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Preface

This volume contains the papers presented at the Scandinavian Conference on
Image Analysis, SCIA 2011, which was held at Ystad Saltsjöbad, Ystad, Sweden,
May 23–27.

SCIA 2011 was the 17th in the biennial series of conferences, which has been
organized in turn by the Scandinavian countries Sweden, Finland, Denmark,
and Norway since 1980. The event itself has always attracted participants and
author contributions from outside the Scandinavian countries, making it an in-
ternational conference.

The conference included a full day of tutorials and five keynote talks pro-
vided by world-renowned experts. The program covered high-quality scientific
contributions within image analysis, segmentation, multiple view geometry, cat-
egorization and classification, structure from motion and SLAM, medical and
biomedical applications, 3D shape, and medical imaging. For the first time in
the SCIA history, we used a two-stage reviewing system with the ten Program
Committee members serving as Area Chairs, each responsible for about 15 pa-
pers. The papers were carefully selected based on three reviews and a consol-
idating report and acceptance/rejection recommendation from the responsible
Area Chair. Among 140 submissions 74 were accepted, leading to an acceptance
rate of 53%.

SCIA has a reputation of having a friendly environment, in addition to high-
quality scientific contributions. We focused on maintaining the reputation, by
designing a technical and social program that we hope the participants found
interesting and inspiring for new research ideas and network extensions. We also
hope that the relaxed and nice atmosphere at Ystad Saltsjöbad also contributed.

We thank the authors for submitting their valuable work to SCIA. This is
of course of prime importance for the success of the event. However, the orga-
nization of a conference also depends critically on a number of volunteers. We
are sincerely grateful for the excellent work done by the reviewers and the Pro-
gram Committee members, which ensured that SCIA maintained its reputation
of high quality. We thank the keynote and tutorial speakers for their enlightening
lectures. And finally, we thank the local Organizing Committee and all the other
volunteers that helped us in organizing SCIA 2011.

We hope that all participants had a joyful stay in Ystad, and that SCIA 2011
met its expectations.

March 2011 Anders Heyden
Fredrik Kahl
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Camera Self-calibration with Parallel Screw Axis

Motion by Intersecting Imaged Horopters

Ferran Espuny1, Joan Aranda2, and José I. Burgos Gil3

1 Dépt. Images et Signal, GIPSA-Lab, Grenoble-INP
Ferran.Espuny@gipsa-lab.grenoble-inp.fr

2 Dept. of Automatic Control and Computing Engineering, UPC
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Abstract. We present a closed-form method for the self-calibration of
a camera (intrinsic and extrinsic parameters) from at least three images
acquired with parallel screw axis motion, i.e. the camera rotates about
parallel axes while performing general translations. The considered cam-
era motion is more general than pure rotation and planar motion, which
are not always easy to produce. The proposed solution is nearly as sim-
ple as the existing for those motions, and it has been evaluated by using
both synthetic and real data from acquired images.1

1 Introduction

We say that a camera follows a parallel screw axis motion when it rotates about
axes parallel to a fixed screw direction, while translating in any direction nei-
ther orthogonal nor parallel to that direction. We consider in this paper the
self-calibration problem from three or more images acquired by a camera with
unchanging internal parameters undergoing a parallel screw axis motion.

By self-calibration, we mean the calibration of a camera without any knowl-
edge on the scene or the camera pose (location and orientation) [11,6].

A scene can be reconstructed up to a projective ambiguity (projective recon-
struction) by using two views of the scene. This can be done by using the funda-
mental matrices between pairs of views, or, alternatively, multiple view tensors.
We will follow a stratified approach for self-calibration, consisting in looking first
for an affine reconstruction, and then upgrading it to a Euclidean reconstruction.
We can achieve the affine level by determining the relative infinite homographies,
and the Euclidean one through the calibration of the camera.

The most simple methods for the Euclidean self-calibration of a camera cor-
respond to particular camera motions: pure rotations [9] and planar motion
[1,7,12,5]. However, since the camera centre is not visible, the assumption of
pure rotation of a camera is only plausible for distant scenes. The assumption
of planar motion requires in turn the relative translations of the camera to be
orthogonal to a fixed screw direction. We relax the previous motion constraints,
1 Research supported by the Spanish MICINN project MTM2009-14163-C02-01.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 1–12, 2011.
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by allowing the camera to translate in more general directions (for three views,
one relative planar motion will yet be allowed).

The parallel screw axis camera motion is known to be degenerate for direct
self-calibration methods [17]: there exists a uni-parametric family of possible con-
ics consistent with the displacements of the camera. The existing general strat-
ified self-calibration methods could be used with this camera motion, but some
require the performance of a 3-dimensional search [10,13,15], and the closed-
form ones [14,16,8] do not guarantee the uniqueness of the solution, having all
of them a high degree of complexity. In contrast, we give in this paper a sim-
ple closed-form (unique) solution to the stratified self-calibration problem with
parallel screw axis camera motion.

The horopter curve of two images is the set of space points projecting onto
two points of identical coordinates in both images. Under general motion, the
horopter is a twisted cubic that projects on a non-degenerate conic, given by the
symmetric part of the fundamental matrix. Horopter curves have already been
used for camera self-calibration with general [15] and planar [1,7,5] motions.

The intersection of the imaged horopters corresponding to three views will
allow us to determine: the apex (image of the screw axis direction) and the image
of the two circular points, which give the metric on the planes orthogonal to the
screw axes. Similarly to planar motion, the scene can be recovered up to a 1-D
affinity in the screw direction. To resolve this ambiguity, some assumptions on the
camera pixel geometry can be made that lead us to a complete camera calibration
(zero-skew constraint, known image aspect ratio or known principal point); the
screw direction conditions the necessary additional assumptions [20,2].

In Section 2 we state the basis for understanding our method and give a
characterisation of the apex, which we will use for the self-calibration in some
particular cases. In Section 3 we formulate the problem and deduce the con-
straints used for its resolution. We detail our stratified solution in Section 4:
the affine step consists of a closed-form solution with an optional iterative re-
finement, and the linear Euclidean upgrade uses the knowledge of the apex and
imaged circular points. Finally, experimental results and conclusions are given.

Notation. We will use � to denote an equality up to scale factor, · for the
matrix-vector and matrix-matrix products, × for the cross product of 3-vectors,
and [u]× for the matrix associated to a 3-vector u so that [u]× · v = u× v, ∀v.

2 Background

The general contents of this section can be found in [6,11]; extra references are
given in the text. Let us consider a set of two images of a rigid scene acquired
from different locations and with different orientations by a camera with intrinsic
parameters given by a calibration matrix

K =

⎛
⎝αu s u0

αv v0
1

⎞
⎠ =

⎛
⎝ fku −fku cotϕ u0

fkv/ sinϕ v0
1

⎞
⎠ , (1)
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being f the focal length, (u0, v0) the image principal point, kv/ku the aspect ratio,
s the skew parameter, and ϕ the angle between the camera sensor axes.

The affine knowledge of the scene, codified by the plane at infinity π∞, allows
us to recognise parallel lines and to compute affine ratios of aligned points. The
Euclidean knowledge of the scene, codified by the absolute conic Ω∞, allows us

to compute distances up to scale and angles. We denote by
(
R t
0T 1

)
the relative

displacement, taking the second camera to the first one. We assume that the
relative angle of rotation θ satisfies 0 < θ < π and that the relative translation
satisfies t �= 0 (we exclude pure translations and pure rotations). We denote
by I, J, r the three fixed points of the relative displacement (eigenvalues of R),
which span the plane at infinity. The circular points I, J ∈ Ω∞ are orthogonal
to r, and codify the metric of the planes orthogonal to r. We denote by Ĩ , J̃ , v
the images of those three points: Ĩ � K · I, J̃ � K · J , v � K · r.

2.1 Stratified Self-calibration

A reconstruction of the scene and cameras is called projective, affine or Euclidean
when it corresponds with the real scene and cameras via a projectivity, affinity
or similarity, respectively.

The fundamental matrix F represents the epipolar map assigning to a point
on the first image the epipolar line of possible corresponding points on the second
image; FT represents the epipolar map in the inverse image order. These maps
are not defined in the epipoles e, e′, right an left null-spaces of F , respectively.
The fundamental matrix is determined in general by seven or more correspon-
dences. Its knowledge is equivalent to knowing a projective reconstruction.

The infinite homography H∞ is the homography between the two images in-
duced by the plane at infinity π∞. The matrix F can be decomposed as:

F � [e′]× ·H∞ . (2)

The knowledge of H∞ allows us to upgrade a projective reconstruction to an
affine one. In fact, the fixed points of the infinite homography are the apex v
and the imaged circular points Ĩ , J̃ , which are image of three points on the plane
at infinity. By construction, we have that H∞ � K · R ·K−1 or, equivalently:

H∞ � (
Ĩ J̃ v

) · diag (exp(−iθ), exp(iθ), 1) · ( Ĩ J̃ v )−1
. (3)

The image of the absolute conic, denoted by ω∞, is a conic on the image plane
codifying, up to scale, the metric on this plane. We denote by ω∗

∞ its dual.
Both conics are equivalent to the camera calibration, since ω∞ � (

K ·KT
)−1,

ω∗
∞ � K ·KT , and allow us to upgrade a projective reconstruction to a Euclidean

one. It follows fromH∞ � K ·R·K−1 and ω∞ � (
K ·KT

)−1 that ω∞ is invariant
under the infinite homography H∞. In fact, using (3), we obtain that, for some
λ �= 0, it holds [20]:

ω∗
∞ � (Ĩ · J̃T + J̃ · ĨT ) + λv · vT . (4)
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In conclusion, we can follow a stratified approach to camera calibration from the
fundamental matrix F : first, we determine the infinite homography H∞ (affine
self-calibration); then, we linearly determine ω∞, the image of the absolute conic,
which is invariant under that homography (Euclidean self-calibration).

2.2 Horopter Curves

The horopter curve of two images is the set of space points that project onto
points of identical (i.e. proportional) coordinates in both images. The horopter
curve passes through the camera centres and through the fixed points of the
relative displacement, which include r, the point at infinity of the rotation axis,
and the circular points I, J . For a general camera motion, it is a proper (irre-
ducible) twisted curve. It decomposes as three lines when t is parallel to r, and
as a circle plus a line (screw axis), when t is orthogonal to r (planar motion).

The image of the horopter is a conic, non-degenerate a for general camera
motion and degenerate (two lines) otherwise. Since the image of the horopter is
the locus of corresponding points with identical coordinates, it is a conic with
matrix given by the symmetric part of the fundamental matrix:

Fsym :=
1
2
(F + FT ) . (5)

This conic will contain the apex v and Ĩ , J̃ , the image of the circular points.
The ratios of intersection of the horopter curves with the plane at infinity

have been exploited for the self-calibration with general camera motion in [15].
We will use a similar constraint for an auxiliary characterisation of the apex:

Lemma 1. If Fsym is non degenerate and μ is a scalar such that

F · Ĩ = μ exp(−iθ)e′ × Ĩ , (6)

then the apex is the only point v ∈ Fsym satisfying

F · v = μe′ × v . (7)

Proof. Both equations follow from (3) and (2). If we had v′ �= v satisfying (7)
then, for every λ ∈ R we would have F · (v + λv′) = μe′ × (v + λv′), and thus
(v+λv′)T ·F · (v+λv′) = 0. Hence, the conic Fsym would contain the line v× v′
and it would be degenerate. ��

3 Problem Statement and Constraints

Remember that we say that a camera follows a parallel screw axis motion when
it rotates about axes parallel to a screw direction while translating in any di-
rection neither orthogonal nor parallel to that direction. Assume that we know
three fundamental matrices F i,j , 1 ≤ i < j ≤ 3 corresponding to three images
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acquired from different orientations by a camera with unchanging internal pa-
rameters undergoing a parallel screw axis motion. We are interested in solving
the stratified self-calibration of the camera, as explained in Section 2.

Accordingly, we want to determine three points in the image: the apex v and
the imaged circular points Ĩ , J̃ , which are common to the three views:

Theorem 1 (Intersection of the Imaged Horopters). Under parallel screw
axis camera motion, the three different imaged horopters (conics represented by
the symmetric parts of the fundamental matrices) intersect at the images Ĩ , J̃ of
the circular points (which are complex conjugate points) and the (real) apex v.
A fourth real intersection point can exist under particular camera motions.

Proof. The screw direction r of the rotation axes and the circular points I, J
are common to all the camera relative displacements. Therefore, their images
belong to the imaged horopters. Five or more intersection points can not exist
for the three imaged horopters, since then these conics would be coincident, and
the relative displacements would be all the same. In particular, the intersection
can not contain a fourth non-real intersection point (and its conjugate). ��

Observe that the three fundamental matrices F i,j corresponding to three views
of a common scene satisfy three compatibility constraints [6,11]:

(e2,3)T · F 1,2 · e1,3 = (e3,2)T · F 1,3 · e1,2 = (e3,1)T · F 2,3 · e2,1 = 0 . (8)

Using the infinite homographies Hi,j
∞ to parametrise the fundamental matrices,

these constraints reduce to a single one:

Theorem 2 (Three-View Affine Compatibility). Consider the infinite ho-
mographies Hi,j

∞ , epipoles ei,j and fundamental matrices F i,j such that

F i,j � [ej,i]× ·Hi,j
∞ , (9)

ej,i � Hi,j
∞ · ei,j , (10)

H2,3
∞ � H1,3

∞ · (H1,2
∞ )−1 . (11)

The three compatibility equations (8) are satisfied if, and only if, any of the
following set of points is linearly dependent:

{e1,2 , e1,3 , (H1,2
∞ )−1 · e2,3} ⊂ R1 , (12)

{e2,1 , e2,3 , H1,2
∞ · e1,3} ⊂ R2 , (13)

{e3,1 , e3,2 , H2,3
∞ · e2,1} ⊂ R3 , (14)

where Ri denotes the i-th image plane.

Proof. By (10) and (11), the sets (13) and (14) are the result of applying H1,2
∞

and H1,3
∞ , respectively, to the set (12). Hence, the linear dependence of any

of those sets is equivalent to the linear dependence of all of them. The direct
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substitution of the parametrisation (9) into (8) gives directly two of the linear
dependency conditions; for instance, the first term in (8) is

(e2,3)T · F 1,2 · e1,3
(9)� (e2,3)T · [e2,1]× ·H1,2

∞ · e1,3 ,

which is zero if, and only if, the vectors in (13) are linearly dependent. ��

4 Self-Calibration Method

We will solve the affine self-calibration problem by intersecting the imaged
horopters (Theorem 1), given by the symmetric part of the fundamental matrices
F i,j , 1 ≤ i < j ≤ 3. We propose a two-step method for computing this inter-
section: a closed-form solution is obtained and further refined using Theorem 2.
We also revisit the upgrading step from affine to Euclidean self-calibration.

4.1 Affine Self-calibration by Intersecting the Imaged Horopters

Given the three fundamental matrices F i,j , 1 ≤ i < j ≤ 3, we can compute the
imaged horopters. To intersect them, we will follow a least squares approach,
which we obtain by adapting the method in the Appendix of [3] to our con-
straints: the conics intersect in three points, one real and two complex conjugate.

General Intersection. Assume that we have a pair of conics C, C′ with coef-
ficients in R, intersecting in Ĩ , J̃ (complex-conjugate pair) and v, P (two points
with coordinates in R). Each of the three degenerate conics (zero determinant)
in the family C+μC′ is a pair of lines joining two points in the intersection of C
with C′. The only lines with real coefficients will be Ĩ × J̃ and v×P . Therefore,
if we tale μ ∈ R such that D = C + μC′ has detD = 0, then D consists of the
line joining the imaged circular points plus a line passing through the apex.

Using the three imaged horopters, we can compute three degenerate conics
Dk following the described procedure. The apex v will be the unique point in
the intersection of the Dk, and the imaged circular points can be obtained by
averaging the intersection of the common line of the three Dk with each of the
conics (see Figure 1). Note that both computations can be integrated in a least-
squares estimation process in presence of noise, and/or if more than three images
are available. Once we have an estimation for the apex v and the imaged circular
points Ĩ, J̃ , the relative rotation angles θi,j can be computed using (6).

The previous estimations can be optionally refined by minimising the sum of
squares of distances of the image points to the epipolar lines obtained using the
fundamental matrices parametrised as follows. By (9), we can use 13 parameters
to describe the three fundamental matrices: we can take one coordinate of Ĩ
to be one (4 dof for Ĩ, J̃), 2 parameters for the relative rotation angles (since
θ2,3 = θ1,3 − θ1,2), unitary vectors for the apex v and the epipoles ej,1 (6 dof),
and 1 parameter for e3,2 satisfying (14).
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Fig. 1. Imaged horopters corresponding to a general parallel screw axis motion. The
discontinuous lines represent the real degenerate conics from each pair-wise linear fam-
ily of conics. The apex v can be obtained by intersecting the lines not containing Ĩ , J̃ .

Particular Cases. We excluded in our assumptions the cases of pure transla-
tion and planar motion. However, it could happen that the relative displacements
are close to these degenerate motions. In the first case, the fundamental matrix
is practically anti-symmetrical, and the computation of the imaged horopter is
badly conditioned. In the second case, the imaged horopter is degenerate. This
is not a problem if only happens for one relative displacement (see Fig. 2, left);
otherwise, a planar motion self-calibration method should be used.

Fig. 2. Left: if one relative displacement is (close to being) planar, the image of the
horopter is degenerate (coordinate hyperbola in the picture). Right: an example of
three conics intersecting in two real and two complex conjugate points.

As we said in Theorem 1, the three imaged horopters can intersect in four
points for particular camera motions. The characterisation of these motions is out
of the scope of this paper. In this case, the pair-wise real degenerate conic will be
the same for any pair of imaged horopters (see Fig. 2, right). The four intersection
points can be obtained by averaging the intersection of such degenerate conic
with each imaged horopter. The imaged circular points will be the non-real
points, while the apex will be the real point satisfying Lemma 1.
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4.2 Linear Upgrade from Affine to Euclidean

Once we know the affine self-calibration, the self-calibration equations are not
enough to determine the Euclidean self-calibration under parallel screw axis
camera motion: all the conics in the one-dimensional family (4) satisfy those
equations. We revisit the additional assumptions usually taken on ω∗

∞, showing
that they can be imposed linearly.

Observe that by Section 2 we have:

ω∗
∞ � K ·KT =

⎛
⎝α2

u + s2 + u2
0 sαv + u0v0 u0

sαv + u0v0 α2
v + v2

0 v0
u0 v0 1

⎞
⎠ , (15)

being the coefficients of K denoted as in (1). If the rotation direction r has non
zero x and y components, the zero skew assumption (s = 0) determines uniquely
the conic ω∗

∞ as that ω∗ in (4) satisfying

ω∗
1,2ω

∗
3,3 − ω∗

1,3ω
∗
3,2 = 0 , (16)

where ω∗
i,j = ω∗

j,i denotes the element in the i-th row and j-th column of a matrix
representing ω∗.

However, if the rotation direction r has zero x or y components, then the
zero skew constraint (16) is satisfied by every conic in the family (4) [20,2]. In
this case, if the rotations are not about axes parallel to the z axis, assuming
zero skew, s = 0, and unit aspect ratio, αu = αv, determines uniquely ω∗

∞. The
equation to impose is the square pixel constraint :

ω∗
1,1ω

∗
3,3 − (ω∗

1,3)
2 = ω∗

2,2ω
∗
3,3 − (ω∗

2,3)
2
. (17)

Apparently, the last two constraints (16) and (17), when imposed on the family
(4), give equations quadratic in λ. We observe though that, since (w · wT )i,j =
wiwj , the coefficient of λ2 in both sides of any of the equations is zero, and con-
sequently those equations are linear in λ. In fact, by (1) the zero skew constraint
imposed on ω = ω∞ reads ω1,2 = 0, and the additional unit aspect ratio con-
straint reads ω1,1 = ω2,2. Both equations are obviously linear on the coefficients
of ω∞ and therefore equivalent to those for ω∗

∞. An optional bundle adjustment
step [4] could be used to refine the Euclidean self-calibration.

5 Experiments

We conducted experiments with both synthetic and real data in order to evaluate
the performance of the self-calibration method of Section 4. We used simulated
data to study the behaviour of the method with respect to the pitch and roll an-
gles of the camera for different levels of noise in the initial image correspondences
used for the computation of the fundamental matrices. Finally, we applied the
method to a set of real images, comparing our results with a ground truth given
by the calibration from pattern method in [18,19].
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Synthetic Data In our simulations, we generated a cloud of 100 points uni-
formly distributed inside a 3-D sphere. We placed in the space three random
cameras related by a parallel screw axis motion in such a way that each camera
could view at least half of the sphere. The calibration matrix of the cameras was

K =

⎛
⎝1000 0 320

0 1000 240
0 0 1

⎞
⎠ .

In the Euclidean frame associated to the first camera, the screw direction had
coordinates

r =
(
sinα sinβ , − cosα sinβ , cosβ

)
, (18)

where β was the pitch angle, considered as the angle between the principal axis
of the camera (the z axis) and the screw direction, and α was the roll angle,
understood as the angle of rotation of the camera about the z axis. The relative
rotation angles, relating any pair of cameras, varied randomly between 10 and
120 degrees. We added Gaussian noise (with deviation σ ranging from 0 to 3
pixels) to the projection of the 3-D points and used the noisy image points as
initial data for the self-calibration method. For each combination of values α,
β and σ we simulated 1000 times different 3-D points, camera poses and image
points; we applied the proposed self-calibration method to each simulation and
computed the mean of the obtained errors.

In a first experiment (Figure 3), we fixed the roll angle α to be zero and varied
the pitch angle β. Since r had no x component, we used the unit aspect ratio
constraint to achieve a Euclidean reconstruction (Section 4). We observed that
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Fig. 3. Errors for roll angle α = 0 and different values of β (degs) and σ (pixels)
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the closer the cameras were to being parallel to the screw direction (β small), the
more exact was the apex and relative angles computation but the more inexact
was the estimation of the image of the circular points and, consequently, the
worst were the obtained affine and Euclidean reconstructions.

In a second experiment (Figure 4), we fixed β = 60 degrees and varied the roll
angle α from 0 to 45 degrees. According to Section 4, the zero skew constraint
was sufficient for the values of α �= 0 in order to upgrade the affine reconstruction
to a Euclidean one. We observed that the bigger the angle α was, the better were
the estimations of the apex and image of the circular points and, consequently,
the better were the obtained affine and Euclidean reconstructions.
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Fig. 4. Errors for β = 60 degs and different values of α (degs) and σ (pixels)

Real Images. The images shown in Figure 5 are part of a 5-image sequence (768
× 576 pixels) acquired by a camera mounted on an articulated robotic arm. The
screw direction (rotation axis) had no x component and the angle between this
direction and the z axis of the camera was approximately equal to 60 degrees.

Fig. 5. Image sequence of a single pattern with β = 60 degs, α = 0 degs (aprox.)

We selected manually the 48 “chessboard” corners from each image and used
standard methods to refine their coordinates with sub-pixel accuracy. We first
computed the affine self-calibration by intersecting the imaged horopters. Since
the x component of the screw direction was zero, we imposed the square pixel
constraint (zero skew and unit aspect ratio) to obtain the camera calibration
matrix. We describe the results using the notations stated in (1):
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Table 1. Results with the 5 real images, being α = αu = αv. First: least-square solution
using the 10 imaged horopters. Next: mean, median and deviation of the closed-form
solution applied to each of the 10 triplets of images.

value mean median deviation

α 863.07 864.01 862.36 38.03
u0 355.65 374.24 369.63 51.78
v0 233.76 255.71 270.06 34.32

In order to obtain the ground truth values, we applied the calibration from
pattern method in [18,19], using all the “chessboard” patterns in the five images.
The ground truth angle between the sensor axes was θ = 89.42 degrees, and
the ground truth aspect ratio was kv/vu = 1.01. Therefore, the assumption of
unit aspect ratio can be considered as valid for the camera. The ground truth
parameters of the focal lengths αu, αv and the camera centre (u0, v0) were:

αu = 856.33 , αv = 865.86 , u0 = 385.24 , v0 = 273.22 .

We observe that, even if the square pixel assumption was not completely correct
for the actual camera, the obtained calibration was close to its ground truth.

6 Conclusion

We have shown that the parallel screw axis camera motion can be used in order
to obtain image sequences easy to self-calibrate, being this motion a possible
substitute or complement to planar camera motions. Our method complexity is
not higher than cubic: after finding the unique real root of certain univariate
cubics, two linear steps are performed to achieve the camera self-calibration.

The proposed stratified self-calibration method has been demonstrated to give
good results on both synthetic and real data. Experiments on synthetic images
have shown that better results are obtained when the camera is oriented far from
being parallel to the screw direction. The addition of a roll angle to the camera
also improves the estimation of the affine and Euclidean reconstructions.

The study of the resilience of the method to deviations from the assumption
of parallel rotation axes could be a further topic of research. An algebraic char-
acterisation of those camera motions leading to imaged horopters intersecting in
four points has been omitted in this paper, due to lack of space; its geometric
interpretation is missing and would also be desirable.
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Abstract. In this theoretical paper we consider the problem of accurately trian-
gulating a scene plane. Rather than first triangulating a set of points and then
fitting a plane to these points, we try to minimize the back-projection errors
as functions of the plane parameters directly. As this is both geometrically and
statistically meaningful our method performs better than the standard two step
procedure. Furthermore, we show that the error residuals of this formulation are
quasiconvex thereby making it very easy to solve using for example standard
local optimization methods.

1 Introduction

The use of planes and their homographies has become increasingly important since
the introduction of graph cuts for dense stereo reconstruction [3]. Since then a number
of methods building on this work has been proposed (e.g. [22,13,5]), all working in a
similar fashion. Typically a family of planes are used to represent the scene, and using
α-expansion each pixel is classified as belonging to one of the planes in the family.
The cost of assigning a pixel to a plane is computed using back-projection between the
two cameras via plane-induced homography (see [8]). If a pixel, back-projected from
one camera to the other, looks similar to the corresponding pixel in the second camera
then the cost of assigning that pixel to the current plane is low. Furthermore, to obtain
smooth classifications a standard regularization term is added [3].

In this paper we investigate the problem of determining the family of planes accu-
rately. The typical way of determining a scene plane from stereo correspondences is by
first triangulating the image points (using for example [7]) and then fitting a plane to
the 3D-points (see [8]). There are two downsides to this approach. First, when we are
triangulating the points we are not using the knowledge that all the points are lying on
the same plane. Second, and perhaps more importantly, when fitting the plane we are
measuring distances in 3D. Hence, we are optimizing a quantity that we cannot observe
in our data and therefore may be inaccurate. The latter is a problem in particular if
the baseline is small. On the other hand fitting problems with a small baseline is very
important since descriptors such as SIFT usually perform much better in this case.

Instead we propose to estimate the plane by minimizing the back-projection errors of
the plane-induced-homography. We will show that this method gives a good estimation
of the plane. Direct estimation (without computing the 3D points) of a scene plane has
been considered before. For example in [11,10] two iterative methods are presented.
There are however no guarantees of convergence to the global optimum. In [1] both
structure and motion is estimated. Here 3D points are constrained to fulfill co-planarity
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constraints exactly, and a bundle adjustment process is employed. In this paper we as-
sume that the cameras are known, but a similar approach (optimizing reprojection error
with the points constrained to lie on the unknown plane) can of course be used. Such a
method would however have to rely on triangulation of the 3D points for initialization
and would only be locally convergent.

In contrast, we show in this paper that when minimizing back-projection errors of the
plane-induced-homography, the problem can be globally optimized using convex opti-
mization. In particular we show that the error residuals are affine functions composed
with a projection. It was shown in [9] that this type of functions are examples of qua-
siconvex functions. Since quasiconvexity is preserved under the max-operation these
problems exhibit no local minima when we minimize the max-norm of the errors. More
recently minimizing the least squares error, using standard Levenberg-Marquardt type
procedures, was addressed in [6,19]. It was shown that for the vast majority of prob-
lems from this class it is possible to use use local methods and verify that the solution
is in fact globally optimal. Furthermore, in [21,14,16,17] systematic ways for handling
outliers in the data was given.

1.1 Quasiconvex Optimization

In this section we very briefly recall the definition and basic properties of quasiconvex
functions. A much more detailed treatment can be found in [18].

When dealing with optimization problems convexity is a very useful property. For
example, when minimizing a convex function we are guaranteed that local methods
converge to globally optimal solutions. Unfortunately, convexity does hardly ever occur
in multiple view geometry problems because projections are in general not convex.
More commonly occurring is the slightly weaker notion of quasiconvexity.

Definition 1. A function f is called quasiconvex on a convex set C if its sublevel sets

Sμ(f) = { x ∈ C; f(x) ≤ μ } (1)

are convex for all μ ∈ R.

Fig. 1. A quasiconvex but not convex function



Triangulating a Plane 15

Figure 1 shows a function that is quasiconvex. It is not convex since it is possible to
draw a line between two points on graph, such that the function is above the line. Qua-
siconvexity is not preserved under addition. It is, however, preserved under the max
operation. That is minimizing the maximal error (see equation (4)) is a quasiconvex
problem if all the error residuals are quasiconvex. The simplest, and perhaps the most
common way of solving such problems is to employ a bisection method. Checking
whether there is an x such that f(x) ≤ μ for a fixed μ is a convex problem. Hence, by
solving a sequence of convex problems one can find an optimal μ (see [9,12,18]). In
[6,19] it was shown that in the vast majority of cases it is also possible to solve the least
squares formulation (see equation (7)) using local methods.

2 3D-Plane Triangulation

Next we consider the problem of determining a scene plane from two images. We as-
sume that the image data is given as two sets of corresponding points in the two images
that are known to be projections of points located on the 3D-plane. Let P1 = [R1 t1],
P2 = [R2 t2] be the two known (calibrated) camera matrices, {xi}, {yi} be the image
coordinates and p the unknown scene plane. When dealing with points, we will use
lower case letters to denote points in euclidean coordinates and capital letters to denote
its homogeneous coordinates. Hence {X i} and {Y i} are the homogeneous coordinates
of {xi} and {yi} respectively.

It is well known that (in a noise free system) there is a homographyH21 from image
1 to image 2 such that

Y i ∼ H21X
i. (2)

(Here ∼ denotes equality up to an unknown scale factor.) And similar for the inverse
homographyH12 = H−1

21 from image 2 to image 1

X i ∼ H12Y
i. (3)

Now, suppose that the system is not noise free. We would like to find the plane (or
homography) that gives the smallest back-projection errors in both images. Therefore
we formulate the following minimization problem

min
p

max
i
Ri(p) (4)

where
Ri(p) = max(||xi −Π(H21Y

i)||2, ||yi −Π(H−1
21 X

i)||2) (5)

and Π : {(x1, x2, x3) ∈ R3;x3 > 0} → R2 is the projection mapping given by

Π(x) =
(
x1/x3

x2/x3

)
. (6)

The constraint x3 > 0 reflects the fact that visible points in the image should be located
in front of the cameras. The residual errors are similar to what is used in homography
estimation with the L∞ norm [9,12], note however that the homography H21 depends
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on the plane p. In homography estimation it is not possible to use back-projection errors
in both images since the inverse of H21 cannot be parameterized linearly in terms of
the elements in H21, and therefore does not yield a quasiconvex problem. However in
this setting this is not a problem, since, as we will show, both H21 and its inverse can
be parameterized linearly by the plane parameters p.

In (4) and (5) we have used the maximum (squared) residual error as is traditionally
done in the L∞-framework. However, recent results (see [6,19]) show that solving the
least squares formulation using local methods also works well for the same framework.
In both cases we need to parameterize H21 and its inverse linearly. The least squares
formulation of our problem is

min
p

∑
i

Ri(p) (7)

where
Ri(p) = ||xi −Π(H21Y

i)||2 + ||yi −Π(H−1
21 X

i)||2. (8)

In this paper we will use both formulations. The latter is solved using local methods
with initialization from the former.

2.1 Homography from a Plane

In this section we derive the expression for the homographies H12 and H21. For sim-
plicity let us first assume that the camera matrices are of the form P1 = [I 0] and
P2 = [R t], and the plane parameters are p = (aT , b)T where a ∈ R3 and 0 �= b ∈ R.

Lemma 1. If P1 = [I 0] and P2 = [R t] then the homographyH21 can be written

H21 = Rb− taT . (9)

The special case b = 1 is proven in [8] and our proof is just a simple extension. It is
however essential, since without it, it is not possible to use both H12 and its inverse in
the error residual, which would prevent us from using symmetric error residuals.

Let x and y be the projections of the point z belonging to p. Then

X = P1Z = [I 0]Z, (10)

which implies that Z = (XT , d)T for some d ≥ 0. Since z belongs to p we have
0 = pTZ = aTX + bd. And therefore

d = −a
TX

b
. (11)

Now, since Z is the homogeneous coordinates for z we may we multiply Z with the
scale factor b, assuming b is positive, without changing anything. The fact that this
assumption is no restriction will be motivated later on. Therefore we obtain

Z =
(

bX
−aTX

)
(12)
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Projecting z into image 2 now gives

Y = P2Z = [R t]
(

bX
−aTX

)
= (Rb− taT )X, (13)

which proves the statement.
Now for the general case we use a transformation to prove the following.

Corollary 1. If P1 = [R1 t1], P2 = [R2 t2] then the homographyH21 can be written

H21 = (b − tT1 R1a)R2R
T
1 + (R2R

T
1 t1 − t2)(R1a)T . (14)

Let

T =
[
RT

1 −RT
1 t1

0 1

]
. (15)

Changing coordinates using T we get in the new coordinate system

P̃1 = P1T = [I 0] (16)

P̃2 = P2T = [R2R
T
1 −R2R

T
1 t1 + t2] (17)

p̃ = T T p =
[

R1a
b − tT1 R1a

]
. (18)

Substituting (16), (17) and (18) into (9) now yields (14). A similar expression for
H−1

21 = H12 is of course obtained by exchanging P1 and P2. Hence H21 depends lin-
early on the plane parameters p and we will write H21(p) to indicate this dependence.
Furthermore, we let Hi

21 denote the i’th row of H21.
To prove that the error residual ||xi −Π(H21(p)Y i)||2 is a quasiconvex function on

the set C = {p;H3
21(p)Y i > 0} we need to prove that the sublevel set

{p ∈ (C); ||xi −Π(H21(p)Y i)||2 ≤ μ2, ∀i} (19)

is convex for a fixed μ (see Definition 1, Section 1.1). However since H3
21(p)Y

i > 0 it
is easy to see that (19) is equivalent to

||(ap, bp)|| ≤ μcp, (20)

where

ap = (xi
1H

3
21(p) −H1

21(p))Y
i, (21)

bp = (xi
2H

3
21(p) −H2

21(p))Y
i, (22)

cp = H3
21(p)Y

i. (23)

and xi
j denotes the j’th coordinate of xi. Since (21)-(23) are linear functions (20) will

be a second order cone constraint (see [2]) which is convex. Hence the error residu-
als are quasiconvex functions (H12 is handled in the same way), and the theory from
[9,12,21,14,6,19,16,20] extends to this problem as well.
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2.2 Chirality

In the proof of lemma 1 we did not motivate b being positive. It is easy to see that
if b < 0 then there will be a sign change when multiplying X with b, and hence X
might not have positive depth in the second camera. Similarly when using 1 we want
the quantity b−RT

1 t1 to be positive. This can always be ensured unless the cameras are
located on opposite sides of the plane. Let P1 = [R1 t1], P2 = [R2 t2] and p = (aT , b)T

as previously. We then have

b− aTRT
1 t1 = pT

[
c1
1

]
(24)

b− aTRT
2 t2 = pT

[
c2
1

]
(25)

where c1 and c2 are the camera centers. Now it is easy to see that if one of these are
negative then c1 and c2 cannot be on the same side of the plane.

Since the cameras need to see the same points the sign of b is normally not a problem
in practice. However, note that in case we for some reason would like to solve a prob-
lem where this is not fulfilled one simply multiplies X with −b instead and the same
result holds. If we do not know anything about the relative locations of the cameras and
the plane we have to test both possibilities. Similar to other multiple view geometry
problems (see [9]), it is easily shown that for each choice there is a local minimum.

3 Experiments

In this section we perform some simple experiments to verify the theory and evaluate
the quality of the proposed methods. In equation (14) the homography H21 is written
as a linear expression in a and b. However as 3 parameters is enough for specifying a
plane we will choose b to be 1 in all our implementations. Note that we still need to use
(14). It is not possible to parameterize both H21 and H12 linearly using only (9) (with
b=1).

3.1 Stability of the Proposed Formulation

As we have mentioned before the standard way of fitting a scene plane to image data,
is to first compute 3D-points using triangulation and then fit a plane to these points.
In our first experiment we compare this approach to the two proposed formulations on
synthetically generated data. We use synthetic data since we would like to know the
true parameters of the plane that generated the measurements. The setup is as follows:
First we placed 30 points randomly on the plane z = 0, within the box −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1. Then we placed two cameras at a distance roughly 4 from the origin with
camera centers fulfilling z ≤ −2. We then added noise with standard deviation 0.0025
to the image coordinates. Figure 2 shows a typical example of the generated images. We
also selected a maximal value for the baseline, that is, the camera centers was placed
closer to each other than this maximal value. Figure 3 shows the results for a number of
different values of the maximal baseline. To the left is the back-projection error when
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Fig. 2. Left: An example image used in the synthetic experiments. x - the exact image point, o -
image point perturbed by noise (noise with std. dev. 0.0025 as in Figure 3).
Right: Same result as in Figure 3 (right panel) using the mean instead of the median.

Fig. 3. Results of the synthetic experiments for the three methods. Left: The max-norm back-
projection error (5) versus the maximal baseline. Middle: The L2-norm back-projection error (8)
versus the maximal baseline. Right: The distance to the true (noise less) solution.

Fig. 4. Results of the synthetic experiments for the three methods. Left: The max-norm back-
projection error (5) versus the noise level. Middle: The L2-norm back-projection error (8) versus
the noise level. Right: The distance to the true (noise less) solution.

measured with the max-norm (5). For each data point in the graph we generated 500 in-
stances of the problem and computed the median of the back-projection error. We chose
the median and not the mean since in rare instances the 3D point triangulation method
produces a plane that is almost perpendicular to the true plane, resulting in extremely
large back-projection errors. Even though we are averaging over a large number of ex-
periments this gives a noisy graph which is difficult to interpret, therefore we use the
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median instead (for comparison we plotted one of the graphs obtained when using the
mean in Figure 2). For the two proposed formulations the median and the mean are very
similar.

To the left is the result when the back-projection error is measured using the max-
norm (4). As expected the proposed L∞ formulation performs best here (regardless of
the baseline).

In the middle is the result when the error is measured with the L2-norm (8). Here
the proposed L2 formulation is the winner. Somewhat surprisingly the proposed L∞
formulation performs better than the 3D-point triangulation approach when the baseline
is small. The reason is that when the baseline is small distances in the direction of the
depth is difficult to observe accurately in the cameras. Hence, the position of the 3D-
points in this direction is uncertain. Therefore, using distances in 3D instead of back-
projection errors results in a more unstable procedure.

To the right is perhaps the most interesting graph. Here we have plotted the median of
the distance from the computed solutions to the true (noiseless solution). If (atrue, 1)
is the parameters for the true solution the distance is measured as ||atrue − aest||2
where (aest, 1) is the estimated solution with one of the methods. When the baseline is
sufficiently large the 3D point triangulation approach is almost as good as the proposed
L2 formulation however when the baseline becomes smaller it is less stable than the
other two methods.

To test the stability with respect to noise we also plotted the same figures when vary-
ing the noise level instead of the maximal baseline. The results cam be seen in Figure 4.
Here the maximal baseline was set to 0.5 and the noise level was varied between 0 and
0.005. The proposed formulations appear to exhibit roughly linear growth in the errors
whereas the triangulation approach seem to grow faster.

3.2 Outlier Removal and Estimation

Next we evaluate our method on real data. In real settings the data is often corrupted
by outliers. A popular method for removing outliers is RANSAC [4], however, here we
will use the approach pioneered by Sim and Hartley [21], and later refined in [17]. This
is an iterative method that is guaranteed to remove one outlier in each iteration. The
algorithm works by solving the problem

min s (26)

s.t. ||(aip+ ai0, bip+ bi0)|| ≤ μ(cip+ ci0) + s, ∀i, (27)

where ai, bi, ci, ai0, bi0 and ci0 are constructed from the i’th measurement (counting
backward and forward homographies separately). It is shown in [17] that by removing
the residuals for which the dual variables y are nonzero we are guaranteed to remove
one outlier. This procedure is then iterated until the solution is good enough (s ≤ 0).

We ran the algorithm on the stereo pair seen in Figure 5. Since the posters located
on the wall has similar texture we obtained a lot of mismatches where points on one
of the poster matches to points on the other. Using SIFT [15] we determined 678 point
correspondences. In order to find a solution with all errors less than 10 pixels 112 itera-
tions was needed. In total 241 image points where discarded. Manual inspection reveals
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Fig. 5. Resulting estimation for the office stereo pair. Read points - outliers, blue points - inliers.
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that almost all the discarded cases is either a mismatch or a point not belonging to the
dominant plane.

4 Conclusions

In this theoretical paper we have proposed a procedure for triangulating a scene plane.
Our method is based on the framework of quasiconvex optimization making it easy to
solve with guaranteed optimality. Furthermore, since we have shown that our problem
belongs to this class, all the previously developed theory naturally applies to this prob-
lem as well. Since the formulation is based on back-projection which is a geometrically
meaningful quantity it is also stable with respect to noise and geometry.
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Abstract. This paper focuses on how the accuracy of marker-less hu-
man motion capture is affected by the number of camera views used.
Specifically, we compare the 3D reconstructions calculated from single
and multiple cameras. We perform our experiments on data consisting of
video from multiple cameras synchronized with ground truth 3D motion,
obtained from a motion capture session with a professional footballer.
The error is compared for the 3D reconstructions, of diverse motions, es-
timated using the manually located image joint positions from one, two
or three cameras. We also present a new bundle adjustment procedure
using regression splines to impose weak prior assumptions about human
motion, temporal smoothness and joint angle limits, on the 3D recon-
struction. The results show that even under close to ideal circumstances
the monocular 3D reconstructions contain visual artifacts not present
in the multiple view case, indicating accurate and efficient marker-less
human motion capture requires multiple cameras.

Keywords: Motion Capture, 3D Reconstruction, Monocular, Bundle
Adjustment, Regression Splines.

1 Introduction

This paper addresses the challenging computer vision problem of precise marker-
less human motion capture from video sequences. It focuses on measuring its
feasibility and achievable accuracy with respect to the number of cameras used.
This is of interest to anyone who wants to acquire the accurate 3D motion of
people performing interesting actions from real video footage. These questions
have been partially explored for the standard actions of walking and jogging
using the HumanEva dataset [6]. It, however, has primarily been used to compare
the accuracy of reconstruction algorithms as opposed to investigating if and when
computer vision can be used for accurate human motion capture.

Our motivation is that we want to reconstruct, in real time, the 3D motion of
a football player during a real game to augment the video broadcast and enhance
the viewer’s experience. Presently, the most effective and reliable way to achieve
this would be to map image measurements to 3D motions [7]. However, learning
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such mappings, as they are poor at extrapolation, requires a large amount of
relevant training data and unfortunately large databases of football motion cap-
ture data are not available. And perhaps, even more pertinently, the complete
repertoire of football actions cannot be replicated in a motion capture studio.
Thus we need to create training data from footage of players in real games.

In the absence of significant training data, there are two distinct approaches
taken. One is based on tracking: given the 3D pose in the first frame tracking
is used to compute the most likely poses for the subsequent frames [11] using
either Kalman or particle filters[13]. The initialization is typically done manually
and visual features of the images are matched to those hypothesized by the
state of the 3D model. These methods can produce nice results, especially with
multi-camera footage, however, they are slow and brittle and potentially require
manual re-initialization when applied to fast extended motions.

The other approach is the direct geometrical solution that can be used if the
image positions of the joints are known and the skeleton is assumed to be a
kinematic chain [1,2,3,4,5]. These algorithms can be adopted to both monocular
and multi-camera data, although the monocular case is a decidedly more difficult.
This type of approach is appealing as it is simple and fast to implement and
there is a large scope for (semi-)automating the localization of the joints in
the images and depth estimation. However, it is unclear if the precision of their
reconstructions, even with manually clicked image joint positions, is good enough
especially from monocular footage.

In this paper we explore what is the achievable accuracy for these meth-
ods given manually estimated joint locations and known camera calibrations.
Thereby we estimate a lower bound for any future automated process. We also
compare the accuracy of monocular reconstructions with stereo and three-view
reconstructions [12]. Our experiments rely on a data set consisting of video from
multiple cameras synchronized with ground truth 3D motion. The motions are
football actions performed by a professional player in a motion capture stu-
dio. We also present a new bundle adjustment procedure for imposing temporal
smoothness, link length and joint angle constraints on the 3D reconstruction.
This algorithm imposes the weakest possible priors on the resulting reconstruc-
tion and reduces the errors due to the noise in the estimated joint positions.
The results indicate that even under close to ideal circumstances the monoc-
ular 3D reconstructions show visual artifacts not present in the multiple view
case. While the latter are visually identical to the ground truth. Thus, precise
reconstructions for large amounts of data is not feasible from monocular data.

The rest of the paper is organized as follows. Section 2 describes how to create
an initial 3D reconstruction from measurements of image joint positions. Both
the monocular and multiple camera case is mentioned. To reduce the effect of
measurement noise we impose weak prior constraints on the reconstruction in
section 3. Section 4 describes the new data set of motion capture synchronized
with video recordings. The data set is used to test the new algorithm and the
accuracy of reconstructions from varying number of cameras. In section 5 we
discuss our conclusions and possible future work.
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2 Initial 3D Reconstruction

The human is modeled as a kinematic chain consisting of joints and links. We
assume that we are given image measurements, from one or multiple calibrated
cameras, of the human joint positions shown in figure 1, for all time frames.
These may have been computed fully automatically, or completely manually, or
somewhere in between. The joints are chosen as rotation centers to have a well
defined position. Two auxiliary joints that are not rotation centers, neck and
pelvis, are added so that all joints form a kinematic chain. These two joints
are not measured explicitly but computed from the measurements of the other
joints. The neck is defined to be the mean of the shoulders. The pelvis is defined
to be the mean of the hips. Note that we do not include the hands, feet or
head in our model. These body parts are not well represented by one rigid link.
Their 3D reconstruction could be obtained by alternative methods, e.g. they
could have standard offsets relative the other joints, or be reconstructed by a
volumetric model. Given the image positions of the joints their position in 3D
can be reconstructed. Two particular scenarios are examined.

Left Shoulder

Left Elbow

Left Wrist

Left Ankle

Left Knee

Left Hip

NeckRight Shoulder

Right Elbow
Right Wrist

Right Knee

Right Ankle

Right Hip
Pelvis

Fig. 1. Joint positions

Multiple Camera Case. When considering the joint positions from several
cameras, triangulation is used to give initial reconstruction of the points in 3D
[12]. Each point at each frame is reconstructed independently of the other points.
The points are not treated as a kinematic chain but as a simple point cloud.

Monocular Camera Case. In contrast when we consider measurements from
just one camera the reconstruction process, due to the depth ambiguities, is more
involved. The reconstruction method implemented, following previous work in
this area [1,2,3,4,5], makes several assumptions. These are that the skeleton is a
kinematic chain with known link lengths, the depth of the root joint (required
for a projective camera) and the flip of each link is known. The flip tells which
end of a link that is closest to the camera. These quantities can be estimated
automatically, though with difficulty [5]. This further degrades the accuracy of
the obtained reconstructions is not considered within this paper. In summary,
the skeletal kinematic chain is reconstructed in 3D, by starting at the root joint
and reconstructing each link in turn.
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3 Imposing Weak Priors on the Initial Reconstruction

Due to measurement noise the initial reconstruction might not look sufficiently
good. This is especially true for monocular reconstruction. Figure 2 shows ex-
amples of measured image joint positions and the corresponding monocular 3D
reconstructions from another view. Even though the measurements seems to be
close to the ground truth in the camera view, the 3D reconstruction typically
differs more if viewed from another angle. Also since the initial reconstruction
is done independently for each frame it is not guaranteed to be continuous over
time. An example of this is shown in the third and fourth examples of figure 2,
which displays the reconstruction of two consecutive frames.

To improve the initially estimated reconstruction we need a stronger model
of what we are reconstructing. By relying more on a prior model the influence
of measurement noise can be reduced. We are trying to reconstruct a human
performing some arbitrary action. Therefore we do not want to restrict the prior
to just model specific actions. The model should fit (almost) all possible human
motions. It is just the completely unnatural motions that should be constrained.
In section 3.1 we describe how to impose link length and joint angle constraints.
In fact the link length constraints are already fulfilled by the initial monocular
reconstruction but it should be imposed on the multiple view reconstruction as
well. In section 3.2 we describe how to also impose temporal smoothness.

3.1 Link Length and Joint Angle Constraints

As a first step constraints can be imposed on the link lengths and joint angles
to reduce the effect of measurement noise. The joints of the human skeleton
cannot rotate freely. For instance the knee and elbow angles have a range smaller
than 180◦. This is one thing that makes the initial monocular estimation look
weird. If these types of constraints are not imposed the arms and legs may
be twisted in unnatural ways. These are the constraints typically applied in
human reconstruction methods. They are used by e.g. [1,5], although they do
not mention the details of their parametrization.

Fig. 2. The top row shows image measurements of the pose for different frames. The
measurements are black and the ground truth is grey. The bottom row shows the
corresponding initial monocular 3D reconstructions viewed from another direction.
The reconstruction errors are significantly larger in this new view.



28 M. Burenius et al.

To implement the constraints we let a human pose be defined by a set of
joint angles and the Cartesian position of one root joint which we define to be
the pelvis. The rotation of the root is not constrained and has three degrees of
freedom (DOF). The elbows and knees are modeled with a single rotation DOF
with upper and lower bounds. The rotation of left and right hip and shoulder
have three DOF, but they should be constrained to not allow the arms and legs
to be twisted unnaturally. We use the twist-swing parametrization [9,10] to deal
with this and constrain the twist parameter with to be within [−π/2, π/2]. The
swing component is unconstrained. This is a good approximation of the true
constraints for humans [9,10].

These are the parameters that are used to define a pose: 6 for the root, 3 for
each shoulder and hip, and 1 for each elbow and knee, giving a total of A = 22
parameters. This is a reduced set of parameters compared to using three Carte-
sian coordinates for each joint giving a total of 36 parameters. More formally
let a = (a1, a2, . . . , aA) be the generalized joint coordinates. The constraints are
then expressed by linear vector inequalities, where the elements are infinite for
the unconstrained components:

amin ≤ a ≤ amax (1)

The length of all links are assumed to be known and fixed. The fixed link
length constraints are fulfilled by construction in this parametrization. Let r =
(r1, r2, . . . , rJ ) where rj is the homogeneous coordinates of the position of joint
j. Denote the mapping from joint angles to the position of the joints in homo-
geneous coordinates as f :

r = f(a) (2)

A Bundle Adjustment Implementation. We now formulate an optimization
problem that can be solved iteratively to get a refined estimate by imposing
constraints on joint angles and link lengths. The initial reconstruction of section
2 is used as an initial guess and the joint angles a are optimized to minimize the
reprojection error:

min
a

C∑
c=1

J∑
j=1

d(Mcrj , zc,j)2

s.t. amin ≤ a ≤ amax

r = f(a)

(3)

where C is the number of cameras and J is the number of joints. Mc is the
projection matrix of camera c and Mcrj is thus the reconstructed joint position
rj reprojected to the image of camera c. zc,j are the measured image position
in camera c of joint j in homogeneous coordinates. d(p1, p2) is the geometric
image distance between the homogeneous points p1 and p2 and d(Mcrj , zc,j) is
thus the reprojection error. The angles are constrained by inequalities (1) and
the link length constraints are fulfilled by construction (equation 2). Given the
initially estimated reconstruction the local minimum of the constrained mini-
mization problem gives the refined reconstruction. The constrained nonlinear
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least squares problem is solved iteratively using the trust-region-reflective algo-
rithm [17,18,19], which is implemented by the MATLAB function lsqnonlin.
Note that this refinement step works the same way no matter how many cameras
we use.

3.2 Temporal Smoothness, Link Length and Joint Angle
Constraints

Both the initial estimate and the refined estimate, imposing link length and joint
angle constraints, have so far been computed independently for each frame. Due
to this the reconstructed animation can look jittery and unnatural, since it is
not forced to be continuous. This is especially true for the monocular recon-
struction. The reasonable assumption of finite muscle forces implies finite joint
accelerations and continuous velocities. In this section we describe how to also
impose constraints on temporal smoothness.

Interpolation. A standard way to impose temporal continuity on the reconstruc-
tion is to use interpolation. Some frames are selected as key-frames and the
reconstruction is interpolated between them. Often the joint angles are interpo-
lated linearly, using SLERP [8] for the joints having three rotational DOF. How-
ever, using linear interpolation the joint velocities will not be continuous at the
key-frames and the reconstruction will look a bit stiff. To get a smoother recon-
struction splines can be used [16]. We use natural cubic splines to do this lead-
ing to continuity in the second derivative at all key-frames/knots (figure 3). One
drawback of interpolation is that the values at the knots are fixed. We interpo-
late between them but do not try to improve the values at the knots. If we have
measurements taken between the knots, then those are not taken into account.

Regression Splines. The drawbacks of interpolation can be fixed by the use
of smoothing splines, e.g. regression splines [16]. The idea is to let the values
at the knots be variables of an optimization problem and find the ones that
gives a spline that minimizes the difference to all measurements. In this way
the spline that best fit the measurements can be computed (figure 3). We use
equidistantly distributed knots. The smoothness is then controlled by a single
parameter which is the distance between knots. The larger distance the smoother
estimate. The measurements of all time frames are considered simultaneously, in
a batch procedure, as opposed to standard Kalman or particle filters [13] which
proceeds chronologically.
New Bundle Adjustment Algorithm. We formulate a new algorithm to
perform 3D reconstruction while imposing temporal smoothness in addition to
the constraints on link lengths and joint angles. The reprojection error is min-
imized while imposing our prior model. The difference is that now we express
each angle parameter i as a function of time t by a regression spline:

ai,t = P (t, αi) (4)

where ai,t is the interpolated joint angle at time t given its values at all knots
αi. Let the values for all angles and knots be stored in α = (α1, α2, . . . , αA).
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Fig. 3. The difference between interpolation and regression splines. The full line is the
ground truth, the crosses are the measurements and the dashed line is the estimation.
The left image shows interpolation between all measurements. The center image shows
interpolation between every fourth measurement. The right image shows regression
splines with a knot at every fourth measurement. Knots are drawn as circles.

The distance between knots is a variable the user may choose manually and
control the smoothness of the reconstruction. It is considered to be fixed in the
optimization. The initial value of all parameters at the knots are taken from the
initially estimated reconstruction, described in section 2. The values at the knots
are then optimized to minimize the reprojection error:

min
α

C∑
c=1

J∑
j=1

T∑
t=1

d(Mcrj,t, zc,j,t)2

s.t. αmin ≤ α ≤ αmax

ai,t = P (t, αi)
rt = f(at)

(5)

In contrast to the previous bundle adjustment in section 3.1 all frames (T ) are
considered simultaneously. The variables we optimize over are the joint angle
parameters at all knots. Given the initial reconstructions at all knots, the local
minimum to the constrained minimization problem gives the refined reconstruc-
tion. The solution is found iteratively just as in section 3.1.

4 Results

To evaluate the accuracy of the monocular and multiple view reconstructions
we obtained 3D motions of a professional footballer, using a commercial off the
shelf motion capture system with passive markers. It provided the ground truth
at a frequency of 200 Hz. We used 35 markers which were not placed at the joint
positions (figure 1), but from the markers the rotation centers defining the joint
positions could be computed. The player was also recorded at 25 Hz by three
regular video cameras at a resolution of 1920x1080 pixels (figure 4). A total of 30
sequences of different football actions were recorded (17 minutes of data). The
videos were calibrated and synchronized to the ground truth.

Using these videos the joint image positions in the three cameras were esti-
mated manually for seven different action instances: receiving and passing the
ball, receiving ball on chest and passing, free kick, pass, defending, running plus
a sharp change of direction, a contested jumping header. This corresponds in
total to 16 s. Note that since the markers used by the motion capture system
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Fig. 4. A motion capture studio was used to capture ground truth animations corre-
sponding to video from three cameras

did not correspond to the joints, the markers were not used to aid the manual
joint estimation in the videos. This is important since the algorithm is intended
to be used in situations outside the motion capture studio without the use of
markers. These measurements were used to reconstruct the actions in 3D and
the results were compared to the ground truth provided by the motion capture
system. Each reconstruction was calculated using the four different algorithms
described in section 2 & 3:

1. Initial Estimate. Independent reconstruction for each frame.
2. Limb Length & Joint Angle Constraints. Initial estimate refined inde-

pendently for each frame.
3. Limb Length & Joint Angle Constraints Interpolated. Reconstruc-

tion (2) is computed for each key-frame and interpolated in-between.
4. Limb Length, Joint Angle & Temporal Smoothness Constraints.

Initial estimate refined by the new bundle adjustment algorithm, using re-
gression splines in a batch process.

Note that the algorithms work on both monocular and multiple view reconstruc-
tion. Each algorithm was tested on several different camera combinations. For
the initial monocular reconstruction we assumed known link lengths, flips and
the depth of the root joint. This was obtained from the ground truth. Also note
that the calibrated cameras were static and that the videos had little motion
blur and no occlusion by any other objects. These assumptions and the fact that
we did manual joint measurements in high resolution images makes it possible to
compute a lower error bound under ideal conditions. In a real situation outside
the motion capture studio the reconstruction will be worse.

Evaluation of the algorithms and comparison between monocular and multiple
view reconstruction requires a quantitative measure of the reconstruction error.
This measure should correspond to the perceived error. The most disconcerting
part of a reconstruction is if the joint angles are unnatural. We therefore look
at the mean joint angle error:

1
TA

T∑
t=1

A∑
i=1

|ai,t − âi,t| (6)
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However, it might not be appropriate to combine the angles describing 1D ro-
tations and the ones describing 3D rotations by the twist-swing decomposition.
For this reason we also define an error measure that only takes the mean over
the 1D angles, describing the knees and elbows.
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Fig. 5. The mean reconstruction error in degrees, vertical axis, resulting from different
camera configurations, horizontal axis. Four different methods of reconstruction are
evaluated. The errors are the mean taken over seven different motions with a total
duration of 16 s.

Figure 5 show these mean reconstruction errors over all mesured sequences, for
different algorithms and camera configurations. The 1D joint angle error shows
a big difference between the monocular and multiple view cases. The error is
almost twice as large for the monocular case. As expected the initial estimate
(1) has the largest error and our new algorithm based on regression splines (4)
has the lowest, while algorithm (2) and (3) are somewhere in-between. However,
except the initial estimate the difference between the algorithms are not that big
in these measures, especially not between algorithm (2) and (3). Nevertheless, in
the monocular case the smooth reconstructions produced by algorithms (3) and
(4) looks much nicer than the jittery reconstructions produced by (1) and(2).
In this sense the perceived error is not captured well by these error measures.
One would likely need an error measure involving derivative approximations to
capture this aspect. Disregarding the nice appearance of temporal smoothness
the new algorithm (4) still performs best even with this simple error measure.

Figure 6 shows monocular and stereo reconstructions compared to the ground
truth for four different frames (one per quadrant). The reconstructions is viewed
from each camera. In this figure camera 1 is used for monocular reconstruction
and camera 1 and 2 for stereo reconstruction. In the view of camera 2 it can
clearly be seen that the monocular reconstruction does not give the same accu-
racy as the stereo reconstruction. The two frames at the bottom are consecutive
and show that the initial monocular reconstruction is not consistent over time.

Looking at the reconstructions in motion our subjective opinion is that for the
three camera case the initial estimate always looks good. For our measurement
accuracy the bundle adjustments does not give a visible improvement in this
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View from
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Fig. 6. Each quadrant shows the 3D reconstruction (black) and the ground truth (gray)
for a single frame. The first column shows the initial monocular 3D reconstruction ob-
tained from camera 1. The second column shows the refined monocular reconstruction,
imposing constraints on joint angles and temporal smoothness. The third column shows
the stereo reconstruction obtained from camera 1 & 2. Each row shows the reconstruc-
tions in one of the three cameras. The view from camera 2 is the interesting one since
the monocular reconstruction looks significantly worse than the stereo reconstruction
from this view. Camera 3 is almost facing camera 1 and for this reason both recon-
structions look all right in it, although the stereo reconstruction looks slightly better.

case. For the two camera case the initial estimate mostly looks good. It looks a
little bit wobbly sometimes. In those cases the reconstruction by algorithm (4)
gives a small but visible improvement. The reconstruction from camera 1 & 3
looks much worse than the reconstructions from camera 1 & 2 or camera 2 & 3.
This is since camera 1 & 3 are almost facing each other. For the bad reconstruc-
tions from camera 1 & 3 algorithm (4) gives a big improvement. This improved
reconstruction looks about the same as the reconstructions from camera 1 & 2
and camera 2 & 3. In the monocular case the initial estimate generally looks
bad. It does not improve that much by just imposing the joint angle constraints
of algorithm (2). Imposing the smoothness of algorithm (3) or (4) gives a bigger
improvement. The reconstruction of algorithm (4) looks slightly better than that
of (3). However, even if this refined reconstruction looks much better than the
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initial estimate there is still a visible difference compared to the ground truth, or
to the multiple view reconstructions. This is in accordance with the quantitative
data shown in figure 5 and the 1D joint angle error which shows a big difference
between the monocular case and the multiple view.

5 Conclusion

By imposing constraints on the link lengths, joint angles, and temporal continu-
ity, the refined estimate created by the bundle adjustment algorithm generally
looks better then the initial estimate. However, in the monocular case the im-
provement is not big enough. Even under close to ideal conditions the monocular
reconstruction looks significantly worse than the multiple view reconstruction.
For our final application of reconstructing 3D motion from a real football game,
we can expect even worse accuracy. To make the monocular reconstruction look
good it is necessary to manually tweak the measurements until the 3D pose
looks correct. However, then the 3D reconstruction is not really created from
the measurements of the image joint positions, but rather constructed manually
in this feedback loop. If two or three cameras were used both the initial and
refined estimate look similar to the ground truth. In the two camera case the
initial estimate looks bad for a small set of frames, but those are improved in
the refinement step.

Future Work. We conclude that monocular 3D reconstruction does not give
the accuracy our application requires. The next step is then to try to use mul-
tiple cameras to accurately reconstruct the 3D motion of a player, outside the
motion capture studio. For our football application we would like to deal with
multiple uncalibrated rotating and zooming cameras. Affine factorization [14]
and auto-calibration [15] can then be used to get the initial reconstruction and
the bundle adjustment algorithm could be extended to also impose smoothness
on the camera calibration. It would also be of interest to explore to what extent
the joint localization can be automatized given the accuracy requirements.
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Abstract. Graph-based methods have become well-established tools for
image segmentation. Viewing the image as a weighted graph, these meth-
ods seek to extract a graph cut that best matches the image content.
Many of these methods are interactive, in that they allow a human op-
erator to guide the segmentation process by specifying a set of hard con-
straints that the cut must satisfy. Typically, these constraints are given
in one of two forms: regional constraints (a set of vertices that must be
separated by the cut) or boundary constraints (a set of edges that must
be included in the cut). Here, we propose a new type of hard constraints,
that includes both regional constraints and boundary constraints as spe-
cial cases. We also present an efficient method for computing cuts that
satisfy a set of generalized constraints, while globally minimizing a graph
cut measure.

Keywords: Image segmentation, Graph cuts, Regional constraints,
Boundary constraints.

1 Introduction

In recent years, several efficient methods for image segmentation have been for-
mulated in the framework of edge weighted graphs. Common for these methods
is that they seek to extract a cut from a pixel adjacency graph, i.e., a graph
whose vertex set is the set of image elements, and whose edge set is given by an
adjacency relation between the image elements. Informally, a cut in a connected
graph is a set of edges such that if they are removed, the graph is separated into
two or more connected components.

Generally, the goal of these methods is to find a cut that best matches some
criterion based on image content, e.g., a cut that coincides with high contrast
regions in the image. In interactive (or supervised) methods, the cut is addi-
tionally required to satisfy a set of hard constraints. These constraints may be
specified by a human user in an interactive setting, or by an automated proce-
dure. Typically, the constraints are given in one of two forms.

Regional constraints. The cut is required to separate all elements in a speci-
fied subset of the graph vertices.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 36–47, 2011.
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Boundary constraints. The cut is required to include a specified subset of
the graph edges.

Computing cuts with respect to regional constraints is a well-studied problem,
and many efficient algorithms have been proposed for this purpose. See, e.g., [2,
15,6,9,4]. A unified theoretical framework, incorporating many of these methods,
was recently proposed by Couprie et al. [3].

The most prominent example of image segmentation with respect to bound-
ary constraints is the Live-wire method [7]. In its original form, this method
is restricted to 2D image segmentation. Many attempts have been made to ex-
tend this paradigm to 3D, see, e.g., [12] and references therein. In general, these
methods, unlike the 2D Live-wire method, do not guarantee optimality of the
resulting segmentation. A notable exception is [10], where a method is presented
for computing globally minimal discrete surfaces with prescribed boundary.

Here, we propose a new type of hard constraints for supervised graph seg-
mentation. Informally, a generalized constraint is a pair of distinct vertices that
any feasible cut must separate. We show that both boundary constraints and
regional constraints may be viewed as special cases of the proposed generalized
constraints. Moreover, we present an efficient method for finding cuts that sat-
isfy a set of generalized constraints, and for which the maximal edge weight in
the cut is globally minimal.

2 Preliminaries

In this Section, we present basic definitions of edge weighted graphs, graph cuts
and vertex labelings. Moreover, we introduce the notion of graph cut segments.

2.1 Edge Weighted Graphs

We define a (undirected) graph as a pair G = (V (G), E(G)) where V (G) is a
set and E(G) is composed of unordered pairs of distinct elements in V , i.e., E
is a subset of {{v, w} ⊆ V | v �= w}. The elements of V are called vertices of B,
and the elements of E are called edges of G. In order to simplify the notation,
the vertices and edges of a graph will be denoted V and E instead of V (G)
and E(G) whenever it is clear from the context which graph they belong to.
An edge spanning two vertices v and w is denoted ev,w. If ev,w is an edge in E,
the vertices v and w are adjacent. For the remainder of this paper, G denotes a
graph (V,E), such that |V | is finite.

We assign to each edge e ∈ E a non-negative real value W (e), called a weight.
The weight represents vertex affinity, i.e., two adjacent vertices are closely related
if the weight of the edge connecting them is high. A common task in image
segmentation applications is to segment an image into regions of homogeneous
intensity. To this end, we may define edge weights as, e.g.,

W (ev,w) = Imax − |I(v) − I(w)| , (1)
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where I(v) is the intensity of the image element corresponding to the vertex
v, and Imax is the maximum intensity value present in the image. The method
proposed here is contrast invariant, i.e., applying a strictly monotonic transfor-
mation to the edge weights does not change the output of the method.

2.2 Graph Partitioning

A partitioning of a graph is commonly represented either as a vertex labeling or
as a graph cut. The two representations are closely related, and the choice of one
representation over the other is largely a matter of preference. Here, we use the
graph cut representation in Sections 3 and 4 to derive our theoretical results. In
Section 5, we switch to the vertex labeling representation, in order to formulate a
practical algorithm for the proposed method. In this Section, we provide formal
definitions of both representations, and clarify the relation between them.

A path in G is an ordered sequence of vertices π = 〈v1, v2, . . . , vk〉 such that
evi,vi+1 ∈ E for all i ∈ [1, k − 1]. Two vertices v and w are linked in G if there
exists a path in G that starts at v and ends at w. The notation v ∼ w

G
will here

be used to indicate that v and w are linked on G. If all pairs of vertices in a
graph are linked, then the graph is connected, otherwise it is disconnected. For
the remainder of this paper, we assume that the graph G is connected.

If G and H are graphs such that V (H) ⊆ V (G) and E(H) ⊆ E(G), then H
is a subgraph of G. If H is a connected subgraph of G and v �∼ w

G

for all vertices

v ∈ H and w /∈ H , then H is a connected component of G.

Definition 1. Let S ⊆ E, and G′ = (V,E \S). If, for all ev,w ∈ S, it holds that
v �∼ w

G′
, then S is a (graph) cut on G.

If S is a non-empty cut on G, then the removal of S from G separates G into
two or more connected components. Note that E is a cut on G.

Definition 2. A (vertex) labeling L of G is a map L : V → L, where L is an
arbitrary set of labels.

In the following, we assume that |L| ≥ |V |. The boundary, ∂L, of a vertex
labeling L is defined as the edge set ∂L = {ev,w ∈ E | L(v) �= L(w)}. The
relation between labelings and cuts is summarized in Theorem 1.

Theorem 1. For any graph G = (V,E) and set of edges S ⊆ E, the following
statements are equivalent:

1. There exists a labeling L of G such that S = ∂L.
2. S is a cut on G.

A proof of Theorem 1 can be found in [11]. Next, we introduce the concept of
graph cut segments, which is central to the development of the proposed method
in Section 4.
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Fig. 1. Graph cut segments. (a) A graph cut, shown as dotted lines. The cut separates
the graph into three connected components, shown in red, green, and blue. (b-d) The
segments of the cut.

Definition 3. Let S be a cut on G, let e ∈ S, and let G′ = (V,E \ (S \ {e})).
The segment Se of S corresponding to e is defined as

Se = {ev,w | ev,w ∈ S, v ∼ w
G′ } . (2)

Any cut S �= ∅ consists of one or more segments. From Definition 3, it follows
that ev,w ∈ Sex,y ⇔ ex,y ∈ Sev,w , and thus a segment can be uniquely identified
by any of its constituent edges. Figure 1 illustrates the concept of graph cut
segments.

3 Constrained Graph Cuts

In this Section, we introduce the proposed generalized hard constraints, here-
inafter referred to as constraints.

Definition 4. A constraint on G is an unordered pair of distinct elements in
V , i.e., a constraint is an element in the set {{v, w} ⊆ V | v �= w}.
Note that while the definition of constraints is identical to the definition of graph
edges in Section 2.1, we do not generally require a constraint to be an element of
E. To differentiate between constraints and edges, a pair of vertices {v, w} that
represents a constraint is denoted cv,w.

Definition 5. Let S ⊆ E and let C be a set of constraints. We say that S
satisfies C if

∀cv,w ∈ C, v �∼ w
(V,E\S)

(3)

and
∀e ∈ S, ∃cv,w ∈ C such that v ∼ w

(V,E\(S\{e}))
. (4)

If S ⊆ E does not satisfy (3) then S is an under-segmentation with respect to C.
If S does not satisfy (4), then S is an over-segmentation with respect to C. In
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Fig. 2. Graph cuts with respect to regional and boundary constraints. (Left) A cut that
satisfies the regional constraints {q, r, s}. The cut (dotted lines) separates the graph
into three connected components. (Right) A cut that satisfies the boundary constraints
{ed,h, ef,g , en,o}. The cut separates the graph into two connected components.

other words, a set of edges S satisfies the constraints C if it is neither an over-
nor an under-segmentation with respect to C.1

Theorem 2. Let C be a set of constraints and let S ⊆ E such that S satisfies
C. Then S is a cut on G.

Proof. Let G′ = (V,E \ S). If S satisfies C, then for each edge ev,w ∈ S there
exists a constraint cx,y ∈ C such that either x ∼ v

G′
and y ∼ w

G′
or x ∼ w

G′
and

y ∼ v
G′

. From (3), it thus follows that v �∼ w
G′

. ��

In the remainder of this Section, we show that the proposed definition of con-
straints includes both boundary constraints and regional constraints as special
cases.

3.1 Regional Constraints

A regional constraint on G is a vertex in V . Informally, a cut S satisfies the set of
regional constraints Cr ⊆ V if each connected component of (V,E \ S) contains
exactly one element in Cr. This is formalized in Definition 6.

Definition 6. Let Cr ⊆ V be a set of regional constraints and let S ⊆ E. We
say that S satisfies Cr if

∀v, w ∈ Cr, v �∼ w
(V,E\S)

(5)

and
∀e ∈ S, ∃v, w ∈ Cr such that v ∼ w

(V,E\(S\{e}))
. (6)

When regional constraints are used in image processing applications, the pixel
adjacency graph is usually augmented with a set of terminal vertices that

1 A similar definition of over- and under-segmentation was proposed by Felzenszwalb
and Huttenlocher [8], in the context of unsupervised segmentation.
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constitute the regional constraints [2]. Each terminal vertex represents an object
category (e.g., object or background), and a vertex that is adjacent to a terminal
vertex is called a seed-point. In this way, an object may be segmented from an
image by specifying one or more seed-points corresponding to that object. See
Figure 2.

From Definitions 5 and 6, it becomes clear that regional constraints are a spe-
cial case of the generalized hard constraints proposed here. For any set of regional
constraints Cr there exists a set of constraints C, namely C = {cv,w | v, w ∈ Cr},
such that S ⊆ E satisfies C if and only if it satisfies Cr.

3.2 Boundary Constraints

A boundary constraint on G is an edge in E. Intuitively, a cut S satisfies the set
of boundary constraints Cb ⊆ E if Cb ⊆ S. This definition, however, is clearly
not sufficient, since the cut S = E satisfies this condition for any Cb. Instead,
we propose the following definition.

Definition 7. Let Cb ⊆ E be a set of boundary constraints and let S be a cut
on G. If Cb ⊆ S and each segment of S contains at least one element of Cb, then
we say that S satisfies Cb.

From Theorem 3 and its Corollary below, it follows that Definition 7 coincides
with Definition 5 in the special case that C ⊆ E. In this sense, boundary con-
straints are a special case of the proposed generalized constraints. See Figure 2.

Theorem 3. Let C ⊆ E be a set of constraints and let, S ⊆ E such that S
satisfies C. Then C ⊆ S.

Proof. Assume to the contrary that S is a cut with respect to C ⊆ E and C �⊆ S.
Then there exists an edge ev,w ∈ C \ S, and thus v ∼ w

G′
, where G′ = (V,E \ S).

This contradicts the assumption that S is a cut with respect to C. ��
Corollary 1. Let C ⊆ E be a set of constraints, let S ⊆ E such that S satisfies
C. For all e ∈ S, there exists a constraint c ∈ C such that c ∈ Se.

Proof. Let ev,w ∈ S. Since S satisfies C, there exists a constraint cx,y ∈ C such
that x ∼ y

(V,E\(S\{ev,w}))

. By Theorem 3 it holds that cx,y ∈ S. Therefore cx,y ∈ Se. ��

4 Strategies for Computing Constrained Graph Cuts

In this Section, we consider the problem of computing a cut that satisfies a set
of constraints. We start by defining a general strategy for computing such cuts.
Based on this general strategy, we show that for any set of constraints on G,
there exists one or more cuts on G that satisfies the constraints. Additionally, we
show that any such cut can be computed using the general strategy. Thereafter,
we present a particular instance of the general strategy, that produces cuts such
that the maximum edge weight in the cut is globally minimal.
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4.1 A General Strategy for Computing Constrained Graph Cuts

If S ⊆ E is a cut on G and G′ = (V,E \ S), then each segment of S forms
a boundary between exactly two connected components of G′. Therefore, the
removal of a segment from a cut is called a merging operation.

Definition 8. Let S be a cut on G and let e ∈ S. The merging operation S � e
is defined as

S � e = S \ Se . (7)

Note that merging operations preserve cuts, i.e., S � e is a cut on G.

Definition 9. Let C be a set of constraints and let S be a cut on G. An edge
e ∈ S is mergeable with respect to C if S � e is not an under-segmentation with
respect to C.

The set of edges in S that are mergeable with respect to C is denoted MC(S).

Lemma 1. Let C be a set of constraints and let S be a cut on G such that S is
not an under-segmentation with respect to C. Then the following statements are
equivalent:

1. S is an over-segmentation with respect to C.
2. MC(S) �= ∅.

Proof. S is an over-segmentation with respect to C ⇔ ∃e ∈ S such that ∀cv,w ∈
C, v �∼ w

(V,E\(S\{e}))

⇔ ∃e ∈ S such that ∀cv,w ∈ C, v �∼ w
(V,E\(S�e))

⇔ ∃e ∈ MC(S) ⇔
MC(S) �= ∅. ��

Definition 10. Let S be a cut on G, and let σ = 〈e1, e2, . . . , ek〉 = 〈ei〉ki=1 be a
sequence of edges in S. If en+1 ∈ S� e1� e2� . . .� en for all n ∈ [1, k−1], then
σ is a merging sequence for S.

If σ = 〈ei〉ki=1 is a merging sequence for S, we define S � σ as

S � σ = S � e1 � e2 � . . .� ek . (8)

If C is a set of constraints and en+1 ∈ MC(S � 〈ei〉ni=1) for all n ∈ [1, k − 1],
then σ is valid with respect to C. If MC(S � σ) = ∅ then σ is complete with
respect to C. If σ1 and σ2 are merging sequences for S, we denote by σ1 · σ2 the
concatenation of the two sequences. If σ2 is a merging sequence for S � σ1, it
holds that σ1 · σ2 is a merging sequence for S and S � (σ1 · σ2) = S � (σ2 · σ1).

Theorem 4. Let C be a set of constraints, let S be a cut on G such that S
is not an under-segmentation with respect to C, and let σ be a complete valid
merging sequence for S with respect to C. Then S � σ satisfies C.



Generalized Hard Constraints for Graph Segmentation 43

Proof. Since MC(S � σ) = ∅, it holds by Lemma 1 that S � σ is not an over-
segmentation with respect to C. Since S is not an under-segmentation with
respect to C, it follows from the definition of mergeable edges that S � σ is also
not an under-segmentation with respect to C. ��

If S is a cut on G such that S is not an under-segmentation with respect to a
set of constraints C, then there exists a merging sequence σ for S such that σ is
valid and complete with respect to C. In particular, we can construct such a σ
using the following procedure:

1. Let σ be an empty sequence
2. While MC(S � σ) �= ∅, append an element from MC(S � σ) to σ.

Thus, it follows from Theorem 4 that if S is a cut on G such that S is not an
under-segmentation with respect to C, there exists one or more S′ ⊆ S such
that S′ satisfies C. We define the set Σ(S,C) as

Σ(S,C) = {S′ ⊆ S | S′ satisfies C} . (9)

Note that if S satisfies C, then Σ(S,C) = {S}.

Theorem 5. Let C be a set of constraints, let S ⊆ E be a cut on G such that
Σ(S,C) �= ∅, and let S′ ∈ Σ(S,C). Then there exists a (possibly empty) merging
sequence σ for S′ such that S′ = S � σ and σ is valid with respect to C.

Proof. Consider the following procedure:

1. Let σ be an empty sequence
2. While S � σ \ S′ �= ∅, append an element from S � σ \ S′ to σ.

Since S′ is a cut on G, it holds that S′ ⊆ S � σ at each step of this procedure.
In particular, this holds when the procedure terminates. By then it also holds
that S � σ \ S′ = ∅, and so S � σ = S′. The validity of σ follows from the fact
that S′ satisfies C. ��

Any cut S on G is, by definition, a subset of E. Thus it follows from Theorem 5
that if S satisfies a set of constraints C, then S = E � σ for some merging se-
quence σ, i.e., any cut that satisfies C may be obtained by repeatedly performing
merging operations on mergeable edges in E.

4.2 An Optimal Strategy for Computing Constrained Graph Cuts

In Section 4.1, we established that for any set of constraints C, there exists one
or more cuts that satisfy C. In this Section we are interested in finding cuts,
among all cuts that satisfy C, that represent “good” partitionings of the graph.
Commonly, the goodness of a cut is measured by some function of the weight of
the edges in the cut, i.e., the sum of the edge weights [2], the normalized sum
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of the edge weights [14], or the maximum edge weight [13]. Here, we define the
weight W (S) of a cut S as the latter, namely

W (S) = max
e∈S

(W (e)) . (10)

A cut S is considered to be good if it has a low weight. The relevance of this cri-
terion for image segmentation has previously been demonstrated by others. For
example, the popular fuzzy connectedness method has been shown to optimize
the same criterion in the presence of regional constraints [13]. If S is a cut that
is not an under-segmentation with respect to a set of constraints C, we define
Σ∗(S,C) as

Σ∗(S,C) = argmin
S′∈Σ(S,C)

(W (S′)) . (11)

Since all cuts in Σ∗(S,C) have the same (minimal) weight, W (Σ∗(S,C)) is well
defined even if |Σ∗(S,C)| > 1. We now present a strategy for finding a merging
sequence σ such that E � σ ∈ Σ∗(E,C), i.e., finding a cut S = E � σ for which
W (S) is globally minimal.

Lemma 2. Let C be a set of constraints, let S be a cut on G such that S is
not an under-segmentation with respect to C, and let e ∈ MC(S). If W (e) =

max
e′∈MC(S)

(W (e′)), then W (Σ∗(S � e, C)) = W (Σ∗(S,C))).

Proof. Assume to the contrary that there exists a S′ ∈ Σ(S,C) such that
W (S′) < W (Σ∗(S � e, C)). If W (e) = max

e′∈MC(S)
(W (e′)), then W (S′) < W (e)

and so e /∈ S′. By Theorem 5, S′ can thus be written as S′ = S�σ, where σ is a
merging sequence of the form σ1 · 〈e〉 ·σ2. Since S� σ1 · 〈e〉 ·σ2 = S�〈e〉 ·σ1 ·σ2

it holds that S′ ∈ Σ(S � e, C). This contradicts the assumption that W (S′) <
W (Σ∗(S � e, C)). ��

Definition 11. Let S be a cut on G, let C be a set of constraints, and let
σ = 〈ei〉ki=1 be a merging sequence for S such that σ is valid with respect to C.
If

W (en+1) = max
e∈MC(S�〈ei〉n

i=1)
(W (e)) (12)

for all n ∈ [1, k − 1], then σ is maximal with respect to C.

Following the procedure for constructing a complete valid merging sequence in
Section 4.1, it is straightforward to show that a complete maximal merging
sequence exists for any S and C. From Lemma 2 it follows by induction that if
σ is a merging sequence for S such that σ is maximal with respect to C, then
S � σ ∈ Σ∗(S,C). Thereby, Theorem 6 follows.

Theorem 6. Let C be a set of constraints, and let S1 and S2 be cuts that satisfy
C. If S1 = E � σ, where σ is a maximal sequence with respect to C, then
W (S1) ≤W (S2).
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5 A Practical Algorithm

In this Section, we re-formulate the approach presented in Section 4.2 in terms of
a practical algorithm, listed in pseudo-code in Algorithm 1. Given a set of con-
straints C, the algorithm computes a vertex labeling L such that ∂L ∈ Σ∗(E,C).
The algorithm is based on the observation that, given a vertex labeling such that
each component has a unique label, a merging operation between two adjacent
components is equivalent to replacing all labels in one component with the label
of the other component.

The computational efficiency of Algorithm 1 depends on a number of imple-
mentational choices. Below, we highlight some implementational details that we
have found greatly improves the speed of the algorithm.

Pre-sorting edges. At each step of the outermost loop of Algorithm 1, an
edge with maximum weight is selected (line 4). This can be implemented
efficiently by pre-sorting all edges of the graph in a non-increasing order by
weight. If the edge weights are integer valued, this can be performed in O(|E|)
operations using count sorting. In interactive segmentation applications, this
sorting step need only be performed once, prior to user interaction.

Efficient region merging. A naive implementation of the region merging step
of Algorithm 1 (lines 6–7) involves updating the label of all elements for
which L(z) = L(v). This becomes prohibitively slow even for modestly sized
images. Instead, we have used a look-up table to keep track of the label of
each region. This table maps the initial, unique, label of each vertex to its
label in the final segmentation. Thus, lines 6–7 of Algorithm 1 is replaced
by an operation that can be performed in constant time.

With the above techniques implemented, the most computationally expensive op-
eration within the outermost loop of Algorithm 1 is to check the existence of a
constraint that makes ev,w non-mergeable (line 5). In our current implementation,
this check is performed by iterating over all constraints in C. The outermost loop
is repeated |E| times and so, in total, the algorithm requiresO(|E||C|) operations.

Algorithm 1: Computing minimum weight cuts satisfying generalized
hard constraints.

Input: A weighted graph G = (V, E) and a set C of constraints.
Output: A vertex labeling L such that ∂L ∈ Σ∗(E,C).
Auxiliary: A set of edges E′.

1 Initialize L so that each vertex has a unique label;
2 Set E′ ← E;
3 while E′ �= ∅ do
4 Select an edge ev,w ∈ E′ such that W (ev,w) is maximal;
5 if L(v) �= L(w) and �cx,y ∈ C s. t. L(v) = L(x) and L(w) = L(y) then
6 foreach z ∈ V s.t. L(z) = L(w) do
7 Set L(z)← L(v);

8 Set E′ ← E′ \ {ev,w};
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Fig. 3. Interactive segmentation of the liver in a slice from an MR volume image,
using three different interaction paradigms. All segmentations were computed using
Algorithm 1. (Left) Segmentation using boundary constraints. The black dots indi-
cate graph edges that must be included in the segmentation boundary. (Middle) Seg-
mentation using regional constraints. Black and white dots indicate background and
object seeds, respectively. (Right) Segmentation using generalized constraints. Each
constraint is displayed as two black dots connected by a line. [MRI data courtesy of
Dr. Olof Dahlqvist-Leinhard at CMIV, Linköping University, Sweden.]

6 Conclusions

We have defined graph cuts with respect to generalized hard constraints, and
shown that this new type of constraints include boundary constraints and regional
constraints as special cases. In previous work on supervised graph segmentation,
different computational strategies have typically been required to compute cuts
that satisfy regional and boundary constraints, respectively. This work unifies and
generalizes the two paradigms. Figure 3 illustrates the ability of Algorithm 1 to
handle different types of constraints. We emphasize that while this example shows
segmentation of a 2D image, our results are derived for arbitraryundirected graphs
and thus directly applicable to images of any dimension.

All interactive segmentation methods are subject to variations in user input.
It is therefore desirable for a segmentation method to be invariant to “small”
changes in the set of constraints [1]. Initial experiments indicate that Algorithm 1
indeed satisfies such a property. Note, e.g., that all three segmentations shown in
Figure 3 are identical, despite being computed from different sets of constraints.
In future work, the precise nature of this robustness property will be investigated.

In Section 5, we presented a practical algorithm for computing minimum
weight cuts that satisfy a set of constraints. In future work, we intend to ex-
plore further the computational aspects of the proposed method. In particular,
differential algorithms are of interest [5].
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Abstract. This paper deals with segmentation of image sequences in an
unsupervised manner with the goal of getting highly consistent segmen-
tation results from frame-to-frame. We first introduce a segmentation
method that uses results of the previous frame as initialization and sig-
nificantly improves consistency in comparison to a single frame based
approach. We also find correspondences between the segmented regions
from one frame to the next to further increase consistency. This matching
step is based on a modified version of an efficient partial shape match-
ing method which allows identification of similar parts of regions despite
topology changes like merges and splits. We use the identified matched
parts to define a partial matching cost which is then used as input to
pairwise graph matching. Experiments demonstrate that we can achieve
highly consistent segmentations for diverse image sequences, even allow-
ing to track manually initialized moving and static objects.

1 Introduction

Unsupervised segmentation is one of the fundamental tasks in computer vision
and is an important step for many high-level tasks including tracking, object
recognition and 3D reconstruction. Despite the tremendous progress in the field
of segmentation [5,9,1,8], image segments have not been a popular choice as un-
derlying representation in most areas of computer vision. This is due to the fact
that segmentation is an ill-posed problem and results for images acquired un-
der slightly different conditions (such as different lighting properties, viewpoint
changes or movement in the scene) differ significantly. Mostly minor changes in
image gradients lead to multiple splits and merges of neighboring regions and
therefore most segmentation methods fail to provide consistent regions.

Analyzing region correspondences between two segmented images allows to
improve the consistency [12] but since no a-priori information about the scene is
used, results are still far from being acceptable for most vision tasks. The main
issue is that shape and appearance of regions change significantly for images of
� This work was supported by the Austrian Research Promotion Agency (FFG) project
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scenes obtained from different viewpoints, therefore matching regions in such
images is a highly ill-posed problem.

In this paper we focus on the much easier problem of efficiently segmenting
a sequence of images with the main goal of providing consistent segmentations
throughout the sequence. This has many potential applications in computer
vision like tracking, background substitution, object recognition or video editing.
Please note, that we do not want to directly segment outlines of moving or static
objects in the sequence, since we are not including any high-level cues or a-priori
information. The results are solely intended to serve as pre-processing step for
subsequent high-level vision applications.

In general there are two different directions of research for improving segmen-
tation consistency in image sequences in the literature. First, using interest point
tracks to find region matches and second, composite clustering of pixels from all
frames in the sequence.

Feature-point based approaches use trajectories of interest points to merge
regions with similar motions. Wills et al. [18] detected feature points using the
Foerstner operator and matched them by comparing high-dimensional descrip-
tors obtained by repeated filtering steps. The feature tracks are used to find
similar motion layers in videos. In [11] feature points were tracked and grouped
together by using a variant of the Expectation-Maximization method mainly
for the task of video editing. Common to all these approaches is that interest
point tracks do not directly define the spatial cohesiveness of the underlying ob-
jects. Mostly heuristics have to be applied to assign tracks to regions and strong
assumptions on the scene have to be made to get reasonable results.

Clustering based approaches take all pixels from all frames at once and find
the most appropriate spatial grouping. Each pixel is represented in the (x, y, t)
space and compared to all others by analyzing local descriptors. For example
in [6] the well known Mean Shift approach is used for hierarchical clustering,
analyzing features consisting of color and motion cues. In [17] the video was
represented as a graph and motion profiles were used to define the edge weights.
Connected segments are found by a standard normalized cut method. Recently a
hyper-graph cut method for video object segmentation was proposed [13], which
allows to define more complex edge weights (beyond the pairwise setting) in
graph matching, achieving promising results. But there are two major issues in
these approaches. First, it is difficult to relate the spatial and temporal domain.
Setting a suitable tradeoff between spatial and temporal changes again requires
some knowledge about the scene, for example the amount and size of moving
objects. Second, computation time is also a weak point since clustering in high-
dimensional feature spaces becomes infeasible even for relatively short sequences.

We propose a method that achieves highly consistent segmentation results
for image sequences by repeatedly matching regions between subsequent frames
overcoming the aforementioned limitations. Our method can be applied online
on a live stream from a camera, since we do not need to perform any post-
processing over the entire sequence. Our work has three major contributions.
First, we propose a segmentation method for image sequences which provides
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highly consistent segmentations by using the result of frame t as initialization for
segmenting frame t+1. The method makes use of a fast and accurate geodesic ac-
tive contour algorithm formulated in the weighted total variation framework and
significantly improves over single image consistency. Our second contribution is
an adaption of a recently proposed partial shape matching method which can
be used to obtain partial match costs between regions of subsequent frames. We
propose a novel descriptor analyzing angles between chords connecting sampled
points and corresponding horizontal lines. Finally, we show how to use the ob-
tained partial matching costs in a spectral graph matching formulation. Graph
matching returns a list of many to many correspondences between segments in
consecutive frames and this list is used to merge and split segments. In such a
way we obtain even more consistent results. This step is formulated in a gen-
eral manner, and can therefore be applied to improve any of the available single
image segmentation methods.

The most related work to ours is from Brendel and Todorovic [3] who recently
proposed a video object segmentation method where the results of single frame
segmentation were improved by also analyzing a partial match cost between
segments. But there are some major differences to our work. First, they only use
a single frame segmentation method like mean shift as input and neglect any
analysis about how to improve the main segmentation consistency. For defining
the partial match cost, they apply a partial matching method denoted as cyclic
dynamic time warping which has a runtime of 200ms. In our setup finding the
partial match cost only requires a few milliseconds. Finally, for analysis of the
identified costs for region matching they do a final clustering of all regions from
the sequence by relaxation labeling which requires the entire sequence to be
provided in advance and prevents online processing.

2 Consistent Image Sequence Segmentation

Unsupervised segmentation is one of the most intensively researched topics in
computer vision and many different segmentation methods have been proposed
achieving excellent results on reference data sets like Berkeley [5,9,1,8]. But most
of the methods are very sensitive to slight changes in image conditions and do
not provide consistent segments.

The straightforward idea for obtaining image sequence segmentation is to ap-
ply any of the available segmentation methods independently to every frame.
Of course, such an approach neglects that subsequent frames have many sim-
ilarities that can be exploited to improve segmentation consistency. Another
fundamental idea for image sequence segmentation is to use the segmentation
of frame t as initialization for segmenting the frame t + 1. Unfortunately, it is
often rather hard or even impossible to apply such a scheme to state-of-the-art
segmentation approaches. Our approach utilizes this straight-forward idea and
exploits a recently proposed segmentation method [8] which perfectly supports
the initialization concept.

In [8] an unsupervised segmentation method was introduced which was based
on the main idea of obtaining the final segmentation as a composition of several
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differently focused sub-segmentations. In a first step salient regions are extracted
which highlight the main color and texture distributions of the image. Then, each
of the salient regions is passed to a weighted total variation segmentation method
(TV-Seg), that provides an accurate figure/ground segmentation for each salient
region. Total variation segmentation minimizes a convex energy functional [4]
and therefore returns a global optimal solution. It has proven to be one of the
most accurate figure/ground segmentation methods available. Since each salient
region provides one figure/ground segmentation, these results have to be merged
to one composite image (see [8] for more details).

We extend this concept for segmentation of image sequences. Instead of apply-
ing a salient region detector to obtain the different initializations for the TV-Seg
method, we use results of the previous frame. Each segmented region of frame
t is mapped to the frame t + 1. In our experiments described in Section 4 this
mapping is just a copy of the segment location from frame t to t + 1, but of
course any motion model can be incorporated here. Each of the mapped seg-
ments is then used as salient region input to the total variation segmentation
method for providing a figure/ground segmentation. One important property of
the method proposed in [8] is that, after performing the segmentations for every
salient region, the still unassigned areas in the image are automatically passed
to TV-Seg to also get accurate segmentations in these areas. In such a way, for
example newly appearing objects in the image sequence become also correctly
segmented. Experiments demonstrate that these frame-to-frame segmentation
approach improves the consistency compared to a single image based approach.

3 Frame-to-Frame Segment Matching

To further increase consistency in the sequences we additionally apply segment
matching between subsequent frames. Finding such correspondences between
regions allows to handle the frequently occurring splits and merges of regions
as it is illustrated in Figure 1. Since the global properties of segments change
drastically if merges and splits happen, they cannot be used directly for obtaining
reliable matches.

Similar to [12] we compare similarities between segments in subsequent frames
only in the portions that are common to the segments. To be able to identify the
common parts of the two segments we exploit the properties of image sequences,
assuming that the shape of object outlines does not change significantly from
one frame to the next. Therefore, we use a partial shape matching method to
identify the common parts between two segments. The goal of partial shape
matching in this context is to find all boundary fragments that match between
the segments, i. e. possess a high shape similarity. Please note, that for an entire
sequence we have to compare a lot of different segments, therefore very high
efficiency is required in this step.

This requirement prevents the use of most of the state-of-the-art shape match-
ing methods like [2,15,10] since they require several hundreds of milliseconds per
match. For example, the top performing shape matching method [10] on the well
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known MPEG-7 shape retrieval data set requires half a second per match which
would be too inefficient for our scenario.

This was also outlined in the closely related video object segmentation frame-
work of Brendel and Todorovic [3]. They therefore proposed a cyclic dynamic
time warping (CDTW) method for obtaining the partial matches with quadratic
complexity. The authors state that their method, excluding the segmentation it-
self, requires several seconds to process a frame, with a matching time of 200ms
per segment pair despite using a C implementation. This runtime still seems to
be too slow for an application like image sequence segmentation.

For efficient shape matching we adapt a recently proposed method [7] for
this purpose. This paper introduced a partial shape matching method which
uses sampled contour points as underlying representation and solves an order
preserving assignment problem. Integral images are used as efficient underlying
data structure which enables partial matching within a few milliseconds. This
approach was designed for similarity transformation invariant matching, which
is not directly applicable in our scenario, since the invariance properties lead to
frequent unnecessary confusions in segment matches.

In [7] each shape with N sampled contour points is described by an N×N de-
scriptor matrix containing angles between chords connecting the sampled points.
The invariance of angles to translation and rotation leads to the aforementioned
properties. To make the approach sensitive to rotation (which is desired in our
scenario), one has to find a novel N×N descriptor. The rest of the method stays
exactly the same (see [7] for details).

We propose a novel descriptor for matching which uses angles between sam-
pled points on the segment outline and a hypothetical horizontal line. Let a
segment outline sampled with N points be denoted as B = b1, b2, . . . bN . Our
descriptor Ω is an N ×N matrix where every entry ωij is defined by the angle
between a line connecting the points bi and bj and a hypothetical horizontal line
through bj. Thus, the descriptor matrix Ω consists of angles computed by

ωij = � (
bi bj , bj hj

) ∀i, j = 1, . . . , N , (1)

where hj is the hypothetical horizontal line through bj . For each segment these
angles are calculated over all possible point combinations. The resulting descrip-
tor matrix is non-symmetric, translation invariant and encodes the rotational
orientation, which is strongly in contrast to the descriptor of [7]. Based on this
descriptor, we can apply the same, highly efficient matching scheme with encoded
orientation information.

We now apply this method to obtain the partial matches between the seg-
ments. We use equidistantly sampled points along the segment boundaries as
underlying representation. Since we only want rough partial matches between
segments, it is not necessary to consider all boundary points for matching as it
is also illustrated in the experiments. Matching returns a set of correspondences,
where it is possible that several, not necessarily connected, boundary fragments
are returned as result. Using the provided correspondences we can estimate any
type of transformation (e. g. a thin-plate spline transformation) between the
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matched regions which allows to register the segments to each other. Because we
have an ordered sequence of boundary points, we can easily identify the areas
of the boundaries that are not matched and estimate a connected region by just
drawing a line between the endpoints of the fragments. In such a way we get the
matched parts between the segments for both frames t and t + 1 and can now
easily estimate accurate partial match costs between the segments, for example
by analyzing the color similarity. This step is also illustrated in Figure 1.

Fig. 1. First two columns show segmentation results in subsequent frames with oc-
curring splits. Segments are matched by comparing shape, where matched parts are
highlighted by white sampled points. Last two columns show partial match areas high-
lighted with yellow boundary, which are used to calculate the partial matching cost.

We use the obtained partial match cost to identify many to many correspon-
dences between the segments in a graph matching scenario where we exploit
unary (partial match cost) and pairwise (edge length) potentials.

Each segment is considered as a node of a graph, and neighboring regions
are connected by an edge. Matching regions now equals to finding a binary
assignment vector x∗ of length N1N2 where each entry xia should be one if
segment i of the frame t matches to a segment a of the frame t+ 1 and N1 and
N2 are the number of segments of frame t and t+1 respectively. The assignment
vector is found in a quadratic assignment optimization procedure by maximizing

x∗ = argmax
x

(
xT Ax

)
= argmax

x

∑
Aia,jb xia xjb , (2)

where A is a provided N1N2×N1N2 affinity matrix describing how well a pair of
segments (i, j) in frame t agrees in terms of local descriptors and geometry with
a pair of segments (a, b) in frame t + 1. The affinity matrix A mainly contains
the pairwise potentials and the unary potentials are placed in the main diagonal.
Many different methods have been proposed to solve this NP-hard problem ap-
proximately, mostly by relaxing the discrete problem to the continuous domain
and we apply a spectral method [14] for finding the principal eigenvector of the
affinity matrix A to obtain the solution x∗.

The most important step to obtain a reasonable matching result is the defini-
tion of an appropriate affinity matrix, containing the compatibilities of segments
in subsequent frames. This segment compatibility is based on the identified par-
tial matches between the segments. We define the entries of the affinity matrix
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as a combination of unary potentials measuring the color similarity and pairwise
potentials measuring the difference in edge lengths by

Aia,jb = e
−

(
w1 ε(ci,ca)+w2 ε(cj,cb)+w3

dij−dab
dij+dab

)
, (3)

where ci is a color descriptor of segment i, dij is the distance between the cen-
ter points of the matched segments and w1,w2 and w3 are manually selected
weight parameters. We use n-dimensional color histograms as segment descrip-
tor. Since the two segments to be compared are of approximately the same size
after mapping, we do not need any normalization and can directly use a his-
togram intersection distance ε to define the unary potentials.

Graph matching returns a list of many to many correspondences and this list is
used to merge and split segments in subsequent frames. Experiments prove that
this step further improves segmentation consistency. Please note further, that
the proposed graph matching method based on partial match costs is totally
independent of the underlying segmentation method and can therefore improve
any single image segmentation results.

4 Experiments

Experiments focus on demonstrating the improved consistency of our proposed
method in comparison to the state-of-the-art. In Section 4.1 we first show the im-
proved consistency by using our proposed image sequence segmentation methods
in comparison to three state-of-the-art segmentation methods. In Section 4.2 we
show that the proposed method is also applicable for tracking static and moving
objects through sequences, based on a manual initialization of the object in the
first frame.

In all experiments we used the same parameters as outlined in [8] for the total
variation segmentation method TV-Seg. The distance between sampled points
for partial shape matching was fixed to 10 and the graph matching weights w1

to w3 were all set to the same value 1/3. We implemented the proposed method
in Matlab which enables segmenting an image in a few seconds independent of
the type of initialization. All required frame-to-frame partial segment matches
and the graph matching optimization together only require about 180ms per
frame. Thus, the main computational bottleneck is the segmentation method,
but it has to be pointed out that as e. g. shown by Pock et al. [16] it is possible
to implement Total Variation methods on GPUs, thereby significantly reducing
computation time.

4.1 Evaluating Consistency

Our first experiment shows the improved consistency of our proposed method
in comparison to three state-of-the-art segmentation methods: Mean Shift [5], a
graph based approach [9] and a saliency driven method [8]. We focused on single
image methods because we are not aware of any publicly available approach for
segmenting whole image sequences. Unfortunately, also for the two most related
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Table 1. Comparison of image sequence consistency scores f(S) on different test se-
quences. Best result per video is shown in bold

Video / Method GB [10] MS [5] Sal [8] OurSeq + GM

Video News 70.23% 82.91% 84.96% 86.60% 88.12%
Video Flower Garden 57.64% 62.81% 60.51% 61.45% 64.04%
Video Daria Jack 54.52% 82.14% 92.66% 96.88% 96.88%
Video Dynamic Texture 52.50% 57.79% 76.83% 76.79% 78.98%
Video Cartoon 57.64% 72.59% 76.55% 81.07% 82.06%

methods [3,12] no code is available. We selected five diverse image sequences
for comparison: the well-known flower garden with a moving camera, a static
camera news messenger sequence, a video from an action recognition data set, a
dynamic texture example and a cartoon sequence.

For quantitative comparison of the obtained results we calculate a frame-to-
frame consistency score O (R,Q) by

O (R,Q) =
1
A

∑
Ra

max
Qi

Ra ∩Qi

Ra ∪Qi
, (4)

where R and Q are two segmentation results in subsequent frames, and Ra and
Qi are the corresponding segments, i. e. the consistency score is the mean overlap
score between the segments, assuming R to be the reference segmentation. For
a segmentation of an entire image sequence S it is possible to provide an overall
score f(S) by measuring the mean frame consistency score over the entire se-
quence. Of course, such an evaluation neglects the quality of the segmentations
itself, for example always segmenting each image in one region would yield a
perfect consistency score. Therefore, we parameterized all algorithms to provide
approximately the same number of regions and as can be seen e. g. in Figure 2
all methods return reasonable segmentation results.

Table 1 summarizes the results on the five test sequences for Mean Shift (MS),
Graph Based (GB), Saliency Segmentation (Sal), our extended segmentation
method described in Section 2 (OurSeq) and the results for additionally acti-
vated graph matching (OurSeqGM) as described in Section 3. Results show that
the saliency driven segmentation method [8] yields the most stable segments.
Adding our initialization concept as described in Section 2 improves results on
average about 2%. Additionally, activating graph matching as described in Sec-
tion 3 provides another improvement of one percent. Although this quantitative
improvement seems to be small, several wrong splits and merges are corrected,
as it is also demonstrated in the tracking application presented in Section 4.2.
Figure 2 furthermore shows selected frames from the news messenger sequence
for the compared methods. Each segment is mapped to its mean RGB value to
be able to identify wrong merges and splits easily. As can be seen the improved
consistency using our proposed approach is visually much more appealing.
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(a) News messenger sequence (b) Dynamic texture sequence

Fig. 2. Direct comparison of image sequence segmentation results using Felzenszwalb’s
method [9] (first row), Mean Shift [5] (second row) and results of our proposed method
(last row). Each obtained segment is mapped to its mean RGB color to be able to
visually demonstrate improved consistency (best viewed in color).

Table 2. Comparison of image sequence consistency scores f(S) on different test se-
quences. GM denotes activation of the proposed graph matching step which merges
and splits several regions to improve consistency.

Video / Method GB [10] + GM MS [5] + GM OurSeq + GM

Video News 70.23% 70.99% 82.91% 83.72% 86.60% 88.12%
Video Flower Garden 57.64% 60.82% 62.81% 63.71% 61.45% 64.04%
Video Daria Jack 54.52% 56.04% 80.99% 82.96% 96.88% 96.88%
Video Dynamic Texture 52.50% 54.19% 57.79% 60.03% 76.79% 78.98%
Video Cartoon 57.64% 59.78% 72.59% 74.71% 81.07% 82.06%

The graph matching approach presented in Section 3 is independent of the un-
derlying segmentation. Therefore, we also made experiments concerning possible
improvements using other underlying segmentations. These results are shown in
Table 2 and again demonstrate improved consistency.

Since we only apply a frame-to-frame segment correspondence analysis, drift-
ing might be an important problem. We do not notice severe drifting problems
in our tested image sequences. A simple test to verify this visual insight is to
apply our method also on the image sequence in reversed order (starting at the
last frame) and compare the segmentation differences between the results for
standard and reversed ordering. For quantitative evaluation we calculated the
frame-to-frame consistency score as explained in Equation 4, this time compar-
ing the segmentations of the same frame obtained in standard versus reversed
ordering. On average we get a consistency score of 84.48%, which illustrates that
no severe drifting effects take place.

4.2 Object Tracking

We further demonstrate the benefit of the proposed partial matching cost based
graph matching step by using our method in a tracking scenario. We initialize a
tracker by segmenting the first frame of the sequence and by manually merging
regions that belong to the object-to-be-tracked.
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Using this initialization as input, we apply the same methods as described in
the previous sections, but this time constraining the graph matching to one-to-
many matches. Our method finds the combination of segments in the subsequent
frame that best fits to the initialization, which allows tracking the defined object
throughout the sequence. To avoid major drifting effects we only update our
reference segmentation when the graph matching step improves the frame-to-
frame consistency.

Such a tracking approach enables quantitative evaluation of the segmentation
accuracy by comparing obtained results to ground truth. We use the publicly
available Weizmann database, which is commonly used to evaluate action recog-
nition methods. This data set provides binary segmentations per frame for all
videos. We selected three videos showing different actions and initialized our
tracker in the first frame manually. On average, segmentation accuracy was
48.44% for Mean Shift [5], 53.37% for Felzenszwalb’s method [9] and 70.12%
for our proposed graph matching approach. The performance gain of approxi-
mately 20% comes from the fact that in single image based segmentation often
the upper body part, the face and the legs are split which are correctly merged
by our proposed method. In Figure 3 we directly compare results to the two most
related image sequence segmentation methods of [12,3] showing improved results
due to our proposed graph matching verification. Further results and exemplary
videos can be found at our homepage1.

(a) Input Image (b) Brendel [3] (c) Hedau [12] (d) Proposed

Fig. 3. Direct comparison on Weizmann sequence to most related methods of [12,3]

5 Conclusion

This paper introduced an unsupervised method for segmenting image sequences.
We first described a method obtaining highly consistent segments exploiting the
similarities between subsequent frames. A second contribution showed that ef-
ficient partial shape matching exploiting a novel angle based descriptor allows
finding similar parts between segments and the definition of a partial match cost.
These costs are used to find correspondences between segments in subsequent
frames in a pairwise graph matching step for handling the repeatedly occurring
splits and merges of segments. This graph matching extension is formulated in a
general way and can be applied to any available segmentation method, improving
the overall sequence consistency. Experimental evaluation demonstrated the im-
proved performance on diverse videos and an application for tracking manually
initialized objects through sequences.
1 http://vh.icg.tugraz.at

http://vh.icg.tugraz.at
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Abstract. Video segmentation or matting, the separation of foreground objects
from background in video sequences, is a demanding task and is needed for a
broad range of applications. The most widespread method for video segmentation
is chroma-keying using a known background color for which a controlled envi-
ronment is required. Recently a different method of keying fore-and background
has been proposed in which the chroma-keying is replaced by depth-keying us-
ing a Time-of-Flight (ToF) camera. The current ToF-cameras suffer from noise
and low resolution sensors, which results in unsatisfying segmentation results.
We propose to combine the segmentation of dynamic objects in depth with a seg-
mentation in the color domain using adaptive background models. We weight the
two measures depending on the actual depth values using either the variance of
the depth images of the ToF-camera or the amplitude image of the ToF-camera
as reliability measure. We show that both methods significantly improve the seg-
mentation results.

1 Introduction

Today, television content as well as movie content contains a significant amount of ar-
tificially composed scenes. To generate such scenes with a mixture of real and artificial
content the real foreground objects have to be separated from the background. The most
common and reliable method for this segmentation task is to use chroma-keying tech-
niques with a known background color as described in [6]. Wang and Cohen [8] give a
very good overview of the field of matting and segmentation for still images and extend
the discussion to video streams. In their survey they discuss many different approaches
such as Poisson Matting, Graph Cut Matting, Baysian Matting, Random Walk matting
and others. A combined segmentation approach based on depth from stereo and color
using Mixture-of-Gaussians was presented by Gordon et al. in [4], in which all pixels
detected by either color or depth are considered foreground. The usage of active dis-
tance measurement devices providing interactive frame-rates for segmentation has first
been introduced by Gvili et al. in [5] and was extended in [1] to segment dynamic ob-
jects with a Time-of-Flight (ToF)-camera [10]. Crabb et al. [2] propose the generation
of a Trimap from ToF-depth and use Cross-Bilateral filtering for segmentation. They
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however miss to show results of more challenging scenes so that a real evaluation is not
possible. Zhu et al. [11] use a combination of stereo and ToF-camera for video matting
which shows promising results. The complexity of the approach however does not allow
real-time usage. Gong et. al [3] very recently extended the Poisson Matting approach
for the usage of additional ToF-depth images using Trimaps. In contrast to their work
and most other recently proposed methods, no Trimaps are required in our proposed
segmentation algorithm.

The use of a ToF-camera that delivers depth for each pixel facilitates object segmen-
tation, because depth is invariant to changing scene illumination and object shadows.
However, ToF depth images typically have low resolution compared to color CCD im-
ages, hence a combination of depth and color segmentation is desirable. In our system
we combine a ToF-camera (204 × 204 pixel) with a color CCD-camera (1600 × 1200
pixel) (see figure 1 (a)) by warping the depth data into the CCD video stream using
the approach described in [1]. We propose to combine segmentation of depth measure-
ments by a ToF-camera with the foreground detection by Mixture-of-Gaussians (MoG).
We adaptively weight the two modalities dependent on the current reliability of the
depth measurement. To determine the reliability of depth measurements we compare
the usage of the depth variance and amplitude image. We argue that the two methods
mutually improve the deficits of the other and with the proposed weighting it is possible
to significantly improve the segmentation results.

(a) (b) (c)

Fig. 1. The capturing system (a) with a CCD camera above a PMDTec CamCube ToF-camera.
Averaged background CCD- (b) and depth- image (c). Brighter values indicate bigger distances.

2 Segmentation

In this section we discuss the segmentation of foreground objects using depth thresh-
olding and the Mixture-of-Gaussians method which we also extend to a forth depth
channel. Finally we introduce our proposed method which adaptively weights color
and depth clues.

2.1 Segmentation by Depth Keying

The most obvious way to detect moving objects is to compare a background depth
image of the scene and the current depth image delivered by the ToF-camera. The
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background depth can be created by averaging several ToF-images (see figure 1). In
the segmentation phase the depth z(x) of every pixel x of a ToF-image is compared
to the background image pixel’s depth zb(x) and if: z(x) < zb(x) − τ the pixel x is
classified as foreground or moving object (τ is a threshold).

The keying is executed on the GPU using shaders in the domain of the CCD-camera.
Figure 2 shows the depth- (a) and corresponding CCD-image (b) with a person in
the scene. Image (c) shows the keying result on the depth image and (d) shows the
corresponding color result. This simple keying approach has one main limitation: the
segmentation is not very precise at object boundaries due to noise and the low depth
resolution. Therefore an improved segmentation at object boundaries is needed.

(a) (b)

(c) (d)

Fig. 2. Warped depth image with person (a), Corresponding CCD image (b), depth segmented
image (c) and corresponding CCD image (d)

2.2 Segmentation by Mixture-of-Gaussians

A well-known method for segmentation is Mixture-of-Gaussians (MoG). The detection
of dynamic objects in a scene using an adaptive background mixture model relates to
the work of Xu et al. [9] and Stauffer et al. [7]. They describe a method that uses
multiple Gaussian distributions to model each pixel of an image. An intensity image
is defined by the three color channels in RGB space F = (FR, FG, FB). Assuming
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that no channel is saturated this representation can be transformed into a normalized
form f = (fr, fg, fb) with e.g. : fr = FR/

√
F 2

R + F 2
G + F 2

B . It is concluded that it is
appropriate to model each fk ∈ f using a Gaussian distribution and the probability of
observing a value ft = (fr,t, fg,t, fb,t) at a pixel at time t is therefore given by:

P (ft) =
N∑

i=1

ωi,t
1√

2πσi,t

e
− (ft−μi,t)2

2σ2
i,t (1)

where N is the number of distributions, ωi,t is a weighting factor for each distribution,
σ2

i,t are the variances and μi,t the mean of the Gaussian distributions. Initial values for
variance σ2

0,0 and mean μ0,0 are determined over a small image region Δx. A pixel is
classified as belonging to a distribution i if:

||ft − μi,t−1|| < cσi,t−1, (c ≈ 3) (2)

and the parameters are updated accordingly. The weights ωi,t(x) are increased while the
weights of the not matched distributions ωj,t(x) are decreased. If the current pixel does
not match any of the existing distributions a new distribution is generated, and if the
number of distributions exceeds a maximum (we allow 3 background distributions), the
distribution with the lowest weight is deleted. In our implementation we record about
50 images of the empty scene and build the background distributions. After that the
update of the background distributions is disabled and only the distances (see equation
(2)) to the background distributions are computed. The average distance of a pixel x to
the background distributions is the color weight and denoted c(x) in the following.

(a) Depth (b) MoG (rgb) (c) MoG+Depth (rgbd)

Fig. 3. MoG segmentation result: The color segmentation easily under- or over-segments fore-
ground objects (a), (b). MoG with depth as fourth channel improves the result, but borders remain
erroneous (c).

Figure 3 (a) and (b) shows a segmentation result if only the Mixture-of-Gaussian
on color is used as segmentation clue. It can be seen that the algorithm tends to either
under- or over-segment the person, especially if a challenging scene is chosen with
many shadows and colors similar to the background.
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2.3 Combining Color and Depth

From the results of the depth- and MoG- segmentation we conclude that a combination
of the two approaches will improve the segmentation. The crucial decision is, which
segmentation is more likely to be correct and if the two approaches deliver different
results which one to trust. The first intuitive possibility is to add the depth information
as forth channel to the MoG on color images. The vector on which the distributions are
defined is then formed by the three color channels in rgb space and the depth value d
as combined rgbd space: f = (fr, fg, fb, d). Figure 3 (c) shows that this can compen-
sate some of the shortcomings of the pure MoG segmentation, but the borders of the
foreground person are still erroneous.

Therefore we propose to use a reliability measure for depth information in the seg-
mentation. We evaluate two different approaches as reliability measure. The first
(method A) is the usage of the variance in depth and the second (method B) is the
usage of the amplitude information provided by the ToF-camera. The amplitude image
quantifies the amount of light that is reflected from the object to the camera. The higher
the values the more reliable is the measurement. At object discontinuities less light is
reflected due to scattering effects. Therefore we use the inverse of the amplitude image
to enable its usage in the same way as the variance image.

Discontinuities in method A are detected by analyzing the variance in the original
depth image. High variances are marked as shown in figure 4 (a). To be able to com-
pare the different modalities they have to be normalized. The current depth difference
d(x) = z(x) − zb(x) is normalized between the minimum dmin and the maximum
depth difference dmax in that image and in the same way the weight of the color fore-
ground pixels c(x) is normalized between the minimum and maximum color weights
cmin and cmax:

d̂(x) =
d(x) − dmin

dmax − dmin
ĉ(x) =

c(x) − cmin

cmax − cmin
(3)

The variance and inverted amplitude values are also normalized between zero and one
to be comparable to the other measurement weights d̂(x) and ĉ(x), and denoted the
normalized uncertainty v̂(x). In areas in which the depth uncertainty is high, the depth
measurement is considered unreliable. Therefore we weight the normalized depth dif-
ference d̂(x) with the uncertainty v̂(x), resulting in an uncertainty filtered depth d̂v(x)
which is scaled between zero and one dependent on the uncertainty. In contrast to that
is the color more reliable if the depth uncertainty is high. Therefore the color weight
ĉ(x) is multiplied with the depth uncertainty v̂(x) and added to the color weight. The
result is that if the depth uncertainty is high the color weight is weighted even higher
while at the same time the uncertainty filtered depth is weighted lower. To consider all
measures in an adequate manner the following equations are proposed:

d̂v(x) = (1 − v̂(x))d̂(x) (4)

ĉv(x) = (1 + v̂(x))ĉ(x) (5)

ŝ(x) =
1
2
(d̂v(x) + ĉv(x)) (6)
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(a) (b) (c)

(d) (e)

Fig. 4. Weighting images:(a)+(b) variance weight image and amplitude image (uncertainty) v̂(x),
(c) variance weighted depth difference d̂v(x), (d) MoG weight ĉ(x) and (e) combined weight
image ŝ(x)

Figure 4 shows the weighting images of the proposed approaches. Image (b) shows
the inverted normalized amplitude image, (c) the normalized variance weighted depth
image, (d) the weighting image of the MoG and the combined weighting image ŝ(x).
Brighter values indicate higher weights. It is clearly visible that the color segmentation
gains more importance on fine structures such as the hands and the feet of the person.
For finally composing the image C (see images in figure 7), we use blending between
foreground F and background color B with ŝ(x) the matting alpha:

C = ŝ(x)F + (1 − ŝ(x))B (7)

3 Results

The approaches are evaluated with the depth maps warped to the domain of the color
camera. Two images have been labeled by hand (see figure 5 (a) and (b)) to allow quan-
titative evaluation. We chose challenging examples in which colors of the background
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(a) (b) (c)

Fig. 5. Manually labeled silhouette images for quantitative evaluation in tables 1 (a) and 2 (b). (c)
shows the to (b) corresponding color image and (a) corresponds to the images in figure 2.

(a) MoG with variance
weighted depth

(b) MoG with amplitude
weighted depth

Fig. 6. Segmented images, corresponding to table 1: (a) Proposed method A, (b) proposed method
B. Note the increased segmentation quality at the borders, especially at the top of the person.

are also present in the foreground and in which we try to distinguish a person from the
floor it is standing on. Tables 1 and 2 show the evaluation results of the segmentation for
the different approaches. The tables compare the number (#) of matching pixel, which
describes how many pixel have been correctly identified as fore-or background, how
many false positives (detected as foreground, but belonging to background) and how
many false negatives are produced by the different approaches. The computed matte
values ŝ(x) have been thresholded for this purpose to obtain a binary segmentation re-
sult with ŝ(x) > 0.1. Percentages of matching pixel are relative to the number of pixel,
percentages of false positives, false negatives and the total error are given relative to the
number of foreground pixel.
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Table 1. Segmentation evaluation for image (a) of figure 5. The image consists of 225000 pixel
of which 18087 have been manually selected as foreground.

Approach Matching False False Total error
pixel #/% positives #/% negatives #/% #/%

Depth 223125 / 99.167 1542 / 8.287 333 / 1.79 1875 / 10.076
MoG 221207 / 98.314 2320 / 12.468 1473 / 7.916 3793 / 20.384

MoG+Depth 222098 / 98.710 2680 / 14.402 222 / 1.193 2902 / 15.595
Proposed Method A 223782 / 99.459 599 / 3.219 619 / 3.327 1218 / 6.546
Proposed Method B 223782 / 99.471 561 / 3.015 630 / 3.386 1191 / 6.4

Figure 7 shows the segmentation results of the combined approach. At some partic-
ular difficult points, in this example the shoes of the person, the segmentation is not
entirely correct, because the similarity between the white shoes and the gray floor is too
high after color normalization. The improved segmentation is clearly visible at hands,

Fig. 7. Final results blended with background image and with black background using equation
7. Some of the improved regions are marked and enlarged.
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Table 2. Segmentation evaluation for image (b) of figure 5. The image consists of 225000 pixel
of which 20859 have been manually selected as foreground.

Approach Matching False False Total error
pixel #/% positives #/% negatives #/% #/%

Depth 221054 / 98.246 3512 / 16.837 434 / 2.081 3946 / 18.918
MoG 221128 / 98.280 1944 / 9.320 1928 / 9.243 3872 / 18.563

MoG+Depth 221522 / 98.454 3300 / 15.821 178 / 0.853 3478 / 16.674
Proposed Method A 222704 / 98.980 1955 / 9.372 341 / 1.635 2296 / 11.007
Proposed Method B 223297 / 99.243 1375 / 6.592 328 / 1.572 1703 / 8.164

hair, the silhouette and feet of the person. Tables 1 and 2 show a quantitative evaluation
of the different approaches. It can be clearly seen that our proposed method outperforms
the other methods. The proposed method B, which utilizes the amplitude images of the
ToF-camera as reliability measure, performs better than the proposed method A.

Our current implementation is not optimized for speed, but to quantify the possibil-
ities we will give some numbers of the current implementation. The current algorithm
operates at 7 Hz on a standard Intel Core i7 PC. Warping the depth to the CCD image
takes ≈ 20ms, applying MoG to a color image takes ≈ 140ms and segmenting the im-
age on the GPU takes ≈ 20ms including uploading the images to textures and readout
of textures to images. At the moment we use two shader passes which can be reduced
to one. MoG, the limiting factor, is currently executed on the CPU, parallel to the final
segmentation. Transferring it to the GPU will significantly speed up the process.

4 Conclusions

We proposed a combined color and depth segmentation approach using a ToF-camera
for depth- and Gaussian-Mixture-Models for color segmentation. Our contribution is
the combination of the two approaches using the amplitude image of the ToF-camera
or the depth variance as reliability measure for the depth measurements which signif-
icantly reduces segmentation errors on fine structures and image areas in which fore-
and background meet. The approach is real-time capable as the depth segmentation and
the evaluation of the combined weighting function is processed on the GPU. The refined
segmentation requires, unlike other methods, no user interaction such as the selection
of a coarse outlining of the foreground object. With these qualities the approach is well-
suited for a variety of applications such as Mixed Reality approaches, teleconferencing
systems or virtual studios.
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Abstract. In this work, the effect of introducing Sparse Principal Com-
ponent Analysis within the Similarity-based Fisherfaces algorithm is
examined. The technique aims at mimicking the human ability to dis-
criminate faces by projecting the faces in a highly discriminative and
easy interpretative way. Pixel intensities are used by Sparse Principal
Component Analysis and Fisher Linear Discriminant Analysis to assign
a one dimensional subspace projection to each person belonging to a
reference data set. Experimental results performed in the AR dataset
show that Similarity-based Fisherfaces in a sparse version can obtain the
same recognition results as the technique in a dense version using only
a fraction of the input data. Furthermore, the presented results suggest
that using SPCA in the technique offers robustness to occlusions.

Keywords: Face recognition, Sparse Principal Component Analysis,
Fisher Linear Discriminant Analysis, Biometrics, Multi- Subspace
Method.

1 Introduction

Recognizing a face is an important everyday task for human interaction. It is
a skill we acquire before we can walk, and we are able to perform it with high
accuracy using little or no effort. Due to the importance of this skill, machine
aided face recognition is one of the most researched fields in image analysis.
However, results reported in literature suggest that facial recognition still lacks
the performance that a human operators can achieve.

In the last two decades, as advanced spectral techniques have emerged, there
have been a gradual shift of the research on face recognition from geometri-
cal towards spectral analysis. Such methods include the unsupervised method
Eigenfaces [1,2] and the supervised method Fisherfaces [3]. Later on, related
techniques have been proposed aiming at obtaining better classification results
by developing more discriminative projections [4,5]. Most supervised methods
in the literature today try to project the face representation into a subspace
where a measure of global separation is maximized. However, the proposed al-
gorithm in this paper tries to project the face representation into a series of
one-dimensional subspaces where one person (class) is discriminated from all
others in the population.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 69–78, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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By solving the problem in a series of subspaces, this algorithm makes the
enrollment or removal of a person easy. It is not needed to recalculate all of the
existing individual subspaces when changes to the population are made. When
a new person is introduced, simply a new individual subspace is added. If a
person has to be removed from the database, it is only needed to remove the
corresponding individual subspace.

In this article the algorithm of Similarity-based Fisherfaces proposed in [7] is
extended by introducing Sparse Principal Component Analysis (SPCA) into the
recognition algorithm. The terms dense and sparse will be used to differentiate
between standard Principal Component Analysis (PCA) and SPCA.

The structure of the paper is as follows. Section 2 describes the algorithm
to construct the sparse similarity-based face representation. Section 3 presents
results that show the discriminative power of using SPCA versus PCA in Sparse
Similarity-based Fisherfaces and its ability to discover the individuals most dis-
criminative characteristics. Section 4 gives a discussion and conclusion for Sparse
Similarity-based Fisherfaces.

2 Algorithm Description

The proposed algorithm builds upon SPCA [10] and Fisher Linear Discriminant
Analysis (FLDA) [3].

However, unlike traditional FLDA, which maximizes a global measure of class
separation1, it obtains a one-dimensional individual linear subspace for each
person (class) enrolled in a training database. The value of the projection of
each sample (face representation) projected into this subspace aims at measuring
the similarity of the sample with respect to that person for whom the subspace
was created. Following, the proposed algorithm is briefly described. For a better
understanding, Fig. 1 displays a diagram of the algorithm.

2.1 Obtaining the Texture Formulation

Face Recognition can be conducted using several types of features such as ge-
ometrical and textural2. In this work, visible texture features are used. The
texture features are obtained by a piece-wise affine warp based on the Delaunay
triangulation of the mean shape. Hereafter, the texture is normalized to zero
mean and unit variance.

When the facial feature representations has been obtained, these are projected
into a SPCA feature space to remove redundancy. There are different ways to
formulate the SPCA objective function [9,10]. In this study the generalized power
method for SPCA formulation is used as described in [10]

φ�0(γ) = max
x∈SP

n∑
i=1

[(aT
i x)

2 − γ]+. (1)

1 In a subspace of dimensionality ”Number of classes” minus one.
2 Textural features can be recovered from any spectral range (E.g. visible or infrared).
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Fig. 1. Algorithm overview. SPCA and FLDA is used in turn on the population to be
enrolled, in order to obtain the Sparse Similarity-based Fisherface representations.
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Formulation (1) yields a single Sparse Principal Component (SPC). In order to
obtain more than one SPC, (1) is used iteratively by means of deflation. Deflation
is obtained as follows: when a new SPC is obtained its variation is removed from
the populations variance before obtaining the next SPC. The advantage of this is
that the resulting SPC number k will be nearly orthogonal to the k− 1 previous
computed SPC.

The γ parameter controls the sparsity of the solution in such a way that the
size of γ will move the SPCA solution between the two extremes: a full PCA and
the zero solution. It depends on the application whether sparsity or explained
variance is valued.

2.2 Creating the Individual Subspaces

After the face representations have been projected into the SPCA feature space,
a second projection using FLDA for each individual in the database is conducted
to build a personalized subspace for each of them. This subspaces are obtained
discriminating each individual with respect to all others.

A standard FLDA projects the data samples into an F-dimensional subspace
so that, it maximizes the ratio of the between-class scatter to the within-class
scatter. The dimensionality F of this subspace is equal to the minimum of n -
1 and m - 1, where n is the number of variables and m is the total number of
people (classes). The projection matrix W is found by maximizing the ratio

WTSBW

WTSWW
, (2)

where SB and SW are the between-class scatter and the within class scatter
matrices, respectively. The projection vectors of this matrix W correspond to
the eigenvectors associated to the non-zero eigenvalues of the matrix S−1

W SB.
In this case of two classes FLDA returns a one dimensional subspace for each

individual. For a more formal discussion of FLDA and Individual Subspaces
see [7].

2.3 Classification

To turn the obtained projections into measurements of similarity a standard-
ization is applied. The standardization of model i = 1, . . . ,m is based on two
assumptions. First, the number of observations for person i is much smaller than
the number of the observations of all other people. Second, the projection of the
other people follows a Gaussian distribution. These two assumptions imply that
the distribution of all the projected facial images on a particular discriminative
individual model is a Gaussian distribution with outliers. The standardization of
model i is then achieved by transforming the projections into a standard Gaus-
sian distribution, keeping the projections of the person i positive. Formally, let
x̄i be the mean of the projections on model i, σi the standard deviation, and
let xi,j be the projection of face representation j in the ith subspace. These
projections are standardized by

x̂i,j = (xi,j − x̄i)/σi. (3)
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If the standardized projection for the images corresponding to person i are nega-
tive, then x̂i,j are replaced by −x̂i,j for all projections. This causes the projection
of the images corresponding to person i to be positive and far from the mean of
the gaussian.

Once the model i is standardized, the probability of a projected image to
belong to person i is given by the value of the standard normal cumulative
function in the projected value. This fact is used to classify a given image. If it
is assumed that the image belongs to a person from the data set, the image is
projected by all the models and classified as belonging to the model that gives
the largest probability. Moreover, it is also statistically possible to decide if a
given person belongs to the data set or it is unknown. This can be achieved by
comparing the largest projection obtained in all the models with a probabilistic
threshold. For example if a 99.9% of probability is required, a given image will
only be considered as belonging to the database if the projection in one of the
individual models is higher than 3.1 standard deviations.

3 Experimental Results

In this article two experiments are presented. The first experiment aims at deter-
mining classification rates of sparse vs. dense versions of Eigenfaces, Fisherfaces
and Similarity-based Fisherfaces, together with a visualization of Sparse Princi-
pal Components. The second experiment analyzes and visualizes which are the
most discriminating pixels in a face image based on the algorithm for Sparse and
Dense Similarity-based Fisherfaces.

3.1 Classification Accuracy

This experiment aims at comparing the performance of SPCA and PCA in the
proposed method with respect to Fisherfaces and Eigenfaces method in terms
of false classification rates. Both PCA and SPCA versions of Fisherfaces and
Eigenfaces will be used in this experiment.

As data set for this study 50 persons (25 male and 25 female) was randomly
selected from the AR face database [8]. The database is composed of two in-
dependent sessions recorded 14 days apart (Only images without occlusions is
used). An example of the selected images for two persons is displayed in Fig. 2.
All the images were manually annotated with 22 landmarks.

The data set was divided into two sets. The images of the first session were
used to train the algorithms, whereas the images from the second session were
subsequently used to test the performance. In order to obtain the texture repre-
sentation of each face in the training set, the different images were warped with
respect to the mean shape, represented by 41339 pixels. These representations
was normalized to zero mean and unit variance.

In the Fisherface and the Eigenface algorithms the Nearest-Neighbor algo-
rithm with Euclidean metric was used as classifier. In the proposed method the
classification is performed in such a way; that a given face image is recognized
as the person associated to the subspace that yields the highest probability.
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(A) (B)

Fig. 2. The AR data set: (A) The seven images without occlusions from first session,
(B) The seven images without occlusions from the second session.

The test was repeated a second time changing the roles of the training and
the test sets: session two was used as training data and session one as test data.

Determine γ for Use in SPCA. Considering the formulation for SPCA (1) it
can be determined that as γ goes to zero the SPCA goes to a full PCA solution.
As described before, the process of choosing γ is not trivial and depends on the
problem at hand, whether a more dense or sparse solution to SPCA is wanted.
After performing exploratory experiments with different values of γ the value of
γ = 0.003 was chosen as a good value for this problem. It is beyond the scope of
this paper to analyze methods for determining an optimal γ for a given problem.
The value of γ = 0.003 is used for the experiments in this study.

The false classification rates for the different techniques are shown in Fig. 3,
where these rates are plotted as a function of using the first i PC/SPC. The
figure shows rates up to the first one hundred PC/SPC.

To analyze the effect of the light variance, another test was conducted where
the three pictures containing extreme light of each person in the test and train-
ing set was removed. This reduces the inner class variance, due to lighting
noise. Any method for postprocessing could be used for removing light variation.
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Fig. 3. False classification rates for Eigenfaces, Fisherfases and Similarity-based Fish-
erfaces with extreme light variation. (A) displays the Dense versions, (B) displays
the Sparse versions. The rates are plotted as a function of using the first i PC/SPC,
i = 1 . . . 100.
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Fig. 4. False classification rates for Eigenfaces, Fisherfases and Similarity-based Fish-
erfaces without extreme light variation. (A) displays the Dense versions, (B) displays
the Sparse versions. The rates are plotted as a function of using the first i PC/SPC,
i = 1 . . . 100.
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Fig. 5. Visualization of the first 28 Sparse Principal Components from the experiment
(A) with extreme light variation (B) without extreme light variation.

However, for simplicity the images are simply removed in this study. The new
false classification rates for the different techniques are shown in Fig. 4. The SPC
can be seen in Fig. 5 for the two experiments with and without extreme light,
respectively.

From Fig. 3 it can be seen that the Sparse versions of Fisherfaces and Similarity-
based Fisherfaces obtain similar recognition results as the Dense versions with
only using a fraction of the input data. In Fig. 4 it can be seen that Sparse
Similarity-based Fisherfaces preforms even better than the Dense version when
large variance in the sample population due to inner class variance noise is mini-
mized (removing light variation). The false classification rates for the first 25, 50
and 100 PC/SPC in Table 1 and Table 2 for the different techniques with and
without extreme lighting, respectively.
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Table 1. False classification rates for Eigenfaces, Fisherfases and Similarity-based Fish-
erfaces with extreme light variation. The rates are shown for the first 25, 50 and 100
PC/SPC, respectively.

Method
Dense version Sparse version

25 PC 50 PC 100 PC 25 SPC 50 SPC 100 SPC

Eigenfaces 29% 19,4% 15,6% 29,7% 23,9% 21,7%
Fisherfases 11,9% 4,6% 2% 11,3% 4,6% 2,6%

Similarity-based Fisherfaces 14% 4,6% 1,4% 13,7% 4,3% 2,7%

Table 2. False classification rates for Eigenfaces, Fisherfases and Similarity-based Fish-
erfaces without extreme light variation. The rates are shown for the first 25, 50 and
100 PC/SPC, respectively.

Method
Dense version Sparse version

25 PC 50 PC 100 PC 25 SPC 50 SPC 100 SPC

Eigenfaces 13% 9,4% 8,4% 12,4% 9,8% 8,4%
Fisherfases 5,8% 1,4% 1% 3,6% 1,8% 0,2%

Similarity-based Fisherfaces 3,8% 2% 0,2% 3,2% 1,8% 0,6%

3.2 Discriminative Pixels

An interesting property of the proposed algorithm is that it is possible to deter-
mine which are the most discriminative features of a given person. The 10, 15
and 25% discriminative pixels corresponding to the highest weights in the model
are displayed (in red) in Fig. 6 for Sparse and Dense Similarity-based Fisher-
faces respectively. It is clear that important discriminating features include eyes,

Person nr: 6 10% 15% 25%

Person nr: 19 10% 15% 25%

Person nr: 34 10% 15% 25%

Person nr: 43 10% 15% 25%

Person nr: 6 10% 15% 25%

Person nr: 19 10% 15% 25%

Person nr: 34 10% 15% 25%

Person nr: 43 10% 15% 25%

(A) (B)

Fig. 6. The 10, 15 and 25% discriminative pixels displayed in red for (A) Similarity-
based Fisher and (B) Sparse Similarity-based Fisherfaces
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noses, glasses, moles and beards. Notice that the Dense algorithm detects the
glasses and the mole of person 43 in Fig. 6 as discriminative features, whereas
the Sparse algorithm does not do this to the same degree. This suggests that
the Sparse method will be more robust giving the same result no matter if the
person is wearing glasses in one picture and contact lenses in another.

4 Discussion and Conclusion

In this work, the effect of introducing Sparse Principal Component Analysis
within the Similarity-based Fisherfaces algorithm are examined. Both the dense
and sparse version of Similarity-based Fisherfaces aims at being a precise and
robust algorithm that can be incorporated into biometrical security systems.

Experimental results in this study have shown that the technique in a sparse
version can obtain the same recognition results as the technique in a dense
version (presented in [7]) with only a fraction of the input data.

Furthermore, the presented results suggest that using SPCA in the technique
offers robustness to occlusions. The discriminative pixels are not primarily fixed
on naturally occurring occlusions in the face (Glasses, molds etc.), whereas for
the dense version of the algorithm they are. This point needs to be examined in
detail in future work.

Moreover, just as the dense version, the sparse version also allows for a simple
interpretation of the results in the final one-dimensional individual subspace.

Another interesting property of the proposed algorithm is that by solving
the problem in a series of subspaces, this algorithm makes the enrollment or
removal of a person easy. It is not needed to recalculate all of the existing indi-
vidual subspaces when changes to the population are made. When a new person
is introduced, simply a new individual subspace is added. If a person has to
be removed from the database, it is only needed to remove the corresponding
individual subspace.
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1 Mærsk Mc-Kinney Møller Institute,
University of Southern Denmark, Odense, Denmark

http://www.mmmi.sdu.dk/covig/
2 Department of Architecture, Design & Media Technology,

Aalborg University, Denmark
3 Centre for Vision, Speech and Signal Processing,

University of Surrey, United Kingdom

Abstract. We present a temporal accumulation scheme which disam-
biguates different kinds of visual 3D descriptors within one coherent
framework. The accumulation consists of a twofold process: First, by
means of a Bayesian filtering outliers become eliminated and second, the
precision of the extracted information becomes enhanced by means of
an unscented Kalman filtering process. It is a particular property of our
algorithm to be able to deal with different kinds of visual descriptors by
the very same mechanism. We show quantitative and qualitative results.

1 Introduction

This article proposes a novel on-line method for learning representations of ob-
jects’ shape based on probabilistic tracking of a family of heterogeneous local
descriptors over time, in 2D and 3D. We present a unified method that allows the
temporal filtering of such different visual descriptors using a common approach.
This approach allows a robotic system to learn autonomously representations of
objects by manipulating them. Having internal representations of object shapes
is required by state-of-the-art robotic grasping and manipulation approaches,
and it is often provided as prior knowledge (e.g., as CAD models). The capacity
for a robotic system to learn on-line an internal representation enabling object
interaction and manipulation is an important goal for cognitive robotics [8]. In
this work, we describe an object using a combination of local descriptors that are
accumulated over time while the robot manipulates the object. Here, we will de-
scribe objects using a combination of edges, junctions and texture patches. The
object representation is based on an Early Cognitive Vision (ECV) framework
that has been presented in [16].

Visual descriptions of objects and scenes can be constituted from a variety of
feature types, like point features [9,10], edge-like features ([16,1]) or texture de-
scriptors in terms of patchlets [11]) carrying complementary information. Some
feature types can be shown to have different relevance for different tasks, and
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previous work has outlined these limitations and the benefits of using a combi-
nation of descriptors to alleviate these limitations (e.g., for the case of motion
estimation, [13]). In the ECV system described in [16], these different image
structures are distinguished and represented by different kinds of symbolic de-
scriptors which parameterize the content of the local patches according to the
semantic content of the local patch (see figure 1). In addition to geometric prop-
erties such as position and orientation, these features also possess appearance
information. It has been shown (see, e.g., [13]) that it is advantageous to make
use of these different aspects of visual information depending on the task and
the actual context.

When using 3D information in visual representations, we face three problems:
Firstly, wrong correspondences in (stereo) matching result in outliers in the
representation. Secondly, occlusion lead to incomplete representations. Thirdly,
3D information is subject to uncertainties evolving in the reconstruction process.
All three problems can be reduced by merging information across different object
views. For this purpose, a number of methods have been developed (SFM, SLAM,
bundle adjustment). These methods have been designed mainly for point features
(see, e.g., [2,12]), although some work also exists on line features [4,15].

In this paper, we describe an algorithm that is designed such that it can be
applied to different feature types jointly allowing for the accumulation of rich
and disambiguated scene and object representations. This flexibility is achieved
through a generic three stage scheme, which 1) makes use of Bayesian filtering
for outlier removal based on confidences associated to the different feature types,
2) extends the representation by novel scene or object aspects and 3) reduces the
uncertainties by an unscented Kalman filtering approach. A particular property
of our approach is that all three stages of our scheme can deal with the different
kinds of descriptors by the very same machinery.

The algorithm was introduced in [15] and includes the use of an Unscented
Kalman Filter (UKF) [5] to track the distribution in the whole feature space,
instead of only considering the position of the feature. This includes the semantic
interpretation of each individual descriptor allowing us to keep track of the rela-
tive reliability of different components of the feature vector by their altered cross
modality variance. Furthermore the algorithm incorporates probabilistic match-
ing of features based on both geometric and appearance information. Moreover
it uses temporal re-evaluation of a feature’s confidence according to tracking
success, including a mechanism for deletion and preservation of descriptors over
time. This work extends the described approach to be able to cope seamlessly
with different feature descriptors. Appropriate parameterizations for the differ-
ent feature types are discussed.

The accumulation of the symbolic representation is an important disambigua-
tion mechanism of the ECV system and has been applied for object learning and
recognition [8] in the context of line features. The work introduced in this paper
will allow for the extension of such work to richer representations realizing even
more efficient and stable pose estimation, recognition and grasping.
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Fig. 1. Four different image structures in 2D and 3D and their parameterization. We
distinguish between four different kinds of local image structures: homogeneous patches,
edges, junctions and textured patches. All four structures need to be represented by local
symbolic descriptors covering appearance as well as geometric information, both in 2D
and 3D. The semantic content is very different for the different kinds of structure.

2 Feature Descriptors

The differentiation in feature type is achieved by making use of the concept
of intrinsic dimensionality of the local image signal [3]. When we talk about
a specific kind of descriptor ΠK , as shown in figure 1, we indicate this by a
superscript K ∈ {H,E, J, T} denoting homogeneous patches, edges, junctions
and texture patches respectively.

The 3D feature descriptors ΠK = (GK , AK , ΣK
G , Σ

K
A , B) illustrated in figure

1 together with their 2D equivalent πK , are parameterized by five terms repre-
senting geometric information GK , appearance information AK , corresponding
uncertainty estimates ΣK

G and ΣK
A and a confidence B ∈ [0, 1]. The confidence

B represents the system’s current belief that the given descriptor is a correctly
extracted primitive representing a feature in the physical scene. The first four
terms depend on the feature type itself and will be defined below.

Tracking the different feature types using an UKF requires a state vector
representing the current state of a primitive. Thus, for each primitive type K
we define the state vector SK = state(ΠK) = (GK , AK) which also allows for
a straightforward update of the primitive when a new state has been estimated.
The exact parameterization of the descriptors as well as the associated initial
covariance matrices are defined in the following subsections. Note that we do
not discuss homogeneous primitives here since our system is based on stereo
processing which can not be initialized at homogeneous areas.1

1 However, note that the accumulation scheme could also be used on data extracted
by sensors not having this problem, such as, e.g., laser sensors.
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(a) Left (b) Right (c) Stereo model

Fig. 2. (a) and (b) shows a stereo pair from the sequence. (c) is the extracted stereo
primitives projected onto an image. Some features are labeled to illustrate the difference
in visualization.

Edge Primitives. have an orientation that can be reliably computed. Their po-
sition is on a one-dimensional manifold (aperture problem). The local structure
can also be determined from local filter responses [7], allowing to differentiate
between step edges (e.g., transition from dark to bright) and line structures
(e.g., bright line on darker background). This structure is taken into consider-
ation when extracting and encoding the color information [16]. An appropriate
geometric representation of the edge or line segment primitive carries a full 6D
pose in 3D. First we have the 3D position and second there is a vector d point-
ing in the direction of the line. The appearance information of the line segment
consist of two color triplets defining the color on the left and right side of the
edge (and one possibly on the edge for a line structure), and a phase ω defining
the color transition. Formally, we have GE = (t, r) = (x, y, z, d1, d2, d3), AE =
(ω, cl1, c

l
2, c

l
3, c

r
1, c

r
2, c

r
3). The covariance of the edge primitive is ΣE

G,0 ∈ R6 × R6

for the geometry and ΣE
A,0 = I6 for the appearance (where In is the identity

matrix of dimension n× n).

Junction Primitives. are intersections of edges and have a complex 2D ge-
ometry covering the intersection point as well as half–lines extending from it.
Because of this complexity, a large degree of ambiguity can be expected in the
computation of the junction parameters and appearance information is not re-
liable enough for matching. The complex geometry extends to the 3D domain
where an important distinction is whether the lines intersecting in 2D also in-
tersect in 3D. We represent the geometric information of the junction primitive
as the 3D position where the lines intersect. A list of the intersecting lines of
the junction is also maintained as a list of links L to line segment primitives.
These line segments are accumulated using the normal procedure for lines with
the added constraint that they can only be matched with line segments that
belongs to matching junctions. Color information is contained in the line seg-
ments. Formally, we have GJ = {(x, y, z), n, (LE

1 , ..., L
E
n )}. Appearance informa-

tion is disregarded for junctions. The covariance for the junction primitive is
ΣJ

G,0 ∈ R3 × R3 for the geometry.

Texture Primitives. are characterized by an intrinsic complexity which is dif-
ficult to characterize in 2D [14]. This complexity however allows in general for
the computation of reliable correspondences for stereo and optic flow process-
ing. A reasonable 3D interpretation is a 3D surface patch, which in contrast
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to homogeneous patches, can be computed reliably by stereo matching. How-
ever, also irregular structures (e.g., trees) in 3D create 2D textures. Hence a 3D
representation of the geometric information probably also requires at least two
different descriptors for surface patches and irregular structures as outlined in [6]
to which we also refer to for further details. The texture primitive, also denoted
texlet because of the similarities with the patchlet introduced in [11], is defined
by a full 6D pose in 3D. For now the only appearance information computed
for the texlet is the mean color. Formally, we have GT = (x, y, z, n1, n2, n3),
AT = (c1, c2, c3). The covariance for the texture primitive is ΣT

G,0 ∈ R6 ×R6 for
the geometry and ΣT

A,0 = I3 for the appearance.

3 The Accumulation Algorithm

In this chapter we describe a framework which makes use of the spatial rep-
resentation by computing the different image descriptors at a given frame (see
[16]) and (already available or estimated) Rigid Body Motion (RBM) informa-
tion in order to predict a representation for the next frame, compare it with
the actual representation extracted in the next frame and finally merge the two
representations.

Some notation must be introduced to describe the generic use of unscented
Kalman filtering of motion and Bayesian confidence update. Every primitive
that has been extracted from the image is an observed primitive in the Kalman
filtering domain and we denote this Π . An accumulated primitive Π̃ on the
other hand is an abstract entity, which most likely has never been observed in
its exact form in any image. It is the result of interpolation between matches over
multiple frames. From the abstract primitives in the accumulated representation
we compute predictions Π̂ by applying a RBM. These predictions can then be
matched with the extracted primitives of the next frame.

When a 3D primitive is represented by its corresponding state vector we de-
note this accordingly, meaning that S is the extracted state, S̃ is the accumulated
state and Ŝ is the predicted state. Uncertainties can also be denoted according
to the primitive it belongs to, i.e., Σ, Σ̃, Σ̂. We use the notation ΠK

i,t to indicate
the i–th primitive in a set of primitives of type K belonging to the t–th frame.
Similarly we have SK

i,t for the state vectors.
All primitives have an associated confidence. The confidence BK

i,t indicates
the system’s belief at time t whether this descriptor corresponds to an object
structure. For the newly extracted ones we use a prior confidence depending
on the type of primitive, the confidence of an accumulated abstract primitive
is estimated using Bayesian filtering and the predicted primitive will have a
confidence identical to the originating abstract primitive.

In the following subsections the individual parts of the accumulation algorithm
will be described in further detail based on the state vector representation of
the primitive. The first three steps are basically Kalman filtering involving a
prediction, matching and correction step. The final step is Bayesian filtering,
which updates the confidences according to primitive state and matching history.
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3.1 Kalman Filtering

The RBM can be formulated in generic terms applying for all primitives defined
as state vectors. It will affect geometric information only as the appearance
ideally would stay constant.

ŜK
t+1 = state(Π̂K

t+1) = state(RBM(T,R)(Π̃K
t )) (1)

We make use of the Scaled Unscented Transform (SUT) to estimate the new
covariance Σ̂K

t+1 of the predicted state ŜK
t+1. The SUT allows for the prediction

of the transformation of a normal distribution by a non-linear process f . This
is done by selecting a specific set of sample points from the distribution, and
transforming them according to f(S) as described in [15].

The transformation of the primitive under a RBM includes a transition of
the geometric information in the current state to the Special Euclidean group
of dimension 3, SE(3). In this work we use dual quaternions when representing
SE(3). We will not go into further detail on the theory of dual quaternions here
but instead guide the interested reader to [15]. Both the feature pose and Rigid
Body Motions (RBMs) are well described by dual quaternions, which then allows
for a compact formulation of a pose transformation under a RBM (with T,R
being the translation and rotation parameters of the RBM):

RBM(T,R)(Π̃K
t ) = Π̂K

t+1 . (2)

We indicate that a predicted primitive Π̂ has been matched with an observed
primitive Π at time t by μt(Π̂,Π).

Having computed the predicted representation, the next step of the filtering
is to compare this model with the observed features. A newly observed 3D–
primitive Πj is matched with a predicted 3D–primitive Π̂i if their associated
states are matched according to a χ2 criterion applied to their Mahalanobis
distance:

(ŜK
i,t+1 − SK

j,t+1)
�(Σ̂K

i,t+1 +ΣK
j,t+1)

−1(ŜK
i,t+1 − SK

j,t+1) < χ2
k=NK ,p=0.05 . (3)

In this equation χ2
k=NK ,p=0.05 indicates the p = 0.05 value in the χ2 distribution

of dimension NK . By definition of the Mahalanobis distance, this implies that
95% of the correct matches will satisfy this criterion. In this case, the likelihood
of the match μt in each projected frame is evaluated using a normal distribution
centered on the predicted primitive. By that we define the binary match function
μt(Π̃i) which is 1 when an abstract primitive was matched at time t or 0 elsewise.

It may happen that several observed features match an accumulated one,
notably when the accumulated feature’s covariance is large. This will happen for
example when an object is moved closer to the camera: the predicted covariance
will be large, and cover several newly observed features. In this case, the most
likely match (according to Eq. (4)) is preserved in a winner–take–all fashion.

p
[
μt(Π̂i, Πj)

]
=

exp
[
− 1

2 (Ŝi − Sj)�Σ̂−1
t (Ŝi − Sj)

]
(2π)n/2

√
|Σ̂t|

(4)



Accumulation of Different Visual Feature Descriptors 85

If the χ2 criterion is not met, we define that p
[
μt(Π̂i, Πj)

]
= 0. Once the

matching is done, the set of predicted model features Π̂t can be corrected from
the newly observed features Πt using a straightforward Kalman filtering ap-
proach as outlined in [15] for line features.

3.2 Accumulation of Confidence

We define the tracking history of an abstract primitive Π̃i from its emergence
at time 0 until time t as:

μt(Π̃i) =
(
μt(Π̃i), μt−1(Π̃i), · · · , μ0(Π̃i)

)T

(5)

thus, applying Bayes formula

p
[
Πi|μt(Π̃i)

]
=

p
[
μt(Π̃i)|Πi

]
p [Πi]

p
[
μt(Π̃i)|Πi

]
p [Πi] + p

[
μt(Π̃i)|¬Πi

]
p [¬Πi]

(6)

where p [Π ] is the prior likelihood that a primitive of a specific type has been
correctly extracted and p [¬Π ] is the prior likelihood that it has been erroneously
extracted. p

[
μt(Π̃i)|Π

]
is the likelihood of a primitive tracking history μ(Π̃i)

given that the primitive Π is correctly extracted.
According to [15], if we rewrite Eq. 6 and assume independence between suc-

cessive observations we have: 2

p
[
Πi|μt(Π̃i)

]
=

⎛
⎝1 +

∏
t p

[
μt(Π̃i)|¬Πi

]
p [¬Πi]∏

t p
[
μt(Π̃i)|Πi

]
p [Πi]

⎞
⎠

−1

. (7)

The computed likelihood is used as feature confidence B. This allows both for
elimination of entities with confidence below a minimum threshold and to freeze
entities with confidence above an acceptance threshold. Eliminated features are
removed from the representation as a result of poor matching or matching qual-
ity. Frozen features have their confidence locked, but are still updated with the
Kalman filter when matching is possible.

4 Results

To evaluate the accumulation framework we apply the system in two different
scenarios. First, an artificial image sequence is generated using a simple cube
rendered in OpenGL for perfectly known motion, shape and pose. This is ideal
for quantitative verification of pose correction and Bayesian confidence update
2 Note that a particular issue of this formulation is the requirement to record the

entire matching history μt(Π̃i). Therefore we use a recursive formulation derived
from equation (7) introduced in [15], which is more practical for an on-line algorithm.
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(a) frame 0 (b) frame 1 (c) frame 10

Fig. 3. Confidence histograms including eliminated features

based on matching quality and history. Second, we grasp a series of objects using
a robot and record natural scene images while the objects are subject to motion.
This is used for qualitative evaluation of the ability to build object models.

Artificial sequence: Figure 2 shows an example of a stereo pair of images.
We use a simple object with the shape of a cube. Our cube has four faces of
uniform colors, one face of marble texture and one face with a simple pattern
of four colors. Inside the faces of uniform colors we do not expect to extract
(homogeneous) features since stereo cannot generate correspondences at such
structures. At the edges of the cube we expect to extract lines in two categories.
Either the faces of the cube are visible on both sides of the edge and the extracted
edge feature will contain colors of the object only, or the edge represents a
depth discontinuity with the color of the face of the cube on one side and the
background color on the other side. The face with a simple pattern of four colors,
on the other hand, provides unambiguous edges, with stable appearance. At the
corners of the cube the edges meet and we expect to extract junctions. At the
textured face we primarily expect textured patches, but could also encounter
areas that will be classified as edges or junctions.

Figure 3 shows the distribution of confidences in some early iterations. After
10 iterations we see the characteristic three–modal distribution in figure 3(c).
The leftmost peak represents the eliminated features which will be removed from
the set and thus no longer updated; in general they originate from wrong stereo
matches. The second peak represents newly observed features that could not
be matched with existing ones and thus are added to the representation with a
confidence that equals the prior probability of a correctly observed feature. The
rightmost peak represents the permanently accepted features. It is an important
observation that the majority of the primitives are distributed by confidence into
one of the three groups. This indicates that after a few frames most primitives
are either discarded or accepted as a result of the matching quality.

A ground truth model of the cube geometry is necessary to compute the
distribution of errors in position and orientation for the set of features. It is
straightforward to obtain for the outer geometry such as the edges, corners and
faces. The internal structure of the texture is more complicated in terms of
ground truth, as it contains edges and junctions depending on scale. To avoid
complications, we use a special extraction procedure when we want to compute
the error distribution. First we extract edges and junctions on a cube without
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(a) frame 0 (b) frame 7 (c) frame 14

(d) frame 0 (e) frame 7 (f) frame 14

Fig. 4. (a)-(c): Position error histogram of corrected features, where no new hypotheses
are added after first frame. (d)-(f): Position error of features extracted at corresponding
single frames.

texture. Then we add the texture and extract textured patches. In this way we
avoid the need for hand labeling features extracted within the textured surface.
For each extracted feature we compute the shortest distance in 3D to a corre-
sponding geometric element in the ground truth model, which is then the error
in position. Having found the nearest element in the ground truth model we can
also compute the error in orientation.

In figure 4 we show the development of position error on an accumulated
model. The features are extracted at the first frame and will afterwards only be
updated and not extended with new hypotheses during accumulation in order
to compare the corrected representation to the stereo representation extracted
at the single frames. In figures 4(a) to 4(c) we show the distribution of position
errors for the accumulated representation at different stages. The single frame
stereo representation extracted at the actual frame are shown in figures 4(d) to
4(f) for comparison. Features with an error out of range on the x-axis are gath-
ered in the rightmost bar of the histogram. These high-error features disappear
during accumulation when outliers are removed and the total number of features
decreases. In general the small corrections lead to a shift towards smaller errors
for the entire representation. Note that figures 4(a) and 4(d) are identical, as the
accumulated representation after the first frame is exactly the extracted stereo.

Figure 5 shows the mean error for each of the feature types in each frame.
We notice how it is reduced by outlier removal and pose correction. Also here,
no new features are added after the first frame, which makes it easy to see this
development.

In figure 6 we compare the accumulated heterogeneous feature model of the
cube from two viewpoints at different stages in the process. The green blobs
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(a) Mean position error (b) Mean orientation error

Fig. 5. Correction of features added in first frame. Junctions have no orientation in
this context.

(a) 1 iteration (b) 15 iterations

Fig. 6. Cube represented by accumulated set of heterogeneous 3D features

indicate junctions, single colored squares represents textured patches and dual
colored squares represents line segments. Multiple viewpoints are chosen to give
an idea of the 3D information. Figure 6(a) shows the model after one iteration
and here we see a number of outliers and inaccurate reconstructions caused by
the noise we apply to the artificial image and wrong stereo matches. After fifteen
iterations we observe two significant changes to the model, which is shown in
figure 6(b). First, the outliers has been removed or corrected in position, as seen
e.g. in the ‘difficult’ lines marked with a red ellipse at the bottom. This side of
the cube are all the time close to horizontal in the image sequence and hence
the reconstructed primitives are very noisy. Note also how the noisy line appear
very nice from one viewpoint (in the top) but a lot worse from another (in
the bottom). Second, the model is now more complete, seen e.g. in the number
of textured patches on the textured face of the cube, the good descriptions of
correctly positioned lines and the occurrence of two additional junctions.

Real world scene. Figure 7 shows objects in a real scene and their accumulated
model after 10 frames. Rotational motion is applied to the object using the
robot between each frame. We use motion estimation [13] to capture the motion
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(a) Ice tea (b) Multiple viewpoints of accumulated model

(c) Spray (d) Single stereo model (e) Accumulated model

Fig. 7. Real scene objects rotated by robot. The object models are accumulated over
10 frames.

information required for prediction. We see that the two objects are described by
line segments at the contours. Junctions are extracted where the lines meet and
the surface in between contour lines is nicely represented by texlets and also some
line segments. The robot gripper is shown as a part of the object model as it of
course shares the same motion as the object. The gripper can easily be removed
because of known geometry. Figure 7(b) shows the accumulated model of an ice
tea from two different viewpoints. The surface facing the camera is represented by
numerous texlets and line segments and only few outliers exist. Figure 7(d) and
7(e) compares a single stereo model with the confidence thresholded accumulated
model. As expected, we see that the accumulated model is indeed more complete
and has fewer outliers.

5 Conclusion

We have introduced an accumulation framework that is able to disambiguate
object representations consisting of different visual descriptors in a coherent way
using the same machinery for all descriptors. By this we have extended the work
in [15] on line segments to generic visual descriptors which will provide richer
and more powerful representations for a variety of tasks as being addressed in
the early cognitive vision system [16].
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Abstract. Person re-identification, i.e., recognizing a single person across
spatially disjoint cameras, is an important task in visual surveillance. Existing
approaches either try to find a suitable description of the appearance or learn a dis-
criminative model. Since these different representational strategies capture a large
extent of complementary information we propose to combine both approaches.
First, given a specific query, we rank all samples according to a feature-based
similarity, where appearance is modeled by a set of region covariance descrip-
tors. Next, a discriminative model is learned using boosting for feature selection,
which provides a more specific classifier. The proposed approach is demonstrated
on two datasets, where we show that the combination of a generic descriptive
statistical model and a discriminatively learned feature-based model attains con-
siderably better results than the individual models alone. In addition, we give a
comparison to the state-of-the-art on a publicly available benchmark dataset.

1 Introduction

Due to ceaseless advances in the research in semi-conductor, communications, and im-
age sensors there is an increasing number of public areas that are subject to video
surveillance. Thus, it becomes infeasible to analyze the ever growing amount of data
– automatic systems are required. This especially applies for person re-identification, a
central task in many surveillance scenarios, which can be described as recognizing an
individual in different locations across a network of non-overlapping cameras. Besides
of specific re-identification scenarios, e.g., tracking criminals over multiple cameras,
typical tasks also include anonymous applications such as crowd analysis by identify-
ing single instances. In general, this task has to be considered very challenging. Typical
problems that have to be handled are extremely varying appearances of a person across
the camera network (due to changing lighting conditions, different viewpoints, varying
poses, etc.), people occluding each other, or a high number of very similar instances.
Thus, motivated by the large number of practical applications and still unresolved prob-
lems there has been a considerable scientific interest within the last years.

For instance, Gheissari et al. [6] fit a triangulated graph to each individual to account
for pose variations. However, the approach is only applicable for similar viewpoints.
The same applies for the approach of Wang et al. [22], who segment an image of a
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person into regions and capture their color spatial structure by a co-occurrence matrix.
A more flexible approach was presented by Farenzena et al. in [4] exploiting perceptual
principles relying on symmetry and asymmetry. They first run a segmentation step to
obtain a person’s silhouette and then accumulate the feature responses of color and
texture features to a signature. Bird et al. [2] propose to segment the query image in
equally spaced horizontal segments and extract the median HSL color of the foreground
pixels of each of these segments.

In contrast, instead of designing specific features by hand, other methods aim to learn
a suitable feature set or to directly generate a ranking model. Bak et al. [1] run a person
detector and estimate a visual signature using Haar-like features that have been selected
for each individual using AdaBoost. A similar but more sophisticated approach was
presented by Gray and Tao [8]. They also select the most relevant features (color and
texture) using AdaBoost but additionally estimate a likelihood ratio test for comparing
corresponding features providing a similarity function. Lin et al. [13] and Schwartz et
al. [18] propose to learn pairwise dissimilarities which can be applied for classifica-
tion. Both approaches, however, require a training stage and labeled samples. Prosser
et al. [16] formulate the person re-identification problem as a ranking problem. They
introduce Ensemble RankSVM, which allows to learn a subspace where the potential
true match gets the highest rank.

To further improve the classification results additional cues can be exploited. Makris
et al. [14] and Rahimi et al. [17] simplify the problem by temporal reasoning on the
spatial layout of the observed environment. Javed et al. [10] learn transitions between
cameras to cope with problems such as illumination changes. Zheng et al. [23] enrich
the description of persons by contextual visual information coming from the surround-
ing people.

These approaches can mainly be subdivided in two groups: (a) methods which em-
ploy a representation of descriptive statistics of the human appearance (using hand
crafted features) [22,6,4,17] and (b) approaches that are based on discriminative learn-
ing [8,13,18,16,3]. Thus, to take advantage of these complementary information cues,
we apply the two strategies in parallel. First, we estimate a generic covariance-based
description and calculate a similarity measure yielding a rank model. For examples
that can not be classified in this way we compute a more specific discriminative model
using boosting for feature selection. Moreover, we introduce a new covariance-based
descriptor and adopt covariance features for the usage within a boosting framework.
In the experimental results, we demonstrate the benefits of the proposed approach on
two different datasets. In particular, we show that using a descriptive and discriminative
model in parallel clearly improves the person re-identification capability. Additionally,
we give a comparison to the state-of-the-art showing competitive results.

2 Person Re-identification System

Given two camera views observing different locations of a scene, the goal of person
re-identification is to select a certain person in one view and to recognize it in the other
view. In the work on hand, we assume that we have already detected the persons in
both views and we will refer the image of the selected person to as the probe image and
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Fig. 1. Overview of the proposed system. After applying a descriptive model to obtain an initial
ranking, a discriminative model can be used to refine the result.

the images searched through the gallery images [7]. In particular, our system, which
is illustrated in Figure 1, consists of a descriptive person model (see Section 3) and a
discriminative person model (see Section 4), which are run consecutively.

For each probe image we first apply the descriptive person model to get an initial
ranking of all gallery images. The first 50 images of this ranking are shown to a human
operator, who then decides whether the searched person has been found or not. If not,
we run the second stage, i.e., learn and evaluate the discriminative person model and
rank the samples according to their confidence values. Since this model captures differ-
ent aspects of an individual, focusing on details best separating it from others, there is
a good chance that it can improve the ranking.

The descriptive model is based on a hand designed feature representation, hence,
it can be estimated for any given single image. The discriminative model, however, is
learned for each instance requiring positive and negative training data. Since we focus
on person re-identification in a surveillance scenario, where multiple images of a person
(multi-shot scenario) are available, we can use these images as training samples. If just
one probe image is available (single-shot scenario), we can generate virtual samples us-
ing geometrical transformations and displacements. Hence, obtaining positive training
samples is not much of a problem.

Though, for the negative training samples a more sophisticated sampling mechanism
is required. For this purpose we use our descriptive model as starting point. As de-
scribed before, applying this model already generates an initial ranked list of person
images. Thus, we sample the negative images from the end of the list. Assuming that
the descriptive person model provides a “good” ranking those images should be most
dissimilar to the searched person. The overall principle is illustrated in Figure 2.

3 Descriptive Person Model

In the first stage of our person re-identification system we generate a descriptive statisti-
cal model which encodes visual appearance information. Considering the given task, the
employed representation must meet requirements of specificity, invariance and compu-
tational efficiency. It implies that on the one hand the visual description must encompass
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Fig. 2. Sampling of training images for the discriminative model. Positive samples are obtained
from the trajectory of the query person, negative samples are drawn from the worst matches of
the initial ranking provided by the descriptive model.

discriminating visual information. On the other hand it must remain mostly unaffected
in presence of photometric, view and pose changes. Moreover, for practical applica-
bility the representation should be computed and matched rapidly at small memory
requirements.

For our purpose we employ the region covariance descriptor of Tuzel et al. [20],
which meets these criteria quite well. The descriptor is capable to combine multiple
complementary cues, easy to compute and generates a compact signature. Since the
descriptor aggregates several visual features, structural information of human visual
appearance – such as the brightness relationship between upper and lower body halves
– is represented only to a limited extent. In order to enhance the structural specificity
of the representation, we use a set of covariance descriptors computed from multiple
horizontal stripes covering the area of an image patch. This strategy is similar to the
multiple region scheme used by [20] and to the principal axis histogram signature em-
ployed by [9].

For a given bounding box R with dimensions W × H a set of region covariance
descriptors is computed in the following manner: The image within the bounding box
IR(x, y) is used to compute a set of features, which represent intensity, color and tex-
ture. In order to capture spatial, color and gradient information, in our case the em-
ployed set of visual features comprises of

{f} =
[
y,L,a,b,

∣∣∣∣∂L∂x
∣∣∣∣ ,

∣∣∣∣∂L∂y
∣∣∣∣
]
, (1)

i.e., the y pixel coordinate vector, the L, a, b color channels and the horizontal and
vertical derivatives of the luminosity channel, respectively. The x-component of pixel
coordinates is excluded from the feature set, thus allowing some invariance with respect
to view variations when the person is seen from various sides.

The bounding boxR is divided intoN (N = 7 in our experiments) equally large hor-
izontal stripes {Sl}l=1..N and within each stripe the covariance descriptor is computed
as

Cl =
1

z − 1

z∑
k=1

(fk − μ) (fk − μ)T
, (2)
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where Cl denotes the covariance matrix computed over z feature values within the l-th
stripe and μ represents the vector of mean values computed on the individual features
of the feature set.

The obtained set of covariance matrices
{
Cl

}
l=1..N

defines a compact descriptor
which encodes the interdependence between individual features computed inside the
region of interest. A coarse structural information is captured using the set of covari-
ances from multiple horizontal regions and by the weak spatial dependence given by
the only slightly specific variation within the y-coordinate feature.

Similarity computation between two human appearances is performed by estimating
the distance between two covariance matrices [5] in pairwise manner by

ρ
(
Cl

i
, Cl

j

)
=

√√√√ d∑
k=1

ln2λk

(
Cl

i
, Cl

j

)
, (3)

where Cl
i

and Cl
j

are computed for two different images i and j, but using the same

stripe element with index l. λk denotes the generalized eigenvalues of Cl
i

and Cl
j
, and

d is the number of features within the employed feature set (d = 6 in our case).
The covariance-based distance between two human appearances is defined as

d̄ij =
1
N

N∑
l=1

ρ
(
Cl

i , C
l
j

)
, (4)

where d̄ij is the mean covariance distance measure obtained from N stripe-versus-
stripe comparisons. When a specific probe image is used as query, the probe image is
compared to all gallery images and a set of distances is obtained. This set of distances
is used to generate a ranking for every image in the gallery with respect to the probe.

