Lemma [I0] shows that there exists a non-zero function f : H — Q>¢
such that >} iy f(h)h = 0. Let us introduce a = >, .y f(h)h and b =
> nem\m. J(h)h. Assume by contradiction that a = 0. Since a+b = 0 we deduce
that b = 0. As f is not the zero function, there exists h € H such that f(h) # 0.
Note that either h € H> or h € H\H>. In the first case we deduce that int(C>)
is empty and in the second case we deduce that int(C<) is empty. Since both
cases are impossible we get a contradiction. Thus a # 0. For every ¢ € int(C>)
we have Zle a(i)c(i) > 0. Since the set {c € Q7 | Zle a(i)c(i) > 0} is closed
we deduce that for every ¢ € int(C>) = C> the same inequality holds. Now let
us consider ¢ € int(C<). In this case Zle b(i)c(i) > 0. Since a+ b = 0 we get
Z?Zl a(i)c(i) < 0. We deduce that this inequality holds for every c € C<. O

Remark 5.6. The previous Lemma is wrong if we remove the finitely gener-
ated condition on the conic sets C< and C». In fact let us consider the conic sets
Cc={xeQ%,]|x(1) <Vv2x(2)} and C> = {x € Q%, | x(2) > v/2x(2)}. Ob-
serve that C< NC> = {0}. Hence the vector space generated by the intersection
is strictly included in Q2. However there does not exist a vector h € Q%\{0}
satisfying the separation property required by Lemma This problem can
be overcome by introducing the vector spaces of R?. We do not introduce this

extension to simplify the presentation.

We can now provide a proof for Theorem We consider two vectors by, by €
7% and two periodic sets P1,Py C Z% such that (b; + P1) N (by + Py) = 0.
We introduce the intersection X = (by + lin(P;)) N (bz + lin(P2)). Observe
that if X is empty the theorem is proved. So we can assume that there exists
a vector b in this intersection. Let us denote by Vi and Vs the vector spaces
generated by P1 and Ps. Lemma [5.4] shows that rank(V;) = dim(P;) and from
dim(b; + P;) = dim(P;) we deduce that dim(b; + P;) = rank(V,). As X is
included in b+V where V = V1NV, we deduce that if V is strictly included in
V; for one j € {1,2} then dim(X) < rank(V) < rank(V;) = dim(b; + P;) and
the theorem is proved. So we can assume that V; = V5 = V. Let us consider the
conic sets C; = Q>oP; and Cy = Q>oP>. Since P; and Py are asymptotically
definable periodic sets, we deduce that C; and Cy are finitely generated conic
sets. Note that C;,Cy C V. We introduce the intersection C = C; N Cs.
Assume by contradiction that the vector space generated by C is equal to V.
Let us consider a vector c¢ in the interior of C. The characterization given by
Lemma [3.5] shows that in this case int(C) = int(Cy) N int(Cs). Since int(C;) =
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int(Q>oP,;) we deduce that ¢ € (Q>oP1) N (Q>oP2). Lemma shows that
¢ € Q>9(P1 NPy). By replacing ¢ be a vector in Nsgc we can assume that
ce P NPs.

Let us prove that there exists k1 € N such that b+ k1c € b; + P;. From b €
b1 +lin(P1) we deduce that there exists p1, p} € P such that b = by +p; —pj.
Since —p] is in the vector space generated by C and c is in the interior of C,
there exists ny € N large enough such that nyc+ (—p/) € C;. Hence there exists
n} € N5 such that nynjc—n)p} € Py. Thus nynjc—p} € (nf—1)p|+P; C P;.
Hence b + kic € by + Py with ky = ninj.

Symmetrically we deduce that there exists ko € N such that b+ksc € by +Ps.
We have proved that b + (k1 + k2)c € (by + P1) N (by + P3) and we get a
contradiction since this intersection is supposed to be empty.

We deduce that the vector space generated by C is strictly included in V.
Lemma [55 shows that there exists a vector h € V\{0} such that:

d

C; C {v eV | Zh(z’)v(z’) > o}
y

C, C {v €V [ h(i)v(i) < 0}

By replacing h by a vector in Nygh we can assume that h € Z%. Now let us
consider x € X. Since x — b; € C; we deduce that Z;lzl h(i)(x(i) —by(i)) >0
and since x —by € Cy we deduce that Z?Zl h(7)(x(i) —b2(i)) < 0. We introduce
the integers z; = Zle h(i)by (i) and 23 = Zle h(i)bz(i). We have proved that
X can be decomposed into a finite union of slices X = (J72, X, where:

d
X, = {x eX| Zh(i)x(i) - z}

Let us prove that dim(X,) < rank(V). If X, is empty the relation is imme-
diate. If X, is non empty let us consider x € X, and observe that X, C x+ W
where:

d
W= {v eV | h(i)v(i)=0
i=1
Note that h € V\W. We deduce that W is strictly included in V and in
particular rank(W) < rank(V). Hence dim(X,) < rank(V).

From X = [J2, X, and dim(X.) < rank(V) for every z, we deduce that
dim(X) < rank(V) and the theorem is proved.

6 Presburger Invariants

Given arelation R over Z% and two sets X, Y C Z? we introduce the forward image
postz(X) and the backward image prez(Y) defined by the following equalities:

{postR(X) = Upex{y € Z%| (x,y) € R}
preg(Y) =Ujeyix € 7% | (x,y) € R}
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We say that a set X C Z% is a forward invariant for R if post z(X) C X and
we say that a set Y C Z% is a backward invariant for R if prep(Y) C Y. In
the reminder of this section we prove the following Theorem All the other
results or definitions introduced in this section are not used in the sequel.

Theorem 6.1. Let R* be a reflerive and transitive almost semilinear relation
over Z4 and let X, Y C Z% be two Presburger sets such that R* N (X x Y) is
empty. There exists a partition of Z¢ into a Presburger forward invariant that
contains X and a Presburger backward invariant that contains Y.

We first prove the following lemma.

Lemma 6.2. The sets postp(X) and preg(Y) are almost semilinear for every
almost semilinear relation R C Z% x Z¢ and for every Presburger sets X, Y C Z¢

Proof. Let us first prove that post(X) is an almost semilinear set. We consider
a Presburger set S C Z%. Observe that X x S is a Presburger relation. Since R
is an almost semilinear relation we deduce that RN (X x S) can be decomposed
into a finite union U§=1(aja b;) + R; with k € N, (aj,b;) € Z¢ x Z% and R; is
an asymptotically definable periodic relation. We deduce that postz(X) NS =
U?Zl b; + P; where P; = {v € Z? | 3(u,v) € R;}. Since R; is a periodic
relation we deduce that P; is a periodic set. Moreover since Q>¢R; is definable
we deduce that C; = {v € Q% | I(u,v) € QxoR;} is definable. Let us prove
that Q>oP; = C;. By construction we have P; C C;. Since Cj; is conic we
deduce that Q>oP; C C;. For the converse inclusion let v € C;. There exists
u € Q7 such that (u,v) € Q>oR;. Hence there exists A € Qso such that
(u,v) € AR;. Let us consider n € N5 such that nA; € N and observe that
(nu,nv) € (nA)R; C R; since R; is periodic. Thus nv € P; and we have proved
that v € Q>oP;. Hence Qx¢P; = C; is a definable conic set and we have proved
that postp(X) is an almost semilinear set. From preg(Y) = postp—1(Y) with
R = {(y,x) | (x,y) € R} we deduce that pre,(Y) is an almost semilinear
set. a

Now, let us prove Theorem We consider a reflexive and transitive almost
semilinear relation R*. We introduce the notion of separators. A separator is a
couple (X,Y) of Presburger sets such that the intersection R*N(X xY) is empty.
Since R* is reflexive, the intersection X N'Y is empty. The Presburger set D =
Z3\(XUY) is called the domain of (X,Y). We observe that a separator (X,Y)
with an empty domain is a partition of Z? such that X is a Presburger forward
invariant and Y is a Presburger backward invariant. In particular Theorem
is obtained thanks to the following Lemma with an immediate induction.

Lemma 6.3. Let (Xo,Yo) be a separator with a non-empty domain Dg. There
exists a separator (X,Y) with a domain D such that Xg C X, Yo C Y and
dim(D) < dim(Dy).

Proof. We first observe that a couple (X,Y) of Presburger sets is a separator if
and only if postz. (X) N preg. (Y) = (0 if and only if postp.(X)NY = § if and
only if prez. (Y)NX = 0.
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Since R* is an almost semilinear relation we deduce that postg.(Xp) is an
almost semilinear set. As Dy is a Presburger set, we deduce that postg.(Xo) N
Dy = U§=1 b; + P; where b; € Z? and P; C Z% is an asymptotically definable
periodic set. We introduce the following Presburger set:

k
S=Jb; +1in(P))

j=1

Observe that post . (Xo) N Do C S. We deduce that the set Y = Y U (Do\S)
is such that postz. (Xo) N'Y = 0. Hence (Xo,Y) is a separator.

Symmetrically, since R* is an almost semilinear relation we deduce that
preg-(Y) is an almost semilinear set. As Dy is a Presburger set, we deduce that
preg. (Y)NDg = J;—, ¢ + Q; where ¢; € 74 and Q; C Z% is an asymptotically
definable periodic set. We introduce the following Presburger set:

T =Je +1in(Q)

=1

Observe that preg. (Y) N Dy C T. We deduce that the set X = Xo U (Dg\T) is
such that preg. (Y) N X = (). Hence (X,Y) is a separator.

Let us introduce the domain D of (X,Y). We have the following equality
where Z;; = (b; +1in(P;)) N (¢; + lin(Qy)):

D=Don( |J Zy)

1<j<k
1<i<n

As (X,Y) is a separator we deduce that postp.(X) N preg-(Y) is empty. As
b;+P; C postp.(Xo) C post g« (X) and ¢; +Q; C preg«(Y) we deduce that the
intersection (b; +P;) N (c; + Q;) is empty. Theorem [5.2 shows that dim(Z, ;) <
max{dim(b; + P;),dim(c; + Q)}. Since b; + P; C Dy and ¢; + Q; € Dy we
deduce that dim(b; + P;) < dim(Dy) and dim(c; + Q;) < dim(Dg). We have
proved that dim(D) < dim(Dy). O

7 Vector Addition Systems

In this section we introduce the Vector Addition Systems, the production relations
and a well order over the set of runs of Vector Addition Systems.

A Vector Addition System (VAS) is a finite subset A C Z. A marking is
a vector m € N? The semantics of vector addition systems is obtained by
introducing for every word w = a; ...ay, of vectors a; € A the relation 2 over
the set of markings defined by x — y if there exists a word p = myg...my, of
markings m; € N¢ such that (x,y) = (mo, my) and m; = m;_; + a; for every
j€{1,...,k}. The word p is unique and it is called the run from x to y labeled
by w. The marking x is called the source of p and it is denoted by src(p), and
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Fig. 8. The production relation of a marking m

m-+ri +rp
<im+r2 km—ka—s-rz
m + s m + S2 } m -+ s1 + so

Fig. 9. Production relations are periodic

the marking y is called the target of p and it is denoted by tgt(p). The set of
runs is denoted by (2.

The reachability relation is the relation denoted by - over the set of markings
defined by x = y if there exists a word w € A* such that x — y. In the sequel
we often used the fact that x — y implies x + v — y + v for every v € N¢,

The production relation of a marking m € N? (see Fig. B) is the relation Sm
over N defined by r Lmsifm+r S m+s. The production relation of a run
p=myg...my is the relation = » defined by the following composition:

* * *
_>p:_)m0 O---0 —>mk
Ezample 7.1. The production relation ~»,, with m = 0 is the reachability

relation.

The following Lemma shows that Lp seens as a subset of Z? is periodic
for every run p as a composition of periodic relations (see Fig. [). Note that in
Section [8] we prove that these periodic relations are asymptotically definable.

Lemma 7.2. The relation —m, is periodic.

* * . *
Proof. Let us assume that r; —, s1 and ro —y, So. Since ry —p, s1 we deduce
* . * *
that r{ + ro —m, s1 + ro. Moreover, since ro —, s2 we deduce that ro +s7 —m
%
so + s1. Therefore r{ +ro —m S1 + So. O

We introduce a well order over the set of runs based on the following Lemma [.3]

Lemma 7.3. The following inclusion holds for every run p:

*

(sre(p), tgt(p)+ =, < =

Proof. Assume that p = myg...m; with m; € N and let (r,s) be a couple
in the production relation Lp. Since this relation is defined as a composition,
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there exists a sequence (v, )o<j<k+1 of vectors v; € N satisfying the following
relations with vo = r and vi41 = s:

* *
Vo ->m0 Vi Vg ->mk vk}+1

We introduce the vector a; = mj;—m;_; for every j € {1,...,k}. Since m;_; 2,
m; we deduce that m;_; + v; 2, m; + v;. Moreover, as v; Lmj Vjt1, there
exists a word w; € A* such that m; + v; &, m; + v;41. We deduce that the
following relation holds:

woai1Wi...apWgk
- "

my + Vo mg + Vi

Therefore (mg, my) + (vo, Vi+1) is in the reachability relation. O

We introduce the order < over the set of runs defined by p < p’ if the following
inclusion holds:

(sre(p)), tet(p))+ = S (s1c(p), tet(p))+ =

In the reminder of this section we prove the following theorem. All the other
results or definitions introduced in this section are not used in the sequel.

Theorem 7.4. The order < is well.

The order < is proved well thanks to the Higmann’s Lemma. We first recall this
lemma. Let us consider an order C over a set S. We introduce the order C* over
the set of words over S defined by ©w C* v where u = s; ... s, with s; € S if there
exists a sequence (t;)1<;j<k with ¢; € S and s; C ¢; and a sequence (w;)o<j<k
of words w; € S* such that v = wotw; ... tpwy.

Lemma 7.5 (Higmann’s Lemma). The ordered set (S*,C*) is well for every
well ordered set (S,C).

We associate to every run p = mg...my the word a(p) = (a1, my) ... (ay, my)
where a; = m; —m;_;. Note that a(p) is a word over the alphabet S = A x N
We introduce the order T over this alphabet by (a,m) C (a’,m’) if a = a’
and m < m’. Since A is a finite set and < is a well order over N¢, we deduce
that C is a well order over S. From the Higmann’s lemma, the order =* is well
over S*. We introduce the well order < over the set of runs defined by p < p/
if a(p) T* a(p’), src(p) < sre(p’) and tgt(p) < tgt(p’). The following lemma
provides a useful characterization of this order.

Lemma 7.6. Let p = mg...my be a run and let p’ be another run. We have
p < p' if and only if there exists a sequence (V;)o<j<k+1 of vectors in N such
that p' = pg ... py, where p; is a run from m; + v; to mj + vji1.

Proof. We introduce the sequence (a;)1< <) defined by a; = m; —m;_;.

Assume first that p < p’.
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Since a(p) C* a(p’) we get a(p’) = wo(ar, m))w; ... (ay, mj,)w;, where w; €
S* and m’; > m;. We introduce the sequence (v;)o<j<k+1 defined by vo =
sre(p’) —sre(p), vi+1 = tgt(p’) —tgt(p) and v; = m)—m; for every j € {1,...,k}.
Observe that v; € N? for every j € {0,...,k + 1}. We deduce that p’ can be
decomposed into p’ = pj ... pj, where p} is the run from m; + v; to m; + v;41
such that a(p}) = w;.

Conversely let (v;)o<j<k+1 be a sequence of vectors in N such that p' =
Py - - - pj, where p’ is a run from m; +v; to m; +v;1. We deduce that we have
the following equality where m’, = m; + v; and a’; € A:

a(p') = alpp)(al, my)a(p)) . .. (ay, my)a(p))

Observe that a); = tgt(p;_,) —m} = (m; + v;) — (m;_1 + v;) and in particular
a; = a;. We deduce that a(p) C* a(p’). Moreover, since src(p) < src(p’) and
tgt(p) < tgt(p’) we deduce that p < p'. O

Since < is a well order, the following lemma shows that < is a well order. We
have proved Theorem [(.4]

Lemma 7.7. p < p’ implies p < p'.

Proof. Assume that p = myg...my. Lemma shows that there exists a se-
quence (v;)o<j<k+1 of vectors in N such that p’ = pj ... p) where pj is a run
from m; +v; to m; +v;y1. Lemmal[Z3 shows that (src(p}), tgt(p)))+ Lpégiﬂ
Hence (vj,vjq1)+ Lp,ngmj. We deduce that (vo, vigy1)+ i’p’giﬁ? by com-
position. Since (src(p’), tgt(p’)) = (sre(p), tgt(p))+ (vo, Ve+1) we get p < p’ from
the previous inclusion. a

8 Asymptotically Definable Production Relations

In this section we prove that production relations are asymptotically definable
(Theorem [B1]). All the other results or definitions introduced in the section are
not used in the sequel.

Theorem 8.1. Production relations are asymptotically definable.

The following lemma shows that asymptotically definable periodic relations are
stable by composition. In particular it is sufficient to prove that production
relations —,, are asymptotically definable for every marking m € N¢ in order
to deduce that production relations — » are asymptotically definable for every
run p.

Lemma 8.2. We have Q>o(R1 o R2) = (Q>0R1) o (Q>0Rz2) for every periodic
relations over Z<.

Proof. We have R; C Q>oR; and Ry C QsoR2. Thus Ry o Ry € C where
C = (Q>0R1) o (Q>0R2). As C is a conic set we get Q>o(R1 o Ry) C C. For
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the converse inclusion, let us consider (x,z) € C. There exists y € Q% such
that (x,y) € Q>oR1 and (y,z) € Q>oR2. There exists A1, A2 € Q> such that
(x,y) € MRy and (y,z) € A2Ro. We introduce n1,ns € N5 such that nyA; € N
and no A2 € N and we deduce that n(x,y) € Ry and n(y,z) € Ry with n = nins.
Hence n(x,z) € Ry o Ry. We deduce that (x,2) € Q>¢(R1 o Ra). |

Theorem B.§ shows that the conic set Qx> S m is definable if and only if the
following conic set is finitely generated for every vector space V C Q% x Q%:

(Q>O i>m) nv

We introduce the periodic relation Lm,v defined as the intersection —,, NV.
Let us observe that (Q>o Zm) NV is equal to Q>0 Lmy. So, we just have to

prove that the conic set Q> Lm,V is finitely generated for every m € N¢ and
for every vector space V C Q% x Q7.

We introduce the set 2 v of runs p such that (src(p), tgt(p)) — (m, m) is in
(N? x N) N V. Note that a couple (r,s) € N? x N¢ satisfies r —p, v s if and only
if there exists a run p € {2y, v such that src(p) = m+r and tgt(p) = m+s. We
introduce the set Qm,v of markings q that occurs in at least one run p € 24, v.
In general the set Qm v is infinite. We consider the set Im v of ¢ € {1,...,d}
such that {q(i) | @ € Qm,v} is infinite. We observe that if ¢ € I,y there
exists a sequence of markings in Qu v such that the ¢th component is strictly
increasing. We are going to prove that there exists a sequence of markings in
Qm,v such that every component in Iy, v is strictly increasing. This property is
proved by introducing the intraproductions. An intraproduction for (m,V) is a
triple (r,x,s) such that x € N¢, (r,s) € (N? x N%) NV and such that:

* *
r — m X —m S

Since S, is a periodic relation we deduce that the set of intraproductions is
stable by addition. In particular m + nx occurs in at least one run of 2y, v
for every intraproduction (r,x,s) and for every n € N. Hence, if x(i) > 0 then
i € Im,v. An intraproduction for (m, V) is said to be total if x(7) > 0 for every
1€ Im,V-

Lemma 8.3. There exists a total intraproduction for (m,V).

Proof. Since finite sums of intraproductions are intraproductions, it is sufficient
to prove that for every i € I, v there exists an intraproduction (r,x,s) for
(m, V) such that x() > 0. We fix i € I.

Let us first prove that there exists q < q' in Qm,v such that q(i) < q'(i).
Since i € I there exists a sequence (qy)nen of markings q, € Qm,y such that
(an(i))nen is strictly increasing. Since (N?, <) is well ordered, we can extract for
this sequence a subsequence that is non decreasing for <. We have proved that
there exists @ < q' in Qm,v such that q(i) < q' (7).

As q € Qm,v then q occurs in a run in {2y, . Hence there exists (r,s) €
(N? x N¥) NV such that:

m+ri>qi>m+s
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Symmetrically, as q' € Qm,v there exists (r',s’) € (N? x N%) 0V such that:
m+r 5q Sm+s
Let us introduce v = q' — q. We deduce:

~(m+r)+rS g +rfromm+r S q.
—q+(v+r) S (m+s)+ (v+r) from q = m+s.
—(m+r)+(v+s) gt (vis) frommtrSq.
~qd+s5 (m+s)+sfromq > m+s.

Sinceq +r=q+v+rand q+v+s=q +s, we have proved the following
relations where x = s+ v +r:

/¥ * /
r+r —-mX—>mS+Ss

As (r +1/;s +¢) € (N® x N¥) NV we deduce that (r + r',x,s + s') is an
intraproduction for (m, V). Since x(i) > 0 we are done. O

Let us introduce an additional element co ¢ N and let Noo = NU {co}. A vector
in N is called an extended marking and the set I = {i € {1,...,d} | m(i) = oo}
is called the set of relazed components of an extended marking m. Given a finite
set I C {1,...,d} and a marking m € N? we denote by m! the extended
marking defined by m!(i) = oo if i € I and m’(i) = m(i) if i ¢ I. Given a
word w = aj ...ay of vectors a; € A, we extend the relation 2, over the set
of extended markings relaxed over a set I by x — y if there exists a word p =
my ... my, of extended markings relaxed over I such that (x,y) = (mg, mg) and
m;(i) =m;_q(¢) + a;(¢) for every j € {1,...,k} and for every i € {1,...,d}\I.
The word p is unique and it is called the run from x to y labeled by w.

We introduce the finite graph Gy = (Q, A, E) where Q = {q/™V | q €
Qm,v} and where E = {(p™V, a,q™"v) | p,q € Qmv Aq = p + a}. We
introduce the periodic relation Ry, v of couples (r,s) € (N? x N¢) NV such that
r(i) = s(i) = 0 for every ¢ € {1,...,d}\Im,v and such that there exists a cycle
in Gm,v on the state m!™ v labeled by a word a; . ..a, where a; € A such that

r+2’;=1 a; =s.

Lemma 8.4. The periodic relation Ry, v is Presburger.

Proof. This is a classical result based on the fact that the Parikh image of a
regular language is Presburger. g

Lemma 8.5. The following equality holds:

Q>0Rmv = Q50 =m,v

Proof. Let us first prove the inclusion D. Let (r,s) such that r i’m,V s. In this
case there exists a word w € A* such that m+r — m+s. Observe that m+ nr
and m + ns are in Qm,y for every n € N. Hence r(i) > 0 or s(i) > 0 implies
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it € Im,v and we deduce that mi=v 2 mlm v Therefore w is the label of cycle
in Gm,v on m’m.V. We have proved that (r,s) € Rm,v.

Now let us prove the inclusion C. We consider (r,s) € Rm,v. In this case
(r,s) € (N? x NY) NV satisfies r(i) = s(i) = 0 for every i € Iy, v and there exists
a word w = a;...ay of vectors a; € A that labels a cycle in G,y on mi=v
and such that m+r+ Z§=1 a; = m+s. Let us consider a total intraproduction
(r',x,s’) for (m,V). Given p € N and j € {0,...,k} we introduce the following
vector my, ;:

my,;=m-+r+px+a;+---+a;

Let us first prove that there exists p € N such that m, ;(i) € N for every
i € Im,y and j € {0,...,k}. Let i € Imv and j € {0,...,k}, since x(i) > 0,
there exists p; ; € N such that my, ;(i) € N for every p > p; ;. We deduce that
there exists p € N such that m,, ;(i) € N for every i € I, v and j € {0,...,k}.

Now we prove that m, ;(i) € N for every i € {1,...,d}\Im,v and j €
{0,...,k}. Let j € {0,...,k}. Since w is the label of a cycle on m’™V there
exists an extended marking q; relaxed over I, v such that the following relation

holds:

T v ai...aj;
m=Y — qj

We deduce that for every i € {1,...,d}\Im,v we have m(i)+a;(i)+---+a;(i) =
q;(4). Since r(i) = 0 and x(i) = 0 we get m,, ;(:) € N.

We have proved that m,, ; € N? for every j € {0,...,k}. Since m, ;—m,, j_1 =
a; we deduce that p, = m, ... m, \ is a run. Note that m, o = m+ px+r and
my; =m-+px—+r+ Z?Zl a; = m+ px +s. We have proved that the following
relation holds:

m—l—px+ri>m+px+s

In particular (r,s) is in the production relation ~,, where m’ = m + px. Since
a production relation is periodic we get m’ + nr — m’ + ns for every n € N. As
(pr’, px,ps’) is an intraproduction for (m, V) we get m 4 pr’ = m’ = m + ps’.
We deduce the relation (m + pr’) + nr = m’ + nr from (m 4 pr’) = m’, and
the relation m’ 4+ ns = (m + ps’) + ns from m’ = (m + ps’). We deduce that
the following relation holds for every n € N:

m + pr’ +nr = m + ps’ + ns

Hence p(r',s’) + N(r,s) €5 y. Thus (r,8) € Q>0 —m,v. From the inclusion
Rmyv C Q>0 —my we get the inclusion Q>¢Rm,v € Q>0 —m,v- O

Lemma 8.6. The conic set Q>oP is finitely generated for every Presburger
periodic set P.

Proof. Let us consider a Presburger periodic set P. Since P is Presburger then
P= U§:1 b; + P; where b; € Z? and P; C Z? is a finitely generated periodic

set. We introduce the finitely generated conic set C = Z?:l(QZUbj +C;) where
C; is the finitely generated conic set C; = Q>¢P;. Since P C C and C is a conic
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set we deduce the inclusion Q>¢P C C. As C is finitely generated we deduce
that C is closed. Hence Q>oP C C. For the other inclusion let p € P;. For
every n € N we have b; + np € P. Hence ibj +p € QxoP for every n € Ny.
We deduce that p € Q>oP. Therefore P; C Q>oP. We get C; C Q>oP. As
Q>0b; € Q>oP C Q>¢P we have proved the inclusion C C Q>oP. Hence the
previous inclusion is in fact an equality. O

Now, we can prove Theorem Bl Lemma B4 shows that Rm v is a Pres-
burger periodic relation. Lemma proves that the conic set Q>¢Rm,v is

finitely generated. Lemma shows that Qxg Lm,V is finitely generated.

Hence (Q>o Lm) NV is a finitely generated conic set for every vector space
V C Q% x Q4. Theorem [3.8 shows that the conic relation Qg X m is definable.
Hence —y, is an asymptotically definable periodic relation.

9 Almost Semilinear Reachability Relations

In this section we prove the following Theorem All the other results or
definitions introduced in this section are not used in the sequel.

Theorem 9.1. The reachability relation of a Vector Addition System is an
almost semilinear relation.

We are interested in proving that — is an almost semilinear relation. We first
inspect the intersection - N((m,n) + P) where (m,n) € N? x N and P C
N? x N? is a finitely generated periodic relation. We introduce the order <p
over P defined by p <p p’ if p’ € p+ P. Since P is finitely generated we
deduce that <p is a well order over P (Dickson’s Lemma). We introduce the set
2m,pn of runs p such that (src(p), tgt(p)) € (m,n)+ P. This set is well ordered
by the relation <p defined by p <p p' if p < o/, (sre(p),tgt(p)) — (m,n) <p
(sre(p’), tgt(p')) — (m, n). We deduce that min<, (2m prn) is finite.

Lemma 9.2. The following equality holds:

= N((m,n) + P) = U (src(p), tgt(p)) + (=, NP)

pEMIn< , (2m,p,n)

Proof. Let us first prove D. Let p € {2y pn. Lemmal[73]shows that the inclusion
(sre(p), tgt(p))+ —,C= holds. Since (src(p),tgt(p)) € (m,n) + P and P is
periodic we deduce the inclusion D.

Let us prove C. Let (x,y’) in the intersection = N((m,n)+ P). There exists a
run p’ € 2m, pn such that x" = src(p’) and y’ = tgt(p’). Since <p is a well order,
there exists p € min<, (2m pn) such that p <p p’. We deduce that (x',y’) is in
(sre(p), tet(p))+ =, We get (x',y") € (sre(p), tgt(p)) + (=, NP) and we have
proved the inclusion C. a
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Theorem [B1] shows Lp is an asymptotically definable periodic relation. Since
P is a finitely generated periodic relation we deduce that P is asymptotically
definable. Lemma shows that the class of asymptotically definable periodic
relations is stable by finite intersections. We deduce that Lp NP is asymptoti-
cally definable. Thanks to the previous lemma we have proved that = is almost
semilinear and Theorem is proved.

10 Conclusion

The reachability problem for Vector Additions Systems consists to decide for a
triple (m, A, n) where m, n are two markings of a Vector Addition System A if
there exists a word w € A* such that m — n. The following algorithm decides
this problem.

1 Reachability( m , A ,n)

2 k<0

3 repeat forever

4 for each word w € A* of length k

5 ifm % n

6 return ‘‘reachable”

7 for each Presburger formula v of length &

8 if ¢(m) and —(n) are true and

9 x>0ANy>0AY(x)ANy €x+ AA—Y(y) unsat
10 return ‘‘unreachable”

11 ]{ — k‘ + 1

The correctness is immediate since when the algorithm returns “reachable” we
deduce that there exists a word w € A* such that m -5 n and when it returns
“unreachable” we deduce a Presburger formula ¢ that denotes a set I satisfying
m € I (since ¢(m) is true), n € I (since —¢p(n) is true), and such that I is a
forward invariant (since x > OAy > OAY(x)Ay € x+AA—)(y) is unsatisfiable).
The termination is guaranteed by the following Theorem [I0.11

Theorem 10.1. For every pair of markings (m,n) in the complement of the
reachability relation of a Vector Addition System, there exists a partition of the
set of markings into a Presburger forward invariant that contains m and a Pres-
burger backward invariant that contains n.

Proof. Let us consider X = {m} and Y = {n} and let R* be the reachabil-
ity relation of the Vector addition system. Theorem shows that R* is an
almost semilinear relation. Since R* is reflexive and transitive and such that
(X xY)NR* =0, Theorem shows that there exists a partition of the set
of markings into a Presburger forward invariant set that contains X and a Pres-
burger backward invariant set that contains Y. a

This algorithm does not require the classical KLMST decomposition. Note how-
ever that the complexity of this algorithm is still open. In fact, the complexity
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depends on the minimal size of a word w € A* such that m - n if m = n,
and the minimal size of a Presburger formula ¢ (x) denoting a forward invariant
I such that m € I and n ¢ I otherwise. We left as an open question the prob-
lem of computing lower and upper bounds for these sizes. Note that the VAS
exhibiting a large (Ackermann size) but finite reachability set given in [8] does
not directly provide an Ackermann lower-bound for these sizes since Presburger
forward invariants can over-approximate reachability sets.

As future work we are interested in providing complexity bounds on formulas

in FO (Q,+, <,0,1) denoting the definable conic sets Q¢ Sm.
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Abstract. We survey various results concerning abstract numeration
systems. We begin with the classical case of the integer base numeration
systems, then examine the more general case of linear numeration sys-
tems. Finally we discuss abstract numeration systems, which generalize
even further the two previous classes of numeration systems.

1 Introduction

The most general definition of a numeration system is simply a rule for repre-
senting numbers as words. We are most familiar with the classical integer base
numeration systems, notably the decimal, or base-10 system, and, for computer
scientists, the binary, or base-2 system. In many cases, the choice of base is
somewhat arbitrary and there are many properties of numbers that are inde-
pendent of their representations as words. However, there are also examples of
rather non-trivial properties of the integers that can be characterized in terms of
their representations in a certain base. For example, Gauss (see Nathanson [29])
proved that a number n is the sum of three squares if and only if n is not of the
form 4%(8m + 7). This condition can be verified rather easily, given the binary
represention of n. Hence the non-trivial property of a number being a sum of
three squares depends very much on the form of its representation in base 2.

If X is a set of integers, the set of representations of the elements of X
in our chosen numeration system forms a language L. Our general object of
study is those sets X for which L can be recognized by the simplest possible
computing device: a finite automaton. Of course, the notion of recognizability
depends on our choice of numeration system. We will consider different classes
of numeration systems in increasing order of generality. We begin with the integer
base numeration systems, proceed to the more general class of linear numeration
systems, and conclude by examining the class of abstract numeration systems,
which contains the other two classes as special cases.

2 Integer Bases

2.1 Basic Definitions and Results

We begin by examining the familiar integer base numeration systems—the sys-
tems wherein we represent integers as sums of powers of a fixed base k. Let k > 2

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 65—@, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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be an integer. For any non-negative integer n, we denote the base-k representa-
tion of n by [n]g. Similarly, for any word w over the alphabet {0,1,...,k—1}, we
denote the value of w, interpreted as an integer written in base k, by (w)y. A set
X C Nis k-recognizable (or k-automatic) if the language [X]j consisting of the
base-k representations of the elements of X is accepted by a finite automaton.

Ezample 1. The set N is k-recognizable for all k, since [N]j is the regular lan-
guage
{0,1,...,k—1}*\ (0{0,1,...,k —1}")

consisting of all words over {0,1,...,k — 1} that do not begin with a 0.

Ezxample 2. The prototypical example of a 2-recognizable set is the Thue—Morse
set
{n € N: [n]2 contains an odd number of 1’s}.

This is clearly 2-recognizable as one can easily define a finite automaton that
accepts those inputs over {0,1} that contain an odd number of 1’s.

It is clear from the definition of k-recognizable, and from well-known closure
properties of regular languages, that the class of k-recognizable sets is closed
under the Boolean operations of union, intersection, and complement.

The following result gives certain properties of the growth of a k-recognizable
set. Charlier and Rampersad [I0] have recently given a more precise description
of the growth of k-recognizable sets.

Theorem 1 (Eilenberg [15]). Let k > 2 be an integer. A k-recognizable set
X = (xn)n>0 of non-negative integers satisfies either

lim sup(Zp4+1 — @n) < 00

n—0o0
or 1
. xn +
lim sup > 1.
n—oo In

This theorem can be used to show that certain sets are not k-recognizable for
any k.

Example 3. The set {n? : n € N} of squares is not k-recognizable for any k, since
clearly
limsup((n +1)? — n?) = oo

and )
1
lim sup (n +2 ) =1.
n— oo n

Ezxample 4. The set of prime numbers is not k-recognizable for any k. It is well-
known that there can be arbitrarily large gaps between sucessive prime numbers.
Moreover, if p,, is the n-th prime, the Prime Number Theorem implies that

p7z+1/pn — 1,

so neither condition of Theorem [I] is satisfied.
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2.2 Cobham’s Theorem and Periodicity

It is natural to wonder to what extent the recognizability of a set X depends
on the choice of base k. Can one pass from one base to another without losing
recognizability? A celebrated result of Cobham [I3] answers this question. Cob-
ham’s Theorem characterizes the sets that are recognizable in all integer bases
k> 2.

We first need the following definitions. Two numbers k and ¢ are multiplica-
tively independent if k™ = ¢™ implies m = n = 0. A subset of the integers is
ultimately periodic if it is a finite union of arithmetic progressions.

Theorem 2 (Cobham’s Theorem [13]). Let k,¢ > 2 be two multiplicatively
independent integers and let X C N. The set X is both k-recognizable and ¢-
recognizable if and only if it is ultimately periodic.

Ezample 5. The set P, = {2" : n. > 0} of powers of 2 is clearly 2-recognizable,
since [Pz = 10* is a regular language. Clearly P» is not an ultimately periodic
set. Cobham’s Theorem therefore implies that P is not 3-recognizable.

Cobham’s Theorem shows that ultimately periodic sets are of particular interest
among the k-recognizable sets. This leads to the following decidability question,
known as the periodicity problem: Given an automaton accepting the base-k
representations of some set X, determine if X is ultimately periodic.

Theorem 3 (Honkala [21I]). The periodicity problem is decidable for k-
recognizable sets.

This decidability result was subsequently reproved several times by various au-
thors, such as Muchnik [28], Fagnot [17], and Allouche et al. [2]. Leroux [26] gave
a polynomial time algorithm.

2.3 Alternative Characterizations

Next we present an alternative characterization of k-recognizable sets. We first
need the following definitions. A map h : X* — A* is called a morphism if h
satisfies h(zy) = h(z)h(y) for all z,y € X*. A morphism may be specified by
providing the values h(a) for all @ € X. This definition is easily extended to
(one-sided) infinite words.

A morphism h : X* — X* such that h(a) = az for some a € X and z € X*
is said to be prolongable on a; we may then repeatedly iterate h to obtain the
fized point

h¥(a) = axh(z)h?(z)h3(z) - - - .
A morphism is k-uniform if h(a) has length k for all a € X; it is uniform if it is
k-uniform for some k. A morphism is a coding if it is 1-uniform.

Ezample 6. The Thue—Morse morphism is the 2-uniform morphism y : {0,1}* —
{0, 1}* defined by

0— 01

1~ 10.
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The fixed point
t = p~(0) =0110100110010110 - - -

is known as the Thue—Morse word. Observe that this is precisely the character-
istic sequence of the Thue-Morse set defined in Example

We have the following alternative characterization of k-recognizable sets.

Theorem 4 (Cobham [14]). Let k > 2. A set X C N is k-recognizable if and
only if its characteristic sequence is of the form g(h“(a)), where g is a coding
and h is a k-uniform morphism prolongable on the letter a.

Ezample 7. In Example[Blwe observed that the set of powers of 2 is a 2-recognizable
set. Its characteristic sequence can be generated using the 2-uniform
morphism

h:aw— ab,b— bec,c— cc

iterated on a and a coding g : a,c — 0,b — 1. We have
h(a) = abbcbeeebeeeceecbeceeceeceeceeeebee - - -

and
g(h¥(a)) = 01101000100000001000000000000000100 - - - .

It is also possible to give a logical characterization of k-recognizable sets.
The k-recognizable sets are precisely the sets definable in the first order theory
(N, +, V%), where Vi (n) is the largest power of k that divides n. For more infor-
mation on this logical characterization of k-recognizable sets, see the survey by
Bruyeére et al. [9].

2.4 k-Recognizable Sets and Number Theory

We end this discussion of k-recognizable sets by giving some number-theoretic
applications. In what follows, the notation F, denotes the finite field of order
p; Fp[T] denotes the polynomial ring over F,; and F,(T') denotes its field of
fractions. The following result shows that p-recognizable sets occur naturally
when studying algebraicity over fields of positive characteristic.

Theorem 5 (Christol [12]). Let X be a set of non-negative integers and let p
be a prime. Then X is p-recognizable if and only if the formal power series

Z "
neX

is algebraic over Fp(T).

Ezxample 8. Let X be the Thue—Morse set and let t = tgt1 - - - be its characteris-
tic sequence. We have observed in Example 2] that X is 2-recognizable. Observe
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also that t satisfies the identities t9,, = t,, and to,4+1 = t, + 1 if we perform the
arithmetic over F5. Consider the formal power series

F(T)=>_ T"

nex
over Fo[T]. We have
F(T) =Y t,T"

n>0

= Z t2nT2n + Z t2n+1T2n+1
n>0 n>0

=Dt T+ T Y (tn + )T
n>0 n>0

=F(T?) +TF(T? + T

1-12

Since we are working over Fy, we have F(T?) = F?(T'), whence we obtain
(1+T)*FX(T)+ (1+T)*F(T)+T =0,
so that F' is algebraic over Fo(T').

Another remarkable occurrence of p-recognizable sets arises in the theory of
linear recurrence sequences over fields of positive characteristic. Let R be a ring
and let U = (Up)n>0 be a sequence over R. The sequence U is a linear recurrence
sequence if there exist k > 1 and aog,...,ar_1 € R such that for all n > 0

Unik = ap—1Upyp—1 + -+ aoUs.

Given a linear recurrence sequence U, its zero set is the set Z(U) consisting of
all indices n such that U,, = 0.

Theorem 6 (Skolem—Mahler—Lech). Let K be a field of characteristic 0 and
let U be a linear recurrence sequence over K. Then Z(U) is a finite union of
arithmetic progressions.

Ezample 9. Let A = (A,)n>0 be defined by
An = An74 +An72; AQ = A1 = A2 = O,A3 =1.
Then Z(A) = {0,1,3,5,7,...}.

This behaviour fails to hold for linear recurrence sequences over fields of pos-
itive characteristic.

Ezxample 10 (Lech). Consider the sequence B = (B,,),>0 over Fy,(T') defined by

B,=(T+1)"-T"—1.
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Then B satisfies the linear recurrence
B, —(2+2T1)By_1+ (1 +3T +3T%)B,_o — (T +T%)B,_3 =0
over IF,,(T') for n > 3. However,
By = (T+1)" —T" —1=0.
Since B, # 0 when n is not a power of p, we have
Z(B) ={1,p,p*p’,.. .},
which is clearly not an ultimately periodic set.

Remarkably, it is possible to describe the zero set of a linear recurrence over a
field of characteristic p in terms of p-recognizable sets.

Theorem 7 (Derksen). Let K be a field of characteristic p > 0 and let U be
a linear recurrence sequence over K. Then Z(U) is a p-recognizable set.

Adamczewski and Bell [I] have recently given a generalization of this result.

3 Linear Numeration Systems

3.1 Basic Definitions and Results

In the classical integer base numeration systems, we represent the integers as a

sum of elements of the sequence (k™),>o of powers of a fixed base k. We now

generalize this idea by considering an arbitrary increasing sequence of integers

U = (Un)n>0 as a basis for representing the integers. As we shall see, the only

sequences U of interest to us are those defined by a linear recurrence relation.
Let U = (U,)n>0 be an increasing sequence of integers with Uy = 1 and

U,
Cy = sup [ nﬂ—‘ < 00.
n>0 n

A greedy representation of a non-negative integer n is a word w = wy_1 -+ wy
over {0,1,...,Cy — 1} such that

and for all j

The greedy representation of n with wy_1 # 0 is denoted by [n]y. A set X of
non-negative integers is U-recognizable if [X]y := {[z]y : * € X} is accepted by
a finite automaton.
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0

Fig. 1. The automaton for the Fibonacci numeration system

Ezample 11 (Fibonacci numeration system). Let U = (Uy,)n>0 be the sequence
of Fibonacci numbers defined by U, y2 = Upy1 + U, and Uy = 1, Uy = 2. Then

13=1-1340-84+0-5+0-3+0-240-1,
so the representation of 13 in the Fibonacci system is [13]y = 100000. Note how-
ever that 13 also has the non-greedy representation 11000. Indeed the language
0*[N]y is the language of all words over {0, 1} that do not contain the factor 11.
The automaton accepting this language is given in Figure [I1
A numeration system U = (Up)n>0 is said to be linear if it satisfies a linear
recurrence over Z. The importance of linear numeration systems is shown by the
following result.
Theorem 8 (Shallit [37]). If N is U-recognizable, then U is linear.
Proof (Loraud [27]). Suppose that [N]y is a regular language. Then 0*[N]y is
also a regular language. Let 7, be the number of words of length n in [N]y and

let s, be the number of words of length n in 0*[N]y. Then (s,)n>0 is a linear
recurrence sequence (this is a well-known result for regular languages). However,

we have
n
Spn = § r; = Up,
i=0

so U is linear, as required. O
The converse of this theorem is not true in general.

Example 12 (Shallit [37]). Let U be the sequence given by U, = (n + 1)? for
n > 0. Then Uy =1, Uy =4, U =9, and U satisfies the linear recurrence

Unts =3Upi2 —3Up41 + U,.
Suppose that [N]y were a regular language. Then the language
[N]y N110%10* = {10°10° € {0,1}* : b* < 2a + 4}

would also be regular; however, one easily shows using the pumping lemma that
this is not the case.
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3.2 Bertrand Systems

In general, the properties of an arbitrary linear numeration system can often
be difficult to analyze. We therefore now restrict our attention to a particular
class of linear numeration systems that are somewhat easier to study. Let U be
a linear numeration system. If

. Una
lim = 1]
n—oo n

for some real § > 1, then U is said to satisfy the dominant root condition and (3
is called the dominant root of the recurrence.

The properties of linear numeration systems with a dominant root 3 are often
linked with the properties of the so-called (-expansions of real numbers. Let
B > 1 be a real number. The (-expansion of a real number x € [0,1] is the
sequence dg(z) = (z;);>1 € N“ that satisfies

T = i x; /¢
i=1
and is the lexicographically largest sequence having this property. If
dg(l) =ty ---t0%,
with ¢, # 0, then we say that dg(1) is finite and we set
ds(1) = (t1 - tm—1(tm — 1))

Otherwise, we set dj(1) = dg(1). If dj3(1) is ultimately periodic, then 3 is a
Parry number.

The next theorem gives a necessary condition for N to be U-recognizable when
U is a linear numeration system with a dominant root 3.

Theorem 9 (Hollander [20]). Let U be a linear numeration system with dom-
inant root B. If N is U-recognizable, then B is a Parry number.

In general it is a difficult problem to characterize the linear numeration systems
U for which N is U-recognizable. Hollander proved a much stronger result than
the one quoted above: he gave sufficient conditions for N to be U-recognizable
in the case where U has a dominant root 8 > 1. It remains an open problem to
give a general characterization of all linear numeration systems U for which N is
U-recognizable. Hollander gave a conjectural characterization at the end of his
paper, but this conjecture is still open.

Next we study a particular class of linear numeration systems U for which
N is always U-recognizable. A numeration system U = (U,),>0 is a Bertrand
numeration system if it has the following property:

a word w is in [N]y if and only if w0 is in [N]y.
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Ezxample 13. For any integer k > 2, the integer base-k numeration system is
a Bertrand numeration system. The Fibonacci system of Example [I] is also
a Bertrand numeration system. On the other hand, if we change the initial
conditions of the Fibonacci recurrence U, 12 = Up41+ U, to Ug =1, U = 3, we
obtain a system that is no longer a Bertrand numeration system, since the greedy
representation of the number 2 is the word 2, but the greedy representation of
the number 6 is the word 102, not the word 20.

Let Fact(Dg) denote the set of factors occurring in the S-expansions of the real
numbers in [0, 1).

Theorem 10 (Bertrand [7]). Let U = (Up)n>0 be a numeration system.
There exists a real number > 1 such that 0*|N]y = Fact(Dg) if and only
if U is a Bertrand numeration system. In this case, if djz(1) = (t;)i>1, then

U,=tUp_1+---+t,Uy+ 1. (1)

If 8 is a Parry number, then (I]) defines a linear recurrence sequence and 3 is a
root of its characteristic polynomial.

Theorem 11 (Parry [31I]). A sequence s = (s;)i>1 over N is the B-expansion
of a real number in [0,1) if and only if (Sn+i)i>1 is lexicographically less than
dy(1) for allm > 1.

As a consequence of Theorems[I0 and[IT], every Parry number 3 has an associated
canonical numeration system. The language of the canonical numeration system
associated with [ is accepted by the deterministic finite automaton Ag accepting
the language Fact(Dg). This automaton is defined as follows. Let

dg(1) =t1 - tiltipr - tipp)”,

where ¢ > 0 and p > 1 are the minimal preperiod and period respectively. The
set of states of Ag is Q3 = {¢s,0,.--,48,i+p—1}. All states are final. For every
j€{1,...,i+ p}, we have t; transitions gg j_1 — gg, labeled by O,...,t; —1
and, for j < i+ p, we have one transition gg j—1 — ¢g,; labeled by t¢;. There is
also a transition ¢g;4+p—1 — ¢a,; labeled by ¢;4+,. See, for instance, [I6/I8123].

Example 14. Let 3 be the dominant root of the polynomial X3 —2X?% — 1. We
have dg(1) = 2010“ and dj(1) = (200)“. The automaton Ag is depicted in
Figure 2

3.3 Pisot Systems

We have seen that for every Parry number  there is an associated Bertrand
numeration system U such that N is U-recognizable. Now we consider linear
numeration systems U whose dominant root is a Pisot number. We shall see
that for such systems the set N is always U-recognizable. A Pisot number is a
real algebraic integer greater than one such that all of its algebraic conjugates
have absolute value less than one.
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Fig. 2. The automaton Ag for dj(1) = (200)~

Theorem 12 (Bertrand [6]; Schmidt [36]). Every Pisot number is a Parry
number.

In view of this result and the discussion above, every Pisot number § has an as-
sociated Bertrand numeration system U in which N is U-recognizable. However,
there may be many other linear recurrence sequences U that also have dominant
root 3 yet are not Bertrand systems. Indeed, there will be one choice of initial
values for the recurrence defining U that will result in a Bertrand system, but
other choices of initial values will result in systems that are not Bertrand sys-
tems. Let us call any linear numeration system whose characteristic polynomial
is the minimal polynomial of a Pisot number a Pisot system.

Ezample 15. The Fibonacci numeration system of Example [[Tlis a Pisot system,
since the characteristic polynomial 22 — z — 1 of the defining linear recurrence
is the minimal polynomial of the Pisot number (1 + v/5)/2.

The principal result concerning Pisot systems is the following.

Theorem 13 (Frougny and Solomyak [18]; Bruyére and Hansel [8]).
Let U be a Pisot system. Then N is U-recognizable.

3.4 Further Discussion

As was the case for the integer base numeration systems, it is also possible to
give a morphic characterization as well as a logical characterization of the U-
recognizable sets for the numeration systems U considered in this section. For
more information, see Fabre [I6] and Bruyére and Hansel [g].

In Section 2.2l we mentioned that the periodicity problem is decidable for base-
k numeration systems. In the setting of linear numberation systems, the problem
is as follows. Let U be a linear numeration system such that N is U-recognizable.
Given a automaton accepting [X ]y for some set X, determine if X is ultimately
periodic. It is currently unknown if this problem is decidable. For Pisot systems
the problem is decidable; for example, the proofs of Muchnik [28] or Allouche et
al. [2] can be easily adapted to these systems. Charlier et al. [4] showed that the
periodicity problem is decidable for a large class of linear numeration systems,
but the general problem remains open.
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4 Abstract Numeration Systems

4.1 Basic Definitions and Results

Abstract numerations systems were first introduced by Lecomte and Rigo [25].
They generalize linear numeration systems and include them as a special case.
In the case of linear numeration systems, we typically begin with a given linear
recurrence sequence and look for conditions under which this sequence results in
a regular numeration language. In the case of abstract numeration systems, we
change our point of view slightly: instead, we consider any fixed regular language
as being a possible numeration language. Of course, the resulting numeration
system is unlikely to be positional in general; instead, we order our numeration
language genealogically and define the representation of n to be the (n + 1)-th
word of the language.

Let w and v be two finite words of the same length (resp. two infinite words)
over an alphabet A C N. We say that u is lezicographically less than v if we can
write v = pau’ and v = pbv’, where a and b are letters such that a is less than
b. If w and v are two finite words (not necessarily of the same length), then u is
genealogically less than v if either |u| < |v| or |u| = |v| and w is lexicographically
less than v.

An abstract numeration system is a triple S = (L, X, <) where L is an infinite
regular language over a totally ordered finite alphabet (X, <). The language L
is called the numeration language. The map [-]s: N — L is a bijection mapping
n € N to the (n + 1)-th word of L ordered genealogically. The inverse map
is denoted by (})s: L — N. A set X C N is S-recognizable if the language
[X]s = {[n]s: n € X} is regular.

Example 16. The base-k numeration systems are all examples of abstract nu-
meration systems. For each k, the defining numeration language is the language

(0,1, k— 11\ (0{0,1,...,k—1}*).

Similarly, the Fibonacci numeration system of Example [IT] is also an abstract
numeration system, as are the Pisot systems discussed in the previous section.

Example 17. Recall from Example Bl that the set {n? : n € N} of squares is not
k-recognizable for any k. However, the set of squares is S-recognizable for the
abstract numeration system

S =(a"b*Ua*c*, {a,b,c},a<b<c),
since the language of representations of the squares is the regular language a*.
If fact, we have the following general result concerning polynomial sequences.

Theorem 14 (Rigo [34]; Strogalov [38]). For any polynomial P € Q[x] such
that P(N) C N, there exists S such that P is S-recognizable.
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The following result, which shows that Cobham’s characterization of the sets
recgonizable in all integer bases carries through in the more general setting of
abstract numeration systems, provides further confirmation that the notion of
abstract numeration system is indeed a natural generalization of the integer base
numeration systems.

Theorem 15 (Lecomte and Rigo [25]). Let S be an abstract numeration
system. Then every ultimately periodic set is S-recognizable.

Krieger et al. [22] reproved this result with an explicit bound on the size of
the automaton accepting an ultimately periodic set. The same construction was
independently found by Angrand and Sakarovitch [3].

Theorem 16 (Krieger et al. [22]). Let m and r be integers with m > 2
and 0 < r < m — 1. If S is an abstract numeration system whose language
L is accepted by an m-state deterministic finite automaton, then the minimal
deterministic finite automaton accepting the language [mN + r]s has at most
nm™ states.

The construction used to establish this result can also be used to prove the
following theorem, originally due to Choffrut and Goldwurm [I1] and later re-
proved by Rigo [33] (see [3]). (For the definition of N-rational series, see Berstel
and Reutenauer [5].)

Theorem 17 (Choffrut and Goldwurm [11]]). Let S = (L, X, <) be an ab-
stract numeration system. The formal series

Z (w)gw

is N-rational.

4.2 Alternative Characterizations

In Section we gave an equivalent characterization of k-recognizable sets in
terms of uniform morphisms. We have a similar characterization for
S-recognizable sets, but now the morphisms are no longer uniform. We say that
a sequence is morphic if it is of the form g(h“(a)), where ¢ is a coding and h is
a non-erasing morphism prolongable on the letter a.

Theorem 18 (Rigo [32]; Rigo and Maes [35]). Let X C N. Then there
exists an abstract numeration system S such that X is S-recognizable if and only
if the characteristic sequence of X is morphic.

Ezample 18. Recall from Example [I7 that the set of squares is S-recognizable
for the abstract numeration system

S =(a"b*Ua*c, {a,b,ct,a<b<c).
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The characteristic sequence of the set of squares can be generated using the
non-uniform morphism

h:aw— abce,b— bee,c— ¢
iterated on a and a coding g : a,b — 1,c— 0. We have
h*(a) = abecbececheceeccheececeee - - -

and
g(h*(a)) = 1100100001000000100000000 - - - .

4.3 Further Discussion

We end by revisiting the periodicity problem in the general setting of abstract
numeration systems. The problem is as follows. Let S be an abstract numer-
ation system. Given an automaton accepting [X]s for some set X, determine
if X is ultimately periodic. As mentioned in Section [34] the decidability of
this problem is still an open question even in the special case of linear numera-
tion systems, so evidently the problem remains open in the general setting. The
periodicity problem becomes particularly interesting in the general setting of
abstract numeration systems because of its equivalence to a longstanding open
problem in the theory of DOL systems. Theorem [[§ gives an equivalence between
S-recognizable sets and morphic sequences. A set X is ultimately periodic if and
only if its characteristic sequence is ultimately periodic, that is, if and only if
its characteristic sequence can be written in the form wvvvv - - -, where v and v
are words. However, the decidability of the periodicity problem for morphic se-
quences is a longstanding open problem in combinatorics on words. If we consider
only purely morphic sequences, that is, sequences of the form h*(a), where h is
a morphism prolongable on the letter a, then Harju and Linna [19] and Pansiot
[30] showed that the periodicity problem is decidable, but the question remains
unsolved for morphic sequences in general. Hence, the periodicity problem for
abstract numeration systems appears to be a difficult one.

There is much more to be said about abstract numeration systems. The theory
of such systems has been extensively developed, in particular by Rigo and his
co-authors. For more information on this topic, one may consult the survey by
Lecomte and Rigo [24].
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Abstract. This paper proposes rule formats for Structural Operational
Semantics guaranteeing that certain binary operators are left distributive
with respect to a set of binary operators. Examples of left-distributivity
laws from the literature are shown to be instances of the provided
formats.

1 Introduction

Over the last three decades, Structural Operational Semantics (SOS), see,
e.g., [1120022], has proven to be a powerful way to specify the semantics of pro-
gramming and specification languages. In this approach to semantics, languages
can be given a clear behaviour in terms of states and transitions, where the
collection of transitions is specified by means of a set of syntax-driven inference
rules. This behavioural description of the semantics of a language essentially tells
one how the expressions in the language under definition behave when run on
an idealized abstract machine.

Designers of languages often have expected algebraic properties of language
constructs in mind when defining a language. For example, one expects that a
sequential composition operator be associative and, in the field of process alge-
bra [TIIT6JI7], operators such as nondeterministic and parallel composition are
often meant to be commutative and associative with respect to bisimilarity. Once
the semantics of a language has been given in terms of state transitions, a natural
question to ask is whether the intended algebraic properties do hold modulo the
notion of behavioural equivalence or preorder of interest. The typical approach to
answer this question is to perform an a posteriori verification: based on the seman-
tics in terms of state transitions, one proves the validity of the desired algebraic
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laws, which describe semantic properties of the various operators in the language.
An alternative approach is to ensure the validity of algebraic properties by design,
using the so called SOS rule formats [2]. In this approach, one gives syntactic tem-
plates for the inference rules used in defining the operational semantics for certain
operators that guarantee the validity of the desired laws by design. Not surpris-
ingly, the definition of rule formats is based on finding a reasonably good trade-off
between generality and ease of application. On the one hand, one strives to define
a rule format that can capture as many examples from the literature as possible,
including ones that may arise in the future. On the other, the rule format should
be as easy to apply as possible and, preferably, the syntactic constraints of the
format should be algorithmically checkable.

The literature on SOS provides rule formats for basic algebraic properties of
operators such as commutativity [19], associativity [I5], idempotence [3] and the
existence of unit and zero elements [5/8]. The main advantage of this approach
is that one is able to verify the desired property by syntactic checks that can
be mechanized. Moreover, it is interesting to use rule formats for establishing
semantic properties since the results so obtained apply to a broad class of lan-
guages. Apart from providing one with an insight as to the semantic nature of
algebraic properties and its link to the syntax of SOS rules, rule formats like
those presented in the above-mentioned references may serve as a guideline for
language designers who want to ensure, a priori, that the constructs under design
enjoy certain basic algebraic properties.

In the present paper, we develop two rule formats guaranteeing that certain
binary operators are left distributive with respect to others modulo bisimilarity. A
binary operator & is left distributive with respect to a binary operator &, modulo
some notion of behavioural equivalence, whenever the equation (z ® y) ® z =
(z®2) ® (y ® 2) holds.

A classic example of left-distributivity law within the realm of process algebra
is (x+y)| 2= (x| 2)+ (y|| z), where ‘+” and |’ stand for nondeterministic
choice and left merge, respectively, from [IIII7]. (The reader may find many
other examples in the main body of this paper.) Distributivity laws like the
aforementioned one play a crucial role in (ground-)complete axiomatizations
of behavioural equivalences over fragments of process algebras (see, e.g., the
above-mentioned references and [4]), and their lack of validity with respect to
choice-like operators is often the key to the nonexistence of finite (in)equational
axiomatizations of behavioural semantics—see, for instance, [6/I8].

In the rule formats, for the sake of simplicity, the @& operator ‘behaves like’
some form of nondeterministic choice operator. Both rule formats are based on
syntactic conditions that are decidable over finite language specifications.

We provide a wealth of examples showing that the validity of several left-
distributivity laws from the literature on process algebras can be proved using
the proposed rule formats.

Roadmap of the paper. The paper is organized as follows. Section [ reviews
some standard definitions from the theory of SOS that will be used in the re-
mainder of this study. Section[3] presents our first rule format guaranteeing that a
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binary operator ® is left-distributive with respect to a binary operator & mod-
ulo bisimilarity. The rule format is defined in Section and some examples of
its application are given in Section We extend our rule format in Section M
by allowing for a wider set of terms appearing in the target of deduction rules.
Examples that can be handled using the second rule format are offered in the
same section. We refer the reader to [1] for proofs and further results.

2 Preliminaries

In this section we recall some standard definitions from the theory of SOS. We
refer the readers to, e.g., [7] and [20] for more information.

2.1 Transition System Specifications and Bisimilarity

Definition 1 (Signatures, terms and substitutions). We let V denote an
infinite set of variables and use x,x',x;,y,y,v:,... to Tange over elements of
V. A signature X is a set of function symbols, each with o fized arity. We call
these symbols operators and usually represent them by f, g, .... An operator with
arity zero is called a constant. We define the set T(X) of terms over X as the
smallest set satisfying the following constraints.

— A variable x € V is a term.
— If f € X has arity n and tq,. .., t, are terms, then f(t1,...,t,) is a term.

We use s, t,u, possibly subscripted and/or superscripted, to range over terms. We
write t; = to if t1 and ty are syntactically equal. The function vars : T(X) — 2V
gives the set of variables appearing in a term. The set C(X) C T(X) is the
set of closed terms, i.e., terms that contain no variables. We use p,q,p’, pi,. ..
to range over closed terms. A substitution o is a function of type V. — T(X).
We extend the domain of substitutions to terms homomorphically and write o(t)
for the result of applying the substitution o to the term t. If the range of a
substitution is included in C(X), we say that it is a closed substitution. For a
sequence 1, ...,T, of distinct variables and a sequence t1,...,t, of terms, we
write [Ty > t1, ..., Ty — t,] for a substitution that maps each x; tot;, 1 <i < n.

Definition 2 (Transition system specification). A transition system spec-
ification (TSS) is a triple (X, L, D) where

— X is a signature.
— L is a set of labels (or actions) ranged over by a,b,l. Ifl € L andt,t' € T(X),

we say that tL is a positive transition formula and t s a negative
transition formula. Such formulae are called t-testing. A transition formula
(or just formula), typically denoted by ¢ or 1, is either a negative transition
formula or a positive one.

— D is a set of deduction rules, i.e., tuples of the form (®,$) where ® is a set
of formulae and ¢ is a positive formula. We call the formulae contained in
@ the premises of the rule and ¢ the conclusion.
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We write vars(®) to denote the set of variables appearing in a set of formulae P.
We say that a formula or a deduction rule is closed if all of its terms are closed.
Substitutions are also extended to formulae and sets of formulae in the natural
way. A set of positive closed formulae is called a transition relation.

We often refer to a positive transition formula ¢ L ¢ as a transition with ¢ being
its source,  its label, and ¢ its target. A deduction rule (@, ¢) is typically written
as ‘i. For the sake of consistency with SOS specifications of specific operators in

the literature, in examples we use

An axiom is a deduction rule with an empty set of premises. We write , for
an axiom with ¢ as its conclusion, and often abbreviate this notation to ¢ when
this causes no confusion.

[OR R I {p1,sPn}
s " in lieu of é .

Definition 3. Given a rule d of the form fe i )y we say that d is f-
L1yeeoslnm ) —

defining, and write op(d) = f, d is a-emitting, and toc(d) = ¢, the target of the
conclusion of d. We also denote by D(f,a) the set of a-emitting and f-defining
rules in a set of deduction rules D.

Ezample 1 (Choice operators). The choice operator from [I7] is defined by the
following rules, where a ranges over the set of actions:

x5! ySy
(chla) (chry) .
z+y>a r+ySy
For each action a, the rules (chl,) and (chr,) are a-emitting and +-defining. For
rule (chl,), we have that toc(chl,) = «'.

The meaning of a TSS is defined by the notion of least three-valued stable
model [23]. We write 7 - p-%p’ if the transition p-%p’ is in the least three-
valued stable model of 7. Since the precise definition of this notion does not
play a role in the remainder of this paper, we omit it for the sake of brevity and
refer our readers to [I] for details.

Definition 4 (Bisimulation and bisimilarity). Let 7 be a transition system
specification with signature X and label set L. A relation R C C(X) x C(X) is a
bisimulation relation if and only if R is symmetric and, for all py,p1,p; € C(X)
andl € L,

(poRp1 AT F po Lpf)) =3Jp; € C(X). (T +p i>p/1 ApyRpY).

Two terms po,p1 € C(X) are called bisimilar, denoted by po < p1, when there
exists a bisimulation relation R such that po R p1.

Bisimilarity is extended to open terms by requiring that s,¢ € T(X') are bisimilar
when o(s) < o(t) for each closed substitution o : V.— C(X).
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3 The Left-Distributivity Rule Formats

In this section, we present a rule format guaranteeing that a binary operator ®
is left-distributive with respect to a binary operator @& modulo bisimilarity. The
rule format suffices to handle many examples from the literature.

Definition 5 (Left-distributivity law). We say that a binary operator & is
left-distributive with respect to a binary operator @& (modulo bisimilarity) if the
following equality holds:

(Toy)@ze(t@2)@ (Y@ 2) 1)

For all closed terms p,q,r, proving the algebraic law (dl) involves two proof
obligations:

— Firability: ensuring that (p @ ¢) ® r = if, and only if, (p@ ) ® (¢® 1) >,
for each action a;

— Matching conclusions: ensuring that, for each closed term p1, if (p® q) ®
r 2% py1, then there exists some closed term py such that (p@7)® (¢@71) = po
and p; < p2, and vice versa.

3.1 The Firability Condition

We begin by introducing the conditions on sets of rules for two binary operators
® and @ that we shall use to guarantee the firability condition for them. First
of all, we present syntactic constraints on the rules for those operators that we
shall use throughout the remainder of the paper.

Definition 6. We say that a deduction rule is of the form (R1) when it has the
structure
D, {z52'} U @,
or
rT®y-St T@®Y-St
where

— the variables x, 2,y are pairwise distinct, and
— &, is a (possibly empty) set of (positive or negative) y-testing formulae such
that =, z" & vars(®,).

A deduction rule is of the form (R2) when it has the structure

{z %'} {y>y'} {z 52/ ySy')
or or
T®Y-St r@ySt Tyt

where the variables x,x',y,y’ are pairwise distinct. A rule of the form (R1) or
(R2) is non-left-inheriting if = & vars(t), that is, if « does not appear in the
target of the conclusion of the rule. An operation f specified by rules of the form
(R1) or (R2) is non-left-inheriting if so are all of the f-defining rules.
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Definition 7 (Firability constraint). Given a TSS T, let ® and & be bi-
nary operators in the signature of T. For each action a, we write Fire(®, ®, a)
whenever the following conditions are met:

— if D(®,a) # 0 then D(®,a) # 0,
— each d € D(®,a) is of the form (R1), and
— each d € D(®,a) is of the form (R2).

Ezxample 2. Recall the choice operator +, presented in Example[ll As our readers
can easily check, Fire(+, +, a) holds for each action a.

The firability constraint in Definition [7 is sufficient to guarantee the aforemen-
tioned firability condition.

Theorem 1 (Firability Theorem). Given a TSS T, let ® and @® be binary
operators from the signature of T. Suppose that Fire(®,®,a) holds for some
action a. Then,

(p@®q)®r-> if, and only if, (p®7) ® (q®T) >,

for all closed terms p,q,r.

The import of Theorem [ is that, when proving the validity of (Il), we can
guarantee the firability condition for action a just by showing that Fire(®, @, a)
holds. Theorem [[lunderlies the soundness of the rule formats we present in what
follows.

The reader will have already noticed that the rule form (R1) does not place
any restriction on tests for the variable y. This is possible because the second
argument of the terms (p @ ¢) ® 7, p® r and ¢ ® r is always the same, i.e. the
term r. This means that, for each ®-defining rule, the same tests performed on
the second argument on one side of (Il) are performed on the other. Roughly
speaking, one side of ([l) may fire as much as the other does, insofar the second
argument is concerned.

3.2 The Matching-Conclusion Condition

Theorem [I] tells us that any rule format, whose constraints imply condition
Fire(®, @, a) for each action a, guarantees the validity of () provided that the
matching-conclusion condition is met. Intuitively, in order to guarantee syntac-
tically that the matching-conclusion condition is satisfied, the targets of the
conclusions of @-defining and @-defining rules should ‘match’ when those op-
erators are used in the specific contexts of the left- and the right-hand sides
of (). In what follows, we shall examine two different ways of ensuring the
above-mentioned ‘match’ of the targets of the conclusions of ®-defining and &-
defining rules. The first relies on assuming that the targets of the conclusions
of @-defining rules are target variables of premises of rules of the form (R2).
The resulting rule format, which we present in this section, is based on easily
checkable syntactic constraints and covers a large number of left-distributivity
laws from the literature.
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The First Rule Format. The rule format that we present deals with examples
of left distributivity with respect to operators whose semantics is given by rules of
the form (R2) that, like those for the choice operator we mentioned in Example[I]
have target variables of premises as targets of their conclusions. The following
definition presents the syntactic constraints of the rule format.

Definition 8 (First rule format). Let T be a TSS, and let ® and @ be binary
operators in the signature of T. We say that the rules for ® and @& are in the
first rule format for left distributivity if the following conditions are met:

1. Fire(®, ®, a) holds for each action a,

2. ® is non-left-inheriting,

8. each ®-defining rule has a target variable of one of its premises as target of
its conclusion and

4. for each action a, either there is no a-emitting and ®-defining rule that tests
both x andy, or if some a-emitting and ®-defining rule tests its left argument
x then so do all a-emitting and ®-defining rules.

Theorem 2 (Left distributivity over choice-like operators). Let T be a
TSS, and let ® and & be binary operators in the signature of T. Assume that
the rules for ® and @ are in the first rule format for left distributivity. Then

(zoy®2z=(2@2)0(Y®2) .

Remark 1. Condition [ in Definition [§ is necessary for the soundness of the rule
format for left distributivity proved in the above theorem. To see this, consider
the operations @ and ® with rules

{z=ay=y} {z>d y>y) {y>y'}
T®y—a T®Yy = @y r®ySy

The above rules satisfy all the conditions in Definition [§ apart from condition [l
Now, let a be a constant with rule a — 0, where 0 is a constant with no rules.
As our readers can easily check,

(a®a)®(0@a) £ (ad0)® a.

Indeed, the term (a ® a) ® (0 ® a) can perform a sequence of two a-labelled
transitions, whereas (a ® 0) ® a cannot because a @ 0 affords no transitions.

3.3 Examples of Application of the Rule Format

Theorem 2l provides us with a simple, yet rather powerful, syntactic condition in
order to infer left-distributivity laws for operators like +. Many of the common
left-distributivity laws are automatically derived from Theorem [2, as witnessed
by the examples we now proceed to discuss.
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Example 8 (Left merge and interleaving parallel composition). The operational
semantics of the classic left-merge and interleaving parallel composition opera-
tors [IIYT3YT7] is given by the rules below:

5 r 5 Y=y
elly=ally  zllySa |y x|y Saly

Theorem [2 yields the validity of the following law.
(@+y)ll z = (2l 2) + (yll 2)

Ezample 4 (Synchronous parallel composition). Counsider the synchronous par-
allel composition from CSP [16]@ specified by the rules below, where a ranges

over the set of actions:
/ a

vllsy=a sy

Theorem [2] yields the validity of the following law.

@+y)lsze@s2)+ s 2)

Ezample 5 (Join and ‘/” operators). Consider the join operator x from [12] and
the ‘hourglass’ operator / from [4] specified by the rules below, where a, b range
over the set of actions:

a a a b
= y—oy o1 y—y
zxySa Fy xfy =y

where F denotes the delayed choice operator from [12]. (The operational spec-
ification of the delayed choice operator is immaterial for the analysis of this
example.) Theorem [ yields the validity of the following laws.