4 Discriminative Person Model

In the second stage of our system we apply a discriminative model, which is estimated
by Boosting for Feature Selection [19, 21]. Thus, similar to [8, 1] the goal is to select
the most discriminant features for a specific instance from an over-complete feature set.
However, unlike these methods, our approach does not involve any labeling of training
data by hand. Moreover, the goal is not to learn a similarity function between image
pairs but similar to [16] to finally generate a ranking of all gallery images. In particular,
we train a model for each probe image and evaluate it on all gallery images. Those are
then sorted according to their confidence values: a higher confidence results in a higher
rank.

4.1 Estimating Ranks by Boosting for Feature Selection

Given a training set of positive and negative samples S = {(x1, y1), ..., (xL, yL)},
where xl ∈ IRm is a sample and yl ∈ {−1,+1} is the corresponding label, a set of
possible features F = {f1, ..., fM}, a learning algorithm L, and a weight distribution
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D, that is initialized uniformly by D(l) = 1
L . Then, the main idea of boosting for fea-

ture selection is that each feature fj corresponds to a single weak classifier hj and that
boosting selects an informative subset of N features. In each iteration n, n = 1, ..., N
all features fj , j = 1, . . . ,M are evaluated on all samples (xl, yl), l = 1, . . . , L and hy-
potheses are generated by applying the learning algorithm L with respect to the weight
distribution D over the training samples. The best hypothesis is selected and forms the
weak classifier hn. The weight distribution D is updated according to the error of the
selected weak classifier.

The process is repeated until N features are selected, i.e., N weak classifiers are
trained (N = 20 in our experiments). Finally, we estimate a confidence measure1 C
according to a weighted linear combination of all weak classifiers hn:

C(x) =
N∑

n=1

αnhn(x). (5)

4.2 Features

Due to the popularity various different features, e.g., Haar-like [21], Edge Orientation
Histograms [12], or boundary fragments [15] have been introduced for the application
with boosting for feature selection. Such features mainly capture generic visual ob-
ject properties and have shown excellent performance for object recognition/detection
and tracking. However, for the re-identification task they are often not discriminative
enough. In particular, as also discussed in Section 5.1, we found that the most impor-
tant information queues are intensity changes between the upper and lower body of a
person and color. Thus, for our application we use a combination of horizontally divided
Haar features and covariance features. Moreover, to avoid that too much background in-
formation is modeled by the (local) features we prohibit features that are placed close
to the image borders.

Since Haar features are well known in the context of boosting (e.g., [21]) in the
following we focus on the discussion on the covariance features capturing the essential
color information. As described in Section 3, covariance matrices, in general, provide
an elegant way of integrating various different feature channels, in our case RGB color
channels, into one compact representation. They capture the variance of these channels
and the correlation between them. However, since the space of covariance matrices does
not form a Euclidean space they cannot directly be used in a boosting framework. To
overcome this limitation, we follow the approach described in [11], allowing to describe
the covariance matrices in a Euclidean vector space. In particular, for the d-dimensional
case a set of 2d + 1 specific vectors si ∈ IRd, called Sigma Points, is constructed as
follows:

s0 = μ si = μ+ α(
√
C)i si+d = μ− α(

√
C)i, (6)

with i = 1 . . . d, μ and C being the data’s mean vector and covariance matrix respec-

tively, and (
√
C)i being the i-th column of the covariance matrix square root. The scalar

α is a constant weighting for the elements in the covariance matrix and is set to α =
√

2

1 If required a strong classifier H can be estimated by H(x) = sign (C(x)).
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for Gaussian data. The points si accurately capture the statistics of the original covari-
ance matrix up to third order for Gaussian and up to second order for non-Gaussian
data. The final feature representation is built by concatenation of all Sigma Points into
one vector. Hence, Sigma Points provide a very powerful representation that is capable
of integrating various different feature channels into one compact feature vector.

With this representation we are now able to efficiently capture local color information
in our boosting algorithm. As for Haar features, we use a rectangular shaped region for
extracting color information (RGB) from an image. All pixels within the covariance
feature’s region are used to calculate the mean vector μ, covariance matrixC and finally
the Sigma Points representation. This enables us to capture very discriminative, local
color features of a person (e.g., red bag), as opposed to the descriptive statistical model
described in Section 3, which extracts color and gradient information from regular stripe
regions laid over the person image. As weak learner hj we apply a Bayesian decision
criterion for the Haar features and a multidimensional nearest neighbor classifier for the
Sigma Points. Haar and covariance features are illustrated in Figure 3.

(a) (b)

Fig. 3. Applied features: (a) Haar features mainly capture intensity changes between the upper
and lower body of a person, (b) covariance features extract local color information in form of
vectors of Sigma Points

5 Experimental Results

We evaluated our approach on two datasets2, the public VIPeR dataset [7] (single-shot
scenario) and our own person re-identification dataset3 (multi-shot scenario). Examples
of both are shown in Figure 4. As performance measure we use Cumulative Matching
Characteristic (CMC) curves [22], which represent the expectation of the true match
being found within the first n ranks.

5.1 VIPeR Dataset

The VIPeR dataset consists of 632 person image pairs taken from two different camera
views. Most of the example pairs contain a viewpoint change of about 90 degrees as well
as significant changes in pose and illumination, making person re-identification very
challenging. To compare our method to other approaches, we followed the evaluation

2 Other benchmarks have been proposed (e.g., [4,1,16]), however, since either no annotations are
available or the datasets are not uniquely defined, we did not used them for our experiments.

3 Available at http://lrs.icg.tugraz.at/downloads.php
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(a) (b)

Fig. 4. Example image pairs from the VIPeR dataset (a) and example trajectory images from our
multi-frame dataset (b). Upper and lower row correspond to different camera views.

Fig. 5. CMC curves of our approach on the VIPeR dataset. The blue curve shows the descriptive
and the green curve shows the discriminative person model. The combination of both models is
depicted in cyan color.

procedure described in [8, 4]. The authors split the set of 632 image pairs randomly
into two sets of 316 image pairs each, one for training and one for testing, and build the
average over several runs. Since we do not need a training set, we evaluate our algorithm
on a subset of 316 randomly selected image pairs and also average the results of several
runs. Considering images from one camera as the probe set, and images from the other
camera as the gallery set, we match each probe image with all images from the gallery
set.

When applying our discriminative person model we need positive and negative train-
ing samples for the boosting step. In our scenario positive training samples are extracted
from person trajectories, and negative training samples are drawn from the gallery im-
ages that received the lowest ranks in the initial, descriptive ranking step. However, the
VIPeR dataset does not provide trajectories, just image pairs. Thus, we generate virtual
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Table 1. Matching rates for ELF, SDALF, ERSVM and our algorithm on the VIPeR dataset

Rank ELF SDALF ERSVM Our Approach
1 12% 20% 13% 19%

10 43% 50% 50% 52%
25 66% 70% 71% 69%
50 81% 85% 85% 80%

positive training images from the probe image by randomly applying slight geomet-
ric distortions and smoothing. Figure 5 and Table 1 show the average results of our
approach on the VIPeR dataset of 5 runs on randomly selected subsets of 316 image
pairs.

As one can see, the descriptive and discriminative person model have similar perfor-
mance. However, since they describe different aspects of a person, taking into account
both models yields a significant improvement. This is shown by a third curve that is
generated using the model returning the higher match rank for each probe image, sim-
ulating the human operator decision described in Section 2. Moreover, in Table 1 we
compare the performance of our approach on the range relevant for our approach, i.e.,
the first 50 ranks, to state-of-the-art methods [8, 4, 16]. As can be seen we obtain com-
petitive results, especially, for rank 1. Even though in contrast to [8,16] we do not need
any (hand) labeling of data and unlike [4] we do not use a foreground-background seg-
mentation. However, we expect that using a segmentation step will improve our results
notably, especially in cases of great pose variations, e.g., varying leg postures.

Fig. 6. Different feature types evaluated on the first 30 image pairs of the VIPeR dataset: Haar
(red), HOG (green), LBP (cyan), Covariance (blue), Haar + Covariance (magenta), combination
of all types (black)
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As discussed in Section 4, we apply only Haar and covariance features for our re-
identification task. In the following, we illustrate that exactly these features are best
suited for our task by evaluating different features on the first 30 image pairs of the
VIPeR dataset: Haar-like, histograms of oriented gradients (HOGs), local binary pat-
terns (LBPs), covariance features using RGB channels, as well as their combinations.
The obtained results in form of CMC curves are depicted in Figure 6. It can clearly be
seen that color (captured by covariance features) is the strongest cue, followed by Haar-
like features, which particularly capture intensity changes between the upper and lower
body of a person. HOGs and LBPs, on the other hand, perform rather poorly, since
they concentrate on finer structures that are often not visible in the gallery image due to
viewpoint changes. In fact, the best performance was achieved using a combination of
Haar-like and covariance features.

5.2 Multi-shot Dataset

Since the intended use case for the proposed method was to apply person re-identification
on surveillance data, we generated a multi-shot dataset. It consists of images extracted
from multiple person trajectories recorded from two different static surveillance cam-
eras. Images from these cameras contain a viewpoint change and a stark difference in
illumination, background and camera characteristics (e.g., green cast). Since images are
extracted from trajectories, several different poses per person are available in each cam-
era. We have recorded 475 person trajectories from one camera and 753 from the other
one, with 245 persons appearing in both views. Thus, each of the 245 persons in the
probe set is searched in a gallery set of 753 individuals. Each trajectory consists of ap-
proximately 100 to 150 images, depending on the walking speed of an individual. For
the gallery set we equidistantly extracted 5 images per trajectory. The maximum rank
returned by these 5 images defines the rank of a person.

Fig. 7. CMC curves of the proposed algorithm on our multi-frame dataset. The blue curve shows
the descriptive and the green curve shows the discriminative person model. The combination of
both models is depicted in cyan color.
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On this dataset, positive samples for the boosting step can easily be extracted from
the trajectory of the searched person. To get some additional variation into the positive
training set, we also generate a few virtual samples, as for the VIPeR dataset. To acquire
negative training samples we again use the ranked list of gallery images provided by our
descriptive model. For the features used in the boosting step we use the same setup as
for the VIPeR dataset.

Figure 7 shows the average results of our approach on this dataset after 3 runs. As
shown by the curves, in contrast to the VIPeR image pairs, the discriminative model
slightly outperforms the descriptive model. This can be explained by greater variability
captured if positive training samples are extracted from a whole trajectory. Thus, an
overfitting to the small number of positive samples can be prevented. Finally, like on
the VIPeR dataset, taking into account descriptive and discriminative information leads
to superior performance.

6 Conclusion

Typical approaches for person re-identification either estimate a visual signature de-
scribing the appearance of a query sample or train a discriminative model. In this paper
we took advantage of both approaches and introduced a system combining descriptive
and discriminative models. We first run an appearance-based matcher using a covari-
ance description, which has shown to be a considerable trade-off between speed and
accuracy. For examples where this representation exhibits low specificity in a second
stage a discriminative model is estimated by boosting for feature selection. In partic-
ular, we found that two types of features describing intensity transitions and color in-
formation (i.e., Haar features and Sigma Points) are best suited for the given task. The
experimental results demonstrated that compared to the single cues using the proposed
approach significatly better results can be obtained. In addition, we gave a comparison
to state-of-the-art methods on a publicly available dataset. Even though avoiding any
labeling and having only a limited amount of training data we can report competitive
results.

Acknowledgments. This work has been supported by Siemens AG Österreich, Cor-
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Abstract. Concept-based representation — combined with some classifier (e.g.,
support vector machine) or regression analysis (e.g., linear regression) — induces
a popular approach among image processing community, used to infer image la-
bels. We propose a supervised learning procedure to obtain an embedding to a
latent concept space with the pre-defined inner product. This learning procedure
uses rank minimization of the sought inner product matrix, defined in the original
concept space, to find an embedding to a new low dimensional space. The em-
pirical evidence show that the proposed supervised learning method can be used
in combination with another computational image embedding procedure, such
as bag-of-features method, to significantly improve accuracy of label inference,
while producing embedding of low complexity.

1 Introduction

Inferring label information from image data has a wide range of applications in com-
puter vision and image processing. A common approach to tackle this problem is to
first build a descriptor for every image, for instance bag-of-features (BOF) histogram,
followed by the label inference formulated as classification or regression analysis prob-
lem. Computationally, this process is congruent to embedding of every image to multi-
dimensional vector space. The vector space defined by the embedding is sometimes
referred to as the concept space, and the embedding itself is said to give rise to concept-
based representation of the data.

Concept-based representation is a popular approach in information retrieval commu-
nity. The representation describes an item — e.g., text document, image, etc — using
sparse vectors of concepts. Construction of the item’s concept-based representation can
be viewed as category labeling procedure, and corresponding concept set as collection
of categories. Furthermore, weights associated with every concept relates information
content of the item with the concept’s category. Intuitively, two related items should re-
ceive similar category labels and formally, relatedness between two items is computed
with cosine similarity (i.e., cosine of the angle between two vectors) in the concept
space. Naturally, it may be desirable to control concept weights to suit specific category
labeling task. We refer to this process as computing context for concept-based repre-
sentation. The context controls which concepts are promoted during construction of the
item’s concept-based representation.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 103–113, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this paper, we propose supervised learning procedure that finds an embedding
to concept space with the inner product operator tuned for the specific label inference
task. Our procedure can be used in conjunction with another label inference method to
improve its accuracy. Among all possible concept spaces that can describe a training set,
the proposed method estimates the one of lowest dimensionality. The labels from the
training data are used to construct “ground truth” similarity matrix, which in turn will
be used to compute the inner product operator that defines the embedding. Our method
requires concept-based representation for the input data. Hence, it can be applied to
any popular unsupervised image embedding procedure used for label inference. The
proposed supervised learning framework is applied to the concept space obtained with
a variant of unsupervised embedding, the so-called bag-of-features representation. We
show that significant improvements in accuracy of label inference is achieved over the
original embedding, when supervised learning is used. In addition, the dimensionality
of the new concept space is much lower than the original.

Classical examples of linear concept space embedding include Singular Value De-
composition (SVD) based methods, Principal Component Analysis (PCA) [13] and La-
tent Semantic Indexing (LSI) [6]. LSI finds orthogonal loading vectors that minimizes
the reconstruction error of the matrix of interest. These methods have been very suc-
cessful in pattern recognition and information retrieval. In recent years, different criteria
or constraints have been proposed to address specific needs. For instance, Independent
Component Analysis (ICA) enforces statistical independence of loading vectors, and
sparse coding (SC) promotes sparse components. These methods are unsupervised and
consequently independent of the classification task. This can result in unnecessary in-
formation loss in the feature extraction stage. Therefore, a large effort has been put
into generating the loading vectors directly from the targeted task, using supervised
learning. A well known example is supervised metric distance learning [16]. Recently,
applications of such methods were reported on large scale problems like information re-
trieval [1] and image annotations [17]. These supervised methods usually achieve better
performance when training labels are available.

A common problem to concept-based representation is selecting the dimensionality
of the concept space (i.e., the correct number of concepts). The dimensionality can
affect performance of computational tasks in that concept space. Hence, it is usually
desirable to find a concept space of low dimensionality. Most methods that achieve this
require expensive validation or experience, which might not be available. Components
can be ranked in methods like PCA or LSI, but this ranking is not necessarily optimal for
the targeted task. Rank Minimization (RM) [10] on the other hand, when combined with
the optimization for the supervised embedding, can estimate the optimal dimensionality
for the specific label inference task.

In this paper we use supervised learning with RM to obtain concept space embedding
tuned for the specific label inference task. We show that our method can significantly
improve accuracy of a label inference procedure that uses concept-based representation
of images. We experiment with several label inference tasks relating images with meat
spoilage, defined on a set of hyper-spectral images of minced meat. The improved accu-
racy is demonstrated on meat spoilage measured as bacterial count (regression analysis)
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and sensor panel assessment (classification). In addition only few features are selected,
which is highly relevant for interpretation of the obtained result.

2 Related Work

Using embedding into concept spaces has a long history in information retrieval. The
first and perhaps most well-known method is Latent Semantic Indexing (LSI) [6]. LSI
applies SVD on term-document matrix, and simultaneously computes loading and doc-
ument embedding vectors. Unseen documents can be represented in the concept space
by projecting to the loading factors. LSI create an index structure for the documents
using concepts instead of “terms”, thus can match documents with “synonyms”, which
was absent in term-based indexing models. LSI is considered the pioneering work that
inspired methods such as probabilistic LSI (pLSI) [11] and Latent Dirichlet Alloca-
tion (LDA) in a probabilistic framework [2]. There are also alternative methods for
generating concepts directly from labeled data. Such approaches have been applied to
conceptual embedding and learning in a variety of information retrieval tasks such as
link prediction, cross-lingual retrieval, and image annotations [1,17]. Despite their suc-
cess these methods suffer from lack of clear strategy for setting the dimensionality of
embedding space.

Concept space embedding has also been successfully used in pattern recognition:
e.g., simple clustering approach to obtain BOF [5,15] for images or video. Compared
to raw feature matching used in early work [12,14], the BOF represents an image as a
histogram of “visual words”, giving rise to image embedding to a vector space where
retrieval or classification can take place.

Furthermore, observe that RM is a generalization of sparse representation for ma-
trices. Various pursuit methods for minimizing the L0 norm attain remarkable results
within problems such as image denoising, compression, inpainting and upscaling [4,9].
In addition, RM methods have found a number of successful applications for problems
such as visual tracking [8] and video inpainting [7].

3 Method

Assume, we are given a set ofQ training items di ∈ RM , i ∈ [1, Q] arranged in columns
of matrixD ∈ RM×Q. Each element in di can be a raw feature or a concept, which can
be viewed as an extracted feature. Let S̃ ∈ RQ×Q denote the “Ground-truth Similarity
matrix (GSM)” ofD. That is, S̃i,j is assigned with “ground truth” similarity for the cor-
responding items di and dj . The GSM can be generated in different ways from labeled
data, or from unsupervised learning, depending on the task of interest. For example, in
classification tasks, we can have

S̃i,j =

{
1 items i and j in same category,

−1 otherwise.

In inferring continuous measurement values, we can have element

S̃ij = 1 − 2|ci − cj |/R,
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where ci and cj are measurement values for items i and j, respectively; R = r1 − r2
and r1 and r2 are maximum and minimum values of the measurement.

We then define “Contextualized Similarity Matrix”(CSM) S = D�WD, where W
is what we call “Context Matrix”. Every element Sij = d�i Wdj describes the “Con-
textualized Similarity” between sample di and dj . The formulation of contextualized
similarity was used in [1] for the problem of text retrieval. Intuitively speaking, the
element Wij models the relevance of the i-th element of d1 and j-th element of d2.

Note that the CSM S is not necessarily DTD, in which W = I and no learning is
required.

In this paper, we try to find the optimal context matrix W that minimizes the recon-
struction error: ‖S − S̃‖. From a supervised learning point of view, the W will catch
the essential information that best describes our target task.

We observe thatW should be a symmetric matrix, so the similarity within the context
maintains the commutative property. Moreover,W will be diagonally dominant matrix,
since each item should be ranked most similar to itself. As a result, we obtain that W
is a positive semi-definite matrix, so it defines an inner product in concept space. In
addition, W gives rise to new concept space embedding. Indeed, since W is positive
semi-definite, we obtain W = PTP where P ∈ Rr×M and r = rank(W ). Matrix P
transforms any item d ∈ RM defined in the original concept space, to the new concept
space Pd ∈ Rr. Among all possible solutions W to the norm minimization, selecting
the one with minimum rank, describes the new concept space with the least number of
concepts. Clearly, if we minimize the rank ofW so that r < M , we also obtain a lower-
dimensional embedding of the original concept space. It should also be noted that rank
minimization can be considered a generalization of vector sparsity for matrices [10].
Indeed, minimizing a rank of a diagonal matrix is equivalent to minimizing number of
non-zero elements of the diagonal vector.

The problem of learning minimum rank context embedding W for the given set of
training items D can be formulated as optimization problem (1):

min
W

‖DTWD − S̃‖ + γ rank(W ) (1)

s.t. W � 0.

Here, γ is regularization parameter. In general, optimizations with rank(.) can not
be solved directly. However, Fazel et al. [10] showed that approximate solution to
(1) can be obtained by replacing rank(W ) objective by its smooth surrogate func-
tion log det(W + δI). This results in the following iterative method for approximating
rank(W ):

Wk+1 = argmin
W∈C

Trace(Wk + δI)−1W (2)

where C is a set of optimization constraints from (1). Computing each iteration ofWk+1

requires solving a semi-definite program (SDP), and its initial estimate W0 can be ob-
tained with another SDP: e.g., replacing rank(W ) objective with Trace(W ) (the so-
called trace heuristic). Empirical evidence in [10] suggests that log det heuristic pro-
duces better approximations of rank(W ) (i.e., lower rank solutions can be found) than
trace heuristic. Our procedure, detailed in Algorithm 1, uses ‖DTWD − S̃‖ objective
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to findW0 followed by few iterations of (2). The value for parameter γ was empirically
chosen to ensure the rank is not optimized at the expense of the norm ‖DTWD − S̃‖
minimization. Parameter β ensures the low rank solution W results in the norm value
very close to the minimum.

Algorithm 1. Minimum Rank Context Embedding

Input:
{di}, set of training items
D ∈ RM×Q, concept based representation for di arranged in columns

Output: P , minimum rank embedding for learned context W

γ = 0.0001
β = 1 + 10−6

S̃ = getGSM({di}) # build Ground-truth Similarity Matrix

W0 = arg min
W∈C

‖DT WD − S̃‖ # Initialize W0 (solve SDP)

κ = ‖DT W0D − S̃‖

C =

{
W � 0

‖DT WD− S̃‖ ≤ βκ

}
# create set of constraints

for k = 1 to 3 do
Wk = arg min

W∈C

[
‖DT WD− S̃‖+ γ Trace(Wk−1 + δI)−1W

]
end for # log det approx. (solve 3 SDPs)
decompose W3 = P T P
return P

Due to high complexity of SDP solvers, the size of problems that can be handled is
very limited. On the other hand, a large number of concepts Q is needed to describe
even moderately sized datasets (e.g., tens to hundreds of thousands). Hence, handling
optimizations of that size by Algorithm 1 is impractical. We employ Latent Semantic
Indexing [6] (LSI), a well known dimensionality reduction technique that is widely used
in information retrieval community for efficient document indexing and retrieval. For the
given set of training items {di} and their concept-based descriptors arranged in columns
of D, SVD of D = UΣV T is computed using SlepC library1. Matrix Σ−1

l UT forms
an embedding for every concept-based item descriptor in l-dimensional space, where
Σl is a matrix formed with l most significant singular values of D. Computing D̂ =
Σ−1

l UTD yields low dimensional (e.g., 15 ≤ l ≤ 100) representation of training items,
and matrix D̂ is passed to Algorithm 1 for learning minimum rank context embedding.

Alternatively, one may choose to use first-order method described in [18] and [19]
to approximate optimization (1) using convex relaxation. Each iteration of their method
requires only a SVD, that can handle large matrices (on the order of hundreds of mil-
lion non-zero entries) using efficient libraries such as Slepc. Using such an approxima-
tion to (1) in Algorithm 1 will enable learning context embedding for larger datasets
described in higher dimensional concept spaces. As a result, no dimensionality reduc-
tion such as LSI or PCA will be required.

1 http://www.grycap.upv.es/slepc/

http://www.grycap.upv.es/slepc/
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The primary objective of this work was to empirically validate the viability of the
proposed framework, described in Algorithm 1, to improve the accuracy of label in-
ference and reduce dimensionality of concept space. The results of our empirical vali-
dations are presented in Section 4. Having obtained initial validation for the minimum
rank context embedding framework, the most prominent direction of our future work
is re-formulating optimization (1) so a first order approximation method can be used
instead of SDP.

4 Experiments

Non-destructive methods for food inspection is important in industrial manufacturing,
and image processing can be one way of measuring such quality parameters. We present
results for label inference experiments on multi-spectral images of minced meat with
ground truth labels for storage degradation. The rest of this section is organized as
follows. Section 4.1 describes dataset of meat images used in our empirical validations.
Algorithm 1 assumes the input data is represented in concept space. Hence, Section 4.2
presents a variant of popular BOF-based image representation used to embed images
to a concept space. Finally, results of label inference experiments performed in both
concept spaces, can be found in Section 4.3.

Fig. 1. Principle sketch of the VideometerLab integrating sphere (a), with camera at the top,
LED’s along the equatorial rim, and a petri dish at the bottom. The wavelengths are 405, 435,
450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940 and 970 nm. Image
examples in a petri dish (b). Top is a fresh meat sample and bottom is a sample stored for 67
hours at 20◦C. Note the black spots of bacteria growth on the bottom sample. Color images are
made from three spectral band (R – 630nm, G – 525nm, and B – 450nm).



On Inferring Image Label Information Using Rank Minimization 109

4.1 Data

Our multi-spectral images are acquired from device called VideometerLab2, which
employs wavelength specific LED illumination placed in an integrating sphere, see
Figure 1. Hereby the meat sample is illuminated by narrow spectral bands of diffuse
light spanning the spectrum at 18 wavelengths from 405 – 970 nm. An image is ac-
quired from each spectral band using a normal CCD camera. The resolution of the
sample images is 1280 × 960 pixels. The minced meat samples have been stored at
different temperature and under different package conditions, and the spoilage has been
assessed with six bacteria count methods and a sensory panel assessment into three cat-
egories – fresh (F), semi-fresh (SF), and spoiled (S). Figure 1 shows an example of the
image data, and Table 1 gives an overview of the measured parameters.

Table 1. Data parameters. Bacteria is measured by blending the meat sample and placing it on an
agar medium and counting the number of bacteria colonies after an incubation period.

Storage
AIR (normal atmosphere) MAP (modified atmosphere)

Temperature
0◦C 5◦C 10◦C 15◦C 20◦C

Storage time
0 – 590 hours

Incubation methods for bacteria count
PCA (Plate Count Agar – 30◦C for 48 hours)
PAB (Pseudomonas Agar Base – 30◦C for 48 - 72 hours)
STAA (Streptomycin Thallous Acetate-Actidione Agar –

25◦C for 72 hours)
RBC (Rose Bengal Chloramphenicol Agar – 25◦C for 72 hours)
VRBGA (Violet Red Bile Glucose Agar – 37◦C for 18 - 24 hours)
MRS (Man-Rogosa-Sharp medium – 30◦C for 48 hours)

Acidity measurement
pH

Sensory panel
F – fresh SF – semi-fresh S – spoiled

4.2 Explicit Unsupervised Feature Extraction

The proposed concept-based representation for images treats each image as a collec-
tion of terms; i.e., pre-defined descriptors for extracted image features. Given a set of
images, we construct their concept-based representation as follows. First, a subset of
images is randomly selected and all of their terms are recorded as concepts. Then, the
remaining images are interpreted in terms of these concepts. Every term associated
with an image votes for k nearest concepts that are identified using approximate nearest
neighbor data structure. A histogram bin, associated with every concept, accumulates

2 http://www.videometer.com/

http://www.videometer.com/
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weights received from each term. The weight χ(t, q) between term t and concept q is
computed using

χ(t, q) =
{

1 − ‖t− q‖ when ‖t− q‖ ≤ 1
0 otherwise

,

where ‖t − q‖ is Euclidean distance between term t and concept q. Once all terms
are processed, histogram bins are normalized to form concept-based descriptor for the
image. Formal overview of this procedure is presented in Algorithm 2.

Algorithm 2. Concept-based Image Interpretor

Input:
qi ∈ Q, concepts terms
tj ∈ I, image terms
k, nearest neighbor parameter

Output: d, concept-based representation of image I

d = 0

for all tj ∈ I do

{qni} = kNN(Q, tj , k) # select k closest concepts qni for term tj

for all {qni} do
d[qni ] = d[qni ] + χ(tj , qni) # accumulate weight for concept qni

end for

end for
d = d/‖d‖ # normalize concept-based image descriptor
return d

Note that the aforementioned method is a variant of well-known bag-of-features
representation. However, it does not perform any clustering or other feature quanti-
zation when concepts are created. In the spirit of recent empirical evidence presented
by Boiman et al. [3], we decided against feature quantization.

Images of minced meat samples contain intensities in 18 spectral bands. Image fea-
tures that are used as terms in the proposed concept-based representation are defined
as follows. The proposed image feature descriptor combines histograms of intensity
changes in neighboring spectral bands. Each feature descriptor is constructed for a rect-
angular image window. For every band bi, we compute the difference of intensity values
with the two neighboring bands bi−1 and bi+1. Then, each pixel in band bi is character-
ized with the angle formed by the two corresponding changes in intensities. A normal-
ized orientation histogram is computed for each of the 16 bands (two extrema bands are
not used), and the orientation histograms are concatenated to form a feature descriptor
for the rectangular window. We use 9 orientation bins, which results in 9×16 = 144 di-
mensional feature descriptors. Image features are computed for 17×17 pixel windows,
sampled every 11 pixels.

We extract image features for regions that depict minced meat only, while ignoring
regions that depict plate or table. Mask for minced meat region is computed for every
sample image. The mask is constructed by training a foreground-background classifier
from one hand-labeled image. From the training image a random subset of pixels was
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Fig. 2. Illustration of minced meat region mask

selected and clustered to 30 clusters using k-means algorithm. Each cluster was labeled
foreground or background, depending on the majority of the labels of the pixels in the
cluster. For an unknown image the nearest cluster center was found, using Euclidean
distance, and the pixel was labeled with the label of the cluster. Finally, morphological
opening and closing was applied to smooth the result, using 11 pixels squared structur-
ing element. Only features residing entirely within the meat region are selected as terms
for the sample. Please refer to Figure 2 for the illustration of a minced meat region mask.

We now present findings for label inference experiments using the aforementioned
concept-based representation for meat samples. We measure accuracy of SVM classifier
and linear regression, trained in concept space computed with Algorithm 2. We then use
Algorithm 1 to obtain embedding to new concept space, and compare label inference
performance in the new space with the original.

4.3 Label Inference Results

We collected a total of 141 pork meat samples. In all of the experiments, 10 meat sam-
ples were randomly selected as terms, while 30 samples were used for training, and the
rest of the samples were used for testing. Every experiment was repeated 100 times and
average prediction accuracy (or error) was recorded. We retained 15 most significant
singular values in LSI procedure and used them in the construction of matrix D̂, that is
then passed to Algorithm 1. Inferring sensory panel scores is a classification problem,
since only three labels (fresh, semi-fresh and spoiled) are available. However, predict-
ing bacteria count values for the meat samples requires regression analysis, since the
bacteria count values are continuous. We used LibSVM tool3 for both classification and
regression problems: SVM classifier with linear kernel and parameter C = 32, and
linear regression with parameters C = 32 and ε = 0.1 (used in loss function). The
choice of linear kernel was motivated by the formulation of the proposed supervised
embedding. We performed a limited set of classification experiments using RBF kernel,
that showed no clear advantage of using non-linear kernel for the supervised embedding
with RM.

For inference of sensory panel score, the average classification accuracy for unsu-
pervised embedding (Algorithm 2) was 69.2%4, while for supervised embedding with

3 http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
4 The best accuracy using RBF kernel (C = 2.0, γ = 0.5) was 71.3%. The parameters were

estimated for the training data using LibSVM’s grid-search tool.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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RM (Algorithm 2 followed by 1) average accuracy was 73.6%5. In addition, supervised
embedding always resulted in two- or three- dimensional concept spaces, while the
dimensionality of the original concept space obtained with unsupervised BOF-based
embedding was 15.

The average mean squared error for predicting six various bacteria count measure-
ments can be found in Table 2. In addition to significant improvement in accuracy, the
dimensionality of the concept space, obtained with the supervised embedding proce-
dure, was always between two and five.

Table 2. Predicting bacteria counts. Mean squared error.

Method PCA PAB STAA RBC VRBGA MRS

Algorithm 2 1.28 2.32 1.19 3.72 3.55 1.34
Algorithm 2 followed by 1 0.44 0.74 0.38 0.70 0.99 0.46

Measurement min 5.1 4.9 3.7 2.3 2.2 3.2
Measurement max 9.9 9.9 8.2 6.8 8.8 8.1

5 Conclusion

We presented a supervised learning procedure to compute embedding in concept space,
where inner product operator is tuned for specific task. We show that the proposed
framework can significantly improve label inference performance of prior art methods
that rely on concept-based representation. However, current formulation of the proce-
dure (i.e. Algorithm 1) requires solving several SDP’s, which significantly limits the
complexity of the problems that can be tackled. Our imminent goals for future work is
to introduce first-order approximation method for (1). Another promising direction for
future work is introduction of novel image features used as terms in Algorithm 2 that
can improve label inference on the meat dataset.
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sion and Control, CDC 2008, Cancún, México, December 9-11, pp. 3446–3451 (2008)

9. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and
Image Processing. Springer, Heidelberg (2010)

10. Fazel, M., Hindi, H., Boyd, S.P.: Log-det heuristic for matrix rank minimization with appli-
cations to hankel and euclidean distance matrices. In: Proceedings American Control Con-
ference, pp. 2156–2162 (2003)

11. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd annual in-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 50–57. ACM Press, New York (1999)

12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision 60(2), 91–110 (2004)

13. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosophical
Magazine 2(6), 559–572 (1901)

14. Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Transactions on
Pattern Analysis and Machine Intelligence 19(5), 530–535 (1997)

15. Sivic, J., Zisserman, A.: Video google: Efficient visual search of videos. In: Ponce, J., Hebert,
M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS,
vol. 4170, pp. 127–144. Springer, Heidelberg (2006)

16. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. In: NIPS. MIT Press, Cambridge (2006)

17. Weston, J., Bengio, S., Usunier, N.: Large scale image annotation: Learning to rank with
joint word-image embeddings. Machine learning 81(1), 21–35 (2010)

18. Yang, J., Yuan, X.: An Inexact Alternating Direction Method for Trace Norm Regularized
Least Squares Problem. Report, Department of Mathematics, Nanjing Uinversity (2010)

19. Yuan, X.: Alternating Direction Methods for Sparse Covariance Selection. In: 20th Interna-
tional Symposium of Mathematical Programming, ISMP (2009)



Saliency in Spectral Images

Steven Le Moan1,2, Alamin Mansouri1, Jon Hardeberg2, and Yvon Voisin1

1 Laboratoire Le2i, BP16, 89010 Auxerre Cédex, France
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Abstract. Even though the study of saliency for color images has been
thoroughly investigated in the past, very little attention has been given to
datasets that cannot be displayed on traditional computer screens such as
spectral images. Nevertheless, more than a means to predict human gaze,
the study of saliency primarily allows for measuring informative content.
Thus, we propose a novel approach for the computation of saliency maps
for spectral images. Based on the Itti model, it involves the extraction
of both spatial and spectral features, suitable for high dimensionality
images. As an application, we present a comparison framework to eval-
uate how dimensionality reduction techniques convey information from
the initial image. Results on two datasets prove the efficiency and the
relevance of the proposed approach.

1 Introduction

Visual attention modeling is the study of the human visual interpretation of a
given scene. In other words, which objects/features will first draw attention and
why ? This notion is closely linked to the analysis of saliency. Yet, the latter is a
much broader concept in that it can be seen as a way of measuring informative
content for any kind of data.

Following early influential work by Treisman et al. [1] and Koch & Ullman [2],
Itti et al. [3] proposed a general visual attention model allowing for the compu-
tation of so-called saliency maps, which purpose is to predict human gaze given
a certain scene. This model involves center-surround comparisons and combina-
tions of three main feature channels, namely colors, intensity and orientations.
More recent work involve for instance the use of graph theory [4], spectral resid-
ual [5], information theory [6], or face recognition [7].

Yet, only a few studies have extended the concept of saliency to objects which
cannot be entirely displayed on traditional computer screens. Among them, it
is worth mentioning the pioneer work by Lee et al. [8] on 3D mesh saliency.
This paper does not tackle such objects but follows however the same idea of
measuring prominent features (in a general way) for non-displayable objects,
that is, multi- or hyperspectral images.

Spectral imaging consists of acquiring the same scene at several different
ranges of wavelengths, usually several dozens. Since multispectral display de-
vices are yet rare, most of today’s popular display hardware is based on the
three-stimulus paradigm [9]. Thus, in order to visualize spectral images, a di-
mensionality reduction step is required so that only three channels (Red, Green
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and Blue) can contain most of the visual information. Such methods involve PCA
[10,11], band selection [12], Color Matching Functions [13], and are based on a
maximization of the informative content of the reduced dataset. However, assess-
ing the quality of a dimensionality reduction technique is very challenging and
application-dependent. When it comes to the task of visualization, one usually
aims at displaying as much information as possible while easing interpretation
by preserving natural colors and contrasts [14].

Even though visual attention has already been used in the context of spectral
images for dimensionality reduction purposes [15], the computation of an actual
saliency map from the entire high-dimensional image has not been tackled so
far to our knowledge. In this paper, we propose a simple method to compute
such a map, based on the extraction of both spectral and spatial features. It
involves a spectrum segmentation for a local analysis of the reflectance curves.
By extending the concept of saliency outside the scope of human visual atten-
tion and considering it as a measure of information, the proposed approach can
be used for images ranging outside the visible wavelengths (400-700nm), espe-
cially since, in many cases, considering for instance the near Infra Red (nIR)
allows to enhance the discrimination between materials and objects of a scene.
Consequently, we have derived a simple technique to measure the efficiency of di-
mensionality reduction techniques to convey informative content from the initial
spectral image.

In the following, we make a step-by-step description of the saliency map com-
putation by explaining the feature extraction, the spectral center-surround com-
parisons and the creation of the final map. In a second section, results are shown
on two spectral datasets and an evaluation framework involving one PCA-based
band transformation approach and two band selection techniques is presented.
Eventually, results are discussed and conclusions are drawn.

2 Saliency for Multispectral Images

We propose a simple and efficient method for saliency map computing for spec-
tral images. It is based on the Itti model of which we have modified the feature
maps computation in order to make it suitable for high dimensional reflectance
vectors. Figure 1 gives the synopsis of the proposed approach.

2.1 Channels Computation

Visual attention modeling usually involves the analysis of three main features,
namely Color, Intensity and Orientation from which several sets of channels are
created (e.g. two for color oppositions, one for intensity and four different orien-
tations). Each set is in fact a gaussian pyramid of an initial channel at several
different spatial scales (typically nine). The purpose of these channels is to allow
for a straight-forward center-surround comparison by means of a simple across-
scale difference. However, if computing color and intensity channels from RGB
images is quite easy, it becomes much more challenging when it comes to create
such channels from reflectance data. As stated in the introduction, many band
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Fig. 1. Synopsis of the proposed approach

transformation and band selection methods exist at this aim, all of them pro-
ducing different results, and each of them being suitable for a given task such
as automatic classification, visualization, compression, noise reduction, etc. In
this paper however, we aim at analyzing saliency in the high-dimensional space,
therefore no dimensionality reduction must be involved at this point. Neverthe-
less, we propose to divide the spectrum into three regions, roughly corresponding
to the blue, green and red wavelength ranges, in order to allow for a local analy-
sis of the reflectance spectra. For images ranging outside the visible wavelengths
(400-700nm), we suggest to add spectrum segments for the Ultra-Violet and
near Infra-Red ranges. However, in the remaining of this paper, we will consider
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only visible-ranging images. Consequently, three subset of the initial image are
obtained and nine spatial scales are created for each of them (from 1 : 20, the
initial scale, to 1 : 28, the coarser one). As for the creation of orientation chan-
nels, we have assumed that differences of orientations being relatively small from
one spectral band to another, it would make sense to compute one orientation
map for the whole set of spectral bands. Therefore, we have applied Principal
Components Analysis (PCA) to the spectral dataset and applied four Gabor
filters (at 0◦, 45◦, 90◦ and 135◦) to the first Principal Component (PC), which
usually contains more than 95% of the data energy. Eventually, we obtain one
set of three spectral cubes, each one of them at nine different spatial scales, as
well as four sets of nine orientation channels, also at nine different spatial scales.
From this point, the later four sets have been processed exactly the same way
as in the Itti model.

2.2 Center-Surround Comparisons

While RGB-based saliency analysis involves the extraction of color and inten-
sity channels prior to the center-surround differences computation, we propose
to decouple color from intensity during this latter step, by means of relevant
comparison metrics:

– Spectral Angle (SA) allows for an intensity-decoupled comparison of re-
flectance spectra. For a given couple of pixels with respective spectra being
noted s1 and s2,the SA is given by the following formula:

SA(s1, s2) = s1
‖s1‖ .

s2
‖s2‖

– Spectral Norm Difference (SND) depicts the difference, in terms of amount
of reflected light, between two spectra. It is given by the following formula:

SND(s1, s2) = abs(‖s1‖ − ‖s2‖)
The substitution of across-scale difference by these metrics allows for the com-
parison of spectra without dimensionality reduction. Therefore, visual attention
is analyzed all over the spectrum. In the common case of spectral images ranging
outside the visible wavelengths (400-700nm), one can no longer talk about visual
attention, but we believe this study to be relevant nonetheless, since its first aim
is to provide a measure of informative content.

Figure 2 gives an example of three reflectance spectra extracted from the
dataset presented in the next section. By applying the aforementioned metrics,
we obtain the results given in the table in Figure 2. These results confirm that the
SND allows for a discrimination between highly and poorly reflecting objects
while the SA achieves a comparison in terms of the shape of the curves.

By means of these metrics, we have computed 6 maps by feature, corresponding
to the comparison between scales c ∈ {2, 3, 4} and c + δ, δ ∈ {3, 4}. An across-
scale fusion at scale four (1:8) allows then for the creation of ten conspicuity maps
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Fig. 2. Example of three different spectra s1 (red plain), s2 (grey dashed) and s3 (blue
dotted)

(3 SA, 3 SND and 4 Orientations) which are then respectively averaged in or-
der to obtain one conspicuity map by mode. They are then fused into one single
saliency map, here again averaging appears to be the best option considering the
heterogeneity of the features. The map is then normalized (division by its global
maximum) in order to reduce the number of salient locations and blurred (gaus-
sian filtering) to avoid tiny salient spots and increasing global smoothness.

3 Experiments and Results

3.1 Data Sets

For our experiments, we used two calibrated multispectral datasets of 31 bands,
ranging in the visible spectrum (400-700 nm):

– “Flowers” represents a natural scene with flowers, leaves and a background.
It comes from a database presented in [16].

– “MacBeth” is the well-known MacBeth CC color calibration target.

Only raw reflectance has been used (no illuminant). Each dataset have been pre-
processed so that bands with average reflectance value below 2% and those with
low correlation (below 0.8) with their neighboring bands have been removed, as
suggested in [17].

3.2 Saliency Map

Figures 3 and 4 represent the final conspicuity maps for both datasets. The de-
picted maps are actually averages of the three conspicuity maps corresponding
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Fig. 3. Conspicuity and final saliency maps for the “Flowers” image. From left to right:
SA, SND and Orientations.

Fig. 4. Conspicuity and final saliency maps for the “Macbeth” image. From left to
right: SA, SND and Orientations.
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to each segment of the spectrum (for the SA and SND features) and of the four
angles maps (for the orientation).

As explained before, these maps depict which locations are the most prominent
in terms of SA, SND and orientations, i.e. the flowers in the first image and
the white patch in the second one. The effect of normalization and filtering
yields high contrast and smoothness, which allows for an easier interpretation
by highlighting a restrained number of relatively large areas. On the “Flowers”
image, SA highlights small areas of background through the leaves while SND
mainly emphasizes the flowers. Both metrics find very different salient locations,
hence their relative independence and the relevance to use both in the whole
process. As for the “MacBeth” target, while the orientation-related saliency is
meaningless due to the regular structure of the image, the orientation appears
to be the most influential feature in the computation of the final map. This is
due to the fact that, in this image, the orientation maps have the highest mean
values. Moreover, this also induces that very few locations are salient in terms
of colors, barely the white patch.

3.3 Evaluation of Dimensionality Reduction Techniques

We propose to illustrate one application of the spectral saliency map on the eval-
uation of dimensionality reduction techniques. At this aim, we have computed
tri-stimulus representations of both datasets by means of one band transforma-
tion and two band selection methods:

– PCArgb is the traditional Principal Components Analysis of which compo-
nents are mapped to the RGB color space (PC1 → R;PC2 → G;PC3 → B).

– LP -based band selection has been proposed by Du et al. [12] and consists of
progressively selecting bands by maximizing their respective orthogonality.

– Entropy-based band selection (ENT ) is a naive method selecting the three
bands with maximal entropy.

For the two latter techniques, resulting channels are mapped to RGB by de-
scending wavelengths. In order to compare the different tri-stimulus composites,
we have considered two simple metrics that we will refer to as Saliency Discrep-
ancy number 1 and 2, respectively (SD1 and SD2). The first one is based on
a point-by-point difference, summed along both spatial dimensions and divided
by the total number of pixels:

SD1(im1, im2) =

∑
i=1:sizeX

∑
j=1:sizeY

smap(im1(i,j))−smap(im2(i,j))

sizeX∗sizeY
with im1 and im2 any two images of same size but potentially different number
of spectral channels and smap(.) an operator computing the saliency map of
its input. The second metric is the inverse of Shannon’s mutual information,
normalized by the sum of entropies:

SD2(im1, im2) =
H(smap(im1))+smap(im2))
MI(smap(im1));smap(im2))
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Results from the dimensionality reduction techniques: (a) PCA (b) LP (c)
Entropy and their associated saliency maps (d-f)

(a) (b) (c)

(d) (e) (f)

Fig. 6. Results from the dimensionality reduction techniques: (a) PCA (b) LP (c)
Entropy and their associated saliency maps (d-f)

with H(.) and MI(.; .) being respectively the entropy and mutual information
operators. Figures 5 and 6 depict the resulting tri-stimulus representations by
means of the aforementioned techniques as well as their associated saliency
maps.



122 S. Le Moan et al.

Table 1. Saliency Discrepancies between the spectral images and their respective tri-
stimulus composites

PCArgb LP ENT

SD1
“Flowers” 13.20 18.73 19.72
“MacBeth” 23.95 16.07 33.74

SD2
“Flowers” 19.41 10.78 12.31
“MacBeth” 12.01 10.61 10.90

Table 1 gives the results of the SD metrics. One must notice that the result-
ing tri-stimulus composites are very different from each other in terms of color
and consequently in terms of saliency. Different regions are highlighted and this
reflects the variety of manners to conveys information from the spectral image.
Consequently, we observe large fluctuations of SD between the initial datasets
and their tri-stimulus composites. As expected, we observe that the SD is inde-
pendent from the overall visual appeal of the image. Indeed, images with very
different hues such as the ones from PCA compared to the results from LP in the
case of the “Flowers” image are close nonetheless (13.20 and 18.73). Both metrics
are in accordance to elect LP as the most suitable method for the visualization
of the “MacBeth” target. However, SD1 ranks ENT as the worst method for
both images while SD2 gives PCArgb as the method conveying the less saliency.
This divergence is due to the fact that Figures 5d and 6d have respectively lower
entropies than Figures 5f and 6f, a property that is conveyed by the normaliza-
tion in SD2. For this, we believe that SD2 is more efficient and accurate than
SD1 in measuring discrepancies. In fine, PCA is globally outperformed by the
two band selection techniques in retaining saliency from the input dataset and
the LP is the method giving best results.

4 Conclusion

We have presented a new method to create saliency maps for spectral images.
It is based on the extraction of both spectral and spatial features and involves a
spectrum segmentation for a better handling of local variations of the reflectance
curves. Further than the single scope of visual attention, it is meant to be a way
of measuring informative content. An example of application has been given on
the comparison of dimensionality reduction techniques for visualization. Further
study will investigate the use and influence of different spectrum segmentation
techniques as well as means to use saliency as a criterion for dimensionality
reduction, in order to control the visual features of a tri-stimulus composite.
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Abstract. This article presents a novel approach to person tracking
within large-scale indoor environments monitored by non-overlapping
field-of-view camera networks. We address the image-based tracking prob-
lem with distributed particle filters using a hierarchical color model. The
novelty of our approach resides in the embedding of an already-seen-
people database in the particle filter framework. Doing so, the filter
performs not only position estimation but also does establish identity
probabilities for the current targets in the network. Thus we use online
person re-identification as a way to introduce continuity to track people
in disjoint camera networks. No calibration stage is required. We demon-
strate the performances of our approach on a 5 camera-disjoint network
and a 16-person database.

Keywords: re-identification, tracking, camera network, non-overlapping
fields of view, particle filtering.

1 Introduction

The problem of estimating the trajectory of an object as it moves in an area of
interest, known as tracking, is one of the major topics of research in computer
vision (see a comprehensive survey in [14]). That becomes even more challenging
with multiple objects tracking (MOT), aiming to maintain identities of tracks.
MOT has been tackled by supervised approaches [13], but also with distributed
particle filters [12] [1]. However, it is usually not feasible to completely cover large
areas with cameras having overlapping views due to economic and/or computa-
tional reasons. Thus, in realistic scenarii, the system should be able to handle
multiple cameras with non-overlapping fields of view (NOFOV). Beyond the
intra-camera tracking problem, the crucial difficulty resides in the transitions
between cameras and the problem of maintaining targets’ identities at the net-
work level. The differences in target appearances are mainly due to different
poses of cameras and different colorimetric responses.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 124–133, 2011.
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That jump between cameras, known as the re-identification problem, can be
seen as twofold with on the one hand the robustness of the descriptor and on the
other hand the specific strategy to match identities. As most approaches, Gray
et al. [4] focus on the target descriptor to achieve the best frame to frame re-
identification rate. They propose the VIPeR dataset, composed of pedestrian im-
ages taken for two cameras with different viewpoints and illuminations. Prosser
et al. used a similar approach in [11]. Rather than choosing which cues to use,
these works let a meta-algorithm provide a descriptor highlighting the invariant
cues of pedestrian silhouette relatively to a learning database. The limitations
here are the great number of samples needed. Other works, also on the descrip-
tor level, try to project their color descriptors on the same subspace, putting
the focus on the color consistency issue and resorting to color calibration. Thus,
Javed et al. in [6] compute a subspace based color brightness transfer function.
That transfer function is estimated over a set of training samples seen in the
network. Bowden et al. in [3] go further into the learning of that transfer func-
tion as they compute it incrementally. Again here, the limitations reside in the
training phase which takes processing time and is biased as the sample target
set cannot be exhaustive.

The different aforementioned approaches consider all a frame to frame com-
parison strategy. Cong et al. in [2] propose a more enhanced process in matching
not only single images of the target but whole tracking sequences. They perform a
spectral analysis of the graph Laplacian of the matrix of two sequences. The num-
ber of clusters in the matrix (i.e. the number of similar descriptors) is directly
linked to the eigenvalues. With SVM classification in the reduced eigenspace,
the decide whether the sequences belong to the same target or not. The inter-
camera re-identification is achieved through the RGB Greyworld normalization
and an elaborated strategy over the sequences. However the comparison is only
done for two sequences at the same time. To bridge the gap between cameras,
Makris et al. in [8] learn spatiotemporal transitions to infer re-appearance time
of targets evolving in a blind spot of the network. With the same goal, Lim
et al. in [7] propose a two-behavior particle filter: when the tracked target is
visible, usual tracking is performed, when it is in a blind spot, particles evolve
in the metric map of the building, dividing the current group in two at each
intersection. Re-identification is achieved when a detection in a camera coincide
with particles in the metric map. Limitations of these approaches resides clearly
in the multiple objects configurations.

In this paper, we see the tracking in NOFOV networks as an extension of
the multiple objects tracking (MOT) in mono- or multi-ocular sequences [13]
[12]. To do so, we propose to embed re-identification within the particle filter
framework. Thus we estimate not only relative position in a given camera but
also the identity of the target in respect to an a priori learned person database
(people that have entered the building where the network is set). Moreover, we
use distributed filters, which implies low complexity and enable the approach to
be extended to large networks. This strategy is an enhanced frame to frame com-
parison as the filter introduce temporality, but still produce a re-identification
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result at each new frame. As there is no public dataset treating about extended
camera networks, we tested our algorithms on our private 5-camera network
composed of a 34-meter long corridor, a meeting room and a building outdoor
entrance with a total 16 pedestrians are wandering in it.

In the following, Section 2 first presents how we learn the identities that we
will track in the other cameras and build a target-database. Section 3 details
the particle filter adaptation. Section 4 introduces a supervisor notion for the
network monitoring. And finally Section 5 presents the way we evaluated the
approach.

2 Learning Identities to Re-identify and Track

2.1 Target Representation

To avoid any camera geometrical calibration problem, the tracking is conducted
in the image plane. We use a rectangular geometric model as Region Of Interest
(ROI). The descriptor is hierarchical: the ROI is sliced into regular horizontal
stripes and each stripe is described by its color distribution. Color histograms
have proven to be robust to appearance changes [9] with their global aspect. The
addition of spatial constraints in the signature localizes the colors and increases
the discrimination power. It has been successfully used for tracking purpose
by Pérez et al. [10] as well as for re-identification purpose by Cong et al. [2].
Moreover that type of descriptor (termed Hand Localized Histogram) was part
of the evaluations conducted by Gray et al. in [4] and also achieved good results
in frame to frame comparison. We use color histograms in the RGB color space
with 8 bins per channel for tracking computing time, and we tuned the number
of stripes using [4] evaluation. As they did, we computed Cumulative Matching
Characteristic (CMC) curves over the VIPeR dataset, for different numbers of
stripes from 1 to 30 and kept the best curve, corresponding to the 5-stripe
descriptor. Associated to a normalization process explained in subsection 3.2,
large bins allow us to handle color discrepancy between cameras.

2.2 Reducing the Database to Key Frames

Before recognizing people we have to see them a first time. We propose to do a
learning of identities in a first camera seen as an entrance point in the network
(e.g. the hall of a building, and Site 0 in the figure 4). Then we will treat the
network as a closed system with a collection of identities walking in it. First we
run a traditional Condensation1 particle filter on the learning sequence. We
extract a view of the target for each frame. Then, we reduce offline this collection
of descriptors to key ones. To select an appropriate number of key frame to retain
the same amount of variation for each identity, we perform a spectral analysis
of the tracking sequences. Our approach is inspired by [2] but here limited to a
single person. Thus we focus on the variations of the target descriptor for the
1 For Conditional Density Propagation.
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same target to extract the main representative descriptors of the sequence. To
do so, we build the similarity matrix of each tracking sequence taken from the
learning camera as Wij = exp(−K · ∑Nc

k=1 d
2(si(k), sj(k))), where d(., .) is the

discrete Bhattacharyya Distance, si(k) (resp. sj(k)) is k-th color distribution
of target i (resp. j), Nc the number of color distributions per target and K a
normalization constant. We apply spectral clustering method to that similarity
matrix calculating its un-normalized Graph Laplacian Δ = D −W where D is
the diagonal matrix of the horizontal sums of W elements: Dii =

∑
j Wij . We

then diagonalize the Graph Laplacian. The eigenvalues present an eigengap when
the number of clusters is reached [2]. In a one person sequence, the gap may not
be obvious, so just put a threshold on the eigenvalues and perform k-means
clustering in the reduced space of the k first eigenvectors, k being the number of
eigenvalues lesser than the threshold. Thus we summarize a tracking sequence
to key frames that retain the main variability in terms of appearance. Figure 1
shows some of the tracking boxes and the chosen key frames. Out of 100 tracking
boxes, we extract between 4 and 10 key frames.

Fig. 1. Some boxes part of a tracking sequence (scaled to have the same height for
design purpose). The green frame highlights the four key frames selected by the k-means
algorithm to represent that identity. These key frames capture the biggest variation of
the target appearance in the tracking sequence.

3 Embedding Re-identification into the Tracking Process

3.1 Particle Filter Framework

A bayesian tracking filtering process begins with the choice of a reference region
in an image, and then proceed to a recursive search of similar regions in the
remaining of the sequence. Given the identity database, we have got here another
reference descriptor to compare with. We use the Mixed State Condensation
particle filter framework [5], to estimate our Mixed State vector composed by
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continuous parameters (the target’s image coordinates x) and also a discrete
parameter (the target’s identity y) in the filter loop, namely

X = (x, y)T, x ∈ R4, y ∈ {1, . . . , Nid}

In our case, we track in the image plane with a rectangular geometric model. We
have x = [xc, yc, hx, r]T, where (xc, yc)T are the coordinates of the box center,
hx is the half width of the box, and r is the width-height ratio which is assumed
constant, and where Nid is the cardinal of the identity database, and N the
number of particles. Given that extended state, the sampling process density at
frame t can be written as in [5]:

p(Xt|Xt−1) = T (Xt,Xt−1) · p(xt|xt−1)

where T (Xt,Xt−1) is a transition probability matrix which will sample the dis-
crete ID parameter, and p(xt|xt−1) is the sampling on the continuous part of
the state. The transition matrix T = [tij ] is built over the key frame set. The
element tij is the similarity between identities i and j in the database, computed
using equation (1) between the most distant key frames of each identity.

The difference with [5] resides in the discrete parameter meaning. They used it
to include different motion models into the filter and to have it decide which one
fits the best. For us, and this is the main novelty of that paper, this parameter
refers to an identity in our already-seen-person database and allows us to perform
simultaneous tracking and re-identification. To the best of our knowledge this
has not been done before.

3.2 Estimating the Identity and the Position

After the sampling stage, the new positions of the particles are evaluated rel-
atively to the new image Zt. The traditional temporal likelihood p(Zt|x(n)

t ) is
estimated as:

w
(n)
Temp(t) = exp{−K ·

Nc∑
j=1

d2
(
s
(n)
t (j), smodel(j)

)
}, ∀ n = 1, . . . , N

where Nc is as previously the number of color distributions per target, smodel(.)
the set of color distributions of the tracking reference model (i.e. the initial box
of a tracking process, that we do not update during the process), s(n)

t (.) the set
of color distributions of the current particle, and N is the number of particles.

The Mixed-State Condensation framework adapted to re-identification pro-
vides an additional likelihood, weighting the particle relatively to its identity,
p(Zt|x(n)

t , y
(n)
t ):

w
(n)
Id (t) = exp{−K · min

i∈Ny

Nc∑
j=1

d2
(
s
(n)
t (j), sidentity(j, y(n)

t , i)
)
}, ∀ n = 1, . . . , N(1)
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where Ny is the cardinal of the key frame class of identity y
(n)
t (y(n)

t being
the identity assigned to the n-th particle at time t), Nc the number of color
distributions per target, sidentity(., y(n)

t , i) is the set of color distributions of the i-
th keyframe of identity y(n)

t in the database, s(n)
t (.) is the set of color distributions

of the current particle, and N is the number of particles. Figure 2 sum up the
principle of these two likelihoods per particle. Each particle is evaluated relatively
to the reference of tracking (wTemp), but also (wId) relatively to its identity
(described by a collection of key frames).

Fig. 2. Illustration of our mixed state particle filter in the case of a database of cardinal
of 3. The particle cloud is divided into three subcloud, identically distributed at the
initialisation of the filter (as displayed in the figure). Then the strongest identity will
take the lead, because of the combined likelihood and the transition matrix T . Mixed
state particles share the same temporal tracking reference (left), but a different identity
in the database (right, with the key frames).

As these two types of likelihood do not share the same order of magnitude, we
normalize them over the set of particles before the resampling stage. That way,
we guarantee the jump between two cameras, known as re-identification. Here,
we do not favor any bins in the histograms, as [6] and [3] do with the computation
of a transfer function. We assume a linear transformation between the cameras
colorimetric responses, adopt a rather large bin quantization to absorb that
transformation and apply that normalization. Moreover, unlike color calibration,
this approach is independent of the pair of cameras considered. We note the
normalized likelihood w∗

Id and w∗
Temp. If w∗

Temp is greater than a threshold (i.e.
if the particle is relevant, otherwise we just use the low temporal similarity as
the combined one), we combine both of these similarities to obtain our likelihood
formulation which will be injected into the particle weighting stage:

π
(n)
t = α · w∗(n)

Temp(t) + (1 − α) · w∗(n)
Id (t), ∀ n = 1, . . . , N.

Doing so, we give weight to the particles that moved into the right place, as-
suming that they hold the right identity. The state estimation is then a two-stage
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process. First we need to compute the MAP on the discrete parameter, i.e. a
partial re-identification.

ŷt = arg max
j

P (yt = j|Zt) = arg max
j

∑
n∈Υj

π
(n)
t , where Υj =

{
n|s(n)

t = (x
(n)
t , j)

}
(2)

The continuous state components are then estimated on the subset of particles
that have the strongest identity (equation (3)).

x̂t =
∑
n∈Υ̂

π
(n)
t · x(n)

t /
∑
n∈Υ̂

π
(n)
t , where Υ̂ = {n|s(n)

t = (x(n)
t , ŷt)} (3)

4 The Non-ubiquity Constraint

Our distributed approach provides a strategy for re-identification. Instead of
comparing one query image to every entries in the database, we let our mixed-
state particle filter perform the decision, allowing identity concurrency in the
process. The drawback of the approach resides in the fact that there is no inter-
actions between filters, which means that nothing constrain filters from choosing
the same identity.

Thus we add to the approach a light supervising procedure that gather
re-identification probabilities thanks to the online identity characterization and
assign each filter its most likely identity respectively to the other filters. For a
multiple targets configuration supervised, equation 2 transforms to equation 4.

ŷt(f) = arg max
j

P (yt = j|Zt, f) = arg max
j

∑
n∈Υj(f)

π
(n)
t (f), (4)

where Υj(f) =
{

n|s(n)
t (f) = (x

(n)
t (f), j)

}
, ∀f = 1 . . . Nfilters

where (s(n)
t (f), π(n)

t (f)) is the n-th particle and its likelihood, of the f -th filter,
and Nfilters is the number of particle filters currently running. When a filter
receive an identity, this identity becomes no more available for the remaining
filters. That way, we avoid having the same identity for two separate targets.

5 Evaluations

5.1 Evaluation Network Setup

We used a five-camera network presenting non-overlapping fields of view
(Figure 4). The camera 0 is the one we used to learn offline the database. Then,
we let 16 pedestrians wandering in the network. Figure 3 shows a key frame per
identity of the database.
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Fig. 3. Our private 16-pedestrian database for experiments

Fig. 4. Overview of the testing network composed of one 34-meter long corridor, one
meeting room and one outside area

5.2 Re-Identification Efficiency

As we explained in Section 1 , our mixed-state approach provides a new strategy
for the re-identification problem. First we provide a thorough comparison of
that strategy to the state of the art one, considering the case of the single target
tracking. We compute re-identification results of all the 16 database identities
for all cameras, for a frame to frame strategy and for ours. In both cases we
use the same descriptor (as we evaluate only the strategy), and initializations
of tracking are provided by a configuration file hand-made. A complete system
would resort to a detector. For the frame to frame, we run the tracking process
with no identity feedback, and compare the estimated position to each entry
in the database, at each time step. Evaluated with identity ground truth, both
strategies produce binary answers at each time step for each target. For each
camera, we sum the results, which true gives re-identification rates per frame,
and then we average them over the overall sequence. The rates are also averaged
over five runs of each tracking sequence due to the stochastic nature of Particle
Filters. Table 1 summarize these results.

We observe different re-identification rates depending on the camera consid-
ered. The site #0 is where the identities have been learned, so descriptors are re-
ally similar, hence the almost 100% rate. However, sites #1 and #4 are rather
different in terms of camera pose and background colors (site #4 being moreover
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Table 1. Re-identification rates for camera to camera comparison of the trivial ap-
proach and Mixed State one

Approach Site #0 to #0 Site #0 to #1 Site #0 to #2 Site #0 to #3 Site #0 to #4

Track then ID 0.96 0.40 0.66 0.65 0.30

Track + ID 0.98 0.46 0.81 0.71 0.34

outside). The descriptor chosen use no background subtraction, which is an ex-
planation to the dropping rates. Still, for each camera, the simultaneous tracking
and re-identification strategy performs better than the frame to frame one.

5.3 Multi-Target Re-identification

Figure 5 provides an illustration of the typical case where the non-ubiquity
constraint is useful: multiple targets evolving in the network. Quantitative eval-
uations are being studied.

Fig. 5. Tracking 5 targets in the network: four in site #2 and one in site #3. Re-
identification results are reported on a map of the network.

6 Conclusion and Perspectives

We have proposed a new approach for people tracking in NOFOV camera net-
works, which does not require any a priori knowledge on the network. Here
we see person re-identification as a means to bring continuity between tracking
sequences from different cameras. The main novelty of that paper is to embed
re-identification into the particle filter framework to estimate simultaneously the
target’s position and its ID within the camera network. Rather than focusing on
the descriptor, we propose here an enhanced matching strategy, introducing tem-
poral filtering in the re-identification process. We have proved by a thourough
comparison over every sites of our private network and every identities consid-
ered that our mixed-state particle filtering strategy outperforms the usual frame
to frame comparison. Moreover, our approach is theoretically independent of
the cameras number as the filters are distributed. And we also provide a way
to constrain ubiquity of identities between the filters in case of multiple targets
tracking.
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Further work will investigate on an online construction and updating proce-
dure of the identity database. Moreover, adding interaction forces between filters
as proposed in [12] would reinforce the multi-targets mono-camera tracking. Fi-
nally, while our approach only uses 2D information, additional knowledge about
the scene (e.g., a ground plane to improve targets’ size estimation), or about the
network (e.g., a topology map to infer some unlikely positions in the network)
would be beneficial.
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Linköping, Sweden
http://www.foi.se/

Abstract. This paper concerns simultaneous localization and mapping
(SLAM) of large areas. In SLAM the map creation is based on identified
landmarks in the environment. When mapping large areas a vast number
of landmarks have to be treated, which usually is very time consuming.
A common way to reduce the computational complexity is to divide the
visited area into submaps, each with a limited number of landmarks. This
paper presents a novel method for merging conditionally independent
submaps (generated using e.g. EKF-SLAM) by the use of smoothing. By
this approach it is possible to build large maps in close to linear time.
The approach is demonstrated in two indoor scenarios, where data was
collected with a trolley-mounted stereo vision camera.

1 Introduction

Simultaneous localization and mapping (SLAM) refers to techniques for estimat-
ing the trajectory along which a person or robot moves in an unknown environ-
ment, while also creating a map of the surrounding area. Many SLAM methods
are based on observing and recognizing landmarks present in the environment,
and the created map consists of the estimated positions of these landmarks. Sen-
sors commonly used for SLAM include visual cameras, laser range finders, sonar
and radar.

Apart from feature extraction and data association, a successful SLAM im-
plementation needs to tackle three major issues; loop closing, large numbers of
landmarks, and consistency. Loop closing shall occur when the sensor revisits a
previously seen area and the result should be an updated and improved map. In
the loop closure the current state of the sensor is also updated. The SLAM algo-
rithm must be able to handle large maps, i.e., a large number of landmarks. The
major problem with many landmarks is that they are usually time consuming to
calculate. Executions times proportional to n2, where n is the number of land-
marks, are common. Furthermore, the resulting map needs to be consistent, i.e.,
correct. Inconsistency is usually related to linearization problems, which cause
the uncertainty about landmark positions and sensor position and orientation
to be underestimated.

The submap SLAM approach that is presented in this paper handles loop
closing, can treat large sets of landmarks in close to linear time, and is consistent.
Examples using stereo camera data is shown.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 134–145, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Background and Related Work

2.1 SLAM Algorithms

One of the most well-known SLAM methods is EKF-SLAM, which, as the name
implies, is based on the extended Kalman filter. The filter state X contains all
information about the sensor pose as well as the position of all landmarks in the
map. Assuming that the landmarks are stationary and that a constant velocity
and angular velocity model is used for the sensor motion,

X = (t, ṫ, r, ṙ, l1, . . . , ln)T ,

where t and ṫ denote the sensor position and velocity, respectively, r and ṙ de-
note the orientation and angular velocity (using e.g. Euler angles or a quaternion
representation), li denotes the ith landmark position and n is the number of land-
marks in the map. Obviously, the state dimensionality grows with the number
of landmarks. The dimensionality of X is 12 + 3n if the orientation and angular
velocity are represented using Euler angles and landmarks are represented using
their coordinates in R3.

Since the EKF explicitly models the covariance between all landmarks, the
SLAM algorithm does not need additional logic to handle loop closures. How-
ever, due to linearization errors EKF-SLAM tends to underestimate the covari-
ances. This may cause inconsistent estimates of the trajectory, and may preclude
successful loop closures. Another disadvantage of EKF-SLAM is that the covari-
ance matrix grows with the square of the number of landmarks in the map. This
quickly causes the computational complexity to become prohibitively large.

A number of alternative algorithms, which address one or both of these dis-
advantages, have been proposed. Information form methods use the information
matrix instead of the covariance matrix. The information matrix is “almost
sparse”, i.e., many elements in this matrix are very close to zero. By removing
weak links between landmarks in a controlled manner, the information matrix
is made sparse, which improves the computational performance. This sparsifi-
cation can be performed in several ways. In the Sparse Extended Information
Filter (SEIF) [12] the approximation causes the method to produce overconfident
estimates (worse than EKF-SLAM), while the Exactly Sparse Extended Infor-
mation Filter (ESEIF) [13] breaks links in such a way that more conservative
estimates are obtained. However, in these methods the landmark covariances are
not immediately available, which makes data association more computationally
expensive.

Another SLAM method is FastSLAM [7] (or FastSLAM 2.0 [8]), where the
sensor pose uncertainty is represented by a particle filter. Since the landmark
positions are conditionally independent given the sensor pose, and since each par-
ticle represents one (completely certain) pose hypothesis, the covariance between
different landmark positions is zero in this formulation. Hence the uncertainty
about each landmark can be modeled by a separate covariance matrix of size
3 × 3, thereby elimininating the quadratic growth rate. On the other hand, a
large number of particles may be needed.
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2.2 Smoothing and Mapping

The algorithms mentioned above, like most other SLAM algorithms, perform
filtering, i.e., compute the new sensor pose and updates the map whenever a
new measurement is available, but retain the previous sensor pose trajectory
without modification. This is obviously suboptimal. In the Smoothing and Map-
ping (SAM) [3] algorithm, smoothing is used instead of filtering. This essentially
means that the entire map and sensor pose trajectory are computed using all
measurements. Hence, all parameters are recomputed whenever a new measure-
ment becomes available.

SAM solves the least squares problem given by

Θ∗ = arg min
Θ

{
N∑

i=1

‖fi(Xi−1,ui) − xi‖2
Λi

+
K∑

k=1

‖hk(Xik
, ljk

) − zk‖2
Σk

}
,

where Θ∗ is a parameter vector containing the trajectory and map information,
K and N are the number of observations and positions along the trajectory,
respectively, and Λ and Σ are the process and measurement noise covariances.
f and h are functions defining the the process and measurement models. Fur-
ther, z represents actual measurements and u is the odometry information (the
estimated motion in the submap).

By linearizing f and h, Θ∗ can be obtained by solving a standard linear least
squares problem of the form

δ∗ = argmin
δ

‖Aδ − b‖2.

Here δ∗ is the optimal adjustment of the linearization point Θ (the previous
estimate). A contains Jacobians of the process and measurement model, eval-
uated at the current linearization point, while b contains the odometry and
measurement prediction errors. The details of the SAM algorithm, including
how to construct A and b are omitted here in order to conserve space; a very
nice presentation is available in [3]. Nevertheless, two important points should
be noted here: 1) The system of equations rapidly becomes very large. However,
A is sparse since most landmarks are only observed along a short part of the
sensor trajectory. By rearranging the columns of A (and the rows of δ∗) this
sparsity can be exploited, greatly reducing the computational complexity of the
algorithm. 2) Since the entire trajectory and map are updated and the problem
is relinearized in every iteration using the current state estimate, SAM does not
suffer from inconsistent solutions due to linearization errors.

2.3 Submaps

One way to cope with rapidly growing computational complexity of SLAM meth-
ods is to divide the environment into smaller areas, or submaps. In addition to
reducing the computational cost, submapping techniques may also improve the
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consistency of the globally estimated map [1]. In Conditionally Independent Di-
vide and Conquer SLAM [11] a chain of submaps is created, and the submaps are
merged by back-propagating information. Loop closure is performed by adding
landmarks common to the current and previous submap at the loop closure lo-
cation. Conditionally Independent Graph SLAM [10] is similar, but maintains
a spanning tree making it possible to transmit information between submaps.
Tectonic SAM [9] is based on the smoothing and mapping concept described
above, and is similar to the method presented in this paper. However, Tectonic
SAM utilizes all observations of landmarks which are shared between differ-
ent submaps. Also, Tectonic SAM creates the submaps and merges them using
SAM-like approaches.

3 Method

As stated in the previous section, EKF-SLAM works relatively well in very small
environments, but produces inconsistent maps and is computationally expensive
when the map grows and linearization errors arise. SAM, on the other hand, does
not suffer from inconsistency problems. However, its computational complexity
grows rapidly with the number of landmark measurements and with the number
of poses in the sensor trajectory. We therefore propose a method where small
submaps are created using EKF-SLAM and merged using an approach similar
to Tectonic SAM. Compared to Tectonic SAM, our approach uses only one
measurement per submap, creates the submaps using EKF-SLAM and merges
them using smoothing. In the merging step, each submap is considered just one
measurement and one position along the sensor trajectory. Hence, in the SAM
step, only a skeleton of the entire trajectory is considered. This submapping
approach reduces the computational complexities of both the EKF-SLAM and
the SAM steps, while also alleviating the consistency issues of EKF-SLAM.

Section 3.1 presents our approach for creating conditionally independent
submaps using EKF-SLAM. Section 3.2 describes the merging process, which
we refer to as Submap Joining Smooting and Mapping (SJSAM).

3.1 Conditionally Independent Submaps

Conditionally independent submaps are created with EKF-SLAM in a way very
similar to [11]. A new submap is initiated when the sensor has moved a user-
specified distance from the start of the current submap. Each submap is locally
referenced, i.e., the sensor position is set to the origin and the orientation to a
default rotation matrix. The covariance for the new pose is zero. The velocity
of the sensor is initiated with the velocity of the sensor in the previous submap,
rotated to compensate for resetting the sensor orientation.

The landmarks that were matched in the last step of the previous submap
are copied to the new submap and used as its initial landmarks. Their positions
are also compensated for the orientation reset. The covariance of the landmark
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positions is calculated from the previous submap by marginalization of the pre-
vious uncertainty about sensor pose:

Pl,l = Pl,l − Pl,cP−1
c,cPc,l,

where Pl,l is the covariance matrix for all landmark positions in the submap, Pc,c

is the covariance of the sensor pose and Pl,c = PT
c,l is the cross covariance. The

resulting covariance matrix is finally rotated to compensate for the orientation
reset within the new submap.

3.2 Submap Merging

In the original SAM approach, the state vector contains all sensor poses along
the trajectory. This means that the state vector grows with time, even if no new
landmarks are observed. Additionally, all landmark observations are stored in the
matrix A, which defines the equation system to be solved in each iteration. If 20
3D landmarks are observed in every frame, a frame rate of 10 Hz corresponds to
20×3×10 = 600 additional rows in A every second. While these rows are sparse,
this still causes the computational complexity to increase rapidly, particularly
since each observation increases the relinearization workload in the algorithm.

In SJSAM, actual landmark observations are not used within the SAM frame-
work. Instead, these observations are used to create submaps using EKF-SLAM.
Submaps are then merged using SAM, treating each submap as just one com-
bined measurement. Similarly, instead of considering each sensor pose along the
trajectory, the entire estimated motion within each submap is treated as one
sample of odometry data to be used in SAM. This approach results in that only
a skeleton of the sensor trajectory is maintained in the SAM state vector. Hence
both the dimensionality of the state vector in SAM and the number of equations
corresponding to measurements are reduced significantly.

Measurement equation. In SJSAM, the landmarks of a submap are consid-
ered relative measurements from the origin of the submap. Each measurement
consists of the relative displacement between the landmark and the sensor in
three dimensions (Δx, Δy and Δz). The measurement equation is

z = (Δx Δy Δz)T = h(xc, l) = T(l − xc)

where z is the measurement, xc is the sensor pose (in this context: the global
coordinates of the first position in the current submap), l is the position of
the observed landmark (also in global coordinates) and T is a rotation matrix
transforming from global to submap-specific coordinates. The covariances of the
landmarks in the submaps are used as measurement noise in SJSAM.

System dynamics. The last position in each submap is considered as odometry
information in the prediction part of the SJSAM merging algorithm. This gives
an initial estimate of the sensor state and the linearization points needed in
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SAM. The equation for predicting a new sensor pose given the previous pose
estimate and the odometry information is the following:

xi =

⎛
⎜⎜⎜⎜⎜⎜⎝

xi

yi

zi

φi

θi

ψi

⎞
⎟⎟⎟⎟⎟⎟⎠

= f(xi−1,ui−1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

xi−1

yi−1

zi−1

φi−1

θi−1

ψi−1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

T−1

⎛
⎝ΔxΔy
Δz

⎞
⎠

Δφ
Δθ
Δψ

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where the pose of the robot in the end of a locally referenced submap is Δx Δy
Δz Δφ Δθ Δψ, i.e., the odometry input given by the final pose in the submap.
The covariance of the final robot pose in the submap is used as process noise in
SJSAM.

Algorithm. For each submap, a number of steps are carried out, see Algoritm
1. First, the linearization points corresponding to the estimates of the sensor
state in sample i and i−1 are retrieved. The linearization point in i−1 is found
in the last rows of the state vector. The linearization point for i is calculated
using the process equation using the state in i−1 and the odometry information
of the previous submap.

The second step is data association. The measurements in a sample correspond
to the landmarks of one submap. For reasons of computational complexity, the
data association is performed using nearest neighbor calculation with Euclidean
distances. For each landmark a SURF descriptor [2], representing the appearance
of the surrounding area in the image, is stored. This descriptor is used as a
validity check in the data association.

In the third step the measurement matrix A is augmented with three rows for
each landmark in the submap. The odometry data is also appended to A and
the new data about measurement and odometry prediction errors is appended
to the vector b. Complete details of how to structure A and b are available in
[3].

SJSAM will incrementally find better estimates of the linearization points
used in the past. Hence A, which depends on the linearization points, needs to
be recalculated once in a while. This is called relinearization and is performed
whenever data from a new submap (odometry and measurements) is processed
by the SAM framework. During relinearization the entire A matrix and the
vector b are traversed.

SJSAM then solves the least squares problem using Q-less QR-factorization
with the sparse A matrix and the vector b. Solving the resulting QR-factorization
gives δ∗ with information of how much to change each variable in the current
state vector Θ (see Section 2.2).

The exact sensor state covariance estimates can be retrieved efficiently from
the QR-factor R using back-substitution [6]. Conservative estimates of the land-
mark covariances can be retrieved efficiently using the sensor covariance and the
measurement noise used when the landmark was initiated. Exact estimates are
more costly to access.
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Algorithm 1. Submap Joining Smoothing and Mapping (SJSAM)

Data: Submaps si = (xi Li)
T ∈ S created with e.g. EKF-SLAM. xi is the last

state of the camera in submap i, and Li is the landmarks in submap i
Result: A state vector Θ∗ = (x̂ m̂)T , where x̂ is a skeleton trajectory and m̂ is

the map
begin1

forall submaps si ∈ S do2

1. Retrieve the linearization points3

if i = 1 then4

Initiate x̂1 with zeros5

else6

x̂i−1 is the last camera state estimate in Θ7

x̂i = f(x̂i−1,ui−1) where ui−1 is the odometry information from8

si−1

end9

2. Data association10

Find all lj ∈ Li that match a previously seen landmark11

Find all ln ∈ Li that have not been seen before12

3. Measurement update13

forall reobservations lj do14

Compute measurement Jacobians with respect to landmark15

positions and camera state
Add measurement Jacobians to A (3 rows)16

Add measurement prediction errors to b (3 rows)17

end18

forall new observations ln do19

Compute an initial estimate for the landmark using the measurement20

Add initial estimate to Θ (3 rows)21

Compute measurement Jacobians with respect to landmark22

positions and camera state
Add measurement Jacobians to A (3 rows, 3 columns)23

Add measurement prediction errors to b (3 rows)24

end25

4. Time update26

if i = 1 then27

Add identity matrix to A (6 rows, 6 columns)28

Add process prediction errors to b (3 rows)29

else30

Compute the process model Jacobian31

Add Jacobian and identity matrix to A (6 rows, 6 columns)32

Add process model prediction errors to b (6 rows)33

end34

Add x̂i to Θ (6 rows)35

5. Relinearization36

Recompute all the elements of A and b that were created during sample37

1 . . . (i− 1), using the new linearization points
6. Solve the least squares problem38

Solve Aδ∗ = b using Q-less QR-factorization39

Θ = Θ + δ∗40

end41

end42



Smoothing-Based Submap Merging in Large Area SLAM 141

Similar work. The Sparse Local Submap Joining Filter (SLSJF) [4] is similar
to SJSAM in that it uses a hierarchical submap approach. SLSJF also stores each
start/end pose of the submaps in the state vector. However, SLSJF uses an Ex-
tended Information Filter (EIF) representation for the submap merging instead
of the SAM representation. SLSJF and I-SLSJF [5] retrieves the state vector
from the information matrix by solving a least squares problem. This is simi-
lar to SJSAM. However, I-SLSJF only recomputes the measurement matrix and
vector somtimes, while SJSAM performs this step in each sample. Additionally,
I-SLSJF does not use a specific prediction step.

4 Examples

We have evaluated the idea with SJSAM on several data sets. Two of them will
be presented here. Both sets are collected in indoor environments with a stereo
camera mounted horizontally on a trolley. The trolley was moved at roughly
constant speed throughout the data collections.

4.1 Implementation Details

Both the EKF-SLAM- and SJSAM-algorithm are implemented in Matlab and
are currently not capable of real-time processing. The main reason for this is the
feature extraction. We divide the map creation process into four essential steps:

1. Data acquisition.
2. Feature extraction with SURF [2].
3. Creation of submaps using EKF-SLAM.
4. Merging of submaps with SJSAM.

There are currently two different methods for submap creation. The first method
is to use the traveled distance as the bounding limit for each submap, e.g., a
new submap is initiated when the camera has moved more than one meter since
the start of the submap. The other method uses the number of landmarks the
submap contains as the condition to start a new submap, e.g., a new submap is
created when the current submap contains more than 100 landmarks. This later
approach gives a more predictable time complexity but the traveled distance
approach gives more evenly spread out submaps. In the experiments below we use
a maximum travel distance of one meter for each submap, to test the algorithm’s
handling of several submaps.

4.2 Small Area Experiment

The first experiment was conducted in a small conference room. During this
experiment the trolley moved a total path of approximately 15 m which gives
a total of 15 submaps and 358 landmarks. Figure 1 shows the result from the
submap generation, colored dots represent landmarks and black dots correspond
to the trajectory. The black squares mark the start of each submap and those
points will be used as input to the SJSAM algorithm.
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Fig. 1. Submaps from the small area.The start of each submap is marked with a square.
The thin lines represent a skeleton map created only from the start of each submap.
Axes in meters.
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Fig. 2. Submaps from the small area processed with the SJSAM algorithm. The short
lines represents the camera’s orientation at the start of each submap. In total there are
358 landmarks in the map. Axes in meters.



Smoothing-Based Submap Merging in Large Area SLAM 143

Since this is a fairly small data set it could also be processed with standard
EKF-SLAM for computational comparison. The total processing time for this
data set with EKF-SLAM was about 6.5 s and with submaps the same data set
can be processed in 3.8 s indicating that the use of submaps significantly reduces
the computational complexity.

Processing the submaps with the SJSAM algorithm yields the map depicted
in Figure 2. It is hard to see any significant improvement but the figure clearly
shows that the algorithm has performed loop-closure and that the trolley has
returned almost exactly to its original position.

4.3 Large Area Experiment

The second experiment was conducted in a dining room connected to a confer-
ence room by a normal doorway, a total path of approximately 34 meters. The
trolley was moved through the dining room, into the conference room, and then
back to the initial position. This results in a trajectory that is eight-shaped.

Figure 3 shows the resulting trajectory using EKF-SLAM. The figure shows
that the trolley not has returned to its original position. This kind of behav-
ior occurs due to drift and the lack of loop-closure between the submabs. The
complete map consists of 34 submaps and the total processing time is about
26 s.

The previously created submaps can be processed by SJSAM algorithm. By
sequential merging of the submaps and re-linearization of the whole problem in
each sample we get the map presented in Figure 4, left. This map consists of
1275 landmarks and the merging time is 3 seconds. It can be seen from the figure
that loop closure has occurred. This can also be seen in the sparse measurement
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Fig. 3. The large area experiment, the trajectory consisting of 34 submaps. Processed
using EKF-SLAM. Axes in meters.
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Fig. 4. The large area experiment. Left: the trajectory after merging the 34 submaps
using SJSAM. Axes in meters. Right: the sparse measurement matrix A illustrating
loop closure. The dots illustrates non-zero elements in A. Axes represents the position
of the elements in the matrix.

matrix A in Figure 4, right, by looking at the lower triangular part of the matrix:
elements that are non-zero and not close to the diagonal represent landmarks
that have been seen before and recognized.

5 Conclusions

We have presented an approach for merging of submaps using smoothing and
mapping. The approach is called Submap Joining Smoothing and Mapping.

The approach is illustrated in two examples using data from a stereo vision
camera. In both examples we can see that a submap-based approach is successful.
The generation of submabs is done in constant time in the number of submaps
and merging with SJSAM is done in almost linear time. This is in a relatively low
time complexity compared to standard EKF-SLAM, which makes this method
suitable for intermediate sized data sets.In the experiment with a larger data set
(large area experiment) SJSAM yields a significant improvement. SJSAM is able
to perform loop-closure and the resulting map is a large improvement compared
to using only submaps.

This paper shows our first results with SJSAM and in the future the perfor-
mance need to be evaluated. The optimal length of submaps needs to be studied
and SJSAM needs to be compared with similar SLAM methods. In the current
implementation data association is performed with nearest neighbor. Extend-
ing the algorithm with data association that uses e.g. the Mahalanobis distance
may lead to improved performance and less sensitivity to drift. It may also be
necessary to use picture comparison techniques, such as tree-of-words.
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Abstract. In this paper we present a method for reading a watermark
from a dual layer hologram image with a digital camera. Here the base of
the hologram out of which the hologram was designed is a binary image.
The hologram obtained is placed on a planar surface and an image is
captured from the hologram by setting up a light source and a digital
camera on appropriate distances and angles relative to the hologram. The
captured image is corrected from affine distortions and a saliency detector
based segmentation is performed for the image. The watermark is read
from the resulting reconstructed binary image. The obtained results show
that the watermark can be recovered perfectly from a dual layer hologram
with a proper setting of the camera and light sources.

Keywords: Digital watermarking, watermarking holograms, print-cam
process.

1 Introduction

Holograms and watermarking have both been considered as safety measures
against copying. In this paper, these two techniques are combined and a method
for recovering a watermark from a dual layer hologram is introduced. This adds
another level of security to the holograms.

Wang et al. [1] proposed a method for watermarking a dot matrix hologram.
For embedding the watermark they used a modified halftoning technique exclu-
sively designed for dot matrix color hologram. When extracting the watermark,
the hologram was photographed by carefully selecting a high resolution digital
camera and proper lighting conditions.

However, there are many hologram techniques available and here a dual layer
hologram as shown in Fig. 1 was manufactured and used instead of a dot matrix
hologram as in [1]. The hologram consists of a background image and foreground
image layers. The frame and the pseudorandom pattern on the hologram back-
ground were considered only as artistic features.
� The financial support from the Academy of Finland and Graduate school of is grate-

fully acknowledged. Hologram by courtesy of Starcke Ltd.
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Fig. 1. a) A design for the hologram. b) The obtained hologram. c) The phase change
in the hologram background and foreground.

When reading a watermark from a printed image with a digital camera, the
watermark should be robust against 3 dimensional distortions, rotation, scaling,
and translation [2,3,4]. In addition, there may be variations in the environment,
such as lighting and reflections. The camera itself inflicts various attacks to the
watermark, for example, JPEG-compression and lens distortions [5,6].

When reading a watermark from a hologram, the problems to be solved are
increased. The hologram surface is often mirror like and the watermarked image
may not be visible in all directions or with all light sources. Source and direction
of the light affects the way the hologram is seen. Due to the rainbow effect on the
surface of the hologram, the color and intensity changes across the watermarked
image when the hologram is tilted relative to the light source. However, it can be
assumed that the color varies in the background of the image in different phase
to that of the foreground as illustrated in Fig. 1.

In this paper, based on the notion of locally different colors on the background
and foreground, the hologram image is segmented and the watermark read. Orig-
inal unwatermarked image is employed in the process. The segmentation method
used in the process is based on a method by Rahtu et al. [9]. The segmentation
process is explained with more detail in Section 2.2.

Here the hologram is created from a binary image. Due to the reflective nature
of the hologram, it is difficult to detect single separate pixels and thus pattern
matching methods were used to modify the method by Tseng et al. [8]. The wa-
termarking method is explained with more detail in Section 2.1. The experiments
were made and the test set-up and results are shown in Chapter 3.

2 Methods

In this chapter, the method applied is explained in detail. First the watermark-
ing method which was applied is explained, then the correction of geometrical
distortions and finally image segmentation algorithm is described.

2.1 Watermarking Method

Pan et al. [7] proposed a data hiding method for binary images. Tseng et al. [8]
later identified some image quality issues and improved the method. In this paper
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we have modified the method by Tseng et al. by applying patten matching meth-
ods in order to better adapt the method for our application. Below is a review of
the method by Tseng et al. and afterwards the modifications are explained.

In the methods by Pan et al. [7] and Tseng et al. [8] the main idea is to use
a secret key and a weight matrix to protect the hidden data. It is shown that
for each m× n block in the host binary image I, r ≤ �log2(mn+ 1)� − 1 bits of
data can be embedded by changing at most 2 bits in the block.

In the following, K is a key, a randomly selected binary matrix of size m×n.
W is a weight matrix which is an integer matrix of size m × n. Here, [W ]i,j
denotes the element of W at row i and column j. W satisfies the condition
that {[W ]i,j |i = 1...m, j = 1...n} = {1, 2, ..., 2r+1 − 1} and each 2 × 2 sub-block
contains at least one odd element. [8]

Tseng et al. [8] aimed to improve the method by Pan et al. [7] by introducing a
distance measure in order to ensure that the modified bit is adjacent to another
bit with the same value. The distance matrix was calculated with

[dist(I)]i,j = min
∀x,y

{
√

|i− x|2 + |j − y|2 | [I]i,j �= [I]x,y} , (1)

where [dist(I)]i,j is the distance from [I]i,j to the closest element [I]x,y such that
the complement of [I]i,j is equal to [I]x,y.

A bit stream b1b2...br is embedded into each non-black and non-blank host
block Ii by first computing following set for each w = 1..2r+1 − 1:

T ′
w = {(j, k)|[([W ]j,k = w) ∧ ([Ii ⊕K]i,j = 0) ∧ ([dist(I)]j′,k′ ≤ √

2)]
∨[([W ]j,k = 2r+1 − w) ∧ ([Ii ⊕K]i,j = 1) ∧ ([dist(I)]j′,k′ ≤ √

2)]} , (2)

where [dist(I)]j′,k′ is for the bit corresponding to [Ii]i,j in block Ii. ⊕ means
bitwise exclusive or of two binary matrices. Here each bit has 8 neighbors and
thus the distance ≤ √

2. [8]
Second, a weight difference is defined (⊗ means pairwise multiplication of two

matrices and SUM means the sum of all elements in a matrix)

d′ ≡ (b1b2...br0) − SUM((Ii ⊕K) ⊗W ) (mod 2r+1) . (3)

If d′ = 0, there is no need to change Ii. Otherwise [8]:

if(there exists an h ∈ {0, 1, ..., 2r − 1} such that T ′
hd′ �= ∅ and T ′

−(h−1)d′ �= ∅)
Randomly pick an h which satisfies the above condition;
Randomly pick a (j,k) ∈ T ′

hd′ and complement the bit [Ii]j,k;
Randomly pick a (j,k) ∈ T ′

−(h−1)d′ and complement the bit [Ii]j,k;
else

if(SUM((Ii ⊕K) ⊗W ) mod 2 = 1)
Keep Ii intact;

else
Select a (j, k) such that [W ]j,k is odd and its corresponding [dist(I)]j′,k′

is the smallest and complement the bit [Ii]j,k;
end

end
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If the resulting modified image block I ′i is completely black or blank, the data
hiding is regarded as invalid. The same bit sequence b1b2...br is hidden to the
next block if applicable. [8]

The receiver computes the hidden data from each block with (SUM((I ′i ⊕
K) ⊗W ))/2, if I ′i is not completely black or blank and SUM((I ′i ⊕K) ⊗W ) is
even. Otherwise, I ′i contains no hidden information. [8]

The method by Tseng et al. [8] guarantees that each modified bit is neigh-
boring a bit that is equal to the new value of the modified bit. Authors focus on
8-neighborhood which, however, results in sporadic pixels such as in Fig. 2.

Fig. 2. Original image and a watermarked image with the method by Tseng et al.

In holograms, the shiny surface inflicts spreading of the pixels in the captured
image. Therefore, sporadic pixels may be difficult to detect reliably. In order to
minimize the possibility for sporadic pixels due to the watermarking method, we
modify the method by Tseng et al. [8] by applying pattern matching methods
to determine possible locations for the watermarked pixels. The watermark is
embedded only in those predetermined locations on such a way that the reading
method of the watermark is not affected. The patterns used are in Fig. 3.

Fig. 3. Patterns used for watermark embedding

Each pixel neighborhood is compared with each of the patterns. If a mach is
found the pixel is marked as a possible location for a watermark bit. Therefore
T ′

w becomes

T ′′
w = {(j, k)|[([W ]j,k = w) ∧ ([Ii ⊕K]i,j = 0)

∧([dist(I)]j′,k′ ≤ 1)] ∨ [([W ]j,k = 2r+1 − w)
∧([Ii ⊕K]j,k = 1) ∧ ([dist(I)]j′,k′ ≤ 1)] ∧ ([M ]j,k = 1)} ,

(4)

where M is a matrix, containing obtained results of the pattern matching. The√
2 is changed to 1 because we are interested only of 4-neighborhood. The wa-

termark is read as in the method by Tseng et al. [8] and the final watermarked
image can be seen in Fig. 4.
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Fig. 4. a) Watermark message as an image. b) Watermarked binary image. c) Final
hologram and synchronization markings.

2.2 Correcting Distortions and Segmentation

The binary watermarking method is very sensitive to geometrical distortions
and as was noted in [10] accurate synchronization is required so that the binary
image can be restored. Here a circular synchronization template, as illustrated
in Fig. 4 is placed on each corner of the image and the user is prompted to
select these templates from the captured image through a user interface before
the captured image is processed and the watermark read. The exact locations of
the circles are known and thus the distortions can be calculated and corrected
with the following affine transformation.

x′ =
a1x+ b1y + c1
a0x+ b0y + 1

, y′ =
a2x+ b2y + c2
a0x+ b0y + 1

, (5)

where (x′, y′) are the original picture positions, (x, y) are the camera picture
positions and a, b and c are coefficients calculated from the circle locations.

In order to recover the watermarked binary image, the captured and corrected
hologram image is segmented. The segmentation is done for a significantly larger
image than the original so that no information is lost. Here we used an image
size five times larger than the original, the size of which was 94 × 90 pixels.

The original unwatermarked binary image is given to the segmentation algo-
rithm as an initial assumption. However, because the color varies in the back-
ground of the hologram in different phase to that of the foreground, it is advanta-
geous work with RGB color space instead of grayscale images. By experimenting,
it was discovered that the segmentation algorithm operates best if the binary
image is not copied to each of the channels but instead roughly divided among
each of the channels by first calculating approximately which channels hold most
of the information corresponding to the binary image. This is done by calculating
for each channel c

gi(c) =

N∑
j

L∑
k

Ui(c)Bi

N∑
j

L∑
k

Ui(c)(1 −Bi)
, (6)

where Ui is ith block on the corrected and captured image U , B is the original
binary image and M and L the size of the image block. It is assumed that the
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colors run horizontally on the image and thus a horizontal block with width of
that of the image and height of 30 was used here. Now, the binary template B′

is calculated with

B′
i(c1) = Bi

B′
i(c2) = Bi if gi(c1) − gi(c2) < 0.4 , (7)

where c1 is the channel where gi is the largest and c2 is the channel where gi

was the second largest.
The segmentation is based on a method by Rahtu et al. [9] and detects visually

salient areas. The method applies a sliding window approach where a window is
moved across the image and the saliency of a point in the window is estimated
by determining the conditional probability of a pixel to be realized from the
distribution estimated inside the window compared to the distribution of the
surrounding area.

In the following, a rectangular window U ′
w is divided into an inner kernel and

an outer border, based here on the binary template. F contain feature values, i.e.
here we used the RGB values as features. Two hypotheses are defined, H0: point
x is not salient, and H1: point x is salient. Corresponding priori probabilities are
P (H1) P (H0) = 1−P (H1). The initial assumption is that H1 is valid for points
in the kernel and H0 is valid for points in the border. The conditional feature
distributions p(F (x)|H1) and p(F (x)|H0) are estimated from the feature values
F in kernel and border. Then with Bayes theorem [9]

P (H1|F (x)) =
p(F (x)|H1)P (H1)

p(F (x)|H0)P (H0) + p(F (x)|H1)P (H1)
, x ∈ �2 . (8)

The saliency measure S(x) is thus defined as S(x) = P (H1|F (x)).
A window U ′

w(i) is slid over the image U ′ using a step sw and measure Si(x) is
calculated at each window position i. The step sw is defined such that windows
do overlap and the final saliency value of a pixel is defined as maximum [9]

S(x) = max
j

{Sj(x)|x ∈ U ′
w(j)} , (9)

The final salient objects were segmented from the background by thresholding
S(x). The threshold corresponds to the lowest probability which is allowed for
a salient pixel to have for hypotheses H1. Further, all 4-connected sets that
cover less than 0.1 percent of the image area were removed and a morphological
closing was performed with disk of radius 0.01 ∗min{wU ′ , hU ′} where wU ′ and
hU ′ are the image width and height respectively. the prior probability was set as
P (H1) = 0.25. For RGB image, the measure was calculated independently for
each channel and maximum was taken as the final saliency value. [9]

In a hologram image the color varies across the image depending on the align-
ment of the hologram in relation to the light source. A red area might be back-
ground in one part of the image and foreground in the other part of the image.
The sliding window size is here selected experimentally to be smaller than as-
sumed color variation but big enough to lead to a reliable segmentation. It is
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assumed that the light source is aligned horizontally to the hologram and thus
the window size was selected here such that wU ′

w
= 150 and hU ′

w
= 50 with

step size sU ′
w

= 20, for image size wU ′ = 470 and hU ′ = 450. However, due to
the properties of the binary image, 8-connected sets that cover less than 0.01
percent of the image area were removed instead of 4-connected sets.

The segmentation method does not take into account the fact that the pixel
size in the corrected image is a multiple of the pixel size in the original image.
Therefore, while segmenting just before thresholding, the image is divided into
blocks of size a × a, where a is the multiple. All the pixels in a block are given
the mean value of the center pixels of the block. The thresholded and segmented
binary image is then scaled to its original size 94×90 and the watermark is read.

3 Experiments

Due to the high cost involved in hologram manufacturing, we were restricted in
using only one hologram. The test setting is depicted in Fig. 5. The hologram
was placed on a plane, the angle of which could be changed. A camera (Canon
G7, 10 MP) was placed on a tripod and set in front of the hologram. The
pedestal was set initially 10cm away from the hologram plane. The test were
conducted by varying the angle of the hologram plane and directing the camera
accordingly as well as varying the camera pedestal distance from 10cm to 15cm
and 20cm.

Fig. 5. The test setting. The light arrives from above the hologram which is set on a
plane at an angle. The camera is directed towards the hologram.

Fig. 6. Effect of changing the angle of the hologram plane
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The experiments were conducted by first holding the camera still and turning
the hologram plane from 0 to 59 degrees, a degree at a time. The results were
collected to Fig. 6 in which y-axis shows the amount of correct watermark mes-
sage bits relative to the angle, 100 being the maximum. It can be seen from the
image, that there are three locations at which the watermark was fully extracted
and the segmentation successful. At these locations the watermarked image was
lit fully, and the color and intensity of the background were locally different
relative to the foreground. At the other locations, the watermark recovery is not
possible due to the hologram properties; The logo is not fully lit and properly
visible. No error correction coding was applied.

The results in the three locations are further illustrated in Fig. 7 and Fig. 8 a)
and b). In Fig. 7 are the original image, corrected image, segmented image and
the obtained watermark message respectively. In the Fig. 8 the original captured
images are left out.

Next, the experiments were conducted by moving the camera away from the
hologram. The angle was incremented from 49 to 59 degrees and the camera
pedestal was moved from 10cm to 15cm and 20cm. The height of the pedestal
was increased accordingly so that the view to the hologram stayed the same.
The results are illustrated in Fig. 7 and Fig. 9 a) and b).

Together the experimental results show that the most important factor in
watermark recovery reliability is not distance of the camera but the angle of
the hologram relative to the camera and light source. Perfect recovery of the
watermark was attained with certain angles of the hologram and correct pho-
tographing set-up.

Fig. 7. Captured images with angles 2 to 5 and with distance 10cm
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Fig. 8. Captured images with distance 10cm and with angles a) 34 to 37 and b) 49 to 52

Fig. 9. Captured images with angles 49 to 52 and with distance a ) 15 cm b) 20 cm
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4 Conclusion

A method for reading a watermark from a dual layer hologram with a digital
camera is presented in this paper. With correct set-up, the watermark was re-
constructed perfectly. The recovery of the watermark from a hologram requires
robustness against 3D distortions, color variations and reflections. The binary
image needs to be reconstructed perfectly pixel by pixel in order to be able to
read the watermark. The method was based on inversion of the distortions by ap-
plying synchronization markings around the image and segmenting the corrected
image. In the future work, the aim is to remove the synchronization markings
as well as take better into account the unique properties of the hologram.
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Abstract. Point pattern matching (PPM) is a widely studied problem
in algorithm research and has numerous applications, e.g., in computer
vision. In this paper we focus on a class of brute force PPM algorithms
suitable for situations where the state-of-the-art methods do not perform
optimally, e.g., due to point sets with regular structure. We discuss of an
existing algorithm, which is optimal in the sense of brute force testing of
different point pairings. We propose a parameter choosing scheme that
minimizes the memory consumption of the algorithm. We also present a
modified version of the algorithm to overcome issues related to its im-
plementation and accuracy. Due to its brute force nature, the algorithm
is guaranteed to return the best possible result.

Keywords: Point Pattern Matching, Computer Vision, Printed
Electronics.

1 Introduction

Point pattern matching (PPM) is a method for finding a one-to-one correspon-
dence and the related transformation between two point sets. What makes find-
ing the right transformation in PPM a non-trivial problem in practice are things
like noise in the point locations, unknown correspondence between the points in
both of the sets, and possible missing or extra points in either one of the sets.
In this paper, we focus on a special PPM case typical of applications in image
analysis and computer vision, i.e., finding the optimal similarity transformation
(scaling, rotation, and translation) between two sets of points P and Q in R2.

Good reviews of state-of-the-art PPM algorithms have been written by Li
et al. [8] and van Wamelen et al. [14]. Different methods include, e.g., relax-
ation [11], graph-based approaches [7,5,4,2], iterative approaches [1], and clus-
tering [13,12,3]. The choice of the PPM algorithm depends significantly on the
application at hand.

In our earlier papers, we have used point pattern matching as a part of a
correction system for printed electronics manufacturing [9]. The problem is to
estimate translations of electronic components, and the connectors of the in-
tegrated circuits serve as registration points. The related matching problem,
however, is slightly different from the usual in that the patterns are man-made
and thus regular, as seen in Figure 1. This means that the connectors typically
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c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. A sample multi-IC module (left) ready for printing the connections (center). A
zoom into the upper left corner is shown in the right.

reside equidistantly on a straight line, which means that several well matching
subset pairs can be found. In Section 2, there is a brief description of this kind
of application area for PPM.

The most efficient PPM algorithms for the general point pattern matching
problem take advantage of the randomness and uniqueness of the patterns in a
way that make them unsuitable for our case. Due to the shape of the point sets,
the only applicable methods are those using exhaustive search to guarantee the
optimal solution even in the presence of good local optima. In this paper, we
consider PPM algorithms following the general idea of alignment (see Section 3).
In the alignment approach, different pairings between the matched point sets are
tested to find the best match.

There exists an alignment based PPM algorithm by Chang et al. [3], which
will work as a basis for this paper. The algorithm is briefly described in Section 3
where we also show that the Chang’s method has an optimal time complexity of
O(m2n2) among all PPM methods based on the alignment of two sets having m
and n points, respectively. However, there are major problems in the algorithm
details that can lead to failing of the algorithm or difficulties in the implemen-
tation. These problems relate to the two-dimensional accumulator array used in
the algorithm to collect scale-rotation pairs created by different alignments of
the point sets. The accumulator array is discussed in more detail in Section 4.

In Section 5, we propose a modification of Chang’s method that fixes the
problems related to the accumulator array. Our solution replaces the array with
a search algorithm in continuous space. In Section 6, we discuss more about the
practical limitations of the Chang’s original algorithm and give an example case
where the modified algorithm is necessary. Section 7 concludes the paper.

2 Printed Electronics

The application area, where the need for an efficient point pattern matching
method for regular patterns arises is inkjet printed electronics. Printed elec-
tronics is an additive process and a relatively new area of research, which uses
traditional printing devices for interconnecting or manufacturing components.
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An example of an application of this technology uses conductive nano particle
and dielectric inks to create interconnection circuits between connector pads of
integrated circuits (ICs) and discrete components that have been molded onto
the background surface [10], see Figure 1.

The problem in the described application is that the embedded components
tend to drift away from their intended locations during and after the molding
process. In our earlier papers [9], we have proposed a computer vision system to
overcome this problem. The processing begins with the acquisition of the image
of the distorted module. In order to find the required correction, the connectors
of the ICs and their locations are detected from the image by means of automated
image analysis. After detection, the problem is to search for a transformation
between the two coordinate sets (i.e., to combine the knowledge where the objects
are with the knowledge where they should be). The transformation is found using
PPM, for which we propose a method in this paper. After the transformation
and correspondence between the point sets are available, the wiring is redrawn
to match the true situation.

3 Point Pattern Matching

Consider a two-dimensional point set P = {pk ∈ R2 | k = 1, . . . ,m} that is to
be matched with the point set Q = {qk ∈ R2 | k = 1, . . . , n}, where m ≤ n. The
aim is to find the parameters of a similarity transformation, i.e., scale s ∈ R+,
rotation θ ∈ [0, 2π) of the rotation matrix Rθ, and translation t = (tx, ty) ∈ R2,
which maximize the number of matching pairs between sets P and Q. Points
p ∈ P and q ∈ Q are said to match if ||q−p′|| < d, where d ∈ R+ is the allowed
point distortion and p′ = sRθp+t is the transformed version of p. The resulting
transformation should also minimize the sum of the squared errors between the
points in Q and the corresponding points in the transformed version of P .

The PPM problem can be divided into two parts. First, we find the best
possible pairing of the two points sets P and Q and discard the outlier points in
both sets. Second, we find the parameters of the optimal transformation between
the paired points. We are only interested in the former problem, because closed
form optimal solutions are available for the latter one.

In this paper, we focus on brute force PPM methods based on a general and
intuitive idea of alignment. In the alignment approach, the point sets are aligned
such that points pi and pj from set P exactly match the points qu and qv

from set Q and then the total number of matching pairs is calculated over the
whole sets. In a naive solution, the best match is found by looping each of the
mn(m− 1)(n− 1)/4 alignments and calculating the number of matching pairs
by finding a nearest neighbor for each point.

Chang’s PPM method [3] re-arranges the calculation in the alignment ap-
proach such that the number of matching pairs can be calculated in constant
time. The best point pairing is found by clustering of scale-rotation pairs achieved
by calculating scales and rotations between each possible pair of point pairs
(pi,pj) and (qu,qv). Pairs with true correspondence tend to cluster around the



Point Pattern Matching for 2-D Point Sets with Regular Structure 159

same region in the scale-rotation space, while non-matching pairs distribute more
randomly. The average scale and rotation of the detected cluster is approximately
the scale and rotation of the transformation between the two sets.

After determining the parameters of an approximate transformation that
transforms set P into set Q, the actual point correspondence is determined by
transforming P with the approximate transformation and pairing each point to
the closest point in Q. If no pair is found within a given distance, the point is con-
sidered an outlier and discarded. Unlike in the naive case, the nearest neighbors
are needed to be found only once.

What makes Chang’s algorithm effective is that it uses an accumulator array
with size independent of the number of points. The array is used to collect each
scale-rotation pair after which the element of the accumulator array with the
most hits is found. While efficient, the discrete accumulator array is also the
weakest part of the algorithm for several reasons. The main reason is that for
point sets with points both relatively close and relatively far from each other,
there exists multiple alignment transformations that have very little deviation in
their scale and rotation but still result in different point pairing. In this case, the
accumulator array has to be very dense in order for the right cluster not to mix
with false hits. Unfortunately, large arrays create problems in implementation.
In addition, too dense an array increases the possibility of the borders of the
array bins to split the target cluster in half, which can make the algorithm to
fail. In the original paper, they do not discuss about choosing a proper size for
the accumulator. In the next section, we propose a method for choosing the array
size in Chang’s algorithm such that the total array size is minimized.

4 Choosing Accumulator Array Size for Chang’s Method

In the original paper of Chang et al. [3], the authors do not discuss about choos-
ing the dimensions of the accumulator array used for collecting the scale-rotation
pairs calculated between each point pair in P and each point pair in Q. How-
ever, the size and density of the accumulator array has a significant impact on
the performance of the algorithm and it also sets restrictions concerning the
implementation of the algorithm.

Like mentioned in the previous section, a single accumulator array bin has
to be small enough such that scale-rotation pairs originating from one point set
alignment cannot get mixed with the scale-rotation cluster of the alignment that
will result from another point pairing. In this section, we will propose a method
for determining the largest possible size of the array bin that minimizes the
accumulator array memory consumption while preserving adequate resolution
for detection of the target cluster.

Consider two points qa and qb chosen from set Q such that the points are
located on distance dab from each other. Also consider a third point qc ∈ Q with a
distance of dbc from point qb in direction determined by angle φ ∈ [0, π]. Together
with points pi and pj from set P , we form two different alignments: first, between
point pairs (pi,pj) and (qa,qb) and, second, between point pairs (pi,pj) and
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Fig. 2. Left: A curve representing a lower bound for the difference between scales and
rotations of two different alignments of sets P and Q. Right: Given the maximum error
ep that the observed points p′

i and p′
j can have with respect to their true locations pi

and pj , this figure illustrates the maximum error εp that can occur in the observed
orientation of the point pair.

(qa,qc). Depending on φ, the difference between the scale and rotation of these
two alignments can be defined as

Δs =
dac − dab

dp
and Δθ = arccos

(
d2

ac − d2
bc + d2

ab

2dacdab

)
, (1)

where dp = ||pi −pj || and dac = ||qa −qc|| =
√
d2

bc − 2dbcdab cos(φ) + d2
ab. Here

we have used the cosine rule.
Let dmax and dmin be the largest and smallest distances between any two

points in Q, respectively. Intuitively, by setting dab = dmax and dbc = dmin we
get a lower bound for Δs and Δθ. Additionally, by denoting r = dmin/dmax,
s = dab/dp, and re = dac/dmax =

√
r2 − 2r cos(φ) + 1, we can write these lower

bounds for equations (1) as

Δs = s(re − 1) and Δθ = arccos
(
r2e − r2 + 1

2re

)
, (2)

respectively. We restrict further investigation on the interval φ ∈ [0, φmax] where
φmax = arccos(r/2). This is because the values φ ∈ (φmax, π] give dac > dmax,
which is not desired as dmax was chosen as the largest of any two point distances.
Equations (2) give us a parametric representation of a lower bound for minimum
difference between two different alignments. In Figure 2 (left), we have plotted
this lower bound with respect to varying φ when s = 1 and r = 1/100.

The problem is to choose the accumulator array bin dimensions such that
two scale-rotation pairs from two different alignments cannot occur in the same
bin. Simultaneously, the bin area should be as large as possible implying a small
number of bins needed to cover the entire scale-rotation space. An optimization
scheme is proposed based on Figure 2 (left): maximize the area of a rectangle
(representing an accumulator array bin) confined between the coordinate axis
and the (Δs,Δθ) curve.
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Both Δs and Δθ are monotonically increasing on φ ∈ [0, φmax]. As an implica-
tion, the maximum area rectangle we are looking for is amongst those rectangles
that have one corner in the origin and the opposing corner on the (Δs,Δθ) curve.
The area of such a rectangle is

a(φ) = |Δs||Δθ| = s(1 − re) arccos
(

1 − r cos(φ)
re

)
. (3)

The maximization problem of a(φ) doesn’t depend on s. In addition, it isn’t
necessary to apply any kind of normalization for Δs or Δθ to make sure that we
are maximizing a valid type of area because this wouldn’t change the location
of the optimum. Thus, we can equivalently maximize function

J(φ; r) =
(
1 −

√
r2 − 2r cos(φ) + 1

)
arccos

(
1 − r cos(φ)√

r2 − 2r cos(φ) + 1

)
. (4)

Here we have emphasized by substituting re from above that there is only one
parameter that we need to know beforehand. This parameter is r, i.e., the ratio
of the distances between the two closest and two most distant points in Q.

We use numerical methods to solve the maximum point of J(φ; r) with a
given r. After this, we can calculate the accumulator array bin size by using
Equations (2). However, Δs still depends on the unknown s, which is the scale
of the alignment transformation. This suggests that we shouldn’t use a uniform
scale axis in our accumulator array. Instead, we need to choose a bin width that
increases linearly as the scale gets larger.

The final issue concerning the size of the accumulator array are the truncation
points for the scale axis. The optimal scale range for the given point sets P and
Q is such that the first scale bin in the array equals to the smallest possible
alignment scale smin = dmin/δmax and the last bin equals to the largest possible
scale smax = dmax/δmin. Here we use δmax and δmin to denote the distance
between the two most distant and two closest points in P , similarly to dmax

and dmin that we use for Q. The dimensions of the accumulator array are now
determined by the following equations:

Ns =
⌈

log (smax/smin)
log (2 − re)

⌉
and Nθ =

⌈
2π
|Δθ|

⌉
. (5)

To achieve Ns we have summed together widths |Δs| of Ns bins starting from
s = smin and then set this sum equal to smax − smin.

To conclude, the entire procedure for choosing the accumulator array size in
Chang’s PPM method is described in the following steps:

1. Loop through each point pair in P and find δmin and δmax.
2. Loop through each point pair in Q and find dmin and dmax.
3. Calculate r, φmax, smin, and smax.
4. Find φ ∈ [0, φmax] that maximizes J(φ; r).
5. Divide accumulator rotation axis [0, 2π] into bins with equal size of |Δθ|.
6. Divide accumulator scale axis [smin, smax] into bins with variable size of

|Δs|.
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5 Modified Method without Discrete Accumulator Array

An improved version of the Chang’s PPM method [3] is now proposed to over-
come the problems related to using a discrete accumulator array. The basic idea
is for each scale-rotation pair to individually form a rectangle defining the error
bounds for that particular scale-rotation pair. The target cluster is then consid-
ered as the area where most rectangles intersect each other in the continuous
scale-rotation space. Dimensions for each rectangle are derived from the given
error bounds of each point in the following manner.

Consider point pairs (pi,pj) and (qu,qv) from sets P and Q, respectively.
Also let i �= j and u �= v. Assume that, when observed, we can only have the
noisy point locations p′

i = pi+ni, p′
j = pj +nj, q′

u = qu+nu, and q′
v = qv +nv,

where ni,nj,nu,nv ∈ R are random noise terms with arbitrary distributions.
Let’s assume that we are provided with constant quantities ep, eq ∈ R+ that

indicate—with a certain confidence level that depends on the distribution of
the noise—the maximum error the points in P and Q are assumed to have,
respectively. It follows that the distance dp between the points pi and pj is now
somewhere between the limits ||p′

i − p′
j || − 2ep ≤ dp ≤ ||p′

i − p′
j || + 2ep and,

similarly, distance dq between the points qu and qv is somewhere between the
limits ||q′

u −q′
v||−2eq ≤ dq ≤ ||q′

u −q′
v||+2eq. From these inequalities it follows

that the true scale parameter s = dq/dp is somewhere on the interval

||p′
i − p′

j || − 2ep

||q′
u − q′

v|| + 2eq
≤ s ≤ ||p′

i − p′
j || + 2ep

||q′
u − q′

v|| − 2eq
. (6)

This gives the worst case error bounds for the scale parameter of the alignment
defined by the point pairs (pi,pj) and (qu,qv).

Bounds for the rotation parameter θ can be established in a similar manner.
Figure 2 (right) illustrates the worst case scenario from the rotation point of
view. Both of the measured points p′

i and p′
j have the maximum error ep in

their locations. The direction of the error is such that the angle εp ∈ [0, π/2]
is maximized. The true orientation θp of the line traveling from point pi to
point pj , i.e., the angle between the line and the x-axis, is obviously somewhere
between the limits θ′p − εp ≤ θp ≤ θ′p + εp, where θ′p is the orientation of the
line from p′

i to p′
j and εp = arctan

(
2ep||p′

i − p′
j ||−1

)
. Similarly, for set Q we

get εq = arctan
(
2eq||q′

u − q′
v||−1

)
. From these error bounds, we can derive the

limits for the true rotation parameter θ = θq − θp:

(θ′q − θ′p) − (εp + εq) ≤ θ ≤ (θ′q − θ′p) + (εp + εq). (7)

Given now a scale-rotation pair, instead of accumulating a corresponding bin
in a discrete accumulator array, we construct a rectangle, whose dimensions are
given by equations 6 and 7. The closer the points p′

i and p′
j or the points q′

u

and q′
v are to each other, the more dominant the error terms ep and eq become,

thus, resulting in larger rectangles. In calculating εp and εq we assume that
||p′

i −p′
j || > 2ep and ||q′

i −q′
j || > 2eq. This is reasonable as this would otherwise
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allow the noise to be so powerful that some of the points in the sets would be
able to change places. No point pattern matching method could survive that.

The final step in the improved algorithm is to find the scale-rotation cluster.
As the scale-rotation pairs now each form a rectangle indicating its error bounds,
the problem—instead of finding the maximum from an accumulator array—
becomes finding the area where most rectangles intersect. This can be done by
using a sweep line algorithm, familiar, e.g., from computer graphics (scanline
rendering [15]). The principle of the sweep line algorithm is simple: The scale-
rotation space is scanned with a horizontal sweep line that moves in y-direction
simultaneously keeping track on rectangles, which intersect the line. The area
where most rectangles intersect at the same time is stored in the memory.

Replacing Chang’s accumulator array with a sweep line algorithm takes care
of the memory issues. However, it also results in increased computational com-
plexity, which we will now discuss a bit more. There are mn(m− 1)(n− 1)/4
different alignments of the two point sets P and Q in the general alignment
approach for solving the PPM problem. Thus, the time complexity of any PPM
algorithm based on the alignment approach is O(m2n2k), where k depends on
the complexity of calculating the matching pairs. A naive solution calculates the
number of matching pairs by finding the nearest neighbors for each point with a
given alignment. Nearest neighbors can be found in O(m log n) time giving the
naive solution a total complexity of O(m3n2 log n).

In Chang’s PPM algorithm [3], the number of matching pairs is calculated in
constant time. This makes the algorithm optimal in the alignment sense with
time complexity of O(m2n2). In the improved algorithm proposed in this paper,
the optimality is lost as finding the best scale-rotation cluster depends on the
number of points. However, there exists an optimal sweep line based solution
with time complexity of O(k log k) for finding the largest possible subset of in-
tersecting rectangles from a set of k rectangles [6]. Thus, the complexity of the
improved algorithm is O(m2n2 logn), where the additional logarithmic term is
fortunately quite marginal compared to the optimal solution.

6 Example Case

The main problem in Chang’s original PPM algorithm is the high memory con-
sumption in cases where the characteristics of the point sets require large ac-
cumulator arrays. In Figure 3, we have experimented with the total accumu-
lator array memory consumption with respect to 1/r, i.e., the ratio between
the two most distant and two closest points in Q. To be able to calculate
the number of bins in the scale axis for arbitrary point sets, we have assumed
r = δmin/δmax = dmin/dmax. This results in smax/smin = r−2, i.e., the number
of scale axis bins (Equation (5)) is independent of smin and smax. In Chang’s
algorithm, there are at most m− 1 scale-rotation pairs from a single alignment
per iteration. Our accumulator array design guarantees that there cannot be
more hits than this in a single array bin. Thus, we have used 16 bit accumulator
array bin, which is adequate with all reasonable size point sets.
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Fig. 3. Memory consumption of a 16 bit accumulator array with respect to the ratio
between the distance of the two most distant points and two closest points
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Fig. 4. Left: Locations of IC connector pads according to design data. Right: Locations
of connector pad candidates detected from an image.

To provide a real life example, consider the IC registration case presented in
Section 2 and the printed electronics module shown in Figure 1. In Figure 4
(left) there are the locations of the connector pads given by the design data of
the IC on the lower right corner of the module. Figure 4 (right) shows connector
pad candidates of the same IC detected from an image. To be able to find the
exact position of the IC in the image, we plan to run Chang’s PPM algorithm
to find the transformation between the two point sets. However, there exists
extremely close points in both of the sets, namely, dmin = 1 pix, dmax = 1636 pix,
δmin = 97.9μm, and δmax = 7894μm. According to Equations (5), we would
need an accumulator array of size 27283 × 14535, which requires 756 MB of
memory. Unfortunately, we don’t have that much contiguous memory available
in the printing lab PC. However, by using the improved algorithm proposed in
this paper, we only need to store coordinates of (m− 1) · (n− 1) rectangles per
iteration. In this case this results in extra memory usage of just 4.5 MB.

7 Conclusions

In this paper we have proposed a modified version of the point pattern matching
algorithm by Chang et al. [3]. The original method is optimal among all PPM
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methods that are based on brute force testing of different alignments, which is
the only way to guarantee success in case of regular point sets.

Despite the optimality, Chang’s method has some problems, e.g., a high de-
mand for memory when matching point sets with clustered points. We have
proposed a method for choosing the accumulator array size that minimizes the
memory consumption. In addition, we have proposed an improved version of the
original algorithm that overcomes the issues related to using a discrete accumu-
lator array. To the best of our knowledge, these result have not been discovered
earlier.

References

1. Besl, P., McKay, H.: A method for registration of 3-D shapes. IEEE Trans. Pattern
Anal. Machine Intell. 14(2), 239–256 (1992)

2. Carcassoni, M., Hancock, E.: Point pattern matching with robust spectral corre-
spondence. In: Proc. IEEE Conf. on Comp. Vis. Pattern Recogn. vol. 1, pp. 649–655
(2000)

3. Chang, S., Cheng, F., Hsu, W., Wu, G.: Fast algorithm for point pattern matching:
Invariant to translations, rotations and scale changes. Pattern Recogn. 30, 311–320
(1997)

4. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registra-
tion. Comp. Vision and Image Understanding 89(2-3), 114–141 (2003)

5. Grimson, W.E.L., Lozano-Pérez, T.: Localizing overlapping parts by searching the
interpretation tree. IEEE Trans. Pattern Anal. Machine Intell. 9(4), 469–482 (1987)

6. Imai, H., Asano, T.: Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane. Journal of Algorithms 4(4),
310–323 (1983)

7. Lavine, D., Lambird, B.A., Kanai, L.N.: Recognition of spatial point patterns.
Pattern Recogn. 16(3), 289 (1983)

8. Li, B., Meng, Q., Holstein, H.: Point pattern matching and applications-a review.
In: IEEE Intern. Conf. on Syst., Man and Cybern., vol. 1, pp. 729–736 (2003)

9. Manninen, T., Pekkanen, V., Rutanen, K., Ruusuvuori, P., Rönkkä, R., Huttunen,
H.: Alignment of individually adapted print patterns for ink jet printed electronics.
J. Imag. Sci. and Tech. 54(5), 050306 (2010)

10. Miettinen, J., Pekkanen, V., Kaija, K., Mansikkamäki, P., Mäntysalo, J., Män-
tysalo, M., Niittynen, J., Pekkanen, J., Saviauk, T., Rönkkä, R.: Inkjet printed
system-in-package design and manufacturing. Elsevier Microelectr. J (2008)

11. Ranade, S., Rosenfeld, A.: Point pattern matching by relaxation. Pattern
Recogn. 12(4), 269–275 (1980)

12. Stockman, G.: Object recognition and localization via pose clustering. Comp. Vi-
sion, Graph. and Image Process. 40(3), 361–387 (1987)

13. Stockman, G., Kopstein, S., Benett, S.: Matching images to models for registra-
tion and object detection via clustering. IEEE Trans. Pattern Anal. and Mach.
Intell. PAMI-4, 229–241 (1982)

14. Wamelen, P.B.V., Li, Z., Iyengar, S.S.: A fast expected time algorithm for the 2-d
point pattern matching problem. Pattern Recogn. 37(8), 1699–1711 (2004)

15. Wylie, C., Romney, G., Evans, D., Erdahl, A.: Half-tone perspective drawings by
computer. In: Proc. Fall Joint Comp. Conf., pp. 49–58. ACM, New York (1967)



Real Time Surface Registration for PET Motion

Tracking

Jakob Wilm1, Oline V. Olesen1,2,3, Rasmus R. Paulsen1, Liselotte Højgaard2,
Bjarne Roed3, and Rasmus Larsen1

1 Informatics and Mathematical Modelling, Technical University of Denmark
Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, Denmark

http://imm.dtu.dk/
2 Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet,

Copenhagen University Hospital, University of Copenhagen
3 Siemens Healthcare, Siemens A/S, Denmark

Abstract. Head movement during high resolution Positron Emission
Tomography brain studies causes blur and artifacts in the images. There-
fore, attempts are being made to continuously monitor the pose of the
head and correct for this movement. Specifically, our method uses a struc-
tured light scanner system to create point clouds representing parts of
the patient’s face. The movement is estimated by a rigid registration of
the point clouds. The registration should be done using a robust algo-
rithm that can handle partial overlap and ideally operate in real time.
We present an optimized Iterative Closest Point algorithm that operates
at 10 frames per second on partial human face surfaces.

Keywords: motion tracking, registration, ICP.

1 Introduction

High resolution medical imaging modalities are highly sensitive to patient move-
ment during image acquisition. The effect of patient movement during a dynamic
Positron Emission Tomography (PET) recording is shown in Fig. 1. Acquisition
times vary from several minutes to a few hours.

Since the invention of PET in the 1970’s [1], resolution has been ever increas-
ing. Our motion tracking method is targeted at the Siemens High Resolution
Research Tomograph (HRRT), which features a spatial resolution below 2 mm
[2]. This is well below the average drift that is observed in healthy subjects dur-
ing a 45 min period [3]. The problem of patient movement is often mitigated by
the use of thermoplastic head restraints or vacuum pillows. However, it is not
possible to completely avoid motion using these methods [4].

A popular method for real time motion tracking is the use of an optical tool
tracker such as Polaris Vicra [5]. The difficulty with such systems is to keep the
optical tool well attached to the patients head, and in the field of view (FOV)
of the tool tracker. This is particularly cumbersome in the narrow gantry of the
HRRT PET scanner.
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Increasing motion

Fig. 1. A simulation of the effect of patient movement on a dynamic PET recording
with radioactive tracer [11-C] Verapamil. Notice the white regions of no diagnostic
value that appear with increased motion. Modified from [6].

We have previously presented a structured light system for motion tracking
[7]. In contrast to the optical tool tracker, our method 1) does not need any
optical tool and preparation of the subject, 2) fits into the narrow gantry of the
HRRT PET scanner and 3) can potentially be built into future medical scanners.

In this paper, we focus on the registration of surfaces emerging from the cur-
rent system. Ideally such registrations should be performed in real time, enabling
online motion correction. In a clinical PET environment, this has many advan-
tages over post processing, in that it allows for interventions based on the results,
and improves clinical work flow.

The standard framework for rigid registration of point clouds is the Iterative
Closest Point (ICP) algorithm. It was introduced by Chen and Medioni [8] and
in a similar version by Besl and McKay [9]. It has gained wide spread popularity
due to its simple formulation and low complexity. Besl and McKay use a point
to point error metric. They also propose an extrapolation scheme to reduce the
number of necessary iterations.

Several authors have proposed enhancements to the speed and robustness of the
algorithm. Most of these are usage specific. An overview of ICP variants is given
by Rusinkiewicz and Levoy in [10]. In the same paper they introduce the concept
of normal space sampling to emphasize feature rich regions of the surfaces. This
paper demonstrates the usefulness of such feature extraction methods.

For partial surfaces, Turk and Levoy suggested to reject point pairs that match
to a mesh boundary [11]. A similar effect might be achieved by rejecting point
pairs that are far apart [10]. In most real world situations, including our own, one
of these techniques is necessary, because the algorithm would otherwise create
correspondences between points that are not present in both surfaces.

As several authors have noted, the determination of nearest neighbors is by far
the most time consuming step in the algorithm. Different acceleration structures
are employed to reduce computation time. These can be grouped into space
partitioning structures such as quad-trees [12], kD-trees [13] or Voronoi diagrams
and data partitioning like Elias algorithm and bucket sorting into a uniform
grid. Using these methods, the complexity of nearest neighbor searches can be
reduced from the O(N2) of brute force searching to an expected O(N logN)
in kD-trees [13] and O(N) for the uniform grid. They do, however necessitate
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a single computation of the search structure for each ICP run. Greenspan and
Yurick show, that in many cases, approximate neighbors are sufficient for the ICP
algorithm to converge [14]. In kD-trees such approximate lookups can be done
using the highly optimized ANN library by Mount and Arya [15]. A caching
kD-tree implementation by Nüchter et al. was reported to halve computation
times in ICP [16].

The use of both kD-trees and the uniform grid is discussed in this paper. We
finally present an optimized version of the ICP algorithm that is particularly
well suited for fast and robust registration of human face scans.

2 Methods

Our structured light scanner uses two cameras and a Pico projector that are
mounted just above the patient tunnel. The setup is shown in Fig. 2. A se-
quence of patterns is projected onto the patient’s face. Based on the distortion
of these patterns, and using a Phase Shifting Interferometry (PSI) algorithm,
point clouds are created. The scanner’s FOV is set to cover the region around
the eyes, which in most cases is free of soft tissue deformations during image
acquisition.

The system creates point cloud representations of a part of the patient’s face.
These are reconstructed to surfaces and inter frame motion is estimated using a
rigid registration with the ICP algorithm.

We process our data to create a single polygonal surface from the input of the
two cameras. The reconstruction and merging of the two point clouds is done in
one step using the Markov Random Field surface reconstruction algorithm [17].
This reconstruction method extracts an isosurface from a regularized distance
field, and has been shown to be particularly well suited for human surface scans
[18]. We call one such reconstructed surface a single frame. The frames contain
approximately 50 k triangles and 30 k points

Fig. 2. Photographs of a mannequin head inside the HRRT PET scanner with the SL
system in the front mounted to the gantry
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To perform motion tracking, every frame must be registered to some reference
frame. To evaluate our algorithm, we use the simulated registration problem
shown in Fig. 3. It shows a surface resembling part of a mannequin head and it
was preprocessed as described above. We transform the same surface using known
parameters and add Gaussian noise individually to the target and reference. This
way, we know the correct point correspondences, and we evaluate the registration
results objectively as they are compared to ground truth, instead of the value of
the objective function. For some experiments we remove parts of both surfaces,
as shown, to create partial overlap.

Fig. 3. A simulated registration scene with a mannequin head. There are approximately
N = 30 k points on each surface. The left side shows the situation before registration,
the right side after. We have used a known transformation. Parts of both surfaces were
removed to simulate the effect of partial overlap.

We state the problem of aligning the point set P = {pi} for i = 1 . . .Np, to
another point set, Q = {qj} for j = 1 . . . Nq, where individual point correspon-
dences are not known.

In order to address the issue of missing point correspondence, the ICP algo-
rithm iteratively performs the following steps until convergence

1. Matching: every data point in P is matched to a point in the model point
set Q to form the nearest neighbor pair (pi, q̂i).

2. Minimization: the error metric is minimized.
3. Transformation: data points are transformed using the minimization result.

The point to point error metric is

E =
N∑

i=1

‖Rpi + T − q̂i‖2
, (1)

where R is an orthogonal rotation matrix and T is a translation vector.
The minimization of E has several closed form solutions, using either quater-

nions [19], orthonormal matrices [20] or the singular value decomposition (SVD)
[21]. We use the SVD because it results in the fewest calculations.
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We consider sub sampling of the surfaces for two reasons. Firstly, it reduces
the overall computational cost of ICP registration. Most time is spend on near-
est neighbor searches with a complexity of at most O(N2) for the brute force
approach, and we expect that halving the number of points can quarter compu-
tation times at best. The other reason is, that an appropriate sampling strategy
will improve ICP convergence.

By bucketing the points according to their normal direction, and sampling
across these buckets, the relative sampling density in feature rich regions is in-
creased. A reasonable choice is to divide the unit sphere into 27 equally sized
regions to obtain the normal buckets. A similar exploitation of differential prop-
erties is sampling across points of different curvature values. We use a method
for curvature estimation on point clouds due to Pauly et al. [22]. The authors
demonstrate, that the variance in a point’s neighborhood can be used to approx-
imate the surface mean curvature. For our surfaces a local neighborhood size of
100 points divided into 10 buckets works well.

For point clouds that have only partial overlap, point pairs involving the
border of the target might be rejected [11]. This is illustrated conceptually in
Fig. 4. Border points are identified as those defining edges that are only part
of one triangle. With our data, this is easy to implement, because connectivity
information is available for the data. Also, the computational cost is very low.

Fig. 4. In surfaces with partial overlap, many erroneous matches to the border of the
target might occur. In border rejection, these pairs are discarded. Modified from [10].

Statistical approaches to remove erroneous matches require no triangulation
of the target. Albeit, we don’t consider them as robust as the border point
rejection, because the latter will let surfaces slide in place even if the degree of
overlap is small.

An important observation concerning the algorithm is that, in many itera-
tions, it will make small updates in approximately the same direction. This will
in some cases allow us to extrapolate the results of preceding iterations to move
quicker.

Using unit quaternions to represent the current rotation, the transformation
may be represented by a seven dimensional vector with six degrees of freedom:

q = [qw qx qy qz Tx Ty Tz]
T
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Letting qk denote the total transformation state vector at the kth iteration,
one may define the change in every iteration as

Δk = qk − qk−1

The angle between the last two directions is

θk = acos
(

Δk ·Δk−1

‖Δk‖ ‖Δk−1‖
)

If the angles θk and θk−1 are small, extrapolation might be considered. It
is noteworthy that the computational overhead of extrapolation is insignificant
and that, it can be combined with all other ICP modifications presented here.
Details of the technique are described in the paper of Besl and McKay [9].

As noted before, the most time consuming part of ICP is the determination of
nearest neighbors. The points on the reconstructed surfaces are close to equally
spaced, which is the result of re-meshing in our surface reconstruction. For this
reason, we consider bucket sorting the points into a uniform grid as an alterna-
tive to the popular kD-tree approach. Naturally, bucketing works best, when the
data points are distributed uniformly such that every cell is occupied by exactly
one point, in which case the algorithm provides O(N) complexity. Point matches
are made by spiraling out from the query point cell and calculating the distances
to all points encountered. When the closest point so far is closer than all un-
visited cells, the search is terminated. It should be noted that the performance
of bucketing can rapidly decrease in the case of outliers, which cause the data
bounding box to grow. For our data, this does not present an issue, because the
Markov Random Field surface reconstruction removes outliers in the data.

3 Results and Discussion

Results for uniform sampling, normal-space sampling and curvature sampling are
shown in Fig. 5. For this evaluation the scene shown in Fig. 3 is used with full
overlap. Therefore the results converge towards zero. It is seen, that normal space
and curvature space sampling perform well and yield faster convergence than
normal uniform sampling. Because normal sampling requires fewer computations
in our case, we use it in our implementation.

We compare the border rejection scheme with dynamic rejection of all pairs
whose distance is either in the upper 10% or more than 2.0 times the standard
deviation. Here we use the scene depicted in Fig. 3 in which model and data have
only partial overlap. The results of using these rejection methods are seen in Fig.
6. It is observed, that for this scene, a rejection strategy is absolutely necessary.
Whilst the border rejection converges slower than the statistical methods we
consider it more robust because of its parameter independence.

The result of using quaternion extrapolation on our registration problem is
shown in Fig. 7. Extrapolation occurs at several instances throughout the reg-
istration, and it reduces the number of iterations significantly. Because extrap-
olation introduces basically no overhead, we use it in our implementation.
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Nearest neighbor search methods are compared in Fig. 8. We use the ANN
library by Arya and Mount for exact kD-tree searches. Both target and reference
contain the full surfaces. It is seen that bucketing in a uniform grid results
in nearest neighbor search times lower than what is achieved with the highly
optimized ANN library. Both methods are much faster than the brute force
approach.

Our custom registration algorithm builds upon the preceding discussion and
results of sampling, border rejection and extrapolation. It samples 1/4 of the
points from across 27 normal buckets. Point pairs involving the model border
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Fig. 9. Alignment times for 100 runs of our robust ICP algorithm with different random
transformations. The measurements have mean 0.1 s and standard deviation 0.03 s.

are rejected. Extrapolation in quaternion space is performed to speed up the
algorithm. Matching is done using bucketing in a uniform grid. The custom
registration algorithm is run 100 times with different transformations. In every
run, the rotation axis and angle are drawn from a uniform distribution. Rotation
angles vary from −5 to +5 degrees. Translations are also uniformly distributed
in the interval −5 mm to +5 mm. In every run, the algorithm is terminated
when the change in RMS value is below 1μm. Measurements are performed on
a 2.16 GHz machine. The results are seen in Fig. 9.

The registration times have mean 0.1 s and standard deviation 0.03 s. This
makes our implementation suitable for real time motion tracking in our PET
application.

4 Conclusion

We have presented a method for motion tracking during PET scans. It builds
upon a structured light system, surface reconstruction and a highly optimized
version of the ICP algorithm. The algorithm is specifically designed for fast
alignment of facial scans. Quantitative experiments show that it is able to run
at approximately 10 fps. This makes our implementation suitable for real time
motion tracking in a clinical situation. In the future, this will result in much
fewer artifacts on high resolution PET. Our system may be easily adapted to
other imaging modalities in which motion artifacts are a major source of error.
For the optimized ICP algorithm, we see many other applications that reach
beyond the medical imaging field.
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Abstract. A priority-based method for pixel reconstruction and incre-
mental hole filling in incomplete images and 3D surface data is presented.
The method is primarily intended for reconstruction of occluded areas
in 3D surfaces and makes use of a novel prioritizing scheme, based on a
pixelwise defined confidence measure, that determines the order in which
pixels are iteratively reconstructed. The actual reconstruction of individ-
ual pixels is performed by interpolation using normalized convolution.

The presented approach has been applied to the problem of recon-
structing 3D surface data of a rock pile as well as randomly sampled
image data. It is concluded that the method is not optimal in the lat-
ter case, but the results show an improvement to ordinary normalized
convolution when applied to the rock data and are in this case com-
parable to those obtained from normalized convolution using adaptive
neighborhood sizes.

Keywords: image reconstruction, hole filling, normalized convolution.

1 Introduction

There are many ways in which an image can be incomplete. Image sensors can
be faulty, 3D surface image data can contain areas of missing data due to surface
reflectance properties and occlusion [9] or image pixels can be lost or distorted
during transmission of data.

As an example of missing data, including sensor occlusion, consider Fig. 6
(on page 183) showing two grayscale images depicting 3D surface data of a rock
pile where missing pixels are marked in black. The image to the right shows the
rows of range data as measured by a structured lighting sensor [9]. To simplify
later analysis of the measurements, we consider how these missing pixels can be
reconstructed.

While many techniques deal with reconstruction of randomly missing pixels
[3, 6, 7, 8], there is also a potential benefit from being able to reconstruct missing
regions within an image. This particular kind of image reconstruction is known
as hole filling and can be summarized into three broad categories.
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Inpainting describes the technique where an artist reconstructs missing sec-
tions in a painting. This process can be formalized into solvable mathemat-
ical problems with the aim of producing visually pleasing images [1, 2].

Geometric methods are typically used when image data comprises a surface
of 3D points, or it is appropriate to represent image pixels in this way. Points
are triangulated into a mesh, upon which the reconstruction is based. Holes
appear as non-triangulated parts of the mesh. These methods fill each hole by
computing a suitable patch that fits in seamlessly within the close proximity
of the hole. The patch is then sampled to get values for the missing points [5].

Kernel regression methods are commonly used for reconstruction of images
based on sparse sets of irregularly sampled pixels, but can also be applied to
whole regions of missing pixels. These methods are based on a foundation
of linear algebra and use basis expansions of local neighborhoods to improve
or fill in the data of a pixel [8]. The neighborhoods are weighted by an
applicability function so the key point in these methods is how to choose
the neighborhood size, shape and applicability. More recently, methods that
adapt the neighborhood size according to the density of sampled points in
the neighborhood and the shape of the applicability function to shapes of
edges surrounding the neighborhood have been presented [7, 8].

In this paper we present a Prioritized Incremental algorithm using Normalized
Convolution (PINC) for reconstruction of missing regions in incomplete images
and 3D surface data. Specifically, when applied to surface data of piled particles
(e.g. rocks) the presented method seeks to reconstruct the data in a way that
preserves local topological variation and particle distinctness. The method makes
use of a novel prioritizing scheme, based on a pixelwise defined confidence mea-
sure, that determines the order in which pixels are iteratively reconstructed. The
actual reconstruction is performed by interpolation using the kernel regression
method known as normalized convolution [6].

2 Method

At any time during the reconstruction process for an image, every pixel can be
sorted into one of the three following classes:

1. Valid pixels, where the original image contains data.
2. Unfilled pixels; non-valid pixels where no value has been assigned.
3. Filled pixels; non-valid pixels that have been assigned an interpolated value.

The presented method reconstructs holes (regions of unfilled pixels) in a data
set by interpolation of unfilled pixels in an order such that those with more
“reliable data” in their proximity are processed before those with less. In order
to achieve this reconstruction, a prioritizing strategy needs to be defined. Such
a prioritization can be achieved by using a measure of the “validity” of the
neighbors of an unfilled pixel.
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Let d(x) denote the 2D Euclidean distance from the pixel x to the closest
pixel containing valid data. A pixelwise confidence measure can then be defined
as

wc(x) =

⎧⎨
⎩

1 if x contains valid data,
0 if x contains unfilled data,
1

d(x)+1 if x contains filled data .
(1)

As unfilled pixels are filled, their confidence measure is changed according to
(1). Pixel confidence values for filled data thus monotonically decrease from 1
at the border of valid data towards 0 in the unfilled pixels.

Consider an unfilled pixel x with a surrounding n × n neighborhood Nx,n

containing pixels xN,1,xN,2, . . . ,xN,n2. By summing up the confidence of the
pixels in Nx,3, a priority measure p(x) based on the confidence in the immediate
neighborhood of x can then be defined as

p(x) =
9∑

k=1

wc(xN,k) . (2)

Since d(x) ≥ 0, 0 ≤ wc(x) ≤ 1 and 0 ≤ p(x) ≤ 8. For example, if x is a unfilled
pixel entirely surrounded by valid data, p(x) would be 8 and that pixel should
consequently be filled in before a pixel with fewer valid neighbors. The range of
p(x) depends on wc(x), and will thus change if another confidence measure is
selected. The idea is that wc should be chosen so that holes are filled inwards
from their perimeters.

The order of reconstruction is thus determined by prioritizing pixels using the
defined confidence measure. Unfilled pixels of equal priority are processed in the
same step. Knowledge of data set restrictions can be included where values are
known to be within a certain interval. This is accomplished by truncating each
assigned value within the interval limits directly after the interpolation step.

The PINC algorithm is a combination of a strategy for selecting the order for
filling-in missing data and a method for assigning values to the unfilled pixels.
It can be summarized as follows:

1 While unfilled pixels remain, do:
2 Select the set X of pixels with highest priority.
3 For each pixel x in X:
4 Obtain coefficients for a local polynomial expansion

around x.
5 Approximate and constrain the value at x.
6 Update the confidences of X and recalculate priorities.

2.1 Local Polynomial Expansion: Assigning Values

Let x denote an unfilled pixel and f the pixelwise signal values of the data set.
The value of x, f(x), can be approximated by the constant-term coefficient for
a best-fit local expansion in a selected basis (for instance, consider the constant
term in a Taylor expansion). In this work a polynomial basis is used.
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Expressing the data values for Nx,n by the signal vector

f = f(Nx,n) =
(
f(xN,1), f(xN,2), . . . , f(xN,n2)

)T ∈ Rn2
(3)

and letting {b1, b2, . . . , bm} constitute a set of m < n2 linearly independent
bases spanning a subspace S of Rn2

, it is possible to approximate f by its
projection fS onto S. By letting B = (b1, b2, . . . , bm)T denote the basis matrix
and c = {c1, c2, . . . , cm} represent the corresponding coefficients for fS , we can
write fS = Bc . The coefficients contained in c are given by

arg min
c∈Rm

‖fS − f‖ = arg min
c∈Rm

‖Bc − f‖ , (4)

which can be recognized as a least squares problem.
However, an adjustment of the influences of the different pixels in Nx,n is

desired so that pixels closer to x have a greater impact on the result than those
further away. Care should also be taken to the reliability of the values in the
neighborhood pixels. These desired objectives of pixelwise influence and reliabil-
ity can be achieved by using normalized convolution with the diagonal matrices
for applicability and certainty given by

Wa =

⎛
⎜⎝
wa(xN,1) · · · 0

...
. . .

...
0 0 wa(xN,n2)

⎞
⎟⎠ and Wc =

⎛
⎜⎝
wc(xN,1) · · · 0

...
. . .

...
0 0 wc(xN,n2)

⎞
⎟⎠

respectively. For all pixels in the neighborhood Nx,n, wa(xN,k) is a Gaussian
mask providing applicability weights and wc(xN,k) is the corresponding confi-
dence mask, where k = 1, 2, . . . , n2. Following the outline provided by Farnebäck
[4], influences of the neighborhood pixels in (4) are assigned weights by a matrix
W , implicitly defined by W 2 = W aW c (Fig. 1). A vector cW , representing the
basis coefficients for the weighted neighborhood, can then be obtained from

arg min
cW ∈Rm

‖WBc − Wf‖ . (5)

The solution to this problem is then given by

cW = (BT W aW cB)−1BT W aW cf , (6)

w
a

w
c w2

Fig. 1. Example of neighborhood weights corresponding to values of Wa (left), Wc

(center) and W 2 (right) for Nx,9
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which can be efficiently solved [4]. Once the coefficients in cW have been cal-
culated, the coefficient corresponding to the constant base function can be re-
trieved, providing the approximation of the pixel value f(x).

3 Experiments and Results

Three different data sets were reconstructed by both ordinary normalized con-
volution (NC) and the PINC algorithm:

1. A gray-scale image, corrupted by randomly removing 90% of the pixels.
2. The same image as in 1, with holes of three different shapes.
3. 3D surface data for a pile of rocks, where data is partially missing.

3.1 Reconstruction of Randomly Removed Data

Figure 2 shows an original image and a version with 90% of the pixels randomly
removed. Reconstructions were performed using a neighborhood size for coeffi-
cient extraction of 15×15 and a Gaussian mask with σ = 1.5 as the applicability
function. The original image is restricted to values in the range R [0, 1], where-
fore these limits were chosen as constraints for the reconstruction. Results of
the NC and PINC algorithms, using zeroth and second order polynomials, are
presented in Fig. 3. It should be noted that the PINC algorithm provides a less
detailed result, but shows a more stable behavior for higher order polynomials
where ordinary normalized convolution returns small regions of extreme values
(Fig. 3, upper right).

3.2 Reconstruction of Holes

Figure 4 shows the same image as in the previous section (Sec. 3.1), now artifi-
cially corrupted by creating holes. The resulting reconstructed images, obtained
by using the same parameter setup as in the previous section, are presented
in Fig. 5. Differences between the two reconstruction algorithms are visible, es-
pecially in the row of circles crossing the face region. Black and white defects
remain in the lower section of the reconstructions performed by ordinary nor-
malized convolution, especially for higher order polynomial expansions.

3.3 Reconstruction of Missing 3D Surface Data

3D surface data from a structured lighting sensor [9] comprising a camera and a
projector was used to test the algorithm. The data consists of spatially separated
rows of 3D data points recorded on a 256×256 image grid and contains occlusions
where the surface structure obscures the reflected light from reaching the camera
(Fig. 6, right). The geometry of the sensor provides a pixelwise upper limit for
the reconstruction of the occluded data, in the form of a linear interpolation
between the measured pixels.
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Fig. 2. The original image (left) and the version with 90% randomly removed data
(right)

Fig. 3. Reconstructions of the right image in Fig. 2 using NC (first row) and PINC
(second row). Order of polynomials used for interpolation are 0 (left) and 2 (right).



182 A. Landström et al.

Fig. 4. The original image (left) and a version with holes (right)

Fig. 5. Reconstructions of the right image in Fig. 4 using NC (first row) and PINC
(second row). Order of polynomials used for interpolation are 0 (left) and 2 (right).
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Fig. 6. 3D surface data of a rock pile: Combined information from all six measurements
(left) and from one measurement only (right)

Fig. 7. Reconstructions of 3D surface data (Fig. 6, right) using 9 × 9 neighborhood
NC (upper left), 15 × 15 neighborhood NC (upper right), adaptive neighborhood NC
(lower left), and 9 × 9 neighborhood PINC (lower right). Order 2 polynomials were
used, giving RMSE values 0.055, 0.031 0.030 and 0.029 respectively.
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The performance of the PINC algorithm was measured by calculating Root
Mean Squared Error (RMSE) values between the interpolated data and a second
data set comprising six overlapping measurements (Fig. 6, left), rescaling the
data sets to gray scale images of range R[0, 1]. For comparison, the surface was
also reconstructed by three different NC approaches. First, a neighborhood of
the same size as used for the PINC algorithm, 9×9 pixels, was applied. Secondly,
the neighborhood was extended to 15 × 15 to avoid the type of holes visible in
the NC results presented in Fig. 5 (upper right). Thirdly, the NC algorithm was
used with adaptive neighborhoods, where for each pixel the smallest surrounding
neighborhood containing at least 25% valid data was used for interpolation.
Results for second order polynomials are presented in Fig. 7. For the 9 × 9
neighborhood NC reconstruction, the RMSE value for the resulting data is 0.055.
It should be noted that in this case the small neighborhood does not bridge the
regions of missing data, giving a potential large error for those pixels. The 15×15
neighborhood NC reconstruction fills in the holes, providing an RMSE value of
0.031. NC reconstruction using an adaptive neighborhood gives a lower RMSE
value, 0.030. Finally, the suggested PINC algorithm gives the RMSE value 0.029.

4 Discussion

As can be seen in Fig. 3, the PINC algorithm does not reconstruct fine details as
effectively as NC on 90% randomly distributed missing data. The reconstruction
by growing property of PINC can result in image structure from a location with
a local cluster of pixels, spreading over the image and influencing the recon-
struction around more isolated pixels. However, while the presented incremental
method is less likely to capture small details in the randomly sampled data, it
is less sensitive to extreme values when using higher order polynomials.

From Fig. 5, it is clear that the suggested incremental approach fills in miss-
ing data where ordinary normalized convolution does not. This is because the
chosen neighborhood is too small to bridge the largest holes. The problem can
be approached by using adaptive neighborhoods, as described in [7, 8]. Also, the
result from the PINC algorithm is in general more pleasant to the eye than the
NC reconstructed image.

Presented results for 3D range data shows that our method gives the best
RMSE value for the tested data. Also, as expected, we see that NC needs a
larger neighborhood to cover the missing regions. The use of locally adaptive
neighborhoods partially solves this problem, but demands more computational
power due to the unconstrained size of the neighborhoods when available pix-
els become very sparse. However, since the PINC algorithm currently reaches
the same performance as NC with adaptive neighborhood sizes, it should be
possible to improve PINC by incorporating the techniques that adapt to their
surroundings such as neighborhood and applicability presented in [7, 8].

Even though the NC reconstruction with a 15 × 15 neighborhood here pro-
duces an RMSE value that is comparable to PINC and adaptive NC, this is not
something we can expect to be true in the general case. The images used in
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this work are at quite low resolution and all occluded regions are roughly of the
same magnitude which in this case makes the 15× 15 neighborhood suitable for
all regions. When having occluded regions of different size, this means that for
using NC we would have to use neighborhoods that bridges the largest occluded
region, something that would introduce smoothing in the smaller cavities.

5 Conclusion

By measuring RMSE values between a reconstructed partially occluded 3D rock
pile surface and its true topology, we conclude that the suggested image recon-
struction by prioritized incremental normalized convolution (PINC) performs
better than ordinary normalized convolution (NC). To adapt the size of neigh-
borhoods seem to be another possible approach of improving the performance of
NC, but we have shown that a comparable result can be achieved using smaller
neighborhoods.

The presented hole filling and reconstruction of randomly sampled data (Figs 5
and 3, respectively) highlights the differences between PINC and NC algorithms.
The PINC algorithm is not adapted for reconstruction of data sets where most
data is randomly removed, but is useful for its purpose; filling holes in 3D surface
data.

References

[1] Averbuch, A., Gelles, G., Schclar, A.: Fast hole-filling in images via fast comparison
of incomplete patches. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds.)
MRCS 2006. LNCS, vol. 4105, pp. 738–744. Springer, Heidelberg (2006)

[2] Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Pro-
ceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 2000, pp. 417–424. ACM Press, New York (2000)

[3] Faille, F., Petrou, M.: Invariant image reconstruction from irregular samples and
hexagonal grid splines. Image and Vision Computing 28(8), 1173–1183 (2010)
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Abstract. A key factor in classifiers based on the normal (or Gaussian)
distribution is the modeling of covariance matrices. When the number of
available training pixels is limited, as often is the case in hyperspectral
image classification, it is necessary to limit the complexity of these covari-
ance models. An alternative to reducing the complexity uniformly over
the whole feature space, is to form orthogonal subspaces and reduce the
model complexity within them separately, e.g., forming full-complexity
within-class, or interior-class, subspace models, and reduced-complexity
exterior-class subspace models. We propose to use subspaces created by
forming fewer and wider spectral bands, instead of the more general
principal component analysis transform (PCA), in an attempt to exploit
a-priori knowledge of the data to create more generalizable subspaces.
We investigate the resulting classifiers by studying their performances on
four hyperspectral data sets. On each data set, experiments where run
using different training set sizes. The results indicate that the classifiers
seem to benefit from using this more data-specific approach to forming
subspaces.

1 Introduction

A recurring challenge in supervised classification of hyperspectral image data is
that of handling the high number of per-object, or per-pixel, measurements (i.e.,
spectral bands) in combination with the often low number of samples available
for training the classifiers. Typically we have about 100 to 200 spectral measure-
ments per pixel, making the space in which we operate quite large and, usually,
very sparsely sampled. As a result, when trying to build a statistical classifier,
we most often have to resort to extremely simple models to avoid overfitting the
training data. Even simple probability density functions (pdfs) like the normal
distribution quickly turn out to be too complex, and, generally, we have to turn
to dimensionality reduction, further restrictions of our model or other types of
regularization, all preferably guided by some appropriate a-priori knowledge of
the specific problem or data itself. The fewer samples we have available to train
the classifiers, the more we rely on creating suitable restraints on our models to
be able to harvest the spectral richness.
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Many classifiers are based on modeling normal distributions, although differ-
ing greatly in how they impose a-priori stricture. In this paper we will focus
on the approach of separating the feature space, principally differently for each
class, into a primary and secondary orthogonal subspace, in which the com-
plexity of how we model the two spaces differs. The primary space is meant to
model a class’ interior, or within, variance, while the secondary space models
the exterior-class, or between-class, variance. The idea of such a separation for
spectral data dates back to the work by Wold et al.[8] and Frank [2] in their
SIMCA and DASCO approaches. If we choose the secondary space to cover a
large part of the full feature space and let it be more simply modeled, we reduce
the overall model complexity and hence limit the chance of overfitting.

In SIMCA, DASCO and common derivatives [7], the division of the feature
space is based on an eigenvalue-decomposition (PCA) of the covariance matrix.
A certain number of the eigenvectors corresponding to the highest eigenvalues
are used to form the primary space, while the rest of the space is assumed to
have equal variance in all directions, i.e., the remaining eigenvalues are set to
their average value. By an eigenvalue-decomposition of the covariance matrix
to form the primary space, we get the linear subspace containing the highest
fraction of the total variance of the data, or, put another way, the subspace
that can best represent the data in a squared error sense. However, there are
no constraints or links to the data-generating process when the linear subspace
is formed. This, in turn, could lead to an overfitting of the training samples,
in the sense that it could make the primary space fail to represent the more
generalizable within-class variance and give an artificially low variance in the
secondary space.

In this paper, we suggest to replace the very general eigenvalue-decomposition
with a more application-specific, or data-specific, approach to forming the pri-
mary and secondary subspaces. In particular, we propose to form primary spaces
by finding the low-dimensional linear subspaces that, like the PCA, can best rep-
resent the data in a squared error sense, but with the restrictions that each basis
vector corresponds to a single, wider spectral band, and that they together cover
the whole spectrum. By enforcing this restriction, based on a-priori knowledge
of the data, i.e., that they stem from samples of continuous curves, we should
be able to obtain within-class subspaces that are less prone to overfitting.

In section 2 we recount the general normal distribution-based classifier, specify
the feature-space separation formulation and give details of our proposed choices
of how to define these subspaces. Details about the experiments, their results
and a discussion on the findings can be found in section 3. Finally, section 4
gives some concluding remarks.

2 Model Formulation

Before we look at the specific models that we will investigate, we start by reca-
pitulating the general formulation of the normal distribution-based classifiers.
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2.1 Discriminant Analysis

Let y be a column vector containing the spectral band values of a single pixel.
Now, by our assumption that each class follows a normal distribution, we end
up with the following discriminant functions if we want to minimize the Bayes
error [1]:

gc(y) = −1
2

log |Σc| − 1
2
(y − μc)′Σ−1

c (y − μc) + log πc, (1)

where μc, Σ−1
c and πc are the mean vector, the inverse covariance matrix (also

called the precision matrix) and a-priori probability for class c, respectively. That
is, a new sample (pixel) y∗ will be classified to the class c giving the highest value
of gc(y∗).

In practice, neither the mean vectors nor the covariance matrices are available
and hence they have to be estimated from the (very limited) amount of available
data. When there are no constraints on the estimates, the maximum likelihood
solutions for the means and covariance matrices are the sample means and the
sample covariance matrices, denoted by μ̃c and Σ̃c, respectively:

μ̃c =
1
Nc

Nc∑
i=1

yi, (2)

Σ̃c =
1
Nc

Nc∑
i=1

(yi − μ̃c)(yi − μ̃c)′, (3)

where Nc is the number of samples in class c. In this paper we will not be
altering the mean-value estimates, but focus on putting restraints on the harder-
to-estimate covariance matrices.

2.2 Primary and Secondary Subspaces

The models that we focus on are based on separating the feature space into
orthogonal primary and a secondary subspaces. The primary subspace is meant
to capture the essential within-class variance, and the “richness” in the proba-
bility density modeling within this space is retained, while the secondary space,
containing the exterior-class variance, is modeled using a spherical pdf.

To be more specific, let m be the total number of features in the full space
(number of spectral bands) and let mp and ms be the dimensionality of the
primary and secondary spaces, respectively, making m = mp +ms. Now, letting
Pc be the projection matrix for the primary space for class c and P⊥c = I − Pc

the corresponding matrix projecting onto the secondary space, we form new
covariance matrices like this:

Σ̂c = PcΣ̃Pc + αcP⊥cIP⊥c

= PcΣ̃Pc + αcP⊥c, (4)
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where the constant αc is set to 1
ms

tr{P⊥cΣ̃cP⊥c} to ensure that the overall
variance is retained, i.e., tr{Σ̂c} = tr{Σ̃c}. Although put a bit loosely, we can say
that the variance in the primary space is retained, while the remaining variance
is spread spherically, or uniformly, in the secondary space. These covariance
estimates, together with the sample means, μ̃c, are plugged into the discriminant
functions in (1) to form the classifier.

2.3 Subspace Modeling Using PCA

The original SIMCA approach and its derivatives form the primary-secondary
space separation by eigenvalue decompositions of the sample covariance matri-
ces. That is, letting V pca

p be an m×mp matrix containing the mp eigenvectors
corresponding to the highest eigenvalues and V pca

s the rest of the eigenvectors of
Σ̃c in (3), we choose Pc = V pca

p V pca
p

′. When we use such a Pc, we of course have
Σ̃c = PcΣ̃cPc + P⊥cΣ̃cP⊥c, meaning that there is no (sample) variance across
the two spaces. This equality will generally not hold for other choices of Pc.

A slightly different model can be achieved if we do not subtract the class
mean when we calculate the sum of outer products constituting Σ̃c, and then
eigenvalue-decompose that matrix to get the Pc projection matrix, i.e., we set
μ̃c = 0 and eigenvalue-decompose (3). By doing this, we include some of the
information that is found in the class’ mean value when deciding on the primary,
or within-class, subspace. When we form the primary space this way, we have
Σ̃c �= PcΣ̃cPc + P⊥cΣ̃cP⊥c since there is actual variance across the subspaces
which we by our modeling enforce to be zero.

A related approach is that of choosing exactly the same projection matrix for
every class. Again we can use the eigenvalue decomposition, although one would
make use of the total scatter matrix. This is very similar to the general PCA
approach used as a dimensionality reducer, although in (4) we keep the secondary
space, i.e., we retain the full dimensionality. Setting αc = 0 for all classes c in
(4), on the other hand, would reduce it to the classical PCA approach if the zero-
valued eigenvalues were ignored (cf. use of pseudo inverses) in the discriminant
function (1).

2.4 Subspace Modeling Using Wider Spectral Bands

In trying to include more domain-specific information into the reduction of model
complexity, we propose to form the primary and secondary space separation
based on a linear dimensionality reduction technique specifically designed for
(continuous) spectral data. Stated more explicitly, we propose to use the di-
mensionality reduction approach described in [5], which finds the optimal, in
a squared-error representation sense, cuts of the spectral curves when forming
fewer, but wider, spectral bands. An example of a spectral curve represented
with different numbers of wider spectral bands can be seen in Figure 1. Now,
by running the algorithm separately with sample sets from the different classes,
we get a different set of spectral bands for each class, i.e., each class has its own
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Fig. 1. An example of a spectral curve from the KSC data set represented using differ-
ent numbers of segments, i.e., using different numbers of primary-subspace dimensions.
From top to bottom; using 5, 10, 37, 73 and 145 (maximum, shown in bold) dimensions.
The curves are vertically shifted for visual clarity.

linear subspace representing as much of the variance as possible. The idea is that
the data-specific restrictions placed on how we form the within-class subspaces
make them more generalizable.

Let us say that V is the m×mp matrix transforming the data from m to mp

dimensions, or from m to mp spectral bands, that one obtains using the training
samples of a certain class c as input to the just mentioned algorithm. We then
obtain the matrix projecting onto the primary space by Pc = V (V ′V )−1V ′,
which is then used in (4) to obtain the reduced-complexity covariance estimate
used in the discriminant function (1).

Of course, analogous to keeping or ignoring the per-class mean values when
we do an eigenvalue decomposition to form the primary subspaces, we can also
choose whether or not to remove the per-class means before we run the di-
mensionality reduction algorithm that finds the new, broader spectral bands.
Furthermore, we can use a common projection matrix for all our classes, again
analogous to that of the eigendecomposition case described in section 2.2.

2.5 Primary-Subspace Size

What is left to be decided is the dimensionality of the primary subspace for
each class. There are several criteria that could be deployed, but in our case we
focus on rather small numbers of training samples, and we want to minimize
the number of free parameters, hence we choose an equal size for all the classes’
primary subspaces. In our experiments, this shared primary-space dimensionality
is chosen through crossvalidation on the classification error.
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3 Experiments

3.1 Data Sets

To evaluate the classification performance of the discussed approaches we have
performed experiments on four hyperspectral images of various sceneries cap-
tured using different sensors.

The first image, Pavia [3], is of an urban scene taken by an airborne sensor. It
has 71 bands, a pixel size of 2.6 m and the ground truth consists of nine classes.
The second image, DC Mall [6], is again from an airborne sensor and also contains
urban type data. It is divided into five classes, has a pixel size of 3 m, and has
150 bands. The third and fourth images, Botswana and Kennedy Space Center
(KSC), are intended for vegetation inventory [4]. The former was captured by
the Hyperion sensor aboard the NASA EO-1 satellite over the Okavango Delta,
Botswana on May 31st, 2001. The image has a pixel size of 30 m, the labeled
data consists of 14 classes, and the number of raw radiance bands used is 145.
The latter data set was captured by an airborne sensor over Kennedy Space
Center (KSC) at Cape Canaveral, Florida on March 23rd, 1996. It has a pixel
size of about 20 m, has 171 bands, and the ground truth consists of 13 classes.
All the above data sets are well known, and the listed references are publications
where the data sets are used with various classification algorithms.

3.2 Experiment Details

We compare the classification performance of the normal distribution-based clas-
sifier (1) using the covariance matrix estimate of (4) with the six different choices
of choosing the primary space projection matrix, P , discussed in section 2. That
is, there are three projection matrix schemes found using PCA; not subtracting
the class means before calculating the scatter matrices, subtracting the class-
means first, and having a common projection matrix for all the classes based on
the full scatter matrix, and we have the three proposed corresponding projection
matrices using the dimensionality reduction transforms that is based on forming
fewer and wider spectral bands.

Furthermore, we also report results using the PCA and the other approach
that seeks wider spectral bands to reduce the number of dimensions explicitly,
i.e., the same as having a common projection matrix for the classes and ignoring
the secondary space completely.

For each of the discussed approaches, the number of dimensions, shared by
all classes, of the primary spaces is found using tenfold crossvalidation on the
classification error rate. We define the error rate to be the average of the classes’
individual error rates.

Each data set was divided into two equally sized, spatially separate, and
mostly disjoint training and test sets. We are interested in how the performance
varies with training sample size, and hence we have chosen to report results
where the total number of training samples are 0.5, 1, 2, 4 and 8 times the
dimensionality of each data set. For each training sample size, the experiments
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were repeated five times, randomly drawing the selected number of samples from
the training set. All data sets were normalized by subtracting the total mean
and rescaling the mean within-class variances to one before fitting the models
and doing the classification.

3.3 Results

Tables 1 to 4 show the average error rates over the five experiments run for
the different training set sizes and for the different data sets. The numbers
in parenthesis are the numbers of times the particular classifier gave a lower
classification error on the test data than did the other corresponding classifier.

From these numbers we can see that, as expected, the classification error
generally decreases with an increased number of training samples. More inter-
estingly, when comparing the proposed way of finding subspaces with that of
PCA, we see that the proposed approach seems to dominate at least when mod-
eling each class separately. In the case of a common primary-secondary space
separation for all the classes, the proposed approach still performs better than
the traditional approach, although not quite as dominantly. When ignoring the
secondary spaces, i.e., performing dimensionality reduction, there is no signifi-
cant difference between the two approaches.

For all data sets, there is a noticeable difference between the results we get
when we keep the full dimension of the space and the ones we get when we do
a dimensionality reduction. When the number of training samples is very low,
about equal to, or lower than, the number of original spectral bands, keeping the
full-dimensional feature space gives better results than when doing a dimension
reduction. When increasing the number of training samples, the error rates of
the two techniques approach each other.

In Figure 2 we show error-rate curves from the Botswana data set when chang-
ing the number of dimensions in the primary space. In both the very low training-
sample case and where there are quite some more training samples available, we
see that there are wider intervals of primary space dimensions that gives ac-
ceptable classification errors when applying the proposed approach to finding
subspaces. Similar results (not shown) are found using the other data sets.

3.4 Discussion

The way that the proposed approach finds the subspaces is much more restricted
than that using PCA, as the proposed approach is based on finding a linear
basis that consists of the average of contiguous original spectral bands instead
of allowing any linear combination of the original bands. The results seem to
indicate that we are capable of modeling the within-class variance properly,
while avoiding overfitting the training data.

The dimensionality of the primary space is found through crossvalidation and
it seems like a lot of the success of the proposed approach stems from the wider
range of such primary-space dimensions that give acceptable results. That is,
there is a greater number of choices of primary-space dimensions that give good
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Table 1. Mean classification errors on the 5 experiments per training set size using
the DC Mall data set. On the left of the slash we show results based on the proposed
way to find subspaces, on the right the traditional PCA-based one. In parenthesis one
can find the number of ”wins” (out of the 5 repeated experiments) for the classifier.