+ynze@xz)+@yxz)  (@t+y)/ze(@/2)+@/2)
Ezample 6 (Disrupt). Consider the following disrupt operator » [914] with rules
e Y-Sy
Ty ey x»yiy’.
Theorem [2] yields the validity of the following law.
(x+y)pze(zr2)+(ywz2)

!'In [16], Hoare uses the symbol || to denote the synchronous parallel composition
operator. Here we use that symbol for parallel composition.
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Example 7 (Unless operator). The unless operator < from [I0] and the operator
A from [4, page 23] are specified by the rules

b b
r5x ys fora<b x5z y-» fora<b

raya rAyLo(x)

where < is an irreflexive partial order over the set of actions and 6 denotes
the priority operator from [I0]. (The operational specification of the priority
operator is immaterial for the analysis of this example.) Theorem [ yields the
validity of the following laws.

(z+y)<ze (xd2)+ (y<z) (z+y)Aze=(xAz)+ (yAz)

4 Analyzing Targets of Conclusions of Deduction Rules

In this section, we extend the first rule format by generalizing the matching-
conclusion conditions. We do so by examining different possible targets of the
conclusions of the ®- and @®-defining rules. By analyzing different possible syn-
tactic shapes for terms, we check which pairs of shapes can be related (possibly
under some further requirements) while preserving the left-distributivity law.
Table[Ilsummarizes our results. Even though the offered list is not exhaustive,
which, at first sight, seems a challenging task to achieve, we believe Table [Tl offers
enough cases to cover almost all practical cases, as demonstrated by the examples
presented in the remainder of this section and in the full version of this paper.
In Table [ x and y are considered as the variables for the first and second
argument, respectively, for both ®- and ®-defining rules. When the variable z’
is mentioned, implicitly the considered rule has a premise = -5 2’ (for a-emitting
rules). Similarly, when the variable y’ is mentioned, implicitly the rule consid-
ered has a premise y —y’. The term ¢ stands for a generic open term from the

Table 1. Analysis of the targets of conclusions

toc(d1) toc(dz) result further requirements
12®y T pAT
22'®@y oy q®r
3 0z ey pOq D(®,a) = {d:1}
4 2 ey ped D(®,a) = {d1}
5 @t 2@y (p®q) ®c(t) D(®,a) = {d1}, z, 2’ & vars(t)
6 2@t 2’y P dd)®() D(®,a) = {d1}, z,2’" & vars(t)
7Tt ey o(t) @ idempotent, D(®,a) = {d1}, =, 2" & vars(t)
8 t x' a'(t) Condition @ of Definition 8 = ¢ vars(t)
9 t Y a'(t) Condition [ of Definition B = ¢ vars(t)

witho=[y—r,yi—m ((€l)]ando =y—r, a2 —p,yi—r (i €1)



Rule Formats for Distributivity 89

signature, and p, ¢ and r are hypothetical closed terms applied to the distribu-
tivity equation in this way: (p @ q) ®r = (p®r) ® (¢ ® r). The symbols p’, ¢/,
and r; are considered as targets of possible transitions from p, ¢ and 7.

Table [l is to be read as follows. First of all, di € D(®,a) and d2 € D(®,a),
for some action a. In each row, the first column (column toc(d;)) specifies the
form of the target of the conclusion of the ®-defining rule d; (e.g., = in case of
row 3), and the second column (column toc(dz)) specifies the form of the target
of the conclusion of the @-defining rule dy (e.g., 2’ ® 3’ in case of row 3). If the
conditions in the column further requirements are satisfied (e.g., in row 3, dj
is the only ®-defining and a-emitting rule), then the result of the transition of
terms (p@®q)®r and (p®r)PD(¢®r) is specified by the term given in column result
(e.g., p®q in row 3). In rows 5-6, the stated result is up to one application of the
left-distributivity equation (1). The requirement @ idempotent means that the
operator @ can be proved idempotent, e.g., by means of the rule format offered
in [3].

The reader may want to notice that the first rule format of Section is
partly based on the analysis which leads to rows 8 and 9.

Theorem 3 (Soundness of Table[dl). Let T be a TSS. Let ® and & be binary
operations in the signature of T satisfying

1. Fire(®,®,a), and
2. if D(®,a) # 0 then for each di € D(®,a) and for each do € D(®,a), the
rules d; and da match a row in Table 1.

It holds that:
oy ®z=(202)0 (y@2)

In what follows, we apply the rule format provided in this section in order to
check some examples of left-distributivity laws whose validity cannot be inferred
using Theorem 2

Ezample 8 (Unit-delay operator and the choice operator from ATP). Consider
any TSS T containing the unit-delay operator | | and the choice operator +*
from ATP [21]@ and for which the transition relation % is deterministic. (The
distinguished symbol x denotes the passage of one unit of time.) The semantics
of those operators is defined by the following rules, where a # x:

x5 52 ySy
(udy) (udy) (extTime)
[z )(y) =2 [z (y) Sy x4y S 4y
i Yy
(extChl,) (extChry)
f£+*yi>f£, x+*yiy’

2 1In [21], the symbol of this operator is @, whose use we prefer to avoid in this paper
for the sake of clarity.
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Table [ can be used to match the targets of the conclusions as follows: the
combination of ud, and extChl, follows from row 8, the combination of ud, and
extChr, follows from row 9, and finally the combination of ud, and extTime
follows from row 7.

Ezample 9 (Timed left merge and the choice operator from ATP). Consider the
TSS for ATP with the timed extension of the left-merge operator from Example[3]
specified by the following rules, where a # x:
a 4 X X,
Tr—x rox ySy
(merge,) (merge,) .
" ,
zlly—=2" |y zlly=a'|| y

Table[can be used to match the targets of the conclusions as follows: the com-
bination merge,, extChl, follows from row 8, the combination merge,, extChr,
follows from row 9 and the combination merge, , extTime follows from row 6.
In the extended version of this paper [I], we apply our rule formats to several
more examples and also show how they can be applied to obtain distributivity
for unary operators. The full version of the paper also offers a much more gen-
eral format for left distributivity based on a notion of distributivity compliance
between rules of which Table [[lis an approximation.
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Abstract. We propose Mutation Systems as a model of the evolution
of a string subject to the effects of mutations and a fitness function. One
fundamental question about such a system is whether knowing the rules
for mutations and fitness, we can predict whether it is possible for one
string to evolve into another. To explore this issue we define a specific
kind of mutation system with point mutations and a fitness function
based on conserved strongly k-testable string patterns. We show that
for £ > 2, such systems can simulate computation by both finite state
machines and asynchronous cellular automata. The cellular automaton
simulation shows that in this framework, universal computation is pos-
sible and the question of whether one string can evolve into another is
undecidable. We also analyze the efficiency of the finite state machine
simulation assuming random point mutations.

1 Introduction

Biological evolution proceeds by variation and selection. Efforts to determine the
evolutionary relationships of different organisms often involve comparing the
DNA sequences of their genomes to find similar subsequences that have been
conserved during evolution, on the assumption that the conserved subsequences
affect the fitness of the organisms. In this work we propose mutation systems as
a simple model of variation and selection acting on strings of symbols, with the
goal of exploring the properties of such systems, specifically what we can predict
and learn about their behavior. Variation is modeled as a mutation function that
maps a string to the set of possible mutations of that string. Selection is modeled
as a fitness function that determines whether each string is fit or not. The main
relation we consider in this paper is whether one fit string can evolve to another
fit string through a sequence of fit strings, each of which is a possible mutation
of its predecessor.

2 Preliminaries

An alphabet X' is a finite nonempty set of symbols. X* denotes the set of all
finite strings of symbols from Y. The empty string is denoted A. A language is
any subset of ¥*. ¥ denotes those elements of ¥* of length k. The symbols in a
string s of length n are indexed from 1 to n and s[i] denotes the i*" symbol of s.

* Research supported by the National Science Foundation under Grant CCF-0916389.

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 92-[l04, 2011.
© Springer-Verlag Berlin Heidelberg 2011



Mutation Systems 93

We consider non-deterministic finite state machines with no accepting states,
defined as follows. A finite state machine (FSM) is a quadruple M = (X, Q, qo, 9),
where X' is the alphabet of input symbols, @ is the set of states, qo is the initial
state, and ¢ is the transition function, which maps @) x X' to subsets of Q. If
every (g, a) contains exactly one state, then M is deterministic. In this case we
may write §(g,a) = ¢ instead of §(¢q,a) = {¢'}.

3 Mutation Systems

We propose a model of the evolution of a string subject to the effects of muta-
tions and a fitness function. A single step consists of a mutation of the current
string followed by an application of the fitness function. If the fitness function
determines that the mutated string is fit, the mutated string replaces the current
string; otherwise the mutated string is discarded and the current string is kept.

Definition 1. A mutation system S = (X, p, f) is composed of an alphabet
X, a mutator u that maps X* to subsets of X* and a fitness function f : X* —
{0,1}. The mutator u specifies the set of strings to which a given string can
mutate in one step. The fitness function f determines whether a given string s

is fit (f(s)=1) or not (f(s)=0).

Given a mutation system S and two fit strings s; and so, we are interested in the
question of whether s; can evolve to sy through a sequence of steps permitted
by S.

Definition 2. Let a mutation system S = (X, u, f) and two strings s1,s2 € X*
be given. We say that sy can mutate to sy in one step, denoted s1 —, s2, if
s2 € p(s1). We say that s1 can evolve to so in one step, denoted s; —g sa,
if f(s1) = f(s2) =1 and s1 can mutate to sy in one step.

As is usual, we denote the reflexive transitive closure of these relations by a su-
perscripted * on the arrow. We say that s; can mutate to s if s1 —, so, that
is, there is a finite sequence of zero or more mutation steps that carries s; to ss.
Similarly, we say that s; can evolve to sy if 51 =% s2, that is, there is a finite
sequence of zero or more evolution steps that carries s; to s3. Note that in the

latter case, s1, so and any intermediate strings in some evolution must be fit.

3.1 Point Mutations

A point mutation of a string is obtained by deleting or inserting a single oc-
currence of a symbol or by replacing a single occurrence of a symbol by any
symbol.

Definition 3. Let s be any string. The mutators jiq, (i, fbr, and jp, are defined
as follows.

1. pa(s) is the set of strings that can be obtained by deleting exactly one occur-
rence of a symbol from s.
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2. pi(s) is the set of strings that can be obtained from s by inserting exactly
one occurrence of a symbol from X into s.

3. pr(8) is the set of strings that can be obtained from s by replacing exactly
one occurrence of a symbol in s by any symbol from 3.

4 tpls) = pa(s) U a(s) U pr ().

The mutator p, permits any single point mutation of a string. Reversibility is
a relevant property of mutators and mutation systems.

Definition 4. A mutator u is stepwise reversible if for all strings s; and sa,
s2 € p(s1) < s1 € p(s2).

That is, if s1 can mutate to sy in one step, then so can mutate back to s1 in one
step. A mutation system S = (X, u, ) is reversible if for all strings s1 and sa,

(81 =5 82) & (82 =5 81).
That is, if s1 can evolve to s, then so can evolve to sq.

The point mutator p, is stepwise reversible: an insertion can be reversed by a
deletion, a deletion by an insertion, and a replacement by the opposite replace-
ment. The following lemma is immediate.

Lemma 1. If u is stepwise reversible then S = (X, u, f) is reversible.

3.2 Conservation of Strictly k-Testable Patterns

We consider fitness functions defined by very local properties of a string, namely
properties characterized by strictly k-testable languages [3[7/10]. Head [5] and
Yokomori and Kobayashi [I3] describe applications of k-testable languages to
modeling biological phenomena.

Definition 5. Let X' be an alphabet. A strictly k-testable pattern P = (PRE,
MID, SUF) is composed of three sets of strings with PRE C X*=1 MID C X*,
and SUF C X*=1. The language of P, denoted Lp, is the set of all strings s
of length at least k such that the prefiz of s of length k — 1 is in PRE, every
substring of s of length k is in MID, and the suffix of s of length k—1 is in SUF.

A fitness function f is defined to be strictly k-testable if there exists a strictly
k-testable pattern P such that for every string s, f(s) = 1 iff s € Lp. A k-
simple mutation system is is a mutation system with mutation operator p,
and a strictly k-testable fitness function. In what follows we focus on 2-simple
mutation systems.

The technique of symbol duplication is useful in preventing unwanted point
mutations in a 2-simple mutation system. If the alphabet is X, then the du-
plicated alphabet D(X) consists of two copies of each symbol a € X, one
with index 1, denoted a', and one with index 2, denoted a?. We define the
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duplication map d from X* to D(X)* such that d(s) is obtained from s by
replacing every occurrence of a symbol a in s by the string a'a?. We define a
projection map hy from D(X)* to X* such that hq(s) replaces every index 1
symbol a! by a and every index 2 symbol a? by the empty string. For example,
d(abb) = a'a®b*b%b1b? and hi(a'b'b?aal) = aba. Clearly hi(d(s)) = s.

Example: Symbol Duplication. Let X = {a,b}. We define a 2-simple mutation
system So = (X9, f1p, f2) that protects strings against point mutations. The
alphabet Yy is D(X) = {a', a?,b',b?} and the strictly 2-testable fitness function
fo is defined by the prefix strings {a',b'}, the suffix strings {a?,b?}, and the
middle strings
{a*d?, a*a', a®b, b'b?, b%at, b*b?}.

The set of strings that are fit with respect to fs are exactly those of the form
d(s) for some nonempty s € X*, for example, a1azb1babibs. If a fit string under-
goes any non-identity point mutation, the resulting string is not fit with respect
to fo.

4 Simulating FSM Computation

To represent FSM computation using a reversible mutation system, we choose
a reversible representation: FSM computation histories, analogous to Bennett’s
construction to make Turing machines reversible [I]. Let M = (X, @, qo,9) be a
finite state machine. Choose an element = ¢ @ and define the state-annotated
alphabet Y as the set of all symbols aq such that @ € X' and ¢ € Q U {z}.
The symbol a, represents the state ¢ of M after reading the symbol a, with x
indicating that the symbol is unread. The main symbol component of a, is a
and the state component is q.

Given a string s € X* of length n, a computation history of M on s is a
string s’ € (Xg)* of length n such that the string of main symbol components of
s’ is s, and the sequence of state components consists of ¢1, ¢o, . .., ¢; € Q followed
by (n —1) s for some 0 < i < n, where for each 1 < j < i, gj+1 € d(g;, s[j])- In
this case, s’ represents the computation in which M has read the first 4 symbols
of s and for each j gives the state reached after reading the j* input symbol.
The initial computation history of M on s, denoted I, (s), is obtained from
s by replacing each a by a,, signifying that all the input symbols of s are unread.

Ezample: M. Define a deterministic finite state machine My = ({a, b}, {0, 1},
0, §1) with transition function §; given by 1(0,a) = 1, 61(0,b) =0, 61(1,a) = 0,
and 61(1,b) = 1. The state of M; indicates whether it has read an odd (1) or
even (0) number of a’s. The computation histories of M; on the input string
abaa are the following: a,b,a,az, a1bp0,0,, a1b1a,0,, a1biagas, a1biagar.

4.1 From FSMs to Mutation Systems

Given a FSM M = (X, Q, qo, ), we describe how to construct a 2-simple muta-
tion system S = (X, yip, f) such that for any non-empty input string s for M,
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ag az by b ag a3 ag a;
aj a3 by by ag a; ay ay
127122 1 2 2
a ax bz bm Ay Gz Qg Ay
al a2 b b2 al a2 al a2
at a? b bv? al a2 al &
271 32 1
ay ai by b7 ag az ag ag
al af b 2 a} af ol a2
al a2 vl v? a(l) a% al a;

1271 32
ay ai by b7 ag af ay ay

Fig. 1. Sequence of mutations for computation of M; on input abaa

the computation histories of M on input s are represented by the strings that
d(I,(s)) may evolve to in S. The alphabet £ is D(Xg). In the symbol a/, the
main symbol component is a, the state component is ¢ and the index is i. For
the example FSM M,
X' = {ag, a3, ap, ag, ai, af, by, 07, b, b3, by, bi ).

Corresponding to the initial computation history I, (s) of M on input s is the
initial string d(I,(s)) with every symbol replaced by its duplicates indexed 1 and
2. For the FSM M7, we have

d(I(abaa)) = ata?blb?alaala?.

The strictly 2-testable pattern P = (PRE, MID, SUF) that determines the
fitness function f is defined as follows. The set PRE contains all symbols of
the form al and aé such that a € X and g € §(qo, a). The set SUF contains all
symbols of the form a2 and az such that a € X and g € Q. The set MID contains
several types of strings of length 2, as follows.

Initial duplicate: ala2 for all a € X.

Initial boundary: a2bl for all a,b € X.

Duplicate update needed: a;ai foralla € X and g € Q.
Updated duplicate: ala? for all a € X and ¢q € Q.
Updated boundary: agb, for all a,b € X" and ¢ € Q.

State transition: agb;, forall a,b e X, g€ Q, and ¢’ € §(q,b).

O Ct o=

For example, the sequence of steps of M7 on input abaa can be achieved by the
mutation steps shown in Figure [[l Each FSM step requires two mutations.

4.2 Correctness of the FSM Simulation

To see that S correctly represents computation by M, we establish certain prop-
erties of evolvability in S. Note that for every a,b € X, al € PRE, a2 € SUF,
ala? € MID and a2bl € MID, and therefore for every nonempty s € X* we
have f(d(Iz(s))) = 1, that is, d(I;(s)) is fit in S. The following lemmas prove
Theorem [} their proofs are omitted for lack of space.
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Lemma 2. Let s’ € (X')* be any nonempty string such that f(s') = 1. Then s’
has the following properties.

1. The indices of s’ alternate between 1 and 2, beginning with 1 and ending with
2.

2. If two consecutive symbols of s' are indexed 1 and 2, they must be ala? or
a;ai or a;ai for some a € X and q € Q.

3. If two consecutive symbols of s’ are indexed 2 and 1, they must be a2bl or
a2b), or aZbl, for some a,b € X and q,q' € Q such that ¢' € 5(q,b).

4. The state components of s' consist of a sequence of elements of Q followed
by a sequence of x’s.

5. The string hq(s") is a computation history of M on the input s composed of

the sequence of main symbol components of hy(s').

Lemma 3. Let s be a nonempty input string for M. Let s’ be any string
evolvable from d(I,(s)) in S. Then hi(s') is a computation history of M on
mput s.

Lemma 4. Let s be a nonempty input string for M. If t is any computation
history of M on input s, then d(t) is evolvable in S from d(I,(s)).

Theorem 1. Let a finite state machine M = (X,Q,qo,0) be given, and let
S = (X', pp, f) be the 2-simple mutation system constructed from M according
to the method described above. Let s € X* be a nonempty input string for M. For
every string s evolvable in S from d(I,(s)), hi(s’) is a computation history of
M on input s. For every computation history t of M on input s, d(t) is evolvable
from d(I,(s)).

In case M is nondeterministic, the strings evolvable from d(I;(s)) in S give all
possible computation histories of M on input s because S is a reversible mutation
system and may evolve backward to the initial string from any string it reaches.
In case M is deterministic, the strings evolvable from d(I,(s)) form a line graph
of 2n vertices, with d(I,(s)) at one end and the history in which all symbols
have state components in @ at the other end.

We consider random point mutations, in which each type of mutation
(deletion, insertion, replacement) is selected with some probability, and for each
type, a string position to apply it is selected equiprobably, and a symbol is
selected equiprobably from the alphabet for an insertion or a replacement. For
a deterministic machine M, the result is a Markov chain of 2n vertices that
moves forward when a mutation causes another symbol to have state component
g € @ and backward when a mutation causes another symbol to have state
component x.

In the construction described above, the probability of a forward mutation and
a backward mutation is the same, namely p,./(2n|X’|) where p, is the probability
of choosing replacement. By standard results on random walks, this implies that
the expected number of attempted mutations for the simulation to reach the
final string is O(|X’|n3/p,.). However, by biasing the random walk in the forward
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direction, this can be reduced to O(|X'|n?/p,.), as suggested by Bennett [2]. For
example, if we make an additional copy of every symbol a; such that ¢ € @Q,
and treat them as equivalent in the simulation, then the probability of a forward

mutation is twice that of a backward mutation.

5 Simulating Cellular Automata

Cellular automata are a well known model of computation introduced by Von
Neumann [12], motivated by physical and biological problems. In a recent survey
paper, Kari [6] notes that cellular automata have several fundamental properties
of the physical world: they are massively parallel, homogeneous, and reversible,
have only local interactions, and facilitate formulation of conservation laws based
on local update rules. These properties match well with the features of our
mutation system model, and a detailed comparison sheds light on the power and
expressiveness of our new model. We consider one-dimensional asynchronous
reversible cellular automata with insertions and deletions because they support
universal computation [9].

A cellular automaton C = (X, 0) is composed of an alphabet of symbols X
and a set § transition rules of the form azb < ayb for substitutions or ab < axb
for insertions and deletions, where a, b, z,y € X. The idea is that the value of
a given cell of the automaton may change only when both its neighbors have
specific values.

For s1,s9 € X*, s; can reach sy in one step of C, denoted s; —¢ s2,
if applying one transition rule to s; yields so. And s; can reach s; in C if
s1 —¢ s2. Given an input string s € X*, a snapshot of C on input s is
any string s’ such that s can reach s’ in C. For example if we have the rules
{abc < adc,dce — dfe, fe < fge}, and an input abce, the snapshots of the
computation on this input are {abce, adce, adf e, adf ge}.

5.1 From Cellular Automata to Mutation Systems

Given a cellular automaton C' = (X, ), we describe how to construct a 2-simple
mutation system S = (X7, up, f) such that for every nonempty input string
s € X*, the snapshots of C' on input s are represented by the strings evolvable
from d(s) in S.

The simulation of a cellular automaton is more complex than the simulation of
a FSM; one step of the cellular automaton may require fourteen point mutations.
To ensure the correct coordination of these mutations, we duplicate the symbols
and also allow them to store information about one or two symbols to the left or
right. The idea is that before performing a transition of the cellular automaton,
the system “locks” the left and right neighbors of the symbol to be changed. The
additional symbol (—) marks the left and right edges of the transition. To permit
insertions and deletions in the string, there is an extra index (%) besides 1 and
2. As an example, the following string

at-a®o bt eb? et Ay dhodE et e?
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represents the string abcde where ¢ has locked its left and right neighbors prepar-
ing for a transition. The explicit concatenation operator (-) separates individual
symbols above. After a transition has been performed, symbols may unlock their
neighbors and return to having empty neighbor information.

Let J = {1,2,*} be the set of indices and N = {A\} U{—}U X U X? be the set
of possible neighbor strings. Define the alphabet X’ for the mutation system as
follows.

Y ={,a acXicJucNuve N}

In the symbol ,a!, a is the main symbol component, i is the index, u (resp. v)
is the left (resp. right) neighbor information. Let »; denote the set of symbols
of the form @’ with empty neighbor information and index i € {1,2}.

The symbol duplication map d maps X* to (X1)* by replacing each occurrence
of a symbol a by the string a! - a®>. We define a projection h; from (X')* to X*
that maps each symbol with index 1 to its main symbol component, and maps all
others to the empty string. Thus hi(d(s)) = s for all s € X*. Also, for example,
hi(_a' - a%- ,,d' b2, -cl-c?) = adec.

a

5.2 Defining the Fitness Function

We describe the strictly 2-testable pattern P = (PRE, MID, SUF) that deter-
mines the fitness function f of the mutation system. PRE consists of all symbols
a' and _a' such that a € X. SUF consists of all symbols a? and a? such that
a € Y. The set MID contains strings of length two to deal with the situations:
(1) empty neighbor information, (2) substitution rules, and (3) insertion/deletion
rules.

Empty neighbor information. To permit duplicated symbols we have a'-a? for all
a € ¥. To permit a boundary between symbols we have a? - b for all a,b € X.
Together with PRE and SUF, these cases ensure that f(d(s)) = 1 for every
nonempty string s € X*.

Substitution rules. For each substitution rule axb < ayb we add strings to MID
that permit d(axb) and d(ayb) to mutate to each other as follows.

To add left neighbor information — to a' we have ¢?- _a' and ¢2 - _a' for all
c € X, as well as _a' - a®. To add right neighbor information — to b we have
b2 - d' and b2 - _d! for all d € X, as well as b* - b2..

To add left neighbor information a to the symbol a? we have _a! - a?, as well
as ,a? - z! and ,a? - y'. To add right neighbor information b to the symbol b! we
have b} - b2, as well as 22 - b} and y? - b}.

To add left neighbor information aa to the symbol x! or y! we have ,a%- ,, !
and ,,x! 22, as well as ,a®-,,y" and ,,y' 2. To add right neighbor information
bb to the symbol z? or y* we have z3, - b} and z' - z3,, as well as yZ, - bi and
y! oygb. The strings that permit both left neighbor information of aa on 2! and
right neighbor information bb on z? (and similarly for ' and 3?) are ,,a! - x%b

and aayl : yl%b'
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1 az )(2 bl b2 dz El

RS .
VN

\ /
al—.a i \.e‘
LK \\ 7]

Vl Y2 bl bZ

Fig. 2. MID strings allowing substitu- Fig. 3. MID strings allowing insertions
tions for the rule azb < ayb and deletions for the rule ac < abc

The above strings permit consecutive symbols indexed 1 and 2 only if they
have the same main symbol. However, we need to permit = to be replaced by y
and vice versa. The strings that permit this are ,,z' -y and ,,y' - z7,. Figure[2
shows the strings added to MID for the substitution rule axb < ayb. Each line
connects two symbols forming a string in MID.

Insertion/deletion rules. For each insertion/deletion transition rule ac < abc we
add the following strings to MID. To add left neighbor information — to a' we
have d®- _a' and d? - _a' for alld € X, as well as _a'- a?. To add right neighbor

information — to ¢? we have ¢ - e! and ¢ - _el for alle € X, as well as ¢' - ¢2.

To add left neighbor information a to a? we have _a' - ,a? as well as ,a? - b!

and ,a? - ¢'. To add right neighbor information ¢ to ¢! we have c! - ¢2 as well

as b? - ¢! and a? - ¢1. The string that permits both left neighbor information of
a on a? and right neighbor information of ¢ on ¢! when a? and ¢! are adjacent
is ,a? - cl.
To add left neighbor information aa to b* when a? is adjacent to b!, we have
a?- bt and b - b2
To allow b to be deleted or inserted, we add strings using the * index that
permit b to become ,,b%, and vice versa, namely ,,b' - b’ and b}, -

Finally we add a string that permits the insertion/deletion of b' and b*

aa~cec?

namely ,a® -, b:.. Figure Bl shows the strings in MID for the insertion/deletion
rule ac < abc. Again each line connecting two symbols indicates a string in MID.
This completes the construction of MID and the mutation system S. To see

that f permits the transitions of C' to be simulated, we prove the following.
Lemma 5. If s € X* is nonempty and s —¢ t then d(s) —% d(t).

Proof. If t is obtained from s by using a substitution rule to substitute ayb for
azxb in s, then the sequence of point mutations in Figure @ applied to the relevant
portion of d(s) shows that d(t) is evolvable from d(s). Symbols (if any) to the
left and right of this portion of d(s) are unchanged.

If ¢ is obtained from s by using an insertion/deletion rule to replace abc in s
by ac, then the sequence of point mutations in Figure [l applied to the relevant
portion of d(s) shows that d(t) is evolvable from d(s). Symbols (if any) to the
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a' - a? - ozt - 2? bt b
_at-a® - 2t 2 bt b
_at - a?® ozt o2 opt a' - a? b ot
_at a2t o2t obt _at- a? bt b2 ot 2
_a' a2t -2 b b2 R P L
_at - ga? - gext ez b bR _at - ga? . bl ot
_at - aa? - guxt - xh b - bR _at-La? - b b2 el
_a' - ,a? - Layt -z - b - b2 at a2
—a1 ! aa2 aay1 ! yl?b ! b; b2— —a1 : aa2 aab1 aach Ci ' 62—
_at - aa? gyt Y bt - VR _at - d? wabie b 2
_at - ga® - oyt oy btV _at - ,a® ct -2
_at o gad® eyt oy bt b2 _a' - a? -2
_a'ca® oyt oy bt b2 _a'- a? -t
I L R A al . a2 o2
o - a yto g bt b2 al . g2 PRI
Fig.4. Sequence of mutations to Fig. 5. Sequence of mutations to
achieve d(azb) <% d(ayb) achieve d(abc) <% d(ac)

left and right of this portion of d(s) are unchanged. Because point mutations
are reversible, the reverse of this sequence indicates how ac can be replaced by
abc. O

5.3 Correctness of the Cellular Automaton Simulation

Theorem 2. Let C = (X,0) be a cellular automaton and let S = (X7, iy, f) be
the 2-simple mutation system constructed from C as described above. Let s € X*
be a nonempty string. For any string t reachable from s in C, the string d(t)
is evolvable from d(s). Conversely, for any string s’ evolvable in S from d(s),
hi(s") is reachable from s in C.

Proof. The first part follows by induction on the number of transitions to reach
t from s in C, using Lemma

For the converse, it suffices to show that if d(s) —% s’ and s —{ hi(s’) and
s’ —gt then hi(s') =& hi(t).

Suppose a' is the first symbol and b? is the last symbol of d(s). To maintain
fitness, these symbols cannot be deleted, and no symbol can be inserted before
the first or after the last. The only changes they can undergo that result in fit
strings is that a' can be replaced by _a' and vice versa, and b? can be replaced
by b2 and vice versa. Thus we need only consider changes to interior symbols.

Let s’ € (X')* be any nonempty fit string. The indices of any three consecutive
symbols in s’ must be one of the seven possibilities: (1,2,1), (2,1,2), (1,2, %),
(2,1,%), (1,%,1), (2,,1), and (*,1,2).

If the deletion of a symbol from the interior of s’ yields another fit string ¢,
then the symbol deleted must be the middle symbol in one of the index sequences:
(1,2,%), (2,1,%) or (2,%,1). In the first and third cases the symbols of index 1
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are unchanged and hq(t) = h1(s’). In the case of (2,1, ), the three symbols in
s’ must be
a? - bt Labl

a aa aa”cer

which implies that abc < ac is a rule in C. Moreover, the symbol before this
triple must be _a' and the symbol after it must be c., which means that h(t) is
obtained from hq(s") by replacing abc by ac, and hy(s") —¢ h1(t).

Analogously, if an insertion of a symbol in the interior of s” yields another fit
string ¢, then only an insertion into (2,x) (yielding (2,1, %)) results in hq(t) #
hi(s"). This implies that the inserted symbol and its two neighbors to the left
and right in ¢ are as follows:

1 2 1 * 1
—-a 4,0 'aab 'uabcc'cc'

Thus, abc < ac is a rule of C and hq(t) is obtained from h;(s’) by replacing ac
by abc and hq(s’) —¢ hi(t).

If a replacement of one interior symbol of s’ by another yields a fit string t,
then either the replacement changes the index of the symbol or not. The only
possible kinds of replacements that change the index of the symbol are of the
form (1,2,1) < (1,%,1). This leaves the symbols of index 1 unchanged, and
h1(t) = h1(5/).

Thus only replacements that we must consider are replacements of symbols
of index 1 by symbols of index 1 with a different main symbol, so that hi(t) #
hi(s"). The indices of the replaced symbol and its two neighbors must be either
(2,1,%) or (2,1,2). In the first case, the three symbols of s’ are of the form
a- bt b

a aa aa”cec?

and there is no other symbol that can replace ,,b' and yield a fit string t. In the
case of (2,1,2) the possibilities for the symbol of index 1 are a', _a', al, and
wa'. When the symbol to its right is one of a?, a, or ,a?, replacing the symbol
of index 1 in ¢’ by a symbol of index 1 and main symbol other than a does not
yield a fit string. Thus, the only possibilities in s’ for the symbol of index 1 and
its right neighbor are the following: (1) a* - a2, (2) ,,a' - a2, (3) ypa' - 2y

In case (1) the only replacement for a' that changes the main symbol com-
ponent is of the form ,,c! and yields

1 2 1 2 41
d” - gd” - gqc - ay, - by

in t. Then deb < dab is a rule in C and hq(t) is obtained from h4(s’) by replacing
dab by dcb, so that hi(s') —¢c hi(t).

In cases (2) and (3) the symbols to the left of ,,a* must be _b'-,b%. The only
possible replacement for ,,a' that changes the main symbol component is of the
form , e’

In case (2), the result in ¢ is

Thus bec < bac is a rule in C' and hy(t) is obtained from hy(s") by replacing bac
by bec, so that hi(s") —¢ hy(t).
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In case (3), the result in ¢ is
bt b et oty dy.

Thus both bed < bed and bad < bed are rules in C, and hq(t) is obtained from
h1(s") by replacing bad by bed. Though this is not necessarily a single step of C,
it is accomplished by two steps: bad —¢ bed —¢ bed, so that hi(s") =& hi(¢),
which concludes the proof of Theorem O

6 Discussion

We have introduced mutation systems to model the evolution of a string subject
to the effects of mutations and a fitness function. Some possible generalizations
of our definition may be fruitful to explore: a population of evolving strings, a
probabilistic or time-varying fitness function, or a fitness function that depends
on comparing strings in the current population.

Comparing our mutation systems to Valiant’s concept of evolvability [11] we
note that his model is designed to explore the question of what functions can
be efficiently approximated through a polynomial-time evolution process, while
our model does not have a final ideal target, but instead has a variety of evolu-
tion pathways and outcomes defined by the mutation operator and the fitness
function.

We have shown that mutation systems with point mutations and strictly 2-
testable fitness functions can represent general computation, and therefore it is
in general undecidable to predict whether one string can evolve into another in
such systems. By contrast, for any k the class of strictly k-testable languages, and
even the class of concatenations of strictly k-testable languages, are learnable in
the limit from positive data [4/8]. A promising future direction is to explore the
learnability of fitness functions given positive data derived from the evolution of
one or more strings in a mutation system.

Acknowledgements. Raonne Barbosa Vargas is now employed by Microsoft Cor-
poration. The authors thank David Eisenstat and Sarah Eisenstat for help with
aspects of this paper.
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Abstract. We introduce the definition of string language S recognized
via picture language P and prove that there is a one-to-one correspon-
dence between a linear bounded automaton (LBA) for S and a tiling
system for P. As consequence tiling systems become an alternative de-
scription for LBA that possibly exploits some geometric properties of
lines and shapes inside the rectangular pictures. We are able to show a
classification of sub-classes of context-sensitive languages via REC sub-
classes. Moreover we state some relations among languages in Chomsky’s
hierarchy (from regular up to context-sensitive) and the corresponding
size of the picture languages that recognize them.

1 Introduction

Picture languages are sets of rectangular pictures, i.e. two-dimensional arrays of
symbols chosen in a finite alphabet. Tiling recognizable picture languages were
first introduced in [6] as a two-dimensional counterpart of regular string lan-
guages. Their definition is given by extending to two dimensions a characteriza-
tion of recognizable string languages in terms of local languages and projections
(cf. [B]). A local picture language is defined by means of a finite set of 2 x 2
pictures (called tiles), and the pair of a local picture language and a projection
is called tiling system. The family of tiling recognizable languages is referred to
as REC. Family REC is a robust class which can be defined using also other
approaches (logic, automata, algebraic) and satisfies different types of closure
properties; moreover REC coincides with regular string languages in the spe-
cial case of one-row pictures ([7]). Nevertheless, we remark that, unlike regular
string languages, tiling recognizable picture languages are not closed under com-
plementation and therefore the family REC is intrinsically non-deterministic.
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Since its introduction, family REC has been intensively studied by investigat-
ing its properties, by examining relations with other models and by considering
sub-families of particular interest (see e.g. [T2IBJATOITIITZ]). In particular, in
this paper, we will refer to the families of unambiguous, row-unambiguous and
deterministic tiling recognizable picture languages (referred to as UREC, Row-
UREC and DREC, respectively) that are defined by extending to two dimensions
the concepts of unambiguous and deterministic automata computations.Those
classes are all distinct and define a hierarchy inside REC ([112]).

In [I0], M. Latteux and D. Simplot use picture languages to represent string
languages. The frontier of a picture p, referred to as fr(p), is defined as the
string in the top row of p, while the frontier of a picture language L, referred
to as fr(L), is the string language containing the frontiers of all pictures in
L. In [I0] it is proved that the family of frontiers of tiling recognizable picture
languages is exactly the family of context-sensitive (string) languages.

The Latteux and Simplot Theorem is a quite interesting theoretical result.
Nevertheless, the way it is stated and its proof techniques do not provide a tool
to push further the result. In this paper we will put in one-to-one correspondence
LBA and tiling systems: a local picture p will represent a computation of an LBA
on its frontier in a compact way. As a consequence a tiling system can be taken as
an alternative description for an LBA and we can work to put in correspondence
REC sub-families with sub-families of context-sensitive languages.

We associate a given string s with very simple pictures p such that the first row
of p (i.e. the frontier) is equal to s while all the remaining positions contain the
blank symbol. The interpretation for this kind of pictures will be of a string put
on top of a whiteboard initialized with all blank symbols bs and this whiteboard
is the place where to write the “calculation” to accept string s. We formally give
the definition of string language recognized via picture language (where pictures
are of the simple kind just described) and prove that a string language is context-
sensitive if and only if it is recognized via a tiling recognizable picture language.
Remark that if p belongs to a tiling recognizable picture language then p is
the projection of a local picture p’ and such p’ is actually the “computation” to
accept p. Then if a string s is recognized via a picture p then the corresponding
local picture p’ will be the “calculation” to accept s.

The proof of this theorem gives an algorithm to transform an LBA into a
tiling system and vice-versa and therefore allows to consider tiling systems as
an effective device to recognize strings. We show that, very interestingly, when
we look at the local language corresponding to a tiling system we can “discover”
some geometric properties used to recognize the frontier of the picture. On the
other side, one could exploit reasoning on geometric properties of a local language
for the LBA design. We illustrate this concept with different examples.

Then, the next results are obtained by taking tiling systems as effective de-
scriptions of LBA. In particular we are able to show that recognizability via
picture languages in REC sub-classes Row-UREC and UREC will correspond to
deterministic and unambiguous context-sensitive languages, respectively. We use
a characterization of family Row-UREC in terms of snake deterministic tiling
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system given in [IT] and prove that such kind of deterministic properties of the
tiling system can be inherited by the LBA.

We remark that problems on LBA can be translated in the context of tiling
recognizable picture languages. We mention here the most famous one: whether
deterministic LBA are equivalent to non-deterministic ones (or, in complexity
terminology, whether DSPACE(n) is equal to NSPACE(n)). This problem can be
therefore restated as: “Is each string language S, recognized via picture languages
in REC, recognized also via picture languages in Row-UREC?" We recall that,
as picture languages classes, Row-UREC is strictly included in REC.

Another issue we consider here, relates the size of the pictures (actually the
number of rows as function of the number of columns) with the type of the string
language in the Chomsky’s hierarchy. Remark that the size of the picture is not
a measure of space complexity but of time complexity: in fact since pictures are
local, they can be constructed row-by-row (starting from the top) maintaining
always only the last row just calculated. We prove that if S is recognized via a
picture language P then a string s € S of length n is recognized via a picture
p € P of O(1) or O(n) or 2° rows depending whether S is regular, context-free
or context-sensitive, respectively.

2 Preliminaries

We introduce some definitions about two-dimensional languages. The notation
used and more details can be mainly found in [7].

A picture over a finite alphabet X' is a two-dimensional rectangular array of
elements of X'. Given a picture p, let p; ; denote the symbol in p with coordi-
nates (4,j), |p|- the number of rows and |p|. the number of columns; the pair
(Iplr, |ple) is the size of p. The set of all pictures over X is denoted by X**. A
two-dimensional language (or picture language) over X' is a subset of X**.

In order to identify the symbols on the boundary of a picture p, we consider
the bordered picture p of size (|p|, + 2, |p|. + 2) obtained by surrounding p with a
special boundary symbol # ¢ X. A tileis a picture of dimension (2, 2) and Bz 2(p)
is the set of all sub-blocks of size (2,2) of a picture p. Given a finite alphabet I',
a two-dimensional language L C I'™** is [ocal if there exists a set © of tiles over
I'U {#} (the set of allowed blocks) such that L = {p € I'"**|B22(p) C O} and
we will write L = L(O).

2.1 Tiling Recognizable Picture Languages

Tiling recognizable languages are defined as projection of local languages. More
precisely, let I" and X' be two finite alphabets and 7 : I' — X be a projection (7
can be extended, in the usual way, to pictures and languages). A picture p’ € I'**
is a pre-image of p € X** if w(p') = p. A tiling system is a quadruple (X, I", O, )
where X and I are finite alphabets, © is a set of tiles over 'U{#} and 7 : ' —» X
is a projection. A two-dimensional language L C X** is recognized by a tiling
system (X, I,0,7) if L = w(L(O)). The family of all tiling recognizable picture
languages over the alphabet X, is denoted by REC(X') or simply REC.
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In all the paper, we will avoid to specify the alphabet of a family of languages,
when it does not cause confusion.

Ezxample 1. Consider the language L of square pictures over a one-letter alpha-
bet, say X = {a}, that is pictures with same number of rows and columns. L is
not a local language, but it belongs to REC. Indeed it can be obtained as the
projection of the local language of squares over the alphabet {a, X} in which all
the symbols in the main diagonal and below it are X, whereas the remaining
positions carry symbol a. Below it is given a picture p € L together with its
pre-image p’. The reader can infer the set of tiles by taking all possible 2 x 2
sub-pictures of the bordered picture.

aaaa Xaa a
_aaaa , XX aa
P= 6aaa P=xXxXa

aa a a X XXX

Observe that, given a tiling system for a language L, to check whether a given
picture p belongs to L we have to find a pre-image in L(©). To do this, we start a
computation process that takes p and rewrites symbols in p in the local alphabet,
in a way that is compatible with the projection 7 and with the set of allowed
tiles. The process is accomplished following some scanning strategy (e.g. look for
a tile matching the top-left corner of the picture, and then continue filling the
positions on the first column, and so on, column by column). It terminates when
all symbols in p are rewritten in the local alphabet. Note that, in general, such
process is non-deterministic: even if a scanning strategy is fixed, at each step of
the computation there can be several choices.

Taking into account this process of computation, in [I], the definition of de-
terminism in REC was given. More precisely four types of determinism, one for
each corner-to-corner direction of reading of a picture, were introduced. Observe
that this is also the case for string languages: there can be given two notions
of determinism according to the reading direction, classical determinism (from
left-to-right) and co-determinism (from right-to-left). DREC denotes the class
of all deterministic recognizable languages, that is languages that can be rec-
ognized by a deterministic tiling system along one of the four corner-to-corner
directions. In this paper we principally deal with family DREC;, that is the class
of all languages that can be recognized by a tiling system that is deterministic
along a direction from one top corner to the opposite corner.

Still referring to the computation process, a tiling system (X, I,0,7) for
L C X** is said unambiguous if for any picture p € L there exists a unique local
pre-image p’ € L(O). L is unambiguous if it is recognized by an unambiguous
tiling system and URFEC denotes the family of all unambiguous two-dimensional
languages (see [6]). Note that this notion is not directed.

In [1], the row-unambiguity was introduced as an intermediate notion between
determinism and unambiguity. There are two types of row-unambiguity, one
along the direction from top-to-bottom (t2b for short) and another one along
the opposite direction (b2t). A tiling system (X, I 0,w) is t2b-unambiguous
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if for any pair of two rows ry € I'™* U {#}** and s € X**, there exists at

most one local row ro € I'**, such that n(re) = s and B2o(p) C © where
p= z :1 j: A language is said row-unambiguous if it is recognized by a
2

tiling system that is t2b- or b2t-unambiguous. Row-URFEC denotes the class of
row-unambiguous languages. In this paper we will be interested in Row-UREC,
the class of all picture languages that are recognized by t2b-unambiguous tiling
systems. Remark that DRECC Row-UREC C URECC REC, (see [1]), and the
strict inclusions hold even if the alphabet is unary [2].

A tiling system (X, I,0,7) is snake-deterministic [I1] if I" and © can be
partitioned as I' = I'1 U T, and © = ©1 U O where (X, 1,01, 7) (X, I, 03,7),
resp.) is a tiling system that is deterministic along the direction from top-left
corner (from top-right corner, resp.) to the opposite corner, and @1 (O, resp.)
a2 by ( a1 b where (a1,b1) # (#,#), resp.) with
ap b1 “az by
ai,b; € I; U {#} for i = 1,2. Tt is also proved that the class of all picture
languages that are recognized by t2b-unambiguous tiling systems coincides with
the class of languages recognized by snake-deterministic tiling systems.

contains only tiles like

2.2 Family REC and Context-Sensitive String Languages

An interesting result due to M. Latteux and D. Simplot points out a relation
between the family REC and the family of context-sensitive languages (JI0]).

Recall that a context-sensitive (string) language is a language generated by
a grammar with no length-decreasing rules or recognized by a linear-bounded
automaton (LBA). Moreover one can always assume that such LBA use only the
input cells: for the sequel we assume that an LBA is a non-deterministic Turing
machine (TM) that uses only the portion of the tape containing the input string.
We denote by CSL the family of all context-sensitive languages and by DCSL the
family of all deterministic context-sensitive languages, i.e. those recognized by
deterministic LBA. We recall that it is an open problem whether CSL=DCSL.

Let p € X** be a picture of size (m,n). The frontier of p is the string cor-
responding to the first row of p that is: fr(p) = p11p1.2...p1,n. Moreover if L
is a picture language, the frontier of L is defined as fr(L) = {fr(p)|p € L}. It
holds the following theorem.

Theorem 1. [Latteux, Simplot, 97] Let F be a string language. Then F is
context-sensitive if and only if there exists a picture language L in REC such
that F = fr(L).

The proof of this theorem is based on the following observations. The computa-
tion of an LBA can be described as a sequence of instantaneous descriptions and
if we write such descriptions one under the others we get a rectangular picture.
The set of so defined pictures (i.e. corresponding to all accepting computations
of a given LBA) is a language in REC. Conversely, given a tiling system for a
picture language L, we can define a context-sensitive grammar G that generates
exactly the frontiers of pictures in L by associating to each tile a rule for G.
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3 Recognition of String Languages via Picture Languages

The Latteux and Simplot Theorem (Theorem [Tl together with its original proof
does not provide any tool to push further the result. Our goal is to put in corre-
spondence sub-families of context-sensitive languages with REC sub-families and
to take advantage of the geometric properties of tiling systems in the recognition
process of the strings. With this aim we will put in one-to-one correspondence
LBA and tiling systems: each local picture p will represent a computation of an
LBA on a string s = fr(p) in a compact way. As a consequence a tiling system
can be taken as an alternative description for an LBA and we can introduce
the definition of string language recognized via a tiling recognizable picture lan-
guage. Moreover we will consider much simpler picture languages (all positions
not in the frontiers contain blank symbol). The interpretation for a string recog-
nized via pictures will be of a string put on top of a whiteboard initialized with
all blank symbols bs.

We introduce the notation YT, for some alphabets X~ and I, to indicate the
set of pictures with first row symbols on X' and all other symbols in I". When

I' = {b} we will simply write Z;. We will always assume that b ¢ 3.

Definition 1. A string language S C X* is recognized via picture language P,
if S= fr(P) and P C X".

In the sequel we will be interested in string languages recognized via picture
languages in REC or in some REC sub-families. In this case, referring to the
mentioned interpretation for a string s recognized via a picture p, the local
picture p’, pre-image of p, will be the computation of s written in the whiteboard.

We first consider a simple example that will help to understand the ideas of
the theorem we prove at the end of this section.

Ezample 2. Consider the string language S = {a"b" | n > 1} over X = {a,b}

and let P C X’ be the language containing pictures of n + 1 rows, whose first
row is a™b™ while the n rows below contain the “blank” symbol b. It is like
the a™b™ string put on top of two “empty” squares of side n. Language P is
tiling recognizable as a projection of the local language L over I' = {a,b, X, Y}
of pictures such that leftmost square has all positions in main diagonal and
below filled with X, and positions above the main diagonal contain a, while the
rightmost square has all positions in main diagonal and below filled with Y and
positions above the diagonal contain b. Essentially the local language “verifies”
that under the two strings a™ and b™ there are two equal squares. Below it is

given the picture p € P with frontier a*b* together with its pre-image p’.
aaaabbbd a aaabbbbd
XaaaY bbb
p= pP=XXaaVYY0bbd
XXXaYYYD
XXXXYYYY
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Now consider the (usual) TM for S proposed in [9] and reported below.

State\symbOl a b X Y B
qo (qla Xa R) - - (q37 Y7 R) -
q1 (qhaaR) (q%KL) - (Q17Y> R) -
q2 (Q27G7L) - (QO7X R) (Q27Y L) -
q3 - - - (¢3,Y,R) (qa, B, R)
a0 - - - - -

It can be easily verified that there is a correspondence between the run of
this TM on a*b* and picture p’. In particular reading the rows of p’ from top
to bottom we find the shots of the tape contents between two head reversals.
Informally we can say that the local picture p’ is a compact representation of
the LBA computation (the word “compact” is referred to the fact that each row
represents several steps of the computation). With the next theorem we will show
that this correspondence can be always made. As a consequence, tiling systems
can be taken as alternative descriptions of TM. Moreover it is interesting to
notice that the description via local language with its geometric shapes could
describe the algorithm more immediately than the table of the TM transitions.

We are now ready to state our theorem. Remark that the statement resembles
the one of Theorem [I (instead of the whole family REC it refers to languages

in X"); nevertheless the proof uses very different techniques that allow us to
gain the results given in Section[dl An LBA is called sweeping if it changes head
direction and accepts only on the leftmost or rightmost symbol of the input.

Theorem 2. A string language S is context-sensitive if and only if S is recog-
nized via picture languages in REC.

Proof. (Sketch) Let S C X* be a string language recognized by an LBA A.
Without loss of generality, we may suppose that A is a sweeping automaton and
that the alphabet of symbols written by A is disjoint from Y. Then a picture
language P recognizing S can be obtained as the language recognized by a tiling
ary
B’
v,0 € I',is in O iff « and v (B and 7, resp.) are two subsequent transitions,
while the symbol written by transition « (v, resp.) is the symbol read by G (5,
resp.). Corner and border tiles are defined according to initial and final states,
and to transitions where the direction of the head is reversed (recall that A is
a sweeping automaton). The projection maps a transition to a when the read
symbol is a € X, and to b otherwise.

Conversely, let S C X* recognized via picture language P given by a tiling
system 7. Then it is possible to associate with 7, a sweeping LBA A that
recognizes fr(P). The idea is that A, during a computation on w € X*, attempts
to recover, row by row, a pre-image p’ of p € P such that w = fr(p). The set of
states is partitioned in the states used for moving rightwards and the ones used
for moving leftwards. While the sweeping LBA is doing the i-th scanning of w
(along some direction), if the head is in the j-th position, then it reads p’(i’j)

system where the local symbols are the transitions of A. A tile with «, 3,
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and replaces it with p’(i +1.5) according to the set of tiles @. If the computation is
successful, then, the concatenation row by row of the content of the tape, before
the head reverses its direction, is exactly picture p’. Note that we can assume
that S is also the frontier of the corresponding local language P’. a

3.1 Further Examples and Remarks

Previous theorem entitles recognizable picture languages to be an effective model
of computation for context-sensitive languages. In particular the computation for
a given string w of length n is done in a rectangle with n columns and the length
of the computation is related to the number of rows of the pictures.

We show some other examples of tiling recognizable picture languages used
to recognize some popular string languages. The aim is to emphasize as the
local languages possibly exploit geometrical properties of lines and figures in a
two-dimensional space for counting and comparing symbols in the input strings.

Ezample 2 (cont.) Consider again language S = {a"b™ |n > 1} in Example
recognized via P. Notice that P can be also accepted as projection of a different
local language L; of pictures where the first row contains a™b"™ while the n rows
below contain two juxtaposed squares with a sort of “V” shapes filled with as
to the left and bs to the right, while the two outside triangles are filled with X's
to the left and Y's to the right. The following figure represents a picture in L
and its “geometric shapes” used to count and compare symbols from the input
string.

aa aa b b bd aa aa b bbb
XaaabbdbdyY NNN NS
XXaabdYY NN\
XXXab'YYY N\ S S
XXXXYYYY N\

Notice that language L corresponds to an LBA that accepts strings by match-
ing the leftmost a with the last b, and then the second a with the second-to-last
b, and so on, while L in Example [2] corresponds to an LBA that matches first a
with the leftmost b, then the second a with the second b, and so on.

Another possibility is to recognize S via the language of pictures with n + 2
rows and frontier ¢™b™: this can be obtained as projection of local language Lo
that contains pictures with a diagonal stripe of X's of width n that starts below
the as in the first row and then goes down moving one step right at each row
till it overlays all bs.

a a b bbb
NN\
N

vae
S e
s
s
s
/
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Language Lo corresponds to another strategy: the LBA reads the string from
left-to-right and marks all the as, then reads again the string from left-to-right
and moves all marks one position right and then re-starts from left-to-right
moving all marks one position right and so on until eventually it succeeds in
moving all marks to cover all and only the bs.

Remark that techniques of above example can be applied to recognize lan-
guages of strings a™b"c"”, or even palindromes ww’ and other similar variations.

Ezample 3. Let S = {ww | w € {a,b}*}. S is recognized via language of pictures
with frontier ww and n + 1 rows where n is the lenght of w. The corresponding
local language is the set of pictures with first row containing ww on top of
two juxtaposed squares. The information about any symbol in the first row
is carried diagonally till the bottom border where continues to be carried one
cell rightwards, and also down vertically till the bottom border. In the bottom
positions of rightmost square it is checked whether the two symbols match.

4 Classification of String Languages by Picture Languages

In this section we use Theorem [2] and the technique introduced in its proof to
push further the result and establish a correspondence among various kinds of
tiling recognizable picture languages and sub-classes of context-sensitive string
languages. In particular we give two main classifications. The first one considers
REC sub-classes DREC;, Row-UREC;, and UREC, while the second one relates
the size of the pictures (actually the number of rows as function of the number
of columns) with the type of the string language in the Chomsky’s hierarchy.

We start by considering the family of row-unambiguous tiling recognizable
languages (see Section [2)).

Proposition 1. A string language S is deterministic context-sensitive if and
only if S is recognized via picture languages in Row-URFEC.

Proof. (Sketch) Let S C X* be a string language recognized by a deterministic
LBA A. Also in the deterministic case, we can suppose without loss of generality,
that A is a sweeping automaton. Consider then the tiling system 7, obtained as

in Theorem [ that recognizes picture language P € X" recognizing S. Since A
is deterministic, then 7 is t2b-unambiguous and P € Row-UREC;.

For the converse, suppose S C X* is a string language recognized via picture
language P, where P is a t2b-row unambiguous language. Then, from [IT], P is
recognized by a snake-deterministic tiling system 7. Applying the construction
of Theorem 2l to 7, we obtain an LBA A recognizing S that is deterministic. O

We recall that a context-sensitive language is unambiguous if it can be recognized
by an unambiguous LBA. Using techniques as in the proof of Proposition [l it
can be proved an analogous result for UREC and unambiguous context-sensitive
languages (UCSL). Previous results enable us to associate with REC sub-classes
their counterparts as sub-families of context-sensitive languages. We summarize
those results in the following theorem.
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Theorem 3. Let L be a string language.

1. L is CSL iff L is recognized via a picture language in REC.

2. L is UCSL iff L is recognized via a picture language in UREC.

8. L is DCOSL iff L is recognized via a picture language in Row-UREC;.

We consider also string languages recognized via picture languages in DREC;: we
refer to this family as L(DREC}). By similar technique as in Theorem 2] it can
be proved that L € L(DREC) iff L is recognized by a special kind of sweeping
deterministic LBA that writes only when moving left-to-right and remains in
the same state when moving right-to-left. For this we affirm that L(DREC}) is
included in the class of deterministic context-sensitive languages but we are not
able to give a precise characterization of this class.

Another interesting point of view to classify pictures that recognize strings is
to consider their sizes. Recalling the interpretation of the picture as a whiteboard
where to write the computation for the string, we remark that, in the construc-
tion of a tiling system from an LBA, the size of the picture (i.e. the “area” of
the whiteboard) is not a measure of space but of time instead (each position is
a step of the corresponding LBA). Let us give the following definition.

Definition 2. S is recognized via P within height f(n) if for any w of length n,
there exists p € P with fr(p) = w such that |p|, < f(n)

Proposition 2. A string language S is context sensitive if and only if it can be
recognized within height 2° wia a picture language in REC.

Proof. Any string language S recognized via a picture language in REC is con-
text sensitive by Theorem B2l

Let now S € CSL and A be an LBA recognizing it. Consider the picture
language P € REC recognizing S constructed as in the proof of Theorem 21 We
claim that for any w € S of length n, there exists p € P such that w = fr(p)
and |p|, < k™ for some constant k. Suppose by contradiction that there does not
exist a k as above, and let w € S such that any p € P with w = fr(p) has more
than an exponential number of rows in n. Therefore |p|, > 4™, where « is the
cardinality of the local alphabet in the tiling system for P. Then a pre-image
of p has two repeated rows. By removing the part of computation of the LBA
between the two repeated rows, we obtain another valid computation of the LBA
and hence another picture pp,in € P with [ppin|r <™ and fr(pmin) =w. O

Proposition 3. A context-free string language S can be recognized within height
O(n) via a picture language in REC.

Proof. A language S is context-free iff there exists a constant k such that S is
recognized by an LBA that can modify the symbol in a tape cell only in its first
k visits of the cell (cf. [§]). Then the corresponding tiling system, constructed as
in the proof of Theorem [2 contains only pictures with [p|, <k - [pl.. |

Remark 1. The converse of previous Proposition [B] does not hold. For instance,
language S = {ww | w € {a,b}*} is recognized within height O(n) via a picture
language in REC as in Example Bl but it is not context-free.
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Proposition 4. A string language S is regular iff it can be recognized within
height O(1) via a picture language in DREC;.

Proof. A language S is regular iff if is recognized by a deterministic finite au-
tomaton that can be viewed as a deterministic tiling system recognizing S taken
as a language of pictures with a single row. O

We collect the results of previous propositions in the following theorem that
relates the Chomsky’s hierarchy languages with some bounds on corresponding
tiling recognizable picture languages.

Theorem 4. Let S be recognized via a picture language in REC.

1. If S is context-sensitive then it can be recognized within height 20
2. If S is context-free then it can be recognized within height O(n).

3. If S is regular then it can be recognized within height O(1).

5 Conclusions and Future Works

The paper presented tiling recognizable picture languages as a computational
model for context-sensitive string languages. We proved that properties of sub-
families of REC can be related to properties of sub-classes of context-sensitive
languages and therefore questions on strings can be translated in the context of
pictures. In particular, denoting by L(F) the family of string languages recog-
nized via picture languages in family F, we have proved that

L(DREC;) C L(Row—UREC;) C LIUREC) C L(REC)

I | I
DCSL UCSL CSL

We left open the problem of characterizing class L{(DREC}); moreover we do
not know if some of those inclusions are strict. Remark that we cannot use the
fact that inclusions among corresponding picture languages classes are all strict
(cf. [1]), and in fact the problem whether DCSL is equal to CSL (in complexity
theory, whether DSPACE(n)=NSPACE(n)) is a longstanding open problem.

Those problems in the “picture world” can be states as follows. Define two
languages L1 and Lo to be fr-equivalent iff fr(Li) = fr(L2) and then investigate
the quotient of REC and its sub-classes with respect to this relation.

We conjecture that L(DREC}) is strictly included in the class DCSL and
we have different candidate languages. Following the examples in this paper we
can verify that L(DREC}) includes both languages of palindromes ww” and of
squares ww, but we believe that the language of strings that contain a sufficiently
long factor of type ww” or of type ww are not in L(DREC}).
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Abstract. We construct a universal reversible Turing machine (URTM)
from first principles. We take a strict approach to the semantics of re-
versible Turing machines (RTMs), under which they can compute exactly
all injective, computable functions, but not non-injective ones. The natu-
ral notion of universality for RTMs is RTM-universality, where programs
are considered part of both input and output of a URTM.

The machine described here is the first URTM which does not de-
pend on reversibilizing any existing universal machine. The interpretive
overhead of the URTM is limited to a (program dependent) constant
factor slowdown, with no other complexity-wise cost wrt time and space.
The URTM is also able to function as an inverse interpreter for RTMs
at no asymptotic cost, simply by reversing the string representing the
interpreted machine.

1 Introduction

Reversible computation models are time-invertible, forward and backward de-
terministic. For stateful computation models this means that not only the next,
but also the previous state is uniquely defined at all times. There is a wide range
of reversible computation models, from cellular automata [9] and pushdown au-
tomata [7], over logic circuits [I6/I3] to quantum computing [5T4]. Reversible
computing principles also finds use in program transformations such as inver-
sion [I5], reversible programming [3JI7] and translation [I], and bidirectional
model transformation [12//6].

Here, we are concerned with the foundational question of universality for
reversible Turing machines (RTMs.) Universality is the (semantic) notion of
a specific machine being able to perform any computation possible within a
computation model. In programming languages, the equivalent notion is that of
a self-interpreter.

Previous work by Morita et al. exists asserting the universality (in the sense of
full Turing completeness) of an RTM [I1]. On close examination, their construc-
tion implicitly allows for a semantical relaxation with respect to what function is
being computed. Specifically, one is allowed to extract part of the tape and con-
sider it the output of the computation, whereby information is irreversibly lost.

In recent work [2] we studied the RTMs under the stricter viewpoint that
the entire configuration must be considered for the output. This decouples the

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 117-J[2§, 2011.
© Springer-Verlag Berlin Heidelberg 2011



118 H.B. Axelsen and R. Gliick

semantic functionality of RTMs from any particular transformation, such as
Bennett’s method [4]. However, under this interpretation reversibility of a ma-
chine implies injectivity of the computed function. The RTMs are then not fully
Turing complete: They cannot simulate irreversible Turing machines without
changing their functional behavior, and in fact cannot even faithfully simulate
all reversible Turing machines. To amend this, we introduced a more natural no-
tion of universality for reversible Turing machines, RTM-universality: An RTM is
RTM-universal (is a URTM) if it can simulate any RTM while also remembering
the simulated machine’s program text.

Here, for the first time, we show how to construct a 3-tape URTM from first
principles. The URTM is efficient in the sense that the asymptotic complexity
of the interpreted RTM is preserved. The interpretive overhead is limited to a
program dependent constant time factor, and there is no change in the space
behavior except for adding a short string encoding the simulated internal state.
Furthermore, the URTM can function as an inverse interpreter at no asymptotic
cost. This is the first demonstration of a URTM with such properties.

2 Reversible Turing Machines

We here define the reversible Turing machines (RTMs). We state only results
and properties relevant here. For a more complete exposition, see [214].

Definition 1 (Turing machine). A TM T is a tuple (Q, X,0,b,qs,qy) where
Q is a finite set of states, X is a finite set of tape symbols, b € X is the blank
symbol,

0CA=@Qx[(ExX)U{— ], =}xQ)

18 a partial relation defining the transition relation, qs € Q is the starting state,
and qr € Q is the final state. There must be no transitions leading out of q¢5 nor
into qs. Symbols <, |, — represent the three shift directions (left, stay, right).

Note that we use a triple format for the transition relation, with two kinds of
rule. A symbol rule (q,(s,s’),q') € § says that in state g, if the tape head is
reading symbol s, write s’ and change into state ¢’. A move rule (¢,d,q') € ¢
says that in state ¢, move the tape head in direction d and change into state ¢’.
This is easily extended to k-tape machines, where we have

A=@x[(Zx D) u{—],-}1%xQ).

The configuration of a TM is a tuple (g, (I, s,7)) € Q x (X* x X x X*), where ¢ is
the internal state, [,r € X* are the left and right parts of the tape (as strings),
and s € X is the current symbol being scanned. A TM T in configuration C'
leads to configuration C’, written as T + C ~ C’, in a single computation step
in the obvious manner defined by the transition relation.

Definition 2 (Local fwd/bwd determinism). A TM T = (Q, X, 4,b, ¢s, ¢f)
is local forward deterministic iff for any distinct pair of triples (q1,a1,q;) € 6 and
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(q2,0a2,45) €9, if 1 = g2 thenay = (s1,]) and az = (82, 85), and s1 # s2. A TM
T is local backward deterministic iff for any distinct pair of triples (q1,a1,q;) € 6
and (g2, a2,45) €9, if ¢i = ¢ then a1 = (s1,8)) and az = (s2,55), and sy # sh.

We say a TM is reversible iff it is locally forward and backward deterministic.

As examples, the rules (q, (a,b),p) and (q, (a,c),p) respect backward deter-
minism (but not forward determinism); rules (q, (a,b),p) and (z,(c,b),p) are
not backward deterministic; and neither are (q, (a,b),p) and (r, —,p).

The semantic function of a TM is defined by its input/output behavior on
standard configurations. A TM is in standard configuration iff the tape head is
to the immediate left of a finite, blank-free string s € (X\{b})*, and the rest of
the tape is blank, i.e., it is in configuration (g, (g, b, 5)) for some state ¢!

Definition 3 (String transformation semantics). The semantics [T] of a
TMT = (Q,X,0,b,qs,q5) is given by the relation

[7] = {(s,8") € (Z\{b})" < (Z\{6})") | T+ (gs, (&, b, 8)) ~" (a5, (,0,5)} -

A computation with a TM is as follows: From starting state ¢s with input s in
standard configuration (gs, (€, b, s)), run the machine until it halts in standard
configuration (gt, (¢, b, s)) with output ', or diverges. We say T’ computes func-
tion f iff [T] = f. Under this semantics, the reversibility of individual steps
leads directly to injectivity in terms of functional behavior.

Theorem 1 (RTMs are injective [2]). If T is an RTM, then [T] is an in-
jective function.

Lemma 1 (RTM inversion, Bennett [4]). Given an RTM T = (Q, X, 9,b,

s, qr), the RTM T—! qef (@, X, inv(6),b,qf,qs) computes the inverse function
of [T], ie. [T7] =[T]~", where inv : A — A is defined as

inv(q, (s,8"),q¢") = (¢',(s',5),q) inv(q, <, q¢") = (¢,—,q)
inv(q, 1,q") = (1,9 inv(q,—,q) = (q

This means that an RTM can be inverted into another RTM very easily.

Theorem 2 (Bennett’s method [4]). Given a I-tape TM T, there exists a
3-tape RTM B(T), s.t. [B(D)](z) = (z, [T](x)).

This seminal result states that any TM can be reversibilized, i.e. turned into
an RTM. It is important to note that Bennett’s method does not not preserve
semantics, [T] # [B(T)], as the output of B(T') includes the input = to TA

Theorem 3 (Expressiveness [4)2]]). The RTMs can compute exactly all in-
jective computable functions. That is, for every 1-tape TM T such that [T] is an
injective function, there is a 3-tape RTM T’ such that [T] = [T"].

! The empty string & denotes the infinite string of blanks b, and is usually omitted.
2 Output values that are added to ensure reversibility are known as garbage in
reversible computing.
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Thus, even though Theorem [I] restricts RTMs to injective (computable) func-
tions, all of these are nevertheless in scope. Finally, we only need 1 tape and 3
symbols for any RTM computation.

Theorem 4 (Robustness [2]). Let T be a k-tape, m-symbol RTM. Then there
exists a 1-tape, 3-symbol RTM T’ s.1.

[[T]](xlv"'vmk) = (y17~-~7yk) iff [[T/]](e(<x1,...,mk>)) = €(<y17'-~yk>)7

where (-) is the convolution of tape contents, and e(-) is a binary encoding.

This is used to simplify our construction of a universal RTM, below.

2.1 Universality for RTMs

A universal machine is a machine that can simulate the (functional) behavior of
any other machine. Usually, a universal TM U is defined as a self-interpreter for
Turing machines:

[T 2) = [T](=) .

Here, "T7 € X* is a Gddel number (or program text) representing some TM
T. However, [U] is a non-injective function (even if T has to be an RTM), so
the RTMs are not universal in the classical sense. In [2], the authors therefore
argued to define universality for the RTMs as follows.

Definition 4 (RTM-universality [2]). An RTM Ug is RTM-universal (or, a
URTM) iff for all RTMs T and all (blank-free) inputs x € X*,

[Ur)("T, 2) = (T, [T](=)) -

Theorem 5 (URTM existence [2]). There exists an RTM Ug, such that Ug
is RTM-universal.

This follows directly from the expressiveness of the RT'Ms, Theorem [3

3 A First-Principles URTM

We shall now describe the design and inner workings of a URTM constructed
from first principles.

Besides novelty, our main motivation for constructing such a machine is to
avoid any use of reversibilization and to limit the interpretive overhead to a
constant factor. Nothing forces us to mechanically reversibilize an irreversible
(classically universal or RTM-universal) machine when constructing a URTM,
and reversibilizations come with considerable drawbacks. Most importantly, they
change the asymptotic complexities of the programs. For instance, the URTM of
Theorem [l [2] relies on Bennett’s trick [4], which means that the URTM uses as
much (temporary) space as time, regardless of the space usage of the interpreted
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program. This change in complexity is a highly undesirable side effect of using
reversibilization

Such asymptotic inefficiency is not necessary: A URTM can (and should)
conserve the asymptotic complexities of the interpreted machines (up to a pro-
gram dependent constant.) However, no URTM with such properties has been
exhibited until now.

Structure and Scope. We know that the 1-tape, 3-symbol RTMs are sufficient
to express every injective computable function. We can therefore restrict our
URTM to interpret exactly these machines. (We shall refer to the interpreted
machine as T'.)

We aim for a “textbook” structure for our URTM, with three tapes:

1. The first work tape will directly correspond to 1’s single tape.

2. The second program tape will hold the program text "7 (described below.)

3. The third state tape (blank at start and halt) will hold the encoding of the
internal state of the interpreted machine T' during the simulation (using the
same encoding used for states in "77.)

Our focus here is on simplicity and efficiency, rather than minimization, so it
shall not concern us that the URTM has a large number of states and symbols.
However, for the same reason we shall not show the complete rule table here.

Program Encoding. We encode the interpreted 1-tape, 3-symbol machine
T = (Q,{b,0,1},8,b,qs,q¢) by a program text "I as follows: The program is
a string listing the rules in 0. The first rule in this program text must be the
single rule that leaves the starting state ¢s, and the final rule must be the single
rule that enters the halting state ¢¢. With rules individually translated as below,
such a string is sufficient to uniquely specify Th

For the actual string "7 we use the alphabet X = {b,0,1,B, S, M, #}. The two
rule types (symbol and move) are translated by

trans(q, (s, s’),q’) = S#encg(q)#encs(s)ency (s’ )#rev(encg(q'))#S
trans(q, d, q') = Mitencg(q)#encp(d)#rev(encg(q'))#M ,

where encg : Q — {0, 1}“0g Q1T is some injective binary encoding of the states
in ), and where

B ifs—b 10 if d =+«
ency(s) = ne= i encp(d) = (BB ifd=|
s otherwise , o1 ifd
1 = — 5

encode the 3 symbols of T and the possible directions. Finally, rev(-) simply
reverses a string. The use of the special symbol B rather than the actual blank

3 In addition to the functional redundancy of conserving the inputs, this complexity-
wise inefficiency is a reason for discarding Bennett’s suggestion of B(U) as a universal
machine.