Train-set size Mean included Mean excluded Common P Dim. reduction

0.5 13.7 (5) / 25.1 (0) 14.9 (5) / 26.4 (0) 14.1 (3) / 15.6 (2) 20.7 (0) / 18.2 (5)
1.0 12.5 (5) / 26.8 (0) 10.6 (5) / 23.5 (0) 10.0 (5) / 12.0 (0) 17.2 (3) / 15.3 (2)
1.5 9.5 (5) / 22.0 (0) 9.4 (5) / 19.7 (0) 9.7 (5) / 11.0 (0) 11.1 (4) / 11.3 (1)
2.0 11.4 (5) / 19.0 (0) 9.8 (5) / 19.6 (0) 10.6 (4) / 13.9 (1) 13.3 (2) / 13.2 (3)
4.0 13.0 (5) / 20.7 (0) 10.3 (5) / 20.5 (0) 9.5 (3) / 10.5 (2) 10.3 (1) / 8.6 (4)
8.0 8.9 (5) / 16.3 (0) 8.9 (5) / 15.9 (0) 9.2 (2) / 9.5 (3) 7.8 (4) / 8.5 (1)

Table 2. Data set: Pavia. For explanation, see the caption of Table 1.

Train-set size Mean included Mean excluded Common P Dim. reduction

0.5 24.7 (5) / 31.8 (0) 23.6 (4) / 32.4 (1) 29.3 (2) / 30.2 (3) 54.2 (2) / 50.8 (3)
1.0 16.6 (4) / 22.3 (1) 22.6 (2) / 20.1 (3) 15.2 (5) / 24.1 (0) 28.3 (2) / 23.8 (3)
1.5 11.7 (5) / 22.2 (0) 13.2 (5) / 17.7 (0) 12.1 (5) / 21.2 (0) 20.9 (2) / 19.9 (3)
2.0 11.0 (5) / 16.3 (0) 12.4 (5) / 16.1 (0) 9.6 (5) / 15.2 (0) 15.7 (2) / 15.7 (3)
4.0 9.4 (4) / 21.6 (1) 11.3 (4) / 13.1 (1) 10.1 (5) / 13.5 (0) 12.7 (5) / 13.6 (0)
8.0 8.1 (5) / 11.8 (0) 9.0 (5) / 12.7 (0) 7.0 (5) / 11.0 (0) 10.3 (4) / 11.6 (1)

Table 3. Data set: KSC. For explanation, see the caption of Table 1.

Train-set size Mean included Mean excluded Common P Dim. reduction

0.5 34.4 (5) / 42.9 (0) 37.8 (5) / 92.3 (0) 32.8 (4) / 32.4 (1) 62.3 (3) / 63.1 (2)
1.0 28.2 (4) / 30.4 (1) 26.7 (5) / 30.0 (0) 29.1 (2) / 30.0 (3) 34.8 (1) / 34.8 (4)
1.5 23.6 (5) / 30.5 (0) 21.4 (5) / 28.5 (0) 22.6 (5) / 26.1 (0) 29.4 (1) / 26.3 (4)
2.0 21.3 (5) / 29.6 (0) 19.6 (5) / 25.4 (0) 20.7 (5) / 24.8 (0) 23.5 (2) / 23.5 (3)
4.0 20.0 (5) / 29.6 (0) 19.2 (5) / 26.1 (0) 19.1 (2) / 18.7 (3) 19.0 (2) / 19.2 (3)
8.0 17.0 (5) / 29.8 (0) 16.7 (5) / 27.6 (0) 16.1 (0) / 14.7 (5) 15.4 (3) / 16.1 (2)

Table 4. Data set: Botswana. For explanation, see the caption of Table 1.

Train-set size Mean included Mean excluded Common P Dim. reduction

0.5 25.2 (5) / 32.1 (0) 22.7 (5) / 33.0 (0) 25.5 (3) / 28.4 (2) 38.8 (5) / 41.5 (0)
1.0 15.8 (5) / 28.8 (0) 16.0 (4) / 20.6 (1) 14.2 (5) / 23.0 (0) 22.8 (2) / 22.1 (3)
1.5 14.9 (3) / 19.9 (2) 13.2 (5) / 21.1 (0) 16.8 (4) / 18.3 (1) 19.4 (2) / 19.1 (3)
2.0 14.3 (4) / 17.6 (1) 10.8 (5) / 18.7 (0) 11.1 (4) / 13.0 (1) 15.6 (0) / 13.5 (5)
4.0 9.9 (5) / 18.7 (0) 10.1 (5) / 17.7 (0) 10.4 (2) / 9.2 (3) 8.9 (3) / 9.1 (2)
8.0 8.9 (5) / 19.1 (0) 8.3 (5) / 17.4 (0) 7.6 (4) / 8.2 (1) 7.8 (3) / 8.8 (2)
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Fig. 2. Classification error rates when varying the size of the primary subspace for the
Botswana data set. Training set sizes are (a) about equal to the number of original
spectral bands and (b) about 8 times as many. Note how quickly the error rates for
the PCA-based approaches increase with added dimensions, making it hard for any
crossvalidation technique to choose a good primary-space size. Subspace sizes chosen
by crossvalidation for these particular training sets are marked by ’o’s.

classification results using the proposed approach than there are choices giving
good results using PCA. After adding a few PCA-dimensions to the primary
space, the whole sample variance is captured, leaving us with an artificial, or
overfitted, primary space, while at the same time there is no variance left to
“spread out” over the secondary space.

Especially in the case of a very limited set of training samples, it seems to be
a good idea to avoid doing a “crisp” dimensionality reduction, but rather keep
the secondary space, although with a simpler pdf model. When there are very
few training samples, it is important to try to keep as much as possible of the
space that they span, while at the same time avoid overfitting. Modeling the
“surplus” space using a simpler model, rather then ignoring it, seems to be a
good compromise.

4 Conclusion

Modeling the covariance is a key factor in normal distribution-based classifiers.
When there is a need to restrict the complexity of such models, one rather
flexible approach is to form orthogonal subspaces of the feature space, and let
the variance in each of them be modeled with a different complexity. In this
paper we have studied the classifier performance on hyperspectral image data
when applying different approaches to forming these subspaces. In particular,
we have proposed to use subspaces created by forming fewer and wider spectral
bands instead of the more general PCA. The results indicate that the classifiers
seem to benefit from using this more data-specific approach.
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Abstract. Mobile phones with integrated digital cameras provide new
ways to get access to digital information and services. Images taken by
the mobile phone camera can be matched to a database of objects or
scenes, which enables linking of digital information to the physical world.
In this paper, we describe our method for mobile image recognition,
which is a part of a pilot system for linking of magazine page images to
additional digital content. Such magazine databases are highly dynamic,
so the recognition method needs to support addition and deletion of im-
ages without rebuilding the whole database. Meanwhile we significantly
reduce the memory cost in the system without sacrificing retrieval accu-
racy. We present recognition results with two different databases.

Keywords: image recognition, mobile visual search, mobile augmented
reality.

1 Introduction

Mobile augmented reality, i.e. augmenting the user’s perception of her surround-
ings using a mobile device, is a relatively new field of research, which has been in-
vigorated by the current prevalence of capable mobile computing devices. These
devices are becoming increasingly small and inexpensive, and they allow us to use
various computing facilities while roaming in the real world. In particular, ordi-
nary mobile phones with integrated digital cameras are ubiquitous, and already
they can provide new ways to get access to digital information and services. The
images or video captured by the mobile phone can be analyzed to recognize the
objects [3] or scenes [18,5] appearing in the recordings.

Consequently, the research on applicable image matching algorithms has re-
cently been very active (e.g. [17,10,12,13]), and the current state-of-the-art meth-
ods can handle recognition from databases containing millions of images. A
mobile image matching algorithm should be robust against variations in illu-
mination, background clutter, viewpoint, and scale. Mobile applications should
work with stringent bandwidth, memory and computational requirements. This
requires the optimization of the performance and memory usage. For example, it
is possible to perform feature extraction directly on the mobile client [19], which
may reduce the system latency and provide better system scalability.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 196–205, 2011.
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In this paper, we describe our image recognition engine which is a part of a
pilot system aimed at linking of images taken with a mobile phone to interactive,
contextual, and short-term mobile services [4]. This kind of technologies can be
used for various purposes: possible application areas include outdoor advertising,
magazine and newspaper advertising, tourist applications, and shopping. We
focus here on a use case with a magazine publisher as the content provider.

The rest of the paper is organized as follows. We first review briefly some
relevant related work and discuss the differences to our method in Section 2. In
Section 3, we describe our method for image recognition from dynamic image
databases. In Section 4, we present results from experiments with two different
databases. Conclusions and plans for future work are discussed in Section 5.

2 Related Work

Image and object recognition based on extracting image patches, describing each
patch with a high-dimensional descriptor, and comparing the descriptors has
become extremely popular and successful [10]. In particular, the visual words
paradigm, where the descriptors are first clustered and each descriptor is then
represented by a cluster identity has made it possible to recognize images from
very large databases [17,12,13]. The visual words are however relatively noisy, as
the quantization is an additional error source, so direct pair-wise matching can
provide more accurate results [14], especially with very few query descriptors.

Using mobile phones to retrieve additional information related to the users’
interests has been studied in a number of research projects. Many systems, such
as the Nokia’s MARA [9] are based on the camera’s various sensors, i.e. GPS re-
ceiver, accelerometer, and magnetometer. Recently, applications based on image
analysis using the mobile phone camera have also been presented. An outdoors
augmented reality system for mobile phones is described in [18], where GPS
location data is used to prune the image data prior to the image matching stage.

The recognition of various objects with mobile phone cameras has also raised
considerable research and commercial interest. For example, an application to
recognize book and CD covers from live video on mobile phones is presented
in [3]. One of the most popular commercial applications with similar functional-
ities has been launched by Amazon / SnapTell1. After taking a photo with the
mobile and sending it to Amazon, corresponding information about the products
appearing in the photo or similar products will be sent back to the user if the
object is on sale in Amazon. Further examples of similar commercial applications
are Google Goggles2, kooaba3, and Nokia’s Point and Find4.

In comparison to the above applications, we present in this paper a system for
retrieving extended magazine content for mobile phones. Due to page limitations,
printed magazines can not include all related information on some comprehensive
1 http://www.a9.com/
2 http://www.google.com/mobile/goggles/
3 http://www.kooaba.com/
4 http://www.pointandfind.nokia.com/

http://www.a9.com/
http://www.google.com/mobile/goggles/
http://www.kooaba.com/
http://www.pointandfind.nokia.com/
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or interesting topics, or advertisements. This information can, however, be made
accessible on the internet. The focus of the application is not on the recognition
of magazine covers or other full pages, but on the varying articles and other
items within the page layout in the magazines. Therefore, the photos the users
submit are not limited to whole pages, but can be of small images or details in
the articles, or of some advertisements. The active database consists of a certain
number of latest issues only, but is highly dynamic as new issues are constantly
appearing and are added to the database. Also, the system has to work with
the mainstream of mobile phones currently in use, not just with the high-quality
cameras included in the high end phones. This can result e.g. in highly blurred
and out-of-focus input images with very few local features due to the difficulty
of the mobile phone cameras to autofocus on macro distances. Therefore, we use
in this work the direct pair-wise matching of local features as our starting point
and aim for real-time matching with high accuracy in this setup.

3 Mobile Image Matching from Dynamic Databases

Our mobile visual searching system [4] is divided into two parts: the mobile
client and the server backend. The user takes photos of interest using the client
software, which then sends the image to the server for recognition. From the user
point of view the system architecture is a quite ordinary web service accessible
with any kind of relatively modern mobile phone equipped with a camera and
an internet connection. In some applications, the local descriptors are extracted
directly on the phone and sent to the server for matching [19], which is only mean-
ingful when the size of the descriptors are significantly smaller than the original
images. However, the size of standard descriptors (e.g. SIFT [10] or SURF [1])
with normal parameter settings is often about three times the size of the original
images, unless some algorithm can be applied to select the useful descriptors,
which means even more computational burden on the phone. Therefore, in our
current application, we resize the query images on the client to 640×480 pixels
(about 25–50 kB in size) and send the resized images to the server. The scale
of the query image is an important parameter for both matching accuracy and
speed, and even a query image smaller than this is often sufficient for recognition.
In this work, we extract and use SURF descriptors for the matching.

3.1 Sub-linear Indexing

A practical method for image recognition and matching must support sub-linear
indexing, i.e. it has to match the query image to the database images with
complexity that does not grow linearly with the size of the database. With
methods that explicitly compare the query to each item in the database, the
response time will at some point be unacceptable. This is crucial especially for
methods that describe the images with non-global descriptions, such as using
sets of local features for each image. Standard methods for sub-linear indexing
include hashing [8] and tree-based approaches [11].
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The classical kd-tree algorithm [7] splits the data from the median in the
dimension which has the largest variance of data among the dimensions, but fails
to provide any speed-up with high-dimensional spaces. Therefore, a common
approach is to use some approximate algorithm, such as Best-Bin-First [10],
multiple randomized kd-trees [16], or hierarchical k-means [12].

Recently, Silpa-Anan and Hartley proposed an approximate version of kd-
tree which uses multiple randomized kd-trees [16]. A randomized kd-tree selects
the dimension to split the data randomly from the first M dimensions with the
greatest variance in the data, and in their method Nt such trees are constructed.
When searching, a single priority queue is maintained for the Nt trees so that
the search can be ordered by distance to each bin boundary. The degree of
approximation is determined by examining a fixed number of leaf nodes, at
which point the search is terminated and the best candidates returned. In the
following, we refer to the multiple randomized kd-trees as a randomized kd-forest.

Neither the kd-tree nor the randomized kd-tree can be modified after con-
struction, i.e. new branches or nodes cannot be added or deleted from the tree
without rebuilding. The time to build the tree is also relatively long when the
dataset is large. If new data is continuously added and old data is removed from
the database, it is infeasible to constantly keep rebuilding the tree. Therefore,
in order to handle the constant changes in a dynamic database, we use multiple
forests of randomized kd-trees. When a new batch of descriptors is added to
the database, these descriptors form a separate randomized kd-forest. Similarly,
when a certain batch of data is removed, we can just remove the corresponding
forest. This multiple forests approach facilitates also parallel processing, which
can further speed up the searching, increase accuracy, and enable query-time
restrictions to the database (cf. Section 3.3).

In our current project, the image database consists of a set of recently pub-
lished issues of a certain magazine or magazines from a publisher. When a new
magazine issue is published, it is added to the database with each page as a
separate image, a new randomized kd-forest is built for the magazine issue, and
the forest is added to the database index. Similarly, the outdated magazine is-
sues are removed from the database by removing the corresponding randomized
kd-forests from the index.

3.2 Descriptor Pruning

A common method for limiting the number of descriptors extracted from im-
ages is to reduce the resolution of the images. This can also be combined with
restricting the number of image-wise descriptors based on some magnitude crite-
rion. E.g. the SURF feature adopts a fast multi-scale Hessian keypoint detector
for the extraction of the keypoints, and the number of descriptors can be re-
stricted using a threshold for the Hessian.

In the setup of this paper, the magazine pages we are considering are quite
different from common images, as there are large portions of text on many pages,
which is common cause of wrong matches, and we cannot reduce the resolution of
the images too much as the system has to be able to recognize also small details
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Fig. 1. The percentage of survived nearest neighbors in the clusters

from the pages. As a result, with default parameter settings and a sufficient
resolution, each magazine page can generate over 10 000 descriptors.

Since each page generates a large number of descriptors, many of them inef-
fective, it is advantageous to study if and how much we can reduce the number
of descriptors without compromising the search accuracy. Two straightforward
approaches for accomplishing this are to increase the Hessian threshold and to
randomly sample the keypoints. A third approach proposed in this paper is to
classify the keypoints based on their estimated probability of matching. For this,
we use a clustering-based classification method.

As the training data set for the clustering, we selected one magazine outside
of the testing database, extracted SURF descriptors from each magazine page,
and build a randomized kd-forest for all the descriptors. The full set of descrip-
tors, 650 000 in total, was then clustered using k-means with 1000 clusters. We
collected a total of 100 images taken with a mobile phone as query images, used
the recognition engine to find the matching magazine pages, and recorded all the
query descriptors that were matched correctly. We then assigned each matching
descriptor from the data set to its cluster, recorded the number of matches for
each cluster, and sorted the clusters according to their total sums of matches.
The relationship between the clusters in sorted order and the percentage of
matched descriptors is depicted in Fig. 1.

From Fig. 1, we can observe that the last 20% of the clusters contain more than
half of the matched keypoints in the data set, which suggests that it could be
feasible to remove a large portion of the clusters and associated descriptors with
marginal effect to the matching performance. We can utilize these sorted clusters
to prune descriptors from other data sets as well, by removing the descriptors
associated to clusters below a certain cluster threshold.

3.3 Matching with Multiple Indices

The recognition of query images received from the mobile clients is implemented
using a two-stage algorithm described in this section. Assume we are matching
a query image q to Nf randomized kd-forests. The first stage begins after dq

descriptors have been extracted from q. The Nn nearest neighbors of each query
descriptor are returned from each randomized kd-forest. We thus obtain a total of
NfNndq descriptors, each associated with a certain database item. We calculate
for each item the total number of its descriptors that belong to this set. Finally,
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the Nc best-scoring magazine pages are selected as candidates for the second
stage.

On the second stage, for the Nc candidates, we do a full pair-wise matching
of the dq query descriptors as in [10] to find the overall best matching pages.
At this stage, we only accept nearest neighbors whose distance is less than τ of
the distance of the second nearest neighbor. The approximate nearest neighbor
algorithm typically results in a substantial number of wrong pair-wise corre-
spondences. In the studied application domain, especially the body text on the
magazines produces incorrect matches. Therefore, to exclude the wrong matches
from further analysis, we estimate a homography between the point correspon-
dences for the Nc candidates using RANSAC [6] and remove the outliers.

4 Experiments

In this section, we describe our experiments with two databases: a collection
of nine issues from three different magazines and the publicly available ZuBuD
Zurich Buildings database [15]. The latter is used to validate and compare our
method to other published results, as the Magazines database is not public. We
use the OpenCV implementation of randomized kd-trees from the Fast Library
for Approximate Nearest Neighbors (FLANN) [11], which uses a fixed M = 5
and constructs a set of Nt randomized kd-trees to be searched in parallel. We use
the parameter values Nt = 4, Nn = 1, Nc = 5, and τ = 0.6 in these experiments.

4.1 Magazines Database

In the Magazines data set, a total of Nf = 9 issues are included from three
different magazines, each containing about 80–130 pages. The size of each page
image is 771×1024 pixels, and a total of 6.5 million descriptors are extracted. The
three descriptor pruning approaches are applied before building the randomized
kd-forests as described in Section 3.2.

For testing the recognition accuracy, we took a total of 300 query images from
three issues, each from a different magazine. The images were taken by a Nokia
E71 phone camera and resized to 640×480 pixels. The images were taken of such
content that could be potentially interesting to the readers of the magazines and
mostly contain only a small portion of whole page. Some of the query images are
illustrated in Fig. 2. In the server, the query images are first resized with a scale
of 0.5, that is to 320× 240 pixels, as we have observed in our initial experiments
that size to work well both in accuracy and speed.

Fig. 2. A random sample of the query images in the Magazines data set
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In the extraction of the SURF descriptors, the Hessian threshold is initially
set to the default value of 500 of the OpenCV implementation, and the three
proposed descriptor pruning methods are then applied. As the name implies, the
random method samples the descriptors randomly from each page before form-
ing the kd-forests. In these experiments, the random descriptor sample varies
from 10% to 90% with 10% intervals. In the Hessian pruning method, we sort
the descriptors from each page according to their Hessian values, use page-wise
thresholds between 800 and 8000 descriptors, and remove the surplus descriptors.
With the clustering-based descriptor classification method, we prune the descrip-
tors mapped to 40%–90% of the clusters with the lowest fractions of matching
descriptors as shown in Fig. 1. The results of these experiments are shown in
Fig. 3, from where we can observe that the matching accuracy of the clustering-
based classification method is somewhat higher than the other two methods,
especially when the size of the kd-forests is only a small fraction of the whole
database. In particular, the matching accuracy remains over 0.9 with only 18%
of the whole database remaining. The average matching time is about 500 ms.

The SURF descriptor is well known for multiscale matching due to the gen-
eration of descriptors using multi-scale scanning. However, the size of the query
image determines the number of descriptors and in practice has a notable ef-
fect on the recognition accuracy. In the above experiments, the query image
was scaled to 0.5 of the original size, which seems to work well overall, but
also results in some failed recognitions. Thus, in the following experiments we
use a multi-scale approach, where the matching is initially done with the scale
of 0.5 and if no match was found, again with scales of 0,67, 0.8, and 1.0. The same
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Fig. 4. A comparison for the recognition accuracies of the three descriptor pruning
methods, using multiple scales s ∈ {0.5, 0.67, 0.8, 1.0}

experiments for the random, Hessian and clustering-based methods are per-
formed with the multiple-scale approach, and the matching accuracy is shown
in Fig. 4.

Comparing the two figures, the multiple-scale matching attains slightly better
results than the single scale of 0.5, with the accuracy remaining near 0.95 with
only 18% of the database used. Furthermore, since most of the query images
are matched correctly with the initial scale, only a small portion of the images
are processed with multiple scales, so the multiple-scale approach decreases the
average response time only slightly while increasing the system accuracy.

4.2 ZuBuD Database

We have also experimented with a publicly available image database to compare
our method and our recognition results with results published in previous works.
The ZuBuD database contains color images of 201 buildings in the city of Zurich.
There are a total of 1005 images as each building is represented by five shots,
taken from different viewpoints and in different lighting conditions. In addition,
there are 115 query images included, each having a correct answer among the
201 buildings in the database. The database is relatively easy, as many works
report high average accuracies, and it is small enough so that exhaustive pair-
wise image matching can be used.

Table 1 shows recognition results from two sources, [20,2], which both use
exhaustive matching and report accuracies of over 0.95. With this database, we
used Nf = 10, Hessian pruning with different thresholds, and multiple scales
of the query images. The results are shown in Table 1, which shows that our
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Table 1. Results with the ZuBuD database; from the literature (left) and our results
(right)

Method # of keypoints Accuracy

[2] (SIFT) 600 0.956

[2] (CHoG) 600 0.974

[20] unknown 0.965

Method # of keypoints Accuracy

Hessian 600 0.974

Hessian 400 0.948

Hessian 300 0.921

No homog. 600 1.0

method is able to reach similar performance with sub-linear matching. The av-
erage matching time is about 300 ms. It can be noted that with 600 keypoints,
as in [2], we get only three failed recognitions, and that these failures are due
to a missing homography. If in this case we accept the image that is most often
selected for the second stage as the recognition result, we get accuracy of 1.0.

5 Conclusions

In the project described in this paper, we maintain a dynamic image database
with magazines from a publishing company. As the database is constantly up-
dated by adding new issues and removing old ones, the separate randomized
kd-forest for each magazine fulfills the requirements for the high flexibility, and
facilities the use of multiple threads to speed up the matching. Due to the demand
for high matching accuracy with query images that are often of poor quality, we
use direct matching of descriptors instead of visual words. The magazine pages
usually contains a large number of descriptors due to high resolution and large
amounts of text. In order to reduce the size of the kd-forests while preserv-
ing the matching accuracy, a clustering-based descriptor classification method
is applied to the descriptor database. By keeping the descriptors only from the
selected clusters, the matching accuracy can reach 0.9 with only 15% of the
descriptors. Therefore, the proposed method significantly reduces the memory
consumption while retaining a high matching accuracy.
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Abstract. We introduce a novel local spatio-temporal descriptor in-
tended to model the spatio-temporal behavior of a tracked object of
interest in a general manner. The basic idea of the descriptor is the
accumulation of histograms of an image function value through time.
The histograms are calculated over a regular grid of patches inside the
bounding box of the object and normalized to represent empirical prob-
ability distributions. The number of grid patches is fixed, so the descrip-
tor is invariant to changes in spatial scale. Depending on the temporal
complexity/details at hand, we introduce “first order STA descriptors”
that describe the average distribution of a chosen image function over
time, and “second order STA descriptors” that model the distribution of
each histogram bin over time. We discuss entropy and χ2 as well-suited
similarity and saliency measures for our descriptors. Our experimental
validation ranges from the patch- to the object-level. Our results show
that STA, this simple, yet powerful novel description of local space-time
appearance is well-suited to machine learning and will be useful in video-
analysis, including potential applications of object detection, tracking,
and background modeling.

1 Introduction

Recent development of powerful detectors and descriptors has led to a tremen-
dous boost of the success of computer vision algorithms to recognize, detect,
and localize events in images. Most of these algorithms, for instance keypoint
detection (DoG [11], Kadir and Brady saliency [5], MSER [13]), local scale or
affine covariant description (SIFT [11], affine Harris/Laplace [14], LAF [15]),
and object detection [2] are applied at the image level, i.e. in the 2D spatial
domain. When temporal information (video) is available, we find that the same
algorithms are still applied at a 2D image level, and the temporal aspect is often
just covered by simple tracking of these 2D detections/descriptions over time.

� This research has been funded by the Croatian Science Foundation and IPV Zagreb.
We also acknowledge the support by OeAD and the Croatian Ministry of Science,
Education and Sports for bilateral Austrian-Croatian exchange.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 206–217, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Histogram-Based Description of Local Space-Time Appearance 207

A principled manner to treat the description of local spatio-temporal events in
video sequences is still missing1.

In this paper, we present a histogram-based descriptor for capturing the lo-
cal spatio-temporal behavior of an “object” of interest. Having a description of
spatio-temporal behavior at the object level opens the door for a wide variety
of potential applications. Applications depend on how we view the “object” in
question: is it a neighborhood of an interest point, is it a fixed rigid object with
apparently moving background, such as a traffic sign seen from a moving ob-
server, or is it a highly complex object with moving parts such as a human?
Depending on the “object”, we can elegantly utilize existing building blocks –
for instance, a mean-shift tracker for tracking regions of interest, the Viola-Jones
detector for traffic sign detection [1] or a HOG descriptor for detecting humans
– to track an object of interest over time. In summary, we depart from exist-
ing 2D image-based detection and track salient events over time using existing
tracking algorithms. We show a novel, principled manner to describe the local
spatio-temporal behavior of objects in videos.

The benefit of having a descriptor of local spatio-temporal behavior is many-
fold. At the level of interest points, consider the problem of “Multibody Structure
and Motion” (MSaM [16]) analysis that requires the sparse 3D reconstruction of
stationary background and a factorization of the foreground into independently
moving objects. To avoid the need for many background points to be tracked,
it would be very useful to identify a few, sparsely distributed “good features to
track” [18] in the stationary background. At the level of fixed, rigid objects, an
illustrative example comes from traffic sign detection. A traffic sign viewed from
a moving car is a rigid object with a distant, moving background. But stickers
that look like speed limit signs are sometimes glued to the back of a truck. A
system for traffic sign detection relying solely on appearance could report such
a sticker as a valid traffic sign. By modeling the local spatio-temporal behav-
ior, however, it could be inferred that the detected object is glued to a fixed,
unchanging background, so it must be a false positive. At the level of complex ob-
jects (for instance human actions, pedestrian detection and tracking), available
research strongly favors the use of spatio-temporal information – be it motion
trajectories, spatio-temporal volumes, or temporal HOG.

2 Related Work

The majority of work in spatio-temporal analysis concerns some type of dynamic
behavior, most commonly human actions. Laptev and Perez [9] study automatic
recognition of human actions in scenes taken from real movies. Their framework
for detection and recognition is based on boosted window classifiers which use
histogram-based spatio-temporal features. Two types of histograms are used: (i)

1 There are a few exceptions to this observation, including the elegant extension from
2D spatial scale space theory [10] to scale in space and time [8]. But their contribution
mostly covers the detection of local, salient space-time events at their characteristic
scale, not a principled way to describe such events.
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a HOG with four bins, to model local appearance and (ii) optical flow histograms
with five bins (four orientations and one bin to represent the lack of optical flow),
to model motion. Each feature is defined by the space-time cuboid on which it
is calculated, by the type of the histogram used for calculation and by the mode
of calculating the feature. Depending on the mode of calculation, a histogram is
either calculated on the entire spatio-temporal cuboid, or the cuboid is divided
into smaller parts for which individual histograms are calculated. To enable
detection and recognition of actions using the proposed features, an AdaBoost
classifier is trained, with Fisher Discriminants as weak learners. This classifier is
combined with a purely 2D appearance classifier, which works better than any
of both classifiers individually.

Ke et al. [6] focus on event detection using volumetric (i.e. spatio-temporal)
features. Inspired by the success of the Viola-Jones detector, they generalize the
notion of 2D rectangular features used by Viola and Jones to 3D box features.
Viola and Jones themselves proposed a temporal extension of their detector
intended for pedestrian detection [19], but their extension employed the differ-
ences between just two consecutive frames. The volumetric features of Ke et al.,
however, can span through multiple frames. The authors suggest computing the
features on the optical flow of the video.

Luo et al. [12] present a learning method for human action detection in video
sequences. They introduce a descriptor set named local motion histograms. Mo-
tivated by Laptev [9], they use Fisher Discriminants as weak learners on the
descriptor set and then train a Gentle AdaBoost action classifier. An action is
contained within a spatio-temporal volume. This volume is divided into “basic
blocks” in different configurations, similar to Laptev and Perez [9]. Within each
block the local motion histograms are calculated, using the magnitude and the
orientation of the optical flow. Three types of histograms are defined, differing
in the manner in which they are calculated (either using raw optical flow or
variants of differential flow).

Dollar et al. [3] develop a framework for generic behavior detection and recog-
nition from video sequences. Their idea is to represent a behavior by using spatio-
temporal feature points, which they define as short, local video sequences such
as, for instance, an eye opening or a knee bending. They propose an interest
point detector intended to react to periodic motions and to spatio-temporal cor-
ners. At the interest points found by the detector they extract spatio-temporal
cuboids. Each cuboid is represented by a descriptor in one of the following ways:
(i) by simply flattening the cuboid into a vector, (ii) by histogramming the values
in the cuboid or (iii) by dividing the cuboid into a number of regions, construct-
ing a local histogram for each region and then concatenating all the histograms.
Authors suggest histogramming either normalized pixel values, the brightness
gradient, or windowed optical flow. The proposed descriptors are used in ac-
tion classification by constructing a library of cuboid prototypes. A histogram
of cuboid types is calculated at the level of the entire video, and is used as the
behavior descriptor.
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Kläser et al. [7] introduce a local descriptor for video sequences based on
histograms of oriented 3D spatio-temporal gradients. The descriptor is a gener-
alization of the well-known HOG descriptor to spatio-temporal data. The gra-
dients become three-dimensional as they are calculated within spatio-temporal
volumes using regular polyhedra. The gradient vector is positioned in the cen-
ter of a regular polyhedron, and the side to which the vector points determines
the histogram bin in which the vector will be placed. In their experiments, they
represent video sequences as bags of words using the described spatio-temporal
HOG generalization. To classify the action type, they use histograms of visual
word occurences (similar to Dollar et al.) with a non-linear SVM with a χ2

kernel.
All the approaches outlined above are intended for video analysis once the

entire video sequence is available. In this paper, we propose a descriptor capable
of harnessing spatio-temporal information on a per-frame basis, not assuming
that the entire video is available. Such a descriptor can easily be used in an online
setting. The descriptor is based on accumulating histograms through time. Our
descriptor is not intended exclusively for action recognition – rather, it aims to
model the spatio-temporal behavior of an object in a general manner.

3 Building the Spatio-temporal Appearance Descriptor

To build the spatio-temporal appearance (STA) descriptor, we require a tracked
object of interest. The descriptor is calculated in every frame using the current
frame information and the information from previous frames. Tracking can be
achieved either by detection, or by using a standard tracker such as meanshift or
KLT [17]. The algorithm for descriptor calculation assumes that a bounding box
around the object of interest is available in every frame. In order to compute
the descriptor, the bounding box around the object is divided into a regular
grid of patches. The size of the grid is a parameter of the algorithm. For each
patch, a histogram is calculated and normalized so it represents an empirical
probability distribution. The value being histogrammed is a parameter of the
descriptor. Possible values include hue, gradient, grayscale intensity, normalized
grayscale intensity, optical flow or any other image measurement. By normalizing
the histogram, i.e. representing the histogram as an empirical probability dis-
tribution, we minimize the influence of scale on the descriptor. If the histogram
were absolute-valued, patches of a larger scale would have more weight. In ev-
ery frame, the empirical probability distribution of each patch is updated with
new measurements. The descriptor is constructed by concatenating the empirical
probability distributions of all patches into a feature vector. The advantage of
such an approach is that we obtain a fixed-length spatio-temporal appearance
descriptor of the object in question, regardless of the spatial or temporal scale of
the object. By using a grid of patches, we compensate for the possibly inaccurate
object localization.

We propose two variants of the spatio-temporal appearance descriptor that
differ in the level of detail in which they describe spatio-temporal behavior: (i)



210 K. Brkić et al.

spatio-temporal appearance descriptor of the first order (first-order STA de-
scriptor), and (ii) spatio-temporal appearance descriptor of the second order
(second-order STA descriptor).

3.1 Spatio-temporal Appearance Descriptor of the First Order

In the spatio-temporal appearance descriptor of the first order, each patch of
the bounding box grid is represented with a single histogram, which shows the
distribution of some image measurement (e.g. hue, gradient) through time.

To construct the descriptor, the bounding box around the object is in each
frame divided into a regular grid of r × s patches. The n-bin histogram of the
patch (u, v) is a set of bins paired with their respective relative frequencies:

Hu,v = {(bi, p(bi))} , i = 1 . . . n (1)

This histogram estimates an empirical probability distribution, where p(bi) is the
a posteriori probability of the bin bi. We propose integrating the histograms of an
individual patch over time to obtain the first-order spatio-temporal appearance
histogram (STA histogram) of the patch:

H(t)
u,v =

{(
bi,

t∑
θ=1

αθp
(θ)(bi)

)}
= {(bi, pt(bi))} , i = 1 . . . n (2)

Here, we introduce the notation pt(bi) which denotes the average empirical prob-
ability of the bin bi in time t. The probability of bin bi in time θ is denoted as
p(θ)(bi). Parameters αθ describe the influence of the histogram in frame θ on the
overall histogram. The simplest choice for αθ is

αθ =
1
t

(3)

which can be interpreted as histograms from all previous frames contributing
equally to the final histogram. This is a good choice when we consider all the
detections of the object equally valuable, regardless of when they were obtained.
Whether all detections are considered equally valuable will depend on the nature
of the problem – for instance, in the case of the observer moving towards the
object, the later detections would probably be more valuable, as they would have
a larger scale than the early detections. One possible way of giving more weight
to the newer detections is that the integrated histogram for a given frame is equal
to the average of the histogram in the current frame and the integrated histogram
for all previous frames. In this case, it can be shown that the parameters αθ are:

α1 = α2 = 1
2t−1

αθ = 1
2t−θ+1 2 < θ ≤ t

(4)

assuming that the sequence has more than one frame, i.e. t ≥ 2. The final first-
order STA descriptor for an individual frame is a concatenation of the first-order
STA histograms of all patches in the grid:

δ(t) =
[
H(t)

u,v

]T

, u = 1 . . . r, v = 1 . . . s (5)
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Fig. 1. Constructing the first order STA histograms for a sequence of three frames. Two
patches are highlighted in red: a patch which lies in the background and a patch which
lies on the object. Notice how the STA histograms of the object patch are constant
through time, while the STA histograms of the background patch change.

By expanding H(t)
u,v, we get:

δ(t) =[pt(b1) pt(b2) . . . pt(bn)︸ ︷︷ ︸
u=1,v=1

pt(b1) pt(b2) . . . pt(bn)︸ ︷︷ ︸
u=1,v=2

. . . pt(b1) pt(b2) . . . pt(bn)︸ ︷︷ ︸
u=r,v=s

]T

(6)
An illustration of constructing a first order STA descriptor is shown in Fig. 1.

3.2 Spatio-temporal Histogram Descriptor of the Second Order

The first-order STA descriptor describes the distributions of some image value
over a regular grid of patches through time. For simplicity, consider the behavior
of the descriptor for a single patch. In the first frame, we get the distribution
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of some image value for that patch. In the second frame, we get another dis-
tribution, and we update the first distribution with the new measurements so
we get the integrated distribution. Therefore, in any frame our first-order de-
scriptor will show the average distribution of some image value measured on the
patch over time. The value of every bin of the first-order STA histogram is the
average of the values of that bin in all elapsed frames (see Fig. 1). However,
when considering only the average value of the bin one cannot determine how
much this bin had varied through time. That information is not available in the
first-order STA histogram. Therefore, we propose to model the distribution of
each histogram bin through time. This is achieved by using histograms of second
order, i.e. histograms of histograms.

The algorithm for creating a second-order STA descriptor builds on the de-
scriptors of the first order. In every frame, the bounding box around the object
is divided into a grid of r × s patches. For each patch, we calculate the patch
histogram, as in (Eq. 1). Now, the bins of the obtained histograms become his-
togrammed themselves. The distribution of the probability p(bi) through time
is modeled by a second-order STA histogram H

′(t)
u,v,i with m bins βj :

H
′(t)
u,v,i = {(βj , p(pt(bi) ∈ βj))} , j = 1 . . .m (7)

This histogram describes how empirical probabilities pt(bi) change through
time. As the maximum value that pt(bi) can take is 1, the bins βj of the second
order STA histogram will have the width of 1/m.

The second-order STA descriptor is obtained by concatenating the second-
order STA histograms into a feature vector:

δ′(t) =
[
H

′(t)
u,v,i

]T

, u = 1 . . . r, v = 1 . . . s (8)

As explained in Subsection 3.1, the first-order STA descriptor describes the
average appearance of an object through time. In contrast, the second-order de-
scriptor encodes both the object appearance and the change of that appearance.

4 Learning from the STA Descriptor

Having built a spatio-temporal appearance descriptor, it is interesting to review
possible saliency measures which can be applied to the descriptor to distinguish
different kinds of space-time behavior. Both variants of the STA descriptor δ(t)

are a concatenation of histogram probabilities. We simplify the notation and
denote every element of the histogram descriptor dk. Hence, the STA descriptor
of the first order is:

δ(t) = [d1 d2 . . . dk]T , k = r × s× n (9)

while the STA descriptor of the second order is:

δ′(t) = [d1 d2 . . . dk]T , k = r × s× n×m (10)
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4.1 Entropy

Because every element of our descriptor originates in a histogram and estimates
a probability, we can calculate the total entropy of the descriptor by:

E(δ(t)) = −
∑

k

dk log dk (11)

which is essentially the sum of entropies of histograms which were concatenated
into the descriptor2. The formula is valid for first and second order descriptors.

Entropy of the STA descriptor conveys important information about the be-
havior of the object through time. Consider the case of the first-order STA
descriptor. If a patch changes a lot through time, its first-order STA histogram
will approach a uniform distribution – because if the patches were changing
completely randomly, every bin of the histogram would be equally likely. On the
other hand, if the patch remains fairly constant through time, we expect a stable
and constant histogram. As entropy is a measure of randomness, a larger entropy
will indicate a distribution closer to uniform. Therefore, using entropy, we can
distinguish between patches that vary and patches that stay the same. There
is, however, one problem: by measuring the entropy of the first-order STA his-
togram, we cannot distinguish between a patch which is constant through time,
but has an appearance resulting in a uniform histogram, and a patch whose ap-
pearance varies a lot through time. Both cases lead to a uniform first-order STA
histogram. To address this, one can measure the total entropy of the second-
order STA descriptor. As the STA histogram of the second order models the
change in the first-order STA histogram, the entropy we obtain will be invariant
to the object appearance.

We envision two uses for the entropy measure. First, at the level of a single
object, knowing the parameters of the descriptor and having a training set of
descriptors δ(t) one can find which patches inside the grid of the object bounding
box are temporally stable – i.e., which patches are likely to describe the object,
and which patches are likely to describe the background. Second, at the level
of multiple objects, one can compare total entropies of two different objects to
find which object is more stable through time. This has proved to be especially
useful in finding good features to track (see the experimental section).

4.2 The χ2 Measure

The spatio-temporal behavior of an object can also be investigated using the χ2

measure. This measure shows whether some empirical probability distribution
matches with the theoretically expected distribution. In a general experiment,
the χ2 measure is calculated as

χ2 =
n∑

i=1

(Oi − Ei)2

Ei
(12)

2 We denote entropy by E, because H is already in use for histograms.
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with Oi being the observed frequency and Ei being the expected frequency. In
the context of our histograms, we can use the χ2 measure to determine how
much a patch changes through time (similarly to the entropy measure). Suppose
that we wish to determine whether a patch changes a lot. If it were changing a
lot, we would expect its first-order STA histogram to be fairly uniform. Hence,
we choose a null hypothesis that the part of the descriptor corresponding to the
histogram of one patch represents a uniform distribution.

Mathematically, assume that the descriptor is given by Eq. 6. For patch u =
1, v = 1, the observed values are pt(bi), i = 1 . . . n, while the expected values
correspond to a uniform distribution and thus are μ(pt(bi)) = 1/n. Then, the χ2

measure of similarity of the patch (u, v) with a uniform distribution is:

χ2
u,v =

n∑
i=1

(pt(bi) − 1/n)2

pt(bi)
(13)

Using this measure, we can determine the similarity of the observed distribution
with a uniform distribution, which might provide an important clue to whether
a patch is changing or not.

4.3 Using the STA Descriptor in Machine Learning

The STA descriptor can be used directly as a feature vector in any machine
learning algorithm. The descriptor length is a constant, regardless of the num-
ber of frames through which the object spans or the scale of the object. At the
same time, the descriptor is richer in information than a single image of an ob-
ject, because it includes the temporal dimension as well. Instead of using the
descriptor directly, one can first transform it by applying one of the mentioned
saliency measures on the elements of the descriptor which correspond to STA
histograms of individual patches. In case of the first-order STA descriptor this
means applying the saliency measures on the histograms of patch appearance,
while in case of the second-order STA this means applying them on the his-
tograms of such histograms. Using the descriptor as a feature vector, we can
train a classifier that discriminates between various classes of objects. Depend-
ing on the desired level of complexity, we will use either the first-order or the
second-order descriptor. The training set is constructed by tracking the objects
through time and calculating the descriptors in frames of interest. Depending
on the application, one might choose to calculate the descriptor of the object in
every frame, and thus obtain more training samples, or to calculate the descrip-
tor in several selected frames, or perhaps just in the last frame. An important
constraint to keep in mind is the dimensionality of the descriptor, which can be
quite large, especially for the second-order descriptor (if we assume a grid of 5×5
patches, and m = n = 5, then the dimensionality of the second order descriptor
will be r × s×m× n = 54 = 625). In order to train a classifier which uses such
a descriptor, one needs a large number of training samples. Possible classifiers
which might be suitable include neural networks, support vector machines, k-NN
classifiers, tree-based classifiers, variants of boosting etc.
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5 Illustrative Experiments

To present the benefits of using the STA descriptor, we chose three illustra-
tive examples: discriminating between true and false positives, discriminating
between static and dynamic background and finding good features to track.

5.1 Discriminating between True and False Positives

Object detectors, when applied to large amounts of data such as videos, in-
evitably produce false positive detections. To deal with that, one usually trains
additional classifiers exploiting different classification cues. Here, we analyze the
benefit of training one such classifier on STA descriptors of the object over train-
ing it on object images without the temporal component. Our positive samples
are triangular traffic signs tracked using a combination of the Viola-Jones detec-
tor and the KLT tracker. For negatives, we choose two variants: (i) artificial false
positives – background patches which are randomly selected and then tracked
and (ii) real false positives obtained as the responses of the Viola-Jones detector
trained on traffic signs [1]. To build the training set, we calculate the first-order
STA descriptor of the object in every frame, and add the descriptor to the set
with the corresponding label (object / non-object). Hence, for every frame in
which the object appears we obtain one training sample. In calculating the de-
scriptor, we use a grid of 5 × 5 patches and 10 histogram bins. The value being
histogrammed is hue. For the classifier, we use a random forest of 10 trees. When
using real false positives, the total number of training samples is 17806, while the
total number of testing samples is 1978. When using artificial false positives, the
total number of training samples is 25370, while the number of testing samples
is 2818. Results summarized in Table 1 show that by using the first-order STA
descriptor we reduce the number of false positives and obtain much better ROC
curves than when working with raw data.

Table 1. Results of discriminating objects (traffic signs) and non-objects (false posi-
tives) using different types of false positives (artificial examples or examples obtained
by the Viola-Jones detector), different operators (hue, gradient) and different feature
vectors (raw pixels / HOG vs first-order STA). The employed classifier is a random
forest. We show true positive (TP), false positive (FP), true negative (TN) and false
negative (FN) rates for the decision threshold of .5.

negatives function feature vector TP FN FP TN AuROC

artificial hue raw pixels 0.994 0.006 0.172 0.828 0.903
artificial hue first-order STA 0.981 0.019 0.018 0.982 0.989

Viola-Jones hue raw pixels 0.843 0.157 0.168 0.832 0.898
Viola-Jones hue first-order STA 0.840 0.160 0.101 0.899 0.947

Viola-Jones gradient raw HoG 0.851 0.149 0.336 0.664 0.831
Viola-Jones gradient first-order STA 0.868 0.132 0.080 0.920 0.960
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5.2 Distinguishing between a Static and a Moving Background

Using the proposed saliency measures and the second-order STA descriptor, we
can train a classifier which distinguishes between objects of the same class that
are glued to a static background and objects which have a moving, distant back-
ground. To illustrate this fact, we created an artificial training set consisting
of tracked triangular signs on a static background and tracked triangular signs
with a moving background. An image of a sign is first selected from a database
of 2000 real traffic sign images and masked to remove its background. Then the
artificial background is randomly selected from a set of available backgrounds.
We simulate the tracking of the sign through time by enlarging the sign and
the background by a plausible random value until the sign reaches some pre-
defined scale limit. For the class of signs with the moving background, we also
simulate background motion. Additionally, we simulate localization noise by ran-
domly offsetting the bounding box around the sign. In every frame, we create
the second-order STA descriptor of the object. The descriptor is calculated over
a grid of 5 × 5 patches and 10 histogram bins are used both for the first-order
and the second-order histogram. The value being histogrammed is gradient ori-
entation. We calculate the entropy of each second-order histogram and form a
feature vector by concatenating all the calculated entropies. The dimensionality
of the feature vector is then equal to the dimensionality of the first-order STA
descriptor: 250. We use around 40000 training samples and around 10000 test-
ing samples. To allow motion to develop, we include only the descriptors of the
frames after frame 3 of the object. The trained random forest classifier achieves
a true positive rate of 0.999 and a false positive rate of 0.125, which shows that
the proposed descriptor successfully models change.

5.3 Finding Stable Features to Track

Finally, we collected first experimental evidence regarding the benefit of our
novel STA descriptors for the problem of finding good features to track in the
background of complex Multibody Structure and Motion (MSaM) scenes. We
analyzed a recent MSaM secquence by Holzer and Pinz [4], where their original
algorithm detects and tracks about 200 point features in the scene. Typically,
150-180 of these points are located in stationary background. We harvested the
most salient background features by ordering all the points by the entropy of
their first-order STA descriptors in every frame and selecting the top 20 points.
These points can be seen as a sparse reconstruction of the stationary background
and can be used in terms of “good features to track” [18] the camera pose.

6 Conclusion and Outlook

The main contribution of this paper certainly is a fundamental one: we have
introduced STA - a novel spatio-temporal appearance descriptor based on his-
tograms. We believe that STA will be widely used and highly successful in many
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applications of video processing due to its simplicity and general applicability.
The descriptor combines spatial and temporal information into a fixed-length
feature vector, independent of spatial or temporal scale of an object. Our pro-
posed saliency measures are helpful in analyzing the space-time behavior of the
object further. We have illustrated how the descriptor can be applied in different
use cases, from discriminating between objects to finding good features to track.

In our future work, we plan to use STA descriptors for the analysis of com-
plex Multibody Structure and Motion (MSaM) scenes, and for the learning and
discrimination of category specific motion patterns.
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17. Šegvić, S., Remazeilles, A., Chaumette, F.: Enhancing the point feature tracker by

adaptive modelling of the feature support. In: Leonardis, A., Bischof, H., Pinz, A.
(eds.) ECCV 2006. LNCS, vol. 3952, pp. 112–124. Springer, Heidelberg (2006)

18. Shi, J., Tomasi, C.: Good features to track. In: Proc. CVPR, pp. 593–600 (1994)
19. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion

and appearance. Int. J. Computer Vision 63, 153–161 (2005)



Content Based Detection of Popular Images in

Large Image Databases

Martin Solli and Reiner Lenz

Media and Information Technology (MIT),
Department of Science and Technology (ITN), Linköping University,
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Abstract. We investigate the use of standard image descriptors and a
supervised learning algorithm for estimating the popularity of images.
The intended application is in large scale image search engines, where
the proposed approach can enhance the user experience by improving
the sorting of images in a retrieval result. Classification methods are
trained and evaluated on real-world user statistics recorded by a major
image search engine. The conclusion is that for many image categories,
the combination of supervised learning algorithms and standard image
descriptors results in useful popularity predictions.

1 Introduction

The motivation for this research is the basic need of every image search engine
to show popular images in the search result, especially within the first images
shown. In a typical real-life image retrieval task, the user queries a search in-
terface with a keyword, for instance the name of an object. To satisfy the user
the list of images that is returned should contain images of the desired object or
scene. But what else makes an image popular? Here we investigate if ordinary
image descriptors, together with supervised learning algorithms, can be used for
estimating the popularity of images. The intended application is in large scale
image search engines, where the proposed approach can improve the sorting of
images in a retrieval result, and thereby enhancing the user experience. Either
we can boost popular images, or do the opposite with non-popular images. We
emphasize that in the current study we want to explore how far we can reach by
using statistical measurements of image content only. The use of other relevance
feedback tools, such as image click statistics, is not included in this paper. In a
real-life application, however, the method can function as a complement to al-
ready implemented feedback methods. In the proposed approach we don’t need
to consider why an image is popular. Knowing that the image is popular is suf-
ficient. We will train our system using two sub-sets of images, the most popular
images, and remaining ones, in this paper referred to as non-popular images.
Sub-sets are created based on recorded user behaviors in the Picsearch image
search engine. Moreover, since the intended application is as a complement to
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Fig. 1. Examples of popular and non-popular images from different keyword categories

other methods, we don’t need to label every possible image. We will only label
images that have a high probability, meaning that they are strong candidates
for the popular or non-popular class.

Content based image retrieval has been an active research field for many years
now. See for instance [12][3][9] for recent developments within image indexing
and relevance feedback. The topic of estimating image popularity from statistical
measurements of image content has not been addressed in the literature before.
Instead we mention two papers by Datta et al. [1][2]. They use images from
a photo sharing web page, peer-rated in two qualities, aesthetics and original-
ity. Numerous visual or aesthetical image features, like Exposure, Depth-of-field,
etc., are extracted. The relationship between features and observer ratings are
explored through Support Vector Machines and classification trees, with the goal
to build a model that can predict the quality of an image. A few other papers
related to photo quality or aesthetics are Ke et al. [5] and Liu et al. [6][7]. We
also mention Cohen-Or et al. [8] presenting a method that enhances the har-
mony among colors of a given image. There are however important differences
between the references mentioned above, and the work presented here. First,
since the standard approach for displaying image retrieval results is to display
image thumbnails, we will only work with small images (maximum size 128 pix-
els). Earlier work typically use images of much larger size. Secondly, for many
methods predicting photo quality, numerous specialized image descriptors are
developed. Here we prefer to start our investigations using common image de-
scriptors, with the advantage that they are already computed in many image
retrieval systems.



220 M. Solli and R. Lenz

2 The Image Database

Our database is collected from the image search engine1 belonging to Picsearch
AB (publ). The database contains thumbnail images, with a maximum size of
128 pixels (height or width), together with meta-data, such as keywords/labels
and user statistics. Original images were crawled from public web pages using 20
different keywords, given in Table 1. 10 of them are related to ordinary objects,
and 10 are based on emotional properties. Image thumbnails were shown to
users visiting the Picsearch search engine, and statistics of how many times each
image has been viewed and clicked were recorded. The ratio ”number of clicks
/ number of views” is used as an estimate of popularity, but only for images
that have been viewed at least 50 times. For each image category we start by
splitting the images into two sub-groups, the 1000 most popular, and remaining
ones. We sample 100 images from the remaining ones, and save them as non-
popular images. As popular images we save the 100 most popular images. In
other words, each category will be described by 200 images, 100 popular, and
100 non-popular. To illustrate the database, the 10 most popular, and 10 non-
popular images, for examples of categories, are plotted in Fig. 1. Each image
category in our database typically contains several thousand images, so it may
sound strange that only 100+100 images are used from each category. The reason
is that the popularity score declines quite rapidly for many image categories,
making it risky to include more than 100 images in the popular class.

Table 1. The keywords used in the experiments. 1-10 are representing objects (or
scenes), and 11-21 are related to emotions.

1: animal 5: garden 9: food 13: formal 17: cold

2: beach 6: cat 10: lion 14: intense 18: warm

3: car 7: dog 11: calm 15: soft 19: pure

4: flower 8: doll 12: colorful 16: vivid 20: quiet

3 Image Descriptors

There is a huge number of image descriptors that can be applied in the following
experiments. However since a comprehensive comparison of image descriptors is
beyond the scope of this study, we will limit ourselves to two local and two global
image descriptors. As local descriptors we use bag-of-features (or bag-of-words)
models, known as state-of-the-art solutions in object and scene classification.
These are compared to global histogram descriptors. The descriptors are:

RGB-histogram: 512 (8×8×8) bins RGB-histogram, with equally sized bins.

1 http://www.picsearch.com/
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Bags-of-emotions: A color-based emotion-related image descriptor proposed
by Solli and Lenz [15]. The descriptor is based on an emotion metric derived in
psychophysical experiments, and the assumption that color emotions in images
are mainly affected by homogenous regions, and transitions between regions.
Emotion scores are derived for found regions, and transitions between regions,
and values are saved in a bag-of-emotions, which is a 112 bins histogram. The
result is a single histogram, and not a collection of histograms as in ordinary
bag-of-features models.

SIFT: Scale Invariant Feature Transform, a standard tool in image process-
ing and computer vision, proposed by Lowe [13]. We use a SIFT implementation
by Andrea Vedaldi2, both for interest point detection, and descriptor extraction.
The result is a 128 bins histogram describing each interest point.

OpponentSIFT: The recommended descriptor in the evaluation of color de-
scriptors carried out by van de Sande et al. [14]. In OpponentSIFT, all three
channels in the opponent color space are described by the SIFT descriptor. One
of the channels contains the intensity information, whereas the others contain
color information invariant to changes in light intensity. The descriptor is in-
cluded in a software package by van de Sande3.

In the following we will refer to the above descriptors as ”RGB”, ”ebags”, ”SIFT”
and ”OSIFT”. The average number of found interest points per thumbnail (for
SIFT/OSIFT) is 125, which is believed to be sufficient for the intended applica-
tion. For SIFT and OSIFT, we adopt the common procedure for bag-of-features
models and perform clustering in the descriptor space (also known as codebook
generation), followed by vector quantization to obtain the distribution over clus-
ter centers (the distribution over codewords). For clustering we use k-means, with
500 cluster centers, and 10 iterations, each with a new set of initial centroids.
Then we search for the iteration that returns the minimum within-cluster sums
of point-to-centroid distances. Clustering is carried out with 10 000 descriptors
(1000 descriptors randomly selected from each of the keywords 1-5 and 11-15).
State-of-the-art solutions in image classification are often using codebooks of
even greater size. But since our experiments focus on thumbnail images, where
the number of found interest points is relatively low, we find it appropriate to
limit the size to 500 cluster centers. Preliminary experiments with an increased
codebook size did not result in increased performance. Similar conclusions about
the size of the codebook can for instance be found in van Gemert et al. [4]. The
ebags histogram has 112 dimensions (bins), whereas SIFT and OSIFT have 500
(after vector quantization), and RGB has 512 bins. For an easier and fair compar-
ison, we use Principal Component Analysis to reduce the number of dimensions
of the RGB, SIFT and OSIFT histograms, leaving the 112 dimensions with the
highest variance.

2 http://www.vlfeat.org/∼vedaldi/
3 http://www.colordescriptors.com/
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Table 2. The overall classification accuracy for different descriptors, different sets of
images (objects and/or emotions), and two different values on the threshold t

t Images RGB ebags SIFT OSIFT mean

0 all 0.57 0.58 0.55 0.56 0.57

0 objects 0.60 0.61 0.58 0.61 0.60

0 emotions 0.55 0.56 0.53 0.54 0.55

0.25 all 0.52 0.70 0.69 0.71 0.66

0.25 objects 0.68 0.77 0.72 0.74 0.73

0.25 emotions 0.43 0.58 0.50 0.65 0.54

mean 0.56 0.63 0.60 0.64
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(a) Image categories 1-5 (objects)
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(b) Image categories 6-10 (objects)

Fig. 2. The mean classification accuracy over descriptors RGB, ebags, and OSIFT, for
different object categories and varying values of t
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(a) Image categories 11-15 (emotions)
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Fig. 3. The mean classification accuracy over descriptors RGB, ebags, and OSIFT, for
different emotion categories and varying values of t
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4 Classification

With database images separated into popular and non-popular images, the goal
is to be able to predict what class an unknown image belongs to. Our classifi-
cation experiments are based on a stratified 10-fold cross-validation procedure.
The original image set of 200 images belonging to each category is partitioned
into 10 subsets, each containing the same number of popular and non-popular
images (10 + 10). The cross-validation process is repeated K times, where K−1
subsets are used for training the classifier, and the remaining subset is used for
validating the model. After K training runs, each image in the category has re-
ceived a classification score, and obtained scores are used for deriving the overall
classification accuracy. An advantage with this kind of cross-validation is that
all images are used for both training and validation, which is useful when the
number of images is limited. A disadvantage, however, is that we obtain 10 clas-
sification models for each category. Depending on the final application, we might
need to combine the result from all models.

A common method for solving a two-class problem is to utilize a supervised
learning algorithm, for instance a Support Vector Machine. Here we use SVM-
light by Thorsten Joachims [10]. For simplicity, and to ensure reproducibility, all
experiments are carried out with default settings. Obtained classification scores
are translated to probabilities using the method proposed by Lin et al. [11]. For
the intended application, it is not crucial that every single image is labeled with
popular or non-popular. As an alternative, we only label images that have a
probability estimate close to 1 or 0, meaning that they are strong candidates
for the popular and non-popular class respectively. For image i, with probability
estimate pi, we define a probability threshold t. Image i will only be classified if
pi lies outside the interval {0.5 − t ≤ pi ≤ 0.5 + t}.

5 Results

The classification accuracy for different descriptors, different sets of images, and
two different thresholds t, can be seen in Table 2. Here the classification model
was trained and tested on merged image sets, containing images from all emo-
tion categories, or all object categories, or a large set containing both emotions
and objects. The classification accuracy is given by the proportion of correctly
labeled images (e.g. 0.8 means that 80% of the images were labeled correctly).
Obtained scores indicate that it is harder to predict popularity in emotion cat-
egories than in object categories. Since the SIFT descriptor usually performs
poorer than OSIFT, we will exclude the SIFT descriptor from the remaining
experiments. The overall performance for all descriptors is rather poor (an ac-
curacy close to 0.5 is equivalent to a random classification). When we, however
apply the learning algorithm on individual categories, we notice large differences
in accuracy between different categories. The result for different object cate-
gories can be seen in Fig. 2. The plot shows the relationship between the mean
classification accuracy over descriptors RGB, ebags and OSIFT, and different
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Table 3. The classification accuracy for the best performing image categories, and
three different descriptors. (t=0.3)

Image category RGB ebags OSIFT

beach 0.82 0.82 0.77

flower 0.77 0.76 0.69

garden 0.80 0.73 0.72

doll 0.78 0.70 0.77

food 0.70 0.72 0.67

lion 0.80 0.81 0.74

colorful 0.68 0.70 0.72

formal 0.76 0.57 0.63

soft 1.00 0.61 0.53

cold 0.72 0.71 0.69

warm 0.72 0.63 0.49

mean 0.78 0.70 0.67

(a) beach (b) flower

(c) garden (d) doll

(e) food (f) lion

Fig. 4. Classification examples for the best performing object categories
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(a) colorful (b) formal

(c) soft (d) cold

(e) warm

Fig. 5. Classification examples for the best performing emotion categories

values on the probability threshold t. Similar plots for the emotion categories
can be seen in Fig. 3. For some categories, a raised probability threshold even-
tually results in an empty class, shown as a terminated curve in the figure. We
see that for object categories beach, flower, garden, doll, food and lion, the accu-
racy is relatively high, and shows consistency for an increased t value. The same
holds for the emotion categories colorful, formal, soft, cold and warm. Remaining
categories, especially the remaining emotion categories, show poor performance.
The classification accuracy for the best performing categories, for different image
descriptors, can be seen in Table 3. We find a value of t = 0.3 appropriate. The
RGB histogram performs best, followed by ebags and OSIFT.

We illustrate the classification result by plotting examples of classified images.
For each image category, and the descriptors RGB, ebags and OSIFT, the 10
images that obtained the highest probability score (most popular) are plotted
together with the 10 images that obtained the lowest score. Plots for the object
categories beach, flower, garden, doll, food and lion are shown in Fig. 4, and
plots for the emotion categories colorful, formal, soft, cold and warm are shown
in Fig. 5. As we might expect, for some of the categories, especially cold and
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Table 4. The mean classification accuracy (over RGB, ebags, OSIFT) for different
categories and different image subsets: only popular, or only non-popular images. The
table also shows the number of images belonging to each subset. (t=0.3)

Accuracy (Nr of images)

Image category popular non-popular

beach 0.79 (57) 0.82 (54)

flower 0.72 (41) 0.77 (39)

garden 0.63 (39) 0.84 (38)

doll 0.62 (33) 0.84 (41)

food 0.67 (35) 0.72 (34)

lion 0.82 (43) 0.74 (44)

colorful 0.70 (25) 0.72 (23)

formal 0.72 (37) 0.43 (22)

soft 0.69 (18) 0.39 (20)

cold 0.67 (33) 0.74 (34)

warm 0.60 (27) 0.64 (23)

warm, the popularity of the images seem to have very little in common with
emotional color properties.

In our final experiments we derive the mean classification accuracy (over
descriptors RGB, ebags and OSIFT) for subsets containing popular and non-
popular images only. The result is shown in Table 4, including the average num-
ber of images that were classified to belong to each subset. Subsets are rather
small due to the threshold t (here t = 0.3). However, since many users only look
at the first few images in a search result, a popular subset of only 20-30 images
is often sufficient. And depending on the application, we can of course use the
probability estimate to rank all images in a category, not only the popular or
non-popular ones. We notice that it is usually easier to classify non-popular im-
ages than popular ones (even if it is completely the opposite in a few categories),
but there is no general relationship between the classification accuracy and the
number of images in each subset.

6 Summary and Conclusions

We have investigated the use of standard image descriptors, both local and
global, for estimating the popularity of thumbnail images. The intended appli-
cation is in large scale image search engines, where the estimate of popularity
can be used (in conjunction with other methods) to improve the ordering of
images in a retrieval result, and thereby enhancing the user experience. The
topic is crucial for any large scale image search engine. In the experiments, a
Support Vector Machine was used in a 10-fold cross-validation procedure to dis-
tinguish between popular and non-popular images. To our surprise, the best
performing descriptor is a global descriptor, the traditional RGB histogram,
followed by Bags-of-emotions, and OpponentSIFT. The classification accuracy,
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however, varies significantly between different image categories. In the current
experiments, the popularity estimate was proven to be useful in 11 out of 20
image categories. By using earlier recorded user statistics for individual image
categories, one can easily decide which categories the proposed approach can be
applied to. The overall conclusion is that for many image categories, the combi-
nation of supervised learning algorithms and standard image descriptors results
in useful popularity predictions. An advantage of using standard descriptors is
that these are often already included in many image databases. The next step
would be to explore how to combine the result with other types of features, for
instance real-time user feedback based on image click statistics.
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Abstract. We present an articulated tracking system working with data
from a single narrow baseline stereo camera. The use of stereo data allows
for some depth disambiguation, a common issue in articulated tracking,
which in turn yields likelihoods that are practically unimodal. While cur-
rent state-of-the-art trackers utilize particle filters, our unimodal likeli-
hood model allows us to use an unscented Kalman filter. This robust
and efficient filter allows us to improve the quality of the tracker while
using substantially fewer likelihood evaluations. The system is compared
to one based on a particle filter with superior results. Tracking quality
is measured by comparing with ground truth data from a marker-based
motion capture system.

1 Introduction

Articulated human motion tracking is the process of estimating the human body
configuration over time from a series of sensor inputs [1]. Motion tracking has a
wide variety of uses ranging from computer gaming and film making to medical
applications. Currently, the most accurate methods are based on physical mark-
ers attached to the human body that can be tracked in three dimensions using
multiple calibrated cameras. These methods have serious drawbacks since they
are cumbersome to set up and too intrusive to be used easily outside labora-
tory settings, e.g. in private homes. Therefore, an accurate markerless tracking
method based solely on input from a camera is needed for a vast array of non-
laboratory applications.

To alleviate this need, much research has gone into markerless articulated
tracking. The most common solution is to use a nonlinear filter with a likeli-
hood model based on monocular images. Due to the lack of depth information
from such data, these likelihood models are inherently multimodal, which has
forced researchers to perform the inference using very general techniques such
as particle filters [2,3,4,5,6]. However, recent boosts in computational power has
made consumer stereo cameras possible, see e.g. the Bumblebee1 or the Microsoft

1 http://www.ptgrey.com/products/bumblebee2/
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Kinect2 camera. Using such cameras allows us to construct approximately uni-
modal likelihood models. This, in turn, allows us to perform the inference using
the more constrained Unscented Kalman Filter (UKF) [7,8]. These constraints
allow for a more robust estimation using fewer computational resources com-
pared to a particle filter. Both these features are sorely needed in practical
applications.

The objective of articulated tracking is to estimate joint angles of a skeleton
model in each frame of an image sequence. The most common approach is to
infer these joint angle from monocular images using a particle filter, see e.g.
[2,3,4,5,6].

Due to the flexibility of the human body, the skeleton model needs to exhibit
many degrees of freedom. Robust estimation of joint angles then requires many
samples in the particle filter, rendering the approach computationally very de-
manding. A commonly used approach to deal with this problem is to reduce
the degrees of freedom in the model by confining the set of legal joint angles
to some (often nonlinear) subspace of the angle space. It seems that most re-
searchers taking this route focus on simple low-dimensional motions, such as
walking [9,10,11,12], golf swings [11,12], tennis playing [13] etc. This approach
can be both robust and computationally efficient, but suffers from the main
drawback that the resulting trackers only work with very specific motions.

The need for particle filters stems from the fact that the used likelihood mod-
els often are multimodal, making the posterior distribution of the joint angles
multimodal as well. The multimodality of the likelihood comes from the use of
monocular images that makes depth ambiguities an inherent part of the prob-
lem. Examples of such likelihoods include a combination of edge strength and
horizontal flow [14], silhouettes extracted using background subtraction [5] and
texture models for each limb [2]. One way of making the largest mode of the
likelihood easier to locate is to use multiple calibrated cameras, as was done by
Deutscher et al. [3]. The need for several calibrated cameras, however, makes the
approach hard to use outside the laboratory. One compromise is to use a single
pre-calibrated stereo camera as suggested by Hauberg et al. [6]. This is also the
approach we will be taking as it will allow us to infer the joint angles using an
unscented Kalman filter.

Unscented Kalman filters have seen little use in articulated tracking as the
likelihood models have usually been multimodal which does not fit with the
Gaussian assumptions of this filter. One notable exception is the work of Ziegler
et al. [15] whose approach shares many similarities with ours. Using four stereo
cameras placed at a 90◦ angle from each other, they are able to track a human
upper body reliably using the UKF. This is also to be expected as data from the
four stereo cameras should be sufficient to avoid any observational ambiguities.
Another example of articulated tracking with the UKF is found in [16], where a
hand is tracked. Here, the likelihood is based on edges in a monocular image, so
there is little reason to believe that the likelihood actually is unimodal. Further-

2 http://www.xbox.com/kinect

http://www.xbox.com/kinect
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more, it seems that they only conduct experiments on image sequences of hands
where the articulation of the fingers remains unchanged for the entire sequence.

In this work we make the following contributions.

– We show that unimodality of the human pose distribution can be assumed
when working with data from a single, narrow-baseline stereo camera.

– We apply the unscented Kalman filter for articulated tracking and achieve
superior results in terms of accuracy and realism of body movements. Fur-
thermore, UKF gives us the benefit of requiring significantly fewer likelihood
evaluations resulting in a lower computational complexity.

This paper is organized as follows. In the next section we describe the general
nonlinear filtering framework and two possible implementations: the UKF and
the particle filter. This is then specialized to articulated tracking in Sec. 3.
Results are presented in Sec. 4 and the paper is concluded in Sec. 5.

2 Nonlinear Filtering

The articulated tracking of human motion can be formulated as a nonlinear
estimation problem modelled by the two difference equations

xt = f(xt−1,vt−1) (1)
yt = h(xt,nt) (2)

where xt ∈ Rnx denotes the state of the system at time t and yt ∈ Rny the
observation. With our motion tracking, the system state corresponds to the
pose of a human body while the observation is a stereo image of the human.
The function f models the transition between system states over time while
h relates the hidden state space to the observation space. Both f and h are
deterministic. vt and nt are random variables representing process noise and
measurement noise respectively.

2.1 The Unscented Kalman Filter

Below follows a very brief introduction to the UKF, we refer to [7,8] for a thor-
ough presentation.

The UKF provides a sequential estimation of the posterior density p(xt|y1:t)
where y1:t = {y1,y2, . . . ,yt}. This is achieved by updating the posterior den-
sity recursively. In each time step, UKF selects a set of 2nx + 1 sample points
X i , i = 0, 1, . . . , 2nx that completely captures the mean and covariance of the
state distribution p(x). These sample points (called sigma points) are then up-
dated according to the state prediction function f and propagated through the
observational model h into observation space. In observation space, their devi-
ation from the observation is measured by the likelihood model p(y|X i). From
the likelihood of all sigma points, the Kalman gain K is updated. K is then
used to update the state estimate x as well as the state distribution p(x).
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2.2 The Particle Filter

The particle filter works by generating a set of n weighted random sample points
X i , i = 1, 2, . . . , n from the prior distribution p(xt|xt−1). Like with the sigma
points of UKF, each of these sample points are projected into observation space
where their likelihood p(y|X i) is quantified and weights assigned accordingly.
The new pose estimate xt becomes the mean of p(xt|y1:t). A more comprehensive
description of the particle filter is presented in [17].

3 Filtering for Articulated Tracking

3.1 The State Model

The articulated human body model is built from a kinematic skeleton consisting
of rigid bones connected by joints with up to three degrees of freedom depending
on the joint type (e.g. an elbow joint has one degree of freedom and a shoulder
joint has three). This approach is common within articulated tracking [1,3]. The
set of joint angles of the kinematic skeleton constitutes our state model vector
x. In this work we limit our tracker to consider only a human body from the
hip and up as depicted in Fig. 1. Furthermore, we assume that the human is
standing still and only moving the upper body parts. Notice however, that it is
trivial to extend the model to include full body motion.

Fig. 1. The kinematic skeleton of the upper human body that we wish to track

As joints of the human skeleton cannot move freely due to physical constraints,
we enforce similar angular constraints on our model. More specifically, we limit
each angle to some interval [l, u] where l and u denote the lower and upper bound.
These box constraints are applied to both the sigma points and the samples in
the particle filter to ensure that the prediction does not consider illegal joint
angles. However, we do not handle self-intersections between body parts.

We initialize the first state x0 manually so that it matches the actual state
as close as possible. We also provide a probability density estimate p(x0) of the
initial state. The state is propagated in time by adding zero mean Gaussian noise
to each joint angle independently, i.e.

p(xt|xt−1) = N (xt|xt−1,Σ) (3)
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where Σ is a diagonal matrix. In our experience, it is not worthwhile to perform
prediction of the state transition between frames as the changes are too small.
Therefore, we perform no actual state transition between frames by letting func-
tion f from Eq. 1 be the identity function. The above model has, among others,
been applied by Sidenbladh et al. [10], Balan et al. [18] and Bandouch et al. [19].

3.2 The Observation Model

The stereo camera provides us with a set of three-dimensional points in each
frame. We perform a simple but efficient segmentation of the input image by
removing points that are further away than a certain background threshold. If
the remaining points contain any outliers (points far away from the body), we
translate these points to bring them within a given Euclidean distance of their
nearest limb. This final set of points constitutes the input observation vector y.
An example of an observation along with a human pose estimate is shown in
Fig. 2.

(a) (b)

Fig. 2. (a) A segmented stereo image of a human body. (b) A human skeleton estimate
projected on the image data.

We use the observational model presented in [6]: For each time step t we gen-
erate a set of sample points X of which each sample X i is to be compared with
the observation in order to compute the likelihood p(y|X i). For this, we use the
nonlinear mapping h (Eq. 2) constructed as follows. Given a state vector X i and
an input observation y, we want to represent the state X i in observation space.
The state is composed of all joint angles in a kinematic skeleton. To each bone
in this skeleton we assign a cylinder with a radius corresponding to the thickness
of the limb; these will serve as our skin model. We then project all points from
y onto the nearest cylinder of the stick figure. As we are working with cylinders,
these projections can be performed trivially. By projecting the points of y onto
skeleton X i we obtain a new observation vector Yi that is comparable to y since
they both have the same dimensionality and the points in the vectors correspond
to each other. Thus, the likehood model can be expressed as
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p(y|X i) = N (y|Yi, λ
2I) , (4)

where λ2 is a variance parameter.

3.3 Computational complexity

The computational complexity of the tracker depends on the filtering method
used. For the particle filter, the computational complexity is O(n(ny + log(n)))
with n being the number of particles sampled and ny the dimensionality of the
observation space. For the UKF, the computational complexity is O(n2

xn
2
y) due

to a singular value decomposition of a Rny×nx matrix. In our experience, the
performance of UKF is very competitive with that of the particle filter since
n >> nx.

4 Results and Evaluation

To measure the performance of the particle filter vs. the UKF we apply both
filters on two image sequences of 300 frames each. Examples of the results are
shown in Fig. 3. The videos are available from http://humim.org/scia2011.
We see that the UKF provides smoother and visually more accurate results
compared to the particle filter. Only when the particle filter sampling is dense
(1500 particles), the quality is somewhat close visually to that of the UKF. In
the first image sequence, both filters are able to track the motion reasonably.
The second sequence is harder to track as body parts move close to each other
and self-occlusions occur. The particle filter fails on several occasions during
sequence 2. UKF proves more robust than the particle filter as it misestimates
the human pose on only one occasion where an arm passes by the head closely. We
believe that most of these problems are caused by our simple skin model and our
observational model that for each point in the observation makes a projection
onto the nearest cylindrical limb. This is very likely to cause problems when
limbs are positioned close to each other.

Overall, the unimodal assumption seems to hold since the observational model
is strong enough to favorize the single, correct pose by a large margin. It is possi-
ble, however, to imagine special cases in which unimodality cannot be assumed,
e.g. if an entire arm is hidden behind a person’s back. In this case, when up-
dating the Kalman gain K, the variance of the kinematic joints related to the
arm will automatically be adjusted to reflect this uncertainty. Thus, when the
variance goes up for certain joints, the tracker should try to estimate these joints
differently, e.g. by relying on a predictive model.

4.1 Accuracy

To obtain a more precise basis for comparison, the tracked person is wearing
physical markers that are tracked in 3D using a high precision motion capture
system. These will serve as our ground truth data. In total, there are eight mark-
ers placed on the human; three markers on each arm and two on the shoulders.
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Particle filter, n = 250 Particle filter, n = 1500 UKF

Fig. 3. The human skeleton estimated by the different filters is superimposed over
selected frames from two videoes. The images in the upper two rows comes from video
1 while the two bottom rows are taken from video 2. The full videoes are available
at http://humim.org/scia2011. Both particle filters have visible difficulties tracking
the motion in the sequence as they seem less prone against self-occlusions and closely
positioned body parts (which happens more often in sequence 2 than in sequence 1).
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(a) (b)

Fig. 4. (a) Average error of the tracking filters. The particle filter is represented by the
solid lines and the UKF by the dashed lines. The vertical error bars represent two times
the standard deviation caused by the Monte Carlo sampling. The deviation is measured
over several trials of the particle filter. (b) Smoothness of the filters measured by the
average deviation of absolute joint positions between time steps. Low values indicate
smooth trajectories. The solid lines represent the particle filter and the dashed lines
represent the UKF.

To quantify the tracking quality we measure how well the markers fit with the
estimated poses. For each marker, we make a projection onto the nearest limb;
just as we did in the observational model. The Euclidean distance between the
projection o and the marker point m can then be used as error measure. To
determine the error from all eight markers of a state x over all time steps T , we
calculate the average error:

E(x1:T ) =
1

8T

T∑
t=1

8∑
j=1

||mt,j − ot,j|| . (5)

The resulting average error for the different filters are shown in Fig. 4a. It is
clear that the UKF performs just as good or better than particle filters with a
dense sampling. Furthermore, it is noteworthy that the monte carlo sampling
of the particle filter results in significant deviations in accuracy when repeating
the tracking. In this regard, the deterministic algorithm of the UKF offers more
reliable results.

4.2 Motion Smoothness

When looking at the image sequences, it becomes clear that the UKF tracking
produces smoother and more realistic motions whereas the skeleton generated by
the particle filter tends to shake between time steps. To quantify this smoothness,
we introduce the following measure. For each time step t we take the absolute
position at,j of each joint j in the human skeleton and measure the movement
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from the previous time step. The smoothness measure is then calculated as the
average deviation of all joints J over T time steps.

S(x1:T ) =
1
TJ

T∑
t=1

J∑
j=1

||at,j − at−1,j|| (6)

The results of our filters are shown in Figure 4b. UKF is clearly superior with
a low deviation between time steps. One could image that another flavor of the
particle filter such as the annealed particle filter will give more smooth results.
However, filters that rely on Monte Carlo methods will always exhibit some
jittering. This reveals another advantage of using the deterministic UKF.

5 Conclusion

In this paper we have shown that not only is the unscented Kalman filter ap-
plicable for articulated tracking, it also provides superior results in terms of ac-
curacy and smoothness compared to the particle filter using substantially fewer
likelihood evaluations. For this to be possible it is, however, essential that the
likelihood model is mostly unimodal. For general monocular situations this is
not the case, but it seems to be a reasonable assumption when working with
stereo data. This observation makes practical articulated tracking systems much
more plausible.

In this paper we used a simple likelihood model based on a simple skin model.
For particle filters, this simplicity is essential as we need to be able to evaluate
the likelihood fast due to the vast number of particles required. When using
UKF, more involved likelihood models are possible as we only need to evaluate
it a few times due to the low number of sigma points. Thus, in the future, we
will consider more realistic skin models in the observational model. Other future
work includes an automatic initialization of the tracker as well as an extension of
the implementation to work with full body models as this will extend the use of
the tracking system. Finally, we need a more elaborate evaluation of the tracker
on more sequences of varied complexity.
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Abstract. Traffic sign recognition is important for the development of
driver assistance systems and fully autonomous vehicles. Even though
GPS navigator systems works well for most of the time, there will al-
ways be situations when they fail. In these cases, robust vision based
systems are required. Traffic signs are designed to have distinct colored
fields separated by sharp boundaries. We propose to use locally seg-
mented contours combined with an implicit star-shaped object model
as prototypes for the different sign classes. The contours are described
by Fourier descriptors. Matching of a query image to the sign pro-
totype database is done by exhaustive search. This is done efficiently
by using the correlation based matching scheme for Fourier descriptors
and a fast cascaded matching scheme for enforcing the spatial require-
ments. We demonstrated on a publicly available database state of the art
performance.

Keywords: Traffic sign recognition, Fourier descriptors, spatial models,
traffic sign dataset.

1 Introduction

Traffic sign recognition is important for the development of driver assistance
systems and fully autonomous vehicles. Even though GPS navigator systems
work well for most of the time, there will always be situations when no GPS-
signal is available or when the map is invalid, temporary sign installations near
road works just to mention one example. In these cases, robust vision based
systems are required, preferably making use of monochromatic images.

1.1 Related Work

Many different approaches to traffic sign recognition have been proposed and
there are commercial vision based systems available, for example in Volkswagen
Phaeton [4], Saab 9-5 [3] and in the BMW 5 and 7 series [1].

One common approach is to threshold in a carefully chosen color space, e.g.
HSV [5], HSI [14] or CBH [18], in order to obtain a (set of) binary image(s). This
is then followed by detection and classification using the authors favorite choice

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 238–249, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of classifier, e.g. support vector machines [12] or Neural networks [5,14]. Another
common approach is to consider an edge map using e.g. Fourier descriptors [10],
Hough transform [6] or distance transforms [7]. For an excellent overview of
existing approaches see [14].

One thing that most published methods have in common is that they report
excellent results on their own data sets. Typically they achieve more than 95%
recognition rate with very few false positives. However, there are unfortunately
no publicly available database for comparing different road sign recognition sys-
tems. Meaning that most authors report results on their own dataset and do
not provide any means of comparing against their method. One of the main
contributions of this paper is to provide a labeled database of more than 20 000
frames captured while driving 350 km on highways and in city environment.

It was recently announced that a dataset of patches containing German traffic
signs will be released [2]. The patches contains a traffic sign and an additional
border of 10 % around the actual sign. The dataset used in this paper contains
the entire image, meaning that both detection and recognition have to be solved.
Not only recognition.

1.2 Main Contribution

The main contributions of this paper are:

1. Extending the work [10] with an implicit star-shaped object model, leading
to improved performance.

2. Removing the need for a region-of-interests detector used in [10], leading to
a fully automatic system.

3. Releasing a database with more than 20 000 frames, 20% being hand labeled,
containing a total of 3488 traffic signs.

2 Methods

The proposed method consists of three steps: extraction of Fourier descriptors
(FDs), matching of FDs, and matching of previously acquired prototypes with
spatial models.

2.1 Fourier Descriptors

The Fourier descriptor (FD) of a shape/contour is created by applying the
Fourier transform to a periodic representation of the contour, which results in a
shape descriptor in the frequency domain.

Adopting the notation in [8], the closed contour c with coordinates x and y is
parameterized as a complex valued periodic function

c(l) = c(l + L) = x(l) + iy(l), (1)
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where L is the contour length.1 The Fourier coefficients C are obtained by taking
the 1D Fourier transform of c,

C(n) =
1
L

∫ L

l=0

c(l) exp(− i2πnl
L

) dl n = 0, ..., N, (2)

where N ≤ L is the descriptor length.
Each coefficient has a clear physical meaning making FDs easy to inter-

pret. Using only a few of the low frequency coefficients is equivalent to using
a smoothed version of the contour, see fig. 1 where a pedestrian outline is recon-
structed starting with two low frequency coefficients and gradually using more
and more high frequency components.

2 3 4 5 6 8 10

12 14 16 32 64 128 256

Fig. 1. Reconstruction of a detail from a Swedish pedestrian crossing sign using in-
creasing number (shown above respective contour) of Fourier coefficients

The main reason for the popularity of FDs is their behavior under common
geometric transformations, such as translation, scaling and rotation. The DC
component C(0) is the only one that is affected by translations c0 of the curve
c(l) �→ c(l)+c0. By disregarding this coefficient, the remaining N−1 coefficients
are invariant under translation. Scaling of the contour, i.e. c(l) �→ ac(l), affects
the magnitude of the coefficients and the FD can thus be made scale invariant
by normalizing with the energy (after C(0) has been removed). Without loss of
generality, we assume that ‖C‖2 = 1 (‖ · ‖2 denotes the quadratic norm) and
C(0) = 0 in what follows.

Rotating the contour c with φ radians counter clockwise corresponds to mul-
tiplication of (1) with exp(iφ), which adds a constant offset to the phase of the
Fourier coefficients

c(l) �→ exp(iφ)c(l) ⇒ C(n) �→ exp(iφ)C(n) . (3)

1 We treat contours as continuous functions here, where the contour samples can be
thought as of impulses with appropriate weights.
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Furthermore, if the index l of the contour is shifted by Δl, a linear offset is added
to the Fourier phase, i.e. the spectrum is modulated

c(l) �→ c(l −Δl) ⇒ C(n) �→ C(n) exp(− i2πnΔl
L

) . (4)

Note that in what follows, the term translation refers to spatial translation of
the entire contour while shift refers to a shift of the start point for sampling the
contour.

2.2 Matching of FDs

Rotation and index-shift result in modulations of the FD and it has been sug-
gested to neglect the phase in order to be invariant to these transformations.
However, most of the information is contained in the phase and simply neglect-
ing it means to throw away potentially useful information [15].

According to (3) and (4), the phase of each FD component is modified by a
rotation of the corresponding trigonometric basis function, either by a constant
offset or by a linear offset. Considering the magnitudes only can be seen as finding
the optimal rotation of all different components of the FD independently. Given
a FD of length N − 1, matching the magnitudes only corresponds to finding
N − 1 different rotations instead of estimating two degrees of freedom (constant
and slope). Due to the removal of N − 3 degrees of freedom, two contours can
be very different even though the magnitude in each FD component is the same.

Recently, a new efficient correlation based matching method for FDs was
proposed by Larsson et al. [10]. This approach is partly similar to established
methods such as [9,17], but differs in some respects: Complex FDs are directly
correlated to find the relative rotation between two FDs without numerically
solving equation systems. Let T denote a transformation corresponding to rota-
tion and index-shift. Let c1 and c2 denote two normalized contours, then

min
T

‖c1 − T c2‖2 = 2 − 2 max
l

|r12(l)| (5)

where | · | denotes the complex modulus and the cross correlation r12 is computed
between the Fourier descriptors C1 and C2 according to [16], p. 244–245,

r12(k) = (c1 � c2)(k)
.=
∫ L

0

c̄1(l)c2(k + l) dl = F−1{C̄1 · C2}(k) . (6)

In particular, if c′1 and c′2 denote two contours so that c′2 = T ′c′1, where T ′

denotes a transformation covering scaling, translation, rotation and index-shift,
then

min
T

‖c′1 − T c′2‖2 = 2 − 2 max
l

|r12(l)| = 0 (7)

where the correlation r12 is computed after the FDs have been normalized with
respect to scale and translation. The parameters of the transformation T that
minimize (7) are given as
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Δl = arg max
l

|r12(l)| φ = arg r12(Δl) (8)

s =
(
∑∞

n=1 |C′
1(n)|2) 1

2

(
∑∞

n=1 |C′
2(n)|2) 1

2
t = C′

1(0) − C′
2(0) . (9)

It is also shown in [10] that considering the maximum of the real part instead
of the absolute value in (7), corresponds to not compensating for the rotation,
i.e. rotation variant matching is given according to

min
T /R

‖c′1 − c′2(Δl)‖2 = 2 − 2 max
l

Re{r12(l)} . (10)

2.3 Sign Prototypes

A traffic sign prototype is created from a synthetic image of the traffic sign,
see first row in fig. 5. The synthetic image is low-pass filtered before local con-
tours are extracted using Maximally Stable Extremal Regions (MSER)[13]. Each
extracted contour ck is described by its Fourier descriptor Ck.

In order to describe the spatial relationships between the local features an
extra component vk is added, creating a pair (Ck,vk) where the first component
captures the local geometry (contour) and the second component the global
geometry of the sign. This second component vk is simply the vector from the
center of the local feature to the center of the object, see fig. 2. This can be seen
as a simple implicit star-shaped object model [11] where each local feature is
connected to the center of the object. The combination of FDs and corresponding
spatial vectors gives the final traffic sign prototype as

P = {(Ck,vk)} k = 1..K (11)

where K is the total number of contours for the sign prototype.
These spatial components effectively remove the need for a region-of-interests

detector as a first step. Even though each Ck might give matches not corre-
sponding to the actual sign, it is unlikely that multiple matches vote for the
same position if they not belong to the actual traffic sign.

2.4 Matching Sign Prototypes

J contours qj are extracted from a query image and represented by their FDs
Qj , see top row in fig. 3. For each sign prototype, all prototype contours Ck are
compared to all extracted contours Qj . Since traffic signs have a well defined
orientation, we use the rotation variant matching score:

ejk = 2 − 2 max
l

Re{F−1{Q̄j · Ck}(l)} . (12)

This results in the binary matrix M = (m)jk of matched contours with

mjk =

{
1 ejk ≤ θk

0 ejk > θk

(13)
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Fig. 2. Extracted local features (green contours) and corresponding vectors (red ar-
rows) pointing towards the center of the traffic sign

PEDESTRIAN_CROSSING

PASS_RIGHT_SIDE

PEDESTRIAN_CROSSING
PEDESTRIAN_CROSSING

Fig. 3. Upper left: Query image. Upper right: Extracted contours. Lower left: Con-
tours that matched any of the contours in the pedestrian crossing prototype are shown
in a non-yellow color. Lower right: The final result after matching against all sign
prototypes.

where θk is a manually selected threshold for each prototype contour k, see fig. 3
lower left for an example of matched contours.

The next step is to verify which combinations of matched contours Qj fit
to the spatial configuration of the sign prototype. This is done by a cascaded
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matching scheme. For each individual match mjk, we obtain by means of (9) the
parameters sk and tk and compute an estimate v′

jk = sjkvk + tjk.
The vector v′

j1 defines a hypothesized prototype center. We then go through
all prototype contours k = 2 . . .K and verify for all mik �= 0, i �= j, that sik/sj1

is sufficiently close to 1 and that v′
ik is sufficiently close to the hypothesized

prototype center. These contours are consistent with respect to scale and loca-
tion and if only if sufficiently many contours are consistent, a detection of the
corresponding sign is flagged, see fig. 3 lower right.

2.5 Dataset

A dataset has been created by recording sequences from over 350 km of Swedish
highways and city roads. A 1.3 mega-pixel color camera, a Point-Grey Chameleon,
was placed inside a car on the dashboard looking out of the front window. The
camera was pointing slightly to the right, in order to cover as many relevant signs
as possible. The lens had a focal length of 6.5mm, resulting in approximately 41
degrees field of view. Typical speed signs on motorways are about 90 cm wide,
which corresponds to a size of about 50 pixel if they are to be detected at a distance
of about 30 m.

A human operator started the recording whenever a traffic sign was visible
and stopped the recording when no more signs were visible. In total, in over
20 000 frames have been recorded of which every fifth frame has then been

1277107918Image000026.jpg

VISIBLE, PEDESTRIAN_CROSSING

VISIBLE, PASS_RIGHT_SIDE
OCCLUDED, PRIORITY_ROAD

VISIBLE, 50_SIGN

BLURRED, PEDESTRIAN_CROSSING

1277107930Image000001.jpg
Misc. signs

VISIBLE, PEDESTRIAN_CROSSING

SIDE_ROAD, PEDESTRIAN_CROSSING
VISIBLE, PEDESTRIAN_CROSSING

VISIBLE, PASS_RIGHT_SIDE

BLURRED, PRIORITY_ROAD

1277389506Image000046.jpg
Misc. signs

BLURRED, 120_SIGN

1277389846Image000071.jpg
Misc. signs

VISIBLE, 120_SIGN

Fig. 4. Examples from the database
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manually labeled. The label for each sign contains sign type (pedestrian cross-
ing, designated lane right, no standing or parking, priority road, give way, 50
kph, or 30 kph), visibility status (occluded, blurred, or visible) and road sta-
tus (whether the signs is on the road being traveled or on a side road), see
fig 4 for examples. The entire database including ground truth is available at
http://www.cvl.isy.liu.se/research/traffic-signs-dataset.

3 Experiments

Synthetic images of Swedish road signs, see bottom row of fig. 5, were used
for creating models according to the methodology described in Sec. 2.3. The
sign models were then matched against real images from two datasets. The
first dataset, denoted Manually ROIs dataset, is the one used in [10] which
is using patches from bounding boxes of 200x200 pixels, see fig. 5. The second
evaluation was done on the the newly collected dataset, denoted Summer dataset,
see Sec. 2.5. All processing is done frame wise not using temporal clues.

Note that the evaluation was done using grey scale images and thus do not
use the distinct colors occurring in the signs as a descriptor. The images used
correspond to the red channel of a normal color camera. This is easily achieved
by placing a red-pass filter in front of an ordinary monochromatic camera. Us-
ing normal grey-scale conversion would be problematic since some of the signs
are isoluminant, e.g. sign (c) in fig. 5. The reason for not using colors is that
color cameras have lower frame rates given a fixed bandwidth and resolution.
High frame rates are crucial for cameras to be used within the automotive in-
dustry. Higher frame rates mean for example higher accuracy when estimating
the velocity of approaching cars.

3.1 Results Manually ROIs Dataset

The first dataset is used in order to compare to the reported results in [10]
and contains 316 regions-of-interests (ROIs) of 200x200 pixels, see fig. 5. The

(a) (b) (c) (d) (e) (f) (g)

(A) (B) (C) (D) (E) (F) (G)

Fig. 5. First row: Synthetic signs used to create models. Second row: Corresponding
real world examples.

http://www.cvl.isy.liu.se/research/traffic-signs-dataset
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Table 1. Performance on the Manually ROIs dataset for the method presented in [10]
and the proposed algorithm

Proposed method [10]

Sign type Recall% #FP Recall% #FP

Pedestrian crossing 98.0 0 98.0 1
Designated lane right 95.8 0 95.8 2
No standing or parking 100.0 0 96.6 1
50 kph 91.7 2 91.7 2
30 kph 95.8 1 95.8 1
Priority road 95.7 0 95.7 1
Give way 94.7 0 94.7 2

ROIs were manually extracted around 216 signs and 100 non-signs. The result
is summarized in table 1. This dataset is fairly simple and the proposed method
increases the already good performance of [10]. Using constraints on the spatial
arrangement of contours removes some of the false positives (FPs) while keeping
the same recall level or increasing it by allowing for less strict thresholds on the
individual contours. The classes Priority road and Give way are unaffected since
they consist of a single contour each, thus not benefiting from the added spatial
constraints.

3.2 Results Summer Dataset

The second evaluation is done on the new Summer dataset, see Sec. 2.5 for details
regarding the dataset. The evaluation was limited to include signs for the road
being traveled on with a bounding box of at least 50x50 pixels, corresponding to
a sign more than 30 m from the camera. Table 2 contains the results for the same
sign classes that was used in the Manually ROIs dataset, with one exception.
The class 30kph was removed since only 11 instances of the sign were visible,
not giving sufficient statistics. The entire image was giving as query without any
ROIs.

All classes except from Give Way show excellent precision. The recall rates
for the Pedestrian crossing and Designated lane right classes are above 90%
while the 50 kph, Priority road and No standing or parking classes show recall
over 70%. The Giveway class shows less impressive performace, recall rate under

Table 2. Results on the Summer dataset for the proposed method

Sign type Total Signs Precision% Recall%

Pedestrian crossing 158 96.03 91.77
Designated lane right 107 100.00 95.33
No standing or parking 44 97.14 77.27
50 kph 67 100.0 76.12
Priority road 198 98.66 74.24
Give way 67 59.26 47.76
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pedestrian crossing

Give way

50 kph

Priority road

pedestrian crossing

no standing or parking

Priority road
pedestrian crossing

designated lane right

Give way

50 kph
pedestrian crossingdesignated lane right

Priority road

Give way

Fig. 6. The first three rows show examples of correctly detected signs. Bottom left
shows an example of a missed detection and bottom right shows an example of a false
positive, classified as a Give way sign.
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50% combined with poor precision. The Giveway class contains only one single
contour and thus can not benefit from the spatial model. Increasing the recall
rate for the Giveway class is possible but would also lead to a dramatic increase
in the number of FPs. Using [10] on this dataset resluts in a high recall rate but
in the order of 2000 FPs for all classes giving precision rates of less than 10%,
showing the dependency of ROIs. The three top rows in fig. 6 show examples of
correctly detected and recognized traffic signs.

The FPs produced are always due to the contour extraction going awry, see
bottom left in fig. 6 for an example of a missed sign. The contour extraction
algorithm were not able to extract sufficient contours from this image resulting
in a missed Designated lane right sign. The bottom right image in fig. 6 shows a
false positive of the Give way class. It is shown in order to illustrate the problems
induced when using a single contour.

4 Conclusions

A method for using locally extracted contours in combination with an implicit
star-shaped object model was presented. The presented method works fully au-
tomatically on query images with no need for regions-of-interests. It is shown
that the presented method performs well for traffic signs that contain multiple
distinct contours, such as the Swedish pedestrian crossing sign. For traffic signs
with few or a single contour, such as the Swedish give way sign, the method still
needs improvement.

A major contribution is the release of the first publicly available large traf-
fic sign database not only containing small patches around traffic signs, thus
allowing for evaluation of detection and recognition not only recognition. The
database contains over 20 000 frames with 20% being labeled. The database will
in the future be extended to include different ambient conditions, such as night
and rain, and also to include signs from different countries.
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Abstract. The contribution describes a statistical framework for image
segmentation that is characterized by the following features: It allows to
model scalar as well as multi-channel images (color, texture feature sets,
depth, ...) in a region-based manner, including a Gibbs-Markov random
field model that describes the spatial (and temporal) cohesion tenden-
cies of ’real’ label fields. It employs a principled target function resulting
from a statistical image model and maximum-a-posteriori estimation,
and combines it with a computationally very efficient way (’contour re-
laxation’) for determining a (local) optimum of the target function. We
show in many examples that even these local optima provide very reason-
able and useful partitions of the image area into regions. A very attractive
feature of the proposed method is that a reasonable partition is reached
within some few iterations even when starting from a ’blind’ initial par-
tition (e.g. for ’superpixels’), or when — in sequence segmentation —
the segmentation result of the previous image is used as starting point
for segmenting the current image.

1 Motivation

The term ’image segmentation’ is used in a very large variety of meanings; in
the ideal case it denotes the process of subdividing images into ’meaningful’
regions; however, what the term ’meaningful’ means is hard to pinpoint. For
recent reviews, see e.g. [16,5]. If we use the term ’segmentation’ in the following,
we intend to refer to the computation of a division of a given image into parts
that are homogeneous from a signal perspective, that is: homogeneous w.r.t. a
statistical model of color, gray value, depth or similar ’features’ that can be
associated with a pixel, or pixel cell, on the image grid. We present an approach
that is able to compute such an ’over-segmentation’, particularly for the case
of multichannel data (color, or gray value plus other features). As Veksler et al
[17] state, the idea of operating on atomic, homogeneously colored or textured
regions is old (see for instance [11] as only one example), whereas the now popular

� This work was funded by the German Federal Ministry of Education and Research
(BMBF) in the project Bernstein Fokus Neurotechnologie – 01GQ0841, and in parts
supported by the ELLIIT programme funded by the Swedish Government.
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term ’superpixels’ has been coined recently [12] and is a very active research area
[7,9,1,17]. We consider it to be the main characteristics of our approach that it is
statistically principled and offers a really quick transition from a ’bad’ partition
(that could be ’guessed’ or determined by some heuristic) into a very good over-
segmentation.

2 The Region-Based Generative Image Model for
Multi-channel Data

A region-based image model assumes that the structure of each image is dom-
inated by regions. The complete image area is subdivided into a partition Q
consisting of regions Ri, i = 1, . . . , NR. Each site on the image grid is associ-
ated with a measurable entity, for instance a gray value, or an RGB color value.
It might also be that additional entities which are not directly measurable are
associated with the individual grid sites, for instance a motion vector, a dis-
parity vector, a depth value, or combinations of such entities. Finally, a region
could also be filled by values which are determined from intermediate computa-
tions, e.g. the output of a set of texture operators. In the interest of a compact
presentation, we denote all these variants as the (region-specific) texture signal.

Besides that each measurement may be single channel or vectorial (= multi-
channel), measurements can be organized in cells (see Fig. 2), for instance for
implementing multi-resolution segmentation algorithms. We do not discuss cells
here due to limited space; the mathematical generalization is straightforward.

It is important that a probability measure can be associated with each real-
ization of the texture signal, that is: it is considered as a realization of a ran-
dom process. These region-specific random processes share the same functional
structure all over the image, but each region is associated with an individual
region-specific parameter vector θi (see Fig. 1). So only the numerical values of
these parameters vary from region to region.

In the experiments performed in this paper, we make two assumptions which
drastically simplify the appearing expressions and reduce the computational ef-
fort, being fully aware that both these assumptions are not true for real im-
age material. However, we show that even these drastic approximations do not
prevent the resulting procedures from yielding very useful results. It has been
confirmed in a very large number of experiments that even a very shallow, in-
complete description of region texture signals is most of the time sufficient for
differentiating such textures. These approximations are:

A1: The feature values at different pixel sites obey the same distribution inside
of a region, but they are statistically independent of each other.

A2: The feature values in the different feature channels at each pixel site are
statistically independent of each other.
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Fig. 1. Region-based image model, asso-
ciating one parameter vector θi to each
region Ri. The values at each pixel site
can be vector-valued (=multi-channel).

single-pixel
single-channel
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single-pixel
multi-channel
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multi-pixel
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multi-pixel
multi-channel
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Fig. 2. Measurements are organized in cells
which may include a single measurement or
several ones; each measurement may be sin-
gle channel or vectorial (= multi-channel)

3 Segmentation as a Maximum-a-Posteriori (MAP)
Estimation Problem

We proceed by formulating the segmentation task as an estimation problem, as
this deduces an ’energy function’ to be optimized from first principles. Corre-
sponding approaches can already be found in early publications on image seg-
mentation such as [15,14,4,6,11].

Let z be the vector of measurements (a 2D array of vectors) on the image
array and let Q = {R1, R2, . . . Rn} be a partition of the image array. We assume
that the measurements inside of each region have been generated by a region-
specific stochastic process. Each of these processes is characterized by a set of
parameters. Thus, to each region Ri of the partition, a stationary stochastic
process with an individual model parameter vector θi = θ(Ri) is assigned.

The ensemble {θ} = {θ1,θ2, . . .θn} of model parameter vectors θi represents,
together with the partition Q, a complete, piecewise stationary1 model for the
image process. We denote the combination of a partition Q and the parameter
ensemble {θ} as the ’array state’ S. For each completely specified array state S,
we can provide a conditional probability density for the total ensemble of ran-
dom variables z, conditioned on Q and {θ}. With prior distributions for the
partition Q and the parameter set {θ}, we can turn this into a joint distribution
p(z,Q, {θ}) = p(z,S).

Based on this formulation, the segmentation task now consists in finding a
likely (hidden) array state S as the cause for an observed image vector z.

In maximum-a-posteriori (MAP) segmentation, we consider the specific com-
bination of a partition Q and the corresponding model parameters {θ1,θ2, . . .θn}
as the sought estimate of the array state S if it maximizes the posterior distri-
bution

p(S | z) = p(Q , {θ1,θ2, . . .θn} | z). (1)

1 We can deviate from stationarity by assuming a smooth deterministic parametric
function to be overlaid by a stationary process, but this is not done here.
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This posterior is, as always, linked by Bayes’ theorem with the prior and the
conditional observation density:

p(S | z) = p(z | S) · p(S)/p(z). (2)

Since the observed image vector z is a fixed realization of a random process,
p(z) is merely a normalization constant. Thus the MAP segmentation is given
by the particular array state S which maximizes

p(z | S) · p(S) = p(z, S) = p(z | Q,θ) · p(θ | Q) · p(Q) → max . (3)

This way we try to find the ’most probable cause’ for the generation of the given
image. Now we have to specify the conditional densities for z, given the individual
region model processes, and also the prior distribution p(Q) for the partitions Q.
Gibbs random fields (GRF) relate p(Q) to the clique potentials Vc(ci) defined on
pairs of neighboring sites on the label array. These ’potentials’ depend on whether
the label values in such a clique are identical or not. The sought distribution is
built from the clique potentials as

p(Q) =
1
Z

· exp(−
∑
ci

Vc(ci)). (4)

Fortunately, the ’partition function’ Z in Eq. 4 is not needed in our algorithm.
The remaining entity to be specified are the region-specific model parameter

vectors θ. They are considered as unknown ’deterministic parameters’, that is:
there is no non-uniform prior on their value range. With that assumption, we
can write

p(S) = p(θ,Q) = k · p(Q). (5)

The model parameters θ are obtained by a region-specific maximum likelihood
estimation: the partition Q is kept fixed, and the term p(z | S) is maximized
with respect to the parameter θ

p(z,S) = p(z | S) · p(S)

= k · p(z | Q , {θ̂ML
(Q)}) · p(Q).

We assume the texture processes of the individual regions to be ’pairwise statis-
tically independent’; this denotes a situation where the knowledge of the com-
plete texture signal inside region Ri does not provide any information on the
texture signal inside region Rj , j �= i. Under this assumption, the joint probabil-
ity density of observing all the texture signals — in other words: the complete
vector-valued image z — can be factorized in

p(z | Q) =
∏
Ri

∏
k

p(zik | θ̂
ML

i ), (6)

where index i enumerates the regions, and index k runs over the feature channels.
The simple structure of eq. 6 does of course result from the assumed region-to-
region and inter-feature channel independences stated in assumptions A1 and
A2.
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4 The Contour Relaxation

With the target function to be maximized being defined by the preceding section,
we proceed now to present the mere optimization method. We begin with an
initial partition Q0 and improve it by a constrained variation of pixel labels. We
regard only those grid points x0 that are located on the contour of a region —
thus the notion ’contour relaxation’ —, and check whether certain changes of
the point’s region label yields an increase of criterion (3). If so, that particular
label change is executed. However, only the current label q(x0), and the labels of
the eight nearest neighbours of x0 are allowed for x0. Since the labels of all other
pixels are kept fixed in each step, only those 8 cliques that include x0 have to
be taken into account, as only their potentials depend on the label of x0. Thus,
the ’label image term’ p(Q) (Eq. 4) can be written as

p(Q) = k1 · exp(−n′
BB − n′

CC) . (7)

Here, k1 is a constant, and B and C are the costs for inhomogeneous horizon-
tal/vertical, and diagonal cliques, respectively. The exponential term implicitly
varies with the choice of the label for x0: the numbers of inhomogeneous cliques
in the regarded clique subset for different choices of q(x0) are expressed by the
values n′

B and n′
C .

Correspondingly, the conditional likelihood of the image data z given the
partition Q can be expressed as the product of a constant term and a variable
term that depends on q(x0):

p(z | Q) = k2 ·
∏
{Rj}

p
(
z(Rj) | θ(Rj)

)
. (8)

Note that the product on the rhs comprises only those regions Rj that are
neighbors to site x0, or directly include contour pixel x0. It is important that
the ML estimates of the region parameters change depending on the choice of
the label chosen for x0. This all boils down to evaluating the expression

p(z,Q) = k1 · k2 · exp(−n′
BB − n′

CC) ·
∏
{Rj}

p
(
z(Rj) | θ(Rj)

)
, (9)

for all the (few) legal choices of q(x0). Grid point x0 obtains the specific label that
maximizes expression (9). In a practical implementation, the negative logarithm
of equation (9) is minimized, which directly yields an energy function that has
been constructed from ’first principles’.

A simple, though efficient optimization scheme is obtained by scanning the
image several times, with systematically varying the scan direction each time.
Since the presented optimization operation needs only to be executed for those
grid points that are located on the boundary of a region, computational costs
are low. The values of the parameters B and C of the Gibbs model are far from
being critical; in our experiments, B had values between 0.3 and 1.5 (typically
0.7) and C = B/

√
2. The relaxation may be stopped as soon as a scan over the

whole image yields only few label changes. In general, about 2-4 iterations are
required.
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5 Likelihood Expressions for Region-Oriented
Segmentation Approaches

Under different pdf models (Gaussian, Laplacian, unilateral exponential...), the
maximum likelihood estimates of the pdf parameters only depend on some few
simple functions of the observables zj that need to be updated continuously:

– N
def
=

∑
j 1, the number of measurements in the cell.

– S
def
=

∑
j zj , the sum of all measurement values.

– Q
def
=

∑
j z

2
j , the sum of the squares of all measurement values.

– A
def
=

∑
j |zj |, the sum of the absolute values of all measurement values.

For a given region, and assuming that the measurement values are uncorrelated
between channels, only these numbers have to be computed (per feature chan-
nel), and only these numbers are needed for the computation of the likelihood
terms appearing in eq. (8) and (9). Since, under a given pdf assumption, these
numbers fully represent all the necessary information contained in a set of mea-
surement values, these numbers are denoted as ’sufficient statistics’.

5.1 The Data Likelihood Term for a Set of Measurements under
the Gaussian Assumption

The value of the pdf for N statistically independent scalar measurements zj from
the same Gaussian distribution is

pz(z) =
(

1√
2π

)N

·
(

1
σ

)N

· exp

⎛
⎝−1

2

∑
j

(zj −mi)
2

σ2

⎞
⎠ . (10)

Estimating the parameters and finding the likelihood value. For the
parameters m and σ2, we assume their maximum likelihood estimates are deter-
mined from the given data set. We obtain

m̂ = S/N ; σ̂2 =
Q

N
−
(
S

N

)2

. (11)

With these estimates, the exponent in eq. 10 is

1
2σ2

∑
j

(zj − m̂)2 =
N

2
.

Inserting this into eq. 10, we obtain

pz(z) =
(

1√
2π

)N

·
(

N2

NQ− S2

)N/2

· exp
(
−N

2

)
. (12)
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Taking the logarithm of this expression, we obtain

ln pz(z) =
N

2
·
(
− ln (2π) + ln

(
N2

NQ− S2

)
− 1

)
. (13)

Data likelihood terms for other pdf models, e.g. Laplacian can be determined
easily and used in exactly the same way.

Fig. 3. Original images used within the experiments: (left to right) Baboon, Starfish,
Venus, Tsukuba, Tiger and Teddy

6 Experimental Results

In the following we present experimental results obtained for multi-channel con-
tour relaxation applied to single images and to a stream of images. We show
results obtained when the initial segmentation is given by (i) a blind segmenta-
tion or (ii) a sparse segmentation, i.e., in the simplest case provided as several
strokes in the image marking the desired foreground and background. Figure 4
(top left) and Fig. 7 (bottom left) visualize exemplary initial segmentations for
both cases.

For images with a resolution of 640×480 pixels, 4 passes of a C/C++ version
of the contour relaxation on the three color channels takes about 150 milliseconds
on an Intel Xenon 2.8GHz processor. Note that this implementation is only single
threaded and unoptimized.

6.1 Contour Relaxation Applied to Single Images

In this section, we show segmentation results obtained when multi channel con-
tour relaxation is applied to single images. We use several well known images
from the Middlebury web site [8] and the Berkeley segmentation database [10]
(cf. Fig. 3).

Automatic Initialization by a Blind Segmentation. A blind segmentation is gen-
erated by subdividing the input image into non-overlapping regions of n × n
pixels, where n = 32 throughout the experiments. The clique costs are set to
0.3 and 0.3√

2
for inhomogenous horizontal or vertical and diagonal cliques, re-

spectively. Then, contour relaxation is applied to the initial segmentation where
first the sufficient statistics of each region on each of the three image channels
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Fig. 4. Segmentation results for image ’Baboon’ : (left) low clique costs, (right) high
clique costs. Upper row: label images after 0, 4 and 8 runs of contour relaxation. Middle
row: contour images; lower row: region mean images. Best viewed in color.

(Y, U, V)2 are computed. Then the relabeling of pixels along the region contours
is performed as described in Sec. 4. We perform 4 passes of contour relaxation,
where each pass is subdivided into 4 sub-passes, that is, within the relabeling
algorithm, pixels are visited from (i) left-right, up-down, (ii) left-right, down-up,
(iii) right-left, up-down and (iiii) right-left, down-up. The purpose of this scheme,
also known as using coding sets, is to bias the results as little as possible with
respect to the used pixel visiting scheme. For all presented results, at latest after
4 passes of contour relaxation have been performed, the segmentation remained
stable, e.g., no further significant change of the labeling could be observed.

Figures 4 to 6 show the results for the data sets Baboon, Venus, Tsukuba,
Cones and Teddy. Here, we display the label arrays, the contour images and
the region mean images after 0, 4 and 8 sub-passes of contour relaxation have
been performed. The region mean images are generated by filling a region of the
label array with the color mean value of all pixels assigned to that specific label
(cf. Sec. 5).

The result figures show that our approach typically produces an over-segmen-
tation in the sense of a super-pixel representation of the input image. That is,
the image is subdivided into many regions (super-pixels), where all pixels in
one region are similar with respect to their color value. Here, it is of utmost
importance that a single super-pixel does not contain different objects within
the image, such as foreground and background, and that the super-pixels are
aligned with the object boundaries. Depending on the number of labels (i.e., the
number of regions Rn) within the initial blind segmentation, the amount of over-

2 The Y channel encodes the luminance, U and V the chrominance of each pixel. This
color space is in reasonable accordance to the assumption of statistically independent
feature channels, since it decorrelates the (strongly correlated) RGB color values.
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Fig. 5. Segmentation results for image ’Tsukuba’ (left) and image ’Venus’ (right):
Upper row: label images after 0, 4 and 8 runs of contour relaxation. Middle row:
contour images; lower row: region mean images. Best viewed in color.

segmentation can be controlled. However, as long as only low-level information,
such as the pixel color value, is available, in general no segmentation on an
object level can be computed, as typically mid-level information, such as motion
or depth, or high-level object knowledge are decisive.

Throughout Fig. 4 to Fig. 6 it can be seen that the super-pixels are aligned
with the object boundaries, such as the head in the Tsukuba image, the posters
and newspaper in the Venus image, the tail of the tiger within the Tiger im-
age (cf. with the results obtained in [3]) and the cuddly toys within the Teddy
image. Note that also fine-grained details, such as the characters on the news-
paper within Venus, or the Baboons whiskery, are captured as well. For the
Baboon image we also show the influence of different clique costs on the re-
sulting segmentation. In Fig. 4 (right) the costs for inhomogeneous cliques are
doubled. Therefore the segmentation appears to be more block-like, whereas in
the case for lower clique costs (Fig. 4 (left)), the segmentation adapts more to
the fine-grained details. This can also be seen within the contour images for both
cases, where the contour image in the case of higher clique costs has a much less
’ragged’ appearance.

Manual Initialization by a Given Sparse Segmentation. The results presented so
far have been obtained in a completely unsupervised manner, where the initial
segmentation was generated ’automatically’. For a typical task such as fore-
ground/background segmentation, often some kind of user input is available,
where parts of the foreground and parts of the background are explicitly la-
beled. Such user input can be given by several line strokes within the input
image, marking the different textures (or objects) to be segmented out. Figure 7
shows an example for the Starfish image, where the background is marked by a
blue stroke and the foreground object by a red stroke. All other pixels remain
initially unlabeled. We use the same initial segmentation as in [13].
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Fig. 6. Segmentation results for image ’Teddy’ (left) and ’Tiger’ (right): Upper row:
label images after 0, 4 and 8 runs of contour relaxation. Middle row: contour images;
lower row: region mean images. Best viewed in color.

Fig. 7. Segmentation of the ’Starfish’. First column shows the original image and the
user strokes. Second column shows the result of a maximum likelihood classification,
columns 3 to 6 show results after 2, 4, 8 and 12 passes of contour relaxation, where
row 1 is the label image and row 2 the contour image. Best viewed in color.

We obtain a full segmentation as described in Sec. 4 by a maximum likeli-
hood classification of all unlabeled pixels to either foreground or background.
Such maximum likelihood labeling is then subject to several passes of contour
relaxation, to remove false classifications and to smooth the label image. The
second column of Fig. 7 shows the maximum likelihood classification result for
the Starfish image and the corresponding contour image. This yields a label array
where the contours of the foreground object are already well captured. However,
several pixels which lie in the background are classified as foreground and vice
versa. Columns 3 to 6 in Fig. 7 visualize how the segmentation is adapted by
applying several passes of multi channel contour relaxation. We are aware of
the fact that optimum solutions to such two-class labeling problems are avail-
able [13,2]. However, we would like to stress that the contour relaxation gives
results which are virtually indistinguishable from these optimum ones, even for
multi-class problems, at much lower complexity of the procedure and lower com-
putational effort. It can be seen that a small amount of pixels in the upper right
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are still marked as foreground. This is caused by the fact that the statistics of
the three color channels for this specific region and the foreground object are
nearly identical. Resolving this issue requires higher level information.

6.2 Temporal Propagation of the Segmentation

The experiments described so far were applied to single images only. In the
following, we show briefly that our approach can be applied to image sequence
segmentation as well.

In order to let image sequence segmentation be efficient it is crucial to ex-
ploit prior knowledge obtained during the processing of the previous images. At
time t, such prior knowledge is, e.g., the segmentation result obtained at time
t − 1. In our framework, the segmentation result from time t − 1 will therefore
be the initialization of the segmentation to be computed for the image at time t.
This significantly decreases the computational effort. Furthermore the labelings
of the images are to a very large extent coherent over time, i.e., a single object
will almost always maintain its label from image to image. Figure 8 shows the
segmentation results obtained for a cluttered office scene, where a person is mov-
ing in front of the camera. The segmentation was automatically initialized with
a blind segmentation as described earlier. Then, 4 passes of contour relaxation
have been applied and the resulting segmentation was used as the initialization
for the next frame to be processed. Again, the label and the contour images
show the desired feature of super-pixels being well aligned with object bound-
aries. Fine grained object structures such as the table legs, or the lamp are well
preserved. Furthermore, the labeling remains largely consistent over time.

Fig. 8. Segmentation results for cluttered office scene: (1. row) label images, (2. row)
contour images, (3. row) region mean images for frames 185, 188, 191, 194, 197 and
200 where the label images are propagated. Best viewed in color and upscaled.
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7 Conclusions

We have demonstrated the performance of the combination of a region-based
stochastic model with the ’contour relaxation’ optimization which very efficiently
yields a ’superpixel’ segmentation. Even though we are fully aware that no guar-
antees concerning achieving a globally optimum solution can be given, the vari-
ous application examples hopefully conveyed the very ’benign’ performance and
the versatile applicability of the scheme. The generalization of the approach to
texture, or using depth and/or motion is obviously a promising next goal.
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Abstract. Techniques from the theory of partial differential equations
are often used to design filter methods that are locally adapted to the
image structure. These techniques are usually used in the investigation
of gray-value images. The extension to color images is non-trivial, where
the choice of an appropriate color space is crucial. The RGB color space
is often used although it is known that the space of human color per-
ception is best described in terms of non-euclidean geometry, which is
fundamentally different from the structure of the RGB space. Instead of
the standard RGB space, we use a simple color transformation based on
the theory of finite groups. It is shown that this transformation reduces
the color artifacts originating from the diffusion processes on RGB im-
ages. The developed algorithm is evaluated on a set of real-world images,
and it is shown that our approach exhibits fewer color artifacts compared
to state-of-the-art techniques. Also, our approach preserves details in the
image for a larger number of iterations.

Keywords: non-linear diffusion, color image processing, perceptual im-
age quality.

1 Introduction

In this paper we consider the problem of anisotropic diffusion of color images.
By decorrelating the RGB color space we derive an improved color diffusion
scheme which exhibits fewer color artifacts compared to state-of-the-art tech-
niques. Moreover, using different edge-stopping functions for each decorrelated
channel yields a diffusion tensor that does not effect structures in other color
channels.

Diffusion filtering is based on partial differential equations (PDEs). In image
enhancement applications a diffusion scheme is called anisotropic if the filter-
process is adapted according to the image structure. On the other hand, if the
diffusion scheme does not take into account the underlying structure, it is called
isotropic diffusion. Perona and Malik [8] were first to propose a PDE-based
anisotropic diffusion scheme

∂tu = div(g(|∇u|2)∇u) , (1)

with diffusivity function g(|∇u|) = (1 + (|∇u|/K)2)−1 where K is a contrast
parameter and ∇u is the image gradient. In the terminology of Weickert [17], the
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Perona-Malik diffusivity is non-linear scalar diffusion and anisotropic diffusion
denotes methods that use a diffusion tensor

D =
∑

i

g(λi)eieT
i , (2)

where λi are the eigenvalues and ei the eigenvectors of the structure tensor [3]

T =
∫
w

(
∂ux∂ux ∂ux∂uy

∂uy∂ux ∂uy∂uy

)
dxdy . (3)

w is typically a Gaussian weight function. The diffusion equation now takes the
form

∂tu = div(D∇u) . (4)

If the eigenvalues of the structure tensor is λi = λi+1, ∀i the anisotropic diffusion
equation reduces to isotropic (scalar) diffusion. The presented diffusion process
is applicable for scalar (gray-valued) images [1, 10, 12].

1.1 Related Work

Several PDE based approaches to suppress noise in color images [2, 5, 15, 9, 18,
14, 13] have been suggested in the past. Despite the progress in the field of color
PDE filtering, the most frequently occurring drawback of the existing methods
is the generation of color artifacts near edges. This problem will be referred to
as a lack of color persistency. The reason for this type of artifact is that an edge
(or noise) in one channel may not be present in the same location in another
channel.

A relatively straightforward extension from gray image diffusion to color image
diffusion is to use the same diffusion tensor for each of the color channels. This
standard approach is described by Weickert [18] where the diffusion tensor is
computed from the weighted average sum of the structure tensors for each RGB
channel. An alternative approach was taken by Tang et al. [14] who map the
RGB color vector space to two separate components, the direction (chromaticity)
and the magnitude (brightness). Thereafter, they perform the diffusion process
separately on these two channels. An important point made in their work is
filtering the chromaticity channel can introduce color artifacts. Sochen et. al
[13], have perhaps taken the most general approach to deriving the diffusion
process. They view a two-dimensional (2D) image as a surface in 3D space and
a color image as 2D surfaces in a 5D space. According to these mappings they
define a metric and derive what they call the Beltrami flow.

1.2 Main Contribution

In this work we propose a color diffusion method based on a PCA-like tech-
nique to decorrelate the RGB color space, derived by Lenz and Carmona [7].
Furthermore, we compare our diffusion approach with the standard approach
described in [18] on real-world natural images and standard test images. Also,
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the proposed diffusion scheme is compared to the color space derived from decor-
relating the RGB channels using standard principal component analysis and the
Beltrami flow [13]. The experiments show that our approach is in general more
color persistent in comparison with these state-of-the-art techniques.

2 Methods

2.1 Standard Approach to Color Image Diffusion

What we call the standard approach is to sum the structure tensors of the RGB
channels [18]

T =
∑

i

wiTi =
∑

i

wi

∑
j

λijeijeT
ij , (5)

where i is the indices of the color channels and
∑

iwi = 1 is a weight. The
diffusion function used in this work to compute the diffusion tensor is g(λ) =
exp(−λ/K) [4].

2.2 Color Model

The RGB color space channels are correlated [11]. However, the noise that may
exist in an image may not be correlated across channels. This can introduce color
artifacts if the RGB space is not decorrelated prior to applying the diffusion
filtering process. In an attempt to decorrelate the R,G and B channels, Lenz
and Carmona [7] introduced the transformation matrix

P =
1√
3

⎛
⎜⎝

1 1 1√
2

√
2 cos(2π/3)

√
2 cos(4π/3)

0
√

2 sin(2π/3)
√

2 sin(4π/3)

⎞
⎟⎠ . (6)

This transformation is derived from the assumption that permutations of the
three RGB channels are on average equally probable. Using tools from the rep-
resentation theory of the permutation group S(3) it can be shown that the result
is a decorrelation of the original RGB variables into a one-dimensional inten-
sity, I, and a two-dimensional color-opponent component. In cases where the
assumption of equally probable permutations is satisfied it can be shown that
the rows of this matrix are the eigenvectors of the correlation matrix computed
from the RGB vectors and that the color-opponent components belong to a
two-dimensional eigenspace belonging to the same eigenvalue.

2.3 New Approach to Color Image Diffusion

In this work we propose a new approach to color image diffusion, with the aim to
reduce color artifacts. The proposition is to first transform the RGB color space
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onto the irreducible representation (6) and to compute the diffusion tensors D1,
D2 and D3, one for each component in the transformed color space

D =

⎛
⎜⎝
D1 0 0
0 D2 0
0 0 D3

⎞
⎟⎠ . (7)

Di =
∑

j gi(λij)eijeT
ij allows for different diffusivity functions gi(·) to be used

in different channels. However, in order to enable a comparative evaluation of
the two filtering techniques, the diffusion function described in section 2.1 will
be used to compute all diffusion tensors, although with different contrast factors
K.

3 Experiments

3.1 Data Set

To evaluate the two approaches to color diffusion, the algorithms are applied to
real-world RGB color images obtained from a data set of road signs. The test
images have been used with the permission of the authors of [6]. The images were
taken in an urban environment. The camera was mounted in the cabin of a car
behind the windscreen. Appropriate regions were cropped from the full images
(1280× 960 pixels) which are of JPEG format. Hence, color artifacts introduced
by the JPEG-compression are already present in the images. Regions of interest
are edges with different color tone and intensity. Images image00756.jpg and
image00312.jpg from the data set were used to extract regions S1 and S2 of
size 512 × 512 pixels seen in Fig. 3 and Fig. 4. Regions of size 56 × 56 pixels
were zoomed in S1 and S2 seen in the same figures. Standard test images used
are the Mandrill and Lena (512 × 512 pixels) seen in Fig. 1 and Fig. 2. Regions
of interest of size 56 × 56 pixels were extracted from both images, in order to
illustrate color artifacts.

3.2 Tested Methods

Four diffusion filtering methods are compared with respect to color persistency.
The first method is the standard approach where the structure tensor is summed
and weighted equally. The second, proposed approach, is based on decorrelating
the standard RGB color space using (6) prior to computing the structure tensors.
The diffusion processes were implemented using a finite-difference approximation
and yield the iterative update scheme

ut+1 = ut + τ(∇D∇ut +D∇2ut) , (8)

where the index t is current iteration. τ is a step parameter and should not be
selected too large, as the diffusion process will then violate the scale-space prop-
erties stated in [17], for a stable diffusion process as t → ∞. The stopping time
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tMAX was determined such that all algorithms terminated when a negative slope
of their error curve was observed. The negative exponential diffusion function
described in section 2.1 was used for all components in all diffusion schemes.
For the experiments, the contrast parameter K was set to 10−3 in the stan-
dard approach and in the intensity channel I of the proposed approach. For the
two color balance channels in the new approach, K was set to 10−1. The third
method used is decorrelation of the RGB color space using standard principal
component analysis (PCA). Eigenvectors are computed from the average of all
test images to enable a fair comparison between the proposed method and the
PCA decomposition. In this case the contrast parameter was set to 10−3. The
final and fourth method, is the state-of-the-art Beltrami flow, which for images
Baboon, S1 and S2 used a contrast parameter of 10−3 and for the Lena image
we used 10−2. All parameter values were set empirically.

The step length was set as follows, in the Baboon image all implementations
used steplength 10−1 except for the Beltrami flow which used 10−3. For the Lena
image step length was set to 10−1 for all implementations. In images S1 and S2
all algorithms were set to use a step length of 1/5 except the Beltrami flow,
which used a steplength of 10−3.

3.3 Performance Evaluation

Since color artifacts are primarily introduced around edges, these regions are
zoomed in order to visually get an understanding of the color distortion. Quan-
titative measurements are often given by the peak-signal-to-noise ratio (PSNR)
in the literature. However, the structural similarity index (SSIM) has been shown
to be a more accurate measurement when determining image similarities [16].
Parameters of the index were set to the default values as recommended by the
author [16]. The source code to compute the MSSIM is available online (http://
www.ece.uwaterloo.ca/~z70wang/research/ssim/). To apply the SSIM index
to the RGB color space, we have chosen to apply the SSIM measure to each indi-
vidual color component and average the result. This approach was chosen since
there is, to be best of our knowledge, no previously published work on the effect
of applying the SSIM measurement to individual color components in the RGB
color space.

4 Results

The four diffusion filtering approaches were tested and compared as described in
section 3.2. Figures are organized as follows: from left to right and up to down:
original image and zoomed region, noisy image, output after maximum number
of iterations of our approach, sum of tensors, PCA and finally the Beltrami flow.
Each of the algorithms has a corresponding zoomed region to their right of the
corresponding full image. First a perceptual analysis based on the visual impres-
sion of the filtering outputs will be done, thereafter an quantitative analysis is
made based on the SSIM index. Figures are best viewed in color.

http://www.ece.uwaterloo.ca/~z70wang/research/ssim/
http://www.ece.uwaterloo.ca/~z70wang/research/ssim/
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Gaussian noise of zero mean and 0.01 standard-deviation has been applied
to the Mandrill and Lena images seen in Fig. 1 and Fig. 2. A subjective as-
sessment of the diffusion process is that as the number of iterations increase,
high-frequency components in the Mandrill image become more blurred in the
standard approach. Visual inspection reveal that the structure in the Mandrill’s
zoomed region is preserved longer before becoming blurred in our method com-
pared to the standard approach. The result of the PCA approach is competitive
with our proposed color space, but visual inspection of the zoomed regions in
Fig. 1 show that color artifacts have been introduced in the high-frequency re-
gions. The Beltrami flow cannot handle the noise level and does introduce color
artifacts. A similar result is seen in Fig. 2, but after 200 iterations it is recog-
nized that there is no perceptual difference between our proposed approach and
diffusion in the decorrelated PCA color space. However, the standard approach
experience excessive blurring not seen in any other method.

Fig. 1. Mandrill with zero mean and σ = 0.01 Gaussian noise. Results are shown after
100 iterations. See text for details.

Image S1 is shown in Fig. 3, interesting parts of the zoomed region is the gable
of the building. Total number of iterations for this image was set to 200. In the
standard approach and the Beltrami flow the white gable is severely blurred and
color artifacts has been introduced around the frame of the window. Diffusion in
our proposed color space preserves the gable and no color artifact is introduced
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Fig. 2. Lena with zero mean and σ = 0.01 Gaussian noise. Results are shown after 200
iterations. See text for details.

around the frame of the window as seen in the PCA color space. Image S2 is
run for 100 iterations. It is seen in this test image that our method does perform
slightly worse than the PCA on the edge of the road sign, but considering the
trunk of the branch in the zoomed image a color artifact was introduced in
the PCA not seen in our approach. Furthermore, the standard filtering and the
Beltrami flow is considerably worse than the other two diffusion schemes.

A quantitative measurement of the two diffusion approaches was made based
on the SSIM index. Performance of the tested images can be seen in Fig. 5. A
higher MSSIM value (maximum value is 1) indicate that the structure of the
filtered image is more similar to the noise free image. Comparing the proposed
and other methods in Fig. 5, it can be seen that the overall result for all the
images are significantly better for the proposed filtering method.

An observation with regards to the Mandrill error graph is that for iterations
100 the PCA performs better than our proposed method. However, in Fig. 1
it is visible that, our approach produces perceptually more similar results to
the ground truth compared to the PCA approach. Furthermore, considering
the slope of the error curves, it is obvious that the standard approach and the
Beltrami flow will continue to degrade the image quality to a larger extend than
our method.
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Fig. 3. S1 with zero mean and σ = 0.01 Gaussian noise. Results are shown after 200
iterations. See text for details.

Fig. 4. S2 with zero mean and σ = 0.01 Gaussian noise. Results are shown after 100
iterations. See text for details.
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Fig. 5. MSSIM-values for proposed and implemented diffusion filtering methods
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5 Conclusion

In this work a novel color image diffusion method is introduced, where the stan-
dard euclidean RGB color space is transformed to a non-euclidean represen-
tation. The basis of the new color space represents the color vector intensity
and color balance. It has been shown that non-linear diffusion in the proposed
color space introduces fewer color artifacts compared to standard state-of-the-
art diffusion techniques. The findings are supported quantitatively by a higher
structural similarity index.
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Abstract. Seed sorting is a mechanical process in which the goal is to
achieve a high level of purity and quality in the final product. Prediction
and control of such processes are generally considered very difficult. One
possible solution is a systems identification approach in which the seeds
and their movement are directly observed and data about important pro-
cess parameters extracted. Image analysis was used to extract such data
from the internal sorting process in one particular seed sorting device
- the so-called “indented cylinder”. Twenty high speed image sequences
were recorded of the indented cylinder in action, sorting a batch of barley
with both whole and broken kernels. The motion trajectories and angle
of escape for each seed in each frame were estimated. Motion trajectories
and frequency distributions for the angle of escape are shown for differ-
ent velocities and pocket sizes. A possible linear relationship is shown to
exist between velocity and the angle. The temporal stability of certain
parameters in the sorting process were also analysed and is shown to be
quite stable for lower velocities.

Keywords: Seed sorting, indented cylinder, system identification, mo-
tion trajectories, image analysis.

1 Introduction

When seeds are harvested from fields they contain a number of larger impurities
(for example stones, leaves, branches, insects) that need to be removed. When
these impurities have been removed using various preprocessing machinery all
that remains are particles of generally the same size. If necessary this relatively
clean seed material can now be processed further. This later step is known as
seed sorting and is the industrial application that we have focused on in this
work. In seed sorting the task is to further sort or divide the preprocessed seed
material into at least two individual sets of particles.

Different types of seed sorting machines are used in the industry today. By
physically manipulating the seed material in a way that takes advantage of var-
ious individual physical distinguishing characteristics of the seeds (usually one
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for each type of machine) these machines are able to sort the material. Typi-
cal examples of such characteristics are (1) mass (density), (2) surface texture
(friction with surfaces), (3) length, (4) general size, and (5) shape (for example
round, prolonged, egg-shaped, flat).

The prediction and control of the process in these machines is generally con-
sidered very difficult. This is primarily due to the biological variations in the
physical characteristics of the individual seeds. This is where the application
of image analysis becomes relevant. There is a need for a systems identifica-
tion approach wherein (parts of) the mechanical particle manipulation process
is directly observed and useful information about important process parameters
extracted. Image analysis is a natural tool for this.

In this paper we show results from experiments wherein image analysis was
used to extract information from the internal process in the indented cylinder
(laboratory scale). The indented cylinder is a length sorter that divides the
incoming seed material into two subsets: (1) long and (2) short seeds. This is
necessary for some seed species for which sorting based on other characteristics
is not possible. The machine consists of a rotating cylinder lying down. The seed
material is fed from one side. The inner surface of this cylinder is equipped with
small pockets (indented into the metal). Due to the rotation of the cylinder these
pockets carry the seeds up to a certain angle. This angle is dependent on the
individual length of the seeds. In principle: Shorter seeds will be carried further
than longer seeds. A catch-pan mounted at the centre of the cylinder will catch
the shorter seeds while the longer seeds fall down to the bottom of the cylinder
again. Due to a small tilt of the cylinder itself the longer seed material advances
to the other side due to gravity. The shorter material is advanced using vibration
of the catch-pan. Most of these basic principles are also depicted graphically in
Figure 1(a).

Berlage et al. [2,3,4] are some of the earliest examples on the use of image
analysis to analyse and improve seed sorting using prototypical machines (not in-
dented cylinders). Dell’Aquila [7] is an example of a recent review on the subject
of automated inspection of seed sorting for quality testing. On the modelling as-
pect again early work by Berlage et al. [1] and Churchill et al. [6] are mentionable.
The analysis, modeling and simulation of the flow of particles in rotating cylin-
ders has been done to great extent. But mostly for use in chemical, pharmaceu-
tical, and matallurgical industries. Positron emission particle tracking (PEPT)
[10,11] and particle image velocimetry (PIV) [5] are examples of specialised tech-
nologies which have been applied for various purposes. Sandidi et al. [12] used a
CCD camera for analysing the flow in a rotating drum used for coating tablets.
Lastly we mention the summarised work in Grochowich [8] – one of the ear-
liest full analyses of various types of seed sorting machines and their inherent
complexity.

In this work we have specifically focused on deducing the angle of escape θ
(with horizontal) of the individual seeds from recordings of the indented cylin-
der during an actual sorting process. The distribution of this important process
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(a) (b)

Fig. 1. A graphic and four examples of frames from the imaging data. Figure 1(a):
The basic principles of the sorting process in the indented cylinder (modified from
[9]). Figure 1(b): Four examples on frames acquired in the experiments. The two rows
each show a situation from two different angular velocities of the cylinder (top: 26 rpm
[revolutions per minute], bottom: 34 rpm). To the left we see the original version and
to the right we see examples on accumulated seed segmentations (accumulated of over
10 frames starting from the one on the left). The angle of escape θ is shown graphically
in the lower left original version.

parameter over time says something about the machines current ability to pro-
cess and sort the material given to it.

We placed a colour CCD camera in front of the active cylinder (it was in
motion with material in it) with the catch-pan removed. Each image frame (taken
at 260 frames/sec) was then segmented and the (approximate) location of each
seed (or particle) in the image plane was extracted. Using a combination of these
locations and the laws of motion (no drag included) we were able to deduce the
most likely parabolic escape trajectories and thus also an estimate for the angle
of escape θ for each particle. Figure 1(b) shows two examples of the images
recorded for two different rotational speeds of the cylinder.

Section 2 describes in more detail the experiments, seed material (barley), and
the acquired data (20 image sequences). Section 3 explains the basic methods
used for extracting the seed locations and for estimating the angle of escape θ.
Section 4 presents the results and Section 5 concludes.

2 Materials and Data

2.1 Experimental Setup

We used a laboratory-sized indented cylinder (Westrup L-AT LAT-0801 ) that
supports cylinders with a radius of 200 mm and a depth of 500 mm. The cylinder
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had a (fixed) inclination with horizontal of 0.7◦. A CCD colour camera (Point
Grey Grasshopper GRAS-03K2C-C ) was placed in front of the cylinder with
the direction of sight aligned with the plane containing the cylinder’s axis of
rotation. The end of the cylinder closest to the camera was slightly lower due to
the small inclination angle.

It was placed at a distance such that the width of the image corresponded to
the apparent width of the cylinder. The monofocal lens used had a focal length
of 25 mm and a horizontal and (deduced) vertical angle of view of 10.97◦ and
8.24◦, respectively. The camera was also rotated 180◦ to use sub-sampling of the
sensor lines and achieve a higher framerate. Using these parameters, the correct
camera-to-cylinder distance was estimated to be 2.7 m.

Illumination was provided by a 150 W halogen modelling light (SOLO 1600
B) placed between camera and cylinder. The angle of light was such that all
the seed material inside the cylinder received the same amount of illumination.
Note that the catch-pan was removed to give room for visual inspection with
the camera.

2.2 The Seed Material

The seed material used was barley (Hordeum vulgare L.). The indented cylinder
is particularly suitable for filtering broken (usually half) non-useful barley kernels
from whole useful barley kernels.

The barley used was filtered manually using the indented cylinder. This al-
lowed us to create a modelled seed batch with a known per particle distribution
of whole and broken kernels. The modelled batch consisted of 50 % whole and
50 % broken barley kernels. The mixed batch had a total mass of 2 kg which was
more than enough for the experiments.

2.3 Experiments and Acquired Data

The cylinder was fed with the modelled seed batch and configured to run with
different settings of two important system variables. These were: (1) the cylinder
rotational speed and (2) the diameter of the pockets in the cylinder. We recorded
the sorting process of the cylinder for ten different rotational speeds and for two
different pocket diameters. The speed was sampled in the range from 26 rpm
(revolutions per minute) to 49 rpm with an average step of 2.56 rpm (corre-
sponding to angular frequencies of 2.73 rad/s to 5.14 rad/s with an average step
of 0.27 rad/s). We used two different cylinders with pocket diameters of 6.0 mm
and 7.0 mm.

A total of 2 × 10 = 20 image sequences were recorded at approximately 260
frames/sec for a total of ten seconds. After recording all sequences were tem-
porarily synchronized such that the position of the cylinder circumference was
the same in the first frame. This resulted in five seconds (1300 frames) of useful
data in all 20 sequences (26000 frames in total). Each frame is of active di-
mensions 240 × 240 pixels and contains the upper right quadrant of the imaged
cylinder circumference.
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Let K = 1300 be the number of frames in each sequence, V = 10 the number
of velocity steps, andD = 2 the number of pocket diameters. One can then define
integer indexes k = 1, . . . ,K, v = 1, . . . , V , and d = 1, . . . , D (where d = 1 and
d = 2 corresponds to pocket diameter 6.0 mm and 7.0 mm, respectively). Any
frame in any of the 20 sequences can now be described as a matrix F(k)

(v,d) ∈
RN×N , where N = 240. Each sequence has also been given a mathematical
name: S(v,d) ∈ RN×N×K . Finally, the following shorthand notations are defined:
F(k) is the k’th frame in any sequence S(v,d) and F is any frame in any sequence.
One final sequence exists: B. This is a background sequence with no seeds in the
scene – just the empty cylinder (d = 2) rotating at velocity step v = 5.

3 Methods

3.1 Estimation of Seed Locations

Figure 2 shows the 11 image processing steps used to extract the locations of
the seeds in each frame F(k)

(v,d). The average Bref of sequence B is the static
background frame mentioned in step 5. This is used for background subtraction
to acquire a global segmentation and to remove certain problematic areas of
the image. The resulting absolute difference map was scaled to range [0, 1] and

Fig. 2. The 11 image processing steps used to extract the seed locations (in the image
plane). In the top-left part an example of a full frame is seen (cylinder velocity is 36
rpm [revolutions per minute]). Step 10 mentions the process of “morphological erosion”.
It is a continued erosion that shrinks objects without holes to single points (holes in
objects are removed prior to the operation).
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a global threshold (step 7) of 0.4 was used (everything above that level was
considered part of foreground/seed). Various morphological tools are then used
to produce binary map containing approximate seed locations in the image plane.
Finally these locations in the image plane are transformed to a 2-dimensional
world space in R2 by a linear interpolation.

3.2 Estimating the Angle of Escape θ

We have estimated the angle of escape θ and calculated the corresponding
parabolic trajectory for all twenty configurations of the indented cylinder.
Figure 3 show six such “trajectory plots” for rotational speeds v = 1, 2, 5,
6, 9, and 10; and for both pocket sizes d = 1 and 2. Note the visible difference
in trajectories due to change in speed. The points shown are the ones extracted
from the recorded frames using the methods described above.

The estimation of θ was done for all points extracted from all frames F using
the processing steps just described (one estimate per point). To minimize data
representation complexity, the seed locations from every 10 frames were com-
bined into a single set of points. That is, for any sequence S(v,d) we generate
L = K/10 = 1300/10 = 130 accumulated point sets A(l) containing I(l) points
(xi, yi) ∈ R2. These accumulated point sets are then analysed for l = 1, . . . , L
resulting in a solution set Θ(l) containing I(l) scalars θi ∈ R.

The specific number of points I(l)
(v,d) available in each A(l)

(v,d) varies only slightly
over l but expectedly varies more over index v and d. Especially for d since the
1 mm difference in pocket diameter has the effect that different amounts of seeds
are caught by the pockets.

During sorting, a seed or particle moves with the cylinder up to a certain
angle θ. This angle is dependent on the radius r and current angular frequency
ω of the indented cylinder. We model the movement of each such particle as a
point (xi, yi) moving in R2 in its own local time domain, starting at time ti = 0
when a force equilibrium (explained in great detail in Grochowich [8, Chp. 7])
accelerates the particle off the cylinder wall and (in our model, influenced now
only by gravity) into a parabolic trajectory.

At that time the particle modelled as the point (xi, yi) will have the following
initial velocity and position components:

ẋ0(θ, ω, r) = −rω sin θ
ẏ0(θ, ω, r) = rω cos θ
x0(θ, r) = r cos θ
y0(θ, r) = r sin θ .

(1)

The parabolic time-dependent motion of a single particle (xi, yi) is described by
components:

xi(t, θ, ω, r) = ẋ0(θ, ω, r)ti + x0(θ, r) (2a)

yi(t, θ, ω, r) = −(g/2)ti2 + ẏ0(θ, ω, r)ti + y0(θ, r) , (2b)
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Fig. 3. Twelve “trajectory plots”: In the top part (markings “A1” to “A6”) they are
shown for six velocities v = 1, 2, 5, 6, 9, and 10; for pocket size d = 1 (6.0 mm). In
the lower part (markings “B1” to “B6”) they are shown for the same velocities but
for pocket size d = 2 (7.0 mm). The points shown correspond to the extracted point
locations in R2. The markings on the circumference depict the estimated θ values.
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Fig. 4. Two residual curves for two distinct points: (x100, y100) from A
(65)
(1,1) and

(x160, y160) from A
(65)

(10,1)
. That is, for both the slowest rotational speed v = 1 (“Velocity

index 1”) and the fastest v = 10 (“Velocity index 10”), though only for one pocket
diameter d = 1. On the curve for v = 1 there are two minima at (1) θ = 0.29 rad
[16.49◦] and (2) θ = 1.03 rad [58.83◦]. On the other curve (v = 10) there is only one
minima at θ = 0.71 rad [40.90◦].

where g = 9.82 m/s2 is the gravity acceleration constant. Solving for t in (2a)
and substituting into (2b) we get the following function (dropping the point
index i for generality):

ỹω,r(θ, x) = Gω
1
r2

csc2θ[r cos θ − x]2 + cot θ [r cos θ − x] + r sin θ , (3)

where the constant Gω = −(g/2)ω−2 is the only factor involving gravity accel-
eration constant g and ω. The problem is now to solve (3) for θ for each point
(xi, yi). This was done numerically. First we defined a residual function:

eω,r(θ, xi, yi) = |ỹω,r(θ, xi) − yi| , (4)

which naturally makes it a minimization problem in R:

θi = argmin
θ

eω,r(θ, xi, yi) . (5)

We chose to do a full numerical search in the entire range from 0 to π/2 with a
step size of h = 10−3π/2 (1000 divisions). No stopping criteria was used, resulting
in a list of 1000 residual values for each point (xi, yi) to analyse further.

Figure 4 shows two plots for the residual value calculated for two points for
the slowest and fastest rotational speed (see figure caption for details). When
looking at the residual curve for v = 1, there are two solutions for the angle θ
(two minima exist). This is a mathematical detail easily dealt with. For current
point (x, y) only θ values for which the following is true can possibly be member
of the solution set Θl: θ < arccos(x/r), where x ≤ r. In the current example we
have x = 0.17, meaning that the upper θ limit is arccos(0.17/0.2) = 0.56 rad
[31.90◦]. Thus only the lower θ value in the current example would be considered.
Finally, we notice that for the residual from motion at velocity step v = 10 there
is only one minima at a higher angle than for the v = 1 curve.
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4 Results and Discussion

The methods presented in Section 3 made it possible to analyse for what angle
with horizontal the seeds are thrown off the cylinder wall. For each solution
set Θl available at each time index l in any sequence, we created a frequency
distribution hl over θ and estimate a normal fit with parameters μl and σl.
Beyond this, all distributions hl for each sequence were also summed and a
normal density fitted as well. This made it possible to statistically describe the
behaviour of θ for each full sequence using only two parameters (we refer to it
specifically as the summed distribution).

In Figure 5 we see examples of the summed frequency distributions with the
corresponding normal fit superimposed. They are specifically shown for three

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Six θ frequency distributions with fitted normal density superimposed. Fig. 5(a),
5(c) and, 5(e) show the distributions and normal fit for velocities v = 1, 5, and 10; for
pocket diameter d = 1 (6.0 mm). Fig. 5(b), 5(d) and, 5(f) show the distributions and
normal fit for the same three velocities, but now instead for pocket diameter d = 2
(7.0 mm).
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(a) (b)

Fig. 6. Two scatter plots showing different variables gathered over time: Figure 6(a)

shows a scatter plot of point counts I
(l)
(d,v) over l, . . . , L for v = 1, 10 and d = 1, 2. In

other words: The number of points accumulated for every ten frames, for the slowest
and fastest velocity and for both pocket sizes. Figure 6(b) shows a scatter plot of
estimated normal μ-parameter from frequency distributions generated from solution
sets Θl over the same index ranges as in Figure 6(a).

Fig. 7. Scatter plot and a linear regression fit of the μ-parameter estimated from the
summed (accumulated over time) frequency distributions under the assumption that
the distribution is normal. The data are shown for all ten angular velocities and for
both pocket sizes. The linear fit was done using all 20 data points (with rpm values as
predictors).

velocity steps: (1) slowest, middle (d = 5), and fastest; for both pocket sizes.
Not much difference in appearance of the distribution over pocket sizes can be
observed directly – mostly the difference is within changes in rotational speed.
Generally, for a higher speed there seems to be a higher probability for larger
values of θ. Also, for the highest speed the distribution also seems to become
slightly multi-modal. Two modes are observable in figures 5(e) and 5(f) and also
in the trajectories plotted in Figure 3 (for that particular rotational speed).

Figure 6(a) show a scatter plot of number of points available in each time step
l. The values are shown for both slowest and fastest velocity step, as well as for
both pocket sizes. The system seems to have some stability over time. It is also
evident that for the fastest velocity step, fewer seeds are extracted than for the
slowest velocity step. Figure 6(b) show for the same velocity steps and pocket
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sizes the estimated μl parameter for the frequency distributions generated over
time. Again we observe stability. On top of this, we observe that θ is generally
larger for the fastest velocity step than for the slowest velocity step. Also, the
number of points extracted is fewer for the fastest velocity step than for the
slowest.

Figure 7 show the estimated μ-parameter for the summed frequency distribu-
tions over all ten rotational speeds and for both pocket sizes. The regression fit
indicates the possibility of a linear relationship between the rotational speed of
the indented cylinder and the angle of escape θ.

5 Conclusions

In this work we have experimentally verified a certain behaviour of the sorting
process in the indented cylinder. First and foremost, at least for the 5 seconds of
recording that we have dealt with, we show that the process has some stability
(but mostly for the lower velocity steps). Secondly, we show a linear relation
between rotational speed and angle of escape θ. As mentioned in the introduc-
tion there is a need for a systems identification approach in where the indented
cylinder is analysed to acquire information about important parameters. Thus
a third results is a more tentative one: We have shown that image analysis can
be used for flow analysis of particles moving in an indented cylinder. This is a
novel step toward the goal of predicting and controlling the sorting process in
these machines.

One final important remark: Our choice of using a seed batch with 50 %
whole and 50 % broken barley kernels will undoubtedly have had an impact on
the distribution of the angle of escape θ. Had the kernel size distribution been
more realistic, for instance, with 10 % broken, and 90 % whole or opposite, then
we would likely have observed a multi-modal frequency destribution of θ. That
would be interesting to try in the future.
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Abstract. While there is growing interest in in-line measurements of
paper making processes, the factory environment often restricts the ac-
quisition of images. The in-line imaging of pulp suspension is often dif-
ficult due to constraints to camera and light positioning, resulting in
images with uneven illumination and motion blur. This article presents
an algorithm for segmenting fibers from suspension images and studies
the performance of Wiener filtering in improving the sub-optimal im-
ages. Methods are presented for estimating the point spread function
and noise-to-signal ratio for constructing the Wiener filter. It is shown
that increasing the sharpness of the image improves the performance of
the presented segmentation method.

Keywords: pulp suspension, fiber segmentation, Wiener filtering, ma-
chine vision, image processing and analysis.

1 Introduction

The paper industry has recently shown increasing interest in the in-line mea-
surements as they could provide information on the state of the process on-line,
making it possible to control the process while the product is still forming. Re-
liable on-line estimates could be used for process optimization, automation and
avoiding breaks and delays in the process. However, accurate on-line measure-
ments are difficult to obtain due to restrictions to camera and illumination, low
contrast of many of the measured particles and the execution times required for
timely measurements.

There are methods for obtaining certain measures related to the papermaking
process and the quality of the end-product. Sitholé and Filion compare quality
measurements of recycled pulp [12]. Wang and Hubbe [13] propose a method for
measuring the electrical properties of fiber surfaces [13] and Saarela et al. [11]
use a streak camera for measuring the fines content of pulp with unknown con-
sistency. These methods, however, tend to be specific for a certain measurement
and are often performed on pulp sheets in laboratory conditions.
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Among the most important factors affecting the quality of the end product are
the properties and formation of the fiber web. The characteristics of the fibers
have a significant effect on the quality of the pulp and the end product. For
example, the length and coarseness of fibers affect the flocculation (the forming
of mass concentrations within the suspension) and the mobility of the fibers,
both of which are factors in the uniformity of the suspension and the extent the
suspension uniformity can be altered. [10]

Before it is possible to make measurements of the fiber characteristics, the
fibers need to be segmented from the suspension images. The low contrast and
varying intensity values of the pixels depicting fibers cause thresholding and
traditional edge detection methods to perform poorly.

This article presents an approach for fiber segmentation from pulp suspen-
sion images, which is a part of a fully automated system of pulp flow analysis
for the inline measurements. Wiener filtering for image restoration is presented.
The estimation of the Wiener filter parameters is discussed. An algorithm for
segmenting fibers is proposed and its feasibility as a part of on-line measure-
ments is studied. Experiments concerning the effect of the Wiener filtering on
the performance of the segmentation algorithm are presented and discussed.

2 Imaging and Image Processing

The images of flowing low-consistency pulp used in this article were taken from
within a pilot process in LUT FiberLaboratory in Savonlinna. The camera used
was a Guppy F-046B, manufactured by Allied Vision Technologies. The 8.3 µm
× 8.3 µm CCD-cells of the camera could produce a maximum of 780 × 582 pixel
images with a framerate up to 49.4 frames per second [1]. As the in-line envi-
ronment of papermaking process offers limited or no accessibility for a camera
with a normal lens, the camera was fitted to a Richard Wolf borescope with a
video lense from the same manufacturer.

To improve the contrast of the fibers, they were processed with an agent
that radiated fluorescent light. One of the pulp images for testing the fiber
segmentation algorithm is presented in Fig. 4.

2.1 Wiener Filtering

Wiener filtering is an inverse filtering method that takes the statistical character-
istics of image noise into account. Both the image and image noise are considered
as random variables and the undistorted image f is estimated by minimizing the
mean square error between the undistorted image and estimated image. [5]

The error measure for the mean square error is calculated from

e2 = E{(f − f̃)2}, (1)

where e2 is the squared error, f̃ the estimate of the undistorted image and E{ · }
is the expected value of the argument [5]. The degraded image is defined as
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g = h(f +N), where h is the point spread function and N the additive noise in
the image.

The noise-to-signal ratio (NSR) required for the filtering is rarely known, but
it can be approximated by a constant [9]. Replacing NSR with constant γ, the
frequency representation of f̃ minimizing the error function in Eq. 1 is gained
from

F̃ (u, v) =
[

1
H(u, v)

|H(u, v)|2
|H(u, v)|2 + γ

]
G(u, v), (2)

where H is the frequency domain representation of the point spread function of
the whole system and G the frequency domain representation of the degraded
image. [5] The parameters required for the filtering are now reduced to point
spread function H and the constant estimating the noise-to-signal ratio γ.

Estimation of point spread function. The point spread function of a camera
can be estimated from images with a sharp edge [8]. The location of the edges
present in an image is derived by performing Canny edge detection [3] and
performing connected component analysis on the found edges.

To find a proper estimate for the edge, RANSAC (Random Sample Concen-
sus) [4] is used to find the line represented by the edge pixels. A number of edge
profiles are taken along the line, five pixels from both sides of the edge. The
mean edge profile is calculated and normalized between [0 1] by

Zi =
pi − pmin

pmax − pmin
, (3)

where pi is the i:th intensity value of the mean edge profile, pmax is the maximum
value of the mean profile, pmin the minimum and Zi the normalized profile value.

The normalized values are compared to an ideal, infinitely sharp edge pideal,
positioned at the center of the normalized profile. The ideal edge depicts an
instant transition between the edge and non-edge pixels. In practice, the ideal
edge cannot be achieved for normal or high-resolution cameras as it would require
alignment of the edge target and the camera CCD-cells, and perfect illumination
conditions. Thus, this method of estimation always yields some amount of point
spread.

The directional point spread estimates ex and ey are calculated as |px−pideal|
and |py − pideal|, respectively. The point spread function matrix Mpsf is calcu-
lated from the column vectors ex and ey by

Mpsf =
eT

y × ex∑
(eT

y × ex)
. (4)

Estimation of noise-to-signal ratio. Murphy et al. [7] present two suitable
methods to estimate the noise in an image. Taking a large uniform area of the
image, the noise can be measured as the standard deviation of the intensity
values of the area. Another approach is to take two images of the same target,
subtract one image from the other and calculating the standard deviation of the
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difference. This method can be improved by increasing the number of images
taken and subtracting the mean image from each of the original ones.

With the statistical characteristics of the noise known, an estimation of the
mean noise-to-signal ratio (NSR) can be calculated for the images from

NSR =
σ(n)
σ(u)

, (5)

where σ(u) is the standard deviation of the undistorted image (i.e. the mean
image of the set) and σ(n) is the standard deviation of the noise [2].

As the environmental conditions are expected to remain constant for the du-
ration of image acquisition and the noise is assumed to be caused mainly by char-
acteristics of the camera, the NSR is expected to remain approximately the same
regardless of the imaged target. However, as temperature and other environmen-
tal factors may change over time in the process environment, re-estimation of
the noise model may be required from time to time.

Estimation result. The sharp edges for estimating the PSF were produced in
the image with two thin razors imaged from the distance of 380 mm (see Fig. 1).
It was assumed that the thin edges can be accurately represented by straight
lines to the accuracy of 780 × 582 pixels captured by the camera. Fig. 2 shows
the estimated edge profiles. A visual representation of the PSF estimated from
the given images is shown in Fig. 3.

Fig. 1. Image for estimating the edge spread function

The noise caused by the camera, measured over ten images, was normally
distributed (see Fig. 3) with zero mean and standard deviation of 0.0032. The
Lilliefors test [6], a statistic test for determining if data is normally distributed
when the mean and variance must be estimated from the sample, was performed
on the noise model of each image. The test suggested that the models are nor-
mally distributed with the probability of 99.9 %.
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(a) (b)

Fig. 2. Mean edge profiles: (a) Horizontal; (b) Vertical

(a) (b)

Fig. 3. Camera noise: (a) Visual presentation of the PSF; (b) Distribution of the noise.

2.2 Fiber Segmentation

The approach for detecting the fibers is summarized in Algorithm 1. Due to
poor performance of standard edge detection filters, the initial segmentation of
fibers is done by a set of filters designed specifically for the images in Fig. 4.
The filter assumes the fibers to manifest as long, thin objects in the images,
with intensity higher than the background. While there is a loss of generality
due to the resolution dependency of the filter set, the designed filters supercede
the traditional edge detection filters in performance.

The filter set is generated by rotating the filter

M =

⎡
⎣−2 −1 0 1 4 1 0 −1 −2
−2 −1 0 1 4 1 0 −1 −2
−2 −1 0 1 4 1 0 −1 −2

⎤
⎦

by 45◦ both clockwise and counter-clockwise to produce the filters for diagonally
positioned fibers, and by rotating M by 90◦ for detecting horizontal fibers.
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Algorithm 1: Fiber segmentation

1: Filter the image for initial detection of fibers.
2: Integrate above average responses from the filters.
3: Form objects by connected component labeling.
4: Remove objects with area below threshold t1.
5: Remove branching points to disconnect overlapping objects.
6: Give remaining objects individual labels.
7:
for object endpoints do

if endpoint with a different label found near the current endpoint then
for endpoints of different label do

Fit a polynomial of degree n to all the points of both labels.
Calculate the STD of error between the points and the polynomial.

end for
Choose the polynomial with lowest error.
if error between points and curve < threshold t2 then

Give the segments the same label.
end if

end if
end for
8: Remove labels with area below threshold t3.

Before integrating the filter responses, any response below the mean intensity
of the image is removed to reduce false responses. Connected component analysis
is performed on the remaining responses to form objects depicting the fiber
segments. Objects with area below t1 are removed as noise (Step 4).

Binary thinning, i.e. the iterative removal of the outer edge pixels of an object,
is performed in Step 5. The segments with a width of single pixel are disconnected
by removing any branch point on the single pixel wide path of a fiber segment.
This results in a number of objects with an area of only one or few pixels. These
objects are considered as noise and removed, while the remaining segments are
given individual labels.

The area around the endpoints of each labeled segment is investigated. If an
endpoint with a different label is found, a polynomial curve of degree n is fit
to all pixels of both labels. The standard deviation of the error between the
datapoints and the fitted curve is calculated. If the error is below a threshold t2
the segments are considered to belong to the same fiber and are given the same
label.

In the case of multiple nearby labels, the curve is fit to the segment containing
the investigated endpoint and to the pixels of all the labels in turn, and the
curve between the label with least error in the fit is tested against the threshold.
Objects with pixel area remaining below t3 after connecting the segments are
removed. The segmented fibers, can be seen in Figures 5.
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3 Experiments and Discussions

The presented segmentation method was applied to the set of 6 images, one of
which is presented in Fig. 4. Using the first image the following parameters of
the algorithm were defined: t1 = 40, t2 = 5, t3 = 30 and n = 3. The method
correctly classified reasonably difficult cases. In Fig. 6d a closer look is taken at
several typical situations the method faces when deciding if segments close to
each other should be classified as one fiber.

Fig. 6a shows a simple case of joining the segments of a straight fiber. In
Fig. 6b the mean interpolation error of the curve fit to the pixels of the two long
segments is too large and the segments are classified as separate fibers. A more
difficult case is shown in Fig. 6c, where the segments of the two straight fibers
are connected, while the two fibers are classified as separate and the segments of
one fiber are not classified as a part of the other. One of the most difficult cases
is shown in Fig. 6d, where a straight fiber in several segments is overlapped by
a curved fiber in two segments. For this instance, the method correctly classifies
the overlapping fibers.

The effect of edge sharpening by the Wiener filter on the performance of the
fiber segmentation method was tested on the same set of six suspension images.
The output of the segmentation algorithm was referenced to a visual estimation
of the correct fibers in the image. While the visual estimation was done by a
non-expert, the fibers in the used pulp images are salient enough to assume a
reasonable accuracy for the estimation.

The results of the segmentation were divided in to three categories: detected
fibers (det.) with most of the fiber segments were found and correctly labeled,
partly detected fibers (par.) with a part of the fiber detected, but missing seg-
ments, and incorrect (inc.) with wrong segments joined or noise segmented as
fiber segment. The number of fibers (num.) was manually estimated for each
image to provide ground truth for the segmentation result.

Filtering the image with Wiener filter resulted in an increase of detected seg-
ments in all categories. The amount of complete fibers detected was significantly
increased along with the amount of the more obscure fibers partially found. While
there was some increase in the false filter responses detected as fiber segments,
most of the final false segments were relatively small and could be removed by
pixel area based thresholding, although at the cost of small true segments.

The results of the segmentation are shown in Tab. 1. The Matlab implemen-
tation of the segmentation algorithm was tested on a desktop computer with two
Intel Pentium 3.00 GHz processors and 2.0 GB of memory. On the average, the
method performed the segmentation for the unfiltered images in approximately
0.56 seconds. When performing the algorithm on filtered images the segmen-
tation took approximately 0.88 seconds due to increased number of detections
(both real segments and noise).
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Fig. 4. An example of the test images for the fiber segmentation algorithm

Fig. 5. Segmented fibers with small segments removed
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(a) (b) (c) (d)

Fig. 6. Closer examination of segment joining results: (a) Segments recognized as a
straight fiber; (b) Segments recognized as separate fibers; (c) Segments recognized
as two separate straight fibers; (d) Segments from overlapping fibers recognized as a
straight and a curved fiber

Table 1. Effect of Wiener filtering on fiber segmentation. (det.) correctly detected,
(par.) partially detected, (inc.) noise segmented or segments joined incorrectly, (num.)
estimated number of fibers.

Filtered image No filtering

det. par. inc. det. par. inc. num.
Image 1 9 7 5 4 9 0 19
Image 2 6 1 4 4 0 2 11
Image 3 7 4 4 3 5 0 16
Image 4 2 5 1 0 2 0 12
Image 5 2 4 1 2 1 0 14
Image 6 1 6 1 0 1 0 9

3.1 Future Work

The segmentation of the fibers is the first step in in-line measurements. There
is still demand for tracking the fibers to determine the flow, classification of the
fibers and further study of the process based on the measurements. Methods for
studying the formation and behaviour of the fiber web are also of interest.

4 Conclusion

While the in-line measurements of paper making process are difficult due to re-
strictions to the location of the camera and positioning of the light, the benefits
are significant. In this work, a method for segmenting fibers from pulp suspen-
sion images was presented, along with methods for estimating the point spread
function and the noise-to-signal ratio for constructing the Wiener filter. The im-
proved sharpness of the image after Wiener filtering significantly improved the
performance of the fiber segmentation algorithm.
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Abstract. For most image registration problems a smooth one-to-one
mapping is desirable, a diffeomorphism. This can be obtained using pri-
ors such as volume preservation, certain kinds of elasticity or both. The
key principle is to regularize the strain of the deformation which can be
done through penalization of the eigen values of the stress tensor. We
present a computational framework for regularization of image registra-
tion for isotropic hyper elasticity. We formulate an efficient and parallel
scheme for computing the principal stain based for a given parameteri-
zation by decomposing the left Cauchy-Green strain tensor and deriving
analytical derivatives of the principal stretches as a function of the defor-
mation, guaranteeing a diffeomorphism in every evaluation point. Hyper
elasticity allows us to handle large deformation without re-meshing. The
method is general and allows for the well-known hyper elastic priors
such at the Saint Vernant Kirchoff model, the Ogden material model
or Riemanian elasticity. We exemplify the approach through synthetic
registration and special tests as well as registration of different modal-
ities; 2D cardiac MRI and 3D surfaces of the human ear. The artificial
examples illustrate the degree of deformation the formulation can handle
numerically. Numerically the computational complexity is no more than
1.45 times the computational complexity of Sum of Squared Differences.

1 Introduction

Registration has been the subject of intense research as it forms the basis for most
quantitative methods for analyzing and tracking morphological changes. It is well
known that image registration is an ill-posed problem and to obtain a meaningful
solution the problem has to regularized. Simple regularizers include re-sampling
and re-gridding or diffusion and linear elasticity which penalize deformation di-
rectly upon the elements of the displacement gradient. It is desirable to use a
proper rotation-invariant measure such as the strain tensor. Frequently used reg-
ularization approaches are volume preservation, parameter constraints through
subspace projection, or more advanced methods such as the methods we describe
based on strains e.g. Riemanian elasticity. These more advanced regularizers are
based on physical models such as viscosity or elasticity. The elasticity model is
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attractive as it is invariant to local translation and rotation assuring meaningful
regularization through the use of principal stretches; the eigen value of the left
and right stretch tensor. The use of this type of regularizer is computational
expensive. However, as we show very efficient computations through analytical
expressions can be made including their derivatives. The resulting scheme is 1.45
times the computational cost of SSD for tedrahedra in 3D. This enables the use
of gradient based methods, with fast convergence. Furthermore, this provides
the local scaling (the determinant of the stretch) such that the non-linearity in
the transformation can be accounted for in the similarity measure. We present a
registration framework that simplifies the implementation of these constraints.
The framework is based on the left Cauchy-Green strain tensor and its eigen
values (squared principal stretches). We form analytical derivatives of the eigen
values with respect to the parameters, independent of the parameterization. This
is essential for easy and fast implementation. Through the chain-rule it is pos-
sible to easily change bases and elasticity model. We illustrate the method on
synthetic data, 2D MRI data and 3D surface registration of Human ear canals.
We model the deformation and exemplify some derivations with tetrahedra and
B-splines as the bases to illustrate the approach and implementation.

2 Previous Work

Registration is an area of continuous research because of its importance in cre-
ating a basis for further analysis. The problem is generally ill-posed, so it needs a
prior or regularization to obtain meaningful results. In most registration schemes,
a regularizer is applied to ensure a valid spatial deformation which is smooth and
preserves topology. The majority of regularization approaches find their motiva-
tion in continuum mechanics. Linear elastic body forces was initially proposed by
[1] to regularize the deformation. This was later adapted into a registration algo-
rithm in [2]. Riemannian elasticity was introduced by [3] which, in contrast to lin-
ear elasticity, is rotation-invariant and therefore capable of capturing much larger
deformations. Elastic image registration by incorporating volume-preserving soft
constraints in registration of pre- and post-contrast MRIs of the female breast
was essentially performed in [4] and [5]. Similarly, [6] used volume-preserving
hard constraints together with linear elasticity to register pre- and post-contrast
MRIs. [7] proposed diffusive regularization, which is the squared Fröbenius norm
of the displacement gradient. The use of viscous-fluid priors was introduced in [8]
which regularize the flow of the deformation rather than the relative spatial dis-
placements. Fluid registration has become widely popular in the neuro-imaging
community [8, 9] because of its ability to model large deformations. Rueckert et
al. [10] reduced the dimensionality of the image registration problem and ensured
a smooth deformation field by using B-splines to describe the deformations be-
tween images. Many research groups have since adapted this approach [11, 12].
Other typical parameterizations of the deformation field are the cosine kernel
proposed by [13] and different kinds of radial basis functions [14]. The focus
of this work is on generalization of non-linear strain and we exemplify using



Efficient Hyperelastic Regularization for Registration 297

Riemannian elasticity, with a formulation that allows for easy exchange of the
regularizer to other forms such as the Ogden material model [15]. The reminder
of this paper is organized as follows: In section 3 we briefly review registration, in
section 4 we briefly discuss similarity measures and derive the first order struc-
ture for SSD as an example. In section 5 we present the regularization frame-
work and present our approach to evaluate the regularization functional and the
first order structure. In section 6 we discuss two different commonly used bases,
B-splines and tetrahedra. In section 7 we present experimental results, discuss
the method in 8 and draw our conclusion in section 9.

3 Registration

We formulate the registration problem as follows: Find a transformation φ which
maps R to I minimizing the similarity measure D. This is an ill-posed problem,
so we add a regularization term S to the function φ. This can be written as the
following objective function

F [I, R,φ] = D[R, I ◦ φ] + αS[φ], (1)

where φ is the deformation. Most registration schemes are formulated numeri-
cally and the influence of local scaling which occur for non-rigid transformations
are left out. Some schemes compensate for this through re-gridding. However
when dealing with large deformation as non-linear hyper elasticity a decision
about local scaling has to be made, one is to take scaling into account or to
consider the problem as re-sampling. For the minimization of F we use the
gradient-based methods, in particular LBFGS [16]

4 Similarity Measure and Image Function

The image forces which drive the registration are derived from the similarity
between the reference and the deformed template image. The natural choice is
sum of squared differences (SSD), however, this requires images where the val-
ues are directly comparable without major bias, gradients etc. To counter these
effects, several other similarity measures exist. The most important include: mu-
tual information [17], normalized mutual information [18], normalized gradient
fields [19], cross correlation [1] and correlation ratio [20]. For surfaces, the choice
is often SSD on a signed distance field or point-to-point distance (Iterated Closes
Point ICP) [21].For first order structure of the similarity measure SSD, we write

D[I, R,φ] =
∫

Ω

(R(x) − I ◦ φ(x; p))2dx. (2)

Differentiating with respect to the parameters p and using the chain rule we get

∂D
∂p

=
1
2

∫
Ω

(R(x) − I ◦ φ(x; p))
∂I(x̃)
∂x̃

∂φ(x; p)
∂p

dx (3)

where x̃ = φ(x; p). Images are considered to be smooth functions ensured by
using cubic B-spline interpolation, which is C2-continuous.
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5 Regularization

We formulate the regularization energy upon φ as the integration of an energy
density function r, i.e.

S[φ] =
∫

Ω

r[φ](x)dx, (4)

We prefer the elasticity-based regularizers as they allow for large deformation
because of rotation-invariance. Any isotropic elasticity energy density function
can be formulated as a function of the eigen values of the left Cauchy-Green
strain tensor.

E(x) = ∇φ(x)∇φ(x)T . (5)

Among these elasticity-based regularizers are volume preservation, Riemanian
elasticity and St. Venant Kirchoff elasticity. The density functions are

rvol[φ] = (
∏

i

εi − 1)2, (6)

rrie[φ] =
μ

4

∑
i

log2 εi +
λ

8

(∑
i

log εi

)2

, (7)

rsvk[φ] =
μ

4

∑
i

(εi − 1)2 +
λ

8

(∑
i

(εi − 1)

)2

(8)

where ε is the eigen values of the left Cauchy-Green strain tensor. The regularizer
must be differentiated with respect to the parameters which, as we propose, can
be achieved using the chain rule. The purpose is to derive an expression for

∂r[φ]
∂p

=
∑

i

∂r[φ]
∂εi

∂εi
∂p

. (9)

It is straight forward to compute ∂r[φ]
∂ε i.e. for Riemanian elasticity

∂rrie[φ]
∂εi

=
μ

2
1
εi

log εi +
λ

4
1
εi

∑
i

log εi (10)

Thus, our concern is to find a way to compute ∂εi

∂p , the derivatives of the eigen
values w.r.t. the deformation parameters.

5.1 Eigen Values and Derivatives

We regularize the strain of the deformation through the eigen values of the
strain tensor which can be decomposed as E = UΛUT . E = ∇xφ(x)∇xφ(x)T a
positive definite symmetric matrix, assuming diffeomorphism. We want to take
the derivative with respect to the eigen values Λ. For eigen values of a symmetric
matrix with multiplicity of one it holds

E = UΛUt ⇔ ∂εi
∂p

= uT
i

∂E
∂p

ui (11)
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The change in the strain can be written as

∂E
∂pj

=
∂∇xφ(x; p)

∂pj
∇xφ(x; p)T + ∇xφ(x; p)

∂∇xφ(x; p)T

∂pj
(12)

Combining eq. 12 and eq. 11 the change in eigen values can be written as

∂εi
∂pj

= uT
i

(
∂∇xφ(x; p)

∂pj
∇xφ(x; p)T + ∇xφ(x; p)

∂∇xφ(x; p)T

∂pj

)
ui (13)

For multiplicity greater than one, no unique eigen vector exist however the
derivatives are easily dealt with as follows. As we assume diffeomorphism
the multiplicity simply indicates isotropy on a hyper plane. Thus, orthogonal
to the distinct eigen vectors we find a hyper plane on which the stretch is the
same in any direction. We can therefore freely choose the vectors in this hyper
plane since all will be eigen vectors, thus the directions of the derivatives are free
within this plane due to isotropy. These special cases can be dealt with easily in
the implementation. Alternatively explicit derivatives exist for the SVD [22].

6 Choice of Basis Functions

The choice of function for φ has a huge impact on performance, so both interpo-
lating and non-interpolating functions can be used. We formulate the problem
for a general basis function for φ which models the local neighborhood transfor-
mation and is evaluated at a single point x. The local transformation of x can
be written as follows.

φ(x; p) = x + B(x)p (14)

where p is the parameters of φ(x,p). φ characterizes the local deformation at
x. The Jacobian ∇φ = J can then be written as

∇xφ(x; p) = I +
[B1(x)p . . . BN (x)p], (15)

∇pφ(x; p) = B(x), (16)

where Bi(x) = ∂B(x)
∂xi

. Several choices of basis functions exist and the above
formulation does not limit the choice. For bases such as tensor product B-splines
as used in [10], cosine basis as used in [23] or polyhedra it is fast and straight
forward.

6.1 Basis Examples

As examples we formulate the problem with tetrahedra and B-splines as the
basis function which models the local neighborhood. Tetrahedra models an affine
transformation, and we represent this by a single point x, the barycenter [24]
of the tetrahedra for deformation constraint, and the points as the parameters
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Fig. 1. Illustration of the linear/affine transformation from triangle v1,v2,v3 to
v1 + Δv1,v2 + Δv2,v3 + Δv3

in the transformation i.e. a free form deformation for all sample points with a
constraint formulated for the barycenter. Figure 1 shows the a deformation based
on triangles in x can be written as a linear combination of the vertices V in the

tetrahedrax = [v1, . . . ,1n]η = V η thus η = V −1

[
x
1

]
= [Dη0]

[
x
1

]
where η

is the barycentric coordinates of x. Thus by choosing polyhedra as the basis,
the analytical derivations of the objective function and its first order derivative
becomes feasible. By first splitting the position of x up we write x = x0 +Δx,
the deformation and the Jacobian ∇φ = J can then be written as

φ(x) = x + ΔPη = x +ΔP [Dη0]
[

x
1

]
∇xφ(x) = I + ΔPD (17)

Similarly for B-splines the derivatives can be derived. As B-splines are tensor
product basis function we restrict ourselves to the 1-dimensional case. The basis
polynomials and derivatives are given by:

B(t) =

⎧⎪⎪⎨
⎪⎪⎩

−t3 + 3t2 − 3t+ 1
3t3 − 6t2 + 4

−3t3 + 3t2 + 3t+ 1
t3

⎫⎪⎪⎬
⎪⎪⎭, ΔB(t) =

⎧⎪⎪⎨
⎪⎪⎩

−3t2 + 6t− 3
9t2 − 12t

−9t2 + 6t+ 3
3t2

⎫⎪⎪⎬
⎪⎪⎭ , 0 ≤ t < 1(18)

thus we write φ(t) = t0 + B(t)p where p are the parameters and ∇tφ = 1 +
ΔB(t)p. The extension to ND is straight forward.

7 Experiments

Two types of experiments have been conducted. One type is on synthetic data
to illustrate the ability to handle large deformations. We use 2D registration
with B-splines and a 3D simulation using tetrahedra. For the real data we apply
correlation ratio (CR) for MRI as distance measures and the SSD of a signed
distance map for the ears. For all real data experiments a scale space approach
has been used in a coarse to fine manner for the deformation, thus propagating
the deformation field to a set of basis functions with higher resolution.
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7.1 Synthetic Data

Several experiments on synthetic data are presented to illustrate the properties
of the elasticity in this formulation for large-scale deformation. 2D experiments
with 3rd degree B-splines and 3D using tetrahedra.

Large deformations. To test the regularization and its ability to capture large-
scale deformation we have performed three experiments. We register a square to
a disc, a C to a disc and a disc to a C (figure 2). The experiments are performed
in 2D with a uniform B-spline basis as parameterization of the deformation φ
and cubic B-spline image interpolation.For the first experiment we use a resolu-
tion of 10 pixels between each node in the B-spline on the images with resolution
300 × 300 pixels. The number of samples are uniformly 100 × 100 in each direc-
tion. As figure 2(a) show, we can register a square to a circle obtaining smooth
deformation fields that is diffeomorphic by definition. Registration of a C to a
disc and vice versa is a difficult task and the success heavily depends on the
right choice of scale for the basis functions. In this experiment we use 60 pix-
els between nodes 30, 8, 4, and 2 to obtain the desired result without falling
into a local minimum. As figure 3(b) and figure 3(c) shows, we obtain deforma-
tion fields for both C to disc and disc to C with very large deformations. The
obtained deformation fields are guaranteed to be diffeomorphic. To obtain sym-
metric solution such as in figure 3(a) all of the basis functions at each resolution
must be placed exactly symmetric and the problem must be exactly symmetric.
Otherwise the solution will be slightly asymmetric, emphasizing slightly.

(a) Square (b) Disk (c) C

Fig. 2. The square (a) and the C (c) have been registered to the disc (b)

Tetrahedra. To show the efficiency of the model and its ability to handle large
deformations we have deformed a 3d cube of 6000 tetrahedra under constant
force. The result in figure 4(b) is obtained without numerical instability and
handles as can be seen very large deformations. Over 80 evaluations we compared
the hyper elastic energy and SSD which gave a ratio of computational time of
HE/SSD=1.45 which shows the efficiency of the algorithm.

7.2 Cardiac Data

This data is a part of a cardiac data set of patients with a serious heart condition.
The data consists of 2D slices from different patients which we co-register using
CR and B-spline parameterization of φ. The slices are not obtained in exactly
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(a) Square to disc (b) C to disc (c) Disc to C

Fig. 3. (a)The deformation field for the registration of the square registered using
Riemanian elasticity and B-spline.(b) The deformation field of the C registered to the
disc using Riemanian elasticity and B-spline. (c) The deformation field of the disc
registered to the C using Riemanian elasticity and B-spline.

(a) (b)

Fig. 4. (a)The un-deformed cube (b) the deformed cube. The transformation to b from
a is guaranteed to be diffeomorphic.

the same angle relative to the patient. Therefore most of the background in the
images has been removed for demonstration purposes. The classes for the CR
is based on a reference image segmented by hand. Figure 5 show a registration
results, the transformation, the residual and the segmentation difference. The
results show that the elasticity forces help move the papillary muscles into place
as we know that they are considered a part of the myocardium by the CR due
to the segmentation.

7.3 Ear Data

In addition we register 80 3D surfaces representing ear impression using 3D
hyper elastic prior. This data was presented in [25] and was obtained to analyze
the shape changes induced in the ear canal by movement of the mandible. The
resulting average shape and a random deformation field is shown in figure 6.
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(a) Reference (b) Transformation
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(c) Residual (d) Dice image

Fig. 5. (a) The reference image. (b) The transformation. (c) The intensity residual
showing that the papillary muscles are registered correctly. (d) The difference in seg-
mentations after registration.

(a) Average ear (b) Deformation field

Fig. 6. (a) The average ear from 80 ears. (b) A 3D deformation field from registration
of 2 ears.

8 Discussion

The method described in this paper can be implemented in parallel and offers due
to the chain rule an easy way of switching between different kinds of elasticity.
The performance in highly dependent on the parameterization φ e.g. a B-spline
in 3D will have 192 parameters where as the tetrahedra only has 12 from which
the strain tensor is computed. Thus, one should when solving a specific problem
carefully select the appropriate parameterization such that speed, accuracy and
performance suit the given task.

9 Summary and Conclusion

We have presented an efficient way of implementing hyper elastic regularization
based on the chain rule and the derivatives of the eigen values of the left Cauchy-
Green strain tensor. The method is illustrated on Riemanian Elasticity but it
is in no way limited to this. We have shown in practice how the methodology
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is adapted to different parameterizations of the deformation and the fact that
the approach can generally be adapted to any parametric base. Finally we have
successfully applied the method to both synthetic and real data, in so doing
illustrating the properties of the regularization. These include the ability to
capture large deformation such as registering a C to a disc. The regularization
can also capture more subtle deformation such as the deformation between ears
in a population and it can capture very small local deformations such as the MRI
data. Finally we have illustrated the effectiveness of the approach by comparing
it to the computational complexity of SSD. The results were very convincing and
only 1.45 times as computational expensive as SSD using B-spline interpolation.
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Abstract. In this paper, we propose a novel framework for blind image
quality evaluation. Unlike the common image quality measures evalu-
ating compression or transmission artifacts this approach analyzes the
image properties common to non-ideal image acquisition such as blur,
under or over exposure, saturation, and lack of meaningful information.
In contrast to methods used for adjusting imaging parameters such as
focus and gain this approach does not require any reference image. The
proposed method uses seven image degradation features that are ex-
tracted and fed to a classifier that decides whether the image has good
or bad quality. Most of the features are based on simple image statistics,
but we also propose a new feature that proved to be reliable in scene in-
variant detection of strong blur. For the overall two-class image quality
grading, we achieved ≈ 90% accuracy by using the selected features and
the classifier. The method was designed to be computationally efficient
in order to enable real-time performance in embedded devices.

Keywords: image artifacts, blur, exposure, no-reference, quality
measurement.

1 Introduction

In this paper, we propose a method for automatic image quality evaluation based
on different types of image degradations such as blur, under or over exposure,
saturation, or lack of meaningful information which are illustrated in Figure 1.
The method does not need the original image as a reference, but the evaluation
is done solely based on the features extracted from the degraded image. Our
method is designed to be fast to compute so that it can be applied on-line. The
method could be applied, for example, to assist photographer by prompting to
capture new image, maybe with different camera parameters, if the obtained
image quality is poor. Another application could be classifying gallery images
based on quality and placing the poor quality images into a trash-folder.

Most of the current image and video quality evaluation methods are aimed
for detecting quality reduction due to lossy compression or transmission errors
[7]. Part of these methods use original non-degraded image as a reference and
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(a) blur (b) under exp. (c) saturation (d) no-info.

Fig. 1. Examples of typical image degradations

perform the evaluation relative to this image. Others are no-reference or blind
methods. Typical degradations are blur, noise, and block-based artifacts due to
compression. The blind quality evaluation independent of image content is a
much more difficult task for a computer although it may be simple for humans.
The distinction between image details and impairments may be difficult [4].
For example, the measurements of blur and noise correlate typically heavily
with the image content [7]. To our knowledge, there are not many methods for
evaluating the overall image quality based on the degradations due to exposure
and blurring. The different degradations are measured typically separately before
image capture to adjust the imaging parameters. For example, under or over
exposure and saturation might be measured for optimal exposure control. On
the other hand, there are methods for measuring blur to achieve optimal focus.
These methods typically compare the metric between multiple images from the
same scene i.e. they make the evaluation relative to a reference. In [5], the authors
have taken different approach to image quality evaluation by classifying images
as professional vs. snapshots based also on the composition of the image.

We are interested in the overall perceived quality of the image due to multiple
factors which include, in addition to blur, also saturation of pixels, incorrect ex-
posure, and information content of the image. The last property means that we
consider accidentally captured images representing, for example, floor as poor
quality. So, instead of evaluating the technical quality traditionally, we are in-
terested in the overall quality perceived by human. We perform the evaluation
without any reference information and independent on the scene content.

Figure 2 presents our framework for image quality evaluation which consists of
three steps: preprocessing, feature extraction, and classification. In the prepro-
cessing step, the images are low-pass filtered and resized to the VGA size. This
is followed by feature extraction. We used seven scalar features each reflecting
the amount of single degradation present in the image. These features are de-
scribed in more detail in Section 2 and summarized in Table 1. The features are
fed to a binary classifier which has been trained based on subjective evaluations
of the training images. Classification is described in more detail in Section 3.
The features as well as the classifier are selected carefully so that they can be
implemented efficiently on-line. For this purpose we tested various methods for
feature extraction as well as for classification. We also developed a completely
new feature for detecting strong blur.
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Feature
extraction

ClassificationPreprocessing
Image Class

Fig. 2. Framework for blind image quality evaluation

2 Features for Detecting Degradations

We used seven separate features for detecting different impairments: blur, under
or over exposure, saturation, and lack of information. These features are pre-
sented in the following with possible discussion of alternatives. Notice that the
amount of noise can be typically predicted based on the exposure parameters
and therefore it is not considered in this work.

Blur. In this work, the aim was to measure global blur caused by sudden camera
motion or defocus of the lens system without any reference information. Different
approaches for blur measurement are shortly reviewed next, before presenting
the method we used.

A lot of earlier research exists on blur measurement in few different contexts.
Traditionally, blur has been measured using metrics based on variance of image
pixels, autocorrelation, image derivatives, estimation of edge widths, investiga-
tion of frequency spectrum, or histograms of pixels values or DCT coefficients.
All these methods are based on the fact that blurring fades out image details
and edges which corresponds to attenuation of the high frequency components
of the image spectrum [4]. Image noise often disturbs these measures as it brings
more variation to image which may be interpreted as sharp details.

Many of the existing blur measurement methods are targeted for autofocusing
systems. In these systems, blur of the same image is measured with different focus
settings. These methods can also work with motion blur. The only criterion for
the measure is that it behaves monotonically when the amount of blur changes.
If these blur measures are applied to images of different scenes, such as in Figure
4(a)-4(c), the results are not comparable as the amount of details in the image
also affects to the measure. There are also methods which are targeted for quality
evaluation of JPEG coded images. These methods measure the blurring caused
by quantization or deblocking filter and are not suitable for our purpose [7].

Another group of blur metrics, which attempts to measure the amount of
blur independent of the image content, is based on edge detection followed by
estimation of the average edge width in the gradient direction or just horizontally
[4]. These methods divide images into blocks and use only blocks containing
edges. When the blur is strong [9] or images noisy [3] it may be however difficult
to find edges reliably. A bigger obstacle is that these methods are suitable only
for defocus blur. In motion blurred images, the sharpest edges are in opposite
direction of the motion which makes the results incorrect. There is also a method
which estimates partially blurred images with different scenes [6]. The method
divides images into blocks and compares blur metrics between these blocks and
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the whole image to detect blurred/sharp blocks corresponding to foreground
objects. The method does not work for global blur.

Absolute blurriness between completely different scenes is very difficult to
measure reliably because the image content affects sometimes even more to the
metric than the blurring. From our tested methods, the most consistent blur
measurements between different scenes gave a method proposed by Crete et al.
[1]. The method is based on comparison of the x and y gradients of a blurred
and re-blurred image. The method uses the assumption that re-blurring already
blurred image does not change the image derivatives as much as blurring of a
sharp image.

When the approach of Crete is used, there is another problem in the case of
strong blur: noise added into the smooth image after blurring appears as false
texture lowering measured blur level. This can be alleviated by suppressing noise
using low pass filtering. In addition, we propose another method for detecting
especially strong blur, which is presented next.

Strong Blur. The feature for strong blur detection is computed by average
normalized difference dα between observed image gn and an artificially blurred
image bαn, namely

dα =
∑
n

|gn − bαn|
gn + δ

, (1)

where α is the motion blur angle used to blur the observed image, n denotes
pixel location, and δ is a small real number. For an observed image gn, which
already contains defocus blur dα is small for all angles α of artificial blur, and
for an image containing motion blur, dα will be small for angle α corresponding
to the motion blur direction in observed image gn. For this reason, minimum of
results dα is selected as the final blur feature d, namely

d = min{dαi} . (2)

Blur to the observed image is generated by a 1 × 9 averaging filter which is
rotated into angles α = {0, 45, 90, 135} degrees. The main difference between
the proposed and Crete’s [1] method is that we do not use image gradient for
computing the feature.

Under or Over Exposure. Under and over exposure is measured using the
mean of the image pixel values, which ranges from 0 to 255. It is assumed that
value 128 corresponds to a well exposed image. Smaller values correspond to
under exposure and larger values over exposure. We used separate features for
under and over exposure. Using two separate features enables to weight them
differently in the classification step to better correspond to the subjective eval-
uation of the image quality.

Saturation. The saturation features are based on amount of saturated pixels in
saturated areas which are larger than 50 pixels. These are supposed to correspond
disturbing highlighted areas in image. So, single saturated pixels are not counted.
Saturation is detected separately in 1/3 top image and 2/3 bottom image. This
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Fig. 3. Saturation is detected separately for areas A, B, and C

Table 1. Features used to measure artifacts for image quality evaluation

is due to the fact that most of the saturation in natural images appears in top
area including sky, sun, lights etc. This top image saturation cannot be avoided
in many situations, and on the other hand, top image saturation is perceived
as more natural and not so disturbing. Top-saturation feature is computed from
area C in Figure 3.

Bottom image saturation feature is computed from areas A and B. It is as-
sumed that saturation of image is most disturbing in the central area A. For this
reason the area A has double weight compared to area B in computation of the
bottom-saturation. The algorithm assumes that the image orientation is known.

No-Information. Some images do not contain any meaningful information.
These images may be captured accidentally, for example, toward the floor. The
image entropy is used as a feature to measure the lack of information in the
image.

All the features are normalized logarithmically into scale [0,1] so that feature
value 0.5 corresponds approximately to the threshold between good and bad
images in subjective quality. The features with their ranges, basis techniques,
and approximate computation times are summarized in Table 1. Times are based
on computation of the features for a VGA image using non-optimized Matlab
implementations and 3 GHz Intel Core 2 Duo E8400 CPU with 4 GB RAM.

3 Classifier for Quality Evaluation

We compared different classifiers for quality evaluation of the images. What
we need is a binary classifier which takes the seven features characterizing the
degradations as input and gives the class good/bad quality as output. The quality
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cannot be classified simply by using a concatenation the features, because single
strong artifact destroys the image quality even if the other features indicate good
quality. It seems that the dominant degradation in the image will indicate quite
well the subjective image quality.

Based on the previous discussion we first tried to use classifier which bases
the classification only on single dominant degradation. This means that the
classifier selects the largest artifact feature value to represent image quality.
This value is compared to a threshold. During training with subjectively labeled
data the relative weights of the features are selected by increasing or decreasing
them iteratively to best reflect the subjective evaluations. This method, referred
hereafter as MaxFeature classifier, produced relatively good results as shown in
the experiment section and the method is also very fast to compute.

We tested also AdaBoost and support vector machine (SVM) classifiers. Both
of these methods are well known classifiers for a two-class classification problem.
For SVM we used the radial basis function (RBF) kernel, which is in general a
good choice when the relation between the classes and features is nonlinear.

4 Experimental Results

Test Images and Preprocessing. As test images, we used 508 5 Mpix images
photographed using Nokia N95 mobile phone. These images contain degradations
caused by real imaging situation including blur, noise, under or over exposure,
saturation of pixel values caused by over exposure or bright sky, sun, lights etc.,
and also accidentally captured images with random content. Figures 1, 6, and 8
show examples of the test images.

This data set is challenging since the images are photographed in various
situations resulting also in images containing no meaningful information (”no-
information”). Many of the images contain multiple degradations at the same
time. Most common artifact is blur due to motion or out of focus. All images
contain also substantial amount of noise. Many images are saturated in part but
at the same time in part under exposed. Saturation appears especially in the
images depicting gray sky.

Before computing the artifact features we preprocessed the 5 Mpix image as
follows. We first low-pass filtered the images to suppress noise, which is essential
for the blur detection, although the image is at the same time blurred slightly.
Filtering was done using a 5-by-5 uniform filter, which can be implemented very
efficiently but still resulted in similar results as a Gaussian filter. Subsequently
the images were resized to the VGA size (640× 480) to reduce the computation
in the feature extraction step.

Subjective Evaluation. For training and testing of the classifiers, the image
quality of the 508 images was evaluated subjectively. This was done by inspecting
the original images on a 19 inch screen. The images were given one of the grades
{0, 1, 2, 3} , ranging from good to useless quality, with respect to the attainable
quality range of a mobile phone camera. For the blur measurement experiment
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the images were evaluated similarly but taking into account only the perceived
blur artifact.

4.1 Features for Detecting Blur

In this section, we present results with blur measurement algorithms. The se-
lection of blur features for overall image quality evaluation was based on these
results. In the first experiment, we compared methods for detecting blur in im-
ages containing completely different types of scenes, shown in Figure 4(a)-4(c),
because blur feature should be invariant to the scene content. As blurring ap-
pears as smoothing of the image, the blur detection algorithms often rate image
containing more texture, such as Figure 4(a), as sharper than image containing
smoother regions, such in Figure 4(c).

We compared our proposed method and the Crete’s method [1] for which there
is a Matlab implementation available online1. Additionally we compared the fol-
lowing methods. Method by Erasmus and Smith [2] is based on the variance of
the image. This method is targeted for autofocusing and illustrates how this kind
of methods are dependent on the image content. The method of Tsomko et al. [8]
computes variances of horizontal derivative image blocks and uses the maximum
variance as a measure of blurriness. The method by Zhu and Milanfar [10] is a
more complicated method which attempts to measure noise and blur simultane-
ously. It is included only for demonstration because the Matlab implementation
is available online2.

Diagrams in Figures 4(d)-4(f) and 4(g)-4(i) illustrate the results of blur esti-
mation with different methods in case of increasing the extent of artificial circular
or horizontal motion blur, respectively. In both cases, it can be noticed that the
Crete’s method and the proposed method behave most consistently between the
three different scenes. The least consistent results are obtained with Erasmus’
method, which mainly reflects the amount of texture in the image instead of
blur. Zhu’s method is nearly as inconsistent between the scenes and in addition
does not behave monotonically. Tsomko’s method is better, but not among the
best. Based on these results we selected the proposed and Crete’s method for
further experiments.

Next we applied the selected features for the 508 test images. For detecting two
highest blur levels {2, 3} out of possible levels {0, 1, 2, 3} we obtain the receiver
operating characteristics (ROC) curves illustrated in Figure 5(a). Curves show
the true positive rate (TPR) of detecting blur as a function of false positive
rate (FPR) when the thresholds for the different features are lowered. As can
be seen, Crete’s method gives slightly better results than the proposed method.
However, a combination of the methods, which selects the larger of the single
features, gives clearly the best results. (Area under curve (AUC): Crete 0.902,
proposed 0.870, and combined 0.943.) In the other case, illustrated by ROC
curves in Figure 5(b), we investigated detection of the strongest blur level {3}.
1 www.mathworks.com/matlabcentral/fileexchange/24676-image-blur-metric
2 http://users.soe.ucsc.edu/~xzhu/doc/metricq.html

www.mathworks.com/matlabcentral/fileexchange/24676-image-blur-metric
http://users.soe.ucsc.edu/~xzhu/doc/metricq.html
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Fig. 4. Blur estimation results using different methods for different types of scenes
(a-c) when blur level is increased: circular blur (d-f) and horizontal motion blur (g-i)

As can be seen, the proposed method can detect the strongest blur better than
Crete’s method while the combined method is superior in this sense. (AUC:
Crete 0.826, proposed 0.911, and combined 0.974.) It seems that Crete’s method,
based on image gradients, is more sensitive to remaining noise in the image which
appears as false texture in strongly blurred, smooth, images. Figure 6 illustrates
some examples of images, containing strong blur, which can be detected by the
combination of the proposed and Crete’s feature but are missed with Crete’s
feature alone.
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Fig. 5. ROC curves for detecting blurred images with different methods: detection of
blur levels {2,3} (a) and only strongest level {3} (b)

Fig. 6. Examples of strongly blurred images which can be detected with the combina-
tion of the proposed and Crete’s feature but not by Crete’s feature alone. (Corresponds
to operating point FPR=0.09 in Figure 5(a).)

4.2 Image Quality Classification

For the classification step, we tested three methods: Support Vector Machine
(SVM) with the RBF kernel3, Real AdaBoost4 with single branch weak learn-
ers, and our own MaxFeature classifier using only single dominant artifact fea-
ture. The classifiers are trained/tested using leave-one-out cross validation. This
means that one image at time is picked for testing and the classifier is trained us-
ing the remaining 507 images. This gives largest amount of training data without
using the test sample for training.

Figure 7 shows the ROC curves for classification using different classifiers.
True/false (T/F) correspond to bad/good quality images with labels {3,4}/{0,1},
respectively. The ROC curves show TPR and FPR when the threshold for
the score of the classifier is lowered gradually. As can be seen in Figure 7,
SVM gives the best result followed by quite similar MaxFeature and AdaBoost

3 www.csie.ntu.edu.tw/~cjlin/libsvm
4 graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox

www.csie.ntu.edu.tw/~cjlin/libsvm
graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox
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Fig. 7. ROC curves for detecting bad quality images with different classifiers

Fig. 8. Examples of classification results. Bad quality (top row) and good quality
(bottom row).

classifiers. Although, the MaxFeature classifier is fastest to compute, we chose
to use SVM classifier in operating point corresponding to the threshold 0: TPR
0.812 (147/181), FPR 0.055 (18/327), and total accuracy 89.76. Figure 8 shows
some examples of classification results. It is noteworthy that in this operating
point there was no {0} labels in FP samples and only four {3} labels among FN
samples. So, none of the best quality images would be thrown away, which is
important.

5 Conclusions

In this study, we proposed a method for blind image quality evaluation based
on different types of image degradations. Evaluation was done using features
extracted from the image which are subsequently fed to a SVM classifier. Also a
completely new feature for detecting strong blur was proposed. According to the
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experiments, the most reliable detection of the blur is achieved by using both
an existing and the proposed blur measurement features. For the overall two-
class image quality grading, we achieved ≈ 90% accuracy by using the selected
features and the classifier.

The proposed method is designed to be fast to compute so that it can be
applied on-line and also with mobile devices. The applications could include,
for example, assisting photographer by warning about low quality results or
removing low quality gallery images.
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Abstract. New technology is continuously proposed in the printing technology,
and as a result the need to perform quality assessment is increasing. Subjective
assessment of quality is tiresome and expensive, the use of objective methods
have therefore become more and more popular. One type of objective assessment
that has been subject for extensive research is image quality metrics. However,
so far no one has been able to propose a metric fully correlated with the per-
cept. Pedersen et al. (J Elec Imag 19(1):011016, 2010) proposed a set of qual-
ity attributes with the intention of being used with image quality metrics. These
quality attributes are the starting point for this work, where we evaluate image
quality metrics for them, with the goal of proposing suitable metrics for each
quality attribute. Experimental results show that suitable metrics are found for
the sharpness, lightness, artifacts, and contrast attributes, while none of the eval-
uated metrics correlate with the percept for the color attribute.

Keywords: Image quality, metrics, print quality, quality attributes, color
printing.

1 Introduction

Image Quality (IQ) assessment is an important part in the printing industry. The in-
troduction of new technology and products require assessment of quality to see if the
quality is improved over the current technology. When observers judge IQ they base
their decision a number of quality attributes, such as colorfulness, contrast, and sharp-
ness. Many researchers have been investigating the importance of different quality at-
tributes and their influence on IQ [14,20,19,24,23]. Knowledge about the importance of
quality attributes can be used to achieve an optimal reproduction of an image [8]. How-
ever, evaluating all quality attributes in the literature is not practical, therefore most
researchers evaluate a subset of quality attributes. A subset of quality attributes helps
reduce the complexity of IQ, and the strengths and weaknesses of a system can be mod-
eled using only a few parameters. Recently, Pedersen et al. [24,23] proposed a set of six
Color Printing Quality Attributes (CPQAs) for the evaluation of print quality:

– The color CPQA contains aspects related to color such as hue, saturation, and color
rendition, except lightness.

– The lightness CPQA is considered so perceptually important that it is beneficial to
separate it from the color CPQA. Lightness ranges from light to dark.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 317–326, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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– The contrast CPQA can be described as the perceived magnitude of visually mean-
ingful differences, global and local, in lightness and chromaticity within the image.

– The sharpness CPQA is related to the clarity of details and definition of edges.
– The artifacts CPQA includes noise, contouring, and banding. In color printing,

some artifacts can be perceived in the resulting image. These artifacts can degrade
the quality of an image if they are detectable.

– The physical CPQA contains all physical parameters that affect quality, such as
paper properties and gloss.

These were proposed with the intention of being used in both subjective and objective
evaluation of quality. Validation of the CPQAs showed that they were suitable to eval-
uate IQ [24,26]. Not long ago, Pedersen et al. [25,27] evaluated IQ metrics for each
CPQA. Their evaluation indicated that metrics based on structural similarity gave good
results for the sharpness, contrast, and lightness CPQAs, but for the other CPQAs the
results were inconclusive. The conclusion was that further evaluation was needed in or-
der to find suitable metrics to assess the quality of the CPQAs. We continue this work
and evaluate IQ metrics for the CPQAs, with the intention of proposing suitable metrics
for each CPQA. This work is considered as a part of our long term goal to be able to
assess quality without being dependent on human observers.

The remainder of the paper is organized as follows: in the next section we introduce
the experimental setup, before we evaluate a set of metrics against the perceptual data
from the experiment. Finally we conclude and propose future work.

2 Experimental Setup

We want to investigate the relationship between the percept of the CPQAs and IQ met-
rics. In order to do this we have carried out an experiment where human observers judge
the quality of the CPQAs on a set of printed images.

2.1 Test Images

Fig. 1. The ten test images used in the ex-
periment. Each reproduced with four different
settings.

Ten images (Figure 1) were selected from
the ISO standards [12,13]. The number
of images follow the recommendation by
Field [9], who recommend between five
and ten images, and the CIE [5], who rec-
ommend at least four images. The images
were selected to cover a wide range of
characteristics, such as lightness from low
to high levels, saturation from low to high
levels, contrast from low to high levels,
hue primaries, fine details, memory colors as skin tones. These different characteris-
tics will ensure evaluation of many different aspects of IQ.
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2.2 Printing Workflow

Firstly, the color space of all the images was changed to sRGB to define the reference
images . Secondly, then the color space was changed to CMYK using the output profile
that was generated using a TC3.5 CMYK test target, measured with a GretagMacbeth
Eye-One Pro spectrophotometer and generated with ProfileMaker Pro 5.0.8. Finally
the CMYK images were printed by a HP DesignJet 10ps printer with the HP soft-
ware RIP v2.1.1 using four different modes: the best print mode, with the resolution of
1200x1200, and the perceptual intent (abbr. BP), the best mode and relative colorimetric
intent (abbr. BR), normal print mode, with the resolution of 600x600 and the perceptual
intent (abbr. NP), and the last with normal print mode and relative colorimetric intent
(abbr. NR). This resulted in the ten images having four different reproductions, giving
a total of 40 images for the observers to judge.

2.3 Observers

Ten observers participated in the experiment, all had normal vision without visual
deficits. There were 3 females and 7 males with an average age of 23 years.

2.4 Viewing Conditions

The observers were presented with a reference image on an EIZO ColorEdge CG224
at a color temperature of 6500 K and luminance level of 80 cd/m2. The image set was
rendered for sRGB display, and therefore a monitor capable of displaying the sRGB
gamut was the most adapted reproduction device for the set of images. A hood was
fitted to the monitor to prevent glare. The printed images were presented randomly in
a controlled viewing room at a color temperature of 5200 K, an illuminance level of
450 ±75 lux and a color rendering index of 96. The observers viewed the reference
image and the printed image simultaneously from a distance of approximately 60 cm.
The experiment followed the CIE guidelines [5] as closely as possible.

2.5 Experiment Procedure

The observers were asked to compare one image selected from the ten images at random
to its four prints. Sharpness quality, color quality, lightness quality, contrast quality,
artifacts quality, and the quality of the main characteristics were evaluated on a five step
scale, where 1 indicated best quality and 5 the worst quality. The physical CPQA was
not evaluated since no physical parameter was changed.

3 Experimental Results

From the experiment z-scores were calculated using the color engineering toolbox [10],
which indicated the perceived differences between the four reproductions. These z-
scores were calculated for each CPQA and the main characteristics, both image-wise
and for the complete dataset.
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It has been suggested in the literature that some regions of the image is more impor-
tant than others [30,18,43]. In order to investigate the relationship between the CPQAs
and different regions of the image, we have calculated the Pearson correlation coeffi-
cients [15] between the main characteristics and the CPQAs. This analysis would reveal
if the quality of the CPQAs are related to the quality of main characteristics (region-of-
interest). From Table 1 we can see that in the different reproductions the main charac-
teristics have varying correlation coefficients with the CPQAs. This indicates that the
quality of the CPQAs are not directly linked with main characteristics, but that other
characteristics are important for the impression of quality of most CPQAs. However,
for some CPQAs and printing modes we see a high correlation between the main char-
acteristics and the CPQAs, this might indicate that IQ metrics performing a weighting
of regions could be more suitable than those assigning equal weight to the entire image.

Table 1. Pearson correlation between z-scores of the main characteristics and the z-scores of the
CPQAs for each printing mode and for all modes

CPQAs
Mode Color Lightness Sharpness Contrast Artifacts

BP 0.85 0.47 0.55 0.92 0.28
BR 0.72 0.45 0.48 0.78 0.55
NP -0.02 0.60 0.30 0.61 0.71
NR 0.31 0.29 0.31 0.88 0.60
All 0.79 0.77 0.71 0.89 0.77

4 Evaluation of Image Quality Metrics

Our long term goal is to be able to automatically evaluate IQ through the CPQAs, more
specifically using IQ metrics. In this part we evaluate a set of IQ metrics for each CPQA
against the perceptual data from the experiment.

4.1 Preparation of the Printed Images

The printed images cannot be directly used with IQ metrics, since the metrics require a
digital input. Because of this the images need to be digitized. To perform this we have
adopted the framework by Pedersen and Amirshahi [22]. First the images were scanned
at a resolution of 600 dpi using an HP ScanJet G4050. The scanner was characterized
with the same test target as used to generate the printer profile. Since the experiment
was carried out under mixed illumination, the CIECAM02 chromatic adaptation trans-
form [6] was used to ensure consistency in the calculations for the metrics. The CIE
guidelines were followed [6], using the measured reference white point of the monitor
and the media were used as input to the adaptation transform.

4.2 Selected Image Quality Metrics

There are a number of IQ metrics proposed in the literature [31]. We cannot eval-
uate all of these, and because of this we have made a selection based on previous
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Table 2. Selected IQ metrics for the evaluation of CPQAs

�������Metric
CPQA

Sharpness Color Lightness Contrast Artifacts

ABF [38] X X X
Busyness [21] X X
blurMetric [7] X
Cao [3] X X
CW-SSIM[40] X X X X
ΔLC [2] X X X X
IW-SSIM [39] X X X X
LinLab [16] X X X
MS-SSIM [42] X X X X
M-SVD [34] X X X
PSNR-HVS-M[32] X X X
PSNR-HVS [32] X X X
RFSIM [44] X X X X
RRIQA [41] X X X X
S-CIELAB [45] X X X
S-DEE [35] X X X
SHAME [29] X X X
SHAME-II [29] X X X
SSIM [37] X X X X
VIF [33] X X X X
VSNR [4] X X X
WLF [36] X X
YCXCzLab [17] X X X

evaluations [1,11,22,25,27], the criteria on which the metrics were created, guidelines
for metrics for CPQAs [27], and their popularity. Since many of the metrics are designed
to account for specific aspects, only the ones suitable for a given CPQA is evaluated.
An overview of the 23 metrics selected for the evaluation and the CPQAs they evaluate
is found in Table 2.

4.3 Evaluation Method

Three different methods were adopted for the evaluation of the IQ metrics. In order to
evaluate all aspects of the metrics we will investigate the performance of the IQ metrics
both image by image, and the overall performance over the entire set of images. The
Pearson correlation [15] is used for the image-wise evaluation, comparing the calculated
quality and observed quality. The mean of the correlation for each image in the dataset
and the percentage of images with a correlation above 0.6 is used as a measure of
performance. Overall performance is also an important aspect, and for this evaluation
we will use the rank order method [28], where the correlation between the z-scores from
the observers and the z-scores of the metric is the indication of performance. With only
four data points it is important to carry out visual inspections of the z-scores to validate
the correlation values.
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4.4 Evaluation Results

Due to many IQ metrics and several CPQAs we will only show the results of the best
performing metrics for each CPQA.

Sharpness. For sharpness the Structural SIMilarity (SSIM) based metrics perform well
(Table 3). The Multi-Scale SSIM (MS-SSIM) has the highest mean correlation with
0.73 and the highest number of images with a correlation above 0.6. It also performs
among the best for the rank order correlation. The results show that metrics based on
structural similarity are well-suited to measure perceived sharpness quality. However,
other approaches as the ΔLC and the Riesz-transform based Feature SIMilarity metric
(RFSIM) have very good performance, indicating that these might be suitable as well.

Table 3. Evaluation of IQ metrics for the
sharpness CPQA

Rank order

Metric
Mean

correla-
tion

Above
0.6

Cor-
rela-
tion

p-value

CW-SSIM 0.66 70 0.94 0.06
ΔLC 0.43 50 1.00 0.00
IW-SSIM 0.56 70 0.89 0.11
MS-SSIM 0.73 80 0.94 0.06
RFSIM 0.61 70 0.97 0.03
SSIM 0.66 80 0.96 0.04

Table 4. Evaluation of metrics for the color
CPQA. Color indicates the color part of the metric.

Rank order

Metric
Mean

correla-
tion

Above
0.6

Cor-
rela-
tion

p-value

ABF 0.07 0 0.23 0.77
LinLab -0.09 0 0.04 0.96
SCIELAB -0.27 0 -0.24 0.76
S-DEEColor -0.38 0 -0.35 0.65
SHAME 0.01 10 0.10 0.90
SHAMEColor 0.05 20 0.12 0.88
SHAMEII 0.23 30 0.27 0.73
YCxCzLab 0.24 30 0.33 0.67

Color. For the color CPQA none of the evaluated metrics perform well (Table 4). It
should be noted that all of these metrics are based on color differences, and this might
be an indication that using only the color difference from the original is not enough
to predict perceived color quality. The color CPQA had a fairly high correlation for
all modes between the main characteristic and perceived IQ (Table 1), which might
indicate that metrics giving more importance to certain regions, such as SHAME and
SHAME-II, could perform better than the metrics that equally weight the entire image.
The experimental results in Table 4 shows that these metrics do not outperform other
metrics.

Lightness. The SSIM based metrics perform very well for the lightness attribute (Ta-
ble 5), the Complex Wavelet SSIM (CW-SSIM) has a mean correlation 0.86 and all
images have a correlation above 0.6. However, other metrics also perform well, such as
the RFSIM, ΔLC, Spatial-DEE with only the lightness part (S-DEELightness) and Adap-
tive Bilateral Filter with only the lightness part (ABFLightness). The results indicate that
any of these are appropriate to measure lightness quality. These metrics take different
approaches to measure lightness quality, indicating that different strategies are suitable.
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Table 5. Evaluation of metrics for the light-
ness CPQA. Lightness indicates the lightness
part of the metric.

Rank order

Metric
Mean

correla-
tion

Above
0.6

Cor-
rela-
tion

p-value

ABFLightness 0.69 80 0.87 0.13
CW-SSIM 0.86 100 0.93 0.07
ΔLC 0.69 80 0.99 0.01
IW-SSIM 0.85 80 0.95 0.05
MS-SSIM 0.82 90 0.93 0.07
RFSIM 0.86 90 1.00 0.00
S-DEELightness 0.80 90 0.89 0.11
SSIM 0.63 70 0.98 0.02

Table 6. Evaluation of metrics for the contrast
CPQA

Rank order

Metric
Mean

correla-
tion

Above
0.6

Cor-
rela-
tion

p-value

CW-SSIM 0.72 90 1.00 0.00
IW-SSIM 0.59 70 0.94 0.06
MS-SSIM 0.72 80 1.00 0.00
RFSIM 0.67 80 0.96 0.04
SSIM 0.65 70 0.99 0.01

Contrast. Many metrics perform well for the contrast CPQA (Table 6). The SSIM
based metrics all have a correlation above 0.6 in more than 70% of the images, they
also have a high mean correlation and excellent rank order correlation. The RFSIM
has a similar performance to the SSIM based metrics. All of these metrics would be
appropriate for measuring contrast. One should notice that all of the well performing
metrics for contrast are based on lightness, and none of them take color information
into account. This might make them inappropriate to measure contrast in images where
color strongly contributes to the impression of contrast.

Table 7. Evaluation of metrics for the artifacts CPQA

Rank order

Metric
Mean

correla-
tion

Above
0.6

Cor-
rela-
tion

p-value

CW-SSIM 0.83 90 0.97 0.03
ΔLC 0.72 70 0.94 0.06
IW-SSIM 0.83 90 0.99 0.01
MS-SSIM 0.77 90 0.97 0.03
RFSIM 0.82 90 0.99 0.01
SSIM 0.60 70 1.00 0.00

Artifacts. The performance for the artifacts CPQA (Table 7) follow the results of many
of the other CPQAs. The SSIM based metrics perform well together with ΔLC and
RFSIM. There are only minor differences between these, and any of them seem to be
suitable to measure artifacts. However, artifacts can vary significantly and to measure
specific artifacts specially designed metrics might be required.
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5 Conclusion and Future Work

In this research we focused on quality attributes for automatic assessment of print qual-
ity. We evaluated a set of image quality metrics for a set of quality attributes, with the
intention of proposing suitable metrics for each attribute. The experimental results show
that structural similarity based metrics perform well for the sharpness, contrast, and ar-
tifacts attributes, but for the color attribute none of the evaluated metrics correlated with
the percept, and for the lightness attribute many different metrics perform well.

Future work should include further investigation of the color attribute in order to
find a suitable metric. Another important issue is how to combine the results from the
attributes to obtain one number representing overall image quality.
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ence. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2009. LNCS, vol. 5646, pp.
81–90. Springer, Heidelberg (2009)



326 M. Pedersen, Y. Zheng, and J.Y. Hardeberg

30. Pedersen, M., Hardeberg, J.Y., Nussbaum, P.: Using gaze information to improve image dif-
ference metrics. In: Rogowitz, B., Pappas, T. (eds.) Human Vision and Electronic Imaging
VIII, San Jose, CA, USA. SPIE Proceedings, vol. 6806, p. 680611 (January 2008)

31. Pedersen, M., Hardeberg, J.: Survey of full-reference image quality metrics. Høgskolen i
Gjøviks rapportserie 5, The Norwegian Color Research Laboratory (Gjøvik University Col-
lege) (June 2009) ISSN: 1890-520X

32. Ponomarenko, N., Silvestri, F., Egiazarian, K., Carli, M., Astola, J., Lukin, V.: On between-
coefficient contrast masking of DCT basis functions. In: Third International Workshop on
Video Processing and Quality Metrics for Consumer Electronics VPQM 2007, Scottsdale,
Arizona, USA, pp. 1–4 (January 2007)

33. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Transactions on Im-
age Processing 15(2), 430–444 (2006)

34. Shnayderman, A., Gusev, A., Eskicioglu, A.M.: An SVD-based grayscale image quality mea-
sure for local and global assessment. IEEE Transactions On Image Processing 15(2), 422–
429 (2006)

35. Simone, G., Oleari, C., Farup, I.: Performance of the euclidean color-difference formula
in log-compressed OSA-UCS space applied to modified-image-difference metrics. In: 11th
Congress of the International Colour Association (AIC), Sydney, Australia (October 2009)

36. Simone, G., Pedersen, M., Hardeberg, J.Y., Rizzi, A.: Measuring perceptual contrast in a
multilevel framework. In: Rogowitz, B.E., Pappas, T.N. (eds.) Human Vision and Electronic
Imaging XIV, vol. 7240. SPIE, San Jose (2009)

37. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612
(2004)

38. Wang, Z., Hardeberg, J.Y.: An adaptive bilateral filter for predicting color image difference.
In: Color Imaging Conference, pp. 27–31. IS&T/SID, Albuquerque, NM, USA (2009)

39. Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment.
IEEE Transactions on Image Processing (2010)

40. Wang, Z., Simoncelli, E.: Translation insensitive image similarity in complex wavelet do-
main. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2,
pp. 573–576 (2005)

41. Wang, Z., Simoncelli, E.P.: Reduced-reference image quality assessment using a wavelet-
domain natural image statistic model. In: Human Vision and Electronic Imaging X. Proceed-
ings of SPIE, vol. 5666, pp. 149–159. SPIE, San Jose (January 2005)

42. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality
assessment. In: Proceedings of the 37th IEEE Asilomar Conference on Signals, Systems and
Computers, pp. 1398–1402 (November 2003)

43. Wang, Z., Bovik, A.C., Lu, L.: Wavelet-based foveated image quality measurement for region
of interest image coding. In: International Conference on Image Processing, pp. 89–92. IEEE,
Los Alamitos (2001)

44. Zhang, L., Zhang, L., Mou, X.: RFSIM: A feature based image quality assessment metric
using riesz transforms. In: Internatonal Conference on Image Processing, Hong Kong, pp.
321–324 (September 2010)

45. Zhang, X., Farrell, J., Wandell, B.: Application of a spatial extension to CIELAB. In: Very
high resolution and quality imaging II, San Jose, CA, USA. SPIE Proceedings, vol. 3025, pp.
154–157 (February 1997)



Supercontinuum Light Sources for

Hyperspectral Subsurface Laser Scattering

Applications for Food Inspection

Otto Højager Attermann Nielsen1, Anders Lindbjerg Dahl1, Rasmus Larsen1,
Flemming Møller2, Frederik Donbæk Nielsen3, Carsten L. Thomsen3,

Henrik Aanæs1, and Jens Michael Carstensen1

1 DTU Informatics, Technical University of Denmark
2 DANISCO A/S

3 NKT Photonics A/S

Abstract. A materials structural and chemical composition influences
its optical scattering properties. In this paper we investigate the use of
subsurface laser scattering (SLS) for inferring structural and chemical
information of food products. We have constructed a computer vision
system based on a supercontinuum laser light source and an Acousto-
Optic Tunable Filter (AOTF) to provide a collimated light source, which
can be tuned to any wavelength in the range from 480 to 900 nm. We
present the newly developed hyperspectral vision system together with
a proof-of-principle study of its ability to discriminate between dairy
products with either similar chemical or structural composition. The
combined vision system is a new way for industrial food inspection al-
lowing non-intrusive online process inspection of parameters that is hard
with existing technology.

1 Introduction

The properties of a suspended materials or colloids are affected by the particle
size distribution. Knowledge about particle size distribution is especially relevant
for many products in the food industry, for example fat and protein particles
suspended in water. The size and density distribution of particles influences
parameters such as “mouth feel” and shelf life, which are important quality pa-
rameters in the food industry. In this paper we address the problem of inferring
information about particle size distribution based on subsurface laser scatter-
ing (SLS). The subsurface scattering of light is affected by both the chemical
and structural composition of a material [8]. Based on these properties we have
designed a vision system consisting of a hyperspectral laser and a CCD camera
for measuring subsurface scattering. We provide a proof-of-principle for inferring
information about particle size distribution demonstrated on a number of dairy
products. This system allows an opportunity for effective online monitoring of
food products as well as real time process inspection, based on a non-intrusive
system.
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Related work
Other methods exist for measuring parameters affected by particle size distribu-
tion, for example rheology based on a measurement of the consistency and flow
of the food product [5]. Another approach is based on measuring the scattering
of a water diluted sample [14]. However the water dilution can alter the particle
composition of the food product. A vision system avoids the intrusive nature of
these methods yet being fast and objective.

Many vision based techniques have been developed for industrial food inspec-
tion, and especially multispectral and hyperspectral methods have been suc-
cessful [3,4,15]. The present system is based on a supercontinuum lightsource,
filtered by and AOTF and light delivered through a single mode fiber. Together
with a camera, as illustrated in Figure 1, the setup becomes a highly flexible
vision system. Our setup follows the work of [1], where an SLS-system1 devised
with laser diodes is demonstrated. In their work SLS-features are correlated with
the composition of milk and rheology of yoghurt. Our system is extended with
multiple wavelengths.

Fig. 1. (a) Illustration of our hyperspectral vision system for probing a samples SLS
properties. (b) Image examples of the SLS properties of two diary products measured
at 630 nm. Both structural and chemical properties affect the appearance of the laser
spot.

Hyperspectral imaging was originally developed for geology and mining based
on remote sensing [11,16] and many hyperspectral analysis techniques have been
developed from these problems like spectral unmixing. But hyperspectral imag-
ing has many other useful applications including food analysis where these tech-
niques is widely employed in both research and industry [7,10,15].

Hyperspectral images can be acquired by point scanning, line scanning, area
scanning and single shot acquisition [15]. In the point and line scanning the
acquisition device or the sample, needs to be moved to obtain a hyperspectral
1 http://www.videometer.com/products/products.html

http://www.videometer.com/products/products.html
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image, which potentially is a source of error [7,13]. In the area scanning, mul-
tiple exposures are acquired from the same geometry, whereas the single shot
acquires the full hyperspectral information at one exposure. Single shot has clear
advantages for speed and robustness, but hyperspectral single shot technology is
still under development and not ready for industrial inspection [18]. The narrow
spectrum for hyperspectral images are typically obtained by filtering in front of
the imaging device [15], whereas we perform light filtering based on an AOTF
allowing a precise control of the wavelength. In this setup we take advantage of
the stable geometry with a fixed camera. The tradeoff is the need for multiple
exposures – one at each wavelength. Our aim is to construct a setup where a few
relevant wavelengths can be identified and subsequently used for constructing
an industrial inspection system.

A very simple approach for obtaining hyperspectral images is to use a filter
wheel [2], but this is restricted to a limited number of spectral bands. Tunable
filters has a clear advantage in providing a flexible control of the wavelengths, but
until now the use of tunable filters for food inspection has been limited [15,17].
There are some examples tunable filters for quality control of food including the
estimation of fruit firmness in [12] and rot of mandarins in [6] based on a LCTF
(liquid crystal tunable filter). The LCTF is placed in front of the camera lens to
filter the light into the camera, in contrast to our setup where the light source is
filtered. The LCTF technology is capable of covering a similar spectral range as
the AOTF. We have chosen the AOTF because it is appropriate with the laser
beam setup that we employ.

The main contributions of this paper are:

1. A SLS computer vision setup based on a CCD camera and a hyperspectral
laser obtained with an AOTF in front of a supercontinuum laser.

2. A proof-of-principle that particle size distribution can be inferred from the
SLS measurements.

3. A platform for future development of hyperspectral SLS.

In the following section we will provide details of the vision system and describe
how we extract relevant features. After that we show our experimental validation,
and finally we discuss the obtained results.

2 Method

The purpose of the SLS technique is to correlate the observed image response
with material properties of the measured samples. This involves design choices
for the vision setup, extraction of relevant features and statistical analysis of the
robustness of the measurements.

Vision system
The hyperspectral analysis is based on images acquired from the vision system
shown in Figure 1 and 2. The system components are described in Table 1.
The systems ability to perform hyperspectral imaging is imposed by changing
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Table 1. Hardware used in the SLS vision system

System Device

Supercontinuum light source SuperK Power from NKT Photonics
AOTF SpectraK Dual from NKT Photonics
Camera Grasshopper CCD camera from Point Grey

the wavelength of the illumination light. The illumination system is based on
a supercontinuum white light laser producing a quasi continues output in the
range from 470 nm to 2400 nm. The output is delivered in a microstructured
optical fiber to an AOTF for spectral filtering of the beam. Currently the spectral
filtering is supported in the range from 480 nm - 850 nm with a spectral width
growing linearly from 3.5 nm to 14 nm. The final beam power output of the
combined system varies as a function of wavelength from around 0.4 to 2.5 mW,
but the output is very stable over time. The AOTF is controlled by a direct
digital synthesizer (DDS) which enables a fast computer controlled frequency
change up to 10 times per second with an accuracy of 0.1 nm.

Fig. 2. Schematic illustration of the system interfaces and the scheme for generating
the hyperspectral illumination system. The supercontinuum laser (a) delivers white
collimated light to the AOTF, which is controlled by the DDS (b). A focused laser
beam is illuminating the sample and an image is captured with a normal CCD camera
(c). The entire setup is computer controlled (d).

The scattering distribution monitored from the sample will be a convolution
of the scattering profile with the beams profile on the surface. Therefore, it is
preferred to have a small simple beam profile. The final light delivery from the
AOTF to the food sample is performed using a LMA-5 photonic-crystal fiber.
The beam is collimated after the fiber using a 5 mm focal length lens. Simulta-
neously the scattering center for the hyperspectral visions system remains fixed
because the LMA-5 fiber support light delivery in the full spectral range covered
by the AOTF.

The scattering profile is imaged using a 16 bit CCD camera with a spatial
resolution of 1600 × 1200 pixels. The current camera connection reduces the
frame rate to 4 Hz, resulting in a total acquisition time of about 3 min for a
hyperspectral characterization of a sample with images from 480 nm to 850 nm
with a spectral resolution of 5 nm.
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Characterization of SLS features
The images are characterized by analysing a single profile through the scattering
distribution. We have adopted a model from [1] to characterize the distributions,
based on taking the logarithm to the distribution and fitted with a linear curve.
An example of the data analysis is presented in Figure 3.

Fig. 3. Illustration of the data produced with the new vision system and the data
analysis from the loglog model. (a) An image of the SLS profile in whole milk, the red
trace is used in the analysis of the scattering profile (red pixels have is high intensities
and blue have low). (b) Intensity through the scattering profile together with the beam
profile. (c) loglog model for the scattering profile together with the linear fit. The black
box indicate the range of data for the analysis.

The image from Figure 3 (a) shows a typical example of the scattering profile.
It is vaguely elongated along the vertical-axis due to the beam being non orthog-
onal to the samples surface. In addition the images are suffering from a vertical
smearing because of the heavy overexposure of the center pixels. An example of a
scattering profile used and the loglog analysis of the image is presented in Figure
3. The scattering profile shows two different regimes previously presented by [9].
The interval closest to the scattering center is dominated by single scattering or
diffuse reflection. In this regime the resulting scattering profile is almost propor-
tional to the beam profile projected on the samples surface. Light rays in this
part of the image have not undergone multiple scattering and do not give much
information on the samples properties. The scattering pattern, which exceeds
the size of the beam width, have undergone multiple scattering events and can
to some extend be modeled as a diffusion process. In this range, the data with
higher intensity than the background noise of the camera is fitted with a linear
slope. The trace analyzed with this method results in two parameters, a slope
and an offset. The offset of the loglog curve, which represents the amplitude of
the SLS profile at the image center, is very system dependent. It may be possible
to make the value independent of the system by calibrating the signal strength
on the CCD camera. The slope of the loglog curve describes the rate of descend
and is therefore a combination of the scattering properties of the sample and its
absorption spectrum. A high value of the loglog slope corresponds to a narrow
scattering profile.
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(a) Measurement of the same sample
repeated four times.
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(b) Measurement of the whole proce-
dure repeated four times.

Fig. 4. Average value and standard deviation showing the loglog slope of the scattering
distribution in four measurements on the same sample of whole milk as a function of
the spectral band. The figures are almost identical because whole milk is measured
in both experiments – the difference is that the same milk sample was measured four
times in (a) whereas four different samples were used in (b).

This form of characterization will be referred to as the loglog model. It only
makes use of a limited amount of image information close to the scattering
centre. The loglog model is not motivated by a physical understanding of the
scattering process, but it gives a robust method that previously has been shown
to correlate well with the structure of the sample [1].

Reproducability
The measurements are performed by first filling up a measuring cup to a specific
height, then conduct a measurement. This procedure has two major uncertainty
elements, the reproducibility of characterizing the same sample, which is a com-
bined effect of the vision system, and a simpler uncertainty element in the way
the sample and cup is positioned in the vision system. The beam is not perfectly
collimated so the spot size of the laser beam may vary as a function of the sam-
ples height in the cup. A variation of the samples height will also change the
size of the scattering profile measured by the camera, which is focused to fixed
depth below the camera.

To estimate the vision systems robustness against variations in the character-
ization of a given sample, the same sample was depicted four times and analyzed
with the loglog model as shown in Figure 4. The resulting average values and
standard deviation is presented in Figure 4(a). Similarly the reproducibility of
the measurements procedure was estimated by performing the parameters of the
same product four times. The whole milk was poured into the measurement cup
and analyzed with the vision system, and the results are presented in Figure
4(b). The standard deviation of the sample characterization is generally much
smaller than both the amplitude and the range spanned by the slope of the full
spectrum that have been analyzed.
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3 Experiments

Here we present the results of experiments that demonstrate the vision systems
capabilities of discriminating chemical and structural variation. These measure-
ments are the first presentation of hyperspectral characterization of the SLS
properties of a material. As a proof-of-principle study a set of commercially avail-
able diary product where measured and characterized using the loglog model.

Chemical composition
The first three measurements focus on products with different chemical contents.
We have chosen cream products with different fat percentage to be characterized
using the SLS vision system. The different fat contents will affect the scattering
profile because it increases the number of scattering centers in the sample, and
thus the slope and offset of the profile. The measured profiles are presented in
Figure 5 showing a generally increasing slope as a function of the fat contents.
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Fig. 5. Experiment showing the hyperspectral response for cream products differing by
fat content. The fat content is especially distinguishable for low and high wavelengths
for the slope parameter, whereas there is also information in the mid rage of the offset
parameter.

The measurements of the scattering slope using the loglog model indicate that
the largest discriminative power is found at the long and short wavelengths. The
slope curves collapse in the spectral range from ∼ 530 nm to ∼ 700 nm. It is seen
that the changes in the slope occurs on a length scale of one hundred nanometer
in this spectral range. With the new hyperspectral vision system we are able to
verify this trend. However the offset still discriminates between the samples in
this interval.

Structural variation
Another important parameter, that we intend to measure is the particle sizes of
different components in the sample. As a first indication of this, the SLS proper-
ties of reduced fat milk was performed on conventionalmilk and a organic product.
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Fig. 6. Experiment showing the hyperspectral response for reduced fat milk differing
by particle size and distribution. The organic product is unhomogenized whereas the
conventional is homogenized. The homogenization process alters the size and distribu-
tion of the fat particles. Note that the difference is primarily a scale change of the SLS
parameters.

These products have different particle size distributions due to the homogeniza-
tion of the conventional milk, which reduces the particle size. Consequently the
conventional milk has a higher density of scattering centers, but with a smaller
average size. The resulting SLS response is presented in Figure 6.

The gain of hyperspectral analysis is small, but from the analysis we can
choose the most discriminative wavelengths. This allows a simple but powerful
method for discriminating between these products that only differ by homoge-
nization process.

To illustrate the diversity of samples that can be examined using the new
hyperspectral SLS vision system, the scattering profiles of a high particle density
cream is compared to the scattering profile of fat reduced milk and yoghurt. The
measured profiles are presented in Figure 7(a).
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Fig. 7. Experiment showing the hyperspectral response for a diverse collection of
products. This illustrates the large amount of information in hyperspectral SLS
measurements.
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4 Discussion

We have demonstrated hyperspectral SLS on a number of samples and shown
that we can uniquely characterize a sample using SLS parameters. Repeated
studies show that the parameters only vary slightly when the data acquisition is
performed several times, indicating that the system is stable over time. This is
very encouraging in relation to industrial inspection of food products based on
this technique.

We chose to demonstrate the hyperspectral SLS on dairy products because
they contain suspended particles causing the subsurface scattering. Also a large
variety of dairy products are easily available making it a good choice for demon-
strating the SLS system. But the SLS technique can be used for measuring many
other products – especially biological samples have subsurface scattering, mak-
ing the technique widely applicable to a range of food products including meat
and vegetables.

We measure a parameter based on the logarithm of the measured pixel inten-
sity taken twice (log(log(I)), where I is the image intensity), which is adopted
from [1]. Empirical studies have shown that this map becomes linear, which al-
lows a characterization based on two parameters – the slope and the intercept
of the profile. The simplicity of this approach is very attractive, because it has
shown to be robust and it is easy to measure. The only problem is the parameters
dependence of the system, and to overcome this we need to include a calibration
procedure in a future system. Further research should address the parameters
characterizing a sample. One interesting application would be to directly in-
fer particle size and distribution and another would be to measure refractive
properties.

Results are reported for a single profile, so at the moment we are not utiliz-
ing the information in the entire image. A consequence is that image noise is
influencing the measurements, as seen from the error bars in the graphs shown
in Figure 5, 6 and 7. We could utilize more of the image to obtain higher signal
to noise ratios, for example by sampling more profiles or employing a 2D model.

The characterization is based on measurements of the subsurface scattering, so
we would like to optimize the system to capture as much information about the
subsurface scattering as possible. The parameters governing the measurements
include the beam power and profile of the laser and the exposure time of the
camera. A large proportion of the light reflected close to the center of the beam
is a result of single scattering or diffuse reflection. Optimally the beam profile
should be as small as possible, so our relatively large profile can make the result
less precise.

The beam power and exposure time have similar effect, and a large power or
long exposure results in a large saturation of the depicted laser spot. This gives
a high signal to noise ratio, but at the cost of information at low intensities. Low
beam power or exposure will provide this information, but with lower signal
to noise ratio. This tradeoff between illumination and exposure time can be
accounted for by using high dynamic range, where an image is composed of
multiple exposures to obtain high signal to noise ratio in both the low and high



336 O.H.A. Nielsen et al.

intensity range. In this paper we chose a single exposure, and despite this we
were able to distinguish small differences like homogenized vs. non-homogenized
milk.

Many of the samples are distinguishable at one wavelength, but it is important
to note that this is not known in advance. Consequently our SLS system allows
us to select the wavelengths with highest discriminative power, and can this way
aid in constructing an optimal food inspection system, for example based on less
expensive hardware like laser diodes. As a result the reconfigurable nature of the
SLS system has great potential in explorative food analysis, but also in more
general material characterization.

5 Conclusion

We have addressed the problem of inferring properties of a material from
measurements of subsurface light scattering. Our contributions are (i) a hy-
perspectral SLS (subsurface laser scattering) vision system, (ii) a procedure for
characterizing the measured samples, and (iii) an experimental analysis of a
number of dairy products. This explorative analysis shows a proof-of-principle
of our hyperspectral SLS system for food characterization, and acts as a platform
for future development.
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Herrero, C., Moltó, E., Blasco, J.: Hyperspectral system for early detection of
rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engi-
neering 89(1), 80–86 (2008)



Supercontinuum Light Sources for Hyperspectral Subsurface Laser Scattering 337

7. Gowen, A.A., O’Donnell, C.P., Cullen, P.J., Downey, G., Frias, J.M.: Hyperspectral
imaging-an emerging process analytical tool for food quality and safety control.
Trends in Food Science & Technology 18(12), 590–598 (2007)

8. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for
subsurface light transport. In: Proceedings of the 28th Annual Conference on Com-
puter Graphics and Interactive Techniques, pp. 511–518. ACM, New York (2001)

9. Joshi, N., Donner, C., Jensen, H.W.: Noninvasive measurement of scattering
anisotropy in turbid materials by nonnormal incident illumination. Optics let-
ters 31(7), 936–938 (2006)

10. Kim, M.S., Chen, Y.R., Mehl, P.M.: Hyperspectral reflectance and fluorescence
imaging system for food quality and safety. Transactions of the ASAE 44(3), 721–
729 (2001)

11. Nielsen, A.A.: Spectral mixture analysis: Linear and semi-parametric full and it-
erated partial unmixing in multi-and hyperspectral image data. Journal of Math-
ematical Imaging and Vision 15(1), 17–37 (2001)

12. Peng, Y., Lu, R.: An LCTF-based multispectral imaging system for estimation of
apple fruit firmness. Part 2. Selection of optimal wavelengths and development of
prediction models. Transactions of the ASAE 49(1), 269–275 (2006)

13. Peng, Y., Lu, R.: Analysis of spatially resolved hyperspectral scattering images for
assessing apple fruit firmness and soluble solids content. Postharvest Biology and
Technology 48(1), 52–62 (2008)

14. Sacoto, P., Lanza, F., Suarez, H., Garcia-Rubio, L.H.: A novel automatic dilution
system for on-line particle size analysis. In: ACS Symposium Series, vol. 693, pp.
23–29. ACS Publications (1998)

15. Sun, D.W.: Hyperspectral imaging for food quality analysis and control. Academic
Press, London (2010)

16. van der Meer, F.: Imaging spectrometry for geological remote sensing. Geologie en
Mijnbouw 77(2), 137–151 (1998)

17. Wang, W., Paliwal, J.: Near-infrared spectroscopy and imaging in food quality
and safety. Sensing and Instrumentation for Food Quality and Safety 1(4), 193–
207 (2007)

18. Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized Assorted Pixel Cam-
era: Post-Capture Control of Resolution, Dynamic Range and Spectrum. Technical
report (November 2008)



Real-Time Detection of Landscape Scenes

Sami Huttunen1, Esa Rahtu1, Iivari Kunttu2,
Juuso Gren2, and Janne Heikkilä1
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Abstract. In this paper we study different approaches that can be used
in recognizing landscape scenes. The primary goal has been to find an
accurate but still computationally light solution capable of real-time op-
eration. Recognizing landscape images can be thought of a special case
of scene classification. Even though there exist a number of different
approaches concerning scene classification, there are no other previous
works that try to classify images into such high level categories as land-
scape and non-landscape. This study shows that a global texture-based
approach outperforms other more complex methods in the landscape im-
age recognition problem. Furthermore, the results obtained indicate that
the computational cost of the method relying on Local Binary Pattern
representation is low enough for real-time systems.

Keywords: computational imaging, scene classification, image
categorization.

1 Introduction

Knowledge of the scene type provides important information in a number of ap-
plications that deal with consumer photographs and digital cameras. Generally,
determining the scene type is the starting point of further image analysis and
search in large image collections [1,5]. On the other hand, it can already guide
the online image capture process in a camera device [3,10].

In this paper we study different approaches that can be used in recognizing
landscape scenes. The detection of landscape scenes is a difficult problem given
the fact that several landscape scenes have similar objects as non-landscape
scenes, and vice versa. Furthermore, illumination conditions are equally unpre-
dictable for both cases. Due to the computational restrictions set by the target
applications the primary goal of our work has been to find an accurate but still
computationally light solution capable of real-time operation.

The results of our work can be utilized when developing a fast method for sep-
arating the landscape and non-landscape scenes. This kind of classification can
serve as a preprocessing step for speeding-up image retrieval in large databases
and improving accuracy, or for performing automatic image annotation [5]. In
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Landscape Non-landscape

Fig. 1. Example of landscape classification

addition to image retrieval applications, camera settings may be adjusted auto-
matically depending on the scene type, so that the best possible representation
can be achieved [3,10].

Definition of landscape and non-landscape images is not totally straightfor-
ward. In this work we assume that if there are no distinct and easily separable
objects present in a natural scene, the image is classified as landscape. From
the photographic point of view, this requirement would mean that as much of
the scene as possible should be in focus. As a result of the aforementioned re-
strictions, the landscape category would contain sunset, beach, mountain, etc.,
subcategories. On the other hand, it is obvious that all the images taken indoors
should be classified as non-landscape. In this case, the non-landscape branch
would consist of indoor scenes and other images containing man-made objects
at relatively close distance (Fig. 1).

Recognizing landscape images can be thought of a special case of scene classifi-
cation which aims at labeling an image into a set of different semantic categories.
Even though there exist a number of different approaches concerning scene classi-
fication, to the best of our knowledge, there are no any other works concentrating
on classifying images into the landscape and non-landscape categories. The pre-
vious works differ by the number of the scene classes, the image representations,
and the classification method. The most methods so far have aimed at classifying
into a small number of scene categories, including indoor/outdoor [8,14,15,16],
city/landscape [17], and subsets of urban and natural scenes [9,13,17]. It can be
noticed that none of these categorizations is directly applicable in our problem.

A common approach in image categorization is to use local features [11,18]
combined with the bag-of-words (BOW) representation [4] and the Support Vec-
tor Machine (SVM) classifier. In this approach the image is then expressed by a
histogram of visual word occurrences which can be used in training a classifier.

Another common way to categorize images is to compute low-level features,
such as color and texture, which are further processed with a classifier engine for
inferring high-level information about the image. These methods assume that
the type of scene can be directly described by the color or texture properties
of the image. In fact it has been shown that low-level features can give very
comparable results on many scene classification tasks [2,15,16]. The work done
in [15] employs low-level color and texture features whereas [16] concatenates
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the histograms in the Ohta color space with texture and frequency features.
Later [14] has introduced an indoor/outdoor classification technique based on
edge analysis.

We show with extensive experiments that a global texture-based approach
competes with or outperforms other more complex methods in the landscape
image recognition problem. Especially the computational cost of the method
relying on Local Binary Pattern [12] representation is minimal compared to the
GIST [13] and BOW methods investigated in this paper.

The rest of the paper is organized as follows. Section 2 gives a detailed de-
scription of the different features and classifier used in this study. The experi-
mental results are presented in Sect. 3. Finally, the conclusions are summarized
in Sect. 4.

2 Methods for Landscape Scene Recognition

There are two main elements in a typical image classification system. The first
one is responsible for the computation of the feature vector representing an
image whereas the second part is the classifier, the algorithm that classifies an
input image into one of the predefined categories based on the feature vector.
In this section we describe two approaches for landscape/non-landscape image
classification. We begin with the image representation models followed by the
classifier engine.

2.1 Global Features

Here we present two different approaches based on global description of image
content.

GIST. One of the most well known global approaches in scene categorization
is the GIST descriptor that was initially proposed in [13]. The main idea of
this approach is to develop a low dimensional representation of the scene, which
does not require any form of segmentation. The authors propose a set of per-
ceptual dimensions (naturalness, openness, roughness, expansion, ruggedness)
that represent the dominant spatial structure of a scene. They show that these
dimensions may be reliably estimated using spectral and coarsely localized in-
formation.

To compute the color GIST description, the image is first divided into a 4×4
grid on which orientation histograms are extracted. Most of the works using
the GIST descriptor resize the image as a preliminary stage, producing a small
square image whose width typically ranges from 32 to 256 pixels. In our work,
the images are rescaled to 240×240 size irrespective of their original aspect ratio.
This is sufficient due to the low dimensionality of the descriptor, in other words,
it does not represent the details of an image.

Local Binary Pattern (LBP). The discrete occurrence histogram of the LBP
patterns computed over an image or a region of image is shown to be a very
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Fig. 2. The LBP histograms are computed in the center (in) and on the boundary
areas (out) separately. The final image representation is then concatenation of these
two histograms (in+out).

powerful texture feature. In LBP [12], the original 3×3 neighborhood is thresh-
olded by the value of the center pixel. The values of the pixels in the thresholded
neighborhood are multiplied by the weights given to the corresponding pixels.
Finally, the values of the eight pixels are summed to obtain the number of a
single texture unit.

When we think about landscape images depicting natural scenes usually the
center of the image does not contain any distinctive objects. Therefore it is
reasonable to utilize this information by computing the histograms in the center
and on the boundary areas surrounding the center separately (Fig. 2). The final
image representation is then concatenation of these two histograms providing us
with a 512 bins long representation. From here onward it is referred as LBPio,
and the basic version of the LBP is annotated by LBPb.

2.2 Local Features

A common approach in image categorization is to use some local features com-
bined with the bag-of-words (BOW) representation which describes an image as
an orderless collection of local features [4]. The basic idea of these approaches is
that a set of local image patches is sampled either densely, randomly, or using
a keypoint detector. After the sampling, a vector of visual descriptors is com-
puted on each image patch independently (Fig. 3). There is a large number of
different methods that can be used for describing the image patch content. One
of the most popular approaches is to use SIFT-based descriptors [11,18] but also
histograms or moments can be considered [18]. Regardless of the choice of the
method, the resulting collection of descriptors is vector quantized and the global
word histogram obtained is used as a characterization of the image.

In this study, the descriptors (see Table 1) were extracted using dense sampling
with a step size of 10 pixels and default scale defined in the binary implementa-
tion [18]. For more information about the descriptors and their implementation
details, please refer to [18]. The descriptor quantization was done by k-means
clustering resulting in a vocabulary of 1000 words. To be independent of the
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Fig. 3. The stages of the bag-of-words approach. First, the sample points are picked
from the image. Then, for every point a color descriptor is computed over the area
around that point. All the descriptors are subsequently vector quantized against a
codebook of prototypical descriptors. This results in a fixed-length feature vector rep-
resenting the image.

Table 1. Local descriptorsa

Type Descriptors

SIFT

rgsift csift
opponentsift rgbsift

hsvsift sift
huesift

Histogram
huehistogram nrghistogram

transformedcolorhistogram opponenthistogram
rgbhistogram

Moment colormomentinvariants colormoments

a For details on the descriptors, see [18].

total number of descriptors in an image, the sum of the final feature vector was
normalized to 1.

2.3 Classification

The Support Vector Machine (SVM) is widely used in scene classification and
therefore it is selected as a classifier in this work. Even though the linear SVM is
light in terms of computational burden, based on our preliminary evaluations we
employ the Radial Basis Function (RBF) kernel in this study. In our application
the classification step is carried out only once per image, thus its effect on overall
time cost is minimal. When computing the kernels the distance function is Chi-
squared with LBPs and local features whereas the GIST features are compared
with the L2 norm.
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3 Experimental Results

Comparative evaluation has been carried out between the methods described in
Sect. 2. Combinations of the features were not considered because such kind of
approaches would be too complex in view of the practical applications.

3.1 Image Sets

The images used for training and testing of the SVM classifier were downloaded
from the PASCAL Visual Object Classes (VOC2007) database [6] and the Flickr
site [7]. All the images mentioned below were manually labeled and resized to
QVGA (320×240) resolution apart from the GIST, which uses 240×240 images.

Training dataset. The combined training and validation database contains
1115 landscape images and 2617 non-landscape images. Approximately 20 % of
the training images were used for validation of the SVM classifier.

Testing dataset. Testing database contains 912 landscape images and 2140
non-landscape images. As with the training images, most of the landscape images
come from the Flickr database and the non-landscape images originate mainly
from the VOC2007 collection.

3.2 Evaluation Criteria

The classification task will be evaluated by the precision/recall curve, and the
principal quantitative measure used is the average precision (AP). In addition,
the performance will be evaluated by the Receiver Operating Characteristic
(ROC) curve. In this case the measure used is the area under curve (AUC).

Furthermore we report the true positive and false positive rates (TPR and
FPR, respectively) of the different approaches when the threshold for the SVM
decision value is set to zero. In our case the definitions for the test images are
as follows:

– False positive (FP): non-landscape classified as landscape
– True positive (TP): landscape classified as landscape

3.3 Results

The precision/recall and ROC curves are illustrated in Fig. 4. For clarity, only
the best performing methods are included in the figures but Table 2 summarizes
all the results in a numerical form. It can be seen that the LBP based approaches
perform best both in terms of AUC and AP. It is worth noting that the LBPio

approach, which concatenates the histograms computed in the image center and
boundary area, gives better performance than LBPb.

Figure 5 contains a collection of sample images when using the LBPio rep-
resentation. When looking at the false positive images (Fig. 5c) it can be seen
that most of the images contain smooth areas around some object.
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Fig. 4. Results of the best performing methods

Table 2. Summary of the results

Classification Execution time (s)
AUC AP TPR FPR Descriptor Total

G
lo
b
a
l LBPio 0.982 0.958 0.882 0.040 0.001 0.005

LBPb 0.972 0.939 0.862 0.055 0.001 0.003
GIST 0.963 0.924 0.809 0.050 NA >0.029

L
o
ca
l
d
es
cr
ip
to
rs

+
B
O
W

rgsift 0.969 0.934 0.814 0.045 0.340 2.699
csift 0.966 0.926 0.825 0.052 0.350 2.712
opponentsift 0.966 0.922 0.828 0.052 0.340 2.694
rgbsift 0.960 0.918 0.804 0.047 0.330 2.744
hsvsift 0.959 0.915 0.804 0.050 0.340 2.494
sift 0.956 0.901 0.806 0.059 0.120 0.595
huesift 0.954 0.902 0.791 0.067 0.290 1.046
colormomentinvariants 0.926 0.857 0.737 0.067 1.410 1.444
transformedcolorhistogram 0.924 0.851 0.692 0.061 0.100 0.147
opponenthistogram 0.909 0.825 0.689 0.079 0.090 0.140
rgbhistogram 0.903 0.805 0.683 0.087 0.070 0.118
colormoments 0.897 0.811 0.697 0.084 1.340 1.376
huehistogram 0.863 0.717 0.525 0.071 0.180 0.223
nrghistogram 0.861 0.727 0.601 0.102 0.080 0.119

3.4 Computational Cost

In order to evaluate the computational cost of the different image representations
the preliminary performance analysis was conducted on a regular Windows PC
(Core 2 Duo 3.2GHz, 4GB RAM).

Our own LBP C code implementation was evaluated with Visual Studio 2010
Profiler whereas the execution times of the different color descriptors were ob-
tained using the binaries publicly available [18]. The results are shown in Table 2
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(a) (b)

(c) (d)

Fig. 5. Classification examples with LBPio representation. (a) Landscape classified as
landscape, (b) non-landscape classified as non-landscape, (c) non-landscape classified
as landscape, and (d) landscape classified as non-landscape.

and they include the time spent on descriptor computation as well as the total
time for SVM classification. It should be noted that the most time consuming
part of the bag-of-words based methods is the word histogram computation.

Unfortunately the GIST descriptor codes [13] were available only for MAT-
LAB and therefore its performance could not be studied thoroughly in these
experiments. However, since the GIST descriptor is computed using several fil-
ters corresponding to different orientations and scales, its computational cost is
likely to be higher than that of LBP.

3.5 Real-Time Implementation

Based on the results presented in Table 2, it is obvious that the LBP histogram
is the best choice when building a real-time system. On the other hand, selection
between the two different LBP representations depends mainly on the require-
ments set by the target platform. Our current real-time implementation coded
in C relies on the basic LBPb, which gives reasonable results with lower memory
consumption.
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Fig. 6. Video frames with the classification results. Green boundaries are used for the
landscape and red boundaries for the non-landscape frames. If the boundary is black,
selection between the classes cannot be done reliably.

When we take a closer look at the profiler results of the final system, the
results indicate that most of the time is spent on the SVM classifier since LBP
histogram computation takes only one third of the overall processing time. The
total execution time for one QVGA frame is about 3 ms which guarantees real-
time performance even on more constrained platforms.

Test videos. In order to evaluate the performance of the LBPb approach in
real-time scenarios we captured several video sequences with different cameras
(Canon EOS 5D Mark II, Logitech QuickCam Fusion, Nokia N95). All the videos
were resized to QVGA resolution but no other pre-processing steps were applied.

The results of the sequences are shown in Fig. 6. To illustrate how the detec-
tion of landscape scenes works with the given frames, we use green boundaries for
the landscape and red boundaries for the non-landscape frames. If the boundary
is black, the decision value of the classifier is close to zero and therefore selection
between the classes cannot be done reliably.

4 Conclusion

In this paper we have studied different approaches that can be used in automatic
landscape scene recognition. Due to the computational restrictions set by the
target devices the primary goal of our work has been to find an accurate but
still computationally light solution capable of real-time operation.

We have shown with extensive experiments that a global texture-based ap-
proach outperforms other more complex methods in the landscape image recog-
nition problem. It appears that the local features are too distinctive for the given
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task. The results obtained clearly indicate that the computational cost of the
method relying on the Local Binary Pattern (LBP) representation is low enough
for real-time systems. It should be noted that the LBP operates on gray scale
images, which means that the use of color information is not needed.
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12. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures
with classification based on featured distributions. Pattern Recognition 29(1), 51–
59 (1996)

13. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation
of the spatial envelope. IJCV 42(3), 145–175 (2001)

14. Payne, A., Singh, S.: Indoor vs. outdoor scene classification in digital photographs.
Pattern Recognition 38(10), 1533–1545 (2005)

15. Serrano, N., Savakis, A., Luo, A.: A computationally efficient approach to in-
door/outdoor scene classification. Proc. IEEE ICPR 4, 146–149 (2002)

16. Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: Proc. IEEE
Workshop on Content-Based Access of Image and Video Database, pp. 42–51
(1998)

17. Vailaya, A., Figueiredo, M.A.T., Jain, A.K., Zhang, H.J.: Image classification for
content-based indexing. IEEE TIP 10(1), 117–130 (2001)

18. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for
object and scene recognition. IEEE TPAMI 32(9), 1582–1596 (2010)

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/
http://www.flickr.com/search/?q=landscape


Generic Object Class Detection Using

Feature Maps

Oscar Danielsson and Stefan Carlsson

CVAP/CSC, KTH,
Teknikringen 14, S-100 44 Stockholm, Sweden

{osda02,stefanc}@csc.kth.se

Abstract. In this paper we describe an object class model and a detec-
tion scheme based on feature maps, i.e. binary images indicating occur-
rences of various local features. Any type of local feature and any number
of features can be used to generate feature maps. The choice of which
features to use can thus be adapted to the task at hand, without chang-
ing the general framework. An object class is represented by a boosted
decision tree classifier (which may be cascaded) based on normalized
distances to feature occurrences. The resulting object class model is es-
sentially a linear combination of a set of flexible configurations of the
features used. Within this framework we present an efficient detection
scheme that uses a hierarchical search strategy. We demonstrate exper-
imentally that this detection scheme yields a significant speedup com-
pared to sliding window search. We evaluate the detection performance
on a standard dataset [7], showing state of the art results. Features used
in this paper include edges, corners, blobs and interest points.

Keywords: detector, AdaBoost, decision tree, distance transform, SIFT.

1 Introduction and Related Works

Object class modeling and detection is a difficult problem. Often the intra-class
variation is significant and the background class is extremely large (i.e. all image
patches not containing an object of the target class), so the decision boundary
required to separate the positive and negative classes in feature space will gener-
ally be complex. To represent a complex decision boundary, we need a powerful
classifier/model. However, such classifiers are in general expensive to evaluate.
This is a problem because at the detection stage we will need to evaluate the
classifier/model for a very large number of subregions of the test image.

To solve this problem Viola and Jones proposed using a cascade of increasingly
complex AdaBoost classifiers [20]. The complex classifiers at the upper stages
of the cascade are then only evaluated on a small subset of the patches in the
test image. In addition they proposed integral images to make the computation
of Haar features extremely efficient. They combined these two techniques to
build an accurate, real-time face detector. However their method has a limited
ability to handle intra-class variation, mainly due to the Haar features not being
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robust to intra-class variation. Therefore Laptev exchange the Haar features for
histogram features (which can be efficiently computed using integral histograms)
and can thus handle more difficult classes than faces [14]. The reason being that
the histogram features are more robust to intra-class variation and therefore
the target class gets a more compact distribution in feature space. Felzenszwalb
et. al. then take one step further and introduce deformable part models into the
cascade to get an even more flexible classifier, which has shown good performance
in the popular Pascal challenge [5,4].

We see that these methods handle increasingly difficult target classes by using
features that are increasingly robust to intra-class variation, while maintaining
computational efficiency. In the present paper we continue this line of research
and propose a generic framework that takes feature maps as input. The number
of feature maps and the methods used to generate them is not specified in the
framework and can thus be adapted to the task at hand. We use an AdaBoost
classifier (with decision trees as weak classifiers) that we cascade to minimize
computations on obvious negatives. The basic image measurements used by our
classifier are distances to feature occurrences. Therefore we can define an effi-
cient hierarchical search that gives a significant speedup compared to the sliding
window approach.

Hierarchical search schemes have been used previously minimize the Chamfer
distance between a search template and a test image [1]. A very large number
of templates are needed to represent an object class with significant intra-class
variation. Gavrila has devised a search scheme that is hierarchical in both search
space and in template space [11]. While the hierarchical search is a desirable
property of the Chamfer matching methods, the template-based representation
of an object class is not. The problem is that there is a big risk that even
a very large set of templates does not represent the whole target class (over-
fitting). The use of a strong classifier is better in this sense, since most classifiers
have been designed to have a good ability to generalize beyond the training
set. For example, if weak classifiers can perform better than chance on every
distribution over the training set, AdaBoost can provably achieve arbitrarily
good generalization bound [8].

In summary our method (1) has good generalization properties (inherited
from the AdaBoost procedure), (2) allows for a very fast hierarchical search and
(3) allows the user to adapt the choice of image features to the task at hand.

The rest of the paper is organized as follows. In section 2 we describe how our
method represents the object category and how this representation is learnt. In
section 3 we describe the detection algorithm in detail. In section 4 we present
experiments evaluating the detection performance and computational efficiency
of our method. Finally, we conclude in section 5.

2 Object Class Model

In this section we describe how an object class is modeled and how the pa-
rameters of that model are learnt. The target object class is represented by a
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boosted decision tree classifier based on normalized distances to feature occur-
rences. The classifier can be visualized as a linear combination of flexible feature
configurations, described in a normalized coordinate system.

We start by defining some notation. We then describe the classifier and how
it is learnt in sections 2.1 to 2.4. Finally, we mention variations to the learning
algorithm in section 2.5.

We assume that we have a set of features K, for which we can compute fea-
ture maps, Φk(I,x) ∈ {0, 1} that returns 1 if feature k occurs at location x in
image I and 0 otherwise. We will also make use of distance transforms of feature
maps: dk(I,x) = min

{x′|Φk(I,x′)=1}
||x − x′||. Distance transforms can be computed

efficiently [2].
The basic building blocks of the classifier are localized features F = (k,p),

defined by the feature index k and the location p in a normalized coordinate
system. We also define the feature value, f (I, t, s) = dk(I, s · p + t)/s, which is
obtained by translating (t) and scaling (s) the normalized coordinate system into
an image (I) and computing the normalized distance to the closest occurrence
of the feature in the image. Note that the computation of the feature value
essentially only involves a lookup into the distance transform table. All feature
values are nonnegative.

We define a dictionary F = {Fn|n = 1 . . .N} = K × P of localized fea-
tures, where P is a uniformly spaced grid in the normalized coordinate sys-
tem. By concatenating the corresponding feature values, we get a feature vector
f (I, t, s) = [f1 (I, t, s) . . . fN (I, t, s)]T .

The training data consists of a set of images {Ij |j ∈ J } and a set of annota-
tions {(ti, si, ji) |i ∈ I}, specifying the location, scale and image number of each
instance of the target class in the image set.

2.1 Cascade

The cascade is not really a part of the object model, but rather a sequence of
object models of increasing detail and specificity. However, it serves two impor-
tant functions: (1) it minimizes the number of computations spent on obvious
negatives at the detection stage and (2) it provides a mechanism for selecting
hard negative examples at the training stage. The cascade is learnt according to
Viola and Jones [20]. Each stage of the cascade contains an object model, which
is learnt using all annotated instances of the target class as positive examples.
We gather negative examples by running the current cascade on all training im-
ages and sample false positive detections. We then compute feature vectors for
all (positive and negative) training examples and pass that to the strong learner,
which will be described in the next section. The strong learner outputs a clas-
sification function H , that is thresholded to determined class membership. The
threshold is typically selected to give a specific true positive rate on a validation
set.
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2.2 Strong Classifier

In this section we describe the strong classifier. The strong classifier is a linear
combination of weak classifiers learnt using a variant of AdaBoost. We give a
generalized description of the boosting algorithm, closely following Schapire and
Singer [18], in listing 1. The input to the learner is a set of feature vectors {fm},
with target class cm ∈ {−1, 1}. The classification function of the strong classifier,
H(f) =

∑T
t=1 αtht(f), is a linear combination of the classification functions of

the weak classifiers. The classification function is thresholded to determine class
membership. We mention different alternatives for initializing and updating the
weight distribution and for choosing the αs in section 2.5. In the next section,
we describe the weak classifier.

Algorithm 1. Boosting
Require: {fm}, cm ∈ {−1, 1}, T

d1 ← initialize weight distribution
for t = 1 to T do

Train weak classifier ht : R∗N → R using distribution dt

Choose αt ∈ R
dt+1 ← update weight distribution

end for
return {α1, . . . , αT }, {h1, . . . , hT }

2.3 Weak Classifier

The weak classifier is a binary decision tree. The leaf nodes contain the outputs of
the classifier and the internal nodes contain binary classifiers, which we will refer
to as single feature classifiers (described in the next section). At the detection
stage the output of the single feature classifier determines whether to visit the
left or right subtree next; when a leaf node is reached, its output is returned.

A generalized description of the weak learner is given in listing 2. The input
to the weak learner is a set of feature vectors {fm}, with target class {cm}, and a
weight distribution d. The weak learner then computes the output of the current
node and possibly constructs left and right subtrees recursively. We will mention
different alternatives for computing the output of a node and for validating the
split induced by a single feature classifier in section 2.5. In the next section we
describe the single feature classifier.

2.4 Single Feature Classifier

A single feature classifier g consists of a single localized feature (selected from
the dictionary) Fn ∈ F , along with a distance threshold t ∈ R+ and its parity
p ∈ {−1, 1}. The output of the single feature classifier is 1 if p · fn ≤ p · t and -1
otherwise.
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Algorithm 2. Weak learner
Require: {fm}, {cm}, d

Node.output ← compute output using {cm} and d
Train single feature classifier g : RN → {−1, 1} using {fm}, {cm} and d
Compute split M− = {m|g(fm) = −1} andM+ = {m|g(fm) = 1}
Stop ← validate split using M−, M+,{cm} and d
if Stop then

return Node
end if
Node.left = Weak learner({fm|m ∈ M−} , {cm|m ∈M−} , d)
Node.right = Weak learner({fm|m ∈M+} , {cm|m ∈M+} ,d)
return Node

Learning a single feature classifier involves selecting a feature n, a threshold t
and a parity p. A generalized procedure for learning a single feature classifier is
given in listing 3. We have observed empirically that our feature values (being
nonnegative) tend to be exponentially distributed. This suggests selecting the
threshold t for a particular feature as the intersection of two exponential pdfs,
where μ+ is the (weighted) average of the feature values from the positive ex-
amples and μ− is the (weighted) average from the negative examples (the parity
is 1 if μ+ ≤ μ− and -1 otherwise):

t = ln
(
μ−

μ+

)
· μ−μ+

μ− − μ+
(1)

Thus each localized feature in the dictionary yields a single threshold and
parity. The remaining task is to select the feature that minimizes the error
function. We will mention different error functions in the following section.

Algorithm 3. Learn single feature classifier
Require: {fm}, {cm}, d

for n = 1 to N do
(tn, pn)← select threshold and polarity using {fm

n }, {cm} and d
en ← compute error using {fm

n }, {cm}, d and (tn, pn)
end for
n∗ ← arg minn en

return (n∗, tn∗ , pn∗)

2.5 Variations

In the previous sections we have given a generalized description of the classifier
and how to learn it. However, there are several ways in which this general scheme
can be varied and in this section we mention the most interesting variations,
which will also be compared experimentally in section 4.

Firstly, we have the choice of whether or not to use asymmetric weighting,
as described in [19]. This choice affects the initialization and update of the
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weight distribution in the strong learner. Using asymmetric weighting requires
setting a parameter k, specifying that false negatives cost k times more than
false positives. We empirically found k = 3n−/n+ to be a reasonable choice in
this case.

Secondly, we have the choice of whether to let the weak classifiers output
binary or confidence rated predictions. This choice affects (1) the computation
of the αs in the strong learner, (2) the computation of the output of a node in the
weak learner and (3) the error that is minimized by the single feature learner. In
the case of binary predictions we use the original AdaBoost algorithm of Freund
and Schapire [8] to compute the αs. The output of a node is simply the weighted
majority of the training examples and the error is the weighted training error. In
the case of confidence rated predictions we follow Schapire and Singer’s recipe
for domain-partitioning hypotheses [18]. The αs are set to 1 in this case.

Finally, we can pose various constraints on the weak classifier. For example
we can limit the depth of the decision tree to reduce the risk of over-fitting.

3 Detection

In this section we describe the detection procedure. It consists of three parts:
(1) preprocessing, (2) scale space search and (3) aspect ratio estimation. The
preprocessing is illustrated in figure 1 and entails computing feature maps and
distance transforms for each feature. The scale space search can be done using
a sliding window approach, however the features used in this paper allow a
hierarchical search scheme with efficient search space culling to be defined. This is
described in the next section. The scale space search yields the position and scale
of detected objects. However, we want the bounding box, which also requires an
aspect ratio. In section 3.2 we describe how to estimate the aspect ratio.

Test image

Feature maps Distance transforms

Fig. 1. Images are preprocessed by computing feature maps and the corresponding
distance transforms for each feature
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3.1 Hierarchical Search

In this section we describe the hierarchical search in scale space. The idea is
that, given a region in search space, we can compute bounds on the value of all
localized features and if none of the possible values would yield a detection, we
can discard the whole region.

We have previously defined the value of a localized feature F = (k,p) to be
f (I, t, s) = dk(I, s · p + t)/s. Now, if we have a cuboid region, S, in search
space, we can compute upper and lower bounds for the feature value; i.e. we can
compute f (u) and f (l) such that f (l) ≤ f (I, t, s) ≤ f (u)∀ (t, s) ∈ S.

Let B contain the 8 corner points of S and let (t0, s0) be any point in S (for
example the centroid). Then let P ′ = {s · p + t|(t, s) ∈ B}, p′

0 = s0 · p + t0 and
dmax = max

p′∈P ′
‖p′

0−p′‖. We can now compute upper and lower bounds as follows:

f (u) = (dk(I,p′
0) + dmax) /s1 and f (l) = max ((dk(I,p′

0) − dmax) /s2, 0), where
s1 and s2 are the minimum and maximum scales in S respectively.

Image spaceSearch space t1

t2

p’2

p’1

S p’ = s p + t
s

(t0,s0)

p’0

Fig. 2. If a localized feature has position p in normalized coordinates and the nor-
malized frame is aligned with an image by translation t0 and scaling s0, the position
of the feature in the image is p′ = s0 · p + t0. However, if we have a whole range S of
possible translations and scalings, the position of the localized feature in the image can
be anywhere in the dashed region in image space. We can easily compute bounds for
the feature value given that the position of the localized feature is within that region.

The uncertainty in the feature value may yield an ambiguity in the output
of the single feature classifier (i.e. it could be either 1 or -1). When evaluating
the weak classifier we are then unable to decide whether to visit the left or right
child node next. In such cases we pursue both paths and the output of the weak
classifier is defined as the maximum of all leaf nodes that were reached. Thus we
get an optimistic strong classifier that returns 1 if (but not only if) any point in
the region, S, is a detection.

We are now ready to define the hierarchical search algorithm. The algorithm
recursively partitions the search space into smaller regions, evaluating the clas-
sifier at each new region. If the classifier returns -1 for any region, that region is
discarded. When the classifier returns 1, subdivision continues until the current
region is small enough; then the classifier is evaluated at the centroid of that
region. A more detailed description is given in listing 4.
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Algorithm 4. Hierarchical search
Require: Classifier c, Search region S

if S is sufficiently small then
(t, s)← centroid of S
result ← evaluate classifier on (t, s)
if result = 1 then

return (t, s)
else

return ∅
end if

end if
result ← evaluate classifier on S
if result = -1 then

return ∅
end if
[R1, . . . , Rl]← split S into subregions
initialize D ← ∅
for all Ri do

D← D ∪ HierarchicalSearch(c, Ri)
end for
return D

3.2 Aspect Ratio Estimation

The detector scans the image over position and scale, but in order to produce
a good estimate of the bounding box of a detected object we also need the
aspect ratio (which typically varies significantly within an object class). We
use regression to estimate the aspect ratio of a detected object. Specifically, we
use gradient boosted regression trees [9]. The regressor is trained using set of
feature vectors {fm}, with target aspect ratio am. We use the same training
set for the aspect ratio estimator as for the detector (albeit the aspect ratio
estimator only uses the positive examples). Each regression tree recursively splits
the training examples in two and finally one estimate of the aspect ratio is
assigned to each leaf node by optimizing some target function. Typically the
target of the ensemble is to minimize the square norm of the residual and the
target of each new regression tree is to correct the errors of the current ensemble.

At the detection stage the boosted regression trees are applied to the feature
vector of each detected object to estimate its aspect ratio.

4 Experiments and Results

We have performed experiments on the ETHZ Shape Classes dataset [7]. This
dataset is challenging due to large intra-class variation, clutter and varying
scales. We used all images from the ETHZ dataset for testing only. Training
images were downloaded from Google Images. These images contained a total of
106 applelogos, 128 bottles, 270 giraffes, 233 mugs and 165 swans. As in [6], a
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Fig. 3. Comparison of different variants of the algorithm. See text for details. Best
viewed in color.

detection is counted as correct if the detected bounding box overlaps more than
20 % with the ground truth bounding box. Bounding box overlap is defined as
the area of intersection divided by the area of union of the bounding boxes.
Several other authors have evaluated their methods on this dataset and we let
[17] represent state-of-the-art.

The goal of our first experiment was to compare the different variants of the
algorithm, as described in section 2.5. We use the giraffes as the test class, be-
cause it is the class with the most intra-class variation and thus the most difficult
and realistic class. The results are given in figure 3. We vary one property at a
time, starting with the choice of boosting algorithm. We compare discrete Ad-
aBoost [8], real AdaBoost [18] and gentle AdaBoost [10]. The results, shown
in figure 3(a), indicate that real AdaBoost is the best choice. We then experi-
ment with the depth setting of the decision tree weak learner (figure 3(b)). We
compare different set depths and an automatic version, where we stop growing
the tree when further growth does not improve the classification error on the
training set. We see that we should either set the depth to some small value, like
one or two, or use the automatic version (which typically outputs very shallow
trees). Then we experiment with different image features, first using only oriented
edges [3] and then using also corners [12], blobs [15] and interest points (figure
3(c)). Interest points were detected using the Kadir-Brady detector [13]. For each
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Fig. 4. Detection rate (DR) plotted versus false positives per image (FPPI) for the
remaining classes of the ETHZ dataset

Table 1. Comparison of detection performance. We state the detection rate at 0.4
FPPI. We compare to the systems of [6,17].

A. logos Bottles Giraffes Mugs Swans

ours@0.4 FPPI: 81.8 96.4 98.9 74.2 90.9
[6]@0.4 FPPI: 83.2 83.2 58.6 83.6 75.4

[17]@0.4 FPPI: 95.0 96.4 89.6 96.7 88.2

interest point we compute the SIFT descriptor [16] and assign it to one out of
eight different clusters which were computed using k-means on a set of interest
points extracted from random background images. The interest points thus gen-
erate eight different feature maps - one for each cluster. We see that using more
features improves the result. We finally tested the asymmetric weighting scheme
[19], concluding that it improves the results (figure 3(d)).

(a) Applelogos true/false positives (b) Bottles true/false positives

(c) Giraffes true/false positives (d) Mugs true/false positives

(e) Swans true/false positives

Fig. 5. Example detections (true and false positives) for each class
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Fig. 6. Comparison of the runtimes of the hierarchical search (y-axis) and the sliding
window search (x-axis). Each point represents one test image.

We also evaluated the performance of the detector, using the settings from
the previous experiment (i.e. real AdaBoost, automatic depth determination, all
features and asymmetric weighting), on all other classes in the ETHZ dataset.
The results are plotted in figure 4 and in table 1 we compare our results to some
previous methods. We also show some example detections in figure 5.

Finally, we compare the runtime of the hierarchical search with the sliding
window approach. Here we again use the giraffe class. Each test image is repre-
sented by a point in the scatter plot shown in figure 6, with the sliding window
runtime on the x-axis and the hierarchical runtime on the y-axis. We see that on
average the hierarchical search yields a 70-fold speed-up. Both algorithms were
implemented in MATLAB/mex and executed on a 2.8 GHz Pentium D desktop
computer (using a single core).

5 Conclusion

In this paper we presented a framework for modeling and detecting visual object
classes. The method is based on feature maps, which are computed by some
external routine that is defined by the user. The learnt model of the object
class is essentially a linear combination of a set of flexible spatial configurations
of the input features. The advantages of the method is that it (1) has good
generalization properties (inherited from the AdaBoost procedure), (2) allows for
a very fast hierarchical search and (3) allows the user to adapt the choice of image
features to the task at hand. We demonstrated these properties experimentally.

Acknowledgements. This work was supported by The Swedish Foundation
for Strategic Research in the project “Wearable Visual Information Systems”.
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Abstract. In this paper, we propose a blur-insensitive descriptor for dy-
namic textures. The Volume Local Phase Quantization (VLPQ) method
introduced is based on binary encoding of the phase information of the
local Fourier transform at low frequency points and is an extension to the
LPQ operator used for spatial texture analysis. The local Fourier trans-
form is computed efficiently using 1-D convolutions for each dimension
in a 3-D volume. The data achieved is compressed to a smaller dimension
before a scalar quantization procedure. Finally, a histogram of all binary
codewords from dynamic texture is formed. The performance of VLPQ
was evaluated both in the case of sharp dynamic textures and spatially
blurred dynamic textures. Experiments on a dynamic texture database
DynTex++ show that the new method tolerates more spatial blurring
than LBP-TOP, which is a state-of-the-art descriptor, and its variant
LPQ-TOP.

Keywords: Local Phase Quantization, Short-Term Fourier Transform,
spatio-temporal domain, blur-insensitivity, dynamic texture.

1 Introduction

Dynamic textures can be seen as sequences of images of moving scenes that
exhibit certain stationarity properties in time [1]. Some examples of dynamic
textures in the real world are fire, moving clouds, a waving flag, and sea waves.
Dynamic texture analysis is essential in many applications, such as facial expres-
sion recognition, action recognition, and background subtraction. Chetverikov
and Péteri created a survey on the existing descriptors for dynamic texture
recognition in [2] and divided the approaches into five classes: methods based
on optical flow, methods computing geometric properties in the spatio-temporal
domain, methods based on local spatio-temporal filtering, methods using global
spatio-temporal transforms, and model-based methods that use estimated model
parameters as features.

Among the most popular approaches for characterizing the local dynamics
of dynamic texture are the methods based on optical flow. For example, in [3],
Péteri et al. achieved promising results using normal flow features combined with
periodicity features, and their features were translation invariant.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 360–369, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In [4], Zhao et al. introduced two methods based on Local Binary Patterns
(LBP) [5]: Volume Local Binary Patterns (VLBP) and Local Binary Patterns
from Three Orthogonal Planes (LBP-TOP). Of these two, LBP-TOP was shown
to be the most efficient approach, and the results achieved were very promising.
These methods are based on local characteristics, which is also our approach to
dynamic texture classification.

One can also combine multiple descriptors. Recently, Ghanem et al. used
Maximum Margin Distance Learning (MMDL) in [6] for dynamic texture recog-
nition. They modeled the distance between two dynamic textures as a pos-
itively weighted sum of their elementary distances: spatial texture element,
spatial texture layout, and dynamics. However, despite the comprehensiveness,
their method is computationally very expensive, since it consists of computing
multiple descriptors.

In some applications, there are degradation factors which complicate the ac-
tual recognition procedure. One common category of degradation is blur caused
by e.g. atmospheric turbulence, motion, or out-of-focus. These blur types can
be seen and considered as spatial blurring. To our knowledge, there are no dy-
namic texture descriptors that are claimed to be robust to spatial blurring. In
[7], Ojansivu et al. proposed a method called Local Phase Quantization (LPQ)
for blur-insensitive spatial texture analysis. LPQ can be also used for dynamic
textures, e.g., when a straightforward generalization of LBP-TOP is made to
form a method in which the LPQ descriptors are calculated from three orthog-
onal planes. For comparison, we have built a descriptor using this approach
(LPQ-TOP), but we also propose a more elaborated approach.

In this paper, we introduce a novel method called Volume Local Phase Quan-
tization (VLPQ), which is a dynamic texture descriptor insensitive to centrally
symmetric spatial blurring. Our method is an extension to the original 2-D LPQ,
and the characterization of dynamic texture is made using the quantized phase
information of the Discrete Fourier Transform (DFT) computed in pixel volume
neighborhoods. Our method uses Short-Term Fourier Transform (STFT) to eval-
uate the DFT, and we use the 13 low 3-D frequency points in the evaluation. The
computational performance of our method is increased by calculating the STFT
using 1-D convolutions for each dimension in a 3-D volume. In our method, di-
mension reduction is essential for the data before scalar quantization to achieve
a reasonable sized binary codeword. After the quantization, a histogram of all
codewords from a dynamic texture volume is formed.

2 Volume Local Phase Quantization

Dynamic texture is a sequence of spatial frames. Therefore, we can first consider
spatial images suffering from blur. The discrete model for spatially invariant
blurring of an original image s(x) resulting in an observed image g(x) can be
expressed by a convolution, given by

g(x) = (s ∗ h)(x) , (1)
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where h(x) is the point spread function (PSF) of the blur, ∗ denotes 2-D convo-
lution, and x is a vector of coordinates [x, y]T . When (1) is taken to the Fourier
domain, the convolution turns into a product. If we consider only the phase of
the spectrum, we get

∠G(u) = ∠S(u) + ∠H(u) . (2)

In the case of centrally symmetric PSFs, H(u) is real valued, and the phase
angle ∠H(u) must equal 0 or π. For a typical PSF, the shape of H(u) is similar
to a low-pass filter. This often implies that at least the low frequency values
of H(u) are positive. At these frequencies, ∠H(u) = 0, and hence ∠S(u) is a
blur-invariant property. [7]

In practice, the blur-invariance is partly disturbed because of the finite size
of the observed images resulting to a loss of information at the borders. The
convolution of the ideal image frame with the blur PSF extends beyond the bor-
ders of the observed image, and this results to a loss of information. When the
Fourier transform is computed from local patches, this effect increases. However,
the local computation allows the blur to vary within a single frame. Ojansivu et
al. indicated in [7] that a highly blur-insensitive texture descriptor can be con-
structed by applying the aforementioned theory. The experiments in [7], [8], and
[9] show clearly the blur-insensitive property. When we consider video sequences
to consist of multiple spatial frames, this theory can also be extended to con-
struct a blur-insensitive descriptor for dynamic textures. In the next sections,
we propose a method for constructing VLPQ descriptor for dynamic textures.

2.1 Short-Term Fourier Transform in the Spatio-Temporal Domain

Dynamic texture consists of a video sequence of multiple frames spread over the
time axis. Therefore, each position x in a sequence f(x) can be expressed in 3-
D coordinates, and every position in a sequence has a 3-D neighborhood. Since
dynamic textures are textures in the spatio-temporal domain, dynamic texture is
mainly a local property. Therefore, the Fourier transform estimation is performed
locally using Short-Term Fourier Transform (STFT). STFT is computed over
an M -by-M -by-N neighborhood Nx centered at each position x. M and N
denote the size of the neighborhood in the spatial and the temporal domains,
respectively. STFT of a sequence f(x) can be defined by

F (u,x) =
∑

y∈Nx

f(x − y)e−j2πuT y , (3)

where u is a 3-D frequency variable, and j =
√−1. Using vector notation, we

can rewrite (3) as
F (u,x) = wT

u fx , (4)

where wu is the basis vector of the 3-D DFT at frequency u, and fx is a vector
containing all pixels from the neighborhood Nx. Because of the separability of
the basis functions, the STFT can be efficiently evaluated for each pixel position
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using 1-D convolutions for each dimension. This increases the computational
efficiency considerably.

As mentioned, the low frequency points are likely to satisfy H(u) > 0. There-
fore, we construct the descriptor using 13 lowest non-zero frequency points:
u1 = [α, 0, 0]T , u2 = [α, 0, β]T , u3 = [α, 0,−β]T , u4 = [0, α, 0]T , u5 = [0, α, β]T ,
u6 = [0, α,−β]T , u7 = [α, α, 0]T , u8 = [α, α, β]T , u9 = [α, α,−β]T , u10 =
[α,−α, 0]T , u11 = [α,−α, β]T , u12 = [α,−α,−β]T , and u13 = [0, 0, β]T , where
α = 1/M and β = 1/N . The selected frequency points are illustrated as closed
circles in Fig. 1. The other frequency points illustrated in Fig. 1 are ignored,
because they are the complex conjugates of the selected ones.

Fig. 1. Frequency points used to calculate STFT

At each position x, after separating the real and imaginary parts of each
component, we get a vector

Fx = [Re{F (u1,x)}, Im{F (u1,x)}, . . . ,Re{F (u13,x)}, Im{F (u13,x)}]T . (5)

The corresponding 26-by-M2N transform matrix can be written as

W = [Re{wu1}, Im{wu1}, . . . ,Re{wu13}, Im{wu13}]T . (6)

Hence, the vector form of the STFT for all frequencies u1, . . . , u13 can be
written as

Fx = Wfx . (7)

2.2 Dimension Reduction

If we take into account all 13 frequency points and their real and imaginary parts,
the length of the resulting descriptor at each position would be 26 real numbers.
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Since this number of variables is excessive, dimension reduction is needed in
order to compress the data. To do this, we first employ Principal Component
Analysis (PCA) to transform the original, possibly correlated, set of variables
to a smaller number of uncorrelated variables. For PCA, we use a correlation
model with only two parameters. Finally, scalar quantization is performed for
the uncorrelated samples.

We assume that the correlation coefficient between two adjacent pixels is ρs

in the spatial domain, and ρt in the temporal domain. We also assume without
loss of generality that the variance of each sample is σ2 = 1. The covariance
between two pixel values f(xi) and f(xj) can be written as

σij = ρ
ds

ij
s ρ

dt
ij

t , (8)

where ds
ij =

√∑2
k=1|xi(k) − xj(k)|2 and dt

ij = |xi(3) − xj(3)|. The covariance
matrix of all M2N pixel positions in a neighborhood Nx can then be expressed
as a M2N -by-M2N matrix C, whose ijth element is σij .

Based on the linear dependence (7), we can express the corresponding covari-
ance matrix of Fx as D = WCWT . To obtain uncorrelated sample vectors, we
use a whitening transformation matrix V that is an orthonormal matrix derived
from the singular value decomposition (SVD) of D that is D = UΣVT . Only L
most important eigenvectors v from SVD are picked to calculate the whitening
transformation. Hence, the final equation for whitening transformation can be
defined as

Gx = [v1,v2, . . . ,vL]TFx . (9)

In our method, the covariance matrix C is created using a correlation model
that is based on assumptions on the correlation between pixel positions. However,
these assumptions can be incorrect in the case of some blur PSFs that are not
isotropic. Therefore, different correlation models could be used to form C. One
approach could also be to estimate C from the data.

2.3 Quantization

After calculation of the vector Gx for each volume position, quantization is per-
formed. Since the samples to be quantized are now approximately uncorrelated,
we use a simple scalar quantization method similar to the one used in [7]. The
quantizer can be defined as

qx(j) =
{

1, if gx(j) ≥ 0
0, otherwise , (10)

where gx(j) denotes the jth component of Gx. The quantized coefficients are
further represented as integer values, whose range depends on the number of
eigenvectors L picked in the dimension reduction (9). The integer values can be
formed using simple binary coding

bx =
L∑

j=1

qx(j)2j−1 . (11)
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Finally, we form a histogram of the integer values obtained from all volume
positions x. This histogram is used as a 2L dimensional feature vector.

3 Experiments

VLPQ algorithm was implemented using MATLAB. The algorithm computes
the required STFTs using 1-D convolutions, and the convolutions are computed
using only valid areas, i.e., areas that can be computed without zero-padding.
The convolutions that occur multiple times in the process are calculated only
once, and the results are stored for later usage in order to reduce the execution
time. In the dimension reduction, L was selected to be 10. This results to a
histogram of length 210 = 1024. The correlation coefficients used in the case of
VLPQ were ρs = 0.1, and ρt = 0.1.

Also LPQ-TOP was implemented using MATLAB, and the algorithm calcu-
lates LPQ histograms from three orthogonal planes similar to LBP-TOP. The
algorithm uses a correlation model with parameters ρs = 0.1, and ρt = 0.1. All
the parameters were selected experimentally. The source codes for VLPQ and
LPQ-TOP are available online1.

The efficiency of VLPQ was experimented using a dynamic texture database
DynTex++ [6], which is a new database compiled from the original DynTex
database [10]. The performance was measured in the classification of sharp as well
as spatially blurred dynamic textures. For comparison, we used LBP-TOP, which
is a state-of-the-art method. Another reference method was our implementation
of LPQ-TOP, which is a variant of LBP-TOP. These two methods are currently
the best performing single descriptor methods and thus comparable to VLPQ.

DynTex++ database consists of 3600 dynamic textures of size 50 × 50 × 50.
The textures are divided into 36 classes, each holding 100 videos. Some example
frames of the sequences used in our experiments are illustrated in Fig. 2. In our
experiments, 50 % of each class was randomly selected to a training set, and the
other 50 % to a test set. We used nearest neighbor method to classify the test
set vectors. In classification, χ2 distance was used as a measurement. Every test
was repeated 20 times, and an average recognition rate was calculated.

3.1 Classification Tests

Classification accuracies of the methods used were measured in the case of sharp
and spatially blurred dynamic textures. The blur was achieved by convolving the
texture frames with spatial filters, and the training was done using the sharp
textures. We used three different PSFs: circular blur of radii {0, 0.5, . . . , 4},
Gaussian blur with standard deviations {0, 0.5, . . . , 4}, and motion blur with
lengths {0, 1, . . . , 8}. Circular blur can be used to model out-of-focus blur, while
Gaussian blur models atmospheric turbulence [11]. For motion blur, we used only
horizontal direction.
1 http://www.cse.oulu.fi/Downloads/LPQMatlab/

http://www.cse.oulu.fi/Downloads/LPQMatlab/
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(a) (b)

Fig. 2. Example frames from DynTex++ sequences: (a) frames from different classes,
and (b) a circularly blurred frame, blurred using radii {0, 0.5, . . . , 4}

In the case of blurred textures, the neighborhood size is a dominating factor
in many cases. Usually, a small neighborhood works well at the low blur levels,
but a larger neighborhood becomes more beneficial at the higher blur levels.
Therefore, the experiment was performed using neighborhood sizes comparable
to each other. In the case of dynamic textures, it is not usually reasonable to use
similar number of neighboring points in the spatial domain and in the temporal
domain [4]. However, the frame rate of DynTex++ sequences is high enough for
using the same number of neighboring points in each direction. Fig. 3(a), Fig.
3(b), and Fig. 3(c) illustrate the achieved classification accuracies of VLPQ with
5 × 5 × 5 neighborhood, LPQ-TOP with 5 × 5 neighborhood on each plane, and
LBP-TOP with 8 samples and radii of 2 in each direction. These methods are
denoted as VLPQ5,5,5, LPQ-TOP5,5,5, and LBP-TOP8,8,8,2,2,2.

In addition, the performances of the methods were measured in the case of
spatially and temporally varying blurring conditions. Each frame of the test
sequences was divided into four regions of the same size. Each region of the first
frame was blurred with different amount of blur. The blur was then linearly
increased so that each region of the last frame suffered from similar amount
of blur. The minimum blur levels of the three blur types were achieved using
circular blur of radii {0, 1, 2, 3}, Gaussian blur with standard deviations {0, 1,
2, 3}, and motion blur with lengths {0, 2, 4, 6}. The maximum levels were the
same as in the previous test. Fig. 3(d) illustrates the achieved accuracies.

From Fig. 3(a), Fig. 3(b), and Fig. 3(c) we can notice that VLPQ5,5,5 is
the best option in general. When no blur is present, the best accuracy (95 %)
is achieved by LBP-TOP8,8,8,2,2,2 followed by LPQ-TOP5,5,5 and VLPQ5,5,5.
However, the differences are not significant, each accuracy being within 2 %. Each
algorithm also achieved an accuracy higher than the one in [6]. When the blur
becomes more eminent, the differences between the methods used become more
considerable, and the high blur-insensitivity of VLPQ5,5,5 becomes noticeable.
In the case of circular or Gaussian blur, VLPQ5,5,5 maintains its performance
extremely well compared to the other methods, LPQ-TOP5,5,5 being the second
best solution.
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Fig. 3. Classification results in the case of different blur types: (a) circular blur, (b)
Gaussian blur, (c) linear motion blur, and (d) varying blur

In the case of linear motion blur, the classification accuracies of the algorithms
used are closer to each other than in the previous cases. This behavior can be
understood knowing that the PSF of motion blur is not isotropic. Therefore,
the correlation model of the LPQ-based methods is not as suitable as before.
However, these methods perform well up to relatively high blur levels, VLPQ5,5,5

once again being the best overall solution.
From Fig. 3(d) we can notice that in the case of varying blurring, VLPQ5,5,5

outperforms the two other methods considerably. In all three cases, the clas-
sification accuracy of VLPQ5,5,5 remains relatively high compared to the other
methods even though the blurring conditions are now varying both spatially and
temporally, and the classification is very challenging.
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3.2 Comparison on Execution Times

In order to clarify the computational complexity of the methods used, a com-
parison on their execution times was performed. The test was carried out on
DynTex++ video sequences, and we used the MATLAB implementations of the
algorithms. Table 1 illustrates the execution times of VLPQ, LPQ-TOP, and
LBP-TOP for one DynTex++ video sequence. We used the same neighborhood
size in each direction for all methods. In the case of LBP-TOP, neighborhood
size M equals to radii (M -1)/2. The times illustrated in Table 1 are mean times
of 3600 sequences. Each algorithm was tested with the same configuration2.

Table 1. Execution times of the methods used

Neighborhood size VLPQ LPQ-TOP LBP-TOP

3 0.13 s 0.28 s 0.15 s

5 0.13 s 0.31 s 0.15 s

7 0.14 s 0.29 s 0.14 s

9 0.14 s 0.29 s 0.13 s

11 0.13 s 0.28 s 0.13 s

As we can notice, computationally the fastest algorithms are VLPQ and LBP-
TOP. We can also notice that a larger neighborhood does not increase the exe-
cution time significantly. In the case of LBP-TOP, the execution time actually
seems to decrease, when a larger neighborhood is used. This behavior can be
explained by the fact that all of these algorithms use only the valid pixels of
a video sequence. With a large neighborhood size, there are less valid neigh-
borhoods, and a smaller part of a video volume can be used in calculation.
DynTex++ sequences are small enough for this to have an effect on the execu-
tion time. It is also worth mentioning that the server used in the computation
was variably stressed by other processes during the test. However, the relations
between the execution times are valid.

4 Conclusions

In this paper, a novel dynamic texture descriptor VLPQ is proposed. VLPQ is
a 3-D extension to the LPQ method, and it utilizes the Fourier transform phase
information calculated locally at every texture volume position using 13 low non-
zero frequency points. As a result of separating the real and imaginary parts of
the Fourier transform, a vector of length 26 is formed. Dimension reduction is
performed to achieve a codeword of a reasonable length, and a histogram is
finally formed out of the results from all neighborhoods.

The performance of the method introduced was compared to a state-of-the-art
method LBP-TOP and its variant LPQ-TOP. The results of the tests performed

2 MATLAB R2010a on a 2.4 GHz, 96 GB Sunray server.
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show that our method tolerates more centrally symmetric spatial blurring than
the two aforementioned methods. It was also shown that VLPQ performs ap-
proximately equally compared to LPQ-TOP and LBP-TOP in the case of sharp
dynamic textures.
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Abstract. In experimental design and 3D reconstruction it is desirable
to minimize the number of observations required to reach a prescribed es-
timation accuracy. Many approaches in the literature attempt to find the
next best view from which to measure, and iterate this procedure. This
paper discusses a continuous optimization method for finding a whole
set of future imaging locations which minimize the reconstruction error
of observed geometry along with the distance traveled by the camera
between these locations. A computationally efficient iterative algorithm
targeted toward application within real-time SLAM systems is presented
and tested on simulated data.

Keywords: Next best view planning, path optimization, SLAM.

1 Introduction

Visual simultaneous localization and mapping (SLAM) is the task of determining
the position and orientation of a camera while concurrently building a map of
the environment, using the camera images and possibly other sensors as input. It
is a chicken-and-egg type problem; given the map, localization is relatively easy
and given the camera positions, map triangulation is straightforward. Accom-
plishing both at once is at the heart of the SLAM problem, which has received
a lot of attention in both the robotics and vision research communities. Much
effort is spent improving the robustness and accuracy of algorithms, particularly
with respect to error accumulation, drift and loop closing (see e.g. [1,2]). A less
studied problem is how to make efficient use of the information collected in active
SLAM systems, i.e. systems where the motion of the sensor can be controlled.
This article considers the problem of maximizing the useful information gained
from a fixed number of images by active planning of the vision sensor movement.
Specifically, we consider the task of finding a camera trajectory between two pre-
determined locations such that the reconstruction accuracy of observed geometry
is maximized while the path length is minimized. The envisioned application is
robot path planning, where the accuracy usually is a secondary objective, so the
focus is on providing the best reconstruction given time or distance constraints.

In this work we only consider the geometric aspects of the problem and do not
account for availability of texture or object occlusion, which are of course issues
in a real system relying on feature tracking. We further assume the following:
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– An initial maximum likelihood estimate of the structure is available, based
on observations up to that point.

– All cameras along the trajectory are oriented towards a particular point of
interest, e.g. the centroid of the features to be estimated.

– The camera can be positioned with such relative accuracy that its pose and
location is fully known at each observation.

These assumptions may be relaxed, as discussed in section 6.2. Finally, the robot
path is represented by a sequence of camera locations, and the number of cameras
on the path must be chosen in advance.

As an experimental design problem, so-called ‘camera network design’ has
been studied extensively in the photogrammetry literature. The emphasis is on
obtaining the most accurate reconstruction given a limited number of cameras,
and time can be spent finding an optimal configuration. For example, in [14] a
genetic optimization algorithm is used to search the high-dimensional parame-
ter space of camera placements. Similar stochastic algorithms are usually em-
ployed since the problem is intrinsically multi-modal i.e. the objective function
has many local minima, cf. [3]. In the context of 3D reconstruction in con-
trolled environments, the task at hand is usually referred to as ‘next best view
planning’, suggesting that given an approximate reconstruction we seek a sin-
gle next view that will reduce the error the most. This is the case in [4] where
the authors reconstruct objects using a camera mounted on a robotic arm. The
object geometry is estimated using a Kalman filter, and the next imaging loca-
tion is determined by searching a discrete parameter space and evaluating the
expected information gain in the filter at each position. A different approach
is taken in [5] where the next imaging location is decided based only on the
single currently least well-determined feature, allowing a simple closed form so-
lution. In the above problem formulations there are usually few or no constraints
imposed on possible sensor configurations, computational complexity is less of
an issue and the ‘next best view’ approaches do not consider more than one
future observation. This work will show that given constraints on the camera
positions, good solutions for many future observations can be found relatively
quickly. For a recent general survey of the sensor planning field see the book by
Chen et al. [6].

The work most similar in spirit to ours is [7] where the path of a robot mov-
ing in the plane is planned based on the expected reconstruction accuracy of an
observed object. An approximation of the geometry is given and the expected
information gain from observing the object from a particular vantage point is
determined on a discrete grid of camera locations. Each grid cell is assigned a
cost proportional to the inverse of the information gain, and a minimum cost
path is found between the starting point and the global minimum grid cell.
The algorithm does not take into account the new information gained after an
actual observation is made, however, and becomes computationally expensive
if we allow the camera to move in three dimensions. The minimum cost path
formulation also restricts the choice of cost function. This work proposes an
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efficient continuous optimization approach to the problem of finding a short path
with large information gain.

2 Problem Formulation

The planner takes as input an initial estimate of the structure, the current loca-
tion of the sensor and the desired destination. The output is a path, represented
by a discrete set of sensor locations, connecting these points. The number of lo-
cations on the path can be set explicitly or deduced from e.g. the robot’s speed
and sample rate and the distance to be travelled. For the experiments in this
paper the sensor is assumed to be a single fully calibrated camera, although
extension to stereo and multi-camera systems is straightforward. The standard
pinhole camera model is used, so that the relation x̂ = f(P,X) between a world
point X and its projection x̂ in homogeneous coordinates is given by

λf(P,X) = KM

(
X

1

)
=

⎛
⎜⎝fx 0 u0

0 fy v0

0 0 1

⎞
⎟⎠(

R | −Rt
)(X

1

)
(1)

where R and t are the camera rotation and translation and K represents the
known intrinsic calibration parameters. However, any differentiable projection
function f(P,X) may be substituted, e.g. to include radial distortion terms.

In the interest of reducing the parameter space dimension, each camera is
parametrized only by its position and is automatically oriented toward a point
of interest, typically chosen as the centroid of the structure under consideration.
Features are deemed visible if they fall within the camera’s field of view; possible
occlusion by other objects is not considered. The measurement uncertainty of
features is also considered fixed.

We define the optimization problem as follows:

Problem 1. Minimize the reconstruction uncertainty of observed geometry and
the distance traveled by the sensor between imaging locations.

These are conflicting objectives, which are combined in a cost function defined
below.

3 Cost Function

Lacking ground truth data or other a priori information, the quality of a re-
construction can only be judged by the statistical uncertainty of the estimate.
Condensing a probability distribution into a scalar quality measure is not en-
tirely straight-forward, however, and choices must be made depending on the
intended application. Also, in most situations only estimates of the probability
distribution are available, e.g. the mean and covariance. In the experimental
design literature, many summary statistics have been proposed and are usually
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functions of the eigenvalues of the covariance matrix, e.g. the trace and determi-
nant, cf. [8]. In the structure-from-motion problem, the eigenvalues have a direct
geometric interpretation which we consider below.

If we assume the position and orientation of the camera is fully known when
an observation is made, the structure estimates corresponding to individual fea-
tures are independent of each other, and the covariance matrix is block diagonal
with 3-by-3 blocks (assuming point features). The eigenvalues of each block cor-
respond to the semi-axes of the ellipsoid representing the variance of the feature
location. We would like these ellipsoids to be as small as possible, but in what
sense? If we minimize the volume, i.e. the determinant, we admit solutions where
a point may be very well-determined in two directions but with a large uncer-
tainty in the third (typically the depth). Minimizing the determinant of the
entire covariance matrix (the so-called D-optimality criterion) could favor solu-
tions where one point is very well determined while others are much less certain.
For navigation and mapping purposes, we would like all, or at least the majority
of features to be reconstructed to reasonable accuracy. Minimizing the largest
eigenvalue (E-optimality) would achieve this, but results in a non-smooth objec-
tive function. We choose to minimize the sum of the eigenvalues (A-optimality),
i.e. the trace of the covariance matrix, which provides a good trade-off with the
added computational benefit of not having to calculate individual eigenvalues.

Before introducing the cost function, we discuss how to compute the trace
given a set of measurements.

3.1 Calculating Covariance

In many recent SLAM systems (e.g. [9,10,11]) maximum likelihood estimates
obtained via bundle adjustment are available. We assume the structure estimate
is optimal in the ML sense with respect to the observations; then the information
matrix is given to first order by I = J�R−1J where J is the Jacobian of the
reprojection error evaluated at the minimum, and R the measurement noise
covariance [12]. Also, the (pseudo-)inverse of I gives an approximation of the
covariance matrix. Since information is additive, including new observations in
the estimate amounts to summing the individual information matrices. In other
words, to calculate the effect of new observations on the structure estimate, we
compute the Jacobian of each observation and add the corresponding information
matrices to the initial one. New observations may of course shift the ML estimate,
invalidating the approximation, but this is avoided in a natural way as discussed
in section 4.

Given a world point X and a camera P , let x be the measured image coor-
dinate, and f(P,X) the projection function mapping X to the expected image
coordinate x̂. Define the re-projection error as EX(P,X, x) = f(P,X) − x with
Jacobian

JX =
dEX

dX
=

⎛
⎝ ∂f1

∂X1

∂f1
∂X2

∂f1
∂X3

∂f2
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⎞
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If several points X1,...,N are observed simultaneously, let

E(P,X1:N , x1:N ) =

⎛
⎜⎜⎝
EX1

...
EXN

⎞
⎟⎟⎠ (3)

with block diagonal Jacobian

J =

⎛
⎜⎜⎝
JX1 0

. . .

0 JXN

⎞
⎟⎟⎠ . (4)

The information matrix for a single image is then given by

I(P,X1:N ) =
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X1R
−1
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. . .

0 J�
XNR

−1
N JXN
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⎟⎟⎠ (5)

where usually the Ri =
(

σ2 0
0 σ2

)
.

The final information matrix given the initial information I0 and images from
camera positions P 1,...,M is now

IM = I0 +
M∑

j=1

I(P j , X1:N) . (6)

Note that the computation is linear in the number of observed features and
the number of images, and that the covariance of the estimate is the inverse,
ΣP 1:M ,X1:N = I−1

M . For notational convenience, from hereon let P denote the set
P 1:M of camera poses along a path, and X = X1:N the estimated structure.

3.2 Cost Function

We propose the following cost function:

C(P,X) =
1
N

tr(ΣP,X) +
α

(M − 1)1−q

M−1∑
j=1

‖P j+1
pos − P j

pos‖q

= U(P,X) + αD(P ) , (7)

i.e. the uncertainty measure plus a function of the camera path, weighted by
a constant factor α > 0, where q ≥ 1. The normalization constants N−1 and
(M − 1)q−1 are designed to make the cost approximately invariant with respect
to the number of observed features and camera positions on the path. Note that
by choosing q > 1, D(P ) will favor solutions with equidistant spacing between
the camera positions, and introducing an offset d, D(P ) =

∑M−1
j=1 (‖P j+1

pos −
P j

pos‖−d)q, we can impose the soft constraint that the path length be d(M −1),
if desired.
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3.3 Cost Function Properties

The multi-modality of the objective functions normally used in next best view
planning makes optimization difficult. The proposed cost function is no excep-
tion, but due to the somewhat local nature of the sought solution there are
obvious bounds on the cost and geometry of the path.

Proposition 1. U(P 1:M , X) is a non-negative decreasing function of the num-
ber of observations M .

Proof. The information matrix I is positive semidefinite. Including a new obser-
vation amounts to adding another positive semidefinite matrix ΔI to I, and the
result is again positive semidefinite. By the Courant-Fischer theorem, we know
that the (sorted) eigenvalues satisfy λi(I +ΔI) ≥ λi(I) for all i = 1, . . . , n and
equivalently λi(Σupdated) = λi

(
(I + ΔI)+

) ≤ λi(I+) = λi(Σinitial). Evidently
tr(Σupdated) ≤ tr(Σinitial). ��

Theorem 1. The length of the path at the minimum P ∗ is bounded.

Proof. Given any initial estimate P̂ of the path, we have

αD(P ∗) ≤ U(P̂ ,X) + αD(P̂ ) − U(P ∗, X)

≤ U(P̂ ,X) + αD(P̂ ) (8)

≤ Uinitial + αD(P̂ )

where Uinitial = 1
N tr(Σ0) andΣ0 the covariance of the current structure estimate.

Since ‖P j+1
pos − P j

pos‖ < ‖P j+1
pos − P j

pos‖q + 1, the length of P ∗ is bounded from
above by (M − 1)1−q

(
α−1Uinitial +D(P̂ )

)
+M − 1. ��

We see that the path must be contained inside an ellipsoid with foci at the (fixed)
first and last camera positions, and that the bound can be computed easily in
advance. As expected, the optimal path approaches the line segment between
the foci as α grows.

This result suggests that we may attempt to find and compare several local
minima by optimizing with varying initial paths sampled from within the feasible
ellipsoid.

4 Proposed Algorithm

As noted in the introduction, the next best view problem is known to suffer from
multiple local minima, cf. [3]; this is true for all reasonable choices of U . Finding
the global minimum is a difficult problem, and the prevailing approach in the
literature seems to be more or less exhaustive search over a discretized parameter
space, [4,7], or stochastic optimization methods, [13,14]. In the interest of speed,
however, we adopt a gradient based optimization scheme, using the well-known
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Levenberg-Marquardt (LM) method. LM minimizes the 2-norm of a residual
vector r, which we construct as

r =

(
tr(ΣP,X1)

N
, . . . ,

tr(ΣP,XN )
N

,
α‖P 2

pos − P 1
pos‖q

(M − 1)1−q
, . . . ,

α‖PM
pos − PM−1

pos ‖q

(M − 1)1−q

) 1
2

(the exponent indicates element-wise square root) so that ‖r‖2 = C(P,X). The
parameter space is the M − 2 intermediate camera positions; the camera orien-
tation is determined by its position and the interest point.

The final hurdle is how to evaluate the cost function before any observations
are made. The best we can do is predict what the camera will see at a partic-
ular location given the current best estimate of the structure. Assuming that
measurements are corrupted with zero-mean noise, the expected observation is
simply the projection x̂ = f(Pi, X). Such an observation has zero reprojection
error, and so does not affect the ML estimate.

The optimization is applied within the following framework:

1. Given an initial estimate of the structure, calculate its centroid and let this
be the camera’s point of interest. Select a target location for the camera, i.e.
select the end point of the path.

2. Generate an initial path by linear interpolation between the first and last
camera locations. The number of discrete camera locations along the path
could be selected to match the image sampling rate and speed of the robot,
but this would normally result in far too many locations and a very high-
dimensional search space. However, it stands to reason that more images
taken from approximately the same vantage point do not contribute quali-
tatively to the reconstruction, so a relatively sparse distribution of camera
locations is sufficient.

3. Find a minimum of the cost function wrt. P using the LM algorithm.
4. Move the camera to the next location along the path and make an actual

observation. Update the structure estimate with this new information, and
update the camera interest point location and path end point, if needed.

Repeat steps 3 and 4, each time with one less camera location along the path
and using the previous path estimate as an initial guess.

5 Experiments

We first apply the above algorithm to the scenario of a robot trying to pass
through a doorway. The doorway is represented by a rectangular array of point
features which are optimally triangulated from the first two views, see figure
1(a). In all experiments we assume an image measurement noise σ equivalent
to about one pixel. The target location is placed in front of the doorway, and
the path is discretized with four waypoints in between. The optimization is run
until convergence and the robot is moved to the next prescribed location along
the path, where a new image is acquired and the structure estimate is updated
using bundle adjustment.



Optimal View Path Planning for Visual SLAM 377

(a) (b) (c) (d) (e)

Fig. 1. Doorway scenario. The robot wishes to approach the passage while determining
its geometry as accurately as possible. The first two cameras on the path represent the
last two images the robot has acquired and provide the initial optimal triangulation
of the geometry. Red dots indicate which cameras are free to move, the red cross is
the point of interest. In this case subsequent observations do not visibly change the
initially planned path. The uncertainty ellipsoids represent 5σ in (a) and 50σ in (b)-(e).
Note that in the latter cases the expected uncertainties, given all observations along
the path, are displayed. The values q = 3 and α = 4.5 · 10−7 were used.

Fig. 2. Here the robot passes (from right to left) by a point cloud and makes a detour
to get as close to the features as possible; this is natural, since the closer the feature,
the higher its angular resolution. Three cases are plotted: α = 0.2 · 10−7 (red dashed),
α = 0.5 · 10−7 (green dotted) and α = 10−6 (black).
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Table 1. Relative error U(P, X)/U(P 1:2, X) and absolute reconstruction error
1
N

∑N
i=1‖Xi −Xi

true‖, where X1:N
true is the ground truth structure being observed, com-

puted for different values of α in the scenario of figure 2. The relative error represents
the expected decrease in uncertainty from the initial estimate given by the first two
images, the reconstruction error the actual error after all observations have been made.
As α is decreased, the optimized path deviates more from the straight line between the
first and last camera position, and the reconstruction error is decreased.

Optimized path Straight path

α Rel. err. Rec. err. Rel. err Rec. err

1.0 · 10−7 1.64 · 10−3 8.32 · 10−4 2.02 · 10−3 1.03 · 10−3

0.5 · 10−7 1.25 · 10−3 7.15 · 10−4 ” ”

0.2 · 10−7 5.36 · 10−4 4.53 · 10−4 ” ”

The influence of the parameter α is illustrated in figure 2 and table 1. The
robot passes by a point cloud, and to get a closer look it must make a detour.
A large α penalizes long paths at the expense of reconstruction accuracy.

6 Discussion

6.1 Computational Complexity

As noted in section 3.1, the cost function can be evaluated in O(MN) time.
The LM algorithm requires the computation of the Jacobian of the residual
vector r each iteration. The analytic expression may be very complicated and
expensive to evaluate, so a finite difference approximation is preferred. The cost
function must be differentiated with respect to 3(M − 2) parameters, requiring
3(M − 2) + 1 function evaluations to compute the Jacobian. But the covariance
matrix is a function of a sum of individual information matrices, where only one
term changes as the camera parameters are perturbed one at a time. By careful
bookkeeping of the information matrices only 4 instances need to be computed
for each camera instead of all 3(M−2)+1 of a näıve implementation. This lowers
the complexity of computing the Jacobian from O(M2N) to O(MN). Neverthe-
less, in real-time applications computing the path should take a few seconds at
most, and recent SLAM systems track hundreds or thousands of features. It may
therefore be necessary to restrict attention to a subset of reconstructed features,
e.g. those with the largest uncertainty, when evaluating the cost.

Furthermore, due to the iterative nature of the optimization, the path compu-
tation may be aborted before convergence but still yield a good approximation,
depending on available time and computational resources.

6.2 Extensions

The assumptions in section 1 can of course be relaxed. If an initial ML structure
estimate is not available, we can either choose to ignore any prior information
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and initialize the algorithm using optimal triangulation from the most recent
images, or simply substitute a non-ML estimate (e.g. from an EKF). If the
estimate is good enough, the inverse of the covariance matrix will still be a good
approximation to the Fisher information. Even if it’s a poor approximation we
would expect the optimized paths to yield better reconstruction accuracy than
a straight or random one.

The requirement that the camera be oriented toward a particular point is only
intended to reduce the dimension of the parameter space. Optimization over the
orientations, or other rules for selecting orientation based on camera position
and estimated structure could easily be incorporated.

It is also assumed that the camera position and orientation are known to high
accuracy when acquiring images. Obviously, this is rarely true in a practical
SLAM system, where there may be considerable uncertainty in the robot loca-
tion. However, the location is usually well-determined relative to nearby, recently
observed features, so for short-term local path planning this is a fair approxima-
tion. Nevertheless, incorporating the camera uncertainty in the covariance esti-
mation would be straightforward, but would also introduce correlations between
features. The information and covariance matrices would no longer be block diag-
onal, raising the computational load considerably, and the cost function would
possibly have to be modified to include the camera location uncertainty. The
practical gain of incorporating such information is less clear.

The nature of the optimization scheme makes it easy to incorporate different
constraints. For example, obstacles in the robot’s path can be modeled as a
potential field added to the cost function.

7 Conclusion

This paper has presented a continuous optimization approach to certain in-
stances of the next best view planning problem, aimed toward application in
SLAM systems. Unlike previous algorithms the next best view is chosen with
consideration of several expected future observations. While the solutions are
only locally optimal, experiments show that reconstruction accuracy is still much
improved, at a computational cost linear in the number of cameras and features.
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Abstract. This paper proposes a new algorithm to estimate automat-
ically the number of deformation modes needed to describe a non-rigid
object with the well-known low-rank shape model, focusing on the miss-
ing data case. The 3D shape is assumed to deform as a linear combination
of K rigid shape bases according to time varying coefficients. One of the
requirements of this formulation is that the number of bases must be
known in advance. Most non-rigid structure from motion (NRSfM) ap-
proaches based on this model determine the value of K empirically. Our
proposed approach is based on the analysis of the frequency spectra of the
x and y coordinates corresponding to the individual image trajectories,
which are seen as 1D signals. The frequency content of the 2D trajectories
is encoded using the modulus of the Discrete Cosine Transform (DCT)
of the signals. Our hypothesis is that the value of K that gives the best
prediction of the missing data also provides the best 3D reconstruction.
Our proposed approach does not assume any prior knowledge and is
independent of the 3D reconstruction algorithm used. We validate our
approach with experiments on synthetic and real sequences.

Keywords: non-rigid SfM, Discrete Cosine Transform, frequency
content.

1 Introduction

The Structure from Motion (SfM) problem is defined as the simultaneous es-
timation of the 3D coordinates of some scene points and the relative motion
between the camera and the world purely from 2D trajectories of tracked fea-
tures. Tomasi and Kanade [11] introduced the factorization technique to tackle
the SfM problem in the case of rigid objects viewed by an orthographic camera
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by imposing the rigidity constraint. This assumption was since relaxed to extend
structure from motion algorithms to the non-rigid domain. Bregler et al. [4] were
the first to propose a factorization approach based on a low-rank shape model to
represent the deforming shape as a linear combination of K basis shapes which
encode its main modes of deformation.

However, the non-rigid structure from motion problem (NRSfM) is severely
under-constrained. Recent approaches to NRSfM have focused on the use of dif-
ferent optimization schemes and the definition of priors to overcome the problems
caused by the inherent ambiguities and degeneracies [5,2,12,9]. The linear basis
shape model has also allowed the formulation of closed form solutions both for
the affine [14] and the perspective [15,13,6] cases. However, closed form solutions
are known to be very sensitive to noise [3,12] and cannot deal with missing data.

Akhter et al. [1] depart from the low-rank shape model and instead describe
the time varying 3D trajectories as a combination of trajectory bases for which
they choose the Discrete Cosine Transform (DCT). The advantage of their ap-
proach is that the bases are generic and do not need to be estimated for each
sequence.

So far there has been little work on the automatic estimation of the number
of deformation modes needed to represent the time varying shape. Most of the
aforementioned approaches estimate the number of deformation modes from the
rank of the measurement matrix (e.g., [14]) or empirically (e.g., [12,9,1]). Roy-
Chowdhury [10] introduces the deformability index (DI) to estimate the number
of basis shapes by taking into account the statistics of the underlying noise in
the shape sequence. However, this approach cannot deal with missing data. In
their coarse-to-fine shape model, Bartoli et al. [2] use the Cross-Validation score
to automatically decide when to stop adding modes of deformation to the model.

This paper addresses the automatic selection of the number of basis shapes
needed to describe a non-rigid object represented using the well known low-
rank shape model, focusing on the missing data case. The goal is to select the
number of bases (K) that gives the best 3D reconstruction. Our hypothesis
is that the value of K that gives the best prediction of the missing data also
provides the best 3D reconstruction. The key point of our proposed approach
is to consider the x and y coordinates of the 2D trajectories (the columns of
the matrix of trajectories W ) as 1D signals and to study their frequency content,
which is assumed to be similar after filling the missing entries in W . The missing
entries are filled with a NRSfM factorization technique, for different values of K.
Then, a measure of goodness of the filled-in data based on the frequency content
preservation is defined. The modulus of the Discrete Cosine Transform (DCT)
is used to study the frequency content of the signals.

This paper is closely related to the work of Julià et al. ([7], [8]), where the
goal was to estimate the rank of a missing data trajectory matrix in the case of
multiple moving rigid objects using the FFT to describe the frequency content
of the 2D trajectories. However, in this paper we focus on the more challenging
case of non-rigid motion.
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2 Deformable Low-Rank Shape Model

We use the low-rank shape model introduced by Bregler et al. [4] in which they
describe the time varying 3D shape of a non-rigid object as a linear combination
of some basis shapes B1, B2,..., BK . Each basis shape BK is a 3 × p matrix
describing the 3D coordinates of p points. The 3D points deform as a linear
combination of the fixed basis set according to time varying coefficients: Si =∑K

d=1 lidBd, where the matrix Si = [Si1, ...,Sip] is the 3D shape of the object at
frame i and lid are the configuration weights. Under an orthographic projection
model, the p points of Si are projected onto 2D image points as:

Wi = Ri

( K∑
d=1

lidBd

)
+ Ti (1)

where Ri contains the first two rows of the full 3D camera rotation matrix and
Ti is the camera translation, which can be eliminated by registering the origin
of the image coordinate system to the centroid of the object. If we now consider
all the frames, f , in the sequence, we can rewrite the linear combination in (1)
as:

W =

⎡
⎢⎣
l11R1 . . . l1KR1

...
. . .

...
lf1Rf . . . lfKRf

⎤
⎥⎦
⎡
⎢⎣
B1

...
BK

⎤
⎥⎦ =

⎡
⎢⎣
M1

...
Mf

⎤
⎥⎦
⎡
⎢⎣
B1

...
BK

⎤
⎥⎦ = MS (2)

Since M is a 2f × 3K matrix and S is a 3K × p matrix, the rank of W is
constrained to be at most 3K and it can be factorized into two matrices: M
contains the camera pose Ri and configurations weights li1,...,liK for each frame
i, while S contains the K basis shapes Bd.

3 Proposed Approach

This section describes our new algorithm to estimate the number of deformation
modes K automatically in the NRSfM problem in the case of missing data.

Our goal is to select the value of K that yields the best 3D reconstruction of
the deformable object. The missing data in the trajectory matrix W are filled
with a NRSfM factorization technique, considering different values for K. Our
hypothesis is that the value ofK that best predicts the missing data also provides
the best 3D reconstruction. Thus, the aim is to define a measure of goodness of
the filled-in data, when different values of K are considered. One could consider
using the root mean square error (rms):

rms = ‖W −MS‖F/
√
n (3)

where ‖ ·‖F is the Frobenius norm and n is the number of known elements in W .
However the rms error would only give information about how well the initially
known entries are approximated. Alternatively, our proposed approach aims to
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define a measure of goodness of fitting for both the initially known data and the
missing data. In this paper we propose to consider the x and y coordinates of
each 2D trajectory (each column of W ) as 1D signals and we define a measure
of goodness based on the frequency content of these signals.

3.1 Frequency Content of 2D Trajectories

The proposed measure of goodness is based on the assumption that the frequency
content of the signals (the 2D trajectories) should be preserved after filling-in
the missing entries in W . The Discrete Cosine Transform (DCT) is used to study
the frequency content of those 1D signals. More specifically, the modulus of the
DCT coefficients, which encodes the amount of information (energy) of the signal
contained at a given frequency, is used.

We propose to compare the energy of the original signals with the one obtained
after filling in the missing entries considering different K values. The number
of basis shapes K that gives the best frequency content preservation is then
selected. Naturally, the problem is that the original signals are not full. This
paper proposes a strategy to fill missing entries in the original signals, without
assuming any K value, to give a full reference trajectory matrix (see details
in Section 3.3). The frequency content of this reference trajectory matrix will
then be compared with the one of the matrix filled-in using different values
of K. It is therefore crucial that our reference trajectory matrix be a good
approximation of the original, unknown, full matrix W .

To illustrate the key idea behind our approach, we consider one of the data-
sets used in Section 4 and we show the way in which the missing data in a
single trajectory is recovered, assuming different values of K. It consists of a
sequence of 37 3D points on a face tracked along 74 frames. A percentage of 30%
missing data is randomly generated from the full matrix of original trajectories.
Fig.1 shows the single trajectory studied in this section, when different values for
K are considered. Specifically, the full trajectory (black line), the data filled-in
with different values for K (red line) and the reference trajectory (blue-dashed
line) are plotted. The corresponding x and y coordinates of this trajectory are
plotted in Fig. 2 (a) and (b), respectively. In addition, the modulus of the DCT
of each of the x and y signals for each K considered are plotted in Fig. 2 (c)
and (d) respectively. The modulus of the DCT of the full signal (black line), the
filled-in signal for different values of K (red line) and the reference signal (blue-
dashed line) are shown. It can be seen that the reference matrix is a good
approximation of the full data both in terms of the 2D image coordinates (see
Fig. 2 (a) and (b)) and of the frequency content (see Fig. 2 (c) and (d)). Notice
that most of the energy of the signal is contained in the lowest frequencies (left
part of the frequency content plot). The proposed approach takes into account
the frequencies containing about 99.99% of the energy of the signal. Fig. 2 (e)
and (f) shows only the lowest frequencies corresponding to the current example.

Fig. 1 and Fig. 2 (a) and (b) show that the data are better filled when K ≥ 6.
Furthermore, the filled-in signal is most similar to the original one when K ≥ 6
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Fig. 1. Single trajectory plotted in the image plane: full data (black line), filled-in data
with values of K ranging from 1 to 8 (red line) and reference data (blue-dashed line)

(see Fig. 2 (e) and (f)). In fact, the best 3D reconstruction is obtained for K = 6
in this example, as we will show later in Fig. 3 (b).

3.2 Algorithm

The proposed algorithm is based on the preservation of the frequency content (or
energy) of the signals. First the reference matrix is built from the visible tracking
data in W following the method described in Section 3.3. The missing data in W
are then filled with a NRSfM factorization technique, considering different values
of K. The modulus of the DCT of each filled-in matrix (referred to as DCTK)
is compared with the one given by the reference trajectory matrix (denoted
as DCTref ). In fact, only a small number of the lowest DCT frequencies, which
contain about 99% of the energy of the signal, are considered. The proposed
measure of goodness of fit compares the signals corresponding to the x and y
coordinates separately and is defined as follows:

eDCT (K) = ex(K) + ey(K) (4)

where
ex(K) = ‖DCTref |x −DCTK|x‖F /

√
l, (5)

ey(K) = ‖DCTref |y −DCTK|y‖F /
√
l, (6)

l is the length of the signal and, DCTref |x and DCTref |y are the modulus of
the DCT of the x and y coordinates of the reference matrix. At the same time,
DCTK|x and DCTK|y are the modulus of the DCT of the x and y coordinates of
the matrix filled for different values of K. Notice that the DCT is applied to the
x and y coordinates of each individual trajectory (each column of the matrix).
Therefore, l is the number of the lowest frequencies taken into account. We
propose to stop increasing K when either eDCT increases or when it decreases
below a given threshold.
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Fig. 2. (a) and (b): x and y coordinates of the studied trajectory; (c) and (d): modulus
of the DCT (logarithmic scale) of the above signals; (e) and (f): modulus of the lowest
frequencies of the DCT. Legend: full data (black line), filled-in data for different values
of K (red line) and reference trajectories (blue-dashed line).
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The proposed algorithm is summarized below:

Algorithm: Automatic estimation of the number of deformation modes
in NRSfM with missing data

Input: A matrix of trajectoriesW2f×p with missing data, where f is the number
of frames and p the number of feature points.

1. Missing data entries of the original W are filled to obtain the reference
matrix Wref using the algorithm in Section 3.3.

2. Set K = 1 and the threshold τ . Compute DCTref |x and DCTref |y (modulus
of the lowest frequencies of the DCT of Wref ).

3. Factorize the missing data matrix W into the structure and motion matrices
using a non-rigid factorization technique: W̃K = M2f×3KS3K×p.

4. Compute DCTK|x and DCTK|y (modulus of the lowest frequencies of the
DCT of W̃K).

5. Compute the error value: eDCT (K) = ex(K) + ey(K),
6. Stop if eDCT (K) ≥ eDCT (K − 1) or (eDCT (K − 1) − eDCT (K)) ≤ τ .

Otherwise, increase K = K + 1 and go back to step 3.

Solution: K = K − 1 is the estimated number of deformation modes.

Fig. 3 (a) and (b) show the proposed measure of goodness of fit (eDCT ) and
the 3D error (rms3D, defined in the next section) obtained for the current ex-
ample (30% of missing data) for increasing values of K. If the proposed stopping
criterion was used with τ = 0.09, the selected number of deformation modes
would be K = 6, which yields the best 3D reconstruction. Fig. 3 (c) shows the
obtained rms. It would be more difficult to define a stopping criterion by study-
ing the rms, since its value does not stabilize. The rms decreases as K increases,
in general.
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Fig. 3. (a) eDCT ; (b) rms3D; (c) rms, all for different values of K (results correspond
to the current example, 30% of missing data)
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3.3 The reference Matrix

As mentioned above, missing data in the original matrix W should be filled in
order to study the frequency content of the original signals. This section presents
a strategy to obtain a full matrix that will be used as a reference trajectory
matrix in the proposed algorithm. The main advantage of the proposed strategy
is that it does not assume any K value. However, other reference matrices could
be considered. In [7] and [8], for instance, the reference matrix was obtained by
filling the missing entries with zeros. This paper proposes to express the original
1D signals using the DCT basis. That is, given the signal wj

x (x coordinates of
the jth-column of W ), we express it as the following product:

wj
x = Φf×dxd×1 (7)

where Φ contains a predefined set of d DCT basis vectors and x are the unknown
coefficients. Specifically, each element in the matrix Φ is the jth-frequency cosine
term at time i:

φij =
σj√
f

cos
(
π(2i− 1)(j − 1)

2f

)
(8)

with σ1 = 1 and σj =
√

2, for j ≥ 2, and f is the number of frames.
The following expression gives the solution to find the coefficients x:

x = (ΦtΦ)−1(Φtwj
x) (9)

Once the coefficients x have been computed, the missing entries in wj
x are

filled with the product (7). It should be remarked that only the known entries
in wj

x and the corresponding rows in Φ are used to compute x. Due to that
fact, the matrix Φ may be close to singular when working with missing data
and equation (9) may give incorrect results. In order to avoid this situation,
we propose an incremental strategy to compute the DCT coefficients. In a first
step, a small number of coefficients of the DCT basis are computed, by using
only the initially known data in W . Then, missing entries in W are filled with
the product (7). The following steps consist in computing a larger number of
coefficients of the DCT basis by using the data filled in the previous step. This
is repeated until the maximum number of coefficients is achieved (the number of
frames). Therefore, we only work with missing data in the first step, where the
number of DCT coefficients (that is, the number of unknowns in equation (9))
is very low.

4 Experiments

The goal of this section is to show that the proposed algorithm estimates the
number of modes of deformation K that yields the best 3D reconstruction of
the deformable object or a very close one. The algorithm is tested for different
percentages of missing data in the initial matrix W—from 10% up to 40%.
Missing entries are randomly generated, as in most of the works that deal with
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missing data (e.g., [12,2,9]). In order to obtain more robust results, 50 runs
are carried out for each hypothesis. Although any NRSfM method can be used
in step 3 of the proposed algorithm, in this paper we chose the EM algorithm
proposed by Torresani et al. [12]. The quality of the 3D reconstruction (S) is
measured, when the ground truth (SGT ) is available, by computing the rms3D

error:

rms3D =
‖SGT − S‖F

‖SGT ‖F
=

√∑
i,j |(SGT )ij − Sij |2

‖SGT ‖F
(10)

4.1 Synthetic Data

In our experiments with synthetic data, the 3D animation of a shark data-set,
Shark, also tested in [12], is used. It consists of 91 3D points tracked along
240 frames and the orthographic projection is obtained by discarding the third
coordinate of each 3D point. The object undergoes rigid motion and deformation
corresponding to 2 basis shapes. Thus, K = 3 in our formulation. Two frames
of the sequence are shown in Fig. 4 (a).

(a) (b) (c)

Fig. 4. Sequences: (a) Shark data-set: frames 1 and 50; (b) Face1 data-set: frames 45
and 70. (c) CMU face data-set: frames 1 and 62.

Fig. 5 (a) and (b) shows the eDCT and the rms3D for different values of K
and different percentages of missing data. In addition, the rms is plotted in
Fig. 5 (c). In this synthetic example, the rms plot is similar to the one obtained
with the proposed measure of goodness of fit. These plots correspond to a single
run. Fig. 5 (a) shows that eDCT (4) > eDCT (3), for any percentage of missing
data. Therefore, the algorithm would stop at K = 3. The rms3D, on the other
hand, takes its minimum value at K = 3 in all the cases. The estimated value
of K for 50 runs of the algorithm with different percentages of missing data are
plotted in Fig. 6 (a). The threshold τ that defines the stopping criterion for K
is empirically set to 0.09 in both synthetic and real data experiments and for
all percentages of missing data. The number of deformation modes is correctly
estimated (K = 3) for every percentage of missing data. Only a few outliers are
obtained in the cases of 30% and 40% of missing data.

4.2 Real Data

Two different data-sets are used in the experiments with real data. The first
data-set, Face1, is a motion capture sequence with 3D ground truth that is
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Fig. 5. Shark data-set: (a) eDCT ; (b) rms3D; (b) rms, all for different K values and
different percentages of missing data (single run)
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Fig. 6. Estimated K values for different percentages of missing data (50 runs): (a) Shark
data-set; (b) Face1 data-set; (c) CMU face data-set

also tested in [9] and has been used as an example in Section 3. It consists
of 37 3D points on a face tracked with a motion capture system and projected
synthetically onto a 74 frame long sequence using an orthographic camera model.
Two frames of the sequence are shown in Fig. 4 (b). The second data-set, CMU
face, also tested in [12], consists of 40 points tracked by a motion capture system
along 316 frames. Data is obtained by orthographic projection. Fig. 4 (c) shows
two frames of the sequence.

Fig. 7 (a) shows the eDCT obtained with the Face1 data-set for increasing val-
ues of K and different percentages of missing data (values are given for a single
run of the algorithm). The eDCT stabilizes at K = 7 for percentages of missing
data below 20%. For percentages of missing data equal or higher than 20%, its
value stabilizes at K = 6. Fig. 7 (b) shows that the rms3D takes it minimum
value at K = 6 for any percentage of missing data. It can be seen that the rms
decreases for increasing values of K (see Fig. 7 (c)). Fig. 6 (b) shows the esti-
mated K values with the defined threshold (τ = 0.09) at the 50 runs and for
different percentages of missing data. The median (horizontal line in the thin-
ner region) of the estimated K is 7, for percentages of missing data below 30%.
For percentages of missing data equal or higher than 30%, the median of the
estimated K is 6. Therefore, the estimated K is equal or very close to the one
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Fig. 7. Face1 data-set: (a) eDCT ; (b) rms3D; (c) rms, all for different K values and
different percentages of missing data (single run)
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Fig. 8. CMU face data-set: (a) eDCT ; (b) rms3D; (c) rms, all for different K values
and different percentages of missing data (single run)

that gives the smallest 3D error reconstruction (K = 6) for any percentage of
missing data (see Fig. 7 (b)).

Fig. 8 shows the results corresponding to the CMU face data-set. Fig. 8 (a)
shows that the eDCT stabilizes at K = 7 for percentages of missing data be-
low 30%. For percentages of missing data equal or higher than 30%, the eDCT

stabilizes at K = 6. Notice in Fig. 8 (c) that the rms decreases as K increases.
Fig. 6 (c) shows the estimated K values at the 50 runs, for different percentages
of missing data. The median of the estimated K value is 7 for percentages of
missing data below 30%. For percentages of missing data of 30% and 40% the
median of the estimated K is 6 and 5, respectively. The estimated K for each
percentage of missing data corresponds to the one that gives the smallest 3D
reconstruction error, or an error very close to that (see Fig. 8 (b)).

5 Conclusions

This paper proposes an algorithm to estimate the number of deformation modes
of a non-rigid shape K in the case of missing data entries in the matrix of
trajectories W . The missing data are filled with a NRSfM algorithm for different
values of K. The modulus of the Discrete Cosine Transform (DCT) is used to
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compare the frequency content of the original trajectories with each filled matrix.
Experimental results show that the estimated value of K gives, in general, the
best 3D reconstruction or, at least, a 3D error very close to the best one.

References

1. Akhter, I., Sheikh, Y., Khan, S., Kanade, T.: Nonrigid structure from motion in
trajectory space. In: Neural Information Processing Systems (2008)

2. Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., Sayd, P.: Coarse-
to-fine low-rank structure-from-motion. In: CVPR (2008)

3. Brand, M.: A direct method for 3D factorization of nonrigid motion observed in
2D. In: CVPR, pp. 122–128 (2005)

4. Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from
image streams. In: CVPR. pp. 690–696 (2000)
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Abstract. In this work, we perform three-dimensional scene recovery
from image data capturing railway transportation corridors. Typical
three-dimensional scene recovery methods initialise recovered feature
positions by searching for correspondences between image frames. We
intend to take advantage of a relationship between image data and re-
covered scene data to reduce the search space traversed when perform-
ing such correspondence matching. We build multi-dimensional Gaussian
models of recurrent visual features associated with distributions repre-
senting recovery results from our own dense planar recovery method.
Results show that such a scheme decreases the number of checks made
per feature to 6% of a comparable exhaustive method, whilst unaffecting
accuracy. Further, the proposed method performs competitively when
compared with other methods presented in literature.

1 Introduction

The term corridor has been used to describe a linear, directional flowing, geo-
graphic band connecting two points of a transportation service ([20]). Corridor
mapping is the process by which data is collected regarding such a transporta-
tion corridor for the creation of a virtual representation. The work presented in
this paper is part of a larger project which is concerned with corridor mapping
from a train mounted, forward-facing High-Definition video camera. The ulti-
mate goal of this project is to perform line-of-sight analysis regarding railway
assets, using recovered 3D scene data as input to a geometric analysis process.
The work presented in this paper is only concerned with the 3D scene recovery
from monocular video aspect of this project.

As pointed out by Favaro et al. [7], the majority of 3D scene recovery meth-
ods are based on the same principle of matching features between image frames
and recovering 3D position using camera geometry. This can be achieved, for
example, by tracking image features across image frames ([25, 16]). Typical fea-
tures used in such scenarios include Harris corners ([13, 15, 6]), SIFT features
([27]) and more recently, SURF features ([1]). Detected feature points are then
matched across images. For example, using template matching within a window
of possible positions as described by Kanbard et al. [13].

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 393–402, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



394 T. Warsop and S. Singh

However, these methods only considered 2D information present in the images
processed when calculating feature correspondences. It is possible to integrate 3D
information into this problem. Using stereo cameras, as can be seen in the work
of Ogale et al. [22], Yun et al. [26] and Zhang et al. [29] (to name a few) this can
be achieved by searching epipolar scanlines across left and right-hand images for
matching feature correspondence, typically with a template matching scheme. It
is possible to integrate these epipolar searching concepts into monocular camera
configurations. For example, Klein et al. [14] presented a method named Parallel
Tracking and Mapping (PTAM). In which features are initialised with their 3D
positions by searching along epipolar lines defined by depth between key frames
of the image sequence. Davison et al. [4, 5] presented a similar idea. Along the
depth-defined epipolar lines, regular intervals were considered and matched in
subsequent frames by projecting them into the current frame, using normalised
sum-of-square differences template matching.

The previous methods are only concerned with recovery of 3D points. How-
ever, it is possible to compute higher-order structures such as planes. In fact,
doing so has the advantage that an infinite density of points can be described
in only a few parameters. Whereas, with the previously discussed methods, in-
creasing the number of feature points increases computation quadratically ([19]).
Further, storing planes collapses state space reducing computation and improv-
ing scalability as well as giving a higher-level scene description ([11]). Also,
memory requirements are reduced as many points are represented by a few pa-
rameters ([18]). There are different ways in which these planes can be computed.
For example, Chekhlov et al. [2] and Gee et al. [11, 10] recover 3D points first
and then fit planes to this information. Any new points that are subsequently
recovered can be added to these created planes. Fraundorfer et al. [8] proposed
a method in which initial planar seed regions were chosen from which the rest
of the planar region could be grown. A different approach taken by Pollefeys et
al. [23] tested a reduced set of planes, projecting image pixels onto the chosen
planes, using image pixel value differences to select the best. Yet another type
of method is presented by both Furukawa et al. [9] and Sinha et al. [24]. Sinha
et al. [24] use sparse reconstructed point and line clouds to provide evidence for
a set of candidate planes. Planar depth was then recovered for each image by
assigning each pixel to one of the candidate planes.

In our application, the 3D scene recovery will be performed in an offline ca-
pacity. Thus allowing us to process image sequences in reverse chronological
order - presenting two interesting properties. First, new scene elements appear
at the image edge, allowing redundant information to be easily ignored. Secondly,
image areas recovered in subsequent image frames exhibit similar 3D scene prop-
erties when they process similar image properties to those processed previously.
This concept is highlighted in Figure 1. It may therefore be possible to exploit
this information, using relationships between image features and recovered 3D
scenes to reduce the size of the search spaces traversed when computing feature
correspondences. Such a concept has not been proposed by previous methods
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Fig. 1. When processing image sequences in reverse order, new scene elements entering
at image edges exhibit similar image and 3D scene properties

and forms the main contribution of this work (named Temporal Search space
Reduction, or TSR).

To further clarify the novelty of our proposal, most 3D scene recovery initialise
new features by computing correspondences between image frames. Comput-
ing these correspondences requires searching a range of values in some capacity
(for example, searching along epipolar scan lines for matches). This structure
is shown in Figure 2(a). We propose the use of relationships learnt from previ-
ously processed image features to reduce the range traversed for correspondence
computation. This is shown in Figure 2(b).

The structure of the remainder of this paper is as follows. Section 2 describes
a simple, dense 3D scene recovery method and our novel method for learning
recurring structures to reduce correspondence range traversal. Section 3 presents
experimental results regarding our method. Finally, section 4 concludes this
paper.

(a) The general structure of
3D scene recovery methods
with regard to the recovery
of individual features.

(b) Proposed extension to general 3D scene
recovery methods, using previously pro-
cessed results to reduce search space traver-
sal when looking for correspondence, hence
improving efficiency.