4 Note that a specific T may have more than one representation, as § is unordered.
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symbol b ensures that the encoding of a given machine will be a blank-free
string that can be given in standard configuration form. As an example, the
simple RTM T = ({qo, q1, 42,93}, {b,0,1},8,b, qo, ¢3), with transition relation

§= {(q07 7 (h), (qla (07 1)3 Q2)7 (qh (13 O)a q2)a (Q27 ) q3)} )
can be represented by program text
TT7 = M#OO#01#10#MS#O1#0 1 #01#SSHO1#10#01#SM# 10#10# 1 1#M |

where encg is given by gg +— 00, g1 — 01, g2 — 10 and ¢3 — 11.

This encoding has the great advantage that we can perform program inver-
sion by simply reversing the string, rev("T") = "T~17. (String reversal can be
performed in linear time by a simple 2-tape RTM.)

URTM Program. The URTM program has the following overall structure.

1. Copy the starting state ¢, (first state of first rule) onto the state tape.

2. Sequentially try to apply each rule on the program tape, from left to right.

3. When all rules have been tried, compare the halting state ¢; (last state of
last rule) with the encoding of the current state g. (on the state tape). If
identical, clear ¢, reversibly, rewind the program tape, and halt.

4. If g. and gy are not identical, rewind the program tape head and go to 2.

Thus, the URTM program consists of two nested loops: an inner loop where we
try to apply each of the rules in the interpreted program to the current simulated
configuration, and an outer loop where we test for the halting condition.

This is a straightforward and well-known design for a universal machine. The
difficulty lies in that it now has to be done completely reversibly, which poses
considerable challenges. For instance, there is control flow confluence at step 2,
which is a source of backward non-determinism. In this case the situation is
resolved by testing the equality of the simulated state with the starting state:
They are only equal at the start of the simulation (i.e., if we came from step
1), and (by definition) must be different thereafter (i.e., if we came from step
4). This is closely related to the use of entry assertions in loops in reversible
programming [I7].

Fig. [l shows a state diagram of the program: nodes are states, and edges
are the actions of the associated rules. We have used a notation mixing or-
dinary state diagrams with reversible flowcharts [I8]. The diamond (test) and
circle (assertion) with inscribed expressions are reversible control flow operators
(CFOs.) The expression of the assertion must be true when entering from the
branch marked “true”’, and false if entering from the branch marked “false”. The
CFOs are here used as shorthand for RTM programs for comparing strings, as
described below.

String Comparison. A central functionality that we rely on throughout the
machine is string comparison. We must continuously compare the encoding of
the current state (on the state tape) with the encodings of states in the rules
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Fig. 1. Overall URTM program structure. The inner loop (topmost, written in ordinary
state diagram form) sequentially tries to apply each rule on the program tape, and the
outer loop (bottommost, written with shorthand reversible flowchart notation) tests
for the halting (and starting) conditions. The symbol rule and move rule phases test for
and apply the current rule on the program tape, passing over it in process. The write
and clear phases initialize and clear the state tape. Edges with the symbolic variable «
encode for three different transitions, with a € {b,0,1}.

of the interpreted machine (on the program tape). How does this work in the
reversible setting?

Assume that we want to check strings #s; ...s,# and #¢;...¢,# (each on a
separate tape) for equality, moving the tape heads from the starting # to the
terminating # in the process. As usual, we can scan the cells from left to right
until either the termination symbol # is reached, or a mismatch is found. If the
rightmost # symbol is reached without a mismatch, then the strings are equal
(and this information is stored in the internal state). If there is a mismatch,
however, then we cannot simply pass directly over the rest of the string, like
one would do in the irreversible caseld Instead, we rewind until the starting #
and then pass obliviously over both strings until the string terminator is found.
Fig. [2 shows a transition diagram for this functionality. Note that this is done
without writing anything to any of the tapes. Also note that the comparison still
takes only linear time, the same as the irreversible case.

A central insight from reversible flowcharts tells us that the inverse of a test
(a conditional split in control flow) is an assertion (a conditional join of control
flow) [18]. Thus, if we invert the transition diagram in Fig. Pl as specified in
Lemma [I, we get an RTM program that can merge two control branches if we
know two strings are equal in one branch, and different in the other. We did this
in the overall URTM program in Fig. [l

® The first mismatch is special, in that the prefixes preceding it are equal. If we only
do a single pass of the strings, then the resulting machine cannot be reversible: In
reverse mode, it would have to predict exactly when the prefixes are equal without
having visited them which is clearly impossible.
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Fig. 2. 2-tape RTM state transition diagram for comparing strings #s1s2 ... sp,# and
#l1t2 ...t # reversibly. (The reader is encouraged to verify the reversibility of the tran-
sitions.) The tape heads start at the left # and end at the right #. Edges with symbolic
variables « and 8 encode multiple rules, subject to side conditions (e.g., that o # #).

Testing and Applying a Rule. We can distinguish symbol and move rules
by their two encompassing S or M symbols, so we have separate subroutines for
each case. We shall here only show the more involved symbol rule.

Application of a given transition rule (g, (s, s’),q’) given current state ¢. and
current symbol s, is done as follows: We first compare states ¢ and g.. If they
match, we compare symbols s and s.. If these also match, we apply rule, i.e., per-
form the substitution specified by the rule, changing the current state to ¢’ and
the current symbol to s’. (Appendix A shows the straight-line state transition
diagram for this.)

This means that there are three distinct branches for the control flow. An
irreversible machine would be able to simply merge these directly at the exit.
This is not an option in the reversible setting, as it breaks backward determinism.
We solve this problem as follows.

We have two disjoint branches where the rule was not applicable: One with a
state mismatch ¢ # ¢., and one where the states matched g = g. but the tape
symbols were different s # s.. Thus, we can reversibly merge the control flow of
the two possible failures by comparing the current state to the source state of
the symbol rule, using the inverted string comparator above.

The key problem is to merge the branch where the rule was applied to the
one where it was not. For this we exploit the reversibility of the interpreted ma-
chine. Specifically, only if rule (g, (s, s’),q’) was just applied to cause the step
T+ (q,(,8,7)) ~ (¢,(l,8',r)) can the current state and symbol be ¢’ and s’
simultaneously: reversibility guarantees it. With this insight, we can perform es-
sentially the inverse of the testing we did for applicability to merge the branches.

A reversible flowchart for testing and application of a symbol rule is shown in
Fig.[Bl We have left out a few unimportant details (such as moving the program
tape head across string terminators, etc.) Note the use of (reversible) string
comparison for both splits and joins in control flow.

Since there is a fixed number of string comparisons, the symbol rule subroutine
only takes time linear in the size of the rule, and importantly does not need to
inspect any of the other rules in the program. So, even though reversibility is
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apply rule

e

Fig. 3. Reversible flowchart for application of a symbol rule (g, (s, s’), ¢’), given current
state ¢. and current symbol s.. The string comparisons are (1mphc1tly) organlzed such
that the program tape head moves from the left S in the encoding of the rule to the
right S.

a global property of a program, we can still rely on it for the application of
individual rule as a peephole propertyﬁ Note also that the sole change to the
tape contents is the substitution of symbols on the work tape, and possibly an
update of the state tape.

The case of the move rule is similar.

Asymptotic Complexity. In each pass over the program text at least one
rule is applied and the work and state tapes are updated. This means that the
interpretation cost in terms of time behavior is a slowdown proportional to the
size of the program. A similar program dependent slowdown is also seen for
irreversible UTMs. With respect to space, the URTM completely follows the
interpreted machine, with only the addition of the string encoding the current
simulated state (dominated by the size of the program).

Given a specific program "7, the URTM thus conserves the asymptotic com-
plexities of the machine 7.

Inverse Interpretation. As mentioned, our chosen encoding allows for ex-
tremely simple program inversion, rev("T") = "T~17. This means that we can
use the URTM for reversible inverse interpretation: Simply apply string reversal
to the program before and after running the URTM. Let R; be an RTM that
reverses its first argument, R;(x,y) = (rev(x),y). We have that

[RioUoRi] ("T7,y) = ("T7,[T7'1(y)) -

This completes our presentation of the URTM.

4 Related Work

In the recent work [2] the authors studied reversible Turing machines from a
programming language viewpoint, defined RTM-universality, and showed the
results summarized in Sect. Pl about the expressiveness and robustness of the

5 The reliance on the reversibility of the interpreted machine explains why our URTM
is not a general UTM: It will get stuck if the interpreted program is not reversible.
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1-tape 3-symbol RTMs. These results form the theoretical basis for the URTM
developed in this paper.

Morita et al. have also studied RTMs [I1/10] and other powerful reversible
computation models, including cellular automata [9]. In [IT] a small universal
RTM was proposed, which implements an interpreter for a cyclic tag system (a
Turing complete formalism.) However, under our strict semantics approach, the
proposed machine does not demonstrate universality (or RTM-universality), as
the halting configuration encompasses not just the program and output, but
also the entire string produced by the tag system along the way, analogous to a
Landauer embedding [8]. Of course, the intent with their machine also appears
to be rather different from ours. We did not aim for a minimal machine in terms
of states and symbols, and allowed ourselves 3 tapes compared to only 1 in [11].

5 Conclusion

The study of reversible computation models complements that of deterministic
and non-deterministic models. Despite a long history, the fundamental properties
of reversible computation models are still not well-understood. In our approach,
where reversibility of a Turing machine implies injectivity of its semantical func-
tion, we have that reversible Turing machines (RTMs) are not quite Turing
complete, but still expressive enough to be universal for their own class with
the natural concept of RTM-universality (which allows a universal machine to
remember the interpreted program text).

We here showed the first RTM-universal reversible Turing machine (URTM)
constructed from first principles. The resulting machine is a very clean and simple
design. We did not have to rely on reversibilization techniques, and the URTM
never writes any temporary values to tape, except for the constant-sized string
encoding the current simulated state. The URTM interprets 1-tape 3-symbol
RTMs with a program dependent constant factor slowdown (bounded by the
size of the interpreted program). Importantly, there are no other change in the
time and space behavior as compared to the interpreted machine. Thus, for in-
dividual machines the URTM is effectively complexity preserving, which has not
been seen before with reversible Turing machines. In addition, the URTM is also
able to function as an inverse interpreter for running RTM programs backwards
by simply reversing the program text, again with no impact on asymptotic com-
plexity. These positive qualities were made possible by explicitly exploiting the
promise of reversibility of the interpreted machine in the URTM design.

We conclude that the RTMs can simulate themselves efficiently.
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Appendix A

Rule Application
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Above is given an RTM state transition diagram for applying rule (q, (s,8),q )
(represented on the program tape) given that the current interpreted state g.
(on the state tape) is ¢, and the current interpreted symbol (on the work tape)
is s. States go through g¢3 (corresponding to clear ¢. = ¢) deletes the current
interpreted state g from the state tape; states g4 through g7 (corresponding to
write ¢. = ¢') substitutes the current interpreted symbol s on the first tape with
s'; states gg though ¢1; writes the new interpreted state ¢’ on the state tape. af
in the ¢4 to g5 and ¢g to g7 transitions is b if & = B and « otherwise.
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Abstract. There are many decision problems in automata theory (in-
cluding membership, emptiness, emptiness of intersection, inclusion and
universality problems) that for some classes of tree automata are NP-
hard. The study of their parameterized complexity allows us to find
new bounds of their non-polynomial time algorithmic behaviors. We
present results of such a study for classical tree automata (TA), rigid
tree automata (RTA), tree automata with global equality and disequal-
ity (TAGED) and t-DAG automata.

1 Introduction

Parameterized complexity. In the classical complexity theory the complexity
of a problem is measured by the amount of a resource (time or space) required
to solve the problem, which is presented as a function of the size of the input of
the problem. There are many problems that are hard in this theory, but appear
not to be so hard under a more refined analysis of complexity that takes into
account the structure of the input data. A notable example of such a problem is
LTL (Linear Temporal Logic) model checking (i.e., the problem if a given Kripke
structure satisfies a given formula of the logic LTL) in the area of automated
verification [I1]. The problem is hard in classical complexity theory, where we
consider input as a whole, but it becomes tractable if we look into the structure
of the input and assume that the “hard” part (here, the checked formula) is
relatively small in comparison to the “easy” part (the checked Kripke structure).

Parameterized complexity [7] [9] gives a framework for analysis of such prob-
lems. In this theory, an instance x of a problem comes together with a parameter
k (typically, the size of some part of the input z). If a problem is decidable in
time f(k)p(|z|) for some function f and some polynomial p, then the problem
is considered to be tractable (with respect to the parameter k) and is called
fized-parameter tractable. There are two fundamental hierarchies of problems
that are not known to be fixed-parameter tractable: the W-hierarchy and the
A-hierarchy. It is believed (but there is no proof of that, similarly as there is no
proof of P#NP) that they do not collapse, so if one proves that a problem is hard
for some levels of these hierarchies, then the existence of efficient algorithms for
this problem is unlikely.

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 129-fi41], 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Tree automata. The theory of finite tree automata [6] is a straightforward ex-
tension of the theory of finite word automata. The main task of this theory is to
provide a finite representation for infinite sets of terms, with efficient operations
for manipulating these sets, and with decidable basic decision problems. In this
paper we investigate parameterized complexity of NP-hard problems for tree au-
tomata. In addition to classical tree automata we also consider recent extensions
like rigid tree automata (RTA), automata with global constraints (TAGED) and
automata on DAG representations of trees (t-DAG). It was known that these ex-
tensions gain additional expressive power for the price of harder (in many cases
NP-hard) decision problems.

Our contribution. Our results are summarized in Table[2] at the end of the pa-
per. In particular, we show that for classical tree automata the inclusion problem
and the universality problem parameterized by the number of states are para-co-
NP-hard. For RTA and TAGED automata the membership problem parameter-
ized by the number of states is W[2]-hard; parameterized by the size of the input
term and the size of the signature it is in W[1]. We also show that for t-DAG
automata the membership problem parameterized by the size of a t-dag and the
size of a signature is W[1]-complete and parameterized by the number of states
of the input automaton it is para-NP-complete while the k-emptiness problem
parameterized by k and the size of a signature is W[1]-complete. A consequence
of all these hardness (which includes completeness) results is that these problems
are not fixed-parameter tractable (unless the W-hierarchy is not strict). This is
rather a bad news for the theory of tree automata, and it was quite surprising
for us — we expected at least some of these problems to be fixed-parameter
tractable.

Related work. We are not aware of any work on parameterized complexity of
decision problems for tree automata. The closest results [I2] concern automata
on words. It is shown there that the k —N-EMPTINESS problem (see Section B3]
for the definition of the problem) parameterized by either |X| + k, |A| 4+ |@Q| or
| Z|+|Q)| is fixed-parameter tractable while parameterized by |A|+k is W[1]-hard
and parameterized by |Q|+ k is W[2]-hard. From the proofs it is not difficult to
infer that "-EMPTINESS parameterized by the number of intersected automata
is W[1]-hard.

2 The Parameterized Complexity Theory

Below we recall the most important concepts from the parameterized complexity
theory that are used in this paper ([7],[9]).

Definition 1. A parameterized problem over an alphabet X is a pair (A, k)
consisting of a set A C X* and a function k : X* — N. The function k is called
a parameterization of the problem.

Definition 2. Let (A, k4) and (B, kg) be parameterized problems over X and I'
respectively. An FPT-reduction of (A, k4) to (B, kp) is a mapping F : X* — I'*
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such that for every inputx € X* we havex € A < F(x) € B, there exist a function
h and a polynomial p such that for every x € X* the result F(x) is computable in
time h(ka(z))p(|x]) and there exists a function g such that for every x € X* we
have kp(F(x)) < g(ka(x)).

We say that a parameterized problem (A, k) is fixed parameter tractable or that
it is in the class FPT (respectively, it is in the class para-NP) if there exists
a deterministic (respectively, nondeterministic) algorithm that for all x € X*
decides whether z € A in time f(x(z))p(|z|), where f is a computable function
and p is a polynomial. A parameterized problem (A4, k) is in the class para-
co-NP class if its complement (X2*\A, k) is in the para-NP class. W[P] is the
class of parameterized problems (A, k) such that there exists a nondeterministic
algorithm that for all z € X¥* decides whether x € A in time f(k(z))p(|z|) and
uses g(k(x))log || nondeterministic steps where f, g are computable functions
and p is a polynomial.

The W-hierarchy is a fundamental hierarchy of problems that are not known
to be fixed-parameter tractable. For the purpose of the current paper it is not im-
portant how exactly the levels of this hierarchy are defined; it is more important
that the inclusions

FPT C W[1] C W[2] C ... W]P] C para-NP.

are known to be true (and despite a lot of research already done, they are not
known to be strict or to collapse). The following problems are known to be
complete for the respective levels of these hierarchies (see [9] for proofs). To
simplify the notation, we write values of parameter functions next to inputs of
problems instead of treating parameters as separate functions.

The problem of parameterized model checking for X;-formulas and the pa-
rameterized clique problem are W[1]-complete. A clique for a graph G = (V, E)
is a set X C V such that for every v,v’ € X there is an edge {v,v'} € E.

Problem (p-MC(X1)). Instance: A structure o and a first-order formula ¢ with
quantifier prefix 3*. Parameter: |§|. Question: & = ¢?

Problem (p-CLIQUE). Instance: A graph G and k € N. Parameter: k. Question:
Is there a clique of k elements in G 7

The problem p-DOMINATING-SET is W[2]-complete. A dominating set for a
graph G = (V| E) is a set X C V such that for every v € V either v € X or
there exists v € X such that {v,v'} € E.

Problem (p-DOMINATING-SET). Instance: A graph G and k € N. Parameter:
k. Question: Is there a dominating set of k elements in G 7

The parameterized colorability problem is para-NP-complete. Its dual is para-
co-NP-complete. We say that a graph G = (V, E) is k colorable if there exists a
function o : V' — {1,...,k} such that for every v,v’ € V if a(v) = a(v") then

{v,v'} ¢ E.
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Problem (p-COLORABILITY). Instance: A graph G and k € N. Parameter: k.
Question: Is G k-colorable?

Problem (p-NON-COLORABILITY). Instance: A graph G and k € N. Param-
eter: k. Question: Is G a non-k-colorable graph?

3 Finite Automata

3.1 Preliminaries

Before discussing different types of finite automata on trees we introduce a basic
terminology connected with this subject. This is standard terminology when
dealing with tree automata [0].

A signature X is a finite set of function symbols with their arity. A term over a
signature X is either a constant symbol from X' or has the form f(¢1,t,...,t,),
where f € Y is an n-ary function symbol and t¢1, ¢, . . ., t,, are terms. We identify
terms with their tree representations, so we use both notions of a tree and
a term interchangeably. A size of a term t (in this paper denoted by [t|) is
a number of subterms of this term (or, equivalently, a number of vertices in
its tree presentation). A language over a signature X is a set (not necessarily
finite) of terms over Y. The positions Pos(t) in a term ¢ are sequences of positive
integers (e, the empty sequence, is the root position; generally a number sequence
represents a node as the path of argument-order edges followed from the root
to get to that node). Hence ¢ can be seen as a function from its set of positions
Pos(t) into a set of function symbols X. By t|,, where ¢ is a term and p € Pos(¢),
we denote a subterm of ¢ at the position p. A DAG representation of a term (in
short, a t-dag) over a signature X' is a directed, acyclic, ordered graph with
vertices labeled with symbols from X such that if a vertex is labeled with an
n-ary symbol then it has n immediate successors. Moreover, it cannot contain
two different vertices representing the same subterm. The size of a t-dag is the
number of its vertices.

3.2 Classes of Automata

In this section we present the models of automata we are interested in. All
considered automata are nondeterministic.

Classical Tree Automata (TA). This class of automata is described with
details in [0].

Definition 3. A tree automaton (TA) is a 4-tuple (X, Q, F, ), where X is a
finite signature, Q is a finite set of states, F' C Q is a set of final states and § is

a set of transition rules of the form f(q1,q2...,qn) — q with ¢,q1,q2 ..., qn € Q
and f € X of arity n.

An automaton starts a computation at the leaves of a tree and moves upward
to the root associating inductively states with subtrees in such a way that its
transition rules are fulfilled. The size of a tree automaton &7 = (X, Q, F,¢) is
equal to |Q| + |X| + |0] and is denoted by |.«7|.



The Parameterized Complexity for Finite Automata on Trees 133

Definition 4. A run of a TA automaton (¥,Q, F,§) on a term t is a map-
ping r : Pos(t) — @ such that for every position p € Pos(t), if t(p) = f where
f is a n-ary symbol in X, r(p) = q and r(pi) = ¢; for all i € {1,...,n} then the
transition f(q1,q2,-..,qn) — q belongs to §. A run is successful if it maps the
root of t to a final state.

An automaton &7 accepts a tree t if there exists a successful run of &7 on t. The
set of all trees accepted by 7 is called the language of o7 and is denoted £ ().

Tree Automata with Global Equality and Disequality Constraints
(TAGED). The TAGED class is described with details in [§].

Definition 5. A tree automaton with global constraints (TAGED) is a
6-tuple (X, Q, R=, Rx, F, ), where (X,Q, F, ) is a tree automaton and R=, R
are binary relations on Q.

Definition 6. A run of a TAGED automaton (¥,Q,R—,R.,F,6) on a
term t is a mapping r that is a run of TA (X, Q, F,§) on t satisfying additional
conditions for all p1,ps € Pos(t):

(r(p1);r(p2)) € R= = tlpy =tlp, and  (r(p1),r(p2)) € R = tlp, # tlp,-

Rigid Tree Automata (RTA). The RTA class is presented in [I0]. It is a
restriction of the TAGET class where some states are identified as rigid.

Definition 7. A rigid tree automaton (RTA) is a 5-tuple (¥,Q, R, F,0),
where (X, Q, F,0) is a tree automaton and R C Q) is a set of rigid states.

During a computation of an RTA automaton all subtrees associated with one
rigid state must be equal.

Definition 8. A run of an RTA automaton (¥,Q, R, F,0) on a termt is a
mapping r that is a run of TA (X, Q, F,d) on t satisfying for all p1,p2 € Pos(t)
an additional condition: r(p1) =1(p2) € R = t|p, = tlp,-

Automata on DAG Representations of Trees (t-DAG Automata). The
t-DAG class is introduced in [4] and used in [5] for solving set constraints. It
is a class of automata running on dag representations of terms. In other words,
a t-DAG automaton is a tree automaton that with equal subtrees of a tree
associates equal states. Using the notation from Definition B it means that

tlpy, = tlp, = r(p1) = r(p2). In this sense it is an automata class dual
to the RTA class.

Definition 9. A t-DAG automaton is a 4-tuple (¥,Q,F,0), where X is a
finite signature, Q is a finite set of states, F' C Q is a set of final states and § is
a set of transitions of a form f(q1,q92...,qn) — q with ¢,q1,92...,q, € Q and
f € X of arity n.

Definition 10. A run of a t-DAG automaton (¥,Q, F,0) on a t-dag G is
a mapping r from the set of nodes of G to the set QQ such that for every node v
of G labeled with n-ary symbol f € X, if v1,va, ..., v, are successors of v, then
f(r(v),r(va),...,r(vy)) — r(v) belongs to 6. A run is successful if it maps the
root of G to a final state.
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3.3 Parameterized Decision Problems for Finite Automata on Trees

We introduce some parameterized decision problems for finite automata on trees.
By @ we denote the set of states of an automaton and by X its signature. By k we
denote a unary encoded number. For each problem different parameterizations
can be considered.

Problem (EMPTINESS). Instance: An automaton 7. Parameter: |Q|,|X| or a
sum of them. Question: Is the language recognized by &7 empty?

Problem (k-EMPTINESS). Instance: An automaton & and k € N. Parameter:
|QI, | ¥, k or a sum of some of them. Question: Does there exist a tree/t-dag of
size k accepted by <77

In the following problems all automata in A are defined over the same signa-
ture X. By |Q| we denote the maximal number of states of an automaton from

A.

Problem (N-EMPTINESS). Instance: A set of automata A = {4, o, ..., 9, }.
Parameter: |Q|,|X],|A| or a sum of some of them. Question: Does there exist a
tree/t-dag accepted by all automata from A?

Problem (k-N-EMPTINESS). Instance: A set of automata A = {o, oo, ..., o}
and k € N. Parameter: |Q|, | X, |Al, k or a sum of some of them. Question: Does
there exist a tree/t-dag of size k accepted by all automata from A?

Problem (MEMBERSHIP). Instance: An automaton </ and a word/tree/t-dag
t. Parameter: |Q|,|X|, |t| or a sum of some of them. Question: Is t accepted by
o7

Problem (UNIVERSALITY). Instance: An automaton . Parameter: |Q|, ||
or a sum of them. Question: Is the language recognized by 7 total?

Problem (INCLUSION). Instance: Two automata <7 and o defined over the
same signature Y. Parameter: |Q1], |Qz|, || or a sum of some of them. Question:
Is it true that £L(eA) C L (h)?

3.4 Known Results

The table below presents known results in the area of the classical complexity
of described decision problems. For proofs see [1], [3],[4],[6].8],[Z0].

Table 1. Summary of known results

TA RTA TAGED t-DAG
EMPTINESS PTIME PTIME EXPTIME-hard NP-complete
decidable
N-EMPTINESS EXPTIME-compl EXPTIME-compl EXPTIME-hard
MEMBERSHIP PTIME NP-complete NP-complete NP-complete
UNIVERSALITY EXPTIME-compl undecidable undecidable  undecidable

INCLUSION  EXPTIME-compl undecidable undecidable  undecidable
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4 Results

Most of the theorems from this section are proved by FPT-reductions. A defini-
tion of FPT-reduction can be found in Section 2] (see Definition [). Due to space
limits some proofs are sketched or omitted. Complete proofs can be found in [2].

4.1 Classical Tree Automata (TA)

k-EMPTINESS, N-EMPTINESS and k-N-EMPTINESS. Our results on
emptiness problems for classical tree automata are summarized in[2l As they are
simple observations we omit the proofs (the proofs can be found in [2]).

UNIVERSALITY

Theorem 1. For TA automata the UNIVERSALITY problem parameterized by
the number of states of an automaton is para-co-NP-hard.

Sketch of proof. We propose a reduction of p-NON-COLORABILITY, which
is a para-co-NP-complete problem. Consider an instance of the p-NON-COL-
ORABILITY problem: a graph G = (V, E) of n vertices v1,va,...,v, and a
number k£ € N. We construct a TA automaton & = (X, Q, F,d) such that G
is not k-colorable if and only if &7 accepts all terms over the signature X. Let

Y ={a1,az,...,ak, f}, where a; is a constant symbol and f is an n-ary function
symbol.
A term over X of the form f(z1,x2,...,z,) for x; € {a1,az,...,ar} represents

a coloring of G with a set of k-colors (z; = a; means that the vertex v; has the
color j). Let @ = {q1,¢2,.-.,4k,4,¢',qr} and F = {qr}. Let & consist of the
following transitions:

(i) a; — qlqilqr forie{1,2,...,k},

(i) f(p1,p2,---,pn) — q|¢ | qr if there exists an edge {v;,v;} € E such that
pj = p1 = ¢; for some i and p; = ¢ for all s # j,s # [,

(i) f(p1,p2;.--,pn) — qld |gr if pj = ¢ for some j and p; = ¢ for all [ # j.

The automaton &7 accepts a term t if and only if it does not contain a subterm
representing a good coloring. This fact can be proved by the induction on the
structure of a term. Thus, &7 accepts all terms over the signature X' if and only if
there are no good k-colorings of G i.e. G is not k-colorable. Moreover, |Q| = k+3
and the size of &/ depends polynomially on the number k and the size of G. O

The result above shows that universality is a very hard problem. Even if we fix
the number of states in the input automaton, it remains co-NP-hard. In fact,
since 3-colorability is an NP-complete problem, we can observe that already
universality of automata with 6 states is co-NP-hard. If one identifies (which is
quite common) the number of states of an automaton with its size, this becomes
a surprising result, because for automata of fixed size the problem should be
solvable in constant time.
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INCLUSION. The following result is a simple observation. We omit the proof
(it can be found in [2]).

Proposition 1. For TA automata INCLUSION problem parameterized by the
size of oo is in FPT.

Theorem 2. For TA automata INCLUSION problem parameterized by |Q1] +
|Q2| is para-co-NP-hard.

Proof. There is an automaton of one state that accepts all terms over a given
signature. The theorem is a consequence of this fact and Theorem [T a

4.2 Rigid Tree Automata (RTA) and Tree Automata with
Equalities and Disequalities (TAGED)

k-EMPTINESS

Theorem 3. For RTA and TAGED automata the k-EMPTINESS problem pa-
rameterized by k + |X| is in W[1].

Proof. 1t is enough to show it for TAGED automata. We reduce the problem to
p-MC(X,). Consider a TAGED automaton (¥, Q), R=, R, F,§) and a number
k € N. We construct a structure &/ and a formula ¢ such that the formula ¢
is fulfilled in 7 if and only if the automaton (X, Q, R=, Rx, F, §) accepts some
term of size k. Let &7 be defined over the set A =60 UQU X U{L}, where O is
the set of terms over X of size not greater than k. Let M = max{ ar(f)| f € X }.
Let there be the following relations in 7.

D::{(qoafaqla"'7QM)|f(qla"'aQar(f))'_>q0€6and q =1 for ar(f)<i<M}a
T :={(to, fot1,-- - tar) | f(t1,.. . tar(p) =to and t; =L for ar(f) <i< M},
T-:={(t,t)| t€ O}, Ty:=OxO\T- Ra—:=R_,

RA;,& = R;ﬁ and FA = F.

Now we define the formula ¢ = 31, ..., 7k, y1,. .., yr ¢ where ¢’ is the conjunc-
tion

/\ /\ (T(yioafayila"'ayiarfaJ—a"'aJ—):>

feX 1<io,... iary <k

D(ﬂ?,‘o,f,xil,...,.’E,‘arf,L,...,L))
A Alfihizﬁn (RA:(xil ’ xlé) = T:(yilﬂylé)) A (RA?é(Ih ) xiz) = T#(yiwyiz))
/\FA(ZI) A d](yla ceey yk)a

where ¥(y1,...,yr) is fulfilled if terms yi,...,yr form a tree and are written
from the top to the bottom and from the left to the right.

’(/}(y17"'7yk \/ /\ wat yct(i)+17"'7yct(i)+arf7L7"'7J~)7
teO, 1<i<k
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where Oy, is the set of all terms from © that have the size k, ¢;(¢) is the index of
the first child of the vertex of the index 7 in the tree ¢ (we are numbering from
the top to the bottom and from the left to the right) and f;(¢) is the function
symbol labeling that vertex. The length of ¥ depends only on k and |X|. The
size of the structure & depends on k and |¥| and polynomially on the size of
the automaton. The length of ¢ depends only on k and |X|. O

MEMBERSHIP

Theorem 4. For RTA and TAGED automata the MEMBERSHIP problem pa-
rameterized by |Q| is W[2]-hard.

Sketch of proof. It is enough to show it for RTA automata. We propose a reduc-
tion of p-DOMINATING-SET. Consider an instance of this problem: a graph
G = (V,E) with V = {wy,vq,...,0,} and a number k € N. We construct an
RTA automaton &/ = (X,Q, R, F,J) and a term ¢ over the signature X such
that in G there is a dominating set of k£ elements if and only if & accepts the
term ¢.

Let X = {x,|v € V} U {fo, 00| v1,v2 € V}U{f, g}, where z, are constant
symbols, fy, v, are symbols of binary functions and f and g are symbols of n-ary
functions. Let Q = {QIa --+» 49k, 9,40, QF}7 R = {qb s 7Qk}a F= {qF} States qi
for i € {1,...,k} represent a choice of vertices of a dominating set. Let 0 consist
of the following transitions.

(i) wy > gi forv eV and i€ {0,1,...,k},

(i) fow(g,q;) — qo for v,w eV and i, j€ {0,1,...,k},

(iil) fu.w(go,q) — ¢ for v,w € V such that {v w} € Fand i€ {1,2,...,k},
(iv) fo,w(gi,gj) —qforv,weV,ie{l,2,...,k} and j 6{0,1,...,k},

(v) g(p1,p2,...,pn) > g, if there exists i € {1,27...,n} such that p; = ¢ and

p;j = qo for all j # 1,
(Vl) f(Q7Q77q)'_>qF

Let ¢t be the term:

f( g(f’umn (mU17xU1)7 cee fU17Un(:I;U17mUn))7 cee
g(fvmm (T, s oy )5 - fvmvn Ly, Ty, ) )

The size of the automaton 7 and the length of the term ¢ depend polynomially
on the size of the graph G. Indeed, there are n(k + 1) transitions of the form (i),
n?(k+1)? transitions of the form (ii), n?k transitions of the form (iii), n?k(k+1)
transitions of the form (iv), n transitions of the form (v) and one transition of
the form (vi). Moreover, |Q| = k+3. One can check that G has a dominating set
of k elements if and only if o7 accepts the term ¢. Indeed, let r be a successful run
of  ont.Let X = {ve V|3l et, r(l) # qo}, where t, is the set of all vertices
of ¢ labeled by x,. The rigidity of states ¢; for ¢ > 0 implies that | X| < k. The

run r is successful, so r(g(fvw1 (Togs Toy ) - s foson (Toy s Tw,)) ) = ¢ for every
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i € {1,2,...,n}. Thus for exactly one j € {1,...,n} we have r(fu, v, (Tv;, v;)) =
q. Then either r(z.,) # qo and v; € X or r(z.,) # qo,v; € X and {v;,v;} € E.
So v; is dominated by v;. Hence, the set X is a dominating set in G. A proof of
the second implication is omitted. a

By using similar methods as in Theorem Bl we can solve the membership problem.
The main difficulty is to make the length of the formula ¢ depend only on the
size of the term ¢ (the input of the membership problem) and not on |X|. This
can be done by using only those symbols from X' that appear in t.

Theorem 5. For RTA and TAGED automata the MEMBERSHIP problem pa-
rameterized by the length of a term belongs to W[1].

4.3 Automata on DAG Representations of Finite Trees (t-DAG
Automata)

EMPTINESS

Proposition 2. For t-DAG automata the EMPTINESS problem parameterized
by |Q| belongs to W[P]. The same problem parameterized by |Q|+ |X| belongs to
FPT.

Proof. In [] it was proved that if a language recognized by a t-DAG automaton
4/ is nonempty then ./ accepts a t-dag of size not greater than 2|Q|®> where
Q@ is the set of states of «&/. To check the EMPTINESS for « it is enough to
guess a t-dag t of a size not greater than 2|Q|* and a mapping r from the set
of subterms of ¢ to @ and check if r is an accepting run. The algorithm guesses
2|Q[*log(|X|) bits; moreover, there are O(|Q|??!") possible runs on a term of
size not greater than 2|Q|>.

In the case of parameterization with |@Q|+ | X, it is enough to check, for every
t-dag of size not greater than 2|Q|3, if it is accepted by /. One can do this by
analyzing all possible runs of the automaton on this term. There are O(|Q|¢1*1)
such terms and there are O(|Q|2/?") possible runs on each of them. O

k-EMPTINESS

Theorem 6. For t-DAG automata the k-EMPTINESS problem parameterized
by k + | X| is W[1]-complete.

Sketch of proof. We propose a reduction of p-CLIQUE which is a W[1]-complete
problem. Consider an instance of the p-CLIQUE problem: a graph G = (V, E)
and a number k € N. We construct a t-DAG automaton & = (X, Q, F,0) and a
number k' such that in G there is a clique of k elements if and only if &7 accepts
a tree of the size k'.

Let ¥ = {z1,x2,...,z }U{f, g}, where x; is a constant symbol, f is a symbol
of a k(k — 1)-ary function and g is a symbol of a binary function. Let Q =
{a12013, - Gre—1,qr} U{quilv € V, 1 <i <k}, F = {qr}. Let 0 consist of
the following transitions:
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(i) i — quiforveVand 1l <i<k,
(i) 9(Gvy,i> Gua,j) — @i, for vi, v € V such that {vi,v2} € E,
(i) f(qu2,91,3:- -+ Qrk—1) — qF-

Note that ¢ = f(g(x1,x2),9(x1,23),...,9(xx—1,zk)) is the only term that can
be accepted by .

Let ¥ = |t| = 1+ k(k—1) +2k(k — 1) = 3k(k — 1) + 1. The size of the
automaton &7 depends polynomially on the size of the graph G. Moreover, the
parameter k' depends polynomially on the parameter k. What is more, one can
easily show that in G there is a clique of k elements if and only if .o/ accepts the
term ¢.

The proof of the fact that the examined problem is in W[1] is similar to the
proof of Theorem [3 O

MEMBERSHIP. By using similar methods as in Theorem [B] (for the member-
ship in W[1]) and in Theorem [f] (for W[1]-hardness) one can prove the following
theorem.

Theorem 7. For t-DAG automata the MEMBERSHIP problem parameterized
by [t| + | X is W[1]-complete.

Theorem 8. For t-DAG automata the MEMBERSHIP problem parameterized
by a number of states is para-NP-complete.

Sketch of proof. In order to show para-NP-hardness of the problem we propose
a reduction of p-COLORABILITY. Consider an instance of the this problem:
a graph G = (V| E) with n vertices vq,ve,...,v, and m edges e, ea,..., ey
and a number k¥ € N. We construct a t-DAG automaton & = (¥,Q,F,0d)
and a t-dag t such that G is k-colorable if and only if &7 accepts t. Let X =
{v1,v2,...,0n,€1,€2,...,em, f}, where v; is a constant symbol, e; is a symbol of
a binary function and f is a n-ary function symbol. Let Q = {q1, 92, ..., 9k, 4, qr}
and F' = {qr}. States ¢1,qo, ..., qr symbolize k colors. Let § consist of the fol-
lowing transitions.

(i) vio g forie {1,2,... k},
(ii) ei(gi,gj) —gfor1 <l<mand1l<i#j<k,

Let t = f(e1(vi1,v12), €2(va1,v22), ..., €m(Vm1, Uma)), where v;; and v;o are ver-
tices incident to an edge e;. The size of the automaton .7 and the size of the t-dag
t depend polynomially on k and on the size of the graph G. Moreover, |Q| = k+ 2.
One can easily show that G is k-colorable if and only if &7 accepts .

The fact that examined problem belongs to the para-NP class is quite obvious.
Indeed, it is solvable by the algorithm that for each vertex of ¢ guesses a state
from @ and then checks in polynomial time if this mapping is an accepting run
of &/ on t. O
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Table 2. Summary of our results

problem parameter TA RTA TAGED t-DAG
EMPTINESS  [Q| + |Z| PTIME PTIME FPT
Q] WP
k-EMPTINESS k4 |Z| FPT wl1] WI[1]  W[l]-complete
N-EMPTINESS  |A| + Q| FPT
|A| W/1]-hard W/[1]-hard W]1]-hard W/1]-hard
Q| W(2]-hard W/[2]-hard W{[2]-hard W/2]-hard
k-N-EMPTINESS |Z| + Q| + k FPT
[Al + Q] FPT
|A| + k W/1]-hard W/[1]-hard W][1]-hard W/1]-hard
Q| + k W(2]-hard W/[2]-hard W{[2]-hard W/2]-hard
MEMBERSHIP  |t| + |Z| PTIME wi1] WI[1]  W[l]-complete
[t] WJ1] W(1] W(1]-complete
Q| W/[2]-hard W]2]-hard para-NP-compl
UNIVERSALITY Q| para-co-NP-compl undecidable undecidable undecidable
INCLUSION |ato| FPT undecidable undecidable undecidable

|Q1] + |Q2| para-co-NP-compl

5 Conclusion

We have studied parameterized complexity of several decision problems for the
following classes of automata on finite trees: TA automata, RTA automata,
TAGED automata and t-DAG automata. Results of our studies are presented in
Table 2] (some of values "PTIME" and "undecidable" are rewritten from already
presented Table []).

These results were quite surprising for us — we had expected more of these
problems to be fixed-parameter tractable. However, a lot of the examined prob-
lems turn to be hard even for such a big parameter as the number of states of
an automaton.

As one can see there are still gaps in the presented table. Moreover, some
issues are partially examined as we have only proved that they belong to some
complexity class or that they are hard in that class. In addition, it seems in-
teresting to check how the complexity will change if one uses binary (instead of
unary) encoding of a number & in &-EMPTINESS and k-N-EMPTINESS prob-
lems. In consequence, there are left some open questions that we hope to examine
in future.
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Abstract. Language models that use interleaving, or shuffle, operators
have applications in various areas of computer science, including system
verification, plan recognition, and natural language processing. We study
the complexity of the membership problem for such models, i.e., how
difficult it is to determine if a string belongs to a language or not. In
particular, we investigate how interleaving can be introduced into models
that capture the context-free languages.

Keywords: interleaving, shuffle languages, membership problems.

1 Introduction

We study the membership problem for various language classes that make use of
the shuffle operator ©®. When applied to a pair of strings v and v, the operator
returns the set of all possible interleavings of the symbols in u and v. For example,
the shuffle of ab and cd is {abcd, acbd, acdb, cabd, cadb, cdab}. The operator is
lifted to languages by defining £1 ® L2 to be the set [J{u®v | u € L1,v € Lo}.
We also consider the shuffle closure operator, whose relationship to the shuffle
operator resembles that of the Kleene star to concatenation.

Various aspects of shuffling have been studied in the theory of formal lan-
guages, see, e.g., [IBIT7TAT3IHIT20/IRII7I3]. In this paper, we take the shuffle
languages considered by Gischer [15] and by Jedrzejowicz and Szepietowski [I7]
as the starting point. These are the languages defined by regular expressions
augmented with the shuffle and the shuffle closure operators.

Shuffling of languages is of interest in a number of different areas:

— In the modelling and verification of systems, shuffling is, as argued by Garg
and Ragunath [12], useful for modelling the interleaving of processes. There
is a close connection between shuffle languages and Petri nets [I5T2l6].

— The shuffle operator (often called interleaving) is used in XML database
systems for schema definitions, see, e.g., Gelade et al. [13].

— In plan recognition, the objective is to identify an agent’s goal or plan, based
on observations of the agent’s actions [8I23]. In a generalised version, a num-
ber independent agents that perform their actions in an interleaved fashion.
To model this multi-agent scenario one could combine shuffle operators and
context-free grammars [16]. For this approach to be tractable, the member-
ship problem for the resulting languages must remain efficiently solvable.

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 142-J(54, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Table 1. Summary of results for the membership problem. The shuffle languages are
abbreviated by Sh, the regular by Reg, and the context-free by CF. The results of this
paper appear in bold face.

Sh Reg®CF Sh®CF CF®CF CFSA
Non-Uniform P P P NPC NPC
Uniform NPC / W[1]-hard P NPC NPC NPC

— In natural language processing, there is a growing interest in linguistic models
for languages with relatively free word ordering. Recent work in this direction
includes parse algorithms for so-called dependency grammars [22J19)].

A number of fundamental questions regarding the complexity of the membership
problem for various models remain unanswered. We answer some of them in
this paper. In particular, we are interested in language classes that capture the
context-free languages. Among the above application areas, such languages are
primarily of interest in plan recognition and natural language processing.

It is important to distinguish the uniform and the non-uniform version of the
membership problem. In the uniform version, both the string and a representa-
tion of the language is given as input. Thus it is important how the language is
represented. In the non-uniform version, only the string to be tested is considered
as input. The language is fixed, and thus its representation is not important.

Contributions. To facilitate the study of languages that combine restricted
forms of recursion and interleaving, we define Concurrent Finite State Automata
(CFSA). We show that the emptiness problem for CFSA is solvable in polynomial
time, list the automata’s closure properties, and identify the language classes
that correspond to certain syntactic restrictions.

Our complexity-results for the membership problems of various language
classes are summarized in Table [Tl For the full class of languages recognized by
CFSA, we show that both the uniform and the non-uniform membership prob-
lem are NP-complete. For the shuffle languages (as used in [I5I7]), the uniform
membership problem is NP-complete [TJ21], while the non-uniform membership
problem can be decided in polynomial time [I7]. We shed further light on the
complexity of the membership problem by showing that the uniform version,
parameterized by the number of shuffle operations, is hard for the complexity
class W[1]. This indicates a strong dependence on the number of shufflings.

For the interleaving of a regular language and a context-free language, we show
that the uniform (and thus also the non-uniform) membership problem can be
solved in polynomial time. For the shuffling of a shuffle language and a context-
free language, the uniform problem is NP-hard, since this holds already for the
shuffle languages. The non-uniform problem is, however, solvable in polynomial
time. For the shuffling of two context-free languages, we show that already the
non-uniform version of the membership problem is NP-hard.

It should be noted that we only investigate which broad complexity classes
the problems belong to. In particular, for the problems that belong to P, our
aim has not been to find optimal algorithms.
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Due to space limitations, we only provide proof sketches and intuitions. Full
proofs of our results can be found in [2].

2 Preliminaries

Sets and numbers. If S is a set, then S* is the set of all finite sequences
of elements of S, and precl(S) is the set of all finite prefix-closed subsets of S*.
In other words, for every S’ € precl(S), if uv € S’ for some u,v € S* thenu € 5’
We write N for the natural numbers. For k € N, we write [k] for {1,...,k}. Note
that [0] = 0. The domain of a mapping f is denoted dom (f).

An alphabet is a a finite nonempty set. Let X' be an alphabet and let ¢ be the
empty string, then X'U{e} is denoted by X.. The length of a string w = ay - - - ap,
is written |w|, and for every a € X, |w|, = |{i € [n] | a; = a}|.

Trees. The set Tx of (unranked) trees over the alphabet X consists of all
mappings t: D — X, where D € precl(N). The empty tree, denoted t., is the
unique tree such that dom (t) = (). We henceforth refer to dom (t) as the nodes of t
and write nodes(t) rather than dom(t). The size of ¢, denoted |t is |nodes(t)].

For a tree t € Tx and a node v € nodes(t), the subtree of t rooted at v
is denoted by t/v. It is defined by nodes(t/v) = {v € N* | vv' € nodes(t)}
and, for all v/ € nodes(t/v), (t/v)(v') = t(vv'). The leaves of ¢ is the set
leaves(t) = {v € N* | i € N s.t. vi € nodes(t)}. The substitution of ¢ into
t at node v is denoted t[v « t']. It is defined by

nodes(t[v — t']) = (nodes(t) \ {vu | u € N*}) U {vu | u € nodes(t')} ;

and, for every u € nodes(t[v — t']), if u = vv’ for some v’ € nodes(t') then
tfo — t'](u) = t/(v"), otherwise t[v «— ¢'](u) = t(u).

For atreet € T let v1,...,vx € nodes(t) be the immediate child nodes of the
root ordered by numeric value. That is, {v1,...,vx} = {v € nodes(t) | |v| = 1},
ordered such that v; < v;41 for all i € [k—1]. Then we will write ¢ as f[t1,..., k],
where f = t(¢) and ¢; = t/v; for all j € [k]. In the special case where k = 0 (i.e.,
when nodes(t) = {€}), the brackets may be omitted, thus denoting ¢ as f.

Shuffle operations and shuffle expressions. We recall the definitions of the
operations shuffle and shuffle closure, and of shuffle expressions, from [I517].

The shuffle operation © is inductively defined as follows: for every u € X* it
is given by u ® e = e ® u = {u}, and by

a1ty © agus = {aqw | w € (u1 ©® ague)} U{asw | w € (rus O ua)}
for every aq, g € X, and ug, us € X*. The operation extends to languages with

L1 O Ly = U up © ug .

u1€L1,uz€L2

The shuffle closure of a language £ € X*, denoted L£®, is

LY = EJOOE@C where L% = {¢} and L = L LY .
=3
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Shuffle expressions are regular expressions that can additionally use the shuffle
operators. The shuffle expressions over the alphabet X' are as follows. The empty
string ¢, the empty set (), and every o € X is a shuffle expression. If s; and s,
are shuffle expressions, then so are (s1-52), (51 +52), (s1©s2), 7, and s, where
- denotes concatenation and + denotes disjunction. Shuffle expressions that do
not use the shuffle closure operator are called closure free shuffle expressions.
The language £(s) of a shuffle expression s is defined in the usual way. Shuffle
languages are the languages defined by shuffle expressions.

3 Concurrent Finite-State Automata

In this section, we introduce concurrent finite-state automata (CFSA). They
are inspired by recursive Markov models, but differ in that recursive calls can
be made in parallel. This allows an unbounded number of invocations to be
executed simultaneously, but each symbol can only be read by one invocation.
In Defintion I}, p® is to be read as single symbol. In the later definition of CFSA
semantics, transitions of the form (g, o, ¢’[p®]) will be interpreted as rule schema.

Definition 1 (CFSA). A Concurrent FSA is a tuple M = (Q, X, §, I), where
— (@ is a finite set of states;
— X is an alphabet of input symbols;
— 60 CQ x X. xTis aset of transitions, where T is the finite set

{q,qlp], alp,P'],alp®] | ¢, p, 0 € QYU {tc} .

A transition (g, a,t) € 0 is
o terminal if |nodes(t)| =0,
e horizontal if |nodes(t)| = 1, and
o vertical if |nodes(t)] > 1.
— I C Q is a set of initial states. O

Remark. For simplicity, we henceforth assume, without loss of generality, that
the terminal transitions form a subset of @ x {e} x {t:}.

Whereas a FSA is in a single state at a time, a concurrent FSA maintains
a branching call-stack of states, represented as an unranked tree. In each step,
exactly one leaf node of the state tree is rewritten. Vertical transitions model
the invocation of child processes; horizontal transitions the continued execution
within a process; and terminal transitions the completion of a process. A CFSA
accepts a string if, upon reading the string, it can reach a configuration in which
every processes has been completed, i.e., the state tree is empty.

Definition 2 (Concurrent FSA semantics). A configuration of the CFSA
M =(Q,X,0,I) is a tuple (w,t) € X* x Ty. The set of all configurations of M
is denoted A(M). A configuration (w,t) € A(M) is initial (with respect to the
string w € X*) if t € 1.
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In its initial configuration, M is in the
unique initial state go and has yet to con-
sume any input symbol.

C LU 90)

To proceed, M must nondeterministically
choose the transition (qo, ¢, 95[q1, g2])-

C LLIILTLY, golars q2] )

By the transition (q1, |, ¢1[q1]), M reaches
the configuration

C LI aolaila] g2] )

and by (g1, [, qi[q1]) and (g2, [, g2(g2]) the
configuration

(I, aolarlar[an]], g2la=]] )

Now M nondeterministically guesses that
it is time to read the symbol |. It prepares
by deleting the leaf labelled ¢ using tran-
sition (q1,¢,t:) to get

(10, @lailai] exlee]] )

and then (g1, |,q1) to get

( L)y aoldilan], q2le=]] )
Again, (q1, |, q1[q1]) lets M read |,

( 1), aldildiar]]; aalae]] )
and (g2,¢,t:), (¢2, |, g2) produces

(1), dblailatlarll ae] )
Thereafter, applying the transition se-
quence (q1,¢,t:),(q1, |, q1) twice yields

(& aola,q2] ) -
Although the entire input has been read,
M does not accept until the state tree has
been reduced to the empty tree. This can
be done by applying (q1,¢,t), (g2, €, te)
to get

(e ¢ ),
and finally (g0, €,tc) to reach

(e te) .

Fig. 1. The CFSA M of Example [[] accepts the input string [[[][]]]

Let (w,t), (w',t') € A(M). There is a transition step from (w,t) to (w’,t'),
written (w, t) — (w’,t’), if there is a transition (g, a, s) € ¢ and node v € nodes(t)
such that w = aw’, t/v = ¢ (so v is a leaf), and either

— se€Tg and t’' =tfv « s], or

— s=7p'[p®] and t’:tﬂva’[g,...,gﬂ] for some for p,p’ € Q and n € N.
~

n

As usual, the reflexive and transitive closure of — is denoted —. The language
recognised by M is L(M) = {w € X* | g€ I : (w,q) = (5,t)}. ]

For the sake of brevity only the state-tree part of a configuration, called a con-
figuration tree, may be shown in cases where the string is irrelevant.

Example 1. Let £; and L5 be the Dyck languageﬁﬁ over the symbol pairs |, |
and [, ], respectively. Their shuffle £ = £, ® L5 is recognised by the concurrent

FSA M = ({CIO7Q17(1{76127Q§}7 {|_7J7 |_7-|}767 {QO})7 where

(Q17|_7QI1[CI1]), (q/17J7QI)7
(25, 1,42), (g2,¢:tc) .

=1 (qo0,&.d[q1, ®]), (q0-¢,ts),
(Q1757t6)7 (qQ7 |—7 QIQ[QQ])7

1A Dyck language consists of all well-balanced strings over a given set of parentheses.
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To illustrate the automaton’s semantics, we step through an accepting run of
M on the string w = |[[][]]] (see Figure [l). Note that since w € wy ® wq for
wi =[] ]] € £y and wy =[] € Ly, it follows that w € L1 © Lo. i

It is known that £; = {a™b" | n € N} is a context-free language, but it is not
a shuffle language. Conversely, Lo = {w € {a,b,c}* | |w|, = |w|, = |w|.} is
a shuffle language but is not context-free. Both £ and Lo is recognized by a
CFSA, and so is £1 U Lo, which is neither a context-free nor a shuffle language.
Thus the CFSA languages properly extend both the context-free languages and
the shuffle languages. They also have comparatively nice closure properties.

Theorem 1. The languages recognised by CFSA are closed under union, con-
catenation, Kleene star, shuffle and shuffle closure. They are mot closed under
intersection with a regular language or complementation.

Restrictions and expressive power. The restrictions considered here are as
follows. A CFSA M = (Q, X, 0,1) is

— horizontal if § contains no vertical transitions;

non-branching if every vertical transition is in @ x X' x {¢'[q] | ¢,4' € Q};
finitely branching if no vertical transition is in Q x X x {¢'[¢®] | ¢,¢' € Q};
acyclic if there is no configuration (w,t) € A(M) and state ¢ € Q such that
q appears twice on a path from the root of ¢ to a leaf.

Theorem 2. A language is:

— regular if and only if it is recognised by a horizontal CFSA;

— context-free if and only if it is recognised by a non-branching CFSA;

— a shuffie language if and only if it is recognised by an acyclic CFSA;

a closure-free shuffle language if and only if it is recognised by an acyclic and
finitely branching CFSA.

Since the closure free shuffle languages are regular [I4], we can conclude that
acyclic and finitely branching CFSA also recognize the regular languages.
CFSA do not provide the full power of linear bounded Turing machines:

Theorem 3. The languages recognised by CFSA are properly contained in the
context-sensitive languages.

Since not all CFSA-languages are context-free (e.g., there are non-context-free
shuffle languages), we conclude that their expressive powers lies strictly between
that of context-free grammars and that of context-sensitive grammars.

Also unlike linear bounded Turing machines, CFSA can be efficiently checked
for emptiness.

Theorem 4. The emptiness problem for CFSA is decidable in polynomial time.
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4 Membership Problems

The membership problem for unrestricted CFSA is intractable, both in the uni-
form and the non-uniform case.

Theorem 5. Both the uniform and the non-uniform membership problem for
CFSA is NP-complete.

NP-hardness for the uniform membership problem for shuffle expressions is al-
ready known; see, e.g., [1I2I]. We postpone the hardness proof for the non-
uniform case until Theorem [@ which shows it for a subclass of the CFSA. The
following lemma establishes that the membership problem for CFSA is in NP.

Lemma 1. Given a CFSA M = (Q,X,6,I) and a string w € X* it is possible
to determine if w € L(M) in nondeterministic polynomial time.

Proof sketch. We rewrite M so that if (g,q) = (e,t) for some ¢ € @ and
t € {s €Ty | |s| <2} then (g,¢,t) € 6. The transitions that must be added
to § can be identified in polynomial time by iterating over every ¢ € @) and
every tree t € {s € Tg | |s| < 2}. To determine if (¢,q) = (¢,%.) corresponds to
the emptiness test (which is polynomial by Theorem[]) on M’ = (Q, X, ¢, {q})
where ¢’ C 0 contains only the transitions that reads e.

The extension of § allow us to assume that a run of M never needs to cre-
ate “unnecessary” nodes only to later delete them without reading any symbols
from the input string. Consider any w € L(M) and notice that in the shortest
accepting run of M on w, no intermediary configuration tree ever has more than
|w]| leaves. Otherwise one of those leaves would consume the empty string and
be superfluous. Similarly, no such tree ever has height greater than |Q|(|w|+ 1).
Otherwise some state ¢ must occur more than |w| + 2 times on the longest path,
so at least one section of the path delimited by ¢ nodes reads the empty string,
which means that the run could be shortened by omitting this loop on q.

This establishes that all configuration trees in a shortest accepting run are
polynomial in size of the input string. Since no unnecessary nodes are generated,
only a polynomial number of transitions are needed to go from one configuration
tree to another. Together this means that there is a polynomial that bounds the
length of the shortest accepting run on every string in £(M). Thus, a non-
deterministic algorithm can be constructed by guessing an accepting run and
then verifying that it respects the transitions in ¢. O

We now turn to the membership problem for acyclic CFSA.

Corollary 1. For acyclic CFSA
1. the non-uniform membership problem is solvable in polynomial time, and
2. the uniform membership problem is NP-complete.

The uniform membership problem is NP-complete already for acyclic and finitely
branching CFSA, which only recognise regular languages. This is not too surpris-
ing, since, e.g., the similar NFA(&) from [I3], which also recognize the regular
languages, has PSPACE-complete uniform membership. For some languages,
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CFSA offer a more succinct form of representation than nondeterministic finite
automata (and than the shuffle automata from [I7]). One example is the lan-
guage family {{a"} | n € N}, for which the smallest NFAs (and shuffle automata)
have sizes linear in n, while the smallest CFSAs are logarithmic in n.

Corollary [ states that the problem is polynomial for a fixed automaton
but NP-hard if the automaton is considered input. The question then remains
whether the size of the automaton merely influences the coefficients of the poly-
nomial or if it affects the degree itself. We give a partial answer by showing that
when parameterized by the maximal size of a configuration tree for the automa-
ton, the uniform membership problem for acyclic and finitely branching CFSAs
is not fized-parameter tractable, unless FPT = WJ1]. This class equivalence is
considered very unlikely and would have far-reaching complexity-theoretic im-
plications. For more on parameterized complexity theory, see, e.g., [10].

We state the result for acyclic and finitely branching CFSA, but it could
be equivalently stated for closure-free shuffle expressions. We first define the
parameterized version of the problem.

Definition 3. An instance of the parameterized uniform membership problem
for acyclic and finitely branching CFSA is a pair (M, w) where M is an acyclic
and finitely branching CFSA over a finite alphabet X and w is a string in X*.
The parameter is the maximal size of any configuration tree for M. The question
is whether w € L(M). |

For acyclic and finitely branching CFSA, the maximal size of the configura-
tion trees depends only on the automaton. If the problem was fixed-parameter
tractable, it would have an algorithm with running time f(k) - n¢, where f is
a computable function, k is the parameter (the maximal tree size), n is the in-
stance size, and c is a constant. Theorem [6] gives strong evidence to the contrary.

Theorem 6. The parameterized uniform membership problem for acyclic and
finitely branching CFSA is W/[1]-hard.

The proof is by a fixed-parameter reduction from parameterized clique, which is
known to be W{[1]-complete [I0].

Definition 4. An instance of k-CLIQUE is a pair (G, k), where G = (V, E) is
an undirected graph and k is an integer. The question is whether there is a
set C' C V of size k such that the subgraph of G induced by C' is complete. The
parameter is k. a

Proof sketch. Let (G = (V, E), k) be an instance of k-CLIQUE, and let n = |V|
and m = |E|. We assume that the vertices are named vy, ..., v, and that the
edges are named e; j, where ¢ < j, and construct an alphabet ' =V U E. Next,
we construct a word wg = vf-v5 - - -vE - edges, where edges is any enumeration of
the edges in F. It remains to construct an acyclic and finitely branching CFSA
Mg such that wg € L(Mg) if and only if G has a clique of size k and such that
the maximum configuration tree size for Mg depends only on k. The idea is to

let M read the shuffle of



150 M. Berglund, H. Bjorklund, and J. Hégberg

— a regular language s = (vF + v5 + -+ 4+ v¥)"~F that consumes all copies of
n — k vertex names;

— aregular language t = V* - E* that does the “garbage collection”; and

— k(k —1)/2 copies of a regular language u = X, ;ep(vi - v; - €;5).

Each instance of u will thus consume (one instance each of) the names of two
vertices and the name of the edge that connects the two vertices. Since only k
vertex names are represented in w¢g after s has consumed all copies of n — k of
them, this means that for all copies of u to be matched, there must be k(k—1)/2
edges in G whose endpoints are all in a set of vertices of size k. This, in turn,
means that G has a clique of size k. Constructing an acyclic and finitely branch-
ing CFSA Mg that does this is straightforward. It is also clear that Mg can
be constructed in such a way that the maximum size of a configuration tree is
bounded by O(k?), which makes this a fixed-parameter reduction. a

The following corollary is immediate.

Corollary 2. The uniform membership problem for closure-free shuffle expres-
sions, parameterized by the number of shuffle operators, is W/[1]-hard.

We next show that the shuffle of a context-free language and a regular language
is efficiently recognizable, even if the language descriptions are part of the input.

Theorem 7. The uniform membership problem for the shuffle of two languages,
one represented by context-free grammar and one represented by a nondetermin-
istic finite automaton, is solvable in polynomial time.

Proof sketch. Let G = (N,X,6,5) and M = (Q,X,v,I,F) be a context-free
grammar on Chomsky normal form and an NFA, respectively.

To test membership in £(G) ® L(M), we extend the CYK algorithm for
context-free grammars. A parse triple for G and M over a string w = ay « - - 4,
is a triple (4, q1,¢2) € (N U{e}) x Q x Q such that w € L(My, 4,) ® L(G4),
where My, 4, = (@, 2,7, {1}, {q2}), and G4 = (N, 2,6, A), unless A = ¢ in
which case L(G.) = {e}.

Like in the CYK algorithm the parse triples are computed for each substring,
starting with the substrings of length 1 and then combining triples to form new
triples for successively longer strings. For example, if (4, ¢,¢’) and (B, ¢',q") are
triples for the strings w’ and w” respectively, then (C, ¢, ¢") is a triple for w'w"”
if G contains the rule C' — AB. Since there are at most (|N|+ 1) - |Q|? distinct
parse triples and O(\w\z) substrings, this can be done in polynomial time. In
the end, w € L(G) ® L(M) if and only if there is a parse triple (S, g, ¢r) for the
whole of w such that S is the start symbol of G, q; € I, and gp € F. O

Since acyclic and finitely branching CFSA only contribute a more compact repre-
sentation of the regular languages, Theorem [] extends to non-uniform member-
ship for the shuffle of a context-free language and a closure-free shuffle language:

Corollary 3. The non-uniform membership problem for the shuffle of two lan-
gquages, one represented by a context-free grammar and one represented by an
acyclic and finitely branching CFSA, is solvable in polynomial time.



Recognizing Shuffled Languages 151

Extending Theorem [7] with techniques inspired by [1I7], we get the following:

Theorem 8. The non-uniform membership problem for the shuffle of a shuffle
language and a context-free language is solvable in polynomial time.

Proof sketch. Assume that the languages are represented by an acyclic CFSA
M and a context-free grammar G. Just as in the proof of Theorem [7 we extend
the CYK algorithm to work with triples. The only difference is that each triple
consists of a nonterminal from G and two configuration trees for M.

For the algorithm to run in polynomial time, the number of configuration
trees that need to be stored must be polynomially bounded. It can be shown
that this is the case by taking advantage of symmetries in the configuration trees.
Intuitively, the shuffle-closure should be applied as sparingly as possible. a

Next, we show that the uniform membership problem for £(A;) ® £(Az), where
L(Ay) and L(A2) are context-free languages, is NP-complete. The construction
makes use of push-down automata (PDA), which are well known to be equiv-
alent to context-free grammars and can be obtained from them in polynomial
time. It also uses two-stack PDA, which have two independent stacks, and are
known to be equivalent to Turing machines. NP-hardness is demonstrated by
constructing two reductions. The first is a polynomial reduction which takes
an arbitrary nondeterministic Turing machine and constructs two context-free
languages, L(Agim) and L(Acomp), which depend only on the Turing machine.
The second reduction takes any string w and constructs a string w’ so that
w' € L(Asim) @ L(Acomp) if and only if w is accepted by A. This second reduc-
tion will be polynomial in |w| 4+ n, where n is the number of steps that A takes
to accept or reject w, which means that A can only be simulated a polynomial
number of steps with a polynomial reduction, but this is sufficient to solve all
problems in NP.

The nondeterministic Turing machine A is assumed to actually be rep-
resented as a nondeterministic two-stack push-down automaton. We assume,
without loss of generality, that A always starts by reading its entire input onto
its first stack, and that the input alphabet is {0,1}. Additionally, we assume
that there is a polynomial P such that A accepts or rejects a string w in at most
P(|wl|) steps.

The input string reductions takes any valid input w for A and constructs
w’ = w - $$ [[push,push, pop,pop; ]][[pushypush; pop,pop; ]

! P A
P(|w]|) copies

The output alphabet of the reduction is {0, 1, push,, push,, popy, popy, |, [, $}-

The push-down automaton A, is constructed to simulate A. A string is
a wvalid stack run (VSR) if it is of the form [pushg][push,][pop,], that is, the
push/pop symbols surrounded by brackets, such that each pop,, = € {0,1},
corresponds to a push, earlier in the string. The stack discipline must be main-
tained; [push,][pushy][pop;] is not a VSR. Ay, is constructed from A so that:
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a string w is accepted by A if and only if there exists some VSR s such that
w-8$-s € L{Agm). The trick is that Ay, simulates the first stack of A on
its own (only) stack, and then exploits this VSR suffix string to simulate the
second stack of A. With this idea in place, the simulation is straightforward. By
assumption, A starts by reading all of its input onto its first stack. Thus Agm,
reads all input up until the $ symbol onto its stack and then discards $. At this
point, A and Ag;,, are in equivalent states. If A contains a rule of the form “if
in ¢ we may pop 0 from the first stack and 1 from the second, in which case we
push 1 onto the second stack and go to state ¢'”, then Ay, can, from state g,
pop 0 from its stack, read the string “[pop;|[pushy]”, and go to state ¢'.

The context-free language L(Acomp) is in the shuffle to read the “extra-
neous” symbols from the constructed input string so that the remainder be-
comes exactly what A, expects. It always starts by reading $, then, for each
[[pushy ...]] template, it reads the extra bracket pair, and three of the stack
operations, so that the remainder is any possible VSR (as described above). For
example, since [push, |[pushy][popy] is & VSR there is a string

$[push,popypop; |[push; popypop, | [pushypush; pop;] € L(Acomp)-
Constructing this grammar is trivial (start with a Dyck language).

Theorem 9. For the shuffle of two context-free languages, the non-uniform
membership problem is NP-complete.

Proof sketch. The problem is trivially in NP, whereas NP-hardness follows from
the construction above. Take a nondeterministic Turing machine A and construct
Agim and Agomp as above. Take any string w and construct w’ = w-$$- [[....
What then happens is that Acopmp will from w’ read one dollar-sign, and then
for each double-bracketed substring read one bracket-pair and three of the four
stack operation, in such a way that the remainder of the input will have the
form w - $ - s for all possible VSR s. By construction, there exists such a string
that is a member of L(Agm,) if and only if w is accepted by A.

Acomp is a constant language, Ay, depends only on A, |w’'| is polynomial in
the size of the input string w, and the number of steps taken by A (assumed to
be polynomial), establishing non-uniform NP-completeness. a

5 Conclusions and Future Work

Concurrent finite-state automata combine the expressive power of context-free
and shuffle languages. The CFSA languages are properly included in the context-
sensitive languages, and minor restrictions of the device suffice to obtain the reg-
ular, context-free, and shuffle languages, respectively. CFSA have comparatively
nice closure properties, and can be sanity-checked in polynomial time.

To be of practical use, at least the non-uniform membership problem needs to
be efficiently decidable. This is known to be true for the shuffle languages, but our
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analysis shows that the efficiency depends heavily on the number of shuffle oper-
ations used. We also obtain that the non-uniform membership problem remains
polynomial for the shuffle of a shuffle language and a context-free language. For
the shuflle of two context-free languages, however, it is NP-complete.

Ideally, also the uniform membership problem should be solvable in polyno-
mial time. The only language class we studied for which this is the case, unless
P=NP, is the interleaving of a regular language and a context-free language.

Future work will strive to determine the complexity of the non-uniform mem-
bership problem for further restrictions of CFSA. If even very sparse use of shuf-
fling has a large negative impact on the complexity, one could consider replacing
the shuffle operator with weaker alternatives, such as unordered shuffle.
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Abstract. A partial word is a sequence of symbols over a finite alpha-
bet that may have some undefined positions, called holes, that match
every letter of the alphabet. Previous work completed the classification
of all unary patterns with respect to partial word avoidability, as well as
the classification of all binary patterns with respect to non-trivial par-
tial word avoidability. In this paper, we pose the problem of avoiding
patterns in partial words very dense with holes. We define the concept
of hole sparsity, a measure of the frequency of holes in a partial word,
and determine the minimum hole sparsity for all unary patterns in the
context of trivial and non-trivial avoidability.

1 Introduction

Notions and techniques related to patterns such as repetitions in strings find ap-
plications in several areas of theoretical and applied computer science, notably
in text processing, data compression, computational biology, string and pattern
matching algorithms (see [7] for an overview on repetitions in strings). In pattern
matching, several algorithms take advantage of the repetitions of the pattern to
speed up the search of its occurrences in a text. On the other hand, non-repetitive
sequences, those avoiding patterns such as squares, or square-free words, have
been used to build several counterexamples in context-free languages, groups, lat-
tice of varieties, partially ordered sets, semigroups, symbolic dynamics, to name
a few (see [§| for a survey on pattern avoidance). For example, Main, Bucher
and Haussler found applications of an infinite square-free co-CFL language [11].
They proved several conjectures on context-free languages by using the set of all
words that are not prefixes of the Thue-Morse infinite sequence, well known to
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be square-free, which provides a CFL language with an infinite square-free com-
plement. Words avoiding more general patterns than squares find applications
in algorithmic problems on algebraic structures.

The topic of (un)avoidable patterns in words has been extensively studied,
providing a framework for better understanding properties of repetitive and
non-repetitive sequences. A pattern p is a non-empty word over an alphabet
of variables, which are usually denoted by «, 3, ~, etc. The terminology of avoid-
able pattern was introduced by Bean, Ehrenfeucht and McNulty [2] and by Zimin
[21]. They proved the fundamental result that it is decidable whether a pattern p
is avoidable; in fact, if p is over m variables, then p is avoidable if and only if w,,
avoids p, where w,, is recursively defined by w; = 1 and w,, = Wp,_1MWm_1,
m > 1. However, the complexity of deciding avoidability has remained open.
The problem “Is it decidable, given a pattern p and an integer k, whether p is
k-avoidable (or avoidable over a k-letter alphabet)?” has also remained open.
An alternative is the problem of classifying all the patterns over a fixed number
of variables m, that is, to find the smallest & such that p is k-avoidable, called
the avoidability index of p, where p is such pattern. In the context of full words,
the case m = 1 of the unary patterns, or powers of a variable «, were investi-
gated by Thue [19)20]: « is unavoidable, aa is 2-unavoidable but 3-avoidable,
and o™ with n > 3 is 2-avoidable. The case m = 2 has been completely clas-
sified [BITOITOITT7IIR], the case m > 3 has also been the subject of investigation
[BUTOUT3].