Fig. 2. Comparison between general 3D scene recovery methods and that proposed by
this work
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2 Dense and Efficient 3D Scene Recovery

2.1 Recovering Planar Structures

Figure 1 shows typical images to be processed by our method. These images
are typical in that they contain many planar structures to be recovered. For
example, the flat ground and almost vertical dense vegetation. Therefore, we
employ a method which searches for these planar structures directly.

Image Division into Quadrilaterals. First, each image considered for 3D
scene recovery is divided into a set of quadrilaterals. Currently this is achieved
by dividing the image into a regular grid and using the grid cells as quadrilat-
erals (more sophisticated methods could be employed in the future). Through
experimentation we found the cell size of 64 × 64 provided the best trade off
between execution time and accuracy.

Quadrilateral Recovery. Each quadrilateral is recovered by determining a
plane (defined by a normal vector and an offset value) which gives the minimum
difference between the original image area and that defined by the area of the
plane reprojected into an adjacent image. The intersection of rays between be-
tween focal point, image quadrilateral and plane of best fit then provide the 3D
coordinates of the recovered plane. This process is summarized in Figure 3.

If the image coordinates of a quadrilateral are denoted iq0, iq1, iq2 and iq3,
the corresponding projected plane coordinates for a plane with normal n and
focal point offset value V are computed as:

pqi = F +
(
n · ((F + nV ) − F )

n · (iqi − F )

)
(iqi + F ) + Cx, ∀i ∈ {0, 1, 2, 3} (1)

where, F is the cartesian coordinates of the focal point and Cx is a vector
storing the central x-coordinate of the recovered scene space. Using the ego-
motion between images, pq0..3 are updated with respect to a new image in which
they are likely to appear:

pq′i = R× pqi + T, ∀i ∈ {0, 1, 2, 3} (2)

where, R and T are rotation and translation matrices describing the ego-motion
between frames. Note, ego-motion was detected using a similar method to Goecke
et al. [12]. Projecting each pq′i into the image space of this second image then
provides coordinates of the updated quadrilateral with respect to the plane de-
scribed by n and V .

Even though the initial quadrilateral dividing strategy produces squares, the
previous will work for any shape quadrilateral (even if iq0..3 represents a square,
iq′0..3 may not). Since we wish to compare the image information within these
two quadrilaterals using a sum-of-absolute differences measure, for ease they are
transformed into squares using a texture mapping procedure. If the two square
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Fig. 3. 3D sequence recovery pipeline of the proposed dense, planar image quadrilateral
recovery method

areas are denoted S1 and S2, they are then compared with a sum-of-absolute
differences measure:

sad =

N−1∑
i=0

N−1∑
j=0

3∑
k=0

|S1(i, j, k) − S2(i, j, k)|

N2
(3)

where, N is the length of one side of the squares and k iterates over the red,
green and blue colour channels of the images.

Given the previously described method, the task of recovering the 3D coordi-
nates of an image quadrilateral is now finding the plane normal vector and focal
point offset which correspond to the lowest sum-of-absolute difference value for
projection into a second image. For a single normal vector, we applied gradient
descent for searching the possible values.

2.2 Unsupervised Learning for Temporal Search Space Reduction

As previously mentioned, the intention of TSR is to link image features with 3D
scene recovery results. This is achieved by storing multi-dimensional Gaussians
representing similar, recurring features. Each of these feature Gaussians is as-
sociated with one or more one-dimensional Gaussian distributions representing
different focal offset values computed as part of the previous planar recovery
method, when recovering quadrilaterals with corresponding image features. Fur-
ther, each of these value distributions has an associated plane normal (as per
the previous method).
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In terms of image features for the image area within a quadrilateral, separate
red, green and blue channel histograms are computed. From each histogram the
mean, standard deviation, skewness, kurtosis and energy are computed, provid-
ing 15 image features in total.

For any new quadrilateral processed, each of these features are computed and
the probability these 15 features (f) belong to any of the feature distributions
currently stored in the model is computed:

pFDi =
1√

2πσ2
FDi

e

−(f−μF Di
)2

2σ2
F Di , ∀i ∈ FD (4)

where, FD is the set of feature distributions in the model, μFDi and σFDi

are the mean and standard deviation respectively of feature distribution i. If
no pFDi is greater than a chosen threshold (in experiments we used 0.6), f
represents a new image structure. The corresponding quadrilateral is recovered
by traversing all plane normals and offset values as previously described. A new
feature distribution (FDnew) is created such the μFDnew = f and σFDnew is
set in each dimension to 20% of the possible range for the corresponding feature
values. FDnew is associated with a new value distribution (V Dnew) representing
the results of the recovery. Specifically, μV Dnew is the offset value of the best
fitting plane. This new feature, value distribution are then added to the model.

However, if any pFDi are greater than the threshold, each associated value
distribution is considered in turn and recovery proceeds using the plane normal
associated with the value distribution and the value range defined by:

minV Di,j = μV Di,j − (DσV Di,j × (1 − pFDi)) (5)
maxV Di,j = μV Di,j + (DσV Di,j × (1 − pFDi)) (6)

where, V Di,j represents the value distribution associated with FDi currently
considered, μV Di,j and σV Di,j are the mean and standard deviation of the 3D
values associated with each value distribution (V Di,j) associated with FDi and
D is a scalar value (chosen in experimentation to be 3). If the sum-of-absolute
difference value corresponding to the best fitting plane computed from these
ranges is greater than a threshold, the values chosen are assumed to of been in-
appropriate and the quadrilateral is reprocessed using all possible plane normals
and offset ranges (this has been done to prevent convergence). The results of
which are used to create a new value distribution (as before) which is associated
with the feature distribution with the highest pFDi value. Further, the mean and
standard deviation of this best fitting feature distribution are updated using f .

Finally, if the sum-of-absolute difference value corresponding to the best fit-
ting plane is less than the chosen threshold, the feature and value distribution
corresponding to the best match are updated accordingly.
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3 Experimental Results

The data used for experimentation consists of High-Definition (i.e. 1920 × 1080
pixels) image frames, captured from a front-forward facing camera mounted on
a train. In total, 5 sequences totalling 520 image frames were used. Due to the
restrictions of the railway environment, each image frame had to be ground
truthed by hand - matching features between image pairs and using these cor-
respondences to reconstruct the true 3D position of the feature manually. Ap-
proximately, 850 features were ground truthed in this manner in each image.
Even though this was done as accurately as possible, this ground truthing will
not be completely accurate and so will provide a source of error when comparing
with the recovered scene. However, the difference between recovered and ground
truth scene can still be used as an indicator of the performance of each method
relative to each other.

Tables 1 and 2 provide the results for number of plane offset values checked
(i.e. size of the search space traversed) and accuracy (which is measured in
metres difference from the ground truth) respectively for an exhaustive method
not using TSR and the described TSR method. Note, the table column heading
SX refers to the sequence number corresponding to the results. These results
show that the incorporation of the image, scene relationship used for reducing
feature correspondence search ranges greatly reduces the number of checks made
(and hence computation) whilst unaffecting accuracy.

Table 1. Average number of focal offset values checked per quadrilateral

Method S1 S2 S3 S4 S5 Average

Exhaustive 335.16 288.62 345.46 314.04 340.39 324.73
TSR 20.32 16.97 22.64 17.00 21.18 19.62

Table 2. Average accuracy of recovered scenes (per image)

Method S1 S2 S3 S4 S5 Average

Exhaustive 0.88 1.40 1.80 0.77 1.62 1.13
TSR 0.55 0.88 1.53 0.64 1.36 0.99

Table 3 compares this TSR method with others presented in literature. Where
possible, authors implementations have been used. For fairness of comparison, all
other methods for which results are presented, recovered the same image areas as
the TSR method. These results show that with the data used in our application,
the presented method provides the most accurate results in the least amount of
time. For completeness, Figure 4 shows typical reconstruction results using the
TSR method from parts of image sequences considered.
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Table 3. Comparison results of the proposed method with others from literature

Method Time (seconds) Difference (m)

TSR 1.29 0.99
SIFT features ([17, 28]) 2.6 4.09
ENFT ([27]) 8.91 3.92
PTAM ([14]) 9.77 1.43
MonoSLAM ([5]) 13.03 1.19
Locally planar patches ([21]) 11.41 1.08
Calway features ([3]) 15.19 1.03

(a) Sequence image 0. (b) Sequence image 60. (c) Sequence image 119.

(d) Example recovered
scene screen shot 1.

(e) Example recovered
scene screen shot 2.

(f) Example recovered
scene screen shot 3.

Fig. 4. Example 3D recovered sequence 1

4 Conclusions

In this work, we have presented a method for 3D scene recovery which explicitly
stores relationships between recurring image features and recovered 3D informa-
tion to reduce search spaces traversed when computing feature correspondences.
Scenes were recovered in a railway corridor mapping context and results showed
that storing and using such relationships can dramatically decrease the compu-
tation required to recover a scene. Further, the proposed planar recovery method
used in conjunction with this TSR method performs competitively with other
methods presented in literature. For future work, we intend to investigate the
benefits of TSR-based methods as applied to data sets other than the specific
one described in this work. That is, we believe there are other data sets to which
the previously described TSR framework could be applied, and investigation of
this would prove the ability of the presented approach to generlise to other cases.
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Abstract. The automated handling of objects requires the estimation
of object position and rotation with respect to an actuator. We propose
a system for silhouette-based pose estimation, which can be applied to a
variety of objects, including untextured and slightly transparent objects.
Pose estimation inevitably relies on previous knowledge of the object’s
3D geometry. In contrast to traditional view-based approaches our sys-
tem creates the required 3D model solely from the object silhouettes and
abandons the need to obtain a model beforehand. It is sufficient to ro-
tate the object in front of the catadioptric camera system. Experimental
results show that the pose estimation accuracy drops only slightly com-
pared to a highly accurate input model. The whole system utilizes the
parallel processing power of graphics cards, to deliver an auto calibration
in 20 s and reconstructions and pose estimations in 200 ms.

Keywords: pose estimation, model creation, shape from silhouette, cata-
dioptric multi-view.

1 Introduction

Robotic pick & place deals with the problem of automated handling of objects.
Typical tasks include sorting, packaging and automated manipulation. In order
to correctly place an object, its position and orientation with respect to the
actuator has to be known. In some scenarios the orientation is given by the way
objects are produced, e.g. filled bottles moved on a conveyor belt, but typically
the pose of the object has to be determined on the fly.

Vision-based pose estimation has become popular in industrial settings. De-
spite the vast amount of literature on various techniques, we limit ourselves to
view-based approaches which were quite popular for a time and were recently
revisited for industrial problems [1,2,3,16]. Here the object pose is determined by
comparing the query image with precomputed 2D reference views of a known 3D
model. Removing the translation by normalizing for the object location leads to
three unknown degrees of freedom given by the possible rotations of the object.
Hence, it is feasible to create reference views by placing a virtual camera on a
sphere with the object in its center and later compare an acquired image to these
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views. The accuracy of view-based approaches depends on the sampling density
of the pose range, and the quality of the 3D model of the object.

Most state of the art methods are designed to work with man-made objects.
These objects can be represented by a polyhedral 3D model, and typically re-
semble sharp edges, which are used as features for the pose estimation. However,
there is a large class of objects which have an organic structure, lack edge fea-
tures and are untextured or slightly transparent (e.g. organic moulding parts).
The only remaining cue for them is the filled outline of the object, its silhouette.
Using silhouettes, the pose estimation problem reduces to a 2D shape matching
problem, where the best matching shape out of a database of precomputed views
defines rotation and translation with respect to a camera.

A prerequisite for view-based methods are 3D models, which have to be cre-
ated by either modeling them in CAD systems or by scanning the object. Re-
construction methods based on Structured Light [14,4] are able to produce very
accurate reconstructions even from untextured objects. Shiny surfaces are diffi-
cult to handle for structured light methods. However, the object silhouette can
also be used for 3D reconstruction.

Structure-from-Silhouette (SfS) methods use only a number of silhouettes
to produce an approximation of the 3D object called the Visual Hull (VH),
originally introduced in [9]. A visual hull is guaranteed to contain the object but
it can be a coarse approximation depending on the number of cameras observing
the object. SfS methods typically require a calibrated camera setup, which is
able to capture the object from several defined viewpoints. A very elegant and
at the same time inexpensive approach is to use a catadioptric system. Reflective
surfaces like e.g. mirrors are placed in the field of view of a camera, to create
additional views of a target object in a single image. Each mirror creates an
additional virtual camera with viewpoint behind the mirror surface. Catadioptric
camera setups have appealing advantages over conventional multi-view camera
systems: a) they allow for a cheap and perfectly synchronized multi-view setup
with a single camera and b) they reduce the number of camera parameters [5].

We propose to use a catadioptric camera system with planar mirrors for both,
model learning and model-based pose estimation. The whole work flow of cam-
era calibration, model creation and refinement, and finally pose estimation solely
relies on the silhouettes of the objects. Our contributions are twofold: first, we pro-
pose to use a visual hull representation of an object as input to our model-based
pose estimation. Second, we build an integrated system which can be used for pose
estimation as well as model creation, needed by the pose estimation method.

Our experiments give evidence, that the proposed approach works for a variety
of objects, where traditional approaches based on image features clearly fail.

2 Method

Our pose estimation method consists of four parts: a) silhouette extraction, b)
system calibration, c) model creation, and d) pose estimation. In the following
sections we will present the multi-view system, and how it is calibrated using
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silhouette information only. During this calibration a 3D model of the object is
implicitly created. This model is further refined and subsequently used as input
for our pose estimation method. All methods rely on one and the same hardware
setup and do not require additional helper devices.

2.1 Silhouette Extraction

The accurate extraction of the object outline is crucial, since it directly influ-
ences the accuracy of all subsequent calibration and reconstruction steps. In this
work we decided to adopt a recently proposed variational segmentation method
introduced in [13]. Segmentation is performed by minimizing the energy:

inf
u

{∫
Ω

g |∇u|dx+ λ

∫
Ω

ufdx
}
, (1)

with u : Ω → {0, 1}. The function g(x) is an edge indicator function which is low
at a strong edge and high in homogeneous regions. The user-provided potential
function f represents the likelihood of every pixel to belong to foreground or
background, respectively.

We define f = − |I − Ibackground| and f = ∞ at the image border, because
both, background and foreground regions have to be given as input to the seg-
mentation method. In contrast to background subtraction, we perform segmen-
tation with an additional edge term and a powerful smoothing prior, which filters
out segmentation errors caused by noise.

2.2 Catadioptric Camera Setup and Calibration

Our setup consists of a single camera, a light source, and n planar mirrors.
Figure 1 shows a cross section of the camera setup. The robotic actuator moves
the object between the radially arranged mirrors, such that the object is visible
in every mirror.

It was shown by Hu et al. [8] and later by Heber et al. [6] that a catadioptric
system with planar mirrors can be calibrated solely from outlines of objects
within the mirror setup. The method requires an intrinsically calibrated camera
Preal at the origin of the world coordinate frame.

The calibration of the catadioptric system results in a set of projectionmatrices

Pi = Preal DT
i , (2)

where D4×4 defines a reflection matrix, corresponding to a planar mirror in 3D
space:

D =
[
I − 2nnT c̃ − 2dn

0 1

]
=
[
R t
0 1

]
. (3)

Reflections in 3D space are Euclidean transformations, which additionally per-
form orientation changes. They depend on mirror plane normal n, camera-
mirror-distance d, and camera coordinate frame origin c̃ as proposed by Gluck-
man et al. [5]. For details on recovering plane normal and camera-mirror-distance
we refer the reader to [6].
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Fig. 1. Schematic of our catadioptric setup. The mirrors are arranged radially around
the object.

Having these camera projection matrices along with a set of silhouettes, we
are able to estimate a coarse approximation of the object by computing the
visual hull. The visual hull is defined as the intersection of all viewing cones,
that are generated via back projection of the 2D silhouettes into 3D space.

Figure 2 shows two visual hull 3D models of a toy figure, generated from 6
and 30 camera views, respectively. Obviously, increasing the number of views
allows to reconstruct more details. However, accurate reconstructions of deep
concavities are not feasible with a visual hull approach which poses no problem
as our approach solely relies on object silhouettes.

(a) (b) (c)

Fig. 2. Comparison of visual hull reconstructions of a toy figure from (b) 6 and (c) 30
camera views, respectively

2.3 Reconstruction Refinement

As shown in Section 2.2, the initial model can be refined by adding more views.
A cheap way to add new views is given by moving either the object or the camera
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setup. In either way the relative orientations of all cameras have to be known. In
our application, a robotic end-effector anyway holds the object within the camera
setup for further placement, so we rotate the object around the last joint in front
of the camera. Each rotation introduces n+1 new virtual cameras. The motion of
the new set of cameras with respect to the original ones is restricted to a circular
motion around a common rotation axis. We consider this motion unknown and
implicitly calibrate it during reconstruction.

Fig. 3. Positions of the virtual cameras around the object and parametrization of the
camera movements. Cameras of the same color belong to one turn of the object in front
of the camera setup.

We parameterize the motion with k + 2 parameters for k movements of the
object: the rotation axis, defined by 2 points x1,x2 ∈ R3, and k angles θ1 . . . θk

with respect to the original camera position. The coordinate system is defined,
such that the real camera is located at the origin and the object at [0, 0, 1].
Without loss of generalization, we are able to reduce the dimensions of x1,x2

from R3 to R2 by fixing their z coordinate to lie on a plane in front of and behind
the object, respectively. Since our fully calibrated n + 1 camera setup is rigid,
we can parameterize (n+ 1)(k + 1) cameras by only k + 2 parameters.

A setup with n = 5 mirrors and k = 4 rotations yields a 30 camera multi-view
system and can be parametrized by 6 parameters. This example can be seen in
Fig. 3.

To automatically determine these parameters, the concept of silhouette con-
sistency for auto-calibration was introduced in [7], which we will briefly discuss
here. Given a set of silhouettes Si, i ∈ [1, k] and its corresponding camera pa-
rameters Pi, i ∈ [1, k], the goal is to maximize the coherence of the measured
silhouettes and the model projections. Every optic ray, defined by the camera
center and a silhouette pixel in one view, must intersect the silhouette in any
other view. This holds for perfect segmentation and camera calibration. Due to
noise in both, segmentation and camera position, the above constraint will not
hold for some rays.

Hernandez et al. proposed a simple metric to measure the degree of consistency
for a set of (Si,Pi) by simply counting the number of pixels, that do not comply
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to the consistency property. This metric can be computed by creating a visual
hull, defined by the silhouettes and current projection matrices, back-projecting
it into the camera images and comparing the two silhouettes. For a visual hull
V defined by (Si,Pi) and its projection into an image SV

i , we use the ratio of
the areas between Si and SV

i as a consistency measure:

C(Si,SV
i ) =

∫ (
Si ∩ SV

i

)∫
Si

. (4)

In order to find optimal camera positions, we seek to maximize the total silhou-
ette consistency ∑

i

C(Si,SV
i ) . (5)

The problem is solved by the derivative-free Nelder-Mead algorithm [11]. During
the optimization process, a visual hull approximation is being built implicitly.
The evolution of the model can be seen in Fig. 2 for the initial camera setup and
after 4 rotations of the object.

For the visual hull we use a simple volumetric space carving approach, orig-
inally proposed by [9]. Since the optimization procedure invokes the visual
hull creation many times, we implemented a very efficient simple space carv-
ing method [15], that utilizes the parallelism of modern graphics cards. The
resulting voxel model is then transformed into a triangulated mesh by applying
a standard marching cubes algorithm proposed by [10].

2.4 Model-Based Pose Estimation

With a 3D model at hand, we seek to determine the rotation (roll, pitch, yaw)
of an object with respect to the camera system. Seeing that we can only use the
object boundaries as input we chose to extend the approach of [12] to a multi-
view setup. There the authors did pose estimation by comparing the outline
of an object to a database of reference views, created from a 3D model of the
object. This potentially large database is indexed into a hierarchical structure by
finding similar views, and by grouping them together in a bottom-up fashion. A
rotation-invariant match to the database yielded pitch and yaw. The roll angle
is determined by the matching procedure.

The original method was designed to be used in a single-view setting. To incor-
porate the remaining views created by the planar mirrors, we propose to apply
the algorithm to only one silhouette. We use the other cameras for verification of
the potential matches. Due to the fact, that the roll angle is determined during
matching, the additional views can not be stored in the database, but have to
be created on-the-fly from the 3D model.

In our setting, the silhouette produced by the real camera is always complete.
The views from the virtual cameras may be partially occluded by the robotic
end-effector. To cope with this, we propose a simple partial contour matching
method. A closed contour from the database is given as a vector of points Cdb =
〈p1, · · · ,pn〉. The partial query contour is given by Cq = 〈q1, · · · ,qk〉. In order
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to match them, we first perform a linear search, where we align q1 with every
point of Cdb, and measure the Euclidean distance of qk to the closest point in
Cdb. This pre-selection yields a set of possible start points for which the final
error measure is obtained. The error is given by the sum of squared distances of
the aligned Cq to the closed contour Cdb.

Out of a list of potential matches, the element of the database with the lowest
error defines the rotational part of the object pose. The translation is restricted
by the robotic end-effector. Remaining translation errors due to inaccuracies of
the robot can be easily determined from the 2D input image.

3 Experiments

In our experiments we use a catadioptric system with 5 planar mirrors, which
yields a 6-camera multi-view system. We first evaluate the accuracy of the pro-
posed calibration and reconstruction method. In order to verify our claim that
visual hull reconstructions can be used for pose estimation, we use synthetic
images of previously scanned 3D models obtained by a laser scanner. Finally we
apply our method to various real-world objects.

3.1 Calibration Accuracy

Intrinsic camera calibration is performed using the method proposed by Zhang
[17]. The extrinsic parameters of the real and virtual cameras are obtained as
described in Section 2.2. We evaluated the re-projection error of the calibration
sphere center over 5 calibration runs with an average of 0.01px, resulting in a
geometric error of 2μm at an object distance of 300mm.

The optimization procedure converges after roughly 200 iterations. The total
time for calibration, reconstruction and triangulation of the voxel representation
is roughly 1 minute on a quad core PC with 4GB RAM and a NVidia GeForce
GTX285. Due to the high repeatability in positioning of the robotic arm, the
calibration has to be done only once. Consecutive reconstructions can be carried
out in 100ms for a voxel size of 5123.

First, we evaluate the accuracy of the estimated rotation angles. The ground-
truth is provided by a turn table with a precision of 1/77◦. The average deviation
for several runs was 0.37◦.

Second, we evaluate the accuracy of the estimated rotation axis. To get a
ground-truth, we let a sphere rotate off-axis, triangulate the center points and
fit a plane through the reconstructed 3D points. The normal of the plane is
defined as rotation axis. The average angular deviation for several runs was
0.34◦.

3.2 Pose Estimation with Synthetic Images

In the experiments so far we have focused on the quality of the calibration, which
directly influences the quality of the reconstructed objects. Now, we want to
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Table 1. Results of the synthetic view experiment. 800 synthetic contours generated
from the ground-truth (GT) model are queried against differently detailed reconstruc-
tions, obtained from the real object. The table shows the mean deviation from the
estimated viewpoint to the ground-truth.

Object
VH6 model VH30 model GT model

r [◦] p [◦] y [◦] r [◦] p [◦] y [◦] r [◦] p [◦] y [◦]

Brick 1 11.28 10.79 7.85 8.52 8.26 5.86 4.57 4.08 2.52
Brick 2 6.74 6.44 4.31 5.03 5.21 3.23 2.44 2.78 1.88
Toy Figure 23.54 25.12 21.94 9.40 7.98 5.18 4.17 3.71 2.31

investigate how the reconstruction quality affects the pose estimation accuracy.
In order to give a quantitative evaluation, we use two objects for which an
accurate 3D model is given.

Each object is reconstructed with the methods presented in Sections 2.2 and
2.3, resulting in two models. The first model is a visual hull reconstruction with
5+1 camera views, the second model was created by turning the object k = 4
times, which equals a reconstruction from 30 camera views. Both models are
converted into a triangulated mesh. One object used, a toy figure, is depicted in
Fig. 4. (b) and (c) show a comparison between a visual hull reconstruction from
30 views and a scanned 3D model from roughly the same viewpoint.

(a) (b) (c)

(d)

(e)

(f)

Fig. 4. Comparison of a model generated with our visual hull base reconstruction (b),
(e) and a laser scanner (c),(f)

First, we use the ground-truth model to create artificial images of the object.
The calibration parameters allow us to simulate the catadioptric camera system,
whereas the 3D model gives us ground-truth poses. In our experiment we created
800 views of the object from random viewpoints. A viewpoint is defined by a
point on a sphere with the object in its center and a roll angle along the camera’s
optical axis

Vl = 〈pl, rl〉 ,pl ∈ R2, rl ∈ [0, 2π] . (6)
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For each 3D model of the object a reference view database consisting of 1000
views is created with the method described in Section 2.4. Table 1 represents
the results of this experiment in terms of mean deviation of the estimated pose
to the ground-truth pose, in roll, pitch and yaw.

Clearly, a more detailed visual hull improves the accuracy of the estimated
poses, bringing it very close to the results, that can be obtained by using a
laser-scanned model. For the geometrically very complex toy figure, a visual
hull obtained from a few camera views is not able to accurately represent the
true object, resulting in pose deviations up to 25◦. Adding additional views by
turning the object in front of the camera improves the result to 8◦.

Figure 5 depicts the number of correct pose estimations, given a maximum
angular deviation for a simple and a complex object, respectively. The simple
model can be approximated quite well even by a coarse visual hull reconstruction,
whereas for the complex model the incorporation of more camera views leads to
large improvements.

When allowing a maximal deviation from the true pose of 8◦ our method
decreases by 5% for the brick with its simple geometry. For the more complex
model, the accuracy decreases by 12%.
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Fig. 5. Results of our synthetic view experiment. The number of correct matches for a
given maximum angular deviation is shown for three different 3D models: visual hull
reconstructions from 6 and 30 views, respectively, and a laser scanned model. Two
different objects were employed: (a) a brick with low complexity, and (b) a toy figure
with rather high complexity

3.3 Pose Estimation with Real Images

We validated our approach for a variety of real world objects for which no 3D
model was available. For this experiment we used a 2 MP FireWire camera and 5
planar standard mirrors. Figure 6 depicts those objects along with the obtained
reconstructions and success rates. Since no ground-truth in terms of correct
viewpoints is available, only qualitative results in terms of ’visually correct’ or
’visually incorrect’ are given. For every object, approximately one out of ten pose
estimation was classified as incorrect, nevertheless the failure cases typically were
near the correct solutions.
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The objects resemble a variety of geometric complexities. They all share the
property of being very low textured. The pose estimation results indicate, that
our method can be used for almost any objects, as long as their outline can be
extracted. A single pose estimation can be obtained in 200 milliseconds, including
the time for segmentation, and pose estimation.

(a)

(b) (c)

(d) (e)

Fig. 6. Objects used for the experiments with real images. (b)-(e) show the obtained
reconstructions using the method described in Section 2.3. The success rates of the
pose estimation are (b) 83.3%, (c) 90%, (d) 92.8 % (e) 90% respectively.

4 Conclusion

In this work we tackled the problem of pose estimation in the context of robotic
pick & place. We introduced an integrated system for model-based pose estima-
tion, without the need of obtaining a model beforehand. Models of new objects
are learned on the fly by placing them in front of the camera system. We pre-
sented a catadioptric multi-view system, which offers a cheap way of creating
several viewpoints with a single camera. The whole process of camera calibra-
tion, 3D reconstruction, and pose estimation is solely based on outer contours of
the objects. Those silhouettes can be extracted reliably for a variety of objects,
making our method applicable to a wide range of products.

We have shown that the visual hull reconstruction can be used for accurate
pose estimation, if enough camera views contributed to the reconstruction. Ex-
periments with both synthetic and real objects prove, that the proposed system
can be used for objects with arbitrary geometry and surface structure. The im-
plementation of the core algorithm on modern graphics cards allows for pose
estimations in 200ms and system auto-calibration in less than 20 s without user
interaction.

Future work may include the investigation of methods tolerant to segmen-
tation errors in order to apply the method to applications with uncontrolled
environment. Also the removal of the restriction on circular object movement to
obtain a reconstruction refinement will be part of our future work.
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Abstract. The need of image registration is increasing, especially in
the medical image domain. The simplest kind of image registration is
to match two images that have similar intensity. More advanced cases
include the problem of registering images of different intensity, for which
phase based algorithms have proven to be superior. In some cases the
phase based registration will fail as well, for instance when the images to
be registered do not only differ in intensity but also in local phase. This
is the case if a dark circle in the reference image is a bright circle in the
source image. While rigid registration algorithms can use other parts of
the image to calculate the global transformation, this problem is harder
to solve for non-rigid registration. The solution that we propose in this
work is to use the local phase of the magnitude of the local structure
tensor, instead of the local phase of the image intensity. By doing this,
we achieve invariance both to the image intensity and to the local phase
and thereby only use the structural information, i.e. the shapes of the
objects, for registration.

1 Introduction

Image registration is needed in a lot of applications. One example is medical
imaging where image registration is necessary to for example be able to compare
images of the brain before and after surgery. A problem with the image modalities
used in medical imaging is that the images produced often differ significantly in
intensity. The most common approach to register images of different intensity
is to maximize the mutual information (MI) between the images [11,10]. While
this approach is sufficient to handle many registration problems, it is not very
hard to create a set of test images where the mutual information approach fails,
such an example is given in Fig. 1.

The main problem with the mutual information approach, and many other
similarity measures, is that they are based on the intensity of the image. A
better approach is to use the local phase [8,9,1,4,2,13]. In this work we take the
phase idea one step further and use the local phase of the magnitude of the local
structure tensor, instead of the local phase of the image intensity. Local phase
is commonly estimated by using quadrature filters [3].

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 414–423, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Two simple test images for which intensity based registration algorithms fail

2 Methods

2.1 Quadrature Filters and Local Phase

A quadrature filter is a complex valued filter for combined edge and line detec-
tion. The real part of the filter, which is even, detects lines and the imaginary
part, which is odd, detects edges. The magnitude of the complex filter response
is an estimate of the phase invariant signal intensity and the phase determines
whether there is an edge or a line and what kind of line or edge. We use log-
normal quadrature filters Q, which in the Fourier domain are expressed as two
polar separable functions R, and D.

Qk(u) = R(||u||)Dk(u) (1)

R(||u||) = eCln2
(

||(u)||
u0

)
C =

−4
B2ln(2)

(2)

Since the phase concept is only valid if we define a direction of the signal, we
construct quadrature filters with different directions. The directions are defined
such that

Dk(u) =

{
(uT n̂k)2 uT n̂k > 0

0 otherwise
(3)

We use four quadrature filters with the directions, Ψk ∈ {00, 450, 900, 1350}. The
complex filter response q is an estimate of a bandpass filtered version of the
analytical signal

q = A · (cos(φ) + i · sin(φ)) = A · eiφ (4)

with magnitude A and phase φ. For image registration applications, it is im-
portant that the filters have a nice and smooth phase. This can be obtained
by optmizing the filters in the spatial domain and the frequency domain at the
same time [7].
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Fig. 2. First row left: A test image with all the kinds of phase for three different
intensities. First row right: The test image with modified intensity and phase, a
shading from right to left and noise. Second row left: The phase, in the y-direction,
of the original test image. Second row right: The phase of the modified test image.
The phase is only invariant to a change in intensity. Third row left: The tensor
magnitude of the original test image. Third row right: The tensor magnitude of
the modified test image. The tensor magnitude is only invariant to a change in phase.
Fourth row left: The phase of the tensor magnitude, in the y-direction, of the original
test image. Fourth row right: The phase of the tensor magnitude of the modified
test image. The phase of the tensor magnitude is invariant both to change in intensity
and to change in phase and thereby we can register the images by using the structural
information only. Since quadrature filters are bandpass filters, they are robust to low
frequencies, e.g. shadings, and high frequencies, e.g. noise.
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2.2 The Local Structure Tensor

The local structure tensor was introduced by Knutsson [5] to represent the local
structure in images and volumes. For an image it is a 2 x 2 matrix in each pixel.
The structure tensor can for example be used for adaptive filtering, to steer the
orientation of enhancement filters. The tensor can be constructed by using the
complex valued filter responses q from quadrature filters. We sum over all filters
k and multiply the magnitude of the filter response with the outer product Nk

of the filter direction vector n̂k, I is the identity matrix.

T =
∑

k

|qk|
(

4
3
Nk − 1

3
I

)
, T =

(
t1 t2
t2 t3

)
(5)

The magnitude of the tensor is given by

|T | =
√
t21 + 2t22 + t23 (6)

2.3 Local Phase of the Magnitude of the Local Structure Tensor

The problem with using the local phase for image registration is that we might
have structures in the images that are similar but have different phase, for ex-
ample a white circle on a black background in one image and a black circle on
a white background in another image. The mutual information of the phase can
handle this, as long as the mappings are consistent, but not if we want to map
a dark line to a bright line in one part of the image and to map a dark line
to a dark edge in another part of the image. To fully take advantage of the
structural information, a better approach is to use a signal representation that
is invariant both to a change in intensity and to a change in the local phase.
The magnitude of the local structure tensor is invariant to a change in phase,
since the orientation for a line and an edge is the same, but not to a change
in intensity. The local phase on the other hand is only invariant to a change in
intensity. By using the local phase of the local structure tensor magnitude, we
achieve a representation that is invariant both to a change in intensity and to a
change in phase. An example of this is given in Fig. 2.

3 Results

We have made a comparison between mutual information of the intensity, mu-
tual information of the phase of the intensity and mutual information of the
phase of the tensor magnitude. One image was rotated between -30 degrees and
30 degrees while the other remained still. We divided the 60 degree interval
into 101 evaluations. As test images, we used the synthetic test images shown in
Fig. 2 and four MRI images, shown in Fig 3. These MRI images differ significantly



418 A. Eklund et al.

Slice 1 Slice 2

Slice 3 Slice 4

Fig. 3. Four MRI slices that are collected from the same location of one subject. The
slices were acquired with a 1.5 T MR scanner. Different scanner settings were used
to generate the different slices. The purpose of the image acquisition was pixel-wise
quantification of physical parameters, based on signal intensity changes as a function
of MR scanner settings. MRI quantification requires a motionless subject and im-
age registration improves the result (courtesy of J.B.M. Warntjes, CMIV, Linköping,
Sweden).

in intensity and for some parts of the image, but not all, the phase has been
inverted. We normalized all similarity measures to have a maximum of 1, to easier
compare the slopes. The resulting plots of the similarity measures as function of
rotation are given in Fig. 4.

To show that the local phase of the tensor magnitude is better than the
local phase of the image intensity for image registration, we performed non-rigid
registration on the two synthetic test images given in Fig. 2 and on two of the
MRI images given in Fig. 3. The MRI images are used for quantitative MRI,
in order to measure physical properties [12]. To obtain good measurements it is
important that the images are registered. The registration algorithm used is the
Morphon [6], which is a phase based non-rigid registration algorithm.

The results of the registration of the synthetic test images are shown in Fig.
5. The results of the registration of the MRI images are shown in Fig. 6.
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Fig. 4. Similarity measures as function of rotation between two images. The blue line is
the mutual information of the intensity values, the green line is the mutual information
of the phase of the intensity and the pink line is the mutual information of the phase
of the tensor magnitude. First row left: Original test image and modified test image,
from Fig. 2. First row right: Slice 1 and slice 1. Second row left: Slice 1 and slice
2. Second row right: Slice 1 and slice 3. Third row left: Slice 1 and slice 4. Third
row right: Slice 2 and slice 3. Fourth row left: Slice 2 and slice 4. Fourth row
right: Slice 3 and slice 4.
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Fig. 5. Top: The original intensity difference between the original test image and the
altered test image. The images have been shifted 3 pixels in the x-direction and 5 pixels
in the y-direction. Middle: The intensity difference after the non-rigid registration with
the phase of the intensity. The altered phases confuse the registration algorithm and
the registration does not work at all. Bottom: The intensity difference after the non-
rigid registration with the phase of the tensor magnitude. By using the phase of the
tensor magnitude we achieve invariance both to the intensity and to the local phase
and now the registration works correctly.
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Fig. 6. Top left: The original absolute intensity difference between slice 3 and slice 1.
Top right: The absolute intensity difference between slice 3 and slice 1 after shifting
the images 6 pixels in the x-direction and 7 pixels in the y-direction. Bottom left:
The absolute intensity difference after the non-rigid registration with the phase of
the intensity. The registration works rather well for the fat border surrounding the
brain but not at all for the ventricles, where the phase is inverted. Bottom right:
The absolute intensity difference after the non-rigid registration with the phase of the
tensor magnitude. Now the registration works for the ventricles as well.

4 Discussion

The similarity measure comparison in Fig. 4 clearly shows that our new similarity
measure decays faster than the other similarity measures. The biggest difference
is however between the intensity and the local phase.

As can be seen in Fig. 5, the local phase of the intensity does not work at all to
register the synthetic test images. By instead using the local phase of the tensor
magnitude we achieve invariance to the local phase and can use the structural
information, i.e. the shape of the objects, for registration.
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For the MRI images similar results are obtained, the local phase of the in-
tensity works rather well for the fat border surrounding the brain, but it does
not work at all for the ventricles since they are bright in one image and dark in
the other. With the local phase of the tensor magnitude the registration works
for the ventricles as well. For rigid registration, the local phase of the intensity
works as well as the local phase of the tensor magnitude. The reason for this is
that the fat border surrounding the brain is the same in all the images. If the
fat border is removed, the rigid registration with the local phase of the intensity
fails, while the registration works if the local phase of the tensor magnitude is
used.

A major advantage with the presented approach is that existing image regis-
tration algorithms can be used without modification. Instead of using the refer-
ence image and the source image as inputs, the tensor magnitude of the reference
image and the tensor magnitude of the source image are used. The found dis-
placement field is then applied to the source image. The increase in processing
time is thus rather small.
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Abstract. The potential of full-field low coherence interferometric tech-
niques for imaging internal structures, such as fibers, interfaces, or in-
clusions in technical materials is demonstrated by our coherence probe
microscopy (CPM) setup. However, the huge amount of recorded data de-
mand for an automatized enhancement and evaluation of the image data.
We propose an automatic image analysis procedure adapted for full-field
coherence probe microscopy, which we tested on fiber composite materi-
als. The performed image enhancement and orientation analysis finally
allow to cluster the internal fiber structures, to detect outliers and en-
able an improved characterization of investigated specimens supporting
a sophisticated material design for the future.

Keywords: coherence probe microscopy, fiber composites, speckles, ori-
entation, monogenic, clustering.

1 Introduction

The increasing demand of industry for new functional materials requires ap-
propriate methods for material characterization and inspection. Aggregates and
composite materials containing structures in the size range of few microns al-
tering material behavior are of crucial interest in the field of material design.
Microscopy techniques on micrograph sections provide excellent conditions for
the analysis of internal microstructures for further material characterization.
But, these methods are hampered by the destructive character of this investiga-
tion techniques. Hence, non-destructive imaging techniques in combination with
an appropriate image analysis for deepening the knowledge about the material
composition on a mesoscopic size scale are on the order of the day.

Computer tomography (CT) and ultrasound (US) imaging are well known
non-destructive imaging techniques. However, they are restricted in their appli-
cation due to the hazardous X-ray radiation and the achievable resolution limited
by the relation to the sample dimensions, or as in case of US by requiring an
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additional coupling medium. For investigation of translucent or scattering mate-
rials low coherence interferometry (LCI) techniques working in the near infrared
wavelength range (NIR) can provide an alternative to CT methods. Their imag-
ing capabilities can be tuned for the visualization of micro-structured materials.
Especially the characterization of the internal structure of the specimen within
semi-transparent scattering materials can be achieved by optical coherence to-
mography (OCT) techniques [1], having its origin in LCI techniques. Exploiting
both intensity and run-time respectively phase information of the backscattered
signal depth-resolved information about e.g. the matrix pattern, disturbances or
inclusions inside the material can be obtained.

The combination of OCT techniques with microscopic methods and using 2D
CCD or CMOS cameras instead of point detectors as imaging device results in
full-field (FF) coherent probe microscopic (CPM) imaging [2], obtaining infor-
mation about both axial and lateral sample structures, with decoupled depth
and lateral resolutions.

Although OCT was originally developed for the biomedical diagnostics, re-
cently, OCT techniques have shown their potential in the field of material re-
search [3,5]. In a similar way, also for CPM as full-field imaging technique a
comparable tendency focusing on material research can be noted [4]. Exploiting
CPM imaging for micro-material inspection represents the aim in our experi-
mental optical configuration. We describe the challenges for routinely evaluating
measured CPM scans and suggest in the following a scheme for automated im-
age analysis starting from the demodulation of the raw data, the enhancement
of the resulting demodulated images, tested methods for orientation estimation
of internal fiber structures, finally allowing a clustering of structures or image
slices.

2 Methods

2.1 CPM Measurement Setup and Materials

A scheme of our CPM optical setup is shown in Fig. 1, depicted here in a
Michelson configuration [2]. As low-coherence light source we apply likewise a
superluminiscent diode (Superlum, central wavelength=850 nm, spectral band-
width=50 nm) and a super-continuum light source (LEUKOS SM-30, central
wavelength=825 nm, spectral bandwidth=350 nm), which provide an axial res-
olution of about 16 μm and 2 μm in air, respectively. The lateral resolution, de-
termined by the focusing optical components totals about 3 μm. The achievable
depth range for imaging yields about 200-500 μm dependent on the investigated
material and the utilized wavelength range. Our conventional CPM system can
be extended additionally by the possibilities as given in microscopy, e.g. by the
modification of the applied imaging contrast [6]. In this paper we demonstrate
an application for micro-material imaging using brightfield contrast.

In particular, polymers reinforced with fiber micro-structures are the tech-
nical materials in the scope of our interest. They contain internal (glass) fiber
components, which may be randomly distributed, but which are often arranged
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Fig. 1. Scheme of the Coherence Probe Microscopy optical setup, here illustrated in
a Michelson configuration. The imaging lens systems are neglected in the drawing for
sake of simplicity.
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Fig. 2. Illustration for CPM imaging samples: (a) sketch of the CPM image stack
taken as en-face scans (x, y) over depth z; (b) and (c) show two (already demodulated)
CPM slices (amplitude images) recorded at different imaging depths, taken from fiber
structures casted in a polymer matrix. The depth varying orientation of the fiber
structures is clearly visible in this sample: the almost diagonal fiber structures in (b)
change to horizontal internal structures in (c).

just as in a layered configuration. The fibers can be knitted or are appearing in
a woven structure. Different fiber layers may be discerned over depth by their
distinguished orientational characteristics of internal structures, as illustrated in
Fig. 2. Additionally to the intended and designed fiber distribution the resulting
CPM image stack may also contain scans showing typical artifacts, so called
’ghost-images’. These erroneous structures may occur due to multiple reflec-
tions at interfaces or are caused by the possible side-lobes of the autocorrelation
function of the light source. These erroneous slices are representing outliers. As
outliers complicate any analysis they should be automatically detected.

2.2 Image Demodulation

At each depth position z a sequence of interferometric images is taken in a phase-
shifted way by equally-spaced phase steps φM (x, y) (in our case, with M up to
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8 frames) between subsequent frames IM (x, y). These interferometric raw data
images have to be demodulated, applying here a complex vector addition scheme
[6]

IC(x, y) =
∑
M

IM (x, y)exp(−iφM (x, y)) (1)

delivering the amplitude image I(x, y) = abs(IC(x, y)) and the phase image
φ(x, y) = arg(IC(x, y)). The thereby obtained amplitude images I(x, y), as shown
in Fig. 2, are used in the following for the demonstrated image analysis as they
contain the structural information of interest. (It should be mentioned, that the
amplitude information could be extended by analyzing the phase image too. How-
ever, these phase-based approaches require extended unwrapping procedure [7].)

The final sample images exhibit a field of view of 2.758 × 2.758 mm and the
stepwidth into the depth is 3 μm. The example image stack counts 100 slices.

2.3 Image Enhancement

CPM scans, as taken by an interferometric imaging technique, are often highly
disturbed by speckles. These speckles exhibit a two-fold nature: on one-hand
they describe a noise component of the signal, but on the other hand they carry
information about the internal structure. This ambiguity and the scattering be-
havior of the micro-structures result that the imaged features often appear in
a patchy, non-continuous way, although the real structures are almost continu-
ous. Furthermore, a non-uniform background illumination, fluctuations during
the phase-stepping, and multiple scattering or reflections complicate an auto-
matic analysis. Therefore, we have tested different denoising and background
correction techniques to enhance the quality of the primary CPM-images.

Denoising. Discussing noise in the measured image In(x, y), the speckle noise
n(x, y) has to be regarded as the dominant contribution, degrading the theo-
retical CPM image I(x, y). Speckle noise (related to intensity) can be modeled
in a multiplicative way. However, in the OCT community mostly a logarithm
transform is applied on the image which converts the speckle noise into an addi-
tive component, log(In(x, y)) = log(I(x, y))+ log(n(x, y)). This logarithm scaled
image is taken by us as basis for our further considerations.

As a well-established method for reducing speckle noise, different adaptive
median filtering techniques are mentioned in literature [8]. Additionally, we have
investigated a denoising approach based on the curvelet transform as introduced
originally by Candes et. al. in [9]. For our application, it shows the advantage
that the elongated fiber structure are taken into account. These fiber structures
are then enhanced, whereas the randomly and isotropically distributed speckle
noise is removed.

As third image enhancement technique tested a denoising based on the á trous
wavelet transform [10] is performed. The á trous wavelet transform applies a, by
a factor of 2, increasingly sized scaling function. At each scale the holes within
the up-sampled scaling function are filled by zero values. It may be realized as a
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fast discrete wavelet transform by subsequently performing a low pass filtering
in a convolutive way, being in particular of interest for the processing of the
huge amount of data. In our case, we have taken a B3-spline scaling function as
convolution mask for our images.

Background Correction. Due to the collimated illumination the background
exhibits a radial illumination profile which hampers the following analysis.
Therefore, a further image enhancement step comprehends a correction for the
non-uniformly shaped background. We have used both, a method based on a
morphological opening approach, the well-established so-called rolling ball algo-
rithm as introduced by Sternberg [11], and a method exploiting an (only) phase-
based reconstruction scheme applying monogenic wavelets for an equalization of
brightness, as recently suggested in [12].

2.4 Orientation Estimation

After preprocessing of the images with different enhancement techniques we are
now able to analyze and to characterize the inner structure of the samples,
where especially the fiber structure orientation indicating the different fiber lay-
ers, should be considered. We have focused on structure tensor methods and in
addition on, complex wavelet-based methods as Gabor filtering and a monogenic
wavelet-based orientation estimation.

Structure Tensor-based Orientation Estimation. As a first approach to
get information about orientation and isotropy properties on internal fiber struc-
tures within the region of interest we have applied a structure tensor-based ori-
entation estimation, which is based on the minimal deviation gradient direction
[13]

θ(x0) = arg max
θ∈[−π,π]

∫
R2
w(x − x0)|∇f(x)T n̄|2dx. (2)

Here, w(x) ≥ 0 is a weighting function that specifies the area of interest and n̄
represents the local orientation n̄ =

[
cos θ sin θ

]T . Rewriting the right-hand side
of equation (2) a tensor form is given by∫

R2
w(x − x0)|∇f(x)T n̄|2dx =

[
cos θ sin θ

]
J(x0)

[
cos θ
sin θ

]
. (3)

With the help of the structure tensor J =
(
J11J12

J12J22

)
= 〈∇f(x) ⊗ ∇f(x)〉w,

determined by the weighted outer product (〈⊗〉w) of the image gradient ∇f(x) =
∇I(x, y), the orientation angle θ

θ =
1
2

arctan
(

2(J12)
(J22) − (J11)

)
, (4)
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the coherence χ, as measure for the isotropy of the pattern in the local neigh-
borhood,

χ =

√
((J22) − (J11))2 + 4(J12)2

(J11) + (J22)
, (5)

and the energy E, as measure for significance,

E = trace(J) = (J11) + (J22), (6)

can be defined.

Orientation Estimation by the Gabor Wavelet Transform. In contrast
to the structure tensor approach, the Gabor wavelet transform [14] as a linear
filter, may be described by its complex-valued filter function g(x, y) = wr(x, y) ·
s(x, y), being a 2D Gaussian kernel function wr(x, y) modulated by a complex
exponential plane wave s(x, y). The filter applied in different orientations θ gives
highest response in the orientation best fitting to the inner structure of the image.

Monogenic Wavelet-based Orientation Estimation. As a third approach
for the local orientation estimation of internal structures we tested a monogenic
wavelet-based method for the structure tensor following an approach as described
in [15]. In analogy to equation (2), by replacing the directional derivative with
the directional Hilbert operator Hθ and the gradient by the Riesz operator R,
as defined in [15,16], now the function

θ(x0) = arg max
θ∈[−π,π]

∫
R2
w(x − x0)|Hθf(x)|2dx (7)

is maximized over a local neighborhood specified by the weighting function
w(x) = w(−x) ≥ 0. The right-hand side of equation (7) can be rewritten in
tensor form by∫

R2
w(x − x0)|Hθf(x)|2dx =

[
cos θ sin θ

]
J(x0)

[
cos θ
sin θ

]
, (8)

where J(x0) now contains the directional Hilbert transforms (HT) of f(x) as
components similar to equation (3). Additionally, this optimization is performed
on different scalings, given by Laplacian like spline wavelet basis. At scale i a
wavelet-based structure tensor is expressed by

[Ji(k)]mn =
∑
l∈Z2

w[l − k]rm,i[l]rn,i[l], (9)

with m,n ∈ {1, 2}, for a given weighting sequence w[l] ≥ 0. The term r1,i[l]
represents the real and r2,i[l] the imaginary part of the complex-valued wavelet
coefficients at scale i in a monogenic wavelet basis, obtained by applying the
Riesz resp. directional HT on an isotropic wavelet basis, as suggested in [15].
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3 Results

3.1 Image Enhancement

We have exemplified the described image analysis procedure on several fiber-
reinforced polymer samples investigated by our CPM optical setup. The polymer
matrix of these samples consisted of either epoxy resine, poly-propylene or poly-
ethylene material, whereas the reinforcement mainly was given by glass-fibers,
included in preferred directions or in a random manner within the polymer ma-
terial. We show our results for one typical representative of these glass-fiber
reinforced polymer samples, containing glass-fibers embedded in an epoxy resin
with different orientation layers. The radial background illumination can clearly
be recognized in Fig. 3 (a) and is emphasized in the corresponding binary ver-
sion (b). As shown in Fig. 3 (c) and (d), the background is sufficiently removed
by the morphological correction, whereas the correction given by equalization
of brightness is depicted in Fig. 3 (e) and (f). For our purposes morpholog-
ical background correction proves most suitable, as so-called ghost structures
(multi-reflections) are better suppressed. The different denoising results are il-
lustrated in Fig. 4. Whereas median filtering gives insufficient results, as visible in
Fig. 4 (a) and (b), the curvelet-based denoising fits well for the fiber structures,
as shown Fig. 4 (c) and (d). Here, the á trous wavelet-based method is com-
bined with a corresponding masking and segmentation, as depicted in Fig. 4 (e)
and (f).

Fig. 3. Background correction exemplified on the fiber-reinforced polymer: (a) the de-
modulated amplitude image as used for analysis, applying in (c) the morphological
correction method and (e) the monogenic wavelet-based equalization of brightness ap-
proach [12]. The corresponding binary versions are shown in (b), (d), and (f). As clearly
recognizable, the originally radial illumination profile could be removed.



CPM Imaging and Analysis for Fiber-Reinforced Polymers 431

Fig. 4. Denoising illustrated for the CPM slices as depicted in Fig. 2 (b) and (c):
applying (a) and (b) median filtering, (c) and (d) curvelet-based denoising, (e) and (f)
á trous wavelet-based denoising method

3.2 Orientation Estimation

The local orientation values for fiber structures given by the different estima-
tion methods are comparatively depicted in Fig. 5, where the original image
is enhanced by the median denoising method and the rolling ball background
correction. The conventional structure tensor-based orientation estimation (a) is
clearly outperformed by both the Gabor wavelet (b) and the monogenic wavelet-
based method (c). The latter has shown to be more robust to noisy structures
due to its multi-scale character, partly allowing to skip an extensive denoising
before. Also the entropy of the orienation in Fig. 5 (b) is smaller than the one
of (a). Therefore, we have performed our cluster analysis, on features obtained
by this monogenic wavelet-based estimation scheme.

Having evaluated the different pre-processing and orientation estimation
methods on the investigated polymer samples and additionally validated by sim-
ulations we finally suggest the following processing scheme: A) Background es-
timation by the rolling ball algorithm, B) Denoising by the median filter (or can
be ommitted), and C) Orientation estimation by the monogenic wavelet-based
method.

3.3 Clustering

As final step towards an automatic classification k-means clustering has been
performed. First, the clustering is applied on a data set of feature vectors, having
the computed local orientation, coherency, and energy, defined in each pixel, as
their entries. Here, the initial clustering is used for classifying the internal fiber
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Fig. 5. Local orientation estimation for the enhanced internal fiber structures, per-
formed in (a) and (b) with the conventional structure tensor approach, in (c) and (d)
with a Gabor filter-based method, (e) and (f) with a modified structure tensor approach
exploiting monogenic wavelets. The usual HSV representation (with hue: orientation,
saturation: coherency, brightness: energy according to equations (4),(5) and (6)), is
replaced here by a vector plot for a better visibility in gray-scale coding.

(a) (c) (e)

(b) (d) (f)

Fig. 6. Clustering of the internal fiber structures within a single slice (here into three
classes: The black area in the images shows the pixels belonging to a class. The top
images (a), (c) and (e) are showing the first class, the bottom images (b), (d) and
(f) are showing the second class. The third class are the remaining pixel points, the
background. The k-means clustering was applied on data (features concerned: local ori-
entation, coherency, and energy) obtained by: (a) and (b) the (conventional) structure
tensor-based estimation, (c) and (d) the Gabor wavelet-based method, (e) and (f) the
monogenic wavelet-based method, [15].
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Fig. 7. Clustering of slices within the whole CPM data stack: (a) representation of
slice-related normalized features (cross-correlation (gray), mean intensity value (black),
entropy of the orientation distribution (dotted)) over depth, (b) resulting clusters,
where surface/outliers (white), diagonal (lightgray) and horizontal (darkgray) fiber
slices, and fiber layer blendings (medium gray) are automatically discernible

structures within a single slice into three classes, as depicted in Fig. 6. The
visibility of the results was improved by a median filter and an morphologic
open operation.

Additionally, a second clustering is realized over the whole CPM data stack
for classifying all slices into four different categories: slices containing fiber layers
of distinguished principal orientations, into surface region, and into erroneous
’ghost images’. In contrast to Fig. 6, which is a pixel based clustering, the clus-
tering in Fig 7 is performed slicewise. The normalized cross-correlation between
subsequent scans, the mean value, and entropy of the orientation distribution,
defined for each slice, give the entries for the feature vector here. These features
calculated for each slice, as depicted in Fig. 7 (a), were taken for the clustering.
The resulting clusters, into which the subsequent slices may by grouped, are de-
picted in Fig. 7 (b). Clearly recognizable in the clustering are the distinguished
fiber orientations layers (light and dark gray), the outliers and the surface (white
both, as outliers are weak repetitions of the surface here), and the deeper bulk
material, where no sufficient information can be gained (medium gray).

4 Conclusions

Summarizing we have shown a complete imaging and image analysis procedure
suitable for the investigation of fiber-reinforced polymers. In conclusion, we have
demonstrated the capability of our established CPM setup and the potential,
which can be achieved in combination with image processing tools for a better
visualization, analysis and classification of the internal fiber structures within
technical materials, finally enabling an automatized evaluation of CPM image
data.
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providing the MAVI 3D image processing software. For computing the mono-
genic orientation and equalization of brightness we have applied both wavelet
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Abstract. Modern livestock farming follows a trend to higher automa-
tion and monitoring standards. Novel systems for a health monitoring
of animals like dairy cows are under development. The application of
infrared thermography (IRT) for medical diagnostics was suggested long
ago, but the lack of suitable technical solutions still prevents an efficient
use. Within the R&D project VIONA new solutions are developed to
provide veterinary IRT based diagnostic procedures with precise abso-
lute temperature values of the animal surface. Amongst others this re-
quires a reliable object detection and segmentation of the IR images. Due
to the significant shape variation of interest objects advanced segmen-
tation methods are necessary. The ”active shape” approach introduced
by Cootes and Taylor [7] is applied to veterinary IR images for the first
time. The special features of the thermal infrared spectrum require a
comprehensive adaptation of this approach. The modified algorithm and
first results of the successful application on approximately two million
IR images of dairy cows are presented.

Keywords: active shape segmentation, infrared imaging, precise tem-
perature measurements, veterinary diagnostics.

1 Motivation and State of the Art

The trend to higher automation and monitoring standards in modern livestock
production as well as more restrictive legal requirements for animal welfare sup-
port the development of novel systems for an automatic health monitoring of
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livestock [4]. For the health monitoring of animals, like the dairy cows discussed
here, infrared thermography (IRT) can be used. The use of IRT for medical diag-
nostic has already been suggested in 1956 [13] by Lawson. But in spite of many
investigations IRT is still rarely applied in veterinary.

Actually the value of veterinary IRT is discussed controversy. A short appli-
cation orientated survey gives Knizkova [12]. In case of the IRT diagnostic of
dairy cows Barth [1] concludes that IRT is not suitable for the early detection of
subclinical udder infections. But Colak et al. [6] showed that all kinds of udder
infections (clinical as well as subclinical) can be recognised with IRT. Similar
results found Berry et al. [3]. In contrast to human medicine, were measurement
and diagnostic standards where established in the last years [9,16], the present
veterinary IRT still suffer from following disadvantages:

1. The lack of technical defined standards (required thermal resolution, maxi-
mal measurement uncertainty etc.) and procedural standards (camera pose,
ambient conditions etc.) for the IRT measurement.

2. The elaborate determination of temperature values. The infrared (IR) im-
age analysis is often performed on basis of a computer aided calculation of
temperature values of regions of interest (ROI), e.g. the average temperature
of udder quarters. Therefore first the two ROI left and right udder quarter
must be localised and marked in the IR image. This take place by a fault-
prone and time consuming manual segmentation. As a consequence only a
few IR images per animals can be analysed.

3. The diagnosis, i.e. the veterinary interpretation of the temperature values,
strongly depends on the individual experience and cognitive skills.

Therefore the interdisciplinary R&D project VIONA was established whereat
scientific and industrial partners are developing and evaluating a novel system
for an automatic infrared based health monitoring. The focus is on monitoring

Fig. 1. Manual segmentation and feature extraction of an IR image of an udder
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of dairy cows under typical farming conditions like moving animals as well as
varying ambient conditions. The paper discusses the objective precise IRT based
temperature measurement. The main focus is the automatic extraction of precise
temperature values, the basis of the veterinary diagnostic algorithms, Fig. 1.

2 Image Acquisition and IR Temperature Calculation

Within the VIONA project many IRT measurements are realised with the con-
figuration shown in Fig. 2. Two IR cameras1 are used in combination with a
reference body of known temperature and emissivity. This generates referenci-
ated IR images sequences from dairy cows on a milking carousel. The ambient
conditions are recorded and an identification refers the IR images to the individ-
ual animal. In the following the images from the rear IR camera are considered.

Fig. 2. IRT measurement of dairy cows on a milking carousel

Veterinary diagnostics require a ”precise” temperature determination. Rele-
vant are temperature differences of about 0.3 K, [15]. From the measurement
point of view this implies first that the IRT measurement has to provide IR
images with a low temperature uncertainty. Second an accurate image segmen-
tation is necessary to calculate the diagnostic temperature values based on the
”correct” ROI. Obviously both process steps influence the resulting temperature
”precision”.

State of the art IR cameras provide a temperature resolution of about 0.1 K.
A common mistake is the assumption that this high resolution is also valid for
comparative analysis between different IR images, e.g. time series of images. The
measuring uncertainty is ignored in nearly all veterinaty studies. An analysis of
temperature measurement uncertainty according to the procedure defined by
the industry measurement standard DIN1319 [14] shows, that primary due to
sensor drift the resulting temperature uncertainty lies at about ±2.2K even if the
1 DIAS Infrared: PYROVIEW 640L, 640×480 pixels, spectral range 8-14 μm, mea-

surement uncertainty ±2.0 K, temperature resolution < 0.1K.
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Fig. 3. Exemplary landmarks of “training shapes” for the dairy cow shape model

conventional radiant temperature correction [2] is performed. With the help of
a model based temperature correction in combination with a reference bodies of
exactly known emission properties leads to a temperature uncertainty of about
±0.4 K, [18].

3 IRT Segmentation and the Active Shape Approach

To investigate the potential of segmentation approaches fixed shape model ap-
proaches were evaluated in former investigations [17]. Within this investigation
a set of models could be found that provide a satisfying segmentation compared
to the results of an manual segmentation. The used image resolution of 320×240
pixels shows some disadvantages for the feature extraction due to the fact that
some anatomic structures are very small. Therefore a high resolution IR cam-
era of 640×480 pixels (DIAS Infrared: PYROVIEW 640L) is used for further
investigations. As a consequence the shape and pattern are depicted much more
detailed. This variety could not be governed by a fixed model approach.

Based on the surveys of model based matching algorithms [5,11] a promising
approach was chosen – the Active-Shape-Models (ASM), introduced by Cootes
and Taylor[8]. This approach involves three separated parts that can be opti-
mized individually:

1. The shape representation as a parametric statistical model.
2. The statistical grey value model for the landmarks2.
3. The search algorithm using both models.

The shape is represented by a vector x = (x1, y1, . . . , xm, ym)T including the m
landmarks of the shape (Fig. 3). Based on a manually labelled set of “training
shapes” the shape model is statistically derived. The parametric model consisting
of the mean shape x̄ and a deviation term:

x = x̄ + Pb. (1)

The dimension of the deviation term is reduced by a principle component anal-
ysis (PCA) and leads to the compact deviation term P . The limitation of the
2 Landmarks are characteristic points of the object, in most cases they are equally

spaced along borders and at junctions.
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Fig. 4. Visualisation of the modelled shape variation x (b)
left: parameter b1 = {−2;−1; 0; 1; 2} – right: parameter b2 = {−2;−1; 0; 1; 2}

parameters b ensure that the model represents valid shapes and allows the cover-
age of shapes not included in the training set. Fig. 4 shows exemplary the shape
variation due to the first two components (modes) of the model parameter vec-
tor b. The parameters in general effect the whole shape, but some mainly effect
specific characteristic, e.g. the second parameter b2 mainly influence the height
of the udder.

The grey value model describes the appearance of each landmark (LM). The
model uses a normalised grey value profile gn in a line-shaped surrounding j of
a LM, giving the grey value vector g for each landmark:

gn =
1∑

(j) gj
g. (2)

Using this normalized grey value profile for each image in the training set the
mean profile ḡn and the covariance matrix Cg are generated for each LM.

Finally both models are joined by a search algorithm performing an iterative
fitting process repeating the following steps:

1. Projecting the shape in the image.
2. Search best fitting landmarks in the shape points environment, by minimising

the weighted distance between the model ḡn and the image grey gn,i

D2 = (gn,i − ḡn)T Cg (gn,i − ḡn) . (3)

3. Calculate the shape parameters using the fitted landmarks.
4. Normalisation of the shape by parameter limitation.

The use of ASM approach according to the configuration of [7] optimised for
image of visible spectal range leads to a poor segmentation quality in case of
veterinary IR images. An analysis shows following reasons:

– The image contrast is dominated by the ambient temperature, see Fig. 5.
This makes normalised derivative landmarks inadequate.

– Parts of the shape model have great variance in shape or align and lead to
undesirable feedback to other body parts in the model.

– Textured objects show unspecific grey value profiles due to the influence of
view angle, environmental conditions, coat structure or dirt, see Fig. 5.

To achieve improved segmentation results the known ASM approach was adapted
to the specific features of images from the thermal infrared spectrum.
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Fig. 5. Properties of IR images– left: influence of the ambient temperature (left: 9 ◦C,
right: 27 ◦C) to IR image contrast – right: texture disturbance due to coat

4 Choice of Segmentation Criterion

For the evaluation of the segmentation algorithm an objective criterion is nec-
essary. The common mean point displacement [8] (for the m landmarks of the
fitted shapes xf against the training shapes xt over n images):

δ =
1
mn

n∑
i=1

√
(xf,i − xt,i)

T (xf,i − xt,i) (4)

is not suitable as segmentation quality criterion. A point displacement is not
always leads to a change in segmentation (see Fig. 6). Therefore a different
criterion describing the enclosed area calculated with the segmentation area of
the training set at and the fitted model af is suggested:

A =
⋂

(af , at)⋃
(af , at)

. (5)

This criterion is sensitive to segmentation differences and insensitive to point
displacements along the segmentation borders, Fig. 6.

Fig. 6. Evaluation of the Segmentation: training shape (left), “correct” segmentation
(mid, criterion A = 1, 0), and “incorrect” segmentation (right, criterion A = 0, 69)
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For applications the finding rate Rα

Rα =
1
n

∑
S(A,α) where S(A,α) =

{
1, A > α
0, otherwise (6)

is calculated. The finding rate Rα describes, how many ”correct” segmentations
were found for a set of n test images.

5 Specific Modifications of the ASM Segmentation

Following steps of the ASM approach were modified for IR image segmentation:

1. Image preprocessing,
2. Landmark representation,
3. Landmark selection for shape creation and initialisation.

5.1 Image Preprocessing

The first modification addresses the disturbing effect of the ambient temperature
on the image contrast. To “normalise” the IR images following preprocessing
approaches were evaluated:

– Scaling to ambient temperature based interval (SAT),
– SAT and edge filter (Canny, Sobel, gradient),
– SAT and smoothing filter (mean, gauss and median), and
– Local histogram equalisation (LHE) [10].

Where the first three options gives negligible improvements the LHE shows good
results, Fig. 7. The ambient temperature influence is reduced significantly and
the landmark representations are much more stable. Even if the influence is not
fully compensated, the grey value normalization Equ. (2) becomes obsolete.

5.2 Landmark Representation

As mentioned above, especially for body parts with coat the images show un-
specific grey value profiles for the landmarks, see Fig. 5. The disturbing effect
can be reduced by applying e.g. median filters. More efficient is the use of two
dimensional temperature patterns instead of the conventional profile lines for
landmark description.Investigation showed that 2D patterns have a generalising
effect over textured landmark surroundings.

5.3 Shape Creation and Initialisation

During the investigation of the ASM approach it was noticed that certain body
parts (e.g. the legs and the tail) show a significant different scale of variation.
This is critical for the creation of proper shape models because within the model
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Orig. image A Prefilt. image A Orig. image B Prefilt. image B

Fig. 7. Preprocessing for IR images of different ambient temperatures; Remark: the
horizontal bar is removed by interpolation; image A: 9 ◦C, image B: 27 ◦C

reduction step, the PCA ”prefers“ great form variations. This implies unintended
couplings and the rejection of small varying body parts.

A possibility to handle this is the use of non equidistant aligned landmarks to
equal the body parts weight in the model. In combination with the exclusion of
body parts with high variance (e.g. the tail, which appears to be of no diagnostic
interest) this algorithm shows good segmentation results.

The shape initialisation has a great impact on convergence and segmentation
quality due to the fact that the ASM is a local search algorithm. For this reason
an adapted pre-fitting for the shape was developed. Table 1 shows that the
segmentation with the adapted initialisation is better than a segmentation using
more pyramidal levels (which is equivalent to a great search space) and leads
with A > 0.7 for the claw and A > 0.8 for the udder to a high segmentation
quality.

All these modifications make a parameter set optimisation for the ASM search
algorithm necessary. Therefore parameters as the size and alignment of the search
area profile, the size of the grey value model pattern and the method of shape
model parameter limitation were examined and adopted. The results of this opti-
misation are not discussed in detail, but the landmark pattern size optimisation
will be exemplified. The criteria introduced above are calculated for different

Table 1. Influence of the initialisation and different number of pyramid levels, basis
is a test set of 101 images and a shape model of 68 landmarks

Adapted Pyramidal Segmentation Criterion
Initialisation Levels A ”Udder” A ”Right claw” A ”Left claw”

no [ 1
2
; 1] 0.68 0.41 0.37

no [ 1
4
; 1

2
; 1] 0.74 0.71 0.58

yes [ 1
2
; 1] 0.84 0.76 0.71
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Fig. 8. Influence of landmark pattern size on segmentation quality

pattern sizes and test regions. Fig. 8 shows the results for the ROI “right claw”.
Summarised larger patterns show better segmentation quality, but require higher
computational power.

6 Application Results

The ASM was successfully applied for the segmentation of more than two million
IR images. The shape model was used as a framework to define veterinary ROI
for objects like the right and the left quarter of the udder automatically. Based
on the determined ROI for every IR image about 30 IR features, especially tem-
perature values, were calculated for the development of the veterinary diagnostic
approaches.

Table 2. Correlation coefficients between the IR features calculated from manually
and automatically generated ROI

IR feature claw ROI claw ROI claw ROI udder rear section

variant 1 variant 2 variant 3
Tmean 0.84 0.82 0.85 0.66 0.93
Tmax 0.89 0.88 0.88 0.76 0.85

. . .

For the evaluation of the automatic image analyse a manually labelled test set
of about 11000 images each with 7 ROI was created. The automatically created
IR features show a high correlation to those calculated from manually segmented
images (Tab. 2). Fig. 9 confirms this showing four time series of a cow over 34
days. The IR features Tmean as well as the Tmax are nearly equal for manually
and automatically generated ROI.

For the modified ASM approach in most cases a fast convergence is observed,
typical are less then 15 iterations. The Fig.10 depicts the first four steps of
a fitting process. The sidewards shift in an image sequence due to the milking
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Fig. 9. IR feature Tmean and Tmax time series for the ROI “udder left” and “udder
right” of one cow (comparison of manually and automatically created ROI)

Step 1 Step 2 Step 3 Step 4

Fig. 10. Fitting progress for an IR image

carousel movement refits the algorithm quickly. The main drawbacks for the vet-
erinary IRT application have been solved by an adoption of the ASM algorithm.

The modification of the ASM approach for veterinary IR images could be
summarised as follows:

– The specific features of IR images require an adapted preprocessing, best re-
sults were found for a combination of normalisation on ambient temperature
(SAT) and local histogram equalisation (LHE).

– For the landmark model ”large” 2D-patterns are suggested, which are much
more robust than line profiles.
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– The suggested segmentation criterion is appropriate for numerical evaluation
and also conform to a manual review.

The finding rate Rα could be increased from up to 60% for the fix model ap-
proach to more than 80% for the ASM segmentation. The image processing is
implemented in the HALCON software and runs on standard computer hard-
ware. The current processing capacity is approximately three images per second.

7 Conclusions and Future Work

The evaluation of the potential of veterinary IRT requires a precise IR temper-
ature features based on a reliable automatic image segmentation. Due to the
significant varying object shapes an advanced ASM approach was chosen and
adapted to the specific properties of thermal IR images.

The approach was successfully tested on two million IR images. Further in-
vestigations face the development of a benchmark for the segmentation and
runtime optimisation as well as an adaption to more distinct animal movements,
maybe even ”walking” animals. Moreover suitable segmentations criteria without
a ground truth to detect incorrect segmentations (Fig. 11) has to be developed.

Missed left claw Missed udder Occluding person

Fig. 11. Examples for missed shape model fits
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4. Büscher, W.: Current developments in livestock farming technology. Yearbook
Agricultural Engineering 2011 23, 7–15 (2011)

5. Cheung, K.W., Yeung, D.Y., Chin, R.T.: On deformable models for visual pattern
recognition. Pattern Rec. 35(7), 1507–1526 (2002)

6. Colak, A., Polat, B., et al.: Short Communication: Early Detection of Mastitis
Using Infrared Thermography in Dairy Cows. J. Dairy Sci. 91(4), 4244–4248 (2008)

7. Cootes, T.: Model-Based Methods in Analysis of Biomedical Images. In: Image
Processing and Analysis, pp. 223–248. Oxford University Press, Oxford (2000)

8. Cootes, T., Taylor, C.: Active shape model search using local grey-level models: A
quantitative evaluation. In: Illingworth, J. (ed.) British Machine Vision Conference,
pp. 639–648. BMVA Press (1993)

9. Diakides, N., Bronzino, J.: Medical infrared imaging. CRC Press, Boca Raton
(2008)

10. Jähne, B.: Digital Image Processing. Springer, Weinheim (1997)
11. Jain, A.K., Zhong, Y., Dubuisson-Jolly, M.P.: Deformable template models: A re-

view. Signal Processing 71(2), 109–129 (1998)
12. Knizkova, I., Kung, P.: Applications of infrared thermography in animal produc-

tion. J. of Agric. Faculty of Ondokuz Mayis University 22(3), 329–336 (2007)
13. Lawson, R.: Implications of surface temperatures in the diagnosis of breast cancer.

Canadian Medical Association Journal 75(4), 309 (1956)
14. Fundamentals of metrology: evaluation of measurements; uncertainty of measure-

ment. DIN1319-4. Beuth Verlag, berlin (February 1999)
15. Clinical thermometers - part 5: Performance of infra-red ear thermometers (with

maximum device). DIN EN 12470-5. Beuth Verlag, berlin (September 2003)
16. Ring, E.F.J., McEvoy, H., et al.: New standards for devices used for the measure-

ment of human body temperature. J. Med. Eng. Technol. 34(4), 249–253 (2010)
17. Wirthgen, T.: Entwicklung und Berechnung IR-basierter Kenngrößen zur Analyse
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Abstract. An object decomposition method is presented, which is guided by a 
suitable partition of the skeleton. The method is easy to implement, has a lim-
ited computational cost and produces results in agreement with human intuition. 

1   Introduction 

Object decomposition is of interest in the framework of the structural approach to 
description and recognition to reduce the complexity of the task. In fact, as discussed 
in [1-4], the human visual system may represent objects with complex shape in terms 
of simpler parts, by decomposing the objects into parts and by organizing object rep-
resentation in terms of the parts and of their spatial relationships. The main advantage 
of such a structured representation is a greater robustness under changes in viewing 
conditions. 

Since the appearance of the above papers, several methods have been proposed for  
object decomposition. For example, decomposition has been guided by skeleton parti-
tion [5-8], distance information [9,10], diffusion distance [11], spectral clustering 
[12], modal analysis [13], and classification within triangle mesh object representa-
tion [14,15].  

Decomposition guided by skeleton partition has been followed particularly for  ob-
jects than can be perceived as articulated in  parts with tubular shape, where a one-to-
one correspondence exists between the individual curves composing the skeleton and 
the individual parts of the object. In this case, it is convenient to associate the points 
of the skeleton with their distance from the complement of the object. Then, the union 
of the balls centered on the points of a given curve of the skeleton and with radii equal 
to the associated distances identifies a perceptually significant object part. In turn, 
when the object also consists of parts that cannot be interpreted as 3D generalized 
cylinders or cones, individual skeleton curves do not necessarily correspond to per-
ceptually significant object parts. Thus, some clever grouping of skeleton curves is 
necessary to generate a skeleton partition where each partition component corre-
sponds to a perceptually meaningful object part.  

We also note that the partition of the skeleton into its constituting individual curves 
may result in a decomposition where the separation between adjacent parts does not 
occur in correspondence of significant curvature changes along the boundary of the 
object. This problem is due to the fact that the skeleton of an object that is not articu-
lated into generalized cylinders or cones actually represents a rather sketched version 
of the object where large parts of the original object are not recovered by the union of 
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the balls associated with the skeleton points. As a consequence, in the obtained object 
decomposition the separation between adjacent parts is in correspondence with the 
curvature changes along the boundary of the sketched version of the object, rather 
than along the boundary of the original object.  

In [8] we introduced a criterion to decompose a 3D object by suitably partitioning 
the skeleton. Here, we present an improved method whose strategy is as follows. A 
partition of the skeleton in three different kinds of subsets is performed by taking into 
account the notion of zone of influence. Then, the components of the partition are 
used to build object’s parts. Since pairs of adjacent parts may be separated by non-
planar surfaces, a concavity filling procedure is employed to redistribute voxels in 
each pair of adjacent parts in such a way to obtain an almost planar separation. Fi-
nally, a merging process is accomplished to obtain a decomposition of the object into 
a smaller number of perceptually significant parts. 

The main differences with respect to the work in [8] regard: i) the way in which the 
partition of the skeleton is performed (two kinds of skeleton partition components 
were considered before), ii) the introduction of suitable criteria to manage cases in 
which an individual part may result as split into sub-parts, and iii) the suggestion of a 
more powerful merging strategy to reduce the number of parts to the most significant 
ones. 

2   Preliminaries 

We refer to solid objects, i.e., rid of cavities, in binary voxel images in cubic grids. 
The object is the set of 1's and the background is the set of 0's. We use the 26-
connectedness for the object and the 6-connectedness for the background.  

For an object voxel p, the 3×3×3 neighborhood N(p) includes the six face-, the 
twelve edge- and the eight vertex-neighbors of p.  

Given two voxels p and q, their distance is measured as the length of a minimal 
discrete path linking p to q. We use the weights wf=3, we=4 and wv=5, as suggested in 
[16], to measure moves from a voxel towards its face-, edge- and vertex-neighbors 
along the path, respectively. This choice of weights is motivated by the fact that the 
<3,4,5> weighted distance provides a reasonable approximation to the Euclidean  
distance.  

The skeleton is a subset of the object consisting of curves symmetrically placed 
within the object, with the same topology of the object, and such that each point of the 
skeleton is associated with the value of its distance from the background, i.e., the ra-
dius of a ball that, centered on the point, is tangent to the object’s boundary and is 
included in the object. Skeletonization has been influenced by the notion of medial 
axis transform introduced by Blum [17], and a number of papers dealing with the 
computation of the skeleton can be found in the literature (e.g., see [18] and the  
references quoted therein). In this work, we use the skeletonization algorithm sug-
gested in [19] to guide object’s decomposition. Skeletonization aims at the inclusion 
in the skeleton of the centers of maximal balls of the object, i.e., the voxels whose  
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associated balls are included in the object but are not completely included by any 
other single ball in the object. In fact, inclusion of all centers of maximal balls, CMB, 
guarantees that the object can be fully recovered by applying to the skeleton the re-
verse distance transformation [16]. However, for 3D objects the CMB generally con-
centrate along symmetry planes and axes, so that not all CMB of the object can be 
kept as skeleton points.  

The ball associated to a distance labeled voxel p is obtained by applying to p the 
reverse distance transformation. Balls associated to a set of possibly sparse voxels 
may overlap and merge into connected components. Each group of balls forming a 
connected component is called zone of influence of the set of distance labeled voxels 
it includes. Distance labeled voxels that are neighbors of each other or are closer to 
each other than the sum of the corresponding radii are included in the same zone of 
influence.  

A voxel p of the skeleton is an end point when it has only one neighboring skeleton 
voxel in N(p). 

A voxel p of the skeleton is a branch point when it has more than two neighboring 
skeleton voxels in N(p). The zones of influence obtained by applying the reverse dis-
tance transformation to the branch points will be used in this paper.  

Concavity filling is a process that identifies voxels of the background placed in lo-
cal concavities of the object and adds them to the object. Concavity filling can be iter-
ated as far as local concavities are detected. The concavity filling algorithm used in 
this paper is based on the use of 3×3×3 operations [20].  

3   Object Decomposition 

Our method provides a one-to-one correspondence between skeleton subsets and ob-
ject parts. It includes the following tasks: i) skeleton partition into three types of sub-
sets, called simple curves, complex sets, and single points; ii) recovery of object parts 
associated to simple curves, single points and complex sets, respectively called simple 
regions, bumps and kernels, where the latter regions constitute a sort of main bodies 
of the object, from which simple regions and bumps protrude; iii) making planar the 
separating surface between adjacent recovered parts; iv) managing the case of parts 
resulting erroneously split into sub-parts; and v) expanding simple regions, bumps 
and kernels. 

To describe our procedure, let us consider the example shown in Fig.1. 
 

 

                                      

Fig. 1. The object “camel”, left, and its skeleton, right 
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3.1   Skeleton Partition  

We apply the reverse distance transformation to the branch points (see Fig. 2 left). 
Then, as said in the previous section, a number of connected components, i.e., the 
zones of influence of the branch points, is obtained which is smaller than or equal to 
the number of branch points. The zones of influence are used to partition the skeleton 
into simple curves, complex sets, and single points. A simple curve is a connected 
component of skeleton voxels that are not included in any zone of influence. As re-
gards skeleton voxels included in zones of influence, we distinguish two cases. When 
end points are not included in a zone of influence, all skeleton voxels included therein 
constitute a complex set (see the paws “camel”). In turn, if end points are included in 
a zone of influence, the end points themselves constitute single point partition com-
ponents, while the remaining skeleton voxels in the zone of influence constitute a 
complex set (see the body of “camel”).  In Fig. 2 right, the three types of partition 
components are shown in different colors (green for simple curves, gray for complex 
sets, and red for single points). 
 

                                     

Fig. 2. The zones of influence, shown in gray, obtained by applying the reverse distance trans-
formation to the branch points, left, and the three types of partition components, right 

Each partition component is assigned an identity label that accounts for the com-
ponent type and distinguishes the components of the same type.  

3.2   Recovery of Simple Regions, Bumps and Kernels 

The reverse distance transformation is applied to the individual partition components, 
and the identity label ascribed to the partition component is, in principle, assigned to 
the object voxels recovered by that component. Actually, individually recovered parts 
partially overlap, so that more than one identity label is possible for some recovered 
voxels. Thus, to have a decomposition into disjoint parts, we identify the connected 
components of recovered voxels with more than one identity label and ascribe to the 
voxels in each of these components the identity label pertaining to the kernel that 
overlaps the component itself.  

Note that for a complex set with end points taken as single points, we do not apply 
the reverse distance transformation to voxels that, in the skeleton, linked the end 
points to the remaining skeleton voxels of the complex set. This choice avoids that the 
surfaces separating bumps from the adjacent kernels are misplaced with respect to the 
intuitively expected positions. This topic will be treated in more detail in Section 5.  

Fig.3 left shows the result of the first recovery step. 
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Fig. 3.  Simple regions, bumps and kernels after the first recovery step, left. Decomposition of 
“camel” where each skeleton partition component is associated with an individual object part, 
right. 

3.3   Improving the Separation between Parts 

The surface separating a bump or a simple region from an adjacent kernel may be not 
planar. An example is shown in Fig. 4 left, where a simple region of “camel” (the 
head-neck region) is shown.  
 

 

Fig. 4. A simple region before, left, and after, right, concavity filling. Voxels shown in the 
middle are the voxels removed from the adjacent kernel and added to the simple region to make 
planar the separating surface. 

Concavity filling is employed to assign to a bump or to a simple region the voxels 
placed in local concavities of that region and belonging to an adjacent kernel. By iter-
ating concavity filling as far as local concavities are detected, the surface separating 
the region from the adjacent kernel becomes almost planar.  Since concavity filling 
uses 3×3×3 operations that are able to derive curvature information from a 5×5×5 
neighborhood [20], the separating surfaces reasonably well approximate planar sur-
faces.  

As an example of the effect of concavity filling see Fig. 4 right. 

3.4   Removal of Sub-parts 

We note that a part with a given identity label may result as divided into sub-parts, 
due to i) the criterion described in Section 3.2 to manage overlapping among regions, 
and ii) to the re-assignment of identity label during concavity filling. We want that 
only one connected part is associated a given identity label, so that a one-to-one cor-
respondence exists between partition components and object parts. To this purpose, 
whenever sub-parts with the same identity label are detected, we discriminate them 
into significant sub-parts and non-significant sub-parts. Only significant sub-parts are 
preserved, while non-significant sub-parts are set to the background value zero. 
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A sub-part of a simple region or of a kernel is regarded as significant if it includes 
at least one skeleton voxel. This criterion cannot be used for bumps, since they defi-
nitely do not include skeleton voxels. Thus, if a bump results split into sub-parts, the 
criterion is to take as significant only the sub-part with the largest size. 

3.5   Expanding Simple Regions, Bumps and Kernels 

As already pointed out, the original object cannot be completely recovered starting 
from the skeleton, so that bumps, simple regions and kernels obtained so far are parts 
of a sketched version of the input object, rather than of the whole original object.  

To decompose the input object, expansion of bumps, simple regions and kernels is 
performed over the voxels of the input object that were not recovered from the skele-
ton. Object voxels reached by the expansion process are assigned the identity label of 
the part they are closer to. Voxels at the same distance from more than one part are 
assigned the label of the part where they have the largest number of neighbors. The 
resulting decomposition for “camel” is shown in Fig. 3 right. 

4   Merging 

Though the obtained decomposition satisfies the one-to-one correspondence between 
skeleton partition components and object parts, the number of parts may be not in 
accordance with human intuition, so that merging criteria to reduce the number of 
parts to the perceptually most relevant ones should be devised. 

Since we regard kernels as constituting the main bodies of the object, we aim at 
merging to kernels suitable bumps and simple regions protruding from them.  

We distinguish simple regions into peripheral regions, i.e., adjacent to one kernel 
only, and non-peripheral regions, i.e., delimited by two kernels. 

We first candidate to merging only non-peripheral simple regions. To decide 
whether any such a region should be merged into a unique object part together with 
the two delimiting kernels, we use the following visibility criterion.  

For the current simple region we consider its surface, which consists of the voxels 
having a face-neighbor in either the background or any of the delimiting kernels. The 
total area of the surface is given by the number of faces of the surface voxels of the 
simple region that are 6-adjacent to the complement of the simple region. The surface 
is interpreted as consisting of two portions: a visible portion and a non-visible portion. 
The area of the visible portion, Av, consists of the number of faces that are 6-adjacent 
to the background. The area of the non-visible portion, Anv, is given by the number of 
faces 6-adjacent to the delimiting kernels.  

If the ratio Av/Anv is smaller than an a priori fixed threshold θ, the simple region is 
regarded as scarcely visible and is merged with the adjacent kernels into a unique 
component. In this paper, θ has been set to 2 by considering a continuous cylinder 
with height h, for which it is Av/Anv= 2πrh/2πr2, as scarcely visible if h is smaller than 
the diameter 2r. To appreciate the effect of merging, see Fig. 5, where the object 
“horse”, its skeleton, the decomposition before merging non-peripheral simple re-
gions, and the result after merging are shown. 
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Fig. 5. From left to right, the object “horse”, its skeleton, the obtained decomposition before 
merging non-peripheral simple regions, and the final result  

For complex objects, a kernel may be adjacent to more than one non-peripheral 
simple region. If the visibility criterion is satisfied for all simple regions adjacent to 
such a kernel, an excessive merging may originate. To solve this problem, we use the 
following strategy. We associate a multiplicity degree m to each kernel, by counting 
the number of adjacent non-peripheral simple regions satisfying the visibility crite-
rion. If a non-peripheral simple region Sj satisfying the visibility criterion is delimited 
by kernels having both m=1, the three regions are merged. The identity label of the 
kernel with the largest volume is ascribed to the obtained merged region.  

If for Sj one delimiting kernel has m=1 while the second delimiting kernel has m>1, 
we first merge Sj with the delimiting kernel with m=1. Sj is ascribed the identity label 
of that kernel. Once merging involving all kernels with m=1 has been accomplished, 
kernels with m>1 are considered. If for the inspected kernel Ki the m adjacent regions 
that could undergo merging already carry an identity label typical of kernels, Ki is 
assigned to the adjacent region with which it shares the largest portion of its surface. 
As an example see Fig. 6, showing the object “cow”, its skeleton, and the decomposi-
tion before and after merging. For “cow”, one kernel with m=2 (shown in black in the 
decomposition before merging) and two kernels with m=1 (shown in red and pink in 
the decomposition before merging) exist. Both non-peripheral simple regions adjacent 
to the kernel with m=2 satisfy the visibility criterion and are accordingly merged with 
their second delimiting kernels with m=1. Then, the kernel with m=2 is merged as 
described above. 

 

             

Fig. 6. From left to right, the object “cow”, its skeleton, the decomposition before merging 
(where the kernel shown in black has m=2), and the result after merging 

As concerns merging of peripheral regions, which can be bumps or simple regions, 
the visibility criterion is integrated by a further condition taking into account the vol-
ume of the object parts. Let Sj be a peripheral region satisfying the visibility criterion 
and let Ki be the adjacent kernel. Merging is accomplished if the ratio between the 
volume (measured as number of voxels) of the region union of Sj and Ki, and the vol-
ume of Ki is smaller than an a priori fixed threshold τ (set to 1.2 in this work). Using  
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Fig. 7. From left to right, the object “prism”, its skeleton, the decomposition before merging 
peripheral regions, and the result after merging 

the visibility criterion also when dealing with peripheral regions is done to avoid 
merging elongated and narrow regions that satisfy the condition on volume. 

The result of merging peripheral regions is shown in Fig. 7 for the object “prism”. 

5   Discussion and Conclusion  

We have tested our decomposition procedure on a number of 3D objects taken from 
publicly available databases [21,22]. A small set of test objects is shown in Fig. 8 
together with the corresponding skeletons. 

 

 
 

 

Fig. 8. Test objects and corresponding skeletons 

The resulting decompositions before and after merging are shown in Fig.9. The 
same values for the thresholds θ and τ have been used for all test objects.  

 

 
 

 

Fig. 9. Decompositions before, top, and after merging, bottom 

The values of θ and τ used in this work can be seen as default values. Obviously, 
threshold values should be tailored to the size of the input objects as well as to the 
specific problem domain. 
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We note that if an object is provided in different poses or scales, whichever skel-
tonization algorithm is used, the skeleton is not guaranteed to have in all cases exactly 
the same number of branches. Thus, a slightly different partition and, hence, a slightly 
different decomposition is likely to be obtained. Moreover, we point out that the per-
ceptual significance of the obtained decomposition parts strongly depends on the way 
skeleton partition has been carried on. In this respect, one could argue that a straight-
forward partition of the skeleton could be used, where only two types of components 
are taken into account, namely components consisting of branch points and compo-
nents consisting of simple curves constituted by the remaining skeleton voxels. How-
ever, if this partition is used as input to the recovery process, a perceptual dominance 
of the regions recovered by the simple curves is obtained at the expenses of the re-
gions reconstructed by the branch points. As a result, the surfaces separating adjacent 
parts do not cut the object in correspondence with the main concavities along the 
boundary of the object, but intrude significantly in the object. See Fig. 10 showing the 
two decompositions obtained for the object “hand”, when starting from the above 
straightforward skeleton partition and from our partition. 

 

                                  

Fig. 10. From left to right, the object “hand”, its skeleton, the decomposition obtained by a 
straightforward skeleton partition, and the decomposition originated by our skeleton partition 

The introduction of the notion of complex sets in the skeleton partition plays a cru-
cial role in obtaining a perceptually significant decomposition. In fact, the kernels are 
not just coinciding with the union of the balls associated with the branch points, but 
are obtained by applying the reverse distance transformation to the skeletal voxels 
included in the zones of influence of the branch points. Thus, kernels are significantly 
larger than the union of the balls associated only to the branch points and, due to the 
criterion adopted to manage overlapping, the separations between kernels and the 
adjacent simple regions are not biased towards the innermost part of the object. 

Another important feature of our partition scheme is the fact that some skeleton 
subsets belonging to a complex set do not participate in the recovery of the corre-
sponding kernel. Each of these subsets is constituted by the voxels linking an end 
point, taken as single point in the partition, to a branch point. If the linking voxels 
participate to the recovery of the kernel, the bump generated by the corresponding 
single point would be a part characterized by a very small volume so that the percep-
tual relevance of the bump would not be enhanced. In turn, if the linking voxels are 
removed from the complex set, but are taken together with the end point to constitute 
a peripheral simple curve, the same problem illustrated in the example in Fig. 10 
would occur. Thus, we keep the linking voxels in the complex set, but do not allow 
them to participate to the recovery process. 

The method is easy to implement, has a limited computational cost and produces 
results in agreement with human intuition. 



456 L. Serino, G. Sanniti di Baja, and C. Arcelli 

 

References 

1. Palmer, S.E.: Hierarchical structure in perceptual representation. Cognitive Psychology 9, 
441–474 (1977) 

2. Marr, D., Nishihara, H.K.: Representation and recognition of three-dimensional shapes. 
Proc. Royal Society of London: Series B 200, 269–294 (1978) 

3. Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition 18, 65–96 (1984) 
4. Biederman, I.: Recognition-by-components: A theory of human image understanding. Psy-

chological Review 94, 115–147 (1987) 
5. Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-

skeletons of 3D objects. The Visual Computer 21(11), 945–955 (2005) 
6. Lien, J.-M., Geyser, J., Amato, N.M.: Simultaneous shape decomposition and skeletoniza-

tion. In: Proc. 2006 ACM Symposium on Solid and Physical Modeling, pp. 219–228 
(2006) 

7. Reniers, D., Telea, A.: Skeleton-based hierarchical shape segmentation. In: Proc. IEEE Int. 
Conf. on Shape Modeling and Applications, pp. 179–188 (2007) 

8. Serino, L., Sanniti di Baja, G., Arcelli, C.: Object decomposition via curvilinear skeleton 
partition. In: Proc. ICPR 2010, pp. 4081–4084. IEEE, Los Alamitos (2010) 

9. Svensson, S., Sanniti di Baja, G.: Using distance transforms to decompose 3D discrete ob-
jects. Image and Vision Computing 20, 529–540 (2002) 

10. Zhang, X., Liu, J., Jaeger, M., Li, Z.: Volume decomposition for hierarchical skeletoniza-
tion. Int. J. Virtual Reality 8(1), 89–97 (2009) 

11. de Goes, F., Goldenstein, S., Velho, L.: A hierarchical segmentation of articulated bodies. 
Computer Graphics Forum 27(5), 1349–1356 (2008) 

12. Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: Proc. 12th 
Pacific Conf. on Computer Graphics and Applications, pp. 298–305 (2004) 

13. Huang, Q.-X., Wicke, M., Adams, B., Guibas, L.: Shape decomposition using modal 
analysis. Computer Graphics Forum 28(2), 407–416 (2009) 

14. Bischoff, S., Kobbelt, L.: Ellipsoid decomposition of 3D models. In: Proc. Int. Symp. 3D 
Data Processing Visualization and Transmission, pp. 480–488 (2002) 

15. Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Plumber: a method 
for a multi-scale decomposition of 3D shapes into tubular primitives and bodies. In: Proc. 
9th ACM Symp. on Solid Modeling and Applications, pp. 339–344 (2004) 

16. Borgefors, G.: On digital distance transform in three dimensions. CVIU 64(3), 368–376 
(1996) 

17. Blum, H.: Biological shape and visual science. J. Theor. Biol. 38, 205–287 (1973) 
18. Siddiqi, K., Pizer, S.M. (eds.): Medial Representations: Mathematics, Algorithms and Ap-

plications. Springer, Heidelberg (2008) 
19. Arcelli, C., Sanniti di Baja, G., Serino, L.: Distance driven skeletonization in voxel images. 

IEEE Trans. PAMI,  
 http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.140 

20. Borgefors, G., Sanniti di Baja, G.: Analyzing non-convex 2D and 3D patterns. 
CVIU 63(1), 145–157 (1996) 

21. AIM@SHAPE Shape Repository,  
 http://shapes.aimatshape.net/viewmodels.php 

22. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. 
Shape Modeling International, Genova, Italy (June 2004) 



A Three-Dimensional Shape Description

Algorithm Based on Polar-Fourier Transform for
3D Model Retrieval

Dariusz Frejlichowski

West Pomeranian University of Technology, Szczecin,
Faculty of Computer Science and Information Technology,

Zolnierska 49, 71-210, Szczecin, Poland
dfrejlichowski@wi.zut.edu.pl

Abstract. In the paper a new 3D shape representation algorithm is pro-
posed — the Polar-Fourier 3D Shape Descriptor. Similarly to the Light
Field Descriptor, the proposed method is based on rendering several
two-dimensional projections of a 3D model, taken from various points of
view. However, the proposed descriptor uses the 2D Polar-Fourier trans-
form for obtained projections This enables the new descriptor to be more
efficient in the recognition or retrieval of 3D models. In order to evalu-
ate the performance of the algorithm, it was experimentally compared
with four other popular approaches — the Extended Gaussian Image,
Shape Distributions, Shape Histogram and Light Field Descriptor — in
the problem of 3D shape retrieval. The achieved results have shown that
the new method outperforms the other four explored ones. The presented
3D shape descriptor can be used in representation, recognition and re-
trieval of 3D models.

Keywords: 3D model retrieval, 3D shape description, Polar-Fourier
transform.

1 Introduction

The problem of 3D model representation, recognition and retrieval is more pop-
ular nowadays than for example ten or twenty years ago. It is mainly caused by
the recent development in computer hardware and software and possibility of ef-
ficient and fast computation of large multimedia data. Thanks to this many new
applications of 3D models have appeared. One of them, especially arising lately,
is the 3D model retrieval, which is a special case of Content-Based Information
Retrieval problem of retrieving data from usually large multimedia collections.
Nevertheless, from the historical point of view the first popular application of
3D models was the Computer Aided Design, CAD ([1]). However, some other
exemplary applications can be easily found. For example, the entertainment ap-
plication became more common lately ([2]) — in virtual reality, games, movies.
Another example is the three-dimensional biometrics, mainly the 3D face recog-
nition ([3]). Finally, the incorporation of a 3D shape description method in the
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MPEG-7 standard for multimedia content description has to be mentioned ([4]).
In spite of the increasing popularity of 3D model processing the number of al-
gorithms developed for the representation of 3D shapes is still definitely smaller
than for the planar (two-dimensional) ones. However, there have been several
approaches developed and explored so far. They can be divided into four main
groups: geometrical, structural, symmetrical and local. The approaches based
on geometrical information about a model are the oldest and most widely used
ones and hence may be easily enumerated. They include the Extended Gaussian
Image, EGI ([5]), its modified version — Complex Extended Gaussian Image,
CEGI ([6]), 3D moments ([7]), Shape Histograms ([8]), Shape Distributions ([9])
and spherical harmonics ([10]). The Multiresolutional Reeb Graph ([11]) is an ex-
emplary algorithm from the second group. The Reflective Symmetry Descriptor
([12]) belongs to the third one. Finally, the method based on canonical geometric
scale-space analysis ([13]) is an example of the local approaches.

In the paper new algorithm is proposed. The general idea applied here is
close to the approach used in the Light Field Descriptor ([14]). Namely, twenty
two-dimensional projections for a 3D model are obtained, with cameras placed
in the vertices of dodecahedron enclosing the object. However this is the only
similarity, because for the achieved projected planar shape another approach
for its description is used. This time the 2D Polar-Fourier transform is applied,
which is very efficient in the problem of planar shape recognition.

The proposed Polar-Fourier 3D Shape Descriptor was experimentally com-
pared with results provided by four other 3D shape descriptors — the Extended
Gaussian Image ([5]), Shape Distributions ([9]), Shape Histograms ([8]) and Light
Field Descriptor ([14]). These algorithms selected for comparison were previously
analysed in [15]. For the problem of 3D object retrieval the models taken from
The Princeton Shape Benchmark database ([16]) were applied.

The remaining part of the paper is organized as follows. Section 2 presents
the proposed Polar-Fourier 3D Shape Descriptor. Section 3 describes briefly ap-
proaches selected for the experimental comparison with the proposed algorithm.
Section 4 provides a detailed description of the conditions and results of the per-
formed experiments. Finally, the last section concludes the paper and provides
some suggestions for further research directions.

2 Description of the Polar-Fourier 3D Shape Descriptor

As it has been stated in the introductory part of this paper, the motivation
underlying the construction of a new 3D shape descriptor was the good result of
the Light Filed Descriptor in the 3D model retrieval. The idea is based on the
use of another planar shape descriptor for the projected 2D shapes. Hence, the
beginning of the proposed algorithm is similar to the previous one.

The Polar-Fourier 3D Shape Descriptor starts with the calculation of the
centroid L of a three-dimensional object:

L = (Lx, Ly, Lz) = (
1
n

n∑
i=1

xi,
1
n

n∑
i=1

yi,
1
n

n∑
i=1

zi), (1)
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where:
(xi, yi, zi) — a vertex of an object,
n — number of vertices for particular 3D shape.

Later, all vertices are translated in order to move the centroid into the origin
of the co-ordinate system. For a vertex P it can be formulated as follows:

Pi = (xi, yi, zi) = (xi − Lx, yi − Ly, zi − Lz), (2)

where: i = 1, 2, . . . , n.
The normalisation of co-ordinates according to the maximal distance from the

centre of gravity is then performed. Thanks to this we can achieve the unitary
maximal distance:

M = max
i

{‖Pi − L‖}, (3)

where: i = 1, 2, . . . , n.
And:

Pi = (
xi

M
,
yi

M
,
zi

M
). (4)

Later, the projections are obtained from 20 various angles. It results from the
assumption that cameras are placed in the vertices of the dodecahedron enclosing
the object. Each time the camera is directed into the origin of the co-ordinate
system. The projections are stored in bitmaps. For each shape from them polar
co-ordinates are calculated for a contour. Firstly, the centroid for the planar
shape is derived (notice that the centroid L of the 3D shape is not equivalent to
the centoid O, which is calculated for each planar shape separately):

O = (Op, Oq) = (
1
s

s∑
i=1

pi,
1
s

s∑
i=1

qi). (5)

where:
s — number of points in a contour of a planar shape,
pi, qi — Cartesian coordinates of the i-th point of the projected shape.

By means of the centre of an object O we can calculate the polar co-ordinates
— Θi for angles and P i for radii:

ρi =
√

(pi −Op)2 + (qi −Oq)2, (6)

θi = atan(
qi −Oq

pi −Op
). (7)

The achieved points are put into the matrix, providing as a result a two-
dimensional representation. This enables us to apply the 2D Fourier transform
to it. Usually for the shape representation, the absolute spectrum is used. Its
values are derived by means of the following equation ([17]):
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C(k, l) =
1

HW

∣∣∣∣∣
H∑

h=1

W∑
w=1

R(h,w) · e(−i 2π
H (k−1)(h−1)) · e(−i 2π

W (l−1)(w−1))

∣∣∣∣∣ , (8)

where:
H , W — height and width of the image in pixels,
k — sampling rate in vertical direction (k ≥ 1 and k ≤ H),
l — sampling rate in horizontal direction (l ≥ 1 and l ≤ W ),
C(k, l) — value of the coefficient of discrete Fourier transform in the coefficient
matrix in k row and l column,
R(h,w) — value in the image plane with coordinates h, w.

From the obtained absolute spectrum square subpart with a side equal to
10 elements is selected and concatenated into the vector. It represents a planar
projection of a 3D model. For matching any similarity or dissimilarity measure
may be applied, e.g. the Euclidean distance.

3 Brief Description of the Algorithms Selected for the
Comparison with the Proposed Method

As it has already been mentioned in the first section, the proposed algorithm
for the 3D shape representation was compared with the results of four other
algorithms — Extended Gaussian Image ([5]), Shape Distributions ([9]), Shape
Histograms ([8]) and Light Field Descriptor ([14]), provided in [15]. In this section
each of them is shortly described.

The Extended Gaussian Image (EGI, [5]) is one of the oldest and most popular
techniques for the description of 3D models. In this approach the Gaussian image
is obtained through the association of the point on the Gaussian sphere with each
point on object’s surface with the same surface orientation.

Each point belonging to a patch on the object (denoted as δJ) corresponds
to a point on the Gaussian sphere (denoted as δS). The Gaussian curvature can
be defined as being equal to the limit of the ratio of the two areas as they tend
to zero ([5]):

K = lim
δJ→0

δS

δJ
=

dS
dJ

. (9)

Assuming S — the area of the corresponding patch on the Gaussian sphere,
having in mind the previous equation, one can derive the formula ([5]):∫∫

J

KdJ =
∫∫

S

dS = S. (10)

For J denoting the corresponding patch on the object the above formula can
be rewritten as ([5]): ∫∫

S

1
K

dS =
∫∫

J

dJ = J. (11)
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The inverse of the Gaussian curvature in the formulation of the EGI descriptor
can be applied thanks to the above relationship ([5]). That gives the possibility
of a mapping that associates the inverse of the Gaussian curvature for a point
on the surface with a corresponding point on the Gaussian sphere. The EGI can
be defined in the following way ([5]):

G(ζ, η) =
1

K(μ, ν)
, (12)

where point with the coordinates (ζ, η) lies on the Gaussian sphere and has the
same normal as point with the coordinates (μ, ν) on the original surface.

The Shape Distribution ([9]) was the second approach compared with the
proposed algorithm. In this method a function representing a model is firstly
selected. It may be of any type, however the authors have proposed a few ones:
the angle between three random points on the object’s surface (A3), the distance
between a centroid and a random point on the surface (D1), the distance between
a pair of random points (D2), the square root of the area of the triangle lying
between three random points on the surface (D3), and the cube root of the
volume of the tetrahedron between four random points on the surface (D4).

For a function N samples are evaluated and using them a histogram is con-
structed, containing the information on how many of the samples fall into B
bins. From the histogram a piecewise linear function is derived, with V equally
spaced vertices, V ≤ B, e.g. N = 10242 samples, B = 1024, and V = 64 vertices
([9]).

All polygons of the 3D object are split into triangles in order to obtain the
samples. For each triangle its area is calculated and stored along with the cu-
mulative area of all previously considered triangles. Later, a triangle with a
probability proportional to its area is selected. This task is performed through
the generation of a random number between 0 and the total cumulative area
and performing a binary search on the array of cumulative areas. For each of
thus obtained triangles a point P on its surface is derived, applying two random
numbers r1 and r2 ranged from 0 to 1 ([9]):

P = (1 − √
r1)A+

√
r1(1 − r2)B +

√
r1r2C, (13)

where A, B and C — the vertices of the selected triangle.
The third approach was the Shape Histograms ([8]). The general idea of the

algorithm is based on the process of partitioning of the space, where a 3D object
is placed. Using the particular obtained cells the histogram is built. The method
of the decomposition of the space can be chosen freely. However, the authors of
the approach have proposed three ones — a shell model, a sector model, and a
spider-web model (see Fig. 1 for illustration).

The Light Field Descriptor (LFD, [14]) was the last method, which has been
compared with the proposed algorithm. In fact its main idea was the basis for
the algorithm proposed in this paper — the rendering of several two-dimensional
projections of a 3D object (see Fig. 2). Those projections are compared in order
to indicate the similar objects. Obviously, this task is performed for various
points of view.
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Fig. 1. Three exemplary methods of space decomposition for shape histograms ([8])

Fig. 2. Exemplary projections obtained for the representation of a model by means of
the Light Field Descriptor ([14])

The algorithm for obtaining the LFD 3D shape description starts with the
shifting of the object’s vertices into the origin of the Cartesian co-ordinates
system. The second step is the normalization of the co-ordinates according to
the maximal one. Later, the crucial stage starts — for 20 various angles (the
cameras are placed in the vertices of dodecahedron enclosing the model) the
rendered planar projections are obtained ([14]). The obtained planar projections
of 3D object are stored in bitmaps, and they are the representations of the model.
Hence, the similarity between two objects is calculated by means of matching
between their projections.

4 Experimental Conditions and Results

All five 3D shape description algorithms presented in this paper — the proposed
Polar-Fourier 3D Shape Descriptor as well as the four approaches selected for the
comparison — were experimentally evaluated by means of the Princeton Shape
Benchmark ([16]). It is a free database made by Princeton University, created to
help in performing the benchmark of different algorithms. This database is very
popular in evaluating the 3D shape descriptors (see for example [18] and [19]).

During the experiments 312 objects belonging to 13 different classes were
used (see Fig. 3). The idea of the experiment was simple. The retrieval was



A Three-Dimensional Shape Description Algorithm 463

Fig. 3. Examples of the 3D models used in the experiment, taken from the Princeton
Shape Benchmark database ([16])

successful if the Euclidean distance between a represented using a descriptor
test and template was the smallest for objects belonging to the same class.
Obviously, the template models did not perform the role of the test ones. The
precise results of the retrieval obtained for investigated algorithms are provided
in Table 1.

The results provided in Table 1 prove that the proposed algorithm outperforms
the other explored 3D shape description techniques. Its average recognition rate
(RR) is close to 75%. This result is more than 5% better than in the case of the
second best descriptor — Light Field Descriptor.

Although the average result of the Polar-Fourier 3D Shape Descriptor is sig-
nificantly the highest in some cases other methods have performed better. For
example, EGI achieved 80% for class number 5, while the P-F 3D was two times
worse. Similarly, for class no. 12 EGI achieved 50%, while the proposed method
gave 37.5%. The highest difference is visible in the case of class no. 13. EGI
descriptor worked in that case really well, while P-F 3D achieved only a 33.33%
retrieval rate. On the other hand, for the rest of the classes the proposed ap-
proach has performed better.

Shape Distributions proved better than the Polar-Fourier 3D only in one case.
For class no. 3 the SD achieved 84.21% and the P-F 3D — 63.16%. The Light
Field Descriptor has also appeared better only once. Its RR for class no. 6 was
equal to 88.89%, while the P-F 3D was slightly worse and achieved 83.33%.
Shape Histograms turned out the worst during the test and never gave a result
better than the proposed approach.
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Table 1. Results of the experiments — percentage of the successful retrieval (retrieval
rate) for particular 3D shape descriptors

Class no. EGI SH SD LFD P-F 3D

1. 57.75 29.58 78.87 78.87 83.10
2. 65.71 48.57 57.14 85.71 85.71
3. 52.63 21.05 84.21 57.89 63.16
4. 53.13 56.25 34.38 56.25 62.50
5. 80.00 20.00 30.00 10.00 40.00
6. 50.00 44.44 72.22 88.89 83.33
7. 66.67 33.33 50.00 50.00 66.67
8. 66.67 0.00 0.00 33.33 66.67
9. 65.12 67.44 27.91 74.42 76.74
10. 70.00 10.00 60.00 60.00 70.00
11. 60.61 9.09 54.55 66.67 75.76
12. 50.00 12.50 12.50 25.00 37.50
13. 100.00 16.67 50.00 16.67 33.33

Overall 60.26 36.86 56.09 68.91 74.68

The result of the Polar-Fourier 3D Shape Descriptor seems to be far from
the ideal; however, the problem of 3D model retrieval is very difficult. This is
illustrated in Fig. 4, where some examples of the objects from the same class are
presented — they sometimes look very dissimilar.

Fig. 4. Illustration of the difficulty involved with 3D-model retrieval — examples of
3D shapes belonging to the same class, yet very different in appearance ([16])

5 Conclusions and Future Plans

In the paper a new algorithm for the description of three-dimensional shapes
has been presented and experimentally compared with four popular methods
— Extended Gaussian Image (EGI, [5]), Shape Distributions ([9]), Shape His-
tograms ([8]) and Light Field Descriptor (LFD, [14]). The problem of 3D object
retrieval has been analysed. For this purpose the models from the Princeton
Shape Benchmark ([16]) were used. The achieved average retrieval rates have
indicated that the proposed method works better in the problem than the other
approaches. The Polar-Fourier 3D Shape Descriptor achieved almost a 75% re-
trieval rate. This result can be considered as satisfactory, because in many cases
the objects within a class display strong differences (see Fig. 4 for an example).
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The other algorithms achieved a retrieval rate equal to: 69% (Light Field De-
scriptor), 60% (Extended Gaussian Image), 56% (Shape Distributions), and 37%
(Shape Histograms).

The obtained experimental results have confirmed the high efficiency of the
approach proposed in Light Field Descriptor ([14]), namely rendering 2D pro-
jections of a 3D model, taken from various points of view. The improvement
applied in the new descriptor is based on the usage of polar-Fourier transform
for the achieved planar shapes. In the future, some other 2D shape descriptors
will be verified by means of the same method. It is possible that thanks to them
the retrieval results will be even better.
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Abstract. This paper shows how stereo and Time-of-Flight (ToF) im-
ages can be combined to estimate dense depth maps in order to automate
plant phenotyping. We focus on some challenging plant images captured
in a glasshouse environment, and show that even the state-of-the-art
stereo methods produce unsatisfactory results. By developing a geomet-
ric approach which transforms depth information in a ToF image to a
localised search range for dense stereo, a global optimisation strategy is
adopted for producing smooth and discontinuity-preserving results. Since
pixel-by-pixel depth data are unavailable for our images and many other
applications, a quantitative method accounting for the surface smooth-
ness and the edge sharpness to evaluate estimation results is proposed.
We compare our method with and without ToF against other state-of-
the-art stereo methods, and demonstrate that combining stereo and ToF
images gives superior results.

1 Introduction

In our post-genomic world, where ever increasing volumes of genetic information
are obtained at great speed and little cost, the collection of phenotypic informa-
tion is often a bottleneck to scientific progress. A phenotype is any observable
characteristic of an organism such as its shape and height. In stark contrast to
genotyping, phenotyping is slow, and expensive in human time. Moreover, mea-
surements are affected by the varying perception and interpretation of different
observers. Image analysis has the potential to overcome these problems, but au-
tomatic interpretation of images of plants and animals remains very difficult. For
example, Figures 1(a) and 1(b) show a stereo pair of images of pepper plants,
from which we wish to estimate phenotypic characteristics such as leaf area, stem
length or fruit size. This is a challenging task, as surfaces are of complex shape,
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c© Springer-Verlag Berlin Heidelberg 2011



468 Y. Song et al.

(a) (b) (c)

Fig. 1. Plant images: (a) and (b) show a stereo pair of images of pepper plants, (c) is
the matching ToF image, which is at much coarser resolution and has been scaled to
match (a) and (b)

and there are multiple depths, linear features and occlusions. Further, shadows
are inconsistent between images because a flash light attached to the camera
was used to offset ambient lighting.

These images were collected as part of an EU-funded FP7 project, SPICY
(Smart tools for Prediction and Improvement of Crop Yield). The plant breed-
ing industry has contributed greatly to the increased quality and yield of plant
products over recent decades. However, to sustain and accelerate this progress,
the relationship between genotype and phenotype needs to be better understood.
For example, yield is a result of the interaction of many genetic factors, and is
also subject to large, extraneous variation. The approach taken in SPICY is
to use crop growth models to predict the phenotypic response, with genotype
encapsulated in model parameters. Our component of the project is the devel-
opment of image analysis tools to replace hand measurements for phenotyping
over a large range of genotypes in a practical environment, with the first step
being recovery of dense depth information from image pairs such as Figures 1(a)
and 1(b). This is usually seemingly-effortless for the human eye and brain, but
unfortunately still not so for computers!

One approach to dense stereo is via robust point correspondence methods
using local feature descriptors such as SIFT [12], followed by methods such as
DAISY [17] and SIFTflow [11]. However, no convincing result addressing the
issue of preserving discontinuity was produced in [11,17] for complex real world
scenes. Global optimisation methods such as graph cuts [3] can produce edge-
preserving results on the Middlebury dataset [15], but challenges in the Middle-
bury dataset are different to these images in our work. Ogale and Aloimonos [13]
proposed to use shape in establishing edge-preserving dense correspondence, but
their images were mostly planar surfaces.



Combining Stereo and Time-of-Flight Images 469

Recently the use of low-resolution range cameras based on the Time-of-Flight
(ToF) principle has received increasing attention. A ToF range camera is an
active image sensor using infrared illumination, and distance measure in cm
is calculated from the time the light has used for travelling to the object and
back. Kolb et. al. [9] gave an overview on techniques and applications of ToF
images, and these provide an option for improving recovery of depth information
by augmenting stereo pairs with partial, coarse resolution, ToF images as in
Fig. 1(c). Given the availabilities of high-resolution stereo images taken close to
the viewpoint of the ToF sensor, it is natural to combine ToF and stereo results
and develop statistical relations between them. In the direction of combining
ToF and stereo, Gudmundsson et. al. [6] transformed ToF points into colour
images by rectification homographies, and then fed them into a hierarchical
stereo matching algorithm. Hahne and Alexa [7] demonstrated the combined
ToF and stereo method can enhance the depth estimation even without accurate
extrinsic calibration. Zhu et. al. [18] developed a weighting method combining
stereo and ToF data by fixed values, and then used belief propagation to optimise
the data. Motivated by this research, we first present a geometric approach to
transform points from ToF image coordinates to colour image coordinates, and
then derive a localised search range for stereo matching. Despite the simplicity of
the ToF transformation, we demonstrate that a global stereo strategy can then
be applied and does improve results and preserve discontinuity. Compared with
above works [6,7,18], challenging low-resolution ToF images 48 × 64 were used
in this work. Beder et. al. [1] also developed a fusion scheme using ToF images
in the same resolution as ours, but their images were planar surfaces while ours
are more complicated.

Current ToF and stereo fusion work (e.g. [1,6,7,10]) lack quantitative results
on preserving depth-discontinuity, and most results were qualitative (except [18]
which used another 3D scanner to produce pixel-by-pixel depth data). This is
partly due to the fact that it is impossible to collect pixel-by-pixel depth data
for ground truth. Our images were collected inside a glasshouse unlike the work
by Zhu et. al. [18] which was done in an indoor lab environment, and the use of a
ToF camera can become obsolete given the readily available and accurate depth
data. In the situation without pixel-by-pixel depth data, we propose a method
to quantify how much depth-discontinuity has been preserved and evaluate the
quality of depth estimation for our approach as well as other state-of-the-art
stereo methods.

In addition to address challenges raised from our applications, the technical
contributions of this paper are: a simple yet effective geometric approach trans-
forming ToF points and producing a localised search range for dense stereo; a
global graph-cut strategy using the localised search range with an emphasis on
preserving discontinuity; an evaluation method to determine the quality of es-
timation without pixel-by-pixel depth data. After describing our contributions,
this paper presents comparison results on some challenging pepper plant images.
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2 Methods

2.1 Setup and Calibration

The camera rig consisted of a colour camera and a ToF camera. The ToF camera is
a RF modulated camera with phase shift detectors (IFM O3D201 PMD camera),
with a resolution of 64×48 pixels, while the colour camera has a resolution of 480×
1280. The rig known as Spy-See [14] moved in a straight line on top of rigid heating
pipes in the glasshouse and captured overlapping images at a fixed interval. The
baseline between images was 5 cm, and objects of interest (e.g. leaves) were located
between 55 cm and 120 cm away from the camera. Fig. 1(a)-(c) show a pair of
stereo colour images and the corresponding ToF image.

Given a rigid and fixed camera setup described above, a two-layer board shown
in Fig. 2(a) was used for calibration at different distances from the camera. The
front layer moved from 40 cm to 120 cm away from the camera in 5 cm steps, and
we used a simple pinhole camera model for the colour camera. Denote s as the
baseline distance between images measured in cm and f ′ as the focal length for
the colour camera, and the relationship between the disparity d and the depth
z is,

d = s f ′ /z (1)

Given multiple depth measurements z (e.g. 40 cm to 120 cm in this work) and
correspondences in each view to compute d, f̂ ′ can be obtained by applying the
least squares fitting technique:

f̂ ′ = arg min
f ′

||d − (s f ′ /z)||2 (2)

The centre of the square seen in Fig. 2(a) is used to compute d, and z is known
for each image. Fig. 2(b) presents the relationship in (1) and plots d against z.

2.2 Dense Stereo Methods

Dense stereo methods can estimate disparity d for every pixel given a pair of
stereo images. However, the pixel consistency assumption is often made for build-
ing the correspondence between two images. In our application, we have found
that pixel values were not reliable for matching due to changes of perspective,
lighting, and noise. To address this issue, the SIFTflow [11] method was chosen,
which uses pixel-wise SIFT features between two images instead of pixel values
for matching. Complex image pairs across different scenes and object appear-
ances have been shown robustly matched in [11].

For our application, discontinuity preserving results are highly desirable. The
pepper plant images shown in Figures 1(a) and 1(b) have very sharp depth edges,
and we have observed step changes over 50 pixels between neighbourhood pixels.
Although Liu et. al. used a simple synthetic image in [11] to demonstrate that
the dense SIFT features contain sharp edges with respect to the sharp edges
in the original image, there is no close-up on complex scenes to prove that the
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(a) (b)

Fig. 2. Calibration: (a) diagram of calibration board, (b) plot of the relationship be-
tween depth z in cm and disparities d in pixels for colour camera. Blue dots were
disparity measurements d for each z, and the red line was the fit by (2).

SIFTflow method can preserve discontinuity. Ogale and Aloimonos [13] examined
the implications of shape on the process of finding dense correspondence, and
attempted to produce disparities in the form of a piecewise continuous function
consistent with the stereo images. Using piecewise constant and piecewise linear
shape models, they have presented results on images with slanted planar surfaces
as well as a pair of stereo images on some branches of a tree, but no results on
curved or nonrigid surfaces common in the pepper plant images have been shown.

Global optimisation methods such as graph cuts and belief propagation have
been shown producing satisfactory discontinuity-preserving results on the Mid-
dlebury dataset [15]. Since global stereo methods produce better results com-
pared with local stereo methods for combining with ToF information [18], we
chose the alpha expansion technique applied in a graph-based energy minimi-
sation framework [3]. The energy cost E given a pixel disparity d is defined as:

E(d) =
∑

D(d(x′,y′)) +
∑
q∈N

V (d(x′,y′), d(x′
q,y′

q)) (3)

where N denotes the first-order neighbourhood pixels. For the data term cost
D,

D(d(x′,y′)) = min

⎧⎨
⎩1

3

∑
c={R,G,B}

∣∣∣I(c)
(x′,y′) − I

′(c)
(x′+d(x′,y′),y′)

∣∣∣ , Td

⎫⎬
⎭ (4)

where I and I ′ represent the intensity value in the pair of colour images. Td is a
truncation constant, and D(d(x′,y′)) is computed for all the possible disparities.
For the smoothness term cost V ,

V (d(x′,y′), d(x′
q,y′

q)) = u(x′,y′,x′
q,y′

q) min
{∣∣∣d(x′,y′) − d(x′

q,y′
q)

∣∣∣ , Tk

}
(5)



472 Y. Song et al.

where parameter Tk is used to truncate the linear energy. (x′q , y
′
q) is one of the

first-order 4-neighbourhood pixels around (x′, y′). u(x′,y′,x′
q,y′

q) represents static
cues in Boykov et. al. [3], which was used as an indicator function in this work
as:

u(x′,y′,x′
q,y′

q) =

{
αv if

∑
c={R,G,B}

∣∣∣I(c)
(x′,y′) − I

′(c)
(x′

q,y′
q)

∣∣∣ > 25
nv αv otherwise

(6)

αv is the smoothness cost for intensity edges, and nv αv is the smoothness cost
for surfaces. The thresholding value 25 was empirically determined from our
experiments. Both αv and nv αv should be set according to the data cost values
in (4). (6) gives more smoothness if there is no intensity edge, and therefore
achieves edge-preservation by encouraging changes at edges at a cost of αv and
limiting changes on the surface by nv αv.

2.3 Localised Search Range from ToF Image

Given the complexity associated with the pepper plant images for dense stereo
methods, a localised search range derived from the corresponding ToF depth
image should improve the estimation accuracy. First of all, a transformation
should be established for points in colour image and ToF image. In our exper-
iments, a near-linear relationship between ToF depth measurements z′′ and z
was observed as in [18]. We used the same procedure for f̂ ′ to obtain f̂ ′′ for the
ToF camera, and developed ToF transformation methods in (7)-(10) to tolerate
errors in ToF camera. For further information on ToF camera calibration, Kolb
et. al. [9] briefly discussed error sources and challenges, and Beder and Koch [2]
developed a checkerboard method and calibration software. Since the ToF image
is much coarser in resolution compared to the colour image, the transformation
from ToF image coordinates to colour image coordinates alone would only give
isolated point depth measurements in the colour image. We therefore treat each
ToF pixel as a patch centring around the pixel, and then transform all points in
the patch to the colour image (see Fig. 3 for an example). In effect, this trans-
formation is one of the up-scaling techniques as discussed by Lindner et. al. [10]
and they provided a biquadratic scheme for this purpose.

Due to different viewing positions of ToF and RGB cameras, there are n ToF
measurements for z (n ≥ 0) at location (x′, y′). If multiple depths were found
at (x′, y′), the minimum value would be chosen, which represents the closest
point to the camera. If no measurement of z is available for (x′, y′), this would
be treated as a missing value. To produce a localised search range [dmin, dmax]
for stereo matching, we used a patch centring around every pixel in the colour
image to compute the minimum and maximum depth values. Denote (x′, y′, z)
as z(x′,y′) and the patch as z(m,n),

|m − x′| ≤ r (7)
|n − y′| ≤ r (8)



Combining Stereo and Time-of-Flight Images 473

In effect, this allows mis-alignment up to r pixels when transforming the ToF
image to the colour image. The maximum and minimum depths (max{z(m,n)}
and min{z(m,n)}) are then converted into disparities as,

dmin(x′,y′) = s f ′/max{z(m,n)} − k (9)
dmax(x′,y′) = s f ′/min{z(m,n)} + k (10)

The search range is expanded by k pixels (normally 0 ≤ k ≤ 3) at each direction
to allow for the noise in the ToF estimates.

Given a localised search range [dmin, dmax] for every pixel, a stereo method
can then be used to find correspondences between images. To incorporate the
localised search range in a graph-based energy minimisation framework, for the
data term cost D in (4), if d(x′,y′) is outside the search range [dmin, dmax] or
d(x′,y′) is linked to a pixel outside the image, D(d(x′,y′)) is set to the maximum
pixel difference value Td. If the localised search range [dmin, dmax] is missing,
D(d(x′,y′)) is computed for all the possible disparities same as a dense stereo
method.

2.4 Quality Quantification

From Fig. 1(a) and 1(b), we see a few foreground leaves with depth edges present
along the leaf boundary. Although pixel-by-pixel depth data were not available,
we can label depth edges to quantify how well the result has preserved depth
edges. The Canny filter was used to detect intensity edges, and these edges were
then manually refined for leaf boundaries (see Fig. 4). Note that we only per-
formed this manual edge refinement at this evaluation stage to produce ground
truth for depth edges, and neither the ToF transformation nor the stereo method
required any intervention after calibration. The area within the leaf boundaries
was considered a leaf surface, and the final output was a binary image with sur-
face pixels located at (x′s, y

′
s) and edge pixels located at (x′e, y

′
e). To compute the

smoothness of the surface and sharpness of the depth edges, we applied 3×3 So-
bel operators in both horizontal and vertical directions, and surface smoothness
penalty Ps was calculated as,

Ps = M(x′
s,y′

s)
(11)

where M is the edge magnitude by the Sobel operators. Edge sharpness score
Se was calculated as,

Se = g(x′
e,y′

e) (12)

where g denotes the edge magnitudeM convoluted with a Gaussian filter in order
to deal with thin and sharp depth edges. In this work, we set the neighbourhood
size of the Gaussian filter to 15 and the standard deviation to 5. A quality
score S accounting for the surface smoothness Ps and the edge sharpness Se was
therefore computed as below,

S = Se − Ps (13)
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The score S penalises displacement between defined depth edges and depth edges
produced by a dense method while requiring the surface to be smooth.

3 Results

This section compares three dense stereo algorithms with our method on some
challenging pepper plant images. Let SIFTflow, Shape and GC represent meth-
ods by Liu et. al. [11], Ogale and Aloimonos [13] and Boykov et. al. [3] respec-
tively. GC refers to the graph cut method without using ToF, and GC+ToF
is the method we propose in this paper. Parameters for all the methods were
optimised by running the particular method for several iterations through all
parameters with different testing orders, and both qualitative and quantitative
results were taken into account. For all our experiments, SIFTflow was config-
ured with a 5-level pyramid, 5 × 5 window, α = 1 and γ = 0.001. The α in
the Shape method was set to 2. Parameters Td, αv, nv, Tk for GC were set as
20, 4, 4, 6. For GC+ToF, the same parameters for GC were used for dense stereo
and ToF parameters r and k were set to 10 and 1 respectively. Since these meth-
ods are established, readers can see the effects of these parameters by following
[11,13,3] for SIFTflow, Shape and GC respectively.

Fig. 3 shows an example of qualitative stereo results produced by the four
methods. Methods GC and GC+ToF produced results with leaves recognisable
from the background. SIFTflow produced smooth results but did not preserve
discontinuity, while Shape was opposite. This can be further examined in Fig. 4,
which shows effects of (11) and (12) on a close-up of a leaf (Leaf 1) by the four
methods. The edge magnitude was weak for SIFTflow, although the surface was
the most smooth. Method Shape suffered from noises on the surface, and GC
failed to produce some depth edges. In comparison, GC+ToF produced best
qualitative results among the four methods, and this was verified by two more
examples in Fig. 5 (Leaf 2 and Leaf 3).

A summary of quantitative results (Se, Ps, S) for all three leaves is shown
in Table 1. Similar to the findings in the qualitative results above, we see that
GC+ToF produced sharp depth edges represented by a high Se score especially
for Leaf 1 and Leaf 2. The ranking of methods produced by the score S is also
consistent with the qualitative results for the two leaves. Leaf 3 is in front of
another leaf, and the magnitude of depth edges is therefore not strong as those
in Leaf 1 and Leaf 2. GC+ToF still produced the best scores Se and S among
the four methods.

This section has shown results on one example of stereo images (Pepper 1),
and two more qualitative results (Pepper 2 and Pepper 3) have been made avail-
able1. Table 2 presents

∑
S for all three results. By using ToF as a localised

search range, the estimation results were improved by at least 16% measured by
the score

∑
S.

1 http://www.bioss.ac.uk/staff/yu/tof

http://www.bioss.ac.uk/staff/yu/tof
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SIFTflow Shape GC ToF GC+ToF

Fig. 3. Disparity results on the ‘Pepper 1’. ToF shows transformed points in colour
image coordinates and the black pixels indicate missing ToF information.

Fig. 4. Quality evaluation for Leaf 1. In every panel, the grey values represent the
disparity (left), Se (middle) and Ps (right) respectively. All four disparity maps use a
common scale shown in Fig. 5. Also the Se and Ps images use a common scale. Left
column: base colour image with depth edges plotted in red. Middle column: results
by SIFTflow (upper) GC (lower). Right column: results by Shape (upper) GC+ToF
(lower).

Table 1. Numerical summary of quality evaluation for Leaf 1, Leaf 2 and Leaf 3. Se

refers to edge sharpness, Ps refers to surface smoothness and S is the quality score.

Leaf 1 Leaf 2 Leaf 3
Se Ps S Se Ps S Se Ps S

SIFTflow 4.55 0.81 3.74 9.35 5.04 4.30 3.56 0.94 2.62
Shape 12.66 4.09 8.56 12.81 8.79 4.02 6.52 1.90 4.61

GC 14.27 1.66 12.61 7.80 3.86 3.94 4.76 0.93 3.83
GC+ToF 20.89 2.76 18.13 20.76 6.20 14.56 7.20 1.65 5.54
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SIFTflow Shape GC GC+ToF

Fig. 5. Results for Leaf 2 and Leaf 3. Upper row: base image and estimates by four
methods for leaf 2. Lower row: base image and estimates by four methods for Leaf 3.
Depth edges are plotted in red.

Table 2. Quantitative summary of quality evaluation for three image examples. Figures
shown here are total quality scores for all leaves in a image,

∑
S.

Pepper 1 Pepper 2 Pepper 3
SIFTflow 10.65 3.21 7.80

Shape 17.19 22.65 9.66
GC 20.37 21.03 10.50

GC+ToF 38.22 31.38 12.21

4 Discussion

This paper shows that dense stereo matching is not a trivial task for the pep-
per plant images collected inside a glasshouse. All three state-of-the-art methods
produced unsatisfactory results, but a simple yet effective geometric approach to
transform coarse-resolution ToF image together with a global graph-cut strategy
can produce smooth results and preserve discontinuity. We have provided both
visual and numerical results to demonstrate this. Fig. 6 presents a surface recon-
struction for Leaf 1 using depth estimates by the proposed method combining
stereo and ToF results, and depths have been recovered for such a complex sur-
face. Although the quality score can quantify the quality of estimation without
pixel-by-pixel depth data as shown in the results section, it only considers the
surface smoothness and the edge sharpness without comparing the depth values.
This was our first attempt on quality quantification that is different to those
in [15,18], and we would like to draw the community’s attentions on evaluation
methods producing quantitative results of depth-discontinuity preservation.

Combining ToF and stereo offers two main advantages. For occlusions and
areas affected by unpredictable illumination, the data term in a global stereo
framework (i.e. D in (4)) produces inaccurate energy costs since corresponding
pixels are either unavailable or difficult to be matched. Using ToF in these situ-
ations provided an estimate and reduced ambiguities. Another advantage is that
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Fig. 6. Surface reconstruction for Leaf 1 using depth estimates by the GC+ToF method
combining stereo and ToF results

dense stereo can be a super resolution technique for ToF images as discussed by
[4,16], and we have presented discontinuity preserving results by combining ToF
and stereo (e.g. Fig. 4). We have not considered environmental effects or mea-
surement uncertainties related to the ToF camera as in [5,9] (e.g. the reflection
issue in a cluttered environment and the influence of intensity on depth), which
are beyond the scope of this paper.

Although we presented the method for one pair of stereo and one ToF images,
it is in principle rather straightforward to apply it to multiple colour images and
one ToF image, or even to multiple colour and ToF images. As Kim et. al. [8]
have shown some promising results on this subject, we hope to build on the
work in this paper for combining multiple colour and ToF images. Problems
faced by stereo methods would be easier given multiple views, and the baseline
would also be increased allowing more accurate depth estimation. We will then
consider how to deal with occlusion and visibility issues within a multiple-view
framework.
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Linköping University, SE-581 83 Linköping, Sweden
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Abstract. Quantitative tissue classification using dual-energy CT has
the potential to improve accuracy in radiation therapy dose planning as
it provides more information about material composition of scanned ob-
jects than the currently used methods based on single-energy CT. One
problem that hinders successful application of both single- and dual-
energy CT is the presence of beam hardening and scatter artifacts in
reconstructed data. Current pre- and post-correction methods used for
image reconstruction often bias CT numbers and thus limit their appli-
cability for quantitative tissue classification.

Here we demonstrate simulation studies with a novel iterative algo-
rithm that decomposes every soft tissue voxel into three base materials:
water, protein and adipose. The results demonstrate that beam harden-
ing artifacts can effectively be removed and accurate estimation of mass
fractions of all base materials can be achieved.

In the future, the algorithm may be developed further to include seg-
mentation of soft and bone tissue and subsequent bone decomposition,
extension from 2-D to 3-D and scatter correction.

Keywords: Iterative reconstruction, Dual energy CT, Tissue classifica-
tion, Tissue composition, Tissue decomposition.

1 Introduction

1.1 Information Attainable from CT Imaging

Computed tomography (CT) measures spatial distribution of the linear attenu-
ation coefficient, μ(x, y, z), [1]. The reconstructed μ-values are affected by quan-
tum noise, scatter, and beam hardening. Scatter and beam hardening lead to
cupping and streak artifacts in reconstructed images. Pre-processing with a water
beam hardening correction algorithm [1] is used in practice. For head imaging,
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post-processing to remove severe streaks and cupping caused by beam harden-
ing in bone is performed. In this case, however, the received μ-values for bone
are inaccurate. It is generally accepted that a more complete suppression of
scatter and beam hardening artifacts can only be achieved by iterative image
reconstruction algorithms.

1.2 Recent Technical Developments in CT Imaging

CT techniques have developed rapidly in recent years. To speed up image acqui-
sition, spiral and multi-slice imaging techniques are used. Helical scanning with
multi-row detectors increases the speed even further and provides reconstructed
volumes, see for example [2].

Dual Energy CT (DECT) with two rotating X-ray tubes was introduced by
Siemens for heart scanning. Later, by using two different tube voltages, it was
used to improve segmentation of anatomical structures with tissue compositions
too close to be discriminated with conventional CT scanners [3].

1.3 Tissue Classification Using Single-Energy CT Scans

In single-energy CT, the historically first tissue classification method was per-
formed by assigning the linear attenuation coefficient values into groups (for
instance bone, soft tissue, etc.) delimited by threshold values. A more elaborate
method currently used in clinical practice was developed by [4]. They assumed
that each tissue was a mixture of two base materials and derived formulas for
the determination of weight fractions of these two materials. The authors sug-
gested that all soft tissues could be expressed as a weighted mixture of three
materials (water, protein and adipose) but their single-energy technique did not
allow tissues to be expressed as a combination of three materials.

1.4 Tissue Classification Using Dual-Energy CT Scans

In [5], it was demonstrated that DECT can be used to determine electron densi-
ties and effective atomic numbers. In [6] it was showed that DECT can be used
to quantify mass fractions of three materials (water, hydroxyapatite and aqueous
iron nitrate). In [7] the method was applied for the determination of (i) iron con-
tent in liver composed of soft tissue, fat, and iron, and (ii) bone-mineral density
in a trabecular bone composed of calcium hydroxyappitite (CaHA), yellow- and
red-marrow. All these applications may help in non-invasive medical diagnostic
methods. None of the DECT applications suggested so far, however, has consid-
ered to use the data about quantitative tissue classification for the suppression
of beam hardening and scatter artifacts. In this respect, our approach is novel.

2 Methods

2.1 Filtered Backprojection Reconstruction in CT

The most common reconstruction method in CT is filtered backprojection. There
exist different variants for parallel and fanbeam projection geometries, see for
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Fig. 1. Parallel computed tomography illustrated

example [1], as well as for helical geometry, see for example [2]. It is also possi-
ble to obtain parallel projections by rebinning fanbeam projections (a resorting
and interpolation process). Here we describe parallel filtered backprojection, see
Fig. 1. The projection generation is performed by the CT scanner and sub-
sequent rebinning. The actual filtered backprojection reconstruction consists of
ramp-filtering and backprojection. The measured attenuation coefficient data is
denoted μ(x, y) and the reconstructed object is denoted μ̂(x, y).

Projection generation is described by

p(r, θ) =

∞∫
−∞

μ(x, y) ds , where
(
x
y

)
=
(

cos θ − sin θ
sin θ cos θ

)(
r
s

)
. (1)

The ramp-filter is applied according to

q(r, θ) = F−1
r

[
Fr[p(r, θ)] · Fr[h(r)]

]
, (2)

where Fr denotes the Fourier transform in the r-direction, F−1
r denotes the

inverse Fourier transform, and

F [h(r)] = H(ρ) =
{ |ρ|, if|ρ| ≤ ρmax ,

0, elsewhere . (3)

Then back-projection is applied, which means smearing of filtered projection
data over the image plane according to

μ̂(x, y) =

π∫
0

q(x cos θ + y sin θ, θ) dθ . (4)

Note that projection and backprojection must be repeated for all angles θ in the
interval 0 ≤ θ < π.
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2.2 Segmentation of Body Tissues

A CT scan of a body part can only contain certain organs and tissues. The
linear attenuation coefficient μ[cm−1] for different tissues can be plotted for two
X-ray tube voltages, 80 and 140kV, in a linear attenuation coefficient (LAC)
diagram, see Fig. 2. In a first step, these tissues are classified using a threshold
classification to for instance lung, soft, and bone tissues, as indicated in the
figure. This might, however, not be sufficient. There is, for example a risk that
bone marrow will be classified as soft tissue. Topologic information may then
be taken under consideration, e.g. a procedure of image segmentation. In the
current work, however, only soft tissues were considered. In the second step,
the soft tissues are classified using the three-material decomposition method as
described in the next section.
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Fig. 2. Threshold classification in the LAC diagram separates lung, soft, and bone
tissues. Attenuation coefficients for selected tissues defined in ICRU44 [8].

2.3 The Three Material Decomposition method

We extended the method by Schneider [4] to dual-energy CT (DECT) as the
three-material decomposition method. It is important to choose a proper set
of base materials. For our case with soft tissue decomposition we chose water,
protein and adipose. Assume that the tissue consists of a mixture of these base
materials with mass fractions w1, w2 and w3, where

w1 + w2 + w3 = 1 . (5)

If the volume of the mixture is the sum of the volumes of individual components,
then the density ρ of the three-material mixture in a volume V [m3] with mass
m [kg] can be written

ρ =
m

V
=

m
m1
ρ1

+ m2
ρ2

+ m3
ρ3

=
1

w1
ρ1

+ w2
ρ2

+ 1−w1−w2
ρ3

. (6)
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The linear attenuation coefficient for the mixture of materials depends on the
volume fractions of the three materials as

μ = w1
ρ

ρ1
μ1 + w2

ρ

ρ2
μ2 + w3

ρ

ρ3
μ3 =

V1

V
μ1 +

V2

V
μ2 +

V3

V
μ3 , (7)

where we have utilized the mixture rule and the fact that
V1

V
=
m1ρ

ρ1m
=
w1ρ

ρ1
, (8)

and similarly for V2 and V3. Using (7) and (5), μ(E1) and μ(E2) for energies E1

and E2 can be written⎧⎨
⎩
μ(E1) = ρ

(
w1

μ1(E1)
ρ1

+ w2
μ2(E1)

ρ2
+ (1 − w1 − w2)

μ3(E1)
ρ3

)
,

μ(E2) = ρ
(
w1

μ1(E2)
ρ1

+ w2
μ2(E2)

ρ2
+ (1 − w1 − w2)

μ3(E2)
ρ3

)
.

(9)

The mass attenuation coefficient is defined as μ/ρ. Using the vector notation
M̄ = (μ(E1)/ρ, μ(E2)/ρ)T for a mixture of interest (and similarly for base ma-
terials M̄1, M̄2, and M̄3), equation (9) can be written

M̄ = w1(M̄1 − M̄3) + w2(M̄2 − M̄3) + M̄3 . (10)

This equation is illustated in Fig. 3.
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Fig. 3. Vector diagram for the three-material decomposition method

Now by combining equations (6) and (9), we get a system of linear equations,(
μ(E1)−μ3(E1)

ρ3
μ(E2)−μ3(E2)

ρ3

)
+ M

(
w1

w2

)
=
(

0
0

)
, (11)

where

M =

[
μ(E1)−μ1(E1)

ρ1
− μ(E1)−μ3(E1)

ρ3

μ(E1)−μ2(E1)
ρ2

− μ(E1)−μ3(E1)
ρ3

μ(E2)−μ1(E2)
ρ1

− μ(E2)−μ3(E2)
ρ3

μ(E2)−μ2(E2)
ρ2

− μ(E2)−μ3(E2)
ρ3

]
. (12)

The solutions to (11) are the weight fractions w1 and w2 of the first two materials.
The third weight fraction w3 is obtained from (5).
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2.4 The Iterative Reconstruction Algorithm

The iterative reconstruction algorithm is illustrated in Fig. 4. As indicated in
the figure, the iterative loop consists of two parts, one for each energy. Fuchs
used a somewhat similar iterative reconstruction algorithm, which was only in
one part, however. It is described and referenced in [9]. Note that the projections
are reconstructed with a full ramp-filtered backprojection.

– Two sets of projections denoted PM,U1 and PM,U2 are measured by the CT
scanner for two different X-ray spectra corresponding to x-ray tube voltages
of U1 and U2. All other data are initialized to 0.

– The measured projections are submitted to the filtered backprojection algo-
rithm which computes the reconstructed images μ1 and μ2 with attenuation
coefficients corresponding approximately to the effective energies E1 and E2

of the X-ray spectra U1 and U2.
– Our tissue classification method described in sections 2.2 and 2.3 (the tissue

in a voxel is a mixture of three basic tissues) gives the classified reconstructed
image μC.

– Then monoenergetic projections PE1 and PE2 at energies E1 and E2, and
polyenergetic projections PU1 and PU2 for spectra U1 and U2 are calculated.

– The polyenergetic projections are then subtracted from the measured pro-
jections, giving a (small) error term. The error term is added to the monoen-
ergetic projections and the result is submitted to the next iteration.

The error term will diminish with each iteration. The final result is the recon-
structed images μ1 and μ2 for energies E1 and E2 and the μC image containing
classified tissue voxels. The μ1, μ2 and μC images will be free from beam hard-
ening distortions.
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Fig. 4. Our iterative reconstruction algorithm. After a certain number of iterations,
the μ1 and μ2 images will contain reconstructions corresponding to energies E1 and E2,
respectively, and the μC image will contain classified tissue voxels. The three images
will be free from beam hardening distortions.
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3 Experiments

3.1 Considerations for the Iterative Reconstruction Algorithm

For simulation of measured X-ray projections the MATLAB/C program take
was used [10]. In the simulation, a fan-beam CT geometry with flat detector,
280 projections per rotations, 256 detector elements, and a fan-beam angle of 13◦

was used. The source-to-isocenter distance was 1m. The fan-beam projections
were rebinned to parallel projections before they were used in the iterative loop.
The energy spectra were produced by x-ray tube voltages of 80kV and 140kV
(the latter voltage was used in combination with an additional Sn filter) provided
by Siemens under a non-disclosure agreement. Their principal appearances are
shown in Fig. 5. The calculation of projections on the classified reconstructed
image was performed using the method in [11].

number of photons, E( )

E [keV]80 140

photon energy,

N

Fig. 5. The principal appearances of two spectra, a 80kV and a 140kV with Sn filter

3.2 The Mathematical Phantom

A mathematical phantom was used in the experiment. It consisted of a large
circular water disc R0 of diameter 40cm, with five small circular regions R1 to
R5 of size 5cm, numbered from top-to-bottom and from left-to-right, see Fig. 6.
The regions were composed of three base materials: water, protein and adipose
and their mixtures with known mass fractions as given in Table 1.

Table 1. Base materials mass fractions in different regions of the phantom

R0 R1 R2 R3 R4 R5

100% Water 100% Protein 25% Protein 40% Protein 75% Protein 100% Adipose
75% Adipose 30% Adipose 25% Adipose

30% Water

3.3 Linear Attenuation Coefficients and Effective Energies

To generate projections through the mathematical phantom, the X-ray attenu-
ation values of each material were calculated by using linear attenuation coeffi-
cients μ(E) = ρ[σCo(E)+σIn(E)+σPh(E)], where ρ[g/cm3] is the density of the
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material and σ[cm2/g] is the mass attenuation coefficient of the coherent scat-
tering (Rayleigh scattering), incoherent scattering (Compton scattering) and the
photoelectric effect, respectively, see e.g. [10]. The mass attenuation coefficients
for water, protein and adipose were obtained from [12]. The effective attenuation
coefficient μmE [m−1] for water was calculated as energy-fluence weighted linear
attenuation coefficient for water,

μmE = (
∫ Emax

0

E N(E) μ(E) dE)/(
∫ Emax

0

E N(E) dE) . (13)

Then, using the μ(E)-curve for water, the energy value corresponding to μmE

for water, was taken as the effective energy Eeff . Then the effective attenuation
coefficients for adipose and protein were taken as μ(Eeff ) in the attenuation
curves for adipose and protein, respectively, see Table 2.

Table 2. Effective energies and linear attenuation coefficients for the two spectra

X-ray Effective μmE [1/m] μmE [1/m] μmE [1/m]
spectrum energies, Eeff [keV] for Water for Protein for Adipose

80 kV 49.9 22.69 28.15 20.79
140 kV + Sn 88.5 17.73 22.70 16.93

Table 3. Quantitative evaluation of weight fractions measured in %

True values After 0 iter. After 7 iter.
Region Water Protein Adipose Water Protein Adipose Water Protein Adipose

R0 100 0 0 -6.7 11.2 94.0 97.3 0.4 2.5
R1 0 100 0 -58.8 104.1 56.3 -1.4 100.0 1.5
R2 0 25 75 -45.5 27.8 119.2 1.6 25.0 73.5
R3 30 40 30 -64.9 46.4 118.0 31.9 39.9 28.2
R4 0 75 25 -54.4 78.9 77.9 1.7 74.9 23.4
R5 0 0 100 -41.3 2.9 139.1 -2.4 0.5 101.7

3.4 Results

The reconstruction results for the 0th iteration (i.e. plain reconstruction without
iterations) and the 7th iteration are given in Fig. 6. For comparison, the plain
reconstructions from monoenergetic effective energies, 49,9kV and 88.5kV, are
also shown in the figure. Note that the results after 0 iterations are affected by
beam hardening artifacts, whereas the results after 7 iterations are very similar
to the monoenergetic reconstructions. The material decomposition results for the
0th iteration and the 7th iteration are given in Fig. 7 and Table 3 show mean
values measured in a surrounding of each region. Note that the weight fractions
are unaccepable after 0 iterations and sufficiently accurate after 7 iterations.
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80kV spectrum, 0 iter

 

 
80kV spectrum, 7 iter
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140kV+Sn spectrum, 0 iter

 

 
140kV+Sn spectrum, 7 iter

 

 
88.5keV mono

 

 

16 18 20 22 16 18 20 22 16 18 20 22

Fig. 6. Reconstruction results after 0 (left) and 7 (middle) iterations corresponding
to 80kV (up) and 140kV+Sn (down) spectrum. Right: Reconstruction results for mo-
noenergetic effective energies, 49,9kV (up) and 88.5kV (down).
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Fig. 7. Weight fractions for water, protein, adipose after 0 (up) and 7 (down) iterations
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4 Conclusions and Future Work

We have presented a novel iterative reconstruction algorithm for dual-energy
CT that performs tissue decomposition and effectively removes beam harden-
ing artifacts. The algorithm was evaluated using computer simulations with a
cylindrical water phantom containing rod inserts consisting of mixtures of water,
protein, and adipose tissue. The simulations demonstrated that the proposed it-
erative algorithm was able to accurately reconstruct mass fraction values of all
base materials in the mixture.

In the near future we will improve our implementation with the aim to reduce
the number of needed iterations (7 at the moment). Future plans also involves
including other types of tissue, such as bone, applications on real measured
CT data, and extension from 2-D images to 3-D data sets. Also, scatter and
statistical noise will be considered and compensated for.
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Abstract. Designing a system for computer aided diagnosis is a com-
plex procedure requiring an understanding of the biology of the disease,
insight into hospital workflow and awareness of available technical solu-
tions. This paper aims to show that a valuable system can be designed
for diagnosing kidney lesions in children and adolescents from 99mTc-
DMSA scintigraphy images. We present the chain of analysis and provide
a discussion of its performance. On a per-lesion basis, the classification
reached an ROC-curve area of 0.96 (sensitivity/specificity e.g. 97%/85%)
measured using an independent test group consisting of 56 patients with
730 candidate lesions. We conclude that the presented system for diag-
nostic support has the potential of increasing the quality of care regarding
this type of examination.

Keywords: Computer Aided Diagnosis, Nuclear Imaging, Active Shape
Models, Artificial Neural Networks.

1 Introduction

Proper medical treatment begins with a correct diagnosis. Medical imaging sys-
tems provide a wealth of information which provide possibilities as well as chal-
lenges for the interpreting physician. The processing of this information is a
complex procedure, where collective knowledge in the field, familiarity with the
specific examination procedure and technical equipment, patient history, and
common sense come together in the formation of a diagnosis. Creating a fully
automated system for processing information of this diversity is difficult; however
there are situations where a computerized system can provide valuable diagnos-
tic support. Computers excel at keeping track of large amounts of data and at
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performing time-consuming and tedious tasks quickly. The combination of a hu-
man interpreter and a computerized system can therefore improve diagnostic
accuracy [1]. The main contribution of such a system is to improve sensitivity,
i.e. avoiding oversight. This paper presents a fully automated system for detect-
ing and diagnosing kidney lesions from 2D scintigraphy images. There are two
main contributions of this system. First, it eliminates time-consuming manual
procedures in currently used systems such as the delineation of the kidneys. Sec-
ond, it provides objective diagnostic support on a per-lesion basis to physicians
with limited experience with this type of examination.

1.1 Clinical Background

One of the most common bacterial infections among children is urinary tract in-
fection, caused by bacterial growth. This condition may develop into pyelonephri-
tis1 which, left untreated, may cause scars in the parenchyma of the kidneys (cf.
Figure 1(a) for anatomical terms). Among the possible consequences of such le-
sions are future renal hypertension (high blood pressure) and renal failure [2].
Children with recurring infections are investigated for possible kidney lesions us-
ing an imaging method where a harmless agent known as dimercaptosuccinic acid
(DMSA) is injected into the blood. DMSA accumulates in the kidneys and the
local accumulation is proportional to the density of functional kidney cells [3,4].
Low accumulation is therefore indicative of locally reduced kidney function. To
make it possible to image the amount of accumulation, DMSA is combined with a
radioactive molecule, 99mTc, a weak gamma radiation emitter. A planar gamma
detector is used to measure the amount of radiation emitted from the kidneys,
thus forming an image of the renal function. The distribution of 99mTc-DMSA
in the kidneys are normally homogeneous. When a patient has had repeated uri-
nary tract infections with lowered kidney function as a result, this can be seen
as wedge-shaped areas of locally reduced intensity in the scintigraphy image [4],
cf. Figure 1(b).

1.2 Related Work

A segmentation method, specific to renal scintigraphy, is proposed in [5]. An au-
tomatic thresholding algorithm is used to segment each kidney. To avoid under-
segmentation, pixels in an area around the initial boundary are classified as
kidney pixels or background. This method does, however, not consider the fact
that diseased kidneys may show lower uptake in wedge-shaped areas around its
boundary. The paper also proposes a system for diagnosing the entire kidney
as normal or abnormal based on a boundary curvature measure. The sensitivity
and specificity of this method was 88% and 96 % respectively.

A commercial 99mTc-DMSA analysis program is available from Hermes Med-
ical Solutions [6]. This software presents various kidney-specific measurements
and presents a statistical map of uptake deviations.
1 Inflammation in the renal pelvis.
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(a) A schematic image of the basic
anatomy of the kidney.

(b) A renal scintigraphy image where
lesions are present in the upper and
lower part of the left kidney, and the
right kidney is normal. The image
size is 128 × 128 pixels and the side
of a pixel is 2.26 mm.

Fig. 1.

2 Methods

An overview of our system can be seen in Figure 2 and the different steps are
explained in more detail below.

Fig. 2. An overview of the system components, from input image to a lesion-based
classification

2.1 Kidney Segmentation

To segment and classify lesions we require some knowledge of relevant kidney
anatomy; for instance we wish to build a map of normal 99mTc-DMSA uptake
and to measure the size of a lesion relative to the entire kidney. As is evident
from Figure 1(b), delineating the outer borders of the kidneys is a relatively easy
task, the kidneys are mostly of high intensity while the background is consid-
erably darker. However, lesions commonly distribute along the border, creating
wedge-like regions of low intensity. To recover a plausible kidney border in such
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areas, strong prior information on the kidney shape must be incorporated. We
believe that Active Shape Models (ASMs) [7] are a suitable approach for this
purpose. An ASM models the distribution of landmarks along the boundary of
a structure as a multivariate Gaussian distribution by means of a principal com-
ponent analysis on the concatenated x- and y-coordinates of all shapes. Tuning
the parameters of this model to fit an object in a given image is carried out in an
alternating fashion. First, each landmark of the model is moved to a position in
its vicinity which most likely represents the object border. Then, the landmark
configuration is relaxed using information from the statistical landmark model
to ensure that the resulting shape is anatomically plausible.

To create the statistical model of kidney anatomy, a training set of 40 kidneys
were annotated with 14 landmarks along the boundary. The model is of a right
kidney; left kidneys were mirrored to be incorporated in the model. By mirroring
the model, we obtain a segmentation tool which can be used on both kidneys
under the assumption of no consistent difference between left and right kidneys
[5]. The resulting shape model uses 10 principal axes which captures 95 % of the
training set variation.

Successful delineation of a kidney using the ASM scheme requires an initial
estimate of the segmentation which is reasonably close to the actual structure.
A bounding box containing the kidney to segment is easily obtained from the
marginal image histograms. The position, size and rotation of this kidney is
then estimated by computing the centroid and principal axes for the coordinates
corresponding to pixels above a foreground intensity threshold. Using this infor-
mation, the mean shape is translated such that its centroid coincides with the
estimated kidney centroid. The shape is then rotated according to the principal
axes. Finally, the shape is scaled in the directions of the principal axes according
to the variance explained along each axis. Results of this initialization can be
seen in the upper row of Figure 3.

The ASM search for an improved fit from the initial segmentation guess is
based on image edge information. Applying an edge detection algorithm on the
raw image data is unwise; scintigraphy images exhibit uneven intensities due to
the underlying Poisson process of nuclear decay. Neighboring pixels representing
the same tissue type may display vastly different intensity levels just by chance.
To reduce this effect while preserving more global edge structures we apply
a bilateral image filter [8]. Bilateral filters are similar to standard Gaussian
blurring with the modification that the Gaussian bell is weighted in each position
by the photometric distance between the central pixel and its neighbors. This
has the effect of smoothing homogenous regions while preserving structure. As a
final preparatory image modification, we encourage the ASM to disregard edges
enclosed in bright areas to some extent by taking the square root of all intensity
values, thus focusing more on the background/foreground edges of interest.

When moving a landmark to a new position, we search among 30 samples
along profiles perpendicular to the shape as suggested in [7]. From these can-
didate positions, we select the one which maximizes the difference between the
mean of inside samples and the mean of outside samples. An advantage of this



An Automated System for the Detection and Diagnosis of Kidney Lesions 493

Fig. 3. Example of segmentations with the initialization in the upper row and the final
segmentation in the lower row. In the fourth example from the left it can be seen that
the segmentation algorithm recovers the low-intensity upper and lower kidney poles.

formulation is that it considers edges with background on the outside and fore-
ground on the inside of the shape model, rather than any image edges. The
algorithm is run until the landmark difference between iterations is sufficiently
low. The second row of Figure 3 shows examples of resulting segmentations.

2.2 Boundary Representation

As stated above, the kidney shape model consists of 14 landmarks placed along
the kidney image boundary. This results in a rather course representation of
the outline. However, a larger number of landmarks is difficult to achieve since
the kidney exhibits few distinctive anatomical points of reference as projected
in 99mTc-DMSA images. Instead, we rely on a suitable interpolation technique
to connect the landmarks accurately. The boundary is represented by a simple
closed curve, making the use of Fourier descriptors [9] suitable. This boundary
representation uses a combination of the discrete Fourier transform and Fourier
series to calculate the Fourier coefficients ck and to recover a continuous bound-
ary curve representation f(t) respectively,

ck =
1
n

n−1∑
j=0

e−2πijk/nfj, f(t) =
n/2∑

k=−n/2

cke
ikt.

Here n = 14 is the number of landmarks, fj = xj + iyj, j = 0 . . . n−1 represents
the set of input landmarks, and i is the complex unit. The complex boundary
function f(t), here sampled at 200 points, is a sum of harmonics of differing phase
and frequency which leads to a globally smooth boundary suitable for describing
the kidney boundary. Further, there exists convenient analytical expressions for
the area and the centroid of the resulting shape [9]. The outlines in Figure 3 are
interpolated using this technique; note how it better handles the curvedness of
the outline than line segments would.
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2.3 Background Removal

The background radiation present in the 99mTc-DMSA kidney images is due
to partial uptake in the blood and other organs. This also occurs behind and
in front of the kidneys, as viewed from the gamma detector. This effect can
be substantial and must be taken into account for accurate estimation of the
kidney-specific 99mTc-DMSA uptake. Our approach is to create a smooth surface
representing how the background radiation varies over the kidney, based on
background samples outside, but close to, the kidney. We then subtract the
intensities implied by this surface from the kidney area and a result of this can
be seen in the top row of Figure 5.

To represent a smoothly varying surface without sudden kinks or excessive
bending, we use a smoothing thin-plate spline [10]. To obtain a smooth estimate
of the background uptake, and avoid fitting the surface to noise, we choose to
regularize the thin-plate spline rather than smoothing the image background
samples. The resulting surface solves

argmin
f

n∑
i=1

(zi − f(xi, yi))2 + λ

∫∫ [(
∂2f

∂x2

)2

+ 2
(
∂2f

∂x∂y

)2

+
(
∂2f

∂y2

)2
]

dxdy,

where {z} is the set of background samples outside the kidney, {x, y} is the set of
image coordinates of these samples, f(x, y) is the thin-plate spline approximant
and λ ∈ [0,∞) determines the stiffness of the plate. There exists a closed-form
solution for solving this problem via a linear system of equations [10].

2.4 Candidate Lesion Segmentation

The most distinctive image feature of kidney lesions is reduced uptake of 99mTc-
DMSA. We therefore base our lesion segmentation approach on a pixel-wise
statistical map of uptake in healthy kidneys and classify areas of a kidney as
candidate lesions which exhibit significantly lowered uptake, measured on the
5% level. In order to create a map of normal uptake, we created a database of
normal kidneys; six patients where both kidneys are considered normal, eleven
patients with normal left kidneys, and 17 patients with normal right kidneys —
a total of 40 samples. Since kidneys have different shapes and sizes they must be
transformed to a common frame of reference where we obtain an approximate
pixel-wise anatomical correspondence. We use thin-plate spline interpolation of
the 14 corresponding outline landmarks to this end where each warp is repre-
sented by a pair of thin-plate splines taking care of landmark deflections in the
x and y directions respectively.

Besides this spatial normalization the images also require photometric normal-
ization by an unknown multiplicative factor. This is a general challenge in many
investigations in nuclear medicine as absolute uptake depends on many unknown
biological and technical parameters. Our normalization approach matches image
A to image B by multiplying A by a factor such that the median of regions of
A with high intensities (almost certainly healthy) matches the median of the
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Fig. 4. The middle image shows the mean uptake of 99mTc-DMSA and the two outer
images shows the uptake at the borders of the confidence interval

corresponding regions in B. In the normal database, all samples are normalized
with respect to an arbitrarily chosen normal sample.

Empirical experience shows that a normal distribution is sufficiently accurate
to describe the distribution of intensities. The parameters of these pixel-wise
distributions are estimated by computing the mean and standard deviation of
all normalized normal samples. Figure 4 shows the mean uptake and its 95%
confidence interval. The middle row of Figure 5 shows the resulting statistical
maps of z-values where tones of yellow towards red indicate regions lower than
-2 standard deviations (-2z).

Fig. 5. Top row shows the resulting intensities when the background radiation has
been subtracted. In the middle row a statistical maps of z-values for the selection of
samples can be seen. Yellow towards red indicate areas lower than -2z. Bottom row
shows example of classification with LDA, the red areas are classified as scars and the
blue ones are classified as healthy.
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2.5 Classification

The essence of a system for computer aided diagnosis (CAD) is a classification
into normal or abnormal, or gradings thereof, either on a per-lesion basis or
regarding the patient as a whole. Here, we classify each lesion as either normal
(blue) or abnormal (red). Typically, such systems are tuned such that very few
actual lesions are classified as normal (high sensitivity). This gives the interpret-
ing physician the possibility to focus on lesion candidates classified as abnormal,
thus streamlining the work and reducing the risk of oversight.

We conducted experiments with three classifiers, two relatively simple baseline
classifiers and one state-of-the-art approach. For baseline experiments, we used
linear and quadratic discriminant analysis (LDA, QDA), and the more advanced
approach is represented by an artificial neural network (ANN). A set of features
is calculated from each potential lesion in order to perform the classification.
These relate both to the lesion shape and texture, as well as to the kidney and
patient as a whole. The following set of features were used here:

Lesion edge closeness. This feature measures the distance from the lesion to
the kidney edge. For each pixel position along the contour of the lesion, the
distance to the closest point on the continuous kidney perimeter is found
using numerical optimization. The smallest such distance, measured in mil-
limeters, is returned.

Lesion major and minor axis length. Length in millimeters of the principal
axes of the ellipse with the same second moments as the lesion.

Relative lesion area. The area of the lesion divided by the kidney area.
Lesion sum of z-scores. The sum of the z-values within a lesion. The z-values

are obtained by subtracting the lesion normal database mean image and
dividing by the database standard deviation image, making each lesion pixel
N (0, 1)-distributed.

Lesion relative sum of z-scores. The sum of lesion z-values divided by the
area of the lesion. Measured in z-scores per square millimeter.

Lesion localization. These two features measure the position of the lesion
centroid relative to its bounding box in the x- and y-directions. Since the
scars are often located at the lateral wall of the kidney this measure can be an
important addition to lesion edge closeness. Measures range from 0 to 1 with
1 corresponding to the most lateral/caudal positions and 0 corresponding to
the most medial/cranial positions.

Lesion eccentricity. This feature measures the elongation of the lesion as the
eccentricity of the ellipse with the same second moments as the lesion. Values
range from 0 to 1, where 0 represents a circle and 1 represents a line segment.

Lesion rate of extreme database deviation. This feature measures the pro-
portion of the lesion which falls under 4 standard deviations when compared
to the normal database.

Kidney separate function. This important measure quantifies the functional
relation between the two kidneys of a patient. With equally functioning kid-
neys, this measure is at 50%. Lower numbers indicate loss of kidney function.
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Kidney length. This feature is of importance since partially damaged kidneys
are likely to suffer from impaired growth. Measured in millimeters.

Kidney area. Another way of measuring kidney growth. Measured in square
millimeters.

Patient age. Age can be an important factor to control for as kidneys develop
much during childhood.

To train the classifiers we created a training set consisting of 36 patients with a
total of 483 candidate lesions. These lesions were classified as normal or abnormal
by a leading specialist on interpreting 99mTc-DMSA renal scintigraphy images.
The prevalence of lesions was 12%. Separate from this training set, we created
a test set from 56 patients with a total of 730 candidate lesions. The prevalence
in the test set was 8%.

Under the assumption that the vector of features for a patient follows a multi-
dimensional Gaussian distribution, LDA and QDA provide optimal classification
in terms of minimizing error rate [11]. Further, LDA assumes that normal and
abnormal candidate features share the same covariance matrix while QDA allow
for different such matrices. LDA and QDA assign a candidate lesion to the class
k that maximizes

δk = xT Σ−1μk − 1
2
μT

k Σ−1μk + log πk, and (1)

δk = −1
2

log |Σk| − 1
2
(x− μk)T Σ−1

k (x− μk) + log πk (2)

respectively, where k ∈ {normal, abnormal}, x represents the input feature vector
to test for, Σ represents a covariance matrix, μk is the mean feature vector for
class k, and πk is the prior probability for class k.

The ANN classification model was implemented as an ensemble of multi-
layer perceptrons (MLP), where each MLP consisted of one hidden layer (7
nodes). Training was carried out by minimizing a cross-entropy error with an
additional weight elimination term [12] to allow for a possible regularization of
the ensemble. Four-fold cross validation was used during the model selection
phase and the final ensemble model used on the test set was created using 3-
fold cross splitting, repeated 10 times, resulting in an ensemble of size 30. The
average output of the MLPs was used as the ensemble prediction.

Examples of lesions classified by LDA can be seen in the bottom row of
Figure 5.

3 Results

The segmentation works well both on kidneys with normal 99mTc-DMSA uptake
and on kidneys with lower uptake, cf. Figure 3. The shape model also makes sure
that the shape of a kidney is maintained. The segmentation has been evaluated
on 40 kidneys and the rate of acceptable segmentations is around 95 %. Most of
the unacceptable segmentations have minor errors; most common is an unsatis-
fying segmentation of the upper and lower pole of the kidney.
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Table 1. Classification results as measured on the test set of 730 candidate lesions

LDA QDA ANN

Area under ROC curve (AUC) 0.964 0.935 0.960
Sensitivity (%) 96.5 96.5 96.5
Specificity (%) 84.8 61.2 83.4
Positive Predictive value (%) 35.0 17.4 32.9
Negative Predictive value (%) 99.7 99.5 99.6
Mis-classification rate (%) 14.2 36.0 15.6

The lesion segmentation algorithm based on the database of normal uptake
detected 100% of diagnosed lesions in the training and test data sets. We did
not have the opportunity to assess the accuracy of candidate lesion geometry.

The classification was validated on a test set of 730 possible lesions and the
performance of the different classifiers can be seen in Table 1. We fixed the
sensitivity at a high value, here 96.5%, since this lessens the risk of classifying
an actual lesion as normal while maintaining reasonable specificity. LDA and
ANN show similar performance with high specificity and negative predictive
value. QDA has notably lower specificity and positive predictive value as well as
a larger misclassification rate. Receiver Operating Characteristic (ROC) curves
for each classifier can be seen in Figure 6.

The program has been developed using Matlab. The computation time for
the analysis of one patient ranged from 5-9 seconds when running on a 2.2 GHz
Windows PC with 1.5 Mb of RAM.

Fig. 6. ROC curves for LDA (blue), QDA (red), and ANN (green). LDA and ANN
perform similarly while QDA does slightly worse.
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4 Discussion

We have shown that an accurate system for the diagnosis of kidney lesions can
be created. Similar systems have previously been shown to increase diagnostic
accuracy in practice, particularly by increasing sensitivity [1]. This means that
physicians are less likely to miss non-conspicuous lesions. In contrary to many
presently used systems, our approach is fully automatic and quick. This has the
potential of increasing care effectiveness and relieving the interpretation from
some of its inherent subjectiveness.

In our classification experiments, linear discriminant analysis performed at
least as good as the more flexible alternatives. Cross-validation results for the
artificial neural network approach was significantly better than those of LDA
and QDA, but performance dropped when measured on the independent test
set. LDA did not suffer from this effect. This is most likely due to the rigid
nature of LDA, rather than that the assumptions of LDA are fulfilled by the
data [11]. It also seems as if the classification problem is rather linear in nature,
in fact, one can obtain a reasonably good system (95% AUC) using relative lesion
area as a single feature. Fair comparisons with CAD systems for other diagnoses
are difficult, but it is interesting to note that positive predictive values of typical
mammography systems are 2-3% [13]. Here, we reach 35%.