An understanding of avoidable patterns is needed in the more general context
of partial words, which allow for incomplete or corrupted data. A partial word
is a sequence of symbols over a finite alphabet that may have some undefined
positions, called holes, denoted by ¢’s. Here ¢ is compatible with, or matches,
every letter of the alphabet. In this context, in order for a pattern p to occur in
a partial word, for each variable a of p, all of its substituted partial words be
pairwise compatible. For the case m = 1, both a and a« are unavoidable, and
so their avoidability indices in partial words is co. In [I2], the case of a™,n > 3
was considered, the avoidability index in partial words being two, settling the
classification of the unary patterns. For the case m = 2, it turns out that with
respect to non-trivial avoidability, in which no variable is substituted by only
one hole, the avoidability index of a binary pattern, one over two variables «
and 3, coincides for both the partial and the full word cases [4]; the avoidability
indices of almost all binary patterns in terms of (not restricted to non-trivial)
avoidability have also been found.

In [14], the authors introduce the concepts of c-approximate and a-similarity.
Here a word uwv with |u| = |v]|, is considered to be a c-approximate square, if u
and v differ on at most ¢ positions, and a a-similar square if the ratio between
the number of positions u and v agree on and the distance of u is at least a. As
we can see one of the notions is “additive,” while the other “multiplicative,” but
both definitions are based on the Hamming distance representing the number of
positions on which u and v differ.
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Following all this, the next problem is how “dense” in holes can a partial word
defined over a fixed alphabet be, while still avoiding a given pattern. In this
paper, we define a new concept, that of hole sparsity, representing the minimum
length each factor of an infinite word should have, such that it contains at least
a hole. Based on this notion, we compute the minimum hole sparsity necessary
for a word defined over an alphabet of size k to avoid a unary pattern a™.

The contents of our paper is as follows: In Section [2 we recall the basic
definitions regarding partial words and patterns in partial words. In Section [3]
we introduce the concept of hole sparsity, which measures the frequency of holes
in a partial word. Moreover, we pose the problem of determining the minimum
hole sparsity a partial word can have while still avoiding a pattern, and present
some tools that are useful for deciding the avoidability of a pattern over a given
alphabet with a given hole sparsity. In Sections @ and Bl we determine this
minimum hole sparsity for unary patterns, for words over alphabets of all sizes,
in the context of trivial and non-trivial avoidability. Finally in Section [ we
conclude with our classification of all unary patterns with respect to hole sparsity.

2 Preliminaries

For more information on partial words, the reader is referred to [3]. For patterns
in full (resp., partial) words, he/she is referred to Chapter 3 of [10] (resp., [@]).

Throughout this paper, A is a fixed non-empty finite alphabet. A finite partial
word of length n over A can be defined as a function w : {0,...,n — 1} — A,
where A, = AU{o}. We call the elements of A letters (the symbol ¢ is not called
a letter). Write |u| for the length of u. For 0 < ¢ < n, if u(i) € A, then i belongs
to the domain of u, denoted D(u), and if u(i) = o, then ¢ belongs to the set
of holes of u, denoted H(u). Whenever H(u) is empty, u is a full word. Refer
to an occurrence of the symbol ¢ as a hole. Denote by A* (resp., A%) the set
of all finite words (resp., partial words) over A. Abbreviate A*\{e} by A" and
A:\{e} by A}. Under the concatenation operation, A* and A} form monoids
whose identities are the empty word denoted by . An infinite partial word over
A is a function v : N — A,.

A partial word v is a factor of the partial word w if there exist x,y such that
u = zvy. If & = ¢, then v is a prefiz of u; if y = €, then v is a suffix of w.
The powers of a finite partial word u are defined recursively by u® = ¢ and for
n > 1, " = wu™"!. Two partial words u and v of equal length are compatible,
denoted u T v, if u(:) = v(i) whenever ¢ € D(u) N D(v). If w,v are non-empty
and compatible, then uwv is called a square. The partial word u is contained in v,
denoted u C v, if |u| = |v| and u(i) = v(¢) for all ¢ € D(u).

Let E be a non-empty finite set of symbols, £ N A = (), whose elements are
denoted by «, 3,7, etc. Symbols in E are called variables, and finite words over
E are called patterns. The pattern p = «aq - - - a1, where each «; is a variable,
occurs in a partial word w (or w meets p) if there is a factor ug - - up—1 in w,
where u;,u; are non-empty and compatible whenever a; = «;; otherwise, w
avoids p or w is p-free. An occurrence ug - - - U,—1 of p is non-trivial if u; # ¢
for all ¢ = 0,...,n — 1. Otherwise, the occurrence is called trivial. We call w
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non-trivially p-free if w contains no non-trivial occurrence of p. For instance,
the pattern affa occurs in abob a ¢ bba, while cbabbbaaab avoids affa (the
underlined occurrence of a3f« is trivial).

A pattern p is k-avoidable if there are infinitely many partial words in A}
with A holes, for any integer h > 0, that avoid p, where A is any alphabet of
size k. Note that if there is a partial word over A with infinitely many holes
that avoids p, then p is obviously k-avoidable. On the other hand, if, for some
integer h > 0, p occurs in every long enough partial word in A} with h holes,
then p is k-unavoidable (it is also called unavoidable over A). Finally, a pattern
p which is k-avoidable for some k is simply called avoidable, and a pattern which
is k-unavoidable for every k is called unavoidable. The avoidability index of p is
the smallest integer k£ such that p is k-avoidable, or is oo if p is unavoidable.

If a pattern p occurs in a pattern ¢, then p divides ¢, denoted by p | q. For
example, aa { afa but aa | afaf. When both p | ¢ and ¢ | p hold, p and ¢ are
equivalent; for instance, acr and (B are equivalent.

3 Hole Sparsity

Results for pattern avoidance in partial words have thus far been obtained by
hole insertions in selected positions of full words (the letters in selected positions
are replaced by holes). In [], for example, a binary partial word with infinitely
many holes that avoids the pattern afafa is constructed, and has at least 80
letters between any two consecutive holes. We are interested in determining how
frequently holes can appear in a word that avoids a given pattern. First, we give
a precise definition of the notion of “frequency of holes.”

Definition 1. The hole sparsity of a partial word w is the smallest positive
integer A such that every factor of w of length A contains at least one hole. In
this case, we call w A-sparse.

For example, aboboacobeoa is 3-sparse, since every factor of length three contains
at least one hole and there is a factor of length two that has no holes.

For a fixed pattern p and fixed alphabet A of size k, we want to determine
the smallest A so that an infinite A-sparse word over A avoids p.

Definition 2. Let p € ET be a pattern.

— Define the non-trivial minimum hole sparsity for p over an alphabet of size k,
denoted xi(p), to be the smallest positive integer A such that there exists an
infinite A-sparse word w over a k-letter alphabet that avoids all non-trivial
occurrences of p. If no such integer exists, then xr(p) = co.

— Define the minimum hole sparsity for p over an alphabet of size k, denoted
X1(p), to be the smallest positive integer X such that there exists an infinite
A-sparse word w over a k-letter alphabet that avoids all occurrences of p
(including trivial occurrences). If no such integer exists, then xj(p) = oo.

We have the following lemma regarding (non-trivial) minimum hole sparsity.
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Lemma 1. For p,q € ET and integer k > 0, the following statements hold:

1. xk(p) = 2;
2. If k <K, then xx(p) = xw (p);
4. If p is k-unavoidable, then xi(p) = oo.

Statements 1-4 hold for the xj, function as well.

Proof. We prove the lemma for the y; function. Statement 4 is trivial, while for
Statement 1, we point out that if an infinite word is 1-sparse, then it consists
only of holes, and therefore meets every pattern. For Statement 2, if k < k’, then
a A-sparse word avoiding p over the k-letter alphabet will also avoid p over the
K'-letter alphabet. We prove Statement 3 similarly by noting that if p | ¢ then a
word that avoids p also avoids q. a

Moreover, the backtracking algorithm given in Chapter 2 of [6] can be easily
adapted to list all the A-sparse words over an alphabet of size k that trivially
or non-trivially avoid p. The following useful definition differs from the usual
preimage definition in that, for all y € ¢~!(z), we do not require that = = o(y),
but only that z is a factor of ¢(y).

Definition 3. Let A and B be alphabets, let ¢ : A* — BT, and let p be a
pattern. We define the preimage of p under ¢, denoted ¢~*(p), to be the set of
all w € A* for which o(w) meets p.

4 Non-trivial Minimum Hole Sparsity for Unary Patterns

In this section, we consider all non-trivial occurrences of o™, where n > 1. Since
« is unavoidable over a k-letter alphabet and ™ is unavoidable over the unary
alphabet, yr(a) = oo and yxi(a®) = oo for all k,n > 1. The pattern o? is
unavoidable over the binary alphabet [19], hence, x2(a?) = oo. Moreover, for
all k > 1, xx(a?) > 3. The latter is due to the fact that acob, acboco, cabo are

compatible with the non-trivial squares, (ab)?, (acb)? and (ba)?.
Lemma 2. For all k > 4, xx(a?) = 4.

Proof. Let A = {a,b,c,d} and consider the morphisms p : A* — A* defined
by p(a) = ad, p(b) = be,p(c) = ab,p(d) = ba, and o : A* — A} defined by
o(a) = dcao, o(b) = beao, o(c) = dbao, o(d) = bdao. Note that the morphism p
has been previously studied; see, for example, exercise 33(c) of 1.6 in [I] (after
a permutation of letters d — ¢ — b — d). We show that the 4-sparse word
o(p¥(a)) avoids non-trivial squares.

Let us first show that p“(a) is square-free. By contradiction, assume that p“(a)
contains a square, and let u? be the smallest factor in p*(a) that is a square. It
is trivial to note that |u?| > 4. Checking all four-length factors of p“(a) we see
that every such factor must contain a c or a d, and therefore u? must contain
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either two ¢’s or two d’s. Since ¢’s and d’s only occur at odd positions in p“(a),
it follows that |u| must be even.

Suppose u begins with a, the case in which u starts with b is symmetrical.
Note that, the second letter of w is either b or d. If it is d, then u? = adu’adv’, for
some u’ € A*. According to the definition of p and the fact that this morphism
is prolongable, there exists a factor x € A* of p*(a), such that u? = p(z)?. This
is a contradiction with the minimality of w. If the second letter of u is b, then ab
is an image of either ¢ or db (since p(db) = babc). If the preimage is ¢, we reach
another contradiction in the same manner. If the preimage is db, it follows that
bu? = babu'babu’b is a factor of p*(a), for some u’ € A*. Once more we reach a
contradiction. Now let us suppose u begins with ¢, the case when u starts with
d is symmetrical. Since b always preceeds ¢, we have bu? = beu'bcu/a is a factor
of p“(a), for some v’ € A*. A contradiction is reached similarly to the previous
cases, and we conclude that p“(a) is square-free.

Assume now, to the contrary, that o(p“(a)) contains a factor uv where u T v
with |u| = |v|. Furthermore, every fourth symbol of o(p*(a)) is an a. If Ju| < 3,
then the only combinations of images of o that contain squares are odbacb and
obdaod, but none of their preimages, xcb, xed, xda or xzde, occur in p“(a). Thus,
|u| > 4, and we show that |u| is divisible by 4. Since |u| > 4, it must be that
both w and v contain a’s. If the a’s occur in corresponding positions, then |u| is
divisible by 4. If not, then without loss of generality we assume that an a in u
corresponds to a ¢ in v. But then the a preceding the hole in v corresponds to
the symbol that precedes the a in u, which is neither a nor ¢, a contradiction.
Note that if u begins with a, since v begins with a hole, it must be that u ends
in a, and this correspondz to a hole at the end of v, a contradiction according
to the previous case. It follows that u T v implies © = v, since ¢’s in u occur in
the same positions as those in v. Hence, we may refer to uv as u?.

Let us look at the position of the first hole in . If u(3) = ¢, then u starts with
one of the images of o, and since |u| is divisible by four, it follows that for some
r € A* we have u? = o(xx), which is a contradiction with the fact that p“(a)
is square-free. If u(0) = o, we consider the square that begins at u(1) and ends
with the ¢ that follows u?, which leads to a contradiction as shown above. If
u(1) = o then u begins with ao and u? must be followed by ac. Considering the
square that starts at u(2) a contradiction follows as shown above. Finally, assume
u(2) = o. If u starts with b or d, then we know the letter that precedes u, and we
find a new square starting with that letter and obtain a contradiction. If u starts
with ¢, then u? = caou'zcaou”z, where v’ = u” € A% and z € {b,d}. Suppose
u? is preceded by d, the case for b is similar. In order to avoid a contradiction
similar to the previous cases, we have z = b. Since the preimage of dcac under o
is a, and, in p*¥(a), a is always followed by b or d, it follows that the first letter of
u’ is b. However, by similar reasoning the first letter in u” is a d, a contradiction
since the latest d corresponds to the b in the first copy of w. a

Next we consider x3(a?). The backtracking algorithm gives us the bound of
x3(a?) > 7. We show that this bound is tight.

Lemma 3. The equality x3(a®) =7 holds.
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Proof. Let A = {a,b,c,d} and B = {a,b,c}, and the morphism p defined
as in Lemma [l Define 7 : A* — B} by w(a) = abcbacoboacbabeo, w(b) =
bacabcoaobcabaco, w(c) = abecacho, and m(d) = bacbcaoc. We show that m(p*(a))
avoids non-trivial squares. Suppose to the contrary that I = w(p“(a)) contains
a factor uwv where u 7 v. Note that, every length two factor of p“(a) has an
image under 7 of length at least 23. Moreover, all squares of length at most 24
are contained in the image of a factor of length three of p“(a). There are ten
such factors aba, abe, adb, bab, bad, bea, cab, cad, dba and dbc, and, by exhaustive
checking, we conclude that their images under 7 are square-free. Thus, it must
be that |uv| > 25.

Let us now show that v = v. In particular, we show that there are no two
non-identical factors of length nine that are compatible. Looking at all 54 length
nine factors of IT obtained from the ten factors of p¥(a) described above, we get
that no two are compatible. Hence, all compatible factors of IT of length nine or

greater must be equal. Since |u| = |v| > 12, we must have u = v.
Looking again at the position of the first hole in u and using an approach
similar to the one in the proof of Lemma [2] the conclusion follows. O

Let us now move on to o and first show that x2(a®) = 3. The backtracking
algorithm gives the lower bound x2(a®) > 3.

Lemma 4. The equality x2(a®) = 3 holds.

Proof. Let A ={a,b,c} and B = {a,b}, and define the morphisms § : A* — A*
by é(a) = ab, §(b) = bc and 6(¢) = ab, and v : A* — B by v(a) = aao,
v(b) = abo and v(c) = bbo. Note that replacing each ¢ in § with a yields the
Thue-Morse morphism. It is well-known that the Thue-Morse word avoids the
patterns a3 and aBaBa [9]. Thus, §“(a) also avoids these patterns.

We show that v(6“(a)) avoids non-trivial cubes. Suppose towards a contradic-
tion, that there exists a non-trivial cube ujusug in v(6%(a)), where uy, us, uz C u
for some v € B and u; # ¢ for all i. We first look at the possible starting letters
of u, ug and wug in order to show |u| = 0 mod 3.

If |lul =1 or 2 mod 3 and |u| > 3, then, because of the compatibility, the u;’s
must begin one with xy¢, one with zoz, and one with oyz, where z,y,z € B.
If zy = aa, then the factor acz implies z = a. The factor aac is followed by a,
while aca is followed by b, yielding a contradiction. If xy = ab, then the factor
aoz implies z = a, but the factor ¢bz implies z = b, a contradiction. Finally, if
xy = bb, then the factor obz implies z = b. The factor bob is followed by b, while
bbo is followed by a, a contradiction. Since |u| = 1 implies the occurrence of a
trivial cube, this leaves |u| = 2 in the case when |u| # 0 mod 3. In this case, u?
is contained in the image of a factor in 6 (a) of length three. It is sufficient to
compute all such factors and check their images to see that none of their images
under v contains a cube.

For |u] = 0 mod 3, we note that v = u; = us = us. The conclusion follows
similarly to the proof of Lemma 2, based on the position of the first ¢ in . 0O

Lemma 5. For all k,n > 3, xr(a™) = 2.
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Proof. From Lemmal[llwe have x3(a®) > 2, so it suffices to show that y3(a?) = 2.
Let A = {a,b,c} and consider ¢*“(a), where ¢ : A5 — A} is given by ¢(a) =
aoboaoe, o(b) = aob, p(c) = aoc and p(¢) = o. Observe that ¢“(a) alternates
letters and holes, and hence is 2-sparse. Suppose towards a contradiction, that
©¥(a) has a factor ujugus with uy, ug, us C u, for some v € A%. If |u| is even,
since holes must occur in the same positions in the w;’s, it follows that © = u; =
u2 = uz. Moreover, a appears in ¢“(a) exactly once every four symbols. Since
|u3| > 6 and u? is a cube, u3 contains an a in each of the three copies of u. Thus,
|u| = 0 mod 4.

Assume that u® begins with an a. The other cases are similar since either
the second symbol in u? is an a, there is an a immediately to the left of u3,
or there is an a before the symbol that precedes u?. In all these cases u? shifts
so that it starts with a. Break u? into factors of length four, each of which is
either s = aobo or t = acco. We can therefore rewrite ¢ (a) in terms of s and
t, such that the cubes in ¢*(a) correspond to cubes in the new word. Note that
p(s) = acboaoccoacbo = sts and p(t) = acboaccoacco = stt, and that this new
word is equivalent to ¢'“(s), where ¢’ : {s,t}* — {s,t}* is given by ¢'(s) = sts
and ¢’ (t) = stt. We reach the desired contradiction using a result of Richomme
and Wlazinski, who show in [I5] that a morphism ¢” on {s,¢}* avoids cubes
if and only if ¢”(ssttststtsttsstsststsstt) is cube-free. It is straightforward to
compute ¢’ (ssttststtsttsstsststsstt) and check that it does not have any cubes.

If n = |u| is odd, then w; T us implies u; = us. Hence, we refer to ujusus
as zyx, where x 1 y. Moreover, we may suppose that 2(0) = o, since otherwise,
there is another cube, of equal length, starting at x(1) = <. Since z(0) = o, and
|| is odd, we have x = ox’o with 2’ € Aj. Since we can break ¢*(a) into factors
of length four that are either acb¢ or aoco, by induction, we deduce that between
any two arbitrary identical letters there are oddly-many letters. Counting the
number of letters between the first letter in the first occurrence of x and the one
in the second occurrence, we get that this number is even. This is a contradiction
with the previous remark, hence, the conclusion follows. a

Next, we show that for a™,n > 4, a binary alphabet is enough for constructing
an infinite word having a hole every two symbols.

Lemma 6. For alln >4, x2(a™) = 2.

Proof. Let A = {a,b} and define p : A5 — A% to be p(a) = aob, u(b) = aca and
p(0) = o. We show that p*(a) is free of fourth powers. Assume that p*(a) has
a factor ujugugug such that wy, us, us, us C u, for some u € A3.

If |u| is even, since the holes align, we have u = u; = ug = usz = ug. Assume
that u* begins with a letter. If it is not the case, then there is a fourth power
of equal length that starts at the second symbol of u*, which must be a letter.
Break u* into factors of length two, each of which is either s = ao or t = bo. We
can therefore write u“(a) in terms of s and ¢, and the fourth powers in u*(a)
correspond to fourth powers in the new word. Since p(s) = acbo = st and p(t) =
acad = ss, the new word is equivalent to p/“(s), where u' : {s,t}* — {s,t}* is
given by p/(s) = st and p/(t) = ss. We now show that p/*(s) is 4th powers free.
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Assume p/“(s) has a factor v* and that v* is the smallest fourth power in
p'“(s). Since, from the definition of u/, between two consecutive t’s there are
either one or three s’s, by induction, there are an odd number of letters between
any two t’s. Moreover, v* > 4 and v* must contain a ¢ and, hence, each copy of
v must contain a t. Thus, |v| must be even. Let v/ € {s,¢}*. If v = stv’, then
the preimage of v* under p’ is unique and contains a fourth power. Since ' is
prolongable, this contradicts the minimality of v. If v starts with ¢, then v is
preceded by s, and there exists again a fourth power which is covered above. If
v = sstv’, then v is preceded by ts, and there is also a fourth power (tssstv’)*,
covered above. Finally, if v = ssstv’, then v is preceded by ¢, and there is a
fourth power (tssstv’)* in p/“(s), which is covered above.

Next, suppose that n = |u| is odd. Note that, uy 1 uz implies u; = uz and
us T ug implies us = uy, and a b occurs at least every 8 symbols. Since |u4\ > 8,
there is at least one b in u*. Assume without loss of generality that b occurs in
u1. Then, there is a corresponding b in u3, and between the two b’s there are
2n — 1 symbols. The remainder of the proof is identical to that of Lemma a

5 Minimum Hole Sparsity for Unary Patterns

Note that xj (o) = xj(a™) = oo for all k,n > 1. Since factors of the form ao or
oa appear in all infinite partial words having holes, X (a?) = oo for all k > 1.

Looking at trivial cubes, any 2-sparse word meets the pattern o, since any
letter a is preceded and followed by a hole. Thus, for all k¥ > 1, we have the lower
bound x;(a?) > 3. For k > 3, we show that the bound is tight.

Lemma 7. For all k > 3, x;(a?®) = 3.

Proof. Let A ={a,b} and B = {a,b, c}, and define the morphisms £ : A* — A*
by &(a) = ab and £(b) = ba, and 7 : B* — B} by 7(a) = abo and 7(b) = aco.

We show that 7(£“(a)) avoids cubes. Suppose to the contrary that 7(£“(a))
has a factor ujugus where uy, us2, ug C u, for some u € A%. If |u| =1 or 2 mod 3
and |u| > 3, then, again due to compatibility, the u;’s must begin one with zyo,
one with zoz, and one with ¢yz, where x,y, z € B. Furthermore, since ¢ is always
followed by a, we must have x = y = z = a, which is absurd. If |u| < 2, then
u? is contained in the image of a factor in £¥(a) of length 3. It is sufficient to
compute all such factors and check their images under 7 for cubes. None of the
images of these under 7 contains a cube.

For |u| = 0 mod 3, we note that u = u; = ug = us.

If u = au’ for ' € B}, then the preimage of u? in £“(a) contains a cube, a
contradiction since £ is the cube-free Thue-Morse morphism. If, instead, u = xu’,
x € {b,c,o}, then we can easily find another perfect cube that begins one symbol
to the left, in the case x = b or = ¢, or to the right, in the case x = ¢, of
u(0). The new perfect cube has the form (au’)?, which leads to a contradiction
as shown above. O

We complete the computation of xj (a®), k > 1, with the following lemma.
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Lemma 8. The equality x3(a®) = 7 holds.

Proof. The backtracking algorithm gives the lower bound of 7. Let A = {a, b},
£: A* — A* the Thue-Morse morphism from the proof of Lemma [7, and define
¢: A* — A% by ((a) = babaaboabbabao and ((b) = baabbac.

We show that ((£“(a)) avoids cubes. Suppose towards a contradiction that
¢(€¥(a)) contains a factor ujusus, where uy, ue,us C u for u € A%. Since every
factor v of £¥(a) with |v| > 7 has an image ((v) such that |((v)| > 70, every
length 63 factor of ((£“(a)) is contained in the image of a factor w of length
eight of £“(a). There are 22 possible such factors and by exhaustive checking we
find out that none contains cubes. Thus, we have |u| > 21.

The same as in the proof of Lemma [B] we show that in ((£“(a)) there are
no two non-identical factors of length 21 that are compatible. In particular, we
check that each of the 51 factors of length 21 of ((£¥(a)) is not compatible with
any other length 21 factor. It follows that any two compatible factors of {(£¥(a))
of length 21 or greater must be equal. Since |u| > 21, we have u = u; = us = us.

Since u? is sufficiently long, it contains the factor ((b) = baabbao. If ((b) is
a factor of u then u = u/¢(b)u” with v"v' = ((w), for w € A*. Hence, the
Thue-Morse word, contains the factor bwbwb, a contradiction since this word is
overlap-free. If ¢(b) is not a factor of u, then u = v'u"v"" with v« = ((b) and
u” = ((w), for w € A*. This implies that the Thue-Morse word contains the
factor wbwbw, again a contradiction. a

The following two lemmas settle a?.
Lemma 9. The equality x3(a*) = 3 holds.

Proof. The backtracking algorithm provides the lower bound. Let A = {a, b},
£: A* — A* the Thue-Morse morphism from the proof of Lemma [7, and define
Kk A* — A% by k(a) = aboabobaobao and k(b) = aboaboabobacbas.

We show that x(£¥(a)) avoids fourth powers. Suppose to the contrary that
k(€Y (a)) contains a factor ujususug with wuy, ug, us,us C u, for some u € A%.
Every factor v of £“(a), |v| > 2, has an image k(v) such that |«(v)| > 24. Hence,
every length 24 factor of k(¥ (a)) is contained in the image of a factor of length
3 of £€¥(a). Since none of the images of these six factors contains fourth powers,
we conclude that |u| > 7.

Moreover, suppose that |u| Z 0 mod 3. Since every third symbol is ¢, at least
one of the u;’s must begin with zyo, where x,y € A and z # y. To maintain
compatibility, another u; must begin with oyx, while the third must begin with
zox. Furthermore, the factor xox must be followed by yo, while the factor zyo
must be followed by yx¢ and the factor ¢yx must be followed by oxy. We conclude
that one of the u;’s should start with x¢xyoy, but since neither acabob nor bobaca
appear in k(£ (a)), this is a contradiction. Therefore, we have 7 < |u| = 0 mod 3.

Next, if |u| = 0 mod 3, then u = u; = us = u3z = uy4, and since |ut| > 28, it
must have the factor bacbac at least once. Because u* has four occurrences of u,
the factor bacbac must appear at least three times. Taking the preimages of the
last three (identical) factors that end with baobao, we obtain a cube in £“(a), a
contradiction since the Thue-Morse word £¥(a) is cube-free. O



Unary Pattern Avoidance in Partial Words Dense with Holes 165
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Lemma 10. For all k > 3, x;(a?) = 2.

Proof. Lemma [l gives the lower bound. Let A = {a,b,c} and define a new
function p’ : AY — Af as follows p/(a) = aob, ' (b) = acce, (/' (c) = aob and
' (¢) = o. Furthermore, note that the infinite word p'“(a) is simply a copy
p¥(a) from Lemma [6 in which some a’s have been replaced with ¢’s. Since a
non-trivial fourth power in p“(a) implies the presence of a non-trivial fourth
power in u“(a), which is impossible, we have that p'“(a) is non-trivially 4th
power free. It is easy to check that p'“(a) avoids trivial fourth powers as well,
since no two consecutive letters of p'“(a) are the same. O

The next two lemmas consider o', where n > 5.
Lemma 11. The equality x5(a®) = 3 holds.
Lemma 12. For alln > 6 and k > 2, xj(a") = 2.

Proof. We show that the Thue-Morse word £“(a) from Lemma [[ with a hole
inserted between every two letters is 6th power free. Suppose to the contrary that
the new word w contains a factor ug - - - us, where u; C u for some u € {a,b}?
and i € {0,...,5}. Moreover, assume that ug---us begins with a letter, for if
it begins with a ¢ then we consider the sixth power in w that begins with the
second symbol of ug - - - u5 and ends with the hole that follows ug - - - us.

Let vg = wouy, v1 = ugus, V9 = ugus, and v = u? so that V0, V1,2 C 0.
We have that |v] = 2Ju| is even, and so vg = v; = vy since the ¢’s occur in
corresponding positions in all v’s. We break vivovs into factors of length two,
each of which are a¢ or bo. Since vy = v9 = w3, removing the holes from each
factor of length two of w preserves the cube in the resulting word. However, this
word is £€“(a), which is known to avoid cubes. The conclusion follows. O

6 Conclusion

Using Lemma [I] and the results from Sections F] and Bl we conclude with the
following theorem which gives xx(a™) and x;j(a™) for all k,n > 1.

Theorem 1. The values of xr(a™) are given in Figure [, while the values of
Xi(a™) are given in Figure[2.
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Abstract. We consider compression of a given set S of isomorphic and
disjoint subgraphs of a graph G using node labelled controlled (NLC)
graph grammars. Given S and G, we characterize whether or not there
exists a NLC graph grammar consisting of exactly one rule such that
(1) each of the subgraphs S in G are compressed (i.e., replaced by a
nonterminal) in the (unique) initial graph I, and (2) the set of generated
terminal graphs is the singleton {G}.

1 Introduction

Graph grammars define languages over graphs, in the same way that string
or tree grammars define languages over strings (trees). Several types of graph
grammars have been proposed and studied (e.g., [8/1]). A well-studied and well-
understood type are the NLC grammars (Node Labeled Controlled grammars)
[8]. An NLC grammar consists of a set of node rewriting rules that indicate how,
in the process of generating graphs from an initial graph using the grammar, a
node with a particular label can be rewritten into a subgraph, and how this sub-
graph is connected to the neighbors of the node being rewritten. These so-called
connection rules are in an important difference with string or tree grammars,
which do not need such rules.

While NLC grammars (and the broader class of (e,d)-NCE grammars that
they belong to) have been studied in detail regarding the properties of the lan-
guages they can define, the complexity of parsing their elements, etc., there has
been little research on the induction of such grammars from example graphs. This
is not specific for NLC grammars: induction of graph grammars has in general
not received much interest. This is somewhat remarkable because the learning
of graph languages from example graphs is generally considered an important
topic in machine learning: it has been used, for instance, to classify molecules
[6], analyse network structures [I2], recognize objects in images [I3], etc. The
induction of graph grammars has the additional advantage that the grammar
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rules define transformations of graphs and as such can be used to describe the
dynamic behavior of graphs, which is of interest in the context of, for instance,
social network analysis.

Several approaches to the induction of graph grammars have been proposed,
with significant practical success; however, there is little theoretical understand-
ing of the learnability of certain types of graph grammars. In the context of NLC
grammars, some initial work has been done that describes how grammar rules
can be learned from example graphs. In this paper, we continue that thread of
research.

Previous work [4] showed how, given a graph G (or a set of graphs — but such a
set can always be considered a single graph with multiple connected components,
so there is no loss of generality in considering a single graph), one can find a sin-
gle NLC grammar rule r and a graph I that is as small as possible (following the
“maximum compression” or “minimum description length” (MDL) principle that
is commonly used in machine learning), with the property that I uniquely de-
termines G through repeated application of r. This work was limited by the fact
that the subgraphs generated by the rule r cannot “touch”, that is, there cannot
be edges connecting two such subgraphs. In [3], it was shown that when the sub-
graphs can touch, this may lead to non-confluency: the order in which nodes are
rewritten can influence the outcome of the rewriting process (thus, I no longer
uniquely determines G unless this order is fixed). In this paper, we characterize
the exact conditions under which the NLC grammar rule will be confluent.

This result is useful for two reasons. From the point of view of graph compres-
sion, it makes a better compression algorithm possible because the conditions
under which subgraphs can be compressed into a single node can be relaxed.
From the point of view of graph grammar induction (and its applications in
machine learning), it allows for a broader class of grammar rules to be learned.

2 Related Work

As mentioned in the Introduction, there has been little research on graph gram-
mar induction. An important line of work in this area was started by Cook and
Holder with their work on Subdue [5], an algorithm for learning from graphs that,
in several variants, led to classification, clustering, and compression of graphs,
and later on to induction of graph grammars [I0/11]. This work is mostly mo-
tivated by practical applications, rather than theory on grammar induction or
graph grammars, and as such these grammars sometimes lack desirable prop-
erties. For instance, node rewriting rules do not always indicate how the new
graph should be connected to the neighborhood of the node being substituted;
as a result, graph compression is not lossless, and the graph grammar lacks a
certain expressive power that other grammars have. Also, potential problems
with non-confluency, overlapping or touching subgraphs, etc., are not studied.

Another line of work is the induction of probabilistic graph grammars in [7I14].
This work builds mostly on methods for constructing probabilistic grammars. It
does not focus on issues such as lossless compression or confluency, which are
not very relevant in that context.
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In [9] the potential of edge replacement grammars for machine learning is
discussed, but we are not aware of further work in that direction.

The most closely related work is [4] and [2I3] on the induction of NLC gram-
mars; this paper builds directly on it. As said in the introduction, the work by
[4] had certain limitations, and the possible effects of lifting these limitations
was studied by [3]. In this paper, we characterize under what conditions the
mentioned limitations can be lifted without undesirable consequences. Before
we can go into detail about this, we need to introduce some terminology and
background.

3 Notation and Terminology

We cousider simple graphs G = (V, E), where V is a finite set of nodes and
E C {{z,y} | z,y € V,x # y} is the set of edges — hence no loops or parallel
edges are allowed. We denote V(G) =V and E(G) = E. For S C V, the induced
subgraph of G is the graph (S, E’) where E' C E and for each e € E we have
e € E'iff e C S. We consider only induced subgraphs, and therefore we will
write “subgraph” instead of induced subgraph. The neighborhood of S C V in
G, denoted by N¢(95), is {v € V\S | {s,v} € E for some s € S}. If S = {z}
is a singleton, then we also write Ng(x) = Ng(S). A labelled graph is a triple
G = (V,E,l) where (V, E) is a simple graph and [ : V' — L is a node labelling
function, where L is a finite set of labels. We write [(G) = (V) = {l(v) | v € V}.
As usual, graphs are considered isomorphic if they are identical modulo the
identity of the nodes. It is important to realize that for labelled graphs, nodes
identified by an isomorphism have identical labels. In graphical depictions of
labelled graphs we always represent the nodes by their labels. As we consider
solely labelled graphs from now on, we will often write simply graph to denoted
labelled graphs.

Subgraphs S7 and Sy are called disjoint (or non-overlapping) if V(S7) and
V(S2) are disjoint. They are called touching if they are disjoint and there is an
edge e € E(G) with one node in S; and the other in Ss.

4 NLC Graph Grammars

In this section we briefly recall the notions and definitions concerning NLC gram-
mars used in this paper, and refer to [§] for a gentle and more detailed introduc-
tion to these grammars.

A NLC graph grammar is an ordered 5-tuple Q = (L, L, I, P, E), where L is
a finite set of node labels, where the elements of L C L (L \ L, resp.) are called
terminal (nonterminal, resp.) node labels, I is a labelled graph with the nodes
labelled by L called the initial graph, and E C L? (where L? = L x L) is called an
embedding relation. Finally, P is a set of tuples (N, .S), called productions, where
N € L\ L and S is a labelled graph with nodes labelled by L. A production
(N, S) is also denoted by N — S.
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— —
N N b a N b a b a

Fig.1. The derivation of graph G (right-hand side) from I (left-hand side) in Ex-
ample [I] using the derivation rule p = N — a—b and embedding relation E =

{(b,a), (b,6), (a, N)}

The semantics of an NLC graph grammar @ are as follows. Let G be a graph
containing a node x labelled by a nonterminal N. Then a production p of the
form N — S is applicable to (defined on) G. The result after applying p to G on
x is another graph G’. The graph G’ is obtained from G by removing node z (and
all edges adjacent to ) and replacing it by (a copy of) S. Moreover, edges are
created between the nodes of S and of Ng(z) according to the embedding relation
E:fory € V(S)and z € Ng(z), we have {y, z} € E(G') iff (I(y),1(z)) € E (where
1 is the labelling function of G’). Now, the set of graphs with only terminal nodes
obtainable from the initial graph I by iteratively applying productions from P
is the language L(Q) of Q.

In this paper, we consider NLC grammars containing exactly one production
N — S, ie., |P| = 1. Therefore we (may) assume without loss of generality
that L\ L = {N}. Hence we specify @Q by the tuple (L, I, (N, S), E). Also, we
may assume without loss of generality that the node labels of S do not contain
N. Indeed, if the node labels of S contain N, and assuming I contains a node
labelled by N, then L(Q) = @ as no graph with only terminal labels can be
generated.

Ezample 1. Let G be the graph on the left-hand side of Figure [Il Let L =
{a,b, N} be the set of labels (N is the nonterminal), E = {(b,a), (b,b), (a,N)}
be the embedding, and p = N — S be the production, where S is the graph
a b . Note that formally we have only defined .S up to isomorphism, however
as we have seen this is not an objection.

Figure [Tl now depicts a derivation from an initial graph I where first produc-
tion p is applied to the node labelled by N on the left-hand side, and then p
is applied on the remaining node labelled by N. The obtained graph G (on the
right-hand side of the figure) has only terminal nodes. The derivation from I by
applying p in the other order on the nonterminal nodes obtains the following
graph.

b

AN

a b a b

This example will be a running example in this paper.
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5 Compatibility and Confluency

In this section we recall the basic notions of compatibility and confluency, and
recall the results from [4] that are necessary for this paper.

We fix some graph G and some graph S. We let S be the set of subgraphs
of G isomorphic to S. We let L = I(G) and, as defined in the previous section
L= LU{N} with N the nonterminal node label.

First we recall the notion of compatibility.

Definition 2. Let G be a graph, § be a set of subgraphs of G isomorphic to
a graph S, and C = (51,95:,...,5,) be a linear ordering of S. We say that
E C L x L is compatible with C (in G) if there are graphs G, ..., G, such that
G, = G and for each i € {1,...,n}, G; is obtained from G;_1 by producing S;
using NLC grammar Q = (L, Gy, (N, S), E).

In case S = {S} is a singleton, we also say that E is compatible with S instead
of (5).

Since the embedding of the new subgraph in the old graph is determined by
node labels, it is impossible that two nodes with the same label in the subgraph
are connected to the neighborhood of the subgraph in a different way. This is
formally expressed as follows.

Lemma 3. Let G be a graph, and Si,...,S, subgraphs of G. If E C L? is
compatible with (Si,...,Sy), then for any i € {1,...,n} and z,y € V(S;) with
I(z) = U(y), we have Ng(x) \ V(Si) = Na(y) \ V(5:).

To characterize the notion of compatibility, we need the notions of inset and
outset.

Definition 4. Let Z C V(G)?2. We define the inset of Z, denoted by Iz, as the
set {(I(x),1(y)) | {z,y} € E(G), (z,y) € Z}, and outset of Z, denoted by Oz, as
the set {(I(z),l(y)) | {z,y} € E(G), (z,y) € Z}.

Let S be an induced subgraph of G. Then the inset (outset, resp.) of S, denoted
by Is (Og, resp.), is defined to be the inset (outset, resp.) of Z = V(S5) x
No(V(5)).

The following lemma from [4, Section 4.1] characterizes compatibility for a
single graph S in terms of the inset and outset of S: the inset are tuples that
should be in E, while the outset are tuples that should not be in E.

Lemma 5 ([4]). Let S be an induced subgraph of G, and let E C L x L. Then
E is compatible with S iff Is C E C L?\Og (i.e., E separates Is from Og).

Hence, there is an E compatible with S in G iff Is N Og = @.

Definition 6. Let G be a graph and let S be a set of mutually isomorphic
subgraphs of G. We say that E C L? is confluent for S if E is compatible with
any ordering C of S.
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a —) ~b a )
S1 -7 Sy T -—----7
Fig. 2. Graph G from Example [Il including a depiction of its subgraphs S1 and So

Ezample 7. We continue Example[Il Let us denote the first and second subgraph
introduced in the derivation from I to G by S; and Sy, respectively, see Figure[2l
Example [ illustrates that the given embedding E is compatible with (S7,S2).
Moreover, one may verify that Is, = Og, = {(a,b),(b,d)}, Is, = {(b,a)}, and
Os, = {(a,a)}. Note that by Lemma[0l E is not compatible with S;. In fact,
there is no embedding compatible with Sy as Is, N Og, # @. The fact that E is
compatible with (57, S2) but not with S; implies that S; could not be generated
by F in its current context, but could be generated if S5 was introduced after S7.

As noted in [4], Lemma [ can be trivially generalized to a set S of mutually
disjoint, non-touching, and isomorphic subgraphs of G.

Lemma 8 ([4]). Let S be a set of mutually disjoint, non-touching, and isomor-
phic subgraphs of a graph G. Then E C L x L is confluent for S iff U;Is, C E C
L?\(U;0s,) iff E is compatible for some ordering C' of S.

6 Touching Subgraphs

We now consider the case where subgraphs touch. Compatibility for the case
where two subgraphs touch is characterized in [3| Lemma 12| (see also [2]). We
recall this result, cf. Lemma below, and use it to establish another, similar
characterization which we will be useful in the next section.

We distinguish three kinds of insets and outsets associated to pairs of touching
subgraphs.

Definition 9. Let S; and S be touching graphs in G. For Z; = V(S2) x
(V(S1) N Ng(S2)), we denote Iz, and Oz, by I(s, s,) and O(g, s,), respectively.
Moreover, for Z; = V(S2) x V(S1), we denote Iz, and Oz, by I, s,)) and
O((s,,55)) respectively. Finally, for Z3 = V(S2) x (Ng(S2) \ V(S1)), we denote
Iz, and Oz, by Ig,\s, and Og,\g,, respectively.

We remark that we assume no interpretation of “S;\S1” in Ig,\g, and Og,\g,-
Note that Z; U Z3 = V(S2) x Ng(S2), and therefore I(g, g,y U Ig,\s, = Is, and
similarly for outset. Also note that (a,b) € I(g, s,) iff (b,a) € I(g,,s,). Moreover,
we have always I (s, s,) = I((s,,s,)) and Os, s,) € O((s,,5,))-

Notice that I(g, s,) and O(g, s,y (and also I((s, s,)) and O((g,,s,))) are con-
cerned with the tuples going from Sy to S;. This is because these tuples are
important in the second step in the derivation to G; the step which creates Ss.
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Ezample 10. We continue Examples Il and [l One may verify that I(s, g,) =
I((Shsz)) = {(b7 a)}7 0(5'1,5'2) = {(ava)}7 O((S1,S'2)) = {(ava)7(b7 b)7(a7b)}7 and
[512\51 = 052\51 = J. NIOI"eOVGI“7 I(SZ,SI) = I((SQ,S’l)) = {(a,b)}, 0(52’51) =
{(b7 b)}a O((S2,Sl)) = {(aaa)7 (ba a)7 (ba b)}> IS1\52 = {(ba b)}a and OS1\52 :{(aab)}'

We now state an implicit result of [3].

Lemma 11. Let S1 and S be touching subgraphs of G, and let x € V(S1) and
y € V(S2) with I(x) = a and l(y) = b. Moreover, E C L? be compatible with
(S1,52). Then {x,y} is an edge iff (b,a) € E and (a,N) € E.

We now recall [l Lemma 12] (it is slightly reformulated here).

Lemma 12 (3]). Let S1 and Sz be touching subgraphs of G. Then E C L? is
compatible with (S1,S2) iff the following conditions hold:

1. E is compatible with So,

2. Isp\s, € E C L?\Og,\s,,

3. {(a,N) | a€l(V(S1)NNg(S2))} CE, and

4. If (b,a) € O((s,,s,)), then (a,N) & E or (b,a) ¢ E (or both).

Note that the fact that F is compatible with (S, S2) does not imply that F is
compatible with S;. In fact, Example[Mlillustrates that we may have Is, NOg, #
& — hence an embedding compatible with S; may not even exist.

We now obtain the following consequence of Lemma [I2] by noticing that the
sets [(V(S1) N Ng(S2)) and I(V(S1) \ Na(S2)) “should” be treated differently.

Lemma 13. Let Sy and Sy be touching subgraphs of G and E C L x L. Then
E is compatible with (S1,S2) iff the following conditions hold:

1. E is compatible with So,

2. Is\s, € E C L*\Og,\s,

3. {(a,N) ]| a€l(V(S1)NNg(S2))} CE, and

4. If (a,N) € E witha € (V(S1)\Ng(S2)), then (b,a) ¢ E for allb € [(V(S2)).

If this is the case, then I(V(S1) N Ng(S2)) NIV (S1) \ Na(S2)) = 2.

Proof. We obtain the “if and only if” part by showing now that Condition 4,
referred to as (I), is equivalent with Condition 4 of Lemma [I2] referred to as
(IT), under the assumption that the other three conditions hold.

First we show that (I) implies (II). Let (b,a) € O((s,,s,)) and (b,a) € E. We
show that (a, N) ¢ E. Hence there is an x € V(S3) and y € V(S1) with I(z) = b
and {(y) = a such that {z,y} is not an edge of G. Assume y € Ng(S2). Then
(b,a) € Os,,s,), and by Condition 1, (b,a) ¢ E — a contradiction. Therefore
y & N (S2), and by (I), we have (a, N) € E (as (b,a) € E), and we are done.

We now show that (IT) implies (I). Assume the contrary and let (a,N) € E
and (b,a) € FE for some a € [(V(S1)\ Ng(S2)) and b € [(V(S2)). Since (b,a) € E
we have by Condition 1 that (b,a) € O(s,,s,)).- As we assume that (II) and
the other three conditions of Lemma [T2] hold, we have by Lemma [[2] that E is
compatible for (S1, S2). By Lemmal[ldl we obtain that there is an edge {z,y} in G
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with 2 € V(S1), y € V(S2), l(x) = a, and I(y) = b. Clearly, x € V(S1) \ Ng(S2).
Consequently, (b,a) € O((s,,s,)) — a contradiction.

Finally, let E be compatible with (S7,S2), and assume that a € I[(V(S1) N
Ne(82)) NV (S1) \ Na(S2)). Let 2 € V(S1) N Ng(S2) and y € V(S1) \ Na(52)
such that {(z) = {(y) = a. As 2,y € V(S1), we have by Lemma Bl Ng(z) \
V(S1) = Ng(y)\V(S1) — a contradiction as ¢ € N¢g(S2) while y & Ng(S2). O

For an embedding relation E C L?, and L' C L, we define the restriction of
E to L' by E[L'] = {(z,y) € E | z,y € L'}. The next corollary follows from
Lemma [[3

Corollary 14. Let Si and Sy be touching subgraphs of G, let L = L\ {N}, and
let E' C L%. Then there is an E C L?, with E[L] = E’, compatible with (S, S2)
iff the following conditions hold:

1. E' is compatible with S,
2. Isns, € E' C L*\Og\s,
3. L(V(S1) N Ng(S2)) NIV (S1) \ Na(S2)) =@

Moreover, if this is the case, then E = E'U{(a,N) | a € l(V(S1) N Ng(S2))} is
compatible with (S1,S2).

Consider again Corollary [[4l Note that E compatible with Sy (i.e., Is, C E C
L*\Og,) implies Is\s, € E C L*\Og,\s,. Moreover, we show now that if E is
compatible with S7, then the third condition of Corollary [I4] also holds.

Lemma 15. Let S1 and Sy be touching subgraphs of G and E C L x L. If E is
compatible with S, then [(V(S1) N Ng(S2)) NI(V(S1) \ Na(S2)) = @.

Proof. Assume to the contrary that a € [(V(S1) N Ng(S2)) NI(V (S1) \ Na(S2)).
Let z € V(S1) N Ng(S2) and y € V(S1) \ Ng(S2) such that {(z) = l(y) = a.
As z,y € V(S1), we have by Lemma [Bl Ng(z) \ V(S1) = Na(y) \ V(S1) — a
contradiction as & € Ng(S2) while y & Ng(S2). |

Hence, by Corollary[I4land Lemma[I5 we notice now that an £’ C L? compatible
for both S; and Sz can be extended to an E C L? compatible for both (57, S5)
and (52, 51). However, as we recall again, it may be the case that E is compatible
with (S1,52), while E' is not compatible with S7, see Example [7]

7 Symmetric Connections

In this section we consider the case where the connections between subgraphs Sp

and Sy are symmetric, i.e., I(g, g,) is symmetric as a relation (if (a,b) € I(g, s,)

then also (b,a) € I(g, s,)). Clearly, I(s, g,) is symmetric iff (g, s,y = I(g,,s,)-
The next lemma is easy to verify.

Lemma 16. Let S1 and Sz be isomorphic touching subgraphs of G where I g, s,)
is symmetric. Then I(V(S1))=1(V(S2)), I(V(S1)NNg(S2)) = I(V(S2)NN¢(S1)),
and [(V(51) \ Na(52)) = 1(V(S2) \ Na(51)).



Characterizing Compressibility of Disjoint Subgraphs with NLC Grammars 175

Proof. As Sy and S3 are isomorphic we have I(V(S1)) = I(V(S2)). Since I(g, s,)
is symmetric, we have moreover {(V(S1) N Ng(S2)) = I(V(S2) N Ng(S1)) and
IV (S1) \ Na(52)) = 1(V(S2) \ Na(51))- O

We show now a key result.

Lemma 17. Let S1 and Sz be isomorphic touching subgraphs of G where I (g, s.)
is symmetric. If E C L? is compatible for (S1,S2), then E is compatible for S.

Proof. Recall that we have Is, = I(g, s,) U Is,\s, (and similar for Og, ). Hence
to show that E is compatible for Sy, i.e., Is, € E C L%\ Og,, it suffices to show
that (1) ISl\SQ CFEC L2\OS1\827 and (2) 1(52’51) CFEC L2\O(S2,Sl)'

The former, (1), follows by Lemma[I3l as E is compatible for (S, S2).

We now show the latter, i.e., (2). As I(s, s,) = I(s,,5,) and I(g, 5,) C E since
E is compatible for (Si, S2), we obtain I(g, 5,y € E.

To show that E C L?\ O(s,,5,), it suffices to show that O(g, s,y = O(s,,ss)
(as E - L2 \ O(S’l,Sg))-

We have by definition of inset and outset, I(g, 5,)UO(s, s,y = K x K’ where K
is the set of labels of the vertices of Sy and K’ is the set of labels of the vertices in
V(S1)NNg(S2). As S and s are isomorphic and I(g, g,) = I(s,,s,), We have by
Lemma [16] l(V(Sl) ﬂNg(SQ)) = l(V(SQ) N Ng(Sl)) and so I(SQ,S’l) U 0(52’51) =
K x K'. Hence I(Sl,SQ) U 0(51’52) = I(SZ,SI) U 0(52’51).

Since E is compatible for (S1,S2), we have I(g, g,y N O(s,,5,) = F. We show
now that I(g, 5,) N O(s,,s,) = . Assume to the contrary that (b,a) € I(g, s,) N
O(s,,5,)- As (b,a) € I(g, s,), there is an edge {z,y} with y € V(S1) and = €
V(S2) with I(y) = band I(x) = a. More specifically, y € V(S1)NNg(S2) (and z €
V(S2) N Ng(S1)). As E is compatible for (S1, S2), we have I[(V(S1) N Ng(S2)) N
I(V(S1) \ Ng(S2)) = @ by Lemma [I3l Consequently, since (b, a) € Os,.s,) and
b € I(V(S1) N Ng(S2)), we have b ¢ [(V(S1) \ Ng(S2)) and therefore there is
an ¥y € V(51) N Ng(S2) and 2’ € V(S2) with I(y") = b and I(2’) = a such that
there is no edge between y’ and z’. By definition of O(g, s,) we have now that
(a,b) € Os, s,y As I(s, 5,) NOqs,,s,) = @, we have therefore (a,b) & I(g,,s,) =
I(s,,s,) — a contradiction. Therefore I (g, 5,) N Os, 5,) = 9.

We thus obtain that {I(s, s,),Os,,s,)} and {I(s, s,),O(s,,s,)} are both par-
titions of K x K'. Since I(g, s,) = I(s,,s,) We obtain Og, s,y = O(s,,5,)- ]

We are ready now to show that if an embedding E is compatible for one order-
ing of touching graphs S; and S3, then F is compatible for the other ordering
precisely when [(g, g,) is symmetric.

Theorem 18. Let S and Ss be isomorphic touching subgraphs of G and let
E C L? be compatible for (S1,S2). Then E is compatible for (So,S1) iff I(s, . s0)
18 symmetric.

Proof. We first show the forward implication. Let E be compatible for both
(51,52) and (52,51). Let z1 € V(Sl), Y1 € V(S1), To € V(SQ), Yo € V(SQ) with
l(xz1) = l(z2) = a and I(y1) = l(y2) = b (a may be equal to b). We need that
show that if {x1,y2} is an edge of G, then {2, y1} is an edge of G. If {x1,y2} is
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Fig. 3. Graph G from Example 20 including a depiction of its subgraphs Si and Ss

an edge of G, then we have by Lemma [Tl (b,a) € F and (a, N) € E. Since E is
compatible for (Sz,S57), we have again by Lemma [[] (and since (b,a) € E and
(a,N) € E) that {x2,y1} is an edge of G.

We now show the reverse implication. Let I(g, s,y be symmetric. We show
that the conditions of Lemma [I3] are fulfilled for (S2,S51). As E is compatible
for (Si,S2), E is compatible for Sz, and therefore Ig,\g, € E C L2\ Os,\s,
(Condition 2 of Lemma [I3) holds.

By Lemma [I6 we have I(V(S1)NNg(S2)) = I(V(S2) NN (S1)) and therefore
Condition 3 of Lemma [I3] holds. Similarly, by Lemma [I8 (V' (S1)) = I(V(S2))
and (V' (S1) \ Na(S2)) = 1(V(S2) \ N¢(S1)) holds and therefore Condition 4 of
Lemma [I3 holds (and using again that I(g, g,) is symmetric).

Next, E is compatible for S; (Condition 1 of Lemmal[I3]) by Lemma[I7 Hence
we obtain that E is compatible for (S, 57). O

Example 19. Consider again Example [[l Recall that the given E is compatible
for (S1,52) (with Sy and Sy as in Figure 2). Now as I(g, 5,) = {(b,a)} (see
Example [I0) is not symmetric, we have by Theorem [[§ that E is not compatible
for (Sg, Sl)

Example 20. Consider now graph G and its subgraphs S; and Sy given in Fig-
ure Bl One may verify that E = {(a,b), (b,a), (b,¢), (a, N), (b, N)} is compatible
with (S1,52). We have I (g, s,) = {(a,b), (b,a)}, and thus I(g, g,) is symmetric.
By Theorem [I8 F is also compatible with (Sz,S1).

Remark 21. One may wonder in view of Theorem [[8 whether or not it holds that
E compatible for both (51, 592) and Sy implies that I(g, g,) is symmetric (recall
that E being compatible for (S2,57) implies that E is compatible for S). It is
straightforward to verify that E = {(a,b), (b,a), (b, N)} and S; and Ss discrete
graphs of two vertices labelled by a and b with one edge {z,y} with z € V(S}),
y € V(S2), l(z) = a, and I(y) = b form a counterexample. O

We now generalize Theorem [I8 where two subgraphs S; and S, are considered
to the case where n subgraphs & = {S51,S5%,...,5,} of G are considered. It
characterizes the notion of confluency of an embedding relation E if S is a set
of mutually isomorphic and disjoint subgraphs of G.

Theorem 22. Let G be a graph, let S be a set of mutually isomorphic and
disjoint subgraphs of G, and let E C L? be compatible for some ordering C of S.
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Then E is confluent for S iff (1) every E is compatible with S; € S, and (2) if
Sj and Sk in S are touching, then I(s; s, s symmetric.

Proof. Let S = {S1,...,Sn}. We first prove the forward implication. Assume
that E is confluent for S. Let S; € S. Let C be an ordering of S where S; is at
the last position in C. Then, by definition, S; is compatible with E. Let now S;
and Sy in & be touching. Again, there are orderings C' of & where S; and Si
are at the last two positions, in any order, in C. Hence by Theorem I8 I 5;.5%)
is symmetric.

We now prove the reverse implication. Let E be compatible with C' =
(Siy,---55:,) where {i1,...,in} = {1,...,n}. Assume moreover that the con-
ditions (1) and (2) of the theorem hold for S. It suffices to prove that for any
ke {l,...,n—1}, E is compatible with the ordering C’ of S obtained from C
by interchanging Sy and Sky1 in C; indeed any ordering of S may be obtained
by iteration of this argument, and the theorem then holds.

As F is compatible with C in G, we have that E is compatible with (S;,,...,
Six, i, ) in G', where G’ is the usual “intermediate graph”. More precisely, G’ is
the unique graph such that G is obtained from G’ by iteratively applying the NLC
grammar rule to create Sj,_,,...,S;, (in this order). We have that E is compat-
ible for (S;,,Si,,,) in G’, and since (g, s,) is symmetric (also in G'), E is com-
patible for (S;, ., Si,) in G’. Therefore, E is compatible with (S, , ..., Si,,,Si,)
in G’ and we have that E is compatible with (S;,,..., S, ., S, Siji0s---15i,)
in G. This completes the theorem. a

8 Discussion

To compress a set S of disjoint and isomorphic subgraphs of G, we used NLC
graph grammars consisting of a single production. As decompression should ob-
tain precisely graph G (i.e., no other graphs), we need to ensure that graph
grammar is confluent. Theorem characterizes confluency (in our case under
consideration) in terms of symmetry in the connections between any two touch-
ing subgraphs which are to be generated by the graph grammar. Future research
could focus on extending the results to more rules. In this case one may consider
recursive applications of graph grammar productions.
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Abstract. The notion of expression derivative due to Brzozowski leads
to the construction of a deterministic automaton from an extended regu-
lar expression, whereas the notion of partial derivative due to Antimirov
leads to the construction of a non-deterministic automaton from a sim-
ple regular expression. In this paper, we generalize Antimirov partial
derivatives to regular expressions extended to complementation and in-
tersection. For a simple regular expression with n symbols, Antimirov
automaton has at most n+ 1 states. As far as an extended regular expres-
sion is concerned, we show that the number of states can be exponential.

1 Introduction

Regular expressions are a basic tool for describing patterns in a text. This is the
reason why they are used in numerous domains that involve pattern specification
or pattern matching, such as electronical document processing, bio-informatics
or data bases. An additional advantage of regular expressions is that they can be
transformed into an equivalent machine, called a finite automaton, that makes it
possible to automatically decide whether a word belongs to the language denoted
by an expression or not.

Simple regular expressions only contain sum, concatenation product and
Kleene star operators whereas extended regular expressions in addition con-
tain boolean operators such as complementation or intersection. Simple regular
expressions have been extensively investigated. Numerous algorithms have been
designed in particular for converting a regular expression into a finite automaton.
These algorithms can be partitioned into two main categories. The algorithms
of the first category are based on the notion of position (of a symbol occurrence
in the expression). It is the case of the algorithm due to Glushkov [9] and to Mc-
Naughton and Yamada [12] that computes a non-deterministic automaton with
n + 1 states from a n-symbol occurrence expression. Let us notice that, under
some assumptions, the inductive algorithm [IT4] computes the same automaton.
The algorithms of the second category are based on the computation of expres-
sion derivatives that is similar to the computation of language quotients [I3/14].
It is the case of the algorithm of expression derivatives due to Brzozowski [3]
that computes a deterministic automaton and of the algorithm of partial deriva-
tives due to Antimirov [I] that computes a non-deterministic automaton with

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 179-J191, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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at most n + 1 states if there are n symbol occurrences in the expression. Let us
remark that the relations that exist between the two notions of position and of
expression derivative have been studied in [25].

As far as extended regular expressions are concerned, many complexity stud-
ies [6] have been realized; we will consider in the following the results of Gelade
and Neven [8] about the succinctness of the operations of complementation and
intersection. On the opposite, there exist few algorithms performing the con-
version of an extended regular expression into an automaton. Actually, boolean
operators (except for the sum) are not compatible with the notion of position and
thus Glushkov algorithm cannot be extended from simple to extended regular
expressions. The inductive algorithm still works for extended regular expres-
sions, but its performance is penalized by the determinization steps required by
the automaton-implementation of some boolean operations. Actually, extended
regular expressions are handled by the algorithm of Brzozowski [3]; however, a
deterministic automaton is computed, which can be a drawback regarding to
space complexity. As far as partial derivatives are concerned, here is what An-
timirov reports in the conclusion of his paper [I]: "It would be useful to find an
appropriate definition of partial derivatives of extended regular expressions (with
intersection, complementation, and other operations). Then, in particular, our
NFA construction would directly extend to this class of regular expressions."

In this paper, we extend the computation of partial derivatives in order to han-
dle the operations of complementation and intersection. It allows us to generalize
the two automaton constructions designed by Antimirov: the non-deterministic
derivated term automaton and the deterministic partial derivative automaton.
We also show that the partial derivative automaton may have a number of states
exponential with respect to the size of the expression.

The main notions used in this paper as well as the computation of expression
derivatives and partial derivatives are recalled in the next section. A generaliza-
tion of the computation of partial derivatives to extended regular expressions is
introduced in Section [3l Section 4 and Section 5 are respectively devoted to the
construction of the derivated term automaton and of the partial derivative au-
tomaton that both recognize the language denoted by a given extended regular
expression.

2 Preliminaries

A finite automaton A is a 5-tuple (X, Q, I, F,d) with X the alphabet (a finite
set of symbols), @ a finite set of states, I C @ the set of initial states, FF C Q
the set of final states and § C Q x X x @ the set of transitions. The set ¢ is
equivalent to the function from Q x ¥ to 29 defined by: ¢’ € §(¢, a) if and only
if (¢,a,q’) € 6. The domain of the function J is extended to 2% x X* as follows:
VP C Q, 6(P,e) = P, 6(P,a) = UpeP d(p,a) and §(P,a - w) = 6(6(P,a),w).
The automaton A recognizes the language L(A) = {w € X* | §(1,w) N F # 0}.
The automaton A is deterministic if #1 = 1 A V(gq,a) € Q x X, #5(q,a) <

1. A deterministic automaton is complete if V(q,a) € Q x X, #d(q,a) = 1.
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For every automaton A, there exists a complete deterministic automaton A’
such that L(A") = L(A) [15].

Let f be a boolean operator of arity k. An extended regular expression E over
an alphabet Y is inductively defined by E =0, E =¢, E = a, E ={(Ey, ..., Ey),
E=(F-G), E=(F*) wherea € ¥ and F, G, E, ..., Ej are extended regular
expressions. The regular expression F is said to be a simple expression if it only
contains sum, concatenation product and Kleene star operators.

The language denoted by the expression F is inductively defined by

L(®) = 0, L(z) = {e}, L(a) = {a} Ya € T, L(F - G) = L(F) - L(G),
L(F*) = L(F)*, L(E(Fx, .., By)) = fu(L(Fy), ..., L(Ey),

where f7, is the language operator associated with the operatoil f.

A language L is regular if and only if there exists a simple regular expression
E such that L(E) = L. It has been proved by Kleene [I0] that a language is
regular if and only if it is recognized by a finite automaton. Moreover, given a
complete deterministic automaton A, a deterministic automaton A’ such that
L(A") = =L(A) can be constructed by setting non final the final states and
vice versa. Therefore, the set of regular languages is closed under any boolean
operator.

The quotient of a language L w.r.t. a symbol a is the language a1 (L) = {w €
X* | aw € L}. It can be recursively computed as follows:

a t0)=a1({e}) =0, a 1 ({b}) = {e} if a = b, § otherwise,
a Y L1ULy)=aY(L1)Ua Y (La), a Y (L}) =a 1 (L1)- L
_ a1 Iy ~L2Ua*1 Lo if€€L1,
oLy L) = {alngg - Lo L) otherwise,
0 (L, ) L)) = B (a (L), .o (L)),

The quotient w~=*(L) of L w.r.t. the word w € X* is the language {w’ € X* |
w-w' € L}. It can be recursively computed as follows: e ~*(L) = L, (aw’)"Y(L) =
w' = a"Y(L)) with @ € X and w’ € X*. Myhill-Nerode theorem [I3/14] states
that a language L is regular if and only if the set of quotients {u=1(L) | u € X*}
is finite.

The notion of derivative of an expression has been introduced by Brzozowski
[3]. Let E be an extended regular expression over an alphabet X and let a and
b be two distinct symbols of Y. The derivative of E w.r.t. a is the expression

d”i (E) inductively computed as follows?:

dli (@) = d(i (5) = d(i (b) =0, dli (a) =g,
dcfl (f(ElaaEk)) = f(dci (El)v"'a dﬂi (Ek))7 dcfl (F*) = dcfl (F) : F*a
d d :
i o [ &F)- G+ f(G)ifee L(F),
i, (FG) = { dcz (F)-G otherwise.
The derivative of E w.r.t. a word w of X* is defined by:

d (d : . .
4 (F) = { du,/(da(E)) ifw=a-w witha e XY and w € ¥

dw Hfw=e.

! For instance L(—E) = -L(E), L(E + F) = L(E) U L(F).
2 This notation is used in order to distinguish the derivative of an expression from the
quotient of a language.
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The set of derivatives of an expression FE is not necessarily finite. It has been
proved by Brzozowski [3] that it is sufficient to use the ACI equivalence (that is
based on the associativity, the commutativity and the idempotence of the sum)
to obtain a finite set of derivatives: the set Dg of dissimilar derivatives. Given a
class of ACI-equivalent expressions, a unique representative can be obtained after
deleting parenthesis (associativity), ordering terms of each sum (commutativity)
and deleting redundant subexpressions (idempotence). Let E._ be the unique
representative of the class of the expression E. The set of dissimilar derivatives
can be computed as follows:

SO =g @) =50 =04 @=c¢
& (B, ER) = (13 (Br), s & (B))~es
G(FT) =4 (F)-F",
, (4 (F)-G+ g (G))~, if € € L(F),
d . _ d d’,
da (F-G) { ((’5 (F)-GQ)w~, otherwise.

Ezample 1. Let us consider the expression E = a*-a* over the alphabet X' = {a}.
The set of derivatives of E is infinite since for every w € £*, 4 (E) = & (E)+
a*. On the opposite, since ,* (E) = a*-a* +a* +a* ~; a*-a* +a* = & (B),

aa

it holds d”,l/ (E) = 5,/ (E). Thus the set of dissimilar derivatives of E is Dy =

{a*a*,a*a* + a*}.

The derivative automaton B = (X, Q, qo, F, ) of an extended regular expression
E over an alphabet X is defined by Q = Dg, qo = E, F ={q€ Q | € L(¢)},
0={(g,a,q") € Qx X xQ | j,/ (¢) = ¢'}. The automaton B is deterministic and

it recognizes the language L(E). Its size can be exponentially larger than the
number of symbols of E (see Example [2]).

Ezample 2. Consider the expression E = (a+b)*a(a+b)™. The set of its deriva-
tives can be computed as follows, where X' = a + b:
o (E)=E+3" § (B)=E+X"+3"1 § (5% = (&%) =21
jI,)(E) =F dﬂib(E) =F+ X1
The set D of dissimilar derivatives of E is equal to the set EU{E+)_ 7 F |
Fc{x", ..., X e}}. Consequently, #Dpr = 1+2"*1. The derivative automaton

of E is presented in Figure [1l

Antimirov algorithm [I] constructs a non-deterministic automaton from a simple
regular expression E. It is based on the partial derivative computation. The
partial derivative of a simple regular expression F w.r.t. a symbol a is the set

Ei (E) of expressions defined as follows:

20 =26)=20=0 2 )=
2(F+G) =2 (F)u J(@), 2 (F)= 2 (F) F*,

O (F.Q)=1{ % da
0a (F - G) { (,i (F)-G otherwise,

with for a set € of expressions, £ - F = Jge E - F.
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a E+En +En—l +En—2

_a
E4+ X"+ 3t
— .
b a b Et+a+ o)
—@-
o )
b\‘ %E+2 X

= _
’

Fig. 1. The derivative automaton of E = (a + b)*a(a + b)"

a,b
—D— O ED OO

Fig. 2. The derivated term automaton of £ = (a + b)*a(a + b)"

The partial derivative of E w.r.t. a word w of X* is computed as follows:
2 ()= agl(i(E)) ?fw:crw’WithaEEandw’EE*7
w a0, (B)={E} ifw=c¢,

with for a set £ of expressions, 51 (&) = Uges 5’; (E).

Every element of a partial derivative is called a derivated term of E. It has
been shown by Antimirov [I] that the set DY, of the derivated terms of E is
such that #D%, < n+ 1. The derivated term automaton A = (X,Q,qo,T, ) of
a simple regular expression E is defined as follows: Q = D, qo = E, F = {q €
Qleec L@l éd=1{qaqd) cQxXxQ|q¢d e ?(q} The automaton A

Oa
recognizes the language L(F).

Ezample 3. Consider the expression E = (a + b)*a(a + b)"™ of Example 2 The
derivated terms of E are computed as follows:
S ((a+b)ala+b)") = ((a+b)*)-ala+b)"U J (ala+b)")
={Eju{z"},
S(E)={E}, J(ZF) =0 (2% ={2""1}.
The set of derivated terms of E is Dj, = {E, X", X1 ... ¢}; the number
of derivated terms is equal to n + 2. The derivated term automaton of E is
represented in Figure 2l

3 Partial Derivatives of an Extended Expression

This section describes two extensions of the computation of partial derivatives
for extended regular expressions. The first one is a natural extension in which the
simple operators (+, - and *) activate the standard partial derivative computa-
tion, whereas the boolean operators (except for the sum) activate the Brzozowski
derivative computation. The interest of this technique is to make easier the
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understanding of the second extension, where partial derivatives of a new type
are computed.

3.1 A Natural Extension

A natural extension of the partial derivative computation is achieved by assum-
ing that the partial derivative of a boolean operator (except for the sum) is the
singleton equal to the derivative of this operator.

Definition 1. The partial derivative of an extended reqular expression w.r.t. a
symbol a is the set 59 (E) of expressions computed as follows:
2= 2= 20 =0, 2 () ={c}
J(FHG)= 2 (F)UJ(G), 2 (F) = 2 (F)-F,
o : ] :
2(F.G) = Ba(Fg GU ;5 (G) zfsep(F),
a S (F)-G otherwise,

Example 4. This example illustrates the worst case of the natural extension,
where partial derivative computation reduces to derivative computation. Let us
consider the three expressions F', G and F defined by:

F=(a+b*ala+0)", G=(—-(-an-b))ala+b)™, E=FNG.
According to Definition[l] J (E) = {j,/ (E)}. Since the intersection operator
is at the highest level of the syntax tree of E, for all word w in X*, the par-
tial derivative of E w.r.t. w contains a unique derivated term: the derivative of

E w.r.t. w. The expression F' has an exponential number of dissimilar deriva-

tives (c¢f. Example ) and j,/ (F) # 0 g,/ (G) # 0. Consequently, F has an

exponential number of derivated terms.

3.2 Set of Sets Extension

The main strength of the partial derivative computation for a simple regular
expression is to break the partial derivative of a sum into a union of derivated
terms. A partial derivative is a set of simple regular expressions, the language
of which is the union of the languages denoted by these expressions. As far as
recognizers are concerned, the advantage is that the derivated term automaton
is a non-deterministic one, and then it may be exponentially smaller than the
deterministic derivative automaton. For extended regular expressions, Example[4]
shows that the computation of a partial derivative is ineffective for any derivated
term for which the highest operator is different from the sum.

We now show how to break the partial derivative of an intersection expression
into a union of derivated terms. Consider the Example @] where:

F=(a+b*ala+b)", G=(-(-an-b))*a(a+b)" and E=FNG.

Let us set: Hy = {F, X", ..., X" "1} and Hy = {G, X", ..., Xn—k+ly

In the natural extension, the partial derivative of E w.r.t. a* contains a unique
derivated term T = (F + X" + ... + Lk 0 (G + £ 4 ...  Xn—k+l),
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By distributivity of N over +, the expression T is equivalent to the expression
T = Z(Hl,Hg)GHl X Ha Hy M Hy.

Let us set: K = {F,X",..., Y% x {G,X",...,X"}. It can be checked that
every derivated term of F is equivalent to a sum of expressions H; N Hj;, where
(H;, H;) is an element in K. There exist (n+2)? distinct expressions H;NH;, and
each one will be transformed into a derivated term in our second extension. As
a result of breaking the partial derivative of an intersection just like Antimirov
breaks the partial derivative of a sum, the number of derivated terms can be
exponentially smaller than the number of dissimilar derivatives. Finally, for an
extended regular expression, a partial derivative is a set of derivated terms (the
language of which is a union of languages), and a derivated term is a set of
expressions (the language of which is an intersection of languages). Thus a partial
derivative is a particular set of expression sets. We now study the properties of
sets of expression sets.

Let E be a set of expression sets, with: E = (J¢cg & and, for all £ € E,
& = Upgee E. The language of E is defined by: L(E) = (Jgcg L(E) and, for all
EcE, L&) = Ngee L(E).

The following properties are satisfied by sets of expression sets.

Lemma 1. Let E and E' be two sets of expression sets, £ and £' be two expres-
sion sets, and F' be an expression.
(1) LE)NLE) =L(EUE),
(2) L(E) N L(E') = Ugep grer LIEVE),
(8) ~L(E) = L(ﬂeeE ZEEE ~E),
(4) L(E) - L(F) = L(Y e ce((Npee E) - F))-
Proof. According to definitions and properties of language operators:
(1) LE)NL(E') = Npee LIE) NNpreer LIE)
=Ngesue L(E) =L(Eue
(2) L(E) N L(E") = Ugeg L(E) NUgrer L(E)
USGIE,E’GIE’ LE)NLE) = UEG]E,S’G]E’ LEue)
(3) ~L(E) = _'UEG]EL(g) = _'UEG]E mEeE L(E)
= mEe]E UEes -L(E) = ﬂsaE UEGS L(-E)
= mgeE (ZEeg -E) = L(ﬂgeﬂz ZEeg —E)
(4) L(E) - L(F) = (Uger L(E)) - L(F) = (Ueeg L(E) - L(F))
= (Ugee LNgee E) - L(F))
( EcE ((ﬂEeS ) ))
=L ece((Npee £) - F))

g

Let E and F be two sets of expression sets and G be an expression. The three fol-
lowing operators are defined: EOG = Ugcx((Mpeg ) G); EQOF = Ugep, rer(EV
F), OE = @¢eer(Uges ~E). According to Lemma [l it holds: L(E ® F) =
L(E) - L(F), LEEQF) = L(E) N L(F) and L(QE) = —L(E). These operators are
used to define partial derivatives of an extended regular expression.

Definition 2. The partial derivative of an extended reqular expression E w.r.t.
a symbol a is the set 59 (E) of expression sets defined by:
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(1) J0)=7@E)=50)=0, (2) J)= {{e}}
8) J(E+F)=0E)YU](F), (4)E)=[(E) B
J(E)oF ife ¢ L(E)

(5) 5 (E-F) =
(E)o FU Ei(F) otherwise.

(6) 5. (~E)=0(5.(E), (7) 5 (ENF)=j(E)@ (F)

a

Qo

Proposition 1. Let E be an extended reqular expression over the alphabet X
and a be a symbol in X. Then it holds: L(E?a (E)) =a Y (L(E)).

Proof. By induction on the structure of extended regular expressions.
According to [1]], formulas (1) to (3) are satisfied.

(4) L(5, (B") = L(g5 (B)© B*) = L(; (E)) - L(E")
=a ' (L(E)) - L(E") = a™ ' (L(E"))
(5) L(5, (B F)) = L(;, (E)oF)  =L(; () L(F)
=a ' (L(E)) - L(F) = a ' (L(E - F))

(5") L(J (E-F))

a

I
=

Il
&=
Q@ PP o

=
=
3

-
&=

(6) L(§ (-E)) =

a

IS
\@g‘
=Q

/—\;\

J

(7) L(;, (EﬂF)) =

Every partial derivative of an extended regular expression E w.r.t. a symbol is
a set E in which each element £ is a derivated term of E. The partial derivative
of a derivated term is computed as follows.

Definition 3. Let E be an extended reqular expression over an alphabet X and
a be a symbol in X. Let € be a derivated term of E. Then:

5, (€) = Op,ee( 5, (Ex)).

Proposition 2. Let E be an extended regular expression over an alphabet X
and a be a symbol in X. Let £ be a derivated term of E. Then:
L(§ (&) = a™'L(&).

Proof. By equality of sets:
L(5(€)) = L(@p,ee 5. (Br)) = Npyee L(5) (Br))

=Npee 0 (L(ER)) = a™ (L(Np,ce Br)) = a™H(L(E)) .

The partial derivative of an extended regular expression F w.r.t. a word aw in
X% is defined by Bfw (E) = Uf’eaa (B) ai &n.

Proposition 3. Let E be an extended reqular expression over an alphabet X
and aw be a word in XF. Then it holds: (aw) *(L(E)) = L(afw (E)).
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Proof. By induction on the length of w:

L(g (B)) = L(,° , (B)) = L(,, (5 (E)))-
By the recurrence hypothesis: L(ai, (8‘1( ) = w’*l(L(a‘z (E)))
According to Proposition [T L( 2 (B)) = a Y (L(E)).
Consequently, L(a‘i (B)) =w'" 1( 1(L(E))) =u"YL(E)). O

4 The Derivated Term Automaton

Let F be an extended regular expression, £ be a derivated term of E, and
E be a partial derivative of F such that £ € E. Every expression Ej in & is
called a derivated expression of E. This relation is noted Ex(©E. According to
Definition Bl for all symbol a € X' and for all derivated expression Fj©) a(r’; &),
there exists a derivated expression F in £ such that Ej(© ai (F})). Consequently,
in order to compute the set of derivated terms of E, it is sufficient to compute
the partial derivatives of derivated expressions and then to combine them with
the operator .

Theset Dy ={&|Jwe X*, € € 3‘1 (E)} is called the set of derivated terms of
E. The derivated term automaton of E, A= (X,Q,qo, F, ), is defined similarly
as for a simple expression: Q = Dy, qo = {E}, F'={& € D | e € L(£')}, and
S {(Fa,0) QxS xQ|Ge (P

Ezample 5. Let us consider the expression £ = F N G in Example @ The
derivated terms of E are computed as follows:
a(B) =5 (F0O(G) 5 (E) ={{F.G}}
={{F} {2 o{{ch {2}
={{FGH{F 2"} {G, 2, {Z"}}
%(F) ={{Fh{2"}} %b( ) ={{F}} o o {ZF) ={{Z" 1)
N6 ={{GL{=" 2@ ={G}} JdZ={="}
The set of derivated terms is: {F NG} U{F, X", ... e} x {G,X",... e}
There are k derivated terms, where:
k=1+n+2)+0m+2)+m+1)+... +2= "0
The derivated term automaton of F is represented in Figure [Bl

{En, En—l}

Fig. 3. The derivated term automaton of £ = F NG
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Proposition 4. Let E be an extended reqular expression and A be its derivated
term automaton. Then it holds: L(A) = L(E).

Proof. By construction, w € L(A) & w € L(? (E)) < w € L(E). ]

The derivated term automaton of an extended regular expression E may have
an exponential number of states with respect to the width of E. It is the case for
the expression F' = —F,, where E,, = (a+b)*a(a+b)™. It can be checked however
that in this case, the derivated term automaton is not minimal. This situation
is consistent with the following proposition that addresses the complexity of the
size of the automata that recognize the language L(—FE), where E is a simple
regular expression.

Proposition 5. (1) For every simple regular expression E over an alphabet X,
it is possible to compute an automaton D such that:
L(D) = L(—=E) and O(|D|) = O(2/FI+1),
(2) There exists a family of expressions (rn)nen such that every automaton
recognizing L(—ry,) has an exponential size with respect to |ry| + 1.

Proof. Proof of this proposition is based on the following known results:

(a) For every simple regular expression F, a non-deterministic automaton G
can be computed such that L(G) = L(E) and |G| = |E|+ 1 [9[12] or |G| < |E|+
1 [d]. (b) For every non-deterministic automaton A, there exists a deterministic
and complete automaton D such that L(D) = L(-FE) and |D| < 2/4l [15]. (c)
For every automaton A over an alphabet Y| a simple regular expression E such
that L(A) = L(E) and O(|E|) = O(|A| x | %] x 4/41) [T206] can be computed.
(d) For X an alphabet of size 4, for all n € N, there exists a simple regular
expression r,, which size is O(n) such that for all simple regular expression r
such that L(r) = X%\ L(ry,), |r| > 22" [8I7].

(1) From (a) and (b).

(2) According to (1), for every simple regular expression E, one can construct
an automaton D such that L(D) = L(—FE) and |D| is at most exponential w.r.t.
|E| + 1. According to (c), D can be converted into an expression F' such that
L(D) = L(—E) = L(F) and |F| is at most exponential w.r.t. 2/Z1+1 Follow-
ing [8[7], let us set E = r,. Then |D| must be exponential w.r.t. |[E| + 1 and
|F'| must be exponential w.r.t. 2/Z%1 5o that condition (d) be satisfied. There-
fore any automaton recognizing L(—E,,) has at least an exponential size w.r.t.
|En| + 1. |

5 The Partial Derivative Automaton

As in the case of a simple regular expression, the language of an extended regular
expression FE is recognized by a deterministic automaton the states of which
are the partial derivatives of E'; moreover this automaton can be computed by
applying the subset construction to the derivated term automaton of E.
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Definition 4. Let E be an extended regular expression over the alphabet X .
The partial derivative automaton of E is the deterministic automaton A’ =
(Z,Q qp, F', &) defined by Q' = {5 (E) |w e Z*}, gy = {{E}}, F' = {G' €
Q' lee LG}, & ={(G',a,H') | §(G")=H'}.

Proposition 6. Let E be an extended reqular expression. The partial deriva-
tive automaton A’ of E is obtained by applying the subset construction to the
derivated term automaton A of E.

Proof. The proof is the same as in the simple regular expression case. Let
A= (X,Q,q0, F,0) and A" = (X,Q,q), F',¢'). By definition of A’, for all
w € X*, the state gf,-w is the partial derivative of E w.r.t. w. Let us consider the
automaton D = (X, S, s, T, -) obtained by applying the subset construction to
the automaton A. For all word w € X*, the deterministic state sg-w is associated
with the subset §(qo, w) of states of Q. By definition of A, this subset is equal to
the union of the derivated terms of E' w.r.t. w, that is to the partial derivative of
E w.r.t. w. Hence, applying the subset construction to the automaton A yields
the automaton A’.

Proposition 7. Let E be an extended reqular expression, B be the derivative
automaton of E and A’ be the partial derivative automaton of E. The automata
B and A’ generally are not comparable.

Proof. A state of B is a derivative of E while a state of A’ is a partial derivative
of E. Thus it seems natural to define a morphism (for example from B to A’)
by associating the state j,/ (E) to the state 0 (E). However this correspondence
only results in a mapping from B to A’ if for all v € X* such that j,/ (E) = 3,, (E),
we also have 08 (E) = aa (E). The reasoning is similar for a morphism from A’
to B. We now exhibit extended regular expressions such that there exists no

morphism either from B to A’ or from A’ to B.
(1) Let us consider the expression E = a(a + €)(ba + b)* + (ba + b)* over the
alphabet X' = {a,b}. It holds:
i (B) = (a+e)(ba+b)* 4(B) = (a+¢)(ba +b)*
o (B) = {{(a+e)(ba+1b)}} gi(E) = {{a(ba +b)*},{(ba +b)"}}.
The derivatives of E w.r.t. ¢ and b are equal, although the partial derivatives

of E w.r.t. a and b are not equal.
(2) Let us consider the expression F' = (ba* N ba*)b+ aa*b over the alphabet

Y ={a,b}. It holds: / /
%(E) =a*b %b(E) = (a*Na*)b
o, (B) = {{a*b}} 5, (B) = {{a"b}}.
The partial derivatives of E w.r.t. a and b are equal, although the derivatives
of E w.r.t. a and b are not equal.
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6 Conclusion

Thanks to an appropriate definition of partial derivatives of complementation
and intersection operations, we have generalized the partial derivative compu-
tation to extended regular expressions. As a result, and generalizing Antimirov
algorithm, we have designed an algorithm for converting an extended regular
expression into a non-deterministic automaton. To our knowledge, it is the first
algorithm computing such a non-deterministic automaton. Notice that the other
boolean operations can be expressed through complementation and intersection
operations, for example the set difference L(E \ F)) = L(E) N —L(F) or the
symmetrical difference L(EAF) = (L(E)N-L(F)) U (L(F)N—-L(E)). Thus the
partial derivatives of the other boolean operations can easily be processed using
the formulae of complementation and intersection operations. For a regular ex-
pression with n positions, the number of states of the derivated term automaton
is bounded by n+ 1 if the expression is a simple one, whereas it has a worst case
exponential complexity (and this bound is tight) if the expression is an extended
one. It is an open question whether there exists an extension of the notion of
position in an extended regular expression that would generalize the relation
between positions and derivated terms of a simple regular expression.
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Abstract. Automatic classes are classes of languages for which a finite
automaton can decide membership question for the languages in the
class, in a uniform way, given an index for the language. For alphabet
size of at least 4, every automatic class of erasing pattern languages is
contained, for some constant m, in the class of all languages generated
by patterns which contain (1) every variable only once and (2) at most
n symbols after the first occurrence of a variable. It is shown that such a
class is automatically learnable using a learner with long-term memory
bounded by the length of the first example seen. The study is extended
to show the learnability of related classes such as the class of unions of
two pattern languages of the above type.

1 Introduction

The present work carries on investigations of learnability properties in connection
with automatic structures. The underlying model of learnability is inductive
inference [2/9T8]. Additionally, (1) the target class of languages for learning is
an automatic family [TO/T2/T3], that is, membership problem for the class to be
learnt can be recognised by a finite automaton in a uniform way, and (2) the
learner itself is automatic [I1]. These learners are given by a function, where in
each step, the learner outputs a hypothesis and updates its long term memory
based on its previous memory and a current input. This function is required to
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be regular, that is it must be recognised by a finite automaton. Such learners
may be considered to be more realistic than learners which have access to all
past data. A further motivation for studying learners which are automatic is
that in some situations (such as space exploration by robots), it may be more
reasonable to have finite automata as a model rather than Turing machines.
Another motivation for the work goes back to the programme of Khoussainov
and Nerode [13] to find which results from recursion theory can be transferred
to automata theory and automatic structures.

Learners with explicit bounds on the long term memory have already been
studied previously (in the general setting of algorithmic learners), see [8I14]. In
the current paper, we consider learners for which the update function of the
learner is automatic. We will mainly be concentrating on learning subclasses of
pattern languages [I] and related classes which are automatic.

Section P below gives the preliminaries related to the model (for both learning
and automatic classes) used in this paper. Section B] deals with the learnabil-
ity properties of certain concrete classes, namely various interesting automatic
classes of pattern languages. The basic class P, consists of all regular pattern
languaged| which are generated by regular patterns in which variables occur only
within the last n symbols of the pattern. Each class P, forms an automatic fam-
ily [12] and Theorem [B] shows that each class P, is learnable by an automatic
learner where the long term memory is bounded by the size of the hypothesis.
Further results in this section investigate the learnability of related classes such
as the class of all (disjoint) unions of two members of P,,. Section [l deals with
learnability of character pattern languages, where the variables are allowed to
be replaced only by one character.

2 The Model

The convolution of two strings z,y € X* (denoted conv(z,y)) is the string
(2(0),y(0)), (x(1),y(1)),...,(x(n — 1),y(n — 1)), where each pair is a symbol
from (X U {o})2. The special symbol ¢ is appended to the shorter string in
order to make both strings to be of the same length n = max{|z|, |y|}. Sim-
ilarly, one can define conv on multiple arguments. A relation R or a function
f is called automatic if the sets {conv(z1,xzo,...,z,) : R(z1,22,...,2,)} and
{conv(z1,x2, ..., Tm,y) : f(x1,22,...,2m) = y}, respectively, are regular. Some
examples of automatic  predicates from  the prior literature
include predicates to compare the length of strings, the lexicographic order and
the length-lexicographic order. Here x is length-lexicographically less than vy iff

! Angluin’s pattern languages |2] are those generated by all the positive length sub-
stitution instances in a pattern, such as, for example, 01xy200zx1 — where the
variables (for substitutions) are z,y,z and the constants/terminals are 0,1,2. In
the present work, variables are also permitted to be substituted by empty strings.
Shinohara [23] introduced regular pattern languages as those languages which are
generated by a pattern where each variable occurring, occurs only once. These lan-
guage classes have been well-studied and found various applications.
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either |z| < |y| or || = |y| and z is lexicographically before y, where |z| denotes
the length of string x.

A family of languages {L, : « € I}, where each L, C D, is said to be
automatic iff D and I are regular sets (over some finite alphabet X and I'
respectively) and the set {conv(a,z) : « € I Ax € D Ax € Lo} is regular. The
sets D and I above are respectively called the domain and index domain for the
automatic family. It can be shown that the functions and relations which are
first-order definable using an automatic family and other automatic parameters,
is again automatic [T0JT3]. Automatic structures are structures given by finitely
many automatic relations and functions — where these structures can also be
considered in a more general sense, when they are just isomorphic to a collection
of finitely many automatic predicates and functions with corresponding regular
domains as defined above.

Properties such as decidability of first order theory make automatic struc-
tures a useful tool not only in learning theory but also in other areas such as
model checking and Boolean algebras [6II3I2T22]. Moreover, though the class
of all regular languages is learnable using queries [4], it is not learnable under
the usual inductive inference criteria from positive data [2[9]. Therefore, it is in-
teresting to investigate which subclasses of regular languages are learnable from
positive data and which are not. For example, Angluin [3] considered learnabil-
ity of the class of k-reversible languages. These studies were later extended [7].
In this context, it is useful to consider which automatic families are learnable
and which notg

The present work considers learning in the setting of automatic structures.
The learning task (also called target class) is a class of languages, £ = {L, :
a € It over a domain D C X*, where I is the index domain. The learner uses
a hypothesis space H = {Hg : f € J} to express its conjectures (here J is the
index domain for the hypothesis space). For this paper both the target class as
well as the hypothesis space are automatic families. A text T is a mapping from
{0,1,2,...} to DU{#}. Here # denotes pauses in the presentation of data. The
content of a text T', denoted content(T), is range(T) — {#}. A text T is for a
language L iff content(T) = L. We let o range over initial segments of texts.

A learnerlearning a target language L € £ from a text T for L, starts (at time
0) with an initial memory (say memyg) and an initial hypothesis (say hypg). At
time t+1, the learner gets the input T'(¢), outputs hypothesis hyp;1 and has new
memory memy1. Here memy41 and hypi1 are computed based on just T'(t)
and mem; (note that the learner does not have access to ¢, unless it remembers
it as part of its memory). Here we allow hyp; to be ?, to denote that the learner
does not change its previous hypothesis (this is useful for some memory limited
models of learner). The memory of the learner is often also referred to as long
term memory of the learner.

2 As noted by Jain, Luo and Stephan [I1], even the class of O-reversible languages is
not automatic; however, as mentioned in the abstract and as will be seen below,
some very nice classes of regular languages are automatic classes and learnable au-
tomatically, that is, by learners which are given using finite automata.
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A learner is called iterative — see [24] — iff at every stage of the learning
algorithm, the memory of the learner is identical to the current hypothesis of
the learner.

A learner M is called automatic learner iff the mapping from (memy, T'(t)) —
(memyy1, hype41) is automatic.

We say that a learner M learns a language L from a text T for L iff, on input
text T', the sequence of hypothesis hypo, hypi,... of the learner M converges
syntactically to a conjecture 8 € J such that Hz = L. Here, we say that the
sequence hypg, hypi, ... of hypotheses converges to § iff there exists a ¢ such
that (1) hyp: = B and (2) for all ¢ > ¢, hypy € {3,7}. The learner M learns £
iff it learns every member L € L from each text T for L. A class L is said to be
learnable iff some learner learns L.

Note that the hypothesis space must contain the family £ to be learnt. When
we do not restrict the memory size or computational power of the learner, the
above learning model is equivalent to Gold’s model of inductive inference [9]
(called explanatory learning). Based on a result of Angluin [2] characterising
algorithmic learnability of general indexed classes, Proposition [l below charac-
terises the general algorithmic learnability of automatic families Note that the
version of Angluin’s condition for automatic classes, as used in Proposition [T
can be checked explicitly for automatic families. Hence it is decidable whether an
automatic family is learnable by an algorithmic learner or not. In what follows,
for simplicity, the tell-tale condition will be referred to as Angluin’s.

Proposition 1 (Based on Angluin [2]). An automatic family {L, : o € I}
18 learnable by a recursive learner iff, for every a € I, there is a bound b, such
that, for all B € I, the implication

[{xELa\w\ﬁba}nggLa]éngLa

holds. One calls the set {x € Ly : || < by} a tell-tale set for L. This condition
is called Angluin’s tell-tale condition. Note that one can take b, = |a| + ¢ for a
suitable constant ¢ independent of « (see [12]).

Angluin’s condition solves the question of algorithmic learnability of automatic
classes. Therefore, for learning automatic families, it is more interesting to con-
sider automatic learners which have a superior run-time behaviour than usual
learners as hypothesis and updated memory of automatic learners can be com-
puted in time linear in the length of the previous memory and current datum;
this is explained in the following remark.

Remark 2. Any automatic function f can be computed in linear time. To see
this, construct a directed acyclic graph (branching program), with root being the
starting state of the automaton recognising f. The acyclic graph has, at each
depth, nodes representing each state of the automaton. The depth of the acyclic
graph is bounded by |z| 4+ ¢ (note that length of f(x) is bounded by |z| + ¢, for

3 Note that herein the focus will, nonetheless, remain primarily on the automatic
learnability of automatic classes and not on their general algorithmic learnability.
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some constant ¢). The acyclic graph has transitions from all nodes at depth d to
all nodes at depth d + 1, for each possible symbol in the alphabet used by the
automaton for recognising conv(z, f(z)). In a first pass over the acyclic graph
from the root node to the end, one marks all reachable nodes when the input to f
is x (and f(z) is allowed all possible values); this can be done in linear time. In the
second pass one identifies the unique reachable accepting node which is on level
£ > |z|. In the third pass, one goes from this accepting node backwards through
the graph of reachable nodes and notes down the members from f(x)of= /(@)
in reverse order. As the computation is unique, it does not matter which choice
one takes in the nodes as long as one remains within the subgraph consisting of
the reachable nodes. This allows one to compute the output of the function in
linear time.

Automatic learners cannot memorise all data they observe; hence the learner can
no longer access the full past history of the data seen so far. Thus, in general,
the requirement of a learner to be automatic is a real restriction and learners
cannot be made automatic by just applying Pitt’s delaying technique [19].

Long term memory limitations were first introduced by Freivalds, Kinber and
Smith [8]. The variations of long term memory in the context of automatic
learners, was considered by Jain, Luo and Stephan [II]. The size of the memory
of a learner may be explicitly bounded in length. The length-restrictions we
consider are:

(1) memory bounded by the size of the longest datum observed so far plus a
constant, that is jmem;| < max({|T(s)| : s < t}) + ¢, for some constant c;

(2) memory bounded by hypothesis size plus a constant, that is |mem;| <
|hypt| + ¢, for some constant c.

For the ease of notation, the “plus a constant” is omitted in the notations below.
Note that the learner is not constrained regarding which alphabet it uses for its
memory. Therefore, the learner might, for example, store the convolution of up
to k examples (in case the memory does not exceed the allowed bound). Note
that, in the case that memory is unbounded or the bound allows storage of the
hypothesis, then the learner can memorise the most recent hypothesis output,
and, thus, abstain from outputting 7.

For many learning paradigms of automatic learning, one can choose the hy-
pothesis space ‘H to be same as L. However, when the amount of the memory
allowed to the learner depends on the size of the hypothesis or when the long
term memory of the learner has to be the most recent hypothesis, as in the case
of iterative learning, this requirement may be a restriction. The main reason for
hypothesis space not to be critical in many cases is that one can automatically
convert the indices from one automatic family to another for the languages which
are common to both automatic families. Only in the case of iterative learning
and bounds given by the size of the hypothesis, it is often important to have
the ability to store some additional information into the hypothesis — which is
impossible in the case of a one-one hypothesis space. For example, Theorem [Blre-
quires a special class preserving hypothesis space, if one considers learning these
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classes using memory bounded by hypothesis size or for iterative learning. Here
a hypothesis space {Hpg : 3 € J} is called class preserving (class comprising) [16]
for the target class {Lo : € I}, if {L,:a € I} ={Hg: 3 € J} (respectively,
{Lo:a€l} C{Hg:peJ}).

Note that, in contrast, hypothesis spaces do matter for learning general in-
dexed families by recursive learners [T6J17].

In the case that the hypothesis space does not matter, often, for the ease of
notation, the languages are given in place of the indices as conjectures of the
learner.

3 Classes of Pattern Languages

Learning theorists have studied the learnability of the class of pattern languages
extensively [TIJT52023] and they are often used to judge the power of learning
models. Although the full generality of pattern languages cannot be brought
over into an automatic setting, there are still rich automatic classes of pattern
languages which deserve to be investigated [12].

Fix an alphabet set 2. The notion of pattern languages is based on the notion
of a pattern [I] which is any string over (X UV)*, where V is an infinite set of
variables which is disjoint from Y. The language associated with a pattern m,
denoted by Lang(w), is the set of strings which can be obtained by replacing
each variable in the pattern by a string over Y. There are two cases: In the case
of an erasing pattern language one permits that the string chosen can be empty;
in the case of a non-erasing pattern language the string must always contain
at least one symbol. In the present work, a “pattern language” is by default an
“erasing pattern language”.

Shinohara [23] considered the class of languages which are generated by regu-
lar patterns, that is, patterns in which the variables do not repeat. Let P,, denote
the class of pattern languages which can be generated by a regular pattern where
variables, if any, only appear within the last n symbols of the pattern. For ex-
ample, the pattern 010232012012x12y12 generates a language in Pg. Jain, Ong,
Pu and Stephan [12] showed that every class P,, can be given as an automatic
family. Furthermore, every automatic class of languages generated by regular
patterns is a subclass of some P,,.

Theorem 3. Every class P, has an automatic learner. This learner can be made
iterative, if one allows a suitable class preserving hypothesis space. Furthermore,
there is also an automatic learner with the memory limited by the size of the first
datum seen.

Proof. Let S be the set of all L € P, which are generated by regular patterns
consisting of at most n symbols. Note that S is finite. The memory of the learner
is of the form conv(z, «), where |a|] = |z| + 1 and every symbol g in « codes a
subset of S. The conjecture of the learner at any stage is the language associated
with the memory defined as follows. Let A be the set of all languages L such
that, for some prefix y of  and language H in the set coded by a(ly|), L =y-H.
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The language associated with memory conv(z, «) is the length-lexicographically
first language (based on the length-lexicographic ordering of (y, H) for the lan-
guages y - H in A) in A such that no proper subset of this language is in A.

The automatic learner conjectures 7 until it sees the first datum = # #. From
then on its memory is of the form conv(x, @) and its conjecture is the language
associated with the above memory, where « is appropriately chosen: For every
prefix y of x, a(|y|) contains all H € S such that y- H contains all the data seen
so far.

It is easy to verify that the above learner is automatic. Furthermore, the
memory of the learner is bounded by the size of the first datum seen. Note
that the language associated with conv(z,a) is the minimal language in P,
which contains all the data seen so far. Hence, the learner converges to a correct
hypothesis.

The above learner can be made iterative, by using a class preserving hypothesis
space, which allows one to pad the hypothesis by the memory conv(z, ) — note
that the memory value of the learner above converges in the limit. O

The above algorithm can be used to obtain the following more involved result
(Theorem []). The result mainly implies that the class of the disjoint unions of
two languages from P, is learnable.

Barzdigs [5] called a learner consistent if the learner, on any input o, outputs
a hypothesis which contains every data-item occurring in o. A learner is said to
be confident [18] if for all input texts the sequence of hypotheses output by the
learner syntactically converges to a hypothesis. Note that these constraints are
required even for input texts for a language outside the class to be learnt.

Proposition 4. Let an automatic class L be given. Suppose that the automatic
learners My, Mo, . .., M, are consistent and confident. Then, there exists another
automatic learner N which is (1) consistent, (2) confident and (3) converges on
a text T' for a language L € L to an index for L whenever at least one of the
learners My, Ms, ..., M, converges on T to an index for L.

Note that the learner N in the above proposition would have its memory bounded
by the size of the longest datum seen, if each of the individual learner M7, Ms, . ..
satisfy this constraint. Similarly, if one allows class preserving hypothesis space,
then N can be made to satisfy memory bounded by hypothesis size if each of
My, My, ... satisfy this constraint.

Proposition 5. {LU{z}: L € P,,z € X* — L} is consistently and confidently
learnable by an automatic learner. Furthermore, the memory of the learner is
bounded by the size of the longest input datum seen.

Theorem 6. For every n, the class P,U{LUH : L,H € P, A\LNH =0} has
an automatic learner. Furthermore, this learner is consistent and confident, and
has memory bounded by the size of the longest datum seen by the learner.

Proof. Note that two non-singleton pattern languages L and H in P,, are disjoint
iff there exists a w and different a,b € X such that either (1) L C waX* and
H C wbX™* or (2) length of w is at most n and L C Y*aw and H C Y*bw.
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The automatic learner N for this theorem maintains the long term memory
conv(fo, B1, B2, B3, Ba, Bs, xa, xb, cy, dy). The learner uses 6 sublearners Ny, Ny,
N3, N3, Ny, N5 using parts of this memory which simulate the learner M from
Theorem [3 and the learner from Proposition [l as follows.

— The learner Ny simulates M on all inputs and [y is the corresponding

memory.
— The learner Ny simulates the learner from Proposition (Bl and uses memory
Bi-

— Let 2 be the longest common prefix of all data observed so far. Furthermore,
if possible, let a, b be different elements of X' such that each observed datum
either extends za or extends xb; otherwise, if such elements of X do not
exist, then let a = ¢ and b = ¢.

Ny and N3 simulate M on the data extending xza and xb, respectively, main-
taining the corresponding memories 32 and B3 — except that in the case of
a = b = ¢, the conjectures of Ny and N3 are X*, rather than the conjecture of
M . Now consider the case that, due to a new datum, the values xa and zb be-
come updated and a # b. Then, a is chosen such that all previously observed
data extend xa, while the current datum extends xb. Then N5 takes over the
old memory of Ny (before processing the current datum) and simulates M
on all data which extend xa, while N3 simulates M on all data extending xb,
among which the current datum is the first to occur. The long term memories
B2 and (3 of Ny and N3 are maintained accordingly. Note that when a # b,
then the above process consistently maintains that Ny and N3 simulate M on
all data which extend xa and xb respectively.

— Let y be the longest common suffix, of length at most n + 1, of all data
observed so far. Furthermore, if possible, let ¢, d be different elements of X
such that all observed data have suffix either cy or dy (where length of cy
and dy are at most n + 1); otherwise let c =d = .

N4 and N5 simulate M on the data ending with cy and dy, respectively,
maintaining the corresponding memories (34 and G5 — except that in the
case of ¢ = d = €, the conjectures of Ny and N5 are X*, rather than the
conjecture of M.

Now consider the case that, due to a new datum, the values cy and
dy become updated and ¢ # d. Then, ¢ is chosen such that all previously
observed data end with cy, while the current datums ends with dy. Then N4
takes over the old memory of Ny (before processing the current datum) and
simulates M on all data which end with cy, while N5 simulates M on all
data ending with dy, among which the current datum is the first to occur.
The long term memories 84 and G5 of N4 and N5 are maintained accordingly.
Note that when ¢ # d, then the above process consistently maintains that
Ny and N3 simulate M on all data which end with cy and dy, respectively.

The new learner N is a combination of the learners Ny, N1, No, N3, N4 and Ns.
When its current memory is updated to conv(Sy, 81, B2, B3, B4, 5, xa, xb, cy, dy),
then N’s hypothesis is calculated from the conjectures Lo, L1, Lo, L3, L4, L5 of
Ny, N1, No, N3, Ny, N5 as follows: L is the first language in the list Lo, L1, LoUL3
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and L4 U L5 which is not a proper superset of any other language in the list. It
is easy to see that the learner N defined like this is automatic.

For the verification, consider first the case that the language L to be learnt
is from P,,. Then Ny learns L and the other learners converge to a superset of
L. If the language to be learnt is of the form L U {z} with L € P,, and z ¢ L,
then N; converges to the correct hypothesis and all other learners converge to
hypotheses for some supersets of L U {z}.

Otherwise, consider disjoint sets L, H € P,, such that |L|,|H| > 2 and the
target language is L U H. Furthermore, let z’,a’,b’,y’, ¢/, d’ be the final values
of the variables x,a,b,y, c,d, respectively. Note that a,b, c,d can change their
value only by either becoming the empty string or by = or y becoming shorter.
This shows that there are at most 2 times as many updates of these variables
as the length of the first string observed. Note that either L C x'a’X* A H C
VXN £V or L C Xy NH C X*d'y' N # d (where, L and H may
be interchanged). Furthermore, if a’ # ', then Ny and N3 converge to L and
H, respectively. Similarly, if ¢/ # d’, then Ny and N5 converge to L and H,
respectively.

The invariant of the learning process is that at every time, Ny and N7 conjec-
ture sets containing all data seen so far, N conjectures a set containing all data
beginning with xa seen so far, N3 conjectures a set containing all data beginning
with xb seen so far, N4 conjectures a set containing all data ending with cy seen
so far and N5 conjectures a set containing all data ending with dy seen so far.
Furthermore, all learners converge. In the limit, one of the following occurs:

— Ny converges to a language generating the target language;

— Np converges to a language generating the target language;

— N, converges to a language consisting of all the strings of the target language
beginning with z’a’ and N3 converges to a language consisting of all strings
of the target language beginning with z'b’;

— N4 converges to a language consisting of all the strings of the target language
ending with ¢y’ and N5 converges to a language consisting of all strings of
the target language ending with d'y’.

Hence, one of the languages Lo, L1, Lo U L3, L4U L5 as computed by the learners
above, in the limit, will be same as the target language and be a subset of
the other three languages; therefore, the learner N will converge to the correct
language. O

We now consider the general case of learning unions of pattern languages from
Pn. While the above results also hold for non-erasing pattern languages, the
following results of this section hold only for erasing pattern languages.

Proposition 7. Suppose Lg, L1, ..., Ly are erasing pattern languages generated
by regular patterns. If X contains at least k+ 1 characters, Ly is infinite and the
difference Ly — Uie{l,Z,...,k} L; is not empty, then this difference is infinite.

Let G,, denote the set of all erasing pattern languages which are generated by a
regular pattern of length at most n which start with a variable. Note that G, is
finite.
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Theorem 8. Suppose |X| > 3. Let L ={L1ULy: Li,Ls € Py, |L1| > 1,|Ls| >
1}. Then, L is learnable by an automatic learner (using class comprising hy-
pothesis space) which (1) uses memory bounded by the size of the longest datum
seen so far and (2) for all texts T for a language L, converges to an index for a
language L' such that L — L' is finite.

Proof. Note that by Proposition [7] different languages in £ are pairwise infinitely
different.

For each Hy, H, € Gy, consider My, g, defined as follows. Conjectures of
M, m, will be of the form conv(z, so, $1,¢), where z, 59,51 € X*, ¢ € {0,1,2}.
The language associated with conv(z, so, s1,0) is X*. The language associated
with conv(z, sg, s1,1) is so - Ho. The language associated with conv(z, sg, $1, 2)
is sg - Hyg U sy - Hy. The string « will be the length-lexicographically smallest
string seen in the input.

Whenever My, m, sees an input w which is length-lexicographically smaller
than any previously seen input, it outputs conv(w, sg, s1, ¢), where if there is a
prefix s of w such that w is the length lexicographically least element of s - Hy,
then sp = s and ¢ = 1; otherwise, sy = w and ¢ = 0. In both cases, s is €.

In other cases, suppose the previous conjecture of My, w, is (z, so, s1,¢) and
the new input is w. Then, use the first case below which applies:

Case 1: ¢ =0 or (w € sg - Hp). In this case conjecture (z, sg, s1, ¢).

Case 2: w ¢ Hy. In this case conjecture (z, sg, 1, 0).

Case 3: ¢ = 1. In this case let s} be the longest prefix of w such that w € s} - Hy,
and conjecture (x, s, 87, 2).

Case 4: ¢ = 2. In this case let s be longest prefix of s; such that w € s} - Hy,
and conjecture (z, so, s, 2).

Note that, on all input texts, Mg, g, converges. Say the converged index is
(z, 80, 81, ¢). Then, this is either a conjecture for X*  or s - Hy contains the
length-lexicographically smallest string in the input and (z, sg, s1, ¢) represents
the language which is a superset of the input language, except maybe for finitely
many strings.

Furthermore, if the input language is L = s- HU s’ - H', for H,H' € G,,
(where s- H contains the length-lexicographically smallest string in L) then the
following two statements hold:

(a) for each Hy, H1, My, u, converges to a superset of L, as this converged
language is a superset of a finite variant of L, and thus by Proposition [1 a
superset of L.

(b) My g+ converges to an index for a subset of L (and thus by (a) above
to an index for L). To see this, suppose My g+ converges to index (z, sg, $1, ¢).
Then z is the lexicographically least element of L, s- H and sg- H. Thus s = so.
Furthermore, if ¢ = 2, we have that s’ - H' 2 s; - H' (since in Case 3 and 4 the
algorithm chooses the longest possible prefix).

Now define M which outputs the convolution of the outputs of all Mg g/,
H, H' € G,,. This conjecture represents language associated with the conjecture
of Mg g/, where R, R’ are chosen to be length-lexicographically least such that
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the conjecture of Mg r/ is not a proper subset of the conjecture of any other
Mpy g 1t follows using (a) and (b) that M learns L. O

A combination of the constructions from Proposition Bl and Theorem |l can be
used to show the following theorem.

Theorem 9. Suppose |X| > 3. Let L = {L1 ULy : L1,Ly € P,}. Then, L
is learnable by a learner (using class comprising hypothesis space) which uses
memory bounded by the size of the longest datum seen so far. Furthermore, the

learner, for all texts T for a language L, converges to an index for a language
L' such that L — L' is finite.

4 Character Variables

In this section, we consider the following modification of pattern languages. We
consider two types of variables: character variables which can be replaced by one
symbol of X and string variables which can be replaced by any string, including
the empty string. Note that one can simulate non-erasing pattern languages (as
studied by Angluin [I]) by putting one character variable followed by one string
variable. The non-erasing pattern language associated with pattern xyzz can
be proven to be regular, by chosing the equivalent pattern abyacz of character
variables a, b, ¢ and erasing string variables y, z.

When investigating the learnability properties of such pattern languages, it
turned out that the character variables make it very difficult to build automatic
learners. For that reason, the case where only character variables are allowed is
considered here.

Let O,, denote the class of languages formed using patterns with variables only
of the type character variable such that, between the first and last occurrence
of any variable, at most n distinct variables appear in the pattern.

Theorem 10. (1) Fach O,, is learnable by an automatic learner with memory
bounded by the size of the longest datum seen so far in the input.
(2) The class {LUH : LNH =0AL,H € Oy} is not automatically learnable.

Acknowledgments. We thank the anonymous referees for useful comments.
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Abstract. We consider a set of natural operations on languages, and
prove that the orbit of any language L under the monoid generated
by this set is finite and bounded, independently of L. This generalizes
previous results about complement, Kleene closure, and positive closure.

1 Introduction

If t,x,y, z are (possibly empty) words with ¢ = zyz, we say
— x is a prefiz of t;
— z is a suffiz of t; and
— y is a factor of t.

If t = zitixate -+ Tptpxny for some n > 1 and some (possibly empty) words
ti,z;, 1<i<n,1<j<n+1,thent; - t, is said to be a subword of ¢. Thus
a factor is a contiguous block, while a subword can be “scattered”.

Let L be a language over the finite alphabet X', that is, L C X*. We consider
the following eight natural operations applied to L:

k: L—L"

e: L — LT

c: L>L=X"-1L
p: L — pref(L)

s: L —suff(L)

f: L —fact(L)

w: L — subw(L)
r: L — L%

Here
Ly={x € X* : zis a prefix of some y € L};

(
suff (L) = {x € ¥* : z is a suffix of some y € L};
(L) ={x € X" : xis a factor of some y € L};
subw(L) = {z € ¥* : z is a subword of some y € L};
LR={zecx* : 2R ec L}

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 204-R1§, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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where 8 denotes the reverse of the word z.
We compose these operations as follows:

if ©=aiaz - -a, € {kaeacapa S, fawar}*a then

a(L) = ar(az(as(- -~ (an(L)) - --)))-

Thus, for example, ck(L) = L*. We also write ¢(L) = L.
Given two elements =,y € {k,e,¢,p, s, f,w,r}*, we write z = y if (L) = y(L)
for all languages L, and we write x C y if (L) C y(L) for all languages L.
Given a subset S C {k, e, ¢, p, s, f,w,r}, we can consider the orbit of languages

Os(L) = {a(L) : =€ S}

under the monoid of operations generated by S. We are interested in the follow-
ing questions: when is this monoid finite? Is the cardinality of Og(L) bounded,
independently of L?

These questions were previously investigated for the sets S = {k,c} and S =
{e, c} [4], where the results can be viewed as the formal language analogues of
Kuratowski’s celebrated “14-theorem” for topological spaces [3J2]. In this paper
we consider the questions for other subsets of {k,e,c,p,s, f,w,r}. Our main
result is Theorem [20] below, which shows finiteness for any subset of these eight
operations.

2 Operations with Infinite Orbit

We point out that the orbit of L under an arbitrary operation need not be finite.
For example, consider the operation ¢ defined by

q(L) ={xz € ¥* : x there exists y € L such that z is a proper prefix of y }.

Here by “z is a proper prefix of 3”, we mean that x is a prefix of y with |z| < |y].
Let L = {a™™ : n > 1}. Then it is easy to see that the orbit

Orgy(L) ={L,q(L),¢*(L), ¢*(L),.. .}

is infinite, since the shortest word in ¢*(L) N a™b is a**1b.
The situation is somewhat different if L is regular:

Theorem 1. Let q denote the proper prefiz operation, and let L be a regular
language accepted by a DFA of n states. Then O¢q(L) < n, and this bound is
tight.

Proof. Let M = (Q, X,6,qo0, F) be an n-state DFA accepting L. Note that a
DFA accepting ¢(L) is given by M’ = (Q, X, 6, qo, F') where

F'={qe @ : there exists a path of length > 1 from ¢ to a state of F }.

Reinterpreting this in terms of the underlying transition diagram, given a di-
rected graph G on n vertices, and a distinguished set of vertices F', we are
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interested in the number of different sets obtained by iterating the operation
that maps F' to the set of all vertices that can reach a vertex in F by a path of
length > 1. We claim this is at most n. To see this, note that if a vertex v is
part of any directed cycle, then once v is included, further iterations will retain
it. Thus the number of distinct sets is as long as the longest directed path that
is not a cycle, plus 1 for the inclusion of cycle vertices.

To see that the bound is tight, consider the language L,, = {¢,a,a?,...,a" 2},
which is accepted by a (complete) unary DFA of n states. Then ¢(L,,) = Ly_1,
so this shows [0y (Ly)| = n. O

It is possible for the orbit under a single operation to be infinite even if the
operation is (in the terminology of the next section) expanding and inclusion-
preserving. As an example, consider the operation of fractional exponentiation,
defined by
n(L) = {z :«a > 1 rational } = U T p({x}).
z€L

Proposition 2. Let L = {ab}. Then the orbit Oy, (L) is infinite.

Proof. We have aba® € n'({ab}), but aba® & n’ ({ab}) for j < i. ]

3 Kuratowski Identities

Let a : 2% — 2% be an operation on languages. Suppose a satisfies the following
three properties:

1. L is a subset of a(L) (expanding);
2. If L C M then a(L) C a(M) (inclusion-preserving);
3. a(a(L)) = a(L) (idempotent).

Then we say a is a closure operation. Examples of closure operations include
k,e,p,s, f, and w.

Note that if a,b are closure operations, then their composition ab trivially
satisfies properties 1 and 2 above, but may not satisfy property 3. For example,
pk is not idempotent, as can be seen by examining its action on L = {ab}
(aab & pk(L), but aab € pkpk(L)).

Lemma 3. Let a € {k,e} and b € {p, s, f,w}. Then aba = bab = ab.

Proof. We prove the result only for b = p; the other results are similar.

Since L C a(L), we get p(L) C pa(L), and then ap(L) C apa(L). It remains
to see apa(L) C ap(L).

Any element of a(L) is either € or of the form ¢ = tyt5 - - - t,, for some n > 1,
where each t; € L. Then any prefix of ¢ looks like ¢1ts - - - t;_1p; for some 7 > 1,
where p; is a prefix of ¢;, and hence in p(L). But each ¢; is also in p(L), so this
shows

pa(L) € ap(L). (1)
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Since a is a closure operation, apa(L) C aap(L) = ap(L).
Similarly, we have ap(L) C pap(L). Substituting p(L) for L in () gives
pap(L) € app(L) = ap(L). O

Lemma 4. The operations kp, ks, kf, kw,ep,es,ef and ew are closure opera-
tions.

Proof. We prove the result for kp, with the other results being similar. It suffices
to prove property 3. From Lemma Bl we have pkp(L) = kp(L). Applying k to
both sides, and using the idempotence of k, we get kpkp(L) = kkp(L) = kp(L).

O
If a is a closure operation, and ¢ denotes complement, then it is well-known
(and shown, for example, in [4]) that acacaca = aca. However, we will need the
following more general observation, which seems to be new:

Theorem 5. Let x,y be closure operations. Then xcycrcy = xcy.

Proof. xzcycxcey C xzcy: We have L C y(L) by the expanding property. Then
cy(L) C ¢(L). By the inclusion-preserving property we have zcy(L) C zc(L).
Since this identity holds for all L, it holds in particular for czey(L). Substituting,
we get xeycxey(L) C zecxey(L). But zecxey(L) = zey(L) by the idempotence
of x.

ey C xeycaey: We have L C x(L) by the expanding property. Then, replac-
ing L by cy(L), we get cy C zcy. Applying c to both sides, we get czcy C ccy = y.
Applying y to both sides, and using the inclusion-preserving property and idem-
potence, we get ycrcy C yy = y. Applying ¢ to both sides, we get cy C cycxcy.
Finally, applying x to both sides and using the inclusion-preserving property, we
get xcy C xcycxcey. O

Remark 6. Theorem [ would also hold if ¢ were replaced by any inclusion-
reversing operation satisfying cc = e.

As a corollary, we get [41]:

Corollary 7. If S = {a,c}, where a is any closure operation, and L is any
language, the orbit Og(L) contains at most 14 distinct languages.

Proof. The 14 languages are given by the image of L under the 14 operations

€, @, C, AC, CQAy ACA, CAC, ACAC, CACH, ACACH, CACAC, ACACAC, CACACH, CACACAC.
O

Remark 8. Theorem [B together with Lemma [l thus gives 196 separate identi-
ties.

In a similar fashion, we can obtain many kinds of Kuratowski-style identities
involving k., e, c,p, s, f,w and r.

Theorem 9. Let a € {k,e} and b € {p,s, f,w}. Then we have the following
identities:
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4. abcacaca = abca
5. bebebeab = beab
6. abcbcabecab = abcab

Proof. We only prove the first; the rest are similar. From Theorem [ we get

acacaca = aca. Hence ab(acacaca) = ab(aca), or equivalently, aba(cacaca) =
aba(ca). Since aba = ab from Lemma[3 we get abcacaca = abea. |

4 Additional Identities

In this section we prove some additional identities connecting the operations
{k7 e? C7p7 87 f7w7/r}'

Theorem 10. We have

7. rp = sr
8. rs=pr
9. rf=fr
10. rc=cr
11. rk =kr

12. rw = wr
13. ps=sp=f

14. pf=fp=rf

15. sf=fs=f

16. pu=wp=sw=ws= fu=wf=w
17. kw = wk

18. rkw = kw

19. ek=ke=k

20. fks=pks

21. fkp = skp

22. rkf =skf=pkf=fkf=kf

Proof. All of these are relatively straightforward. To see ([20)), note that p(L) C
f(L) for all L, and hence pks(L) C fks(L). Hence it suffices to show the reverse
inclusion.

Note that every element of ks(L) is either € or can be written & = s182- - s,
for some n > 1, where each s; € s(L). In the latter case, any factor of z must be
of the form y = s{'s;11 -+ 515}, where s} is a suffix of s; and s’ is a prefix of
sj. Then ss;11---sj_15; € ks(L) and hence y € pks(L).

Similarly, we have pkf = pk(ps) = (pkp)s = (kp)s = k(ps) = kf, which
proves part of (22)).

Theorem 11. We have

23. pes(L) = X* or (.
24. The same result holds for pcf, fcs, fcf, scp, scf, fep, wep, wes, wef, pcw, scw,
few, wew.
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Proof. Let us prove the first statement. Either s(L) = X*, or s(L) omits some
word v. In the former case, cs(L) = @, and so pcs(L) = 0. In the latter case, we
have s(L) omits v, so s(L) must also omit X*v (for otherwise, if zv € f(L) for
some z, then v € s(L)). So X*v C c¢s(L). Hence pes(L) = X*.

The remaining statements are proved similarly. a

The following result was proved in [I, Theorems 2 and 3].
Lemma 12. We have ecece = cece.

Theorem 13. Let L be any language.
25. We have kckek(L) = ckck(L) U {e}.

Proof. First, suppose € € L. Then e(L) = k(L) and ce(L) = ck(L). Since € ¢
ck(L), we obtain ece(L) = eck(L) = kck(L)—{e}. Then, cece(L) = ckck(L)U{e}.
So ecece(L) = kckck(L). From Lemma [I2] we deduce kckck(L) = ecece(L) =
cece(L) = ckck(L) U {e}.

Second, suppose € ¢ L. Then e(L) = k(L) — {€} and ce(L) = ck(L) U {€}.
We obtain ece(L) = kck(L) and cece(L) = ckck(L). So ecece(L) = eckck(L) =
kckck(L) — {e}. From Lemma [[2] we deduce kckck(L) = ecece(L) U {e} =
cece(L) U {e} = ckck(L) U {e}.

Lemma 14. Let L be any language.

(a) If zy € kp(L) then x € kp(L) and y € kf(L).
(b) If xy € ks(L) then x € kf(L) and y € ks(L).
(c) If xy € kf(L) then xz,y € kf(L).

(d) If zy € kw(L), then x,y € kw(L).

Proof. We prove only (b), with the others being proved similarly. If zy € ks(L),
then = € pks(L) and y € sks(L). But s C f, so pks C pkf, and pkf = kf by
@2). Hence = € kf(L). Similarly, sks = ks by Lemma[3] so y € ks(L). |

Lemma 15. We have pepckp C kp.

Proof. Let « € pepckp(L). Then there exists y such that xy € cpckp(L). So
xy ¢ pckp(L). Then, for all z, we have zyz ¢ ckp(L). Hence xyz € kp(L). Thus
x € pkp(L) = kp(L).

Theorem 16. Let b € {p,s, f,w}. Then

26. keb(L) = eb(L) U {e}
27, kekb(L) = ckb(L) U {e}
28. kbebekb(L) = bebekb(L) U {e}.

Proof. We prove only three of these identities; the others can be proved similarly.
kep(L) = ep(L) U {e}: Assume x € kcp(L). Either x = € or we can write
T = x1x9 - - T, for some n > 1, where each x; € ¢p(L). Then each z; & p(L).
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In particular 21 & p(L). Then z129 - - x, & p(L), because if it were, then x; €
p(L), a contradiction. Hence z € ¢p(L).

kckp(L) = ckp(L)U{e}: Assume x € kckp(L). Either = € or we can write x =
1o -+ Ty for some n > 1, where each x; € ckp(L). Then each z; & kp(L). In
particular 1 & kp(L). Hence 1 (z2 - - - ) & kp(L), because if it were, then z1 €
kp(L) by Lemmal[l4] a contradiction. Hence x & kp(L), so = € ckp(L), as desired.

kpcpckp(L) = pepekp(L) U {e}: Assume = € kpepckp(L). Either = € or we
can write © = x7 - - - &p,, where each x; € pepckp(L). In particular, there exists y
such that z,y € cpckp(L); that is, x,y & pckp(L). Assume x & pcpckp(L). Then
xy & cpckp(L), so xy € pckp(L). Then there exists z such that xzyz € ckp(L);
that is, zyz & kp(L). But from Lemma [[5] we know that every z; is in kp(L)
Further, since z,y & pckp(L), we have xz,yz & ckp(L); that is, z,yz € kp(L).
This shows that xyz = 1 - - - ,—1(z,yz) belongs to kp(L), a contradiction. 0O

Theorem 17. We have

29. sckp(L) = X* or ().
30. The same result holds for

fckp, pcks, fcks,pckf, sckf, fckf,wckp, wcks, wck f, wekw, pckw, sckw, fckw.

Proof. To prove (29), note that either kp(L) = X*, or kp(L) omits some word
v. In the former case, ckp(L) = 0, and so sckp(L) = 0. In the latter case, we
have kp(L) omits v, so kp(L) must also omit vX* (for otherwise, if vz € kp(L)
for some x, then v € kp(L) by Lemma [I4], a contradiction). Then vX* € ckp(L)
and hence sckp(L) = X*.

The other results can be proved similarly. a

Lemma 18. Let L be any language.

(a) If xy € skp(L), then x,y € skp(L).
(b) If zy € pks(L), then x,y € pks(L).

Proof. We prove only (a), with (b) being proved similarly.
If xy € skp(L), then x € pskp(L) and y € sskp(L). But pskp = (ps)kp
fkp = skp by @1)). So x € skp(L). Also, sskp = skp, so y € skp(L).

o il

Theorem 19. We have

31. scskp(L) = X* or (.
32. The same result holds for pcpks.

Proof. We prove only the first result; the second can be proved analogously.
Either skp(L) = X*, or it omits some word v. In the first case we have cskp(L) =
() and hence scskp(L) = (). In the second case, skp(L) must omit vX* (for if
vx € skp(L) for any z, then by Lemma [I§ we have v € skp(L), a contradiction).
Hence scskp(L) = X*. |



Finite Orbits of Language Operations 211

5 Results

Our main result is the following:

Theorem 20. Let S = {k,e,c,p, f,s,w,r}. Then for every language L, the set
Os(L) contains at most 5676 distinct languages.

Proof. Our proof was carried out mechanically. We used breadth-first search to
examine the set S* = {k,e,c,p, f,s,w,r}* by increasing length of the words;
within each length we used lexicographic order with k < e <c<p < f<s <
w < r. The nodes remaining to be examined are stored in a queue Q.

As each new word x representing a series of language operations is examined,
we test it to see if any factor is of the form given in identities (23)—-24) or (B30)-
B2). If it is, then the corresponding language must be either X*, 0, {e}, or XT;
furthermore, each descendant language will be of this form. In this case the word
x is discarded.

Otherwise, we use the remaining identities above to try to reduce x to an
equivalent word that we have previously encountered. If we succeed, then z is
discarded. Otherwise x(L) is potentially a new language, so we append all the
words Sz to the end of the queue. Some simplifications are possible. For example,
using our identities we can assume x contains only a single r and this appears
at the end; this cuts down on the search space.

We treat the identities (2B)-(27) somewhat differently. We keep track of
whether a language contains € or not. For example, when appropriate, we can
replace akcb with acb for a,b € {p, s, f,w}.

If the process terminates, then Og(L) is of finite cardinality.

We wrote our program in APL. For S = {k,¢,p, f, s, w,r}, the process termi-
nated with 5672 nodes that could not be simplified using our identities. We did
not count (), {e}, ¥, and X*. The total is thus 5676.

The longest word examined was ckcpepckpckpckpepepckceker, of length 25, and
the same word with p replaced by s.

Our program generates a complete description of the words and how they sim-
plify, which can be viewed at www.cs.uwaterloo.ca/~“shallit/papers.html.

O

Remark 21. If we use two arbitrary closure operations a and b with no relation
between them, then the monoid generated by {a, b} could potentially be infinite,
since any two finite prefixes of ababab - -- are distinct.

Here is an example. Let p denote prefix, as above, and define the exponentia-
tion operation

t(L) = {2" : x € L and i is an integer > 1}. (2)

Then it is easy to see that ¢ is a closure operation, and hence the orbits O, (L)
and Oy (L) are finite, for all L. However, for L = {ab}, the orbit Oy, + (L) is
infinite, as aba® € (pt)*(L), but aba® & (pt)? (L) for all j < i.

Thus our proof of Theorem crucially depends on the properties of the
operations {k, e, c,p, s, fyw,r}.

We now give some results for some interesting subsets of S.
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Fig. 1. DFA accepting a language L with orbit size 14 under operations p and ¢

Table 1. Final states for composed operations

language final states language final states
L 3,7,8 pepe(L) 1,5,6,7
c(L) 1,2,4,5,6 cpep(L) 2,3,6,7
p(L) 1,2,3,5,6,7,8 cpepe(L) 2,3,4,8
pe(L) 1,2,3,4,5,6,8 pepep(L) 1,2,3,5,6,7
ep(L) 4 pepepe(L)  1,2,3,4,5,8
cpe(L) 7 cpepep(L) 4,8
pep(L) 1,4,5,8 cpepepe(L) 6,7

5.1 Prefix and Complement

In this case at most 14 distinct languages can be generated. The bound of 14
can be achieved, e.g., by the regular language over X' = {a, b, ¢,d} given by the
regular expression a*((b+ ¢)(a(XX)* + b+ dX*) + dXT) and accepted by the
DFA in Figure[ll

Table [1l gives the appropriate set of final states under the operations.

5.2 Prefix, Kleene Star, Complement

The same process, described above for the operations {k,e,c,p,s, f,w,r}, can
be carried out for other subsets, such as {k, ¢, p}. For this our breadth-first search
gives 1066 languages. The longest word examined was ckcpepckpckpckpepepckcke.

5.3 Factor, Kleene Star, Complement

Similarly, we can examine {k, ¢, f}. Here breadth-first search gives 78 languages,
so our bound is 78 + 4 = 82. We can improve this bound by considering new
kinds of arguments.

Lemma 22. Let L be any language. There are at most 4 languages distinct
from X*,0, 5%, and {€} in O, g ke, rey (f(L)). These languages are among f(L),
kf(L), kckf(L), and kef(L).

Proof (Sketch). First observe that the set of languages {X*, 0, X+, {e}} is closed
under any operation of the set {k,c, f}. We make a case study. We consider
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successively the languages generated by {k, f, ke, fc} from fef(L), kf(L), and
kcf(L). We make use of Identities (22)), (24), 26), &0), and B0).

Let alph(L) denote the minimal alphabet of a language L, that is, the minimal
set of letters that occur in words of L.

Lemma 23. Let L be any language. We have kf(L) = k(alph

)-

(L)
Proof. The minimal alphabets of L and f(L) coincide. Thus f(L) C k(alph(L)),
so kf(L) C k(alph(L)). Further, alph(L) C f(L). So k(alph(L)) C kf(L) as well.

Lemma 24. Let L be any language. There are at most 2 languages distinct from
25,0, 5%, and {e} in O s e, rey (fE(L)) — Otp, ke, s (f(L)). These languages
are among fk(L) and kefk(L).

Proof. Apply Lemma 22] to k(L) and use kfk = kf. To see the latter identity,
use Lemma [23 and observe that alph(k(L)) = alph(L).

Lemma 25. For any language L, we have either f(L) = X* or fe(L) = X*.

Proof. Assume f(L) # X*. Then there exists a word in c¢f(L), say w. Hence
X*wX* N f(L) = 0. Since L C f(L), we also have X*wX* N L = (), that is
Y*wX* C ¢(L). This implies fe(L) = X*.

Theorem 26. 50 is a tight upper bound for the size of the orbit of {k,c, f}.

Proof (Sketch). From Lemmas 22 and 24], and Identity (25), starting with an ar-
bitrary language L, the languages in Oy . 3 (L) that may differ from 2, 0,2+,
and {e} are among the images of L and ¢(L) under the 16 operations

L Ef, kekf kef, fk,kefk, fck,kfck, kekfck, kefck, (3)
fkck, kcfkck, fckek, kfckcek, kek fckek, kef ckck.

the complements of these images, together with the 14 languages in Oy, .y (L).

By using Lemma 28] we show that there are at most 32 pairwise distinct
languages among the 64 = 16 - 4 languages given by the images of L and ¢(L)
under the 16 operations (@) and their complements.

Adding the 14 languages in Oy, (L), and X*,0, XF, and {e}, we obtain that
50 = 32+ 14 4 4 is an upper bound for the size of the orbit of {k, ¢, f}.

The bound is tight because the language L given by two copies (over disjoint
alphabets) of the language accepted by the DFA of Figure 2] over the alphabet
{a,b,c,d e, f,g,h,i} (iis a letter that does not occur in any word of L, i.e.,
i ¢ alph(L)) has 50 pairwise distinct elements in Oy ¢ 3 (L).

5.4 Kleene Star, Prefix, Suffix, Factor

Here there are at most 13 distinct languages, given by the action of
{e.k,p,s, f.kp, ks, kf,pk, sk, fk, pks, skp}.
The bound of 13 is achieved, for example, by L = {abc}.
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Fig. 2. The DFA made of two copies of this DFA accept a language L with orbit size
50 under operations k, ¢, and f

Table 2. Upper bounds on the size of the orbit

r 2w 2 f 2
s 2 p 2 ¢ 2
k 2 w,r 4 fr 4
fiw 3 s,w 3 s, 3
p,w 3 pf 3 ¢r 4
c,w 6x c, f 6% ¢, s 14
c,p 14 k,r 4 k,w 4
k,f 5 k,s 5 k,p 5
k,c 14 f,w,r 6 s, f,w 4
p, f,w 4 p,s, f 4 c,w,r 10
c f,r 10x ¢, f,w 8% ¢, s, w 16
¢ s, f 16x ¢,p,w 16x c¢,p, f 16
k,w,r 7k, f,r 9 k f,w 6
k,s,w 7 ks, f 9 k,p,w 7
k,p, f 9 k,c,r 28 k,c,w 38:x
k,c, f 50« k,c,s 1070 k,c,p 1070
p,s, f,r 8 p,s, f,w 5 ¢, f,w,r 12x
¢ s, f,w 16x c,p, f,w 16x c¢,p,s, f 16
k, f,w,r 11 k,s, f,w 10 k,p, f,w 10
k,p,s, f 13 k,c,w,r 2% k,c, f,r 84«
ke, f,w 66% k,c,s,w 1114 k,c,s, f 1450
k,c,p,w 1114 k,c,p, f 1450 p,s, f,w,r 10
c,p, S, fyr 30x c¢,p,s, f,w 16x k,p,s,f,r 25
k,p,s, f,w 14 k,c, f,w,r 120% k,c,s, f,w 1474

k,c,p, f,w 1474 k,c,p,s,f 2818 c¢,p,s, f,w,r 30%
k,p,s, f,w,r 27 k,c,p,s, f,r 5628 k,c,p,s, f,w 2842
k,c,p,s, f,w,r 5676
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5.5 Summary of Results

Table [2] gives our upper bounds on the number of distinct languages generated
by the set of operations. An entry in bold indicates that the bound is known
to be tight. Some entries, such as p,r, are omitted, since they are the same as
others (in this case, p, s, f, 7).

Most bounds were obtained directly from our program, and others by addi-
tional reasoning. An asterisk denotes those bounds for which some additional
reasoning was required to reduce the upper bound found by our program to the
bound shown in Table

6 Further Work

We plan to continue to refine our estimates in Table 2] and pursue the status
of other sets of operations. For example, if ¢ is the exponentiation operation
defined in (@), then, using the identities kt = tk = k, and the inclusion ¢t C k,
we get the additional Kuratowski-style identities kctckck = kck, kckctck = kck,
kctctck = kck, tctetck = tck, and kctctet = kct. This allows us to prove that
Ofk,ey (L) is finite and of cardinality at most 126.
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Abstract. The class of w-regular languages provides a robust specifica-
tion language in verification. Every w-regular condition can be decom-
posed into a safety part and a liveness part. The liveness part ensures
that something good happens “eventually”. Finitary liveness was pro-
posed by Alur and Henzinger as a stronger formulation of liveness [2]. It
requires that there exists an unknown, fixed bound b such that something
good happens within b transitions. In this work we consider automata
with finitary acceptance conditions defined by finitary Biichi, parity and
Streett languages. We give their topological complexity of acceptance
conditions, and present a regular-expression characterization of the lan-
guages they express. We provide a classification of finitary and classical
automata with respect to the expressive power, and give optimal algo-
rithms for classical decisions questions on finitary automata. We (a) show
that the finitary languages are X9-complete; (b) present a complete pic-
ture of the expressive power of various classes of automata with finitary
and infinitary acceptance conditions; (¢) show that the languages defined
by finitary parity automata exactly characterize the star-free fragment of
wB-regular languages [4]; and (d) show that emptiness is NLOGSPACE-
complete and universality as well as language inclusion are PSPACE-
complete for finitary automata.

1 Introduction

Classical w-regular languages: strengths and weakness. The widely stud-
ied class of w-regular languages provides a robust language for specification for
solving control and verification problems (see, e.g, [I314]). Every w-regular spec-
ification can be decomposed into a safety part and a liveness part [I]. The safety
part ensures that the component will not do anything “bad” (such as violate
an invariant) within any finite number of transitions. The liveness part ensures
that the component will do something “good” (such as proceed, or respond, or
terminate) in the long-run. Liveness can be violated only in the limit, by infinite
sequences of transitions, as no bound is stipulated on when the “good” thing must
happen. This infinitary, classical formulation of liveness has both strengths and
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weaknesses. A main strength is robustness, in particular, independence from the
chosen granularity of transitions. Another main strength is simplicity, allowing
liveness to serve as an abstraction for complicated safety conditions. For exam-
ple, a component may always respond in a number of transitions that depends,
in some complicated manner, on the exact size of the stimulus. Yet for correct-
ness, we may be interested only that the component will respond “eventually”.
However, these strengths also point to a weakness of the classical definition of
liveness: it can be satisfied by components that in practice are quite unsatisfac-
tory because no bound can be put on their response time.

Stronger notion of liveness. For the weakness of the infinitary formulation of
liveness, alternative and stronger formulations of liveness have been proposed.
One of these is finitary liveness [2]: finitary liveness does not insist on a response
within a known bound b (i.e, every stimulus is followed by a response within
b transitions), but on response within some unknown bound (i.e, there exists b
such that every stimulus is followed by a response within b transitions). Note
that in the finitary case, the bound b may be arbitrarily large, but the response
time must not grow forever from one stimulus to the next. In this way, fini-
tary liveness still maintains the robustness (independence of step granularity)
and simplicity (abstraction of complicated safety) of traditional liveness, while
removing unsatisfactory implementations.

Finitary parity and Streett conditions. The classical infinitary notion of
fairness is given by the Streett condition: it consists of a set of d pairs of requests
and corresponding responses (grants) and requires that every request that ap-
pears infinitely often must be responded infinitely often. Its finitary counterpart,
the finitary Streett condition requires that there is a bound b such that in the
limit every request is responded within b steps. The classical infinitary parity
condition consists of a priority function and requires that the minimum priority
visited infinitely often is even. Its finitary counterpart, the finitary parity con-
dition requires that there is a bound b such that in the limit after every odd
priority a lower even priority is visited within b steps.

Results on classical automata. There are several robust results on the lan-
guages expressible by automata with infinitary Biichi, parity and Streett condi-
tions, as follows: (a) Topological complexity: it is known that Biichi languages
are I19-complete, whereas parity and Streett languages lie in the boolean closure
of X§ and II9 [12]; (b) Automata expressive power: non-deterministic automata
with Biichi conditions have the same expressive power as deterministic and non-
deterministic parity and Streett automata [9I5]; and (c¢) Regular expression
characterization: the class of languages expressed by deterministic parity is ex-
actly defined by w-regular expressions (see the handbook [I6] for details).

Our results. For finitary languages, topological, automata-theoretic, regular-
expression and decision problems studies were all missing. In this work we present
results in the four directions, as follows:

1. Topological complexity. We show that finitary Biichi, parity and Streett
conditions are X9-complete.
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2. Automata expressive power. We show that finitary automata are incompara-
ble in expressive power with classical automata. As in the infinitary setting,
we show that non-deterministic automata with finitary Biichi, parity and
Streett conditions have the same expressive power, as well as deterministic
parity and Streett automata, which are strictly more expressive than deter-
ministic finitary Bilichi automata. However, in contrast to the infinitary case,
for finitary parity condition, non-deterministic automata are strictly more
expressive than the deterministic counterpart. As a by-product we derive
boolean closure properties for finitary automata.

3. Regular expression characterization. We consider the characterization of fini-
tary automata through an extension of w-regular languages defined as wB-
regular languages by [4]. We show that non-deterministic finitary Biichi au-
tomata express exactly the star-free fragment of wB-regular languages.

4. Decision problems. We show that emptiness is NLOGSPACE-complete and
universality as well as language inclusion are PSPACE-complete for finitary
automata.

Related works. The notion of finitary liveness was introduced in [2], and games
with finitary objectives was studied in [8]. A generalization of w-regular lan-
guages as wB-regular languages was introduced in [4] and variants were studied
in [5] (also see [3] for a survey); a topological characterization has been given
in [II]. Our work along with topological and automata-theoretic studies of fini-
tary languages, explores the relation between finitary languages and w B-regular
expressions, rather than identifying a subclass of wB-regular expressions. We
identify the exact subclass of wB-regular expressions that corresponds to non-
deterministic finitary parity automata.

2 Definitions

2.1 Topological Complexity of Languages

Let X be a finite set, called the alphabet. A word w is a sequence of letters,
which can be either finite or infinite, it will be described as a sequence wowy . . .
of letters. A language is a set of words: L C X* is a language over finite words
and L C X¥ over infinite words.

Cantor topology and Borel hierarchy. Cantor topology on X is given by
open sets: a language is open if it can be described as W - X* where W C X*. Let
X9 denote the open sets and ITY denote the closed sets (a language is closed if its
complement is open): they form the first level of the Borel hierarchy. Inductively,
we define: X7, is obtained as countable union of IT{ sets; and II?, ; is obtained as
countable intersection of XY sets. The higher a language is in the Borel hierarchy,
the higher its topological complexity.

Since the above classes are closed under continuous preimage, we can define
the notion of Wadge reduction [I7]: L reduces to L', denoted by L < L', if there
exists a continuous function f : X% — X such L = f~(L'), where f~(L') is the



Finitary Languages 219

preimage of L’ by f. A language is hard with respect to a class if all languages of
this class reduce to it. If it additionally belongs to this class, then it is complete.