The lesion detection system detected 730 lesions in the test material — 8% of
these represented actual lesions. This stresses the importance of offering classi-
fication of detected findings. The work involved in classifying 730 findings from
scratch is far greater than reviewing around 60 candidates classified as abnormal
paired with a quick review of remaining lesions.

In this paper, we have used data from a single hospital. In future work we
will evaluate the method on material from more centers and a bigger variety of
cameras. Further, we wish to develop the user interface to better fit typical hos-
pital workflow, including integration with image storage and retrieval systems,
and to provide a system for (semi-)automatic reporting. One may also consider
providing a diagnosis for the patient as a whole, based on the diagnoses of the
individual lesions, in order to quantify the risk of future renal malfunction.
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Abstract. This paper presents a method for automatically segmenting
abdominal adipose tissue from 3-dimensional magnetic resonance im-
ages. We distinguish between three types of adipose tissue; visceral, deep
subcutaneous and superficial subcutaneous. Images are pre-processed to
remove the bias field effect of intensity in-homogeneities. This effect is
estimated by a thin plate spline extended to fit two classes of automat-
ically sampled intensity points in 3D. Adipose tissue pixels are labelled
with fuzzy c-means clustering and locally determined thresholds. The
visceral and subcutaneous adipose tissue are separated using deformable
models, incorporating information from the clustering. The subcutaneous
adipose tissue is subdivided into a deep and superficial part by means
of dynamic programming applied to a spatial transformation of the im-
age data. Regression analysis shows good correspondences between our
results and total abdominal adipose tissue percentages assessed by dual-
emission X-ray absorptiometry (R2 = 0.86).

Keywords: Image processing, MRI, Abdominal adipose tissue, Bias
field correction, Tissue classification.

1 Introduction

It has been estimated that 171 million people worldwide had diabetes in the year
2000 and that this would increase to 366 million by 2030 [19]. If untreated, dia-
betes can cause complications such as blindness, amputation and kidney failure.
This stresses the importance of methods for screening and early detection.

A measure related to type 2 diabetes is insulin resistance (IR). The gold
standard for measuring IR is the hyperinsulinemic euglycemic clamp. However,
this method is invasive, expensive and labour intensive – therefore impractical
for clinical practice.

Abdominal obesity has a well established association with increased risk of IR
and type 2 diabetes. In the assessment of abdominal adipose tissue (AT), it is
relevant to distinguish between subcutaneous (SAT) and visceral (VAT), since
a strong association between the quantity of VAT and IR is well proven [1].
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c© Springer-Verlag Berlin Heidelberg 2011



502 T.H. Mosbech et al.

Various methods exist for assessing body fat, such as body mass index (BMI),
waist size related measures (WS), skin fold callipers, dual-emission X-ray absorp-
tiometry (DXA), X-ray computed tomography (CT) and magnetic resonance
imaging (MRI). BMI, WS and callipers only offer crude general approximations,
and they (along with DXA) are unable to distinguish between different types
of AT, although correlation has been reported [15]. CT can give very detailed
information of both quantity and spatial distribution by means of the Hounsfield
scale, but the acquisition entails a radiation hazard to the subject. On the other
hand, MRI is attractive, as it is a safe modality, also providing visualisations
suitable for accurate identification of different AT types.

However, in MRI there is no direct correspondence between intensities and
tissue type, and MRI often suffers from problems related to image quality and
artefacts. This can call for cumbersome manual or semi-automatic segmentation
performed by trained experts. A robust automated assessment from MRI would
therefore be highly beneficial in clinics.

A common artefact in MRI is the hardware related bias field ; a non-anatomic
variability within same-tissue intensity values over the image domain. The in-
homogeneity is spatially smooth, with a reported level of variation reaching up
to 20% [18].

One way of correcting the effect is by means of extra images of a uniform phan-
tom acquired in connection with each scan session [11]. However, this increases
the total scanning time and cost. Instead, we present a method for estimating
the effect and correcting the images retrospectively based solely on the MRI of
the subject.

Methods from unsupervised learning have successfully been applied for la-
belling AT by intensity thresholding in MRI. [7] demonstrated the suitability of
fuzzy c-means clustering (FCM) for this purpose.

For partitioning the abdomen into the regions containing SAT and VAT, [12]
used dynamic programming (DP) coupled with an active shape model, trained
on a set of manual segmentations. In [2] a region growing algorithm was used to
isolate the VAT. For the same task, a deformable model based on concepts of
active contours was applied by [17]. Leinhard et al. [16] used atlas-based segmen-
tation, registering a manually segmented prototype to each target image. In our
work we combine FCM, DP and active contours in an automatic segmentation
method requiring no training data.

It has been suggested to subdivide SAT into superficial SAT (sSAT) and deep
SAT (dSAT), anatomically partitioned by Scarpa’s fascia (SF) – a thin layer
of connective tissue in the abdominal wall. In [14] both dSAT and VAT were
found to be strongly associated to IR, whereas sSAT only had a weak relation.
Differing from previous methods, we adopt this strategy for our segmentation
algorithm, and automatically assess three different types of AT.

2 Data

The participants in the study were 40 young healthy twins; 23 men and 17
women, age 18 to 21 years, characterised as ranging from very lean to slightly
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obese with BMI between 14.7 and 21.0. Multi-slice T1 weighted MRI was ac-
quired with a 3T Philips Achieva whole body scanner. For each subject, between
15 and 26 slices were used to cover the abdominal region bounded by L1 and
L4. Slices with resolution 512 × 512 pixels, size 0.8984 × 0.8984 mm2, thickness
7 mm and gap 1 mm. For the same region, the total fat percentage was also
assessed with DXA.

3 Methodology

Our method consists of three parts; a preprocessing step to remove the spatial
inhomogeneity of the bias field, a pixel-wise classification identifying AT, and a
separation of regions to distinguish between the three types of AT.

3.1 Bias Field Correction

A commonly used model for the bias field effect on a voxel with acquired intensity
yobserved is the multiplicative link [10]

yobserved = ytrue · ybias ⇔ (1)
log(ytrue) = log(yobserved) − log(ybias), (2)

where ytrue is the true intensity, and ybias is the bias field effect. With this
formulation we can remove the field from an acquired image by subtraction – if
the effect is known.

Our method exploits the slow spatial variation and estimates the bias field ef-
fect by a smooth function in three dimensions, with parameters obtained through
regression.

The regression is based on a set of spatially dense reference voxel points with
intensities holding information about the bias field effect. [12] proposed a method
based on automatically sampled points corresponding to adipose tissue and the
assumption, that these intensities would be similar across the entire image – if
not corrupted by the bias field.

However, given the lean nature of the subjects in this study, this method
results in too few points, especially from VAT. In order to cover the entire
abdomen, we extend the method by regarding two classes of reference points;
AT and tissue of high water content.

For each slice, points are sampled automatically across the abdomen as local
intensity minima (high water content) and maxima (AT). Under the assumption
of a spatially smooth effect, we use 12 × 9 rectangles overlapping 10 pixels to
subdivide the abdomen. For each rectangle we trim the two point sets to only
contain points with intensities within 15% of each rectangle-minimum and max-
imum, respectively. To avoid clusters of points, the points are spatially trimmed
by 10 × 10 non-overlapping rectangles, only keeping the single points in each
rectangle with highest and lowest intensity.



504 T.H. Mosbech et al.

Different values around the chosen, were tested for both the number of rect-
angles and the percentage thresholds. It was found that they yielded more or
less the same sets of points.

After the trimming, the sampled points are gathered from all slices to form a
three dimensional point set; N observations s ∈ R3, with coordinates [s1 s2 s3]T ,
log-transformed intensity y and a class-indicator c

c(s) =

{
0 for s high water content
1 for s adipose tissue

(3)

Supported by the assumption of smooth variation, we use a thin plate spline
(TPS) [6] to model the bias field. Estimating this smoothing TPS is formulated
as the minimisation a penalised sum of squared differences S subject to the
function f

S(f) =
N∑
i

{yi − f(si)}2 + αJ(f), (4)

where J(f) is the curvature. The parameter α controls the amount of smoothness
enforced, our selection of a proper value is described later.

For fitting the two classes of observations, we extend the standard formulation
of f presented in [8] and [9]

f(s) = β0 + βT
1 s + γc(s) +

n∑
j

δjhj(s). (5)

This way, γ is a constant difference between intensities of the two classes.
The basis-functions hj(s) are defined by means of cubed distances from the

observation points to n knots t with coordinates [t1 t2 t3]T , located on a regular
grid covered by the points.

hj(si) = ‖si − tj‖3. (6)

We formulate (4) as a set of linear equations. The knots and data points are
gathered in two coordinate matrices

Tk =
[

1 · · · 1
t1 · · · tn

]
[4×n]

, Td =
[

1 · · · 1
s1 · · · sN

]
[4×N ]

(7)

The corresponding data values and class-indicators are gathered in two N × 1
vectors Y and C.

Matrices forming the basis functions of f in (5) are arranged as Ek and Ed,
with elements computed as

{Ek}ij = hj(ti), with i, j = 1, · · · , n (8)

{Ed}ij = hj(si), with i = 1, · · · , N and j = 1, · · · , n (9)
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Equation (5) can then be written in matrix form

F = Edδ + TT
d β + Cγ =

[
Ed TT

d C
]⎡⎣δβ
γ

⎤
⎦ (10)

where the vector F consists of N elements {F}i = f(si), and β = [β0β1][4×1].
Gathering the coefficients δj in a n × 1 vector δ, we can write the curvature

function J(f) as
J(f) = δTEkδ. (11)

We add a set of linear constraints on the basis function coefficients δj
n∑

j=1

δj =
n∑

j=1

δjtj1 =
n∑

j=1

δjtj2 =
n∑

j=1

δjtj3 = 0. (12)

They can be incorporated in the linear system of equations as Tkδ = 0 and a
4 × 1 Lagrange multiplier vector λ.

With this setup (4) can be written as:

S(f) =
[
Y − Edδ − TT

d β − Cγ
]T [

Y − Edδ − TT
d β − Cγ

]
+αδEkδ + λTTkδ. (13)

We estimate the TPS as the least squares solution to the system of equations,
composed by ∂S

∂δ = ∂S
∂β = ∂S

∂γ = ∂S
∂λ = 0,⎡

⎢⎢⎣
ET

d Ed + αEk ET
d TT

d ET
d CT TT

k

TdEd TdTT
d TdCT 0

CEd CTT
d CCT 0

Tk 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
δ
β
γ
λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
ET

d YT

TdYT

CYT

0

⎤
⎥⎥⎦ (14)

From parameter estimates δ̂ and β̂, the effect f̂ can be computed for voxel
positions x gathered in a matrix Tx. With a basis function matrix Ex set up as
in (9), a vector of the estimated effect Ŷx with elements {Ŷx}i = f̂(xi) is

Ŷx =
[
Ex TT

x

] [ δ̂
β̂

]
(15)

The effect of a given α to control the rigidity of the TPS varies when fitting to
different observation sets. In order to get a consistent estimate across subjects,
we adapt a measure of effective degrees of freedom, dfα [9]. With this, specifying
dfα = 5 leads to the least squares fitting hyperplane, while dfα = n leads to an
interpolating fit.

For the TPS estimation a regular grid of 11 × 7 × 5 knots is used. We find,
that a value of dfα = 80 provides a good overall trade off; fitting the intensity
variation caused by the bias field while remaining robust towards noise. While
increasing the value to dfα = 120 does not seem to improve the fit, a choice
of dfα = 50 yields a too rigid hypersurface. Figure 1 illustrates the bias field
correction.
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Fig. 1. Bias field correction. Left; the original image. Middle; the two classes of sampled
points (black and white are intensity maxima and minima, respectively). Right; the
corrected image.

3.2 Identifying Adipose Tissue

We label the volume in an unsupervised manner using FCM with random seeds
[5], automatically distinguishing between voxels of the two classes by intensity
based thresholding.

For a voxel j the FCM algorithm yields membership values 0 ≤ ujk ≤ 1,
with k = 1, 2 and uj1 + uj2 = 1, reflecting the degrees of membership to the
two clusters. These membership values form a reference between intensity and
tissue type comparable between subjects. This way overall determined thresholds
on the membership values can adapt to the intensity characteristics in each
individual subject. A threshold of ε = 0.5, corresponds to labelling as the most
likely tissue type.

3.3 Identifying Regions

We automatically divide the abdomen into the anatomically defined regions con-
taining dSAT, sSAT and VAT. The region identification is performed slice-by-
slice.

Active Contours. The SAT is characterized as a ring of homogeneous high
intensity located under the skin. The shape of the layer is generally smooth.

The boundary between the SAT layer and the region containing the VAT is
located using a variant of the active contours algorithm [13,20]. The method is
based on spatially evolving a closed curve in 2-dimensions X(s) = (X(s), Y (s)),
with parameterisation s ∈ [0, 1]. For simplicity, we omit s in the following.

The evolution is driven to minimise the curve energy. By treating the curve
X as a function of time t this corresponds to a dynamic formulation

γ
∂X
∂t

= Fint(X) + Fext(X). (16)

The internal force component Fint should govern the smoothness of the curve
during the evolution and make the segmentation robust e.g. towards discontinu-
ities in the image structures of interst. The external force Fext should incorporate
image information related to the segmentation task. γ merely makes the units
on both sides consistent.
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The internal force is written as

Fint(X) =
∂

∂s

(
α
∂X
∂s

)
− ∂2

∂s2

(
β
∂2X
∂s2

)
, (17)

where ∂X
∂s is the degree of stretching, while ∂2X

∂s2 is the curvature. The contribu-
tions of the two are controlled by weights α and β.

We use a balloon model [3], forming the external force by two terms

Fext(X) = Fdef(X) + Fimp(X), (18)

where Fdef is a deflation force, and Fimp is an impurity force.
The deflation force for a point X on the curve is defined as

Fdef(X) = wdefN(X), (19)

where wdef > 0 is a weighting parameter, and N(X) is the inward unit normal
for the curve at the point. A deformation using Fdef alone would cause the curve
to contract – like a deflating balloon.

The second force term of (18), Fimp, is directed opposite of Fdef , and should
neutralise the deformation by means of image information.

In the formulation of Fimp, we rely on the assumption of distinct homogeneous
high intensities in the SAT layer. At a given time in the deformation, the force
magnitude is defined by the content of the region enclosed by the initial and
current curve.

The magnitude is zero for a pure area, and is designed to grow proportional
to the share of impure intensity covered. For a point X on the curve, we write

Fimp(X) = −wimpN(X)
∫ 1

0

H(Θ − I(Xz))dz, (20)

with weight wimp > 0. H is a Heaviside step function based on a threshold Θ
and image value I at the location Xz = (1 − z)Xinit + zX. That is, the line
integral between the point position on the initial and current curve.

To define Θ in a generic fashion across subjects, we base the segmentation on
the AT-class membership values provided by the FCM algorithm. This way the
intuitive choice Θ = 0.5, gives good results.

The method is first used for segmenting the outer boundary of the SAT layer;
initialised as a circle around the abdomen, with impurity based on non-AT. This
is then used to initialise the inner boundary segmentation. Figure 2 shows an
example of the SAT-layer segmentation.

Dynamic Programming. We partition the SAT layer into a deep and a super-
ficial part by identifying SF. On the MRI, SF appears as a smooth low intensity
line on the high intensity AT. The shape generally follows the outline of the
abdomen. We make use of these properties in the segmentation; spatially trans-
forming the image and applying dynamic programming (DP) [4,5].
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Fig. 2. SAT-layer segmentation by active contours

Fig. 3. The spatial transformation of the SAT layer. Left; 20 profiles illustrating the
resampling concept. Middle; the resampled image using 200 profiles and the flat trans-
formed image. Right; directed acyclic graph illustrating the edge structure.

Fig. 4. Partitioning of the SAT layer by DP. Left; transformed image. Right; original
set-up.

We apply a polar transformation of the SAT layer; resampling along profiles
from the centre. Furthermore, to make SF appear straighter, the resampled image
is flattened removing all zero-intensity pixels outside the SAT-layer. Figure 3
illustrates the resampling steps.

In the transformed image, SF runs approximately straight across the image.
We utilise this, and regard the image as a directed acyclic graph; pixels are
vertices weighted by their intensity with connecting directed edges as illustrated
on the rightmost drawing on Fig. 3.

This way, we can identify SF as the shortest path from a vertex in the leftmost
column to one in the rightmost. The edge structure chosen is suitable, as it
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enforces smoothness on the path. Figure 4 shows the resuling path on both the
transformed image and the original set-up – after transforming it back.

4 Results

The clustering and the identified regions are combined to form the final seg-
mented volume. We observe a slight difference in the characteristics of VAT and
SAT, as the MRI generally exhibit less contrast for the latter, due to the partial
volume effect. We handle this by means of locally defined thresholds; ε = 0.85
for VAT and ε = 0.50 in the SAT layer. Figure 5 shows an example of the final
segmentation.

The segmented volumes were subject to a visual inspection by medical experts.
On slices, where blurry artefacts in the anterior part were caused by insufficient
breath-holding during image acquisition, the SAT layer identification generally
proved robust.

Most subjects featured very little anterior SAT. A decision was therefore made
to only consider the subdivision in the posterior. On slices with little SAT, SF
coincides with the inner SAT layer boundary (e.g. Fig. 1). Here, the DP scheme
classified the entire layer as sSAT.

Fig. 5. Final AT segmentation. Light grey; sSAT. Dark grey; dSAT. Black; VAT.
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Fig. 6. Corresponding percentages of total abdominal adipose tissue; computed with
our MRI-based method and assessed by DXA. The line shows the linear regression fit
y = −0.3975 + 0.8169x with R2 = 0.86.



510 T.H. Mosbech et al.

As a quantitative assessment, the obesity was reported as three volume per-
centages for each subject; sums of voxels in each AT-class relative to the total
sum of voxels in the abdomen.

Figure 6 shows a comparison of our total AT percentage with a corresponding
measure assessed by DXA. A linear regression analysis showed good a fit between
the two (y = −0.3975 + 0.8169x, R2 = 0.86). Our method seems to produce
slightly higher values in comparison to DXA-measurements. This supports our
choice of applying a stricter threshold for VAT, as this over-estimation would
have been more distinct.

5 Conclusion

This work presents a method for fully automated segmentation of VAT, dSAT
and sSAT in abdominal MRI.

The method automatically performs a three-dimensional correction of the
MRI to remove the hardware-related bias field effect, enabling intensity based
tissue classification.

The unsupervised classification scheme, allows us to use structures in intensity
distributions related to the two classes. Furthermore, we can distinguish between
characteristics of VAT and SAT.

The deformable model identifying the SAT layer proved to handle discontinu-
ities and artefacts well without a training set. Our inclusion of image information
uses results from the tissue classification, adapting to the individual subjects to
makie the segmentations more robust.

Considering that both quantities of VAT and dSAT have a reported connection
to IR, our partitioning into sSAT and dSAT has an advantage over VAT due
to the degree of partial volume effect present in the VAT on the MRI used in
this study. Where the appearance of SF generally is well-defined; either clearly
visible on the SAT layer or coinciding with the interior SAT boundary.

The segmentations were visually validated by medical experts. Furthermore,
to evaluate the tissue classification, total percentages of AT measured by our
method was compared to similar measures obtained from DXA of the same
abdominal region. A linear regression showed good correspondence (R2 = 0.86).

The developed automated segmentation method proved suitable for distin-
guishing between three types of abdominal AT from MRI. In comparison to
manual and semi-automatic segmentations, our method enables a much larger
throughput and eliminates intra- and interobserver variability.
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Abstract. Modern epidemiological studies analyze a high amount of
magnetic resonance imaging (MRI) data, which requires fully automatic
segmentation methods to assist in organ volumetry. We propose a fully
automatic two-step 3D level set algorithm for liver segmentation in MRI
data that delineates liver tissue on liver probability maps and uses a
distance transform based segmentation refinement method to improve
segmentation results. MR intensity distributions in test subjects are ex-
tracted in a training phase to obtain prior information on liver, kidney
and background tissue types. Probability maps are generated by using
linear discriminant analysis and Bayesian methods. The algorithm is able
to differentiate between normal liver tissue and fatty liver tissue and
generates probability maps for both tissues to improve the segmentation
results. The algorithm is embedded in a volumetry framework and yields
sufficiently good results for use in epidemiological studies.

Keywords: Level Set Segmentation, Distance Transformation, Linear
Discriminant Analysis, Bayes’ Theorem.

1 Introduction

Advances in medical imaging techniques have substantially increased the de-
mand on medical image segmentation. Besides being used as a tool in routine
clinical practise, medical image segmentation can be very helpful for analyz-
ing certain health-related properties in populations in modern epidemiological
science. Organ volumetry is an important part of this. Epidemiological studies
often analyze enormous amounts of data from participants, which would make
manual segmentation very time-consuming and exhaustive and, consequently,
prone to intra- and interreader bias.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 512–523, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Automatic image segmentation is preferred but is difficult because under-
standing the complexity of medical images requires radiologists with special
training and skills. Automatic liver segmentation is particularly challenging since
the properties of hepatic tissue are similar to those of adjacent organs and tis-
sues. Consequently, state-of-the-art segmentation techniques can lead to over-
segmentations with liver segments including adjacent organs such as the kidney,
pancreas, spleen, and stomach. Conversely, some diseases such as cirrhosis, fatty
liver, or tumors can show heterogeneous tissue properties inside the liver, which
can lead to undersegmentation.

This work sets out to assist medical experts in analyzing MR datasets in
the setting of epidemiological studies investigating large populations of different
subjects. MR datasets typically show lower contrast and smaller edge magni-
tudes than CT datasets. Further challenges of tissue delineation in MR datasets
are motion and pulsation artifacts as well as partial volume effects. All of these
drawbacks require robust segmentation techniques especially designed for MR
datasets and incorporating flexibilities for identifying oversegmentation in the
setting of automatic volumetry. The approach presented here uses flexible level
set segmentation including the ability of recognizing and reducing oversegmen-
tation. Liver MR signal intensity patterns of multiple contrast datasets differ
strongly between normal and fatty livers. The method proposed here differs
from existing approaches for MR image segmentation in that it differentiates
between fat liver and normal liver, enabling successful segmentation for both
kinds of liver tissues.

2 Related Work

Literature research shows that numerous approaches for liver segmentation in CT
datasets exist, while only a few methods have been proposed for MR datasets. CT
segmentation approaches cover a wider spectrum of different methods ranging
from fundamental concepts (like histogram analysis, morphological operations,
threshold techniques, and region growing) [1, 2] to deformable models [3, 4, 5],
atlas-based concepts [6, 7, 8, 9], classification methods [10, 11, 12], and graph-cut
techniques [13, 14]. There exist a fast liver segmentation method [15] especially
for contrast enhanced MR images using a partitioned probabilistic model. How-
ever, only few approaches are available for native MR datasets using level set
segmentation techniques [16, 17, 18] or fast marching and improved fuzzy cluster
methods [19].

Although MR acquisition usually produces multiple contrast datasets, exist-
ing analysis approaches to the segmentation of MR datasets do not apply image
information from all weighting available. Variations in appearance resulting from
liver disease or the presence of different types of liver tissue are not accounted
for. Twenty percent of the subjects in our study have fatty livers [20]. Fatty livers
have different tissue properties than nonfatty livers and therefore have different
MR signal intensities. Automatic methods should recognize fatty livers and seg-
ment them as well as nonfatty livers. Hence, we developed a fully automatic liver
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segmentation framework that can differentiate between fatty livers and nonfatty
livers and segments both types of tissue by using class-specific prior knowledge
about MR signal intensities. We use 3D geodesic active contours and extend and
accelerate the work of [21] for segmentation of liver-specific probability maps by
calculating improved stopping terms in a two-step segmentation approach. The
drawbacks of existing approaches discussed above are overcome by the approach
we are presenting here.

3 Data Acquisition

The study is based on images taken from participants of the population-based
Study of Health in Pomerania (SHIP). All abdominal MR datasets were acquired
on a 1.5 Tesla MR scanner (Magnetom Avanto; Siemens Medical Systems, Er-
langen, Germany). Subjects were placed in the supine position, and two phased-
array surface coils were placed over the abdomen and pelvis. The spinal coil was
embedded in the scanner table. Two trained technicians performed all examina-
tions in a standardized way. Four different datasets were created using the VIBE
sequence (Fig. 1). The T1-weighted gradient-echo sequence in two-point Dixon
technique [22] provides in- and out-phase as well as water- and fat-saturated im-
ages. Images were acquired with TR = 7.5 (ms) and multimodal TE = 2.4/4.8
(ms) and a flip angle of 10. The voxel size was 1.64 x 1.64 x 4.0 mm, and 64
slices were acquired in 19 s. The image resolution used is common for diagnosis
in clinical routine although it is relatively coarse. It was used in SHIP in order to
avoid long image acquisition times. The Dixon technique ensures that the four
different datasets are sufficiently well registrated for the subsequent methods
that are used in our liver volumetry framework.

4 Description of the Method

4.1 Denoising of MR Datasets

Edge-preserving anisotropic diffusion [23] is used to homogenize the MR inten-
sities inside the different tissue types and to preserve edge magnitudes that are
important for distinguishing liver tissue from adjacent tissues. We applied this
denoising method over 50 iterations by using time steps of 0.0625.

4.2 Training Phase

A training phase is mandatory for supervised probability map generation tech-
niques. Thus, for training purposes, binary masks of 20 livers from different
subjects were segmented manually and saved. Manual segmentation was per-
formed by medical experts. The binary masks served to obtain prior knowledge
of MR signal intensity distributions and can be used for later probablity map
generation. Since many subjects in SHIP have fatty livers, we determined MR
signal intensities separately for fatty liver and nonfatty livers. As biopsy results
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Fig. 1. Original MR images taken from a transverse slice of the VIBE sequence. In-
phase weighting (upper left), opposed-phase weighting (upper right), fat-saturated
weighting (lower left), water-saturated weighting (lower right). Frequently mentioned
organs and tissue types in this work are labeled on the images for better orientation.

are available for some SHIP subjects, we selected MR datasets of 10 subjects
with nonfatty livers (< 5 % fat) and 10 subjects with fatty livers (25% - 64%
fat) for this purpose. For our supervised recognition technique, we aim to en-
hance the transition region between liver and kidney and therefore we have to
assign three tissue types (liver, kidney, and background). Hence, binary masks
of the 20 selected subjects’ right kidneys were segmented manually by medical
experts and saved separately. Finally, an overlap region, which is contained in
all 20 binary masks of the segmented livers, was determined. We call this region
the ”reliable common liver” (rcl) region because it is most likely contained in all
liver regions of the SHIP subjects.

4.3 Probability Map Generation

MR signal intensity distributions for liver and surrounding tissues are estimated
from the training data. Since intensity distributions in the MR images vary
for fatty and nonfatty livers, two distributions in the rcl region are estimated.
Likelihoods for the two tissue types can be determined with the MR intensity
distributions of the two types of trained binary masks. Thus, for every tissue
type, we can calculate their mean (μf , μnf ) and covariance matrices (Σf , Σnf)
and estimate their multivariate normal distributions (Pf , Pnf ). We extract all
N test subjects’ MR signal intensity samples (V = {−→X i‖−→Xi ∈ rcl, i = 1..N})
inside the rcl region and assign the liver tissue type according to the maximum
likelihood classification by using the calculated log-likelihoods:
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max{
N∑

i=1

lnPnf (−→Xi‖μnf , Σnf ), lnPf (−→Xi‖μf , Σf)} (1)

For generating probability maps we apply the work of Gloger et.al. [24] and
use linear discriminant reduction techniques based upon the work of [25] and
extended by [26] for multiple distribution classes. By using the binary masks
produced during the training phase, MR distributions for the two liver tissue
types, the kidney, and the background can easily be estimated. Every sample
vector of the collected MR distributions consists of four elements representing
the four different MR weightings. We distinguish two types of probability map
generation: the two-class case (liver, background) and the three-class case (liver,
kidney, background). For each case, we perform linear discriminant reduction
(LDA)[25] and determine the axis that serves as optimal projection axis for the
data to reduce class overlaps after projection. LDA reduces the dimensional-
ity of the samples from n=4 to n=1 in a linear manner by preserving as much
discriminant information between the given class distributions as possible. By
projecting the sample vectors of every class onto the projection axis we obtain
one-dimensional probability distributions for every class. The distributions are
generated using a kernel density estimator on the histogram. We used a value
of σ = 2.0 as standard deviation in the gaussian kernel. Additionally, we in-
corporate the information of the trained positions in the given binary masks of
the three classes as independent probabilities into the likelihoods. In the case of
three classes this results in:

P (L|−→V ) =
P (−→V |L)Pxyz(L)

P (−→V |L)Pxyz(L) + P (−→V |K)Pxyz(K) + P (−→V |B)Pxyz(B)
(2)

Pxyz(L) = Pxyz(L|x, y, z) = P (L|x)P (L|y)P (L|z) (3)

for the liver class. Here V = V (x, y, z) represents a voxel with its MR dataset
coordinate and L,K,B represent the 3 classes of liver, kidney, and background,
respectively. Liver pobability map generation for the two-class case is defined
straight-forward in the same manner as (2) and (3), treating kidney samples
and kidney locations as part of the background class information. In this ap-
proach we do not differentiate between the class occurrences and set the a priori
probabilities of every class to 1. For every test subject we calculate the liver
probability maps for the three-class case and the two-class case, depending on
which liver tissue type is present. The segmentation is performed in the liver
probability map of the two-class case, incorporating liver probability maps of
the three-class case for refinement purposes (Fig. 2).

4.4 3D Level Set Segmentation

Instead of using original MR datasets, we perform level set segmentation on
the calculated probability maps. We use the liver probability map of the two-
class case calculated as described in the previous section. In the liver probability
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Fig. 2. Two-class liver probability map (upper left) and three-class liver probability
map with kidney significantly suppressed (upper right). Difference image enhances
transition region between liver and kidney (lower left). Original fat-saturated image
(lower right).

map, the most probable liver tissue is enhanced based on liver- specific MR signal
intensity distributions and MR dataset locations. A further advantage is that we
can use the maximum value of the probability map as the starting point for 3D
level set segmentation. During the test phase of our method, we observed that
the maximum value is always located inside the liver. As possible MR artifacts or
liver disease may show different probability values, we use the Geodesic Active
Contour approach of Caselles et.al. [21]. Consequently, we use the flexibility
of the level sets to perform topological changes for our segmentation purpose.
A drawback of the level set method is its time-consuming propagation process.
Hence, we perform the segmentation in two steps: a fast and coarse segmentation
step on lower resolved probability maps and a fine segmentation step in the
probablity maps with original resolution. Fine segmentation is initiated with the
coarse segmentation result that is scaled up to the original matrix resolution.
Level set propagation is steered by the following partial diffential equation:

∂φ

∂t
= g(pm)(a+ bκ)|∇φ| + ∇g(pm)∇φ (4)

Here, φ represents the signed distance function depending on the segmenting
surface, κ is the mean curvature, pm = pm(x, y, z) represents the probability
map values at the MR dataset positions, and a, b are weighting parameters for
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propagation speed and level set mean curvature weighting. As stopping function
we chose:

g(pm) =
1

1 + |∇pm|2 (5)

The stopping effect of g is influenced by the strength of the probability map
gradients. To accelerate level set propagation we suppress the influence of lower
probability map gradients. Instead of using a threshold to remove low gradients
we use a sigmoid function to transform the gradient values to the relevant range
of gradients to ensure faster propagation. We focus on a particular set of gradient
values and progressively attenuate values outside that range:

S(|∇pm|) = (max(|∇pm|)−min(|∇pm|)) 1

1 + exp(− |∇pm|−β
α )

+min(|∇pm|) (6)

For the sigmoid transformation we apply the following values for the param-
eters: α = 10 and β = max(|∇pm|)

3 .

4.5 Distance Transform Based Segmentation Refinement

Due to adjacent tissue with similar appearance overspills can occur. Some of
those overspills could be avoided by penalizing the curvature term during level
set propagation. However, it was crucial to find a representative weighting pa-
rameter for penalizing the curvature term for all the variously shaped livers
having different curvature properties. In case of strong curvature penalizations,
elongated and tapered liver parts are excluded during segmentation. Interior liver
parts having low probability values (i.e. vasular structures or the hepatic portal
vein) have to be overcome by topological changes. This is not possible, if high
curvatures are necessary to overcome those inner structures. Since, higher penal-
ization of the curvature term produces undersegmentations we used curvature
weightings, which in fact can produce overspills but includes all liver parts.

Then we applied a new method to remove those overspills, which are rec-
ognized and removed in a postprocessing step where we assume that regions
erroneously connected to the liver are touching the liver only in a small region.
By eroding the liver boundary such regions should be found since erosion should
split the segment at those sites. Hence we erode the liver segment, remove erro-
neously included segment parts and use the remaining, eroded part to predict the
correct liver boundary at sites of overspill. We use the distance transform that
has been generated by the level set segmentation to guide this erosion process.
During level set propagation we have assigned positive distance values inside the
liver and negative ones outside the liver. Hence, the positive part represents a
distance transform of the segmentation result (SR) and we determine an initial
3D label (SR label) constructed by all positive distance values. Now we itera-
tively subtract a distance value (we chose 1 mm) from the signed distance map,
which leads to a subsequent inwards shrinkage of the zero level set. If the segment
is split in a shrinkage step, then we continue with the segment that contains the
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Fig. 3. Slice of 3D label resulting from level set segmentation (left). Same slice following
label separation as a result of the shrinkage method (middle). Voxels contained in level
set segmentation result and not contained in one of the separated 3D labels are assigned
to the 3D labels according to their minimal euclidean distance. The borders of the
shrinked 3D labels (middle) are depicted in green with arrows indicating the shrinkage
direction (right).

starting point of the level set propagation. Voxels removed by the actual shrink-
age step get segment labels assigned according to their euclidean distance to
the nearest segment. We construct a new signed distance map depending on the
liver-representing label surface. Thus, we remove all labels which we regard as
overspills (Fig. 3).

Given the high liver shape variability and the fact that livers consist of left
and right liver parts we aim to avoid label separations inside the liver. Livers
can show concave surface regions, which can lead to separations inside the liver
when this method is used. We found that most overspills are detected in the
first shrinkage steps; hence, we use an upper shrinkage frontier (20 mm) to
avoid removal of liver parts. However, parts of the kidney region may not be
removable by this technique since the kidney has similar tissue properties, and
there is a higher degree of surface contact between liver and kidney. Overspill
into kidney regions can be removed if we perform shrinkage beyond 20 mm but
only at sites where label separations occur inside the transition region between
liver and kidney. This transition region can be determined by subtracting the
liver probability map of the two-class case from the liver probability map of
the three-class case (Fig. 2, lower left). We threshold this difference dataset by
choosing the half of the probability map maximum (0.5 in case of probability
values of [0;1]).

5 Results

We tested our method on 40 MR datasets from different subjects, which are not
contained in the training set. 20 Twenty of the MR datasets contained livers
with normal tissue and 20 MR datasets showed livers with fatty tissue. Result
quality was different depending on whether fatty livers or nonfatty livers were
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Table 1. Mean (Mean) and standard deviations (Std) of segmentation quality measures
for evaluating liver segmentation with the new method proposed here. Segmentation
quality differs for nonfatty livers (left) versus fatty livers (right).

Nonfatty livers Fatty livers
VE OE DICE TPF VE OE DICE TPF

Mean 0.047 0.129 0.944 0.881 0.120 0.206 0.892 0.940
Std 0.031 0.028 0.020 0.052 0.078 0.082 0.057 0.017

segmented. Hence, we evaluate and present the results for fatty and nonfatty
livers separately (Tab. 1).

We used three segmentation quality measures for result evaluation. We cal-
culate the volume error (with VT , VS representing the training and segmented
volume respectively)

V E =
VT − VS

VT
(7)

and overlap error according to:

OE =
N(|MT −MS|)

N(MT )
(8)

with MT ,MS representing the binary masks of trained and segmented dataset
respectively. N() represents the number of voxels. Furthermore, we calculated
the true positive fraction according to:

TPF =
N(MT ∩MS)

N(MT )
(9)

Finally, we determined the DICE coefficient, which has been established as a
reliable measure for segmentation quality in large-scale studies [27]:

DICE =
2N(MT ∩MS)
N(MT ) +N(MS)

(10)

Our method performs better when used to segment nonfatty livers. All quality
measures are superior for nonfatty livers compared with fatty livers. A compar-
ison with existing approaches to liver segmentation in CT and MR datasets
is difficult due to inconsistently used quality measures. Unfortunately, reliable
data on the quality of MR segmentation is scarce. Although comparing quality
measures between different imaging modalilities is precarious, we compare our
results with the few results published on CT datasets. In [5] the authors report
overlap errors of 12.2, which is nearly the same as our results for nonfatty livers.
The authors in [28] achieved a mean value of 0.91 for the Dice coefficient, which
is worse than our results for nonfatty livers. The only reliable information about
quality measures for MR liver segmentation is given in [18]: our results for the
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TPF measures are with a mean value of 0.94 nearly as good as their TPF results
of 0.95. However, our method is fully automatic and takes different tissue types
into account, which is not possible by applying the method described by Chen
et al. Result analysis with visualization techniques in our volumetry framework
shows that probability maps of nonfatty livers are less susceptible to overspill.
Furthermore, overspills from probability maps of nonfatty livers are easier to
remove. With the upper border for the maximum shrinkage distance we used
during the distance-based refinement phase, some overspills are not removed
from fatty liver probability maps.

6 Discussion

We developed a fully automatic 3D volumetry framework, which uses and ex-
tends an existing edge-based level set approach to segment livers in MR datasets.
Previously, we tested also a well-known region-based level set approach [29] deliv-
ering worse results than our extended edge-based level set approach. A two-step
level set segmentation is performed in liver probability maps produced by com-
bining methods of linear discriminant analysis with a Bayesian formulation. We
filter relevant liver edges from liver probability maps by using sigmoid functions
which generates adapted stopping functions to improve and accelerate level set
propagations. Prior knowledge about liver-specific MR intensity distributions is
collected during a primary training phase, which is used for probability map gen-
eration. Thus, no user-interaction is required. Our method differentiates between
fatty liver tissue and non-fatty liver tissue and generates tissue-specific probabil-
ity maps automatically. Consequently, our method performs liver sgementation
for both tissue types, which is very helpful for applications in epidemiological
studies.

We tested our method for 40 probands of an epidemiological study and achieved
good results. Comparisons show that our results for non-fatty livers are in the
same quality range as results from existing approaches for liver segmentation of
CT and MR datasets. Our method outperforms several approaches for CT
datasets. A volume error of less than 5% for non-fatty livers is already appropriate
for fully automatic non-fatty liver volumetry in large-scale studies.

The segmentation results for fatty livers should be improved to be used for
epidemiological studies. Fatty liver tissue shows more similarity to adjacent tissue
types, which reduces the probability map quality for the application of edge-
based level set segmentation techniques. Due to higher tissue similarity, over-
spill into adjacent tissue is more probable on fatty liver probability maps. In
future work we aim to improve the segmentation quality especially for fatty
livers by using more relevant liver features in order to reduce the volume error
below 10%. Although livers show high shape variabilities, we will incorporate
prior shape information to improve the results for fatty livers.
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Abstract. We present a non-incremental approach to structure from motion. Our
solution is based on robustly computing global rotations from relative geome-
tries and feeding these into the known-rotation framework to create an initial
solution for bundle adjustment. To increase robustness we present a new method
for constructing reliable point tracks from pairwise matches. We show that our
method can be seen as maximizing the reliability of a point track if the quality
of the weakest link in the track is used to evaluate reliability. To estimate the
final geometry we alternate between bundle adjustment and a robust version of
the known-rotation formulation. The ability to compute both structure and cam-
era translations independent of initialization makes our algorithm insensitive to
degenerate epipolar geometries. We demonstrate the performance of our system
on a number of image collections.1

1 Introduction

Structure from motion is by now becoming a well studied problem [25]. The dominant
approaches are the incremental or sequential reconstruction algorithms [6,24]. Typically
these algorithms are initialized using a minimal solver, solving for either two or three
views. Additional points are then triangulated and added to the reconstruction. Once
this is done new cameras viewing the reconstructed points can be added. By alternating
triangulation and resectioning the full reconstruction is computed an incremental way.
The downside of this approach is that it is highly dependent on the initial configuration
and sensitive to degenerate configurations. Indeed, if the baseline is small it is easy to
see that it is not possible to determine the depth of the structure. Since these methods
rely on a well estimated structure for adding new cameras, degenerate geometries may
cause them to fail. To avoid this [6,24] removes configurations where the data can be
well fitted to a homography. Furthermore, due to their sequential nature these meth-
ods suffer from drift (error accumulation) [7], rather than distributing the error evenly
throughout the sequence. This is addressed in [26] where a heuristic approach based
on covariance estimation of the structure and the CIRC criterion [27] is presented. A
method for determining a reliable initial pair is proposed in [4].

Another approach to structure from motion that is less sensitive to drift are the so
called hierarchical methods [11,19,23,12]. Here the images are organized in a hier-
archical cluster tree, and the reconstruction proceeds from the root to the leafs. Still

1 Code and data sets can be downloaded from
http://www.maths.lth.se/matematiklth/personal/calle/

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 524–535, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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degenerate geometries have to be avoided since the structure is used for reconstruction.
As noted in [19] the loss of feature points and the necessity of a reasonable baseline
creates a trade-off. That is, there is a sweet spot in terms of view separation, where
calculation of multi view geometries is best performed.

A third option, which we follow in this paper, was investigated in [17,10]. Here
rotations are first estimated separately using two-view geometries. Then these rotations
are fed into the L∞ framework [15] which solves for structure and camera translations
simultaneously without the need for any initial solution. We solve a robust version of
the known-rotation problem [22] that is also able to remove outliers. As shown in [10]
this approach is not sensitive to degenerate configurations. Even though the geometry
is degenerate if the baseline is zero the rotation is not. In fact, the rotation estimation
will be accurate when the baseline is small, since in this case the number of matches is
usually large. Furthermore, with this approach one does not have to estimate the scale of
the two-view reconstructions since the only information that is used from the two-view
estimations are the rotations, and they are independent of the scale.

2 System Overview

In this section we present the basic design of our structure from motion system. Figure 1
shows an overview of the system. The first step is pairwise matching of images. We
run matching using Lowe’s implementation of SIFT [16] for each pair of images. At
present, this is by far the most computationally demanding step of the algorithm. For
the cathedral data set (cf. Section 3) with 480 images of size 1936 × 1296 pixels this
takes more than one week. On the other hand there are more efficient implementations
of SIFT and moreover, this step could easily be parallelized since the different pairs are

Fig. 1. System overview. The various stages and the data structures passed between them.
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independent. For certain scenes the number of pairs could probably be reduced by first
using vocabulary trees [21,2], however this has not been implemented here.

The detected correspondences are passed on to the next step which creates global
point tracks throughout the unordered image collection. Section 2.1 presents a graph-
based algorithm for creating consistent point tracks and show that this can be seen as
trying to maximize the reliability of a point track, where the reliability is defined as the
weakest connection in the track.

In the next step, point tracks are used to compute epipolar geometries for all image
pairs seeing the same points. We use the five-point algorithm [20] since we assume
calibrated cameras. The point tracks are constructed before computing geometries since
this increases the number of pairs where a useful geometry can be computed. This
also increases the redundancy in the camera graph making it easier to detect incorrect
geometries.

The points that have been deemed inliers to the pairwise geometries are used to create
new global point tracks using the same method as before; see Section 2.1. The relative
rotations are used in a rotation averaging approach to compute camera orientations in
the global coordinate system; see Section 2.2.

The point tracks and the global rotations are then fed into the final step where the
global geometry is computed. To compute the geometry we alternate between a robust
version of the known-rotation problem [9,22] and bundle adjustment [28]; see Sec-
tion 2.3. Since we use the known-rotation formulation all that is needed for a starting
solution is the rotations. Furthermore, since we only use the rotations from the pairwise
geometries our system is not sensitive to degenerate geometries (small baseline). As is
shown in [10] the rotations are still well defined. Finally we remove all 3D-points that
have an uncertain depth. Note that we use as many points as possible, even those that are
only seen by two nearby cameras. The depth of such points may be difficult to estimate
however they still help constrain the rotations and should therefore not be removed until
the geometry has been computed; see Section 2.3. Note that in an incremental system
such points can be damaging, since the addition of new cameras rely on a well estimated
structure. This is however not a problem for our non sequential approach.

2.1 Point Tracking in Unordered Image Collections

Next we present our algorithm for tracking points throughout unordered image col-
lections. Feature descriptors such as SIFT [16], SURF [3], GLOH [18] etc. are not
invariant to a full projective transformation. Therefore it is difficult to match points if a
significant projective distortion is present, making matches between images with large
baseline less reliable. Note that, in principle, our algorithm would work well even using
only pairs with small baselines. However, the positions of points that are seen in many
views are still more certain than those seen only in a few cameras. Furthermore, the
tracking of points increases the redundancy in the camera graph, making it easier to
detect outlier rotations.

We want to build tracks from the pairwise matchings such that none of the tracks
contains more than one point from a given image. Moreover, if two conflicting matches
exist, we want to pick the one from the most reliable view pair. As a measure of this
reliability, we use the number of SIFT correspondences obtained in that pair, but the
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algorithm works with other measures as well. Let ik denote image point k in image i.
We build an undirected graph G = (V , E), where the nodes V are the detected image
points from all images. We assume that we have matched all or a subset of the image
pairs. These matchings induce an edge set E where (im, jn) ∈ E if the image point cor-
responding to node im has been matched to jn. Furthermore we have an edge weight
functionw : E �→ R+, representing the reliability of the match. We will use the number
of matchings between two views to measure the reliability, but other choices are possi-
ble. Note that the weight of an edge between points k, l in images i, j only depends on
the images. Hence we denote it wi,j .

We assume that the graph is connected, otherwise we consider a subgraph. We want
to form tracks such that the selected correspondences are as reliable as possible. If
we use the sum of edge weights for measuring this reliability, a track consisting of
two edges and one weak edge might still be considered very strong. Therefore we use
the minimum edge weight instead. Hence, our goal is to maximize the minimal edge
weights in the edge set representing a track. The quality of the track is basically the
quality of the weakest link. Formally we define the reliability of a path P as

R(P ) = min
(im,jn)∈P

wi,j . (1)

We will use Algorithm 1 to optimize reliability. The algorithm has certain similiarities
to Prim’s algorithm for computing a maximum spanning tree; see [5]. We start with one
initial point track, T (im) for each image point, im in each image, i. As the algorithm
proceeds, tracks with corresponding image points are merged. To start the algorithm
we pick an arbitrary image i and look for another image j such that the weight wi,j is
maximized. This image pair will correspond to a lot of point-to-point correspondences,
(im, jn) ∈ E . We go through all of these and merge tracks T (im) and T (jn) unless this
leads to an inconsistency.

Algorithm 1.

input : (V, E)
output: Tracks T (im)
begin

Let EI := {(i, j) : wi,j �= 0} ;
For each image point ik in each image i, init T (ik) = {ik};
Select an image i randomly and set I = {i};
while EI �= ∅ do

Find a pair (i, j) ∈ EI such that i ∈ I and wi,j is maximized ;
for each (m, n) such that (im, jn) ∈ E do

if T (im)
⋃

T (jn) has ≤ one point from each image then
Merge T (im) with T (jn)

EI := EI \ {(i, j)};
end
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Definition 1. A path in the correspondence graph is accepted by Algorithm 1 if its
endpoints end up in the same track.

Definition 2. An inconsistent path in the correspondence graph is a path from an image
point ia in image i to another image point ib in the same image. A simple inconsistent
path is an inconsistent path such that image i is the only image visited twice.

The constraint that we only merge tracks T (im)
⋃
T (jn) has no more than one point

from each image, ensures that the final tracks contain no inconsistent paths. Moreover,
the following theorem shows that no matches are removed unless there is an inconsistent
path.

Theorem 1. If a path P is not accepted by Algorithm 1 then some edge (ia, jb) ∈ P is
the weakest edge in a simple inconsistent path and all the other edges in that path are
accepted.

Proof. Clearly some (ia, jb) ∈ P was not accepted. Consider the step when this edge
was considered by Algorithm 1 . Let T1 = T (ia) and T2 = T (ib) at this time. If (ia, jb)
was not accepted we know that T1 and T2 were not merged and hence that T1

⋃
T2

contains two points from the same image. We denote this ka and kb. Since a track is
connected there is a path P1 ⊂ T1 connecting ia and ka and a path P2 ⊂ T2 connecting
jb and kb. Together with the edge (ia, jb) these paths form a simple inconsistent path
and all edges of this path apart from (ia, jb) have already been accepted. It remains to
show that (ia, jb) is the weakest edge in this path.

To do so, we consider the order in which the edges of this inconsistent path has been
considered in Algorithm 1. Some image visited by the path must have been the first that
was added to I (see Algorithm 1). After that, until all but one edge is considered there
is always at least two different edges in the path that could be added and the algorithm
will pick that with the highest weight. But this won’t be the weakest edge and hence
the weakest edge is considered last. Since we know that (ia, jb) was considered last it
is the weakest edge.

To gain some intuition around this result, let a and b be the endpoints of a path P .
Clearly this path indicates that a and b are projections of the same 3D point. Now, with
notation from the proof, we can also find a path Pa from a to ka (via ia) and a path Pb

from b to kb (via ib). Together these paths indicate that a and b are in fact projections of
different 3D points. Hence, if P is not accepted then

R(P ) ≤ min{R(Pa),R(Pb)}. (2)

One way to view this is that P as well as (Pa, Pb) yield hypotheses concerning a and b.
Theorem 1 shows that Algorithm 1 chooses the hypothesis having highest reliability.

Figures 2 and 3 shows examples of the result of the algorithm. In Figure 2 two images
from the sequence is matched directly. This results in 20 matches. Figure 3 shows the
result of the tracking algorithm. Here we obtain 48 matches. In addition we show the
adjacency matrix for the camera graphs. In this case the camera graphs have an edge
between i and j if there are more than 20 matches between images i and j. There are
1116 edges in the one computed from the direct matches, and 1436 in the one obtained
from the tracks.
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Fig. 2. Image nr 1 and 12 in the Vercingetorix sequence and matches when only matching the
images directly. There are 20 matches (and it can be seen that at least two are incorrect). To the
right is the adjacency matrix for the camera graph thresholded at 20 matches.

Fig. 3. Image nr 1 and 12 in the Vercingetorix sequence after running the tracking algorithm.
There are 48 matches. To the right is the adjacency matrix for the camera graph thresholded at 20
matches.

Remark. The point tracking algorithm is used twice in our structure from motion
framework. The first time all correspondences from the SIFT matching are used and
the weight wi,j is simply the total number of correspondences between image i and im-
age j. The second time, only the inliers from the epipolar geometries are used and wi,j

is the number of inliers of the best epipolar geometry estimated from views i and j.

2.2 Robust Global Rotation Computation

The most common approach to rotation averaging are variants of [13], where a relax-
ation of the maximum likelihood estimator is solved. However, it has recently been
shown [8] that this approach may fail if there is a camera loop where the total rotation
is 360 degrees. Furthermore, it does not handle outlier rotations. Zach et al. [29] use
cycles in the camera graph and a Bayesian framework to detect incorrect pairwise rota-
tions. This leads to an intractable problem so they have to limit the length of the cycles
to 6 edges.

In contrast, we employ a simple RANSAC approach, similar to [14], for finding a set
of rotations consistent with as many of the relative rotations as possible. Given relative
rotationsRi,j , in each RANSAC iteration, we want to compute a set of rotationsRk (in
the global coordinate framework) such that

Ri = Ri,jRj (3)
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roughly holds for as many relative rotations as possible. To achieve robustness to noise
we allow a small error in (3). The global rotations are computed by randomly selecting
a spanning tree in the camera graph. The rotations can then be computed by simple
(linear) elimination along the edges of the tree. Once this is done we evaluate how well
the remaining equations are fulfilled. We say that Ri,j is an inlier rotation if the angle
of rotation of the RT

i Ri,jRj is less than 1 degree.
In contrast to [14] which uses an unweighted graph, we select each rotation with a

probability proportional to the total number of matchings, to achieve efficiency. This
introduces a bias towards selecting rotations from geometries with small baselines. At
first this might seem like a serious problem as relative orientation estimation gets unsta-
ble for short baselines. However, it is shown in [10] that this instability does not affect
the rotation estimates. Hence, even with short baseline or no baseline at all, the relative
rotation can be accurately estimated, using e.g. [20].

2.3 Global Geometry Estimation

The final step of our framework is to estimate the full structure and motion in the global
coordinate frame. The input is the global point tracks and the global rotation estimates.
Even though the point tracks have been constructed from points that have been deemed
inliers in the pairwise geometries, there will still be a portion of outliers when con-
sidering the entire tracks. Therefore we employ a robust version of the known-rotation
formulation [22], which we briefly outline.

Estimating structure, camera positions and outliers. If the camera matrix is P =
[R t] then the (squared) reprojection error can be written

Ei(X,R, t) =
∣∣∣∣∣∣(xi

1 − R1X + t1
R3X + t3

, xi
2 − R2X + t2

R3X + t3

)∣∣∣∣∣∣2, (4)

where Rj and tj denotes the j’th row of R and t respectively. If R3X + t3 > 0, that is,
if visible points are located in front of the camera, we may write the condition that the
reprojection error is less than γ, Ei(X,R, t) ≤ γ2 as∣∣∣∣∣∣((xi

1R3 −R1)X + xi
1t3 − t1, (xi

2R3 −R2)X + xi
2t3 − t2

)∣∣∣∣∣∣ ≤ γ(R3X + t3) (5)

If either X or R is known then (5) is a convex constraint. The known-rotation problem
(see [15]) is another example where the 3D-points and the positions of the cameras are
allowed to vary simultaneously.

Now, assume that we define an outlier-free solution to be a solution where all errors
are less than γ. Since the intersection of convex sets is convex it is possible to test, using
convex programming, whether a solution is free from outliers. To be able to remove
potential outliers we add a non negative slack variable si to (5), giving∣∣∣∣∣∣((xi

1R3 −R1)X + xi
1t3 − t1, (xi

2R3 −R2)X + xi
2t3 − t2

)∣∣∣∣∣∣ ≤ γ(R3X + t3) + si.

(6)
Now, minimizing the number of outliers means minimizing the number of nonzero slack
variables subject to the constraint (6). If we do this and remove the residuals for which
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si is non-zero, we will get an high-quality, outlier-free solution. However, minimizing
the number of non-zero si’s is difficult so we consider the relaxation

min
∑

i

si, (7)

instead. Details can be found in [22].

Bundle adjustment. The method outlined in the previous section, computes structure
and camera translations independently of the initialization. This gives us the advantage
that we do not need to estimate the scale factors needed to fuse the pairwise geometries.
This is particularly difficult when the baseline is small, since in that case the structure
is very uncertain. On the other hand the rotation estimates are more certain for a small
baseline, so we want to use these geometries as well.

Still, the rotations from the rotation averaging step may not be optimally aligned
and may need to be reestimated as well. Therefore we propose an alternating scheme.
Given the rotations we estimate an inlier set that is as large as possible using the known-
rotation framework. In a second step, we update the structure and motion using bundle
adjustment [28] based on the current inlier set. These steps are iterated until the number
of outliers has stabilized. Usually two iterations is sufficient.

Finally, we remove all the 3D points that have an uncertain depth estimate. This is de-
termined by considering the second derivative of the reprojection error, in the direction
of the camera center. Points having a very small second derivative are discarded.

3 Results and Conclusions

This section presents the results of our structure from motion system for a number
of image collections. The implementation is mainly Matlab-based2. For the the SIFT
descriptors we use the implementation from [16]. And for solving the known-rotation
problem we use MOSEK [1]. For increased computational efficiency, we use linear
programming instead of second order programming when solving the known-rotation
formulation; cf. [22].

Figures 4-9 shows the results of running our algorithm on the various image col-
lections. The tables show the execution times of the various steps of the algorithm; see
Figure 1. The computationally most demanding step is matching SIFT features between
views. For the datasets with repeated textures the number of outliers are higher, e.g. the
dome of the Pantheon. This is because the tracking algorithm can merge these if one
false correspondence survives the RANSAC step. Since the known-rotation framework
cannot split tracks into smaller pieces it instead finds the largest consistent subtrack and
classifies the rest of the image points as outliers. The number of outliers is reduced if
the merging of tracks (T (im)

⋃
T (jn)) is turned off. On the other hand this reduces the

size of the tracks. Another way to reduce the number of outliers is to split the track at
the weakest link if an outlier in the track is detected. This is easily done by searching
the tree constructed in Section 2.1.

2 Code and data sets can be downloaded from
http://www.maths.lth.se/matematiklth/personal/calle/
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Algorithm step: 1) 2) 3) 4) 5) 6)
Execution time (s): 11789 42 1819 25 15 506

Fig. 4. The statue of Vercingetorix. The image set consists of 69 cameras. The algorithm creates
41274 tracks which are projected into 107078 image points, and 2869 of these are deemed outliers
in the geometry estimation step.

Algorithm step: 1) 2) 3) 4) 5) 6)
Execution time (s): 17233 58 2911 11 34 2362

Fig. 5. The city hall of Stockholm. The image set consists of 43 cameras. The algorithm creates
47833 tracks which are projected into 266517 image points, and 3440 of these are deemed outliers
in the geometry estimation step.

Algorithm step: 1) 2) 3) 4) 5) 6)
Execution time (s): 14464 538 10152 93 272 2254

Fig. 6. Alcatraz courtyard. The image set consists of 133 cameras. The algorithm creates 41173
tracks which are projected into 342658 image points, and 12247 of these are deemed outliers in
the geometry estimation step.
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Algorithm step: 1) 2) 3) 4) 5) 6)
Execution time (s): 41883 1364 17664 186 541 2977

Fig. 7. Pantheon Paris. The image set consists of 182 cameras. The algorithm creates 59724 tracks
which are projected into 415498 image points, and 59066 of these are deemed outliers in the
geometry estimation step.

Algorithm step: 1) 2) 3) 4) 5) 6)
Execution time (s): 28540 952 14558 174 380 3259

Fig. 8. Arc de Triomphe, Paris. The image set consists of 173 cameras. The algorithm creates
56655 tracks which are projected into 387651 image points, and 27674 of these are deemed
outliers in the geometry estimation step.

Algorithm step: 1) 2) 3) 4) 5) 6)
Execution time (s): 947450 22081 102150 1134 11425 24636

Fig. 9. The Cathedral of Lund. The image set consists of 480 cameras. The algorithm creates
77182 tracks which are projected into 1044574 image points, and 4520 of these are deemed
outliers in the geometry estimation step.
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(eds.) DAGM 2006. LNCS, vol. 4174, pp. 657–666. Springer, Heidelberg (2006), 524

5. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Heidelberg (2008), 527
6. Brown, M., Lowe, D.: Unsupervised 3d object recognition and reconstruction in unordered

datasets. In: Conf. 3-D Digital Imaging and Modeling (2005), 524
7. Cornelis, K., Verbiest, F., Van Gool, L.: Drift detection and removal for sequential structure

from motion algorithms. Trans. Pattern Analysis and Machine Intelligence (2004), 524
8. Dai, Y., Trumpf, J., Li, H., Barnes, N., Hartley, R.: Rotation averaging with application to

camera-rig calibration. In: Asian Conf. on Computer Vision (2009), 529
9. Dalalyan, A., Keriven, R.: L1-penalized robust estimation for a class of inverse problems

arising in multiview geometry. Neural Information Processing Systems (2009), 526
10. Enqvist, O., Kahl, F., Olsson, C.: Stable structure from motion using rotational consistency.

Technical report, Centre for Mathematical Sciences, Lund University (2010), 525, 526, 530
11. Fitzgibbon, A., Zisserman, A.: Automatic camera recovery for closed or open image se-

quences. In: Eur. Conf. Computer Vision (1998), 524
12. Gherardi, R., Farenzena, M., Fusiello, A.: Improving the efficiency of hierarchical structure-

and-motion. In: Conf. Computer Vision and Pattern Recognition (2010), 524
13. Govindu, V.: Combining two-view constraints for motion estimation. In: Conf. Computer

Vision and Pattern Recognition (2001), 529
14. Govindu, V.: Robustness in motion averaging. In: Eur. Conf. Computer Vision (2006), 529,

530
15. Kahl, F., Hartley, R.: Multiple view geometry under the L∞-norm. Trans. Pattern Analysis

and Machine Intelligence (2008), 525, 530
16. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. Journal of Computer

Vision (2004), 525, 526, 531
17. Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruc-

tion. In: Conf. Computer Vision and Pattern Recognition (2007), 525
18. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Trans. Pattern

Analysis and Machine Intelligence (2005), 526
19. Nistér, D.: Reconstruction from uncalibrated sequences with a hierarchy of trifocal tensors.

In: Eur. Conf. Computer Vision (2000), 524, 525
20. Nistér, D.: An efficient solution to the five-point relative pose problem. Trans. Pattern Anal-

ysis and Machine Intelligence (2004), 526, 530
21. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Conf. Computer

Vision and Pattern Recognition (2006), 526
22. Olsson, C., Hartley, I., Eriksson, A.: Outlier removal using duality. In: Conf. Computer Vi-

sion and Pattern Recognition (2010), 525, 526, 530, 531
23. Schaffalitzky, F., Zisserman, A.: Multi-view matching for unordered image sets, or How do

I organize my holiday snaps?. In: Eur. Conf. Computer Vision (2002), 524



Stable Structure from Motion for Unordered Image Collections 535

24. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from Internet photo collections.
Int. Journal on Computer Vision 80(2), 189–210 (2008), 524

25. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Heidelberg (2010),
524

26. Thormaehlen, T., Broszio, H., Weissenfeld, A.: Keyframe selection for camera motion and
structure estimation from multiple views. In: Eur. Conf. Computer Vision (2004), 524

27. Torr, P., Fitzgibbon, A., Zisserman, A.: The problem of degeneracy in structure and motion
recovery from uncalibrated image sequences. Int. Journal on Computer Vision (1999), 524

28. Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment - a modern syn-
thesis. In: Int. Conf. Computer Vision (1999), 526, 531

29. Zach, C., Klopschitz, M., Pollefeys, M.: Disambiguating visual relations using loop con-
straints. In: Conf. Computer Vision and Pattern Recognition (2010), 529



Projector Calibration by “Inverse Camera

Calibration”

Ivan Martynov, Joni-Kristian Kamarainen, and Lasse Lensu

Machine Vision and Pattern Recognition Laboratory (Kouvola Unit)
Lappeenranta University of Technology, Finland

http://www2.it.lut.fi/mvpr

Abstract. The accuracy of 3-D reconstructions depends substantially
on the accuracy of active vision system calibration. In this work, the
problem of video projector calibration is solved by inverting the standard
camera calibration work flow. The calibration procedure requires a single
camera, which does not need to be calibrated and which is used as the
sensor whether projected dots and calibration pattern landmarks, such
as the checkerboard corners, coincide. The method iteratively adjusts the
projected dots to coincide with the landmarks and the final coordinates
are used as inputs to a camera calibration method. The otherwise slow
iterative adjustment is accelerated by estimating a plane homography
between the detected landmarks and the projected dots, which makes
the calibration method fast.

1 Introduction

In the recent years, video projectors have become the devices of choice for com-
puter vision systems of active scene exploration and reconstruction. A camera-
projector pair alleviates the difficult task of establishing correspondences
between the views, and therefore, systems like Structured Light [10] can pro-
vide accurate 3-D reconstructions. Lately, projector-camera pairs have also be-
come increasingly popular in modern game controllers such as Kinect (XBox).
However, even if active systems alleviate the matching problem, calibrated video
projectors are still required.

The camera calibration problem, i.e., the estimation of camera intrinsic and
extrinsic parameters, has been studied for a particularly long time and the ex-
isting state-of-the-art techniques including [14,15,6,4] can be used for accurate
calibration [12]. The basic working flow is the following: i) a set of images of
a known calibration pattern are captured from various camera poses, ii) pixel
coordinates of the calibration pattern “landmarks”, such as the corners of a
printed checkerboard pattern, are located, and iii) the camera parameters are
non-linearly estimated based on correspondence of the located 2-D image co-
ordinates and the known 3-D landmark coordinates under the selected camera
model. The video projector projection is usually modelled as the inverse projec-
tion of a pin-hole camera, and therefore, it is treated as perspective projection

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 536–544, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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similar to the camera models. Therefore, if correspondences between the projec-
tor pixels and the calibration landmarks can be established, the standard camera
calibration methods can be adopted for the video projector calibration as well.

This work is based on the popular camera calibration technique implemented
in Bouguet’s Camera Calibration Toolbox for Matlab [2]. The technique is ex-
tended for fast video projector calibration by adopting the inverted camera cal-
ibration procedure based on an iterative search of 2-D projector coordinates
coinciding with the calibration pattern landmarks. The calibration results are
reported for several real settings.

1.1 Related Work

During the last few years, the interest to use inexpensive off-the-shelf cameras
and video projectors for active and computer vision has increased considerably.
Camera and projector calibration are the necessary steps, and therefore, various
approaches and methods have been proposed to calibrate video projectors. The
idea of “inverting” the camera calibration is not new, and it has been exem-
plified by several authors [9,7]. However, their formulations are different to the
ones presented here: they project a calibration pattern onto a plane, “the wall”,
capture it by a camera, and then utilise the standard calibration work flow. The
main disadvantage of this approach is that it requires a calibrated camera and,
moreover, errors from the camera calibration are transferred to the projector.

One class of the calibration methods utilise known relations of the camera,
and the wall or the projector [11,13]. This makes the methods accurate and the
problem easier to formulate, but also less flexible than those requiring a cali-
brated camera. These methods can be used for fixed industrial camera-projector
systems, but not in the general case where configurations and poses are unknown.

Another important class of the methods includes those referred to as auto-ca-
libration methods. These methods do not require a physical calibration target.
Most auto-calibration methods work only for the extrinsic parameters [8] or
require a calibrated camera [7], but lately even more automatic methods have
been proposed. For example, the method by Draneni et al. [3] assumes a plane
projection geometry, “the wall”, and that one of the projector poses is “roughly
frontal”. These methods are attractive choices due to their automatic processing,
but there always exists the need for very accurate calibration in the structured
light and active vision systems. The extrinsic parameters can be solved by the
auto-calibration methods, but the intrinsic parameters should be solved by the
inverted camera approach utilising a physical calibration target since this is
accurate and needs to be done only once.

2 Projector Calibration

2.1 Camera Calibration

The main objective of camera calibration is to solve camera’s intrinsic pa-
rameters (focal length, lens aberration model parameters, etc.). Similarly, also
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the extrinsic parameters (location and pose) are accurately found by the same
optimisation process. Typically, the intrinsic parameters do not change when
the camera is moved and camera’s optics is not touched, and therefore, solving
the extrinsics with known intrinsics is considered as its own problem, e.g. [1]. The
standard camera calibration methods aim to solve the parameters as accurately
as possible, and therefore, they typically use a physical calibration pattern, such
as a printed planar checkerboard pattern. Images from the pattern are captured
from different camera poses, and the camera model parameters are optimised to
match the 2-D image coordinates and the known 3-D coordinates of the pattern.
The most popular methods with their implementations available are Tsai’s [14],
Zhang’s [15] and Heikkilä’s [6] methods. The methods mainly differ by the cam-
era model parameters and how they utilise the calibration pattern landmarks.

For our study, the Matlab toolbox implementation by Bouguet [2] was cho-
sen. The toolbox makes use of Zhang’s method and a planar checkerboard as
the calibration pattern. The method requires the user to capture a sufficient
number of images with the same camera in different locations. Then the toolbox
provides functions to detect the pattern cross points which is done separately
for all the images. The detection is semi-automatic as the first four corners need
to be annotated manually (see the left image in Fig. 1) and then the algorithm
computes the remaining corners automatically (see the right image in Fig. 1).
The four corners help to initiate the locations of the other cross points, and then
the algorithm searches for the accurate corner coordinates within some prede-
fined window whose default size is 11x11 pixels. To achieve sub-pixel accuracy,
the Harris corner detection is applied.

Fig. 1. Semi-automatic location of the checkerboard corners in Camera Calibration
Toolbox [2]

If the corner detection fails, the toolbox allows to adjust the detection param-
eters, such as the size and number of the squares in the checkerboard pattern,
a visually estimated distortion factor, etc. For the most cameras, the detection
works out-of-the-box, and therefore, it is utilised in our projector calibration.
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The next step is to calculate the intrinsic parameters of the camera (focal
length, principal point, skew, radial and tangential distortions) using the de-
tected corners. This is done by the main calibration function. After the opti-
misation process, the toolbox outputs the estimated parameters and the pixel
errors. Again, these values can be adjusted and the calibration re-run. It is worth
to remark that the detection of corners can be done without knowing the intrin-
sics, apparently.

2.2 Inverting Camera Calibration

For calibrating the projector, the same checkerboard pattern is used as for the
camera calibration. The main problem is to define the grid of cross points in the
projector plane which project exactly onto the grid of the real pattern. This task
is solved with the help of an uncalibrated camera. The camera can be used to
capture the pattern and projected points. The points can be projected with a
distinguishable colour which is easy to detect. Again, the detection of the cross
points can be achieved with the same semi-automatic method of the toolbox.
The projector grid points can be projected onto the same view, captured by
the camera and detected in the camera view, i.e., in camera pixel coordinates.
The both detected sets of points can be compared, and if the distance between
any of them is larger than a specified threshold, the points in the projector
plane are moved towards the corners points of the pattern in the camera view.
Fig. 2 illustrates this procedure to automatically find the correspondence of the
calibration pattern corners (the checkerboard cross points) and the projected
grid. In this figure, four steps are shown and it can be seen that the difference
between the third and fourth steps is very small (the two bottom images).

After the iterative search, the coordinates in the projector “view” are known
and it is possible to directly apply the toolbox functions to compute the intrin-
sics and extrinsics of the projector. Corresponding to the camera calibration, the
projector needs to be put in different locations where the corner detection pro-
cedure is repeated. When all corner points in the projector plane are computed
for all locations, the main toolbox optimisation process can be started.

2.3 Proposed Calibration Method

For the method, it needs to be decided how to detect the corner points of the
calibration pattern in the projector plane. First of all, the relation between the
camera and projector points is defined as the projective homography. This rela-
tion helps to make an accurate initial estimation of the corners in the projector
plane and speed up the iterative search in the next stage. For the homography
estimation the direct linear transform (DLT) [5] is used.

To compute the projective homography, at least four points are needed, but
the DLT is fast for even hundreds of points. In the current implementation,
four points are used in a rectangular configuration in the projector plane and
they are projected on the wall. The wall here denotes any planar background.
The points are coloured and, therefore, easy to distinguish and detect. The only
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Fig. 2. Example of automatic adjustment of the projected dots to the calibration
pattern corners (from the up left to the bottom right)

consideration is that the points are visible to the camera, i.e., not outside its
view. Homography from the camera coordinates to the projector coordinates is
computed using the DLT method.

Using the computed homography, all the detected calibration pattern corner
points on the camera plane are transformed into the corresponding points on the
projector plane. These points can now be projected and their location verified by
using the camera. The verification is again achieved by locating the points with
the camera and comparing their camera coordinates to the calibration pattern
coordinates. The DLT estimated points do not exactly match due to the non-
linearity in the projector intrinsics and since the DLT camera model is linear.
However, the points are close to the correct locations and can be iteratively
adjusted by a re-projection and re-capturing loop.

After the adjusted corner points on the projector plane are computed, the
calibration routines of the toolbox are used. The algorithm for the described
inverted camera projection method is given in Alg. 1.

It should be noted that if the location of the camera does not change while the
projector is moved, the corner detection of the calibration pattern needs to be
done only once. Generally, there is a need to recompute the corners’ locations of
the checkerboard pattern in the camera plane only if the location of the camera
has changed. Algorithm 1 is executed for each different location of the projector
and all coordinate sets are the input to the toolbox calibration function.
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Algorithm 1. Inverted camera calibration for video projector calibration.
1. Project four or more points which are visible to the camera.
2. Capture an image and detect the projected points.
3. Compute homography H from the camera points to the projector points (DLT).
4. Capture an image and detect the corners of the checkerboard pattern.
5. Transform the detected corner points to the projector points using H .
6. for all corner points do
7. Project the projector plane points in the neighbourhood of the transformed cor-

ner point.
8. Capture an image and detect the point’s coordinates
9. Select the one closest to the detected corner.

10. end for

3 Experiments

The proposed algorithm was applied to a camera-projector system. The used
camera was Unibrain Fire-i BCL 1.2 with the native resolution of 640 × 480,
and the video projector was ViewSonic DLP projector with the resolution of
800 × 600. These can be considered as inexpensive commodity hardware.

In the experimental setup, the camera and projector were put in locations
where that the angle between the views of the devices was roughly 30 degrees.
During the experiments, the location of the projector was changed several times,
thus, the angle between the camera and projector varied from 10 to 60 degrees.
The configuration is demonstrated in Fig. 3.

Fig. 3. The used camera-projector system

The main factor affecting the calibration accuracy are the camera properties,
mainly the resolution, and the location of the camera from the projection plane.
The resolution was kept fixed, but the effect of the camera distance was stud-
ied. The two distances used were approximately 60 and 120 cm from the wall.
Example images captured from these two distances are shown in Fig. 4. In the
both cases, the viewing angle remained approximately the same.
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(a) 60 cm (b) 120 cm

Fig. 4. The two camera configurations investigated

The projector location was changed 8 times, i.e., Algorithm 1 was executed
for nine different images. These points were the input to the calibration proce-
dure. The estimated intrinsic parameters are shown in Table 1 and the extrinsic
parameters for a roughly similar view in Table 3. For the accuracy evaluation,
the reprojection error was used (the last line in the tables). The reprojection
error was computed by using the estimated intrinsic and extrinsic values and by
projecting the projector plane coordinates on the wall and measuring the stan-
dard deviation of the distances to the detected calibration pattern coordinates.
From the errors in Table 1 we see that the distance change results to the error
increase of 20-30% for the double distance. Note that the error numbers are given
in pixel coordinates and are, therefore, affected by the projector resolution.

Table 1. Calibration results for the intrinsics

Param 60 cm 120 cm

Focal Length: fc = [1301.9; 1289.2] fc = [1317.6; 1314.0]
Principal point: cc = [360.5; 718.8] cc = [347.4; 719.3]
Skew: alpha = -0.00785 alpha = -0.00960
Distortion: kc = [-0.145; 0.177; kc = [-0.109; 0.211;

-0.004; -0.010; 0.000] 0.008; -0.013; 0.000]
Pixel error: err = [1.051; 1.045] err = [1.369; 1.240]

In order to see how the distance affects the accuracy, it was necessary to
investigate the change of the focal length error because it is less affected by
larger errors in a few single pixels than the reprojection error. Several tests were
carried out and it was noticed that a degrade of approximately of 25% in the
accuracy occurs. In other words, if the distance from the camera to the wall is
doubled then the reprojection error becomes roughly one fourth bigger. Table 2
presents the errors in the focal length estimation from the same images.
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Table 2. Focal length estimation error from the both distances

Param 60 cm 120 cm

Focal length error: err = [41.79; 40.40] err = [57.03; 55.11]

The comparison of the extrinsic parameters for the two sets is rather useless
since the projector location was different. However, this can be solved by using
the same image as an evaluation image. The results for this experiment, the
reprojection pixel deviations for the one view, are shown in Table 3. The chosen
evaluation view was from the second test where the distance from the camera
to the wall was approximately 120 centimetres. Again, the error increased by
approximately 17%.

Table 3. Calibration results for the extrinsic parameters of the last location of the
projector

Param 60 cm 120 cm

Pixel error: err = [1.539; 1.156] err = [1.541; 1.160]

The last experiment was the estimation of a sufficient number of images for the
calibration of the projector. This means that the algorithm was run with 2 to 9
images. The error is affected by the location of the projector. When the projector
is located with a wider angle with respect to the camera, the reprojection error is
somewhat larger. However, if the computation of the focal length is considered,
the error of the computation of the focal length tends to decrease as the number
of planes increases. From Fig. 5 it can be seen that 5 images are sufficient in
the sense that the error does not decrease significantly as the number of images
further increases. Also, this experiment demonstrates that the computation of
the focal length, and the intrinsics in general, are not seriously affected by larger
errors in a few single points.

Fig. 5. Focal length error (in pixels) depending on the number of planes
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4 Conclusion

In this work, a method to calibrate a video projector by inverting the work flow
of camera calibration is proposed. The method is based on the existing popular
camera calibration tool, and by integrating the method to the tool, it can be used
to accurately calibrate any camera-projector or single projector system without
the need to first calibrate the camera.

At the core of the method is the iterative search of projector plane points
which correspond to the points in the calibration pattern. This otherwise slow
search is enhanced by introducing good initialisation by plane homography es-
timation. All code will be made publicly available.
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Abstract. Estimation of local spatial structure has a long history and
numerous analysis tools have been developed. A concept that is widely
recognized as fundamental in the analysis is the structure tensor. How-
ever, precisely what it is taken to mean varies within the research commu-
nity. We present a new method for structure tensor estimation which is
a generalization of many of it’s predecessors. The method uses filter sets
having Fourier directional responses being monomials of the normalized
frequency vector, one odd order sub-set and one even order sub-set. It is
shown that such filter sets allow for a particularly simple way of attaining
phase invariant, positive semi-definite, local structure tensor estimates.
We continue to compare a number of known structure tensor algorithms
by formulating them in monomial filter set terms. In conclusion we show
how higher order tensors can be estimated using a generalization of the
same simple formulation.

Keywords: structure tensor, higher order, quadrature, monomial filter.

1 Introduction

Many of the popular image analysis concepts of today have roots that can be
traced to early work in signal processing and optics, e.g. Riesz transforms,[1],
Zernike moments, [2], and Gabor signals,[3]. The first steps towards analysis of
digital images were taken more then four decades ago [4]. From the very start
detecting edges and lines in images was considered a fundamental operation [5].
Since these early days new and more advanced schemes for analysis of local
image structure has been suggested in a seemingly never ending stream. Papers
having a particular relevance in the present context can be found in, for example
[6] - [33]. Local image orientation, scale, frequency, phase, motion and locality of
estimates are prominent examples of features that have been considered central
in the analysis.

The main force driving the research has been the need for an efficient and
useful analysis of data produced by increasingly capable imaging devices. Both
the outer and the inner dimensionality is commonly high, e.g. volume sequence
data and tensor field data respectively. Regardless of this development the first
stages in the analysis remain the same. In most cases the processing starts by
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performing local linear combinations of image values, e.g. convolution operators.
The output from these convolutions are then usually combined in a non-linear
fashion to produce local feature descriptors.

We will focus on developments regarding a particular instance of such al-
gorithms, local structure tensor estimation. We start by presenting a general
estimation scheme using monomial filter sets.

2 Monomial Filters

The monomial filters are spherically separable, i.e. defined as a product of one
radial and one directional part:

F (μ̂) = R(ρ)D(μ̂) (1)

where μ defines the Fourier domain (FD) coordinates and ρ = ‖μ‖. The radial
part, R(ρ), is a band-pass or high-pass filter (R(0) = 0) and a typical choice is
the lognormal function [9].

Directional part - The directional part consists of monomials i.e. products
of positive integer powers of the components of μ̂. Performing n repeated outer
products of μ̂ will contain all order n component products.

μ̂⊗n = μ̂ ⊗ μ̂ ... ⊗ μ̂︸ ︷︷ ︸
n entities

(2)

For convenience we rearrange the terms such that the directional part, Dn(μ̂),
becomes a matrix:

Dn(μ̂) = μ̂ �μ̂⊗(n−1)�T (3)

Here the “ � � ” notation implies a lineup operation which arrange the ele-
ments of a multi dimensional array into a lexicographic ordered column vector.
The motivation for introducing this notation is that letting Dn contain the el-
ements of μ̂⊗n arranged as a matrix greatly simplifies the equations needed in
the following analysis.

To handle the special cases of n = 0 and n = 1 we introduce the following
definitions:

μ̂ �μ̂⊗(−1)� ≡ μ̂⊗0 ≡ I (4)

where I is an identity matrix scaled to have a unity frobenius norm. The need to
introduce these definitions correspond to the fact that order 0 implies a scalar
entity that does not carry orientation information and thus constitutes a special
case.

It is also worth noting here that the odd part of D1(μ̂) corresponds to the
Hilbert transform in the 1-dimensional case and the Riesz transform for higher
dimensions, [1].

The monomial filter matrix - For each order n a monomial filter matrix is
defined as:

F n = R(ρ) Dn(μ̂) (5)
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FD SD

Fig. 1. Left: Fourier domain images of F3(1, 1) and F3(1, 2), see eq. (6). High values are
bright and low values are dark. Green indicates positive real values and red indicates
negative real values. Right: Spatial domain images of F3(1, 1) and F3(1, 2). Yellow
indicates positive imaginary values and blue indicates negative imaginary values. The
black contours are iso-level lines. The remaining filters in the set are 90 deg rotated
copies of the shown filters.

As an example consider the monomial filter matrix of order three in 2D. Using
the notation μ̂ = (μ, ν)T the monomial filter matrix is computed as:

F 3 = R(ρ)
(
μ
ν

)⌊
μ2 μν

μν ν2

⌋T

= R(ρ)
(
μ
ν

) (
μ2 μν μν ν2

)

= R(ρ)
(
μ3 μ2ν μ2ν μν2

μ2ν μν2 μν2 ν3

)
(6)

For clarity of the presentation most examples in this paper are given in 2D. The
proposed concept is, however, valid for any signal dimensions.

Monomial filter responses - Now let the spatial domain (SD) correspon-
dence of the monomial filter matrix F n be denoted Fn. Each element of Fn con-
sequently contains the convolution kernel of the corresponding FD filter function
in F n. If the multi dimensional signal is denoted s(x) where x denotes the SD
coordinates the monomial filter response matrix, Qn(x), is defined as:

Qn(x) = Fn(x) ∗ s(x) (7)

Denoting the Fourier transform of s around x by Sx the same relation is, in the
Fourier domain, expressed as:

Qn(x) =
∫

Fn(μ) Sx(μ) dμ (8)

In this general description each element of Qn(x) contains the monomial filter
responses for the entire signal. Since all filtering operations in this paper are shift
invariant we may from now on sometimes omit the spatial coordinate vector x
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and, when doing so, consider each element of Qn to contain a monomial filter
responses for any given spatial coordinate.

3 Signal Classes

It is useful in the following to define different classes of signals. We will here
define three different signal classes: Sinusoidal, Simple and Rank d signals.

Sinusoidal signals - We first present the simplest case, a sinusoidal signal
with amplitude a, spatial frequency u, and phase θ. For this case the monomial
filter response matrix can be described in FD terms as:

s(x) = a cos(uTx + θ) (9)

both even and odd order filters will respond and we get:

Qn =

{
a cos(θ)R(ρ)Dn(û) for even n

−ia sin(θ)R(ρ)Dn(û) for odd n
(10)

Simple signals - Following [18] we define signals that can be expressed by
equation (11) to be termed simple signals.

s(x) = g(ûTx) (11)

Here g(x) is any real, one variable, function and x = ûTx. û is a unit vector
giving the orientation of the signal. For this case the monomial filter response
matrix can be described in FD terms as:

Qn(û) = An Dn(û)

= An û �û⊗(n−1)�T
(12)

The local orientation invariant filter factor, An, is a function of the radial filter
function, R(ρ), and the signal generating function, g(x). The fact that the Fourier
transform of a simple signal is non-zero only on a line through the origin makes
for a simple solution. Denoting the Fourier transform of g(x) by G(u) we find
the filter response amplitude as:{

An = Ae =
∫
R( |u| ) G(u) du for even n

An = Ao =
∫
R( |u| ) G(u) sign(u) du for odd n

(13)

Unless explicitly mentioned all signals will in the following be regarded simple.

Rank d signals - Although not directly used here, it is worth noting that it
is straight forward to classify more complex signals in a similar manner. Let Û
be a projection operator of rank d and g be a real function of d variables, then

s(x) = g(Ûx) (14)

is a rank d signal. Thus, a simple signal is a rank one signal. A full rank signal
corresponds to Û = Î. In the following we will only distinguish between sinu-
soidal, simple and non-simple signals.
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4 Second Order Structure Tensors

The next step towards obtaining a structure tensor is to compute the outer
product of the filter matrix.

T2
n = Qn QT

n (15)

where “ T ” denotes complex conjugate transpose.
We will present the case where the local neighborhood of the image consists of

a simple signal with direction û. As a simple introductory example we consider
2-dimensional monomial filters of order three.

Q3 = Ao

(
u3 u2v u2v uv2

u2v uv2 uv2 v3

)
(16)

Carrying out the sums we get:

T3 = Q3 QT
3

= AoA
∗
o

(
u3 u2v u2v uv2

u2v uv2 uv2 v3

)
⎛
⎜⎜⎜⎝
u3 u2v

u2v uv2

u2v uv2

uv2 v3

⎞
⎟⎟⎟⎠

= |Ao|2 (u2 + v2)2︸ ︷︷ ︸
=1

(
u2 uv

uv v2

)

= |Ao|2
(
u2 uv

uv v2

)

(17)

In general the matrix product of equation (15) becomes:

T2
n = An û �û⊗(n−1)�T︸ ︷︷ ︸

Qn

�û⊗(n−1)� ûT A∗
n︸ ︷︷ ︸

QT
n

= An û �û⊗(n−1)�T �û⊗(n−1)�︸ ︷︷ ︸
inner product

ûT A∗
n

(18)

The inner product of the lined up outer products above can be performed in
reversed order. Then, for n > 0, equation (18) simplifies to:

T2
n = An û (ûT û)(n−1)︸ ︷︷ ︸

=1

ûT A∗
n (19)

By definition ûT û is equal to one. It follows that the under-braced term also
equals one and we have the desired result:

T2
n = |An|2 û ûT ; n > 0 (20)

For n = 0 we have a special case since the filter is isotropic, Dn = 1, and
T2

0 = Q0 QT
0 = |Ae|2 I.
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Monomial quadrature - As stated in equation (13) even and odd filters will
have different local magnitudes.

T2
n =

{
A2

e û ûT for even n

|Ao|2 û ûT for odd n
(21)

A phase invariant monomial quadrature tensor can now be computed as the sum
of one even index tensor and odd index tensor. Letting n be even and m odd we
obtain:

T2
nm = T2

n + T2
m

= QnQT
n + QmQT

m

= |Ae + Ao |2 û ûT

= q2 û ûT

(22)

Note that the tensor magnitude, q, will be the same regardless of the order of
the filters used.

Tensor positivity - A more compact expression of the monomial quadrature
tensor can be attained by concatenating the even and the odd filter response
matrices to a single matrix. The “ , ” notation implies concatenation of the
arguments left to right.

Qnm = (Qn , Qm) (23)

and compute the monomial quadrature tensor of origin (m,n) as

T2
nm = Qnm QT

nm (24)

As the monomial quadrature tensor is computed from products of filter response
matrices

T2
nm = QnmQT

nm =
∑

k

λk êkê
T
k (25)

it follows that all λk ≥ 0 which allows for robust certainty estimates for the local
structure estimation.

5 Structure Tensor Estimation Variations

Local structure analysis algorithms are quite complex and involve a lot more
than the filters used. This makes comparisons difficult to interpret from a filter
point of view. There are, however, a number of interesting similarities between
different suggested algorithms. A few previous comparisons can be found in [21]
and [26]. In the following we point out the relation to the monomial approach
for a number of well known approaches to structure tensor estimation. We show
that nearly all variants can be formulated as special or modified versions of the
monomial approach.
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The structure tensor, T - The first publications mentioning tensors as a
representation for local orientation and structure is due to Knutsson, [12,16].
Similar to the earlier developed vector representation, [9,11], the construction is
based on a set of quadrature filters oriented in a number of fixed orientations,
qk, k indicating the orientation. The structure tensor is obtained as:

T =
∑

k

√
qkq∗k Tk (26)

The vector variant works for two dimensional signals but for three dimension,
or more, the tensor formulation is necessary. The loglet based structure tensor
estimation suggested in [22] also uses this weighted ’basis tensor’ approach but
involve a different set of filters allowing higher order orientations components to
be incorporated.

Unlike the methods discussed below these method for structure tensor con-
struction are not possible to describe as a special or modified case of the mono-
mial approach.

The gradient tensor, TG - The simplest way to obtain a matrix describ-
ing local orientation is exemplified by Bigun-Granlund’s inertia matrix [13] and
Förstners corner detector [15]. This matrix is constructed as the outer product
of the local gradient and is, in the notation introduced above and Q defined by
equation(7), given by:

TG = T1

= Q1 QT
1

(27)

Although the authors never mention tensors in the original work this outer prod-
uct matrix estimate is often referred to as the gradient tensor or the structure
tensor.

Since only a single order, i.e. order one, is used this tensor is not phase in-
variant. Another drawback is that the frequency bandwidth of the estimate can
become twice that of the original signal which may cause significant aliasing
artifacts. Both these shortcomings are in practice, to some extent, remedied by
the use of an averaging filter performing a weighted summation of local outer
products. On the other hand this decreases the spatial resolution of the estimate,
[24].

The boundary tensor, TB - The boundary tensor originally suggested by
Köthe, [23], uses orders one and two and constitutes a special case of the mono-
mial quadrature tensor.

TB = T12

= Q12 QT
12

(28)

The energy tensor, TE - The energy tensor, suggested by Felsberg, [28], is
a variant where filters of different orders are involved in the computed products.
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The energy tensor uses an isotropically bandpass filter signal, it’s gradient and
it’s Hessian. It can in monomial terms be expressed as:

TE = T1 + T(0,2)

= Q1Q
T
1 + q0Q2

(29)

Note that the filter response matrices here have different radial frequency re-
sponse and the mixing of different order terms will not give a positive semi-
definite tensor for all image neighborhoods.

Gradient energy tensor, TGE - The gradient energy tensor (GET) suggested
in [29] can be said to use the same formula as the energy tensor with the input
signal replaced by it’s gradient. In monomial terms the result can be expressed:

TGE = Q2 QT
2 +

1
2

(
Q1 QT

3 + Q3 QT
1

)
(30)

Note that also in this case the filter response matrices here have different radial
frequency response and that the mixing of different order terms will not give a
positive semi-definite tensor for all image neighborhoods.

Spatial 2:nd order polynomial tensor, TSP - The 2:nd order polymer
tensor suggested by Farnebäck in [19] is a sum of outer products of 1:st and 2:nd
order monomial filters. The difference from the monomial approach is that the
filters are designed as windowed 1:st and 2:nd order polynomials in the spatial
domain.

TSP = T1 + T2

= Q1Q
T
1 + Q2Q

T
2

(31)

This spatial design results in 1:st and 2:nd order filter that have different radial
functions in the frequency domain. For this reason the result is not in general
phase invariant i.e components are not in quadrature. However, since it is a sum
of squares, the result is always positive semi-definite.

Spherical harmonics, TSH - A somewhat different way to estimate a local
structure tensor is suggested in [24]. This approach is based on sums of products
of spherically separable filters. The filter have the same radial function and
the directional functions are spherical harmonic functions. The structure tensor
carries information about 0:th and 2:nd order variations in orientation. A product
between an order j filter and an order k filter will contain signal components
of orders j − k and j + k. By an appropriate weighted summation of a number
of filter products it is possible to retain only order 0 and order 2 in the correct
proportion while canceling out all other orders: i.e:

TSH =
∑
jk

wjkHjHk (32)

This is a very general approach and, since spherical harmonic filter sets of orders
1 to N span the same function space as monomial filter sets of orders 1 to N ,
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all monomial tensor variations can also be expressed in this way. With proper
weights the result can also be made phase-invariant.

Sum of monomial tensors - Even more careful weighting of spherical har-
monic filter products will give positive semi-definite tensors, in this case the
result will be equivalent to a sum of tensor estimates over different order, n ≥ 0
(even and odd), monomial filter matrices, Qn.

TSM =
∑

n

wnQnQT
n (33)

6 Higher Order Structure Tensors

In equation (18) the filter matrix is constructed to produce a 2:nd order tensor.
However, a simple rearrangement of the order n filter matrix components will
allow tensors of order 2p to be estimated.

T2
2p,n = An �û⊗p� �û⊗(n−p)�T︸ ︷︷ ︸

Q(p)n

�û⊗(n−p)� � û⊗p�T
An︸ ︷︷ ︸

QT
(p)n

= An �û⊗p� �û⊗(n−p)�T �û⊗(n−p)�︸ ︷︷ ︸
inner product

� û⊗p�T
An

(34)

As before the inner product of the lined up outer products above can be per-
formed in reversed order. Then, for n ≥ p ≥ 0, equation (18) simplifies to:

T2
2p,n = An � û⊗p� (ûT û)(n−p)︸ ︷︷ ︸

=1

� û⊗p�T
An (35)

By definition ûT û is equal to one. It follows that the under-braced term also
equals one which gives:

T2
2p,n = |An|2 �û⊗p�� û⊗p�T ; n ≥ p ≥ 0 (36)

The result now holds the components of a tensor of order 2p. However, due to
the use of the lineup operator, the components are stored in matrix form and
they need to be re-organized in order to obtain the result as a proper tensor Υ
of order 2p.

Υ2p,n = � T2
2p,n� (37)

The “ � � ” notation used here indicates a reshape operation that restores the
proper structure of the data, i.e. the result is a tensor having 2p indexes.

As 2:nd order tensors are naturally represented as matrices the lineup opera-
tor greatly simplifies the notation. For higher order tensors, however, the use of
standard tensor notation may be preferred by some readers. Equations (36) and
(37) can then be jointly expressed as:

Υ
a1 ... ap

n b1 ... bp
= |An|2 u

a1 ... ap
ap+1 ... an u

ap+1 ... an

b1 ... bp
(38)
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According to the Einstein convention a summation is performed over equal in-
dexes and equation 38 clearly shows that the difference between tensors of dif-
ferent order is how many indexes are summed over (contracted). Letting p = 0
means summing over all indexes and the result is a scalar representing the local
energy. For p = 1 we obtain the standard structure tensor. For p > 1 we obtain
higher order tensors having the power to represent more complex local structure.

Non-simple signals - For such non-simple signals equation (38) is no longer
applicable since there is no unique local orientation, u. Directly expressed as a
sum of filter products, corresponding to a generalization of the monomial filter
response matrix product in equation (15), we obtain an order 2p structure tensor
as:

Υ
a1 ... ap

n b1 ... bp
= q

a1 ... ap
ap+1... an q

ap+1... an

b1 ... bp
(39)

Tensors of order four have been used to analyze situations with two orientations
present, e.g. [25,31,33]. Applications where tensors of order higher than four have
been used are so far not known to the authors but can be expected to prove a
powerful tool when more that two orientation are present.

To produce quadrature type tensors we still need to add a tensor from odd
order filter sets and a tensor from even order filter sets. In the most general case
we can express the estimation of local structure tensors of order 2p as a weighted
summation of order 2p tensors, here of order (p

p), from monomial filter sets of
different orders, i.e:

Υ
a1 ... ap

b1 ... bp
=

∑
n

wn q
a1 ... ap
ap+1... an q

ap+1... an

b1 ... bp
(40)

7 Conclusion

Research concerning 2:nd order structure tensor estimation is still continuing
after more than two decades. The higher order tensor estimates produced by
equation (40) contains a much richer representation of the local structure and we
expect that the future will hold considerable effort towards fully understanding
these new higher order constructs.
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0843, Linköping University, Sweden (1986)

12. Knutsson, H.: A tensor representation of 3-D structures. In: 5th IEEE-ASSP and
EURASIP Workshop on Multidimensional Signal Processing, Noordwijkerhout,
The Netherlands (September 1987), poster presentation

13. Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In:
IEEE First International Conference on Computer Vision, London, Great Britain,
pp. 433–438 (June 1987)

14. Lenz, R.: Rotation-invariant operators and scale space filtering. Pattern Recogni-
tion Letters 6, 151–154 (1987)

15. Forstner, W., Gulch, E.: A fast operator for detection and precise location of dis-
tinct points, corners and centres of circular features. In: ISPRS Intercommission
Conference on Fast Processing of Photogrammetric Data, pp. 281–305 (1987)

16. Knutsson, H.: Representing local structure using tensors. In: The 6th Scandinavian
Conference on Image Analysis, Oulu, Finland, pp. 244–251, (June 1989); Report
LiTH–ISY–I–1019, Computer Vision Laboratory, Linköping University, Sweden
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Abstract. Time-resolved medical data has important applications in
a large variety of medical applications. In this paper we study auto-
matic analysis of dynamical renal scintigraphies. The traditional analysis
pipeline for dynamical renal scintigraphies is to use manual or semiau-
tomatic methods for segmentation of pixels into physical compartments,
extract their corresponding time-activity curves and then compute the
parameters that are relevant for medical assessment. In this paper we
present a fully automatic system that incorporates spatial smoothing
constraints, compartment modelling and positivity constraints to pro-
duce an interpretation of the full time-resolved data. The method has
been tested on renal dynamical scintigraphies with promising results. It
is shown that the method indeed produces more compact representa-
tions, while keeping the residual of fit low. The parameters of the time
activity curve, such as peak-time and time for half activity from peak, are
compared between the previous semiautomatic method and the method
presented in this paper. It is also shown how to obtain new and clinically
relevant features using our novel system.

Keywords: Medical image analysis, time-resolved, compartment mod-
elling, dynamical renal scintigraphies, segmentation.

1 Introduction

Dynamical renal scintigraphy, or simply Renography, is a method used by medi-
cal doctors to assess the renal function of a patient. It exploits the mechanisms of
the homeostasis - preservation of an optimal extracellular fluid volume and the
ability to either remove or restore ions and chemical compounds produced as a re-
sult of the metabolism. Since these abilities heavily rely on the complex structure
of the kidney any impairments, such as kidney stones, cancer or obstructions, on
the kidneys’ anatomy and physiology lead to decreased renal function. If this is
suspected by the medical doctor, then renography is performed. The procedure
of the examination is that the patient is excessively hydrated to build up the
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urine production. The patient is then given an injection of a tracer consisting of
a radioactive isotope, 99mTc, that is attached to a molecule specifically designed
to be removed by the kidneys. The progression of this tracer is then recorded
by a gamma camera to form a time-resolved image sequence that is used in the
further analysis.

The acquired sequence holds the accumulated counts between time points t−
Δt and t for each detector on location (x, y) in the frame corresponding to time t.
The data that is used in this paper was retrieved from Skånes universitetssjukhus,
SUS, where they record this progression with a 128-by-128 detector grid and
with uniform time sampling, Δt = 15. This provides a resulting image sequence
which consists of np = 80 frames. In Figure 1 a summarized image sequence is
displayed.

Fig. 1. A summarized image sequence from dynamical renal scintigraphies, the images
show the accumulated counts every second minute

The traditional analysis pipeline then is to use manual and/or semi-automatic
methods for segmenting the data into pixels, which correspond to the different
physical compartments, to estimate the corresponding time-activity curves for
the different compartments by summing the pixels in each compartment and to
estimate parameters or make classification based on such curves. Two problems
arise from the above, (a) manual methods are often time-consuming and differ-
ent operators may obtain slightly different results and (b) each pixel contains
an unknown mixture from the different compartments which is interfering the
results. Especially interesting is the way to obtain the Renogram, the TAC which
describes the uptake and washout from the kidney and is the primary result of
renography studies. In a publication from 2010 Piepsz et al. [2] states “The way
of handling a renogram remains extremely variable from country to country and
even from department to department. Part of these divergences is obviously re-
lated to the use of obsolete software available on most of the gamma camera
systems”. The result of the previously mentioned problems is the huge variety
of renal software packages currently used by practitioners, where many of them
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are developed to fit local fashion e.g. [3] or the one found at SUS. There also
exists software from commercial actors trying to bridge the gap [4]. Common
for these applications is their manual or semi-automatic approach to obtain the
parameters [5].

The aim of this paper is thus to address the problems stated above, (a) and (b),
and construct an automatic method to assess the renal function by exploiting the
fact that each pixel contains a mixture of contributions from a few types of tis-
sue and organs, in this paper denoted as compartments, which can be identified
and used to obtain the structure of tissue and organs that is present in the im-
age sequence. This corresponds to finding the compartments, their time-activity
curves and the composition of compartments in each pixel. The result includes
data about (i) for each pixel (x,y), the weight ck(x, y) representing the contri-
bution from each compartment k in the pixel, (ii) the time-dependence bk(t)
of each compartment and (iii) system identification of the underlying compart-
ment model. We will do this in the setting of positivity and spatial smoothness
constraints applied on ck and bk. With this information an analysis of the renal
function is performed.

Many articles have been published on how to obtain the image sequence, the
renogram and which parameters that can be used for the medical assessment.
One way of exploiting information in the data is to use Proper Orthogonal De-
composition, POD, where it was shown by Veltri et al. [1] that a few modes
generated from it were sufficient to distinguish different parts of the anatomy of
the healthy kidney as well as pathological areas in the pathological kidney. At
ISCORN1 2010 Richard Lawson presented a summary of the methodologies used
when performing an analysis of the kidney and the extraction of the renogram
[6]. In his presentation he primarily focused on two strategies for counteracting
the accumulated counts from background tissue - the Patlak plot and the de-
convolution analysis. Whereas the mathematical model behind the Patlak plot
relies on the assumption of constant infusion of tracer, deconvolution analysis
models the kidneys’ impulse response function from an injection from the blood,
cf. [7,8]. Other approaches to extract the renogram are also introduced in [9,5].
Compartmental modelling has also drawn some attention, in the mid-nineties
Fine et al. developed a model for parametric deconvolution analysis [10]. Other
attempts include the use of concepts from pharmacokinetics e.g. Meng et al.
propose a 2-compartmental model approach to reconstruct the renogram and
estimate physical parameters [11]. Drainage and flow rate parameters between
different compartments can also be estimated using compartment models [12].

2 Methods

Our proposed system is built up by several modules further explained in this sec-
tion. At first we present a brief introduction to the Singular Value Decomposition,

1 XIV International Symposium on Radionuclides in Nephrourology.



560 D. Ståhl et al.

SVD, which is used as a reference method. Later in this section our method for
estimating the weights ck(x, y), the bases bk(t) and the compartmental models
are introduced.

Our assumption is that the data D(x, y, t) can be approximated well as a
linear combination of these components according to

D(x, y, t) ≈ D̃c,b(x, y, t) =
K∑

k=1

ck(x, y)bk(t), (1)

where K is the number of compartments, in our experiments K = 5, and c and
b denotes the sets of weights and bases that is reconstructing D. Since the image
sequence is a recording of the accumulated counts it is further assumed that each
element in D can be regarded as generated from a counting process e.g. Poisson
process with intensity λ. However, if the accumulated counts are large it could as
well be approximated by a normal distribution. It should also be outlined that
scattering and attenuation effects introduces noise in each element of D.

2.1 Using SVD to Approximate the Data

A common approach to reduce the dimensionality of the data and its noise is
to use SVD. The data sequence can then be optimally reconstructed in a least
squares sense [13], i.e. the approximation D̃c,b that minimizes

min
c,b

∑
x

∑
y

∑
t

|D(x, y, t) − D̃c,b(x, y, t)|2 (2)

is found by (i) rearranging the data D in a matrix M so that each time point t
in D forms a column in M and (ii) performing a singular value decomposition of
M , M = USV T . In the case of 5 compartments and 5 basis functions, the first
5 columns of V gives the optimal basis functions and the first 5 columns of US
gives the optimal weights ck after rearrangement of the columns back to matrix
form again. An illustration of the output is shown in Figure 2.

Fig. 2. The first five modes generated by SVD from left to right. The lower row holds
the bases and the upper row holds the scores.
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SVD provides the optimal L2 fit, but ignores constraints such as sparsity,
spatial continuity and positivity. The weights ck(x, y) is also expected to assume
both positive and negative parts where most of them will be nonzero. Although
no particular spatial continuity constraints are assumed, the weights might still
be relatively smooth due to the structure of the data. Note also that the gen-
erated bases bk does not in general provide any physiological information about
compartment k due to the orthogonality of the bases and that the concentration
of tracer only can assume positive values. Hence, the bases are not expected to
give an expression of a possible underlying compartment model.

2.2 Using Classification to Approximate the Data

An alternative method is to enforce sparsity by using machine learning tech-
niques. In this method we exploit basis functions that are extracted from data
from four healthy patients after manual segmentation of the image into four
parts (i) injection site, (ii) blood and surrounding tissue, (iii) kidney and (iv)
bladder. For a novel data set we first remove pixels (x, y) for which the time
series measurements contain insufficient data to be able to classify reliably. For
the remaining pixels an over-segmentation is performed. Each individual seg-
ment is then classified into in one of the four classes above. Finally the left
and right kidney is automatically separated using a horizontal histogram func-
tion of the segmented kidney class. Since the left and right kidney by nature
is well-separated it is therefore straightforward to segment them. Prior to the
kidney separation a morphological operator is used to obtain a homogenous clas-
sification, see Figure 3. The spatial location of the clusters then indicates the
possibility of having non-zero weights of the particular bases, these areas are
denoted as the support mk(x, y) of compartment k. An estimate of ck(x, y) are
then obtained from Equation 2. In figure 4 the estimated compartments after
classification is displayed.

Fig. 3. A figure displaying the classification of pixels into the four classes (left) and the
adjusted classification using a morphological operator (right). Legend: Black - pixels
not classified due to poor SNR. Green: pixels classified as injection site. Red: pixels
classified as blood/tissue. Yellow: pixels classified as kidney. Cyan: pixels classified as
bladder.
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Fig. 4. The compartments generated from classification from left to right (Injection,
blood/tissue, left kidney, right kidney, bladder). The lower row holds the bases and the
upper row holds the scores. Note the similarity between blood/tissue, left and right
kidney TACs, suggesting that the mixture of them has to be estimated.

2.3 Estimation of bk

The composition of each pixel is described by c and can be used to reduce the
influence of one compartment in other compartments and their associated bk(t).
The bks can be estimated using least squares, let Dk(x, y, t) denote the data
subtracted by the other compartments except for the one to be estimated, k,
then bk(t) | ck(x, y) is estimated as

b̂k(t) = min
bk(t)

nt∑
t=1

∑
(Dk(x, y, t) − bk(t)ck(x, y))2 . (3)

2.4 Estimation of ck Using Positivity Constraints and Spatial
Smoothness Priors

Once estimates of bk(t) and mk(x, y) are given for compartment k it is possible
to estimate ck(x, y) using positivity constraints and spatial smoothness priors.
If no spatial smoothing is applied, estimation of ck(x, y) becomes independent
for each pixel (x, y). If such, the estimation problem becomes nxny non-negative
least squares problems,

min
ck(x,y)

nt∑
t=1

⎛
⎝D(x, y, t) −

∑
(x,y)∈mk(x,y)

bk(t)ck(x, y)

⎞
⎠

2

, (4)

of size ntnc, where nx and ny are 128, nt for our data is 80 and nc is the number of
relevant compartments acting on the pixel, in our experiments 1 or 2. To decrease
the computational demand two methods of introducing spatial regularization is
considered in this paper. The first is based on linear parametrization of ck so as
to enforce spatial smoothness and the other is based on penalizing the second
derivatives of ck.
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For the linear parametrization, each weight ck(x, y) is parameterized linearly
with much fewer parameters or control points. This makes the minimization
problem for different pixels connected and the independent pixel problem can
instead be written as a large nonlinear least squares problem of the form d = Mc,
where d is a vector of length nxnynt (for our data 1310720) and M is a sparse
matrix of size nxnynt×nxnyK, (1310720×81920), where K denotes the number
of compartments. The parametrization of ck can now be seen as a linear mapping
ck = Rx, where x denotes the control points. x is then estimated by solving
d = MRx in a non-negative least squares manner. This problem is efficiently
solved by sparse numerical linear algebra routines since the relevant Fischer
matrix RTMTMR is relatively small and has sparse band-diagonal structures.

The first regularization implies smoothing in the neighborhood around the
control points. However, the estimation problem is still independent between
control points, the second way of regularization connects the control points to
enforce spatial smoothing between these as well. To penalize the second deriva-
tives the laplacian of the weights ck is calculated and added into the estima-
tion problem with a proportionality constant C > 0, i.e. we wish to minimize
|MRx − d|2 + C|Lx|2, where the parameter C controls the amount of global
regularization applied. The higher C is the smoother the cks get. In our experi-
ments the selection of C was obtained by manual determination about whether
the computed cks reflected the actual compartment well or not e.g. it is expected
that the blood/tissue distribution covers the whole body and have high weights
where there is a high concentration of blood.

2.5 Compartment Modelling

Given the estimated bases and weights for each compartment and prior knowl-
edge of the interaction between them, the compartment modelling can be
performed with the deconvolution analysis approach in mind. With the assump-
tion that the interactions between compartments is linear they can be char-
acterized with an impulse response between the systems’ input and output i.e
bj(t) = (h∗bk)(t). In matrix notation this can be formulated as Bj = HBk where
Bj is the complete time series of bj(t) (nj = 80), Bk is bk(t)’s (nk = nj) ditto
and H is a circulant matrix (H ∈ Rnk×nk

). By rearranging the right hand side
HBk = Xh, where X is a left triangular matrix containing elements from Bk

and h is the impulse response function, h can now be estimated in non-negative
least squares sense. To reduce the computational effort regularization using con-
trol points is used, similar to the first type introduced in section 2.4, to estimate
smooth impulse response functions.

2.6 Incorporating All Constraint Modalities

The algorithm of the complete system, incorporating all constraint modalities,
can be outlined in two steps - First classification of each pixel is performed to ob-
tain preliminary bases and their support in the image domain. Then an iterative
scheme for estimation of b and c is performed according to the description in
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Section 2.3, 2.4 and 2.5. The output now consists of the estimated compartments
and a compartment model describing their interaction.

3 Experimental Validation

In this section the experimental results, validation and a presentation of new
features are presented. At first, the experimental results addresses the prob-
lem of sparsity, positivity and residual patterns for our data set. The proposed
method for ck estimation is also compared to thin plate splines interpolation [14].
Secondly, we use the extracted information from our algorithm to generate the
renogram and the parameters computed by the software currently used at SUS
and compare the results of the two systems on two healthy patients. At last, a
review of possible features using our algorithm is presented.

As mentioned earlier the goal was to come up with an algorithm providing
reasonable estimates which fulfills the constraints on positivity, sparseness and
spatial smoothness in comparison with the optimal case found by SVD, the
SVD results are found in Figure 2. With the introduction of machine learning
techniques, the dense ck matrix is reduced to a sparse equivalent containing

Fig. 5. The injection, blood/tissue, left kidney, right kidney and bladder compartments
after thin plate splines interpolation. The lower row holds the bases and the upper row
holds the scores.

Fig. 6. The injection, blood/tissue, left kidney, right kidney and bladder compartments
after the iterative scheme proposed in 2.6. The lower row holds the bases and the upper
row holds the scores.
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Table 1. A summary of the results of the algorithm. The system tends to produce
sparse weights containing only positive elements and bases also containing only positive
elements. The residuals drop a bit as the iteration goes on.

Step # % ck(x, y) �= 0 % ck(x, y) > 0 % bk(t) > 0 Residual error
PCA 100 63.87 57.50 27.61
Classification 20.00 100.00 100.00 34.26
TPS 23.14 100.00 95.75 33.71
Iteration #1 24.31 100.00 100.00 36.86
Iteration #2 24.33 100.00 100.00 36.23
Iteration #3 24.34 100.00 100.00 36.19

Table 2. A comparison between our system (left) and the current one used at SUS
(right). In the renograms (top left and top right) it is seen that our system is able to
extract the same shape of the curve.

left right
T 3.0 3.0
T1/2 8.8 5.3
U 51.3 % 48.7 %
A 11.8 % 10.5 %

left right
T 3.2 3.5
T1/2 9.5 5.5
U 52.8 % 47.2 %
A 20.3 % 13.6 %

only a fifth of the original non-zero elements, it also produces weights that are
non-negative, see Figure 4. The bases are all positive but holds a mixture of
information from other compartments as well e.g. the kidney bases are strongly
influenced by over- and underlying tissue.

By estimating the influence of other compartments in one compartment a new
estimate of ck and bk is obtained. On our data, the thin plate spline interpolation
should provide an estimate of tissue in the injection site, kidneys and bladder,
see Figure 5. A possible risk by doing this is that to much tissue correction can
produce artifacts such as negative elements in bk. The interpolation also adds
elements to ck, which results in denser cks. With the introduction of positivity
and spatial smoothness constraints and three iterations of weights and basis es-
timation, the bks have converged to bases that have been reduced from influence
from other compartments, see Figure 6. The ck is still sparse and the non-zero
elements are positive as well. A summary of the results is obtained in Table 1.
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Fig. 7. The coordinate images of the kidney compartment (upper) and bladder com-
partment (lower) of two healthy subjects (left respective right). There should not be
any tracer accumulation if the kidneys are normal, as can be seen in the subject on
the right hand side. The left subject’s left pelvis accumulates tracer.

A verification study was performed against a program using the manual ap-
proach to obtain the renogram. The parameters to test are those currently mea-
sured at SUS; Time in minutes to peak of the renogram T , time in minutes to
reach half peak activity T1/2, relative uptake by the two kidneys U and residue
activity at the end of study A. It can be seen in Table 2 that our system is able
to reproduce similar results.

By introducing the concept of compartments and the estimation of these our
system is able to distinguish non-functional regions of the kidney from normal
regions in the particular case of tracer accumulation. Since the bladder compart-
ment represents such an accumulation we can estimate the level of accumulation
inside the kidney as we estimate the coordinate image cbladder ∈ mkidney . In
return we also estimate the remaining function in the functional regions. In Fig-
ure 7 it can be seen that the left subject’s left renal pelvis suffers a bit from
accumulation.

4 Discussion and Conclusions

The novel system was tested against a reference system at SUS, using the pa-
rameters which is currently used at SUS for assessing the renal function. The
results from this comparison study show that our system is able to produce sim-
ilar results as the present software. However, it needs further development in
order to handle pathological kidneys. Since the algorithm just decomposes data
in to several compartments it is not sure whether the weights coincides with the
true compartments e.g. this can be displayed as an erroneous shape of the kid-
ney if there is no outflow of urine. Validation studies using pathological kidneys
therefore have to be performed in the future.

The novel system introduces a new feature - the level of tracer accumulation in
the kidney. Since the algorithm outlined in the methods section is able to distin-
guish the mixture of compartments in each pixel, one could estimate e.g. bladder
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characteristics inside the kidney. If the kidneys suffer from tracer accumulation
or obstruction the algorithm induce the presence of bladder inside the kidney. If
the generated cbladder ∈ mkidney is compared against a normal database it should
be possible to find regions that significantly differs from healthy kidneys. Further
studies have to be undertaken to determine whether this feature are relevant for
medical assessment or not and how it could be implemented in renography.

All in all, the novel system is successful in automatically retrieving the com-
partments and use this information to evaluate the composition of compartments
in each pixel. With this information it is possible to evaluate characteristics
and produce similar results as the present software. Practically, an automated
software based on this approach would extract more information and provide
better background subtraction since the composition of compartments can be
determined. Meanwhile, it reduces the time spent on outlining the different
compartments.

The sparseness introduced in this paper is introduced to achieve a compact
representation of data. With this representation, spatial smoothness priors can
be used in the estimation of the compartments. The implication is that the
computational complexity of the method is reduced due to the fact that less
pixels is involved in the proposed nonlinear least squares problem.

Recall that the residuals of the least squares estimate should be independent
and identically distributed for it to be a valid estimator. However, typical es-
timates are assumed to attain real numbers whereas counting processes only
generate integers. A loss function that penalizes the likelihood for the estimate
to come from a counting process could then be considered. However, in our works
we keep the estimation with subject to the L2-norm.
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Abstract. In this paper, we propose a weighted component-based feature de-
scriptor for expression recognition in video sequences. Firstly, we extract the tex-
ture features and structural shape features in three facial regions: mouth, cheeks
and eyes of each face image. Then, we combine these extracted feature sets using
confidence level strategy. Noting that for different facial components, the con-
tributions to the expression recognition are different, we propose a method for
automatically learning different weights to components via the multiple kernel
learning. Experimental results on the Extended Cohn-Kanade database show that
our approach combining component-based spatiotemporal features descriptor and
weight learning strategy achieves better recognition performance than the state of
the art methods.

Keywords: Spatiotemporal features, LBP-TOP, EdgeMap, Information fusion,
Multiple kernel learning, Facial expression recognition.

1 Introduction

A goal of automatic facial expression analysis is to determine the emotional state, e.g.,
happiness, sadness, surprise, neutral, anger, fear, and disgust, of human beings based on
facial images, regardless of the identity of the face. To date, there have been some sur-
veys describing the state-of-the-art techniques of facial expression recognition, based
on static images or video sequences [4,23]. The surveys show that dynamic features
from video sequences can provide more accurate and robust information than the static
features from images.

Feature representation is very important for automatic facial expression analysis.
Methods combining geometric and appearance features have been considered earlier [23].
For example, Tian et.al [22] proposed to use facial component shapes and transient
features like crow-feet wrinkles and nasal-labial furrows. A framework of combining
facial appearance (Scale-invariant feature transform) and shape information (Pyramid
histogram of orientated gradient) was proposed for facial expression recognition [15].
Both similarity-normalized shape (SPTS) and canonical appearance (CAPP) were de-
rived from the active appearance models (AAM) to interpret the face images [16]. It is
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observed that the combination of geometric and appearance information can describe
the face in a better way. But most of approaches used complicated geometric information
like shapes and the trasient feature [16,22]. Furthermore some researches [8,10,15,20]
cropped the facial image into some sub-regions or components, and then extracted the
appearance features from those components. Researches [8,10] have shown that
component-based approach is robust in some cases against pose motion or partial occlu-
sion. But the features in the earlier component-based methods were only extracted from
static images, even though some of them [20,24] use Hidden Markov Models (HMMs)
or Dynamic Bayesian Networks (DBNs) to integrate the static information with time
development.

In facial expression recognition, it is notable that the facial components take dis-
tinct effect on different expressions [13,19,21]. Hence, another major task in this paper
is to select the most relevant features among the multiple feature sets extracted from
the different facial regions. Using boosting algorithm or just simply assign the weight
parameters to the corresponding face components [21,28] would be feasible. Recently,
the multiple kernels learning (MKL) in support vector machines (SVM) has been intro-
duced to combine heterogeneous sources of information for decision fusion in computer
vision. In addition, recent studies in [3,7] have shown that the MKL method achieves
decent performance in applications of object/image recognition.

In this paper, we focus on combining dynamic texture features and structural features
of facial components for describing facial movement. In order to reduce the complex-
ity, we develop a method for fusing multiple feature representations. Motivated by the
aforementioned MKL method, we aim to learn weights for multiple feature sets in fa-
cial components. We test our approache on the Extended Cohn-Kanade Database which
contains 97 subjects with seven emotions. Our person-independent experiment shows
that the weighted component-based approach performs better than other approaches.
The contributions of this paper include: 1) we applied the dynamic texture and structural
shape features [5,27] from facial components to represent facial dynamic sequences;
2) we developed the framework of feature fusion via confidence level method, and 3)
weight learning by MKL was presented.

2 Component-Based Feature Descriptor

Concerning pose variation and partial occlusion, component-based features [8,10,15]
are more effective for representing facial expressions. Three facial components: mouth,
cheeks and eyes are considered in our method and shown in Figure 1(c). Facial points,
shown in Figure 1(a) in each frame can be obtained by AAM [2]. Then eyes, nose and
mouth areas are determined by the detected 62 facial points. Please note that because
eyebrows are also important in expression, the eyes component is extended from the
blue dashed rectangle to blue solid rectangle, as shown in Figure 1(b). In order to extract
micro-information from components, each component is further divided into a couple of
blocks, as shown in Figure 2(b). In this paper, we use CFD (Component-basedF eature
Descriptor) as the abbreviation of the proposed framework.
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(a) (b) (c)

Fig. 1. (a) 62 facial points detected by AAM [2,16] (b) Rectangles for eyes, nose, mouth deter-
mined by detected facial points (c) Three components cropped from the facial image-eyes, nose
and mouth

(b)(a) (c)

1st volume
T

X

Y

2nd volume
1st volume

2nd volume

Fig. 2. Framework of component-based feature descriptor. (a) Dynamic appearance representa-
tion by LBP-TOP; (b) Three components (eyes, nose, mouth); (c) Dynamic shape representation
by EdgeMap.

2.1 Dynamic Texture Features For Appearance Representation

The local binary pattern (LBP) operator is a gray-scale invariant texture primitive statis-
tic, which has shown excellent performance in the classification of various kinds of
textures [18]. And LBP operator is defined as:

LBPS,R =
S−1∑
s=0

f(gs − gc)2s, (1)

where

f(gs − gc) =
{

1, gs − gc ≥ 0
0, gs − gc < 0 ,

and gc is the gray value of the center pixel, gs is the gray values of S equally spaced
pixels on a circle of radius R at this center pixel.

LBP-TOP has been recently proposed for motion analysis and shown excellent per-
formance in the classification of expression [28] and lip-reading [25]. Features extracted
by this method effectively describe the appearance, horizontal motion and vertical mo-
tion from the image sequence. We extend to use LBP-TOP to describe the spatiotempo-
ral features (XY, XT, and YT planes) of three components. That is to say, after detecting
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each component, the LBP-TOP histograms for each component are computed and con-
catenated into a single histogram to represent the appearance (XY plane) and motion
(XT and YT planes) of the facial expression sequence, shown in Figure 2(a). In our ex-
periments, the radii in axesX , Y and T are set as three; the number of local neighboring
points around the central pixel for all three planes is set as eight.

2.2 Dynamic Structural Features For Shape Representation

Edge map (EdgeMap) features were recently proposed to describe the edge orientation
of the pixel for detecting facial landmarks [5] and also utilized as describing structural
features together with LBP (only in XT and YT planes) for speaker identification from
lipreading [26]. Given a smoothed image from one video with a set of 16 kernels, the
whole set of 16 kernels results from the differences between two oriented Gaussians
with shifted kernel:

Gθt =
G−

θt
−G+

θt∑
u,v[(G−

θt
−G+

θt
) · h(G−

θt
−G+

θt
)]
, (2)

where

G−
θt

=
1

2πσ2
exp(− (u− σ cos θt)2 + (v − σ sin θt)2

2σ2
), (3)

G+
θt

=
1

2πσ2
exp(− (u+ σ cos θt)2 + (v + σ sin θt)2

2σ2
), (4)

h(G−
θt

−G+
θt

) =
{

1, G−
θt

−G+
θt
> 0

0, G−
θt

−G+
θt

� 0
, (5)

and σ is a root mean square deviation of the Gaussian distribution, θt is angle of the
Gaussian rotation, θt = 22.5 × t, t = 0, · · · , 15; u, v = −3,−2,−1, 0, 1, 2, 3.

In our paper, same to [5], 10 kernels (t = 2, 3, 4, 5, 6, 10, 11, 12, 13, 14) is used to
define the contrast magnitude of a local edge at pixel (p, q). The orientation of a kernel
that gave the maximum response is estimated by the orientation of a local edge:

ϑp,q,θt =
∑
c,d

gp−u,q−vGθt , (6)

where gp,q denotes the gray level of the image at pixel (p, q); p = 0, · · · ,W − 1,
q = 0, · · · , H − 1; W and H are the width and height of the image, respectively.

After getting the edge orientation for each pixel, a histogram is created to collect up
the occurrences of different orientations. Studies in [6,26] used EdgeMap to describe
the structural features in XY plane of a video sequence. Inspired by them, the EdgeMap
histograms from XY plane in block volumes (Figure 2(b)) are concatenated into a sin-
gle histogram for representing structural features, shown in Figure 2(c). But different
from [26], in which they only considered LBP texture features in XT and YT planes,
in our approach, LBP operation in XY plane is still utilized to describe appearance fea-
tures and then concatenated into a single histogram together with those from XT and
YT planes, shown in Figure 2(a), in order to avoid the loss of appearance feature.
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3 Multiple Feature Fusion

As shown in Figure 2, we extract component-based feature sets, which represents tex-
ture features from LBP-TOP operation or structural features from EdgeMap in each
component. In studies on various feature extraction approaches, it has been suggested
that different feature sets could offer complementary information. A fusion scheme that
harnesses various representations is likely to improve the overall performance. The out-
puts of various feature extractors can be fused to obtain decisions that are more accurate
than the decisions made by any individual feature representation. As shown in Figure 3,
each feature set of LBP-TOP or EdgeMap is the input of one matching module and the
model of weight learning.

Fig. 3. Framework of multiple feature fusion, FU: Fusion Module

3.1 The Weight Learning Framework

The MKL approach [3,7,14] is used to combine or select relevant representations.
The multiple kernel learning tasks in our approach are viewed as an efficient way to
learn weights that are optimal for several feature sets. Suppose we have M feature sets
{Ωm}M

m=1, each of them hasN samples {−→x i,m}N
i=1, and the corresponding class label

of −→x i,m is yi, where yi ∈ {+1,−1}. Thus, the kernel function of MKL is defined as

ki,j =
M∑

m=1

βmk(−→x i,m,
−→x j,m), (7)

s.t. βm ≥ 0 and
∑M

m=1 βm = 1, where βm is the weight of m-th feature set Ωm,
k(−→x i,m,

−→x j,m) is the base kernel of −→x i,m and −→x j,m from Ωm. Here, all kernel matri-
ces of feature sets have been normalized to unit trace.

The MKL task, which is based on the framework of SVM, is considered as a way of
optimizing the kernel weights. When a kernel machine for multiple feature sets is used,
the dual problem of MKL is defined as

max
N∑

i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyj

M∑
m=1

βmk(−→x i,m,
−→x j,m), (8)

s.t.
∑N

i=1 yiαi = 0, 0 ≤ αi ≤ ε and βm ≥ 0,
∑M

m=1 βm = 1, where, αi is the La-
grange coefficient, and the regularization ε determines the trade-off between the margin
and the error on training data.
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Optimizing over both the Lagrange coefficient αi and the weights for m-th feature
set βm is one particular form of semidefinite programming (SDP). MKL algorithm is
terminated when a stopping criterion is met. The stop criterion in our implementation
is based on the variation of coefficients βm between two consecutive steps. In order
to compute the weights for different feature sets from specific expression, we should
consider an approach that divides multi-class problem into some one-vs-rest classifi-
cation problems. Finally, this framework will generate the weight of m-th feature set
under c-th class, i.e. βc,m. In our case, we use MKL-WL (MKL for Weight Learning)
for abbreviation, which is summarized in Algorithm 1.

Algorithm 1. MKL-WL on expression recognition

input : M feature sets {Ωm}Mm=1 with N samples, C classes
output: {βc,m}c=1,...,C;m=1,...,M

for c← 1 to C do
for m← 1 to M do

Generate Positive Set Ω+
m← Find the data from Ωm ∈ c;

Generate Negative Set Ω−
m← Find the data from Ωm �∈ c;

Form Km←Ω+
m and Ω−

m;

Unit trace normalization of {Km}Mm=1;
{βc,m}m=1,...,M by optmizing Equation(8);

3.2 The Fusion Module Framework

For exploiting the complementary information among all feature sets, we investigated
one decision rule, i.e. mean rule. Detailed derivation of decision rules can be found
e.g. in [12]. Assume that all feature sets are generally statistically independent, and
the priori probability of occurrence for c-th class model are under assumption of equal
priors, the fusion rule of multiple feature sets [9] is described as:

Assign −→x → μ if

P (c = μ|−→x , Ω1, . . . ,ΩM ) = max
c∈{1,...,C}

[Q({P (c|Ω1)βc,1, . . . , P (c|ΩM )βc,M})]

= max
c∈{1,...,C}

∑ {P (c|Ω1)βc,1, . . . , P (c|ΩM )βc,M}
M

(9)

where −→x and μ represents the testing sample and the corresponding class, respectively.
In our framework, LIBSVM [1] is used for modeling matching module and generat-

ing voting numbers or probabilities.

4 Experiments

The proposed approach was evaluated on the Extended Cohn-Kanade facial expres-
sion database (CK+) [16]. The orginal Cohn-Kanade database [11] includes 486 FACS-
coded sequences from 97 subjects for six basic expressions: happiness, sadness, sur-
prise, anger, disgust and fear. For CK+ distribution, it has been further augmented to in-
clude 593 sequences from 123 subjects for seven expressions (additional 107 sequences,



Expression Recognition in Videos Using a Weighted Component-Based Feature 575

Block size

4x3 4x4 5x4 5x5 6x5 7x6 7x7 8x7 8x8 9x8 9x9 10x9 10x1011x1011x11

Re
co

gn
itio

n r
ate

55

60

65

70

75

80

85

90

Eyes
Nose
Mouth

Fig. 4. Performance of three components with different block sizes

Anger Contempt Disgust Fear Happy Sadness Surprise

W
eig

ht

0.0

.1

.2

.3

.4

.5

.6

Eyes
Nose
Mouth

Fig. 5. Average weights for three components based on three kernels

26 subjects and contempt expression), which makes it more challenging than the origi-
nal database. In our experiments, 325 sequences from 118 subjects were selected from
the database for seven basic expression recognition. Leave-one-subject-out method
was used in the whole scenario.

In our approach, three components are cropped as shown in Figure 1. However, the
size of each facial component is so large that more than one block is needed to describe
its local spatiotemporal information. Moreover, as observed from Figure 1(c), the areas
of different parts are different. This means that using the same number of blocks for all
components is not reasonable [27]. Thus, different number of blocks is used for three
components. Figure 4 shows the performance of using different block numbers of eyes,
nose, and mouth. As observed from Figure 4, the highest recognition rate is achieved
when the block size is 9 × 8, 11 × 10, 8 × 8, for eyes, nose and mouth, respectively.
Based on the results in Figure 4, 9× 8, 11× 10, 8× 8 block sizes are used in eyes, nose
and mouth, respectively.

In Section 3.1, we proposed dynamic weight learning by using MKL. In order to
figure out the importance of the components to different expressions, the weights on
three components are shown in Figure 5. In this figure, these weights clearly show: (1)
both eyes and mouth components play important roles in fear and sadness; (2) both
mouth and nose components contribute to disgust and happiness; (3) anger and con-
tempt, mostly depend on eyes; (4) mouth component determines surprise.
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Below, we give brief comparison with the state-of-the-art works [16,27] for expres-
sion recognition. Figure 6 compares our methods: CFD, CFD withMKL based on linear
kernel (CFDM-Linear),Histogram Intersection kernel [17] (CFDM-HI), and Gaussian
kernel (CFDM-Gaussian), with SPTS+CAPP [16], LBP-TOP [27] and EdgeMap [6].
From this figure, we can see that CFD obtained better result (89.85%) than block-based
LBP-TOP (87.07%) and EdgeMap (82.77%), with increase of 2.77% and 7.08%, and
also better than SPTS+CAPP (88.38%), with an increase 1.47%. Additionally, it is very
interesting that dynamic weight using MKL based on linear kernel (93.23%) and HI ker-
nel (93.85%) can improve the performance of CFD. Compared to the other methods,
CFDM-HI outperformed on average recognition rate and all expressions except anger.
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Fig. 6. Performance comparison (%) with different approaches

5 Conclusion

In order to boost facial expression recognition, we propose a component-based feature
descriptor to describe facial expressions from video sequences. In our approach, three
components (eyes, nose and mouth) are cropped from facial image according to auto-
matically detected facial points, and dynamic texture and shape features are extracted
by LBP-TOP and EdgeMap, respectively. Then multiple feature sets are combined by
fusion strategy. Furthermore, for boosting CFD, we proposed an approach for learning
weights for multiple feature sets.

In experiments on the CK+ Database, we discussed the roles and significance of com-
ponents with respect to expressions, through analyzing the weights computed by MKL-
WL algorithm. Besides, we also have demonstrated that the CFDM-Linear, CFDM-HI
lead to a promising improvement in facial expression classification, comparing with
previous works. In future work we plan to explore how our approach could be adopted
to the very challenging problems including view variation and partial occlusion.
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21. Taini, M., Zhao, G., Pietikäinen, M.: Weight-based facial expression recognition from near-
infrared video sequences. In: 16th Scandinavian Conference on Image Analysis, pp. 239–
248. Springer, Heidelberg (2009)

22. Tian, Y., Kanade, T., Cohn, J.: Facial expression analysis. In: Li, S.Z., Jain, A.K. (eds.) Hand-
book of Face Recognition, pp. 247–276. Springer, Heidelberg (2005)

23. Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affective recognition methods: Au-
dio, visual and spontaneous expression. IEEE Transactions on Pattern Analysis and Machine
Intelligence 31(1), 39–58 (2009)

24. Zhang, Y., Ji, Q.: Active and dynamic information fusion for facial expression understand-
ing from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 27(5), 699–714 (2005)
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28. Zhao, G., Pietikäinen, M.: Boosted multi-resolution spatio temporal descriptors for facial
expression recognition. Pattern Recognition Letters 30, 1117–1127 (2009)



Spatio-chromatic Image Content Descriptors and

Their Analysis Using Extreme Value Theory�

Vasileios Zografos and Reiner Lenz

Computer Vision Laboratory, Linköping University, Sweden
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Abstract. We use the theory of group representations to construct very
fast image descriptors that split the vector space of local RGB distribu-
tions into small group-invariant subspaces. These descriptors are group
theoretical generalizations of the Fourier Transform and can be computed
with algorithms similar to the FFT. Because of their computational
efficiency they are especially suitable for retrieval, recognition and clas-
sification in very large image datasets. We also show that the statisti-
cal properties of these descriptors are governed by the principles of the
Extreme Value Theory (EVT). This enables us to work directly with
parametric probability distribution models, which offer a much lower
dimensionality and higher resolution and flexibility than histogram rep-
resentations. We explore the connection to EVT and analyse the charac-
teristics of these descriptors from a probabilistic viewpoint with the help
of large image databases.

1 Introduction

With the considerable increase in online visual content, there has been a great
demand for tools to handle efficiently, large and dense collections of image data.
Furthermore, online images exhibit a large variation in content, appearance and
quality. An automated image search engine must therefore be able to process
quickly such large datasets and accurately recover a selection of images that fit
a user’s query. As a result, many sophisticated feature descriptors [1], are not
capable of dealing with image databases comprised of many million samples, in
a reasonable time frame.

Motivated by these observations, we suggest a novel spatio-chromatic image
descriptor and an associated model selection method that are well suited for
very fast search over very large image databases. These descriptors (or filters)
are designed to preserve important image information (e.g. colour edges and line
features), while being invariant under certain spatio-chromatic changes. Such
characteristics can be useful in tasks of object recognition, image retrieval and
classification. In this paper, we explore the visual significance of these descriptors
and demonstrate that they form effective tools, which may be used to investigate
the internal structure of the image databases.
� Funded by the EU FP7/2007-2013 programme, under grant agreement No 247947
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In the rest of this paper, we briefly introduce the theory behind the construc-
tion of our descriptors in Sec. 2. In Sec. 3 we review the main properties of
EVT and explain how it is connected to the descriptors. In Sec. 4 we propose
a simple approach for EVT model estimation and selection. We continue with
experiments and their analysis on public image datasets in Sec. 5. Finally, we
conclude with a succinct summary discussion in Sec. 6.

2 Spatio-chromatic Descriptors

In this work, we propose a number of spatio-chromatic descriptors that have
been constructed using the representation theory of finite groups (see [2]). The
groups used are the dihedral groups D(3) and D(4). The dihedral group D(n)
is defined as the group of all geometry preserving transformations (rotations
and reflections) of the regular n-sided polygon, in this case the triangle and the
square. The group D(4) exploits the square grid structure of most modern image
sensors. The details of the usage of D(4) are described in [3]. The usage of D(3)
is based on the observation that in a statistical sense, the three color channels
R,G,B are interchangeable. This statistical permutation property suggests the
usage of the permutation group S(3) of three elements, which is identical to
the group D(3). For an intuitive understanding it might be helpful to identify
the three channels R,G and B as corners of the regular triangle. For additional
details see [4].

For the descriptor construction, we use only RGB vectors on 4×4 neighbor-
hoods around a pixel. These vectors are all located in a 48-dimensional space.
The tools of representation theory are applied to split this space into its small-
est subspaces that are invariant under all spatial and RGB transformations in
D(4) and D(3). The result is that the RGB space is first transformed into the
1-dimensional R+G+B (intensity) component and the 2-dimensional color op-
ponent space given by the combinations RG=R-G and YB=R+G-2B. This is
then followed by a combination with the spatial D(4) filters. The final result
is a decomposition of the original 48d space into 24 subspaces of dimensions 1,
2 and 4. The first 12 are spatial filters operating on the intensity component
R+G+B whereas the other 12 filters operate on the two-dimensional opponent
color space (RG,YB). This decomposition is implemented by an orthonormal
transformation and so the norms of the vectors in the subspaces are preserved
under the spatial and color operations in D(4) and D(3). To summarize: the
original image is first filtered with 48 filters, then the magnitudes of 24 col-
lections of filter results, are computed and the produced images r1, ..., r24 with
non-negative pixel/magnitude values provide the spatio-spectral descriptors of
the original image. Figure 1 gives an illustration of the relation between the orig-
inal image and the 24 computed descriptor images. A computer implementation
of the filtering process is available from [5].
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r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24

Fig. 1. The intensity (middle row) and colour (lower row) filter results from a typical
image. Note that the first three filters represent averaging of pixel values.

3 Extreme Value Theory

Extreme Value Theory (EVT) deals with the behaviour of the extrema (minima
and maxima), of a probability distribution. EVT has been applied to many
natural processes and also in biological and computer vision. In this paper, we
suggest a connection between filtered image data and EVT, and we have used the
latter to model and analyse the distribution of the former. In the next chapter,
we will show experimental results, which demonstrate that the vast majority of
examined filtered images follow the EVT model.

3.1 The Basics of Univariate EVT

EV theory, similarly to the central limit theorem, states that the non-degenerate
asymptotic distributions of the sample extremum of a process, must belong to
one of just three possible general families regardless of the original distribution
function F . Furthermore, it is not necessary to know the detailed nature of F
or which limiting form (if any) it gives rise to. As a matter of fact, we just need
to know the behaviour of the tails of F (x) for large x, so that a good deal may
be said about the asymptotic properties of the extremum.

More formally, suppose that we have an i.i.d. sequence of random variables
XN whose common distribution is F (x)=Pr{Xi ≤ x}. Also let sn=Max(n)(XN )
denote the nth sample maximum of the process. Then Pr{sn ≤ x}=F (x)n. For
non-trivial limit results, and suitable normalising constants an>0, bn, the pre-
vious equation converges to Pr{an(sn − bn) ≤ x}= F (a−1

n x+ bn)→H(x). In [6]
it is shown that the possible non-degenerate limiting forms of H are:

H(x) = exp
(− exp(μ−x

σ )
)

, ∀x Gumbell
H(x) = 1 − exp

(
− (

x−μ
σ

)k
)

, x > μ Weibull

H(x) = exp
(
− (

x−μ
σ

)−k
)

, x > μ Fréchet
(1)
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where μ, σ, k are the location, scale and shape parameters of the distributions
respectively.

3.2 A Simple Stochastic Model

The utility of EV theory in the study of low-level vision can be explained with
the following simple model: consider a black-box unit U with input X the pixel
values from a finite window in a digital image (a similar analogy can be applied to
the receptive fields of a biological vision system). The purpose of this black-box
is to measure the amount of some non-negative quantity, X(t) that changes over
time. We write u(t)=U(X(t)). We also define an accumulator s(n)=

∫ n

0
u(t)dt

that accumulates the measured output from the unit, until it reaches a certain
threshold s(n)=Max(n)(X) or a certain period of time, above which the accu-
mulator is reset to zero and the process is restarted. If we consider u(t), s(n) as
stochastic processes and select a finite number N of random samples u1,...uN ,
then their joint distribution J(u1,...,uN) and the distribution Y (sN ) of sN , de-
pend on the underlying original distribution F (XN ). At this point we may pose
two questions:

1. When N→∞ is there a limiting form of Y (s)→Φ(s)?
2. If there exists such a limit distribution what are the properties of the black-

box unit U and of J(u1,...,uN ) that determines the form of Φ(s)?

In [7] the authors have demonstrated that under certain conditions on Y (s) the
possible limiting forms of Φ(s) are the familiar forms in (1) and depend on the
tail behaviour of F (X) at large X . In our particular case, we use as units U
the black-box that computes the absolute value of the filter result vectors from
the irreducible representations of the dihedral groups. The filter vectors not
associated with the trivial representation, are of the form s=

∑
(xi-xj) where xi,

xj are pixel values. We can therefore expect that these filter values are usually
very small and that high values will appear very seldom. In addition, these
sums are calculated over a small, finite neighbourhood, and for this reason, the
random variables are highly correlated. In short, the output for each filter has
a form similar to the sums described in [7], and so it should be possible to use
the EVT to model their distribution. As we will show experimentally later, the
EVT models in (1) provide a good fit to our filtered data, which is a strong
indication that the requirements for EVT equivalence from [7] generally hold.
We also note, that since we are always dealing with positive quantities (norms
of sums) that have a strictly positive support, we do not use the Gumbel model,
which is unbounded, but only the Weibull and Fréchet models.

4 Proposed Approach

In the previous section, we have discussed the connection between our proposed
filters and the EVT models. In this section, we suggest a simple approach for
estimating the parameters of these models, using maximum likelihood, and then
selecting the model that has the best fit using a residual analysis approach.
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Distribution parameter estimation: We begin with a log-likelihood func-
tion Λ(θ) that expresses the conditional probability of realising the data sample
given the model parameters θ=(μ, σ, k), and then try to determine the choice of
parameters (ML estimates) that maximise the likelihood for the available data.
Since the 3-parameter Weibull and Fréchet distributions, do not have closed form
expressions of the ML estimates, we need to apply an iterative method, such as
the Newton-Rhapson approach. The iteration step, which usually is executed
until convergence, is given by θ̂t+1=θ̂t+pt, for t=0,1,2..., where pt=-∇2f−1

t ∇ft

is a search (descend) direction on the log-likelihood function. As such, we need
expressions for the gradient ∇ft and Hessian ∇2ft of the Weibull and Fréchet
distributions. For the Weibull, the gradient ∇ft =

[
∂Λ(θ)

∂θ

]
is given by:

∂Λ(θ)
∂μ = −(k − 1)

∑ 1
xi−μ + k

σ

∑ (
xi−μ

σ

)k−1
,

∂Λ(θ)
∂σ = k

σ

[
−n+

∑ (
xi−μ

σ

)k
]
,

∂Λ(θ)
∂k = n

k − n log σ +
∑

log(xi − μ) − ∑ (
xi−μ

σ

)k
log

(
xi−μ

σ

)
,

(2)

and the Hessian ∇2ft =
[

∂2Λ(θ)
∂θ∂θ′

]
by:

∂2Λ(θ)
∂μ2 = −(k − 1)

[∑(
1

xi−μ

)2

+ k
σ2

∑ (
xi−μ

σ

)k−2
]
,

∂2Λ(θ)
∂μ ∂σ = ∂2Λ(θ)

∂σ ∂μ = − (
k
σ

)2 ∑ (
xi−μ

σ

)k−1
,

∂2Λ(θ)
∂μ ∂k = ∂2Λ(θ)

∂k ∂μ = −∑ 1
xi−μ + k

σ

∑ (
xi−μ

σ

)k−1
log

(
xi−μ

σ

)
+ 1

σ

∑ (
xi−μ

σ

)k−1
,

∂2Λ(θ)
∂σ2 = k

σ2

[
n− (k − 1)

∑ (
xi−μ

σ

)k
]
,

∂2Λ(θ)
∂σ ∂k = ∂2Λ(θ)

∂k ∂σ = − 1
σ

[
n− ∑ (

xi−μ
σ

)k − k
∑ (

xi−μ
σ

)k
log

(
xi−μ

σ

)]
,

∂2Λ(θ)
∂k2 = − n

k2 − ∑ (
xi−μ

σ

)k [
log

(
xi−μ

σ

)]2
.

(3)
Similarly for the Fréchet:
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UW results ODB results

Fig. 2. Typical EVT model fitting results from the two databases using the R2 g.o.f.
statistic. Note that the numbers are comparable to those in Table 1.

For a discussion on more advanced iterative ML estimators and appropriate
initial estimates for θ̂0 we refer to the excellent book by [8] on the Weibull
distribution. Similar techniques apply for the Fréchet.

Model selection: Once we have fitted the two models by ML, we can choose the
most appropriate of the two, using a goodness-of-fit (g.o.f.) criterion. This crite-
rion is chosen as the deviation between each of the fitted distributions and the
data. Given the empirical cumulative distribution function (cdf) Δ̂n of the data
sample (x1, ..., xn) [9], and cdf Fn (evaluated at the same points as the data sam-
ple) from the Weibull and Fréchet distributions separately (equations in (1)), then
the g.o.f. measure, called the coefficient of determination, is defined as:

R2 = 1 − (n− 1)
∑n

i=1 (Δ̂n − Fn)2

(n− ζ)
∑n

i=1 (Δ̂n − Δ̄n)2
, with ζ = 3 the model degrees of freedom.

(6)
We choose the model with the maximum R2 value. If in addition we wish to
reject a sample (“no-fit”), we can impose a lower threshold on R2.

5 Experiments

We have used two datasets for our experiments and subsequent analysis. The
first is the UW database [10], which consists 1109 colour photos of various
vacation locations and natural, outdoor scenes e.g. “Barcelona”, “Iceland” etc.
The images have been obtained by different cameras and resolutions, but most
of them are 756×504 pixels. The second dataset, ODB [11], contains 30000
thumbnail images (reduced in size so that the maximum size in one direction is
128 pixels), across 15 object categories. These images were automatically crawled
from public web pages using a variety of textual keywords.

5.1 Statistical Analysis: Goodness of Fit

In this section, we show experimentally the following:

I) the R2 g.o.f. test is more reliable and robust than common statistical g.o.f.
tests for model selection.
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II) the 3-parameter Weibull-Fréchet models provide a good fit to the distribu-
tion of filtered natural images across different datasets.

III) The 3-parameter Weibull-Fréchet models are more flexible and can describe
a larger portion of the data, than the 2-parameter Weibull model alone can.

We demonstrate I) on synthetic data, where the ground truth is known, and
compare 4 different approaches: the two sample Kolmogorov-Smirnov test, the
χ2 and g-test and the R2 test from (6). In total, we carried out 6000 tests, with
500 samples drawn from various distributions (2 and 3-param. Weibull “W2”,
“W3”; 3-param. Fréchet “F3”; and a 2-param. Lognormal, used here as a “no-
fit” sample), with realistic parameter settings, that is, ones that we are likely to
observe in natural images. The results are shown in Table 1. We can see that the
R2 is the only test that performs consistently well along the different samples
even for the “hard” W3 and F3 cases (these are samples with parameter choices
that lead to problematic ML surfaces). For this reason, we have decided to use
the R2 test in the remainder of our analysis.

II) and III) are demonstrated on the UW and ODB databases. We applied the
filters, selected the appropriate model and rejected any fits with a low R2 value.
The results are shown in Fig. 2. Due to space limitations, we have only included
2 filters (one intensity and one colour), but all the other filters exhibit the same
typical behaviour. In particular, for the intensity filters, W2 fits a much larger
percentage of data than in the colour case (sometimes the W2 model dominates
in the intensity filters), with the F3 being the least contributing sub-model. The
former is in line with the findings of [12] when intensity gradient filters are used as
image patch descriptors (our descriptors are essentially localised gradient filters).
Note however, that by combining all the EVT sub-models we can describe well
in excess of 80% of the data. This is something that the W2 alone cannot do.
This observation becomes more pronounced for the colour filters, where W3 and
F3 have a more prominent role, with W3 alone modelling between 50-70% of
the data. In this case, W2 is limited to around 10% and thus the approach of
[12] cannot be used to model colour edges, unless one applies W2 to each colour
channel separately [13].

We note here that around 15-20% of the fits have been rejected. The no-fit
portion includes outliers (i.e. non-natural images, trivial filter results etc) and
data where the ML estimation did not converge. These numbers are similar to
the no-fit results we have observed in the synthetic tests in Table 1, and are
therefore related to the characteristics of the algorithm as well as the data.

Table 1. Goodness-of-fit comparative results (as percentage of correct classifications)

F3 W3 W2 no-fit hard F3 hard W3

Kolmogorov-Smirnov 80.3% 23% 99.2% 25% 93.1% 1.1%

g-test 0.81% 16% 66.1% 92.4% 19.4% 4%

χ2 12.4% 31.6% 88% 98.8% 0% 0%

R2 99.5% 88.7% 89.7% 87.9% 85.5% 77.3%
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In conclusion, these experiments indicate that the EVT may be considered as
a viable hypothesis for modelling the distribution of our descriptors (or similar
types of intensity and colour gradient filters). Moreover, the additional modelling
capacity of W3 and F3, relative to W2 alone, has also been demonstrated.

5.2 Further Analysis: The σ, k-Space

We continue with an analysis of the types of images that are assigned to each
submodel (W2, W3 and F3) for a specific filter (r9) and the image position in the
σ, k parameter space. For economy of space, we only demonstrate a single filter
on the UW dataset, but the results generalise to all filters and different datasets.
We omit the μ parameter since for these datasets it exhibits very little variation
and the most important behaviour is observed in the other two parameters. First
of all, if we look at Fig. 4 we see a correlated dispersion in the two axes, with the
F3 images spanning only a very small region of the space at low σ, k, and well
separated from W2 and W3. Also notice how the F3 set typically includes images
with near-uniform coloured regions with smooth transitions between them, or
alternatively very coarse-textured, homogeneous regions with sharp boundaries.
High frequency textures seem to be relatively absent from F3, and on average
the image intensities seem to be lower in F3 than in W2 and W3.

On the other hand, the W2 and W3 clusters are intermixed, with W2 mostly
restricted to the lower portion of the space. For smaller σ, k values, the W2
images exhibit coarser textures, with the latter becoming more fine-grained as
σ, k increase in tandem. Also, there seems to be a shift from low exposure, low
contrast images with shadows (small σ, k), to high contrast, more illumination,
less shadows when σ, k become large. Furthermore, W2 shows a preference for
sharp linear edges associated with urban scenes, whereas W3 mostly captures
the “fractal”-type edges, common in nature images.

(a) Original image (b) Filter result r8 (c) Tails

(d) Mode (e) Median (f) Synthesis

Fig. 3. A comparison between the extrema and other regions of a filtered image
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Fig. 4. Image type and model distribution in σ, k-space

These observations become more apparent when looking at Fig. 5(a) and (b).
In these experiments, we took one (grayscaled) image from the database, and
introduced different amounts of noise and smoothing to simulate high and low
frequency texture components (Fig. 5(a)) and also linear and nonlinear intensity
changes, in order to simulate variations in the amount of illumination (Fig. 5(b)).
The image was filtered and the distribution parameters fitted at each instance
are shown as trajectories in the σ, k-space. As we have already seen, the images
shift to the upper right corner of the space as higher frequency components
are added, and for the opposite (smoothing of textures) the images will move
towards areas of lower σ and gradually increase in k as the texture homogeneity
is increased. For textures that have an approximate constant colour (e.g. sky)
the images will cluster on the upper left corner of the space. The UW dataset
does not contain such images, and so that space in Fig. 4 remains empty.

If we now look at intensity variations, we see that an increase in gain will move
the image toward the upper right corner where all the well-illuminated images
lie. When the gain is decreased, we will move towards the upper left corner where
the very dark (almost constant) images are. If we now increase the bias, then we
see that mostly the k parameter increases (note that the two parameters do not
have the same units). Similarly, a decrease in bias will cause a similar decrease
in k, while leaving σ relatively intact. Finally, we examine nonlinear changes in
intensity (gamma correction). A decrease in gamma value, first reduces the σ
parameter only (unlike the bias) and then for additional decreases, the k values
start to increase when all the pixels take the same very low (dark) values. Note
however, that in this case, the increase in k is much slower and converges to
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(a) Noise and smoothing. (b) Image intensity changes.

(c) Intensity and colour filter scatter plot.

Fig. 5. The behaviour of filtered images in σ, k-space

a much lower k, than when the gain was decreased. On the other hand, if we
increase the gamma without re-normalising the pixel values between [0,255], then
we see a shift towards the lower right corner of the space (increase of σ without
increase of k). This region of the σ, k-space is usually empty, but when it is not
(depending on the data) it mostly occupied by simple pictorial images such as
graphics, designs and logotypes on white background.

In Fig. 5(c) we see a scatter plot for all the images in UW using all
the filters (except r1,...,r3). We see two very distinct clusters, one for the intensity
filters that is spread along a σ, k diagonal (as in Fig. 4), and one for the colour
filters spread mainly along the k-axis. In conclusion, all the above properties of
the σ, k-space are only applicable due to the EV theory and cannot be exploited
with histogram representations. The fact that the images exhibit clear clusters
and predictable variation in that space, is a good indication of the utility of the
EVT framework for retrieval and classification tasks.

Finally, we illustrate the importance of the data at the extrema of a filtered
image, as described by the EVT. In Fig. 3(a) we show an image from UW
(rescaled for comparison) and its filtered result using r8 in Fig. 3(b). This is
essentially a gradient filter in the x- and y-directions. Next is Fig. 3(c) that shows
the response at the tails of the fitted distribution. It it immediately obvious that
the tails contain all the important edges and boundary outlines that abstract
the main objects in the image (house, roof, horizon, diagonal road). These are
the salient features that a human observer will focus on, or that a computer
vision system might extract for object recognition or navigation. We also show
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the regions near the mode in Fig. 3(d). We see that much of it contains small
magnitude edges and noise from the almost uniform sky texture. Although this
is part of the scene, it has very little significance when one is trying to classify
or recognise objects in an image. A similar observation holds for the grass area,
which although contains stronger edges than the sky and is distributed near the
median (Fig. 3(e)), it is still not as important (magnitude-wise and semantically)
as the edges in the tails are. Finally, Fig. 3(f) shows how all the components put
together, can describe different regions in the image: the salient object edges
in the tails (red); the average response, discounting extreme outliers, (median)
in yellow; the most common response in light blue (mode); and the remaining
superfluous data in between (dark blue). This is exactly the type of semantic
behaviour that the EVT models can isolate with their location, scale and shape
parameters, something which is not immediately possible when using histograms.

5.3 Classification and Retrieval

We also include a a basic example on how our descriptors may be used, in prin-
ciple, for classification and retrieval tasks. For this example, we have isolated
4 classes from the ODB dataset, with tags “Andy Warhol”, “Claude Monet”,
“beach” and “garden”, each containing 1000 images. After filtering with r21 and
model selection, we used 75% of the images to train an SVM (with standard set-
tings), and classified the remaining 25%. For the SVM input, we generated 1000
samples from the probability density function of the model chosen for each image.

The overall classification score was 40.5% with the random baseline at 25%.
This result is satisfactory considering the many outliers and high variation in the
data (due to the automated text-based harvesting) and the lack of specificity in
the 4 categories. The 10 top ranked images in each category (one-to-all retrieval)
are shown in Fig. 6. The goal here, just like in online image search, is not to
retrieve the most representative images for each class (means of the clusters) but
the ones that are the furthest away from the SVM decision boundaries (cluster

Fig. 6. 4 class image retrieval from the ODB dataset using r21 with an SVM
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extrema). Therefore, a perfect classification score in CBIR is not as important
as fast and accurate retrieval of very few, relevant samples.

Observe in Fig. 6, the differences between the vivid, near-constant colours
and sharp edges in the “Warhol” set and the less saturated, softer tones and
faint edges of the “Monet” set. In the same way, the “garden” images contain
very high frequency natural textures and the “beach” images more homogeneous
regions with similarly coloured boundaries. These characteristics are the exact
information captured by the filters and the EVT models and which can be used
very effectively for image classification and retrieval purposes.

6 Conclusion

In this work, we have presented a set of spatio-chromatic, image content
descriptors that are inspired by the theory of group representations. We have
demonstrated that by using the EVT to model the output distribution of the de-
scriptors, we can take advantage of specific parametric distribution models that
offer a more flexible representation than histograms. Furthermore, additional
important characteristics of large image datasets only become visible inside this
parametric probability space. These descriptors, combined with the EVT models,
offer themselves for very efficient and effective tools for content-based retrieval
and classification of image data.

We would like to explain here that the EVT is not the only model one may
use to describe similar image properties. In fact [14] have used fragmentation
theory to describe the apparent Weibull distribution of gradient-filtered grayscale
images. Despite this, our experiments have shown that EVT is more flexible, since
[14] advocate a very restrictive fragmentation schedule that might not always
apply in practice; more descriptive, since EVT has 3 submodels instead of 1 as
in [14]; and finally EVT is easily applied to colour filters as well.
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Abstract. The visualization of images with a large dynamic range is
a difficult task and this is especially the case for gray-level images. In
radiology departments, this will force radiologists to review medical im-
ages several times, since the images need to be visualized with several
different contrast windows (transfer functions) in order for the full infor-
mation content of each image to be seen. Previously suggested methods
for handling this situation include various approaches using histogram
equalization and other methods for processing the image data. However,
none of these utilize the underlying human anatomy in the images to
control the visualization and the fact that different transfer functions
are often only relevant for disjoint anatomical regions.

In this paper, we propose a method for using model-based local trans-
fer functions. It allows the reviewing radiologist to apply multiple transfer
functions simultaneously to a medical image volume. This provides the
radiologist with a tool for making the review process more efficient, by
allowing him/her to review more of the information in a medical image
volume with a single visualization. The transfer functions are automat-
ically assigned to different anatomically relevant regions, based upon a
model registered to the volume to be visualized. The transfer functions
can be either pre-defined or interactively changed by the radiologist dur-
ing the review process. All of this is achieved without adding any un-
familiar aspects to the radiologist’s normal work-flow, when reviewing
medical image volumes.

1 Introduction

The visualization of images with a large dynamic range, i.e. images that have a
large value range, is a difficult task and is common in many imaging applications.
This also applies to gray-level images, since the human eye has a limited ability to
discern different gray-levels and since many display devices are incapable of prop-
erly displaying a large number of gray-levels, i.e. there is a limited display range.

A radiology department is a high-pace work environment, where radiologists
are under constant pressure to review a never-ending stream of images, and in

This work was funded by the Swedish Research Council, grant 2007-4786.

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 592–603, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Local Transfer Functions for Efficient Visualization 593

which it is especially important to handle the problem of visualizing gray-level
images with a large dynamic range. Despite the digitalization that the whole
work-flow has undergone in radiology departments, the review process of the
images still remains the same to a large extent, i.e. images are reviewed as gray-
level images on an image by image basis. This means that the review process
for a whole body CT scan, which can easily generate thousands of images, will
require a considerable amount of time.

The issue of a large dynamic range is usually handled by providing the ra-
diologist with functionality that allows him/her to interactively change, what
is know as, the contrast window (or the window/level) of the displayed images;
hereafter referred to as applying a transfer function. A contrast window is de-
fined as a linear mapping of the pixel values in a certain value range to a given
display range. The value range is either determined by a min and a max value
or by a width and a center value. This allows him/her to adjust the contrast
and the brightness of the visualized images in accordance with either some pre-
defined settings or based upon experience. However, when visualizing images,
the radiologist often employs several transfer functions. In the case of a CT
chest scan, this can mean that he/she first scrolls through the image stack with
a soft tissue contrast window applied, then with a bone window, and finally with
a lung window, see Fig. 1. Thus, the radiologist has to scroll through the stack
several times, despite the fact that the different windows are often only relevant
to disjoint regions of the body.

The problem of having too large a dynamic range to display is a well-known
problem within the medical imaging community [11], and for which a number of
different solutions have been proposed. Many of these suggestions are based on
histogram equalization and include adaptive histogram equalization (AHE) [12],
contrast limiting adaptive histogram equalization (CLAHE) [13] and multi-scale
adaptive histogram equalization (MAHE) [6]. Although they enable the radiolo-
gist to see more, they are limited in the sense that they rely on a pre-processing
step. Unsatisfactory pre-processing might force the radiologist to manually find
an optimal set of parameters for each medical image volume in order to produce
satisfactory images. Since parameters such as tile size, number of bins and clip
limit are unfamiliar to the radiologist and also difficult to master, in practice the
only tool for changing the visualization of an image still is a global min-max win-
dowing. See Fig. 2 for an example using CLAHE with different parameter sets.

Fig. 1. An example from a CT chest scan displaying the use of different transfer func-
tions. From left: Lung window, bone window and mediastinum window.
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Fig. 2. An image from a CT chest scan displaying the use of CLAHE (adapthisteq in
MATLAB) with various parameter settings

There are other approaches for handling this problem that do not include
histogram equalization. In [7] it is suggested that the use of a bi-linear trans-
fer function will improve the visualization. Another approach, presented in [4],
is where multiple transfer functions are applied separately and then combined
using weighted averaging. In a US patent application, [2], yet a third alterna-
tive is presented, where a single transfer function is applied first and later, two
other transfer functions are applied to the values that were clipped due to the
first transfer function. This approach resembles a functionality, known as dual
window, that used to be available on some modality workstations. Dual win-
dow functionality allowed the radiologist to apply a contrast window within an
already applied contrast window. However, a common limitation of these three
suggestions is that they fail to make use of the fact that different transfer func-
tions are often only relevant to disjoint regions.

In this paper, we present a method for the utilization of local transfer functions
for visualization of medical image volumes based upon deformable models. The
aim of this suggestion is to enable the radiologist to view images with multiple
local transfer function applied simultaneously to the volume, instead of just one
global transfer function. The transfer functions are automatically assigned to
different anatomically relevant regions in the volume to be visualized and they
can either be pre-defined or interactively changed by the radiologist during the
visualization.

2 Model-Based Local Transfer Function

The basic idea behind the proposed method consists of an anatomical model
that is deformed, with the aid of non-rigid registration, to fit the data volume to
be visualized. Voxel-specific transfer functions are then applied to the volume,
where the transfer functions are derived from the deformed model. This will
enable the radiologist to review images while applying multiple transfer functions
simultaneously. The applied model can be more or less complex depending on
the number of segmented tissues (compartments) in the model, in which a pre-
defined transfer function is linked to each compartment. The radiologist can
also interactively control the transfer function for each compartment during the
review process. See Fig. 3 for a graphical overview of the proposed method.

The following sections will in more detail describe the different aspects of the
proposed method.
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Fig. 3. Method overview

2.1 Model

The model IM consists of a body with N compartments, where ICi (x) describes
the probability [0, 1] of tissue i in x. The different compartments are combined
to create the model according to:

IM =
N∑

i=1

aiICi (1)

Where
∑N

i=1 ICi (x) = 1 and where ai are values used to combine the different
compartments ICi in order to create a model suitable for image registration.
How to select ai depends on which registration method that is used in the sub-
sequent step, e.g. an intensity-based method would require that the voxel values
of the model are similar to the voxel values of the volume to visualize whereas
a phase-based method would require that the boundaries between the different
compartments in the model have the same sign as in the volume to visualize. A
min and max value (αi and βi) are assigned to each compartment. These values
are used to control the transfer functions, see Fig. 4.

2.2 Registration

A segmentation and registration algorithm known as the Morphon is employed
to register the model with the data set to be visualized. The Morphon is a phase-
based algorithm where a source image IS(x), in our case IS = IM , is iteratively
deformed, ID(x) = IS(x + d(x)), until it is sufficiently similar to a target image
IT . This process is performed over multiple scales starting on coarse scales to
register large global displacements and moving on to finer scales to register
smaller local deformations. For a more detailed review of the algorithm, the
reader is referred to [8].

When the registration process is completed, the estimated deformation field
is applied to all the compartments of the model using linear interpolation.

ĨCi(x) = ICi(x + d(x)) (2)
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pdisp

v

2bits stored–1α β

2bits display–1

Fig. 4. An illustration of how the min and max values α and β control the local
transfer function, where v is the local voxel value and pdisp is the display value. Bits
stored denotes the number of bits used to store each voxel value and where bits display
denotes the number of bits available for display in the display device

2.3 Visualization Based Upon Local Transfer Functions

The next step is to define the voxel-specific transfer functions, which are defined
by a min and max value for each voxel, Iα (x) and Iβ (x). The deformed com-
partments ĨCi are combined for both the min and max values (αi and βi) to
create Iα (x) and Iβ (x).

Iα (x) =
∑N

i=1 αiĨCi (x)∑N
i=1 ĨCi (x)

(3)

Iβ (x) =
∑N

i=1 βiĨCi (x)∑N
i=1 ĨCi (x)

(4)

The data set to be visualized, I, is then transformed according to the voxel-
specific transfer functions to form Idisp, which then is used for visualization.

Islope =
2bits display − 1

Iβ − Iα
(5)

Ĩ = min (max (I, Iα) , Iβ) (6)

Idisp = Islope

(
Ĩ − Iα

)
(7)

2.4 Smooth Transition Regions between Transfer Functions

An important issue to consider and to handle correctly is that of the transition
regions between the compartments, i.e. how to handle the transition between
different transfer functions. This is important since no registration algorithm
can produce perfect results and since the borders between different tissues are
rarely binary. Thus, it is important to have a transition that does not introduce
any new features that are disturbing to the radiologist reviewing the images.

A first step which handles the transition regions is already incorporated into
the model, since the compartments are described with a continuous probability
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between [0, 1] instead of with a binary model. The effect of this on the transfer
functions in the transitions regions can be seen in Fig. 5 and the effect on the
final visualization result can be seen in Fig. 6.

Another approach is to provide the radiologist with a tool for controlling
the transition regions. A simple but effective tool is to include averaging of the
transition regions, in which the radiologist can select which averaging filter to
apply and the size of the applied filter.

Other approaches for handling the transition regions were tested, including
different non-linear mappings of the probability functions describing the com-
partments and different non-linear combinations of the transfer functions in the
transition region. However, none of them added any significant improvements
than the already described continuous model and the user-controlled averaging
of the transition regions.

pdisp

v

4095800 1300

255

Lung window
Mediastinum window
Intermediate windows

Fig. 5. An example to demonstrate how the transfer functions varies in the transition
region between two different transfer functions

Fig. 6. One example to demonstrate the difference in using a binary model versus a
continuous model. The close-ups especially highlights the difference in smoothness of
the features introduced in the transition regions. Left side: Binary model, Right side:
Continuous model.
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3 Evaluation

To evaluate the usefulness of the proposed method we have tested it on a number
of clinical data sets and allowed three clinicians to evaluate the proposed method
based upon the visualized images. The evaluation was based upon the following
questions:

– What are the possibilities of the proposed method?
– What are the limitations of the proposed method?
– What is important to consider when handling transition regions, i.e. the

region between two different transfer functions?
– Would it be possible to use the proposed method to make the review process

of large medical image volumes more efficient?

4 Implementation

The proposed method was evaluated using data sets made available by [1] at
http://www.dir-lab.com/. The data sets consist of 4D CT thoracic data from
patients with esophageal cancer. Each 3D data set, in the 4D data sets, has a
size of 512x512x128 and a spatial resolution of 0.97x0.97x2.5 mm. Using one of
the patients, a model was created consisting of two compartments, see Fig. 7.
The model was then registered with two different data sets from the same patient
but from different exhale/inhale phases. Each of the estimated deformation fields
was applied to the model, which was then used to visualize the data sets using
multiple transfer functions.

Fig. 7. Two different compartments (lung and body) combined to form the model

The model was created using MIPAV 5.0.0 and a semi-automated method
to segment the contour of the body and of the lungs. A continuous model was
achieved by applying Gaussian filtering to the binary segmentation of the body
and of the lungs. In our case we set ai to 1 for the body compartment and to 0
for the lung compartment. The registration of the model with the data sets to
be visualized was performed in MATLAB R2010a with the aid of a GPU-based
implementation of the Morphon, implemented with CUDA 3.0. Due to memory
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constraints on the graphics card the data sets were downsampled to 256x256x128
before registering the model with the data sets.

The deformation of the model and the visualization were performed in MeVis-
Lab 4.6.2. Two different transfer functions were applied, one lung contrast win-
dow (min-max equal to 0 − 1300) and one mediastinum contrast window (min-
max equal to 800−1300). The display range for the visualized images was limited
to eight bits, i.e. 256 gray-levels, since this is the commonly used display range
when reviewing medical gray-level images.

5 Results

5.1 Results from the Evaluation

All three radiologists acknowledged the potential in the proposed method, in
terms of making the review process more efficient by avoiding the need to

Fig. 8. Two examples to demonstrate the use of multiple transfer functions. Top row:
Combined lung and mediastinum window, Middle row: Lung window, Bottom row:
Mediastinum window.
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scroll through an image stack multiple times. They predicted that the method
would have the greatest potential when working with images that display tis-
sues/compartments where the visually important information is located within
the tissues and not on the border between the tissues. Another type of relevant
images would be those where there is a large difference between the applied
transfer functions, e.g. transfer functions for air, soft tissues and/or bone. An-
other comment was that this method would be useful when there is a need for a
quick overview, e.g. when the reason for the examination is vague or in trauma
cases.

On the other hand, the radiologists found little or no potential in the proposed
method, when reviewing images with small structures or where the borders be-
tween the different tissues/compartments contain vital information or when the
applied transfer functions are very similar.