Classical liveness conditions. We now consider three classes of languages that
are widespread in verification and specification. They define liveness properties,
i.e, intuitively say that something good will happen “eventually”. For an infinite
word w, let Inf(w) C X denote the set of letters that appear infinitely often in
w. The class of Biichi languages is defined as follows, given F' C X

Biichi(F) = {w | Inf(w) N F # 0}

i.e, the Biichi condition requires that some letter in F' appears infinitely often.
The class of parity languages is defined as follows, given p : X — N a priority
function that maps letters to integers (representing priorities):

Parity(p) = {w | min(p(Inf(w))) is even}

i.e, the parity condition requires that the lowest priority which appears infinitely
often is even. The class of Streett languages is defined as follows, given (R, G) =
(R;, Gi)1<i<d, where R;, G; C X are request-grant pairs:

Streett(R, G) = {w | Vi,1 < i < d,Inf(w) N R; # 0 = Inf(w) N G; # 0}

i.e, the Streett condition requires that for all requests R;, if it appears infinitely
often, then the corresponding grant G; also appears infinitely often.

The following theorem presents the topological complexity of the classical
languages:

Theorem 1 (Topological complexity of classical languages [12])

— For all ) C F C X, the language Biichi(F) is I19-complete.
— The parity and Streett languages lie in the boolean closure of X3 and IIY.

2.2 Finitary Languages

The finitary parity and Streett languages have been defined in [§]. We re-
call their definitions, and also specialize them to finitary Biichi languages. Let
(R,G) = (R;,Gi)1<i<d, where R;,G; C X, the definition for FinStreett(R, G)
uses distance sequence as follows:

; 0 R;
dist],(w, (R, G)) = { . wr ¢ By
inf{k' — k| kK > k,w € Gj} w € R;
i.e, given a position k where R; is requested, disti(w7 (R, Q)) is the time steps
(number of transitions) between the request R; and the corresponding grant G;.
Note that inf(()) = oo. Then distx(w, (R, G)) = max{dist] (w,p) | 1 < j < d}
and:
FinStreett(R, G) = {w | lim sup disty (w, (R, G)) < oo}
k
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i.e, the finitary Streett condition requires the supremum limit of the distance
sequence to be bounded.

Since parity languages can be considered as a particular case of Streett lan-
guages, where G; C R; € G2 C Ry.. ., the latter allows to define FinParity(p).
The same applies to finitary Biichi languages, which is a particular case of fini-
tary parity languages where the letters from the set F' have priority 0 and others
have priority 1. We get the following definitions. Let p : ¥ — N a priority
function, we define:

dist(w,p) = inf{k’ — k| k" > k, p(wy:) is even and p(wy ) < p(wy)}

i.e, given a position k where p(wy) is odd, distg(w,p) is the time steps between
the odd priority p(wy) and a lower even priority. Then FinParity(p) = {w |
lim sup,, disty (w, p) < co}. We define similarly the finitary Biichi language: given
FC X, let:

nexty(w, F) = inf{k' — k | k' > k,wy € F}

i.e, nexty(w, F') is the time steps before visiting a letter in F. Then

FinBiichi(F) = {w | lim sup nexty (w, F') < co}.
k

2.3 Automata, w-Regular and Finitary Languages

Definition 1. An automaton is a tuple A = (Q, X, Qo,J, Acc), where Q is a
finite set of states, X is the finite input alphabet, Qo C Q is the set of initial
states, 6 C Q x X x Q is the transition relation and Acc C Q% is the acceptance
condition.

An automaton is deterministic if it has a single initial state and for every state
and letter there is at most one transition. The transition relation of deterministic
automata are described by functions § : Q x X' — @. An automaton is complete
if for every state and letter there is a transition.

Acceptance conditions. We will consider various acceptance conditions for
automata obtained from the last section by considering () as the alphabet. Au-
tomata with finitary acceptance conditions are referred as finitary automata;
classical automata are those equipped with infinitary acceptance conditions.

Notation 1. We use a standard notation to denote the set of languages recog-
nized by some class of automata. The first letter is either N or D, where N stands
for “non-deterministic” and D stands for “deterministic”. The last letter refers
to the acceptance condition: B stands for “Biichi”, P stands for “parity” and S
stands for “Streett”. The acceptance condition may be prefized by F' for “finitary”.
For example, NP denotes non-deterministic parity automata, and DFS denotes
deterministic finitary Streett automata. We have the following combination:

HRRt
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We denote by L,, the set of w-regular languages ([6JI5I9UT0]):

L, = NB = DP = NP = DS = NS.

3 Topological Complexity

In this section we define a finitary operator UniCloOmg that allows us to relate
finitary languages to their infinitary counterparts; we then give their topological
complexity.

Union-closed-omega-regular operator on languages. Given a language
L C X%, the language UniCloOmg(L) C X¥ is the union of the languages M
that are subsets of L, w-regular and closed, i.e, UniCloOmg(L) = U{M | M C
L,MelIlL,MeL,}.

Proposition 1. For all languages L C X* we have UniCloOmg(L) € X9.

The following lemma shows that FinStreett(R,G) is obtained by applying the
UniCloOmg operator to Streett(R, G).

Lemma 1. For all (R,G) = (R;,Gi)1<i<d, where R;,G; C X, we have
UniCloOmg(Streett(R, G)) = FinStreett(R, G).

Corollary 1. The following assertions hold:
— For all p: ¥ — N, we have UniCloOmg(Parity(p)) = FinParity(p);
— For all F C X, we have UniCloOmg(Biichi(F')) = FinBiichi(F).

Theorem 2 (Topological characterization of finitary languages). The
finitary Biichi, finitary parity and finitary Streett languages are X9-complete.

Proof. We show that if ) C F C X, then FinBiichi(F) is X9-complete. It fol-
lows from Corollary [I] that FinBiichi(F) € X9. We now show that FinBiichi(F)
is X9-hard. By Theorem [ we have that Biichi(X \ F) is II9-complete, hence
Y@\Biichi(X \ F) is X9-complete. We present a topological reduction to show
that X“\Biichi(X' \ F) < FinBiichi(F). Let b : ¥ — X“ be the stuttering
function defined as follows:

w =wy Wi ... W,
b(w) = wo wiwy ... WpWp ... Wy, ...
N ~ ~ -
2 on

The function b is continuous. We can easily check that the following holds:
Inf(w) C F iff 3B € N,3n € N,Vk > n,next,(b(w), F) < B.

Hence we get X\ Biichi(X'\ F') < FinBiichi(F), so FinBiichi(F) is X9-complete.
From this we can deduce the two other claims. a
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4 Expressive Power of Finitary Automata

In this section we consider the finitary automata, and compare their expressive
power to classical automata. We then address the question of determinization.
Deterministic finitary automata enjoy nice properties that allow to describe lan-
guages they recognize using the UniCloOmg operator. As a by-product we get
boolean closure properties of finitary automata.

4.1 Comparison with Classical Automata
Finitary conditions allow to express bounds requirements:

Ezample 1 (DFB ¢ L, ). Consider the finitary Biichi automaton shown in Fig.[T]
the state labeled 0 being its only final state. Its language is Ly = {(v/0a/(©) -
(brafM) . (p2af@) ... | f: N —= N, f bounded, Vi € N,j; € N}. Indeed, 0-
labeled state is visited while reading the letter b, and the 1-labeled state is
visited while reading the letter a. An infinite word is accepted iff the 0-labeled
state is visited infinitely often and there is a bound between two consecutive
visits of the O-labeled state. We can easily see that Lp is not w-regular, using
proof ideas from [4]: its complement would be w-regular, so it would contain
ultimately periodic words, which is not the case.

However, finitary automata cannot distinguish between “many b’s” and “only
b’s™

Ezample 2 (DB ¢ NFB). Counsider the language of infinitely many a’s, i.e,
L; = {w | w has an infinite number of a}. The language L; is recognized by
a simple deterministic Biichi automaton. However, we can show that there is
no finitary Biichi automata that recognizes L;. Intuitively, such an automaton
would, while reading the infinite word w = ab ab® ab® ab*...ab™... € L;, have
to distinguish between all b’s, otherwise it would accept a word with only b’s at
the end.

4.2 Deterministic Finitary Automata

Given a deterministic complete automaton A = (Q, X, qo, d, Acc), we define its
finitary restriction by UniCloOmg(A) = (@, X, qo, 0, UniCloOmg(Acc)).

Fig. 1. A finitary Biichi automaton A
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Treating the automaton as a transducer, we consider the following function:
Cy 2 X¥ — Q% which maps an infinite word w to the unique run p of A on w
(there is a unique run since A is deterministic and complete). Then:

L(A) ={w| Ca(w) € Acc} = C4(Acc).
The property C(UniCloOmg(Acc)) = UniCloOmg(C 4 (Acc)) follows from the

following lemma.

Lemma 2. For all A= (Q, X, qo,0, Acc) deterministic complete automaton, we

have:
1. for all AC Q¥, A is closed = C 4 (A) closed (C4 is continuous).

2. for all L C X%, L is closed = C4(L) closed (C4 is closed).
3. for all A C Q¥, A is w-regular = C, (A) w-regular.
4. for all L C X%, L is w-regular = C4(L) w-reqular.

Theorem 3. For any deterministic complete automaton A recognizing a lan-
guage L, the finitary restriction of this automaton UniCloOmg(A) recognizes

UniCloOmg(L).

Theorem [J allows to extend all known results on deterministic classes to finitary
deterministic classes: as a corollary, we have DFB C DFP and DFP = DFS.

We now show that non-deterministic finitary parity automata are more ex-
pressive than deterministic finitary parity automata. However, for every language
L € L, there exists A € DP such that A recognizes L, and by Theorem Bl the de-
terministic finitary parity automaton UniCloOmg(.A) recognizes UniCloOmg(L).
Observe that Theorem Bl does not hold for non-deterministic automata, since we
have DP = NP but DFP C NFP.

Ezample 8 (DFP C NFP). As for Example [Il we consider the languages L =
{(a?ob/ ) . (@ bF M) - (a72073)) ... | f: N — N, f bounded, Vi € N, j; € N} and
Ly = {(a”Opi0) . (a7 Wpit) . (afPbi2) ... | f : N = N, f bounded, Vi € N, j; €
N}. It follows from Example [I that both L; and Ly belong to DFP, hence to
NFP. A finitary parity automaton, relying on non-determinism, is easily built to
recognize L = L1 U Lo, hence L € NFP. We can show that we cannot bypass this
non-determinism, as by reading a word we have to decide well in advance which
sequence will be bounded: a’s or b’s, i.e, L ¢ DFP. To prove it, we interleave
words of the form (a* - b*)* - ¥ and (a* - b*)* - ¥, and use a pumping argument
to reach a contradiction.

4.3 Non-deterministic Finitary Automata

We can show that non-deterministic finitary Streett automata can be reduced to
non-deterministic finitary Biichi automata, and this would complete the picture
of expressive power comparison.

Our results are summarized in Corollary 2] and shown in Fig[2

Corollary 2. We have (a) DFB € L,; (b) DFB C DFP = DFS C NFB =
NFP = NFS; (¢c) DB ¢ NFB; (d) L, £ NFB.



224 K. Chatterjee and N. Fijalkow

NFB = NFP = NFS

Fig. 2. Expressive power classification

4.4 Closure Properties
Theorem 4 (Closure properties). The following closure properties hold:

1. DFP is closed under intersection.

2. DFP 1is not closed under union.

3. NFP is closed under union and intersection.

4. DFP and NFP are not closed under complementation.

5 Regular Expression Characterization

In this section we address the question of giving a syntactical representation of
finitary languages, using a special class of regular expressions.

The class of wB-regular expressions was introduced in the work of [4] as an
extension of w-regular expressions, as an attempt to express bounds in regular
languages. To define wB-regular expressions, we need regular expressions and
w-regular expressions.

Regular expressions define regular languages over finite words, and have the
following grammar:

L:=0|e|o|L-L|L*|L+L; oc€X

In the above grammar, - stands for concatenation, * for Kleene star and + for
union. Then w-regular languages are finite unions of L - L’*, where L and L’ are
regular languages of finite words. The class of wB-regular languages, as defined
in [], is described by finite union of L - M*, where L is a regular language
over finite words and M is a B-regular language over infinite sequences of finite
words. The grammar for B-regular languages is as follows:

M:=0|e|lo|M-M|M*|MP | M+M;, cex

The semantics of regular languages over infinite sequences of finite words will
assign to a B-regular expression M, a language in (X*)“. The infinite sequence
(ug,u1,...) will be denoted by u. The semantics is defined by structural
induction as follows.
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() is the empty language,

¢ is the language containing the single sequence (e,¢,...),

a is the language containing the single sequence (a,a,...),

— My - My is the language {(ug - vo,u1 - v1,...) | u € My, v € M},

]\4}* is the language {(uo...up(1)—1,Up1)-- Up2)—1,---) | w € M, f: N —
N )

M? is defined like M* but we additionally require the values f(i + 1) — f(4)
to be bounded uniformly in i,

— My + M; is {w ‘ u € My,v € My, Vi,w; € {ui,vi}}.

Finally, the w-operator on sequences with nonempty words on infinitely many
coordinates is: (ug,u1,...)* = wuouq . ... This operation is naturally extended to
languages of sequences by taking the w power of every sequence in the language.
The class of wB-regular languages is more expressive than NFB, and this is
due to the x-operator. We will consider the following fragment of wB-regular
languages where we do not use the x-operator for B-regular expressions (however,
the #-operator is allowed for L, regular languages over finite words). We call this
fragment the star-free fragment of wB-regular languages.

Theorem 5. NFB has exactly the same expressive power as star-free wB-regular
exTPressions.

To prove that any language in NFB can be described by a star-free wB-regular
expression, we use the same lines as for w-regular languages, except that a spe-
cial attention is needed on size of final loops. The converse implication is more
involved. We define acceptance conditions for automata reading infinite sequence
of finite words, and proceed by induction on star-free B-regular expressions to
build a finitary Biichi automaton that recognizes MZ. Then, we lift up au-
tomata reading infinite sequences of finite words to automata reading infinite
words. This transformation is possible due to the key, yet simple observation
that for all star-free B-regular expressions M and for all v € M we have (Ju,]|)»
is bounded.

6 Decision Problems

In this section we consider the complexity of the decision problems for finitary
languages. We present the results for finitary Biichi automata for simplicity, but
the arguments for finitary parity and Streett automata are similar.

Theorem 6 (Decision problems). The following assertions hold:

1. (Emptiness). Given a finitary Biichi automaton A, whether L(A) = 0 is
NLOGSPACE-complete and can be decided in linear time.

2. (Universality). Given a finitary Biichi automaton A whether L(A) = X% is
PSPACE-complete.

3. (Language inclusion). Given two finitary Biichi automata A and B, whether
L(A) C L(B) is PSPACE-complete.
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We can show that a finitary Biichi automaton is empty if and only if it is empty
regarded as a Biichi automaton. The PSPACE-hardness for universality and
language inclusion follows from the special case of automata over finite words. For
the PSPACE membership, we design a PSPACE algorithm for language inclusion
(and universality follows as a special case), by performing a synchronous product
of A and a subset construction of B.
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Abstract. We consider two-player graph games whose objectives are
request-response condition, i.e conjunctions of conditions of the form “if
a state with property Rq is visited, then later a state with property Rp
is visited”. The winner of such games can be decided in EXPTIME and
the problem is known to be NP-hard. In this paper, we close this gap by
showing that this problem is, in fact, EXPTIME-complete. We show that
the problem becomes PSPACE-complete if we only consider games played
on DAGs, and NP-complete or PTIME-complete if there is only one player
(depending on whether he wants to enforce or spoil the request-response
condition).

We also present near-optimal bounds on the memory needed to design
winning strategies for each player, in each case.

1 Introduction

Games. Games played on graphs are suitable models for multi-component sys-
tems: vertices represent states; edges represent transitions; players represent
components; and objectives represent specifications. The specification of a com-
ponent is typically given as an w-regular condition [6], and the resulting w-regular
games have been used for solving control and verification problems (see, e.g.,
[1U7I8]).

Fairness specifications. The class of fairness objectives is one of the most im-
portant specifications in verification and synthesis. The two classical notions of
fairness are as follows: (a) strong fairness (or Streett) objectives, and (b) request-
response (or assume-guarantee) objectives. The fairness objectives consist of a
set of k pairs of requests and corresponding responses. The Streett objective re-
quires that every request that appears infinitely often must be granted infinitely
often. The request-response objective requires that every request that appears
is granted after it appears. The class of Streett objectives is a canonical and
widely used form of fairness specification [I0J6]. The class of request-response
(assume-guarantee) specifications was studied in [I1], and it was shown that
a wide range of practical specifications (such as an elevator controller) can be
specified as request-response specifications.

Previous results. Games with Streett objectives have been widely studied and
optimal bounds on computational complexity and memory required by winning

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 227-p37, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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strategies have been established. The winner problem in games with Streett
objectives with k request-response pairs is coNP-complete [5]. The memory bound
for winning strategies is as follows: there is an optimal (matching lower and
upper) bound of k! for the size of memory for the player with the Streett objective
and the opposing player has a memoryless winning strategy (a strategy that
is independent of the history and depends only on the current vertex) [4]. In
contrast, for games with request-response objectives there are gaps both in the
computational complexity bounds, and memory bounds required for winning
strategies. Games with request-response objectives can be solved in EXPTIME [I1]
and are NP-hard [3]. The winning strategies for the player with request-response
objective require a memory of size at least [k/3] - 21*/3) and memory of size
k - 2k*1 suffices for winning strategies for both players [11].

Our results. We present tight computational complexity bounds for request-
response games, and present near optimal bounds on memory required by win-
ning strategies. Our results are as follows:

1. We first show that games with request-response objectives are EXPTIME-
complete (improving the NP-hardness lower bound). In the study of turn-
based deterministic games with classical objectives such as Rabin, Streett,
Muller the complexities are NP-complete, coNP-complete, PSPACE-complete,
respectively [10]. For turn-based games, several EXPTIME-completeness re-
sults are known for more general class of games such as pushdown games [12]
or imperfect-information games [9]. We show that for perfect-information
finite-state turn-based deterministic games, a natural variant of Streett ob-
jectives lead to EXPTIME-completeness. The EXPTIME-hardness results for
pushdown or imperfect-information games are either due to the infinite store
(stack) or the imperfect-information, whereas our proof is different and shows
how to exploit the simple extension of Streett objectives to request-response
objectives to mimic runs of alternating polynomial space Turing machines.

2. For the special class of DAG-games we show that request-response objec-
tives are PSPACE-complete. We also study the complexity of one player game
graphs: if there is only one player with request-response objectives, then the
problem is NP-complete; and if there is only the opposing player, then the
problem can be solved in polynomial time.

3. We improve the lower bounds for memory required for winning strategies in
games with request-response objectives: we show that the protagonist player
(whose goal is to enforce the request-response objective) requires 2k — 1
and the antagonist (opposing) player requires 2¥ memory states, (improving
the lower bound of |k/3] - 2l%/3] for the protagonist player, and no bound
was known for the opposing player). With a very simple argument we show
the construction of [II] can be used to obtain an upper bound k - 2* for
the protagonist and 2* for the antagonist. Thus our lower bound of 2% — 1
almost matches the upper bound of k- 2% for the protagonist, and our bound
of 2% for the opposing player is a tight bound. Thus, we present almost
optimal bounds on memory required by winning strategies. For DAG-games
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with request-response objectives, we prove an optimal (matching upper and
lower) bound of memory size <U€];2 J) for winning strategies of both players.

2 Definitions

Arenas and plays. A (finite) game arena A is a tuple ((V, &), V., Va), where
(V,€) is a finite graph and V,, Vo is a partition of V. The vertices in V, are
called Eve’s vertices and those in Vg are called Adam’s vertices. For a vertex u
in V, we denote by E(u) the set of successors of u: E(u) ={v € V| (u,v) € £}
We assume that every vertex has at least one successor. A play p on an arena
A is a (possibly infinite) sequence p = pg, p1, ... of vertices respecting the edge
relation: for all ¢ > 0 we have (p;, pi+1) € .

Strategies. Intuitively, a strategy is a recipe to extend plays. Formally, a strategy
o for Eve is a function o : V* -V, — V such that for all finite plays (or histories)
x ending in a vertex v of Eve, o(x) is a successor of v. Strategies for Adam are
defined analogously (and are usually denoted 7).

An equivalent definition of strategies uses the notion of memory. A strategy
with memory o for Eve is a tuple (o, o, 0%, o) where o™ is the set of memory
states, ot € o™ is the initial memory state, o® : Vo x o™ — V is the next-move
function, and o° : V x o" — oM is the memory update function. Notice that any
strategy can be represented as a strategy with memory V*. A strategy o has
finite memory if o" is finite (in this case, |o"| is the size of o); it is memoryless
if o" is a singleton. Notice that a memoryless strategy for Eve is independent of
the history of the play and depends only on the current vertex, and hence can be
described as a function from V, to V respecting the edge relation. The notation
for strategies with memory and memoryless strategies for Adam is analogous.

A play p is consistent with o if for all ¢ > 0 such that p; belongs to Eve we
have p;y1 is o(po, p1,-..,pi). Given an initial vertex v € V, a strategy o for
Eve and a strategy 7 for Adam, we denote by p(v, o, 7) the unique infinite play
starting in v and consistent with ¢ and 7.

Request-response objectives. A winning condition (objective) P for an arena
A is a subset of the plays on the arena. In this paper, we consider the request-
response objectives introduced by Wallmeier, Hiitten, and Thomas in [I1]. It
refers to vertex properties Rqy,...,Rq; which capture k different “requests”,
and other vertex properties Rpy,...,Rp; which represent the corresponding
“responses” (each Rq;,Rp; C V). The associated request-response condition re-
quires that for each i, whenever a vertexr in Rq; is visited, then later a vertex
in Rp, is visited. In linear time temporal logic (LTL) the condition is more of-
ten formalized as A;_;G(Rq, — XF(Rp,;)), where G, X, and F denote globally,
next, and eventually, respectively. The Streett objective in LTL is described as
NiZ1(G F(Rq;) — G F(Rp,)).

A strategy o is winning for Eve from a vertex v in a game G = (A, ®) if,
for any strategy 7 for Adam, the play p(v,o,7) belongs to @. A strategy 7
is winning for Adam from a vertex v if for all strategies o, the play p(v,o, )
belongs to =@ = IT \ @. The winning region of Fve in G, denoted Wg(®), is the
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set of vertices from which Eve has a winning strategy, and the winning region
for Adam, denoted W (—®), is defined similarly.

Theorem 1 (Determinacy [11]). For all request-response games, for all ver-
tices v, either Eve or Adam has a winning strategy from v.

3 Complexity of Request-Response Games

In this section, we consider the computational complexity of request-response
games in general. Our main result is an EXPTIME lower bound in complexity,
matching the EXPTIME membership from [I1]. We also study the complexity of
the winning strategies in terms of memory, and provide near optimal bounds for
both players.

3.1 Request-Response Games Are EXPTIME-Complete

In [I1], the authors show that request-response games can be solved in EXPTIME,
but they do not provide any lower bound in complexity. In this subsection, we
show that the problem is in fact EXPTIME-hard, through a reduction from the
membership problem for alternating polynomial space Turing machines.

An alternating Turing machine (ATM) is a tuple (Q, gin, Qv, Qn,Z, 9, qacc)
where:

— @ is a finite set of control states, partitioned into existential (Qy) and uni-
versal (Qn) states;

— @in € @ is the initial state;

Z ={0,1} is the tape alphabet;

- 0CQXTIxQxTIx{-1,1} is the transition relation;

— Qacc € @ is the accepting state.

For a given polynomial p, the question of whether an ATM M accepts a word
w in space at most p(|w|) is EXPTIME-complete [2]. We reduce this problem to
the winner problem of request-response games. The idea is that the players build
a run of the machine: Eve controls the existential states and Adam the universal
ones; if the run reaches an accepting state, Eve wins; if it goes on forever, Adam
does. A winning strategy for Eve in the game translates as an accepting run tree
of the machine.

We use p(|w|) copies of the control graph of the machine in order to store the
current location of the head. However, the arena does not store the content of
the tape. Instead, at each step, Eve announces the current symbol and Adam
either accepts it or challenges it. If he does the latter, the play stops: Eve wins
if she has been truthful; Adam wins if she cheated. This interaction is described
in Figure[Il

We use request-response pairs to force Eve to announce the correct symbol at
each step. There is a pair ¢° for each location £ and each symbol s. An extra pair
$ guarantees that the correct simulation of an infinite run is winning for Adam.
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(¢,£,0,7) ~’\(q,£, 0,!) ——— » Transitions of (g,0)

Transitions of (g, 1)

Fig. 1. The consistency gadget at a state (g, ¢)

The idea is that whenever a symbol s is written on the location £, a request of
type £° is generated. The play begins in the vertex start, which is a request of
type i%¢ for each i € {0,...,|w| — 1}, as well as a request of type $. Then the
token goes to (gin, 0) for the first step.

At the beginning of a step where the machine is in the control state ¢ and its
head is at the /*® cell, the token is in the vertex (g, ), which belongs to Eve. Her
first task is to announce the contents of the cell. She does so by granting either
29 or ¢! (by going to (q,¢,0,7) or (q,¢,1,7), respectively). At this point, Adam
can challenge her choice by sending the token to (g, ¥, L), which is a sink where
all the pairs except for £° and ¢! are granted. Thus, if Eve has announced the
correct symbol, she wins; otherwise, either £° or £! is left pending and she loses. If
Adam chooses to accept Eve’s claim, the token goes to the vertex (g, ¢, ,!), which
belongs to Eve if ¢ is an existential state and to Adam if ¢ is a universal state.
There, the controlling player chooses a transition of the form ¢t = (gq,4,r, j, £) by
going to the vertex (t, /), which generates a request of type ¢/. The token goes
then to the vertex (r, £ & 1) for the next step, unless 7 = gacc, in which case the
token goes to the sink vertex stop, which grants all the requests.

Let us show that Eve has a winning strategy in G if, and only if, M accepts w.
We call honest a strategy for Eve which always calls the correct symbol in vertices
of the form (g, ¢), and trusting a strategy for Adam which never challenges the
choices of Eve. It is clear that any winning strategy of Eve has to be honest, and
that an honest strategy of Eve is winning if and only if it is winning against any
trusting strategy of Adam.

There is a natural bijection between (i) plays consistent with an honest strat-
egy for Eve and a trusting one for Adam and (ii) runs of M on w. It can be
extended to a bijection between the honest strategies of Eve and the run trees
of M on w, which matches winning strategies and accepting run trees. Thus Eve
has a winning strategy if and only if M accepts w. It follows that the problem of
deciding the winner in request-response games is EXPTIME-hard. As it is known
to belong to EXPTIME [I1], Theorem [ follows:
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Theorem 2. The problem of deciding the winner in a request-response game is
EXPTIME-complete.

3.2 Strategy Complexity

We consider now the complexity, in terms of memory, of the winning strategies
for both players. In [I1], the reduction to Biichi games yields strategies with
memory k - 2%, It is possible to improve these bounds a little with two simple
observations:

— In the original reduction, the arena keeps track of the pending requests (2*
memory) and of an “active” pair which must be satisfied next (k memory);
Eve does not need to discriminate between the vertices where the active pair
is not pending, so she only needs Zf:o i- (’;) =k 21

— By replacing the Biichi condition with a generalized Biichi conditions (with
k target sets), one can get rid of the “active pair” tracker; Adam still has
memoryless winning strategies in the reduced game, so he only needs 2*

memory states in the original request-response game.

The authors presented only a lower bound for Eve, who was shown to need
2Lk/3] memory states. In this section, we improve and complete this picture
with a better lower bound for Eve (2¥ — 1), and a tight bound for Adam (2%).
The games realizing the lower bounds are presented in Figure

In the game of Figure the vertex labelled @ is a request of each type;
for each 4, a vertex labelled i is a response of type 4, and a vertex labelled 7 is
a response of every type but i. Intuitively, a play is divided in steps in which
Adam first chooses a pair and Eve then grants either this pair (and the play
continues) or all the others (and the play stops). It is clear that Eve can win
with the following strategy: the first time Adam chooses the i petal, she grants
the pair 7; the second time, she grants all the other pair. We show that Adam
can defeat any strategy with less than 2¥ — 1 memory states.

Let 0 = (o, 0%, 0, 0%) be a strategy for Eve with less than 2 — 1 memory
states. For each memory state m, we define the stopping set x(m) of m as the set
of petals where Eve would stop the play if Adam chose them (notice that m is
the memory of Eve in the “heart” vertex: it might change after Adam has made
his choice, but her behaviour is still determined by m and the petal that Adam
chose). As there are less than 2¥ — 1 memory states, there is a strict subset X of
{1,...,k} which is not the stopping set of any memory state. Now, Adam can
win against o by choosing, at each step, a petal in the symmetric difference of
X and x(m), where m is Eve’s current memory under o. Such a play can either
go on forever if Adam keeps to petals in X, or stop the first time he gets out. In
either case, there is at least one request outside of X which is never granted.

In the game of Figure the arena has 4k + 1 vertices: there is one copy
of the bottom, middle, left, and top vertices for each request-response pair.

! This strategy uses 2 memory states, but it is clear that there is no actual need for
a specific memory state to remember that every petal has been visited: in this case,
the play is already won, no matter what Eve does later on.
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1 u

e

=

(a) Eve: 28 — 1 (b) Adam: 2%
Fig. 2. Lower bounds in memory

For each pair, say the i'", the vertices labelled 7) (left and top) are both requests
and responses (recall that requests have to be granted in the strict future); the
vertex labelled 7 (middle) is a response of every type but i. The right and bottom
vertices are neither requests nor responses of any type (the label () of the bottom
vertex only serves as a reminder that there are k different copies of this vertex).
From the initial vertex (on the right), Eve can go to any of the bottom vertices;
likewise, from each left vertex, Eve can go to any of the top vertices. By contrast,
in a bottom vertex, say (i), Adam has to go to either the left vertex i or the
middle vertex 7. A step of this game can be described by the three following
actions: Eve chooses a pair, say i; Adam either grants it and requests it again
(and the play continues), or grants every other pair (and the game stops); Eve
then chooses a (possibly different) pair, say j, grants it, and requests it again.
Adam can win by stopping the game the second time a pair is requested (thus
with 2¥ memory states), and we show that he cannot win with less.

Let 7 = (7™, 7%, 7%,7%) be a strategy for Adam with less than 2* memory
states. For a memory state m in ™, we define the stopping set x(m) of m as the
sets of bottom vertices where Adam would stop the play if Eve chose them (once
again, m is the memory of Adam in the right vertex: it might change after Eve’s
choice, but Adam’s behaviour is determined by m and this choice). As there are
less than 2¥ memory states, there is a subset X of {1,...,k} which is not the
stopping set of any memory state. Now, Eve can win against 7 by choosing, at
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each step, a pair in the symmetric difference of X and x(m), where m is Adam’s
current memory under 7 in the right vertex and cycling through the pairs in X
in the left one. Such a play can either go on forever if Eve keeps to petals in X,
or stop the first time she gets out. In both cases, only requests in X are enabled.
Furthermore, in the first case, each such request is granted infinitely often; in
the second case, each request in X is granted when the play stops, and never
enabled again.

Theorem 3. In any request-response game with k request-response pairs, wher-
ever Eve has a winning strategy, she has a winning strategy with memory k-2F=1;
wherever Adam has a winning strategy, he has a winning strategy with memory
2k Furthermore, there is a request-response game with k request-response pairs
in which Eve can only win with at least 2 — 1 memory states, and one where
Adam can only win with at least 28 memory states.

4 Restrictions

In this section, we consider two special types of request-response games, where
the winner problem is easier to solve.

4.1 DAG Arenas

The first one is the case where the arenas have the form of a directed acyclic
graph (no cycles apart from loops on vertices with no other successors). By
contrast to the usual study of “long-term” behaviours, these games focus on
“short-term” objectives. We show that request-response games played on DAG-
arenas are PSPACE-complete, and provide tight bounds for the memory required
of each player.

As with most games played on DAG arenas, it is possible to solve the winner
problem in polynomial space, by enumerating the plays in lexicographic order.
We show PSPACE-hardness through a reduction from the truth problem of quan-
tified boolean formulae. From a QBF in conjunctive normal form with k variables,
we derive a request-response game with 3 - k + 1 vertices as follows: there is a
vertex for each variable and one for each literal; the “variable” vertex leads to
the two corresponding “literal vertices, and belongs to Eve if the variable is ex-
istential or to Adam if is is universal; there is a request-response pair for each
clause, which is requested at the beginning of the play and solved at each literal
present in the clause. For a QBF of the form 3z, Vo, . .., dxk, the resulting game
is described in Figure [3] (the vertex C is a request of each type).

Theorem M follows:

Theorem 4. The problem of deciding the winner in request-response games
played on DAG arenas is PSPACE-complete.

The restriction to DAG arenas also affects the complexity of strategies.
Theorem [0 provides tight bounds for both players:
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@ 1 oy
s
Fig. 3. Reduction from QBF to request-response games on DAG arenas

Theorem 5. In any request-response game with k request-response pairs played
on a DAG-arena, wherever a player has a winning strategy, he has a winning
strategy with memory (Lk];Q J)‘ Furthermore, for each player there is a request-
response game with k request-response pairs in they can only win with at least
(Lk];ZJ) memory states.

Proof. In order to devise a winning strategy for either player, it is enough to
remember the current set of unanswered requests: as all the plays are finite,
they are winning if, and only if, they end with all their requests answered.
Furthermore, there is no need to keep two separate memory states for two sets
A and B of pairs such that A C B: if Eve can win in both cases, she can do so in
both cases by playing as if the set of unanswered requests was B; symmetrically,
Adam can win by playing in both cases as if the set of unanswered requests was
A. As there are at most (Lk%]) incomparable subsets of {1,...,k}, both Eve

and Adam can win with memory (Lk’;Z J) in any request-response game with k
request-response pairs.

A family of arenas where this much memory is necessary can be described as
follows:

— FEve. Adam can choose | k/2] requests. Then Eve can choose | k/2] responses.
It is clear that she must choose the exact the same subset that Adam chose.
As there are <U€];2J) possibilities, she needs memory <U€];2J)'

— Adam. All pairs are initially requested. Eve can choose | k/2]| responses, then
Adam chooses | k/2] requests. Finally, Eve can choose k—1 responses. Again,
Adam needs to match the subset that Eve chose, so he needs <U€];2 J) memory
states.

Theorem [ follows. O

4.2 One-Player Arenas

One-player games correspond to the synthesis of controllable systems, with no
interaction from the environment. Game problems are usually much simpler in
this case. For example, if the player tries to ensure a request-response specifica-
tion, the winner problem becomes NP-complete:

Theorem 6. The problem of deciding whether FEve has a winning strategy in a
one-player request-response game is NP-complete.



236 K. Chatterjee, T.A. Henzinger, and F. Horn

Proof. We can reduce SAT to one-player games using the same reduction that we
used in the former section: if all the quantifiers are existential, all the vertices in
the resulting game belong to Eve. Thus the problem is NP-hard.

In order to describe a NP procedure to solve this problem, first observe that
a play always consists of a finite path w followed by infinite occurrences of all
the vertices in a strongly connected component C'. It is winning for Eve if every
request unresolved in w or present in C' is matched by a corresponding response
in C. The crux of the proof is the fact that we can always choose w of size at
most (k + 1) - |V| by removing from it all the cycles which do not contain the
last occurrence of a response. We can thus guess non-deterministically both w
and C, and the NP-membership follows. a

If the player is trying to spoil, rather than ensure, a request-response objective,
the winner problem can be decided in polynomial time:

Theorem 7. The problem of deciding whether Adam has a winning strategy in
a one-player request-response game is PTIME-complete.

Proof. The PTIME hardness comes from the trivial reduction from alternating
reachability. In order to describe a PTIME procedure, observe that in order to
win, Adam needs only to reach a request from which he can avoid the corre-
sponding response. As safety and reachability winning regions can be computed
in polynomial time, so can be the winning region of Adam in a one-player game
where he controls all the vertices. O
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Abstract. Multilingual text compression exploits the existence of the
same text in several languages to compress the second and subsequent
copies by reference to the first. This is done based on bilingual text
alignment, a mapping of words and phrases in one text to their seman-
tic equivalents in the translation. A new multilingual text compression
scheme is suggested, which improves over an immediate generalization
of bilingual algorithms. The idea is to store the necessary markup data
within the source language text; the incurred compression loss due to this
overhead is smaller than the savings in the compressed target language
texts, for a large enough number of the latter. Experimental results are
presented for a parallel corpus in six languages extracted from the EUR-
Lex website of the European Union. These results show the superiority
of the new algorithm as a function of the number languages.

1 Introduction

In countries like Canada, Belgium and Switzerland, where speakers of two or
more languages live side-by-side, all official texts have to be published in mul-
tilingual form. The current legislation of the ever expanding European Union
obliges the translation of all official texts into the languages of all member states.
As a result, there is a growing corpus of important texts, large parts of which
are highly redundant, since they do not have any information content of their
own, and are just transformed copies of some other parts of the text collection.

We wish to exploit this redundancy to improve compression efficiency in such
situations, and introduce the notion of Multilingual Text Compression: one is
given two or more texts, which are supposed to be translations of each other and
are referred to as parallel texts. One of the texts will be stored on its own (or
compressed by means of pointers referencing only the text itself), the other texts
can be compressed by referring to the translation, using appropriate dictionaries.

The basis for enabling multilingual text compression is first the ability to
match the corresponding parts of related texts by identifying semantic corre-
spondences across the various sub-texts, a task generally referred to as align-
ment. As the methods for detailed alignment are quite sensitive to noise, they
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usually use a rough alignment of the text as an auxiliary input. They might
also use an existing multilingual glossary, but they always generate their own
probabilistic glossary, which corresponds to the processed text (see [3I6I9I2]).

The compression of parallel texts was first treated almost two decades ago in
[12], but without using text alignment tools. The idea of using alignment was
raised in [5], and a detailed algorithm was presented in [4]. Different, though
basically similar algorithms have recently been suggested in [I1IT]. However, all
these algorithms relate only to bilingual parallel texts; therefore, should three
or more parallel texts be compressed, the algorithms would be applied to each
source-target pair of texts independently.

The current work proposes a new compression scheme for parallel texts, re-
ferred to as multilingual. Similar to our previous bilingual algorithm [4], the
new method also exploits alignment to increase space efficiency. However, the
current algorithm stores the information regarding the aligned source-text frag-
ments within the source text rather than within each of the target texts. On
one hand, significant savings are made for each target text, but on the other
hand, a large overhead is paid for the source text. Nevertheless, major parts of
the additional information are shared by many of the bilingual alignments and
the incurred overhead converges to a constant rate for a large-enough number
of target texts, which makes it worthy paying in such cases, as our empirical
results clearly confirm.

The next section presents the details of the algorithm, and experimental re-
sults are reported in Section 3.

2 Multilingual Compression Algorithm

Reminiscent of the bilingual algorithm, the multilingual algorithm assumes the
following resources:

1. 8, T, T?% ..., T*: The single source and k target texts, respectively, where
Vh € [1,k], T" is a translation of S.
2. Ag 1, Ag 12, ..., Ag pr: Word- and phrase-level alignments of the text pairs

(S, TY), (S,T?), ..., (S,T*), correspondingly.
Let s;,; denote the word sequence of length [ within S beginning at the ith
word. Similarly, let t}m denote the word sequence of length m within 7"
beginning at the jth word. Agp» consists of a set of connections of the
form (i, 1, j, m), each of which indicating the fact that s;; and tj{m have been
determined as matching phrases. We assume that for any pair (j, m) there
is at most one connection of the form (4,1, j, m) within Ag . From here and
below, s; and t? stand for s; 1 (the ith word of S) and t?,1 (the jth word of
T"), correspondingly.

3. St (Thyerm (T?)em, ..., (T*)*": Lemmatized forms of S, T*, T2, ..., Tk,
respectively.
Let (s;;)"™ and (t?’m)‘m denote the lemma sequences corresponding to s;

and 7

7 m» respectively. That is, the concatenations of the lemmata of s;, si41,

cevy Sipi—1 and t?, t?—s—h ceey tjl+m_1, correspondingly.
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4. Lg: A lemmata dictionary corresponding to .S. The entries of this dictionary
are the words appearing in .S. Each entry stores a list of all possible lemmata
of the keyword, sorted in descending order of frequency.

Let Lg(s) denote the lemma list for the word s. For instance, if S is an
English text, then Lg(working) = (work,working).

5. Vi, V2, ..., Ve Variant dictionaries corresponding to the target texts.
For each h € [1, k], the entries of V. are the lemmata of all words appearing
in T". Each entry stores a list of all possible morphological variants of the
key lemma, sorted in descending order of frequency.

Let Vi (t) denote the variant list for lemma ¢. For example, if 7 is a French
text, then Vrs(normal) = (normal, normale, normaux, normales).

6. Gsr1, Gsr2, ..., Gg ke Bilingual glossaries corresponding to the text pairs
(S, TY), (S,T?), ..., (S,T*), respectively. The entries of these glossaries
are source-language lemma sequences. Each entry includes a list of possible
translations of the key sequence into target-language sequences, sorted in
descending order of frequency. The translations also appear in lemmatized
form.

Let Ggrn(s) denote the translation list of the source-language sequence
s into the language of T". For instance, if S and T are English and French
texts, correspondingly, then Gg rs(mineral water) = (eau mineral). Note
that the word eau (water) in French is feminine, which requires a feminine-
form adjective, namely minerale, whereas the adjective mineral—the cor-
responding lemma—is the masculine singular form.

The new algorithm encodes all aligned source sequences appearing in any of the
k alignments within the source text. This is done using some special codewords,
each indicating a different sequence length, inserted just before the first words of
the aimed sequences within the text run. When more than one sequence begins
at the same word, the respective annotations are inserted one after another pre-
ceding the start word. The order by which such successive marks are introduced
can be determined arbitrarily. However, the compression procedure for the tar-
get texts relates to the order of these annotations when computing offset values
for the aligned target sequences. Hence, this order must be decided before any
target text is compressed.

The fact that the entries of the bilingual glossaries are lemmata sequences
means that the aligned source fragments must be stored in a way that enables
retrieving the lemma of each aligned word. Keeping only the lemmatized version
of the source text (S*™) is unacceptable because the original source text, being
an integral part of the multilingual corpus, must be restorable like the k target
texts. Due to space-efficiency consideration, we have chosen to store the inflected
form of each source word along with its lemma index, if more than one lemma
exists.

The output of the annotation procedure can be compressed using any encod-
ing, for instance, Huffman coding with two Huffman trees: HY will store the
words and aligned-sequence marks, whereas H5 will hold the lemma indices.
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Following the annotation of the source text, each aligned source sequence can
be referred to using its ordinal number. At that point, each target text 7" may
be compressed independently using the algorithm given below.

Beginning at the first position j = 1 within 7", use Ag n to find the longest
sequence t?’m having a corresponding sequence s;; in S. The redundant connec-
tions can be removed in advance, thereby avoiding redundant source sequences
and their direct and indirect overheads. If a corresponding sequence is found,
replace t;{m with the concatenation of a pointer to s;; with some indices, which
are necessary for the restoration of the missing target words. The substituting
reference consists of the following details:

1. ord(i,l) — expected: Offset of s;; from the expected sequence. This value is
actually a pointer to s;;. ord (7,1) denotes the ordinal number of s, ; among
the aligned sequences annotated within S. Initially, expected = 0; after using
a connection (i,l, j, m), expected is assigned the ordinal number of the next
sequence still not used which follows s; ;. As an example, if ord (i,1) = 4, and
the indices of the aligned source sequences used so far are 1, 2, 5 and 8, then
the new value of expected should be 6: the sequence indexed 5 is skipped
since we assume in this example that it has already been used. 4 should now
join the set of used sequences.

2. Index of ()™ within Gg rn (si7)- In the case of a single translation, this
index is omitted (same as emitting €).

3. Indices of ¢ ... ¢%, | within Vi ((80)=™) ... Vpu (£, _1)"™), correspond-
ingly. Again, € is used in the case of singletons.

The above reference is output preceded by a special codeword meaning “refer-
ence”. The next iteration will work for j = j + m.

If no m is found such that (i,1,j,m) € Agpn, t? is written to the output
stream and j is incremented by 1. The process continues while j < |T"|.

The way the expected source sequence (ezpected) is determined is derived from
the nature of the alignment. Given a pair of aligned source and target sequences,
it is probable that the source counterpart of the next target sequence be the next
source sequence. Of course, differences in word and phrase ordering as well as the
existence of additional source sequences, aligned with sequences in other target
texts, often yield some small deviations, which are overcome using the offset
values. Another quite realistic assumption is that a source sequence already
referred to once during the process will be rarely used again. The search for the
next unreferenced sequence is always very local, meaning that it is performed in
time O(1).

For a single alignment, the expected source sequence for target number n
could be simply n itself. The unification of source sequences from k alignments
into one common list does not permit such an assumption. In this case, relating
to the last known connection as an anchor point is a more conceivable heuristics.

The output for each target text T can be encoded using three Huffman
codes: H{ " will contain the unaligned words as well as the special #REF# escape

sequence, HY " will hold the offset values, and HI " shall store the translation
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n S Tl AS,Tl T2 AS,T2
(English)  (French) (German)

1 For Aux Im

2 the fins  (3,1,2,1) Sinne

3 purpose de dieses

4 of la Gemeinsamen (6,1,4,1)

5 this présente Standpunkts (7,1,5,1)

6 common position (6,2,6,2) bedeutet

7 position  commune der

8 , , Ausdruck

9 the on :

10 following entend

11 definitions par

12 shall :

13 apply

14 :

Fig. 1. Example of paragraphs with corresponding alignments

and variant indices. Indeed, if the distributions of the offsets and indices for
all k texts are similar, then it might be worthy using two common codes, H]
and HI' | for all offsets and indices, respectively. As opposed to the indices, the
offset values also include negative integers. Therefore, their distributions are
significantly different, which makes it preferable to use two distinct codes.

One of the important properties of both our bilingual and multilingual sche-
mes is that sections are compressed independently of other sections. The use of
Huffman coding rather than Bzip, LZ or any other encoding with inter-section
dependencies for representing both source and target texts enables storing them
in blocks of any size without any decrease in space efficiency. Nevertheless, adap-
tive encodings are also applicable in our case, but the compression savings might
be hurt in case of partition into small blocks.

The decompression algorithm is straightforward. Note that it needs only the
dictionary files, as all relevant information included in the other files is encoded
within the compressed text itself.

Figures [Il and [2] give an example of the algorithm’s input and output, corre-
spondingly. The index n in the first columns denotes the ordinal token number.
The second column of Figure [ lists the tokens of an English paragraph, taken
from the experimental multilingual corpus (see Section [J). The third and fifth
columns are the French and German parallels of that paragraph, respectively.
The fourth and sixth columns show the connections suggested by the English-
French and English-German alignments. As an example, the connection (6, 2, 6,2)
in Ag 1 indicates the fact that the English sequence common position, begin-
ning at token number 6 and consisting of 2 tokens, is aligned with the French se-
quence position commune, also beginning at token number 6 (but of the French
paragraph) and consisting of 2 tokens. Note that the English-German alignment
(Ag 72) also relates to the same two English tokens; nevertheless, it aligns each
of them separately with its German counterpart. This difference merely origi-
nates from the way in which the alignment algorithm computes the probabilities
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n Annotated S Compressed T Compressed T2

(English) (French) (German)
1 For Aux Im
2 the #REF#,0, ¢,0 Sinne
#AL1#
3 purpose,e de dieses
4 of la #REF#,1,0,0
5 this présente #REF#,1,¢,1
#AL1#
#AL2#
6 common,e #REF#,1,¢,0,0 bedeutet
#AL1#
7 position,e der
8 s s Ausdruck
9 the on :
10 following entend
11 definitions par
12 shall :
13 apply
14 :

Fig. 2. Compression of French and German texts using their English parallel

of candidate connections, which also takes into account some offset and length
probabilities.

The second column of Figure [ displays the English text, playing the role of
the source text, with annotation of the aligned sequences as well as their lemma-
tization indices. In this specific case, €’s are output as lemmatization indices,
because all 3 aligned tokens have only one possible lemma. The codeword #AL1#
indicates that the next token is the beginning of an aligned sequence of length 1.
Likewise, #AL2# marks the beginning of an aligned sequence of length 2. Notice
that token number 6 is the beginning of two distinct sequences. The former, of
length 1, comes from Ag 72, whereas the latter, of length 2, originates in Ag 71.
At the same time, token No. 7 is also a 1-token sequence, also coming from
Ag 2.

Finally, the third and fourth columns present the compressed forms of the
French and German paragraphs, respectively. The two aligned sequences in each
target text have been replaced with suitable references. For instance, the French
sequence position commune has been substituted with the reference 1,¢,0,0.
The offset 1 results from the fact that the previous replacement relates to source
sequence number 0, namely, purpose. Thus, expected for the current connection
is 1, which refers to the sequence common, rather than common position, enu-
merated as number 2. The offset, therefore, is ord (6,2) — expected =2 — 1 = 1.

The sequence common position has a single translation in Gg 1, that is,
position commundl. As a result, no translation index is written to the output

! Note that the French lemmatizer has given the feminine form commune as the lemma
of commune. That is because it referred to the feminine noun commune (community)
rather than to the feminine form of the adjective commun (common). However, this
has no significance for our algorithm.
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stream (expressed in the figure by €). When the decoder reaches the discussed
reference, it will first identify the implied English sequence using the offset value.
Then, after lemmatizing its words using L, it will look up the sequence in Gg 1.
At that point, it will find out that the proposed translation is unique, and there-
fore will not read an index at that stage. The next step will be seeking the word
position in Vi1, finding there several options such as position, positions,
POSITION etc.. Now the decoder must read the next index, i.e. 0, in order to
choose the right variant. The same process will be performed for the lemma
commune, which also has a few possible variants.

The next section exhibits our empirical results on a real-life corpus and dis-
cusses their consequences.

3 Results and Analysis

In order to assess our algorithms, we extracted a 6-language corpus from the
EUR-Lex website [7], which holds the European Union’s legislative publications
of the last few years in all EU members’ languages (currently 23). Our subset
was formed of all texts published between January 1st and May 31st 2005 in
the following languages: German (de = Deutsch), English (en), Spanish (es =
Espanol), French (fr), Italian (it) and Portuguese (pt).

Table [ displays the size of each part of the corpus in MBs and in million
words. Notice that the Portuguese text is significantly smaller than the others.
That is because a very large document, constituting around 11.5% of each of the
other texts, had no Portuguese version. It should also be noted that a few other
small pieces are missing in most of the texts since they have not been translated
or due to technical problems. This situation simulates a real-life corpus, where
not all contents exist in all languages. This fact makes the current results even
more relevant.

The lemmatization of the texts was done using the Tree Tagger [13], a language-
independent part-of-speech tagger and lemmatizer, currently adapted to several
European languages. As the paragraphs of each document in the various lan-
guages were not precisely aligned with each other, we applied a simple adjust-
ment of the DKvec algorithm [8] to all 30 possible pairs of texts in order to obtain
a better paragraph-level alignment. Finally, the bilingual glossaries and detailed
alignments were automatically generated by an extension of the word align al-
gorithm [6] to multi-word sequences. The average length of an aligned target
sequence for all 30 alignments was around 1.7 words per sequence. The rate of
aligned target words was within the range of 28-40%, depending on the avail-
able level of monolingual pre-processing, the relative nature of the languages of

Table 1. Full sizes of the parallel texts
Unit de en es fr it pt

MB 27.37 2598 28.03 28.56 27.55 24.28
MW 446 479 510 520 493 441
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Table 2. Averages for monolingual methods

METHOD
BZip2 GZip  HWORD
Excluding 1file split 1file split
de 17.5 245226 273 23.1
en 17.5 24.6 22.7 275 227
es 17.6 24.722.8 27.6 229
fr 17.7 24.722.8 27.6 228
it 17.6 24.722.8 27.6 228
pt 174 24.322.6 27.3 228

Table 3. Results for bilingual algorithm

TARGET

de en es fr it pt Avg
SReMB % MB % MB % MB % MB % MB % (%)
de 492 189 5.27 18.85.41 18.95.26 19.14.63 19.119.0
en 4.70 17.2 490 17.55.00 17.54.92 17.84.34 179 17.6
es 4.85 17.74.71 18.1 495 173484 17.64.22 17.417.6
fr 477 1744.60 17.74.75 16.9 4.75 17.24.21 173173
it 4.77 17.44.67 18.04.79 17.14.88 17.1 423 174174
pt 4.93 18.04.88 188497 17.75.14 18.05.01 18.2 18.1
Avg 17.6 18.3 17.6 17.8 18.0 17.8 17.8

the aligned texts and some other text-specific factors (average rates presented
in Table [1).

As established above, the basic idea of alignment-based compression is to
exploit parallelism to achieve better results compared with general-purpose,
monolingual methods. Therefore, it is necessary to apply several such meth-
ods on the test corpus in order to examine the extent of improvement obtained
by the various multilingual schemes.

We define the compression rate as the fraction, given in percent, of the
size of the compressed file divided by the original size. Table Pl details the
average compression rates yielded by 3 principal methods—Bzip2, Gzip and
HurrWoRD—for all 6 possible combinations of 5 languages. The first column,
titled “Excluding”, indicates the identity of the text not taken into account. This
is needed for a fair comparison with the performances of our algorithms on each
combination of target languages. BZ1P2 and GZ1pP were first applied to the tar-
get texts, considering each as a single file (1file), then each file was split into
its 3076 documents, and each fragment was compressed on its own (split). The
increase in the file sizes can be immediately recognized. Note that HWORD gives
identical results for both settings.

Table Bl presents the results achieved by the bilingual algorithm for each
source-target pair of texts along with the average compression rates for each
source and target texts and the aggregate average.
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Table 4. Source annotation overheads

Text Text + 1 alignment Text + 5 alignments

Size Size Al Lem. Tot. Size Al Lem. Tot.
S.MB MB MB % KB % % MB MB % KB % %
de 5.91 6.43 0.52 8.81 2.83 0.05 8.86 6.77 0.85 14.46 4.53 0.07 14.54
en 6.09 6.71 0.62 10.27 8.95 0.14 10.41 7.19 1.10 18.09 14.46 0.23 18.32
es 6.35 7.00 0.65 10.2524.29 0.37 10.62 7.52 1.17 18.38 40.47 0.62 19.00
fr 6.56 7.22 0.67 10.15 35.52 0.53 10.68 7.79 1.23 18.82 57.92 0.86 19.68
it 6.39 7.04 0.65 10.19 30.12 0.46 10.66 7.56 1.18 18.46 48.10 0.74 19.20
pt 5.64 6.23 0.59 10.38 23.14 0.40 10.78 6.70 1.06 18.77 35.29 0.61 19.38

Table 5. Additional overhead as function of k (English text as source)

Text + k Diff Add  ratio
k alignments (MB) ovrhd (%)
6.09
6.67 0.58 9.55
6.92 0.26 4.21 0.44
7.06 0.13 2.17 0.52
7.15 0.09 1.51 0.70
7.20 0.05 0.87 0.57

T W N~ O

It should be noted that the numbers for the bilingual and multilingual algo-
rithms do not include the sizes of the auxiliary files, since in the scenario of a large
multilingual Information Retrieval system, dictionaries and glossaries are needed
anyway and are not stored exclusively as an aid for compression. However, even
if those sizes are to be considered, it should be kept in mind that, according to
Heaps’ Law [10], the size of a dictionary for a text of size n is expected to be an®,
where 0.4 < 6 < 0.6. The total size of the auxiliary dictionaries for the current
evaluation corpus, compressed using Bzip2 (rather than a dictionary-oriented
compression scheme), is about 9% of the decompressed text. Should a 20GB
corpus be compressed, the corresponding dictionaries would comprise less than
1% of the original text. Obviously, specific dictionary compression can further
decrease that rate.

As stated in Section 2l the multilingual algorithm uses an annotated source
text. Obviously, this annotation is not for free. Table M displays the overheads
paid for the markup of aligned source sequences (“Al.”) as well as for lemmatiza-
tion indices (“Lem.”). As already remarked, we used one Huffman code for text
words and alignment marks (for sequence lengths 1-7), and another Huffman
code for the lemma indices. Therefore, the overhead of the alignment data is
calculated by subtracting the size of the Huff Word file encoding the pure text
from that of the file encoding the annotated text, whereas the lemmatization
overhead is simply the cost of storing the series of lemma indices using a distinct
Huffman code. For the sake of briefness, we present only the average overheads
in the case of a single target text. This is acceptable because the differences from
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Table 6. Results for multilingual algorithm (with k& = 5)

Oh. TARGET Inc. Oh. Exc. Oh.
Src. (MB) de en es fr it pt (%) (%)
de 0.86 4.58 4.92 5.05 4.91 4.32 18.3 17.7

en 1.11 438  4.504.604.533.99 170  16.2
es 121 451430 448439383 170  16.1
fr 1.20 442419428 429379 167 157
it 1.23 4.43 4.27 4.34 4.42 3.83 168 159
pt  1.09 4.62 4.51 4.56 4.71 4.60 175 167
Avg. 172 164

Table 7. Result summary

Alignment Bilingual Multilingual BZir2 GZ1P HWorb

Src Coverage k=1k=5k— oo 1lfile split 1file split

de 29.0 19.0 194 183 17.7 17.524.522.6 273 23.1
en 35.9 176 177 170 16.2 17.524.6 22.7 27.5 22.7
es 36.6 176 176 170 16.1 17.624.7 228 27.6 22.9
fr 38.0 173  17.2 16.7 15.7 17.724.722.827.6 228
it 37.3 174 174 16.8 159 17.624.722.8 27.6 22.8
pt 32.8 181 182 175 16.7 17.424.322.6 27.3 22.8
Avg 349 178 179 172 16.4 17.524.6 22.7 27.5 22.8

the average values are very small. In addition, this impreciseness has no effect
on the average compression rates.

A glance taken at the overhead table reveals that the ratio between the anno-
tation cost for five targets (k = 5) and for a single target (k = 1) is less than 2.
That is, the additional overhead for another four targets is smaller than the cost
paid for the first target. Table [l details the growing sizes of the text+alignment
HuffWord files for the English text as source, when each time marks for an addi-
tional alignment are incorporated into the text. The ratio between the additional
overheads for the kth and (k — 1)th alignments is around 0.6, which leads to the
thought that if some more targets were added, the additional overhead would
quickly converge towards 0. Consequently, the annotation overhead in the case
of large enough k’s may be deemed a constant independent of k, which permits
ignoring it and taking into account only the sizes of the compressed targets .

Table [0l exhibits the performances of the multilingual algorithm for k& = 5.

The compression rates were computed by accumulating the overhead and the
sizes of the five compressed targets and then dividing the result by the sum of
the sizes of the five decompressed targets. The results for £k = 1 were slightly
worse than those achieved by the bilingual algorithm (averages given in Table[T]).
This had been quite expected in light of the high overhead paid for a stand-alone
alignment.

The rightmost column of Table [6] shows the compression rate when overheads
are excluded. For k = 5, the average overhead constitutes ca. 0.8% of the entire
decompressed corpus. As Table [l hints, overhead is unlikely to grow significantly



248 E.S. Conley and S.T. Klein

even for a sixth target, so we may already deem it maximal. Hence, for k = 23,
the current number of languages in the European Union, the overhead’s relative
part may drop below 0.2%.

Finally, Table [ puts side-by-side the average alignment coverage rates and
the compression rates achieved by the monolingual, bilingual and multilingual
algorithms. For the monolingual methods, the term “Source” refers to the text not
taken into average account (equivalent to “Excluding” in Table ). The column
labeled “k — o0” includes the same data presented in the “Exc. Oh.” column of
Table[6l Indeed, the compression rate which could be obtained for a large number
of targets with compressibility similar to that of the current test texts converges
to the rate computed excluding the source annotation overhead. That is because
for large k’s, this overhead converges towards a relatively small constant and
may therefore be neglected.

A close observation into the results would recognize a tight correlation between
alignment coverage and compression rates. This is, of course, expected, because
each aligned target sequence is replaced with a reference, which is shorter, in
average, than the corresponding HuffWord encoding. Hence, the higher the cov-
erage rate, the better the compression. It may be assumed that if the German
text could be stemmed before being aligned, we would get even better results.
In general, if the alignment algorithm yielded denser outputs, the results could
improve significantly.

Bzip2 does not perform as well for small blocks as it does for large blocks, as
opposed to Huffman coding, which is indifferent to block size. Therefore, in cases
where extraction of relatively small pieces is desired, even the bilingual scheme
with Huffman coding would be preferable over regular BziP2, not to mention the
other 2 monolingual methods. Results also show that it is unworthy using the
multilingual scheme rather than the bilingual one for small k. However, for large
enough k, the multilingual algorithm is advantageous even if each target is to be
stored in a bulk, rather than split into pieces. In that situation, of course, the
encoding method of the compression procedure’s output may be changed from
HWORD to BZ1p2, which is expected to yield a further improved compression.

4 Conclusion

The current work suggests the first specific methods for compressing multilingual
parallel texts, based on text alignment. The algorithm has been tested on a
real-life multilingual corpus and achieved significant improvements over general-
purpose methods.

A prominent advantage of the compression scheme is its static nature, which
enables applying it to blocks of any size without changing compression efficiency.
This property is particularly important for Information Retrieval systems, where
users are frequently interested in relatively small pieces of texts. Compressing
each small piece per se permits transferring and deciphering the desired piece
only, thereby saving a lot of expensive communication and processing time.
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Abstract. We consider the positive singular and the singular Artin
monoids of finite type. These have been the subject of a great deal of
recent research and the main purpose of this paper is to prove that these
monoids are automatic. In order to do this we establish a new criterion
for proving monoids automatic that may be of independent interest.

1 Introduction

The concept of an automatic group was introduced in [4J14] in order to describe
a large class of naturally occurring groups with an easily solvable word problem.
This was then extended to automatic monoids; see [SII820] for example. This
notion (see Definition [Il) uses the concept of a transducer, a finite automaton
with two input tapes and two one-way heads. If these two heads are required
to move synchronously, we speak of a synchronous transducer. As a transducer
has two input tapes, its language can be described as a binary relation on the
set of strings. Such a relation is said to be (synchronously) rational if it is the
language of a (synchronous) transducer.

When constructing a synchronous transducer, it can be simpler to first build
an asynchronous machine which then is transformed into a synchronous one.
When considering automatic monoids and groups, one technique for this trans-
formation has mainly been used: if the positions of the two asynchronously
moving heads differ uniformly by at most k, then an equivalent synchronous
automaton exists; this technique requires one to show that along any successful
computation, at any given time, the difference does not exceed k (see [17]). Using
a result of Frougny and Sakarovitch [15], this can be relaxed to showing that,
in any successful run, the difference is at most & in the final configuration (see
Proposition 2 below).
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In this paper we apply this new approach to singular Artin monoids of finite
type (Theorems[lland2]). The Artin groups of finite type all share the remarkable
properties of the braid group B, and B, may be studied very fruitfully in its
guise as such a group. The braid group has applications in diverse areas such
as combinatorial group theory, representation theory, trace monoids and low-
dimensional topology; it has even been the focus of interest as a prospect for
a public-key authentication system based on a non-Abelian group [23]. Shortly
after B,, was introduced by Artin, a presentation by generators and relations
with remarkable properties was obtained which led to the definition of the more
general Artin monoids; this motivates the currently developing theory of Garside
structures.

The singular braid monoid SB,, was introduced in [3/6] to study Vassiliev
knot invariants; the idea is that the strings of a braid can have intersections. In
the same way that the braid group may be considered as an example of an Artin
group, the definition of singular braid monoid may be extended to arbitrary Artin
type and a singular Artin monoid is obtained [I0]. Roughly speaking, a singular
Artin monoid is an Artin monoid with some additional “singular” generators. We
combine part of the normal form from [9] for Artin monoids with the singular
parts of the braids to give automatic structures for singular Artin monoids.

An interesting connection with the theory of trace monoids [II] is that the
submonoid consisting of the purely singular braids of a singular Artin monoid
defined by a graph I is isomorphic to the trace monoid on a graph which is
the complement of I'. Thus the singular Artin monoid is some sort of blend of
an Artin group with a trace monoid, and the normal form for the automatic
structure we obtain in this paper is a blend between that for the (bi)automatic
structure for Artin groups of finite type and the Foata normal form for traces.

The proofs are quite lengthy and combinatorial in nature and we do not give
the full details in this extended abstract; instead we provide a sequence of lemmas
and previously known facts that we have used to prove these theorems and we
hope that these give the reader a feeling as to the overall structure of the proofs
of these results.

2 Automaticity via Rational Relations

Let (M,-,1) be a monoid. An M -automaton is a structure A = (Z, 0, ¢, F') where
Z is a finite set of states, § C Z x M X Z is a finite transition relation with
(2,1,2") € 6 if and only if z = 2/, ¢ € Z is an initial state, and F C Z is a set of
accepting states; thus an M-automaton is a finite graph whose edges are labeled
by elements of the monoid M. A run is a finite sequence (z;, My, Zi+1)1<i<n Of
transitions; its label is the element my - ms - - - m,, of the monoid M. A run is
successful if z; = ¢ and z,11 € F. The set L(A) accepted by A is the set of
labels of successful runs. A subset X of M is said to be rational if there is an
M-automaton A with X = L(A), i.e. if it is the behaviour of some M-automaton.

Any finite set X C M is rational. If X,Y C M are rational, then so are the
following sets (see [13] for example):



252 R. Corran et al.

e XUYand X - Y={z-y:2x€eX,yeY},
o (X)={z1 22 - 2, : ¥ € X} (some authors use X* in place of (X)).

Conversely, any rational set can be constructed from finite sets using the oper-
ations U, -, and ().

If M = I'* is a finitely generated free monoid then the rational subsets of M
are also known as regular languages; in this case M \ X and X NY are rational
whenever X and Y are rational (but this does not hold for general monoids M).

If M = I'* x A* is the direct product of two finitely generated free monoids
then M-automata are also known as transducers and rational subsets of M as
rational relations or transductions (see [5] for an extensive treatment of rational
relations). To emphasize that the behaviour of a transducer A is a relation we
will write R(.A) instead of L(A). For example, if I' = A = {a}, then the relation

{(a",a®") : n € N} = ({(a,aa)})

can be realized by an automaton with just one state and a loop labeled (a, aa).

Another way to consider relations accepted by a finite state device is to first
transform the relation into a language and then check whether this language is
regular. Let | € I" be a symbol and I'(2, L) = (' U{L})?\ {(L, L)}. We define
the convolution ® : I'* x I'* — I'(2, L)* by:

e®e=¢ a®e=(a,l) e®b=(Lb) av®bw= (a,b)(vew)

fora,be Nandv,w € *. If RC I'™* x I'*let R® = {v®w : (v,w) € R} denote
the convolution of R. Note that R® is a language over the alphabet I'(2, 1).
Define a homomorphism 7 : I'(2, L)* — I'* x I'* by:

77(@7b) = (a7b)7 77((17 L) = (a7€)7 W(i7b) = (57b)

for a,b € I'. Since R = n(R?®) and rational sets are closed under homomorphic
images [13], we have that, if R® is rational, then R is rational. The converse is
not true however: for example, if R = {(a,aa)), then R is rational but R® =
{(a,a)™(L,a)™ : n € N} is not. Given the following result the reason for this
failure is that the length difference of u and v is unbounded for (u,v) € R:

Proposition 1 (Corollary 2.5 of [15]). If A= (Z,0,, F) is a transducer and
k € N is such that | |u| — |[v|| < k for (u,v) € R(A) then R(A)® is regular.

Given this result, we say that a rational relation R is difference bounded if there
is a constant k such that ||u| — |v|| < k for all (u,v) € R.

Let M be a monoid, I" a finite set, # : I'* — M an epimorphism, and L C I'™*.
Then we define:

L(e) = {(u,v) € L* : 0(u) = 0(v)}; L- = L(e)%;
L(a) = {(u,v) € L* : O(ua) = 0(v)}; L, = L(a)®

for a € I'. We have the following definition of an automatic structure for M:
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Definition 1. An automatic structure for M is a triple (I, 0, L) where:

1. I is a finite set, 0 : I'* — M 1is an epimorphism and L C I'* is reqular;
2. (L) = M; and
3. L— and L, are regular for every a € I.

A monoid is said to be automatic if it has an automatic structure.

It is not hard to see that the regularity of L follows from the remaining condi-
tions; in the automaton for the language L,, we replace labels of the form (a,b)
by a and those of the form (L,b) by & and drop the remaining transitions. We
can assume [§] that § maps L injectively onto M. In this case, the regularity
of L_ follows immediately from the regularity of L: replace transition labels of
the form a by (a,a). The resulting automaton, considered over I'(2, 1), accepts
{u®u : uw € L} which equals L_ by the injectivity of 8];. Hence the main
task in showing the automaticity of a monoid is the construction of synchronous
transducers whose language is L(a). Since these transducers describe the multi-
plication by generators, they are called multiplier automata.

Given Proposition [Il one can derive an alternative characterization of auto-
matic monoids as follows:

Proposition 2. Let M be a monoid.

1. If there exists a finite set I, an epimorphism 6 : I'* — M and a regqular
language L C I'* such that L(a) is a rational relation and difference bounded
for any a € T', then (I',0, L) is an automatic structure for M.

2. If M has an automatic structure (I',0, L) with 0 [1 injective and if the set
{r € M : 26(a) = y} is finite for any y € M and a € I' then L(a) is
difference bounded for any a € I.

Note that the finiteness assumption is necessary in the second part. For example,
if the automatic monoid M contains a zero element, then the relations L, cannot
be difference bounded. If the monoid M has a length function, then the finiteness
assumption is always satisfied; this will be the case in our considerations.

We finish this section by introducing some notational conventions. The set
of natural numbers {1,2,...,n} is denoted by [n]. For a monoid (M,-,1), we
write z < y if and only if x is a left divisor of y, i.e. if there exists z € M with
-z = y. Since the monoids under consideration will be cancellative and will
have no nontrivial decomposition of the unit element, < will be a partial order.

3 The Results

A Coxeter graph is a partially edge-labelled (undirected) graph with vertex set
[n] with labels coming from {3,4,...} U {oc}. For a fixed Coxeter graph I', we
define m;; to be the label of the edge between vertices ¢ and j if it exists, and 2
otherwise; in particular, m;; = m;; holds. The Coxeter graphs of finite type finite
unions of graps from Fig. [] (see below for an explanation of this terminology).
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Type Coxeter graph
A (n21) 1 2 n—1 7
4
B, (n>2) —o—e

£y —o o o
1 6 2 3 4
G2 — o
1 2
Hs o o o
1 2 3
0 5
4 o o o
1 2 3 4
m
Iy(m) (m>5) o —e@
1 2

Fig. 1. Connected Coxeter graphs of finite type. Unlabelled edges have value 3.

For a nonempty word w and a natural number n, let (w)™ be the prefix of
length n of the word w”.

The positive singular Artin monoid of type I', denoted by M, will be defined
via a presentation. The generators are X' U T where

Y={o1,...,0n} and T ={m,..., 7},

that is, one o- and one 7-type generator for each vertex of I'. The relations are
constructed via the edge information. For m;; # oo, we have the relations:

(o905)™ = (0500)™" (R1)
7i{0j0)™ 1 = (0301)™ T Tjmy; mod 2)-+i((miy+1) mod 2) (£2)
7,75 =T if my; =2 (R3)

Ti0; = 0;7; for i € [n] (Ry)

The positive singular Artin monoid M of type I' is given by the presentation
Mr :MOH<ZUT : RlURQUR3UR4>.

Our aim is to show that M is automatic and we prove:
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Theorem 1. Any positive singular Artin monoid of finite type is automatic.

Birman [6] and Baez [3] introduced such a monoid in the special case where I is
a path and all labels are 3 (type A in Figure[I)); the general case was introduced
in [I0]. Birman’s conjecture (the “desingularisation map" is an embedding of M
into the group algebra of the braid group) was proved for the monoid of singular
braids [2I] and for the singular Artin monoids of right angled type [16] and of
type Iz(m) [12]. Antony [I] provides evidence that Birman’s conjecture might
hold in the general case.

Having considered the positive singular Artin monoids of finite type we turn
to a monoid into which they embed, namely the singular Artin monoid.

Let I' be any Coxeter graph with associated positive singular Artin monoid
Mr. Define the singular Artin monoid of type I', denoted by M#A, to be the
monoid defined by the presentation with generators X UT U X! (the last being
the set of formal inverses of X), and relations Ry, R, R3 and Ry (as given above)
together with the additional relations
-1 -1

o, o, =1 for each 7 .

0i0; g

Our aim is to show that M 14 is also automatic and we prove:

Theorem 2. Any singular Artin monoid of finite type is automatic.

4 The Positive Singular Artin Monoid M

We now collect together some results about the monoid M = Mp which we will
need in this paper. The following three results are proved in [10].

(0.1) The monoid M is left and right cancellative.

(0.2) Any subset X C M has a least common right (respectively left) multiple
precisely when it has a common right (respectively left) multiple. When this
is the case, the lem is unique. Let X be the set of common left divisors
of elements x and y. Then X has a common right multiple and therefore
a least common multiple that we denote by ged(zx,y) since it equals the
greatest common left divisor of x and y. In particular, any two elements of
M have a greatest common left divisor.

(0.3) For ¢ # j, 7; and 7; have a common multiple if and only if 7;7; = 7;7, in
which case this is the least common multiple.

Let Rev be the map on words over X UT which reverses the word. Since u = v
is a defining relation precisely when Rev(u) = Rev(v) is a defining relation, Rev
extends to an anti-endomorphism of Mp (i.e. Rev(zy) = Rev(y) Rev(z) for any
x,y € M) and it is easy to see that:

(0.4) The map Rev is an anti-automorphism of M of order two.

Observe that all the relations involving a single element of T' on each side
of the equation are all of the form 7;w = wr; where w is a word over X and
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j may or may not be the same as i. Furthermore, the relations involving more
than one element of T on each side involve only letters from T'; thus we have
a homomorphism v : Mp — Mp defined on generators by mapping o; — o;
and 7; — 1. The image under v is the submonoid S = Sp generated by X
called the positive Artin monoid; it has presentation given by generators X
and relations R;. If 27y = 27w, where z,y, z,w are elements of S, then, by
considering the image under v, we have that zy = zw.

(0.5) If z1;y = 27w where z,y, z,w € S, then zy = zw.

The reflection group of type I is the quotient of the Artin monoid S obtained
by imposing order 2 on the generators. The Coxeter graph I" is of finite type
(i.e., is a finite union of graphs from Fig. []) if and only if the set X' as a common
multiple in S (see [7]), or, equivalently (given that S embeds in M), has a
common multiple in M. From now on we will restrict ourselves to the case where
I is of finite type.

(0.6) [7] For every finite X C S, the lem of X always exists. Thus, since S is a
submonoid of M, any finite subset X of M where each z € X is representable
by a word over X has a least common multiple that is itself representable as
a word over Y.

(0.7) [I0] For € S and 7 € T, lem(7,z) always exists, and is of the form
Txa = xat' for some a € S and 7 € T.

Since M has unique least common multiples whenever common multiples
exist, we have a unique least common multiple A of X. Let

Q:={qe M\ {1} : gp = A for some p}.

By preservation of the number of 7’s (all relations have same number of 7’s on
both sides, so all words representing any given element of M have the same
number of 7’s), all elements of @ are elements of S; in fact (see [7]) they are
precisely the non-trivial elements of S which are not expressible in the form uaav
for any generator a € X UT; given this, they are said to be square-free elements.

(0.8) [7] If gzy = A then each of ¢,z and y is in Q.

(0.9) [1I0] There is an automorphism - of M defined by wA = Aw, which,
in particular, defines a permutation on 7', and a permutation on Y. This
automorphism is either trivial or of order 2, depending on the type of I'.

By (0.7), lem(, q) exists for any 7 € T and ¢ € S and is of the form 7¢a. The
following two results give some more information on the element a € S provided
that ¢ is square-free. We can use (0.1), (0.5) and (0.8) to prove:

Lemma 1. If g € Q and 7 € T, then the least common multiple of q and T
exists and is of the form qxt; = Tqr for some x € S and 7; € T, and qz is
square free.

We can then use Lemma [I] to deduce:
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Corollary 1. Let 7 € T and z € M with 7 < z and let ¢ = ged(z, A). Then
7q = q7’ for some 7' € T and 7q = lem(q, 7).

The restriction of the following result to elements u,v € S follows from Propo-
sition 2.1 of [I9]. As we are only interested in singular Artin monoids of finite
type, one could produce an alternative proof which is a little simpler.

Lemma 2. Ifu,v € M then ged(uv, A) = ged(uged(v, A), A).

Let 7 C M be the set of elements lem(X) for all nonempty subsets X C T
having a common multiple in M. For x € M, let

T(x)=lem{teT : t =< x}.

For x € M\ {1}, let

a(z) = {god(x’ 4) i ged(@ 4) #1

T(x) otherwise.

Observe that a(x) € 7T is equivalent to saying that X' A = (which is shorthand
for “no element of X left divides 2”). We can then use Lemma[2 to prove:

Lemma 3. Ifx € M andp € QUT then the pair (a(x), T(x)) and the element p
determine a(px).

From Corollary [l one can show:
Lemma 4. Ifp e QUT and x € M with apx) = p then T (pz) =T (pT(x)).

Suppose TuTjw = w1 TpTRW2 = w1 TETew2 for some elements u, w,wr,we of S.
Then, intuitively, the 7’s in 7;ur; can commute after extension with w € S.
Using (0.6) and (0,7) one can prove the following result which shows that they
can commute regardless of w:

Lemma 5. Let v =tur; whereu € S, t € T, j € [n] and such that u’ is neither
left nor right divisible by X. In addition, let w,wi,wy € S, s € T andl € [n] be
such that tutjw = w1sTwe = wiTswy. Then u = 1.

5 The Language of Normal Forms

Recall that 7 C M comprises all the elements lem(X) for all nonempty subsets
X C T having a common multiple in M. Since T'C 7 and X C @, the singular
Artin monoid M is generated by Q U7 . From now on, we will consider words
over the generators @@ U7 as well as products in M of elements of Q U7 . To
avoid confusion, we will use the following conventions.

Let ¢ : (QU T)* — Mp be the natural epimorphism. For words u and v in
(QUT)*, we write u ~ v if p(u) = ¢(v), i.e. if v and v represent the same
element of M. If we want to stress that v and v coincide letter by letter, we
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will write v = v. This eliminates any use of v = v for words u and v. On the
other hand, for elements =,y € M, we will write x = y to denote that they are
equal. Since words over S U7 of length 1 are actually elements of M as well,
we can then write a = b for a,b € SU7. Clearly, in this case, a = b, a = b, and
a ~ b are equivalent. To reiterate, a string q1¢s . . . g, of elements of Q U7 is to
be understood as word over @ U7 and not as the monoid element represented
by this sequence. This monoid element is denoted by ¢(q192 . ..¢,) or, if n = 2,
simply by q1 - go.

Michel (in Section 4 of [I9]) defines normal forms from @Q* for the elements
of S (again without the assumption of finite type). We extend his idea to the
singular Artin monoid of finite type M: for any x € M, we define a unique word
NF(z) over @ U T and later (see Lemma [I0]) show that the set of all words
obtained this way is a regular language in (Q U T)*.

Let w(z) be the unique element of M with a(x) - w(z) = x; then the normal
form is defined inductively by

NF(1) =e¢ and NF(z) = a(z) NF(w(x)) for z € M\ {1}.

Note that this is well-defined since, as long as x # 1, we have that a(z) #£ ¢, i.e.
w(z) is properly shorter than [ Let L C (Q U T)* denote the set of all words
NF(z) for z € M.

The following results relate the normal forms of x € M and x - 7, for some
k € [n]. They will become useful later when we construct an automatic structure
for M. We first use Corollary [l to deduce:

Lemma 6. Let qiqa...qp be in L, and suppose that the least common multiple
of p(qig2...qp) and 7, € T is ©(qiq2 - - qpTi) for some k € [n]. Then there is
a sequence of integers i = ig,i1,...,% = k such that 7, ,q¢ ~ q¢7i, for each
t € [p].

We then use Lemmas M and [ to prove:

Lemma 7. Let p; € QU T with p1pa...pm € L, x = p(p1p2...pm) and let
k € [n]. Then either NF(x - 1) = p1ip2...pm Tk or else there are £ € [m] and
j € [n] with NF(z - ) = pip2-..pe—1(pe - 7j)Pes1 - - - Dm. Furthermore, in this
latter case, we have that lem(7j, (pe ... pm)) = @(De - .- PmTh)-

Having described the relation between the normal forms of z € M and z - 7,
we now obtain similar results for the normal forms of x and z - o,. Somewhat
surprisingly, this turns out to be more involved. Using Corollary[Il we can prove:

Lemma 8. Let tw € L witht € T and w € Q*. In addition, let ¢ € Q. Then
NF(p(twq)) = psu for somep € Q, s € T and u € Q* such that tp ~ ps.

We then use (0.5), Lemma [2] Lemma [l and Lemma [7] to prove:

! Vershinin [22] defines a similar normal form for positive singular braid monoids;
the only difference is that he sets a(z) = 7; where ¢ is minimal with =, < z if
ged(z, A) = 1. His normal form does not allow us to prove the central Lemma Ia
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Lemma 9. Let w = witiws ... witpwisr € L with t; € T and w; € Q*. Let
g € QU {1} and define ¢ € QU {1} for 1 < i < k+1 by qxy1 = ¢ and
qi = ged(p(tiwit1¢it1), Q). Then there are u; € Q* and s; € T such that

o NF(p(tiwiy1qiv1)) = qisitbit1,

e NF(o(wiqr)) = u1, and
e NF(p(wq)) = urs1ug -« UkSkUpt1-

6 Automaticity of M

Ifpe QUT let W, € (¥ UT)* be some representative of p. Define a homomor-
phism n: (QUT)* — (X UT)* by n(p) = W and let K = n(L). We will show
that (Y UT, K) is an automatic structure for the positive singular Artin monoid
of finite type M. We first use Lemmas [B] and @l to prove:

Lemma 10. The set L C (QUT)* is regular.

Given that homomorphic images of regular sets are regular and K = n(L), we
immediately deduce:

Lemma 11. The set K C (X UT)* is regular.
We then use Lemmas [6] and [ to prove:

Lemma 12. If k € [n] then the relation L(1;) = {(u,v) € L X L : utg ~ v} is
rational.

Our next aim is to prove that the relation L(q) = {(u,v) € L x L : ug ~ v} is
rational for ¢ € Q. To this aim, we consider the relations

Hy, = {(w,u) erL®: w,u € Q", wp ~ u}
Ryr ={(w,u) € L? s wu € Q*,wp ~ ru}

for p,r € Q and prove (using [9]):

Lemma 13. For p,r € Q, the relations H, and R, , are rational.
We then use Lemma [0 to prove:

Lemma 14. If g € Q then the relation L(q) is rational.

Finally we can prove Theorem[Il Let o € Y U7 . Since X C Q and T C 7, we can
speak of the relation L(a) which is rational by Lemmas[I2]and [[4 Since rational
relations are closed under the application of homomorphisms, the relation

K(a) ={(n(u),n(v)) : (u,v) € L(a)}

is rational as well. Since the relation K (o) is difference bounded, Theorem [II
follows from Proposition P2l and Lemma [l
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7 Automaticity of the Singular Artin Monoid M#

Antony [2] proved that M is a submonoid of MA. Thus A, the lem of X in M,
may be considered as an element of M#, and extending the automorphism -
to M# in the natural way (0! := 0;~!) preserves the property that wA = Aw,
where w is now in M 14. Furthermore, since A is a common multiple of X' in M,
for each o € X, there is a unique A, € M defined by the property A = A,0.
Thus, for each o, Ac—! = A, lies in the submonoid M.

Define a language L over QU Q' U7 as follows:

LA :={u'v : ue LNQ*, v € L and ged(p(u), p(v)) = 1}.

Let 7: (QUQ ' UT)* — M#A be the natural extension of ¢ : (QUT)* — Mr;
clearly 7 restricts to a map from L2 to MA. We will write u ~ v whenever
7(u) = 7(v) holds. We then have:

Lemma 15. The language L? is a set of unique normal forms for Mﬁ.
We can also establish:

Lemma 16. Let uz,u, € LN Q* and vy,v, € L be such that x = uj'v, and
Y= u;lvy belong to L. Furthermore, let T € T and o € . Then we have:

(1) 7 =y if and only if uy = uy and vy = VLT;

(2) xo =~y if and only if there exists ¢ € Q such that quy, =~ uy and quy =~ v,0;

(3) xo=' =~ y if and only if there exists ¢ € Q such that qu, ~ Au, and
quy = Vs

By [9], (Q,L N Q*) is a biautomatic structure for the positive Artin monoid S
which is the submonoid of M generated by Q. Hence the language

JL={u®v:uveL pqu)=p)}
is regular for ¢ € ). This implies that the relation
R'(q) = {(u,v) : u,v € LNQ*, p(qu) = p(v)}
is also rational for any ¢ € Q. We can extend R’(q) to all of L:

Lemma 17. If ¢ € Q then the relation R(q) = {(z,y) € L x L : qv = y} is
rational.

We can then use Lemma [I6]l to deduce:

Lemma 18. The relation L2 (t) = {(z,y) € L® x L? : xt =y} is rational for
anyte YUX-tUT.

Given all this we can, exactly as in the proof of Theorem [I deduce Theorem 2



Singular Artin Monoids of Finite Coxeter Type Are Automatic 261

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Antony, N.: On singular Artin monoids and contributions to Birman’s conjecture.
Comm. Algebra 33, 4043-4056 (2005)

Antony, N.: The natural embedding of positive singular Artin monoids. Comm.
Algebra 34, 3329-3346 (2006)

. Baez, J.C.: Link invariants of finite type and perturbation theory. Lett. Math.

Phys. 26, 43-51 (1992)

. Baumslag, G., Gersten, S.M., Shapiro, M., Short, H.: Automatic groups and amal-

gams. J. Pure Appl. Algebra 76, 229-316 (1991)

. Berstel, J.: Transductions and Context-free Languages. Teubner Studienbiicher,

Stuttgart (1979)

. Birman, J.S.: New points of view in knot theory. Bull. Amer. Math. Soc. 28, 253—

287 (1993)

. Brieskorn, E., Saito, K.: Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17,

245-271 (1972)

. Campbell, C.M., Robertson, E.F.; Ruskuc, N., Thomas, R.M.: Automatic semi-

groups. Theoret. Comput. Sci. 250, 365-391 (2001)

. Charney, R.: Artin groups of finite type are biautomatic. Math. Ann. 292, 671-683

(1992)

Corran, R.: A normal form for a class of monoids including the singular braid
monoids. J. Algebra 223, 256-282 (2000)

Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publ. Co., Sin-
gapore (1995)

East, J.: Birman’s conjecture is true for i2(p). J. Knot Theory Ramifications 15,
167-177 (2006)

Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New
York (1974)

Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston,
W.P.: Word Processing In Groups. Jones and Bartlett, Boston (1992)

Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite
words. Theoret. Comput. Sci. 108, 45-82 (1993)

Godelle, E., Paris, L.: On singular Artin monoids. In: Geometric Methods in Group
Theory, Contemp. Math., vol. 372, pp. 43-57. Amer. Math. Soc., Providence (2005)
Hoffmann, M., Thomas, R.M.: Notions of automaticity in semigroups. Semigroup
Forum 66, 337-367 (2003)

Hudson, J.F.P.: Regular rewrite systems and automatic structures. In: Semigroups,
Automata and Languages, Porto, 1994, pp. 145-152. World Sci. Publishing, River
Edge (1996)

Michel, J.: A note on words in braid monoids. J. Algebra 215, 366-377 (1999)
Otto, F., Sattler-Klein, A., Madlener, K.: Automatic monoids versus monoids with
finite convergent presentations. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379,
pp. 32-46. Springer, Heidelberg (1998)

Paris, L.: The proof of Birman’s conjecture on singular braid monoids. Geom.
Topol. 8, 1281-1300 (2004)

Vershinin, V.: On the singular braid monoid. St. Petersburg Math. J. 21(5), 693—
704 (2010)

Wang, B., Hu, Y.: Signature scheme based on the root extraction problem over
braid groups. IET Information Security 3(2), 53-59 (2009)



Networks of Evolutionary Processors
with Subregular Filters

Jiirgen Dassow, Florin Manea*, and Bianca Truthe

Otto-von-Guericke-Universitdt Magdeburg, Fakultét fiir Informatik
PSF 4120, D-39016 Magdeburg, Germany
{dassow,manea, truthe}@ivs.cs.uni-magdeburg.de

Abstract. In this paper we propose a hierarchy of classes of languages,
generated by networks of evolutionary processors with the filters in sev-
eral special classes of regular sets. More precisely, we show that the use of
filters from the class of ordered, non-counting, power-separating, circular,
suffix-closed regular, union-free, definite and combinational languages is
as powerful as the use of arbitrary regular languages and yields net-
works that can generate all the recursively enumerable languages. On the
other hand, the use of filters that are only finite languages allows only
the generation of regular languages, but not all regular languages can
be generated. If we use filters that are monoids, nilpotent languages or
commutative regular languages, we obtain the same family of languages
which contains non-context-free languages but not all regular languages.
These results seem to be of interest because they provide both upper
and lower bounds on the classes of languages that one can use as filters
in a network of evolutionary processor in order to obtain a complete
computational model.

1 Introduction

An important part of theoretical computer science is the study of problems and
processes connected with regular sets. In the last years a lot of papers appeared in
which, for such problems and processes, the effect of going from arbitrary regular
sets to special regular sets was studied. We here mention four such topics.

— It is a classical result that any nondeterministic finite automaton with n
states can be transformed into a deterministic one with 2" states, which
accepts the same language, and that this exponential blow-up with respect
to the number of states is necessary in the worst cases. In [2], this problem is
studied if one restricts to the case that the automata accept special regular
languages only. It is shown, that the situation does not change for suffix-
closed and star-free regular languages; however, for some classes of definite
languages, the size of the deterministic automaton is bounded by 27! + 1.

* Also at: Faculty of Mathematics and Computer Science, University of Bucharest,
Str. Academiei 14, RO-010014 Bucharest, Romania (flmanea@fmi.unibuc.ro). The
work of Florin Manea is supported by the Alezander von Humboldt Foundation.

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 262-R74, 2011.
© Springer-Verlag Berlin Heidelberg 2011



Networks of Evolutionary Processors with Subregular Filters 263

— A number «a, n < a < 2", is called magic (w.r.t. n), if there is no nondeter-
ministic finite automaton with n states such that the minimal deterministic
finite automaton has « states. It is known that no magic numbers exist if
n > 3. This situation changes if one considers subregular families of lan-
guages. For instance, only the values o with n +1 < o« < 277! 4+ 1 are
possible for prefix-free regular languages (see [16]).

— In the last 20 years the behaviour of the (nondeterministic) state complexity
under operations is intensively studied, i.e., it is asked for the size of the
minimal (non)deterministic finite automaton for the language obtained from
languages with given sizes. For many operations, the worst case is exactly
determined. It has been shown that one gets smaller sizes if one restricts to
special regular languages (see [13], [14], [3], and [I7]).

— In order to enlarge the generative power, some mechanisms connected with
regular languages were introduced, which control the derivations in context-
free grammars. For instance, the sequence of applied rules in a regularly
controlled grammar, the current sentential form in a conditional grammar
and the levels of the derivation tree in a tree controlled grammar have to
belong to given regular languages. In the papers [7], [9], [8], and [IT], the
change in the generative power, if one restricts to special regular sets, is
investigated.

In this paper we continue the research along this direction. We consider the effect
of special regular filters for generating evolutionary networks.

Networks of language processors have been introduced in [6] by E. CsuHAJ-
VARJU and A. SALOMAA. Such a network can be considered as a graph where the
nodes are sets of productions and at any moment of time a language is associated
with a node. In a derivation step any node derives from its language all possible
words as its new language. In a communication step any node sends those words
to other nodes where the outgoing words have to satisfy an output condition
given as a regular language (called output filter), and any node takes words
sent by the other nodes if the words satisfy an input condition also given by a
regular language (called input filter). The language generated by a network of
language processors consists of all (terminal) words which occur in the languages
associated with a given node.

Inspired by biological processes, in [4] a special type of networks of language
processors was introduced which are called networks with evolutionary proces-
sors because the allowed productions model the point mutation known from
biology. The sets of productions have to be substitutions of one letter by an-
other letter or insertions of letters or deletion of letters; the nodes are then
called substitution node or insertion node or deletion node, respectively. Results
on networks of evolutionary processors can be found, e. g., in [4], [5], [18]. For in-
stance. in [5], it was shown that networks of evolutionary processors are complete
in that sense that they can generate any recursively enumerable language.

Modifications of evolutionary networks with evolutionary processors concern
restrictions in the type of the nodes and the mode of applying a rule. In [I],
it is investigated how the generative power behaves if one restricts to networks
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with at most two types of nodes only. Moreover, in the case that one allows that
some insertions and deletions can only be performed at the begin or end of the
word one has also restricted to special regular filters given by random context
conditions.

In this paper, we modify the filters. We require that the filters have to belong
to a special subset of the set of all regular languages. We show that the use of
filters from the class of ordered, non-counting, power-separating, circular, suffix-
closed regular, union-free, definite and combinational languages is as powerful as
the use of arbitrary regular languages and yields networks that can generate all
the recursively enumerable languages. On the other hand, the use of filters that
are only finite languages allows only the generation of regular languages, but
not all regular languages can be generated. If we use filters that are monoids,
nilpotent languages or commutative regular languages, we obtain the same fam-
ily of languages which contains non-context-free languages but not all regular
languages. These results seem to be of interest because they provide both upper
and lower bounds on the classes of languages that one can use as filters in a
network of evolutionary processor in order to obtain a complete computational
model.

By reasons of space we omit some proofs. The omitted proofs can be found in
[10] (see http://theo.cs.uni-magdeburg.de/pubs/preprints/pp-afl-2011-01.pdf).

2 Definitions

We assume that the reader is familiar with the basic concepts of formal language
theory (see e.g. [19]). We here only recall some notations used in the paper.

By V* we denote the set of all words (strings) over V (including the empty
word A). The length of a word w is denoted by |w|. By V* and V¥ for some
natural number k& we denote the set of all non-empty words and the set of all
words with length k, respectively. Let Vi be the set of all words over V' with a
length of at most &, i.e. Vj = Uf:o 1743

By REG, CF, and RE we denote the families of regular, context-free, and
recursively enumerable languages, respectively.

For a language L over V', we set

Comm(L) ={ai, ...a;, |a1...an, € L, n > 1, {i1,i2,...,0n} ={1,2,...,n}},

Circ(L) = {vu|uv € L, u,v € V*},
Suf(L) ={v|wv € L, u,v eV}

We consider the following restrictions for regular languages. Let L be a lan-
guage and V = alph(L) the minimal alphabet of L. We say that L is
— combinational iff it can be represented in the form L = V* A for some subset
ACYV,
— definite iff it can be represented in the form L = AU V*B where A and B
are finite subsets of V*,
— nilpotent iff L is finite or V* \ L is finite,
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— commutative iff L = Comm/(L),

— circular iff L = Cire(L),

— suffiz-closed (or fully initial or multiple-entry language) iff xy € L for some
x,y € V* implies y € L (or equivalently, Suf(L) = L),

— non-counting (or star-free) iff there is an integer k£ > 1 such that, for any
x,y,z € V* zy*z € L if and only if 2y*t'z € L,

— power-separating iff for any x € V* there is a natural number m > 1 such
that either J7* N L =0 or J™ C L where J* = {z" | n > m},

— ordered iff L is accepted by some finite automaton A = (Z,V, 4, 2, F') where
(Z, =) is a totally ordered set and, for any a € V, the relation z < 2z’ implies
the relation d(z,a) < 6(2’, a),

— union-free iff L can be described by a regular expression which is only built
by product and star.

It is obvious that combinational, definite, nilpotent, ordered and union-free lan-
guages are regular, whereas non-regular languages of the other types mentioned
above exist.

By COMB, DEF, NIL, COMM, CIRC, SUF, NC, PS, ORD, and UF we
denote the families of all combinational, definite, nilpotent, regular commuta-
tive, regular circular, regular suffix-closed, regular non-counting, regular power-
separating, ordered, and union-free languages, respectively. Moreover, we add
the family MON of all languages of the form V*, where V is an alphabet (lan-
guages of MON are target sets of monoids; we call them monoidal languages).
We set

G={FIN, MON, COMB, DEF, NIL, COMM , CIRC, SUF, NC, PS, ORD, UF}.

The relations between families of G are investigated e.g. in [I5] and [20]. and
their set-theoretic relations are given in Figure [Tl
We call a production o« — 3 a
— substitution if |o| = |8] =1,
— deletion if |o| =1 and 8 = A.

REG
/ '
PS
A
NC CIRC
/ A A
ORD DEF UF COMM SUF
A A
NIL COMB
A A
FIN MON

Fig. 1. Hierarchy of subregular languages (an arrow from X to Y denotes X C Y, and
if two families are not connected by a directed path then they are incomparable)
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The productions are applied like context-free rewriting rules. We say that a word
v derives a word w, written as v => w, if there are words x,y and a production
a — [ such that v = zay and w = xPy. If the rule p applied is important, we
write v =, w.

We introduce insertion as a counterpart of deletion. We write A — a, where
a is a letter. The application of an insertion A — a derives from a word w any
word wjaws with w = wyws for some (possibly empty) words w; and ws.

We now introduce the basic concept of this paper, the networks of evolutionary
processors (NEPs for short).

Definition 1. Let X be a family of regular languages.
(i) A network of evolutionary processors (of size n) with filters of the set X is
a tuple
N = (V,N{,Ns,..., Ny, E, )

where
— V is a finite alphabet,
— for1<i<n, N; =(M,;, A;, I;,0;) where
— M; is a set of rules of a certain type: M; C {a — b | a,b € V} or
M;C{a—XlaeV}orM;C{A—0b|beV},
— A; is a finite subset of V*,
— I, and O; are languages from X over V,
— E is a subset of {1,2,...,n} x {1,2,...,n}, and
— j s a natural number such that 1 < j < n.
(i) A configuration C of N is an n-tuple C' = (C(1),C(2),...,C(n)) where C(i)
is a subset of V* for 1 <i<n.
(iii) Let C = (C(1),C(2),...,C(n)) and C' = (C'(1),C'(2),...,C"'(n)) be two
configurations of N'. We say that C derives C' in one
— evolutionary step (written as C = C") if, for 1 < i <mn, C'(i) consists
of all words w € C(i) to which no rule of M; is applicable and of all
words w for which there are a word v € C(i) and a rule p € M; such
that v ==, w holds,
— communication step (written as C F C") if, for 1 <i <mn,

C'(i) = (CH)\0)U | (Ck)nOxNIL).

(ki) eEE

The computation of an evolutionary network N is a sequence of configura-
tions Cy = (C¢(1),C(2),...,C¢(n)), t > 0, such that
- Cop=(A1,A2,...,A,),
— for any t > 0, Cy; derives Coyy1 in one evolutionary step,
— for any t > 0, Cary1 derives Cayo in one communication step.
(iv) The language L(N') generated by N is defined as

L) = G:0)

t>0

where Cy = (Cy(1),C(2),...,C(n)), t > 0 is the computation of N.
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Intuitively, a network with evolutionary processors is a graph consisting of some,
say n, nodes N1, Na, ..., N, (called processors) and the set of edges given by E
such that there is a directed edge from Nj to N; if and only if (k,i) € E.
Any processor N; consists of a set of evolutionary rules M;, a set of words A;,
an input filter I; and an output filter O;. We say that N; is a substitution
node or a deletion node or an insertion node if M; C {a — b | a,b € V} or
M; C{a—AX|aeV}or M; C{\ — b|be V} respectively. The input
filter I; and the output filter O; control the words which are allowed to enter
and to leave the node, respectively. With any node IN; and any time moment
t > 0 we associate a set Cy(i) of words (the words contained in the node at
time t). Initially, NV; contains the words of A;. In an evolutionary step, we derive
from C; (i) all words applying rules from the set M;. In a communication step, any
processor N; sends out all words C(7) N O; (which pass the output filter) to all
processors to which a directed edge exists (only the words from C(¢) \ O; remain
in the set associated with N;) and, moreover, it receives from any processor Ny
such that there is an edge from Nj to N, all words sent by Ny and passing
the input filter I; of Nj;, i.e., the processor N; gets in addition all words of
Ci(k) N O N I;. We start with an evolutionary step and then communication
steps and evolutionary steps are alternately performed. The language consists of
all words which are in the node N; (also called the output node, j is chosen in
advance) at some moment ¢, t > 0.

For a family X C RFEG, we denote the family of languages generated by
networks of evolutionary processors where all filters are of type X by £(X).

The following fact is obvious.

Lemma 1. Let X and Y be subfamilies of REG such that X C Y. Then the
inclusion £(X) C E(Y) holds.

The following theorem is known (see, e. g., [5]).

Theorem 1. £(REG) = RE.

3 Some General Results

We start with some results which hold for every type of filters.

Lemma 2. For every network N of evolutionary processors, there is a network
N of evolutionary processors that generates the same language as N and has the
property that its output node N’ has the form N' = (0,0,1',0") for some regular
languages I', O' over the network’s working alphabet and no edge is leaving N'.

Theorem 2. Let X € G. Then each language L € X can be generated by a NEP
N with at most two nodes and with filters from X.

Proof. Let X = FIN. Let L be a finite set over V. Then the evolutionary network
(V,(0,L,0,0),0,1) with all filters from FIN generates L.

If X # FIN, then MON C X holds by Figure [l Moreover, let L € X be
a language over an alphabet V. We construct the NEP N = (V, Ny, No, F, 2)
given as
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L=Vv" 0=V N Y n-r 0y =V
\4i=0) M={r-alacv}y )  \={rlreL} =0 /

Every word w € V* will be derived in node N; and be communicated to node
N5 which accepts all words that also belong to L. The language generated by A/
is LIN) = A, U (VT N L) = L. All filters are of type X.

Corollary 1. For each class X € G, we have X C £(X).
Corollary 2. For each class X € G, we have MON C £(X).

Proof. By the relations given in Figure [l and Corollary [ it is sufficient to
show that MON C E(FIN). Let V be an alphabet and L = V*. Then the
evolutionary network (V,({ X —a|a €V },{A},0,0),0,1) with all filters from
FIN generates L. Thus, any monoidal language L = V* belongs to E(FIN).

4 Computationally Complete Cases

In this section we present the computational completeness of some families £(X).
Theorem 3. £(SUF) = RE and E(CIRC) = RE.

Proof. First we show that £(SUF) = RE.

Let L be a recursively enumerable set. Let N' = (V, N1, Na, ..., Ny, E,j) be a
network with evolutionary processors and filters from REG such that L(N) = L.
For any node N; = (M;, A;, I;, 0;), we construct the sets

I} = (XYY YU Suf(L){Y } U{A},
0} = {XYO{Y} U Suf (0){Y} U{A},

where X and Y are two new symbols. By definition, I} and O} are suffix-closed.
We assume that the network N has the property N; = (0,0, I;, O;) and no edge
leaves the output node (according to the previous Lemma).

We consider the network

N' = (VU{X,Y},N|,N},....,N. N} .\ N} o E',n+2)

n?’
with

Nz/ = (M“{X}AZ{Y},I:,O;) for 1 <4 < n,
N,’L+1 ={X->\NY— A},@,I},V*),
Nr/L+2 = (®7®7V*7®)7
E'=Eu{(i,n+1)|(,j)e E}U{(n+1,n+2)}.
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It is obvious that the filters of N}, ; and Nj _, are suffix-closed, too. Thus N’
is a network of type SUF'.

We now prove that L(N) = L(N’). We start with words of the form XwY
and as long as these words are changed according to rules of M;, 1 < i < n,
they can only be sent to nodes N[, 1 < s < n, and N}, ;. Thus we simulate a
derivation in A (in AV we have an X in front of and a Y behind the word w

occurring in \) and get into N, ; exactly those words XwY whose subword w

comes into N;. Now X and Y are removed and the resulting word w is sent to
N}, . 5. Other words cannot arrive in N}, , and other words do not appear in N;.
Hence, L(N") = L(N).

To show that E(CIRC) = RE, we repeat the previous proof with the following
modifications. We set

I = Circ({ X} {Y'}) and O] = Circ({X}0,{Y}) for 1 <i < n.

This ensures that Circ(F) = F for all filters F' of the new network N’. Then the
proof proceeds as in the case of suffix-closed filters.

Theorem 4. £(COMB) = E(DEF) = E(UF) = RE.

By the relations shown in Figure [Il, Lemma [, and Theorem [I we obtain the
following theorem.

Theorem 5. £(ORD) = E(NC) = E(PS) = RE.

5 Computationally Non-complete Cases

We first discuss the case of finite filters. We start with a certain normal form for
networks with finite filters.

Lemma 3. For each NEP N with only finite filters, we can construct a NEP
N’ with only one processor and finite filters that generates the same language

as N.
Theorem 6. £(FIN) C REG.

Proof. Let N = (V, N1, Na,..., Ny, E,j) be a network with finite filters. Obvi-
ously, a word w is in V; if and only if it is in A; or satisfies I; or is obtained
from a word in N; by application of a rule in M;. We set

U={a|X—aeM;}, V' ={d|aeV}, andU ={d |a€U}.
Let h: (VUV’)* — V* be the homomorphism defined by

A, fora eU’,

ha)=aforacV and h(a')=
(@) = afora and (@) {a, for a’ € V/\ U,

and 7 : (VUV)* — V* be the finite substitution where 7(a) = 7(a’) for
a € V and 7(a) consists of all b € V U {A} such that there are an integers
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s >0 and bg,b1,...,bs—1 € V and by € V U {A} such that a = by, b = b, and
b — bit1 € M; for 0 <i <s—1 (note that s = 0 implies a = b). Furthermore,
let

k:max{|w| ‘U/EOJ‘UI]’UAJ’}+1.

We note the following facts:

— Assume that there is a word w of length at least k in L(N). Then w is in
Cy(j) for some t. By its length, it cannot leave the node, and thus all words
which have a length at least k& and can be obtained by application of rules
of M; to w belong to L(N), too.

— If w with |w| > k+ 1 is in L(N), then w is obtained from a word v € L(N)
of length k by application of rules in M; (since substitutions and deletions
do not increase the length, the shortest words in L(N) with length at least
k are obtained by an insertion from a word of length less than k and thus
they have length k).

Now it is easy to see that

k—1
LN) = (L) A | VU (= L) nvE) n V)
i=0 i>k

holds. Since finite languages are regular and regular languages are closed under
inverse homomorphisms, finite substitutions, intersection, and union, L(N) is
regular. Hence E(FIN) C REG holds.

Let V. ={a} and L = {a} U{a™ | n > 3 }. Obviously, L is regular.

Suppose the language L is generated by a network with only finite filters.
Then, by Lemma [3] there is a network A with only one node N = (M, A, (), O)
that generates L. Since L is infinite, this node must be inserting. Hence, the rule
set is M = {\ — a }. If the initial set A contains A then A € L(N) which is in
contrast to A ¢ L. If the initial set A contains a or aa then the word aa belongs
to the generated language L(N') which is in contrast to aa ¢ L. If the initial set
only contains words a™ with n > 3 then the word a cannot be generated but
a € L which is a contradiction, too. Hence, there is no network with only finite
filters that generates L. Thus, L € REG \ £(FIN).

The following result shows that the use of filters from the remaining language
families, i. e., from MON or NIL or COMM leads to the same class of languages.

Theorem 7. £(MON) = E(COMM) = E(NIL).
We now present some relations of £(MON) to other language families.
Theorem 8. E(FIN) C E(MON).

Proof. Since FIN C NIL, we obtain E(FIN) C £(NIL) by Lemma [Il By Theo-
rem [ the nilpotent language L = {a} U {a™ | n > 3 } is contained in E(NIL).
However, by the second part of the proof of Theorem [B, L is not contained in
E(FIN). Thus E(FIN) C E(NIL). The statement now follows from Theorem [71
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Lemma 4. The family E(MON) contains a non-semi-linear (hence non-regular
and non-context-free) language.

Proof. Let V.= {S,A,F,a} and N' = (V, Ny, Na, N3, Ny, N5, E,5) be the
following network:

(M ={S—AA-F}), \  (M={rx-A4}, ) ( My=0, N
Al = {S}, < Ay = @7 AS = 07
[1:{S7A}*7 > IQZ{S,A}*7 15:{(1}*7
0,=1{5A4} 0, =1{5,4} 05 ={al*

\ O =154) U @EEA (Gt

/Mg:{/;/HS}? N T My={S—a}, )
\ 43 =1, _ A={s},
I ={A}", Ii={S}",

\ Os={S} )\ Oa={a} Y,

In the beginning, we have the word S in node N;. We consider a word S™ for
n > 1 in node N; in an even moment (in the beginning or after a communication
step). One occurrence of S is replaced by A, then the word is sent to node Na
where another copy of A is inserted. This word w goes back to node N7 and it
goes on to node N3 which takes it if no S appears in the word. If in N; the rule
A — F is applied then the symbol F' is introduced which cannot be replaced.
Due to the output filter O, the word will be trapped in Ny for ever. If, in the
word w, no S is present then the only rule which can be applied is A — F' and
the cycle is stopped. If w still contains an S then it is replaced by A and N»
inserts another A. So, the words move between N7 and N where alternatingly
an S is replaced by A and an A is inserted until the word only contains As. The
word is then A™t!. Hence, the number of letters has been doubled.

In N3, each A is replaced by S. The word is S”! when it leaves N3. It moves
to N1 and to N4. In Ny, the cycle starts again with a word S™ for m > 1. All
arriving words in N4 have the form S™ with n > 2. In order to cover also the
case n = 1, the initial language of this node consists of S. In Ny, every letter S
is replaced by the symbol a before the word leaves to node and moves to the
output node Ns.

Hence, L(NV) = {a®" |n>0}.

Corollary 3. NIL C E(MON) and COMM C E(MON).

Proof. The inclusions follow from Corollary [[l and Theorem [[l The strictness
follows from Lemma [l

Finally, we give a result which can be understood as a lower bound for the
generative power of monoidal filters.

Theorem 9. Let L be a semi-linear language. Then Comm(L) € E(MON).
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6 Conclusion
If we combine all the results of the preceding sections, we get the following
diagram which we state as a theorem.
Theorem 10. The following diagram holds.
RE = E(REG) = E(PS) =E(NC)

=E&(ORD) =E(SUF) = &( CIRC’
fé' DEF) = &( COMB

/ \

6 £(NIL)
R — 5 COMM)
/\
£(FIN) NIL COMM
A \ A
FIN MON

The subregular classes considered in this paper are defined by combinatorial
or algebraic properties of the languages. In [12], subclasses of REG defined by
descriptional complexity have been considered. Let REG,, be the set of regular
languages which can be accepted by deterministic finite automata. Then we have

REG) C REGy, C REG3 C --- C REG,, C --- C REG.
By Lemma [ and [12], Lemma 4.1 and Theorems 4.3, 4.4., and 4.5, we get
E(REG,) C E(MON) C E(REG:) = E(REG3)=---=RE

and the incomparability of £(REG;) with REG and CF.
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Abstract. Interval Markov Chains (IMCs) are the base of a classic prob-
abilistic specification theory by Larsen and Jonsson in 1991. They are
also a popular abstraction for probabilistic systems.

In this paper we study complexity of several problems for this abstrac-
tion, that stem from compositional modeling methodologies. In particu-
lar we close the complexity gap for thorough refinement of two IMCs and
for deciding the existence of a common implementation for an unbounded
number of IMCs, showing that these problems are EXPTIME-complete.
We also prove that deciding consistency of an IMC is polynomial and
discuss suitable notions of determinism for such specifications.

1 Introduction

Interval Markov Chains (IMCs for short) extend Markov Chains, by allowing to
specify intervals of possible probabilities on state transitions. IMCs have been
introduced by Larsen and Jonsson [I0] as a specification formalism—a basis
for a stepwise-refinement-like modeling method, where initial designs are very
abstract and underspecified, and are then made continuously more precise, until
they are concrete. Unlike richer specification models such as Constraint Markov
Chains [4], IMCs are difficult to use for compositional specification due to lack of
basic modeling operators. To address this, we study complexity and algorithms
for deciding consistency of conjunctive sets of IMC specifications.

In [I0] Jonsson and Larsen have introduced refinement for IMCs, but have not
determined its computational complexity. We complete their work on refinement
by classifying its complexity and characterizing it using structural coinductive
algorithms in the style of simulation.

Consider the issue of combining multiple specifications of the same system. It
turns out that conjunction of IMCs cannot be expressed as an IMC itself, due
to a lack of expressiveness of intervals. Let us demonstrate this using a simple
specification of a user of a coffee machine. Let the model prescribe that a typical
user orders coffee with milk with probability = € [0,0.5] and black coffee with

* This work was supported by the European STREP-COMBEST project no. 215543,
by VKR Centre of Excellence MT-LAB, and by an “Action de Recherche Collabo-
rative” ARC (TP)L.
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probability y € [0.2,0.7] (customers also buy tea with probability ¢ € [0,0.5]).
The vendor of the machine delivers another specification, which prescribes that
the machine is serviceable only if coffee (white or black) is ordered with some
probability z € [0.4,0.8] from among other beverages, otherwise it will run out
of coffee powder too frequently, or the powder becomes too old. A conjunction
of these two models would describe users who have use patterns compatible
with this particular machine. Such a conjunction effectively requires that all
the interval constraints are satisfied and that z = = + y holds. However, the
solution of this constraint is not described by an interval over 2 and y. This can
be seen by pointing out an extremal point, which is not a solution, while all
its coordinates take part in some solution. Say x = 0 and y = 0.2 violates the
interval for z, while for each of these two values it is possible to select another
one in such a way that z’s constraint is also held (for example (x = 0,y = 0.4)
and (x = 0.2,y = 0.2)). Thus the solution space is not an interval over z and y.

This lack of closure properties for IMCs motivates us to address the problem
of reasoning about conjunction without constructing it — the, so called, common
implementation problem. In this paper we provide algorithms and complexity
results for consistency, common implementation and refinement of IMCs, in order
to enable compositional modeling. We contribute the following new results:

— In[I0] a thorough refinement (TR) between IMCs is defined as an inclusion
of implementation sets. We define suitable notions of determinism for IMCs,
and show that for deterministic IMCs TR coincides with two simulation-like
preorders (the weak refinement and strong refinement), for which there exist
co-inductive algorithms terminating in a polynomial number of iterations.

— We show that the thorough refinement procedure given in [I0] can be imple-
mented in single exponential time. Furthermore we provide a lower bound,
concluding that TR is EXPTIME-complete. While the reduction from TR
of modal transition systems [3] used to provide this lower bound is concep-
tually simple, it requires a rather involved proof of correctness, namely that
it preserves sets of implementations in a sound and complete manner.

— A polynomial procedure for checking whether an IMC is consistent (C), i.e.
it admits a Markov Chain as an implementation.

— An exponential procedure for checking whether k£ IMCs are consistent in the
sense that they share a Markov Chain satisfying all—a common implemen-
tation (CI). We show that this problem is EXPTIME-complete.

— As a special case we observe, that CI is PTIME for any constant value of
k. In particular checking whether two specifications can be simultaneously
satisfied, and synthesizing their shared implementation can be done in poly-
nomial time.

For functional analysis of discrete-time non-probabilistic systems, the theory
of Modal Transition Systems (MTSs) [I5] provides a specification formalism
supporting refinement, conjunction and parallel composition. Earlier we have
obtained EXPTIME-completeness both for the corresponding notion of CI [2]
and of TR [3] for MTSs. In [10] it is shown that IMCs properly contain MTSs,
which puts our new results in a somewhat surprising light: in the complexity



276 B. Delahaye et al.

M

Fig. 1. Examples of Markov Chains, Interval Markov Chains and satisfaction relation

theoretic sense, and as far as CI and TR are considered, the generalization of
modalities by probabilities does come for free.

The paper proceeds as follows. In Section 2] we introduce the basic definitions.
All results in subsequent sections are new and ours. In Section Bl we discuss de-
ciding TR and other refinement procedures. We expand on the interplay of de-
terminism and refinements in Sectiond The problems of C and CI are addressed
in Section Bl We close by discussing the results and related work in Section [6l
Due to space constraints, some algorithms and proofs are given in a long version
of this paper [6].

2 Background

We shall now introduce the basic definitions used throughout the paper. In the
following we will write Intervals)y ;) for the set of all closed, half-open and open
intervals included in [0, 1].

We begin with settling notation for Markov Chains. A Markov Chain (some-
times MC in short) is a tuple C = (P, pg, 7, A, Vi), where P is a set of states
containing the initial state py, A is a set of atomic propositions, Vo : P — 24
is a state valuation labeling states with propositions, and 7 : P — Distr(P) is a
probability distribution assignment such that Zp, cpm(p)(p') =1forallpc P.
The probability distribution assignment is the only component that is relaxed
in IMCs:

Definition 1 (Interval Markov Chain). An Interval Markov Chain is a tuple
I ={(Q,q0,p, A, V), where Q is a set of states containing the initial state qo,
A is a set of atomic propositions, Vi : Q — 24 is a state valuation, and ¢ :
Q — (Q — Intervalsjy 1)), which for each q € Q and ¢’ € Q gives an interval of
probabilities.

Instead of a distribution, as in MCs, in IMCs we have a function mapping el-
ementary events (target states) to intervals of probabilities. We interpret this
function as a constraint over distributions. This is expressed in our notation
as follows. Given a state ¢ € @ and a distribution o € Distr(Q), we say that
o€ p(q) iff o(q¢') € p(q)(¢’) for all ¢ € Q. Occasionally, it is convenient to think
of a Markov Chain as an IMC, in which all probability intervals are closed point
intervals.
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We visualize IMCs as automata with intervals on transitions. As an example,
consider the IMC in Figure 1b. It has two outgoing transitions from the initial
state A. No arc is drawn between states if the probability is zero (or more
precisely the interval is [0, 0]), so in the example there is zero probability of going
from state A to A, or from B to C, etc. Otherwise the probability distribution
over successors of A is constrained to fall into ]0.7,1] and [0,0.3[ for B and C
respectively. States B and C' have valuation , whereas state A has valuation
«, 0. Figure la presents a Markov Chain using the same convention, modulo the
intervals. Notice that our formalism does not allow “sink states” with no outgoing
transitions. In the figures, states with no outgoing transitions are meant to have
a self-loop transition with probability 1 (a closed point interval).

There are three known ways of defining refinement for IMCs: strong refine-
ment (introduced as simulation in [10]), weak refinement (introduced under the
name of probabilistic simulation in [7]), and thorough refinement (introduced as
refinement in [10]). We recall their formal definitions:

Definition 2 (Strong Refinement). Let I; = (Q,qo,¢1,A4,V1) and Iz =
(S, 80,02, A, Vo) be IMCs. A relation R C @ X S is a strong refinement relation
if whenever ¢ R s then

1. The valuation sets agree: Vi(q) = Va(s) and
2. There exists a correspondence function 6 : Q — (S — [0,1]) such that, for
all o € Distr(Q), if o € ©1(q), then
(a) for all ¢ € Q such that o(q') > 0, §(¢') is a distribution on S,
(b) for all " € S, we have 3 o 0(q') - 0(q')(s) € pa2(s)(s'), and
(c) forallg € Q and s € S, if 0(¢')(s') >0, then ¢ Rs'.

I, strongly refines I, or 11 <s I, iff there exists a strong refinement containing
(o0, 50)-

A strong refinement relation requires the existence of a single correspondence,
which witnesses satisfaction for any resolution of probability constraint over
successors of ¢ and s. Figure 2a illustrates such a correspondence between states
A and « of two IMCs. The correspondence function is given by labels on the
dashed lines. It is easy to see that, regardless of how the probability constraints
are resolved, the correspondence function distributes the probability mass in a
fashion satisfying .

A weak refinement relation requires that, for any resolution of probability
constraint over successors in I, there exists a correspondence function, which
witnesses satisfaction of I5. The formal definition of weak refinement is identical
to Def. 2 except that the condition opening Point (2]) is replaced by a weaker
one:

Definition 3 (Weak Refinement). Let Iy = (Q, qo, 1, 4, V1) and Is = (S, sg,
w2, A, Vo) be IMCs. A relation R C Q x S is a weak refinement relation if
whenever ¢ R s, then
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1. The valuation sets agree: Vi (q) = Va(s) and
2. For each o € Distr(Q) such that o € ¢1(q), there exists a correspondence
function § : Q — (S — [0, 1]) such that

(a) for all ¢’ € Q such that o(¢') > 0, §(¢') is a distribution on S,

(b) for all s" € S, we have 3~ o 0(q") - 0(q')(s") € p2(s)(s'), and
(c) forallg € Q and s € S, if 0(¢')(s') >0, then ¢ Rs'.

I, weakly refines Is, or Iy <w Iz, iff there exists a weak refinement containing
(0, 50)-

Figure 2b illustrates a weak refinement between states A and « of another two
IMCs. Here, x stands for a value in [0.2,1] (arbitrary choice of probability of
going to state C' from A). Notably, for each choice of z, there exists p € [0, 1]
such that p-x € [0,0.6] and (1 —p) -z € [0.2,0.4].

Satisfaction Relation. This relation establishes compatibility of Markov Chains
(implementations) and IMCs (specifications). The original definition has been
presented in [I0JIT]. Consider a Markov chain C' = (P, pg, 7, A, V) as an IMC
with only closed point interval probabilities, and let I = (@, qo, ¥, A, Vi) be an
IMC. We say that C satisfies I, written C | I, iff there exists a weak/strong
refinement relation R C P x Q, called a satisfaction relation, containing (po, qo)-
Remark that when C is a Markov Chain, the weak and strong notions of refine-
ment coincide. Whenever C' = I, C' is called an implementation of I. The set of
implementations of I is written [I]. Figure lc presents an example of satisfaction
on states 1 and A. The correspondence function is specified using labels on the
dashed arrows i.e. the probability mass going from state 1 to 3 is distributed to
state B and C' with half going to each.

We say that a state ¢ of an IMC is consistent if its interval constraint ¢(q) is
satisfiable, i.e. there exists a distribution o € Distr(Q) satisfying ¢(q). Obviously,
for a given IMC, it is sufficient that all its states are consistent in order to guar-
antee that the IMC is consistent itself—there exists a Markov Chain satisfying
it. We discuss the problem of establishing consistency in a sound and complete
manner in Section [l

Finally, we introduce the thorough refinement as defined in [10]:

Definition 4 (Thorough Refinement). IMC I; thoroughly refines IMC I,
written I; <t I, iff each implementation of I implements Is: [I1] C [I2]

Thorough refinement is the ultimate refinement relation for any specification

formalism, as it is based on the semantics of the models.

3 Refinement Relations

In this section, we compare the expressiveness of the refinement relations. It is
not hard to see that both strong and weak refinements soundly approximate the
thorough refinement (since they are transitive and degrade to satisfaction if the
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(a) Tlustration of a strong refinement re  (b) Illustration of a weak refinement re
lation between an IMC I; and an IMC lation between an IMC I3 and an IMC
1o I

Fig. 2. Illustration of strong and weak refinement relations

left argument is a Markov Chain). The converse does not hold. We will now
discuss procedures to compute weak and strong refinements, and then compare
the granularity of these relations, which will lead us to procedures for comput-
ing thorough refinement. Observe that both refinements are decidable, as they
only rely on the first order theory of real numbers. In concrete cases below the
calculations can be done more efficiently due to convexity of solution spaces for
interval constraints.

Weak and Strong Refinement. Consider two IMCs I; = (P, 01,91, A4, V1) and
I, = (Q, 02, p2, A, V2). Informally, checking whether a given relation R C P x @
is a weak refinement relation reduces to checking, for each pair (p,q) € R,
whether the following formula is true: V& € ¢1(p), 36 : P — (Q — [0,1]) such
that m x § satisfies a system of linear equations / inequations. Since the set of
distributions satisfying ¢1(p) is convex, checking such a system is exponential
in the number of variables, here |P|-|Q|. As a consequence, checking whether a
relation on P x @ is a weak refinement relation is exponential in |P| - |Q|. For
strong refinement relations, the only difference appears in the formula that must
be checked: 36 : P — (Q — [0,1]) such that V& € ¢1(p), we have that = x ¢
satisfies a system of linear equations / inequations. Therefore, checking whether
a relation on P X @ is a strong refinement relation is also exponential in |P|-|Q|.

Deciding whether weak (strong) refinement holds between I; and Iy can be
done in the usual coinductive fashion by considering the total relation P x @
and successively removing all the pairs that do not satisfy the above formulae.
The refinement holds iff the relation we reach contains the pair (01, 02). The
algorithm will terminate after at most |P| - |@)| iterations. This gives an upper
bound on the complexity to establish strong and weak refinements: a polynomial
number of iterations over an exponential step. This upper bound may be loose.
One could try to reuse techniques for nonstochastic systems [9] in order to reduce
the number of iterations. This is left to future work.

Granularity. In [I0] an informal statement is made that the strong refinement
is strictly stronger (finer) than the thorough refinement: (<1) 2 (<s). In [7] the
weak refinement is introduced, but without discussing its relations to neither
the strong nor the thorough refinement. The following theorem resolves all open
issues in relations between the three:
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(b) IMC I,

Fig. 3. IMCs I4 and I5 such that I4 thoroughly but not weakly refines I5

Theorem 1. The thorough refinement is strictly weaker than the weak refine-
ment, which is strictly weaker than the strong refinement: (<t) 2 (<w) 2 (<s).

The first inequality is shown by exhibiting IMCs I, and I5 such that I thor-
oughly but not weakly refines Is (Figure[3)). All implementations of I satisfy I,
but state B cannot refine any of 31 or (2: Let ¢ be a distribution admitted in B
giving probability 1 to state C. Because of the interval [0, 0.5] on the transition
from (31 to &1, at least 0.5 must be assigned to 71, but C' and 7; cannot be re-
lated. A similar argument shows that B cannot refine 82. The second inequality
is shown by demonstrating two other IMCs, I3 and I such that I3 weakly but
not strongly refines Iy (Figure 2b). State A weakly refines state a: Given a value

x for the transition A — C, we can split it in order to match both transitions

a X5 5 and a {-p)s, d2. Define §(C)(41) = p and 6(C)(d2) = (1 — p), with

p=0if02<2<04,p="2%if04 <z <08, and p= 0.6 if 0.8 < z. The
correspondence function § witnesses weak refinement between A and «. How-
ever, there is no such value of p that would work uniformly for all x, which is
required by the strong refinement.

Deciding Thorough Refinement. As weak and strong refinements are strictly
stronger than thorough refinement, it is interesting to investigate complexity
of deciding TR. In [I0] a procedure computing TR is given, albeit without a
complexity class, which we establish now, closing the problem:

Theorem 2. The decision problem TR of establishing whether there exists a
thorough refinement between two given IMCs is EXPTIME-complete.

The upper-bound in checking whether I; thoroughly refines I5 is shown by ob-
serving that the complexity of the subset-simulation algorithm of [I0] is O(|Q)] -
2IP1) where @ and P are the set of states of I; and Iy, respectively (see [6]).

Summarizing, all three refinements are in EXPTIME. Still, weak refinement
seems easier to check than thorough refinement. For TR, the number of iterations
on the state-space of the relation is exponential while it is only polynomial for
the weak refinement. Also, the constraint solved at each iteration involves a
single quantifier alternation for the weak, and three alternations for the thorough
refinement.
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(a) AMTS M (b) The IMC M

Fig. 4. An example of the translation from Modal Transition Systems to IMCs

The lower bound of Theorem Pl is shown by a polynomial reduction of the
thorough refinement problem for modal transition systems to TR of IMCs. The
former problem is known to be EXPTIME-complete [3].

A modal transition system (an MTS in short) [I5] is a tuple M = (S, so, 4,
—, --+), where S is the set of states, s¢ is the initial state, and — C Sx Ax S are
the transitions that must be taken and --» C S x A x S are the transitions that
may be taken. In addition, it is assumed that (—) C (--»). An implementation
of an MTS is a labelled transition system, i.e., an MTS where (—) = (--).
Formal definitions of refinement and satisfaction for MTSs are given in [6].

We describe here a translation of MTSs into IMCs which preserves imple-
mentations, while we delegate the technicalities of the proof to [6]. We assume
we only work with modal transition systems that have no deadlock-states, in
the sense that each state has at least one outgoing must transition. It is easy
to transform two arbitrary MTSs into deadlock-free ones without affecting the
thorough refinement between them [6].

The IMC M corresponding to a MTS M = (S5, sg, A, —, --+) is defined by
the tuple M = (@, q0, AU {e},p, V) where Q = S x ({e} U A), g0 = (s0,¢€), for
all (s,z) € Q, V((s,x)) = {z} and ¢ is defined as follows: for all t,s € S and
b,ae ({fUA), o((t,0)((s,a) =10, 1] if £ 55 ((£,0))((s, @) = [0,0] if ¢ /> s;
and ¢((t,0))((s,a)) = [0,1] otherwise. The encoding is illustrated in Figure [

~

Now one can show that I = M iff [I] C [[]/\/l\ ], and use this to show that the
reduction preserves thorough refinement. This observation, which shows how
deep is the link between IMCs and modal transition systems, is formalized in
the following theorem lifting the syntactic reduction to the level of extensional
semantics:

Theorem 3. Let M and M’ be two Modal Transition Systems and M and M’
be the corresponding IMCs defined as above. We have

MSTM/ <~ ]/\I\STM\/

Crucially the translation is polynomial. Thus if we had a subexponential al-
gorithm for TR of IMCs, we could use it to obtain a subexponential algorithm
for TR of MTSs, which is impossible [3].
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4 Determinism

Although both are in EXPTIME, deciding weak refinement is easier than de-
ciding thorough refinement. Nevertheless, since these two refinements do not
coincide in general, a procedure to check weak refinement cannot be used to
decide thorough refinement.

Observe that weak refinement has a syntactic definition very much like simula-
tion for transition systems. On the other hand thorough refinement is a semantic
concept, just as trace inclusion for transition systems. It is well known that sim-
ulation and trace inclusion coincide for deterministic automata. Similarly for
MTSs it is known that TR coincides with modal refinement for deterministic
objects. It is thus natural to define deterministic IMCs and check whether thor-
ough and weak refinements coincide on these objects.

In our context, an IMC is deterministic if, from a given state, one cannot
reach two states that share common atomic propositions.

Definition 5 (Determinism). An IMC I=(Q, qo, v, A, V) is deterministic iff
for all states q,r, s€Q, if there exists a distribution o € v(q) such that o(r) > 0
and o(s) > 0, then V(r) # V(s).

Determinism ensures that two states reachable with the same admissible distri-
bution always have different valuations. In a semantic interpretation this means
that there exists no implementation of I, in which two states with the same
valuation can be successors of the same source state. Another, slightly more
syntactic but semantically equivalent notion of determinism is given in [6].

It is worth mentioning that deterministic IMCs are a strict subclass of IMCs.
Figure Al shows an IMC I whose set of implementations cannot be represented
by a deterministic IMC.

We now state the main theorem of
the section that shows that for deter-
ministic IMCs, the weak refinement,
and indeed also the strong refinement,
correctly capture the thorough refine-
ment:

Theorem 4. Given two deterministic Fig.5. AnIMC I whose implementations
IMCs T and I' with no inconsistent cannot be captured by a deterministic
states, it holds that T <t I' iff [ <w I’ ™C

fI<sI'.

5 Common Implementation and Consistency

We now turn our attention to the problem of implementation of several IMC
specifications by the same probabilistic system modeled as a Markov Chain. We
start with a formal definition of the problem:

Definition 6 (Common Implementation (CI)). Given k > 1 IMCs I;, i =
1...k, does there exist a Markov Chain C' such that C |=I; for all i?
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Somewhat surprisingly we find out that, similarly to the case of TR, the CI
problem is not harder for IMCs than for modal transition systems:

Theorem 5. Deciding the existence of a CI between k IMCs is EXPTIME-
complete.

We sketch the line of argument below, delegating to [6] for details. To establish
a lower bound for CI of IMCs, we reduce from CI of modal transition systems,
which is known to be EXPTIME-complete [2]. For a set of modal transition
systems M;, i = 1...k, translate each M;, into an IMC ]\/4:-, using the same
rules as in Section [3l It turns out that the set of created IMCs has a common
implementation if and only if the original modal transition systems had. Since
the translation is polynomial, the problem of CI for IMCs has to be at least
EXPTIME-hard (otherwise it would give a sub-EXPTIME algorithm for CI of
MTSs).

To address the upper bound we first propose a simple construction to check
if there exists a CI for two IMCs. We start with the definition of consistency
relation that witnesses a common implementation between two IMCs.

Definition 7. Let I1 = (Q1,q}, p1, A, Vi) and Iz = (Q2, ¢, p2, A, Va) be IMCs.
The relation R C Q1 X Q2 is a consistency relation on the states of I; and I
iff, whenever (u,v) € R, then

— Vi(u) = Va(v) and
— there exists a distribution p € Distr(Q1 X Q2) such that
1.V € Q1Y cq, P(u,0") € pr(u)(u) A V' € Q23 cq, p(u,0) €
p2(v)(v'), and
2. Y(u',v") € Q1 X Qq, if p(u/,v") >0, then (u/,v") € R.

It can be shown that two IMCs indeed have a common implementation if and
only if there exists a consistency relation containing their initial states. The
consistency relation can be computed in polynomial time using a standard coin-
ductive fixpoint iteration, where pairs violating Definition [0 are successively
removed from (1 X Q2. Each iteration requires solving a polynomial number
of linear systems, which can be done in polynomial time [14]. For the general
problem of common implementation of k& IMCs, we can extend the above defi-
nition of consistency relation to the k-ary relation in the obvious way, and the
algorithm becomes exponential in the number of IMCs k, as the size of the state
space Hle |Q;| is exponential in k.

As a side effect we observe that, exactly like MTSs, CI becomes polynomial
for any constant value of k, i.e. when the number of components to be checked
is bounded by a constant.

Consistency. A related problem is the one of checking consistency of a single
IMC I, i.e. whether there exists a Markov chain M such that M = I.

Definition 8 (Consistency (C)). Given an IMC I, does it hold that [I] # 02

It turns out that, in the complexity theoretic sense, this problem is easy:
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Theorem 6. The problem C, to decide if a single IMC is consistent, is polyno-
mial time solvable.

Given an IMC I = (Q, qo, ¢, A, V'), this problem can be solved by constructing a
consistency relation over @) x @ (as if searching for a common implementation of
I with itself). There exists an implementation of I iff there exists a consistency
relation containing (qo, go). Obviously, this can be checked in polynomial time.

The fact that C can be decided in polynomial time casts an interesting light on
the ability of IMCs to express inconsistency. On one hand, one can clearly specify
inconsistent states in IMCs (simply by giving intervals for successor probabilities
that cannot be satisfied by any distribution). On the other hand, this inconsis-
tency appears to be local. It does not induce any global constraints on implemen-
tations; it does not affect consistency of other states. In this sense IMCs resemble
modal transition systems (which at all disallow expressing inconsistency), and
are weaker than mized transition systems [5]. Mixed transition systems relax the
requirement of modal transition systems, not requiring that (—) C (--»). It is
known that C is trivial for modal transition systems, but EXPTIME-complete
for mixed transition systems [2]. Clearly, with a polynomial time C, IMCs cannot
possibly express global behaviour inconsistencies in the style of mixed transition
systems, where the problem is much harder.

We conclude the section by observing that, given the IMC I and a consistency
relation R C @ x @, it is possible to derive a pruned IMC I* = (Q*, g5, ¢*, A, V*)
that contains no inconsistent states and accepts the same set of implementations
as I. The construction of I* is as follows: Q* = {q € Q|(q,9) € R}, ¢ = qo,
V*(q*) = V(g") for all ¢* € Q*, and for all ¢7, g5 € Q*, *(a1)(a3) = ¢(a7)(g3)-

6 Related Work and Conclusion

This paper provides new results for IMCs [10] that is a specification formalism
for probabilistic systems. We have studied the expressiveness and complexity
of three refinement preorders for IMCs. The results are of interest as existing
articles on IMCs often use one of these preorders to compare specifications (for
abstraction) [TOJT27]. We have established complexity bounds and decision pro-
cedures for these relations, first introduced in [I0]. Finally, we have studied the
common implementation problem. Our solution is constructive in the sense that
it can build such a common implementation.

There exist many other specification formalisms for describing and analyzing
stochastic systems; the list includes process algebras [I/16] or logical frameworks,
[8]. We believe that IMCs is a good unification model. A logical representation is
suited for conjunction, but nor for refinement and vice-versa for process algebra.
As an example, it is not clear how one can synthesize a MC (an implementation)
that satisfies two Probabilistic Computation Tree Logic formulas.

In [I2/T3], Katoen et al. have proposed an extension of IMCs to the continuous
timed setting. It would be interesting to see our results extend to this new model.
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Abstract. Building on the celebrated Krohn-Rhodes Theorem we char-
acterize classes of regular languages in terms of the cascade decomposi-
tions of minimal DFA of languages in those classes. More precisely we
provide characterizations for the classes of piecewise testable languages
and commutative languages. To this end we use biased resets, which are
resets in the classical sense, that can change their state at most once.
Next, we introduce the concept of the scope of a cascade product of reset
automata in order to capture a notion of locality inside a cascade prod-
uct and show that there exist constant bounds on the scope for certain
classes of languages. Finally we investigate the impact of biased resets
in a product of resets on the dot-depth of languages recognized by this
product. This investigation allows us to refine an upper bound on the
dot-depth of a language, given by Cohen and Brzozowski.

1 Introduction

A significant result in the structure theory of regular languages is the Krohn-
Rhodes Theorem [7], which states that any finite automaton can be decomposed
into simple “prime factors” (a detailed exposition is given in [4J6I9IT0]).

We use the Krohn-Rhodes Theorem to characterize classes of regular lan-
guages in terms of the decompositions of the corresponding minimal automata.
In [8] this has been done for star-free languages by giving an alternative proof
for the famous Schiitzenberger Theorem [I1]. In [I] R-trivial languages are char-
acterized (among other things) by proving structural properties of the cascade
products covering their minimal automata. We continue these studies, in an at-
tempt to improve our understanding of the potential of automata decompositions
for classifying regular languages, an approach which is as yet not well developed
in comparison to the structure theory of regular languages based on algebraic
methods (wreath product and block product decomposition of monoids, see [14]).

We treat here the case of piecewise testable and commutative languages, as
well as the star-free languages in their classification by the dot-depth hierarchy.
To this end, we use the concept of a biased reset (called a half reset in [I]) and
introduce locally i-triggered cascade products in order to characterize piecewise
testable languages. For commutative languages we use the notion of one letter
automaton (OLA) and a corresponding one letter cascade product. We show
that a language is commutative iff its minimal automaton is covered by a direct

A.-H. Dediu, S. Inenaga, and C. Martin-Vide (Eds.): LATA 2011, LNCS 6638, pp. 286-97, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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product of a one letter cascade product of biased resets and one letter simple
cyclic grouplike automata.

Next we introduce the notion of scope of resets within a cascade product in or-
der to further refine our analysis of the Krohn-Rhodes decomposition. Informally
speaking, the scope of a product of resets is the maximal number of preceding
automata, to which any given factor is still sensitive. The scope measures a
notion of locality in the product. As initial results we show that the scope of
cascade products recognizing R-trivial languages is bounded by 2 and that for
piecewise testable languages, it is bounded by 1.

Finally we pick up a result from Cohen and Brzozowski [2], which bounds the
dot-depth of a star-free language by the number of factors of a cascade product of
resets recognizing it. We show that this result can be refined by counting blocks
of biased resets as a single reset. To this end we show that multiplying (w.r.t.
the cascade product) an arbitrary number of biased resets to an automaton 2
increases the dot-depth of languages recognized by the product by at most one
(compared to the dot-depth of languages already recognized by 2).

The present paper is based on the diploma thesis [5].

2 Preliminaries

A semiautomaton is a tuple A = (Q, I', 6%), where @ is a finite set of states, I is
a finite set of letters, called the input alphabet of A and 6% : I' — Q¥ is the state
transition function assigning a mapping a® : Q — Q to each letter a € I". By
function composition we can extend these mappings to wordsw =ay1---a, € I'*
by setting w2(q) = an®(an_12(---a12(q)--- . A subsemiautomaton of A is a
structure Ao = (Qo, I, d3'), where Qo C @ is closed under the mappings §*(a)
for all @ € I" and 63" (a) is the restriction of §%(a) to Qo, a € I'. A homomorphism
from A = (Q, I',6%) to B = (P, I',6P) is a mapping ¢ : Q — P with ¢(a*(¢)) =
a®(p(q)) for all ¢ € Q and a € I'. A covers a semiautomaton B (of the same
input alphabet), written B < 2, if 9B is the image of a subsemiautomaton of
under some homomorphism .

A deterministic finite automaton (DFA) is a semiautomaton A = (Q,IJ)
with a designated initial state qo € @ and a set F' C @Q of final states. In
this situation we sometimes write (2, qo, F') or (using the same symbol for the
DFA and the corresponding semiautomaton) 2% = (Q, I, qo, 0, F'). If A is a DFA,
then the language accepted by A is denoted by L(A) = {w € I'*|w?(q) € F}.
A single semiautomaton constitutes the foundation of several DFA. Hence, a
semiautomaton “recognizes” a set of languages: L(2) = {L C I'*|3q0 € Q, F' C
Q: L=L%A,q,F)}. f L € L(A) we say L is recognized by . Given a regular
language L C I'* we denote the canonical DFA for L by . As noted above,
we often identify a DFA with the underlying semiautomaton. This identification
is used in the following proposition, the proof of which is left to the reader:

Proposition 1. Given a semiautomaton A and a regular language L, we have
Le L) if A, <.

! Note that the empty word induces the identity mapping.
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In what follows we will often deal with two kinds of semiautomata: resets and per-
mutation automata. A reset automator] is a semiautomaton % = ({0, 1}, I, 6%),
where for any input a € I' the induced mapping @™ is either the identity on B :=
{0, 1} or has constant value x € B. Conversely, a permutation automaton is an au-
tomaton P = (Q, I, 6%), such that every input @ € I" induces a permutation (that
is, a bijective function).