Fig. 9. Another two examples to demonstrate the use of multiple transfer functions.
Top row: Combined lung and mediastinum window, Middle row: Lung window,
Bottom row: Mediastinum window.
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Another important comment from the radiologists, was that the images ap-
peared familiar, albeit the simultaneous use of multiple transfer functions. Also
the fact that the visualization was controlled using the familiar parameters of a
contrast window, was highly appreciated.

The comments regarding how to handle the transition regions differed. One
radiologist appreciated the smooth transition between the different transfer re-
gions, because it did not visually disturb him as much as a sharp transition
would, whereas the other two radiologists appreciated the sharp transition since
it reminded them about the fact that multiple transfer functions where applied
simultaneously.

5.2 Results from the Implementation

Results from the implementation of the proposed method can be seen in Figs. 8
and 9.

6 Discussion

In this paper, we have presented a method for applying multiple transfer func-
tions for visualizing gray-level images with a large dynamic range. This is possible
since different transfer functions are often only relevant to disjoint anatomical re-
gions, when radiologists review medical image volumes. To apply multiple trans-
fer functions we have used a model, registered to the data set to be visualized,
to control the local transfer function applied in each voxel.

The results presented, clearly indicate the usefulness of the proposed method,
both in terms of its use of multiple transfer functions and its use of a registered
model to control the applied transfer functions, in order to make the review
process more efficient.

Two important features of the proposed method are that it does not intro-
duce any new and unfamiliar parameters for the radiologists to work with and
that, even though multiple transfer functions are applied simultaneously, voxels
belonging to the same anatomical region are mapped with a single linear transfer
function. The fact that these features are important and relevant to a radiologist
was confirmed in the results from the evaluation in Sec. 5.1. This separates our
method from the methods described in Sec. 1, where either both or one of these
features are missing. For instance the histogram-based methods introduce an
unfamiliar parameter set to work with and a non-linear mapping of the voxel
values. The non-linear mapping of the voxel values is also introduced by the
methods that attempts to visualize more by adapting the transfer functions.

However, there are a few aspects of the proposed method which can be com-
mented upon. First, the method presented is dependent upon a successful regis-
tration of the model with the medical image volume to be visualized and espe-
cially that the deformation field, estimated by the registration process, is smooth.
Thus, it is important to use registration methods that are diffeomorphic and that
allows incorporation of prior knowledge to control the deformation field in or-
der to improve the registration result, something which can be done using the
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Morphon, [3,5]. Second, the reason for registering the model and not the actual
patient data, upon which the model is based, is to avoid the risk of allowing
details in the image volume to control the registration. Because of this, it was
also natural to use the Morphon algorithm for the registration process, since,
unlike other methods, it is phase-based and not intensity-based.

As previously described, we used a continuous probability of the different
compartments in the model, in order to achieve a smooth transition region be-
tween different transfer functions, see Fig. 6, which would not introduce visu-
ally disturbing features to the radiologist whilst reviewing images. However, the
results from the evaluation show, that there appears to exist a difference in
opinion regarding how to handle the transitions regions. An individual accom-
modation to this, could easily be obtained by using the suggestion in Sec. 2.4,
i.e. providing the user with functionality for smoothing the boundaries between
the different compartments. Despite the use of a continuous model and various
other attempts, new features were introduced in the transition regions, some-
thing which was difficult to completely avoid. However, this can be avoided if the
voxel-specific transfer functions combined together form a global monotonically
increasing transfer function. Since this would limit the contrast for each applied
transfer function, it was not deemed relevant.

One of the key features of the proposed method is the use of local transfer
functions, which has not been previously utilized in visualization of gray-level
images. However, the notion of local or spatially dependent transfer functions
is not entirely new. For instance, both [9,10] make use of spatially dependent
transfer functions for direct volume rendering. A major difference, however, is
that they use local histograms to control the local transfer functions instead of
using a model which is registered to the volume to be visualized.

Future work includes creating more complex anatomical models and to evalu-
ate examinations that include blood vessels with contrast, hip implants, trauma
cases and brain scans. Furthermore, the proposed method needs to be evaluated
in a user study involving a larger number of radiologists. Another future devel-
opment would be to extend the method to incorporate transfer functions used
in direct volume rendering.
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Abstract. X-ray videography is one of the most important techniques
for the locomotion analysis of animals in biology, motion science and
robotics. Unfortunately, the evaluation of vast amounts of acquired data
is a tedious and time-consuming task. Until today, the anatomical land-
marks of interest have to be located manually in hundreds of images for
each image sequence. Therefore, an automatization of this task is highly
desirable. The main difficulties for the automated tracking of these land-
marks are the numerous occlusions due to the movement of the animal
and the low contrast in the x-ray images. For this reason, standard track-
ing approaches fail in this setting. To overcome this limitation, we analyze
the application of Active Appearance Models for this task. Based on real
data, we show that these models are capable of effectively dealing with
occurring occlusions and low contrast and can provide sound tracking
results.

Keywords: Active Appearance Models, X-ray Videography, Landmark
Tracking, Locomotion Analysis.

1 Introduction

An important field of ongoing research in biology, motion science and robotics
is concerned with the analysis of how the morphology of animals constrains
their locomotion. Discovering the underlying relations means not only obtaining
a better understanding of common principles of locomotion, but also learning
about the adaptivity of the locomotor system to certain circumstances or gaining
a more precise knowledge of evolution [8]. It also provides deep insight into the
mechanical properties and self-stabilization techniques of animals, which is, for
instance, of great interest for the construction of walking robots.

To enable reliable conclusions regarding these open questions, extensive stud-
ies have to be carried out on many specimens across different species. These
studies are focused on analyzing the movement of the locomotor system. For
the case of bipedal terrestrial locomotion, the parts of interest are mainly the
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(a) Acquisition System (b) Example Images

Fig. 1. (a) Biplanar high-speed x-ray acquisition system (NeurostarR©, Siemens AG).
(b) Two example images of a quail (Coturnix coturnix) for the dorsoventral (top row)
and lateral (bottom row) camera view acquired with this system.

pelvis, the femur and joints like the hip and knee joints [8]. X-ray videogra-
phy has gained large popularity for this sort of locomotion analysis over the past
decades, as it allows for a relatively unobstructed observation compared to exter-
nal marker based videography [4,8]. A typical state-of-the-art x-ray acquisition
system is shown in Fig. 1a. Two C-arms allow biplanar recordings at 1000Hz
with a resolution of 1536 × 1024 pixels. For locomotion analysis, a treadmill is
placed on the table to enable recordings of walking animals. Two example im-
ages of the dorsoventral (top row) and lateral (bottom row) view obtained with
this system are given in Fig. 1b. The images show the locomotion of a quail
(Coturnix coturnix ).

The evaluation of the recorded data is based on anatomical landmarks which
have to be located in each image of the sequence. The amount of landmarks
differs from sequence to sequence, but common values range from ten to thirty
per image. To this day, the labeling task mainly has to be carried out by the
human expert, because common tracking algorithms fail due to the overlaps and
the low contrast present in the x-ray projections (see Fig. 1b). To speed up the
tedious task of manual labeling and to enable the evaluation of large amounts
of data, an automatic tracking approach for anatomical landmarks is necessary.
The goal of this work is to develop a method which can deal with the problem
of overlapping body parts and low contrast x-ray images, and which allows to
substantially reduce the human effort spent on manual landmark labeling. In the
following we propose the application of Active Appearance Models [5,7,6]. The
primary reason for the choice of Active Appearance Models is that relationships
between landmarks and gray values are modeled in the context of the entire
image (i.e. globally) and not just locally, which is a promising way of dealing
with the problems stated above.
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The remainder of this paper is organized as follows. After a short literature
review and a motivation for the use of Active Appearance Models in Sect. 2, we
will give a brief introduction to these models in Sect. 3. In Sect. 4 we will discuss
general aspects and specific properties of Active Appearance Models applied to
the scenario of anatomical landmark tracking. The results of our experiments
are presented in Sect. 5. At the end we will summarize our findings and discuss
future work.

2 Related Work and Motivation

Tracking is an important field of computer vision and a subject of research for
many years. It can be distinguished between data-driven and model-based track-
ing approaches. For the former, prominent representatives are optical-flow-based
tracking [10], the “KLT tracker” [1], region-based tracking [9,11] or trackers
based on SIFT descriptors [14]. All these approaches use local image features
and allow for a tracking solely based on the given data. The local treatment is
the main weakness for the present case, as occlusions in the x-ray images can
often only be resolved by using global context information.

Model-based approaches, on the contrary, try to explain the given data by
using an underlying model. In the field of medical x-ray analysis, for instance,
target regions are tracked by registering a 2D image sequence to a previously
recorded 3D computer tomography dataset [15]. In the biological context, this ap-
proach is also known as X-ray Reconstruction of Moving Morphology (XROMM)
[2,3]. However, this approach is very demanding and complex in our scenario, as
not only a full-body computer tomography scan, but also a skeletal model for
each specimen need to be provided for each tracking task.

For our application, Active Appearance Models [5,7,6] combine the advantages
of both tracking principles. On the one hand, training is based on the image se-
quence and given landmarks, and no explicit model information is necessary in
advance. Instead, a combined model of shape and texture is learnt automat-
ically based on the training data. This model describes landmarks and gray
values within a combined global framework. Active Appearance Models have
been applied to numerous tasks, the most prominent being face modelling and
tracking [7,19] and medical applications (e.g. [16]). A non-exhaustive overview of
example applications is given by Stegmann [17]. Important extensions of Active
Appearance Models for our application are for instance presented by Walker et
al. [19], who make use of the sequential nature of their data or by Lelieveldt et
al. [12], who extend Active Appearance Models to multiple camera views.

3 Active Appearance Models

Active Appearance Models [5,7,6] are generative statistical models which jointly
describe the shape (represented by landmarks) and the appearance (represented
by gray values) of non-rigid objects pictured in digital images. The application
of such models generally involves two steps, namely the training and the fitting
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step. For training, annotated images showing an instance of the object to be
modeled are needed. The annotations only consist of landmarks, i.e. 2D points
which define the shape of the object instance in the according image. In our case,
these landmarks consist of parts of the locomotor system (e.g. joints) and the
torso. Once trained, an Active Appearance Model can be fit to new images in
an easy and quick manner. The following two subsections give a brief overview
of the basics of Active Appearance Models.

3.1 Training Step

Given the N training images In ∈ RY ×X , 1 ≤ n ≤ N and their corresponding
M landmarks ln = (xn,1, . . . , xn,M , yn,1, . . . , yn,M )T ∈ R2M , Active Appearance
Models are trained in three sub-steps: the creation of a statistical shape model, a
texture model and a combined model. The next passage will give a short overview
of these three steps.

Shape Model. At first, the combined variation of the landmarks over the
training set is analyzed. The goal is to reveal how the position of each landmark
correlates with the positions of the other landmarks in order to obtain a specific
description of the object’s shape. After removing the effects of rotation, scaling
and shifting, principal component analysis (PCA) is applied on the centered and
aligned landmarks. The result of the PCA is the matrix P L of shape eigenvectors,
which can be used to represent each shape l′ via

l′ = l0 + P LbL, (1)

where l0 is referred to as the mean shape. The elements of the vector bL =
P T

L (l′ − l0) are the shape parameters of l′.

Texture Model. The second step is to build a statistical model of the image
gray values given in the training data. The approach is very similar to the previ-
ous step. The gray values of every training image In are warped into a common
reference shape. The remaining actions for the texture model follow those from
the shape model. Again, PCA is applied and each texture vector g′ in the given
reference shape can be represented via

g′ = g0 + P GbG, (2)

where g0 is the mean texture, P G are the texture eigenvectors and bG = P T
G(g′−

g0) are the texture parameters of g′.

Combined Model. To model the dependencies between shape and texture,
an additional PCA is applied on the vectors cn = (wbT

L,n, b
T
G,n)

T
, where bL,n

and bG,n are the shape and texture parameters for the nth training example
and w ∈ R is a scaling factor (to account for the different units of shape and
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texture). In the end, each object instance with the concatenated parameters c′

can be represented by
c′ = P CbC. (3)

Here, bC are the combined parameters or appearance parameters and the ma-
trix P C are the combined eigenvectors. If this matrix is restricted on the first
eigenvectors which explain a certain amount of model variance, a vast dimension
reduction can be achieved. This typically leads to statistical combined models
which are capable of explaining the appearance of an object with a very compact
set of appearance parameters.

3.2 Model Fitting

Model fitting describes the process of finding suitable appearance parameters for
a given model such that the model instance fits a previously unseen image. As
every Active Appearance Model describes one specific object, it can be assumed
that all fitting tasks are similar. Therefore, we do not need to carry out a separate
time-consuming optimization each time we see a new image, but instead can
learn the solution for these similar tasks in an offline step. This is achieved by
using multivariate regression where parameter changes are predicted based on
the texture difference between the model and the real image. The necessary
training data is obtained by systematically displacing known model instances
from the training set. Once learnt, this relationship is used to iteratively fit a
model instance to a given image in a quick and easy way.

4 Application to X-ray Locomotion Landmark Tracking

The general application of Active Appearance Models for tracking tasks in video
sequences is straightforward and has been widely discussed in the literature,
however mainly under the aspect of face tracking [7,19]. For the application to
high-speed x-ray locomotion sequences, there are two important differences com-
pared to the case of usual tracking. First of all does the training data not consist
of miscellaneous instances of the object to be modeled (e.g. a face database for
face tracking), but rather of images taken from the sequence to be tracked it-
self. The reason for this approach is that often only one sequence per species
is available or that available sequences differ considerably, either in their visual
appearance or in the labeled landmarks.

The second specific characteristic compared to usual Active Appearance Model
tracking is the property which is characterized by the shape model. Instead of the
variation of landmarks between static instances of an object, the shape model de-
scribes the dynamic variation of landmarks during the locomotion of one specific
specimen. Therefore, the shape model becomes actually a very basic locomotion
model. An example for this effect can be seen in Fig. 2. It shows the first two
eigenmodes of the statistical shape model for the trunk and femora (thighs)
landmarks of a quail trained on the lateral view of the dataset shown in Fig. 1b.
The first eigenmode explains 85% of the total shape variation, and it can be



Anatomical Landmark Tracking for the Analysis of Animal Locomotion 609

(a) Real Landmarks
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(b) Shape Variance of the Active Appearance Model

Fig. 2. Shape variance of the trunk and femora landmarks for the lateral view of the
dataset shown in Fig 1b. The first and second shape parameters explain 85% and 11%
of the total variance of the landmarks, respectively. Due to the specific application, the
statistical shape model actually characterizes a very basic locomotion model.

seen that it mainly expresses the forward and backward femora movement dur-
ing the locomotion. Therefore, the first eigenmode of the shape model roughly
corresponds to the angle which is spanned between the two projections of the
femora. The second eigenmode shows a large movement of the rightmost land-
mark relative to the rest of the trunk. As this particular landmark corresponds
to the quail’s 5th vertebra, the second eigenmode models the typical cervical
movement of a quail while walking.

5 Experiments and Results

The experiments presented in the following were performed on the quail dataset
as shown in Fig. 1b. The sequence has a total length of 2.245 s (2245 images)
and covers 51/2 walking periods (about 11 strides) at a resolution of 1536× 1024
pixels. Because the labeling for all sequences was done by human experts so far,
plenty of groundtruth data is available. For this data set, the groundtruth data
consists of 10 and 12 anatomical landmarks for the dorsoventral and the lateral
view in 68 and 81 images of the sequence, respectively. Approximately every
20th image was labeled. The landmarks of interest cover the 5th vertebra (neck),
the pelvis, the acetabula (hip joints), the pygostyle (pearson’s nose), the caudal
carina (rear breastbone), the furcula (wishbone) and the knee joints. The most
part of the tracking relevant occlusions occur in the region of the knee joints.

In our experiments, we wish to investigate the following issues:

(1) Are Active Appearance Models suitable for this kind of tracking task?
(2) Does the global modeling lead to better results compared to local methods?
(3) How do image size and preprocessing influence the tracking quality?
(4) Which and how many images of a sequence are best suited for training?

Based on the point to point error [17], which is the Euclidian distance between
tracking result and groundtruth landmark position, we examine general suitabil-
ity, the generalization ability and the model accurateness for various scenarios.
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(a) Point to Point Errors

(b) Result for Image 261 (c) Result for Image 1361

Fig. 3. (a) Point to point errors of the tracked landmarks of the lateral view using
a basic Active Appearance Model compared to the groundtruth landmark positions.
For each image index, the median error as well as the first and third quartiles of the
landmark errors are shown. The training images are selected from equally spaced frames
(indicated by vertical lines) of the walking period marked with a shaded background.
Subfig. (b) and (c) show the tracking results for the images 261 and 1361 in detail,
where crosses and circles denote tracked and groundtruth landmarks.

5.1 General Suitability

Proof-of-Concept. As a general proof-of-concept for the application of Active
Appearance Models to this kind of tracking task, we trained a basic model on the
given dataset. As training set we chose 15 images evenly spread over one walking
period in the middle of the sequence. After a coarse initialization of the landmark
positions for the first image of the sequence, the landmarks were tracked solely
based on the trained model and without any further user interaction. To ensure
temporal consistency, we used the result of frame t as initial solution for frame
t+ 1. Fig. 3a shows the point to point errors of the tracked landmarks for each
image having groundtruth data available. For each image index, the median
error and the first and third quartiles of the landmark errors are shown as a
measure of accuracy and precision, respectively. The images used for training
are indicated by vertical lines and the according walking period is marked with
a gray background.

First of all, the difference between the results on the training and non-training
images is clearly visible. Both accuracy and precision are about two to four times
larger in the previously unseen images compared to the training images. How-
ever, median errors of ten pixels for the non-training images are a promising
result, taking the image resolution of 1536 × 1024 pixels into account. To sup-
port this claim, Fig. 3b and 3c show the detailed tracking result for the images
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(a) Result for Image 1231 (b) Result for Image 161

Fig. 4. Tracking results for the images (a) 1231 and (b) 161 of the dorsoventral camera
view. Image 1231 has one of the best and image 161 has one of the worst tracking
results on the non-training images of the sequence.

261 and 1361, where crosses and circles denote tracked and groundtruth land-
marks, respectively. From Fig. 3a it can be seen that image 261 has one of the
best tracking results amongst the non-training images. This observation can be
verified by Fig. 3b. Image 1361, on the contrary, has one of the worst perfor-
mances of the tracked sequence according to the point to point error. This result
is also visible in Fig. 3c, where especially the knee joint landmarks are imprecise.
One reason for the different tracking qualities of these two images is probably
the amount of relevant occlusions (i.e. occlusions of the femora, hip joints and
knee joints), which differs substantially in the two images.

Nevertheless, above results show that Active Appearance Models are capable
of dealing with the difficulties of the given data. Despite the considerable oc-
clusions, no landmark is completely lost. In contrast to the human expert, no
temporal model or anatomical knowledge was exploited. However, the tracking
accuracy is promising for real applications, and it has to be considered that even
the hand-labeled groundtruth landmarks may deviate from their true anatomical
positions by several pixels.

For the dorsoventral view, the results are closely related to those from the
lateral view. For a similar training set, the point to point error curve is akin to
the one of the lateral view as shown in Fig 3a. In Fig. 4a and 4b, examples for
one of the best and worst tracking results of the dorsoventral sequence are shown
in detail. Again, both results demonstrate that Active Appearance Models can
handle the existent difficulties of the data very well.

Comparison to Local Approaches. In contrast to global approaches like
the Active Appearance Models, local tracking methods are likely to fail in this
setting. To verify this claim, we tested the Horn-Schunck optical flow tracking
method [10] on the same dataset. As expected, the results show that indeed
this method is adequate to track landmarks which are not subject to occlusions,
like the 5th vertebra, the pelvis or the pygostyle. The other landmarks, however,
were irretrievably lost as soon as occlusions occurred in the x-ray projections
due to the locomotion of the quail. This result underlines another advantage of
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Table 1. Computational considerations for identical models trained on various image
scales of the quail dataset. Training was performed on 15 images taken from one walk-
ing period. The tracking was performed on the entire sequence of 2245 images. The
landmark errors were calculated on the non-training images of the sequence only. All
error values refer to the original image size of 1536× 1024 pixels.

Image Size Texture Size Computing Time Error Quartiles

Training Tracking 1st 2nd 3rd

100.0% 146,055 px 95.4 min 362.4 min 3.43 px 6.45 px 10.73 px
50.0% 36,432 px 29.2 min 82.7 min 3.39 px 6.45 px 10.93 px
25.0% 9,068 px 6.2 min 19.8 min 3.52 px 6.81 px 10.96 px
12.5% 2,257 px 1.7 min 4.6 min 4.09 px 7.33 px 12.16 px

Active Appearance Models for this tracking task, which can usually recover after
suboptimal model fits in the image sequence.

5.2 Impact of Image Resolution and Preprocessing

Image Resolution. For 15 training images, the learning and tracking step of
an Active Appearance Model took about 7.63 h on a modern desktop PC (Intel R©

CoreTM i5 CPU 760 @ 2.80GHz). We therefore examined the performances of
Active Appearance Models for several resolutions of the input data in order to
find out whether full resolution images are necessary. The experiments were made
for image scales of 100% (1536 × 1024), 50% (768 × 512), 25% (384 × 256) and
12.5% (192 × 128). The results of these experiments are listed in Tab. 1. It can
be seen, that despite the enormous differences in the training and tracking time,
the results for image scales of 100%, 50% and 25% do not deviate substantially.
For a scale of 12.5%, however, the loss of quality due to the resolution reduction
becomes apparent.

Preprocessing. Another important aspect we analyzed was how sensitive Ac-
tive Appearance Models react on different methods of preprocessing of the input
data. We compared the performance of Active Appearance Models applied to
(1) the original data with background-subtracted and contrast scaled images,
(2) images sharpened based on the Laplacian operator and (3) gradient images.
All three methods have their justification, as the first two improve the con-
trast in the images and reveal faint structures, whereas the latter emphasizes
the anatomical structures of interest, such as the femur. The results, as listed
in Tab. 2, however, show that only the first two methods benefit the tracking
performance, while the gradient approach even worsens the result. This result
suggests that homogeneous areas in the image (like certain organs) are important
for the fitting process. Based on these findings, we used background-subtracted
and contrast scaled images for the majority of the conducted experiments.
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Table 2. Influence of different preprocessing methods on the tracking performance

Preprocessing Error Quartiles
1st 2nd 3rd

Original (no preprocessing) 3.77 px 7.40 px 11.85 px
Background subtraction & contrast stretching 3.52 px 6.81 px 10.96 px
Laplace-based enhancement 3.45 px 6.44 px 10.99 px
Gradient image (Sobel) 4.03 px 8.59 px 15.77 px

5.3 Selection of Training Images

For real applications, the amount of human effort spent in landmark labeling to
create training data is the main limiting factor for data evaluation. Our goal is
to achieve the desired tracking quality with as much as necessary, but as little as
possible human interaction. Therefore, two very important questions about the
given training data arise. The first one is how much training images are actu-
ally necessary to achieve the desired tracking quality, and the second question is
which images of the given sequence are most suitable as training images. To an-
swer these questions, we trained several Active Appearance Models with varying
sizes of the training set and selection schemes. In the first case we started with
images entirely taken from one walking period. Then, we successively added new
images, one walking period at a time. In the end, the training size ranged from 3
images (1/5 walking period) to 58 images (4 walking periods). In the other case,
the same image amounts were used, but the images were selected from equally
spaced images of the entire sequence.

We evaluated the experiments in two different ways. In one case we only
used the unseen images of the series for testing, which gives the generalization
ability of the according models. In the second case, only the errors made on the
training set were evaluated, giving an estimation for the model accurateness.
The evaluations for both cases are shown in Fig. 5a and 5b. It can be noticed
that the results for both selection methods differ substantially. Considering both
the generalization ability and the model accurateness, the period-based method
seems to be the better choice for few training examples, whereas the equally
spaced selection gives better results for many training images. In both cases, the
turning point is located around 15 images, which is the maximum amount of
images taken from one period. That is, as long as images from one period are
to be used for training, the period-based method is to be preferred. As soon as
images from more than one walking period should be used, the equally spaced
selection is more advantageous. The reason for this result is quite clear: few
equally spaced images will generally not cover all parts of a walking period, which
is a disadvantage compared to period-based selection. For many images, equally
spaced methods will perform better because they cover all walking periods of
the sequence in contrast to the period-based selection.
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Fig. 5. Tracking errors on (a) non-training images (generalization ability) and (b) on
training images (model accurateness) for varying sizes and selection schemes of the
training set. For few training examples, the period-based selection appears to be more
advantageous.

6 Conclusions and Further Work

We analyzed the application of Active Appearance Models for anatomical land-
mark tracking in x-ray videos of animal locomotion. As landmarks and gray
values are modeled in a global manner, these models are well suited to deal with
occlusions and low contrast in images. We showed that the Active Appearance
Model based approach performed substantially better than local approaches on
real data. We also studied the effect of different preprocessing and image selec-
tion methods on the performance and generalization ability of the models.

Further work should focus on the combined modelling of both camera views
(for instance based on [12]) to improve the performance for frames with high
occlusion and thus uncertainty. Additionally, the knowledge that the training
data is actually a sequence and not just a set of images should be exploited. For
the reduction of user interaction, bootstrapping methods for Active Appearance
Models based on [18,13] could be utilized. Another important issue will be to
derive a confidence value from the texture error of the Active Appearance Models
to automatically detect ill-fitted frames.
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Abstract. The Image Foresting Transform (IFT) is a framework for
seeded image segmentation, based on the computation of minimal cost
paths in a discrete representation of an image. In two recent publications,
we have shown that the segmentations obtained by the IFT may be
improved by refining the segmentation locally around the boundaries
between segmented regions. Since these methods operate on a small sub-
set of the image elements only, they may be implemented efficiently if
the set of boundary elements is known. Here, we show that this set may
be obtained on-the-fly, at virtually no additional cost, as a by-product
of the IFT algorithm.

Keywords: Interactive Image Segmentation, Image Foresting
Transform.

1 Introduction

Image segmentation, the process of identifying and separating relevant objects
and structures in an image, is a fundamental problem in image analysis. Accurate
segmentation of objects of interest is often required before further processing
and analysis can be performed. Despite years of active research, fully automatic
segmentation of arbitrary images remains an unsolved problem.

Seeded segmentation methods attempt to solve the segmentation problem in
the presence of prior knowledge in the form of a partial segmentation. Given an
image where a small subset of the image elements (called seed-points) have been
assigned correct segmentation labels (e.g., object or background), an automatic
algorithm completes the labeling for all image elements. The seed-points may
be provided either by some automatic pre-processing algorithm, or by a human
user in an interactive setting. Many different algorithms for seeded segmentation
have been proposed ranging from classical seeded region growing [1,11], through
to the more recent minimal graph cuts [3], random walks [7], and image foresting
transform (IFT) [6] approaches. Here, we focus on the IFT approach.

In the IFT, the image is represented by an edge-weighted graph. Each image
element corresponds to a node in the graph, and adjacent image elements are
connected by graph edges. Segmentation is performed by assigning to each node
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the label of the closest seed-point, as determined by the minimum cost path from
the node to the set of seed-points.

The IFT can be computed using Dijkstra’s algorithm [4], slightly modified
to allow multiple seed-points [6]. An efficient implementation of Dijkstra’s algo-
rithm, and so of the IFT, requires O(|I|) operations, where |I| is the number of
image elements, for a sparse graph with bounded integer path costs.

In interactive segmentation applications, a user often adds or removes seed-
points to refine an existing segmentation. In [5], it was shown that seed-points can
be added to, or removed from, an existing IFT solution, without recomputing the
entire solution. This modified algorithm, called the differential IFT (DIFT), gives
a significant reduction of the total time required for interactive segmentation.
In a differential implementation, the computation time required for each editing
operation is proportional to the number of image elements that are modified
by the operation. This number is usually much smaller than |I|. For typical
segmentation scenarios, the DIFT reduces the computation time required for
editing operations by a factor between 10 and 20, compared to the IFT [5]. The
DIFT is described in detail in Section 3.

In two recent publications [9,10], we show that the segmentations obtained by
the IFT may be improved by performing local operations around the boundaries
of the segmented regions. These methods are reviewed, and examples of their
application are given, in Section 4.

The boundary of a segmentation is here defined as the set of image elements
adjacent to at least one element with a different label. This set is usually much
smaller than the set of image elements. Since the methods proposed in [9] and [10]
operate only in a small region around the boundary, they may be computed
efficiently if the set of boundary elements is known.

For any given image element, it is easy to check if the element is part of the
segmentation boundary by comparing the label of the element to the labels of
its neighbors. Thus, a trivial algorithm for obtaining the boundary is to iter-
ate over all image elements and check if the element is on the boundary. This
however, requires O(|I|) operations, and thus the advantage of the differential
implementation is lost. Here, we show that the set of boundary elements may
be computed on the fly, at virtually no additional cost, as a by-product of the
DIFT algorithm1. This makes it possible to implement the methods proposed
in [9,10] efficiently in conjunction with the DIFT, thereby making them more
attractive for interactive segmentation.

2 Background

2.1 Images and Graphs

An image I is a pair (I, I) consisting of a set I of image elements and a mapping
I that assigns to each image element p ∈ I an element in some arbitrary set,
1 We note that the concept of extracting segmentation boundaries while computing the

DIFT was previously investigated by Audigier et al. [2], for the purpose of visualizing
the segmentation results.
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Fig. 1. Segmentation of the liver in a slice from an MR volume image. (Left) Original
image. (Middle) Segmentation obtained with the IFT, from user defined seed-points
shown in gray. (Right) Boundary of the segmentation, computed on-the-fly as a by-
product of the IFT algorithm.

typically a subset of Zn or Rn (e.g., I ⊂ Z
n and I : I → [0, 255]). We associate

an image with an adjacency function N that maps each image element p ∈ I to
a set N (p) ⊆ I of adjacent image elements. We require the adjacency function
to be symmetric, so that p ∈ N (q) ⇐⇒ q ∈ N (p) for all p, q ∈ I. An image,
together with an adjacency function, may be interpreted as a graph, whose nodes
are the image elements and whose edges are all ordered pairs of image elements
p, q ∈ I such that q ∈ N (p).

For each ordered pair of adjacent image elements p and q, we assign a real
valued, non-negative, edge weight w(p, q). The edge weights represent local dis-
similarity, i.e., p and q are strongly connected if w(p, q) is close to 0. Typically,
edge weights are computed from local image features such as intensity or gradient
magnitude.

2.2 Paths and Path Costs

A path π = 〈p1, p2, . . . , pk〉 of length |π| = k − 1 is a sequence p1, p2, . . . , pk

of image elements such that pi+1 ∈ N (pi). We denote the origin p1 and the
destination pk of π by org(π) and dst(π), respectively. If π and τ are paths such
that dst(π) = org(τ), we denote by π · τ the concatenation of the two paths.

The cost of a path is denoted f(π). This cost is typically a function of the
edge weights along the path, e.g., the sum of all the edge weights along the path
or the maximum edge weight along the path. The maximum possible cost of a
path is denoted +∞.

A path π is a minimum cost path if f(π) ≤ f(τ) for any other path τ with
org(τ) = org(π) and dst(τ) = dst(π). In general, a minimum cost path is not
unique. The set of minimum cost paths between two image elements p and q is
denoted πmin(p, q).

The definition of a minimum cost path between two sets of image elements
is analogous. For two sets A ⊆ I and B ⊆ I, π is a path between A and B if
org(π) ∈ A and dst(π) ∈ B. If f(π) ≤ f(τ) for any other path τ between A and
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B, then π is a minimum cost path between A and B. The set of minimum cost
paths between A and B is denoted πmin(A,B).

2.3 Spanning Forests

A predecessor map is a mapping P that assigns to each image element p ∈ I
either an element q ∈ N (p), or ∅. For any p ∈ I, a predecessor map P defines a
path P ∗(p) recursively as

P ∗(p) =
{ 〈p〉 if P (p) = ∅
P ∗(P (p)) · 〈P (p), p〉 otherwise .

We denote by P 0(p) the first element of P ∗(p). A spanning forest is a predeces-
sor map that contains no cycles, i.e., |P ∗(p)| is finite for all p ∈ I. If P ∗(p) = ∅,
then p is a root of P .

2.4 Image Segmentation

A segmentation of an image I is a mapping L that assigns to each image ele-
ment p ∈ I an element in some arbitrary set of labels, e.g., L : I → {object,
background}. The boundary ∂L ⊆ I of a segmentation is defined as

∂L = I \ {p | L(p) = L(q) for all q ∈ N (p)} ,

i.e., an image element belongs to the boundary if at least one of its neighbors
has a different label.

2.5 The Image Foresting Transform

Given an image I, a path cost function f , an adjacency function N and a set of
seed-points S ∈ I with corresponding labels, the IFT computes a spanning forest
P such that P ∗(p) ∈ πmin(p, S) for all image elements p ∈ I. During this process,
a cost map C and a segmentation L are built, such that C(p) = f(πmin(p, S)) and
L(p) = L(P 0(p)). A triple (P ,C,L) that satisfies these properties is a solution
of the IFT with respect to S.

3 The Differential Image Foresting Transform

The DIFT allows seed-points to be added to, or removed from, an existing IFT
solution in an efficient way. Given a solution of the IFT with respect to a set of
seed-points S, the DIFT algorithm computes a solution with respect to another
set of seed-points S′. The difference between S and S′ can be written in terms
of the following two sets: S+ = S′ \ S and S− = S \ S′. It holds that S′ =
(S \S−)∪S+, i.e., S′ can be obtained from S by adding all elements in S+ and
removing all elements in S−.
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Algorithm 1. DIFT
Input: Image I, adjacency function N , path cost function f , solution {C, P,L},

set S of old seed-points, and set S′ of new seed-points.
Output: C, L, P , and B.
Auxiliary: Three sets of image elements Q, T , and V .
Update the labels of all elements in S′, according to the user input;1

foreach p ∈ S+ do2

C(p)← 0, P (p)← ∅;3

(C, P, F )← RemoveSeeds(C, P,N , S−);4

Q← F ∪ S+, T ← ∅, V ← ∅;5

while Q �= ∅ do6

Remove p from Q such that C(p) is minimum;7

B ← B \ {p}, V ← V ∪ {p}, T ← T \ {p};8

foreach q ∈ N (p) do9

cost← f(P ∗(p) · 〈p, q〉) ;10

if q /∈ V then11

T ← T ∪ q;12

if q ∈ V and L(p) �= L(q) then13

B ← B ∪ {p, q};14

if cost < C(q) or P (q) = p then15

Q← Q ∪ {q};16

P (q)← {p}, L(q)← L(p), and C(q)← cost;17

foreach p ∈ T do18

B ← B \ {p};19

foreach q ∈ N (p) do20

if L(p) �= L(q) then21

B ← B ∪ {p, q};22

The procedure for computing the DIFT is given in Algorithm 1. This algo-
rithm is essentially the same as that presented in [5]. However, in addition to
the solution (C,P,L), Algorithm 1 computes a set B (for boundary) such that
B = ∂L. See Figure 1. To see that B, as computed by Algorithm 1, equals
the boundary of L, we observe that if a node is not inserted into Q during Al-
gorithm 1, then the label of that node is not changed. Thus, to compute the
correct boundary, we only need to update the nodes that pass through Q during
the algorithm, and their neighbors.

Each node is inserted into and removed from Q at most once. Thus, when a
node is removed from Q, it has already been given its final label. The set V (for
visited) is used to keep track of this – each time a node is removed from Q, it is
inserted into V . On line 13, it holds that p ∈ V . Thus, if q ∈ V , we can safely
compare L(p) and L(q) to check if p and q belong to the boundary.

The set T (for touched) is used to keep track of elements that are adjacent
to at least one element is V , but are not in V themselves. All nodes that remain in
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Procedure RemoveSeeds
Input: Cost map C, predecessor map P , adjacency function N , and set S− of

seed-points to be removed.
Output: C,P , and set F of frontier image elements.
Auxiliary: FIFO queue U , and set W of visited elements.
F ← ∅, W ← ∅;1

foreach p ∈ S− do2

Insert p in U ;3

while U is not empty do4

Remove p from U ;5

C(p)← +∞, P (p)← ∅;6

W ←W ∪ {p}, F ← F \ {p};7

foreach q ∈ N (p) do8

if q /∈ W then9

F ← F ∪ {q};10

if P (q) = p then11

Insert q in U ;12

T after the termination of the while-loop on lines 6-17 also need to be checked
for possible inclusion in B, as is done on lines 18-22.

4 Applications

In this section, we review the methods presented in [9] and [10]. Both these meth-
ods improve the segmentations obtained by the IFT by performing operations
locally around the segmentation boundary. Thus, the methods benefit from the
on-the-fly approach presented here.

4.1 Sub-pixel Segmentation with the IFT

The original IFT produces crisp segmentations, i.e., each image element is as-
signed the label of exactly one seed-point. However, due to the finite resolution
of digital images, an image element may be partially covered by more than one
(continuous) object. By allowing mixed labels, it is possible to obtain segmen-
tations with sub-pixel precision. Numerous studies have confirmed that pixel
coverage segmentation [14] outperforms crisp segmentation for subsequent mea-
suring of object properties such as length/surface area and area/volume, see,
e.g., [13,12].

In [9], we presented a method, called the sub-pixel IFT, for approximating
pixel coverage segmentation within the IFT framework, by computing mixed
labels at the segmentation boundaries. Experiments, reported in [9], indicate
that the sub-pixel IFT is less sensitive to small variations in seed-point placement
than the crisp IFT. A segmentation result obtained with the sub-pixel IFT is
shown in Figure 2.
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Fig. 2. Hip bones of a human, segmented from a CT volume image. The segmentation
was obtained using the IFT, with seed-points selected interactively by a human user.
A polygonal surface was extracted from the segmented volume using the Marching
Cubes algorithm [8], which takes sub-pixel information into account when available.
(Top) Segmentation obtained by the IFT. (Bottom) Segmentation obtained by the
sub-pixel IFT proposed in [9].

4.2 The Relaxed IFT

Numerous studies have shown that the IFT, and similar methods based on min-
imal cost paths, are capable of producing high quality segmentations in a wide
range of contexts. However, in images with weak or missing boundaries the IFT
tends to produce irregular segmentation boundaries. An explanation for this is
that the IFT propagates information from the seed-points only along minimum
cost paths. Since two adjacent image elements may receive their information from
different seed-points, regularity of the segmentation boundary is not enforced.

In [10], we address this weakness of the IFT by proposing the relaxed IFT
(RIFT). This modified version of the IFT features an additional parameter that
controls the smoothness of the segmentation boundary, thereby making the re-
sults more predictable in the presence of noise and weak edges. The method
works by applying an iterated relaxation procedure to the segmentation labels,
in a narrow band around the segmentation boundary. The effect of the relaxation
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Fig. 3. Segmentation of a muscle in a slice from an MR volume image. (Left) Original
image with seed-points representing muscle and background. (Middle) Segmentation
result obtained by the IFT. (Right) Segmentation result obtained after 30 iterations of
the relaxation procedure proposed in [10].

procedure is illustrated in Figure 3. In [10], the RIFT was used to refine manual
segmentations of a thoracolumbar muscle in MR images. The manual segmen-
tations, segmentations obtained with the IFT, and segmentations obtained with
the RIFT, were graded by 12 observers. The segmentations obtained by the RIFT
were preferred over the segmentations obtained by the IFT without relaxation.
Additionally, the segmentations obtained by the RIFT were found to be qualita-
tively comparable to the manual segmentations, while intra-user variations were
reduced by more than 50%.

5 Conclusion

We have shown that the boundary of the segmentations obtained by the IFT may
be computed on-the-fly, as a by-product of the DIFT algorithm. This allows the
sub-pixel IFT and the RIFT to be implemented efficiently in conjunction with
the DIFT.

As mentioned in Section 2.2, the minimum cost path between two image
elements may not be unique. Therefore, a strategy is needed for assigning labels
in ambiguous cases. In previous literature on the IFT, such a strategy is usually
referred to as a tie-breaking policy [5]. In Algorithm 1, a first-in-first-out (FIFO)
policy is assumed. However, extensions to other tie-breaking policies (e.g., the
mean tie-breaking policy proposed in [9]) should be straightforward.
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Abstract. The Green function of Mumford-Shah functional in the absence of 
discontinuities is known to be a modified Bessel function of the second kind 
and zero degree. Such a Bessel function is regularized here and used as a filter 
for feature extraction. It is demonstrated in this paper that a Bessel filter does 
not follow the scale space smoothing property of bounded linear filters such as 
Gaussian filters. The features extracted by the Bessel filter are therefore scale 
invariant. Edges, blobs, and junctions are features considered here to show that 
the extracted features remain unchanged by varying the scale of a Bessel filter. 
The scale invariance property of Bessel filters for edges is analytically proved 
here. We conjecture that Bessel filters also enjoy this scale invariance property 
for other kinds of features. The experimental results presented here confirm our 
conjecture of the scale invariance property of the Bessel filters. 

Keywords: Scale Space, Linear Filtering, Bessel Filter, Feature Extraction. 

1   Introduction 

Scale space theory has been established based on the application of a series of 
bounded linear filters such as a Gaussian filter on images. In a scale space setting, it is 
observed that the features extracted from an image may change if the scale of a Gaus-
sian filter varies. This phenomenon is known as scale space smoothing. Such an ob-
servation has led to the scale space theory to propose a framework to select the “most 
important” scale in which a feature should be extracted [1],[2]. Bounded linear filters 
usually demonstrate scale space smoothing. However, in this paper, we demonstrate 
that a Bessel filter which is unbounded at the center does not show any property asso-
ciated with the scale space smoothing when it is used to extract features such as 
edges, ridges, blobs, and corners. Such an unbounded filter is numerically intractable. 
We therefore propose a method here to regularize the filter. The rest of the paper is 
structured as follows. Section 2 introduces the Bessel filter and the theory behind it 
and a regularization method for implementations is presented in section 3. Section 4 
deals with the numerical results. The paper concludes in section 5.  
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2   Theory 

The Green function associated with the Mumford-Shah functional for the whole 
plane, in the absence of boundaries, is a modified Bessel function of the second kind 
and zero degree [3]. A closed form of this Green function is written as: 
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A three dimensional view of Green function (1) for (u, w) = (0,0)is shown in  
figure (1-a). The cross-section of this Green function is also depicted in figure (1-b). 
As shown in figure (1), Bessel function (1) is singular at the centre which is not nu-
merically tractable for implementation. It is therefore important for numerical pur-
poses to regularize function h.  

In this paper, we suggest the following regularized and normalized function 
named as Bessel filter. 
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Fig. 1. The M-S Green function for 10μ = : a) 3D view b) a cross-section 

The construction of the filter proposed in equation (2) is explained in more details 
in section 3 and figure (3). We are here inspired by the following theorem proved for 
an edge detection algorithm based on the Bessel filter [4].  

Theorem: The gradient magnitude of the convolved image +→ RRu 2:  calculated in 
*u h gε=  has local maxima on discontinuities of a given piecewise-constant image 

+→Ω Rg : as 0ε →  . 
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The above theorem implies that scale-space smoothing is not applicable to Green 
function (2) when it is used for edge detection. In fact, there is a family of filters 
which are scale invariant for edge detection. The Bessel filter investigated in this pa-
per is a member of this family. Another example in such a family is also designed and 
analyzed in [5]. We conjecture in this paper that Green function (1) does not demon-
strate any property associated with the scale space smoothing for the detection of any 
feature, i.e. features extracted by the Bessel filter investigated here are scale invariant. 
The numerical results presented in section 4 of this paper support such a conjecture. 

3   Implementation Issues  

The convolution of the function h in (1) with the original input image g is calculated 
as the first step for feature extraction to calculate the convolved image u. Then an ap-
propriate differential entity of u is examined to find regions for which this differential 
entity is maximum. 

Δ

Δ

ε

p

q

O

 

Fig. 2. A 5 x 5 grid used for the construction of a Bessel filter proposed in equation (2) for the 

case of 32 <
Δ

< ε   

The algorithm proposed here is implemented in Matlab 7.3 environment. We have 
exploited the built in besselk function in Matlab to construct the Bessel filter. Figure (2) 
helps us understand how the regularized Bessel filter proposed in (2) can be constructed. 
A 5 x 5 window forming the window grids of the filter is shown in this figure. It  
is noted that Δ  and ε in the figure are the sampling distance and regularizing parameter 
respectively. The dashed line circle in figure (2) represents the circle with a radius given 
in (3). 

2
r

ε=  (3)
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Fig. 3. The cross section of the regularized filter proposed in (2) 

According to equation (2), the values of the filter in all points inside this circle should 
be unity and the filter values in all points outside of this circle should be set to the fol-
lowing value: 

0

0 2
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h r
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ε ε

μ

=  (4)

where r is the distance between the central point O and the point outside of the cir-

cle. If the point is the outside of the dashed line circle (such as point p shown in the 
figure), then the value given in equation (4) is therefore assigned to the filter at point 
p. For a point inside the circle (such as points q and O), unity is assigned to the filter 
at this point. For the case when ε < Δ , the dashed circle contains only the central 
point O and therefore the value of the filter at only the central point O is set to unity.  

We consider Δ  being unity throughout this paper. Having constructed the filter, 
the derivatives of the filter with respect to x and y are convolved with the original im-
age to compute the derivatives of the image. Such derivatives can then be used in 
various differentials entities for image feature extraction. A cross section of con-
structed regularized Bessel filter is also depicted in figure (3). Finally we need to  
determine the window size according to which the Bessel filter defined in (2) is trun-
cated, since this filter in spatial domain is not band limited. Therefore we define the 
truncated filter as: 
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We use the term defined in (5) to determine a filter size for the Bessel filter with re-
spect to μ . 

( ) ( ) ( , )
r

E d h r h r dε ε= −∑  (5)

We notice that for, 5d μ=  E becomes negligible ( 0045.0=E ) in comparison with 

the total area under the filter ( )h rε , i.e., 

( 5 ) ( )
r

E d h rεμ= <<∑  

Therefore, in this paper the window size of the filter proposed here is set to 
(10  +1)  (10  1)W μ μ= × + . It is clear that if we choose larger window sizes than 

this, the algorithm becomes numerically more expensive with almost the same accu-
racy. In summary, once the Bessel filter is constructed, its derivatives with respect to 
x and y directions are numerically calculated and then these derivatives are convolved 
with an input image to compute the derivatives of the image in x and y directions. The 
various differential entities investigated in this paper are finally computed to extract 
appropriate features for image analysis by detecting the local maxima of the corre-
sponding differential entities. 

4   Numerical Results 

Let us start this section by presenting our numerical results on edge detection. It is 
customary in literature (see e.g. [6]) to convolve an image with a filter and then find 
the maxima of the absolute value of the gradient of the convolved image to detect 
edges, i.e., the maxima of the following differential entity correspond to the edges of 
image I.  

uϒ = ∇  (6)

where *u h I= and h is the filter. The image of figure (4-a) is examined for edge de-
tection. Gaussian and Bessel filters with size 41 are employed for edge detection to 
produce the results in figures (4-b and c). 

 

(a)                                         (b)                                      (c) 

Fig. 4. Edge detection with two filters with the size 41, a) Original image b) Edge map pro-
duced by Bessel filter( 0.1ε = ) c) Edge map produced by Gaussian filter 
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As shown in figure (4), the corners in the edge map produced by a Gaussian filter, 
become distorted when the filter size (and hence scale) is considerably high. This 
phenomenon is known as scale space smoothing. The corners in the edge map pro-
duced by the Bessel filter however do not show any distortion as the filter size (scale) 
increases. We note that the filter parameters such as the standard deviation 

(   

6

filter sizeσ = ) of the Gaussian filter and μ  for Bessel filter are calculated according 

to the filter size. Figure (5-a) shows a real world image whose edge maps are detected 
by the Bessel and Gaussian filters. This figure depicts another example for edge de-
tection showing that the Bessel filter can extract same features regardless of the scale. 
However some features are distorted in some scales when a Gaussian filter is used for 
edge detection. Same filter size (size =9) is used for both filters. As shown in this fig-
ure, some letters (such as “t”, “f”, “a”, “m” and so on) even in lower scales are de-
tected with better accuracy by the Bessel filter. A noisy synthetic image is also shown 
in figure (6-a). In order to remove the noise, the filter size 13 is chosen for both fil-
ters. More details are extracted in the edge map produced by the Bessel filter. Accord-
ing to the theorem presented in section 2, as 0ε →  higher accuracy in edge detection 
is achieved by the Bessel filter. The parameter ε  however is set to unity for the pur-
pose of noise removal in this example. As can be seen from this figure, a better accu-
racy in edge detection is achieved by the Bessel filter. 
 

 

(a) 

 
(b)                                                         (c) 

Fig. 5. Edge maps in various scales a) Original image b) Edge map produced by the Bessel fil-
ter (size=9, 0.1ε = ), c) Edge map produced by the Gaussian filter(size=9) 
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(a) 

  
(b)                                                              (c) 

Fig. 6. Edge maps of a noisy image produced by the Gaussian and Bessel filters (size=13) a) 
Original noisy image b) Edge map produced by the Bessel filter ( 1ε = ) c) Edge map produced 
by the Gaussian filter 

In both figures (5) and (6), a stair case strip of logarithmically increasing grey 
scales is added at the bottom of the original images to ensure that the equivalent val-
ues for thresholds are used in both algorithms. 

Figure (7-a) shows a Gaussian circle. Bessel filters with size 9 and 301 are applied 
to this Gaussian circle to detect edges as shown in figures (7-b and c). Gaussian filters 
with the same sizes are applied to the Gaussian circle to produce edge maps shown in 
figures (7-d and e).  

As shown in figure (7), the edge map of the Gaussian circle significantly changes 
when the filter size (and consequently the scale) of the Gaussian filter increases from 
9 to 301. However a slight change in edge maps is observed when the Bessel filter 
with two different sizes are used. The reason for the slight change in the edge maps is 
that it is not numerically tractable to set ε to zero. Analytically it can be proved, as 

0ε →  the edge maps produced by the Bessel filter will be unchanged, regardless of 
the filter size (the proof will be similar to the proofs of the theorems presented in [4]). 

For blob detection, the maxima of the following differential entity are detected. 

2uΓ = −∇  

where *u h I=  in which h is either a Bessel or a Gaussian filter and I is the input im-
age. Figure (8) shows the first 11 maxima of Γ for blob detection using the Bessel 
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and Gaussian filters with two different sizes. As shown in figures (8-a and b), lower 
scale blobs are detected by Bessel filters with both sizes 21 and 61. However, by in-
creasing the size of the Gaussian filter, the detected blobs change significantly (see 
figures (8-c and d)). As can be seen from figure (8), Bessel filters produce scale in-
variant features when they are used for blob detection. It is noted that for Bessel fil-
ters the values of the local maxima of Γ  always decrease from the top to the bottom 
of the blob pattern image shown in figure (8) in all scales (small and large scales).  

However the more bottom the blob is in the image of figure (8), the higher the 
value of the local maxima of Γ is, when a large scale is used for a Gaussian filter. For 
a Gaussian filter with a smaller scale, on the other hand, the values of the local 
maxima of Γ  decrease from the top of the blob pattern image to its bottom. 

The corners of the image shown in figure (9) are detected by convolving the origi-
nal image with both Bessel and Gaussian filters and finding the maxima of the follow-
ing differential entity: 

2 22y xx x y xy x yyu u u u u u uΞ = − +  

where *u h I=  in which h is either a Bessel or a Gaussian filter and I is the input im-
age. The first seven maxima of the differential entity Ξ  are plotted in figure (9). As 
can be seen from figure (9), the locations of the detected corners change, when Gaus-
sian filters with higher scales are employed. This is due to the scale space smoothing 
property associated with Gaussian filters. However the corner locations detected by 
the Bessel filters with various sizes remain unchanged. 

 
 

 
(a)                                   (b)                                 (c) 

 
(d)                                (e) 

Fig. 7. The effect of scale space smoothing on the edge maps of a Gaussian circle a) Original 
image b) edge map produced by the Bessel filter with size=9 c) edge map produced by the Bes-
sel filter with size=301 d) edge map produced by the Gaussian filter with size=9 e) edge map 
produced by the Gaussian filter with size=301 
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(a)                                 (b)                               (c)                           (d) 

Fig. 8. The first 11 blobs detected by using Bessel and Gaussian filters with two different filter 
sizes a) Bessel filter with size=21( 0.1ε = ) b) Bessel filter with size=61( 0.1ε = ) c)Gaussian 
filter with size 21 and d) Gaussian filter with size 61 

 
(a)                                         (b) 

 
(c)                                   (d) 

Fig. 9. The first seven most important corners detected by Bessel and Gaussian filters a) Bessel 
filter with size=9 ( 1ε = ) b) Bessel filter with size=201 ( 1ε = ) c) Gaussian filter with size=9, 
d) Gaussian filter with size=201 

5   Conclusion 

The Green function associated with the Mumford-Shah functional in the absence of 
discontinuities is considered in this paper for feature extraction. A regularization 
method is presented here to introduce a Bessel filter. It is analytically proved in this 
work that Bessel filters produce scale invariant features for edge detection. It is there-
fore conjectured here that Bessel filters always produce scale invariant features for the 
detection of other features. Numerical results for Gaussian edges, blobs, corners as 
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well as edges presented in this paper support such a conjecture. The features extracted 
by Bessel filters are invariant to the scale (size) of the filter.  
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Abstract. We present a Virtual Mirror system which is able to simulate
a physically correct full-body mirror on a monitor. In addition, users can
freely rotate the mirror image which allows them to look at themselves
from the side or from the back, for example. This is achieved through
a multiple camera system and visual hull based rendering. A real-time
3D reconstruction and rendering pipeline enables us to create a virtual
mirror image at 15 frames per second on a single computer. Moreover,
it is possible to extract a three dimensional skeleton of the user which is
the basis for marker-less interaction with the system.

Keywords: Virtual Mirror, Shape-from-Silhouette, CUDA, Markerless
User-Interaction, Free-Viewpoint Video.

1 Introduction

A virtual mirror is an Augmented Reality (AR) system which renders an image
of the user from a virtual viewpoint and creates the illusion of a mirror image.
In addition to that, it allows to add virtual objects and to modify the image
in a way that is not possible with physical mirrors. In this paper, we propose a
physically correct simulation of a full-body mirror using a multi-camera system
and a single monitor. We also extend its viewing capabilities by allowing users to
rotate their mirror image using solely natural hand gestures. This is beneficial,
for example, in dressing rooms where users want to see how they look from the
side or from behind in new clothes.

The concept of a virtual mirror is not new in the area of computer vision
and AR [5,6,8]. One common property of existing virtual mirror systems is that
they consist of a single camera with a fixed position where the horizontally
flipped video stream is shown to the user on a monitor. However, such systems
generally do not allow one to simulate a correct mirror because video devices
are only able to capture a projected image and not the reflection of the user
from his viewpoint. Free viewpoint video systems on the other hand are able
to render an arbitrary view of a person by combining images from multiple
fixed cameras [3,9,18]. This allows for the accurate simulation of optical effects,
including rendering of a reflection image. Due to the amount of image data,

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 635–645, 2011.
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processing of the camera input often can not be performed in real-time on a
single computer. Only recent developments in GPU computing have made it
possible to render virtual viewpoints at interactive frame rates. We provide a
more detailed review of the current literature in Sect. 2.

Our contribution is a novel virtual mirror system which combines a multi-
camera capture system with real-time free-viewpoint video. We equip a room
with several cameras (see Sect. 3) and use a virtual camera to render an arti-
ficial mirror image which we display on a large monitor. Even though such a
design incurs additional hardware compared to a single camera system, it adds
several benefits. Due to the fact that the virtual camera has no restrictions on
its position and parameters, we can generate an optically correct mirror effect.
In Sect. 4 we describe how we determine and adapt the camera parameters when
the user moves in front of the monitor. The capabilities of a multi-view cam-
era system reach far beyond basic mirror simulations. We are able to not only
show the frontal view of the user but rotate the virtual camera in a 360◦ fashion
around her. So far, our system is the only virtual mirror which provides such
possibilities. The user can control this rotation by means of hand-gestures which
we detect in a skeletal representation of the body. In Sect. 5 we show that we
are able to achieve real-time processing of the camera images using only a sin-
gle computer. We evaluate the robustness of user input detection and present a
qualitative evaluation of the mirror image. Finally, Sect. 6 provides conclusions
and a comparison to existing virtual mirror systems as well as suggestions for
future enhancements of the proposed system.

2 Related Work

In this section we will give an overview of previous work concerning virtual
mirrors and free-viewpoint video. Virtual mirrors have gained huge interest in
recent years in the area of computer vision and augmented reality. For example,
in [6] a camera is attached to a portable flat screen in order to simulate a
hand-held mirror. Other virtual mirrors are able to display augmented objects
or completely altered appearances instead of the true mirror image [2,5,17]. In
fashion stores, people will use a mirror for looking at themselves in new clothes
or with gadgets. This leads to the idea of using virtual mirrors for augmenting
clothes [8] or shoes [4] onto the mirror image of a person without the need to
actually wear them. Recently, commercial websites such as [11] have started
to offer web cam applications which for example show an augmented mirror
image of users with virtual sunglasses on their face. All these systems share the
restriction of a single view-point: they only allow a frontal view of the user.

In contrast, free viewpoint video systems are able to render arbitrary views
of an object by using images from multiple fixed cameras. There exist two ma-
jor forms of object representation in such systems. Polygon based models [3,14]
explicitly reconstruct the object as a triangle-mesh and use texture mapping
to overlay the current video stream on the object. While such methods allow
high quality outputs, they are only suitable for off-line processing due to the
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Fig. 1. (a) Top-view of the camera and virtual mirror setup: The user is surrounded
by multiple cameras and sees an artificial mirror image of himself or herself on the
display. (b) Illustration of the mirror effect: When the user has a distance d from the
mirror, the mirror image appears at the same distance behind the mirror. The height
of the mirror image on the mirror surface always is half the height h of the user and
does not depend on the distance d.

computationally intensive reconstruction. Visual-hull based rendering [1,9] re-
quires only depth information obtained through processing of camera images
with background segmentation (silhouette) in order to synthesize a new view-
point. However, true real-time processing of such data is still a challenging task.
Only recent developments in GPU computing have made it possible to render
virtual viewpoints at interactive frame rates [18], but often exceed the compu-
tational power of one computer [16].

3 System Design

Our virtual mirror system requires three components: multiple cameras to cap-
ture images of the user, a computer to process the data and a monitor to show
the mirror image. Figure 1a sketches the setup and shows the positions of the
user, the mirror display and the multi-view camera system.

3.1 Geometric Considerations for the Mirror

A virtual mirror needs to simulate the properties of a real mirror as accurate as
possible. When standing in front of a mirror at a distance d, the mirror image
of oneself appears exactly at the same distance but behind the mirror. However,
even though this distance can change, the size of the user in the mirror image
when projected on the mirror surface stays constant at half the height h of the
user. This is illustrated in Fig. 1b. We take advantage of this observation in order
to choose an appropriate monitor for our mirror. A 47 inch Full-HD television
mounted in portrait mode has a height of 104 cm and therefore can display the
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Fig. 2. Processing pipeline for the Virtual Mirror System

full-body mirror image of users up to 2 meters in height, which includes 99
percent of all people according to [15].

3.2 System Architecture

The complete setup is required to fit into a small room of 3× 2 meters, which is
equipped with ten synchronized color cameras connected to a single computer
via three FireWire buses. Due to the space limitations, the viewing frustums
of all cameras are focused on an area approximately 1.5 meters in front of the
monitor, so the user is only allowed to move within a small area. The cameras
deliver 640 × 480 pixel images at 15 frames per second. In order to process the
amount of input data produced by our setup (around 100MB/s), we exploit
the computational power of a CUDA enabled NVIDIA GTX 480 graphics card.
Developing algorithms that execute on the GPU enables high performance in
applications with many parallel tasks [10] such as pixel-wise image processing
(e.g. image undistortion and silhouette extraction). Due to these hardware com-
ponents, we are able to process the camera images and display an output on the
virtual mirror at 15 frames per second using only a single computer.

4 Methodology

Our Virtual Mirror system uses a series of processing steps which extract the
required information from the input images. We illustrate the pipeline that per-
forms our reconstruction and rendering process in Fig. 2. In the first stage, we
acquire a live stream of multiple synchronized camera images. Each image is
then undistorted using radial distortion parameters determined during camera
calibration. A subsequent silhouette extraction step segments the user from the
background in all images. We employ a luminance insensitive background sub-
traction method in order to cope with shadows caused by the user. Silhouette
data is used to generate a low-resolution voxel model and extract a skeleton
which we use to implement marker-less user interaction. In the mirror simula-
tion mode of our system, a virtual camera is controlled by the 3D position of the
user’s head which we determine in voxel space. An alternative mode of operation
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(a) (b) (c) (d)

Fig. 3. Voxel scooping demonstrated on a 2D silhouette (in 3D the silhouette corre-
sponds to object voxels): (a) Silhouette image. (b) Scooped levels and the resulting
graph. (c) Graph with markings for some scooping errors. (d) pruned skeleton graph.

allows the user to rotate the camera around him- or herself by hand gestures.
Finally, we use an image based visual hull (IBVH) technique to render the im-
age of the user using the virtual camera. The remainder of this section describes
important components of our system in more detail.

4.1 3D Reconstruction and Robust Skeleton Estimation

In our system, we use a 3D model to determine the position of the head and
hands of the user. We use a fast space carving approach on the GPU [13] to
obtain a discrete voxel grid V with a resolution of k3 voxels (k = 64). Once the
voxel model has been obtained, we need to perform a hierarchical segmentation
into head, body and limbs. In the recent years it has become popular to build
a so-called Reeb graph [19] to represent the topology of arbitrary multidimen-
sional structures. A Reeb graph is generated by extracting level sets from such
structures and keeping track of critical points where a level set becomes discon-
nected. When applied to the human body, an optimal Reeb graph has a tree
structure with branches for head, arms and legs.

In this work, we utilize a fast and robust method called Voxel Scooping [12]
for extracting the Reeb graph of the human body. While the algorithm was
originally intended for tracing centerlines of neurons in medical data, we show
that it can be easily applied to volumetric body scans such as obtained from
our shape-from-silhouette approach. Starting with the node at a seeding point,
each node in the graph spherically expands in voxel space with a locally adaptive
radius (hence the name scooping). Based on this expansion, a new node is created
and the process is repeated until there are no more voxels left to scoop. When
the expanded voxels of a single node no longer form a connected component, a
branching node is created and each branch is processed individually. In the final
Reeb graph there will be artifacts in the form of short branches (see Fig. 3c).
A final pruning step removes branches that only consist of two or less nodes in
order to obtain a clean graph with only six arcs corresponding to head, body
and limbs (as in Fig. 3d). We propose to use the top of the head as the seeding
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Fig. 4. (a) Illustration of the mirror effect with the position of the eyes c, the position
of the virtual camera c̃ as well as the distance d between the user and the mirror surface
plus the mirror normal n. (b) shows how the virtual camera is rotated around the user
in free-viewpoint mode.

point for voxel scooping, which will always produce a tree structure similar to
the human skeleton as in Fig. 3b. The position of the head is determined when
the user steps into the system and is further tracked in voxel space.

4.2 Hand Position Estimation

For user interaction we use the position of the hands of the user, which we
detect in the skeletal Reeb graph. The detection must work independently from
the current body pose while being robust towards graph artifacts that cannot
be removed using our length based graph pruning alone. Therefore, we propose
to use the geodesic distance between leaf nodes as a pose-invariant feature to
detect hands in the graph. Suppose there are NE leaf nodes in the graph, then
pd(n)|n=1...NE is the shortest path-distance from node n to the root of the graph
(which is the head). In order to classify a leaf node as a hand, we compare
each pd(n) to the expected geodesic distance between the head and hands which
is approximately 0.6 times the body height. During voxel scooping, geodesic
distances between all nodes and the root are calculated automatically, therefore
no further processing is required (such as building shock graphs). Note that the
graph will not completely represent the full human body topology in the general
case. For example, arms will not be distinguishable from the upper body in the
voxel model when they are close to the body. However, for user-interaction we
are only interested in hands that are stretched away from the body and therefore
we can ignore hands in undetectable poses.

4.3 Virtual Mirror Camera

A mirror image as seen by the user depends on two factors: the position of the
eyes c ∈ IR3 and the mirror plane π ∈ IR4. While the mirror plane is fixed
and configured once, the position of the eyes changes when users move. For an
authentic mirror simulation, it is sufficient to approximate the position of the
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eyes by adding a constant offset to the top of the skeletal graph in every frame.
The mirror plane π, which is the surface of the monitor in our system, can be
expressed using a homogeneous notation which satisfies πTX = 0 for every 3D
point X that lies on the plane. The first three components of π correspond to
the plane normal

n = [π(1), π(2), π(3)]T ‖n‖ = 1 (1)

of the mirror while the fourth component π(4) describes the distance of the plane
from the origin as determined in the configuration step. The orthogonal distance
d between c and the mirror surface can be calculated as follows:

d = πT
[c
1

]
. (2)

The 3 × 4 camera matrix P̃ = K̃[R̃|̃t] producing an optically correct mirror
image from the user’s view on the monitor can be calculated from the position
of eyes c, the distance d and the normal n of the mirror plane (see Fig. 4a). The
rotation R̃[3×3] of the virtual camera is defined so that the camera looks along
the normal n of the mirror surface with an up-vector (up = [0, 0, 1]T ):

R̃ =

⎡
⎣ rx

T

(rx × n)T

nT

⎤
⎦ with rx = n × up . (3)

Note that the gazing direction of the user does not affect the mirror image and
therefore does not need to be considered. The position c̃ of the virtual camera is
simply a mirrored version of the position of the eyes c which yields the translation
vector t̃ for the virtual projection matrix P̃:

t̃ = −R̃ · c̃ with c̃ = c − 2 · d · n . (4)

The last component of the camera matrix P̃ is the intrinsic matrix K̃ which
mirrors and projects the scene onto the monitor’s surface:

K̃ =

⎡
⎣−f 0 px

0 −f py

0 0 1

⎤
⎦ with f = 2 · d . (5)

The focal length f of the camera is equal to the distance between the virtual
camera and the user, which is twice the user-mirror distance d. This can be
explained by the observation that the size of oneself’s image on the mirror surface
is constant and independent from d and the focal length of the eyes (see Fig. 1b).
In the general case, the mirror image will be an off-center projection with the
principal point offsets px and py shifted depending on the eye position c, the
size of the monitor and its resolution in pixels as well as the position of the
application window on the monitor.
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(a) (b) (c)

Fig. 5. (a) Simulation of a mirror with the generated mirror image in (b). (c) The user
is looking at his own back.

4.4 User Interaction

Apart from the mirror simulation, our system supports a full 360◦ view of the
user by rotating the virtual mirror camera around the body as seen in Fig. 4b.
We propose a simple and intuitive way of controlling this view through hand
gestures. The user can trigger a clockwise or counterclockwise rotation of the
mirror image by stretching his left or right hand away from his body, respectively.
Stretching out both hands resets the rotation and sets the camera back to the
normal mirror mode. Such input can be implemented by detecting hand positions
as described in Sect. 4.2 and does not require visible markers attached to the
human body. In order to minimize unintentional user inputs, we require the user
to maintain a certain pose for a short amount of time (e.g. one second) before
an action is triggered.

4.5 Image-Based Visual Hull Rendering

For mirror image rendering, our system uses an efficient implementation of the
image-based visual hull (IBVH) algorithm by Matusik et al. [9] which only needs
to calculate those parts of the visual hull that appear in the rendered image. Sim-
ilar to [18], it is entirely implemented on the GPU but offers a set of additional
features: our algorithm can process images from cameras that do not see the
entire body of the user. Moreover, we implemented a view-dependent texture
mapping scheme including a visibility check and stereo matching which allow us
to improve the visual quality of the output. Implementation details about this
rendering module can be found in [7].

5 Experiments

In this section we evaluate our virtual mirror system in terms of visual quality,
robustness and run-time. Figure 5a shows an example of an user interacting with
the system. As soon as the user steps in front of the monitor, a virtual mirror
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(a) (b) (c) (d) (e)

Fig. 6. Evaluation of skeleton extraction by voxel scooping and hand detection on
different poses. (a) to (c) show correct skeleton and hand detection. In (d) the arms
are merged with the body and no hands are detected. (e) shows wrong hand detections
due to errors in the voxel model and skeleton.

image such as in Fig. 5b is shown on the screen. We obtain an appealing artificial
mirror image at a resolution of 540×960 pixels, from any virtual camera position
such as in Fig. 5c which shows a user looking at his own back.

5.1 User Interaction

In our system, we implement marker-less user interaction through hand gestures.
As we rely only on a very simplistic model of the human body (it must contain
a head and arms) we can robustly detect the hands when they are represented
correctly in the underlying skeletal graph. This is shown in Fig. 6 (a) to (c).
When the arms are too close to the body, they cannot be distinctively detected in
the skeletal graph anymore (Figure 6d). Similarly, when the arms have multiple
connections to the body in voxel space (as in Fig. 6e), the skeleton reconstruction
fails and wrong detections can occur. However, such errors will only appear when
the hands are close to the body. As we react to user input only when hands are
distinctly away from the body, we can ignore these errors.

5.2 Run-Time Evaluation

For an interactive system, fast processing and a low latency between user input
(or movement) and graphical output is desirable. A balanced use of graphics
hardware and CPU processing allows us to achieve real-time execution for the
whole system. We are able to render an output mirror image at 15 frames per
second and display it to the user less than 100ms after camera image acquisition.
A detailed evaluation of the average run-time of individual components can be
found in Table 1 where the total runtime of all components is below 1/15 s
or 66ms. In contrast to other systems such as [1,16], we require only a single
computer for processing the camera images. Also, we do not need to process a
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Table 1. Run-time of the individual components averaged over 100 frames

Component Processor Runtime

Undistortion and Segmentation GPU 6.1 ms
Voxel Space-carving (643 voxels) GPU 4.2 ms
Skeletal graph and hand detection CPU 5.7 ms
Rendering GPU 32.4 ms

Total 48.4 ms

high resolution volumetric representation of the user as rendering of the output
is performed on an image-based visual hull. For Reeb graph generation and hand
detection, a 643 voxel model is sufficient.

6 Conclusions and Discussions

We have presented a system which displays a convincingly and optically correct
mirror image of the user who is standing in front of a large monitor. This has been
achieved through a free-viewpoint video system and visual hull based rendering.
In order to interact with the system, around 15 frames per second and low
latencies are desirable which we are able to achieve on a single computer using
simple image features (silhouettes) and high performance processors (GPU).
The key benefit in using the GPU is the parallelization of image processing
and rendering tasks, which account for more than 80 percent of our computing
workload. Besides the simulation of a real mirror, we allow the user to look at
him- or herself from an arbitrary viewpoint and control this behavior through
hand gestures.We realize this through a skeleton like representation of the user
in which we detect the hands robustly without the need for visual markers.

To our knowledge, our system is the first virtual mirror that accurately sim-
ulates a real mirror. The best existing mirror simulation so far is [6] where the
facial image of a single fixed camera is transformed and displayed by assuming
the face lies on a plane parallel to the monitor. Our system does not require any
transformations in image space, which facilitates integration of artificial objects
that do not lie on the facial plane but can be placed anywhere in space. While
all existing virtual mirror systems allow real-time operation by processing 2D
images, we produce a similar output but from a full 3D representation of the
user within the same time constraints. Unlike marker based systems such as [5],
users do not have to wear or carry objects in order to interact with our system.
We allow user interaction in 3D space using no more than their hands.

The current implementation is limited to displaying only the user as seen
by the cameras from an arbitrary viewpoint. In future work we will integrate
artificial objects such as virtual clothes into the mirror image and let users
interact with them. Also, our multi-view camera system allows for generation of
high quality 3D scans and motion capture.
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Abstract. Rivers during floods bring a lot of fallen trees and debris.
Video surveillance systems are installed on strategically important places
on the rivers. To protect these places from destructions due to accumu-
lation of wood, such systems must be able to automatically detect wood.
Image segmentation is performed to separate wood and other moving
elements from the rest of the water. Moving objects are detected with
respect to brightness and temporal variation features. The floating wood
is then tracked in the sequence of frames by temporal linking of the
segments generated in the detection step. Our algorithm is tested on
multiple videos of floods and the results are evaluated both qualitatively
and quantitatively.

1 Introduction

Video monitoring systems installed on rivers record videos throughout the year.
During floods, rivers carry many fallen trees, bushes, branches of fallen trees and
other small pieces of wood. Automatic detection and counting of these fallen trees
and other wooden pieces will help to protect infrastructures like bridges and dams
from hazardous accumulation of trees. This automation will also decrease the
manual efforts involved in supervised surveillance. In this paper, automatic wood
detection in the river is performed by image segmentation and motion tracking.
Dynamic nature of such application implies many constraints and limitations.

This paper is organized as follows. Section 2 presents a review of relevant
works. Section 3 summarizes observations and assumptions made on available
videos. The image segmentation method is presented in 4. Moving objects are
related within successive frames thanks to a temporal linking method, which
is described in section 5. This section also presents the method for counting
wood pieces in the river. The experimental results, including comparison with
ground truth data are presented in section 6. Section 7 concludes and presents
perspectives to video analysis in outdoor scenarios.

2 Related Works

Wood detection and tracking in rivers is an example of moving object detection
within moving background. There are two major theories for object recognition

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 646–655, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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in fixed camera videos [1]. In the first approach, the moving object is identified
first and then the motion it performs in the image sequence is sought (e.g. back-
ground subtraction methods). In the second approach, the motion information
is used directly to recognize moving objects (e.g. optical flow based techniques).
For moving object detection, the adaptive background model was proposed for
non-stationary backgrounds by [2]. It is constructed by adapting the changes
during the training period. Gaussian Mixture Model (GMM) method is used by
many researchers [3,4], where one or more Gaussian(s) are used to represent a
pixel-wise background model. The Gaussian model parameters are recursively
updated in order to follow the gradual background changes. The Weiner filter is
used by [5] to learn and predict color changes in each background pixel. In [6] a
spatio-temporal filtering method is proposed for compensation of the limitations
of region-based image blocks, applied in an aquatic context. A filtering method
based on spatial features with spectral features is also presented in [7].

Unlike previously discussed methods, optical flow-based methods proposed
by [8] directly detect moving objects from their motion information. [9] used the
estimation of the consistency of the optical flow over a short duration of time.

3 Limitation of Existing Methods in Our Case

Available videos of wood imply many constraints and difficulties which are sum-
marized. Fig. 1 represents a few images extracted from the videos. The presence
of bridge (top left corner of images), moving branches of tree in front of the cam-
era (right middle portions of images) and the shadows of surrounding trees over
the river are evident from these images. The detection of wood depends on the
intensity difference between wood and water. But water waves in the presence
of sunshine resemble wood pieces as shown in Fig. 2. The distinction between
waves and floating wood must be made for correct wood detection and track-
ing. Waves and wood move at similar speed and hence cannot be distinguished
with respect to motion dissimilarity criterion. The motion of wood is not purely
translational. Finally, due to remote location of the monitoring scene and the
limitations of transfer rate of data networks, the frame rate in the video is very
low (∼4 fps). Consequently, the object displacement is large between consecutive
frames of videos as shown in Fig. 6.

Due to above properties of videos, existing methods may suffer from sev-
eral limitations. The GMM method may lead to misclassification when the

(a) (b) (c) (d)

Fig. 1. Few original images of, (a) a wood piece under the shadows of surrounding
trees, (b) surrounding building cast shadows over water, (c) a fallen tree in the cloudy
weather and (d) a wood piece having reflection of sun shine from the surface of water
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background scene is complex [10]. For tracking objects in consecutive frames,
the consistency of differential optical flow methods require small object displace-
ments, which is not the case in current videos. Larger water waves have strong
consistent movements in multiple frames. Moreover the object shape also play an
important role in such methods, but in our case there is no specific shape or size
of wood objects. Consequently, due to the complex nature of our application, we
chose not to construct a background model. As a matter of fact the background
is dynamic with water waves and wood in motion with the same speed.

4 Segmentation of Floating Wood

This paper is an improvement of our previous work [11]. We have developed the
mathematical modelization of the problem. The intensity based segmentation
method described in this new paper gives better results. Automatic detection of
wood begins with the image segmentation step, which is a pixel-based probabilis-
tic approach based on intensity and its temporal variation. We take as an input a
sequence of T frames {I(., t)}1≤t≤T . Basically, we rely on two observations: wood
is darker than water and undergoes permanent motion. The intensity probability
map Pi contains the likeliness of pixels to be wood with respect to their bright-
ness, whereas the temporal probability map Pt contains this information with
respect to the brightness temporal variations at each pixel level.

4.1 Intensity Probability Map

The brightness of floating wood pieces is lower than water, even under the shad-
ows of surrounding trees. Moreover, it does not change significantly in the pres-
ence of sunlight. Fig. 5 shows intensity histograms of wood pieces as an example.
It seems relevant to approximate the intensity distribution of wood by Gaussian
distribution with fixed mean and variance. The input grayscale value of each
pixel x at time t being denoted by I(x, t), the probability of the current pixel to
belong to wood is

Pi(x, t) = gμ,σ2(x, t) and gμ,σ2(x, t) =
1

σ
√

2π
exp

(
− (I(x, t) − μ)2

2σ2

)

where g is a Gaussian probability density function. To find μ and σ2, we led
experiments on different wood pieces under various lighting conditions. Selection
of mean and variance is discussed in section 4.4. Fig. 4(b) shows an example

Fig. 2. An image with water wave and wood piece are highlighted, (b) upper portion
of image is zoomed to show shape and color intensity of wave, (c) part of image is
zoomed to show shape and color intensity of wood piece



Wood Detection and Tracking in Videos of Rivers 649

of Pi for a wood piece. In the presence of cast shadows of surrounding tree,
the intensity probability map Pi has higher value in wood regions but also at
undesirable shadowed regions.

4.2 Temporal Probability Map

Wood cannot be extracted relying solely on intensity considerations. Indeed,
some objects like bridge pillars or cast shadows of surrounding trees have the
same intensity as wood. To remove these static objects, we rely on pixel-wise
temporal variations. The temporal probability is partially based on the normal-
ized inter-frame difference ΔtI:

ΔtI(x, t) =
I(x, t) − I(x, t− 1)

255
(1)

which takes its values within range [−1, 1]. Hard thresholding the absolute in-
terframe difference |ΔtI| has been extensively tested for object detection. By
nature, this technique only detects new object pixels and inevitably removes ob-
ject areas that overlap in time. This is the case here with big wood pieces. Our
temporal probability Pt is defined in order to avoid this drawback. We design it
according to the observation that, when wood passes through a given pixel, ΔtI
dips to a negative value and then to a positive value afterwards. Moreover, Pt

should naturally remain constant if ΔtI = 0. This is achieved using a recursive
definition in time:

Pt(x, t) = Pt(x, t− 1) +H(ΔtI(x, t)) (2)

where H ∈ [−1, 1] is an updating function, mapping the inter-frame difference to
the amount of changes in the temporal probability. We express it in accordance
with the considerations previously addressed. To handle noise and ignore insignif-
icant intensity variations due to the non-uniformity of wood or water, H(ΔtI)
should be null for relatively small values of |ΔtI|. It allows to handle slow illu-
mination variations as well. Beyond certain threshold value, H should increase
or decrease as ΔtI gets significantly negative or positive, respectively. Instead of
using hard thresholding which would cause H to jump suddenly from 0 to 1 or
−1, we use a soft approach less critical with respect to the choice of threshold
parameters leading to the following piecewise linear definition:

H(ΔtI) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if ΔtI ∈ [−1,−τ − B
2 ]

αΔtI + β if ΔtI ∈ [−τ − B
2 ,−τ + B

2 ]
0 if ΔtI ∈ [−τ + B

2 , τ − B
2 ]

αΔtI − β if ΔtI ∈ [τ − B
2 , τ + B

2 ]
−1 if ΔtI ∈ [τ + B

2 , 1]

(3)

where α = −1
B and β = 1

2 − τ
B . Fig. 3 plots H versus ΔtI. Variation of H in

turns requires a threshold τ and transition length B. The probability of a wood
pixel must have higher value than surrounding. It should be noted that Pt(x, t)
in Eq. (2) is truncated between 0 and 1 afterwards to remain a probability. In
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a b c d e f

1

−1

H(ΔtI)

ΔtI

Fig. 3. Representation of updating function H(ΔtI)

the first frame, we set Pt(x, 1) to 0 everywhere, as it is very unlikely that wood
pieces appear at initial time. Temporal probability Pt is non-null only if temporal
brightness variation is negative enough, i.e. if a pixel gets significantly darker
or has the same brightness as it had in the previous frame. It helps in removing
stationary objects in the scene (e.g. pillars of bridge). Fig. 4(c) highlights the
fact that Pt has higher values for a wood piece than water and static areas.

4.3 Combination of Intensity and Temporal Probability Maps

Since we expect wood to be simultaneously dark and under motion, wood pixels
should have both high intensity and temporal probabilities, hence it is relevant
to multiply the two probability maps. The product yields the joint probabil-
ity Pglobal, representing the likelihood of a given pixel to be wood with respect
to its intensity and corresponding variation: Pglobal(x, t) = Pi(x, t)Pt(x, t). The
foreground image is obtained by simple thresholding of the joint probability map:

FG(x, t) =
{

1 if Pglobal(x, t) ≥ GTh

0 otherwise (4)

The joint probability Pglobal is high for wood pixels but also unfortunately for
pixels located on dark waves. Hence, global threshold GTh should be chosen in
order to limit the number of false detections without removing significant parts
of real wood pieces (choice of GTh is discussed in section 4.4). An example of
final foreground image is shown in Fig. 4(d), which clearly indicates that the
algorithm can detect moving wood pieces under difficult weather conditions.
Also, we have evaluated the segmentation results with ground truth images in
section 6.

4.4 Selection of Parameters

In previous sections, we introduced some parameters which need to be investi-
gated thoroughly. For this purpose, we extracted small and large wood pieces
under different weather conditions. An example of floating wood along with three
portions highlighted in different colors is shown in Fig. 5. We fix μ = 55 and
σ2 = 225. Computation of the temporal probability involves threshold τ and its
transition length B, whereas extraction of the final foreground image requires
global threshold GTh. Parameter tuning was performed through a brute-force
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(a) (b) (c) (d)

Fig. 4. (a) An example of wood piece under sunlight with corresponding, (b) inten-
sity probability map Pi, (c) temporal probability map Pt and (d) resulting FG after
thresholding

Fig. 5. Floating wood piece; (1) Zoomed portion of wood pixels and corresponding
intensity histogram highlighted by red, (2) green and (3) blue rectangle

approach, by maximizing the overlap between the foreground image generated
with current parameter values on one hand and ground truth segmentations on
the other hand, on a training dataset. The overlap was measured using the Dice
coefficient, which is a commonly used measure of segmentation quality (see for
example [12]). It is expressed as S = 2|X∩Y |

|X|+|Y | where X is the result of image
segmentation and Y is the corresponding ground truth image. S is equal to 1
when the segmented region and the ground truth region perfectly overlap, and
0 when they are disjoint. Firstly, for each parameter, the range of values giving
satisfactory results was coarsely located by successive attempts. We determined
that the triplet (τ, B,GTh) leading to the best segmentation was located in
range [0.1, 0.4] × [0.1, 0.4] × [0.01, 0.2]. Then, all parameter values within these
ranges were tested, with respective steps 0.05, 0.05 and 0.02.

The optimal values for these parameters for which S values are maximum for
both small and big wood pieces are τ = 0.3,B = 0.3 and GTh = 0.05. For big
wood pieces, S average value obtained is 0.8, with a maximum value equals to
0.9 and a minimum value equals to 0.71. For small wood pieces, average S is
0.71 with a maximum value equals to 0.8 and a minimum value equals to 0.6.

5 Tracking of Floating Wood

During flood water waves and turbulences are prominent. As shown in Fig. 2
waves and wood resemble and therefore, the distinction should be made between



652 I. Ali, J. Mille, and L. Tougne

them. We propose a temporal linking method based on the segmentation method
for this purpose.

5.1 Extraction of Representative Points

The size, shape and orientation of the floating wood do not remain the same in
consecutive frames. Moreover, submergence causes partial occlusions resulting in
variable number of connected components, which is shown in Fig. 6. In order to
group several connected components which may correspond to the same object,
we first rely on centroids. The centroid cRi of a given component Ri is taken as
the representative of Ri. To evaluate the closeness between two connected com-
ponents R1 and R2, we choose to consider the euclidean distance between cR1

and cR2 . This distance allows us to label the connected components of same
object even if their size vary from one frame to another due to occlusion. We
perform hierarchical grouping of connected components as long as the distance
between their centroids is below a threshold s. At each step, the two closest
connected components Ra and Rb are merged in a new region whose representa-
tive center is assigned to the average (cRa + cRb

)/2, until ‖cRa − cRb
‖ < s. Let

R = {Ri}i=1...n be a set of gathered connected components. Its representative
center cR is the average of centroids cRi , and the following relation is verified:

R = {R1, ..., Ri, ...Rn} ⇒ cR =
1
n

n∑
i=1

cRi and ‖cRi − cR‖ < s ∀i ∈ 1...n

This method is robust to partial occlusion of wood in water. Hence, every ob-
ject in the frame is localized by a representative point, which is linked to its
corresponding point in the next frame.

5.2 Temporal Linking of Floating Wood

Let cR(t) and cR(t + 1) be representative points of object R matched in two
consecutive frames. This is actually verified if their distance is below δ:

‖cR(t) − cR(t+ 1)‖ ≤ δ (5)

Fig. 6. Four consecutive frames of a moving wood object, zoomed resulting segmented
object regions show the appearance of floating wood in the images
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Fig. 7. A summary of small video portion represents wood (in different colors) and
water waves (black color) trajectories

where δ = 100 pixels, which is the maximal displacement of wood pieces we
learned after experimentally testing on different videos. Incidentally, it allows
us to give a lower bound of threshold s. If s is lower than δ, objects may be
mismatched in consecutive frames. A component of an object may be mistakenly
matched with another component of the same object, which does not happen
if s > δ. Similarly two objects moving simultaneously can be counted separately.

The positions of the representative point of an object in consecutive frames
can be linked by line segments, which yields a trace in the summary image. Such
an image is a graphical representation of trajectories during a given duration, an
example is shown in Fig. 7. We can notice from the summary image that wood
objects make longer traces than waves. The summary image also exhibits that
water waves disappear after some frames. This property is used in the following
to distinguish wood pieces from waves.

5.3 Counting Wood Pieces

For each object R, we determine the number of consecutive frames in which it ap-
pears. We obtain a sequence of n representative points {cR(t), cR(t+1), ..., cR(t+
n−1)} in which each couple (cR(t+ i), cR(t+ i+1)) verifies Eq. 5. Wood pieces
and water waves are separated from one another according to their persistence
in the consecutive frames. Hence, the chosen criterion to consider R as a wood
piece is n ≥ K. If a wood piece is not totally submerged, its representative point
at different times should all be linked two by two. Unlike wood pieces, waves
generally disappear after three or four frames. Hence, floating wood is counted
on this basis. The relevancy of this limit is evaluated in section 6.

6 Experimental Results

The studied videos were generated by a monitoring system set up on the river
Ain in France. Notice that even if all our videos come from a unique camera,
weather conditions vary a lot. No assumption is made about the wood position in
the water or according to static parts such as bridge. Consequently our method
could be used with another camera in a likewise scene. We tested our algorithm of
wood counting on five videos of 1500 frames each, for which we had ground truth
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Fig. 8. (on the left) Quantitative comparison of selection the number of consecutive
frames for wood attribution for a video (on the right) precision and recall for video
evaluated for K = 3,4,5 and 6 consecutive frames

Table 1. Quantitative evaluation of wood counting and segmentation in videos

Wood counting Wood segmentation
Video Nt Nd(%) Npd(%) Nw(%) Overlap ratio(%)

1 41 91 9 1 79
2 37 90 10 0 76
3 47 90 10 0 81
4 80 92 8 3 83
5 85 93 7 4 80

data for validation. Frames have size 640× 480 and are extracted from MPEG4-
compressed streams tested on an Intel Core2 Duo 2.66GHz with 4GB RAM
running C code. Average computation time per frame is 210 ms and it can be
used smoothly in the on-line scenario. In section 5.3, we introduced the minimal
number of consecutive frames K during which wood pieces should appear and to
be counted as wood. This number is evaluated in Fig. 8. Qualitative evaluation
is given by precision Pr and recall Re, defined as:

Pr =
Nd

Nd +Nw
; Re =

Nd

Nt

where Nd is the number of detected wood pieces by algorithm, Nw is the number
of waves detected as wood and Nt is the total number of wood objects i.e. (Nt =
Nd +Npd) where Npd number of non detected wood pieces. We can see that the
best trade-off between false positive and negative detections is obtained with
K = 4. Successful wood counting is validated manually by visual inspection
frame per frame. Results are summarized in Table 1. Moreover, we randomly
selected a wood piece per video and compute the overlap ratio of segmented
wood object with ground truth.

After visual inspection, it turns out that undetected wood pieces correspond
to very small parts, which are not critical with respect to the application. These
small pieces are often totally submerged in some frames.

7 Concluding Remarks

In this paper we presented an automatic method for detecting and counting the
floating wood in rivers. Intensity and temporal probability maps are computed
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for every incoming frame. These two probability maps are combined and resulting
image is segmented by selecting a threshold. The resulting segmented image
contains wood pieces along with some water waves. Water waves are separated
from wood pieces by temporal linking method. Due to outdoor environment there
are many constraints in our case. The experimental results are evaluated on every
step. This algorithm could be extended to any object detection within multiple
motions in background. Future work will be dedicated to the incorporation of
prior object motion knowledge in both segmentation and tracking processes to
reduce again omissions and false detections.
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Abstract. Variational frameworks based on level set methods are pop-
ular for the general problem of image segmentation. They combine differ-
ent feature channels in an energy minimization approach. In contrast to
other popular segmentation frameworks, e.g. the graph cut framework,
current level set formulations do not allow much user interaction. Ex-
cept for selecting the initial boundary, the user is barely able to guide
or correct the boundary propagation. Based on Dempster-Shafer theory
of evidence we propose a segmentation framework which integrates user
interaction in a novel way. Given the input image, the proposed algo-
rithm determines the best segmentation allowing the user to take global
influence on the boundary propagation.

1 Introduction

Mumford and Shah [13] formalized the problem of image segmentation as the
minimization of an error functional. Independent of each other, Chan and Vese
[3] and Tsai et al. [21] proposed level set implementations of the Mumford-Shah
functional. The boundary between object and background is represented by the
zero-level set of a signed distance function ϕ : Ω → R [15]. The boundary evolu-
tion is modeled by a partial differential equation coming from the corresponding
Euler-Lagrange equation. In contrast to the frameworks propagating explicit
boundary points [9], the implicit level set representation has several well known
properties, e.g. it can handle topological changes elegantly and it can easily be
extended to higher dimensions.

Due to their popularity, region-based segmentation frameworks have been re-
fined continuously [11,2,18,14,5,22,17,6] to increase the number of scenes, where
this framework can succeed. E.g. authors proposed statistical modeling of regions
[22], additional feature channels like texture [17] or shape priors [6].

Yet, most existing level set methods are not qualified as an interactive seg-
mentation tool. The corresponding initial value problem propagates the region
boundary to a local minimum of the energy function without allowing the user to
correct the final segmentation result. In contrast to the variational approaches,
discrete energy minimization segmentation frameworks such as graph cut ap-
proaches [20,1,16] provide an elegant way to treat user interaction to guide or
correct the segmentation process.
� This work is partially funded by the German Research Foundation (RO 2497/6-1).

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 656–665, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Interactive Image Segmentation Using Level Sets and Dempster-Shafer 657

Fig. 1. Segmentation results using the proposed user-interactive segmentation frame-
work. The left example is a James Bond photo from the internet and the right one is
from the Berkeley Segmentation Database.

A simple rule-based reasoning is usually used to integrate user interaction
into the segmentation process: if the user marks a pixel as an object, then it is
forced to be object, on the contrary a pixel is background if the user marks it
as background. These so-called hard constraints can also be found in [1,16,4]

Level set methods for interactive segmentation have been proposed earlier
by Cremers et al. [4]. They developed a statistical framework integrating user
interaction. In addition to an initial boundary they provide a framework, where
the user is able to mark object and background regions in terms similar to a
shape prior. Thus the user can indicate which areas are likely to be part of
the object or the background. In contrast, the key contribution of our paper
is to develop a framework based on Dempster-Shafer theory of evidence which
actually also uses the intensity information contained in the user defined regions.
Thus, the evolving boundary is directly driven by the following three terms:

– the intensity information contained in the image [22],
– the user labeling in terms similar to a shape prior [4] and
– the intensity information of the user labeling (our contribution).

The proposed contribution results in global influence of the user defined regions,
while other frameworks only allow local refinement of the segmentation (e.g.
[4,1]). The different features contained in the image and the user defined regions
are combined according to Dempster’s rule of combination.

We continue with a review of the variational approach for image segmenta-
tion, which is the basis of our segmentation framework. Section 3 introduces
the proposed segmentation method which integrates the user interactivity and
the final workflow of the segmentation is recapitulated. Experimental results in
Section 4 demonstrate the advantages of the proposed method in comparison to
other state-of-the-art segmentation methods. Section 5 concludes the paper.

2 Level Set Segmentation with Evidence Theory

The variational approach for image segmentation used in our framework is based
on the works of [3,5,22]. An extension of these works introducing the Dempster-
Shafer theory of evidence is presented in [19]. In this section we will shortly
review this framework and the key advantages of using evidence theory for level
set based segmentation methods instead of the traditional Bayesian framework.
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The key idea, which makes it different from other Bayesian segmentation
frameworks, is the use of Dempster’s rule of combination to fuse informations
arising from different feature channels [7]. This framework is often described as
a generalization of the Bayesian theory to represent inaccuracy and uncertainty
at the same time. With the Bayesian theory, feature channels with low support
have a high influence on the decision. In contrast, with Dempster-Shafer theory
of evidence feature channels with high support for a specific region have a higher
influence on the evolving boundary [19]. We make use of these two properties to
introduce the proposed user interactivity.

The basis for our segmentation method is the following energy-functional:

E(ϕ) =−
∫

Ω

H(ϕ) logmim(Ω1) dΩ −
∫

Ω

(1 −H(ϕ)) logmim(Ω2) dΩ︸ ︷︷ ︸
data term

+ λ1

∫
Ω

|∇H(ϕ)| dΩ︸ ︷︷ ︸
curve constraint

,

(1)

where λ1 is a weighting parameter between the given constraints, H(s) is a
regularized Heaviside function and mim : ℘(Ω) → [0, 1] is the mass function
defined over the hypothesis set Ω = {Ω1, Ω2}. In this context the region Ω1

denotes the object region and Ω2 the background. The mass function mim, fuses
k feature channels with Dempster’s rule of combination:

mim = m1 ⊗m2 ⊗ . . .⊗mk , (2)

where the single mass functions mj are defined by probability densities for back-
ground and object. Dempster’s rule of combination is given by

m(A) = m1(A) ⊗m2(A) =

∑
B∩C=A

m1(B)m2(C)

1 −
∑

B∩C=∅
m1(B)m2(C)

. (3)

The probability densities are computed by a histogram analysis for each region.
They are defined by

mj(Ω1) = p1,j(I(x)), mj(Ω2) = p2,j(I(x)) ,
mj(∅) = 0 , mj(Ω) = 1 − (p1,j(I(x))) + p2,j(I(x))) ,

(4)

for j ∈ {1, . . . , k}. For the quality of the segmentation process, it is very im-
portant how the probability densities for each region are modeled. In this paper
we restrict to the nonparametric Parzen density estimates [10]. Using discrete
histograms this approach comes down smoothing the histograms computed for
each region i and channel j by a Gaussian kernel. Other cues and models that
can be integrated in such a framework are texture information [17] and shape
priors [11].



Interactive Image Segmentation Using Level Sets and Dempster-Shafer 659

Minimizing the energy (1) with respect to ϕ using variational methods and
gradient descent leads to the following partial differential equation:

∂ϕ

∂t
= δ(ϕ)

(
log

mim(Ω1)
mim(Ω2)

+ λ1 div
( ∇ϕ

|∇ϕ|
))

. (5)

Thus the segmentation process works according to the well known expectation-
maximation principle [8] with an initial partitioning (Ω1, Ω2).

3 Interactive Variational Image Segmentation

Analogue to Cremers et al. [4] we assume a given image I : Ω → R and a user
input L marking certain image locations as object or background regions.

L : Ω → {−1, 0, 1} , (6)

where the label values reflect the user input:

L(x) =

⎧⎪⎨
⎪⎩

1, x marked as object,
−1, x marked as background,

0, x not marked.
(7)

Using the user-defined labeling L(x) and defining a new segmentation constraint
on this leads to the proposed energy function:

E(ϕ) = Eim(ϕ) + λ1Ecurve(ϕ) + Euser(ϕ)︸ ︷︷ ︸
new

(8)

where Euser = ν · Euser−shape + Euser−image. The first term of the user-defined
energy function is defined according to [4] by

Euser−shape = −1
2

∫
Ω

Lσ(x)sign(ϕ(x)) dΩ , (9)

with a Gaussian-smoothed label function

Lσ(x) =
∫

Ω

L(x)kσ(x) dΩ (10)

and the Gaussian kernel function kσ(x).
This model has two free parameters ν and σ which can be interpreted as

follows. The parameter ν provides the overall weight of the user interaction
and determine how strongly the user input will affect the segmentation. The
parameter σ defines the spatial range within which a point labeled as object
or background will affect the segmentation. It can therefore be interpreted as a
brush size.
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The novel second term Euser−image of Euser is inspired by the image energy
Eimage and is defined as follows:

Euser−image =
∫

Ω

H(ϕ) logmuser(Ω1) dΩ

−
∫

Ω

(1 −H(ϕ)) logmuser(Ω2) dΩ .

(11)

The mass function muser is, in contrast to the mass function mimage, defined by
the marked regions while the function mimage is defined by the image regions
divided by the curve.
Euser−shape can be interpreted as a user-defined shape prior, while Euser−image

takes the image information on the marked regions into account and can therefor
be interpreted as an indicator for the appearance of a region.

Fusing the mass functionsmim andmuser contained inEimage andEuser−image

respectively, with Dempster’s rule of combination we obtain an energy-functional
of the form:

E(ϕ) = −
∫

Ω

H(ϕ) logm(Ω1) dΩ −
∫

Ω

(1 −H(ϕ)) logm(Ω2) dΩ︸ ︷︷ ︸
data term + user defined term

+ λ1

∫
Ω

|∇H(ϕ)| dΩ︸ ︷︷ ︸
curve constraint

−λ2ν

∫
Ω

LσH(ϕ) dΩ︸ ︷︷ ︸
user-shape

,

(12)

where the mass function m = mim ⊗muser fuses the image data given by mim

and the user data given by muser according to Dempster’s rule of combination.
Minimizing (12) using variational methods and gradient descent leads to the
following partial differential equation:

∂ϕ

∂t
= δ(ϕ)

[
log

m(Ω1)
m(Ω2)

+ λ1div
( ∇ϕ

|∇ϕ|
)

+ λ2 (νLσ)
]
. (13)

The Dempster-Shafer theory of evidence is used to fuse the information because
feature channels with low support have a lower influence on the evolving bound-
ary as shown in [19]. This is helpful because the user-defined regions can be
very sparse, which means that the resulting channel-histograms can have re-
gions where neither the object nor the background region is supported. Using
the Bayesian framework for fusing this information would lead to small proba-
bilities for both regions, ignoring all other feature channels, especially the image
feature channels. With the proposed framework based on Dempster’s rule of
combination, this would be interpreted as uncertainty meaning that the other
feature channels are not affected by this feature.

In contrast to the work of Cremers et al. [4] the proposed framework not
merely provides an indication in terms of a shape prior for the segmentation,
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Fig. 2. General workflow of the proposed variational, user interactive segmentation
framework

but actually uses the intensity information given by the user labeling. This in-
formation is further combined with Dempster’s rule of combination, instead of
multiplying the different probabilities, to represent inaccuracy and uncertainty.
While the user labels in [4] have only local support to the evolving boundary
and thus to the final segmentation, our framework allows global support for user
defined regions. Figure 2 shows the proposed general interactive segmentation
workflow.

4 Experiments

In this section we test the proposed user-interactive segmentation framework ex-
perimentally. Several results are shown in Figures 1 and 3 and compared to the
graph cut framework by Boykov et al. [1]. The images used for the experiments
are natural images taken from the berkley segmentation dataset [12]. Further-
more we compared the proposed framework with the user-interactive framework
in [4]. While user-interaction only has local influence on the final segmentation
in the framework proposed by Cremers et al., our framework allows global influ-
ence on the segmentation result with a small stroke, e.g. the global influence of
the small foreground stroke in Figure 3.

We also performed a user study, where six persons segmented five real images
with the proposed framework and the graph cut segmentation tool. In these mod-
erately difficult examples (e.g. the soldier in Figure 4) the proposed framework
needed significantly fewer user-interactions while the mean F1 measure over all
segmented images is comparable. The result of our user study is shown in Table
1. Figure 4 shows some of the segmented images. We have to distinguish that
users tend to make longer strokes using graph cuts. Especially the two initial
strokes are very large (see Figure 3 and 4) compared to the small strokes in our
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initialization (2 clicks) initialization (5 strokes)

segmentation result segmentation result

user interactivity (4 additional strokes) user interactivity (9 additional strokes)

Final segmentation result after user re-
finement (Initialization (2 clicks, 1 fore-
ground and 3 background strokes)

Segmentation result after user refine-
ment (11 foreground- and 3 background
strokes)

Fig. 3. Segmentation results using the proposed interactive segmentation framework
(left) and graph cut (right). The proposed segmentation algorithm needs significant
fewer user interactions (red and blue strokes) to produce a slightly better result.
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2 strokes + 2 clicks 12 strokes 6 strokes + 2 clicks 11 strokes

6 strokes + 2 clicks 9 strokes

3 strokes + 2 clicks 5 strokes

Fig. 4. Segmentation results using the proposed variational framework (left) and
GraphCut (right). The yellow curves describe the segmentation boundaries, while the
blue and red strokes mark the user defined regions.

framework. The average stroke size with the proposed method is approximately
half of the stroke size with graph cuts. Although the proposed method is not
implemented on the GPU, the total time for segmenting the images was almost
the same for both methods. In addition the users are able to guide the evolving
boundary instead of changing the final segmentation.

We have to mention that we did not test other segmentation frameworks like
e.g. GrabCut [16], but the results presented in [16] are very close to what we
and the users have achieved in our study.
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Table 1. Results of our user study. While the mean F1-measure is comparable for all
methods, the proposed method needed significantly fewer user interactions, comparing
the average number of strokes.

Image Graph Cuts F1 [4] F1 proposed Method F1

Lady Bug 4.33 str. 0.9366 1.3 str. + 2 klicks 0.8943 1.3 str. + 2 klicks 0.9011

Eagle 9.33 str. 0.9676 7 str. + 2 klicks 0.9265 5.5 str. + 2 klicks 0.9472

Bird 7.83 str. 0.9610 2.3 str. + 2 klicks 0.9541 1.83str. + 2 klicks 0.9624

Flowers 7.17 str. 0.9808 6.6 str. + 2 klicks 0.9891 4 str. + 2 klicks 0.9892

Soldier 9.33 str. 0.9654 10.3 str. + 2 klicks 0.9814 7.33 str. + 2 klicks 0.9736

5 Conclusion

We presented a new framework for foreground extraction based on level set
methods and Dempster-Shafer theory of evidence. The framework extends the
traditional framework by means of user-interactivity to allow more precise seg-
mentations. The user-interactivity (strokes) is integrated into the traditional
framework by a user-defined shape prior (local influence) and by user-defined
image features (global influence). The impact of the new framework is demon-
strated by several experiments on natural images and a user study in comparison
to the well known graph cut framework. With the new extensions the level set
based segmentation framework allows small user interactions having global in-
fluence on the evolving boundary. In comparison to graph cut, the presented
framework needs significantly fewer user interactions to produce high-quality
segmentations.
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Abstract. Salient region detection has gained a great deal of attention in
computer vision. It is useful for applications such as adaptive video/image
compression, image segmentation, anomaly detection, image retrieval, etc.
In this paper, we study saliency detection using a center-surround
approach. The proposed method is based on estimating saliency of local
feature contrast in a Bayesian framework. The distributions needed are
estimated particularly using sparse sampling and kernel density estima-
tion. Furthermore, the nature of method implicitly considers what refer-
eed to as center bias in literature. Proposed method was evaluated on a
publicly available data set which contains human eye fixation as ground-
truth. The results indicate more than 5% improvement over state-of-the-
art methods. Moreover, the method is fast enough to run in real-time.

Keywords: Saliency detection, discriminant center-surround,
eye-fixation.

1 Introduction

Saliency detection in images and videos was introduced to computer vision in
late 90s. One of the classical, most well-known papers is the one published by
Itti et al. [1] in 1998. Their approach is based on extracting early visual features
(e.g. colors, orientations, edges, ...) and fusing them into a saliency map in a
three-step process.

Saliency detection has two key aspects: biological and computational. From
the biological point of view, we can categorize saliency detection methods into
top-down, bottom-up, and hybrid classes. In the top-down approach, it is as-
sumed that the process of finding salient regions is controlled by high-level in-
telligence in brain. The main idea of bottom-up approach is that the process
of saliency detection is an uncontrolled action on the shoulder of eye’s recep-
tors. Hybrid aspect believes in parallel and complementary role of top-down and
bottom-up approaches.

Considering the computational view, we grouped saliency detection into dif-
ferent paradigms. One well-known class of algorithms is the center-surround
technique. In this paradigm, the hypothesis is that there exists a local window
divided into a center and a surround; and the center contains an object. Figure 1

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 666–675, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.ee.oulu.fi/mvg


Fast and Efficient Saliency Detection 667

(a) (b)

Fig. 1. An example showing center surround concept

shows this concept. Achanta et al. [2] provides us such a sample. They measured
the color difference of a center pixel and average color in its immediate sur-
rounding. Seo and Milanfar [3] used Local Steering Kernel (LSK) response as a
feature and applied Parzen window density estimation to estimate the probabil-
ity of having an object in each local window. Rahtu et al. [4] employed histogram
estimation over contrast features in a window.

Frequency domain methods can be considered another category. Examples of
such techniques can be found in [5,6,7]. Hou and Zhang [6] proposed a method
based on relating extracted spectral residual features of an image in the spectral
domain to the spatial domain. In [5] phase spectrum of quaternion Fourier trans-
form is utilized to compute saliency. Achanta et al. [7] introduced a technique
which relies on reinforcement of regions with more information.

Another class of algorithms relies on information theory concepts. In [8] a
technique based on self-information is introduced to compute the likelihood of
having a salient region. Lin et al. [9] employed local entropy to detect a salient
region of an image. Mahadevan and Vasconcelos [10] utilized Kullback-Leibler
divergence to measure mutual information to compute saliency.

In this paper, we introduce a method which belongs to the center-surround
category. The major difference between the proposed technique and other similar
methods is that it uses sparse sampling and kernel density estimation to build
the saliency map. Also, proposed method’s nature implicitly includes center bias.
The method is tested on a publicly available data set. Finally, it is shown that
the proposed method is fast and accurate.

2 Saliency Measurement

In this section, general Bayesian framework toward a center-surround approach
is initially discussed. Afterwards, basics of proposed method are explained. It
is followed by introducing the multi-scale extension. Finally, a brief explanation
about implementation and algorithm parameters is provided.

2.1 Bayesian Center-Surround

Let us assume that we have an image I. We define each pixel as x = (x̄, f)
where x̄ is the coordinate of pixel x in image I, and f is a feature vector for each
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coordinate. So, f can be a gray-scale value, a color vector, or any other desired
feature (e.g., LBP, Gabor, SIFT, LSK, ...).

Suppose, there exists a binary random variable Hx that defines pixel saliency.
It is defined as follows:

Hx =
{

1, if x is salient
0, otherwise. (1)

The saliency of pixel x can be computed using P (Hx = 1|f) = P (1|f). It can be
expanded using the Bayes rule as follows:

P (f |1)P (1)
P (f |1)P (1) + P (f |0)P (0)

. (2)

In the center-surround approach, we have a window W divided into a surround
B and center K where the hypothesis is that K contains an object. In fact,
pixels in K contribute to P (f |1), and pixels in B contribute to P (f |0). Having
a sliding window W , we can sweep the whole image and calculate the saliency
value locally.

The difference between center-surround methods is the way they deal with
P (1|f). For instance, Rahtu et al. [11] estimate (2), by approximating both
P (f |1) and P (f |0) using histogram approximation over pixels’ color values.
Moreover, they assume P (0) and P (1) are constant. Seo and Milanfar [3] sup-
pose P (1|f) ∝ P (f |1) and apply Parzen window estimation over LSK features
to approximate P (f |1).

2.2 Defining Saliency Measure

We define saliency measure for x belonging to center utilizing P (1|f, x̄). Applying
Bayes’ theorem, we can write:

P (1|f, x̄) =
P (f |x̄, 1)P (1|x̄)

P (f |x̄) . (3)

This can be further expanded to:

P (1|f, x̄) =
P (f |x̄, 1)P (1|x̄)

P (f |x̄, 1)P (1|x̄) + P (f |x̄, 0)P (0|x̄) . (4)

Computing (4) require the estimation of P (f |x̄, 1) and P (f |x̄, 0), which can
be done in several ways. For instance in order to estimate P (f |1) and P (f |0),
in [12,13,14] a generalized Gaussian model is used, in [3] Parzen window estima-
tion was adapted, and Histogram estimation is applied in [11]. We adapt kernel
density estimation method to compute feature distribution. As a result, we can
write:

P (1|f, x̄) =
1
m

∑m
i=1 G (f − fx̄Ki)P (1|x̄)

1
m

∑m
i=1 G (f − fx̄Ki)P (1|x̄) + 1

n

∑n
i=1 G (f − fx̄Bi)P (0|x̄) , (5)
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where n and m are the number of samples, xBi = (x̄Bi, fx̄Bi) is the ith sample
belonging to B and xKi = (x̄Ki, fx̄Ki) is the ith sample belonging to K, and
G (.) is a Gaussian kernel.

Since we plan to compute saliency of pixel x belonging to center, (5) can be
simplified by selecting K as small as a pixel. In that case, we have

G(f − fx̄Ki) =
1√

2πσ1

exp(−‖f − f‖2

2σ2
1

) =
1√

2πσ1

, (6)

where σ1 is standard deviation. Afterwards, we assume that only a few samples
from B, which are scattered uniformly on a hypothetical circle with radius r
contribute to P (f |x̄, 0). In fact, by substituting (6) into (5) and knowing the
fact that P (0|x̄) + P (1|x̄) = 1, we can write:

Pn
r (1|f, x̄) = 1

/(
1 +

σ1(1 − P (1|x̄))
nσ0P (1|x̄)

n∑
i=1

exp

(‖f − fx̄Bi,r‖2

2σ2
0

))
, (7)

where σ1 and σ0 are standard deviations, n is the number of samples form B
and r shows the radius at which samples will be taken. Figure 2 illustrates an
example of such a central pixel and sample pixels around it. This sparse sampling
reduces the number of operations required to estimate P (f |x̄, 0) and increases
computation speed.

(a) (b) (c)

Fig. 2. (a) A pixel and its selected surrounding samples in a window, (b) Procedure of
applying a window, (c) A sample saliency map obtained, using proposed method

In order to approximate the distribution P (1|x̄), we compute average fixation
map over a training set. Also, to avoid zero value we biased the obtained prob-
ability by adding b = 0.1. We further smooth the estimated distribution using
a Gaussian kernel of size 30 × 30 and σ = 20. Figure 3 shows the probability
obtained.

We define saliency in terms of sampling circle radius and number of samples
as follows:

Sn
r (x) = Ac ∗ [Pn

r (1|f, x̄)]α , (8)

where Ac is a circular averaging filter, ∗ is convolution operator, Pn
r (1|f, x̄) is

calculated using (7), and α ≥ 1 is an attenuation factor which emphasizes the
effect of high probability areas.
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Fig. 3. Estimated P (1|x̄). It is generated by low pass filtering an average fixation map
obtained from several fixation maps.

Center bias. There exists evidence that human eyes fixates mostly on the center
of image [15]. This is because most of the human taken photos are taken in such
a way to have the subject in the center of the image. This knowledge can be
used to improve saliency detection performance. Saliency detection benefits from
center bias by giving more weight to the center. For instance, Judd et al. [15]
applied an arbitrary Gaussian blob on the center of the image to centrally bias
their technique. Yang et al. [14] learned the central bias by learning a normal
Bivariate Gaussian over the eye fixation distribution.

In our method P (1|x̄) gives weight to the positions more probable to observe
an object. However, since we learn it from human taken photos, it can be con-
sidered equivalent to center bias in this case. Studying figure 3 conveys the same
concept.

2.3 Multi-scale Measure

Many techniques apply the multi-scale approach toward saliency. The reason for
such an approach is that each image may consist of objects of different sizes.
Generally multi-scale property is achieved by changing the size of W . In order
to make our approach multi-scale, it is only needed to change the radius and
number of samples. We refer to the radius as “size scale” denoted by r and to
the number of samples as “precision scale” denoted by n. Computing saliency of
a pixel at different scales we take the average over all scales:

S(x) =
1
M

M∑
i=1

Sni
ri

(x), (9)

where M is the number of scales, Sni
ri

(x) is the ith saliency map calculated at a
different scale using (8).

2.4 Implementation

In our implementation, we used CIELab color vector as feature. So for any pixel
x = (x̄, f), we have f = [L(x̄), a(x̄), b(x̄)] where L(x̄), a(x̄) and b(x̄) are CIELab
values at x̄. In order to reduce the effect of noise, we employed a low-pass filter.
For this purpose, we used a Gaussian kernel of size 9×9 with standard deviation
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σ = 0.5. We also normalized all the images to 171×128 to make easier the process
of images with different sizes.

We applied three different size scales with fixed precision scales. The param-
eters were r = [13, 25, 38], n = [8, 8, 8], σ1 = [1, 1, 1], and σ0 = [10, 10, 10]. The
attenuation parameter α was set to 25, and an averaging disk filter of radius 10
was applied. All the tests were performed by means of MATLAB R 2010a on a
machine with Intel 6600 CPU running at 2.4 GHz clock, and 2GB RAM.

3 Experiments

This section is dedicated to the evaluation of proposed saliency detection tech-
nique. We compare proposed technique with Achanta et al. [7], Achanta et al. [2],
Zhang et al.1 [13], Seo and Milanfar2 [3], Goferman et al.3 [16], Rahtu et al.4 [11],
Bruce and Tsotsos5[8], and Hou et al.6 [6]. We use available public codes for all
the methods except for [2,7]. The parameters used for each algorithm are the
same as reported in the original paper. We provide qualitative and quantitative
tests to show the pros and cons of each technique. Also, we evaluate running
time of each method.

We used data set released by Bruce and Tsotsos in [8]. The data set consists
of 120 images of size 681 × 511 and eye fixation maps. Almost all of images are
composed of everyday life situations which makes the data set a difficult one.
We divide the data set into the train and test sets containing 80 and 40 images,
respectively. P (1|x̄) was obtained using the training set.

3.1 Quantitative Analysis

Receiver Operating Characteristic (ROC) curve is a method of evaluating saliency
maps using eye fixation density maps [8,15,14]. In this method, a threshold is var-
ied over saliency map; and number of fixated and non-fixated points are counted
at each threshold value. Amount of true positive rate and false positive rate are
obtained by comparing the results with a reference saliency map. These values
will build the ROC curve.

In order to perform quantitative analysis, we use a similar approach as in [8].
In fact, we moved the threshold value from zero to maximum pixel value, and
computed true positive and false positive values. Eventually, reported the average
value over all images. Figure 4 depicts the resulting curves. Table 1 reports the
Area Under the ROC (AUC). As it can be seen from both Figure 4 and Table 1,
proposed method outperforms all the other methods with a considerable margin.
1 http://cseweb.ucsd.edu/~l6zhang/
2 http://users.soe.ucsc.edu/~rokaf/SaliencyDetection.html
3 http://webee.technion.ac.il/labs/cgm/Computer-Graphics-Multimedia/

Software/Saliency/Saliency.html
4 http://www.ee.oulu.fi/mvg/page/saliency
5 www.cse.yorku.ca/~neil
6 http://www.its.caltech.edu/~xhou/projects/spectralResidual/

spectralresidual.html

http://cseweb.ucsd.edu/~l6zhang/
http://users.soe.ucsc.edu/~rokaf/SaliencyDetection.html
http://webee.technion.ac.il/labs/cgm/Computer-Graphics-Multimedia/
http://www.ee.oulu.fi/mvg/page/saliency
www.cse.yorku.ca/~neil
http://www.its.caltech.edu/~xhou/projects/spectralResidual/
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Tsotsos et al. [8]
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Fig. 4. Comparing the performance of proposed method and other state-of-the-art
techniques in terms of Receiver Operating Characteristic (ROC) curve

Table 1. Comparison of different methods in terms of Area Under the Curve (AUC).
Mean ± standard deviation is reported.

Algorithm AUC

Achanta et al. [7] 0.5024 ± 0.1216
Achanta et al. [2] 0.6447 ± 0.1067
Zhang et al. [13] 0.6719 ± 0.0874
Hou et al. [6] 0.6863 ± 0.1117
Seo and Milanfar [3] 0.7292 ± 0.0972
Rahtu et al. [11] 0.7495 ± 0.0624
Goferman et al. [16] 0.8022 ± 0.0844
Bruce and Tsotsos [8] 0.7971 ± 0.0691
Proposed 0.8614 ± 0.0648

Table 2. Comparison of different methods in terms of running time

Algorithm Timing(msec/pixel)

Achanta et al. [7] 1.25e-3
Achanta et al. [2] 3.71e-3
Zhang et al. [13] 0.20
Hou et al. [6] 6e-3
Seo and Milanfar [3] 0.58
Rahtu et al. [11] 6.5e-2
Goferman et al. [16] 1.43
Bruce and Tsotsos [8] 8.7e-2
Proposed 7.6e-3

Table 2 summarizes the measured running time per pixel. Although the pro-
posed method is not the fastest method in the list, it is the fastest among high-
performance methods.



Fast and Efficient Saliency Detection 673

Fig. 5. An example showing saliency maps produced using different techniques. The
leftmost column shows the original image and its fixation map. On the right side from
left to right and top to bottom results from Achanta et al. [7], Achanta et al. [2],
Zhang et al. [13], Seo and Milanfar [3], Goferman et al. [16], Rahtu et al. [11], Bruce
and Tsotsos [8], Hou et al. [6], and Proposed method are depicted.
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3.2 Qualitative Assessment

In order to have better conception, we provide some sample images. Figure 5
shows saliency maps produced by several methods. The Human eye fixation map
of each image is also provided for comparison.

4 Conclusion

In this paper, We introduced a new saliency technique based on center-surround
approach. We showed that the proposed method can effectively compute the
amount of saliency in images. It is fast in comparison to other similar approaches.

We introduced a method which utilizes P (1|f, x̄) to measure saliency. We used
sparse sampling and kernel density estimation to build the saliency map. The
proposed method’s nature implicitly includes center bias.

We compared the proposed method with eight state-of-the-art algorithms. We
considered running time, and area under the curve in evaluation of methods. The
method is the best technique in terms of AUC. Also, it is the fastest accurate
method in comparison to other techniques.
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2. Achanta, R., Estrada, F.J., Wils, P., Süsstrunk, S.: Salient region detection and seg-
mentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS,
vol. 5008, pp. 66–75. Springer, Heidelberg (2008),
http://icvs2008.info/index.htm

3. Seo, H.J., Milanfar, P.: Training-free, generic object detection using locally adap-
tive regression kernels. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 32, 1688–1704 (2010)
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Abstract. Recent developments in face analysis showed that local bi-
nary patterns (LBP) provide excellent results in representing faces. LBP
is by definition a purely gray-scale invariant texture operator, codify-
ing only the facial patterns while ignoring the magnitude of gray level
differences (i.e. contrast). However, pattern information is independent
of the gray scale, whereas contrast is not. On the other hand, contrast
is not affected by rotation, but patterns are, by default. So, these two
measures can supplement each other. This paper addresses how well fa-
cial images can be described by means of both contrast information and
local binary patterns. We investigate a new facial representation which
combines both measures and extensively evaluate the proposed represen-
tation on the gender classification problem, showing interesting results.
Furthermore, we compare our results against those of using Haar-like
features and AdaBoost learning, demonstrating improvements with a
significant margin.

Keywords: Texture Features, Local Binary Patterns, Contrast, Gender
Classification.

1 Introduction

Recent developments in face analysis showed that local binary patterns (LBP) [1]
provide excellent results in representing faces [2,3]. For instance, it has been
successfully applied to face detection [4], face recognition [2], facial expression
recognition [5], gender classification [6] etc. LBP is a gray-scale invariant texture
operator which labels the pixels of an image by thresholding the neighborhood of
each pixel with the value of the center pixel and considers the result as a binary
number. LBP labels can be regarded as local primitives such as curved edges,
spots, flat areas etc. The histogram of the labels can be then used as a face
descriptor. Due to its discriminative power and computational simplicity, the
LBP methodology has already attained an established position in face analysis
research1.

LBP is by definition a purely gray-scale invariant texture operator, codifying
only the facial patterns while ignoring the magnitude of gray level differences (i.e.
1 See LBP bibliography at http://www.cse.oulu.fi/MVG/LBP_Bibliography

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 676–686, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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contrast). However, texture can be regarded as a two-dimensional phenomenon
characterized by two orthogonal properties: spatial structure (patterns) and con-
trast (the strength of the patterns). Pattern information is independent of the
gray scale, whereas contrast is not. On the other hand, contrast is not affected
by rotation, but patterns are, by default. These two measures supplement each
other in a very useful way. The question which arises then is how well facial
images can be described by means of both contrast information and local binary
patterns? In other words, could contrast information enhance the effectiveness of
the popular LBP-based facial representation? If so, how the two measures could
optimally be combined? This paper addresses these issues by proposing and in-
vestigating a new facial representation which combines contrast information and
local binary patterns. We extensively evaluate the proposed facial representation
on the gender classification problem, although other face related tasks such as
face detection, facial expression recognition or face authentication could also be
considered.

Gender classification from facial information consists of determining whether
the person whose face is in the given image or video is a man or a woman. This
is a two-class pattern recognition task which is very useful in many applications
such as more affective Human-Computer Interaction (HCI), audience measure-
ment and reporting, consumer behavior analysis and marketing, content-based
image and video retrieval, restricting access to certain areas based on gender, and
so on. The main challenges in gender classification from facial images are due to
geometrical non-uniformity, make-up and occlusions, pose and illumination vari-
ations, and image degradations e.g. caused by blur and noise. These factors are
unfortunately often present in real-world face images captured in unconstrained
environments.

First attempts of using computer vision based techniques to gender classifi-
cation started in early 1990s. Since then, a significant progress has been made
and several approaches have been reported in literature. Fundamentally, the
proposed techniques differ in (i) the choice of the facial representation, ranging
from the use of simple raw pixels to more complex features such as Gabor re-
sponses, and in (ii) the design of the classifier, ranging from the use of nearest
neighbor (NN) and fisher linear discriminant (FLD) classifiers to artificial neural
networks (ANN), support vector machines (SVM) and boosting schemes. For in-
stance, Moghaddam and Yang [7] used raw pixels as inputs to SVMs while Baluja
and Rowley [8] adopted AdaBoost to combine weak classifiers, constructed using
simple pixel comparisons, into single strong classifier. Both systems showed good
classification rates. A comparative analysis on gender classification approaches
can be found in [9].

The rest of this paper is organized as follows. Section 2 briefly describes the
popular LBP methodology for representing face images. Our proposed facial rep-
resentation that combines contrast information and local binary patterns is then
presented in Section 3. Section 4 considers the gender classification problem and
provide extensive experiments and analysis on the effectiveness of using contrast
information to supplement local binary patterns. The section also analyzes the
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effects of illumination normalization, the generalization ability and the real-time
implementation of the proposed gender classification method. A conclusion is
drawn in Section 5.

2 Face Representation Using Local Binary Patterns

The LBP texture analysis operator, introduced by Ojala et al. [1], is defined
as a gray-scale invariant texture measure, derived from a general definition of
texture in a local neighborhood. It is a powerful means of texture description
and among its properties in real-world applications are its discriminative power,
computational simplicity and tolerance against monotonic gray-scale changes.

The original LBP operator forms labels for the image pixels by thresholding
the 3×3 neighborhood of each pixel with the center value and considering the
result as a binary number. Fig. 1 shows an example of an LBP calculation.
The histogram of these 28 = 256 different labels can then be used as a texture
descriptor.

Fig. 1. The basic LBP operator

The operator has been extended to use neighborhoods of different sizes. Using
a circular neighborhood and bilinearly interpolating values at non-integer pixel
coordinates allow any radius and number of pixels in the neighborhood. The
notation (P,R) is generally used for pixel neighborhoods to refer to P sampling
points on a circle of radius R. The calculation of the LBP codes can be easily
done in a single scan through the image. The value of the LBP code of a pixel
(xc, yc) is given by:

LBPP,R =
P−1∑
p=0

s(gp − gc)2p, (1)

where gc corresponds to the gray value of the center pixel (xc, yc), gp refers to
gray values of P equally spaced pixels on a circle of radius R, and s defines a
thresholding function as follows:

s(x) =
{

1, if x ≥ 0;
0, otherwise. (2)

Another extension to the original operator is the definition of so called uniform
patterns. This extension was inspired by the fact that some binary patterns occur
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more commonly in texture images than others. A local binary pattern is called
uniform if the binary pattern contains at most two bitwise transitions from 0 to
1 or vice versa when the bit pattern is traversed circularly. In the computation
of the LBP labels, uniform patterns are used so that there is a separate label for
each uniform pattern and all the non-uniform patterns are labeled with a single
label. This yields to the following notation for the LBP operator: LBPu2

P,R. The
subscript represents using the operator in a (P,R) neighborhood. Superscript u2
stands for using only uniform patterns and labeling all remaining patterns with
a single label.

Each LBP label (or code) can be regarded as a micro-texton. Local primitives
which are codified by these labels include different types of curved edges, spots,
flat areas etc. The occurrences of the LBP codes in the image are collected
into a histogram. The classification is then performed by computing histogram
similarities. For an efficient representation, facial images are first divided into
several local regions from which LBP histograms are extracted and concatenated
into an enhanced feature histogram.

3 Face Representation Using LBP and Contrast

LBP operator by itself totally ignores the contrast information which is a prop-
erty of texture usually regarded as a very important cue for our vision system.
In many applications, a purely gray-scale invariant texture operator like LBP
may waste useful information, and adding gray-scale dependent information like
contrast may enhance the accuracy of the method. This observation is behind
our idea of combining contrast information and local binary patterns for facial
representation.

We measure the rotation invariant local contrast in a circularly symmetric
neighbor set just like the LBP:

VARP,R =
1
P

P−1∑
p=0

(gp − μ)2 , where μ =
1
P

P−1∑
p=0

gp . (3)

VARP,R is, by definition, invariant against shifts in the gray scale. Since con-
trast is measured locally, the measure can resist even intra-image illumination
variation as long as the absolute gray value differences are not badly affected.

Like in LBP methodology, the contrast measures could be collected into a
histogram and used as a contrast descriptor of the face. However, variance mea-
sure has a continuous-valued output; hence, quantization of its feature space is
needed before computing the histograms. We therefore perform the quantization
by adding together feature distributions for every single model image in a total
distribution, which is then divided into B bins having an equal number of entries,
thus obtaining the cut values of the bins of the histograms. In our experiments,
we have set the value of B to 8. Fig. 2 shows some examples of contrast images
after quantization.

After quantization, we collect the contrast measures into a histogram as fol-
lows: we first divide the face into blocks and then extract a contrast histogram
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(a) (b)

Fig. 2. Examples of contrast images using VAR operator. (a) Original training sam-
ples and (b) corresponding contrast images using VAR8,1 operator and B=8 level of
quantization.

Fig. 3. Proposed facial representation combining contrast information and local binary
patterns

from each block and concatenate them into a single histogram that is used as a
contrast descriptor of the face.

Hence, given a facial image, our proposed representation for describing both
facial texture patterns (LBP) and their strength (i.e. contrast) consists of (i)
dividing the face into local blocks; (ii) extracting local LBP histograms and
concatenating them into a single LBP histogram; (iii) extracting local contrast
histograms and concatenating them into a single contrast histogram; and (iv)
concatenating the LBP and contrast histograms to obtain spatially enhanced
histogram denoted as LBP/VAR histogram. The procedure of extracting the
LBP/VAR histogram is illustrated in Fig. 3.

4 Experiments on Gender Classification

To assess the effectiveness of combining contrast information and local binary
patterns, we considered the gender classification problem and conducted
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extensive experiments evaluating the performance of the proposed facial rep-
resentation and comparing the results against those of using only LBP (i.e.
without contrast).

4.1 Experimental Data

For experiments we considered three publicly available face databases namely
FRGC 2.0 [10], FERET [11], and XM2VTS [12]. The databases encompass vari-
ations in illumination, expressions, pose angles, age of the subjecs, ethnicity etc.
We randomly divided the datasets into training and testing sets as described in
Table 1.

Table 1. The division of the data into training and testing sets

Database
Training Testing

Males Females Total Males Females Total

FRGC2.0 13,565 10,518 24,083 2,050 2,050 4,100

FERET 1,801 1,039 2,840 260 260 520

XM2VTS 1,092 962 2,054 130 130 230

4.2 Settings

We first normalized the training face samples to 24×24 pixels using the eye co-
ordinates that are supplied with the datasets. Figure 4 illustrates some examples
from the training samples.

Our proposed facial representation involves the following free parameters to
be fixed: the number and size of blocks when dividing the face images, the
radius and number of neighbors for the LBP operator, the radius and number
of neighbors for the contrast operator (VAR) and the quantization level.

Regarding the division of the faces into blocks and given the relatively small
size of the training face images (24×24 pixels), we divided the images into 3×3
equally sized rectangular regions as shown in Figure 3. We considered both
overlapping (using 3 pixels both horizontally and vertically) and non-overlapping

Fig. 4. Sample images from the training set
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divisions, yielding block sizes of 10×10 pixels for overlapped blocks and 8×8
pixels for non-overlapping blocks.

When looking for the optimal LBP operator, we noticed that LBP representa-
tion is quite robust with respect to the selection of P and R parameters. Changes
in these parameters may cause big differences in the length of the feature vector,
but the overall performance is not necessarily affected significantly. Hence, we
selected the LBPu2

8,1 operator since it is a good trade-off between discriminative
power and feature vector length.

For contrast calculation, we used the rotation invariant variance VARP,R op-
erator with 8 neighbors (P=8) in radius of 1 (R=1). Given the continuous-valued
nature of the contrast measures, quantization is then needed before computing
the histograms. We first computed a total contrast distribution from all our
training samples by adding together feature distributions from each sample. We
then performed quantization by thresholding the total distribution into 8 sec-
tions having an equal number of entries. Hence, we determined the threshold
values that are later used for quantizing the contrast measures for the test sam-
ples. Therefore, in most experiments LBPu2

8,1 and VAR8,1 operators are used for
computing the histograms.

For determining the gender of a person in a given test image, we used the
extracted facial representations as inputs to an SVM classifier with a non-linear
RBF kernel. The choice of SVM is motivated by its proven performance in various
object detection and recognition tasks in computer vision. The parameters of the
SVM classifier were determined using grid search and five-fold cross validation.
For SVM implementation, we used the publically available LIBSVM library [13].

For the purpose of analyzing the effects of illumination variations, we also con-
sidered an illumination normalization procedure using Tan and Triggs’ method
[14].

4.3 Results and Analysis

We conducted extensive experiments in 9 different configurations. Tables 2 and
3 describe the considered parameters in each configuration. In the first seven
experiments (#1 till #7), we trained the classifier using only training samples
from FRGC 2.0 database and evaluated the performance on the rest of the data
including FRGC 2.0, FERET and XM2VTS test samples. In experiments #8
and #9, the system was trained using training samples from FRGC 2.0 and
FERET databases, and evaluated on FRGC 2.0, FERET and XM2VTS test
data. Training the system on one or more databases and then doing evaluation on
other (different) databases is important for gaining insight into the generalization
ability of the proposed method under different and unknown conditions.

The average classification rates in each configuration are summarized in the
last columns of Tables 2 and 3, whereas more detailed results are given in Table 4.

(A) Importance of contrast information: The primary goal of the exper-
iments was to analyze whether facial images can be efficiently described by
means of both contrast information and local binary patterns. In other terms,
could contrast information enhance the effectiveness of the popular LBP-based
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Table 2. Experiments conducted using FRGC2.0 training samples

Exp. Method Window Overlap Illumination Quantization Avg. classification
(#) size normalization levels rate (%)

1 LBP4,1 10×10 3 - - 87.34

2 LBPu2
8,1 8×8 - - - 91.53

3 LBPu2
8,1 10×10 3 - - 91.93

4 LBPu2
8,1 8×8 - applied - 92.13

5 LBPu2
8,1 10×10 3 applied - 91.69

6 LBPu2
8,1/VAR8,1 8×8 - - 8 94.53

7 LBPu2
8,1/VAR8,1 10×10 3 - 8 93.73

Table 3. Experiments conducted using FRGC2.0 and FERET training samples

Exp. Method Window Overlap Illumination Quantization Avg. classification
(#) size normalization levels rate (%)

8 LBPu2
8,1 10×10 3 - - 92.31

9 LBPu2
8,1/VAR8,1 10×10 3 - 8 96.33

facial representation? The obtained results comparing LBP versus LBP/VAR
(see Exps. #2 versus #6, #3 versus #7, and #8 versus #9) clearly indicate
that combining contrast information and local binary patterns does enhance the
gender classification performance in all configurations. The performance gain
was around 3%.

(B) Effects of illumination normalization: To gain insight into the sen-
sitivity of the proposed facial representations against illumination variations,
we considered and experimented with an illumination normalization procedure
proposed by Tan and Triggs [14]. It consists of pre-processing the facial images
by applying Gamma correction, difference of Gaussian (DoG) filtering, mask-
ing and equalization. The experiments (see Exps. #2 versus #4 and #3 versus
#5) showed no significant improvements using illumination normalization, hence
pointing out the relative robustness of our proposed approach against illumina-
tion variations.

(C) Generalization ability of the system: To gain insight into the gen-
eralization ability of the system under different and unknown conditions, we
considered experiments in which training and test samples are taken from differ-
ent databases. As expected, the results showed performance degradation when
evaluating the system on different and unknown conditions. This problem can be
alleviated by training the system on larger and different databases. For instance,
training the system using samples from only FRGC database yielded classifica-
tion rate of 93.73% while using training samples from both FRGC and FERET
databases improved the performance, reaching 96.33%.

(D) Comparison to other methods: We compared our results against those
of one of the state-of-the-art methods using Haar-like features and AdaBoost
learning for gender classification. The obtained results, shown in Table 5, clearly
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Table 4. Comparison of gender classification results of several approaches on three
different test sets

Exp. Method
Gender Classification Rate (%)

FRGC2.0 FERET XM2VTS
(#) Males Females Males Females Males Females

1 LBP4,1 91.95 89.22 73.46 71.46 82.31 56.15

2 LBPu2
8,1 94.63 93.17 88.46 73.08 90.77 60.77

3 LBPu2
8,1 95.51 93.22 85.38 74.62 86.15 68.46

4 LBPu2
8,1 95.80 93.37 90.77 70.77 83.85 68.43

5 LBPu2
8,1 95.29 93.71 88.08 66.15 83.58 70.00

6 LBPu2
8,1/VAR8,1 98.00 96.97 87.69 73.46 92.31 59.23

7 LBPu2
8,1/VAR8,1 98.78 94.39 89.62 68.46 93.08 63.08

8 LBPu2
8,1 92.98 94.44 88.38 84.62 89.23 74.62

9 LBPu2
8,1/VAR8,1 98.24 96.98 95.38 87.69 90.77 80.77

Table 5. Comparison between our proposed method and Haar-classifier based on Ad-
aBoost learning

Method
Gender Classification Rate (%)

FRGC 2.0 FERET XM2VTS All
M F Avg. M F Avg. M F Avg. Avg.

LBPu2
8,1/VAR8,1 + SVM (Exp. #9) 98.24 96.98 97.61 95.38 87.69 91.54 90.77 80.77 85.77 96.33

Haar-like features + AdaBoost 79.71 82.93 81.32 86.92 76.15 81.54 76.15 77.69 76.92 81.10

assess the effectiveness of our proposed approach as it outperforms the method
using Haar-like features and AdaBoost with a significant margin (96.33% versus
81.10%).

(E) Real-time implementation: Among the advantages of using LBP-like fa-
cial representation is the computational simplicity of the LBP operator. We built
a real-time demonstration using the LBP representation and SVM for gender
classification in real-world scenarios. Including face and eye detection modules,
the framework runs at more than 17 frames per second on a 3 GHz Intel Core 2
Duo computer and successfully recognizes the gender of the users in most cases.

5 Conclusion

From the observation that LBP approach codifies only the facial patterns while
ignoring their strength, we proposed a novel facial representation combining
LBP and contrast information. The extensive experiments on the gender clas-
sification problem showed significant performance enhancement compared to
popular methods such as basic LBP method or using Haar-like features with
AdaBoost learning. Pre-processing the facial images using illumination normal-
izations seemed to not enhance the performance, hence pointing out the rel-
ative robustness of our proposed approach against illumination variations. To
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gain insight into the generalization ability of the proposed approach, we con-
sidered experiments in which training and test samples are taken from different
databases. The results suggested using larger and different databases to alleviate
the generalization problem. Exploiting the computational simplicity of the LBP-
like facial representations, we also built a real time demonstration for real-world
applications.

Analyzing the misclassification errors made by the system, we noticed that
female’s faces are harder to classify than male’s ones. Perhaps, this could be
explained by the fact that when only facial areas are used for gender classifi-
cation, the presence of moustaches and beards helps more the classification of
male’s images. However, one can expect better classification of female’s images
when external features such as hair are also included. This issue will be further
investigated in our future work.

To further assess the effectiveness of combining contrast information and local
binary patterns for face representation, we also plan to extend the evaluation
of our methodology on other face-related tasks including age estimation and
ethnicity classification especially from real-life faces acquired in unconstrained
conditions using, for instance, the recently built database called the Labeled
Faces in the Wild (LFW) [15].
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Abstract. Graphs provide effective data structures modeling complex
relations and schemaless data such as images, XML documents, circuits,
compounds, and proteins. Given a query graph, efficiently finding all
database graphs in which the query is a subgraph is an important prob-
lem raising in different domains. In this paper, we propose a new method
for indexing tree structures based on a graph-theoretic concept called
caterpillar decomposition and discuss its advantages over two previous
indexing algorithms. Experimental evaluation of the proposed framework
including the comparison with the previous approaches demonstrates the
efficacy of the overall approach.

Keywords: shape retrieval, indexing, caterpillar decomposition.

1 Introduction

One of the highly active research areas within the field of multimedia systems is
multimedia retrieval. With the increasing availability of multimedia collections
due to various digital storage devices, an efficient retrieval of similar multimedia
items for a given query from a large database is essential. Since images form
the base for other multimedia types such as video and animation, we present an
efficient graph-based image retrieval system in this paper.

Graphs provide an effective data structure modeling complex relations such as
organization of entities in images, XML documents, compounds, and proteins. A
critical and common retrieval problem exists in many graph-based applications.
Given a query graph q and database D = {g1, g2, . . . , gn}, this problem is stated
as efficiently finding all graphs in which q is a subgraph. Since checking whether
a pair of graphs is isomorphic to each other is computationally expensive, se-
quential search of the database for this problem is impractical.

A number of indexing approaches have been proposed in the past to address
this problem. Generally, these approaches use some graph attributes such as
maximum, minimum, average node degrees, path lengths, and node adjacency
to locate database graphs with similar attributes. One such approach presented
in the literature is path-based approach [8,7,2], which utilizes graph paths for
indexing. In particular, this algorithm first extracts paths from each database
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Fig. 1. Limitations of the path-based approach. Although the query shown in part (a)
appears as a subgraph in part (d) only, the path-based approach retrieves all graphs
in parts (b)-(d)

graph up to same maximum length. Given a query graph, it then locates a
database graph, which contains all paths that exist in the query. Although one
can easily index a query graph into the database using the path-based approach,
this indexing algorithm has an important drawback: paths of a graph do not
carry sufficient information regarding its structure, resulting in a number of
false positive retrievals. Figure 1 presents an example, where query and three
database graphs are shown in parts (a)-(d), respectively. One may notice that
the only graph in part (d) includes the query as a subgraph. However, since
all database graphs contain a path up to length four, they are all retrieved as
the result of this indexing algorithm. This shows that the path-based approach
is not suitable for applications where graphs in the system contain too many
paths.

To decrease the number of false positive retrievals, an indexing algorithm
should take into consideration graph’s structure. gIndex [11] is an example of this
type of indexing. This algorithm extracts frequent subgraphs from the database
and uses discriminative ones for indexing. Here, a subgraph is called frequent if
it is included by a large number of database graphs. Each frequent and discrim-
inative substructures form the feature set. Once the feature set is computed,
features are translated into sequences and a prefix tree is constructed to store
and retrieve them efficiently. For a given query, all its substructures up to some
maximum size is generated and the prefix tree is used to search for database
graphs which consists of the same substructures.

In this paper, we propose a new method for indexing tree structures. Our
algorithm is based on a graph-theoretic concept named caterpillar decomposition
(CD), which is the collection of edge-disjoint, root-leaf paths. Computing the
CD for a tree enables us to represent it as a vector in the geometric space. After
representing the query in the same fashion, we perform a range search around
the query to retrieve similar database trees efficiently. The proposed algorithm
uses tree structures for indexing rather then path lengths alone and it does not
require an extra step to determine frequent substructures unlike path-based and
gIndex approaches. Experimental evaluation of the proposed approach shows the
improved retrieval performance over these two algorithms. Figure 2 presents an
overview of the proposed framework.

Indexing tree structures has been proposed before by Shokoufandeh et al. [10].
In that work, the sum of the largest eigenvalues of the tree’s adjacency matrix
for the root is used to represent it in the geometric space. After performing
the same process for the query, similar database trees is retrieved by means
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Fig. 2. Overview of the proposed algorithm. Each database tree is represented as a set
of points in the geometric space using its caterpillar decomposition (transition 1). After
representing query in the same fashion (transition 2), trees with the same substructures
are retrieved by means of an efficient k-nearest neighbor search algorithm.

of an efficient nearest neighbor search around the query vector. To account for
local deformation and substructure, this approach also represents the root of
each subtree as such a vector. Eigenvalues of graph’s laplacian matrices has
also been used for indexing in the literature [3]. The motivation for choosing
laplacian matrix over adjacency matrix comes from studies showing that the
laplacian matrix is more informative and more representative in terms of creating
fewer number of co-spectral graphs. Given a graph, this approach computes its
signature using the sorted eigenvalues of laplacian matrix. For a query graph
and a large database, the indexing amounts to a nearest neighbor search in the
model database. Similar to the work presented in [10], the authors compute the
vectors for each subgraph in the system. Borrowing the same ideas, we compute
the CD for each subtree to represent the local structure and thus to retrieve
graphs with the same substructures.

The rest of the paper is organized as follows. After providing a brief review of
some concepts in Section 2, we describe our indexing approach in Section 3. We
present the experiments including the comparison of our approach with path-
based and gIndex algorithms in the domain of shape retrieval in Section 4.
Finally, we finish the paper with the conclusion in Section 5.

2 Preliminaries

In this section, we provide definitions of some concepts which we use in our
framework. A graph G is a pair (V,E), where V is a finite set of vertices (nodes)
and E is a set of edges between the vertices. An edge e = (u, v) connects two
vertices such that u, v ∈ V . Two vertices are adjacent, if there exists an edge
between them. |G| denotes the size of graph G and it is defined by the number
of vertices. A tree is a graph without cycles. A pair of vertices in the tree is,
thus, connected by one simple path.
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Fig. 3. Skeleton points of the silhouette image in part (a) is shown in part (b). Af-
ter applying k-means algorithm, the representative points are shown in part (c). The
minimum spanning tree is computed using the representative points.

Two graphs G1 and G2 share substructures if there exists two subgraphs g1 ∈
G1 and g2 ∈ G2 which are isomorphic to each other. Two graphs H = (VH , EH)
and G = (VG, EG) are said to be isomorphic if there is a bijection between their
vertex sets, f : VH → VG such that any pair of vertices u and v of G are adjacent
if and only if f(u) and f(v) are adjacent in H .

Since the proposed indexing framework is designed especially for trees, our
algorithm starts by representing input images as trees through skeleton points.
A skeleton point (or, shock point) is defined in [4] as the dynamic view of the
medial axis where the propagation of waves from the shape boundary results
in the formation of singularities. In [1] medial axis is described as the locus of
centers of circles inside the region which are bitangent to the boundary in at
least two places. Each skeleton point p is associated with a 3-dimensional vector
v(p) = (x, y, r), where (x, y) are the Euclidean coordinates of the point and r
is the radius of the maximal bi-tangent circle centered at the point. Each shock
point represented as a vertex in the skeleton graph, which takes over significant
role especially on structural and statistical pattern recognition. Each pair of
skeleton points in the graph is connected by an edge whose weight reflects the
Euclidean distance between them. We convert the graph to a tree by computing
its minimum spanning tree. As a result, nodes correspond to skeleton points,
and edges connect nearby skeleton points. The root of the tree is the node that
minimizes the sum of the shortest path distances to all other nodes.

The number of the skeleton points is proportional to size of the image. As a
result, the large number of points make the overall process slower. To reduce the
number of these points, we use k-means algorithm, which clusters the skeleton
points and returns one representative for each cluster. The minimum spanning
tree is then computed using the k-representatives. Figure 3 illustrates this pro-
cess. The skeleton points of a silhouette image shown in part (a) appear in part
(b). Part (c) shows the k-means cluster representatives computed using these
points.
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3 Indexing Tree Structures through Caterpillar
Decomposition

Given a query and a large database represented as tree structures, the objective
of our indexing algorithm is efficient retrieval of database trees, which share
substructures with the query. Our algorithm is based on a graph-theoretical
concept named caterpillar decomposition (CD), which captures the topological
structure of the tree. This concept has been used in [5,6] for embedding the tree
nodes into low dimensional Euclidean spaces such that the distances between the
vertices are realized by the Euclidean distances between the embedded points.
In this paper, we use the CD to represent the root of each input tree as a
vector. Once each tree is represented as such a vector, performing a nearest
neighbor search around the query allows us to retrieve trees consisting of the
same substructures.

The concept of the CD is described in a sample tree shown in Figure 4. The
three paths between a and e, a and j, a and h are called level 1 paths and
represent first three paths in caterpillar decomposition. If we remove these three
level 1 paths from the tree, we are left with the 2 edge-disjoint paths. These are
the paths between c and k, and b and l, called level 2 paths, which represent
the other two paths in caterpillar decomposition. If removing the level 2 paths
had left additional connected components, the process would be repeated until
all the edges in the tree had been removed. The union of the paths is called
the caterpillar decomposition of the tree. The total number of paths in the CD
specifies the dimensionality of the geometric space into which the root of the
tree is embedded.

To compute the coordinate of the root in the geometric space, we begin by
finding the unique path from each leaf lying on the first level. The weight of
a root-leaf path determines the value of its corresponding coordinate. Once the
weight of each path on the first level is computed, we repeat this process with the
leaves on the second level, etc., until all leaves of the tree have been considered. In
this procedure, the order in which the paths appear in CT changes the position
of the root in the geometric space. To be consistent, we select the paths by their

Fig. 4. Caterpillar decomposition of a rooted tree. Root-leaf paths are extracted from
the tree by their levels and weights.



692 F. Yilmaz and M.F. Demirci

levels and their weights. To illustrate this algorithm, we turn back to Figure 4
in which the root of the tree is embedded into a 5-dimensional space. Assuming
that each edge in the tree has a uniform weight, the value of the first coordinate
is determined by the weight between a and e, which is 4 in this case. The value
of the second and the third coordinates are also defined by the paths from the
leaves on the first level, namely h and j, respectively. Repeating the same process
for the level 2 paths, we obtain the coordinates of the root, (4, 3, 2, 3, 2).

It is important to note that using the above procedure, trees are represented
into geometric spaces of different dimensions. Therefore, we first have to perform
a registration step whose objective is to represent the trees in the same space.
To do this, we bring up lower dimensional signatures to higher dimensions by
padding them with zeros. Let pm denote the maximum number of paths in a
database tree. Suppose that tree T1 has p1 paths and p1 ≤ pm. By adding pm−p1

0-valued coordinates, we make the dimensions of the tree signatures equal. In
case that the number of paths in the CD of the query is greater than pm, we
reduce its dimension using a dimensionality reduction technique, e.g., Principal
Component Analysis.

Having equalized the dimensionality of the trees and represented them in
the same space, we can now proceed with performing a nearest neighbor search
around the query. Unfortunately, the indexing formulation given above cannot
support local structures: two trees may share the same structures up to only
some level. Although adding or removing tree structure changes the coordinates
of the root, the position for the root of each subtree that survives such alteration
will not be affected. Therefore, the proposed indexing mechanism cannot depend
on the vector (or, signature) of the whole tree only. As done in previous indexing
algorithms [10,3], we compute the signature of each subtree in the database and
represent each signature in the geometric space using the same fashion.

Applying the same process to the given query results in a set of vectors corre-
sponding to the tree and subtrees of the query. We then perform a nearest neigh-
bor search around each vector and combine their retrieval results in a weighted
schema such that database trees with bigger size and closer distance to the query
vectors gets higher weights then others. More specifically, let SQ = {sq1, . . . , sqm}
be the set of query signatures extracted from query Q. For a particular signature
sqi ∈ SQ, let Nsqi = {st1, . . . , stk} be the set of database signatures returned by
the nearest neighbor search. We compute the weight of the vote between sqi and
a signature sti computed from database (sub)tree ti as follows:

ψsqi,sti =
|ti|

1 + ||sqi − sti||2 (1)

Let ST = {st1, . . . , stp} denote the set of all signatures for one particular database
tree T . The similarity between between query signature sqi and stl ∈ ST is com-
puted as follows:

wsqi,stl
=
{
ψsqi,stl

if stl ∈ Nsqi ,
0 otherwise. (2)
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Fig. 5. The top four row presents sample silhouettes from the dataset, while the
bottom row shows some sample views for the same object class

Given a query Q and database tree T along with their signature sets SQ =
{sq1, . . . , sqm} and ST = {st1, . . . , stp} computed from Q and T , respectively,
the final similarity between Q and T is then obtained as:

WQ,T =
m∑

u=1

p∑
v=1

wsqustv . (3)

This formulation ensures that database trees which frequently appear in the
nearest neighbor lists of the query get higher similarity scores than others.

Revisiting the key features of the proposed algorithm, encoding of a tree’s
structure captures its local topology, thus allowing for its use to retrieve database
trees with the same substructures. The signature of a tree is invariant under the
reorderings of its branches. This, in turn, allows us to compare the signatures of
a pair of trees without solving the corresponding problem. In addition, the algo-
rithm sorts the database trees by similarity to the given query without requiring
an extra step to determine the frequent substructures.

4 Experiments

In this section we evaluate the proposed approach in the context of a shape
recognition experiment. We use a silhouette dataset, consisting of 18 different
objects with 72 views for each. The top four rows of Figure 5 presents sample
silhouettes, while the bottom row shows some sample views for the same object.
Each silhouette in the dataset is represented as a rooted undirected skeleton tree
using the method described in Section 2.

To test the proposed approach on the database, we removed 36 of the 72 views
of each object (every other view) and used these as queries to the remaining
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Table 1. Retrieval results for path-based, gIndex, and the proposed algorithms. NN:
nearest neighbor, FT: first tier, ST: second tier. The proposed algorithm outperforms
the two previous algorithms for these three criteria.

NN(%) FT(%) ST(%)

path-based 38.9 32.6 61.6

gIndex 57.8 50.5 71.4

proposed work 91.2 66.7 88.3

database, which is the other 36 views for each of the 18 objects. We then per-
formed nearest neighbor searches around each query vector to retrieve database
trees with the same substructures. We computed nearest neighbor (NN), first
tier (FT), and second tier (ST) retrieval rates for the experiments. Here, the
first tier rate measures the number of the models in the query’s class appearing
within the top K−1 retrievals, where K denotes the size of the query’s class [9].
Similarly, the second tier considers the top 2K − 1 retrievals for measuring the
same rate. For comparison purposes, we also computed the retrieval rates of both
path-based and gIndex approaches on the same database.

The results are shown in Table 1 and reveal that the proposed framework
and gIndex algorithm are more effective than the path-based approach for all
three retrieval rates. This shows the importance of encoding structural informa-
tion for retrieval rather than using the path lengths only. One may notice that
the proposed framework also outperforms the gIndex algorithm considering all
three retrieval criteria. Although both approaches take into consideration tree
structures, the gIndex algorithm look for exact patterns that exist in the query.
In case a minor topological change to a tree happens, e.g., slightly changing the
edge weights or adding/removing a leaf, exact patterns may not appear in close
structures. On the other hand, these small changes make the coordinate for the
root of the resulting tree close to its original position using our algorithm. As a
result, representing substructures by computing the CD for each subtree in the
system enables the proposed approach to retrieve trees with similar substruc-
tures effectively.

To test the sensitivity of the proposed indexing algorithm to perturbation of
the query, we perturbed each query by deleting a randomly selected connected
subset of its skeleton points whose size was around 15% of the total number of
skeleton points. The average nearest neighbor, first tier, and second tier retrieval
rates were recorded as 85.7%, 60.8%, 83.3%, respectively. This reflects the al-
gorithm’s stability to missing data. Although not a true occlusion experiment,
these results present the algorithm’s ability to match local structure.

We should note that many of the objects in the database are symmetric. If a
query has an identical view elsewhere on the object, that view might be retrieved
as its nearest neighbor and scored as an error. Thus, the nearest neighbor rates, in
these experiments, should be considered as worst-case. In addition, by improving
the sampling resolutions of the viewing sphere, we expect that retrieval rates
would increase for all three algorithms.
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5 Conclusions

Graph indexing is an important problem facing researchers in different domains.
In this paper, we have proposed a new technique for indexing tree structures
using a graph-theoretical concept, named caterpillar decomposition, which is
defined as the collection of edge-disjoint, root-leaf paths. Our algorithm starts
by representing each database tree along with its subtrees as a point in the geo-
metric space based on its caterpillar decomposition. After representing the query
in the same fashion, an efficient retrieval of trees with the same substructures
is performed by means of a nearest neighbor search. Experimental evaluation
of the framework, including a comparison with the two previous approaches
demonstrates the efficacy of the overall algorithm. Performing a more compre-
hensive experimental test using a larger dataset with different image formats
and applying our framework to different domains are our future plans.
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Abstract. Data Assimilation is commonly used in environmental sci-
ences to improve forecasts, obtained by meteorological, oceanographic
or air quality simulation models, with observation data. It aims to solve
an evolution equation, describing the dynamics, and an observation equa-
tion, measuring the misfit between the state vector and the observations,
to get a better knowledge of the actual system’s state, named the ref-
erence. In this article, we describe how to use this technique to recover
missing data and reduce noise on satellite images. The recovering pro-
cess is based on assumptions on the underlying dynamics displayed by
the sequence of images. This is a promising alternative to methods such
as space-time interpolation. In order to better evaluate our approach, re-
sults are first quantified for an artificial noise applied on the acquisitions
and then displayed for real data.

1 Introduction

Satellite acquisitions are commonly contaminated during the acquisition process:
images display noise of various extent. Moreover, part of the data are covered
by clouds. These structures are considered as occlusions in case of ocean images.
The issue of recovering noisy and missing data has been extensively studied by
the scientific community, in order to allow a better visualization and under-
standing of the information. A first class of methods groups the interpolation
techniques [1,8]. Interpolation is used to convert data acquired on an irregular
grid to a regular one. B-splines are frequently chosen as they allow a good com-
promise between the adequacy to input data and the regularity of the result.
If interpolation is applied to the issue of recovering missing data, regions can
be recovered with multi-scale B-splines [10]. Another possibility is to use a nor-
malized convolution [9] applying only on valid pixels. The kernel convolution,
usually chosen Gaussian, can be driven by the local image gradient orienta-
tion [12]. However, if the surface of missing data is too large, these techniques
become insufficient. A second class of methods concerns the so-called “inpaint-
ing” approaches, which make use of oriented diffusion processes. Using the local
orientation of image gradient, it becomes possible to close interrupted lines [6],
and even, to recover large regions by diffusing the image texture in the direction
of the image gradient [4,5,7,11,14]. However, these methods are either spatial
or space-time techniques, with time only considered as an additional dimension:
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they do not use any knowledge on the underlying dynamics that is visualized by
the image sequence. In this paper, we propose an alternative and design a new
data assimilation method to recover missing data, based on assumptions over
the dynamics.

Section 2 briefly summarizes the weak formulation of variational data assim-
ilation, that is applied in the paper. Section 3 describes its application to the
issue of recovering missing data while Section 4 displays results and quantifies
them on artificial data.

2 Variational Data Assimilation

Let us first summarize the principles of variational data assimilation.

2.1 Mathematical Setting

Let X being a state vector depending on the spatial location x (x = (x, y) for
2D images) and time t. X is defined on A = Ω × [0,T], Ω being the bounded
spatial domain and [0,T] the temporal domain.

We assume X is evolving in time according to:

∂X
∂t

(x, t) +�(X)(x, t) = Em(x, t) (1)

�, named evolution model, is supposed differentiable. As � describes approxi-
mately the effective evolution of the state vector, based on assumptions, a model
error Em is introduced to quantify the deviation in space and time.

Observations Y(x, t), which are satellite image acquisitions in this paper, are
available at location x and date t and linked to the state vector through an
observation equation:

Y(x, t) = �(X(x, t)) + EO(x, t) (2)

The observation error EO simultaneously represents the imperfection of the ob-
servation operator � and the measurement errors.

We consider having some knowledge on the initial condition of the state vector
at t = 0:

X(x, 0) = Xb(x) + Eb(x) (3)

with Xb named the background value and Eb the background error.
Em, EO and Eb are assumed to be Gaussian and characterized by their covari-

ance matrices Q, R and B [13].

2.2 Variational Formulation

In order to solve the system (1), (2), (3) with respect to X having a maximal
a posteriori probability given the observations, the functional (4) is defined and
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has to be minimized. This is called “weak formulation” of 4D-Var, because the
first term corresponds to a non perfect model.

E(X) =
1
2

∫
A

(
∂X
∂t

+�(X)
)T

(x, t)Q−1(x, t)
(
∂X
∂t

+�(X)
)

(x, t)dxdt

+
∫

A

(Y −�(X))T (x, t)R−1(x, t) (Y −�(X)) (x, t)dxdt

+
∫

Ω

(
X(x, 0) − Xb(x)

)T
B−1(x)

(
X(x, 0) − Xb(x)

)
dx

(4)

Em, EO and Eb are assumed to be independent with no correlation between two
space-time location and the functional E represents the log-density of the joint
probability law [2]. The minimization is carried out by solving the associated
Euler-Lagrange equation with an auxiliary variable λ, named adjoint variable:

λ(x,T) = 0 (5)

−∂λ
∂t

+
(
∂�

∂X

)∗
λ =

(
∂�

∂X

)∗
(x, t)R−1 (Y −�(X)) (x, t) (6)

X(x, 0) = Bλ(x, 0) + Xb(x) (7)
∂X
∂t

+�(X) = Qλ(x, t) (8)

As the initial condition for λ is given at time T (Equation (5)), λ is computed
backward in time using (6). Equation (6) makes use of two adjoint operators

denoted by
(
∂�

∂X

)∗
and

(
∂�

∂X

)∗
that are formally the dual operators of

∂�

∂X

and
∂�

∂X
. Solving Equations (5–8), also named the Optimality System, is however

not straightforward: the state vector is determined from Equations (7) and (8)
using the adjoint variable and the adjoint variable is determined from Equations
(5) and (6) using the state vector. To break this deadlock, an incremental method
is applied, that is fully described in [3].

3 Recovering of Missing Data

To recover the missing data, we define the quantities described in Section 2.1
in the following way. X is defined as (W q)T : W = (u v)T is the motion
vector, and q is a tracer that is compared to the image observations during the
assimilation phase.

In Equation (1),� is equal to (�W �q)T , with�W and�q, respectively,
the evolution models of W and q. A stationary assumption is used for the veloc-
ities and�W reduces to 0. This simple heuristics is acceptable for a large range
of marine processes if the velocity is less than 0.1 to 0.5 meters per second. The
evolution of q is modeled with its transport by the velocity W and�q = ∇qT W.
Moreover, we assume that Em reduces to its component on the evolution of q.
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As the quantity q, which is compared to the image data, is one component of
X, � is a projection and Equation (2) reduces to:

I(x, t) = q(x, t) + EO (9)

The variance R of the Gaussian noise EO is chosen so that R−1(x, t) (used in
Equation (2)) is almost infinitesimal, on noisy pixels. These are then discarded
from the computation.

The background value Xb depends on the available knowledge. A null value
is given for the background of motion Wb and the first observation is taken as
background of the tracer qb.

4 Results

The approach, described in Section 3, is applied on satellite acquisitions and
compared with state-of-the-art methods. First, an artificial noise is added to the
original data, in order to quantify results. Second, our approach is used on a
sequence displaying missing data, in order to illustrate its potential to recover
information on satellite acquisitions.

4.1 Artificial Noise

A sequence of satellite Sea Surface Temperature (SST) images has been acquired
by NOAA-AVHRR over the Black Sea in July 20051 (see Fig. 1).

Fig. 1. NOAA-AVHRR images

1 Data have been provided by E. Plotnikov and G. Korotaev from the Marine Hy-
drophysical Institute of Sevastopol, Ukraine.
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(a) Noisy image (b) Our approach

(c) Bertalmio et al (d) Tschumperlé et al

Fig. 2. Recovering of the noisy data

In a first experiment, a noise has been added to the second image as a black
square (10 × 10) (see Fig. 2). Data assimilation is then applied as explained in
Section 3. Bertalmio et al [4] and Tschumperlé et al [14] are also used on the
same data. Results are displayed on Fig. 2. Their quality is quantified, in Table 1,
by the mean, minimum and maximum of the difference between the recovered
image and the original image whose grey level values over the whole sequence
range from 23.428595 to 25.71952.

In a second experiment, the noise is a 50×50 square added to the second image
(see Fig. 3). The same methods are again applied and results are displayed on

Table 1. Statistics on the recovered images

Method Mean Min Max
Our approach -0.001010 -0.215643 0.382748
Bertalmio et al -0.004595 -0.254509 0.145491

Tschumperlé et al -0.000339 -0.299999 0.299999

Table 2. Statistics on the recovered images

Method Mean Min Max Correlation
Our approach 0.008273 -0.543972 0.769663 0.702
Bertalmio et al 0.023610 -0.867842 0.950588 0.482

Tschumperlé et al 0.026362 -0.799999 1.000000 0.572
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(a) Noisy image (b) Our approach

(c) Bertalmio et al (d) Tschumperlé et al

Fig. 3. Recovering of the noisy data

Fig. 4. Noisy sequence (squares are 10× 10)

Fig. 3. Statistics are given in Table 2. We also provide the correlation value
between recovered and real data.

These experiments demonstrate that our approach is ahead of state-of-the art
techniques as the size of the noisy region increases. First order statistics, correlation
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Fig. 5. Recovering of the noisy data

and visual results are much more better with our approach in the case of the 50×50
square. This demonstrates the usefulness of dynamics information in the process.

In a third experiment, noise is added on all images, except the first one (see
Fig. 4). Our approach is applied and results are displayed on Fig. 5. Table 3
provides statistics (Mean, Min, Max) of the three corrupted frames, over the
10 × 10 squares, for the original, result and difference data.

Table 3. Error statistics

Frame Stat. Original Result Difference
Mean 24.652100 24.563805 -0.001706

2 Min 23.415665 23.415922 -0.482744
Max 25.715666 25.716354 0.220243
Mean 24.652100 24.652100 0.001935

3 Min 23.642063 23.642063 -0.461876
Max 26.042063 26.042063 0.151356
Mean 24.652100 24.652100 -0.00124

4 Min 23.543968 23.543968 -0.361067
Max 26.143969 26.143969 0.250856

These three experiments demonstrate that our approach successfully recover
missing or noisy data of limited extension.

4.2 Real Noise

A sequence of six SST acquisitions acquired by NOAA-AVHRR over the Black
Sea in May 2005 is displayed on Fig. 6. Noise is mainly due to clouds. Using
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Fig. 6. Satellite acquisitions

Fig. 7. First frame: original data and result of preprocessing

metadata linked to the image, a null radiometric value is given to these noisy
pixels that are displayed in cyan. A specific value is given to ground pixels, which
are displayed in black. This is the case for region at the left corner.

Using Bertalmio et al [4], a pre-processing is applied on the first image (see
Fig. 7) in order to fill in the missing data (excepted ground pixels).

Our approach is applied. The comparison between the original and result data
is displayed on Fig. 8. This demonstrates the potential of our approach.
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(a) Observations: frames 1, 2 and 3

(b) Results: frames 1, 2 and 3

(c) Observations: frames 4, 5 and 6

(d) Results: frames 4, 5 and 6

Fig. 8. Observations and results
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5 Conclusion

In this paper, we describe an approach to recover missing data on a sequence of
satellite images, based on the underlying dynamics. This is an alternative to the
use of spatial properties as commonly done in the state-of-the-art. The method
relies on an evolution equation, describing the dynamics, and a variational data
assimilation algorithm that solves the evolution equation with constraints from
the observations. Given an image sequence, the data assimilation method com-
putes a tracer q and a velocity field W on the space-time domain. The resulting
q(x, t) is the recovered image value.

We quantify the relevance of our approach on satellite data, corrupted by
an artificial noise and provide comparisons with state-of-the-art methods. Our
approach has also been tested on satellite images displaying natural missing
data.

In order to improve the quality of results, alternative evolution equations
should be considered. For instance, shallow water equations are known to cor-
rectly describe the surface velocity of SST acquisitions. Their use should allow
a better recovering process. Moreover, the illumination change, due to various
acquisition times over the sequence, should be better modeled in the evolution
equation.
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Abstract. We propose a target segmentation approach based on sensor
data fusion that can deal with the problem of a diverse background. Fea-
tures from sensor images, including data from a laser scanner and passive
sensors (cameras), are analyzed using Gaussian mixture estimation. The
approach tackles some of the difficulties with Gaussian mixtures, e.g., se-
lecting the number of initial components and a good description of data
in terms of the number of Gaussian components, and determining the
relevant features for the current data set. The feature selection quality
is analyzed on-line. We propose a criterion that determines the quality
of the resulting clusters in terms of their respective spatial distribution.
The output from the analysis is used for object-background segmenta-
tion. Segmentation examples of surface-laid mines in outdoor scenes are
shown.

Keywords: Feature selection, segmentation, Gaussian mixture, mine
detection, cluster selection.

1 Introduction

Detection of small targets in complex and changing environments is a challeng-
ing problem due to factors like varying lighting conditions, shadowing effects,
different physical properties of the targets, varying aspect angles of the sensors,
occlusion, etc. The complex and changing background in which the targets are
placed can often be described by a mixture model, but the model parameters
have to be estimated from data to give a meaningful representation. Without a
priori information of the most informative sensor data in a particular case, mea-
surements of several physical phenomena are desired. As a consequence, we need
a signal processing framework that can extract information from multi-faceted
data and has the flexibility to handle new terrain types and a diversity of target
signatures. The application in mind is detection of surface-laid land-mines in
vegetation areas. The scene in Fig. 1a contains several mines of different models,
and although no mines are buried they are not that easy to find.

In this paper a segmentation method based on Gaussian mixture models is
proposed. It addresses some of the difficulties with Gaussian mixtures; selecting
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the number of initial components and a good description of the data set and
determining relevant features for the current data set. Assuming that data are
samples from mixtures of Gaussian distributions reduces the problem partly to
a “missing parameter problem”. Several features are computed and evaluated
to determine what combination gives the best results, using measures in the
feature domain as well as estimates of the physical size of the segments. The only
exploited a priori knowledge is the approximate target dimensions. Due to the
complexity of the background, we propose on-line selection of both the number
of components and features. We add one feature at a time and need dynamic
ranking of the features and the possibility to vary the order that features are
added.

Mixture models constitute a widely used approach for unsupervised learning
problems. Selecting the number of components is discussed in [5,10,11], where [5]
proposes the Minimum Message Length (MML) for component number selection
and [10,11] combine component and feature selection in a Bayesian framework.
Bali [8] proposes a joint solution for the number of features and selection of num-
ber of components problem, taking into account both the spatial and spectral
structures in data. Fauvel et al. [13] tackles the problem by fusing morphological
information (spatial data properties) and the original hyperspectral data us-
ing support vector machines. Feature selection is also discussed in [4,12], where
[12] uses the Principal Component Analysis (PCA) for feature selection. The
drawbacks of PCA and other measures with unclear physical interpretation are
discussed in [8]. Jimenez [9] describes a preprocessing step for reducing the num-
ber of features. Two criteria for feature selection are discussed in [4]: the scatter
separability (SS) criteria and the Maximum Likelihood (ML).