Recall that a monoid M divides a monoid N, written M < N, if there exists
a surjective monoid homomorphism v : Ny — M from a submonoid Ny of NV
onto M. As with coverings of automata, the division relation is transitive and
reflexive. We recall that the transition monoid of an automaton is the set M ()
of all mappings w® : Q@ — Q for w € I'*. In the special case where 2 is a
permutation automaton, the monoid M (%) is a group G. If 2 has precisely |G|
states we call & a grouplike automaton. Notice that in this case, we may identify
the states from @ with elements from G. G is the group associated with 2.
A grouplike automaton & is simple (cyclic) if the associated group is simple
(cyclic). Since the number of states is equal to |G| it makes sense to speak of the
order of &, which we define to be the order of G.

Given two automata A = (Q, I,6%) and B = (P, " x Q, %) we define

o Ba):=a™P:QxP—>QxP
N0)

The automaton 2 * B = (Q x P, I',§**®) is called the cascade product of 2 and
%B. We recall a few important properties of the cascade product:

(¢,p) — (a™(q), (a,q

Theorem 1 (see [6]). Let 2, B and € be semiautomata with input alphabets
of the suitable format. Then the following hold:

(1) (AxB)«C=2Ax (B xC)
(2) If A < B then €+ A< C x B

The following theorem is the basis for our task of characterizing language classes:

Theorem 2 (Krohn, Rhodes, [7]). Let 2 be a semiautomaton. Then
AL FrxexFn

for semiautomata §;, such that each §; is either a reset or a simple grouplike
automaton with M (§;) < M ().

A detailed exposition of the Krohn-Rhodes Theorem is given in [3J46]. We will
call a decomposition of an automaton 2(, which is of the form stated in Theorem
B a Krohn-Rhodes decomposition (of 2).

2 Reset automata are often introduced in a more general fashion, allowing for an arbitrary
number of states. However, if areset automaton has more than 2 states, it can be covered
by a direct product of 2-state reset automata (see, for instance, [6]).
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3 Piecewise Testable Languages

In this section we want to characterize piecewise testable languages in terms
of their cascade products. Recall that a language is piecewise testable iff it is a
Boolean combination of expressions of the form I™a;I™ --- I*a,I"* for letters
a,...,an € I'y n € Ny (if n = 0 we obtain I'*). There are several character-
izations for piecewise testable languages (see for instance [IITOIT2/TEIT3]). It
should be mentioned that the characterization from [13] (stated in terms of ma-
trices over a semiring) is very similar to the one we give below, yet not stated
in terms of semidirect products. This result is again mentioned in [I5] in the
context of a discussion of restricted semidirect products. The decomposition ob-
tained thereby is indeed very close the one we give below. As we give a purely
automaton theoretic proof (the proof from [I5] is purely algebraic) it would be
interesting to investigate whether one can be obtained from the other.

Definition 1. Let Ry x - - - x R, be a cascade product of resets.

(a) We say the reset R; has scope k if for every pair of inputs (a, (z1,...,2-1))
and (a, (y1,...,yi—1)) with y; = z; for alli —k < j < i —1 the induced
mappings are equal, i.e.

mi 9{i

(a, (1‘1,...71}1‘_1)) :(a, (y17~-~7y’i—1))

(b) The scope of R; is the minimal number k, such that R, has scope k. The
scope of the product Ry * - - - x R, is the maximal scope of a reset R;.

(c) If b € B, we call the product above strictly locally b-triggered, if it has scope
1 and for every reset R; every input of the form (a,(x1,...,2,-2,1 — b))
induces the identity mapping. A product is called locally b-triggered, if it is
a direct product of strictly locally b-triggered products.

In other words, the scope of a reset counts the number of resets preceding it in
a cascade, such that it is sensitive to the state of these resets. For example, a
cascade product degenerates to a direct product iff it has scope 0. Strictly locally
b-triggered products add another constraint to this, namely that the reset may
only alter its state if the immediately preceding reset is in state b. We will return
to the scope of a cascade product in Sec. Bl

A reset R = (B, I,9) is b-biased, where b € B, if for every input a € I' we
have a® = idg or for all ¢ € B we have am(q) = b. In the second case, we write
a® = b. A reset R is biased if it is b-biased for some b. We can now state:

Theorem 3. A language L is piecewise testable iff it is recognized by a locally
b-triggered cascade product of b-biased resets.

Notice that this yields a Krohn-Rhodes decomposition of 2, by Proposition I
We will dedicate the remainder of this section to proving this result. To this end
we first verify that all piecewise testable languages are recognized by a locally
b-triggered cascade product of b-biased resets. Without loss of generality we will
henceforth assume b = 1 (otherwise we rename the states).
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By the definition of piecewise testable languages above it is sufficient to show
that every language of the form L = I'™a1I"™ --- [™a,I"™ is recognized by such
a product: Boolean combinations can be recognized by direct products and a
direct product of locally 1-triggered products is again locally 1-triggered. Given
L, we define n 1-biased resets Ry, ..., R, by settingﬁ:

R . life, 1 =1Na=a;
(a, (@1,..., 2ia)) - (0) = { b otherwise
for all b € B, a € I" and (x1,...,7;—1) € B!, Then every R; is 1-biased and
R1 * --- xR, is strictly locally 1-triggered and evidently accepts L with initial
state go = (0,...,0) and final states {(1,...,1)}.
Before embarking on showing the converse, we need a bit of preparation:

Remark 1. Let | = (B, I,0) be a 1-biased reset and let I} = {a € I'|la™ = 1}.
Therd] LR) = {0, I*,Upep, I'al™,Noep, I*al*}. In particular all languages
from L(R) are piecewise testable.

We now investigate the languages recognized by cascade products of biased
resets:

Lemma 1. Let A = (Q,I',6%) be a semiautomaton and let R = (B, " x Q, ™)
be a 1-biased reset. Then every language recognized by A « R is a finite union of
languages of one of the following three forms (for suitable po,pr € Q):

(1) L e L(A)
2) L= |J L@ po.{a}) a LA a*(q), {pr})
(a,q)ES1
9 L= U L@po{a)-a ") 0L po, {pr})
(a,q)€S1

where S1 ={(a,q) € I' x Q| (a,q)m =1}.

The proof of this lemma is not difficult, but omitted due to space constraints.
The reader is referred to [5].

Lemma 2. If2 := Ry % --- xR, is a strictly locally 1-triggered cascade product
of 1-biased resets R; = (B, " x B1,6%), i = 1,....n, then every language
recognized by A with accepting states {(x1,...,xn)|xn, = 1} C B™ is a finite
union of languages of the form I'a ™ --- I a,,I'™, m € Ny.

The proof of this lemma is by induction on n and uses Lemma [l and Remark [Tl
For details the reader is again referred to [5].

This enables us to complete the proof of Theorem [Bl Let 2 be a locally 1-
triggered cascade product of 1-biased resets. Then 2l is a direct product of strictly

3 We use the convention I' x B® = I' and accordingly (a, (z1,...,2i-1)) = a if i = 1.
4 Given a language L C I'* we denote the complement language by L = I'* \ L.



Classifying Regular Languages via Cascade Products of Automata 291

locally 1-triggered cascade products of 1-biased resets. Therefore all languages
from L(2A) are Boolean combinations of the languages recognized by strictly lo-
cally 1-triggered products. Since the piecewise testable languages form a Boolean
algebra, it is sufficient to show that all strictly locally 1-triggered cascade prod-
ucts of 1-biased resets recognize only piecewise testable languages.

Hence assume that 24 := Ry * --- x R, is strictly locally 1-triggered. Let
g € B™ and F = {(le, ey fl,n)7 ey (f7-717 ey fr,n)}~ Since L(Q[, QO7F) =
Uiy L&, g0, {(firs-- - fin)}) we may assume that F = {(fi,...,fn)}. Sup-
pose ¢o = (go.1,---,q0n) and let qo; = 1. Then, because A is strictly lo-
cally 1-triggered, L = L(%2,qo, F) is the intersection of the languages J =
LR * -+ % Ri(qo,15--590,0), {(f1,--, fi)}) and K = L(Rip1 * Rigp =

<% Ry, (90,i+15 - - G0n), {(fix1,-- -, fn)}) where R;y1 is obtained from R4
by treating all inputs a € I" as (a, (0,...,0,1)). Since both resulting products
are again strictly locally 1-triggered, we may assume that go = (0,...,0).

Now assume that f,, = 1. Then, since 2 is strictly locally 1-triggered and
since all resets are 1-biased, we have f; = ... = f,, = 1 or the language L =
LA, qo,{(f1,---, fn)}) is empty. Hence L(2, qo,{(z1,...,2n)|zn = 1}) = L,
since (1,...,1) is the only state with =, = 1 reachable from ¢y. By Lemma [2] we
see that L is a finite union of languages of the form I™a;I™* ---I™*a,.I"™*.

If f, = 0 we pick ¢ € {1,...,n — 1} maximal (if it exists) with f; = 1. If
no such 4 exists, then clearly L = L(?R1,0,{1}), which is piecewise testable.
Hence we assume such an index 4 exists. Since 2 is strictly locally 1-triggered

we see that f; = --- = f; = 1, since otherwise (f1,..., f,) is again unreachable
from ¢g. Furthermore we must have f;1o = --- = f, = 0 for the same rea-
son. This implies that R; 1o, ..., MR, are irrelevant to the acceptance behavior of

(2, qo, (f1,-- -, fn)). Thus we may assume that i =n — 1.

Using the results from the case f, = 1 we get that K := L(®; * --- x
Rn-1,(0,...,0),{(1,...,1)}) is a finite union of languages I™a; "™ --- *a,I"*.
Now by Lemma/[I] L is a finite union of languages of the form KoI'™* N K. Since
the piecewise testable languages are closed under the Boolean operations this
concludes the proof.

4 Commutative Languages

In this section we embed the well known results on commutative languages
into our framework. We first recall the definition. For w = a1---a,, € I'* let
Perm(w) = {ax@1): " Gr(m)|m € Sn}, where S, denotes the symmetric group
on n points. A language L is commutative if Perm(w) C L for every w € L.
This is evidently the case iff M (L) is commutative iff 2, is commutative. Recall
that a semiautomaton is commutative if w™(p) = ¢ implies v*(p) = ¢ for all
v € Perm(w).

Definition 2. Let L C I'* be regular.
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(a) If there exists N C Ny and ag € I' with L = {w € I'*||wl|,, € N}, then L is
called 1-semilinear (with respect to ag)2Y.

(b) A semiautomaton A, such that there exists a letter ag € I' with ap™ # id
and a® = id for all ag # a € I' is called one letter automaton (OLA) (with
respect to ap).

1-semilinear languages are commutative. Clearly languages accepted by OLA are
1-semilinear. Furthermore 1-semilinear languages yield canonical DFA, which are
OLA (for the proof one can use, for instance, Moore’s minimization algorithm).
A cascade product, such that the automaton it defines is an OLA, is a one letter
cascade product. We recall that a language is commutative iff it is a Boolean
combination of 1-semilinear languages (for details the reader is referred to [10]).
We now turn towards characterizing OLA by their Krohn-Rhodes decomposi-
tions. We first observe that minimal OLA (i.e. those that are canonical DFA for
some (1-semilinear) language L) have a very simple form. If 2y, = (Q, I, qo, 6, F)
is the minimal DFA for a 1-semilinear language L (with respect to a € I') then
there exist 4 < j minimal, such that w;*%(go) = ijlL(qo)7 where wy, = o for
k € Np. Since 2y, is an OLA w.r.t. a all states from @ occur in the sequence
wo™ (o), w1™ (go); - - -, wj—1™* (go) (A is minimal). Set gy, := wy™* (o). Then
we obtain two disjoint sets Qiair = {40, - - -, ¢i—1} and Qioop = {¢, - - -, -1}

Lemma 3. Let Ay, be an OLA. Then Ap, <Ry *--- x R; X &, where Ry * - - - %
R; is a one letter cascade product of 1-biased resets and € is a cyclic one letter
grouplike automaton of order j —i (where i < j are as above).

Proof. Choose ¢ and j as in the previous paragraph. For Ry * --- x R; we
pick the product recognizing (I'*al™*)" as constructed in Sec. Bl We define ¢ =
(Quoop, I, 6") by &' (z) = 2®*|q,,,, for x € I". Pick 7 € Qo0p such that w;*(r) =
¢, i.e. T is chosen such that after seeing i a’s we end up in the first state of
Qlo0p Visited when starting from ¢q. Define A C B x Q1o0p by starting out from
(0,...,0,7) and adding all states reachable in Ry * - - - * R; x €. Then A defines
a subsemiautomaton. Notice that for (z1,...,2;,q) € A there exists 0 < k < i
such that 1 = --- =z = 1 and 441 = --- = x; = 0. Denote this integer k by
max(z1,...,2;). Then we define ¢ : A — Q by (21,...,2i,9) = Gmax(ar,....z;) if
max(z1,...,x;) < i and g otherwise. Is is left to the reader to verify that ¢ is a
surjective homomorphism onto 2Az. g

The grouplike automaton € in the lemma above need not be simple. Hence we
decompose € further in order to arrive at a Krohn-Rhodes decomposition. It is
well known that for every finite cyclic group C' we have C = Z/mZ = x5_,Z/m;Z
where |C| = m = [[;_, m; and the m,; are pairwise coprime prime powers. We
will give an automaton theoretic equivalent of this fact. Denote by C,, the group
(ZMZ,+), n € N, and denote the n-class of an integer i by [i],. Returning to

5 The name results from the fact that the Parikh image of such a language is deter-
mined by just one dimension.
5 Here |w|, denotes the number of occurrences of the letter a € I' in w.
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the grouplike automaton from the previous lemma, let the order of € be m.
Define $ = (Cy,, I, 09) where 29([i],n,) = [i + 1], if 2 = a and [i],,, otherwise,
x € I'. Evidently € 2 § and so in particular € < §. Define €; = (Cy,,, I, 6%)
in the same way as § (that is for x € I' let 2% ([k];n,) = [k + 1], if * = a and
[k]m,; otherwise). Then evidently all €; are one letter cyclic grouplike automata
and we have $) = €; x --- x &,. For the proof of this statement, one uses the
(group) isomorphism obtained from classical group theory and verifies that it is
also a homomorphism of automata. It remains to decompose grouplike one letter
automata of the form € = (Cpx, I, §) for some prime p and some k € N.

Lemma 4. € < (Cp, [,6Y) % -+ % (Cp, I" x Cgil,ék), for cyclic grouplike au-
tomata (Cp, I' x C)71,6"), 1 <i < k. The cascade product defines an OLA.

Proof. The proof is by induction on k. If & = 1 there is nothing to show.
For the induction step we define ® = (C,,I,6°) by 2°([i],) = [i + 1], if
= a € I' and [i], otherwise, 2 € I'. Then define § = (Cpre-1,I" x Cp,67)

by (a,[p— 11p) ([ile-1) = [i + Uper and (z,[r]p)" ([ilpp-1) = [il s for all
(z,[r]p) # (a,[p—1]p). Observe that © * § is an OLA. By the induction hypoth-
esis and Theorem [I] we are done if we show that ¢ < ® * §. To this end define
@ : Cp x Cpr—1 — Cpr by o([ilp, [j]pr-1) = [(i mod p) + j - pl,». This mapping is
well-defined (as one easily verifies) and is a homomorphism of semiautomata. We
only treat the case of the letter a, the case of the remaining letters being trivial.
We have a®(([p — 1, [ilye—1)) = [(p— 1+ p) + Ly = 9([0]p, [j + Uppos). IF
0<i<p—1, then a(p([ily, [lye—)) = i+ -p+ Ups = @(li + 1ps [ilpe—). O

In summary, we have shown:
Theorem 4. Let L C I'*. The following are equivalent:

(1) L is commutative

(2) Ar, < (><i?:1 Riq * - 9‘{17,”) X (><;':1 Ciq k% Q:z‘,m,;); where all cascade
products define one letter automata, all resets are biased, all grouplike au-
tomata are cyclic of prime order and the orders of €;; and €y ;1 are equal

iffi=1i.

5 The Scope of Cascade Products

In Definition [l we introduced the scope of a cascade product. Notice this defini-
tion was only stated for cascade products consisting of resets. We are therefore
only dealing with star-free languages. We now want to use this notion to in-
vestigate language classes: Given a class C of star-free languages (e.g. piecewise
testable languages, R-trivial languages etc.), what can be said about the scope
of a cascade product recognizing the languages from C? If there exists k € Ny,
such that every L € C is recognized by a cascade product of scope at most k,
then we say C has constant scope or has scope k. From Theorem Bl we can deduce:
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Proposition 2. The class of piecewise testable languages has scope 1.

Recall that a language is R-trivial if its syntactic monoid M (L) is R-trivial, i.e.
if mM(L) =nM(L) iff m =n for all m,n € M(L). We have:

Theorem 5. The class of R-trivial languages has scope 2.

The idea of the proof is to decompose an R-trivial language L into a union of left-
deterministic productsﬁ and then to show how to cover the minimal automata
for such products by a scope 2 product of biased resets. For a detailed proof,
which we omit due to space constraints, the reader is referred to [5].

6 Cascade Products and Dot-Depth

In this section we will make extensive use of first order logic. We will be using
formulas from the logic FO[min, max, (Py)qcr, <, S]. Such formulas will be in-
terpreted in word models: Let w = by---b,, € I'*. Then the model associated
with w is denoted w = ({1,...,m},1,m, {i|b; = a})aer, <,S) where S(z,y)
iff y = 2+ 1 and < is the usual order on natural numbers. If ¢ is a sentence
we write L(¢) = {w € I'| w |= ¢} for the language specified or accepted by
¢. If () has free variables 7 = (21,...,,) then we write (w,k) = ¢(z) for
k= (k1,...,kn) if ¢ holds in w with x; interpreted by k;.

As usual we denote by X, the set of FO-formulas, which are equivalent to
a formula in prenex normal form with n quantifier alternations beginning with
a block of existential quantifiers, e.g. 3T1YZ2 - - - QnZTn(T1, ..., Tn) where ¢ is
quantifier free and @, is existential iff n odd. We then define IT,, to be the set of
formulas, the negation of which is in X, and we set A,, = X, NII,,. Given a set of
formulas @ we define BC(®) to be the set of all Boolean combinations of formulas
in @. Immediately from the definitions one gets BC(X,,) = BC(Il,,) C A, 41 and
BC(A,) = A, for all n € N. Also, we recall that disjunctions and conjunction
of X, (resp. II,) formulas is again a X, (resp. IT,,) formula. Given a set ¢ of
formulas, we often write L € @ if L = L(y) for some sentence ¢ € .

We now recall the dot-depth of star-free languages. To this end let By be the
set of all finite and co-finite languages. For n € Ny define B5,, 1 to be the set of all
Boolean combinations of languages LiaiLs -+ Ly_1ay—1 Ly, where Lq,..., L, €
B, and ai,...,a, € I'. One can show that UnGNO B, is the set of star-free
languageﬁ. The dot-depth of a language L is the number n € N, such that
LeB,\By-1 (or0if L € By). The dot-depth is intimately tied to logic:

Theorem 6 (Thomas, [16]). L € B,, iff L € BC(X,) for n € N.

Notice the theorem makes no statement about level 0. The following theorem is
due to Brzozowski and Cohen. In its original formulation it did not make any

" Recall a product I'vailhasls ---anl}, is left-deterministic if for every i = 1,...,n
we have a; ¢ ;-1 (see [19] for details).
8 See [2U9UT0] for details.
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references to logic. We give an alternative proof using logic and can thereby place
the languages more precisely within a given level of the hierarchyﬁ:

Theorem 7 (Cohen, Brzozowski, [2]). Let L be recognized by a cascade prod-
uct Ry * -+ x Ry, of n resets. Then L € A,yq and so has dot-depth at most
n+ 1.

Proof. The proof is by induction on n. The induction start is left to the reader.
For the induction step write 2 = Ry * --- * R, 1 = (Q, I, 6%). Then L(A) C A,
by the induction hypothesis. Let L(q,b) = L(& * R, (g0,b0),{(¢g,b)}). Then
every language in £(2 % JR,,) is a union of languages of this form. It is sufficient
to show L(q,b) € X, 11 for all states (¢,b). The claim follows from the fact that
L(q,b) € Xy,11 as well, hence L(q,b) € Xpp1 N Iy1 = Anyr.

We pick a formula ¢,(x) € A, such that for w = a1 ---a, € I'" we have
(w, k) | q(x) iff a1 ---a € L(q) = L(A, g0, {q}) for ¢ € Q. Denote by I'¥) C
I' x @ the set of inputs inducing the constant i-mapping in R,, for i € B.
Then L(g, b) is specified by ¢4(max) AJz3z VyVzo ( V(a.grer® ©q (@) APa(z1) A

S, 21) A ((S(y,zg) Ay > ) = Nagyera-n (eq ) V ﬁpu(zQ)))), which is
in X, 11 since ¢, € A, for all ¢ € Q. a

We will now refine the result from Theorem [[l However, before moving on, we
recall from [I] that the state set @ of a cascade product of biased resets is
partially ordered, i.e. there exists a partial order < on @, such that for all a € I
and all ¢ € @ we have ¢ < a(q). We note that we can extend this partial order,
to a total order, which is still compatible with the transitions in the way just
outlined. We will say the state set is ordered.

Lemma 5. Let 2 = (Q,I',0%) be a semiautomaton, such that L(A) C A,, for
somen € N. Then L(A x Ry x - x Ry) C Apy1, where R; is a biased reset for
1=1,...,k, keN.

Proof. Let S = {1,...,r} be the state space of O = Ry * --- * Ry. We may
assume the compatible order on S to coincides with < (the usual order on N).
Denote by I ; € I' x @ the set of inputs which map 7 to j. Notice that in a run
£ can change its state at most r — 1 times.

Write B := A x O. Let L = L(*B, (qo,%0),{(qr, f)}), where go,qr € @Q and
io, f € S. Then all languages in £(B) are unions of languages of this form (and
therefore defined by disjunctions of the corresponding formulas). For ¢ € @ and
W= a1-am € I'*let g4(x) € A, be such that (w,t) = pq(z) iff a1---a; €
L(2, go0,{¢}). Then clearly L(2, go,{q}) = L(¢q(max)). We treat only the case
ig # f. The other case requires an adjustment term, which checks the possibility
of staying in ig = f. Define 6 to be

9 The result from [2] yields L € By+1 = BC(X+1), which is a superset of Apyi.
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r—1
\/ 3m1~-~3ijy0-~-Vyj(yo <xp <Yp-<Yj—1<z; <yY; A\ \/
j=1 (i1 sryij_1)ESI—1

(Vo @) Ao A, () A A sl A ~rs(v)))

k=0 s#i s#f

where ¥y, (x) = (m = min/\\/(a’qo)ept’u Pa(min)) i (x > min AJy(S(y,x) A
Nager, . Paly) A P,(x))). t¢,u() verifies that O changes to state u upon read-
ing the letter at position z if O was in state ¢ before. 6 says that for some suitable
j we have precisely j state changes leading from ig to f. Since we can replace
Jy(S(y,x)A--- by Yy(S(y,z) — - -, we have ¢; ; € Ay, hence § € X, ;. Again
(see proof of Theorem [7) we conclude 8 € A, 1 (the complement language is
also in X, 41). Clearly L = L(6 A ¢, (max)), which is a A,,1; formula. O

Hence biased resets as factors in a cascade product have a limited impact on the
dot-depth. We now define the biased reset complezity of a cascade product. In-
formally, the biased reset complexity is the number of resets in a product, where
every block of biased resets is counted as a single reset. For instance, indicating
biased resets by a square and non-biased resets by a circle, the following product
has biased reset complexity 6:

More formally, let SR; * --- * 2R, be a cascade product of resets. Let B =
{(i,7)|R biased for i < k < j and R;_1,R,11 not biased}. Let m be the num-
ber of biased resets in the product. The biased reset complexity is n — m + | B].
The following theorem is now immediate:

Theorem 8. Let Ry * --- % R, be a cascade product of resets with biased reset
complezity k. Then L(Rq1 x -+ x R,) C Agyq.

The following example shows that the bound given in Theorem Bl is not tight.

Ezxample 1. Consider L := I™al™bI™al™*bI™* where I' = {a,b}. Then define
three resets as depicted in Fig.[ll The cascade product Ry * Ro * R3 recognizes L
with initial state (0, 0,0) and final states {(0,1,1), (1, 1,1)}. Notice that Theorem
[ yields L € A4, Theorem Rl yields L € Az, but L € X} as one easily verifies.

v e (b, 1) (b,1,1)

b
(a) R (b) Rz (c) Rs

Fig. 1. Resets for the language L. Inputs, which have not been specified, are assumed
to induce the identity mapping.
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7 Conclusion

Motivated by the Krohn-Rhodes Theorem we classified several classes of regu-
lar languages via their cascade decompositions. The concepts used, respectively
introduced in this study, were biased resets, locally triggered cascade products,
and the scope and the biased reset complexity of cascade products.

This paper gives initial results on the introduced concepts; it leads to several
interesting questions left open here. For example, it should be answered whether
for each n there is a star-free language L, which needs at least scope n in the
cascade decomposition of any (minimal) automaton accepting L,,. As another
direction for future research (connected with the final result), we mention that
the biased reset complexity of decompositions of automata for star-free languages
seems to deserve a closer study.
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Abstract. Let g1,h1 : {a,b}" — {a,b}" be successor morphisms of
non-periodic binary morphisms g, h. Suppose that g, h have a minimal
solution which is not simple. Let (e, f), (¢/, f') be letter blocks of g1, hi1,
that is, a prefix minimal pairs of words such that gi(e) = hi(f) and
g1(e") = h1(f'). In this paper we will show that if the primitive roots of
words {gi(a), g1(b), hi(a), h1(b), e, f, €', f'} have the length at least
two, then the length of both letter blocks (e, f), (¢’, f') is bounded by a
constant.

1 Introduction

An equality word, also called a solution, of morphisms g, h : X* — A* is a word
w satisfying g(w) = h(w). All equality words of the morphisms g, h constitute
the set Eq(g, k), which is called the equality language of g and h. The concept
of equality language was first introduced in [I2] and since then has been widely
studied. Equality languages have achieved particular importance in the represen-
tation theory of formal languages since every recursively enumerable language
can be effectively found as a morphic image of an equality language, see [I].

The simplest non-trivial equality language is the equality language of binary
morphisms. Although the binary equality language may seem at first sight very
simple, in reality its structure is still unknown. One of the important results
concerning binary equality languages is that the set of all binary equality lan-
guages containing at least one non-empty word is recursive (see [2], a complete
proof given in [5]). This algorithmic problem known as the PCP(2) is a special
variant of the Post Correspondence Problem (PCP), whose undecidability was
proved by E. Post in [10].

As the PCP is one of the most emblematic algorithmic problems, lot of at-
tention has been paid to its special variants. It is known that the PCP remains
undecidable for instances whose domain alphabet is of size at least seven. On the
other hand, the marked version of the PCP, that is when image words of both
morphisms start with different letters of the target alphabet, was proved to be
decidable (see [6]). The complexity of described decision algorithms for both the
PCP(2) and the marked PCP is exponential. However, in case of the PCP(2), a
polynomial algorithm was found in 2002 (see [7]).

The leading role in the proof of decidability of the PCP(2) is played by a
reduction sequence of successor morphisms. Successor morphisms in the reduc-
tion sequence of g, h are in most cases strictly simpler than the previous pair
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of morphisms. A measure of ‘simplicity’ of a morphism in this case is its suffiz
complezity, which is simply the number of different non-empty suffixes of either
of two image words. Although during the process we can reach a pair of mor-
phisms with the same suffix complexity as its predecessor, these exceptions are
known and can be treated separately. The complete classification of morphisms
with stable suffix complexity can be found in [§].

Importantly, since elements of binary equality language are also transformed
into simpler structures during the process of creation of the reduction sequence,
determining the length of this sequence would be useful in the analysis of the
structure of binary equality languages. Notice, however, that even though the
problem of finding the structure of binary equality languages uses some facts
from the proof of the PCP(2), both problems are significantly different.

Let g1, h1 : {a,b}* — {a,b}* be a pair of successor morphisms of g, h. Sup-
pose that morphisms g, h have a minimal solution which does not have unique
overflows. Let (e, f), (¢/, f') be letter blocks of g1, hi, that is, a prefix minimal
pairs of words such that gi(e) = h1(f) and g1(e’) = h1(f’). In this paper we will
show that the length of both letter blocks (e, f), (¢/, f') is bounded by a constant
unless any of the words from {g1(a), g1(b), h1(a), h1(b),e, f, €', f'} are a power of
a letter.

From the bound for the length of the letter blocks of morphisms g1, h; we can
get directly the bound for the suffix complexity of their successors and thus a
bound for the length of the reduction sequence of successor morphisms of g, h.

2 Basic Concepts and Definitions

The standard terminology and basic facts of combinatorics on words (see for
example [9] and [IT]) will be used throughout the text. Particularly, a reader
shall recall that a binary morphism ¢ : {a,b}* — A* is marked if the image
words g(a) and g(b) start with different letters. We shall use u <, v when wu is
a prefiz of v and v <, v when u is a non-empty proper prefiz of v. Similarly,
u <g v expresses the fact that u is a suffiz of v and u <s v means that u is a
non-empty proper suffiz of u. The set of all suffixes of a word u will be denoted
by Suff(u). Two words are suffiz comparable if one is a suffix of another. The
greatest common prefiz of two words u and v shall be denoted by u A v. A (one-
way) nfinite word composed of infinite number of copies of a word u will be
denoted by u*. By the length of a word v we mean the number of its letters
and we denote it by |u|. Similarly, the number of occurrences of the letter a in u
will be denoted by |u|s. It should be also mentioned that the primitive root of a
word u is the shortest word p such that v = p* for some positive k. The notation
pref; (u) will be used for the word v <, u such that |v| = k. Since any alphabet
can be encoded by two letters, we will suppose that g : {a,b}* — {a,b}*.

It is a well-known fact that two words u,v commute if and only if they have
the same primitive root. A binary morphism g : {a,b}* — {a,b}* is called non-
periodic if its image words g(a) and ¢(b) do not commute. In what follows, we
will be interested only in non-periodic morphisms.
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Binary morphims have the following very important property: For each non-
periodic binary morphism g : {a,b}* — {a,b}* there is a uniquely given marked
(non-periodic) binary morphism gy, : {a,b}* — {a,b}* and a word z, such that
for all words w € {a,b}* we have g(w) = z4gm(w)z, . One should note that z,
is in fact equal to g(ab) A g(ba) (see [I1], p. 348).

Critical overflow. Let g, h: {a,b}* — {a,b}* be two binary non-periodic mor-
phisms and gm, hm be their marked versions. If the words z4 and z;, are suffix
comparable, we define the critical overflow c(g,h) of g, h by

c(g,h) = zhz;1
Note that if the original morphisms g and h are marked, the critical overflow
exists and is empty.

Solution. Let g,k : {a,b}* — {a,b}* be two binary morphisms. A word w is a
solution of g, h if g(w) = h(w). We say that a solution w is minimal if it is not
a prefix of any other solution. A solution w is called simple if all overflows are
unique. That is, if wy, wiu, we and wou’ are prefixes of w* such that

g(w1)z = h(ws) and g(wiu)z = h(wau”)

for some word z € {a,b}* U ({a,b}~1)*, then |u| = |u/| = k|w| for some k € N .
Notice that every simple solution is minimal. However, the reverse implication
does not hold (see Example [).

Block decomposition of a solution. It is known that every minimal non-
simple solution decomposes into simple structures called letter blocks. The letter
block of binary morphisms g, h is a (prefix) minimal pair of words (e, f) such
that

c(g,h)g(e) = h(f)e(g, h) (1)

Notice that if both morphisms g and h are marked, the letter blocks are just
minimal pairs of words (e, f) such that g(e) = h(f). It follows from (I)) that
for morphisms g, h, the corresponding marked morphisms g, Ay, have the same
letter blocks as g, h. For each pair of binary morphisms there are at most two dif-
ferent letter blocks (e, f), (¢/, f’) such that ef and €’ f’ are non-empty. Moreover,
pref, (€) # pref, (¢') and pref, (f) # pref, ().

For every minimal non-simple solution w of binary morphisms g and h there
is a sequence

(u07v0)7 sy (un7vn)
such that w = ug...un = vy ... v, and (upuo, vove) and (u;,v;), 0 < i < n, are

letter blocks of g and h. This sequence is called a block decomposition of the
solution w (see Fig. [I).
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g: gluo) | g(u1) | gu2) | glus)
h(vo) | h(vy) | h(vs) | h(vs)

Fig. 1. Block decomposition of a solution

Successor morphisms. Morphisms g1, h1 : {a,b}* — {a,b}* are called suc-
cessor morphisms if there exist non-periodic binary morphisms g, h : {a,b}* —
{a,b}* such that (g1(a), h1(a)) and (g1(b), h1(b)) are their letter blocks.

Quite naturally, morphisms g, h will be called predecessor morphisms. Ob-
viously, the predecessor morphisms are not uniquely given. Notice as well that
successor morphisms are necessarily marked. This follows from the fact that
for two different letter blocks (e, f), (¢’, f) we have pref;(e) # pref;(¢’) and

pref, (f) # pref; (f').

Definition. A pair of successor morphisms (g1, k1) is called saturated if at least
one pair of their predecessor morphisms has a non-simple minimal solution.

The following example shows that the condition that at least one pair of predeces-
sor morphisms has a solution does not imply that the other pairs of predecessor
morphisms of g; and h; have to possess a solution as well.

Ezample 1. Let g1,h1 : {a,b}* — {a,b}* be binary morphisms defined in the
following way:
g91(a) = a, hi(a) = ab,

gl(b) = bb, hl(b) b

It is easy to check that the following two pairs of morphisms (g, k) and (¢’, k')
are predecessor morphisms of (g1, h1):

g(a) = abb, h(a) = a,
g(b) =0, h(b) = bb,
g'(a) = babab, W(a) =b,
g'(b) = ab, h'(b) = baba .

The morphisms g, h have a minimal solution w = abb. Moreover, this solution
is non-simple since it has two overflows which are the same. Namely, for w; =
a,ws = ab and u = b%,u’ = b we have

g(w1) = h(ws) and g(wiu) = h(wau')

but |u| is not a multiple of |w|. Therefore, the pair of morphisms (g1, h;) is
saturated. However, it can be checked easily that the pair (¢’, ') does not have
any solution.
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Definition. Let g,h : {a,b}* — {a,b}* be binary morphisms and let (e, f),
(¢’, ') be their letter blocks. A pair of morphisms (g, h) is called combinatorially
rich if the primitive roots of words {g(a), g(b), h(a), h(b),e, f,€’, f'} have the
length at least two.

Notice that since the length of the primitive roots is at least two, each image
word as well as each letter block word of combinatorially rich morphisms have
to contain both letters a and b at least once.

We can now formulate our main result. Up to the morphisms which are not
combinatorially rich, the block structure of successor morphisms is quite re-
stricted. In fact, the length of both letter blocks of combinatorially rich successor
morphisms is bounded by a constant.

Theorem 1. Let g1,h1 : {a,b}* — {a,b}* be a pair of combinatorially rich
saturated successor morphisms and let (e, f), (€', f') be their letter blocks. Then
le] + |¢'| < 1412 and |f| + |f'| < 68 or vice versa.

The proof of the theorem is based on the analysis of the suffix complexity of
successor morphisms of g1, hy.

Suffix complexity. The suffix complexity o(g) of a morphism g is defined as
the number of different non-empty suffixes of g(a) or g(b). Formally,

o(g) = [{u,u # € and u € Suff(g(a)) U Sufi(g(5))}] -

The suffix complexity of a pair of morphisms (g, h) is defined as the sum of
their suffix complexities. The concept was first introduced in the proof of the
decidability of the binary PCP. It is known that suffix complexity of successor
morphisms is less than or equal to the suffix complexity of its predecessors (see
[2]). In this sense each successor morphism is simpler than its predecessor.

The suffix complexity of a morphism g is related to its length in the following
way:

;(Ig(a)l +19®))) < olg) < lga)l + |g(b)] - (2)

The suffix complexity of successor morphisms can be bounded by the number
of certain types of overflows inside the letter blocks of their predecessor. Suppose
that g1, hy are successor morphisms of g, h and let (e, f), (¢/, ') be letter blocks
of g, h. Let gn, hm be corresponding marked morphisms of g, h. We define a set
O, as the set of all non-empty suffixes of g (a) or gm (b) which occur as overflows
inside at least one of the letter blocks. More formally, u € O, if u is a non-empty
suffix of g (a) or gm(b) and there are words eq, e, f1 and fo such that

gm(el) = hm(fl)u and u.gm(€2) = hm(f2) .

Each u € O4 determines uniquely a non-empty word fo € Suff(f) U Suff(f’).
This defines a mapping

g : Og — {Suff(f) USuff(f)}\{e} .
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Since words f and f’ are in fact words hi(a) and hq(b), we have obtained a
mapping between O, and o(h1). Notice that this mapping is surjective, since for
each non-empty s € Suff(f) we can find u € O, as gm(e1)(hm(fs™1))~! where
e1 is a minimal prefix of e such that |gm(e1)|] > |hm(fs™1)|. Surjectivity of
immediately implies the following bound for the suffix complexity of hy:

a(h1) <[Og] . 3)

Now, one can easily find a bound for the length of the letter blocks of g, h simply
by combining (2) and (@):

1+ 11 = [P (a)] + [ ()] < 20(h1) < 2]|O] . (4)
Similarly, we can define the set Oy, and obtain

le[ + 1€’ = lg1(a)| + |g1(b)] < 20(g1) < 2[On] . ()

3 One Letter Bound for Successor Morphisms

We have seen that in order to prove Theorem [I] it is enough to find a bound for
the cardinality of the sets Og4, and Oy,. Obviously, if the morphisms g1, h; had
bounded lengths, this task would be trivial. However, the difficulty of finding a
length bound for morphisms g1, h; is one of the reasons why the structure of
binary equality languages remains unknown. Fortunately, it has turned out that
to prove our theorem it is enough to bound the number of just one of the letters
a, b inside the image words of g; and h;. This section will discuss the problem
of obtaining a one letter bound in more details.

The following lemma deals with the structure of sufficiently long letter blocks.
In fact, it is a variation of the result obtained in [4] for simple solutions. This
should not be surprising, since both simple solutions and letter blocks are simple
structures. The proof uses practically same methods as the proof of the similar
result in [3] and therefore will be omitted.

Lemma 1. Let g, h: {a,b}* — {a,b}* be binary morphisms which have a non-
simple minimal solution. Let (e, f), (¢/, f") be letter blocks of g, h and suppose
that the word h(b) is the longest of all four image words {g(a), h(a), g(b), h(b)}.
If |flo = 9 or |f'|s > 9, then one of the two letter blocks belongs to the following
set:

{(bi7pj)7(aivpj)v(pi7bj)7(si7bj)} (6>
where i,j € N and p, s are primitive words such that |plp = 1 and |s|, = 1.

Notice that the assumption that the word h(b) is the longest of all four im-
age words {g(a), h(a), g(b), h(b)} in the previous lemma allows us to distinguish
between letters a and b.

It follows from the previous lemma that at least one morphism in a pair of
combinatorially rich saturated successor morphisms has a bounded number of
one of the letters.
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Corollary 1. Let gi,hy : {a,b}* — {a,b}* be a pair of combinatorially rich
saturated successor morphisms. Then |hi(a)|q < 8 and |hi(b)|q < 8, or|g1(a)]s <
8 and |g1(b)|a < 8, for some letter d € {a,b}.

Proof. Let g, h be predecessor morphisms of g; and h;. Since g1, h1 are saturated,
we can suppose that g, h have a minimal non-simple solution. Let (e, f), (¢/, )
be letter blocks of g, h and suppose that h(b) is the longest of all four image
words {g(a), h(a), g(b), h(b)}. By Lemmalll either |f|, < 8 and |f’|, < 8, or one
of the letter blocks belongs to the set ([@l). The latter possibility means that either
(91(a), hi(a)) or (g1(b), h1(b)) belongs to (@). This contradicts the assumption
that g1, h1 are combinatorially rich morphisms. Therefore, |h1(a)ly = |f]p < 8
and |h1(b)|p = | f']s < 8. O

In the previous lemma we have proved that at least one morphism in a pair
of combinatorially rich saturated successor morphisms is bounded in one of the
letters. However, in order to prove our theorem, we need to find the similar bound
for the remaining morphism as well. We will start with the following lemma:

Lemma 2. Let g1,hy : {a,b}* — {a,b}* be a pair of combinatorially rich sat-
urated successor morphisms and suppose that for a letter d € {a,b} it holds
|hi(a)|lqa < 8 and |h1(b)|a < 8. Then |gi(a)|la < 8 or |g1(b)|a < 8.

Proof. Let g, h be predecessors of g; and h;. We can suppose that g,h have a
minimal non-simple solution w. Let (e, f), (¢/, f’) be letter blocks of g, h. Since
w is minimal and non-simple, each of the two letter blocks has to be included in
the block decomposition of w at least once. Looking at the block decomposition
of w we obtain the following equality for the letter d:

\wla = ilela + jle'la = il fla + j1f']a;

where i > 1 and j > 1. Therefore, |e|q > |f|q4 if and only if |¢/|q < |f/|a- In other
words, either |e|q or |€/|4 is less than or equal to eight, since by our assumption
|fla = |h1(a)la < 8 and |f'|4 = |h1(b)|q < 8. This completes the proof. |

We have seen that there is a one letter bound for three out of four image words
of a pair of combinatorially rich saturated successor morphisms. It turns out
that finding a bound for the fourth word is much more complicated. The rest of
this section is dedicated to this task.

The following slightly technical lemma is based on properties of cyclic words
discussed in [4] and [3]. Because of space limitation, the proof will be omitted.

Lemma 3. Letg, h: {a,b}* — {a,b}* be binary marked morphisms and suppose
that

g(ulciuQ) = v1h(dusdusd)vy
for some letters ¢,d € {a,b} and words u1,us,us,us € {a,b}*, vi,ve € {a,b}*

such that |h(d)| > |g(c)|, vevi € Imh, |g(u1)| < |vi| and |g(u2)| < |ve|. Then
either uyus € ct, or g(c) commutes with h(v), for some word v € {a,b}*.
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Notice that if in previous lemma g(c) commutes with h(v), then g(c’) = h(v*),
for some j,k € N,i. Let (e, f) be a letter block of morphisms g,h such that
¢ <p e. From the prefix minimality of (e, f) we obtain that e € ¢*. Thus, if we
suppose that morphisms g, h from the previous lemma are combinatorially rich
marked morphisms, then the words g(c) and h(v) cannot commute and therefore,
necessarily ujus € ct.

The key ingredient in finding a bound for the remaining image word of succes-
sor morphisms g1, k1 is the fact that under certain conditions the block decompo-
sition of a solution of predecessor morphisms g, h cannot contain long sequences
of the same letter block. This is expressed more generally in the following way:

Lemma 4. Let g1,h1 : {a,b}* — {a,b}* be a pair of combinatorially rich
marked morphisms and suppose that |hi(a)|y < 8, [hi1(b)]p < 8, and |h1(b)|y <
lg1(b)]p. Let w be a word such that zg1(w) = hi(w)z, for a word z € {a,b}* U
{a=1,b71}*, and |w|y # 0. Then a*® is not a factor of w.

Proof. Suppose for a contradiction that a*” is a factor of w. Since (g1,h1) is a
combinatorially rich pair of morphisms, we know that |g1(a)|s # 0, otherwise the
length of the primitive root of g1(a) would be one. Notice that since zg;(w) =
hi(w)z, we can find words uq, us, v1,v2, v such that

4QUQ) = vlhl(v)vg 5

g1(w) = g1(wra
vovy € Imhq, |g1(u1)| < |v1] and |g1(uz)| < |vz|. Let v be the longest possible
word satisfying this property. Then |hy(v)|p > 33|g1(a)|p > 33 because |g1(a)|y #
0 and we suppose that |h1(a)|, < 8 and |h1 ()], < 8. And thus |v| > 5. Therefore,
either |v|, > 3 or |v|p > 3. Since |g1(w)| = |h1(w)], also

[wla([Pr(a)lo = 191(a)ls) = |wlp(lg1(B)lo — [P (B)]o) -

From the fact that w contains both letters ¢ and b and the assumption that
[h1 ()]s < |g1(D)|s, we can see that |hi(a)|y > |g1(a)|s. Then, if hi(a) is a factor
of g1(a)¥, we have as well |hi(a)| > |g1(a)|. We are left with the following three
cases:

1) |v|q > 3. Then hy(a) is a factor of ¢g1(a)* and |hi(a)| > |g1(a)|. Therefore, we
can apply Lemma[3]and obtain that w € a™, a contradiction with the assumption
that |wl|, # 0.

2) |vlp > 3 and |h1(b)| > |g1(a)|]. Again we can apply Lemma Bl and get that
w € a™, a contradiction with the assumption that |wl|, # 0.

3) [vlp > 3, |v]e < 2and |h1(b)] < |g1(a)|- We will show that in this case there are
at least five g (a) inside g1(a)*® covered by hi(b)*. Then we can just exchange
morphisms g; and h; and apply Lemma [l We will obtain that w € b and the
proof will be complete. Let w1, us, u3 € b* be words such that v = uja™ usa?us,
where 41,12 € {0,1}. Since |h1(v)]p > 33|g1(a)|p and |h1(a)]p < 8 < 8|g1(a)|s, we
have |hi(u;)|s > 5lg1(a)|s for at least one j € {1,2,3}. Since hi(u;) is a factor
g1(a)®, we have as well |hi(u;)| > 5|g1(a)| and the proof is complete. O
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In order to illustrate the connection between the previous lemma and the block
decomposition of a solution of predecessor morphisms, suppose that g;,h; are
combinatorially rich successor morphisms of g, h. Let w be a non-simple minimal
solution of g, h and let

(up,v0), .-, (Un,vn)

be a block decomposition of w. Then w = ug...u, = Vg ... Vn, (UnUg, UpVy) =
(g1(cn), hi(en)) and (ug,vi) = (g1(ci), hi(ci)), 0 < i < n, where ¢; € {a,b},
0 < ¢ < n. We can suppose that |vg| < |ug|. Then

(valuo)gl(cl ceiCp—16n) = hi(er ... cn_lcn)(vgluo) )

Since w is a non-simple minimal solution, the block decomposition includes each
letter block at least once. Therefore, for w' = ¢1...¢, we have |w'|, # 0 and
|w'|a # 0. By Corollary [l we can suppose that |hi(a)|q < 8 and |h1(b)|q < 8, for
a letter d € {a,b}. If we suppose that |h1(b)|q < |g1(D)|a, then from the previous
lemma we obtain that ¢*° is not a factor of w’, where ¢ # d. Therefore, the
length of a maximal continuous sequence of letter blocks corresponding to the
letter ¢ in the block decomposition of w is at most 48.

Finally, let us formulate the following lemma which establishes a bound for
the number of one of the letters inside the remaining image word of successor
morphisms.

Lemma 5. Let g1,h1 : {a,b}* — {a,b}* be a pair of combinatorially rich satu-
rated successor morphisms. Suppose that the number of b’s in the image words
hi(a), h1(b) and g1(a) is less than or equal to eight. Then |g1(b)]p < 344.

Proof. Suppose, for a contradiction, that |g1(b)], > 345. Then [g1(b)[p > |h1(D)]s-
From the assumption that g, h; are combinatorially rich morphisms, we obtain
that |g1(a)|p > 1. Let g, h : {a,b}* — {a,b}* be predecessor morphisms of g; and
h1 and let w be their non-simple minimal solution with the block decomposition:

(’IL()7’I)())7 ey (u,“’l)n) .

Then w = ug...up = Vg...Vn, (U, vnvo) = (g1(cn), hi(cn)) and (ug,v;) =
(91(ci),ha(e)), 0 < i < n, where ¢; € {a,b}, 0 < i < n.Let w = ¢1...cp.
Notice that

(v 'uo)g1(w') = ha(w')(vg "uo)
and since w is a non-simple minimal solution, |w'|, # 0 and |w’|, # 0. It follows
from the |g1 (w’)| = |h1(w’)| that

'l (lg1 (D)6 = 1h1 (D)) = [w'[a(ha(a)ls — lg1(a)ls) -

Since |g1(b)|s > |h1(b)|s, necessarily |gi(a)lp < |hi(a)|p. Then it follows from
inequalities |g1(a)|p < 8, |hi(a)|p < 8, |h1(b)]p < 8 that

Tlw'|o > (345 — 8)|w'|, = 337|w'|, > 7 - 48|uw']s .

By the pigeonhole principle, there is a consecutive sequence of 49 letters a inside
the word w’, which contradicts Lemma @] O
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4 Proof of Theorem 1

In this concluding section, we will argue that there is a bound for the cardinality
of the sets Oy, and Oy, based on the previously found bounds for the number
of one of the letters inside the the image words of successor morphisms. Then,
having in mind (@) and (@), the proof of Theorem [] will become substantially
easy.

The next lemma (see [4]) is an easy application of the fact that for a marked
morphism g there is at most one factorization of a word w into the image words

g(a) and g(b).

Lemma 6. Let g be a marked morphism and u,v,w be words satisfying
glu) Aw <, glv) Aw .

Then g(u) Aw = g(u Av).

The following claim plays an important role in counting overflows inside the set
Oy, of the type a™. For combinatorially rich marked morphisms g, h, there are

at most two different g-overflows of the type a™ inside the letter blocks of g and
h.

Lemma 7. Let g,h : {a,b} — {a,b}* be marked binary morphisms and let
(e, f), (€, f') be their letter blocks. Let (e1, f1), (e2, f2) and (es, f3) be prefizes of
(e, f) or (¢, f') such that

gler) = h(fr)a’,  glea) = h(f2)d’ and  g(es) = h(f3)a",
where 1 <1 < j <k. Then g,h are not combinatorially rich morphisms.

Proof. Suppose for contradiction that g, h are combinatorially rich morphisms.
Let hq be an image word h(a) or h(b) starting with a. Since g, h are combinato-
rially rich morphisms, there is a number m € N such that a™b <, h,. Notice
that since the morphism h is marked, overflows a’,a’ and a* cannot be longer
than m. Then, there are words u, v such that

a™ b <, g(u),
a™ ' <, g(v) .

Therefore, g(u) Aa® <, g(v) Aa®. According to Lemmal6], we get that g(uAv) =
a™ 7. Then g(a) € at or g(b) € a™ which is in contradiction to g,h being
combinatorially rich morphisms. a

The same lemma as the previous one can be formulated for h-overflows; there
are at most two different h-overflows of the type a™ inside the letter blocks of g
and h.

Finally, we will demonstrate that the cardinality of the sets Og4, and Oy, is
bounded.
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Lemma 8. Let g1, h : {a,b}* — {a,b}* be a pair of combinatorially rich satu-
rated successor morphisms. Then |Og,| < 706 and |Op,| < 34 or vice versa.

Proof. Firstly, let us recall that successor morphisms are marked. Therefore, the
set Oy, consists of all words u such that u is a non-empty suffix of g (a) or g1 (b)
and there are words e, es, f1 and f3 such that

gi(e1) = hi(fi)u and ugi(e2) = hi(f2) .

According to Corollary [l and Lemma [2] we can suppose that the number of b’s
in image words hq(a), h1(b), g1(a) is less than or equal to eight. Applying Lemma
Bl we then obtain that |g1(b)|p < 344. Let us count the elements of Op, which
are suffixes of hq(a):
- starting with b: Since |hyi(a)|p < 8, the number of different suffixes of hy(a)
starting with the letter b is at most eight.
- starting with a: Since g1, h; are combinatorially rich morphisms, there is a
number m € N such that a™b <, gi(a) or a™b <, g1(b). Then the number of
possible overflows starting with the letter a longer than m+1 is at most eight. It
remains to deal with overflows which have at most m letters. Since the morphism
g1 is marked, these overflows have to be of the form a™. But by Lemma [T, there
are at most two different hi-overflows of the form at inside the letter blocks of
g1, hl-
Suffixes of hi(b), g1(a) and g;(b) can be counted in the same way as suffixes
of hi(a). Again, we would find at most eight different suffixes starting with the
letter b and eight different sufficiently long suffixes starting with the letter a for
hi(b) and g¢1(a). In the case of g1(b), the only difference is that |g1(b)], < 344.
Therefore, there are at most 344 different suffixes starting with the letter b and
344 different sufficiently long suffixes starting with the letter a.

Having counted also overflows of the type at, we obtain that the cardinality
of Oy, is less than or equal to 34 and cardinality of Oy, is less than or equal to
706, which completes the proof. a

Now, it becomes easy to prove our theorem.
Proof of Theorem 1. From () and (&), we obtain that
|f1+1f'] < 2|01, le| + || < 2|On,| -
By Lemma 8 we get
If]+1f] < 1412, le| + |e’| < 68,

or vice versa. This completes the proof. a

5 Reduction Sequence of Successor Morphisms

We have already mentioned that by the straightforward application of Theorem
[[l we can find a bound for the reduction sequence of successors of morphisms g, h
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which have non-simple minimal solution. Indeed, if (g;, h;);>1 is the sequence
of successors of non-periodic binary morphisms g,k : {a,b}* — {a,b}* with
decreasing suffix complexity, than it follows from () and (Bl that the length of
the sequence is at most |Og, | + |On,| + 1 = 741 unless any of the image words
{gi(a), gi(b), hi(a), hi(b)} i=1,2) are a power of a letter.

Knowing this bound is particularly important in the analysis of the structure

of binary equality languages. The specific application in this field is a question
for further research.
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Abstract. We investigate weighted asynchronous cellular automata
with weights in valuation monoids. These automata form a distributed
extension of weighted finite automata and allow us to model concurrency.
Valuation monoids are abstract weight structures that include semirings
and (non-distributive) bounded lattices but also offer the possibility to
model average behaviors. We prove that weighted asynchronous cellu-
lar automata and weighted finite automata which satisfy an I-diamond
property are equally expressive. The main result of this paper gives a
characterization of this expressiveness by weighted MSO logics.

1 Introduction

During the last decades, a fruitful connection between automata and logics re-
vealed. This process started with Biichi [3] who used finite automata to obtain
decidabilty results for logical problems. In particular, during his investigations
he characterized the expressive powers of finite automata, i.e. the class of regu-
lar languages, by means of monadic second-order logics (MSO logics). However,
finite automata are suitable only for modeling qualitative systems.

The interest in modeling quantitative systems led to several specialized exten-
sions of finite automata like probabilistic automata and lattice automata [I§].
A more generic approach is provided by the theory of weighted automata [§]. A
weighted automaton is essentially a finite automaton with the additional feature
that weights from an arbitrary semiring are assigned to each transition. Using
the operations of the semiring such an automaton assigns weights to words.
Although there is a well developed theory of weighted automata and the first
prominent result was established by Schiitzenberger [2I] already in the 1960s,
semiring weighted logics were not taken into account for a long time. Droste
& Gastin [7] closed this gap by characterizing the expressiveness of weighted
automata by weighted MSO logics. Nowadays, such logics are still an ongoing
subject of research [IJIT].

Despite the very general nature of semirings there are quantitative aspects
which cannot be modeled in this framework of weighted automata. These are
aspects like the average consumption of some resource [4] or weights from —
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potentially non-distributive — bounded lattices [12], which are used in multi-
valued logics. Recently, Droste & Meinecke [I0] introduced valuation monoids to
capture this variety of possible weight structures within one uniform framework.
They studied weighted automata over such structures and characterized their
expressive powers by certain fragments of weighted MSO logics.

All the automaton models mentioned so far take words as input and can conse-
quently model concurrency only as interleaving. A valuable concept for modeling
distributed systems are traces [6] in combination with Zielonka’s asynchronous
cellular automata [23]. Generalizing Biichi’s result, Thomas [22] characterized
the expressiveness of these automata again by MSO logics. Later on, this con-
nection was extended to infinite traces by Ebinger & Muscholl [13].

Weighted asynchronous cellular automata with weights from a commutative
semiring were introduced by Kuske [I9], who showed them to be equally expres-
sive as weighted I-diamond automata as well as weighted automata with a trace
closed behavior. Afterwards, Meinecke [20] characterized this expressive power by
weighted MSO logics. The combination of these results [14] generalizes Biichi’s
theorem to a distributed and semiring weighted setting. This naturally raises
the question whether a similar characterization also exists when the weights are
taken from a valuation monoid instead of a semiring. Therefore, this paper is
devoted to the investigation of that issue.

The main results are as follows. First, we present weighted asynchronous cel-
lular automata over valuation monoids as a model for quantitative distributed
systems. Moreover, we define weighted I-diamond automata for modeling the
interleaving behavior of such systems and show that both kinds of weighted au-
tomata are equally expressive. Second, we introduce weighted MSO logics over
valuation monoids. The main theorem of this paper characterizes the expres-
siveness of weighted asynchronous cellular automata by this logics. In the end,
we mention how the logics can be slightly extended if the valuation monoid has
some additional properties. Altogether, we provide a joint extension of the re-
sults of Droste & Gastin [7], Fichtner, Kuske & Meinecke [14], and Droste &
Meinecke [10].

2 Background: Traces and Asynchronous Cellular
Automata

This section is intended to give the necessary background in trace theory. For a
more general overview we refer the reader to [5I6].

2.1 Traces and Finite Automata

The architecture of a distributed system is modeled by a graph (£, D) consisting
of a non-empty, finite set £ of locations and a symmetric and reflexive dependence
relation D on L. For any ¢ € L the set of all m € £ with (¢,m) € D is denoted
with D(¢). For the rest of this paper, we fix the graph (L, D).
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A distributed alphabet is a family X' = (Xy)se . of mutually disjoint alphabets.
Abusing notation, we denote the set | J,. , X¢ by X as well. Moreover, we obtain
a map loc: X' — L by putting loc(a) = ¢ for every a € ;.

A trace over X' is a triplet t = (V, C, A) consisting of a non-empty, finite set V',
a partial order C on V, and a labeling A\: V' — X such that for all z,y € V the
following two conditions are satisfied, where loc; = locoA: V — L:

(i) if (loce(z),loce(y)) € D, then x T y or y C «,
(ii) if # C y and there is no z € V with z C z C y, then (loci(z),loct(y)) € D.

The set of all (isomorphism classes of) traces is denoted with T(X) and subsets
L C T(X) are called trace languages.

To each word w = a; ... a, € X1 we assign a trace trc(w) = (V,C,\) € T(X)
as follows: V.= {1,...,n}, A(i) = a;, and C is the transitive closure of

E={(ij) eV xV]|i<jand (loc(a;),loc(a;)) €D} .

In this way, we obtain a surjective map trc: X+ — T(X). In the case of |£] =1,
the order C is the natural linear order on V and the map trc: Xt — T(X) is a
bijection. Thus, we can consider words as a special case of traces.

Two words w,w’ € X7 are called trace equivalent if tre(w) = tre(w’).
The independence relation T is the set of all pairs (a,b) € X x X with
(loc(a),loc(b)) ¢ D. It is well known that two words are trace equivalent iff they
are related by the least equivalence relation ~7 on X7T satisfying uabv ~7 ubav
for all (a,b) € 7 and u,v € X*.

A finite automaton over X (FA for short) is a tuple M = (Q, I, T, F) consist-
ing of a finite set Q) of states, a transition relation T' C ) x X' x @, and two sets
I,F C Q of initial and final states. A run of M on a word a1 ...a, € X7 is a
sequence o = (qo,a1,q1)(q1,a2,42) - .. (@n—-1,n,qn) € T™ with gy € I. The run
o is successful if ¢, € F. The language recognized by M is the set L(M) of all
words w € X+ which admit a successful run.

An FA M has the Z-diamond property if for all p, q,r € Q and (a,b) € T with
(p,a,q),(q,b,r) € T there is some ¢’ € @ such that (p,b,q'),(¢’,a,r) € T. In this
situation the language recognized by M is trace closed, i.e., for all u,v € X T with
u ~7 v we have u € L(M) iff v € L(M). Therefore, FAs with the Z-diamond
property can be used as recognizers for trace languages.

2.2 Asynchronous Cellular Automata

Asynchronous cellular automata [23] are a distributed extension of classical finite
automata. An asynchronous cellular automaton over X (ACA for short) is a tuple
A= ((Qe)eec, I, (Te)ecr, F) consisting of a finite set of local states Q¢ and a local
transition relation T, C (HmeD(e) Qm) X Xy x Qy for each £ € L, and two sets
I, F C[],ecp Qe of global initial and final states. The ACA A is deterministic if
I is a singleton and each T} is a partial map (HmeD(@) Qm) X X — Qy.

For any transition 7 = ((pm)men(¢),a,q) € Te we put read,, (1) = py, for
m € D({), act(r) = a, and write(r) = ¢q. A run of A on a trace t = (V,C,\) €
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T(X) is a pair p = (i, r) consisting of a global initial state ¢t = (¢t )mer € I and
amap r: V — [y Tr such that for every x € V' the following two conditions
are satisfied, where 7 = r(z) and ¢ = loc,(z):

(i) 7 € Ty and act(7) = A(z), and

(ii) for every m € D(¢) we have either read,,(7) = write(r(ymax)) Where ymax is
the greatest (w.r.t. ©) y € V with y T « and loci(y) = m, or readn,(7) = tm
if no such y exists.

The run p is successful if there is some f = (fim)mer € F such that for every
m € L we have either f,, = write(r(Zmax)) Where zpay is the greatest (w.r.t.
C) z € V with loc,(z) = m, or fm, = iy, if no such z exists. The language
recognized by A is the set L(A) of all traces t € T(X) which admit a successful
run. The connection between ACAs and FAs with the Z-diamond property was
established by Zielonka:

Theorem 2.1 (Zielonka [23]). Let L C T(X) be a trace language. The follow-
ing are equivalent:

(1) L is recognized by some ACA over X,

(2) L is recognized by some deterministic ACA over X,

(3) treY(L) is recognized by some FA over X,

(4) tre=1(L) is recognized by some deterministic FA over X having the I-diamond

property.

2.3 MSO Logic on Traces

For the rest of this section, we provide two disjoint infinite sets Vy and V; of
elementary and set variables, respectively. The syntax of MSO logics over X' is
given by the grammar

pr=z<ylAz)=alreX|plpAp|Vzp|VXp,

where a € X, z,y € Vo, and X € V. Let ¢ be an MSO-sentence, i.e., an MSO-
formula without free variables. For every trace t = (V,C, \) € T(X) there is an
obvious meaning of ¢ = ¢ under the assumption that variables from Vy resp. V;
range over elements resp. subsets of V' and < is interpreted by C. The language
defined by ¢ is the set L(yp) of all traces t € T(X) with ¢ = ¢. The connection
between ACAs and MSO logics was established by Thomas:

Theorem 2.2 (Thomas [22]). Let L C T(X) be a trace language. Then L is
recognized by some ACA over X if and only if L is defined by some MSO-sentence
© over .

3 Weighted Asynchronous Cellular Automata

In this section we want to extend the model of asynchronous cellular automata by
adding transition weights. As weight structures we consider valuation monoids,
which were recently introduced by Droste & Meinecke [10]. The highlight of this
section is a weighted version of Thm. 2] on page
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3.1 Valuation Monoids and Weighted Finite Automata

A waluation monoid is an algebraic structure (D, +, Val, 0) consisting of a com-
mutative monoid (D, +,0) and a valuation function Val: DT — D such that
Val(d) = d for all d € D, and Val(dy,...,d,) = 0 whenever d; = 0 for some
ie{l,...,n}.

Example 3.1. The following structures are valuation monoids:
(a) (QU{—0o0},max,avg, —oo) and (Q U { oo}, min, avg, co) where

a‘vg(d17"~7dn) - dl ++dn 5
n
(b) (K,+,]],0) where (K,+,-,0,1) is a semiring and [[(dy,...,d,) =di -+ -dp,
(¢) (L,V,inf, L) where (£,V, A, L, T)is a (non-distributive) bounded lattice and
inf(dy,...,dp)=di A+ Ndy.

The valuation monoid in (a) allows us to model the average consumption of
some resource, an aspect which cannot be captured by the semiring weighted
framework. For more examples we refer the reader to [10].

Before introducing weighted asynchronous cellular automata, we recall the
weighted automaton model of Droste & Meinecke [I0]. A weighted finite au-
tomaton over an alphabet X' and a valuation monoid D (wFA for short) is a
tuple M = (Q,I,T, F,~) consisting of an FA (Q,I,T,F) over X and a transi-
tion weight function ~v: T — D. (Successful) runs of M are defined as for the
underlying FA. The weight of atun o =7, ...7, € T is

Y(o) = Val(y(m), ..., ¥(1n))
and the behavior of M is the mapping ||M]|: 2T — D defined by

[|IM]|(w) = Z {7(o) | o is a successful run of M on w } .

3.2 Weighted Asynchronous Cellular Automata

In the definition of behavior above, Val is used to combine the transition weights
of a single run, whereas + is used to collect the weights of all different successful
runs on one trace. Since there is no natural execution order of the transitions of
an ACA, we require another property of valuation monoids:

Definition 3.2. A valuation monoid (D,+, Val,0) is order independent if
Val(dl, ey dn) = Val(d,r(l), ces 7d7r(n))
holds true for all (dy,...,d,) € DV and permutations = of {1,...,n}.

Ezample 3.3. The valuation monoids in Example 3] (a) and (c) are order inde-
pendent, whereas this is only the case for (b) iff K is commutative.
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For the rest of this section we fix a distributed alphabet X and an order indepen-
dent valuation monoid (D, 4+, Val, 0).

Definition 3.4. A weighted asynchronous cellular automaton over X and D
(wACA for short) is a tuple A = ((Qe)eer, I, (To)eer, F, (Ve)eer) consisting
of an ACA ((Qe)eer,I,(To)eer, F) over X and transition weight functions
Ye: Tg — D.

(Successful) runs of a wACA are defined as for the underlying ACA. The weight
of arun p = (¢,7) on a trace t = (V,C, \) € T(X) is

v(p) = Val(<’)/loct(:r) (r(x)))a:GV) )

This definition does not depend on the order in which the elements of V are
enumerated, since D is order independent.

Definition 3.5. Let A be a wACA over X and D. The behavior of A is the
function ||A||: T(X) — D defined as

IIA|l(¥) Z {v(p) | p is a successful run of A ont} .

This definition suggests that maps T(X) — D are subject to our interest. Thus,
they get the concise name trace series from now on. In particular, we are in-
terested in those trace series that can occur as the behavior of some wACA.
Similarly, mappings ¥ — D are called word series.

3.3 The Z-diamond Property and Its Relationship to wACAs

In order to use wFAs in the context of trace series we are interested in those
automata M with a trace closed behavior, i.e., for all u,v € X+ with v ~7 v
we have ||[M||(u) = ||[M]||(v). In general, it is undecidable whether a given wFA
has this property, cf. Prop. 3.1 in [I7]. However, the following definition gives a
syntactical property of wFAs which is sufficient for a trace closed behavior. For
some wFA M = (Q,I, T, F,~) over X and all a,b € X and p,r € Q) we put

Z:Ir’ ={qe Q]| (p,a,q) €T and (q,b,7) € T} .
Definition 3.6. A wFA M = (Q,1,T,F,v) has the I-diamond property if for
all p,r € Q and (a,b) € T there is a bijective map f = f;’,{’: a b — Q - such
that for any q € Q;:fi we have

v(p,a,q) =v(f(q),a,7) and ~(g,b,r) =~(p,b, f(q)) -

The idea behind is depicted in the figure on the right. 4
Consider some states p,r € () and a pair of indepen- 7%
dent letters (a,b) € Z. For any path from p to r (via / \O
some ¢ € @) labeled with ab and weighted by d; and ds r
o @b(g)) which \ 4

is labeled with ba and has the same weights, but in the
opposite order. Moreover, this correspondence between

there must be path between p and r (via O
b(q
T

a
17
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pathes has to be one-to-one. Intuitively, in this situation the execution order of
the independent actions a and b does not matter. This condition is similar to
that in a semiring weighted setting [14], where the transition matrices of inde-
pendent letters are required to commute. But since valuation monoids provide
less algebraic properties than semirings, we need the existence of the bijections

g”f in order to prove the following lemma;:

Lemma 3.7. If a wFA M over X has the Z-diamond property, then its behavior
|M]| is trace closed.

Proof. Due to the definition of ~7 it suffices to show that |[M||(w) = || M]|(w")
holds true for all w = uwabv and w' = wbav with u,v € X* and (a,b) € Z.
Consider a successful run o of M on w and let 7 = (p,a,q) and 7" = (g, b,r) be
the transitions within this run which belong to the distinguished letters a and
b in w. If we replace 7 and 7" in o by (p,b,q") and (¢’,a,r), where ¢’ = I‘},’f?(q),
the result is a successful run ¢’ on w’. Due to the order independence of D, this
run satisfies v(0) = y(o’). Since f3; is a bijection, this construction yields a
weight preserving one-to-one correspondence between the successful runs of M

on u and those on v. O

In order to formulate our first new result, we need to assign to each trace series
S: T(XY) — D a word series trc™1(S): Xt — D defined by

tre™H(S)(w) = S(trc(w)) .

Theorem 3.8. Let S: T(X) — D be a trace series. The following are equiva-
lent:

(1) S is the behavior of some wACA over X,
(2) trc=1(S) is the behavior of some wFA over X with the I-diamond property,
(3) tre=1(S) is the behavior of some wFA over X.

The implication (2) = (8) is trivial and (1) = (2) is shown below. Proving
(3) = (1) needs some preperation and is done afterwards.

Proof (Sketch for (1) = (2)). Let A = ((Qe)eec, !, (To)eer, F, (ve)eer) be a
wACA such that ||A| = S. We construct a wFA M = (Q,I,T, F,~) as follows:
its state space is Q = [, Q¢, the transition relation 7" is the set of all tuples
(p,a,q) € Q x X x @ such that, with £ = loc(a), we have ((pm)men(r), @, qe) € Te
and p,, = ¢, for all m # £, and the weight v(p,a,q) of such a transition is
given as Ye((Pm)mep(e), @, qe). To verify that M has the Z-diamond property,

for p,r € Q and (a,b) € T we can choose ;}”f(q) = ¢ with ql’oc(b) = Tloc(p) and

q; = pe for £ # loc(b).

In order to show ||[M]|| = trc=1(S), consider a word w = ay ...a, € X+, the
trace t = tre(w) € T(X), and a successful run o = (go, a1,¢1) - - . (Gn—1,an, Gn) €
T™ of M on w. For each i = 1,...,n we put r(i) = (((Qi_l)m)mep(£)7ai7 (gi)e),
where ¢ = loc(a). Then, p = (qo, ) is a successful run of A on ¢t with y(o) = v(p).
Moreover, this constrution yields a bijection between the successful runs of M
on w and those of A on t. We can conclude | M| = tre ! (||A||) = tre™(S). O
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In order to prove the remaining implication we need the concept of lexicographic
normal forms, which was already used by Kuske [19] for a similar purpose.
Therefore, we fix a linear order < on £ and denote the induced lexicographic
order on L1 also by <. To each w = a;...a, € X7 we assign the sequence
loc(w) = loc(ay)...loc(a,) € L. A word w € XV is in lexicographic normal
form if for all u € Xt with w ~7 u we have loc(w) < loc(u). For every trace
t € T(Y) there is exactly one word Inf(¢) € trc=1(¢) which is in lexicographic
no