Our work is inspired by [4] and [5], but we use histogram peak detection to
guide the initial number of components instead of starting with several compo-
nents and then reducing them. We use the MML criterion [5] to select the proper
number of components. We incorporate feature selection in the component esti-
mation and analyze the quality of the current feature selection on-line. We also
propose an complement to the normalized SS measure that is based on analyz-
ing the spatial distribution of the resulting clusters. High-dimensional mixture
modeling is common for segmentation of hyper spectral images [8,9,13]. We fuse
features originating from image data of various resolution (laser scanner and
passive sensors). Sensor data are co-registered to pixel-correspondence. Earlier
work of this approach has been reported in [7,6]. Our segmentation approach is
described in Section 2. Examples on real data and analysis results are shown in
Section 3. The work is discussed and concluded in Section 4.

2 Clustering of Object and Background Data

The main problems associated with the proposed clustering method are to a) de-
termine the best clustering given a certain set of features, b) determine whether
the addition of another feature improves the result and c) specify the order in
which the features should be added. Below, we describe the basic building blocks
of the method and how we address the problems.



710 C. Grönwall and G. Tolt

2.1 Gaussian Mixture Model

We start by recalling that the probability density function (pdf) for a Gaussian
mixture can be written as

P (y|Θ) =
k∑

m=1

αmp (y|θm) (1)

θm ≡ [μm, σm]
Θ ≡ [θ1, . . . , θk, α1, . . . , αk]

p (y|θm) ∈ N
(
μm, σ

2
m

)
αm ≥ 0, m = 1, . . . , k,

∑k

m=1
αm = 1,

where y = [y1, . . . , yn]T is the given feature vector with n samples, k is the
number of Gaussian components, p (·|·) is the Gaussian probability function, αm

is the relative weight between each Gaussian, θm contains the mean, μm, and
standard deviation, σm, for each component m.

2.2 The Minimum Message Length Criterion

When estimating the parameters with the EM algorithm it is required that the
number of components is known, which is not the case for unsupervised methods.
For this purpose, we use the Minimum Message Length (MML) criterion and
choose the optimal number of components as the one that minimizes the MML.
The underlying idea of the MML criterion is that if a short code can be built
for the data, the data generation model is good [3,5]. In the unsupervised case
the MML criterion is formulated as [5]

L (Θ, Y ) =
D

2

∑
m:αm>0

log
(nαm

12

)
+

k

2
log

n

12
+
k (D + 1)

2
− log p (Y |Θ) , (2)

where D is the number of parameters specifying each component, k the total
number of components and n the number of samples/observations.

2.3 The EM-MML Algorithm and Initialization

The MML criterion is added to the EM algorithm and we further on refer to the
EM-MML algorithm. In order to preserve small clusters, a local maximum-based
initialization was chosen over other techniques, such as random initialization
or initialization based on principal directions. In order to avoid finding local
maxima in a high-dimension feature space, we start with a 1D clustering problem
and then add features sequentially until the best segmentation is obtained. The
feature sorting procedure is described in Sec. 2.6.

To initialize the 1D clustering, a smoothed 1D histogram of a feature vector
Y is created and the location of the top k local maxima in the histogram are
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chosen as start values for μm. The weights αm are distributed equally between
the start components and the standard deviations are given a small constant
value.

Starting from an initialization with k Gaussian components, an EM estimation
is made for eachm = k, ..., 1. A threshold τ is set that removes model components
whose weights (α’s) are too small between each estimation, to avoid the problem
with a singular covariance matrix. If none of the weights are close to zero, the two
components with the shortest Euclidean distance are selected and of those two,
the component with the smallest weight is removed. After one component has
been removed, the clustering continues with the remaining ones. The clustering
result giving the lowest MML value is then selected as the optimal one.

The parameters of a current d-dimensional model are used to initialize a higher
dimension (d+1) model. This is done by extending the d-dimensional model with
the parameters from the 1-D analysis of the feature to be added. For example,
assume that the current 1-D model contains three components and that a second
feature containing four components is added. The 2-D model is then initialized
with 12 components.

2.4 The Normalized Scatter Separability Criterion

The SS criterion [4] is a measure of how separated the clusters are and how com-
pact each cluster is, the assumption being that the more separated the clusters,
the better the segmentation. The SS criterion is defined as

SS = trace
(
S−1

w Sb

)
, (3)

where Sw is a sum of the weighted covariances and Sb is the sum of the weighted
sample variance. A high value of SS equals a maximization of the between-class
scatter matrix, Sb, and a minimization of the within-class scatter matrix, Sw.

To compare SS criteria for two set-ups with different number of features, the
criterion is normalized with respect to dimension [4]:

SS (sj , Cj) = SS (sj , Cj) · SS (sj+1, Cj) , (4)

where sj = [y1, . . . ,yj] ∈ Y , where j = 2, . . . , d − 1, Cj is the number of
components after estimation of sj .

2.5 The Spatial Scatter Criterion

When judging whether the EM-MML clustering has successfully divided the
data into object and background, existing application-specific knowledge about
the expected targets should be used. The target size is known to lie within
a certain interval. Ideally the background would be random and would then
result in segments consisting of samples that are uniformly distributed across
the scene, while segments that form some sort of spatially concentrated cluster
can correspond to targets. Therefore, we propose a spatial scatter criterion (SC),
defined as the mean distance from the segment centroid to the samples in the
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segments. Let Im represent the indices of all samples xi belonging to cluster m,
such that

Im = {i : p(yi|θm) = arg max
l=1,...,k

p(yi|θl)}. (5)

Then the spatial scatter measure for cluster m, SCm, can be written as

SCm =
1
nm

∑
i∈Im

‖xi − x̄m‖, (6)

where ‖ · ‖ is the Euclidean distance in the real world coordinate system and x̄m

is the centroid coordinates of cluster m.

2.6 Feature Sorting

As the clustering result depends on the order in which the features are added,
they have to be sorted wisely prior to the main segmentation. To solve this,
every feature is subject to one-dimensional EM-MML clustering. The comparison
between features is first done by sorting the corresponding clustering results
according to ascending SS measure and then selecting features giving clusters
of acceptable SC measures first (if any). As a result, we give priority to features
that produce clusters of acceptable physical size that are also well separated in
the feature space.

3 Examples

The proposed method is tested on real data from field trials. The analysis is based
on optical sensors, which implies that the mines should be (partly) visible, i.e.,
surface laid mines. In Fig. 1 the features for one of targets are shown and the
segmentation is shown in Fig. 2. In this case the target data is segmented into
two parts (blue and green) and the background into one segment (red). Fig. 3
shows another example, where the result obtained with highest-ranked feature
is improved as more features are added.

3.1 Sensor Data and Data Registration

Data was collected at different field trials [1,2] where images were captured
in a forward-looking view. Three sensors were used: a scanning 3D-imaging
laser radar, a passive IR camera collecting data in four SWIR/MWIR spec-
tral bands (1.5-5.2 μm), and a high-resolution camera operating in the visual
range. The spatial resolution of the laser scanner and the visual range camera
was in the order of 1 cm per point/pixel on the ground, while the resolution of
the SWIR/MWIR sensor was about 2.5 cm/pixel.

To fuse data on the pixel level, sensor data was registered [2], i.e., trans-
formed to a reference coordinate system (here, the local coordinate system of
the laser scanner). Using the range information from the laser sensor, 3D points
can readily be projected onto an image plane to support the image matching in
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) A forest scene, with the target under study marked with a red circle. (b)
Laser intensity. (c) Surface score. (d) Height above local ground plane. (e) RGB data.
(f) Three Mid-wave IR bands pseudo-colored as RGB values.

complex scenes. All objects were placed on a quite flat ground surface and an
ordinary image matching approach produced results at par with the 3D based
registration. A visual inspection was made to verify the overlap of the data after
the transformation, although an offset of a few centimeters is possible. For the
sets that contained mine data and other objects of interest ground truth target
masks were created to support the evaluation of the resulting segmentation.

3.2 Features

Three features were generated from the laser radar images: the laser return
intensity, height above the ground plane (calculated by rotation of the 3D point
cloud) and a surface score. From the passive sensors (IR and visual cameras) the
spectral bands (four IR bands and the color channels R, G, and B) were used as
features. Each sample is associated with a d-dimensional feature vector and the
complete data set could then be viewed as a n× d feature matrix.

The height above the ground plane and the surface score are spatial features,
included to support segmentation when the spectral contrast is poor. We assume
that targets consist of relatively smooth surface patches which make them differ-
ent from the background. The surface score (Sx) is used to represent the degree
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Fig. 2. Left: Segmentation result for the object shown in 1, consisting of three segments.
Right: Ground truth.

to which each laser point belongs to a smooth surface patch. This measure is
obtained through fitting of a local parabolic surface to each laser 3D sample and
its neighbors. It is defined in terms of residual distance between the points and
the surface and the normal direction similarity. For a particular sample x, Sx is
defined as

Sx =
∑

i∈Nx

〈nx,ni〉si, (7)

where Nx defines the neighborhood of x, 〈n̂x,ni〉 denotes the scalar product
between the estimated normal at xi and the normal at a sample on the surface,
and si denotes the proximity between xi and the surface. si equals 1 when the
distance is zero and decreases for increasing distances and equals 0 beyond a
distance threshold ρ. Hence, only points close to the surface and with normals
similar to nx contribute significantly to the surface score.

3.3 Parameter Settings

Throughout the examples, the following parameter settings were used. We set
k = 5 for all scenes. The final number of clusters, obtained after fusion of several
features, was not limited. The threshold for removing low-weighted Gaussian
functions was set to τ = 0.01. Assumptions of target dimensions resulted in 0.02
m ≤ SC ≤ 0.12 m. The distance threshold for SC was set to ρ = 0.04 m, based
on a priori knowledge of the range uncertainty of the laser scanner.

4 Results

The proposed method was applied on data from five scenes, where the mines were
placed in forest, grass fields or on gravel road. There were a total of 126 tar-
gets of various sizes, from small anti-personnel mines (diameter 6-7 cm) to large
anti-tank mines (about 30 cm). The weighted average of the feature order for
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Fig. 3. (a) Image of a mine. (b) Segmentation result with the proposed method, based
on the highest ranked feature (Intensity). (c) Final segmentation result with the pro-
posed method (with four features: Intensity, Green, Height and Red). (d) Ground truth.

the five scenes is shown in Table 1. For scene five the RGB camera was not used
and the MWIR data was preprocessed with the RX algorithm to one feature [6].
The feature order varies between the scenes, but features originating from laser
scanner data get high ranking for all scenes. In the final segmentation result, all
extracted segments of acceptable physical size were compared to ground truth
data and the number of true target and non-target points, respectively, were
counted. A total of 114 segments were found, of which 72 contained a majority
of true target points. Detection statistics for scene 1 is shown in Fig. 4. If there
are more than 100 samples on the mine we get good performance. If there are
less than 100 samples on the mine (mine 10-20), the segmentation sometimes
fails in producing a good target-background segmentation. A closer inspection



716 C. Grönwall and G. Tolt

Table 1. Feature order (weighted average) for the five scenes. For scene 5 the RGB
camera was not used and the MWIR data was preprocessed to one feature.

Scene
Features

Intensity Height Surface Red Green Blue MW1 MW2 MW3 MW4

1 (forest) 1 2 5 6 4 3 10 7 9 8

2 (forest) 1 2 4 5 6 3 9 7 8 10

3 (road) 2 1 8 5 6 4 9 10 7 3

4 (grass) 1 3 6 5 4 2 7 8 10 9

5 (forest) 2 3 4 - - - 1 1 1 1

of the result showed that of the remaining 42 segments, all but five corresponded
to scenes containing small targets with only typically about 40-50 samples. In
other words, for these targets the segmentation was not able to find the target
correctly. In addition to the targets, the algorithm was also applied on seven
randomly chosen background areas (without any targets) and no acceptable
clusters were found in any of them.

0 5 10 15 20
0

0.5

1

1.5

2

Segment number

True
False

5 10 15 20
0

200

400

600

800

Segment number

Fig. 4. Detection results for scene 1. Top: The number of true detections (black) and
false detections (white) relative to the number of ground truth samples. For visualiza-
tion purposes the scale has been truncated, and hence false detection values equal to
two indicate that segments with at least twice the number of ground truth samples
were found. Below: The number of ground truth samples for the targets in the scene.
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5 Conclusions and Future Work

In this paper, an approach to target-background segmentation based on fusion
of optical sensor data is presented. The underlying source of the sensor data was
assumed to be a mixture of Gaussians. The expectation maximization algorithm
was used to estimate the parameters of the mixtures. Since the “true” number
of mixtures is not known a priori, the minimum message length criterion was
utilized to determine which of the Gaussian mixture estimations to use as a
representation of the original data. Two criteria for quantifying clustering per-
formance were investigated: a spatial scatter criterion and the normalized scatter
separability criterion.

The method was tested on five scenes containing a total of 114 targets of which
72 were correctly segmented. The missed targets were mainly anti-personnel
mines with a diameter smaller than 10 cm. This implies that the segmentation
method as such works quite well, but that there are data quality issues asso-
ciated with small objects in cluttered environments. Not only are registration
and ground truth errors more significant for smaller targets, but smaller objects
tended to be more occluded than larger ones when placed in a cluttered environ-
ments (grass, sprigs, etc). Since the laser scanner has an inherent limitation to
resolve multiple surfaces within the path of one laser pulse, noisy range readings
are introduced for objects occluded by grass. Further, the range noise of the laser
sensor is in the order of about σ = 1 cm, which makes it difficult to accurately
perform local spatial analysis for small objects, e.g. compute normal directions
and the surface score measure.

Currently we use a fixed size of the neighborhood, chosen small to avoid
smoothing effects for small objects, but a possible future improvement would
be to perform a multi-scale spatial analysis or to adapt the size of the neigh-
borhood according to the local statistics. Using a laser radar sensor with higher
precision would most likely also improve the discrimitive power of the surface
score.

It should be pointed out that the proposed method is a segmentation tech-
nique rather than a dedicated mine detector. In fact, the size of the segments
(here measured in terms of a spatial scatter measure) is the only exploited target
property. This means that as expected the method sometimes finds segments not
corresponding to targets, but twigs, tufts of grass, etc. Including other proper-
ties of the targets, e.g. the fact that they are solid bodies, would most likely
improve the results further. Further work will focus on how range data filter-
ing approaches such as the ones presented in [14] could be incorporated in the
process.

Currently, the clustering is performed in the feature space and the spatial dis-
tribution of points is used only for verification of the clustering results. A possible
improvement would be to integrate the spatial relations between points into the
clustering process itself. This could serve as a complement to the verification of
cluster size that was proposed in this paper.
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Abstract. This paper describes a novel automatic skull-stripping
method for premature infant data. A skull-stripping approach involves
the removal of non-brain tissue from medical brain images. The new
method reduces the image artefacts, generates binary masks and multi-
ple thresholds, and extracts the region of interest. To define the outer
boundary of the brain tissue, a binary mask is generated using morpho-
logical operators, followed by region growing and edge detection. For
a better accuracy, a threshold for each slice in the volume is calcu-
lated using k-means clustering. The segmentation of the brain tissue is
achieved by applying a region growing and finalized with a local edge re-
finement. This technique has been tested and compared to manually seg-
mented data and to four well-established state of the art brain extraction
methods.

Keywords: Skull Stripping, Newborns MRI, Brain Segmentation.

1 Introduction

In this study, we focus on Magnetic Resonance Imaging (MRI) brain segmenta-
tion from premature infants. Premature birth is associated with a high risk of an
injury in white matter. This brain injury can cause the development of cerebral
palsy [12] [26]. Therefore, the segmentation of newborn brain MRI is an important
task for the study and diagnosis of neurodevelopment disorders at an early stage.
The first stage of brain segmentation involves the extraction of the entire region
of interest (ROI) which consists of the brain tissue such as cortical grey matter
(GM), white matter (WM), deep grey matter, and cerebellum. This procedure is
called skull-stripping and requires removing the skull, fat and cerebrospinal fluid
(CSF) parts. Skull-stripping is a difficult task on adult brain MRI. However, it is
more challenging using premature infant brain MRI because infants are still in an
early development stage of the brain structure. Harnsberger et al. [8] provides an
useful insight into the development of the newborn brain MRI and the undergoing
changes in the brain structure during the first years of age.

Over the past years, various techniques have been proposed for unsupervised
skull stripping such as histogram-based [2] [20], region-based [7] [22] , boundary-
based [23] , graph-cut based [18], fuzzy-based [9] or hybrid approaches [4] [19].
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Some of the methods have been embedded in software tools such as Brain-
Suite [21], SPM8 [25], MRIcroN [17] or FMRIB Software Library (FSL) [5] [24].
Brain Surface Extraction (BSE) [22] is one of the well-established Brain Extrac-
tion Algorithms (BEA). BSE is an edge based method which uses an anisotropic
diffusion filter, followed by a Marr and Hildreth edge detector. The final seg-
mentation is obtained by applying morphological operators on the edge map to
enable the removal of the non-brain tissue. The second well-established BEA is
called Brain Extraction Tool (BET) [23]. This method is based on estimating
the intensity threshold of the brain and non-brain regions, and then determines
the centre of gravity of the brain volume, followed by defining the initial sphere
which is based on the previous calculated centre of gravity. Finally, the tech-
nique deforms the initial sphere outwards to the brain tissue boundaries. The
third well-known brain segmentation approach is called Statistical Parametric
Mapping (SPM) [6] which consists of realigning, normalizing and segmenting
steps. Realigning and normalizing were performed to transform the volume into
the Talairach space. The segmentation generates GM, WM and CSF areas.

Only a few methods have been developed with the main focus on brain ex-
traction from MRI data from infants. One of these approaches was proposed by
Chiverton et al. [4]. Their technique first removes the background using region
growing, then uses parameter estimation to fit an intensity Gaussian mixture
model to a predefined histogram. A 2D mask is created by segmentation using
thresholding and region growing. The final segmentation is achieved using sim-
ple 3D morphological operators. Another approach based on infant brain MRI
was proposed by Kobashi et al. [9]. This technique uses fuzzy rule-based active
surface models. The images were segmented using thresholding and morpholog-
ical operations. A surface model was achieved using connected triangles which
allow the surface to be deformed by moving them around. The positions of the
triangles were defined using fuzzy IF-THEN rules.

The aim of this paper is to present a novel skull-stripping method called Hy-
brid Skull-Stripping (HSS) which removes all non-brain tissue in brain MRIs
using premature infant data. At this stage, the region of interest is composed of
cortical grey matter, deep grey matter, white matter and the cerebellum. The
removal parts are skull, fat, fluid, eyes and body parts. According to our knowl-
edge, BET and BSE have been used by the majority of the previous developed
skull-stripping approaches for comparison purposes. In this paper, we use BET,
BSE and SPM to compare with the new method.

2 Proposed Method

2.1 Overview

Figure 1 presents an overview on the structure of the HSS algorithm proposed
in this paper. The pre-processing step deals with the improvement of the image
quality. This step is divided in two parts, first the image is smoothed to reduce
noise and the second part implicates intensity adjustment to remove the inten-
sity shifts between slices throughout the volume. The next step comprises the
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Fig. 1. Overview of the proposed skull stripping technique

generation of a binary mask. The mask is created within three steps, first reduc-
ing the partial volume effect, second removing small objects and finally detecting
the outer boundaries of the brain tissues. Before the ROI can be segmented, a
seed point is automatically defined and a threshold for each image in the volume
is calculated. The final step refines the outer edges.

2.2 Data Pre-processing

One challenge in medical images is generated by the inconsitencies appearing
in the images between patients and throughout the patient volumes. In order
to address this issue we propose to apply a two-step procedure. The first step
addresses the noise reduction in the images while preserving the edges, while the
second step deals with the adjustment of intensity changes in all slices of the
dataset.

Anisotropic diffusion filter. The Coherence Enhancing Diffusion Filter (CED)
from Weickert [27] allows us to smooth the image and strengthen the edges. In
previous skull stripping approaches [22] [28], a similar anisotropic diffusion fil-
ter [13] has been used to strengthen the edges between each region. This allows
a more precise removal of the non-brain tissue and it facilitates the separation
of each region of interest such as WM and GM. This works well on adult MRIs.
However, when using infant brain MRIs especially preterm children, this task
is more complicated and this is caused by a higher quantity of Partial Volume
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Effect (PVE). In our case, the focus of applying of the anisotropic diffusion filter
lies in strengthening the edges between the brain tissue and the CSF in order to
facilitate the application of an edge detector in a later stage of the algorithm.
Experimentally, we concluded that the best results were obtained when setting
the CED paramenters to the following values: σ = 0.5, ρ = 4.

Intensity Adjustment. Due to the MRI acquisition procedure, MRIs images
include intensity changes, not only between patients but also within the same
data sequence. The aim of this step is to adjust the ROI intensity into the
same range throughout the entire sequence of one patient. In the first part,
the background is removed by using a simple tresholding procedure that sets all
background pixels to 0. In the second part, the intensity of the foreground region
is adjusted in each image individually. The approximate ROI which includes
all brain tissue is detected using histogram analysis. In each histogram, one
local maximum and two local minima of the ROI are detected. By knowing the
location of the ROI in the histogram, the region is shifted into the same intensity
range for each image. To avoid a cut-off in the bright intensity, that area will
be stretched out, so a smooth transition is still maintained. Figure 2 presents
an example of an image taken before and after the intensity adjustment and its
corresponding histogram. The approximate ROI which lies between two local
minimums is clearly visible in the histogram. The pixels with intensities smaller
than 1 × 104 in the histogram belong to the background. The adjustment of
the intensity does not mean that each region has the same intensity throughout
the volume but implies that each region can be found in a certain range. The
problem which remains to be addressed is that the GM and WM still overlap in
their intensity range.

Fig. 2. Left: an sample and its associated histogram before applying the intensity
adjustment; right: same sample after the intensity adjument was applied
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2.3 Creating Mask

In the first stage, a primary mask of the main brain region is constructed with
the intention of reducing the PVE. This is provided by bringing the ROI into the
foreground and the other region into the background using once the erosion and
dilation operators. In the resulting image, the foreground region will be defined
by a different intensity value when compared to the background region.

In the second step, a fast binary region growing is used to check the connec-
tivity of the main brain region. Additionally this enables us to remove regions
that are not connected such as the eyes. The automated seedpoint detection for
this step is explained in the next sub-section.

To generate the final mask, the Marr and Hildreth edge detector [11] is applied
on the second mask that was modified by projecting the intensities on the ROI.
The Marr and Hildreth edge detector first runs a Gaussian low-pass filter followed
by detecting the boundaries using the Laplacian edge operator. The best results
have been obtained using a Gaussian kernel of 5 × 5 and a variance σ of 2. The
purpose of this final step is to remove the large fluid areas on the outside of
the brain region. Due to partial volume effect, in some cases the edge detector
does not find enclosed boundaries. Morphological operators have been applied
on the edge map to connect loose ends of edges. The images corresponding to
each mask generation step are given in Figure 3. In the proposed HSS algorithm,
the generation of the binary mask is essential, as it will be used as boundary
stopping condition in a later procedure.

Fig. 3. Displays each mask step, starting with the original image, followed by first
mask, then second mask and finish with the final mask. The small bright part visible
in the third image is a leftover of the lacrimal glands.

2.4 Automatic Seedpoint Detection

The seedpoint is the starting point for the region growing algorithm used in HSS.
During the intensity adjustment, the seedpoint in the z direction is determined by
selecting the image with the largest connected region of brain tissue. Within the
image of seedpoint z, the x and y coordinates are obtained by extracting the largest
connected region associated with the dominant intensity. The dominant intensity
in ROI is retrieved as a local maximum in the histogram. One pixel will be taken
from the extracted region and defined as seedpoint with the coordinate (x,y,z).
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2.5 ROI Segmentation

To extract the ROI, a region growing algorithm is applied on the MRI sequence.
Pohle et al. [14] proposed an adaptive region growing to segment regions in
medical images using two runs of the region growing. However, if conditions
such as shape differences or intensity changes within the region of interest are
not well defined then the method does not work well. Li et al. [10] propose a
different region growing method to address this problem. This has been done by
using an adaptive threshold based on the mean value and standard deviation of
the region of interest to define the grey value range of the current pixel.

We tried different thresholds such as the adaptive threshold proposed by Li et
al. and we tried to use the difference of the current value and a fixed value. In our
trials these thresholds have generated erroneous segmentation in several volumes.
Therefore, we decided that the use of one threshold for the entire volume is not
as efficient as calculating thresholds for each slice individually. The range of the
intensity values in the ROI is still very large. By using a threshold for each
image, we can define a more precise threshold for different parts of the volume.
The idea on how to calculate the threshold came from the K-means clustering
algorithm, where the clustering process is defined as follows:

J =
K∑

j=1

∑
n∈Sj

|xn − μj |2 (1)

The algorithm clusters the data points into K disjoint classes Sj each containing
nj data points, where xn is an observation and μj is the geometric centroid of
the data points in cluster Sj . Each cluster was initialised with a predefined value.
To speed up the process, the classes are calculated from the grey values of the
histogram. This means that the algorithm does not need to run over the entire
image which would be 512 × 512. Instead the classes can be calculated from an
array of the size of 1 × 126. For each image, the intensity range is partitioned
into eight classes which allows putting more weight on the intensity range of
the ROI. The eight classes are presented in an array which is used as threshold
in the ROI segmentation. During the extraction procedure, the class to which
the current voxel will be assigned to, will define the voxel as brain or non-brain
tissue.

Region Growing. A region growing algorithm is used to extract the brain
tissue. This algorithm considers two thresholds as a stopping condition. The
first threshold is used for the identification of the outer boundaries between
ROI and CSF in which case we applied the final binary mask. As soon as the
algorithm hits a boundary pixel, the region growing stops. The second threshold
is used to differentiate the ROI and non-brain tissue within the volume in this
case the previous calculated array threshold is applied. To assign the current
voxel to a class in that array, the smallest distance between the current voxel
and the class centroids is used. In a post-processing step, a local edge refinement
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has been applied which uses the gradient magnitude to refine the outer border
pixel. A few automated segmented samples are shown in Figure 4 (top row).

3 Evaluation

3.1 Data Aquisition

T2 brain volume MRIs (TR: 2660; TE: 142.7; DFOV: 16×16cm) of premature
infants have been imaged at full term equivalent in the Children’s University
Hospital, Dublin, Ireland. Each slice has a thickness of 1 mm and a dimension
of 512 × 512 pixels. Our database consists of MRI volumes from five patients.
The data of Patient 1 includes 170 images, Patient 2 has 178 images, Patient
3 consists of 186 images, Patient 4 consists of 172 images and the fifth patient
includes 88 images. The dataset is composed of a total of 794 images. The first
four patients have a slice spacing of 0.5 mm and the fifth patient has a slice
spacing of 1 mm. In order to perform a comprehensive quantitative evaluation
of the proposed HSS, the entire database was manually segmented. The manually
segmented data has been marked in conjunction with a clinical expert from the
Children’s University Hospital, Dublin, Ireland.

3.2 Visual Examination

Figure 4 (top row) shows automated segmented images sampled from one pa-
tient volume. A visual examination of our results indicates the accuracy of the

Fig. 4. Top row: result images of the automated skull-stripping segmentation; bottom
row: images manually annotated by a clinical expert. The intensity difference between
the top and bottom row images is caused by an automatic intensity adjustment in the
display of the top row images by Matlab.
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proposed HSS and in order to emphasis this, we have performed a quantitative
evaluation when our method is compared against the manually segmented data.
During the post-processing step, only the outer boundaries of the ROI were re-
fined but not inside the ROI. Consequently, on some images small parts of CSF
can remain. To get a clear opinion on the efficiency of the proposed segmenta-
tion method, the results of HSS were compared against the manually segmented
data and against four state of the art BEA tools. Each tool, BrainSuite [21],
FSL [5] [24], SPM8 [25] and MRIcroN [17], are freely available on the internet,
and use one of the three well-established BEA. BrainSuite has embedded BSE
and allows the application in a stepwise manner so that the parameters can be
adjusted for each step. The only parameter we need to optimize is the size of the
structuring element employed in the erosion algorithm in the final step. BET
is embedded in two software tools we used. MRIcroN applies BET (version 1)
and FSL applies BET2 (version 2). The best results of both tools were obtained
using their default values with a fractional intensity threshold of 0.5. Applying
SPM8, the best results were provided by adjusting the bias regularisation to a
value of 0.1 and using the native space for the generation of GM, WM and CSF.

3.3 Similarity Metrics and Numerical Evaluation

1. The first set of tests is done by using the Dice Similarity Metric (DSM) which
describes the amount of overlap voxels between the manual segmented data
and the automated segmented data. The mathematical formula to calculate
the metric is described as follow: DSM = 2|M1∩M2|

|M1|+|M2| , where M1 is the auto-
mated segmented volume and M2 is the manual segmented volume. The dice
similarity metric is a very popular comparison metric used for evaluations
in many MRI segmentation approaches [1] [3] [15] [18] [22].

2. The Jaccard metric (JS) measures the similarity between two volumes and
has been used as a comparison in previous brain segmentation techniques
[16] [18] [19] [22]. This is done by dividing the size of the intersection and the
size of the union of the two datasets. The mathematical formula to calculate
the Jaccard similarity is described as follow: JS = |M1∩M2|

|M1|∪|M2|
3. Over-segmentation can be calculated using the false positive. This formula

calculates the percentage of the amount of voxels which remains in the vol-
ume as a part of the ROI but do not belong to the ROI. The false positive
was calculated as follow: FP = |M1−M2|

|M2|
4. Under-segmentation can be calculated using the false negative. This formula

calculates the percentage of the amount of voxels which have been removed
from the ROI but would belong to the ROI. The false negative was calculated
as follow: FN = |M2−M1|

|M2|

All the comparison results are shown in Table 1.
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Table 1. Quantitative performance evaluation when the proposed skull-stripping
method (HSS) is compared against four state of the art implementations. Best results
are highlighted in bold.

Methodology DSM JS FP(%) FN(%)

Patient 1 HSS 0.9586 0.9249 4.3435 3.9532
FSL 0.8800 0.7858 26.8620 0.3171
BrainSuite 0.9065 0.8290 18.2950 1.9336
MRIcroN 0.7840 0.6448 38.3500 10.7870
SPM8 0.9076 0.8308 16.1460 3.5014

Patient 2 HSS 0.9462 0.8979 7.0101 3.9170
FSL 0.8793 0.7846 26.5170 0.7418
BrainSuite 0.9029 0.8229 1.0563 16.8360
MRIcroN 0.8547 0.7463 30.7940 2.3911
SPM8 0.9187 0.8496 12.5900 4.3385

Patient 3 HSS 0.9607 0.9245 3.7178 4.1182
FSL 0.8838 0.7918 26.2120 0.1605
BrainSuite 0.7437 0.5919 24.6060 26.2380
MRIcroN 0.7097 0.5501 45.0090 20.2370
SPM8 0.8386 0.7220 27.651 7.8324

Patient 4 HSS 0.9586 0.9205 4.5710 3.7439
FSL 0.8586 0.7522 32.9050 0.0275
BrainSuite 0.9044 0.8255 0.3393 17.1720
MRIcroN 0.8144 0.6869 38.3750 49.4460
SPM8 0.8733 0.7751 27.8950 0.8640

Patient 5 HSS 0.9475 0.9004 3.6053 6.7189
FSL 0.8955 0.8107 22.4920 0.6913
BrainSuite 0.9262 0.8626 12.6160 2.8591
MRIcroN 0.8714 0.7721 25.2660 3.2830
SPM8 0.8529 0.7436 15.5720 14.0590

4 Discussion

The quantitative results displayed in Table 1 indicate that HSS returns accurate
results when applied to skull stripping on brain MRI data of premature infants.
Table 2 reveals the accuracy of each analysed technique in comparison with the
other brain extraction methods by observing the average results of each test. HSS
provides the overall best results in the dice similarity, Jaccard similarity and false
positive results. The average similarity values are: 95% for the Dice calculation
and 91% for the Jaccard calculation. There is an average of misclassified voxels
of less than 5% which is a satisfactory result.

Every approach has its strong and weak points which is reflected in the results
values in Table 1 and Table 2. HSS has two main weak points which have to be
addressed in future work. First, due to the partial volume effect, the boundaries
between the lacrimal glands (tear glands) and the ROI are not always visible on
the MRI of premature infant. As a consequence, the region growing algorithm
will continue to grow in the region instead of excluding it. A second weak point
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Table 2. Average values over the entire database of the results from each comparison
test

Methodology DSM JS FP(%) FN(%)

HSS 0.9543 0.9127 4.6495 4.4902

FSL 0.8794 0.7850 26.9976 0.3876

BrainSuite 0.8767 0.7863 11.3825 13.0077

MRIcroN 0.8068 0.6800 35.5588 17.2288

SPM8 0.8782 0.7842 19.9708 6.1191

consists in the presence of CSF boundaries inside the brain volume. During the
pre-processing step only outer boundaries have been refined and for that reason
small parts of fluid can remain inside the ROI.

The comparison evaluation revealed that FSL returned the smallest percent-
age in false negatives but a higher percentage in false positives. This occurs
because FSL leaves the CSF in the image and therefore it is less likely to have
removed too much of the brain tissue. On the other hand, the higher rate of
false positives is caused by the remaining CSF. FSL removes the skull and the
fat and only in a few places small parts of the skull can be observed. This tech-
nique seems to be a good solution for the removal of skull and fat. In brain MRIs
of premature children at the age of a few weeks, the brain structure has not been
fully developed. The challenge of early brain development is mainly caused by
the fact that the infant brain contains less white matter myelin then the adult
brain which results in less defined edges between different regions. Looking at
the results generated by BrainSuite and FSL, we observed that they are simular.
The major differences can be found in the over segmentation and under segmen-
tation. BrainSuite has average error rates of 11% for FP and 13% for FN and
this might be caused by the edge detection that BSE is based on and the partial
volume effect that prevents the edge detection to find the correct boundaries.
The problem of PVE has been solved in HSS by using morphological operators
to reduce the PVE and by combining the edge detection with morphological
operators to enclose the main edges between fluid and brain tissue. MRIcroN
uses the first version of BET technique. Same as FSL, MRIcroN does not take
the fluid inside the brain volume into consideration. For example, when applying
MRIcroN, within an image, on one half CSF and sometimes skull and fat tissue
remains and on the other half the CSF is removed but often some of the brain
tissue is removed as well. This leads to high error rates. The differences on the
results compared to FSL show us that the second version of BET comprise sig-
nificant improvement. SPM8 is the only technique of these four which was not
developed for skull stripping in the first place. The result is presented in three
different volumes where each volume represents a different region such as GM,
WM or CSF. The similarity and comparison results were calculated by com-
bining the GM and WM images. SPM8 results lie within the same accuracy of
FSL and BrainSuite. It has not been stated but in our opinion, SPM8 has been
developed to be used on clear structured adult brain MRI and not on children
brain MRI with the age of under two years.
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5 Conclusion

The purpose of this paper is to introduce an automatic algorithm for the brain
extraction from infant MRI data. The developed algorithm is based on a hybrid
approach that embeds a suite of image processing tools that include a reduction
of artefacts, generation of a binary mask and the application of a region growing
for the extraction of the main brain region. One of the advantages of the proposed
approach consists in the reduction of PVE, and the numerical results indicate
higher performance of the proposed algorithm when compared to state of the
art implementations.

Acknowledgment. This study was funded by the Children’s University Hospi-
tal, Dublin, Ireland. We wish to thank our colleagues for providing us with the
medical insight and for expert visual assessment of MRI scans.

References

1. Babalola, K.O., Patenaude, B., Aljabar, P., Schnabel, J., Kennedy, D., Crum, W.,
Smith, S., Cootes, T., Jenkinson, M., Rueckert, D.: An evaluation of four automatic
methods of segmenting the subcortical structures in the brain. NeuroImage 47,
1435–1447 (2009)

2. Balan, A.G.R., Traina, A.J.M., Ribeiro, M.X., Marques, P.M.A., Traina Jr., C.:
Head: The Human Encephalon Automatic Delimiter. In: CBMS 2007: Proceedings
of the Twentieth IEEE International Symposium on Computer-Based Medical Sys-
tems, pp. 171–176. IEEE Computer Society Press, Washington, DC, USA (2007)

3. Boesen, K., Rehm, K., Shaper, K., Stoltzner, S., Lueders, E., Rottenberg, D.:
Quantitative comparison of four brain extraction algorithms. NeuroImage 22, 1255–
1261 (2004)

4. Chiverton, J., Wells, K., Lewis, E., Chen, C., Podda, B., Johnson, D.: Statistical
morphological skull stripping of adult and infant MRI data. Computers in Biology
and Medicine 37, 342–357 (2007)

5. Crum, W.R., Rueckert, D., Jenkinson, M., Kennedy, D., Smith, S.M.: A frame-
work for detailed objective comparison of non-rigid registration algorithms in neu-
roimaging. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS,
vol. 3216, pp. 679–686. Springer, Heidelberg (2004)

6. Friston, K.J., Penny, W.: Posterior probability maps and SPMs. NeuroImage 19,
1240–1249 (2003)

7. Hahn, H.K., Peitgen, H.-O.: The skull stripping problem in MRI solved by a single
3D watershed transform. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI
2000. LNCS, vol. 1935, pp. 134–143. Springer, Heidelberg (2000)

8. Harnsberger, H.R., Osborn, A.G., Ross, J., Macdonald, A.: Diagnostic and Surgical
Imaging Anatomy: Brain, Head and Neck, Spine. Amirsys Inc. (2006)

9. Kobashi, S., Fujimoto, Y., Ogawa, M., Ando, K., Ishikura, R., Kondo, K., Hirota,
S., Hata, Y.: Fuzzy-ASM Based Automated Skull Stripping Method from Infantile
Brain MR Images. In: IEEE International Conference on Granular Computing, pp.
632–635 (2007)

10. Li, X.: CI, L., Wang, R., Li, J.: A Region Growing Method Based on Fuzzy Con-
nectedness. In: ICALIP, pp. 993–997 (2008)
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Abstract. In pulping and papermaking, dirt particles significantly af-
fect the quality of paper. Knowledge of the dirt type helps to track
the sources of the impurities which would considerably improve the pa-
per making process. Dirt particle classification designed for this purpose
should be adaptable because the dirt types are specific to the different
processes of paper mills. This paper introduces a general approach for the
adaptable classification system. The attention is paid to feature extrac-
tion and evaluation, in order to determine a suboptimal set of features for
a certain data. The performance of standard classifiers on the provided
data is presented, considering how the dirt particles or different types are
classified. The effect of dirt particle grouping according to the particle
size on the results of classification and feature evaluation is discussed. It
is shown that the representative features of dirt particles from different
size groups are different, which has an effect on the classification.

Keywords: machine vision, particle segmentation, dirt particle classifi-
cation, feature extraction, pulping, papermaking, image processing and
analysis.

1 Introduction

Recently the papermaking industry has been focusing on process optimization
and has become more interested in machine vision methods. Dirt particles affect
considerably the formation of paper, impairing the printing properties. Tracking
the amount and type of dirt in pulp enables to use the materials and energy
more efficiently. Additionally, knowing the type of the particles it is easier to
determine the source of dirt and to eliminate the problem of dirt particles. Man-
ual dirt counting is a time-consuming process, involving human for analysis and
evaluation. In this case the human factor affects significantly the results of evalu-
ation. A human is not able to keep the same level of concentration and attention
during the whole period of work, and the decisions might be subjective depend-
ing on a researcher. The process of dirt counting might be automated so that

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 731–741, 2011.
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the tedious work is performed by a machine and a human has only to analyze
the results.

The machine vision approach in the paper quality control consists of acqui-
sition of digital images of the paper samples and the analysis of the digitized
samples using computational methods. The idea of such systems is described
in [1,2,3] where not only off-line but also on-line methods for paper evaluation
are presented. The off-line methods for dirt detection consider scanned images
of the paper sheets. The system evaluates the mean intensity of the pixels and
according to the local threshold segments the impurities. In [2] a threshold is
determined manually, in the other cases there is an opportunity of automatic
calculation of the threshold. On-line systems usually adapt to the intensity au-
tomatically and determine the threshold. The classification of particles is not
done or only dirt clustering according to the shape is performed, e.g., in [6].

This study focuses on the development of the approach for adaptive classifi-
cation of the dirt particles. The approach should use a standard classification
method to be capable of adapting for the specific data. Types of dirt features
and their evaluation are paid a special attention. The particles are divided into
subgroups according to their size and the results of classification for the sub-
groups are compared to the results without the division. Section 2 provides the
description of the approach and the method proposed. In Section 3 the results
of feature extraction and classification are discussed. The conclusions are drawn
in Section 4.

2 Classification of Dirt Particles

2.1 Problem Statement

Objectives. The aim of the presented research is to develop a method for adap-
tive classification of dirt particles in dry pulp sheets. Feature selection should
be automated. State-of-art generic classification methods are used so that the
classification was not related to any data. It is important since the system should
handle adding new dirt types. Additionally, it is needed to study how the division
of dirt particles according to their size can affect the classification results.

Restrictions. The research is based only on the provided data, which includes
dry pulp sheets with dirt particles of four dirt types: bark, sand, plastic, and
shives. The provided data does not introduce all the possible variations of pulp
and dirt.

Test samples. Each test sample contains dirt of a single type. The samples
were scanned, and the examples of test samples are presented in Figure 1.

2.2 General Workflow

Algorithm 1 introduces the main steps of the adaptive classification. After dirt
particle segmentation the grouping of the whole set based on the area is per-
formed.
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(a) (b)

(c) (d)

Fig. 1. Pulp sheets: (a) Bark; (b) Plastic; (c) Sand; (d) Shive

In the case of multiple subsets the features should be evaluated separately for
each subset since for dirt particles of different size different characteristics can
be significant. It is worth mentioning that the classification method should not
be related to the specific data set since the available data does not represent all
the possible dirt particles and pulp types. For these reasons the performance of
several standard classifier is evaluated.

2.3 Grouping of Dirt Particles Based on a Size

The experiments have revealed that dirt particles of different size might have
different features that count. Varying significantly within one class some features
cause problems in classification because of considerable overlapping of the classes
in feature space. A number of grounds might be found to figure out groups of
particles within one class. For example, based on the area histogram one could
divide one class into several depending on histogram bins. In the this work ISO
5350-1:2006 [13] is employed for group categorization.
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Algorithm 1. General workflow for classification
Segment dirt particles using the Kittler method [7]
Divide the particles into subsets according to the size
for each subset do

Extract features from the particles
Determine the optimal or suboptimal feature set
Perform training and testing using different classifiers

end for
Evaluate the performance of the classifiers

2.4 Segmentation

Segmentation of dirt particles is an important stage at which small low contrast
areas should be detected in an image. According to the survey [10], there is a
number of methods to use but none of them can be universally used for any
segmentation problem. In this study the Kittler thresholding method [7] is used.
The choice of the method is based on the previous study on automated counting
and characterization of dirt particles in pulp [4].

Grayscale images are considered for segmentation. The images are divided into
foreground which consists of the dirt particles and background. The foreground
and background are modeled as a mixture of two Gaussians [7]. The threshold can
be calculated by optimizing the cost function based on the Bayesian classification
rule.

2.5 Feature Extraction

The features can be divided into two categories: geometric features and color
features. Geometric features include characteristics of shape, form, and unifor-
mity of a dirt particle. Color features include, for example, mean color, variation
of color, and intensity. The calculated features are presented in Table 1.

Table 1. Feature set

Maximum diameter Extent Elongation Eq. (6)
Minimum diameter Fiber length Eq. (1) Curl Eq. (7)
Solidity Fiber width Eq. (2) Mean intensity
Eccentricity Form factor Eq. (3) Mean color
Convex area Roundness Eq. (4) Area
Perimeter Aspect ratio Eq. (5) Coarseness Eq. (8)
Std of color

For each dirt particle a bounding box is determined which is the smallest
rectangle enclosing the dirt particle. The Solidity specifies the proportion of the
pixels in the convex hull that are also in the region. The Eccentricity specifies
the eccentricity of the ellipse that contains the same second-moments as the
region. Convex area is the number of pixels in the convex hull of a dirt particle.
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Extent specifies the ratio of pixels in the region to pixels in the total bounding
box. Mean color and mean intensity are calculated as the mean hue value and
the mean intensity over a dirt particle area. Std of color describes the standard
deviation of color within the area of a dirt particle.

Other geometric features are calculated according to the following formulas:

Fiberlength = 0.25 · (Perimeter − (
√

|Perimeter2 − 16 · Area|)) (1)

FiberWidth =
Area

F iberLength
(2)

FormFactor =
4 · π · Area
Perimeter2

(3)

Roundness =
4 ·Area

π ·MaxDiameter2
(4)

AspectRatio =
MaxDiameter

MinDiameter
(5)

Elongation =
∣∣∣∣FiberLengthF iberWidth

∣∣∣∣ (6)

Curl =
∣∣∣∣MaxDiameter

F iberLength

∣∣∣∣ (7)

Coarseness =
Perimeter2

4 · π ·Area (8)

2.6 Feature Evaluation

Feature evaluation is performed to determine the set of features that should be
used to classify the dirt particles. The evaluation function is determined by the
Linear Discriminant Analysis (LDA) [5] that is used for data classification and
the reduction of feature space dimensions.

The goal of the LDA method is to maximize the separability of data classes,
which implies the maximization of the ratio

r = tr

( |Sb|
|Sw|

)
. (9)

Within the class scatter matrix

Sw =
C∑

i=1

Ni∑
j=1

(xj −meani) (10)

where C is the number of classes, Ni is the number of samples in class i, xj is
the j-th element of class i, and meani is the mean value of class i, determines
the variance of values within one class.
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Between the class scatter matrix

Sb =
C∑

i=1

(meani −mean) (11)

where mean is the mean of the means of all the classes, evaluates the variance
of feature values within one class.

To find the space where the current features might be distinguishable in the
most efficient way one should maximize the criterion

cr = tr(S−1
w · Sb) (12)

which means that the eigenvectors of the criterion matrix should be calculated.
The matrix of eigenvectors describes the transformation to the new feature space.
The sample vectors from all the classes should be transferred to that space and
using one or several thresholds might be distinguishable.

In order to decrease the computational time suboptimal algorithms are usu-
ally employed. An algorithm should be developed specifically for a certain task. A
sequential approach for feature selection is presented in Algorithm 2. In this case
the ratio is calculated for different combinations of features, consisting of one, two,
and three items. If the optimal combination consists of three features, the values
of ratio for the combinations consisting of the optimal set and one new feature is
calculated. If the current ratio is more than the maximum, one should continue
adding features until the calculated ratio is less than the maximum. As an output
the algorithm provides the suboptimal feature set and the ratio value for it.

Algorithm 2. Feature selection
Calculate the ratio values for all combinations consisting of one, two, and three
features
Find the list of features feat list corresponding to the maximum ratio max ratio 9
if length(feat list)==3 then

while curr max ratio > max ratio do
for all unused features do

Add the current feature to the optimal set
Calculate the ratio for the new combinations

end for
Find the maximum of the calculated values of ratio
Update the maximum ratio max ratio and the optimal list features feat list

end while
end if

2.7 Classification

The classifiers used in the study are listed in Table 2. State-of-the-art generic
classification methods as well as the well-known structural approaches are used
in order not to be related to the specific data. K-NN is used with a neighbor-
hood of 1, 3, and 5 samples. LDA is based on the transformation described in
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Section 2, where the linearizing transformation is described. GMM classifier is
used with expectation maximization (GMMem) and Figueiredo-Jain (GMMfj)
criteria [8]. SVM is used with a second order polynomial kernel. In the case of
expectation maximization criterion 4 components were used to model the data.
For Figueiredo-Jain criterion the maximum number of components was 10. The
Adaboost method introduces a set of weak classifiers, represented as a separate
feature, to create a strong classifier. In the case of the Adaboost classification
all the features are employed.

Table 2. List of classifiers

K-Nearest Neighborhood (k-NN) [9] Gaussian Mixture Model (GMM) [11]
Naive Bayesian Classifier (Bayes) [9] Support Vector Machine (SVM) [11]
Linear Discriminant Analysis
(LDA)

[11] AdaBoost [12]

3 Experiments and Discussion

3.1 Test Samples and Experiments

The samples for experiments are prepared by papermaking specialists of LUT
FiberLaboratory. Based on the expert choice the selected types of particles are
plastic, bark, sand, and shive. The samples have been scanned with reflective
light. The examples of dirt particles used in the experiments are presented in
Figure 1. The examples of the separate dirt particles are presented in Figure 2.

(a) (b) (c) (d)

Fig. 2. Dirt particles: (a) Bark; (b) Plastic; (c) Sand; (d) Shive

The dirt particles were segmented and features were computed using Algo-
rithm 2. Since the amount of dirt particles was restricted two middle size groups
were combined into one. The suboptimal feature sets for each size group are
described in Table 3.

From the results it can be seen that the color is more important for bigger
particles, since the color of smaller ones is not saturated. Standard deviation of
color also becomes a more effective when the area of particles is large enough to
estimate the feature. At the same time coarseness is considered to be a significant
feature for the smaller groups. It is interesting to notice, that for the whole set of



738 N. Strokina et al.

Table 3. Suboptimal feature sets for each size group

Group Feature set

0.04-0.15 mm2 Form factor + Coarseness
0.15-1.00 mm2 StdColor + Coarseness
1.00-5.00 mm2 Mean color + Std of color

The whole set Mean color + Std of color

particles, without division into groups, the most effective features are the mean
color and the standard deviation of color as for the biggest particles.

Two experiments were carried out. In the first experiment the whole data set
was considered and the classification was performed on the training set, on the
separate test set and using leave-one-out validation. In the second experiment the
dirt particles were divided into the size groups. The classification was performed
for all subsets separately. Table 5 shows the amount of particles in the train
and the test sets for each dirt type for the whole set and for the size groups.
The particles for training and testing were selected independently for the size
groups and for the whole set. The amount of the dirt particles in the test set
was restricted by the total amount of dirt.

3.2 Classification on the Whole Set

The classification results can be found in Table 4. The numbers represen
the percentage of correctly classified dirt particles. For better representation
the highest results are set in bold. One can notice that it is possible to divide
the classifiers into two groups according to their performance. The first group
with the best performance includes nearest neighborhood methods, SVM, and
Gaussian mixture model classifiers producing approximately the same result.
The poor performance of LDA and Adaboost can be explained by the fact that
the classes are significantly overlapping in the feature space. From the results one
can conclude that both the choice of an appropriate classifier and the selection
of the optimal or suboptimal features lead to the sufficient classification results.

3.3 Classification Using Subsets

The results of classification have been averaged for the size groups and can be
found in Table 6. The numbers represent the percentage of correctly classified
dirt particles.

The result of classification for size groups are slightly worse than for the whole
set which can be conditioned by the lack of samples in each of the groups. Here
the same tendency among classification methods can be noticed as in the exper-
iment with the whole set. The classifiers giving the best results are the Gaussian
mixture model approach and the nearest neighborhood classifiers. However, the
Adaboost, SVM and LDA classifiers have better performance than in the case of
the whole set, which means that the size groups of particles are less overlapping
in the feature space than the whole set.
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Table 4. Classification results for the whole set

Classifier Train set Leave-one-out
Test set

Bark Plastic Sand Shive Average

1-NN - 98.3% 87.6% 97.5% 88.7% 64.4% 83.3%

3-NN 98.0% 97.6% 86.7% 96.8% 84.4% 55.9% 82.1%

5-NN 98.9% 96.6% 95.2% 98.2% 54.6% 51.7% 82.4%

Bayes 87.0% 85.3% 74.5% 81.2% 29.7% 65.2% 68.8%

LDA 68.3% 67.0% 92.1% 51.6% 79.4% 66.1% 59.8%

GMMfj 97.3% 93.7% 84.5% 96.0% 85.1% 45.5% 78.8%

GMMem 98.5% 96.0% 83.8% 95.5% 51.1% 45.0% 77.3%

SVM 81.3% 78.5% 82.2% 84.7% 97.3% 40.0% 76.1%

AdaBoost 73.3% 69.5 % 54.6% 82.6% 57.6% 79.4% 68.8%

Table 5. Amount of particles for each dirt type

Size group
Train set Test set

Bark Plastic Sand Shive Bark Plastic Sand Shive
0.04-0.15 mm2 50 50 50 50 609 89 29 22
0.15-1.00 mm2 20 20 20 20 342 184 9 55
1.00-5.00 mm2 40 40 40 40 20 24 24 101
The whole set 100 100 100 100 981 307 72 188

Table 6. Classification results for the size groups

Classifier Train set Leave-one-out
Test set

Bark Plastic Sand Shive Average

1-NN - 75.5% 68.8% 59.3% 61.5% 59.2% 62.2%

3-NN 88.4% 80.3% 76.6% 55.2% 60.7% 63.5% 64.0%

5-NN 85.5% 77.8% 76.3% 52.9% 57.5% 67.8% 63.6%

Bayes 83.9% 79.2% 90.9% 50.0% 58.1% 62.2% 65.3%

LDA 65.6% 64.8% 84.2% 42.3% 70.9% 61.6% 64.8%

GMMfj 95.1% 83.0% 77.5% 68.8% 64.3% 64.0% 68.7%

GMMem 89.5% 86.3% 94.5% 70.1% 49.1% 64.5% 69.5%

SVM 67.8% 64.3% 75.6% 73.3% 52.1% 41.1% 60.5%

AdaBoost 71.2% 69.8% 58.7% 56.3% 71.7% 87.3% 68.5%

In the future work, it will be useful to obtain more samples with dirt in order
to perform classification of size groups on bigger sets. Besides that, if there is a
need, particle texture can be studied to discover new features. Low performance
of some classifiers has to be also addressed: either those classifiers should not
be used or their parameters must be tuned. Some prior information from the
experts might be obtained concerning the frequency of occurrence of the specific
dirt types.
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4 Conclusion

The present study focuses on the problem of the adaptive classification of dirt
particles. An approach for feature selection is described, and relevant features
are extracted for classification. The experiments were performed on the whole
set and for the size groups of the particles.

It was discovered that for different size groups of dirt different features count.
The satisfactory results of classification were obtained for the whole data set.
Although the results were slightly worse for size groups, it was shown that the
size groups of classes are less overlapping in the feature space. The results show
that the critical task is to select the appropriate features. The final tuning for
an application can be made by selecting a specific classifier from the best ones
and with enough tuning possibilities.
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Abstract. This paper proposes a new technique for text extraction on complex 
color documents and cover books. The novelty of the proposed technique is that 
contrary to many existing techniques, it has been designed to deal successfully 
with documents having complex background, character size variations and dif-
ferent fonts. The number of colors of each document image is reduced auto-
matically into a relative small number (usually below ten colors) and each 
document is divided into binary images. Then, connected component analysis is 
performed and homogenous groups of connected components (CCs) are cre-
ated. A set of features is extracted for each group of CCs. Finally each group is 
classified into text or non-text classes using a neuro-fuzzy classifier. The pro-
posed technique can be summarized into four consequent stages. In the first 
stage, a pre-processing algorithm filters noisy CCs. Afterwards, CC grouping is 
performed. Then, a set of nine local and global features is extracted for each 
group and finally a classification procedure detects document’s text regions. 
Experimental results prove the efficiency of the proposed technique, which can 
be further extended to deal with even more complex text extraction problems. 

Keywords: Text extraction, Color reduction, Connected component analysis, 
Adaptive run length smoothing, Pattern classification, Neuro-fuzzy classifier. 

1   Introduction 

This paper proposes a technique for text extraction in complex color documents and 
cover books. Interest about exploiting text information in images and video has grown 
notably during the past years. Text can provide powerful description of the image 
content and it reasonably attracts the research interest. 

A main categorization of text extraction methods include texture based techniques 
[1]-[4] and connected components (CCs) based techniques [5]-[9].  

Texture based methods use the observation that text in images has distinct textural 
properties that distinguish them from the background. They are mainly used in video 
text based applications [10]-[12]. On the other hand, CCs based techniques are fast 
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and relatively simple in implementation and exploit the fact that characters are seg-
mented. The proposed approach belongs to this specific category of text information 
extraction techniques. 

The proposed technique performs color reduction to limit document’s colors and 
divides each document into a set of binary documents, one for every color. Then, it 
performs connected component (CC) analysis and creates groups of components. For 
each group, a set of features is extracted and finally the classification process, based 
on a neuro-fuzzy system, detects those groups that correspond to text regions. 

Most text extraction techniques focus on data sets of documents with certain speci-
fications such as: 

- Documents pixel depth is 8-bit gray-scale 
- Documents have low character size variations 
- Text gray values are greater than background values 
- Documents have uniform background without contrast variations 

The novelty of the proposed paper is that overcomes the specifications mentioned 
above and deals successfully with complex text extraction problems. 

2   Description of the Technique 

The technique proposed in this paper is based on an iterative procedure of four stages. A 
document image is the input of the technique. The number of its colors is decreased 
(usually in less than ten colors) according to a color reduction technique [7]. After color 
reduction, the initial document can be represented by a set of binary images, one for 
each color, which we call color planes. Then, an iterative procedure is applied to each 
color plane. Generally, the proposed technique can be summarized into four stages: 

Stage 1. Pre-processing: CC analysis is performed to each color plane. Color reduc-
tion process usually creates noisy, superfluous CCs. Most of these CCs, though, can 
be easily recognized and removed during this stage. 
Stage 2. Page segmentation: CCs of each color plane are grouped according to an 
adaptive run length smoothing algorithm (ARLSA) [16].  
Stage 3. Feature extraction: Each group of CCs is considered as a pattern. For each 
pattern, a set of nine local run length and spatial features is extracted. 
Stage 4. Classification using Adaptive Neuro-Fuzzy Interference System (ANFIS) 
[14]. A subset of patterns is first used to train the classifier.  

A block diagram of the proposed technique is shown in Fig. 1. In the rest of this sec-
tion a brief description of color reduction [7] and ARLSA [13] algorithms is given. 

N - binary
color planes

Pre-
processing

CC
grouping

Feature
extraction

Pattern
classification ENDEnd of color

planes? NormalizationDocument
image

YES

Next color
plane

  
Fig. 1. The block diagram of the proposed technique 
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2.1   Color Reduction 

A color document or a cover book has millions of different color values. In order to 
apply CC analysis, we have to limit the total number of colors. To achieve that, we 
use an unsupervised clustering algorithm to find clusters of similar colors, originally 
proposed by Sobottka et al. [7]. We chose to implement this color reduction technique 
for three basic reasons: 

- Simplicity of the algorithm 
- Very low computational cost 
- Text objects (CCs) are coherent and final color distribution inside the document 

image is homogenous. 

2.2   Adaptive Run Length Smoothing Algorithm 

Adaptive run length smoothing algorithm (ARLSA) [13] is a modified version of 
RLSA [15], a common algorithm, that it is used in page layout analysis and segmenta-
tion techniques. Generally, ARLSA is applied on CCs of binary images.  

( , )

( , )

( , )

i j l

R i j h

R i j o

L CC CC T

H CC CC T

O CC CC T

<
<
<

                                                  (1) 

The novelty of ARLSA is, that it applies run length at a certain direction only be-
tween pixels of different CCs and only if these CCs fulfill certain specifications. In 
the proposed technique, ARLSA is applied in the horizontal direction. 

Let ip  and jp  be two pixels that belong to CCs iCC  and jCC  and ( )jCC i j≠ . 

The connection between ip  and jp is made only if the following specifications are 

fulfilled:  
where ( , )i jL CC CC is the Euclidean distance between the bounding boxes of  iCC  

and jCC , ( , )R i jH CC CC is the height ratio between iCC  and jCC  and 

( , )R i jO CC CC  is the overlapping ratio between iCC  and jCC . Furthermore, RH can 

be defined as: 
( , ) min( , ) / max( , )

i j i jR i j CC CC CC CCH CC CC H H H H=                         (2) 

Where 
iCCH and 

jCCH the heights of iCC  and jCC .  

Finally, RO is defined as the overlapping ratio between two components. 

   

(a) (b) (c) 
Fig. 2. ARLSA filtering example: (a) A color plane, (b) color plane after application of 
ARLSA, (c) filtered color plane 
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3   Image Pre-processing 

The purpose of this stage is to remove small noisy connected components and large 
background or graphic components. Pre-processing filtering is applied in two separate 
steps: 

First, noisy elements are filtered out based on three characteristics of the connected 
components and their corresponding bounding boxes. For a connected component 

iCC  these characteristics are:  

The height of the bounding box of the iCC , 
iCCH  

The elongation
min{ , }

( )
max{ , }

i i

i i

CC CC

i
CC CC

H W
E CC

H W
=  

The density 
( )

( )
( )

num i
i

size i

P CC
D CC

BB CC
= ,  

which is the ratio of the number of foreground pixels ( )num iP CC  to the total number 

of pixels in the bounding box ( ) ( ) ( )size i i iBB CC H CC W CC= ⋅ . 

Connected components with ( ) / 3iH CC AH< , or ( ) 0.08iD CC < , or 

( ) 0.08iE CC <  are considered as noisy elements and they are eliminated, where 

AH is the average height of all CC of the color plane. These values have been se-
lected very carefully, so no character elements will be eliminated.  

The second type of filtering removes large background and graphic components. It 
is based on the comparison of the connected components from two images, the initial 
binary document image and the resulted image after the application of the ARLSA. 
Let 1I  be the original image (see Fig. 2(a)), 2I  the image after the application of the 

ARLSA (see Fig. 2(b)). The number of pixels 
2IP of each connected component 

2iCC I∈  is calculated, that is the number of the black pixels. In the defined area of 

each 2iCC I∈ , the sum 
1I

P  of the corresponding black pixels of 1I  is also calculated.  

The ratio of these two sums is taken into account as in the following equation:  

2

1

I

R R
I

P
P T

P
= ≤  (3)

As it is mentioned above, ARLSA connects only similar neighbor components. In this 
case, graphic components of Fig. 2(a) are isolated and the application of ARLSA does 
not link them with other components. Therefore, their pixel size remains almost the 
same and RP  has a value near to one. Components, which correspond to pixel size 

ratio smaller than RT  (Eq. 3), are removed and a new image 3I  (see Fig. 2(c)) is pro-

duced. The parameters used in ARLSA are those parameters proposed as optimal by 
the authors.  
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4   Document Segmentation  

Document page segmentation is very important for successful classification. During 
this stage, CCs of color planes are grouped to form a pattern for the classification 
procedure. False grouping will have as a result unreliable feature values and further-
more classification failure. Therefore, we need a reliable technique that groups CCs of 
the same class (text or non-text). 

To perform successful grouping, we use ARLSA. ARLSA groups only similar CCs 
as far as height and overlapping is concerned. 

The choice of ARLSA is based on the following reasons: 

- Characters are in most cases CCs of similar height in a certain direction (in most 
cases horizontal). Furthermore, the height ratio between two characters of the 
same font size (in the same sentence) is less than 2.  

- Graphics consist of CCs that have great variation in height. Furthermore, graphic 
CCs do not have a defined arrangement in space and therefore overlapping 
measure in a certain direction is very low. 

- Background CCs are large isolated CCs. 

Because of the above reasons, text CCs group together in most cases, while non-text 
CCs form small groups. Each group is considered as a pattern for the feature extrac-
tion and classification stages. 

5   Feature Extraction 

In this stage, we form a set of nine features for each pattern (group of CCs) of each 
binary color plane. Feature selection has been made carefully, in order to distinguish 
text from non-text patterns as much as possible. 

Mean Elongation: Elongation feature has been introduced in Section 3. Each pat-
tern after CC grouping is formed by a set of CCs. The value of this feature is the mean 
elongation of a pattern’s CCs. The idea of choosing mean elongation is that usually, 
character CCs have similar width to height ratio. On the other hand, lines and big 
graphic CCs can have either too small or too big width to height ratio. 

Mean Density: Density feature has been also introduced in Section 3. The value of 
this feature is the mean density of a pattern’s CCs. The idea of choosing mean density 
is that most graphic CCs have many holes and therefore their density values are 
smaller than character CCs. 

Mean pixel size: This feature represents the mean pixel size of the CCs of each  
pattern. 

Local Connectivity: This feature measures the coherence of a pattern. For each 
pixel ,i jp  of a pattern, the number of neighbor pattern pixels, within a 3x3 neighbor-

hood, is counted. The total number of neighbor pattern pixels is divided by the pixel 
size of the pattern for normalization reasons. This feature takes large values for co-
herent CCs, while it takes small values for thin CCs or CCs with many holes. It can be 
expressed as follows: 
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Where , ,l i jp a pixel of a pattern l  and lPS the total number of pixels of the pattern, 

which is pixel size of pattern l .  
Run length mean and Run length variance features: For each pattern, we calculate 

the mean run length value at a certain direction that we call it dG (group direction). 

Each pattern is a group of CCs, as it is mentioned in Section 4. The center points of 
these CCs define a least squares line. The gradient of this line, we call it dG . Least 

squares line is represented by the following equation: 

y a bx= +  (5)

We are interested in the direction of this line, which is defined as: 

1 1 1
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Where n is the number of a pattern’s CCs and 0 0{( ),..., ( )}n nXc Yc Xc Yc  are their center 

points. 
Run length mean and variance features are extracted from the run length histogram 

of each pattern. 
Group direction mean feature: For each pair of CCs of a pattern . iCC . and jCC , 

we compute the corresponding gradient , ,d i jG . Group direction mean feature is the 

mean value of all , ,d i jG .  

Mean Overlapping feature: As it is mentioned above, the center points of the CCs 
of a pattern define a group direction dG . For each pair of CCs of a pattern iCC  

and jCC , we compute the corresponding overlap measure in the direction of dG . The 

mean overlapping feature is the mean overlapping value of a pattern. 
Fig. 3 illustrates an example of this feature. Suppose that the word “Example” is a 

pattern that consists of seven CCs, we calculate the overlap between letters-CCs “E” 
and “X” in the group direction. This feature is similar to the overlap feature that we 
introduced in Section 2.2 in the horizontal direction, but now overlapping is calcu-
lated in the direction of dG  

dG

iCC jCC

, ,

, ( , )
max( , )

i j i j

d

i j i

CC CC CC CC

R G i j
CC CC CC

O O
O CC CC

H H H
= =

,i jCC CCO

 

Fig. 3. Overlapping feature for CCs “E” and “x” in the direction of dG  
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Black and white alterations: This feature is calculated by the total number of altera-
tions between pattern and non-pattern pixels in the group direction,

 dG .The number 

of black and white alteration is divided by the width of the pattern for normalization.   

6   Pattern Classification Using ANFIS 

ANFIS (Adaptive-Network-based Fuzzy Interference System) [14] is a neuro-fuzzy 
multilayered architecture, which was first introduced by Jang, well known for dealing 
with complex nonlinear modeling or classification problems. ANFIS main advantage 
is that it combines the strong descriptive characteristics of fuzzy logic with the learn-
ing capabilities of neural networks.  

ANFIS consists of 6 layers which are described below: 

Layer 1: The nodes of this layer carry the inputs of the network to the next layer. 
Layer 2: Each node of this layer implements a fuzzy membership function that de-

scribes a fuzzy set of each input (linguistic nodes). The proposed implementation uses 
Gaussian membership functions which are described by the following equation: 

2

2

( )

2( ) , 1, , , 1, ,

i
j j

i
j

x

i
A j j jx e j m i k

σ

σμ
− −

= = =K K
 

(7)

The output of this layer reveals the membership degree of feature jx to fuzzy set i
jA , 

where j stands for the input and i for the fuzzy set defined in input j.  The fuzzy input 
partition has been implemented through subtractive clustering [16]. 

Layer 3: The nodes of this layer are called rule nodes. The output of each node repre-
sents the degree that satisfies the hypothesis of a rule. The number of nodes of this 
layer is equal to the number of the rules, that is 1 mn k k= × ×L . The degree of fulfill-

ment of each rule can be calculated by the following: 

1
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m

i
i A j j
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xμ μ
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= ∏x , i = 1,…n  (8)

Layer 4: In this layer, the normalized fulfillment of each rule is calculated: 
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x
, i = 1,…n  

(9)

Layer 5: The nodes of this layer calculate the output of each rule: 

( ) ( )i iy i wμ= ×x , i = 1,…n  (10)

Layer 6: In this layer the node calculates the final output of the model by summariz-
ing the partial output of each rule: 

1

( )
n

i

y y i
=

=∑  (11)
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Fuzzy input partition has been implemented via subtractive clustering [16], while 
hybrid batch learning algorithm [15] is used to calculate the parameters of the net-
work. 

7   Experimental Results 

In order to achieve objective experimental results, we created a dataset with document 
and ground truth images for evaluation purpose. Document dataset consists of 50 
color cover books and documents with complex background, various font colors, sizes 
and types. Ground truth binary images were created for all 50 documents manually, 
using commercial image processing software. The proposed technique can identify 
text areas with skew up to 45 degrees. The documents are all taken from the internet, 
while their resolution is at least 200 dpi. 

Due to space limitations, we present in Fig. 4 two characteristic results that they 
should be discussed. These examples reveal some of the advantages and disadvan-
tages of the proposed technique.  

Fig. 4 (b) shows a successful result. The cover book has non-uniform background 
and fonts of different sizes and colors. Main contribution to the successful result has 
the great resolution and successful color reduction that leads to coherent CCs. 

Fig. 4 (c) shows a movie poster with uniform background and a large graph. Text 
areas, which include fonts of different color, type and size, have been successfully 
detected. However, some graph patterns in the middle of the Fig. 4 (d) have wrongly 
classified as text. These patterns have common text characteristics, such as elonga-
tion, density, run length variation and overlapping, which lead to classification error. 

  

(a) (b) 

  

(c) (d) 

Fig. 4. Text extraction examples: (a), (c) Original document images, (b), (d), resulted  
document images 
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8   Conclusions 

We have presented a new technique for text extraction on complex color documents. 
In this type of documents, text and graphics are highly mixed with the background 
and therefore color reduction, page segmentation and furthermore text extraction is a 
challenging task. Experiments have been performed and presented to test the effec-
tiveness of the proposed technique.  

The main advantage of the presented technique lies on the fact that although it 
deals with complex documents, it performs high successful rates and a reliable result 
for further processing. Pattern extraction based on connected component analysis and 
classification using ANFIS seem to work fine, even under extreme circumstances. 
Additionally, ARLSA provides very useful information about text patters. However, 
we intend to perform more research in the field of color reduction (extraction of color 
planes) and pattern extraction. 
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Variational Space-Time Stereo

Sergey Kosov, Thorsten Thormählen, and Hans-Peter Seidel

Max-Planck-Institut Informatik (MPII), Saarbrücken, Germany

Abstract. This paper addresses the problem of space-time stereo with
active illumination and presents a formulation of this problem in the vari-
ational framework. Variational problems of this scale are computationally
expensive to solve directly. We overcome this challenge by showing that
speed-improving techniques, as the full-multi-grid and the multi-level-
adaptation techniques, can be applied. We evaluate the performance of
our method on 3 ground-truth datasets. The experimental results for syn-
thetic and real datasets show that the combination of active illumination
and variational space-time stereo improves the quality of the reconstruc-
tion on average by up to 3.1 times compared to a reconstruction from a
single passive stereo image pair without active illumination.

1 Introduction

A classical problem in computer vision is the reconstruction of disparity field
between several stereo images. The task is to find those corresponding pixels in
the stereo images that are the projections of the same 3D point. The collection
of displacement values for all pixels of an image forms a dense disparity map.

Algorithms for dense disparity map reconstruction are often a basic building
block of more complicated systems for automatic 3D scene analysis, event detec-
tion, or object recognition. These systems are applied, for example, in machine
vision, robotics, or medical applications. Furthermore, the recent development in
cinematography, where more movies are shot in stereo, has sparked a new inter-
est in the topic of stereo estimation in academia as well as in the post-production
and home-entertainment industry.

A number of researchers have worked on fast and accurate stereo estimation
(e.g., [1,2,3]). Nowadays, variational methods are among the best techniques
for optic flow reconstruction, which is very related to disparity estimation, e.g.
Mémin and Pérez [4] and Brox et al. [5]. These methods minimize an energy
functional by solving the corresponding Euler-Lagrange equation. In order to
solve this equation numerically, it is represented as a system of parabolic par-
tial differential equations in finite differences. To optimize the energy functional,
iterative solvers, like the Jacobi and Gauss-Seidel methods, are used. In 2006,
Bruhn et al. [6] presented a real-time implementation of a variational solver
for optic flow reconstruction, based on the multigrid method [7]. Recently, Val-
gaerts et al. [8] have presented an approach that allows to incorporate both

A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, pp. 752–763, 2011.
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spatial and temporal information (from two subsequent image pairs) for optic
flow reconstruction. A real-time variational solver for disparity reconstruction
was demonstrated [9]. The real-time performance has been achieved by a combi-
nation of the full-multi-grid (FMG) method, the multi-level adaptation technique
(MLAT) [10], and adaptive parameter techniques.

Classical stereo vision algorithms process the stereo image pairs of different
points in time independently. However, better results can be obtained by consid-
ering the problem not only in space but also in time. In 2003, Zhang et al. [11]
showed that the space-time approach gives better results for disparity estima-
tion. They suggested that each classical stereo algorithm can be extended to the
spatio-temporal domain. In this paper we follow their suggestion and show how
a variational solver can be used for space-time disparity estimation.

Nevertheless, though space-time approaches can improve disparity estimation
results, almost all disparity estimation methods need local textures to compute
dense disparity maps. Therefore, the algorithms lose their accuracy in homoge-
neous image regions. Additional texture can be generated when active illumina-
tion is applied [12]. In this paper it will be argued that projected vertical color
strip pattern are very well suited to be used in combination with the variational
method. Furthermore, infrared light can be used in order to project patterns
that are not visible to the human eyes [13].

In this paper, we present a combination of structured light and fast variational
space-time stereo. To the best of our knowledge, this paper is the first to per-
form space-time disparity estimation with active illumination in the variational
framework. However, we are of course not the first to combine active illumination
and space-time stereo. The benefit of additional spatio-temporal information for
stereo vision has been shown before, e.g., by Zhang et al. [11]. The advantage of
the variational framework is the high reconstruction accuracy. The disadvantage
of variational solvers is that they tend to become slow, if they are applied on
large equation systems. This is especially a problem as the number of equations
is increased by adding information from different points in time. In this paper,
we show that speed-improving techniques, like FMG and MLAT, can still be
applied. The approach is evaluated with 3 ground-truth datasets.

2 The Space-Time Variational Method

Currently, almost all stereo vision algorithms analyze and process stereo image
sequences in pairs of a left and a right frame. Processing the stereo pairs sepa-
rately from the whole sequence leads to the loss of the dynamics occurring in this
image sequence [14]. However, these dynamics (such as displacement between two
frames, or occluded/exposed areas) contain vital information and can be used
to achieve a better convergence rate for the variational method and to enhance
the accuracy. We address this issue by extending the variational approach to the
spatiotemporal domain, as described in the following subsections.

Problem formulation. Given a rectified stereo sequence consisting of individ-
ual sequences for the left and right camera, each scalar-valued image sequence



754 S. Kosov, T. Thormählen, and H.-P. Seidel

I(x, y, t) is stored in a pixel matrix and (x, y, t)� is the space-time coordinate of
a voxel within the three-dimensional spatio-temporal domain Ω̄ = Ω × T . For
every voxel of the left sequence Il(x, y, t), we now try to estimate the disparity
value u(x, y, t), which is the offset of the x-coordinate of the voxel position, in
order to match the corresponding voxel from the right sequence Ir(x, y, t):

Ir(x, y, t) − Il(x+ u(x, y, t), y, t) = 0 . (1)

Since we are dealing with continuous real-world data, the disparities are not
necessarily integer values. This is taken into account by employing different
linearization techniques while solving Eq. (1). In our case, we use a linear inter-
polation approach [9] for the linearization.

An energy functional is constructed that consists of two terms: a data term
that imposes the constancy assumption on the grey values, and a smoothness
term that regularizes the local and often non-unique solution for the data term
by an additional smoothness assumption.

Data term. In a real-world recording, we have to deal with occlusions and
non-lambertian surfaces in the scene. Therefore, the left-hand side of Eq. (1)
is usually not exactly zero. However, it should be as close to zero as possible.
Therefore, we minimize the corresponding energy functional

E(u(x, y, t)) =
∫∫∫

Ω̄

‖Ir(x, y, t) − Il(x+ u(x, y, t), y, t)‖2
dx dy dt . (2)

Smoothness term. The smoothness term is based on the assumption that
neighboring space-time regions belong to the same object and, thus, have similar
disparities. The main role of the smoothness term is the redistribution of the
computed information and the elimination of local disparity outliers. If reliable
information from the data term is not available, the smoothness term helps to
fill the problematic region with disparities calculated from neighboring regions
and from previous and future points in time.

In our work, we use 3 different regularizers: Tichonov, Charbonnier, and
Perona-Malik regularization. Tichonov regularization assumes overall smooth-
ness and does not adapt to semantically important image or disparity field
structures (Horn and Schunck [15]). Charbonnier’s and Perona-Malik’s disparity-
driven regularizations assume piecewise smoothness and respect discontinuities
in the disparity field (see, e.g., [16,17]).

For all three regularizers, the smoothness term in general form is expressed as
Ψ(|∇3u(x, y, t)|2). The energy functional from Eq. (2) extended by the smooth-
ness term takes the following form:

E(u) =
∫∫∫

Ω̄

‖Ir(x, y, t) − Il(x+ u, y, t)‖2 + ϕ · Ψ(|∇3u|2) dx dy dt , (3)

where ϕ is the weight of the smoothness term.
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Euler-Lagrange equation. The goal of the variational method is to find a
function u(x, y, t), which minimizes the energy functional E(u(x, y, t)). Once we
have constructed the energy functional, we need to find a solution, i.e., disparity
field, which minimizes the functional. If the functional is constructed over a strict
convexity requirement, the problem of minimization can be simplified, since there
exists only one unique solution.

The Euler-Lagrange equation is an equation that is satisfied by the unknown
function u(x, y, t), which minimizes the functional

E(u)) =
∫∫∫

Ω̄

F (x, y, t, u, ux, uy, ut) dx dy dt , (4)

where ux = ∂u
∂x , uy = ∂u

∂y , ut = ∂u
∂t and F is a given function that has continuous

first order partial derivatives. The Euler-Lagrange equation then is the partial
differential equation:

Fu − ∂

∂x
Fux − ∂

∂y
Fuy − ∂

∂t
Fut = 0 . (5)

For the energy functional from Eq. (3) the Euler-Lagrange equation for each
voxel (x, y, t)� is given by

Ilx(x+ u, y, t)(Ir(x, y, t) − Il(x+ u, y, t)) +ϕ · div(Ψ ′(|∇3u|2) · ∇3u) = 0 . (6)

In order to minimize the energy functional, we solve the resulting system
of differential equations with homogeneous Neumann boundary conditions [18].
This step is done via discrete numerical schemes. The Euler-Lagrange equations
are discretized, linearized, and approximated via finite-differences schemes. In
the end, we arrive at a linear (in case of Tichonov regularizer) or non-linear (in
case of Charbonnier or Perona-Malik regularizers) system of equations.

Discretization. In order to discretize Eq. (6), we use linear interpolation for
the data term and standard discretization for the diffusion filters [19]. For the
space-time variational method we use a 6-voxel stencil (see Fig. 1, left) for the
computation of the smoothness term (instead of a 4-pixel stencil as is used by
classical variational approaches that do not smooth in time dimension). The
discretized smoothness term can be written as Ψ ′(|∇3u(iΔx, jΔy, kΔt)|2) ≡

Fig. 1. 3D stencil for the smoothness term discretization: left: labeling of weighting
coefficients; right: splitted stencil for different space and time regularization
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gi,j,k. We also introduce the following substitutions (cf. Fig. 1): gi+1,j,k +gi,j,k ≡
gr, gi−1,j,k+gi,j,k ≡ gl, gi,j+1,k+gi,j,k ≡ gu, gi,j−1,k+gi,j,k ≡ gd, gi,j,k+1+gi,j,k ≡
gf , gi,j,k−1 + gi,j,k ≡ gb and

∑
o∈{l,r,u,d,f,b} go ≡ gc. Then the smoothness term

takes the following expression:

ϕ · [ gr ·u(x+ 1, y, t) + gl · u(x− 1, y, t) + gu · u(x, y + 1, t)
+ gd ·u(x, y − 1, t) + gf · u(x, y, t+ 1) + gb · u(x, y, t− 1) (7)
− gc ·u(x, y, t)] .

Since space and time are incommensurable concepts in mathematics, we may
want to penalize the solution in space and time differently (e.g., the Charbonnier
regularizer for space, and the Tichonov regularizer for time). For that purpose we
modify the standard discretization scheme and introduce the alternative function
hi,j,k, and parameter φ to function gi,j,k and parameter ϕ, respectively. Eq. 7
can be rewritten as

ϕ · [ gr ·u(x+ 1, y, t) + gl · u(x− 1, y, t) + gu · u(x, y + 1, t)
+ gd ·u(x, y − 1, t) − g′c · u(x, y, t)] (8)

+φ · [ hf ·u(x, y, t+ 1) + hb · u(x, y, t− 1) − h′c · u(x, y, t)] ,

where g′c ≡ ∑
o∈{l,r,u,d} go and h′c ≡ ∑

o∈{f,b} ho.
Note that Eq. (8) will be identical to Eq. (7) for hi,j,k ≡ gi,j,k and φ = ϕ.

Therefore Eq. (8) describes the more general case and provides the additional
flexibility. In addition, for φ = 0, we end up with the classical variational ap-
proach for disparity reconstruction.

Space-time FMG and MLAT. The multigrid method implies the usage of
coarser grids, i.e., a pyramid of scaled versions of the initial images. Classical
multigrids methods use the factor of two as a scale factor. So the maximal
reasonable number of levels we can express are: #levels ≤ log2 min {X,Y, T }.

Usually, the time dimension is much smaller than the space dimensions: T <<
min {X,Y }, e.g., if we have video at 25 fps and want to process several blocks
per second, we could use for example around 10 frames in a space-time block.
On the other hand, the image spatial resolution measures in hundreds of pixels.
Therefore, the number of coarse grids will be too small for effective application.
As a consequence, we have reverted to the solution to use the full-multi-grid
approach only in the spatial directions for each time slice independently. Thus,
for each frame, we use the same number of pyramid levels. Implementation details
about the of the FMG approach in the variational framework are given in [9].

The multi-level adaptation technique (MLAT) is another technique to reduce
the computation time of the variational solver. When updating from a coarser to
finer grid in the FMG approach, we look at peculiarities of the solution, and only
refine the grid in areas where high peculiarities are found. This results in a non-
regular grid structure on the finest level. During space-time stereo processing it
can be assumed that the solution is changing very smoothly with time: ut → 0.
Thus, in order to apply the MLAT in the space-time framework, we can use the
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classical MLAT approach for calculating the adapted grid once per currently
processed space-time block. As the structure is the same for all frames of the
block, the neighbouring voxels in time have the same spatial resolution, and thus
can be directly used to perform the iterative variational optimization steps with
the described 6-voxel stencil.

3 Active Illumination

In most stereo matching algorithms, the inherent ambiguity of image values in
homogeneous image regions leads to a loss of accuracy in the computation of
dense disparity maps. A possible solution to this problem is the introduction
of artificial texture into the scene, e.g., by the projection of intensity coded
light [12]. These stereo setups with active illumination benefit from improved
local scene texture – hence better correspondences – and therefore allow the
reconstruction of more accurate dense disparity maps.

Our setup consists of a Point Grey Bumblebee R© XB3 camera synchronized
with a projector casting a structured light pattern onto the scene (see Fig. 2). We
projected patterns in the visible light spectrum but projecting infra-red patterns,
which are not visible to the human eye, is possible as well.

Fig. 2. Our stereo setup and examples of projected patterns: (from left to right: Point
Grey Bumblebee R© XB3 camera; principle of a stereo system using active illumination;
binary pattern; random color pattern

The question is now what is the best suited projection pattern for the scene
and for our reconstruction method. A number of researchers have worked on op-
timizing the employed patterns that are mostly based on vertical stripes [20,21].
The main idea of these works is to adapt the pattern in such a way, that inter-
ference by the scene is minimized. Using a graph-cuts approach, the algorithm
identifies the pattern and reconstructs the disparity map. Thereby, a combina-
tion of geometric coding, color coding and tracking over time is used.

Using with the variational method and a stereo camera, we do not need to
identify the pattern during the reconstruction process. That gives us the follow-
ing advantages: 1.) we do not need to know the exact position of the projector
and 2.) we do not need prior knowledge about the structure of the projected
light. Let I(x, y, t) be an image of a scene without active illumination used (only
with ambient illumination), and IC(x, y, t) will be the image of the scene with
active illumination used (plus the same ambient illumination) and taken from
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the same position as I(x, y, t). Then the C(x, y, t) = IC(x, y, t) − I(x, y, t) will
be the visible color pattern.

The data term of the Euler-Lagrange equation (6), which we solve to esti-
mate the disparity map, has the following form: Ilx(Ir − Il). In order to achieve
accurate results, we need to make this term as informative as possible (for de-
tails, please refer to [9]). Using structured light, we can express this demand as
follows:∂IC

∂x >> 0, or

arg max
C

∂IC

∂x
= arg max

C

∂(I + C)
∂x

= Ix + arg max
C

Cx , (9)

i.e. the optimal structured pattern for the variational approach is such a pat-
tern, where the horizontal derivative is maximal. Thus, vertical black-and-white
stripes (see Fig. 2) without any adaptation to Ix(x, y, t) or to the observed scene
are best suited to achieve highest accuracy. This conclusion agrees with the work
of Horn and Kiryati [22]. However, such a pattern has some important disadvan-
tages. If the scene lacks texture, after illuminating it with the black and white
stripes pattern, we get the same uncertainty, because of the repeating structure
of the pattern. Moreover, using multi-grids, the variational method needs to have
a set of coarser copies of the input images, and using the black-and-white stripes
with geometric coding could cause ambiguities on some coarse levels. As a solu-
tion, we propose a random generated, high-contrast color pattern (see Fig. 2).
Since this pattern is generated randomly, all the levels (coarse and fine) will
contain random vertical lines based illumination.

Assuming all surfaces in the scene obey Lambertian reflection, the reflected
light resulting from the blending of projected light and object texture is identical
in both images [23].

4 Evaluation

In this section we show results for the presented space-time variational method
with active illumination for disparity estimation. The results are also presented
in the supplemental video. The method was implemented, using single-threaded
C++ code, and all the experiments were made on a Intel Core 2 Quad Processor
2,83GHz with 8GB DDR2 RAM. To evaluate our novel method, we use three
different data sets with ground-truth disparity and occlusion maps. We evaluate
the results with the percentage of “bad” voxels (which have a disparity error
larger than one or two pixels, see [24] for more details).

Dynamic scene without active illumination. As a first example, we use
the data set Gargoyle from York University [25], with a resolution of 640x480x40
voxels. The results for one of the frames from the sequence for the classical vari-
ational single frame processing (SFP) and novel variational space-time process-
ing (STP) approaches can be found in Fig. 3. For both approaches, the number
of iterations at the finest level is 10, and the parameter λ of the non-linear
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Fig. 3. Gargoyle scene: top row (from left to right): left and right images of the 27th
stereo pair from the sequence, the corresponding ground truth disparity and occlusion
map; bottom row: (from left to right) solution and bad pixels map (9.69%) for the
SFP approach, solution and bad pixels map (7.99%) for the STP approach (error
threshold = 2 pixels) (red pixels = bad pixels).

Charbonnier regularizer is λ = 0.03. The only difference are the smoothness
parameters, which are ϕ = 2500 for SFP, and ϕ = 2300 and ψ = 100 for STP.

The calculation time for the whole space-time block containing all 40 frames
is 114 seconds. For the 27th stereo frame, we can observe an improvement from
9.69% for SFP to 7.99% for STP. Fig. 5 shows the percentage of bad pixels for
the whole sequence. The STP curve is smoother than the SFP curve and on
average we gain about 1.3% improvement (SFP: 10.42%; STP: 9.16%).

Static scene with active illumination. In a second experiment, we use the
dataset Ship, with a resolution of 600x400x10 voxels. The scene was shot with a
point Grey Bumblebee R© XB3 camera and the ground truth was obtained with
a Konika Minolta 3D laser scanner. In Fig. 4, the results for the classical SFP
and novel STP are shown. For both approaches we set the number of iterations
to 25, and used the linear Tichonov penalizer for time dimension and the non-
linear Charbonnier and Perrona-Malik penalizers with λ = 0.01 and λ = 0.3,
respectively, for space dimensions. The SFP approach is applied with smoothness
parameter ϕ = 5000 and STP with ϕ = 1000 and ψ = 1000. The calculation
time for this scene is 55 seconds.

For the first stereo frame, we can observe a large improvement from 14.74%
for SFP to 10.41% for STP. This is because in static scenes the solution is the
same for all the frames of the input sequence, and therefore the algorithm can
rely strongly on the temporal regularizer and we can use a very sharp penalizer
for the space dimensions. As a result, we gain more accurate edges and less noise
in the background of the reconstructed disparity map. Fig. 5(right) shows the
percentage of bad pixels for the whole sequence. We can observe that the STP
curve is almost constant and concurs with the average value of bad voxels. In
contrast, SFP curve is not smooth and on average we gain an improvement of
about 4% (SFP: 14.56%; STP: 10.54%).
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Fig. 4. Ship scene: top row (from left to right): left and right images of the first
stereo pair from the sequence, the ground-truth disparity and occlusion map; bottom
row: (from left to right) solution and bad pixels map (14.74%) for the SFP approach,
and solution and bad pixels map (10.41%) for the STP approach (error threshold = 2
pixels) (red pixels = bad pixels).

Fig. 5. Comparison of the reconstruction accuracy for SFP and STP (error threshold
= 2 pixels). left: Gargoyle scene: Average values: SFP: (10.42%); STP: (9.16%); right:
Ship scene: Average values: SFP: (14.56%); STP: (10.54%).

Dynamic scene with active illumination. The last dataset is the synthetic
scene Knight, with a resolution of 640x360x18 voxels. The 3D scene and ground
truth data are generated in manually in a 3D modeling package. The scene
has a static background and a rotating knight shell. The maximal disparity in
the scene is 16 pixels. In Fig. 6 the results for the novel STP approach with
and without active illumination is shown. For both cases we used 15 iterations
on the finest level and non-linear Charbonnier and Perrona-Malik penalizers
with λ = 0.01 and λ = 0.3 for time and space dimensions, respectively. The
smoothness parameters are ϕ = 2500 and ψ = 1100.

For the 7th stereo frame (shown in Fig. 6), we can observe more than two times
improvement, from 4.46% of bad pixels without active illumination to 2.13% with
active illumination. As we can see from the Fig. 6, with active illumination and
space-time processing it became possible to completely get rid of bad pixels in the
static background, and significantly reduce the amount of bad pixels at the edges
of the moving objects due to the application of the non-linear regularization in
the time dimension. The processing of the whole scene took 58 seconds. The



Using Active Illumination for Accurate Variational Space-Time Stereo 761

Fig. 6. Knight scene: top row (from left to right): left images of the 7th stereo pair
from the sequence (without active illumination (AI) and with AI), the ground truth,
and occlusion map; bottom row: (from left to right) solution and bad pixels map
(4.46%) for STP approach without AI, and solution and bad pixels map (2.13%) for
STP with AI (error threshold = 1 pixel) (red pixels = bad pixels)

Fig. 7. left: The finest MLAT grid for the Knight scene; right: Emitting active
illumination color pattern each i-th frame (error threshold = 1 pixel)

finest grid, calculated by MLAT and used for all 18 frames of the sequence is
depicted in Fig. 7(left).

We further evaluated the approach by applying active illumination not all the
time, but only each i-th frame. This can significantly reduce the energy con-
sumption for an LED-structured light projector in real-life applications without
losing too much accuracy in reconstructed disparity maps. The results of this
experiment are shown in Fig. 7(right). We used the following parameters: num-
ber of iterations is 20, non-linear Charbonnier and Perrona-Malik penalizers
with λ = 0.01 and λ = 0.3 for time and space dimensions, respectively, and
smoothness parameters ϕ = 2300 and ψ = 1500.

From the diagrams in Fig. 7(right) we can observe that if there are no frames
with active illumination used in the sequence, the SFP approach gives better
results than STP. That is because we used the same parameters for the whole
experiment, and these parameter must be a trade-off between processing scenes
with active illumination and without. In our case, STP gives worse results, be-
cause of too strong smoothness of the solution in time direction, which resulted
in a too strong blurring of the disparity map around the moving objects in scene.
On the other hand, we can observe that already with 20% frames with active
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Table 1. Comparison of the average percentage of bad pixels for the Knight scene
(error threshold = 1 pixel). Improvement ratio are given in brackets.

without AI with AI
SFP STP SFP STP

Variational method 5.9% 5.2% (1.1x) 3% (2x) 1.9% (3.1x)
Expansion method 2.9% 3.7% (0.8x) 2.4% (1.2x) 2.2% (1.3x)
Belief propagation 3.1% 2.9% (1.1x) 1.9% (1.6x) 1.4% (2.2x)
Swap method 10.3% 8.8% (1.2x) 7.2% (1.4x) 4% (2.6x)
Infection method 16.3% 16.2% (1.0x) 9.1% (1.8x) 8.9% (1.8x)
TRW method 3.6% 2.4% (1.5x) 2.4% (1.5x) 1.3% (2.8x)

illumination used in the sequence we observe two times better accuracy than
with SFP.

In the Tab. 1 we show the best results that are gained with different com-
binations of the proposed variational methods in the top row of the table. The
worst case is the processing of each frame separately and without active illu-
mination. The best result was achieved for the space-time approach with active
illumination with 1.9% of bad voxels. The other rows of Tab. 1 show results for
classical methods, which implementations are available online1. The STP results
of these methods are generated by smoothing the SFP results over time with the
Tichonov regularizer.

5 Conclusion

We have shown that processing time-space blocks instead of single stereo image
pairs provides significantly higher accuracy for the disparity reconstruction. Pro-
cessing the time-space blocks within the variational method and the combination
with active illumination has shown to be an effective approach. The accuracy
of static scenes with different randomly generated color patterns increases the
accuracy of reconstruction. A comparison on datasets with a classical varia-
tional disparity estimator, which processes only a single frame, shows that our
implementation of the extended variational approach outperforms the current
state-of-the-art. Furthermore, we showed how speed-improving techniques, like
the full-multi-grid technique and the multi-level-adaptation technique, can be
applied in the space-time stereo variational framework.
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Abstract. A semiautomatic segmentation method for images of allergic
reactions in skin prick test is proposed. The method is based on elliptic
model for the shape of the wheal, and it uses the kernel Fisher discrim-
inant for grayscale projection and for measuring the separability of the
object and the background areas. Experiments indicate that the method
is robust and the results are close to those obtained manually.

Keywords: Allergy Test, Kernel Fisher Discriminant, Elliptic Shape
Model.

1 Introduction

The skin prick test is a standard allergy diagnosis method. Compared to its
alternatives, e.g., measuring the antibody levels in the blood, it is simpler and the
results are available immediately. In a typical skin prick test, multiple allergens
are tested at the same time by placing drops of allergen extracts on the patient’s
skin (usually on the forearm) and piercing the skin with a small metal lancet.
A positive reaction induces a raised itchy area, a wheal, whose size is used for
estimating the sensitivity to certain allergen. Traditionally, a medical doctor uses
a ruler to manually measure the size of the wheal. The test procedure assumes an
elliptic shape, with possible elongated branches (called pseudopodia) disregarded
and the result of the measurement is the mean of the major and minor axes of
the imaginary ellipse [10]. An illustration of the measurement is in Figure 1. As
can be seen, most practitioners apply pressure to improve the visibility.

Problems with the traditional method are that the measurement result is
subjective and only one measurement can be taken at a single time instant (so
all wheals are not measured simultaneously). The wheal growth speed may also
have some clinical importance, which can not be exploited today. Additionally,
no documentation is left from the reaction (besides the possibly biased measure-
ments). Thus, automation of allergy test using image analysis is of interest.

Several approaches using digital photography and subsequent image analysis
for skin erythema detection and melanoma detection have been proposed. There
exists a lot of literature on melanoma segmentation [2,4,5], but only a few studies
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Fig. 1. Manual allergy measurement

of measurement of allergic reactions from 2D pictures [8,9], 3D profiles [10] or
other specialized imaging hardware [13]. Our concern is in low-cost 2D digital
color photography. Among these, Roullot et al. [9] considers seven well known
color spaces and compares the separability of the reaction from the background
using a training database. As a result, they discover that the optimal dimension
among the color spaces is the a∗-component of the L∗a∗b∗ color space. Using the
extracted a∗-component, they use simple thresholding for segmenting the wheal.

Nischik et al. [8] also discover the L∗a∗b∗ color space most suitable for the
wheal segmentation and use the standard deviations of the L∗ and a∗ compo-
nents as the features for classification. The classifier is trained to separate be-
tween foreground (the wheal) and the background (healthy skin) using manually
generated training data. The classifier output determines directly the boundary
between the two regions.

Recent work by Celebi et al. consider finding optimal color transformation
for extracting the foreground [2]. Although the paper concentrates on melanoma
segmentation, the principle is applicable for other skin diseases, as well. The
paper searches for optimal linear combination of the RGB-components, such
that the output maximizes the separability of the foreground and background.
The foreground and background are determined in each iteration using Otsu
thresholding. Thus, the algorithm iterates all projections defined on a finite grid,
and tests their performance by measuring the Fisher ratio of the foreground and
background (which are determined using Otsu thresholding).

The method of [2] is an unsupervised method, which attempts to find the best
projection without any user manual assistance. However, in our work we study
the case, in which the user points the approximate center of the wheal. From
the practical point of view this is acceptable, because it requires less work than
the manual measurement. However, we plan to automate the detection of the
wheal location in the future. Note also that in the temporal direction, clicking
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Fig. 2. Proposed wheal detection framework

the last image in the time series is enough for determining the wheal location in
all pictures, if temporal motion compensation is used.

The method proposed in this paper consists of the steps in the block diagram
of Figure 2 and are described in the paper as follows. In Section 2, the optimal
grayscale projection is stated in terms of the Fisher Discriminant (FD). Section
2 also considers the Kernel Fisher Discriminant (KFD), which generalizes the
FD using the kernel trick. After describing the optimal grayscale mapping, we
define an elliptical shape model for the wheal in Section 3. Finally, in Section 4
we present experimental results and conclude with discussion in Section 5.

2 Grayscale Projection

The key problem when searching the borders of the wheal is the poor contrast
between the wheal and skin. An example of a wheal is illustrated in Figure 3 (a).
Although the wheal borders are barely visible, the shape becomes highlighted
when mapped into grayscale in a suitable manner. Well known mappings for skin
color processing include the hue component of the HSV color space (Figure 3 (b))
and the a∗ component of the L∗a∗b∗ color space (Figure 3 (c)). In all projections,
we have smoothed the RGB image by convolution with a disc shaped window
of radius 5. However, these are more or less arbitrary, and variability in skin
color and allergic reaction strength may decrease their applicability. Instead,
training based projections may improve the separation further, and make it more
invariant for all patients. An unsupervised method for finding a well-separating
projection in terms of the Fisher criterion was proposed by Celebi et al. [2],
whose result is shown in Figure 3 (d). In this case the coefficients are 1, -0.1 and
-0.3 for red, green and blue channels, respectively.

Optimality of the grayscale projection can be studied assuming that we know
the approximate location of the wheal. This way we can construct training sets
consisting of the wheal area and the surrounding healthy skin, denoted by S1

and S0, respectively. With the training sets we can seek for optimal separation
in the RGB space in a supervised fashion.

The training set is acquired as follows. When the user has pointed the ap-
proximate location of the center of the wheal, a set of RGB values is obtained
from the neighborhood. In our experiments, the training set of the wheal (S1)
is obtained inside the circular neighborhood with the radius of 10 pixels. The
training set of the healthy skin (S0) is acquired from pixels that are far away
from the center. In our experiments this is done by taking all pixels located at a
radius between 45 and 50 pixels from the center, as illustrated in Figure 3 (h).

The natural tool for optimally projecting the three-dimensions to grayscale is
the Fisher Discriminant, [3]. Fisher discriminant finds the projection dimension
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. The projection of the wheal in RGB color space. The original RGB image is
shown in Figure (a), and (b) shows the hue component, (c) the a∗ component of the
L∗a∗b∗ color space and (d) is the projection proposed in [2]. Optimal Fisher discrim-
inant projection is shown in Figure (e), and the results of its kernelized version are
shown in figures (f) and (g) using RBF kernel with bandwidth σ selected using Silver-
man rule of thumb and with fixed σ = 0.5. The training sets are obtained from areas
shown in (h), where the blue center is the foreground sample region and the green circle
is the background sample region.

w that maximizes the separability of the classes in terms of the ratio of the
between-class-variance and within-class-variance; i.e., the so called Fisher ratio:

J(w) =
wTSBw
wT SWw

, (1)

where SW ∈ R3×3 and SB ∈ R3×3 are the within-class and between-class scatter
matrices, respectively. It can be shown that the optimal direction w is given by

w = S−1
W (μ1 − μ0), (2)

where μ1 ∈ R3 and μ0 ∈ R3 are the sample means of S1 and S0. An example
of the result of the Fisher discriminant projection is shown in Figure 3 (e).

The FD is a special case of so called Kernel Fisher Discriminant (KFD) [7,11],
which is a kernelized version of the standard FD. As all kernel methods, the KFD
implicitly maps the original data into a high-dimensional feature space and finds
the optimally separating manifold there. Using the implicit mapping via the
kernel trick, the explicit mapping can be avoided, which allows calculating the
FD even in an infinite-dimensional space.
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In practice the KFD can be calculated implicitly by substituting all dot prod-
ucts with a kernel function κ(·, ·). It can be shown, that all positive definite
kernel functions correspond to a dot product after transforming the data to a
feature space H with mapping Φ(·) [11]. The feature space H can be very high
dimensional, and the use of the projection vector w directly may be impractical
or impossible. Instead, the famous Representer theorem guarantees that the so-
lution can be represented as a linear combination of the mapped samples [11].
Thus, the Fisher ratio in the feature space is based on the weights of the samples
α instead of the weights of the dimensions:

J(α) =
αTQTSΦ

BQα

αTQT SΦ
WQα

, (3)

where α ∈ RN = (α1, α2, . . . , αN )T is the weight vector for the mapped training
samples in the matrix Q = [Φ(x1), ...,Φ(xN )], and SΦ

B and SΦ
W are the between-

class and within-class scatter matrices in the feature space H, respectively.
Similar solution as the one for the Fisher discriminant in Eq. (2) can be found

also for this case, [11]. However the inversion becomes more difficult, since the
dimension of the weight vector α is now the number of the collected training
samples. Therefore, we need a regularization term λI, where λ is a small positive
scalar and I is the N×N identity matrix. In our notation this yields the solution

α = (QTSΦ
W Q + λI)−1QT (μΦ

1 − μΦ
0 ), (4)

where μΦ
1 ∈ H and μΦ

0 ∈ H are the sample means of the mapped wheal and
skin samples, respectively. It is straightforward to show, that Eq. (4) can be
expressed in terms of dot products and thus the kernel trick, [7,11]. Also the
actual projection of a test sample x ∈ R3 can be expressed through the kernel
as y = αT QTΦ(x) =

∑N
i=1 αiκ(xi,x).

There are various alternatives for the kernel function κ(·, ·), among which
the most widely used are the polynomial kernels and the Radial Basis Function
(RBF) kernel. We experimented with various kernels, and found out that the
polynomial kernels do not increase the separation significantly when compared
with the linear kernel, which is equivalent to the traditional FD. In other words,
all low-order polynomial kernels produce a projection very similar to the first
order kernel, shown in Figure 3 (e). However, the separation seems to improve
with the RBF kernel

κ(u,v) = exp
(
−||u − v||2

2σ2

)
. (5)

There are two parameters in the KFD projection with RBF kernel: The regu-
larization parameter λ and the kernel width σ2. Since there exists a lot of training
data in our case, it seems to be less sensitive to the regularization parameter λ
than the width σ2. In our experiments we set the value of λ = 10−5, and if the
condition number of the matrix in Eq. (4) indicates that the matrix is close to
singular, the value of λ is increased ten-fold until the inversion succeeds.
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Fig. 4. Left: The grayscale projection data of the wheal in Figure 3 using KFD pro-
jection with RBF kernel and σ = 1. Right: The final result after nonlinear LS fit.

Figures 3 (f-g) illustrate the effect of the bandwidth parameter σ2. Figure 3
(f) uses the bandwidth selected using so called Silverman’s rule of thumb [12],
widely used in kernel density estimation and defined by σ̂rot = 1.06σ̂xN

− 1
5 ,

where σ̂x is the sample standard deviation of the data and N is the data length.
In the example in Figure 3 (f) the rule of thumb gives σrot = 1.37. Figure 3 (g)
on the other hand illustrates the result with fixed σ = 0.5.

3 Elliptic Shape Model

The transition from the background (the healthy skin) to the foreground (the
wheal) can be quite smooth, and the KFD-projected image may contain several
individual foreground regions although the image has only one wheal. This is
mostly due to the noise in the data, whose effect is greatly emphasized by the
grayscale projection. Therefore, simple thresholding results in ragged boundaries,
and unrealistic wheal size estimates. In order to increase the robustness of the
segmentation, we fit a shape model for the appearance of the wheal. Since the
manual measurement assumes that the wheals are ellipses, an elliptic shape
model seems reasonable. Thus, the problem is to find an ellipse that divides the
image into two maximally inhomogeneous areas.

Since there are an infinite amount of ellipses, we have to limit the search space
somehow. This can be done by fitting a model to the grayscale projection and
considering only the isosurfaces of the model. Based on Figure 3, the Gaussian
surface seems an appropriate model for the spatial grayscale distribution in this
case. Moreover, it suits our assumption of elliptic wheals, because the isosurfaces
of the two-dimensional Gaussian are ellipses.

More specifically, the Gaussian model is defined by

f(x; c,x0,Σ) = c · exp
(−(x − x0)T Σ(x − x0)

)
, (6)

where c ∈ R+ defines the scale of the Gaussian, x = (x, y)T denotes the image
coordinates where the the model is fitted, x0 = (x0, y0)T denotes the location of
the peak of the Gaussian and Σ ∈ R2×2 is a symmetric coefficient matrix.

The least squares (LS) fit to the grayscale image data is defined by

min
c,Σ,x0

N∑
k=0

(zk − f(xk; c,x0,Σ))2, (7)
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Fig. 5. Left: The KFDR as a function of the ellipse size. Center: The maximally separat-
ing ellipse overlaid on top of the corresponding KFD projection. Right: The maximally
separating ellipse overlaid on top of original RGB data.

where zk denotes the grayscale value at image position xk. Note that the data
has to be preprocessed by subtracting the minimum of zk, k = 0, . . . , N , in order
to avoid a constant offset term in the model.

Fitting the Gaussian is a nontrivial problem, although lot of literature on the
topic exists (e.g., [1]). However, the easiest approach is to use software packages
such as Matlab Optimization toolbox to find the optimal parameters. In order
to avoid local minima, we initialized the iterative search with the parameters
obtained from a logarithmic transformation of the model and the data. This
makes the problem linear least squares, and provides a good starting point.
Figure 4 shows the original grayscale data on the left, the result of logarithmic
fitting in the center and the result of nonlinear iterative fitting on the right.

The isosurfaces of the Gaussian fit can be used as candidates for elliptic seg-
mentation. As noted earlier, all the isosurfaces are cross-sections of a paraboloid
and thus ellipses. Moreover, due to fitting, they most likely have the correct
orientation and correct ratio of major and minor axis lengths. Thus, our next
goal is to seek for the best elliptic isosurface among them all.

The definition of a good ellipse among the candidates needs some measure
of separation between the segmented areas. Recent work by Harchaoui et al. [6]
considers using the Kernel Fisher Discriminant Ratio (KFDR) for testing the
homogeneity between two sets, which coincides well with our use of KFD for
grayscale projection in Section 2.

In other words, we test all ellipses that are cross sections of the fitted Gaussian
and attempt to maximize the KFDR of Eq. (3) with respect to training sets
defined by the ellipse. The situation is similar to the grayscale projection, but
now we are not looking for a good classifier for the RGB data, but only assessing
how well the data could be classified. Unlike Section 2, the choice of the training
samples is now based on the boundaries of the ellipse to be tested. Note that
this is not equivalent to calculating the variances directly from the projections
of Figure 3, because the projection is calculated separately for the training sets
determined by each ellipse candidate.

Sometimes the KFDR separability criterion results in very small ellipses, be-
cause a small foreground training set tends to be well separable. As an extreme
example, an ellipse containing only a single pixel has extremely good separability
assuming no other pixel has exactly the same RGB value. Thus, we decided to
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modify the criterion by multiplying it with the cardinality of the smaller training
set. Alternatively, we could set a minimum size restriction for the ellipse.

An example of the separability test is shown in Figure 5. The figure shows
the KFDR between the "inside" class and the "outside" class for ellipses with
different radius. It can be seen that the maximal separation is obtained at radius
42, and the corresponding ellipse is illustrated in Figure 5, as well.

4 Experimental Results

The results from the described method are compared to manual wheal segmen-
tations (made by a non-medical expert). The similarity measure used by Celebi
et al. [2] compares the areas of the segmentations. For our purposes, this is not
an appropriate criterion, since ultimately we are interested in the major and
minor axes of the wheal. The error in areas increases quadratically with respect
to the axes, which is not desirable. Instead, we used the following error criterion
between the computer segmentation A and the manual ground truth B:

E(A,B) =

√
Area(OR(A,B)) −√

Area(AND(A,B))√
Area(B)

, (8)

where OR(A,B) consists of pixels segmented as foreground in A or B, and
AND(A,B) of foreground pixels in both A and B. Moreover, Area(A) is the
number of foreground pixels in A. The favourable property of Eq. (8) is that it
increases linearly with respect to the error in major and minor axes. For example,
it can be shown that the error measure for concentric circles with radii r+a and
r − a are equal if the true radius is r. This is not the case with the error of [2].

Examples of segmentation results are illustrated in Figure 6. The figure shows
the result of manual segmentation (red) compared with the result of the proposed

Table 1. The comparison of automated wheal measurement methods in terms of the
error of Eq. (8). Each row defines an initial color space, each column corresponds
to a grayscale transformation. The last column corresponds to a manually designed
transformation based on what looks good. In the RGB case, the Ad Hoc transformation
is the difference G−B, in the L∗a∗b∗ case it is the a∗ component, and in the HSV case
the H component.

Gaussian Gaussian Gaussian Linear 2. order Celebi Ad
(σ = 0.5) (σ = 1) (σ = σrot) kernel kernel method hoc

With RGB 0.3283 0.2152 0.2331 0.4008 0.2119 1.5159 0.2552
shape L∗a∗b∗ 0.2120 0.2296 0.2141 0.1853 0.2154 1.4405 0.9945
model HSV 0.2501 0.2225 0.1951 0.4922 0.3948 1.2466 0.6302

Without RGB 0.4850 0.2327 0.1871 0.2602 0.2170 1.1963 0.2799
shape L∗a∗b∗ 0.2274 0.1866 0.3017 0.2403 0.2190 1.0266 1.4060
model HSV 0.2218 0.2219 0.5129 0.3932 0.3435 1.0099 0.4573
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Fig. 6. An example of segmentation result. The red boundary is the result of manual
segmentation, while blue and green boundaries represent the result of our method
with and without the elliptic shape model, respectively. The errors (with / without
shape model) for the five wheals are as follows (from left to right): 0.3144/0.2157,
0.2284/0.1562, 0.1130/0.2336, 0.1233/0.1269, 0.2457/0.1212.

method with (blue) and without (green) the shape model. Table 1 represents the
average errors with different grayscale transformations. The test data consists of
seven wheals including those shown in Figure 6. The five first columns represent
different KFD projections designed using training data, while in the last two
columns the projection is designed in an unsupervised or ad hoc manner.

From the results one can clearly see that the KFD projections have the small-
est errors. The errors are many times larger in the last two columns. On the
other hand, the best performing projections (e.g., the Gaussian kernel) seems
to make the elliptic shape model unnecessary. On the other hand, this is rather
obvious when looking at, e.g., the result in Figure 3(f), where the separation
between foreground and background is very clear.

Another reason for a worse than expected performance of the shape model is
seen in Figure 6. The manually segmented wheals are not ellipses, so the elliptic
model can not reach zero error even in theory. The best cases are the ones where
the true wheal is ellipse-shaped with no elongated pseudopodia, i.e., 3rd and 4th

wheals from the left. In all other cases the wheal shape is more irregular, and
the shape model results in the largest inscribed ellipse. However, there is some
randomness in the results due to the small N . We plan to study the performance
with larger N and compare them with the manual results of a trained physician.

5 Conclusions

In this paper we proposed a method for automatic segmentation of allergic reac-
tions. The method combines an optimal grayscale transformation with an elliptic
shape model for the allergic reactions. Experiments show that the method can
efficiently quantify the size of the wheal. The experiments also indicate that
the grayscale transformation is sometimes powerful enough to render the elliptic
shape mode unnecessary. However, the shape model results may be in coherence
with medical doctor’s measurements, since they also disregard the pseudopodia.

We plan to continue the development of the algorithm into several directions.
One is to consider a recently introduced method of graph cuts with shape pri-
ors. It will also be interesting to compare the results with those of a medical
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doctor, together with larger population of test persons. Also the robustness of
the method to, e.g., the starting point pointed by the user is an important
topic for practical applicability. Additional topics of future work include auto-
matic wheal detection and extension of the method to time series measured from
video.
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Abstract. In this paper we present a framework to construct a continu-
ous orientation representation in arbitrary dimensions. Existing methods
for 2D (doubling the angle) and 3D (Knutsson mapping) were found ad
hoc. We show how they can be put in a general framework to derive suit-
able representations for filtering in spaces of arbitrary dimension. The
dimensionality of the derived representation is shown to be minimal.
Connections with the gradient structure tensor and Knutsson mapping
are shown, like the fact that angle doubling works in each pair-cone of
the Knutsson mapping. Finally, using projection operators we show how
angles between vectors in the base space are related to vectors in the
mapped spaces and in particular how to achieve preservation of isotropy.

Keywords: orientation representation, angle doubling, projection
operators.

1 Introduction

The representation of directional information such that filtering can be applied
without discontinuities has received considerable attention in the early days of
image analysis for two-dimensional images [1,2,3,4]. Later representations for
3-dimensional images have been found [5,6]. Most notably are here the contri-
butions of Knutsson [4,5], who found a 5D minimal representation for 3D data
and Granlund who found the angle doubling for 2D data [1].

The important role of directional information comes from the need to charac-
terize simple neighborhoods - the local structure - in images. They are the basic
building blocks of images. Simple neighborhoods are commonly referred to as
shift invariant in at least one direction and not shift invariant in at least one
other direction[2,3,7]. First order intensity variations are described by gradients
and a collection of local gradients is needed to compute a dominant orientation.
A vector has direction but locally only the orientation is needed. Representing
orientation by angles (direction information) is troublesome, in the sense that it
� Corresponding author.
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is discontinuous. E.g. representing a line in 2D by its angle [0, 2π] with respect
to a fixed coordinate axis is not suitable. More general, vectors v and −v have
the same orientation but point in opposite directions.

Averaging operations on directional representation by standard filtering in
order to reduce noise produce artifacts at the discontinuities given by e.g. the
angle representation. Standard filtering requires a continuous orientation repre-
sentation, i.e. to compute the local dominant orientation. A well-known tool to
analyze one-dimensional neighborhoods from gradients is the Gradient Struc-
ture Tensor (GST) [2,3,8,9,10]. It is defined as the dyadic product of the image
gradients

G := ∇I∇It and G := ∇I∇It , (1)

where I is a nD grey-value image and the over-lining stands for averaging the
tensor elements inside a local neighborhood. This smoothing scale is typically
3 to 10 times larger than the scale at which the (regularized) gradients are
computed. This suppresses gradient orientation contributions due to noise and
yields a smooth, robust orientation output. Interpretation of the filtering is done
via an eigenvalue analysis of G and the ratio of the eigenvalues describe the local
structure. Other applications that require continuous orientation representations
include the estimation of curvature (i.e. the rate of change of local orientation)
[11,12] and block matching in MRI diffusion tensor imaging [13]. Also the widely
used Hough transform for detecting straight lines benefits from a continuous
parameter representation [14,15].

For locally multi-directional neighborhoods more complex approaches are
needed. Structure such as crossing fibers or corners in images have locally more
than one dominant orientation. The eigenvalue analysis of e.g. the structure ten-
sor cannot handle that and standard smoothing of the representation will not
return any of the dominant orientations, but a weighted average. A variety of dif-
ferent approaches have been developed that can deal with these neighborhoods
[16,17,18,19].

In 1989 Knutsson [5] introduced the following mapping M : IRn → IRn×n to
map discontinuous to continuous representations that allow further processing

M(v) =
vvt

‖v‖ , v ∈ IRn . (2)

Here the vector v is generally the image gradient. From the construction it is clear
thatM is symmetric and has only n(n+1)/2 independent components. The map-
ping is slightly different from the structure tensor G. Both mappings treat an-
tipodal vectors the same by mapping them onto the same tensorM(v) = M(−v).
They have a rotation invariant norm, i.e. the information carried by the mag-
nitude is not mixed with information carried by the angle (polar separability).
However, eq. 2 differs from the GST in that it preserves distances between the
input and output space (uniform stretch), i.e. ‖δM(v)‖ = c‖δv‖ for ‖v‖ = const.
whereas ‖δG(v)‖ = c‖δv‖‖v‖. The uniform stretch property allows to compute
curvature of lines and surfaces in nD by applying derivative filters to M and
to interpret the outcome [11,12]. Without distance preservation the outcome of
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derivative filters on the mapped representation cannot be interpreted in the same
way as in the base space.

The property of a rotation invariant norm of eq. 2 leads to another restriction
on the mapping in the form of trace(M) = const.. Therefore the dimensionality
of the mapping proposed in eq. 2 can be further reduced [6], i.e. in addition to
omitting the non-unique terms. Applying this dimensionality reduction to the
2D case of eq. 2 in polar form leads to the double angle method of Granlund
r(cos 2ϕ, sin 2ϕ) [2,7,6]. Already in 1985 Knutsson presented the solution for the
3D case [4] ad hoc. Later it turned out that his solution can also be directly
obtained from eq. 2 by applying dimensionality reduction and reverting to polar
coordinates [6].

2 Construction of the General Knutsson Mapping

The construction of the mapping with minimal dimensions from eq. 2 for the
n-dimensional case has remained unclear. In [6] we already observed that the
dimensionality reduction of eq. 2 led to the angular harmonics in 2D and the
spherical harmonics in 3D. The construction, however, of an orthonormal basis
for higher dimensional spherical harmonics is not straight-forward [20].

Here we present a concept to iteratively construct an orthonormal basis to rep-
resent orientation in nD. We put the dimensionality reduction into a framework
that allows intuitive construction. Let the diagonal elements {Mii}, i = 1, . . . n

of eq. 2 span a nD space where Mii is one basis vector (0, . . . ,
i↓
1 , 0, . . . , 0). As

the trace must be constant, i.e.
∑
Mii = const., we rotate the basis such that

one new axis is aligned with 1 = (1, . . . 1) and the rest are orthogonal to it
(orthonormality can always be achieved later if necessary by normalization).
The off-diagonal elements of eq. 2 remain untouched, they comprise already a
minimal set, and will flow into the mapping as is.

2.1 The 2D Case in the General Framework

We now apply a (unknown) rotation matrix R2 to the standard basis I in 2D
such that R2I = D2 produces a matrix D2 in which the last column is a vector
with only ones 1 = (1, 1). For the 2D case this recipe looks for a rotation matrix
R2:

R2

(
1 0
0 1

)
=
(
a1 1
a2 1

)
= D2 (3)

such that the inner product of vector a and 1 is zero, i.e. (a,1) = (a1, a2)·(1, 1) =
0 ⇒ a1 = −a2. Up to a scaling factor the matrix D2 is again a rotation matrix.
Let us choose a1 = 1 and apply D2 to the diagonal elements of M(v) = (v2

1 , v
2
2)

for ‖v‖ = r = 1 and we obtain vT D2 = (v2
1 − v2

2 , v
2
1 + v2

2 = const.) =
(cos 2ϕ, const.). Together with the off-diagonal terms 2v1v2 = sin 2ϕ and normal-
ization with ‖v‖ = r this gives indeed the well-known double angle representation
[1,2]. The connection between the tensor representation of eq. 2 and the double
angle method has already been pointed out and made explicit in [7, Chapter 9].
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2.2 The 3D Case in the General Framework

Going to 3D we can use the 2D result if we rotate only in subspaces orthogonal
to the ones constructed for 2D. This way we construct D3

R3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ =

⎛
⎝ 1 b1 1

−1 b2 1
0 b3 1

⎞
⎠ = D3 (4)

such that b ⊥ 1 ⊥ (1,−1, 0). This orthogonality gives two equations for the
components of vector b

b1 − b2 = 0 (5)
b1 + b2 + b3 = 0 . (6)

Let us choose b1 = −1 ⇒ b2 = −1, b3 = 2. This choice yields the mapping
Knutsson found intuitively [4]. Applying this choice of D3 to the diagonal el-
ements of M(v) = (v2

1 , v
2
2 , v

2
3) for ‖v‖ = 1 we obtain vT D3 = (v2

1 − v2
2 , 2v2

3 −
v2
1 −v2

2 , v
2
1 +v2

2 +v2
3 = const.). In polar form this reads (sin2 ϑ cos 2φ,

√
3(cos2 ϑ−

1
3 ), const.). Putting these terms together with the off-diagonal elements
(v1v2, v1v3, v2v3) of eq. 2 we arrive at the original description by Knutsson [6].

2.3 The nD Case in the General Framework

We notice that there was a choice in one of the components of the vector a
and b to fulfill the requirements of orthogonality. This implies of course that the
mappings are not unique in terms of scaling (of an axis) as long as we do not
require orthonormality. We will also see that the implicit historic choices for a
and b do not generalize well to nD. For a systematic iterative construction let
us chose a1 = −1 ⇒ a2 = 1, or

D2 =
(

1 1
−1 1

)
(7)

and for 3D we use the earlier b1 = −1 ⇒ b2 = −1, b3 = 2, or

D3 =

⎛
⎝−1 −1 1

1 −1 1
0 2 1

⎞
⎠ . (8)

From this we can continue the construction for nD as follows

Dn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 · · · 1
1 −1 −1 · · · 1
0 2 −1 · · · 1
0 0 3 · · · 1

0 0 0
. . . 1

0 0 0 n− 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (9)
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The last column vector is 1 and the i-th vector is (

i times︷ ︸︸ ︷
−1, . . . ,−1, i, 0, . . .). It is

apparent from this iterative construction that all properties for each subspace
are preserved. That is, the lower dimensional mappings are embedded in the
higher dimensional representation. For example application of D4 to the diagonal
elements of M(v) in 4D reduces the set as follows: (v2

1 , v
2
2 , v

2
3 , v

2
4) → (−v2

1 +
v2
2 ,−v2

1 − v2
2 + 2v2

3 ,−v2
1 − v2

2 − v2
3 + 3v2

4 , const.). Orthonormality can always be
imposed if desired.

3 Alternative Mapping Based on Projection Operators
and Angles between Vectors in Mapped Space

We shall now give an alternative mapping based on projection operators of the
form I − PI . This mapping gives the same angles between mapped vectors and
therefore must be equivalent to the reduced mappings (angle doubling, [4, Eq.
50] and the general mapping implied by eq. 9), i.e. equal up to a global rotation
in mapped space. This rotation implicit in the former mappings brings the iden-
tity matrix along one of the axes (the last variable indicated as const.). In the
alternative presented here we just project it away.

A projection of a vector w onto a vector v is given by Pvw = (v,w)
(v,v) v, with

v, w,∈ IRn. Pv is idempotent and we have (I − Pv)Pv = Pv(I − Pv) = 0. Using
this property the inner product of two vectors v, w can be split into (v, w) =
(Pav, Paw)+((I−Pa)v, (I−Pa)w) by projection onto an arbitrary vector a ∈ IRn.
The projection onto I − Pa is to be interpreted as the projection onto the n− 1
dimensional hyperplane with normal a.

The angle between two vectors in mapped space by projections (from eq. 2)
is in operator notation cos∠(Pv, Pw) = (Pv, Pw) = cos2 ∠(v, w) = 1

2 +
1
2 cos(2∠(v, w)). This result was already found in [6, Eq. 21].

We now propose the following equivalent alternative mapping to the iterative
construction of eq. 9

v → (I − PI)Pv . (10)

To deduce the angle between the projection operators (I−PI)Pv and (I−PI)Pw

we use eq. 24 from the appendix

cos∠((I − PI)Pv, (I − PI)Pw) =
cos∠(Pv, Pw) − n−1

1 − n−1
(11)

=
1 − 2n−1

2 − 2n−1
+

cos(2∠(v, w))
2 − 2n−1

(12)

where we have used

cos∠(I, Pv) =
(I, Pv)
‖I‖‖Pv‖ =

1√
n
. (13)
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If we make this relation explicit for n = 2, 3, 4 we get for eq. 12

n = 2 : 0 + cos(2∠(v, w)) ,
n = 3 : 1

4 + 3
4 cos(2∠(v, w)) ,

n = 4 : 1
3 + 2

3 cos(2∠(v, w)) .

The case n = 2 was already long known as doubling of the angle and gives the
same relation as eq. 3. The case n = 3 gives the same relation as the mapping
of Knutsson as in [4, Eq. 50] or of course as eq. 8. For all higher dimensional
mappings generated by eq. 9 the angles in mapped space are to be computed
by eq. 12. For example for n = 3 we get for the diagonal elements by eq. 8
(−v2

1 + v2
2 ,−v2

1 − v2
2 + 2v2

3 , v
2
1 + v2

2 + v2
3 = const.) (up to scaling) and using the

projection of eq. 10 we get 1
3 (2v2

1 − v3
2 − v2

3 ,−v2
1 + 2v2

2 − v2
3 ,−v2

1 − v2
2 + 2v2

3). See
also the appendix for a comparison of the mappings.

From eq. 13 we see that 1/n can be interpreted as the average cosine angle
between two vectors in the mapped space M or

〈cos∠(Pv, Pw)〉 =
〈
cos2 ∠(v, w)

〉
=

1
n
. (14)

In this average, the vector v is fixed and the set {w} has uniform distribution
over the n− 1 dimensional solid angle.

From here it is not yet clear what the advantage is to use v → (I − PI)Pv

instead of the approach v → Pv of eq. 2, however, in the following we will see that
if we want the mapping to preserve the isotropy then it is indeed useful. Eq. 9
is also shown to preserve isotropy and reduces the components of the mapping
to be computed by one compared to eq. 2 or eq. 10.

4 Preserving Isotropy in Mapped Space

Summarizing the relations between angles in mapped space and original space
(eq. 11 and 13) we get

cos∠((I − PI)Pv, (I − PI)Pw) =
cos∠(Pv, Pw) − 〈cos∠(Pv, Pw)〉

1 − 〈cos∠(Pv, Pw)〉 (15)

=
cos(2∠(v, w)) − 〈cos(2∠(v, w))〉

1 − 〈cos(2∠(v, w))〉 . (16)

Now we see that the average cosine angle of this expression is zero, i.e.
〈cos∠((I − PI)Pv, (I − PI)Pw)〉 = 0, just as is the case for the average angle
〈cos∠(v, w)〉. Using the operator (I −PI)Pv produces a representation that pre-
serves isotropy.

The angle between operators does not change when they are multiplied by
a positive scalar ∠(P ′

v, P
′
w) = ∠(Pv, Pw) with P ′

v = f(v)Pv. Moreover, if f(v)
does not depend on the direction of v, preservation of isotropy (the zero average
of eq. 15) also holds for P ′ instead of P . Now we can characterize Knutsson’s
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mapping and our iterative construction scheme as follows: i) [4, Eq. 18-22] for
3D is equivalent to isotropy preservation of ‖v‖(I−PI)Pv, ii) [5, Eq. 4] (or eq. 2)
for nD is equivalent to ‖v‖Pv and iii) the iterative construction for nD of eq. 9
is equivalent to isotropy preserving ‖v‖(I − PI)Pv.

Please note, that Knutsson always used f(v) = ‖v‖. We remark that mappings
with different choices of f(v) could be studied, e.g. f(v) = ‖v‖p. In particular
p = 0 and p = 2 look interesting, with Dv = ‖v‖2Pv being the dyadic product
of v and v applied in the gradient structure tensor.

5 Doubling the Angle – Knutsson Cones in Higher
Dimensions

The angle between two mapped vectors has been investigated by Knutsson with
special attention to the case of a 2D Euclidean subspace (plane) in 3D [4]. He
found that each halfplane in his 5D reduced mapping is mapped onto a 2D
manifold in a separated 3D subspace where the manifold is the surface of a cone.
Note that doubling of the half-plane angle occurs in mapping the half-plane onto
the surface of a cone. That is due to the fact that the iterative construction of
the generalized mapping for arbitrary dimensions embeds all lower dimensional
mappings with their properties among which the angle doubling that was found
in 2D.

In generalizing from 2D to nD one might hope for generalization of the cone to
a hypercone. That appears to be impossible. Each pair of axes in nD forms a 2D
subspace with a corresponding cone. The extra dimension of a cone represents
at once both off-diagonal elements in the symmetric matrix. In nD the number
of off-diagonal element pairs can only be represented by one extra dimension for
each 2D subspace and this is what one cone per 2D subspace amounts to. In
Fig. 1 and Fig. 2 we visualize the cases for n = 2 and n = 3; below we formalize
our reasoning.

Let us consider now for sake of simplicity, but without loss of generality a
normal vector v = (c1, c2, c3) ∈ IR3 with ‖v‖ = 1, where ci represents the

Fig. 1. For the case n = 2 we draw the relation between the diagonal elements c2
1, c

2
2

and the off-diagonal element
√

2c1c2 and how this pair forms a cone
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Fig. 2. Knutsson cones in higher dimensions. In the general case each pair of ci, cj gives
one extra dimension and one guiding cone. The extra dimension of a cone represents
at once both off-diagonal elements in the symmetric matrix.

direction cosine. For the diagonal components of M(c) is it clear that they stay
in the subspace c21+c22+c23 = 1. The non-diagonal elements c1c2, c1c3, c2c3 follow
the respective guiding cones, i.e. the angle doubling works per pair-cone. Also
in higher dimensions only pairs operate in 2D. For the cones we must check the
norms such that everything adds up to one. This will give a scaling factor of

√
2

for the n(n+ 1)/2-dimensional mapping M

c21 + c22 + c23 = 1 (17)

(c21)
2 + (c22)

2 + (c23)
2 + (

√
2c1c2)2 + (

√
2c1c3)2 + (

√
2c2c3)2 = 1 . (18)

6 Conclusion

This paper presents a generalized framework for the construction of a continuous
orientation representation in arbitrary dimensions. The mappings for all dimen-
sions lower than the current one are embedded and hence its properties hold as
well. We introduced projection operators as an alternative to construct isotropy
preserving mappings. The ad hoc constructions of Granlund and Knutsson are
now explicit and available for arbitrary dimensional spaces. The well-known an-
gle doubling works in each pair-cone of the Knutsson mapping.
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Appendix

Projection Operator Properties

Let us consider the angle between Pav and Paw and (I − Pa)v and (I − Pa)w,
but first we compute the required inner products

(Pav, Paw) =
(

(a, v)
(a, a)

a,
(a,w)
(a, a)

a

)
(19)

= (a, v)(a,w)(a, a) (20)
= ‖v‖‖w‖ cos∠(a,w) cos ∠(a, v) , (21)

((I − Pa)v, (I − Pa)w) = (v, w) − (Pav, Paw) (22)
= ‖v‖‖w‖ (cos∠(v, w) − cos∠(a,w) cos ∠(a, v)) .(23)

For v = w we get ((I − Pa)v, (I − Pa)v) = ‖v‖| sin∠(a, v)|. Finally we arrive at

cos∠((I − Pa)v, (I − Pa)w) = cos∠(w, v) − cos∠(a, v) cos∠(a,w)
| sin ∠(a, v)|| sin ∠(a,w)| , (24)

cos∠(Pav, Paw) = cos∠(a, v) cos∠(a,w) . (25)

Eqs. 19 to 25 are also valid for the mapped vectors of a, v, w.

Relation between Iterative (eq. 9) and Alternative Mapping (eq. 10)

Let the symmetric matrices span the space S of dimensionality n+ (n2 − n)/2.
Further the off-diagonal symmetric matrices the (n2 − n)/2-dimensional space
N and the diagonal matrices the n-dimensional space D, where N and D are
orthogonal. D consists of the unit matrix I and its orthogonal complement,
the space T , of traceless matrices. The difference between eq. 9 and eq. 10 is
the treatment of the unit matrix I. In both cases v ∈ IRn is mapped to S by
projection on S of vT v (or a scaled version of it with f(v)). The projection onto N
is also the same, just copying the matrix elements vivj for i < j. The projection
onto D is different. Eq. 9 constructs an orthogonal basis in D consisting of I and
a basis of T consisting out of matrices orthogonal to I. Then it is projected onto
this basis in D and the projection onto I can be omitted as it is irrelevant for the
goal of the mapping. Eq. 10 also copies the matrix elements vivi but eliminates
the projection onto I.

Eq. 10 uses n components with condition that the sum over all components
must be zero, where eq. 9. uses the condition that the last component must be
constant.
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Abstract. Hough transform is a well-known and popular algorithm for
detecting lines in raster images. The standard Hough transform is rather
slow to be usable in real-time, so different accelerated and approximated
algorithms exist. This paper proposes a modified accumulation scheme
for the Hough transform, which makes it suitable for computer systems
with small but fast read-write memory – such as the today’s GPUs.
The proposed algorithm is evaluated both on synthetic binary images
and on complex high resolution real-world photos. The results show that
using today’s commodity graphics chips, the Hough transform can be
computed at interactive frame rates even with a high resolution of the
Hough space and with the Hough transform fully computed.

Keywords: Line Detection, Hough-Transform, Real-Time, GPU,
CUDA.

1 Introduction

The Hough transform is a well-known tool for detecting shapes and objects in
raster images. Originally, Hough [6] defined the transformation for detecting
lines; later it was extended for more complex shapes, such as circles, ellipses,
etc., and even generalized for arbitrary patterns [1].

When used for detecting lines in 2D raster images, the Hough transform is
defined by a parameterization of lines: each line is described by two parameters.
The input image is preprocessed and for each pixel which is likely to belong
to a line, voting accumulators corresponding to lines which could be coincident
with the pixel are increased. Next, the accumulators in the parameter space are
searched for local maxima above a given threshold, which correspond to likely
lines in the original image. The Hough transform was formalized by Princen
et al. [14] and described as an hypothesis testing process.

Hough [6] parameterized the lines by their slope and y-axis intercept. A very
popular parameterization introduced by Duda and Hart [3] is denoted as θ-"; it
is important for its inherently bounded parameter space. It is based on a line
equation in the normal form: y sin θ + x cos θ = ". Parameter θ represents the
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angle of inclination and " is the length of the shortest chord between the line
and the origin of the image coordinate system. There exist several other bounded
parameterizations, mainly based on intersections of lines with image’s bounding
box [18][11][4]. Different properties of these intersects are used as parameters.

The majority of currently used implementations seems to be using the θ-"
parameterization – for example the OpenCV library implements several variants
of line detectors based on the θ-" parameterization and none other. It is mainly
because the parameterization uses a very straightforward transformation from
the image space to one bounded space of parameters and because of its uniform
distribution of the discretization error across the Hough space.

Several research groups invested effort to deal with computational complexity
of the Hough transform based on the θ-" parameterization. Different methods
focus on special data structures, non-uniform resolution of the accumulation
array or special rules for picking points from the input image.

O’Rourke and Sloan developed two special data structures: dynamically quan-
tized spaces (DQS) [13] and dynamically quantized pyramid (DQP) [17]. Both
these methods use splitting and merging cells of the space represented as a binary
tree, or possibly a quadtree. After processing the whole image, each cell contains
approximately the same number of votes; that leads to a higher resolution of the
Hough space of accumulators at locations around the peaks.

A typical method using special picking rules is the Randomized Hough Trans-
form (RHT) [19]. This method is based on the idea, that each point in an n-
dimensional Hough space of parameters can be exactly defined by an n-tuple of
points from the input raster image. Instead of accumulation of a hypersurface
in the Hough space for each point, n points are randomly picked and the cor-
responding accumulator in the parameter space is increased. Advantages of this
approach are mostly in rapid speed-up and small storage. Unfortunately, when
detecting lines in a noisy input image, the probability of picking two points from
same line is small, decreasing the probability of finding the true line.

Another approach based on repartitioning the Hough space is represented by
the Fast Hough Transform (FHT) [8]. The algorithm assumes that each edge
point in the input image defines a hyperplane in the parameter space. These
hyperplanes recursively divide the space into hypercubes and perform the Hough
transform only on the hypercubes with votes exceeding a selected threshold. This
approach reduces both the computational load and the storage requirements.

Using principal axis analysis for line detection was discussed by Rau and Chen
[15]. Using this method for line detection, the parameters are first transferred to
a one-dimensional angle-count histogram. After transformation, the dominant
distribution of image features is analyzed, with searching priority in peak de-
tection set according to the principal axis. There exist many other accelerated
algorithms, more or less based on the above mentioned approaches; e.g. HT
based on eliminating of particle swarm [2] or some specialized tasks like iterative
RHT [9] for incomplete ellipses and N-Point Hough transform for line detec-
tion [10]. For more information about different existing modifications of Hough
transform, please see [7].
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This paper presents an algorithm for real-time detection of lines based on the
standard Hough transform using the θ-" parameterization. The classical Hough
transform has some advantages over the accelerated and approximated methods
(it does not introduce any further detection error and it has a low number
of parameters and therefore usually requires less detailed application-specific
fine-tuning). That makes the real-time implementation of the Hough transform
desirable. The algorithm uses a modified strategy for accumulating the votes in
the array of accumulators in the Hough space. The strategy was designed to
meet the nature of today’s graphics chips (GPUs). The modified algorithm is
presented in Section 2 of the paper. Section 3 presents the experiments comparing
the commonly used variant of Hough transform with the implementation of
the algorithm run on a GPU. The results show that the GPU implementation
achieves such performance which allows running the Hough transform with a
high-resolution accumulator space in real time. Section 4 concludes the paper
and proposes directions for future work.

2 Real-Time Hough Transform Algorithm

Before discussing the new real-time Hough transform algorithm, let us review
the “classical” Hough transform procedure based on the θ-" parameterization in
Algorithm 1 (the θ-" parameterization itself is depicted by Figure 1).

Algorithm 1. HT for detecting lines based on the θ-" parameterization.
Input: Input image I with dimensions Iw, Ih, Hough space dimensions H�, Hθ

Output: Detected lines L = {(θ1, �1), . . .}
1: H(�̄, θ̄)← 0,∀�̄ ∈ {1, . . . , H�}, θ̄ ∈ {1, . . . , Hθ}
2: for all x ∈ {1, . . . , Iw}, y ∈ {1, . . . , Ih} do
3: if I(x, y) is edge then
4: increment H

(
�̄(θ̄, x, y), θ̄

)
,∀θ̄ ∈ {1, . . . , Hθ}

5: end if
6: end for
7: L = {(θ(θ̄), �(�̄))|�̄ ∈ {1, . . . , H�} ∧ θ̄ ∈ {1, . . . Hθ}∧ at (�̄, θ̄) is a high max. in H}

Points in the input image I with dimensions Iw and Ih are classified with a
binary decision on line 3 (e.g. by an edge detector and thresholding). Lines 2–
6 accumulate curves into the Hough space. Function "̄(θ̄, x, y) computes the
corresponding "̄ for each line passing through point (x, y) at angle θ̄:

"̄(θ̄, x, y) =

[
H�

(
(y − Ih

2 ) sin( π
Hθ

θ̄) + (x− Iw

2 ) cos( π
Hθ

θ̄)
)

√
I2
w + I2

h

+
H�

2

]
. (1)

Line 7 detects above-threshold local maxima in the accumulated space and trans-
forms the discretized Hough space coordinates "̄ and θ̄ to " and θ by the following
functions:

"("̄) =

√
I2
w + I2

h

H�

(
"̄− H�

2

)
, θ(θ̄) =

π

Hθ
θ̄. (2)
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Fig. 1. The θ-� parameterization of lines in a coordinate system with origin in the
center of the input image.

Usually, a small neighborhood (3 × 3 in OpenCV, 5 × 5 or 7 × 7 in cases of high
resolution of the Hough space) is used for detecting the local maxima by line 7.
The accumulator value must be above a given threshold to be considered for a
“high local maxima”. The threshold is another input parameter of the algorithm,
but since it does not influence the algorithm’s structure, it is used silently by
line 7 for simplicity of the algorithmic notation.

The key characteristic of this algorithm is rasterization of the sinus curve and
incrementation the corresponding accumulators in the Hough space. On some
systems, this might be expensive or even not available at all.

2.1 Hough Transform on a Small Read-Write Memory of
Accumulators

The classical Hough transform accesses sparsely a relatively large amount of
memory. This behavior can diminish the effect of caching. On CUDA and similar
architectures, this effect is even more significant, as the global memory is not
cached. To achieve real-time performance, the memory requirements must be
limited to the shared memory of a multiprocessor (typically 16 kB).

Algorithm 2 shows the modified Hough transform accumulation procedure.
The key difference from Algorithm 1 is the actual size of the Hough space. The
new algorithm stores only H�×n accumulators, where n is the neighborhood size
required for the maxima detection. Functions "̄, θ, ", and the edge and maxima
detection are identical to Algorithm 1. First, the detected edges are stored in a
set P (line 1). Then, first n rows of the Hough space are computed by lines 2–7.
The memory necessary for containing the n lines is all the memory required by
the algorithm and even for high resolutions of the Hough space, the buffer of n
lines fits easily in the shared memory of the GPU multiprocessors.

In the main loop (lines 9–18), for every row of the Hough space, the max-
ima are detected (line 10), the accumulated neighborhood is shifted by one row
(lines 11–13) and a new row is accumulated (lines 14–17); please refer to Fig-
ure 2 for an illustration of the algorithm. Thus, only the buffer of n lines is being
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Algorithm 2. HT accumulation strategy using a small read-write memory.
Input: Input image I with dimensions Iw, Ih, Hough space dimensions H�, Hθ,

neighborhood size n
Output: Detected lines L = {(θ1, �1), . . .}
1: P ← {(x, y)|x ∈ {1, . . . , Iw} ∧ y ∈ {1, . . . , Ih} ∧ I(x, y) is an edge}
2: H(�̄, i)← 0, ∀�̄ ∈ {1, . . . , Hρ},∀i ∈ {1, . . . .n}
3: for all i ∈ {1, . . . , n} do
4: for all (x, y) ∈ P do
5: increment H(�̄(i, x, y), i)
6: end for
7: end for
8: L← {}
9: for θ̄ = �n

2
� to Hθ − �n

2
� do

10: L← L ∪ {(θ(θ̄), �(�̄))|�̄ ∈ {1, . . . H�} ∧ (�̄, �n
2
�) is a high local max. in H}

11: for i = 1 to n− 1 do
12: H(�̄, i)← H(�̄, i + 1), ∀�̄ ∈ {1, . . . , H�}
13: end for
14: H(�̄, n)← 0, ∀�̄ ∈ {1, . . . , H�}
15: for all (x, y) ∈ P do
16: increment H(�̄(θ̄ + �n

2
�, x, y), n)

17: end for
18: end for

reused. The memory shift can be implemented using a circular buffer of lines to
avoid data copying.

In the pseudocode, maxima are not detected at the edges of the Hough space.
Eventual handling of the maxima detection at the edge of the Hough space does
not change the algorithm structure, but it would unnecessarily complicate the
pseudocode. Two solutions exist – either copying the border data or rasteriz-
ing necessary parts of the curves outside of the Hough space. Both approaches
perform similarly and their implementation is straightforward.

On CUDA, the threads in a block can be used for processing the set of edges
P (lines 15–17 and 4–6) in parallel, using an atomic increment of the shared
memory to avoid read-write collisions. In order to use all multiprocessors of the
GPU, the loop on line 9 is broken to a number (e.g. 90 is suitable for current
NVIDIA GeForce graphics chips) of sub-loops processed by individual blocks of
threads.

The algorithm as described above uses exactly H� × n memory cells, typi-
cally 16-bit integer values. In the case when the runtime system has more fast
random-access read-write memory, this memory can be used fully, and instead
of accumulating one line of the Hough space (lines 15–17 of the algorithm),
several lines are accumulated and then scanned for maxima. This leads to fur-
ther speedup by reducing the number of steps carried out by the loop over θ̄
(line 9).
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Fig. 2. Illustration of Algorithm 2. The gray rectangle represents the buffer of n lines.
For row 4, the above-threshold maxima are detected in each step within the buffer.
Then, the row 7 values are accumulated into the buffer, using the space of row 2, which
will not be needed in future processing.

2.2 Harnessing the Edge Orientation

In 1976 O’Gorman and Clowes came with the idea not to accumulate values
for each θ but just one value instead [12]. The appropriate θ for a point can be
obtained from the gradient of the detected edge which contains this point [16].
One common way to calculate the local gradient direction of the image intensity
is using the Sobel operator. Sobel detector uses two kernels, each approximates
the derivation in horizontal (Gx), respectively vertical (Gy) direction. Using
these two values, the gradient’s direction can be obtained as θ = arctan(Gy

Gx
).

To avoid errors caused by noise and rasterization, accumulators within several
degrees around the calculated angle are also incremented. From experimental
testing, the interval’s radius equal to 20◦ seems suitable. This approach reduces
the computation time and highlights the maxima peaks. A disadvantage of this
method is its dependency of the results on another user parameter – the radius.
Small radius of the incremented interval of θ can lead into discarding some
maxima due to inaccurate θ location. On the other hand, a too high radius can
diminish the performance benefits of the method.

This approach to utilizing the detected gradient can be incorporated to the
new accumulation scheme presented in the previous section. When extracting
the “edge points” for which the sinusoids are accumulated in the Hough space
(line 1 in Algorithm 2), also the edge inclination is extracted:

1: P ← {(α, x, y)|x ∈ {1, . . . , Iw} ∧ y ∈ {1, . . . , Ih}
∧ I(x, y) is an edge with orientation α}.

Then, instead of accumulating all points from set P (lines 4–6), only those points
which fall into the interval with radius w around currently processed θ are ac-
cumulated into the buffer of n lines:
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4: for all (α, x, y) ∈ P ∧ i− w < ᾱ < i+ w do
5: increment H("̄(i, x, y), i+ �n

2 �)
6: end for

and similarly for lines 15–17:

16: for all (α, x, y) ∈ P ∧ θ̄ + �n
2 � − w < ᾱ < θ̄ + �n

2 � + w do
17: increment H("̄(θ̄ + �n

2 �, x, y), n)
18: end for.

Please, note that the edge extraction phase (line 1) can sort the detected edges
by their gradient inclination α, so that loops on lines 15–17 and 4–6 do not visit
all edges, but only edges potentially accumulated, based on the current θ̄ (line 9
of Algorithm 2). For (partial) sorting of the edges on GPU, an efficient prefix
sum can be used [5].

3 Experimental Results

This section evaluates the speed of the newly presented line-detection algorithm.
Two groups of experiments were made: the first one is focused on the speedup in
the case when " is calculated for each θ (Section 2.1, Algorithm 2); the second
test evaluates the situation when the Sobel operator is used for detection of
edge orientation and only an interval of the sinusoid curves is accumulated to
the Hough space (Section 2.2).

Each test compares the computation time of 4 implementations: new algo-
rithm running on (i) ASUS nVIDIA GTX480 graphics card (1.5GB GDDR5
RAM) and (ii) ASUS nVIDIA GTX280 graphics card (1GB GDDR3 RAM),
(iii) an OpenMP parallel CPU implementation of the presented algorithm (Intel
Core i7-920, 6GB 3×DDR3-1066(533MHz) RAM – the same machine was used
for evaluating the GPU variants), (iv) and an OpenMP parallel “standard” im-
plementation running on the same machine. As the “standard” implementation,
the code based on OpenCV functions was used and optimized by parallelization.

3.1 Performance Evaluation on Synthetic Binary Images

As the dataset for this experiment we used automatically generated black-and-
white images. The generator randomly places L white lines and then inverts
pixels on P different positions in the image. The evaluation is done on 36
images (resolution 1600 × 1200): images 1–6, 7–12, 13–18, 19–24, 25–30, 31-
36 are generated with L = 1, 30, 60, 90, 120, 150 respectively, with increasing
P = 1, 3000, 6000, 9000, 12000, 15000 for each L. The suitable parameters for
images of these properties were H� = 960 and Hθ = 1170 (resolution of the
Hough space) and the threshold for accumulators in the Hough space was 400.

Figure 3 reports the results of the four implementations. Note, please, that
the CUDA version is several times faster than the commonly used OpenCV
implementation and achieves real-time or nearly real-time speeds.
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Fig. 3. Performance evaluation on synthetic binary images. Red: GTX480, Orange:
GTX280, Green: Striped algorithm on the CPU, Blue: Standard HT accumulation.

3.2 Performance Evaluation on Real-Life Images

The images used in this test were real-world images (see Figure 4). For possi-
bility of comparison with previous test, resolution of Hough space was same;
i.e. H� = 960 and Hθ = 1170; the threshold for accumulators in the Hough
space was dependant on the input image resolution (one fourth of the diagonal;
this corresponds to the shortest possible line detected by Hough transform); the
radius of the accumulated interval (refer to Section 2.2) was 20◦.

Figure 5 contains the measured results. They indicate that even for complex
real-world images the proposed algorithm implemented on commodity graphics
hardware can detect lines at interactive frame rates. Contrary to the version that
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Fig. 4. Representative real images used in the test. The number in the top-left corner
of each thumbnail image is the image ID – used on the horizontal axis in Figure 5. The
bottom-left corner of each thumbnail states the pixel resolution of the tested image.



792 R. Jošth et al.
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Fig. 5. Performance evaluation on real-world images (see Figure 4) using the Sobel
operator and only accumulating intervals of the sinusoids. Red: GTX480, Orange:
GTX280, Green: Striped algorithm on the CPU, Blue: Standard HT accumulation.

works with the whole sinusoids in the Hough space (Section 3.1), the speed of
the CPU implementation of the presented algorithm is about as fast as the stan-
dard CPU version. This can be explained by better cache coherency when only
fractions of the sinusoids are rasterized. However, for efficient implementation
on CUDA and similar architectures, the presented algorithm is required.

4 Conclusions

This paper presents a modified algorithm for line detection using the Hough
transform based on θ-" parameterization. The algorithm was designed to fully
using of small read-write memory; that makes it suitable for execution on recent
graphics processors.

The experiments show that on commodity graphics hardware, the algorithm
can operate at interactive frame rates even on high-resolution real-life images,
while accumulating to a high-resolution Hough space to achieve accurate line
detections. This real-time processing speed is achieved for the plain Hough trans-
form, which – contrary to the acceleration and approximation mechanisms used
in the literature – does not require many application-specific parameters. There-
fore, its use in applications is more straightforward and does not require com-
plicated human-assisted parameter tweaking. While the algorithm was designed
for GPU processing, it outperforms the standard HT implementation even on
the CPU, thanks to better cache usage of the new accumulation scheme.

The algorithm is very suitable for recent GPUs; however, it can be used on
other architectures with limited fast read-write memory and high degree of par-
allelism, as well. In near future, we are intending to explore its usability on other
platforms – focusing on embedded, mobile and low-power systems.
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Abstract. A new solution is proposed to decompose a curve into arcs
and straight line segments in O(n log n) time. It is a combined solution
based on arc detection [1] and dominant point detection [2] to strengthen
the quality of the segmentation results. Experimental results show the
fastness of the proposed method.

1 Introduction

An important problem in computer vision is the extraction of meaningful fea-
tures from image contour for constructing high level descriptors of images. Many
existing methods use critical points or straight segments as meaningful features
to construct the descriptors. Arc and straight segments are basic objects that
appear often in images, specially in graphic document images. A combination of
arcs and straight segments is a good solution that avoids the problem in which
an arc is approximated by many straight segments or critical points.

Many methods have been proposed for decomposition of a planar curve into
arcs and line segments. Rosin et al. [3] constructed firstly a polygonal description
and detected fitting arcs by grouping connected lines. Chen et al. [4] proposed a
method for segmenting a digital curve into lines and arcs in which the number
of primitives is given. This procedure has two stages. The first stage, based on
the detection of significant changes on curvature profile, is to obtain a starting
set of break points and determine an initial approximation by arcs and lines
based on this set of break points. The second stage is an optimization phase
that adjusts the break points until the error norm is locally minimized. Horng
et al. [5] introduced a curve-fitting method to approximate digital planar curves
using lines and arcs based on an approach of dynamic programming. After that,
Horng [6] proposed an adaptive smoothing approach for decomposition of a
digital curve into arcs and lines. Firstly, a curvature profile is determined by
using a Gaussian filter. Then, it is smoothed by using an adaptive smoothing
technique. Finally, the input curve is segmented by arcs and lines based on
the smoothed curvature representation. Similarly, Salmon et al. [7] proposed a
method for decomposition of a curve into arcs and segments based on curvature
profile. They used a notion of discrete curvature based on arithmetic discrete
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c© Springer-Verlag Berlin Heidelberg 2011



Decomposition of a Curve into Arcs and Line Segments 795

lines and blurred segments. The main idea is to construct the curvature profile of
the curve and use the extracted key points for reconstruction. Tortorella [8] et al.
introduced a method to approximate a curve by arcs and straight segments based
on an approach of dynamic programming. This method works in a transformed
domain, called the turning function (see Arkin [9]). Bodansky [10] presented
a method for the approximation of a polyline with straight segments, circular
arcs and free curves. It contains two steps. The first step is the segmentation of
polygonal lines into fragments (short polygonal lines) and the second step is the
approximation of the fragments by geometric primitives. If some fragments can
not be approximated by geometric primitives with acceptable precision, they are
recognized as free curves.

In this paper, we present a novel method for decomposition of a curve into
arcs and lines. It is based on a new method for circle detection [1] and dominant
point detection [2]. Dominant point detection [2] is used as a preliminary step
to extract the critical points of the curve. It has a complexity in O(n log n)
time. So, it possesses a low processing cost. In addition, it is easy and simple
to implement. The rest of this paper is organized as follows. The next section
recalls a method for dominant point detection. Section 3 presents a method
for circle detection. In section 4, we propose a method to split a curve into
arcs and straight line segments. Section 5 presents some experimentations and
applications to vectorization based on curve reconstruction.

2 Dominant Point Detection

Dominant points (DP) are local maximum curvature points on a curve that have
a rich information content and are sufficient to characterize this curve. We recall
hereafter a method of dominant point detection [2] based on an approach of
discrete geometry.

2.1 Blurred Segment

The notion of blurred segment [11] was introduced from the notion of an
arithmetical discrete line. An arithmetical discrete line, noted D(a, b, μ, ω),
(a, b, μ, ω) ∈ Z

4, gcd(a, b) = 1, is a set of points (x, y) ∈ Z
2 that satisfies:

μ ≤ ax− by < μ + ω. A blurred segment (BS) [11] with a main vector (b, a),
lower bound μ and thickness ω is a set of integer points (x, y) that is optimally
bounded (see [11] for more detail) by a discrete line D(a, b, μ, ω). The value
ν = ω−1

max(|a|,|b|) is called the width of this BS. Figure 1.a shows a blurred segment
(the sequence of gray points) whose the optimal bounding line is D(5, 8,−8, 11),
the vertical distance is 1.25. Nguyen et al. proposed in [12] the notion of maximal
blurred segment. A maximal blurred segment of width ν (MBS) (see figure
1.b) is a width ν blurred segment that can not be extended to the left and the
right sides of a given curve. A linear recognition algorithm of width ν blurred
segments is described in [11].
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Fig. 3. MBS and dominant point

2.2 A Method for Dominant Point Detection

Nguyen et al. introduced some propositions utilized in [2] to locate and eliminate
weak candidates as dominant points (DP). Considering a given width ν, we have:

Proposition 1. A DP must be in a common zone of successive maximal blurred
segments (see figure 2).

Proposition 2. The smallest common zone of successive maximal blurred seg-
ments whose slopes are monotone contains a candidate of DP (see figure 3.a).

Proposition 3. A maximal blurred segment contains a maximum of 2 DP can-
didates (see figure 3.b).

Heuristic strategy: In each smallest zone of successive maximal blurred seg-
ments whose slopes are increasing or decreasing, the candidate as dominant point
is detected as the middle point of this zone.

Based on the above study, Nguyen et al. proposed a method for the dominant
point detection (see algorithm 1).
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Algorithm 1. Dominant point detection [2].

Data: C discrete curve of n points, ν width of the segmentation
Result: D set of extracted dominant points
begin

Build MBSν = {MBS(Bi, Ei, ν)}mi=1, {slopei}mi=1 ;
m = |MBSν |; p = 1; q = 1; D = ∅ ;
while p ≤ m do

while Eq > Bp do p + +;
Add (q, p− 1) to stack;
q=p-1;

while stack �= ∅ do
Take (q, p) from stack;
Decompose {slopeq, slopeq+1, ..., slopep} into monotone sequences;
Determine the last monotone sequence {sloper, ..., slopep};
Determine the middle point DP of the last monotone sequence
{sloper, ..., slopep};
D = {D ∪DP} ;

end

3 Arc Detection

In this section, we recall a linear method [1] for the detection of digital arcs.
Nguyen and Debled proposed in [1] some properties of arcs in tangent space
representation that are inspired from Arkin [9] and Latecki [13].

3.1 Tangent Space Representation

Let C = {Ci}n
i=0 be a polygon, li - length of segment CiCi+1 and αi = ∠(

−−−−→
Ci−1Ci,−−−−→

CiCi+1). If Ci+1 is on the right of
−−−−→
Ci−1Ci then αi > 0, otherwise αi < 0.

Let us consider the transformation that associates a polygon C of Z
2 to a

polygon of R2 constituted by segments Ti2T(i+1)1, T(i+1)1T(i+1)2, 0 ≤ i < n (see
figure 4) with:

T02 = (0, 0),
Ti1 = (T(i−1)2.x+ li−1, T(i−1)2.y), i from 1 to n,
Ti2 = (Ti1.x, Ti1.y + αi), i from 1 to n− 1.

3.2 Properties of Arc in the Tangent Space

Nguyen et al. also proposed in [1] some properties of a set of sequential chords of a
circle in the tangent space. They are resumed by proposition 4 (see also figure 5).

Proposition 4. [1] Let C = {Ci}n
i=0 be a polygon, αi = ∠(

−−−−→
Ci−1Ci,

−−−−→
CiCi+1)

such that αi ≤ αmax ≤ π
4 . The length of CiCi+1 is li, for i ∈ {1, . . . , n}. We

consider the polygon T (C), that corresponds to its representation in the modified
tangent space, constituted by the segments Ti2T(i+1)1, T(i+1)1T(i+1)2 for i from



798 T.P. Nguyen and I. Debled-Rennesson

α1

α2

α3

C0

C1

C2

C3

C4

(a) Input polygonal curve

x0

y

α1
α2

α3

T11

T12 T21

T22 T31

T32 T41

T02

(b) Tangent space representation

Fig. 4. Tangent space representation

O

C2
C3

H0

H1

C0
C5

C4

C1

α1

H

(a) A set of sequential chords
of an arc.

x

y

0

T(i+1)1

T(i+2)1

Ti1

Ti2

T(i−1)2

Mi+1

Ii

Ii+1Mi

T(i+1)2

Mi−1

(b) Its property in tangent space represen-
tation.
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0 to n − 1. MpC = {Mi}n−1
i=0 is the midpoint set of {Ti2T(i+1)1}n−1

i=0 . So, C is
a polygon whose vertices are on a real arc only if MpC = {Mi}n−1

i=0 is a set of
quasi collinear points.

From now on, MpC is called the midpoint curve.

3.3 Algorithm for Arc (Circle) Detection

Thanks to proposition 4, Nguyen et al. proposed a linear algorithm in [1] (see
algo. 2) for the arc/circle detection.

4 Curve Decomposition into Arcs and Lines

Algorithm 2 allows to recognize a digital circle by detecting straight line segment
in the tangent space. The parameter αmax is used to assure that the hypothesis
of theorem 4 is valid. We have the definition below.

Definition 1. In the curve of midpoints in the tangent space, an isolated
point is a midpoint satisfying that the differences of ordinate values between
it and one of its 2 neighboring midpoints on this curve is higher than the thresh-
old αmax. If this condition is satisfied with all 2 neighboring midpoints, it is
called a full isolated point
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Algorithm 2. Detection of a digital arc/circle [1].

Data: C = {Ci}ni=0 digital curve, αmax - maximal admissible angle, ν- width of
blurred segment

Result: ARC if C is an arc, CIRCLE if C is a circle, FALSE otherwise.
begin

Use [11] to decompose C with blurred segments of width 1: P = {P}mi=0;
Represent P in the modified tangent space by T (P ) (see section 3.1);
if there exists i such that Ti2.y − Ti1.y > αmax then return FALSE;
Determine the midpoint set MpC = {Mi}m−1

i=0 of {Ti2T(i+1)1}m−1
i=0 ;

Use the algorithm in [11] to verify if MpC is a blurred segment of width ν;
if MpC is a straight line segment then

if |Mm−1.y −M0.y| � 2 ∗ π then
return CIRCLE;

else return ARC;

else return FALSE;
end

4.1 Main Idea of the Proposed Method

We present in this section a new method for curve decomposition into arcs and
straight line segments. Our principal idea is to apply a dominant point detector
[2] as preprocessing step to enhance the segmentation quality. We assume that
the extremities between an arc and a straight segment, or among 2 arcs, or
among 2 straight line segments are also dominant points. It is true for almost
all cases. Therefore, we detect firstly the dominant points on the input curve
C. These points are considered as candidates for extremities between the arcs
and the straight line segments in a decomposition of C. In the next step, we will
group the points if they constitute an arc. The detection of an arc [1] is based
on theorem 4 by using algo. 2. Thanks to this algorithm, an arc corresponds to
a straight segment on the curve of midpoints (MpC) such that the difference of
ordinate values among 2 successive midpoints is less than a threshold αmax. The
isolated points correspond to straight line segments. This process is done in the
tangent space representation of the polygon that is constructed from detected
dominant points.

4.2 Analysis of Configurations

Let us consider figure 6. In this example, there are all basic configurations among
the primitive arc and line: arc-arc, arc-line and line-line. Figure 7 presents these
configurations in detail in the tangent space. Concerning the midpoint curve
(MpC) in the tangent space, we have several remarks below.

– An isolated point in MpC corresponds to an extremity among two adjacent
primitives in C.

– A full isolated point in MpC corresponds to an line segment in C.
– An isolated point in MpC can be co-linear with a set of co-linear points that

corresponds to an arc.
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Due to the second remark, it is not appropriate to apply directly a polygonal-
ization on the midpoint curve to extract arcs from the input curve.

4.3 Proposed Algorithm

Thanks to the above remarks, we present hereafter an algorithm (see algo. 3) to
decompose a curve C into arcs and straight line segments. First, the sequence
of dominant points (DpC) of C is computed. DpC is then transformed in the
tangent space and the MpC curve is constructed. An incremental process is
then used and each point of MpC is tested: if it is not an isolated point (in
this case, it corresponds to a segment in C), the blurred segment recognition
algorithm [11] permits to test if it can be added to the current blurred segment
(which corresponds to an arc in C). If it is not possible, a new blurred segment
starts with this point.

Complexity: As shown in [2], the detection of dominant points can be done in
O(n log n) time. The transform to the tangent space is done in linear time. The
recognition process in MpC is also done in linear time [11]. So, the proposed
method is done in O(n logn) time.

1 By default, αmax = π
4
, ν = 0.2 (see algo. 3).
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Algorithm 3. Curve decomposition into arcs and lines

Data: C = {C1, . . . , Cn}-a digital curve, αmax- maximal angle, ν-width of
blurred segments 1

Result: ARCs- set of arcs, LINEs- set of lines
begin

Use [2] to detect the set of dominant points: DpC = {D0, . . . , Dm}; BS = ∅;
Transform DpC in the tangent space and construct the midpoint curve
MpC = {Mi}m−1

i=0 ;
for i=0 to m-1 do

CbiCei = {Ci}ei
bi

- part of C wich corresponds to Mi;

if
(
(|Mi.y −Mi−1.y| > αmax)&&(|Mi.y −Mi+1.y| > αmax)

)
then

Push CbiCei to LINEs;

else
if BS ∪Mi is a blurred segment of width ν [11] then
BS = BS ∪Mi;
else

C
′
- part of C corresponding to BS;Push C

′
to ARCs;

if
(
(|Mi.y −Mi−1.y| > αmax)||(|Mi.y −Mi+1.y| > αmax)

)
then

Push CbiCei to LINEs;BS = ∅;
else

BS = {Mi};

end

5 Experimentations

5.1 Experimental Results and Comparisons

This method is rapid and simple to implement. Figures 8, 9 and 10 show some
experimental results of the proposed methods.

Moreover, figures 11, 12 and table 1 show some comparisons with other meth-
ods [7,5,6]. Salmon et al. [7] proposed a method for the same purpose based on

(a) Decomposition into arcs and
lines

(b) Vectorization

Fig. 8. Test on the curve in figure 6. Parameters: αmax = π
4
, ν = 0.2



802 T.P. Nguyen and I. Debled-Rennesson

(a) (b)

(c) (d)

Fig. 9. Curve reconstruction by using the proposed method. (a) (resp. (c)): Input curve,
(b) (resp. (d)): Reconstructed curve. Parameters: αmax = π

4
, ν = 0.2.

(a) Input image (b) Extracted edge (c) Decomposition (d) Reconstruction

(e) Input image (f) Extracted
contour

(g) Decomposi-
tion

(h) Recon-
struction

Fig. 10. Test on technical images. Parameters: αmax = π
4
, ν = 0.2.
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Table 1. Comparison with others methods: Horng et al. [5] and Horng [6]

Curve No of point Method No of primitives ISE CR FOM CPU Time (s)

Fig. 12.b 605
Proposed 22 449.828 27 0.060 0.05

Horng et al. 15 489.7 40.333 0.0824 1274.75
Horng 29 329.9 20.862 0.0632 3.23

Fig. 12.c 413
Proposed 22 139.746 22 0.1288 0.03

Horng et al. 13 175.4 31.769 0.1811 511.77
Horng 26 107.7 15.885 0.1475 0.94

curvature profile that is constructed by using the determination of left and right
blurred segment at each point in O(n2) time. So, this method is less efficient
than our method. Moreover, the use of filtering and least square fitting methods
on the curvature profile cause a distortion in the results of reconstruction. On
the contrary, our method is based on a dominant point detector, so the extremi-
ties among sequential primitives are well located. Table 1 compares qualitatively
the proposed method with other methods. We adapt the criterion of Sarkar [14]
that is used in polygonal approximation to calculate the quality of each method.
CR is the compression ratio between the number of points and the number of
extracted primitives, ISE is the integral square error between the curve and the
reconstructed curve and FOM is the ratio between CR and ISE to balance
these two aspects. The proposed method is a little less efficient than Horng et
al. [5], Horng [6] but it is more rapid than these ones.

5.2 Application to Vectorization

Thanks to this method, figure 8.b presents the reconstruction of the curve
based on extracted arcs and lines. That is also the main idea for an appli-
cation to vectorization of a curve based on the reconstruction of the curve
from extracted arcs and lines. An arc is constructed simply based on 2 ex-
tremities and the middle point of the digital arc. Figure 10.d and figure 9.b, d
show some examples of vectorization by using the proposed method with other
curves.

(a) Input curve (b) Proposed method (c) Salmon’s method [7]

Fig. 11. Comparison with Salmon et al. [7]
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(a) Input image (b) Curve 1 (c) Curve 2

(d) Curve
1, proposed
method

(e) Curve 1,
Horng et al. [5]

(f) Curve 1,
Horng [6]

(g) Curve 2, proposed
method

(h) Curve 2, Horng et al.
[5]

(i) Curve 2, Horng [6]

Fig. 12. Comparison with Horng et al. [5] and Horng [6]. Parameters: αmax = π
4
,

ν = 0.2.

6 Conclusion

We have presented a new method for decomposition of a curve into arcs and
lines in O(n logn) time. A preprocessing based on dominant point detector [2]
allows us to locate the extremities among primitives such as lines and arcs well.
By detecting the isolated points, the arc and line primitives can be located in
the input curve. The use of 2 primitives (arc and line) allows us to obtain a good
description of curves in relation with other techniques based on corner points
and polygonalization.
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